Sample records for plasma source mass

  1. Developments in Plasma-Source Mass Spectrometry

    DTIC Science & Technology

    1988-07-11

    Spectrometry 12 PERSONAL AUTHOR(S) Gary M. Hieftje and George H. Vickers 13a. TYPE OF REPORT b.TMCOEE . TEO POTYerMohay 5.AGCUN Technical FROM TO 11 July...4134006 TECHNICAL REPORT NO. 41 DEVELOPMENTS IN PLASMA-SOURCE MASS SPECTROMETRY by Gary M. Hieftje and George H. Vickers Acessoo i or * NTIS GRMX Prepared...G. M. Hieftje , and A. T. Zander, Spectrochim. Acta 1987, 42B, 29 60 Determination of Lead Isotope Ratios by Inductively Coupled Plasma-Mass

  2. Comparison of Three Plasma Sources for Ambient Desorption/Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    McKay, Kirsty; Salter, Tara L.; Bowfield, Andrew; Walsh, James L.; Gilmore, Ian S.; Bradley, James W.

    2014-09-01

    Plasma-based desorption/ionization sources are an important ionization technique for ambient surface analysis mass spectrometry. In this paper, we compare and contrast three competing plasma based desorption/ionization sources: a radio-frequency (rf) plasma needle, a dielectric barrier plasma jet, and a low-temperature plasma probe. The ambient composition of the three sources and their effectiveness at analyzing a range of pharmaceuticals and polymers were assessed. Results show that the background mass spectrum of each source was dominated by air species, with the rf needle producing a richer ion spectrum consisting mainly of ionized water clusters. It was also seen that each source produced different ion fragments of the analytes under investigation: this is thought to be due to different substrate heating, different ion transport mechanisms, and different electric field orientations. The rf needle was found to fragment the analytes least and as a result it was able to detect larger polymer ions than the other sources.

  3. Comparison of three plasma sources for ambient desorption/ionization mass spectrometry.

    PubMed

    McKay, Kirsty; Salter, Tara L; Bowfield, Andrew; Walsh, James L; Gilmore, Ian S; Bradley, James W

    2014-09-01

    Plasma-based desorption/ionization sources are an important ionization technique for ambient surface analysis mass spectrometry. In this paper, we compare and contrast three competing plasma based desorption/ionization sources: a radio-frequency (rf) plasma needle, a dielectric barrier plasma jet, and a low-temperature plasma probe. The ambient composition of the three sources and their effectiveness at analyzing a range of pharmaceuticals and polymers were assessed. Results show that the background mass spectrum of each source was dominated by air species, with the rf needle producing a richer ion spectrum consisting mainly of ionized water clusters. It was also seen that each source produced different ion fragments of the analytes under investigation: this is thought to be due to different substrate heating, different ion transport mechanisms, and different electric field orientations. The rf needle was found to fragment the analytes least and as a result it was able to detect larger polymer ions than the other sources.

  4. Mass analyzer ``MASHA'' high temperature target and plasma ion source

    NASA Astrophysics Data System (ADS)

    Semchenkov, A. G.; Rassadov, D. N.; Bekhterev, V. V.; Bystrov, V. A.; Chizov, A. Yu.; Dmitriev, S. N.; Efremov, A. A.; Guljaev, A. V.; Kozulin, E. M.; Oganessian, Yu. Ts.; Starodub, G. Ya.; Voskresensky, V. M.; Bogomolov, S. L.; Paschenko, S. V.; Zelenak, A.; Tikhonov, V. I.

    2004-05-01

    A new separator and mass analyzer of super heavy atoms (MASHA) has been created at the FLNR JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10-3. First experiments with the FEBIAD plasma ion source have been done and give an efficiency of ionization of up to 20% for Kr with a low flow test leak (6 particle μA). We suppose a magnetic field optimization, using the additional electrode (einzel lens type) in the extracting system, and an improving of the vacuum conditions in order to increase the ion source efficiency.

  5. Surface analysis using a new plasma assisted desorption/ionisation source for mass spectrometry in ambient air

    NASA Astrophysics Data System (ADS)

    Bowfield, A.; Barrett, D. A.; Alexander, M. R.; Ortori, C. A.; Rutten, F. M.; Salter, T. L.; Gilmore, I. S.; Bradley, J. W.

    2012-06-01

    The authors report on a modified micro-plasma assisted desorption/ionisation (PADI) device which creates plasma through the breakdown of ambient air rather than utilising an independent noble gas flow. This new micro-PADI device is used as an ion source for ambient mass spectrometry to analyse species released from the surfaces of polytetrafluoroethylene, and generic ibuprofen and paracetamol tablets through remote activation of the surface by the plasma. The mass spectra from these surfaces compare favourably to those produced by a PADI device constructed using an earlier design and confirm that the new ion source is an effective device which can be used to achieve ambient mass spectrometry with improved spatial resolution.

  6. Plasma Ion Sources for Atmospheric Pressure Ionization Mass Spectrometry.

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-Guo

    1994-01-01

    Atmospheric pressure ionization (API) sources using direct-current (DC) and radio-frequency (RF) plasma have been developed in this thesis work. These ion sources can provide stable discharge currents of ~ 1 mA, 2-3 orders of magnitude larger than that of the corona discharge, a widely used API source. The plasmas can be generated and maintained in 1 atm of various buffer gases by applying -500 to -1000 V (DC plasma) or 1-15 W with a frequency of 165 kHz (RF plasma) on the needle electrode. These ion sources have been used with liquid injection to detect various organic compounds of pharmaceutical, biotechnological and environmental interest. Key features of these ion sources include soft ionization with the protonated molecule as the largest peak, and superb sensitivity with detection limits in the low picogram or femtomole range and a linear dynamic range over ~4 orders of magnitude. The RF plasma has advantages over the DC plasma in its ability to operate in various buffer gases and to produce a more stable plasma. Factors influencing the performance of the ion sources have been studied, including RF power level, liquid flow rate, chamber temperature, solvent composition, and voltage affecting the collision induced dissociation (CID). Ionization of hydrocarbons by the RF plasma API source was also studied. Soft ionization is generally produced. To obtain high sensitivity, the ion source must be very dry and the needle-to-orifice distance must be small. Nitric oxide was used to enhance the sensitivity. The RF plasma source was then used for the analysis of hydrocarbons in auto emissions. Comparisons between the corona discharge and the RF plasma have been made in terms of discharge current, ion residence time, and the ion source model. The RF plasma source provides larger linear dynamic range and higher sensitivity than the corona discharge, due to its much larger discharge current. The RF plasma was also observed to provide longer ion residence times and was not

  7. Plasma Source Development

    NASA Astrophysics Data System (ADS)

    Walker, Jonathan; Heinrich, Jonathon; Font, Gabriel; Ebersohn, Frans; Garrett, Michael

    2017-10-01

    A 100 kW class lanthanum-hexaboride plasma source is under continuing development for the Lockheed Martin Compact Fusion Reactor program. The current experiment, T4B, has become a test bed for plasma source operation with the goal of creating a high density plasma target for neutral beam heating. We present operation and performance of different plasma source geometries, results of plasma source coupling, and future plasma source development plans. ©2017 Lockheed Martin Corporation. All Rights Reserved.

  8. Plasma-surface interaction in negative hydrogen ion sources

    NASA Astrophysics Data System (ADS)

    Wada, Motoi

    2018-05-01

    A negative hydrogen ion source delivers more beam current when Cs is introduced to the discharge, but a continuous operation of the source reduces the beam current until more Cs is added to the source. This behavior can be explained by adsorption and ion induced desorption of Cs atoms on the plasma grid surface of the ion source. The interaction between the ion source plasma and the plasma grid surface of a negative hydrogen ion source is discussed in correlation to the Cs consumption of the ion source. The results show that operation with deuterium instead of hydrogen should require more Cs consumption and the presence of medium mass impurities as well as ions of the source wall materials in the arc discharge enlarges the Cs removal rate during an ion source discharge.

  9. Plasma surface cleaning in a microwave plasma source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, C.C.; Nelson, W.D.; Haselton, H.H.

    1994-03-01

    A microwave electron cyclotron resonance (ECR) plasma source has been operated to produce reactive plasmas of oxygen and its mixture with argon. Aluminum samples (0.95 cm by 1.9 cm) were coated with thin films (<20 {mu}m in thickness) of Shell Vitrea oil and cleaned by using such reactive plasmas. The plasma cleaning was done in discharge conditions of microwave power up to 1300 W, radio frequency power up to 200 W, biased potential up to 400 V, gas pressures up to 5 mtorr, and operating time up to 35 min. The surface texture of the postcleaned samples has been examinedmore » visually. Mass loss of the samples after plasma cleaning was measured to estimate cleaning rates. Measured clean rates of low-pressure (0.5-mtorr) argon/oxygen plasmas were as high as 2.7 {mu}m/min. X-ray photoelectron spectroscopy (XPS) was used to determine cleanliness of the sample surfaces after plasma cleaning. The XPS study on polished samples confirmed the effectiveness of plasma cleaning in achieving atomic level of surface cleanliness. In this technical memorandum plasma properties, cleaning phenomena, and significant results are reported and discussed.« less

  10. The requirements for low-temperature plasma ionization support miniaturization of the ion source.

    PubMed

    Kiontke, Andreas; Holzer, Frank; Belder, Detlev; Birkemeyer, Claudia

    2018-06-01

    Ambient ionization mass spectrometry (AI-MS), the ionization of samples under ambient conditions, enables fast and simple analysis of samples without or with little sample preparation. Due to their simple construction and low resource consumption, plasma-based ionization methods in particular are considered ideal for use in mobile analytical devices. However, systematic investigations that have attempted to identify the optimal configuration of a plasma source to achieve the sensitive detection of target molecules are still rare. We therefore used a low-temperature plasma ionization (LTPI) source based on dielectric barrier discharge with helium employed as the process gas to identify the factors that most strongly influence the signal intensity in the mass spectrometry of species formed by plasma ionization. In this study, we investigated several construction-related parameters of the plasma source and found that a low wall thickness of the dielectric, a small outlet spacing, and a short distance between the plasma source and the MS inlet are needed to achieve optimal signal intensity with a process-gas flow rate of as little as 10 mL/min. In conclusion, this type of ion source is especially well suited for downscaling, which is usually required in mobile devices. Our results provide valuable insights into the LTPI mechanism; they reveal the potential to further improve its implementation and standardization for mobile mass spectrometry as well as our understanding of the requirements and selectivity of this technique. Graphical abstract Optimized parameters of a dielectric barrier discharge plasma for ionization in mass spectrometry. The electrode size, shape, and arrangement, the thickness of the dielectric, and distances between the plasma source, sample, and MS inlet are marked in red. The process gas (helium) flow is shown in black.

  11. Atmospheric pressure plasma analysis by modulated molecular beam mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aranda Gonzalvo, Y.; Whitmore, T.D.; Rees, J.A.

    Fractional number density measurements for a rf plasma 'needle' operating at atmospheric pressure have been obtained using a molecular beam mass spectrometer (MBMS) system designed for diagnostics of atmospheric plasmas. The MBMS system comprises three differentially pumped stages and a mass/energy analyzer and includes an automated beam-to-background measurement facility in the form of a software-controlled chopper mechanism. The automation of the beam modulation allows the neutral components in the plasma to be rapidly and accurately measured using the mass spectrometer by threshold ionization techniques. Data are reported for plasma generated by a needle plasma source operated using a helium/air mixture.more » In particular, data for the conversion of atmospheric oxygen and nitrogen into nitric oxide are discussed with reference to its significance for medical applications such as disinfecting wounds and dental cavities and for microsurgery.« less

  12. Development of soft ionization using direct current pulse glow discharge plasma source in mass spectrometry for volatile organic compounds analysis

    NASA Astrophysics Data System (ADS)

    Nunome, Yoko; Kodama, Kenji; Ueki, Yasuaki; Yoshiie, Ryo; Naruse, Ichiro; Wagatsuma, Kazuaki

    2018-01-01

    This study describes an ionization source for mass analysis, consisting of glow discharge plasma driven by a pulsed direct-current voltage for soft plasma ionization, to detect toxic volatile organic compounds (VOCs) rapidly and easily. The novelty of this work is that a molecular adduct ion, in which the parent molecule attaches with an NO+ radical, [M + NO]+, can be dominantly detected as a base peak with little or no fragmentation of them in an ambient air plasma at a pressure of several kPa. Use of ambient air as the discharge plasma gas is suitable for practical applications. The higher pressure in an ambient air discharge provided a stable glow discharge plasma, contributing to the soft ionization of organic molecules. Typical mass spectra of VOCs toluene, benzene, o-xylene, chlorobenzene and n-hexane were observed as [M + NO]+ adduct ion whose peaks were detected at m/z 122, 108, 136, 142 and 116, respectively. The NO generation was also confirmed by emission bands of NO γ-system. The ionization reactions were suggested, such that NO+ radical formed in an ambient air discharge could attach with the analyte molecule.

  13. The Thermal Ion Dynamics Experiment and Plasma Source Instrument

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Chappell, C. R.; Chandler, M. O.; Fields, S. A.; Pollock, C. J.; Reasoner, D. L.; Young, D. T.; Burch, J. L.; Eaker, N.; Waite, J. H., Jr.; hide

    1995-01-01

    The Thermal Ion Dynamics Experiment (TIDE) and the Plasma Source Instrument (PSI) have been developed in response to the requirements of the ISTP Program for three-dimensional (3D) plasma composition measurements capable of tracking the circulation of low-energy (0-500 eV) plasma through the polar magnetosphere. This plasma is composed of penetrating magnetosheath and escaping ionospheric components. It is in part lost to the downstream solar wind and in part recirculated within the magnetosphere, participating in the formation of the diamagnetic hot plasma sheet and ring current plasma populations. Significant obstacles which have previously made this task impossible include the low density and energy of the outflowing ionospheric plasma plume and the positive spacecraft floating potentials which exclude the lowest-energy plasma from detection on ordinary spacecraft. Based on a unique combination of focusing electrostatic ion optics and time of flight detection and mass analysis, TIDE provides the sensitivity (seven apertures of about 1 cm squared effective area each) and angular resolution (6 x 18 degrees) required for this purpose. PSI produces a low energy plasma locally at the POLAR spacecraft that provides the ion current required to balance the photoelectron current, along with a low temperature electron population, regulating the spacecraft potential slightly positive relative to the space plasma. TIDE/PSI will: (a) measure the density and flow fields of the solar and terrestrial plasmas within the high polar cap and magnetospheric lobes; (b) quantify the extent to which ionospheric and solar ions are recirculated within the distant magnetotail neutral sheet or lost to the distant tail and solar wind; (c) investigate the mass-dependent degree energization of these plasmas by measuring their thermodynamic properties; (d) investigate the relative roles of ionosphere and solar wind as sources of plasma to the plasma sheet and ring current.

  14. Fast Determination of Ingredients in Solid Pharmaceuticals by Microwave-Enhanced In-Source Decay of Microwave Plasma Torch Mass Spectrometry.

    PubMed

    Su, Rui; Wang, Xinchen; Hou, Changming; Yang, Meiling; Huang, Keke; Chen, Huanwen

    2017-09-01

    Rapid qualitative and quantitative analysis of solid samples (e.g., pharmaceutical preparations) by using a small and low-resolution mass spectrometer without MS/MS function is still a challenge in ambient pressure ionization mass spectrometric analysis. Herein, a practically efficient method termed microwave-enhanced in-source decay (MEISD) using microwave plasma torch desorption ionization coupled with time-of-flight mass spectrometry (MPTDI-TOF MS) was developed for fast analysis of pharmaceutical tablets using a miniature TOF mass spectrometer without tandem mass function. The intensity of ISD fragmentation was evaluated under different microwave power values. Several factors, including desorption distance and time that might affect the signal intensity and fragmentation, were systematically investigated. It was observed that both the protonated molecular ions and major fragment ions from the active ingredients in tablets could be found in the full-scan mass spectra in positive ion mode, which were comparable to those obtained by a commercial LTQ-XL ion trap mass spectrometer. The structures of the ingredients could be elucidated in detail using the MEISD method, which promotes our understanding of the desorption/ionization processes in microwave plasma torch (MPT). Quantitative analysis of 10 tablets was achieved by full-scan MPTDI-TOF MS with low limit of detection (LOD, 0.763 mg/g), acceptable relative standard deviation (RSD < 7.33%, n =10), and 10 s for each tablet, showing promising applications in high throughput screening of counterfeit drugs. Graphical Abstract ᅟ.

  15. Fast Determination of Ingredients in Solid Pharmaceuticals by Microwave-Enhanced In-Source Decay of Microwave Plasma Torch Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Su, Rui; Wang, Xinchen; Hou, Changming; Yang, Meiling; Huang, Keke; Chen, Huanwen

    2017-09-01

    Rapid qualitative and quantitative analysis of solid samples (e.g., pharmaceutical preparations) by using a small and low-resolution mass spectrometer without MS/MS function is still a challenge in ambient pressure ionization mass spectrometric analysis. Herein, a practically efficient method termed microwave-enhanced in-source decay (MEISD) using microwave plasma torch desorption ionization coupled with time-of-flight mass spectrometry (MPTDI-TOF MS) was developed for fast analysis of pharmaceutical tablets using a miniature TOF mass spectrometer without tandem mass function. The intensity of ISD fragmentation was evaluated under different microwave power values. Several factors, including desorption distance and time that might affect the signal intensity and fragmentation, were systematically investigated. It was observed that both the protonated molecular ions and major fragment ions from the active ingredients in tablets could be found in the full-scan mass spectra in positive ion mode, which were comparable to those obtained by a commercial LTQ-XL ion trap mass spectrometer. The structures of the ingredients could be elucidated in detail using the MEISD method, which promotes our understanding of the desorption/ionization processes in microwave plasma torch (MPT). Quantitative analysis of 10 tablets was achieved by full-scan MPTDI-TOF MS with low limit of detection (LOD, 0.763 mg/g), acceptable relative standard deviation (RSD < 7.33%, n =10), and 10 s for each tablet, showing promising applications in high throughput screening of counterfeit drugs. [Figure not available: see fulltext.

  16. Hall Current Plasma Source Having a Center-Mounted or a Surface-Mounted Cathode

    NASA Technical Reports Server (NTRS)

    Martinez, Rafael A. (Inventor); Moritz, Jr., Joel A. (Inventor); Williams, John D. (Inventor); Farnell, Casey C. (Inventor)

    2018-01-01

    A miniature Hall current plasma source apparatus having magnetic shielding of the walls from ionized plasma, an integrated discharge channel and gas distributor, an instant-start hollow cathode mounted to the plasma source, and an externally mounted keeper, is described. The apparatus offers advantages over other Hall current plasma sources having similar power levels, including: lower mass, longer lifetime, lower part count including fewer power supplies, and the ability to be continuously adjustable to lower average power levels using pulsed operation and adjustment of the pulse duty cycle. The Hall current plasma source can provide propulsion for small spacecraft that either do not have sufficient power to accommodate a propulsion system or do not have available volume to incorporate the larger propulsion systems currently available. The present low-power Hall current plasma source can be used to provide energetic ions to assist the deposition of thin films in plasma processing applications.

  17. Metrics for comparing plasma mass filters

    NASA Astrophysics Data System (ADS)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-10-01

    High-throughput mass separation of nuclear waste may be useful for optimal storage, disposal, or environmental remediation. The most dangerous part of nuclear waste is the fission product, which produces most of the heat and medium-term radiation. Plasmas are well-suited to separating nuclear waste because they can separate many different species in a single step. A number of plasma devices have been designed for such mass separation, but there has been no standardized comparison between these devices. We define a standard metric, the separative power per unit volume, and derive it for three different plasma mass filters: the plasma centrifuge, Ohkawa filter, and the magnetic centrifugal mass filter.

  18. Abatement of Perfluorinated Compounds Using Cylindrical Microwave Plasma Source at Low Pressure

    NASA Astrophysics Data System (ADS)

    Kim, Seong Bong; Park, S.; Park, Y.; Youn, S.; Yoo, S. J.

    2016-10-01

    Microwave plasma source with a cylindrical cavity has been proposed to abate the perfluorinated compounds (PFCs). This plasma source was designed to generate microwave plasma with the cylindrical shape and to be easily installed in existing exhaust line. The microwave frequency is 2.45 GHz and the operating pressure range is 0.1 Torr to 0.3 Torr. The plasma characteristic of the cylindrical microwave plasma source was measured using the optical spectrometer, and tunable diode laser absorption spectroscopy (TDLAS). The destruction and removal efficiency (DRE) of CF4 and CHF3 were measured by a quadrupole mass spectroscopy (QMS) with the various operation conditions. The effect of the addition of the oxygen gas were tested and also the correlation between the plasma parameters and the DRE are presented in this study. This work was supported by R&D Program of ``Plasma Advanced Technology for Agriculture and Food (Plasma Farming)'' through the National Fusion Research Institute of Korea (NFRI) funded by the Government funds.

  19. Plasma Heating During Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Murphy, N. A.; Shen, C.; Rimple, R.; Raymond, J. C.

    2016-12-01

    Several recent observational analyses have shown that plasma heating enters into the energy budget of coronal mass ejections (CMEs) at about the same order of magnitude as the kinetic energy. The ultimate source of the heating is the magnetic field, but the mechanisms by which magnetic energy is converted to thermal energy are poorly understood. We will review observational evidence for CME heating and discuss candidate mechanisms that may be responsible for the heating. We will discuss the Python implementation of a non-equilibrium ionization model and its application to CME plasma, and report on progress on modeling three events where the Ultraviolet Coronagraph Spectrometer (UVCS) on the Solar and Heliospheric Observatory (SOHO) observed the same ejecta at multiple heights.

  20. Helicon Plasma Source Optimization Studies for VASIMR

    NASA Technical Reports Server (NTRS)

    Goulding, R. H.; Baity, F. W.; Barber, G. C.; Carter, M. D.; ChangDiaz, F. R.; Pavarin, D.; Sparks, D. O.; Squire J. P.

    1999-01-01

    A helicon plasma source at Oak Ridge National Laboratory is being used to investigate operating scenarios relevant to the VASIMR (VAriable Specific Impulse Magnetoplasma Rocket). These include operation at high magnetic field (> = 0.4 T), high frequency (<= 30 MHz), high power (< = 3 kW), and with light ions (He+, H+). To date, He plasmas have been produced with n(sub e0) = 1.7 x 10(exp 19)/cu m (measured with an axially movable 4mm microwave interferometer), with Pin = I kW at f = 13.56 MHz and absolute value of B(sub 0) = 0.16 T. In the near future, diagnostics including a mass flow meter and a gridded energy analyzer array will be added to investigate fueling efficiency and the source power balance. The latest results, together with modeling results using the EMIR rf code, will be presented.

  1. 21 CFR 640.60 - Source Plasma.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Source Plasma. 640.60 Section 640.60 Food and... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.60 Source Plasma. The proper name of the product shall be Source Plasma. The product is defined as the fluid portion of human blood...

  2. 21 CFR 640.60 - Source Plasma.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Source Plasma. 640.60 Section 640.60 Food and... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.60 Source Plasma. The proper name of the product shall be Source Plasma. The product is defined as the fluid portion of human blood...

  3. 21 CFR 640.60 - Source Plasma.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Source Plasma. 640.60 Section 640.60 Food and Drugs... STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.60 Source Plasma. The proper name of the product shall be Source Plasma. The product is defined as the fluid portion of human blood collected by...

  4. 21 CFR 640.60 - Source Plasma.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Source Plasma. 640.60 Section 640.60 Food and... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.60 Source Plasma. The proper name of the product shall be Source Plasma. The product is defined as the fluid portion of human blood...

  5. 21 CFR 640.60 - Source Plasma.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Source Plasma. 640.60 Section 640.60 Food and... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.60 Source Plasma. The proper name of the product shall be Source Plasma. The product is defined as the fluid portion of human blood...

  6. Ion acoustic shock wave in collisional equal mass plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adak, Ashish, E-mail: ashish-adak@yahoo.com; Ghosh, Samiran, E-mail: sran-g@yahoo.com; Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in

    The effect of ion-ion collision on the dynamics of nonlinear ion acoustic wave in an unmagnetized pair-ion plasma has been investigated. The two-fluid model has been used to describe the dynamics of both positive and negative ions with equal masses. It is well known that in the dynamics of the weakly nonlinear wave, the viscosity mediates wave dissipation in presence of weak nonlinearity and dispersion. This dissipation is responsible for the shock structures in pair-ion plasma. Here, it has been shown that the ion-ion collision in presence of collective phenomena mediated by the plasma current is the source of dissipationmore » that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The dynamics of the weakly nonlinear wave is governed by the Korteweg-de Vries Burgers equation. The analytical and numerical investigations revealed that the ion acoustic wave exhibits both oscillatory and monotonic shock structures depending on the frequency of ion-ion collision parameter. The results have been discussed in the context of the fullerene pair-ion plasma experiments.« less

  7. Aerosol Vacuum-Assisted Plasma Ionization (Aero-VaPI) Coupled to Ion Mobility-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Blair, Sandra L.; Ng, Nga L.; Zambrzycki, Stephen C.; Li, Anyin; Fernández, Facundo M.

    2018-02-01

    In this communication, we report on the real-time analysis of organic aerosol particles by Vacuum-assisted Plasma Ionization-Mass Spectrometry (Aero-VaPI-MS) using a home-built VaPI ion source coupled to a Synapt G2-S HDMS ion mobility-mass spectrometry (IM-MS) system. Standards of organic molecules of interest in prebiotic chemistry were used to generate aerosols. Monocaprin and decanoic acid aerosol particles were successfully detected in both the positive and negative ion modes, respectively. A complex aerosol mixture of different sizes of polymers of L-malic acid was also examined through ion mobility (IM) separations, resulting in the detection of polymers of up to eight monomeric units. This noncommercial plasma ion source is proposed as a low cost alternative to other plasma ionization platforms used for aerosol analysis, and a higher-performance alternative to more traditional aerosol mass spectrometers. VaPI provides robust online ionization of organics in aerosols without extensive ion activation, with the coupling to IM-MS providing higher peak capacity and excellent mass accuracy. [Figure not available: see fulltext.

  8. Pulsed Plasma Electron Sources

    NASA Astrophysics Data System (ADS)

    Krasik, Yakov

    2008-11-01

    Pulsed (˜10-7 s) electron beams with high current density (>10^2 A/cm^2) are generated in diodes with electric field of E > 10^6 V/cm. The source of electrons in these diodes is explosive emission plasma, which limits pulse duration; in the case E < 10^5 V/cm this plasma is not uniform and there is a time delay in its formation. Thus, there is a continuous interest in research of electron sources which can be used for generation of uniform electron beams produced at E <= 10^5 V/cm. In the present report, several types of plasma electron source (PES) will be considered. The first type of PES is fiber-based cathodes, with and without CsI coating. The operation of these cathodes is governed by the formation of the flashover plasma which serves as a source of electrons. The second type of PES is the ferroelectric plasma source (FPS). The operation of FPS, characterized by the formation of dense surface flashover plasma is accompanied also by the generation of fast microparticles and energetic neutrals. The latter was explained by Coulomb micro-explosions of the ferroelectric surface due to an large time-varying electric field at the front of the expanding plasma. A short review of recent achievements in the operation of a multi-FPS-assisted hollow anode to generate a large area electron beam will be presented as well. Finally, parameters of the plasma produced by a multi-capillary cathode with FPS and velvet igniters will be discussed. Ya. E. Krasik, J. Z. Gleizer, D. Yarmolich, A. Krokhmal, V. Ts. Gurovich, S.Efimov, J. Felsteiner V. Bernshtam, and Yu. M. Saveliev, J. Appl. Phys. 98, 093308 (2005). Ya. E. Krasik, A. Dunaevsky, and J. Felsteiner, Phys. Plasmas 8, 2466 (2001). D. Yarmolich, V. Vekselman, V. Tz. Gurovich, and Ya. E. Krasik, Phys. Rev. Lett. 100, 075004 (2008). J. Z. Gleizer, Y. Hadas and Ya. E. Krasik, Europhysics Lett. 82, 55001 (2008).

  9. Energy & mass-charge distribution peculiarities of ion emitted from penning source

    NASA Astrophysics Data System (ADS)

    Mamedov, N. V.; Kolodko, D. V.; Sorokin, I. A.; Kanshin, I. A.; Sinelnikov, D. N.

    2017-05-01

    The optimization of hydrogen Penning sources used, in particular, in plasma chemical processing of materials and DLC deposition, is still very important. Investigations of mass-charge composition of these ion source emitted beams are particular relevant for miniature linear accelerators (neutron flux generators) nowadays. The Penning ion source energy and mass-charge ion distributions are presented. The relation between the discharge current abrupt jumps with increasing plasma density in the discharge center and increasing potential whipping (up to 50% of the anode voltage) is shown. Also the energy spectra in the discharge different modes as the pressure and anode potential functions are presented. It has been revealed that the atomic hydrogen ion concentration is about 5-10%, and it weakly depends on the pressure and the discharge current (in the investigated range from 1 to 10 mTorr and from 50 to 1000 μA) and increases with the anode voltage (up 1 to 3,5 kV).

  10. A compact time-of-flight mass spectrometer for ion source characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L., E-mail: l.chen03@gmail.com; Wan, X.; Jin, D. Z.

    2015-03-15

    A compact time-of-flight mass spectrometer with overall dimension of about 413 × 250 × 414 mm based on orthogonal injection and angle reflection has been developed for ion source characterization. Configuration and principle of the time-of-flight mass spectrometer are introduced in this paper. The mass resolution is optimized to be about 1690 (FWHM), and the ion energy detection range is tested to be between about 3 and 163 eV with the help of electron impact ion source. High mass resolution and compact configuration make this spectrometer useful to provide a valuable diagnostic for ion spectra fundamental research and study themore » mass to charge composition of plasma with wide range of parameters.« less

  11. High Power Helicon Plasma Source for Plasma Processing

    NASA Astrophysics Data System (ADS)

    Prager, James; Ziemba, Timothy; Miller, Kenneth E.

    2015-09-01

    Eagle Harbor Technologies (EHT), Inc. is developing a high power helicon plasma source. The high power nature and pulsed neutral gas make this source unique compared to traditional helicon source. These properties produce a plasma flow along the magnetic field lines, and therefore allow the source to be decoupled from the reaction chamber. Neutral gas can be injected downstream, which allows for precision control of the ion-neutral ratio at the surface of the sample. Although operated at high power, the source has demonstrated very low impurity production. This source has applications to nanoparticle productions, surface modification, and ionized physical vapor deposition.

  12. Constricted glow discharge plasma source

    DOEpatents

    Anders, Andre; Anders, Simone; Dickinson, Michael; Rubin, Michael; Newman, Nathan

    2000-01-01

    A constricted glow discharge chamber and method are disclosed. The polarity and geometry of the constricted glow discharge plasma source is set so that the contamination and energy of the ions discharged from the source are minimized. The several sources can be mounted in parallel and in series to provide a sustained ultra low source of ions in a plasma with contamination below practical detection limits. The source is suitable for applying films of nitrides such as gallium nitride and oxides such as tungsten oxide and for enriching other substances in material surfaces such as oxygen and water vapor, which are difficult process as plasma in any known devices and methods. The source can also be used to assist the deposition of films such as metal films by providing low-energy ions such as argon ions.

  13. Modeling of the plasma extraction efficiency of an inductively coupled plasma-mass spectrometer interface using the direct simulation Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Kivel, Niko; Potthast, Heiko-Dirk; Günther-Leopold, Ines; Vanhaecke, Frank; Günther, Detlef

    The interface between the atmospheric pressure plasma ion source and the high vacuum mass spectrometer is a crucial part of an inductively coupled plasma-mass spectrometer. It influences the efficiency of the mass transfer into the mass spectrometer, it also contributes to the formation of interfering ions and to mass discrimination. This region was simulated using the Direct Simulation Monte Carlo method with respect to the formation of shock waves, mass transport and mass discrimination. The modeling results for shock waves and mass transport are in overall agreement with the literature. Insights into the effects and geometrical features causing mass discrimination could be gained. The overall observed collision based mass discrimination is lower than expected from measurements on real instruments, supporting the assumptions that inter-particle collisions play a minor role in this context published earlier. A full representation of the study, for two selected geometries, is given in form of a movie as supplementary data.

  14. Plasma Sheet Source and Loss Processes

    NASA Technical Reports Server (NTRS)

    Lennartsson, O. W.

    2000-01-01

    Data from the TIMAS ion mass spectrometer on the Polar satellite, covering 15 ev/e to 33 keV/e in energy and essentially 4(pi) in view angles, are used to investigate the properties of earthward (sunward) field-aligned flows of ions, especially protons, in the plasma sheet-lobe transition region near local midnight. A total of 142 crossings of this region are analyzed at 12-sec time resolution, all in the northern hemisphere, at R(SM) approx. 4 - 7 R(sub E), and most (106) in the poleward (sunward) direction. Earthward proton flows are prominent in this transition region (greater than 50% of the time), typically appearing as sudden "blasts" with the most energetic protons (approx. 33 keV) arriving first with weak flux, followed by protons of decreasing energy and increasing flux until either: (1) a new "blast" appears, (2) the flux ends at a sharp boundary, or (3) the flux fades away within a few minutes as the mean energy drops to a few keV. Frequent step-like changes (less than 12 sec) of the flux suggest that perpendicular gradients on the scale of proton gyroradii are common. Peak flux is similar to central plasma sheet proton flux (10(exp 5) - 10(exp 6)/[cq cm sr sec keV/e] and usually occurs at E approx. 4 - 12 keV. Only the initial phase of each "blast" (approx. 1 min) displays pronounced field-alignment of the proton velocity distribution, consistent with the time-of-flight separation of a more or less isotropic source distribution with df/d(nu) less than 0. The dispersive signatures are often consistent with a source at R(SM) less than or equal to 30 R(sub E). No systematic latitudinal velocity dispersion is found, implying that the equatorial plasma source is itself convecting. In short, the proton "blasts" appear as sudden local expansions of central plasma sheet particles along reconfigured ("dipolarized") magnetic field lines.

  15. Humidity Effects on Fragmentation in Plasma-Based Ambient Ionization Sources

    NASA Astrophysics Data System (ADS)

    Newsome, G. Asher; Ackerman, Luke K.; Johnson, Kevin J.

    2016-01-01

    Post-plasma ambient desorption/ionization (ADI) sources are fundamentally dependent on surrounding water vapor to produce protonated analyte ions. There are two reports of humidity effects on ADI spectra. However, it is unclear whether humidity will affect all ADI sources and analytes, and by what mechanism humidity affects spectra. Flowing atmospheric pressure afterglow (FAPA) ionization and direct analysis in real time (DART) mass spectra of various surface-deposited and gas-phase analytes were acquired at ambient temperature and pressure across a range of observed humidity values. A controlled humidity enclosure around the ion source and mass spectrometer inlet was used to create programmed humidity and temperatures. The relative abundance and fragmentation of molecular adduct ions for several compounds consistently varied with changing ambient humidity and also were controlled with the humidity enclosure. For several compounds, increasing humidity decreased protonated molecule and other molecular adduct ion fragmentation in both FAPA and DART spectra. For others, humidity increased fragment ion ratios. The effects of humidity on molecular adduct ion fragmentation were caused by changes in the relative abundances of different reagent protonated water clusters and, thus, a change in the average difference in proton affinity between an analyte and the population of water clusters. Control of humidity in ambient post-plasma ion sources is needed to create spectral stability and reproducibility.

  16. Humidity Effects on Fragmentation in Plasma-Based Ambient Ionization Sources.

    PubMed

    Newsome, G Asher; Ackerman, Luke K; Johnson, Kevin J

    2016-01-01

    Post-plasma ambient desorption/ionization (ADI) sources are fundamentally dependent on surrounding water vapor to produce protonated analyte ions. There are two reports of humidity effects on ADI spectra. However, it is unclear whether humidity will affect all ADI sources and analytes, and by what mechanism humidity affects spectra. Flowing atmospheric pressure afterglow (FAPA) ionization and direct analysis in real time (DART) mass spectra of various surface-deposited and gas-phase analytes were acquired at ambient temperature and pressure across a range of observed humidity values. A controlled humidity enclosure around the ion source and mass spectrometer inlet was used to create programmed humidity and temperatures. The relative abundance and fragmentation of molecular adduct ions for several compounds consistently varied with changing ambient humidity and also were controlled with the humidity enclosure. For several compounds, increasing humidity decreased protonated molecule and other molecular adduct ion fragmentation in both FAPA and DART spectra. For others, humidity increased fragment ion ratios. The effects of humidity on molecular adduct ion fragmentation were caused by changes in the relative abundances of different reagent protonated water clusters and, thus, a change in the average difference in proton affinity between an analyte and the population of water clusters. Control of humidity in ambient post-plasma ion sources is needed to create spectral stability and reproducibility.

  17. Mini-conference on helicon plasma sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scime, E. E.; Keesee, A. M.; Boswell, R. W.

    2008-05-15

    The first two sessions of this mini-conference focused attention on two areas of helicon source research: The conditions for optimal helicon source performance and the origins of energetic electrons and ions in helicon source plasmas. The final mini-conference session reviewed novel applications of helicon sources, such as mixed plasma source systems and toroidal helicon sources. The session format was designed to stimulate debate and discussion, with considerable time available for extended discussion.

  18. Plasma characteristics of direct current enhanced cylindrical inductively coupled plasma source

    NASA Astrophysics Data System (ADS)

    Yue, HUA; Jian, SONG; Zeyu, HAO; Chunsheng, REN

    2018-06-01

    Experimental results of a direct current enhanced inductively coupled plasma (DCE-ICP) source which consists of a typical cylindrical ICP source and a plate-to-grid DC electrode are reported. With the use of this new source, the plasma characteristic parameters, namely, electron density, electron temperature and plasma uniformity, are measured by Langmuir floating double probe. It is found that DC discharge enhances the electron density and decreases the electron temperature, dramatically. Moreover, the plasma uniformity is obviously improved with the operation of DC and radio frequency (RF) hybrid discharge. Furthermore, the nonlinear enhancement effect of electron density with DC + RF hybrid discharge is confirmed. The presented observation indicates that the DCE-ICP source provides an effective method to obtain high-density uniform plasma, which is desirable for practical industrial applications.

  19. Plasma Sources for Medical Applications - A Comparison of Spot Like Plasmas and Large Area Plasmas

    NASA Astrophysics Data System (ADS)

    Weltmann, Klaus-Dieter

    2015-09-01

    Plasma applications in life science are currently emerging worldwide. Whereas today's commercially available plasma surgical technologies such as argon plasma coagulation (APC) or ablation are mainly based on lethal plasma effects on living systems, the newly emerging therapeutic applications will be based on selective, at least partially non-lethal, possibly stimulating plasma effects on living cells and tissue. Promising results could be obtained by different research groups worldwide revealing a huge potential for the application of low temperature atmospheric pressure plasma in fields such as tissue engineering, healing of chronic wounds, treatment of skin diseases, tumor treatment based on specific induction of apoptotic processes, inhibition of biofilm formation and direct action on biofilms or treatment of dental diseases. The development of suitable and reliable plasma sources for the different therapies requires an in-depth knowledge of their physics, chemistry and parameters. Therefore much basic research still needs to be conducted to minimize risk and to provide a scientific fundament for new plasma-based medical therapies. It is essential to perform a comprehensive assessment of physical and biological experiments to clarify minimum standards for plasma sources for applications in life science and for comparison of different sources. One result is the DIN-SPEC 91315, which is now open for further improvements. This contribution intends to give an overview on the status of commercial cold plasma sources as well as cold plasma sources still under development for medical use. It will discuss needs, prospects and approaches for the characterization of plasmas from different points of view. Regarding the manageability in everyday medical life, atmospheric pressure plasma jets (APPJ) and dielectric barrier discharges (DBD) are of special interest. A comprehensive risk-benefit assessment including the state of the art of commercial sources for medical use

  20. The HelCat dual-source plasma device.

    PubMed

    Lynn, Alan G; Gilmore, Mark; Watts, Christopher; Herrea, Janis; Kelly, Ralph; Will, Steve; Xie, Shuangwei; Yan, Lincan; Zhang, Yue

    2009-10-01

    The HelCat (Helicon-Cathode) device has been constructed to support a broad range of basic plasma science experiments relevant to the areas of solar physics, laboratory astrophysics, plasma nonlinear dynamics, and turbulence. These research topics require a relatively large plasma source capable of operating over a broad region of parameter space with a plasma duration up to at least several milliseconds. To achieve these parameters a novel dual-source system was developed utilizing both helicon and thermionic cathode sources. Plasma parameters of n(e) approximately 0.5-50 x 10(18) m(-3) and T(e) approximately 3-12 eV allow access to a wide range of collisionalities important to the research. The HelCat device and initial characterization of plasma behavior during dual-source operation are described.

  1. Kinetic models for the VASIMR thruster helicon plasma source

    NASA Astrophysics Data System (ADS)

    Batishchev, Oleg; Molvig, Kim

    2001-10-01

    Helicon gas discharge [1] is widely used by industry because of its remarkable efficiency [2]. High energy and fuel efficiencies make it very attractive for space electrical propulsion applications. For example, helicon plasma source is used in the high specific impulse VASIMR [3] plasma thruster, including experimental prototypes VX-3 and upgraded VX-10 [4] configurations, which operate with hydrogen (deuterium) and helium plasmas. We have developed a set of models for the VASIMR helicon discharge. Firstly, we use zero-dimensional energy and mass balance equations to characterize partially ionized gas condition/composition. Next, we couple it to one-dimensional hybrid model [6] for gas flow in the quartz tube of the helicon. We compare hybrid model results to a purely kinetic simulation of propellant flow in gas feed + helicon source subsystem. Some of the experimental data [3-4] are explained. Lastly, we discuss full-scale kinetic modeling of coupled gas and plasmas [5-6] in the helicon discharge. [1] M.A.Lieberman, A.J.Lihtenberg, 'Principles of ..', Wiley, 1994; [2] F.F.Chen, Plas. Phys. Contr. Fus. 33, 339, 1991; [3] F.Chang-Diaz et al, Bull. APS 45 (7) 129, 2000; [4] J.Squire et al., Bull. APS 45 (7) 130, 2000; [5] O.Batishchev et al, J. Plasma Phys. 61, part II, 347, 1999; [6] O.Batishchev, K.Molvig, AIAA technical paper 2000-3754, -14p, 2001.

  2. An experiment to measure the mass density of a plasma armature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, J.W.; Thomas, K.A.; Clothiaux, E.J.

    1991-01-01

    In this paper a diagnostic technique for determining the mass density, and possibly the plasma composition, of the plasma armature in the MIDI-3 free-running arc device is described. The armature consists primarily of the components of polythylene and copper, and it can reach velocities in excess of 8 km/sec. The approach in this proof-of-principle experiment utilizes a flash x-ray source with x rays having energies from 3 keV to 20 keV, an elliptical x-ray crystal spectrometer, and an appropriate detector array and data acquisition system.

  3. A Numerical Study of the Non-Ideal Behavior, Parameters, and Novel Applications of an Electrothermal Plasma Source

    NASA Astrophysics Data System (ADS)

    Winfrey, A. Leigh

    Electrothermal plasma sources have numerous applications including hypervelocity launchers, fusion reactor pellet injection, and space propulsion systems. The time evolution of important plasma parameters at the source exit is important in determining the suitability of the source for different applications. In this study a capillary discharge code has been modified to incorporate non-ideal behavior by using an exact analytical model for the Coulomb logarithm in the plasma electrical conductivity formula. Actual discharge currents from electrothermal plasma experiments were used and code results for both ideal and non-ideal plasma models were compared to experimental data, specifically the ablated mass from the capillary and the electrical conductivity as measured by the discharge current and the voltage. Electrothermal plasma sources operating in the ablation-controlled arc regime use discharge currents with pulse lengths between 100 micros to 1 ms. Faster or longer or extended flat-top pulses can also be generated to satisfy various applications of ET sources. Extension of the peak current for up to an additional 1000 micros was tested. Calculations for non-ideal and ideal plasma models show that extended flattop pulses produce more ablated mass, which scales linearly with increased pulse length while other parameters remain almost constant. A new configuration of the PIPE source has been proposed in order to investigate the formation of plasmas from mixed materials. The electrothermal segmented plasma source can be used for studies related to surface coatings, surface modification, ion implantation, materials synthesis, and the physics of complex mixed plasmas. This source is a capillary discharge where the ablation liner is made from segments of different materials instead of a single sleeve. This system should allow for the modeling and characterization of the growth plasma as it provides all materials needed for fabrication through the same method. An

  4. Plasma X-Ray Sources for Lithography

    DTIC Science & Technology

    1980-05-12

    in evaluating various plasma sources. In addition, a brief analysis is given of three devices, or systems, used to produce such plasmas: the electron beam- sliding spark, the dense plasma focus and the laser produced plasma.

  5. Compact mass spectrometer for plasma discharge ion analysis

    DOEpatents

    Tuszewski, M.G.

    1997-07-22

    A mass spectrometer and methods are disclosed for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector. 7 figs.

  6. Compact mass spectrometer for plasma discharge ion analysis

    DOEpatents

    Tuszewski, Michel G.

    1997-01-01

    A mass spectrometer and methods for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector.

  7. Surface plasma source with saddle antenna radio frequency plasma generator.

    PubMed

    Dudnikov, V; Johnson, R P; Murray, S; Pennisi, T; Piller, C; Santana, M; Stockli, M; Welton, R

    2012-02-01

    A prototype RF H(-) surface plasma source (SPS) with saddle (SA) RF antenna is developed which will provide better power efficiency for high pulsed and average current, higher brightness with longer lifetime and higher reliability. Several versions of new plasma generators with small AlN discharge chambers and different antennas and magnetic field configurations were tested in the plasma source test stand. A prototype SA SPS was installed in the Spallation Neutron Source (SNS) ion source test stand with a larger, normal-sized SNS AlN chamber that achieved unanalyzed peak currents of up to 67 mA with an apparent efficiency up to 1.6 mA∕kW. Control experiments with H(-) beam produced by SNS SPS with internal and external antennas were conducted. A new version of the RF triggering plasma gun has been designed. A saddle antenna SPS with water cooling is fabricated for high duty factor testing.

  8. Plasma x-ray radiation source.

    PubMed

    Popkov, N F; Kargin, V I; Ryaslov, E A; Pikar', A S

    1995-01-01

    This paper gives the results of studies on a plasma x-ray source, which enables one to obtain a 2.5-krad radiation dose per pulse over an area of 100 cm2 in the quantum energy range from 20 to 500 keV. Pulse duration is 100 ns. Spectral radiation distributions from a diode under various operation conditions of a plasma are obtained. A Marx generator served as an initial energy source of 120 kJ with a discharge time of T/4 = 10-6 s. A short electromagnetic pulse (10-7 s) was shaped using plasma erosion opening switches.

  9. Electrodeless Plasma Source: Phase II Update

    NASA Astrophysics Data System (ADS)

    Prager, James; Ziemba, Timothy; Miller, Kenneth

    2012-10-01

    Eagle Harbor Technologies, in collaboration with the University of Washington, has developed a low-impurity, electrode-less plasma source (EPS) for start-up and source plasma injection for fusion science applications. In order to not interfere with the experiment, a pre-ionizer/plasma source must meet a few critical criteria including low impurity production, low electromagnetic interference (EMI), and minimal disruption to the magnetic geometry of the experiment. This system was designed to be UHV compatible and bakable. Here we present the results of the EPS Phase II upgrade. The output plasma density was increased by two orders of magnitude to >10^17 m-3 in hydrogen with no magnetic field injected. EPS system integration with the HIT-SI experiment has begun.

  10. Physical properties of erupting plasma associated with coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Lee, J.; Raymond, J. C.; Reeves, K. K.; Moon, Y.; Kim, K.

    2013-12-01

    We investigate the physical properties (temperature, density, and mass) of erupting plasma observed in X-rays and EUV, which are all associated with coronal mass ejections observed by SOHO/LASCO. The erupting plasmas are observed as absorption or emission features in the low corona. The absorption feature provides a lower limit to the cold mass while the emission feature provides an upper limit to the mass of observed plasma in X-ray and EUV. We compare the mass constraints for each temperature response and find that the mass estimates in EUV and XRT are smaller than the total mass in the coronagraph. Several events were observed by a few passbands in the X-rays, which allows us to determine the temperature of the eruptive plasma using a filter ratio method. The temperature of one event is estimated at about 8.6 MK near the top of the erupting plasma. This measurement is possibly an average temperature for higher temperature plasma because the XRT is more sensitive at higher temperatures. In addition, a few events show that the absorption features of a prominence or a loop change to emission features with the beginning of their eruptions in all EUV wavelengths of SDO/AIA, which indicates the heating of the plasma. By estimating the physical properties of the erupting plasmas, we discuss the heating of the plasmas associated with coronal mass ejections in the low corona.

  11. Miniaturized cathodic arc plasma source

    DOEpatents

    Anders, Andre; MacGill, Robert A.

    2003-04-15

    A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  12. The study of helicon plasma source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao Tingting; Shang Yong; Graduate University of Chinese Academy of Sciences, Beijing 100049

    2010-02-15

    Helicon plasma source is known as efficient generator of uniform and high density plasma. A helicon plasma source was developed for investigation of plasma neutralization and plasma lens in the Institute of Modern Physics in China. In this paper, the characteristics of helicon plasma have been studied by using Langmuir four-probe and a high argon plasma density up to 3.9x10{sup 13} cm{sup -3} have been achieved with the Nagoya type III antenna at the conditions of the magnetic intensity of 200 G, working gas pressure of 2.8x10{sup -3} Pa, and rf power of 1200 W with a frequency of 27.12more » MHz. In the experiment, the important phenomena have been found: for a given magnetic induction intensity, the plasma density became greater with the increase in rf power and tended to saturation, and the helicon mode appeared at the rf power between 200 and 400 W.« less

  13. The study of helicon plasma source.

    PubMed

    Miao, Ting-Ting; Zhao, Hong-Wei; Liu, Zhan-Wen; Shang, Yong; Sun, Liang-Ting; Zhang, Xue-Zhen; Zhao, Huan-Yu

    2010-02-01

    Helicon plasma source is known as efficient generator of uniform and high density plasma. A helicon plasma source was developed for investigation of plasma neutralization and plasma lens in the Institute of Modern Physics in China. In this paper, the characteristics of helicon plasma have been studied by using Langmuir four-probe and a high argon plasma density up to 3.9x10(13) cm(-3) have been achieved with the Nagoya type III antenna at the conditions of the magnetic intensity of 200 G, working gas pressure of 2.8x10(-3) Pa, and rf power of 1200 W with a frequency of 27.12 MHz. In the experiment, the important phenomena have been found: for a given magnetic induction intensity, the plasma density became greater with the increase in rf power and tended to saturation, and the helicon mode appeared at the rf power between 200 and 400 W.

  14. Handheld low-temperature plasma probe for portable "point-and-shoot" ambient ionization mass spectrometry.

    PubMed

    Wiley, Joshua S; Shelley, Jacob T; Cooks, R Graham

    2013-07-16

    We describe a handheld, wireless low-temperature plasma (LTP) ambient ionization source and its performance on a benchtop and a miniature mass spectrometer. The source, which is inexpensive to build and operate, is battery-powered and utilizes miniature helium cylinders or air as the discharge gas. Comparison of a conventional, large-scale LTP source against the handheld LTP source, which uses less helium and power than the large-scale version, revealed that the handheld source had similar or slightly better analytical performance. Another advantage of the handheld LTP source is the ability to quickly interrogate a gaseous, liquid, or solid sample without requiring any setup time. A small, 7.4-V Li-polymer battery is able to sustain plasma for 2 h continuously, while the miniature helium cylinder supplies gas flow for approximately 8 continuous hours. Long-distance ion transfer was achieved for distances up to 1 m.

  15. 21 CFR 640.74 - Modification of Source Plasma.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Modification of Source Plasma. 640.74 Section 640...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.74 Modification of Source Plasma. (a) Upon approval by the Director, Center for Biologics Evaluation and Research, Food and...

  16. 21 CFR 640.74 - Modification of Source Plasma.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Modification of Source Plasma. 640.74 Section 640...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.74 Modification of Source Plasma. (a) Upon approval by the Director, Center for Biologics Evaluation and Research, Food and...

  17. 21 CFR 640.74 - Modification of Source Plasma.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Modification of Source Plasma. 640.74 Section 640...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.74 Modification of Source Plasma. (a) Upon approval by the Director, Center for Biologics Evaluation and Research, Food and...

  18. 21 CFR 640.74 - Modification of Source Plasma.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Modification of Source Plasma. 640.74 Section 640...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.74 Modification of Source Plasma. (a) Upon approval by the Director, Center for Biologics Evaluation and Research, Food and...

  19. 21 CFR 640.74 - Modification of Source Plasma.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Modification of Source Plasma. 640.74 Section 640...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.74 Modification of Source Plasma. Link to an amendment published at 77 FR 18, Jan. 3, 2012. (a) Upon approval by the...

  20. Characterization of microwave plasma CVD of diamond by mass analysis and optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Weimer, Wayne A.; Johnson, Curtis E.

    1990-12-01

    A microwave plasma enhanced chemical vapor deposition system is characterized using optical emission spectroscopy and mass spectrometry. CH4 CH2 CH4 and CO were used as carbon source gases. The effects of 02 addition to the feed gas is examined. Emission from CH in the plasma is observed and CH4 is a stable reaction product for all carbon source gases used. 02 is fully consumed and converted to H20 and CO. Emission from C is observed for all hydrocarbon gases when 02 is added but is absent when CO is the carbon source gas. Addition of 02 also dramatically affects the relative amount of reaction products as the carbon in the system is converted to CO. 1.

  1. High electronegativity multi-dipolar electron cyclotron resonance plasma source for etching by negative ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stamate, E.; Draghici, M.

    2012-04-15

    A large area plasma source based on 12 multi-dipolar ECR plasma cells arranged in a 3 x 4 matrix configuration was built and optimized for silicon etching by negative ions. The density ratio of negative ions to electrons has exceeded 300 in Ar/SF{sub 6} gas mixture when a magnetic filter was used to reduce the electron temperature to about 1.2 eV. Mass spectrometry and electrostatic probe were used for plasma diagnostics. The new source is free of density jumps and instabilities and shows a very good stability for plasma potential, and the dominant negative ion species is F{sup -}. Themore » magnetic field in plasma volume is negligible and there is no contamination by filaments. The etching rate by negative ions measured in Ar/SF{sub 6}/O{sub 2} mixtures was almost similar with that by positive ions reaching 700 nm/min.« less

  2. Dense Plasma Focus - From Alternative Fusion Source to Versatile High Energy Density Plasma Source for Plasma Nanotechnology

    NASA Astrophysics Data System (ADS)

    Rawat, R. S.

    2015-03-01

    The dense plasma focus (DPF), a coaxial plasma gun, utilizes pulsed high current electrical discharge to heat and compress the plasma to very high density and temperature with energy densities in the range of 1-10 × 1010 J/m3. The DPF device has always been in the company of several alternative magnetic fusion devices as it produces intense fusion neutrons. Several experiments conducted on many different DPF devices ranging over several order of storage energy have demonstrated that at higher storage energy the neutron production does not follow I4 scaling laws and deteriorate significantly raising concern about the device's capability and relevance for fusion energy. On the other hand, the high energy density pinch plasma in DPF device makes it a multiple radiation source of ions, electron, soft and hard x-rays, and neutrons, making it useful for several applications in many different fields such as lithography, radiography, imaging, activation analysis, radioisotopes production etc. Being a source of hot dense plasma, strong shockwave, intense energetic beams and radiation, etc, the DPF device, additionally, shows tremendous potential for applications in plasma nanoscience and plasma nanotechnology. In the present paper, the key features of plasma focus device are critically discussed to understand the novelties and opportunities that this device offers in processing and synthesis of nanophase materials using, both, the top-down and bottom-up approach. The results of recent key experimental investigations performed on (i) the processing and modification of bulk target substrates for phase change, surface reconstruction and nanostructurization, (ii) the nanostructurization of PLD grown magnetic thin films, and (iii) direct synthesis of nanostructured (nanowire, nanosheets and nanoflowers) materials using anode target material ablation, ablated plasma and background reactive gas based synthesis and purely gas phase synthesis of various different types of

  3. The Earth: Plasma Sources, Losses, and Transport Processes

    NASA Astrophysics Data System (ADS)

    Welling, Daniel T.; André, Mats; Dandouras, Iannis; Delcourt, Dominique; Fazakerley, Andrew; Fontaine, Dominique; Foster, John; Ilie, Raluca; Kistler, Lynn; Lee, Justin H.; Liemohn, Michael W.; Slavin, James A.; Wang, Chih-Ping; Wiltberger, Michael; Yau, Andrew

    2015-10-01

    This paper reviews the state of knowledge concerning the source of magnetospheric plasma at Earth. Source of plasma, its acceleration and transport throughout the system, its consequences on system dynamics, and its loss are all discussed. Both observational and modeling advances since the last time this subject was covered in detail (Hultqvist et al., Magnetospheric Plasma Sources and Losses, 1999) are addressed.

  4. Capillary plasma jet: A low volume plasma source for life science applications

    NASA Astrophysics Data System (ADS)

    Topala, I.; Nagatsu, M.

    2015-02-01

    In this letter, we present results from multispectroscopic analysis of protein films, after exposure to a peculiar plasma source, i.e., the capillary plasma jet. This plasma source is able to generate very small pulsed plasma volumes, in kilohertz range, with characteristic dimensions smaller than 1 mm. This leads to specific microscale generation and transport of all plasma species. Plasma diagnosis was realized using general electrical and optical methods. Depending on power level and exposure duration, this miniature plasma jet can induce controllable modifications to soft matter targets. Detailed discussions on protein film oxidation and chemical etching are supported by results from absorption, X-ray photoelectron spectroscopy, and microscopy techniques. Further exploitation of principles presented here may consolidate research interests involving plasmas in biotechnologies and plasma medicine, especially in patterning technologies, modified biomolecule arrays, and local chemical functionalization.

  5. Ultra-Sensitive Elemental Analysis Using Plasmas 3.For Understanding an Inductively Coupled Plasma Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Sakata, Kenichi

    Aplasma-interface is considered the most mysterious part of an inductively coupled plasma mass spectrometer system in terms of understanding its operational mechanism. After a brief explanation of the basic structure of the inductively coupled plasma mass spectrometer and how it works, the plasma-interface is discussed in regard to its complex operation and approaches to investigating its behavior. In particular, the position and shape of the plasma boundary seem to be important to understand the instrument's sensitivity.

  6. Collisional considerations in axial-collection plasma mass filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochs, I. E.; Gueroult, R.; Fisch, N. J.

    The chemical inhomogeneity of nuclear waste makes chemical separations difficult, while the correlation between radioactivity and nuclear mass makes mass-based separation, and in particular plasma-based separation, an attractive alternative. Here, we examine a particular class of plasma mass filters, namely filters in which (a) species of different masses are collected along magnetic field lines at opposite ends of an open-field-line plasma device and (b) gyro-drift effects are important for the separation process. Using an idealized cylindrical model, we derive a set of dimensionless parameters which provide minimum necessary conditions for an effective mass filter function in the presence of ion-ionmore » and ion-neutral collisions. Through simulations of the constant-density profile, turbulence-free devices, we find that these parameters accurately describe the mass filter performance in more general magnetic geometries. We then use these parameters to study the design and upgrade of current experiments, as well as to derive general scalings for the throughput of production mass filters. Most importantly, we find that ion temperatures above 3 eV and magnetic fields above 104 G are critical to ensure a feasible mass filter function when operating at an ion density of 10 13 cm –3.« less

  7. Collisional considerations in axial-collection plasma mass filters

    DOE PAGES

    Ochs, I. E.; Gueroult, R.; Fisch, N. J.; ...

    2017-04-01

    The chemical inhomogeneity of nuclear waste makes chemical separations difficult, while the correlation between radioactivity and nuclear mass makes mass-based separation, and in particular plasma-based separation, an attractive alternative. Here, we examine a particular class of plasma mass filters, namely filters in which (a) species of different masses are collected along magnetic field lines at opposite ends of an open-field-line plasma device and (b) gyro-drift effects are important for the separation process. Using an idealized cylindrical model, we derive a set of dimensionless parameters which provide minimum necessary conditions for an effective mass filter function in the presence of ion-ionmore » and ion-neutral collisions. Through simulations of the constant-density profile, turbulence-free devices, we find that these parameters accurately describe the mass filter performance in more general magnetic geometries. We then use these parameters to study the design and upgrade of current experiments, as well as to derive general scalings for the throughput of production mass filters. Most importantly, we find that ion temperatures above 3 eV and magnetic fields above 104 G are critical to ensure a feasible mass filter function when operating at an ion density of 10 13 cm –3.« less

  8. 21 CFR 640.64 - Collection of blood for Source Plasma.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Collection of blood for Source Plasma. 640.64... (CONTINUED) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.64 Collection of blood for Source Plasma. (a) Supervision. All blood for the collection of Source Plasma shall...

  9. 21 CFR 640.64 - Collection of blood for Source Plasma.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Collection of blood for Source Plasma. 640.64... (CONTINUED) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.64 Collection of blood for Source Plasma. (a) Supervision. All blood for the collection of Source Plasma shall...

  10. 21 CFR 640.64 - Collection of blood for Source Plasma.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Collection of blood for Source Plasma. 640.64... (CONTINUED) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.64 Collection of blood for Source Plasma. (a) Supervision. All blood for the collection of Source Plasma shall...

  11. 21 CFR 640.64 - Collection of blood for Source Plasma.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Collection of blood for Source Plasma. 640.64... (CONTINUED) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.64 Collection of blood for Source Plasma. (a) Supervision. All blood for the collection of Source Plasma shall...

  12. 21 CFR 640.64 - Collection of blood for Source Plasma.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Collection of blood for Source Plasma. 640.64... (CONTINUED) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.64 Collection of blood for Source Plasma. (a) Supervision. All blood for the collection of Source Plasma shall...

  13. Counter-facing plasma guns for efficient extreme ultra-violet plasma light source

    NASA Astrophysics Data System (ADS)

    Kuroda, Yusuke; Yamamoto, Akiko; Kuwabara, Hajime; Nakajima, Mitsuo; Kawamura, Tohru; Horioka, Kazuhiko

    2013-11-01

    A plasma focus system composed of a pair of counter-facing coaxial guns was proposed as a long-pulse and/or repetitive high energy density plasma source. We applied Li as the source of plasma for improvement of the conversion efficiency, the spectral purity, and the repetition capability. For operation of the system with ideal counter-facing plasma focus mode, we changed the system from simple coaxial geometry to a multi-channel configuration. We applied a laser trigger to make synchronous multi-channel discharges with low jitter. The results indicated that the configuration is promising to make a high energy density plasma with high spectral efficiency.

  14. Hollow-Cathode Source Generates Plasma

    NASA Technical Reports Server (NTRS)

    Deininger, W. D.; Aston, G.; Pless, L. C.

    1989-01-01

    Device generates argon, krypton, or xenon plasma via thermionic emission and electrical discharge within hollow cathode and ejects plasma into surrounding vacuum. Goes from cold start up to full operation in less than 5 s after initial application of power. Exposed to moist air between operations without significant degradation of starting and running characteristics. Plasma generated by electrical discharge in cathode barrel sustained and aided by thermionic emission from emitter tube. Emitter tube does not depend on rare-earth oxides, making it vulnerable to contamination by exposure to atmosphere. Device modified for use as source of plasma in laboratory experiments or industrial processes.

  15. Automated control of linear constricted plasma source array

    DOEpatents

    Anders, Andre; Maschwitz, Peter A.

    2000-01-01

    An apparatus and method for controlling an array of constricted glow discharge chambers are disclosed. More particularly a linear array of constricted glow plasma sources whose polarity and geometry are set so that the contamination and energy of the ions discharged from the sources are minimized. The several sources can be mounted in parallel and in series to provide a sustained ultra low source of ions in a plasma with contamination below practical detection limits. The quality of film along deposition "tracks" opposite the plasma sources can be measured and compared to desired absolute or relative values by optical and/or electrical sensors. Plasma quality can then be adjusted by adjusting the power current values, gas feed pressure/flow, gas mixtures or a combination of some or all of these to improve the match between the measured values and the desired values.

  16. Alternative modeling methods for plasma-based Rf ion sources.

    PubMed

    Veitzer, Seth A; Kundrapu, Madhusudhan; Stoltz, Peter H; Beckwith, Kristian R C

    2016-02-01

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H(-) source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H(-) ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD

  17. Pulsed, atmospheric pressure plasma source for emission spectrometry

    DOEpatents

    Duan, Yixiang; Jin, Zhe; Su, Yongxuan

    2004-05-11

    A low-power, plasma source-based, portable molecular light emission generator/detector employing an atmospheric pressure pulsed-plasma for molecular fragmentation and excitation is described. The average power required for the operation of the plasma is between 0.02 W and 5 W. The features of the optical emission spectra obtained with the pulsed plasma source are significantly different from those obtained with direct current (dc) discharge higher power; for example, strong CH emission at 431.2 nm which is only weakly observed with dc plasma sources was observed, and the intense CN emission observed at 383-388 nm using dc plasma sources was weak in most cases. Strong CN emission was only observed using the present apparatus when compounds containing nitrogen, such as aniline were employed as samples. The present apparatus detects dimethylsulfoxide at 200 ppb using helium as the plasma gas by observing the emission band of the CH radical. When coupled with a gas chromatograph for separating components present in a sample to be analyzed, the present invention provides an apparatus for detecting the arrival of a particular component in the sample at the end of the chromatographic column and the identity thereof.

  18. DETERMINATION OF BROMATE IN DRINKING WATERS BY ION CHROMATOGRAPHY WITH INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRIC DETECTION

    EPA Science Inventory

    Bromate is a disinfection by-product in drinking water, formed during the ozonation of source water containing bromide. An inductively coupled plasma mass spectrometer is combined with an ion chromatograph for the analysis of bromate in drinking waters. Three chromatographic colu...

  19. Plasma-based wakefield accelerators as sources of axion-like particles

    NASA Astrophysics Data System (ADS)

    Burton, David A.; Noble, Adam

    2018-03-01

    We estimate the average flux density of minimally-coupled axion-like particles (ALPs) generated by a laser-driven plasma wakefield propagating along a constant strong magnetic field. Our calculations suggest that a terrestrial source based on this approach could generate a pulse of ALPs whose flux density is comparable to that of solar ALPs at Earth. This mechanism is optimal for ALPs with mass in the range of interest of contemporary experiments designed to detect dark matter using microwave cavities.

  20. Preparation Of Sources For Plasma Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Waters, William J.; Sliney, Hal; Kowalski, D.

    1993-01-01

    Multicomponent metal targets serving as sources of vapor for plasma vapor deposition made in modified pressureless-sintering process. By use of targets made in modified process, one coats components with materials previously plasma-sprayed or sintered but not plasma-vapor-deposited.

  1. Plasma Waves Associated with Mass-Loaded Comets

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce; Glassmeier, Karl-Heinz

    2015-01-01

    Plasma waves and instabilities are integrally involved with the plasma "pickup" process and the mass loading of the solar wind (thus the formation of ion tails and the magnetic tails). Anisotropic plasmas generated by solar wind-comet interactions (the bow shock, magnetic field pileup) cause the generation of plasma waves which in turn "smooth out" these discontinuities. The plasma waves evolve and form plasma turbulence. Comets are perhaps the best "laboratories" to study waves and turbulence because over time (and distance) one can identify the waves and their evolution. We will argue that comets in some ways are better laboratories than magnetospheres, interplanetary space and fusion devices to study nonlinear waves and their evolution.

  2. Performance evaluation of a permanent ring magnet based helicon plasma source for negative ion source research

    NASA Astrophysics Data System (ADS)

    Pandey, Arun; Bandyopadhyay, M.; Sudhir, Dass; Chakraborty, A.

    2017-10-01

    Helicon wave heated plasmas are much more efficient in terms of ionization per unit power consumed. A permanent magnet based compact helicon wave heated plasma source is developed in the Institute for Plasma Research, after carefully optimizing the geometry, the frequency of the RF power, and the magnetic field conditions. The HELicon Experiment for Negative ion-I source is the single driver helicon plasma source that is being studied for the development of a large sized, multi-driver negative hydrogen ion source. In this paper, the details about the single driver machine and the results from the characterization of the device are presented. A parametric study at different pressures and magnetic field values using a 13.56 MHz RF source has been carried out in argon plasma, as an initial step towards source characterization. A theoretical model is also presented for the particle and power balance in the plasma. The ambipolar diffusion process taking place in a magnetized helicon plasma is also discussed.

  3. Performance evaluation of a permanent ring magnet based helicon plasma source for negative ion source research.

    PubMed

    Pandey, Arun; Bandyopadhyay, M; Sudhir, Dass; Chakraborty, A

    2017-10-01

    Helicon wave heated plasmas are much more efficient in terms of ionization per unit power consumed. A permanent magnet based compact helicon wave heated plasma source is developed in the Institute for Plasma Research, after carefully optimizing the geometry, the frequency of the RF power, and the magnetic field conditions. The HELicon Experiment for Negative ion-I source is the single driver helicon plasma source that is being studied for the development of a large sized, multi-driver negative hydrogen ion source. In this paper, the details about the single driver machine and the results from the characterization of the device are presented. A parametric study at different pressures and magnetic field values using a 13.56 MHz RF source has been carried out in argon plasma, as an initial step towards source characterization. A theoretical model is also presented for the particle and power balance in the plasma. The ambipolar diffusion process taking place in a magnetized helicon plasma is also discussed.

  4. Alternative modeling methods for plasma-based Rf ion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veitzer, Seth A., E-mail: veitzer@txcorp.com; Kundrapu, Madhusudhan, E-mail: madhusnk@txcorp.com; Stoltz, Peter H., E-mail: phstoltz@txcorp.com

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H{sup −} source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. Inmore » particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H{sup −} ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two

  5. Surface analysis under ambient conditions using plasma-assisted desorption/ionization mass spectrometry.

    PubMed

    Ratcliffe, Lucy V; Rutten, Frank J M; Barrett, David A; Whitmore, Terry; Seymour, David; Greenwood, Claire; Aranda-Gonzalvo, Yolanda; Robinson, Steven; McCoustra, Martin

    2007-08-15

    A novel plasma-assisted desorption/ionization (PADI) method that can be coupled with atmospheric pressure sampling mass spectrometry to yield mass spectral information under ambient conditions of pressure and humidity from a range of surfaces without the requirement for sample preparation or additives is reported. PADI is carried out by generating a nonthermal plasma which interacts directly with the surface of the analyte. Desorption and ionization then occur at the surface, and ions are sampled by the mass spectrometer. The PADI technique is demonstrated and compared with desorption electrospray ionization (DESI) for the detection of active ingredients in a range of over-the-counter and prescription pharmaceutical formulations, including nonsterodial anti-inflammatory drugs (mefenamic acid, Ibugel, and ibuprofen), analgesics (paracetamol, Anadin Extra), and Beecham's "all in one" cold and flu remedy. PADI has also been successfully applied to the analysis of nicotine in tobacco and thiosulfates in garlic. PADI experiments have been performed using a prototype source interfaced with a Waters Platform LCZ single-quadrupole mass spectrometer with limited modifications and a Hiden Analytical HPR-60 molecular beam mass spectrometer (MBMS). The ability of PADI to rapidly detect active ingredients in pharmaceuticals without the need for prior sample preparation, solvents, or exposed high voltages demonstrates the potential of the technique for high-throughput screening in a pharmaceutical or forensic environment.

  6. Plasma source for spacecraft potential control

    NASA Technical Reports Server (NTRS)

    Olsen, R. C.

    1983-01-01

    A stable electrical ground which enables the particle spectrometers to measure the low energy particle populations was investigated and the current required to neutralize the spacecraft was measured. In addition, the plasma source for potential control (PSPO C) prevents high charging events which could affect the spacecraft electrical integrity. The plasma source must be able to emit a plasma current large enough to balance the sum of all other currents to the spacecraft. In ion thrusters, hollow cathodes provide several amperes of electron current to the discharge chamber. The PSPO C is capable of balancing the net negative currents found in eclipse charging events producing 10 to 100 microamps of electron current. The largest current required is the ion current necessary to balance the total photoelectric current.

  7. Ion sampling and transport in Inductively Coupled Plasma Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Farnsworth, Paul B.; Spencer, Ross L.

    2017-08-01

    Quantitative accuracy and high sensitivity in inductively coupled plasma mass spectrometry (ICP-MS) depend on consistent and efficient extraction and transport of analyte ions from an inductively coupled plasma to a mass analyzer, where they are sorted and detected. In this review we examine the fundamental physical processes that control ion sampling and transport in ICP-MS and compare the results of theory and computerized models with experimental efforts to characterize the flow of ions through plasma mass spectrometers' vacuum interfaces. We trace the flow of ions from their generation in the plasma, into the sampling cone, through the supersonic expansion in the first vacuum stage, through the skimmer, and into the ion optics that deliver the ions to the mass analyzer. At each stage we consider idealized behavior and departures from ideal behavior that affect the performance of ICP-MS as an analytical tool.

  8. A Variable Frequency, Mis-Match Tolerant, Inductive Plasma Source

    NASA Astrophysics Data System (ADS)

    Rogers, Anthony; Kirchner, Don; Skiff, Fred

    2014-10-01

    Presented here is a survey and analysis of an inductively coupled, magnetically confined, singly ionized Argon plasma generated by a square-wave, variable frequency plasma source. The helicon-style antenna is driven directly by the class ``D'' amplifier without matching network for increased efficiency while maintaining independent control of frequency and applied power at the feed point. The survey is compared to similar data taken using a traditional exciter--power amplifier--matching network source. Specifically, the flexibility of this plasma source in terms of the independent control of electron plasma temperature and density is discussed in comparison to traditional source arrangements. Supported by US DOE Grant DE-FG02-99ER54543.

  9. Plasma-based EUV light source

    DOEpatents

    Shumlak, Uri; Golingo, Raymond; Nelson, Brian A.

    2010-11-02

    Various mechanisms are provided relating to plasma-based light source that may be used for lithography as well as other applications. For example, a device is disclosed for producing extreme ultraviolet (EUV) light based on a sheared plasma flow. The device can produce a plasma pinch that can last several orders of magnitude longer than what is typically sustained in a Z-pinch, thus enabling the device to provide more power output than what has been hitherto predicted in theory or attained in practice. Such power output may be used in a lithography system for manufacturing integrated circuits, enabling the use of EUV wavelengths on the order of about 13.5 nm. Lastly, the process of manufacturing such a plasma pinch is discussed, where the process includes providing a sheared flow of plasma in order to stabilize it for long periods of time.

  10. Coupled microwave ECR and radio-frequency plasma source for plasma processing

    DOEpatents

    Tsai, Chin-Chi; Haselton, Halsey H.

    1994-01-01

    In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm.sup.2 at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance.

  11. Coupled microwave ECR and radio-frequency plasma source for plasma processing

    DOEpatents

    Tsai, C.C.; Haselton, H.H.

    1994-03-08

    In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm[sup 2] at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance. 4 figures.

  12. Negative ion source with hollow cathode discharge plasma

    DOEpatents

    Hershcovitch, Ady; Prelec, Krsto

    1983-01-01

    A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.

  13. Physical investigation of a quad confinement plasma source

    NASA Astrophysics Data System (ADS)

    Knoll, Aaron; Lucca Fabris, Andrea; Young, Christopher; Cappelli, Mark

    2016-10-01

    Quad magnetic confinement plasma sources are novel magnetized DC discharges suitable for applications in a broad range of fields, particularly space propulsion, plasma etching and deposition. These sources contain a square discharge channel with magnetic cusps at the four lateral walls, enhancing plasma confinement and electron residence time inside the device. The magnetic field topology is manipulated using four independent electromagnets on each edge of the channel, tuning the properties of the generated plasma. We characterize the plasma ejected from the quad confinement sources using a combination of traditional electrostatic probes and non-intrusive laser-based diagnostics. Measurements show a strong ion acceleration layer located 8 cm downstream of the exit plane, beyond the extent of the magnetic field. The ion velocity field is investigated with different magnetic configurations, demonstrating how ion trajectories may be manipulated. C.Y. acknowledges support from the DOE NSSA Stewardship Science Graduate Fellowship under contract DE-FC52-08NA28752.

  14. Mass dependency of turbulent parameters in stationary glow discharge plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titus, J. B.; Alexander, A. B.; Wiggins, D. L.

    A direct current glow discharge tube is used to determine how mass changes the effects of certain turbulence characteristics in a weakly ionized gas. Helium, neon, argon, and krypton plasmas were created, and an axial magnetic field, varied from 0.0 to 550.0 Gauss, was used to enhance mass dependent properties of turbulence. From the power spectra of light emission variations associated with velocity fluctuations, determination of mass dependency on turbulent characteristic unstable modes, energy associated with turbulence, and the rate at which energy is transferred from scale to scale are measured. The magnetic field strength is found to be toomore » weak to overcome particle diffusion to the walls to affect the turbulence in all four types of plasmas, though mass dependency is still detected. Though the total energy and the rate at which the energy moves between scales are mass invariant, the amplitude of the instability modes that characterize each plasma are dependent on mass.« less

  15. Development challenges for Low Temperature Plasma Sources ``from Idea to Prototype''

    NASA Astrophysics Data System (ADS)

    Gerling, T.; Baudler, J.-S.; Horn, S.; Schmidt, M.; Weltmann, K.-D.

    2015-09-01

    While plasma medicine is a well-motivated and intensively investigated topic, the requirements on the plasma sources change for individual applications. For example in dermatology, a large scale treatment is favored, while in dentistry, a localized application of plasma sources is required. Meanwhile, plasma source development is based on feasibility and not on the application. When a source is developed, it is usually motivated towards an application instead of considering an application and designing a plasma source to fit its needs. Each approach has its advantage and can lead to an advance in the field. With this contribution, we will present an approach from idea to prototype and show challenges in the plasma source development. For example, the consideration of legal regulations, adaption of the plasma source for a specific field of application and the interplay of gas flow dynamics with electrical field distribution. The solution was developed within several iterations to optimize it for different requirements. The obstacles that occurred during the development process will be highlighted and discussed. Afterwards the final source is characterized for a potential medical application and compared directly with a plasma source certified as a medical product. Acknowledging grants: AU 11 038; ESF/IV-BM-B35-0010/13.

  16. Negative ion source with hollow cathode discharge plasma

    DOEpatents

    Hershcovitch, A.; Prelec, K.

    1980-12-12

    A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface is described. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.

  17. Plasma Source Development for LAPD

    NASA Astrophysics Data System (ADS)

    Pribyl, P.; Gekelman, W.; Drandell, M.; Grunspen, S.; Nakamoto, M.; McBarron, A.

    2003-10-01

    The Large Plasma Device (LAPD) relies on an indirectly heated Barium Oxide (BaO) cathode to generate an extremely repeatable low-noise plasma. However there are two defects of this system: one is that the cathode is subject to oxygen poisoning in the event of accidental air leaks, requiring a lengthy recoating and regeneration process. Second, the indirect radiative heating is only about 50 % efficient, leading to a series of reliability issues. Alternate plasma sources are being investigated, including two types of directly heated BaO cathode and several configurations of inductively coupled RF plasmas. Direct heating for a cathode can be achieved either by embedding heaters within the nickel substrate, or by using inductive heating techniques to drive currents within the nickel itself. In both cases, the BaO coating still serves to emit the electrons and thus generate the plasma arc. An improved system would generate the plasma without the use of a "cathode" e.g. by inductively coupling energy directly into the plasma discharge. This technique is being investigated from the point of view of whether a) the bulk of the plasma column can be made sufficiently low-noise to be of experimental value and b) sufficiently dense plasmas can be formed.

  18. Ptychographic imaging with partially coherent plasma EUV sources

    NASA Astrophysics Data System (ADS)

    Bußmann, Jan; Odstrčil, Michal; Teramoto, Yusuke; Juschkin, Larissa

    2017-12-01

    We report on high-resolution lens-less imaging experiments based on ptychographic scanning coherent diffractive imaging (CDI) method employing compact plasma sources developed for extreme ultraviolet (EUV) lithography applications. Two kinds of discharge sources were used in our experiments: a hollow-cathode-triggered pinch plasma source operated with oxygen and for the first time a laser-assisted discharge EUV source with a liquid tin target. Ptychographic reconstructions of different samples were achieved by applying constraint relaxation to the algorithm. Our ptychography algorithms can handle low spatial coherence and broadband illumination as well as compensate for the residual background due to plasma radiation in the visible spectral range. Image resolution down to 100 nm is demonstrated even for sparse objects, and it is limited presently by the sample structure contrast and the available coherent photon flux. We could extract material properties by the reconstruction of the complex exit-wave field, gaining additional information compared to electron microscopy or CDI with longer-wavelength high harmonic laser sources. Our results show that compact plasma-based EUV light sources of only partial spatial and temporal coherence can be effectively used for lens-less imaging applications. The reported methods may be applied in combination with reflectometry and scatterometry for high-resolution EUV metrology.

  19. Plasma Processing of Metallic and Semiconductor Thin Films in the Fisk Plasma Source

    NASA Technical Reports Server (NTRS)

    Lampkin, Gregory; Thomas, Edward, Jr.; Watson, Michael; Wallace, Kent; Chen, Henry; Burger, Arnold

    1998-01-01

    The use of plasmas to process materials has become widespread throughout the semiconductor industry. Plasmas are used to modify the morphology and chemistry of surfaces. We report on initial plasma processing experiments using the Fisk Plasma Source. Metallic and semiconductor thin films deposited on a silicon substrate have been exposed to argon plasmas. Results of microscopy and chemical analyses of processed materials are presented.

  20. Z-Pinch Plasma Neutron Sources

    DTIC Science & Technology

    2006-03-24

    deuterium into 9 to 14 keV (around 10 keV), which is well in the fusion energy range we are interested in. To make plasma radiation sources work, we...showing the 1-D dynamics of the pinch plasma implosion, temperature, fusion energy production and deposition for the conditions of shot Z1422. The minimum...histories of ion and electron temperatures, fusion energy production and energy deposition in ID RMHD run modeling deuterium shot Z1422. In our simulations

  1. Large-Area Permanent-Magnet ECR Plasma Source

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2007-01-01

    A 40-cm-diameter plasma device has been developed as a source of ions for material-processing and ion-thruster applications. Like the device described in the immediately preceding article, this device utilizes electron cyclotron resonance (ECR) excited by microwave power in a magnetic field to generate a plasma in an electrodeless (noncontact) manner and without need for an electrically insulating, microwave-transmissive window at the source. Hence, this device offers the same advantages of electrodeless, windowless design - low contamination and long operational life. The device generates a uniform, high-density plasma capable of sustaining uniform ion-current densities at its exit plane while operating at low pressure [<10(exp -4) torr (less than about 1.3 10(exp -2) Pa)] and input power <200 W at a frequency of 2.45 GHz. Though the prototype model operates at 2.45 GHz, operation at higher frequencies can be achieved by straightforward modification to the input microwave waveguide. Higher frequency operation may be desirable in those applications that require even higher background plasma densities. In the design of this ECR plasma source, there are no cumbersome, power-hungry electromagnets. The magnetic field in this device is generated by a permanent-magnet circuit that is optimized to generate resonance surfaces. The microwave power is injected on the centerline of the device. The resulting discharge plasma jumps into a "high mode" when the input power rises above 150 W. This mode is associated with elevated plasma density and high uniformity. The large area and uniformity of the plasma and the low operating pressure are well suited for such material-processing applications as etching and deposition on large silicon wafers. The high exit-plane ion-current density makes it possible to attain a high rate of etching or deposition. The plasma potential is <3 V low enough that there is little likelihood of sputtering, which, in plasma processing, is undesired

  2. Plasma discharge elemental detector for a mass spectrometer

    NASA Astrophysics Data System (ADS)

    Heppner, R. A.

    1983-06-01

    A material to be analyzed is injected into a mirowave-induced plasma discharge unit, in which the material is carried with a flow of buffer gas through an intense microwave energy field which produces a plasma discharge in the buffer gas. As the material exits from the plasma discharge, the material is sampled and conveyed along a capillary transfer tube to a mass spectrometer where it is analyzed. The plasma discharge causes dissociation of complex organic molecules into simpler molecules which return to the neutral ground state before they are analyzed in the mass spectrometer. The buffer gas is supplied to one end portion of the discharge tube and is withdrawn from the other end portion by a vacuum pump which maintains a subatmospheric pressure in the discharge tube. The sample material is injected by a capillary injection tube into the buffer gas flow as it enters the plasma discharge zone. The dissociated materials are sampled by an axial sampling tube having an entrance where the buffer gas exits from the plasma discharge zone. The sample material may be supplied by a gas chromatography having a capillary effluent line connected to the capillary injection tube, so that the effluent material is injected into the microwave induced plasma discharge. The microwave field is produced by a cavity resonator through which the discharge tube passes.

  3. Characterization of an electrothermal plasma source for fusion transient simulations

    DOE PAGES

    Gebhart, T. E.; Baylor, Larry R.; Rapp, Juergen; ...

    2018-01-21

    The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. Here in this work, an electrothermal (ET) plasma source has been designed as a transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime driven by a DC capacitive discharge. The current channel width is defined by the 4 mm bore of a boron nitride liner. At large plasma currents, the arc impacts the liner wall, leading to high particle and heat fluxes to the liner material, which subsequentlymore » ablates and ionizes. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have durations of 1 and 2 ms. The peak currents and maximum source energies seen in this system are 1.9 kA and 1.2 kJ for the 2 ms pulse and 3.2 kA and 2.1 kJ for the 1 ms pulse, respectively. This work is a proof of the principal project to show that an ET source produces electron densities and heat fluxes comparable to those anticipated in transient events in large future magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each shot using infrared imaging and optical spectroscopy techniques. This paper will discuss the assumptions, methods, and results of the experiments.« less

  4. Characterization of an electrothermal plasma source for fusion transient simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gebhart, T. E.; Baylor, Larry R.; Rapp, Juergen

    The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. Here in this work, an electrothermal (ET) plasma source has been designed as a transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime driven by a DC capacitive discharge. The current channel width is defined by the 4 mm bore of a boron nitride liner. At large plasma currents, the arc impacts the liner wall, leading to high particle and heat fluxes to the liner material, which subsequentlymore » ablates and ionizes. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have durations of 1 and 2 ms. The peak currents and maximum source energies seen in this system are 1.9 kA and 1.2 kJ for the 2 ms pulse and 3.2 kA and 2.1 kJ for the 1 ms pulse, respectively. This work is a proof of the principal project to show that an ET source produces electron densities and heat fluxes comparable to those anticipated in transient events in large future magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each shot using infrared imaging and optical spectroscopy techniques. This paper will discuss the assumptions, methods, and results of the experiments.« less

  5. Characterization of an electrothermal plasma source for fusion transient simulations

    NASA Astrophysics Data System (ADS)

    Gebhart, T. E.; Baylor, L. R.; Rapp, J.; Winfrey, A. L.

    2018-01-01

    The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. In this work, an electrothermal (ET) plasma source has been designed as a transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime driven by a DC capacitive discharge. The current channel width is defined by the 4 mm bore of a boron nitride liner. At large plasma currents, the arc impacts the liner wall, leading to high particle and heat fluxes to the liner material, which subsequently ablates and ionizes. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have durations of 1 and 2 ms. The peak currents and maximum source energies seen in this system are 1.9 kA and 1.2 kJ for the 2 ms pulse and 3.2 kA and 2.1 kJ for the 1 ms pulse, respectively. This work is a proof of the principal project to show that an ET source produces electron densities and heat fluxes comparable to those anticipated in transient events in large future magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each shot using infrared imaging and optical spectroscopy techniques. This paper will discuss the assumptions, methods, and results of the experiments.

  6. Development of a long-slot microwave plasma source.

    PubMed

    Kuwata, Y; Kasuya, T; Miyamoto, N; Wada, M

    2016-02-01

    A 20 cm long 10 cm wide microwave plasma source was realized by inserting two 20 cm long 1.5 mm diameter rod antennas into the plasma. Plasma luminous distributions around the antennas were changed by magnetic field arrangement created by permanent magnets attached to the source. The distributions appeared homogeneous in one direction along the antenna when the spacing between the antenna and the source wall was 7.5 mm for the input microwave frequency of 2.45 GHz. Plasma density and temperature at a plane 20 cm downstream from the microwave shield were measured by a Langmuir probe array at 150 W microwave power input. The measured electron density and temperature varied over space from 3.0 × 10(9) cm(-3) to 5.8 × 10(9) cm(-3), and from 1.1 eV to 2.1 eV, respectively.

  7. Effect of source tuning parameters on the plasma potential of heavy ions in the 18 GHz high temperature superconducting electron cyclotron resonance ion source.

    PubMed

    Rodrigues, G; Baskaran, R; Kukrety, S; Mathur, Y; Kumar, Sarvesh; Mandal, A; Kanjilal, D; Roy, A

    2012-03-01

    Plasma potentials for various heavy ions have been measured using the retarding field technique in the 18 GHz high temperature superconducting ECR ion source, PKDELIS [C. Bieth, S. Kantas, P. Sortais, D. Kanjilal, G. Rodrigues, S. Milward, S. Harrison, and R. McMahon, Nucl. Instrum. Methods B 235, 498 (2005); D. Kanjilal, G. Rodrigues, P. Kumar, A. Mandal, A. Roy, C. Bieth, S. Kantas, and P. Sortais, Rev. Sci. Instrum. 77, 03A317 (2006)]. The ion beam extracted from the source is decelerated close to the location of a mesh which is polarized to the source potential and beams having different plasma potentials are measured on a Faraday cup located downstream of the mesh. The influence of various source parameters, viz., RF power, gas pressure, magnetic field, negative dc bias, and gas mixing on the plasma potential is studied. The study helped to find an upper limit of the energy spread of the heavy ions, which can influence the design of the longitudinal optics of the high current injector being developed at the Inter University Accelerator Centre. It is observed that the plasma potentials are decreasing for increasing charge states and a mass effect is clearly observed for the ions with similar operating gas pressures. In the case of gas mixing, it is observed that the plasma potential minimizes at an optimum value of the gas pressure of the mixing gas and the mean charge state maximizes at this value. Details of the measurements carried out as a function of various source parameters and its impact on the longitudinal optics are presented.

  8. Mass Spectrometry of the CO2 Laser Plasma.

    DTIC Science & Technology

    1981-06-01

    Lasers Plasma Chemistry Discharge Electrochemistry 20. ABSTRACT (Continue on reverse side If necessary end identify by block number) ... The neutral and...Reference 3). The evidence indicates that valuable information concerning the plasma chemistry of the discharge can be obtained with the aid of a mass...gives very reliable results as will be shown later. The ultimate goal of this project was to investigate the plasma chemistry of the CO2 laser discharge

  9. Ring current dynamics and plasma sheet sources. [magnetic storms

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.

    1984-01-01

    The source of the energized plasma that forms in geomagnetic storm ring currents, and ring current decay are discussed. The dominant loss processes for ring current ions are identified as charge exchange and resonant interactions with ion-cyclotron waves. Ring current ions are not dominated by protons. At L4 and energies below a few tens of keV, O+ is the most abundant ion, He+ is second, and protons are third. The plasma sheet contributes directly or indirectly to the ring current particle population. An important source of plasma sheet ions is earthward streaming ions on the outer boundary of the plasma sheet. Ion interactions with the current across the geomagnetic tail can account for the formation of this boundary layer. Electron interactions with the current sheet are possibly an important source of plasma sheet electrons.

  10. The mass and speed dependence of meteor air plasma temperatures

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  11. The mass and speed dependence of meteor air plasma temperatures.

    PubMed

    Jenniskens, Peter; Laux, Christophe O; Wilson, Michael A; Schaller, Emily L

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  12. Moderate pressure plasma source of nonthermal electrons

    NASA Astrophysics Data System (ADS)

    Gershman, S.; Raitses, Y.

    2018-06-01

    Plasma sources of electrons offer control of gas and surface chemistry without the need for complex vacuum systems. The plasma electron source presented here is based on a cold cathode glow discharge (GD) operating in a dc steady state mode in a moderate pressure range of 2–10 torr. Ion-induced secondary electron emission is the source of electrons accelerated to high energies in the cathode sheath potential. The source geometry is a key to the availability and the extraction of the nonthermal portion of the electron population. The source consists of a flat and a cylindrical electrode, 1 mm apart. Our estimates show that the length of the cathode sheath in the plasma source is commensurate (~0.5–1 mm) with the inter-electrode distance so the GD operates in an obstructed regime without a positive column. Estimations of the electron energy relaxation confirm the non-local nature of this GD, hence the nonthermal portion of the electron population is available for extraction outside of the source. The use of a cylindrical anode presents a simple and promising method of extracting the high energy portion of the electron population. Langmuir probe measurements and optical emission spectroscopy confirm the presence of electrons with energies ~15 eV outside of the source. These electrons become available for surface modification and radical production outside of the source. The extraction of the electrons of specific energies by varying the anode geometry opens exciting opportunities for future exploration.

  13. New method for comprehensive detection of chemical warfare agents using an electron-cyclotron-resonance ion-source mass spectrometer

    NASA Astrophysics Data System (ADS)

    Kidera, Masanori; Seto, Yasuo; Takahashi, Kazuya; Enomoto, Shuichi; Kishi, Shintaro; Makita, Mika; Nagamatsu, Tsuyoshi; Tanaka, Tatsuhiko; Toda, Masayoshi

    2011-03-01

    We developed a detection technology for vapor forms of chemical warfare agents (CWAs) with an element analysis system using an electron cyclotron resonance ion source. After the vapor sample was introduced directly into the ion source, the molecular material was decomposed into elements using electron cyclotron resonance plasma and ionized. The following CWAs and stimulants were examined: diisopropyl fluorophosphonate (DFP), 2-chloroethylethylsulfide (2CEES), cyanogen chloride (CNCl), and hydrogen cyanide (HCN). The type of chemical warfare agents, specifically, whether it was a nerve agent, blister agent, blood agent, or choking agent, could be determined by measuring the quantities of the monatomic ions or CN + using mass spectrometry. It was possible to detect gaseous CWAs that could not be detected by a conventional mass spectrometer. The distribution of electron temperature in the plasma could be closely controlled by adjusting the input power of the microwaves used to generate the electron cyclotron resonance plasma, and the target compounds could be detected as molecular ions or fragment ions, enabling identification of the target agents.

  14. RF Plasma Source for Heavy Ion Beam Charge Neutralization

    NASA Astrophysics Data System (ADS)

    Efthimion, P. C.; Gilson, E.; Grisham, L.; Davidson, R. C.

    2003-10-01

    Highly ionized plasmas are being employed as a medium for charge neutralizing heavy ion beams in order to focus to a small spot size. Calculations suggest that plasma at a density of 1 - 100 times the ion beam density and at a length 0.1-0.5 m would be suitable for achieving a high level of charge neutralization. An ECR source has been built at the Princeton Plasma Physics Laboratory (PPPL) in support of the joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 0-10 gauss. The goal is to operate the source at pressures 10-5 Torr at full ionization. The initial operation of the source has been at pressures of 10-4 - 10-1 Torr. Electron densities in the range of 10^8 - 10^11 cm-3 have been achieved. Recently, pulsed operation of the source has enabled operation at pressures in the 10-6 Torr range with densities of 10^11 cm-3. Near 100% ionization has been achieved. The source has been integrated with NTX and is being used in the experiments. The plasma is approximately 10 cm in length in the direction of the beam propagation. Modifications to the source will be presented that increase its length in the direction of beam propagation.

  15. Initial experimental test of a helicon plasma based mass filter

    NASA Astrophysics Data System (ADS)

    Gueroult, R.; Evans, E. S.; Zweben, S. J.; Fisch, N. J.; Levinton, F.

    2016-06-01

    High throughput plasma mass separation requires rotation control in a high density multi-species plasmas. A preliminary mass separation device based on a helicon plasma operating in gas mixtures and featuring concentric biasable ring electrodes is introduced. Plasma profile shows strong response to electrode biasing. In light of floating potential measurements, the density response is interpreted as the consequence of a reshaping of the radial electric field in the plasma. This field can be made confining or de-confining depending on the imposed potential at the electrodes, in a way which is consistent with single particle orbit radial stability. Concurrent spatially resolved spectroscopic measurements suggest ion separation, with heavy to light ion emission line ratio increasing with radius when a specific potential gradient is applied to the electrodes.

  16. Initial experimental test of a helicon plasma based mass filter

    DOE PAGES

    Gueroult, R.; Evans, E. S.; Zweben, S. J.; ...

    2016-05-12

    High throughput plasma mass separation requires rotation control in a high density multi-species plasmas. A preliminary mass separation device based on a helicon plasma operating in gas mixtures and featuring concentric biasable ring electrodes is introduced. Plasma profile shows strong response to electrode biasing. In light of floating potential measurements, the density response is interpreted as the consequence of a reshaping of the radial electric field in the plasma. This field can be made confining or de-confining depending on the imposed potential at the electrodes, in a way which is consistent with single particle orbit radial stability. In conclusion, concurrentmore » spatially resolved spectroscopic measurements suggest ion separation, with heavy to light ion emission line ratio increasing with radius when a specific potential gradient is applied to the electrodes.« less

  17. Design of a novel high efficiency antenna for helicon plasma sources

    NASA Astrophysics Data System (ADS)

    Fazelpour, S.; Chakhmachi, A.; Iraji, D.

    2018-06-01

    A new configuration for an antenna, which increases the absorption power and plasma density, is proposed for helicon plasma sources. The influence of the electromagnetic wave pattern symmetry on the plasma density and absorption power in a helicon plasma source with a common antenna (Nagoya) is analysed by using the standard COMSOL Multiphysics 5.3 software. In contrast to the theoretical model prediction, the electromagnetic wave does not represent a symmetric pattern for the common Nagoya antenna. In this work, a new configuration for an antenna is proposed which refines the asymmetries of the wave pattern in helicon plasma sources. The plasma parameters such as plasma density and absorption rate for a common Nagoya antenna and our proposed antenna under the same conditions are studied using simulations. In addition, the plasma density of seven operational helicon plasma source devices, having a common Nagoya antenna, is compared with the simulation results of our proposed antenna and the common Nagoya antenna. The simulation results show that the density of the plasma, which is produced by using our proposed antenna, is approximately twice in comparison to the plasma density produced by using the common Nagoya antenna. In fact, the simulation results indicate that the electric and magnetic fields symmetry of the helicon wave plays a vital role in increasing wave-particle coupling. As a result, wave-particle energy exchange and the plasma density of helicon plasma sources will be increased.

  18. Which is safer source plasma for manufacturing in China: apheresis plasma or recovered plasma?

    PubMed

    Liu, Yu; Li, Changqing; Wang, Ya; Zhang, Yan; Wu, Binting; Ke, Ling; Xu, Min; Liu, Gui; Liu, Zhong

    2016-05-01

    In most countries, the plasma for derivative production includes two types of plasma, apheresis plasma (AP) and recovered plasma (RP). However, the plasma recovered from whole blood is not permitted for manufacture in China. Because of the lack of source plasma and the surplus of RP, the Chinese government is considering allowing RP as an equivalent source for the production of plasma derivatives. It is known that human blood can be contaminated by various infectious agents. The objective of the study was to evaluate if infectious risk would increase by enacting this policy. The samples from the two types of blood donors from January 1 to December 31, 2013, were collected. Supplementary testing was conducted and the residual risk (RR) of human immunodeficiency virus (HIV), hepatitis B virus, and hepatitis C virus (HCV) in the two types of blood donors and donations were calculated through the incidence-window period model. Prevalence of the markers of hepatitis E virus, hepatitis A virus, severe fever with thrombocytopenia syndrome bunyavirus, cytomegalovirus, B19, and West Nile virus was calculated. No significant difference was found in the RR of the three pathogens in the two types of blood donors. However, after the quarantine period, the RR of HCV and HIV in AP was significantly lower than that in RP. A quarantine period of 2 years will make the infectious risk of RP not significantly different than that of AP. Our data demonstrate that allowing RP to be used for the manufacture of plasma derivatives will not increase its infectious disease risk if coupled with a 2-year inventory hold. © 2016 AABB.

  19. Inductively generated streaming plasma ion source

    DOEpatents

    Glidden, Steven C.; Sanders, Howard D.; Greenly, John B.

    2006-07-25

    A novel pulsed, neutralized ion beam source is provided. The source uses pulsed inductive breakdown of neutral gas, and magnetic acceleration and control of the resulting plasma, to form a beam. The beam supplies ions for applications requiring excellent control of ion species, low remittance, high current density, and spatial uniformity.

  20. Large area plasma source

    NASA Technical Reports Server (NTRS)

    Foster, John (Inventor); Patterson, Michael (Inventor)

    2008-01-01

    An all permanent magnet Electron Cyclotron Resonance, large diameter (e.g., 40 cm) plasma source suitable for ion/plasma processing or electric propulsion, is capable of producing uniform ion current densities at its exit plane at very low power (e.g., below 200 W), and is electrodeless to avoid sputtering or contamination issues. Microwave input power is efficiently coupled with an ionizing gas without using a dielectric microwave window and without developing a throat plasma by providing a ferromagnetic cylindrical chamber wall with a conical end narrowing to an axial entrance hole for microwaves supplied on-axis from an open-ended waveguide. Permanent magnet rings are attached inside the wall with alternating polarities against the wall. An entrance magnet ring surrounding the entrance hole has a ferromagnetic pole piece that extends into the chamber from the entrance hole to a continuing second face that extends radially across an inner pole of the entrance magnet ring.

  1. Comprehensive Analysis of Low-Molecular-Weight Human Plasma Proteome Using Top-Down Mass Spectrometry.

    PubMed

    Cheon, Dong Huey; Nam, Eun Ji; Park, Kyu Hyung; Woo, Se Joon; Lee, Hye Jin; Kim, Hee Cheol; Yang, Eun Gyeong; Lee, Cheolju; Lee, Ji Eun

    2016-01-04

    While human plasma serves as a great source for disease diagnosis, low-molecular-weight (LMW) proteome (<30 kDa) has been shown to contain a rich source of diagnostic biomarkers. Here we employ top-down mass spectrometry to analyze the LMW proteoforms present in four types of human plasma samples pooled from three healthy controls (HCs) without immunoaffinity depletion and with depletion of the top two, six, and seven high-abundance proteins. The LMW proteoforms were first fractionated based on molecular weight using gel-eluted liquid fraction entrapment electrophoresis (GELFrEE). Then, the GELFrEE fractions containing up to 30 kDa were subjected to nanocapillary-LC-MS/MS, and the high-resolution MS and MS/MS data were processed using ProSightPC 3.0. As a result, a total of 442 LMW proteins and cleaved products, including those with post-translational modifications and single amino acid variations, were identified. From additional comparative analysis of plasma samples without immunoaffinity depletion between HCs and colorectal cancer (CRC) patients via top-down approach, tens of LMW proteoforms, including platelet factor 4, were found to show >1.5-fold changes between the plasma samples of HCs and CRC patients, and six of the LMW proteins were verified by Western blot analysis.

  2. Invention of the Annular Inductively Coupled Plasma as a Spectroscopic Source

    NASA Astrophysics Data System (ADS)

    Greenfield, Stanley

    2000-05-01

    This paper shows how experiments with electrical discharges from the 18th century onward led to their use as sources in atomic spectroscopy and how the invention of the annular inductively coupled plasma (ICP) some 30 years ago arose from the need to solve a problem that necessitated the use of a high-temperature source. The search for such a source followed a fairly logical pattern involving dc plasma jets and an ICP such as had been used by T. B. Reed for crystal growing. The ellipsoidal plasma used by Reed was not entirely suitable as a spectroscopic source, since the analytical sample either mixed with the plasma gases or passed around the plasma, resulting in matrix effects and a diminution in the emission. It is shown how suitable modification of the plasma torch with attention to gas flows made it possible to produce an annular or tunnel plasma through which the sample aerosol could be passed, resulting in an annular ICP with greatly improved spectroscopic properties. The further refinements to the source and ancillary equipment are also discussed.

  3. ISOTOPE DILUTION ANALYSIS OF BROMATE IN DRINKING WATER MATRIXES BY ION CHROMATOGRAPHY WITH INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRIC DETECTION

    EPA Science Inventory

    Bromate is a disinfection byproduct in drinking water which is formed during the ozonation of source water containing bromide. This paper described the analysis of bromate via ion chromatography-inductively coupled plasma mass spectrometry. The separation of bromate from interfer...

  4. Some Rare Earth Elements Analysis by Microwave Plasma Torch Coupled with the Linear Ion Trap Mass Spectrometry

    PubMed Central

    Xiong, Xiaohong; Jiang, Tao; Qi, Wenhao; Zuo, Jun; Yang, Meiling; Fei, Qiang; Xiao, Saijin; Yu, Aimin; Zhu, Zhiqiang; Chen, Huanwen

    2015-01-01

    A sensitive mass spectrometric analysis method based on the microwave plasma technique is developed for the fast detection of trace rare earth elements (REEs) in aqueous solution. The plasma was produced from a microwave plasma torch (MPT) under atmospheric pressure and was used as ambient ion source of a linear ion trap mass spectrometer (LTQ). Water samples were directly pneumatically nebulized to flow into the plasma through the central tube of MPT. For some REEs, the generated composite ions were detected in both positive and negative ion modes and further characterized in tandem mass spectrometry. Under the optimized conditions, the limit of detection (LOD) was at the level 0.1 ng/mL using MS2 procedure in negative mode. A single REE analysis can be completed within 2~3 minutes with the relative standard deviation ranging between 2.4% and 21.2% (six repeated measurements) for the 5 experimental runs. Moreover, the recovery rates of these REEs are between the range of 97.6%–122.1%. Two real samples have also been analyzed, including well and orange juice. These experimental data demonstrated that this method is a useful tool for the field analysis of REEs in water and can be used as an alternative supplement of ICP-MS. PMID:26421013

  5. Honeycomblike large area LaB6 plasma source for Multi-Purpose Plasma facility

    NASA Astrophysics Data System (ADS)

    Woo, Hyun-Jong; Chung, Kyu-Sun; You, Hyun-Jong; Lee, Myoung-Jae; Lho, Taihyeop; Choh, Kwon Kook; Yoon, Jung-Sik; Jung, Yong Ho; Lee, Bongju; Yoo, Suk Jae; Kwon, Myeon

    2007-10-01

    A Multi-Purpose Plasma (MP2) facility has been renovated from Hanbit mirror device [Kwon et al., Nucl. Fusion 43, 686 (2003)] by adopting the same philosophy of diversified plasma simulator (DiPS) [Chung et al., Contrib. Plasma Phys. 46, 354 (2006)] by installing two plasma sources: LaB6 (dc) and helicon (rf) plasma sources; and making three distinct simulators: divertor plasma simulator, space propulsion simulator, and astrophysics simulator. During the first renovation stage, a honeycomblike large area LaB6 (HLA-LaB6) cathode was developed for the divertor plasma simulator to improve the resistance against the thermal shock fragility for large and high density plasma generation. A HLA-LaB6 cathode is composed of the one inner cathode with 4in. diameter and the six outer cathodes with 2in. diameter along with separate graphite heaters. The first plasma is generated with Ar gas and its properties are measured by the electric probes with various discharge currents and magnetic field configurations. Plasma density at the middle of central cell reaches up to 2.6×1012 cm-3, while the electron temperature remains around 3-3.5eV at the low discharge current of less than 45A, and the magnetic field intensity of 870G. Unique features of electric property of heaters, plasma density profiles, is explained comparing with those of single LaB6 cathode with 4in. diameter in DiPS.

  6. Honeycomblike large area LaB6 plasma source for Multi-Purpose Plasma facility.

    PubMed

    Woo, Hyun-Jong; Chung, Kyu-Sun; You, Hyun-Jong; Lee, Myoung-Jae; Lho, Taihyeop; Choh, Kwon Kook; Yoon, Jung-Sik; Jung, Yong Ho; Lee, Bongju; Yoo, Suk Jae; Kwon, Myeon

    2007-10-01

    A Multi-Purpose Plasma (MP(2)) facility has been renovated from Hanbit mirror device [Kwon et al., Nucl. Fusion 43, 686 (2003)] by adopting the same philosophy of diversified plasma simulator (DiPS) [Chung et al., Contrib. Plasma Phys. 46, 354 (2006)] by installing two plasma sources: LaB(6) (dc) and helicon (rf) plasma sources; and making three distinct simulators: divertor plasma simulator, space propulsion simulator, and astrophysics simulator. During the first renovation stage, a honeycomblike large area LaB(6) (HLA-LaB(6)) cathode was developed for the divertor plasma simulator to improve the resistance against the thermal shock fragility for large and high density plasma generation. A HLA-LaB(6) cathode is composed of the one inner cathode with 4 in. diameter and the six outer cathodes with 2 in. diameter along with separate graphite heaters. The first plasma is generated with Ar gas and its properties are measured by the electric probes with various discharge currents and magnetic field configurations. Plasma density at the middle of central cell reaches up to 2.6 x 10(12) cm(-3), while the electron temperature remains around 3-3.5 eV at the low discharge current of less than 45 A, and the magnetic field intensity of 870 G. Unique features of electric property of heaters, plasma density profiles, is explained comparing with those of single LaB(6) cathode with 4 in. diameter in DiPS.

  7. A membrane-separator interface for mass-spectrometric analysis of blood plasma

    NASA Astrophysics Data System (ADS)

    Elizarov, A. Yu.; Gerasimov, D. G.

    2014-09-01

    We demonstrate the possibility of rapid mass-spectrometric determination of the content of anesthetic agents in blood plasma with the aid of a membrane-separator interface. The interface employs a hydrophobic selective membrane that is capable of separating various anesthetic drugs (including inhalation anesthetic sevofluran, noninhalation anesthetic thiopental, hypnotic propofol, and opioid analgesic fentanyl) from the blood plasma and introducing samples into a mass spectrometer. Analysis of the blood plasma was not accompanied by the memory effect and did not lead to membrane degradation. Results of clinical investigation of the concentration of anesthetics in the blood plasma of patients are presented.

  8. Plasma Desorption Mass Spectrometry: Coming of Age.

    ERIC Educational Resources Information Center

    Cotter, Robert J.

    1988-01-01

    Discusses the history and development of Plasma Desorption Mass Spectrometry to determine molecular weights and structures of proteins and polymers. Outlines theory, instrumentation, and sample preparation commonly used. Gives several examples of resulting spectra. (ML)

  9. Apparatus for coating a surface with a metal utilizing a plasma source

    DOEpatents

    Brown, Ian G.; MacGill, Robert A.; Galvin, James E.

    1991-01-01

    An apparatus and method for coating or layering a surface with a metal utilizing a metal vapor vacuum arc plasma source. The apparatus includes a trigger mechanism for actuating the metal vacuum vapor arc plasma source in a pulsed mode at a predetermined rate. The surface or substrate to be coated or layered is supported in position with the plasma source in a vacuum chamber. The surface is electrically biased for a selected period of time during the pulsed mode of operation of the plasma source. Both the pulsing of the metal vapor vacuum arc plasma source and the electrical biasing of the surface are synchronized for selected periods of time.

  10. Physics-electrical hybrid model for real time impedance matching and remote plasma characterization in RF plasma sources.

    PubMed

    Sudhir, Dass; Bandyopadhyay, M; Chakraborty, A

    2016-02-01

    Plasma characterization and impedance matching are an integral part of any radio frequency (RF) based plasma source. In long pulse operation, particularly in high power operation where plasma load may vary due to different reasons (e.g. pressure and power), online tuning of impedance matching circuit and remote plasma density estimation are very useful. In some cases, due to remote interfaces, radio activation and, due to maintenance issues, power probes are not allowed to be incorporated in the ion source design for plasma characterization. Therefore, for characterization and impedance matching, more remote schemes are envisaged. Two such schemes by the same authors are suggested in these regards, which are based on air core transformer model of inductive coupled plasma (ICP) [M. Bandyopadhyay et al., Nucl. Fusion 55, 033017 (2015); D. Sudhir et al., Rev. Sci. Instrum. 85, 013510 (2014)]. However, the influence of the RF field interaction with the plasma to determine its impedance, a physics code HELIC [D. Arnush, Phys. Plasmas 7, 3042 (2000)] is coupled with the transformer model. This model can be useful for both types of RF sources, i.e., ICP and helicon sources.

  11. Physics-electrical hybrid model for real time impedance matching and remote plasma characterization in RF plasma sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudhir, Dass, E-mail: dass.sudhir@iter-india.org; Bandyopadhyay, M.; Chakraborty, A.

    2016-02-15

    Plasma characterization and impedance matching are an integral part of any radio frequency (RF) based plasma source. In long pulse operation, particularly in high power operation where plasma load may vary due to different reasons (e.g. pressure and power), online tuning of impedance matching circuit and remote plasma density estimation are very useful. In some cases, due to remote interfaces, radio activation and, due to maintenance issues, power probes are not allowed to be incorporated in the ion source design for plasma characterization. Therefore, for characterization and impedance matching, more remote schemes are envisaged. Two such schemes by the samemore » authors are suggested in these regards, which are based on air core transformer model of inductive coupled plasma (ICP) [M. Bandyopadhyay et al., Nucl. Fusion 55, 033017 (2015); D. Sudhir et al., Rev. Sci. Instrum. 85, 013510 (2014)]. However, the influence of the RF field interaction with the plasma to determine its impedance, a physics code HELIC [D. Arnush, Phys. Plasmas 7, 3042 (2000)] is coupled with the transformer model. This model can be useful for both types of RF sources, i.e., ICP and helicon sources.« less

  12. The terrestrial plasma source - A new perspective in solar-terrestrial processes from Dynamics Explorer

    NASA Technical Reports Server (NTRS)

    Chappell, Charles R.

    1988-01-01

    The geospace environment has been viewed as a mixing bowl for plasmas of both solar and terrestrial origin. The present perspective on the nature of the supply mechanisms has undergone a radical evolution over the past decade, particularly during the five years of the Dynamics Explorer mission. During this period, the terrestrial source has increased in importance in both magnitude and character of ionospheric outflow. These outflows include the classical polar wind, the cleft ion fountain, the auroral ion fountain, and the polar cap. The earth can be envisioned as a multifaceted fountain which ejects particles from different spatial locations spread around the globe. These particles exhibit a range of masses from 1 to 32 amu and a range of energies from 1 eV to 10 keV. The total flux of this ionospheric outflow is very large: adequate to supply the entire magnetospheric particle population. And the implications of the outflow are significant across a broad spectrum of solar-terrestrial processes ranging from sources of magnetospheric plasmas, to influences on ionospheric density and temperature structure, to energy transfer in phenomena such as stable auroral red arcs. The Dynamics Explorer mission has made a major contribution in the characterization of the terrestrial plasma source.

  13. An ion source for radiofrequency-pulsed glow discharge time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    González Gago, C.; Lobo, L.; Pisonero, J.; Bordel, N.; Pereiro, R.; Sanz-Medel, A.

    2012-10-01

    A Grimm-type glow discharge (GD) has been designed and constructed as an ion source for pulsed radiofrequency GD spectrometry when coupled to an orthogonal time of flight mass spectrometer. Pulse shapes of argon species and analytes were studied as a function of the discharge conditions using a new in-house ion source (UNIOVI GD) and results have been compared with a previous design (PROTOTYPE GD). Different behavior and shapes of the pulse profiles have been observed for the two sources evaluated, particularly for the plasma gas ionic species detected. In the more analytically relevant region (afterglow), signals for 40Ar+ with this new design were negligible, while maximum intensity was reached earlier in time for 41(ArH)+ than when using the PROTOTYPE GD. Moreover, while maximum 40Ar+ signals measured along the pulse period were similar in both sources, 41(ArH)+ and 80(Ar2)+ signals tend to be noticeable higher using the PROTOTYPE chamber. The UNIOVI GD design was shown to be adequate for sensitive direct analysis of solid samples, offering linear calibration graphs and good crater shapes. Limits of detection (LODs) are in the same order of magnitude for both sources, although the UNIOVI source provides slightly better LODs for those analytes with masses slightly higher than 41(ArH)+.

  14. High Current, High Density Arc Plasma as a New Source for WiPAL

    NASA Astrophysics Data System (ADS)

    Waleffe, Roger; Endrizzi, Doug; Myers, Rachel; Wallace, John; Clark, Mike; Forest, Cary; WiPAL Team

    2016-10-01

    The Wisconsin Plasma Astrophysics Lab (WiPAL) has installed a new array of nineteen plasma sources (plasma guns) on its 3 m diameter, spherical vacuum vessel. Each gun is a cylindrical, molybdenum, washer-stabilized, arc plasma source. During discharge, the guns are maintained at 1.2 kA across 100 V for 10 ms by the gun power supply establishing a high density plasma. Each plasma source is fired independently allowing for adjustable plasma parameters, with densities varying between 1018 -1019 m-3 and electron temperatures of 5-15 eV. Measurements were characterized using a 16 tip Langmuir probe. The plasma source will be used as a background plasma for the magnetized coaxial plasma gun (MCPG), the Terrestrial Reconnection Experiment (TREX), and as the plasma source for a magnetic mirror experiment. Temperature, density, and confinement results will be presented. This work is supported by the DoE and the NSF.

  15. Investigation of radiofrequency plasma sources for space travel

    NASA Astrophysics Data System (ADS)

    Charles, C.; Boswell, R. W.; Takahashi, K.

    2012-12-01

    Optimization of radiofrequency (RF) plasma sources for the development of space thrusters differs from other applications such as plasma processing of materials since power efficiency, propellant usage, particle acceleration or heating become driving parameters. The development of two RF (13.56 MHz) plasma sources, the high-pressure (˜1 Torr) capacitively coupled ‘pocket rocket’ plasma micro-thruster and the low-pressure (˜1 mTorr) inductively coupled helicon double layer thruster (HDLT), is discussed within the context of mature and emerging electric propulsion devices. The density gradient in low-pressure expanding RF plasmas creates an electric field that accelerates positive ions out of the plasma. Generally, the total potential drop is similar to that of a wall sheath allowing the plasma electrons to neutralize the ion beam. A high-pressure expansion with no applied magnetic field can result in large dissociation rates and/or a collimated beam of ions of small area and a flowing heated neutral beam (‘pocket rocket’). A low-pressure expansion dominated by a magnetic field can result in the formation of electric double layers which produce a very directed neutralized beam of ions of large area (HDLT).

  16. Convex Curved Crystal Spectograph for Pulsed Plasma Sources.

    DTIC Science & Technology

    The geometry of a convex curved crystal spectrograph as applied to pulsed plasma sources is presented. Also presented are data from the dense plasma focus with particular emphasis on the absolute intensity of line radiations.

  17. Plasma source development for fusion-relevant material testing

    DOE PAGES

    Caughman, John B. O.; Goulding, Richard H.; Biewer, Theodore M.; ...

    2017-05-01

    Plasma facing materials in the divertor of a magnetic fusion reactor will have to tolerate steady-state plasma heat fluxes in the range of 10 MW/m2 for ~107 sec, in addition to fusion neutron fluences, which can damage the plasma facing materials to high displacements per atom (dpa) of ~50 dpa . Material solutions needed for the plasma facing components are yet to be developed and tested. The Materials Plasma Exposure eXperiment (MPEX) is a newly proposed steady state linear plasma device that is designed to deliver the necessary plasma heat flux to a target for this material testing, including themore » capability to expose a-priori neutron damaged material samples to those plasmas. The requirements of the plasma source needed to deliver this plasma heat flux are being developed on the Proto-MPEX device, which is a linear high-intensity radio frequency (RF) plasma source that combines a high-density helicon plasma generator with electron and ion heating sections. It is being used to study the physics of heating over-dense plasmas in a linear configuration. The helicon plasma is operated at 13.56 MHz with RF power levels up to 120 kW. Microwaves at 28 GHz (~30 kW) are coupled to the electrons in the over-dense helicon plasma via Electron Bernstein Waves (EBW), and ion cyclotron heating at 7-9 MHz (~30 kW) is via a magnetic beach approach. High plasma densities >6x1019/m3 have been produced in deuterium, with electron temperatures that can range from 2 to >10 eV. Operation with on-axis magnetic field strengths between 0.6 and 1.4 T is typical. The plasma heat flux delivered to a target can be > 10 MW/m2, depending on the operating conditions.« less

  18. Plasma source development for fusion-relevant material testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caughman, John B. O.; Goulding, Richard H.; Biewer, Theodore M.

    Plasma facing materials in the divertor of a magnetic fusion reactor will have to tolerate steady-state plasma heat fluxes in the range of 10 MW/m2 for ~107 sec, in addition to fusion neutron fluences, which can damage the plasma facing materials to high displacements per atom (dpa) of ~50 dpa . Material solutions needed for the plasma facing components are yet to be developed and tested. The Materials Plasma Exposure eXperiment (MPEX) is a newly proposed steady state linear plasma device that is designed to deliver the necessary plasma heat flux to a target for this material testing, including themore » capability to expose a-priori neutron damaged material samples to those plasmas. The requirements of the plasma source needed to deliver this plasma heat flux are being developed on the Proto-MPEX device, which is a linear high-intensity radio frequency (RF) plasma source that combines a high-density helicon plasma generator with electron and ion heating sections. It is being used to study the physics of heating over-dense plasmas in a linear configuration. The helicon plasma is operated at 13.56 MHz with RF power levels up to 120 kW. Microwaves at 28 GHz (~30 kW) are coupled to the electrons in the over-dense helicon plasma via Electron Bernstein Waves (EBW), and ion cyclotron heating at 7-9 MHz (~30 kW) is via a magnetic beach approach. High plasma densities >6x1019/m3 have been produced in deuterium, with electron temperatures that can range from 2 to >10 eV. Operation with on-axis magnetic field strengths between 0.6 and 1.4 T is typical. The plasma heat flux delivered to a target can be > 10 MW/m2, depending on the operating conditions.« less

  19. Relationship between Intensity of Fullerene-Mass Spectrum and Carbon Vibrational Temperature in Microwave-Helium Plasmas

    NASA Astrophysics Data System (ADS)

    Ueda, Kengo; Kuwahara, Kiyoshi; Fujiyama, Hiroshi

    1999-07-01

    Soot containing fullerenes, such as C60 and C70, was synthesized with He plasmas generated in a quartz tube by microwave-glow discharge. A reticulated vitreous carbon (RVC) heated by the microwave He plasmas with an electric field of TE10 mode was used as the carbon source. Swan bands of C2 molecules were observed during the synthesis by optical emission spectroscopy (OES) in order to investigate the effect of the vibrational temperature of C2 molecules on the formation of the fullerenes. The soot deposited on the quartz tube was analyzed by laser desorption time-of-flight mass-spectroscopy (LD-TOF-MS). The intensities of the mass spectra of fullerenes were confirmed to be maximum for the conditions as follows: the absorbed microwave power Pab=200 W and the He gas pressure P=100 Torr, while the C2 vibrational temperature was approximately 7000 K.

  20. Apparatus for coating a surface with a metal utilizing a plasma source

    DOEpatents

    Brown, I.G.; MacGill, R.A.; Galvin, J.E.

    1991-05-07

    An apparatus and method are disclosed for coating or layering a surface with a metal utilizing a metal vapor vacuum arc plasma source. The apparatus includes a trigger mechanism for actuating the metal vacuum vapor arc plasma source in a pulsed mode at a predetermined rate. The surface or substrate to be coated or layered is supported in position with the plasma source in a vacuum chamber. The surface is electrically biased for a selected period of time during the pulsed mode of operation of the plasma source. Both the pulsing of the metal vapor vacuum arc plasma source and the electrical biasing of the surface are synchronized for selected periods of time. 10 figures.

  1. The ionization length in plasmas with finite temperature ion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jelic, N.; Kos, L.; Duhovnik, J.

    2009-12-15

    The ionization length is an important quantity which up to now has been precisely determined only in plasmas which assume that the ions are born at rest, i.e., in discharges known as 'cold ion-source' plasmas. Presented here are the results of our calculations of the ionization lengths in plasmas with an arbitrary ion source temperature. Harrison and Thompson (H and T) [Proc. Phys. Soc. 74, 145 (1959)] found the values of this quantity for the cases of several ion strength potential profiles in the well-known Tonks-Langmuir [Phys. Rev. 34, 876 (1929)] discharge, which is characterized by 'cold' ion temperature. Thismore » scenario is also known as the 'singular' ion-source discharge. The H and T analytic result covers cases of ion sources proportional to exp(betaPHI) with PHI the normalized plasma potential and beta=0,1,2 values, which correspond to particular physical scenarios. Many years following H and T's work, Bissell and Johnson (B and J) [Phys. Fluids 30, 779 (1987)] developed a model with the so-called 'warm' ion-source temperature, i.e., 'regular' ion source, under B and J's particular assumption that the ionization strength is proportional to the local electron density. However, it appears that B and J were not interested in determining the ionization length at all. The importance of this quantity to theoretical modeling was recognized by Riemann, who recently answered all the questions of the most advanced up-to-date plasma-sheath boundary theory with cold ions [K.-U. Riemann, Phys. Plasmas 13, 063508 (2006)] but still without the stiff warm ion-source case solution, which is highly resistant to solution via any available analytic method. The present article is an extension of H and T's results obtained for a single point only with ion source temperature T{sub n}=0 to arbitrary finite ion source temperatures. The approach applied in this work is based on the method recently developed by Kos et al. [Phys. Plasmas 16, 093503 (2009)].« less

  2. Mass discharge assessment at a brominated DNAPL site: Effects of known DNAPL source mass removal

    NASA Astrophysics Data System (ADS)

    Johnston, C. D.; Davis, G. B.; Bastow, T. P.; Woodbury, R. J.; Rao, P. S. C.; Annable, M. D.; Rhodes, S.

    2014-08-01

    Management and closure of contaminated sites is increasingly being proposed on the basis of mass flux of dissolved contaminants in groundwater. Better understanding of the links between source mass removal and contaminant mass fluxes in groundwater would allow greater acceptance of this metric in dealing with contaminated sites. Our objectives here were to show how measurements of the distribution of contaminant mass flux and the overall mass discharge emanating from the source under undisturbed groundwater conditions could be related to the processes and extent of source mass depletion. In addition, these estimates of mass discharge were sought in the application of agreed remediation targets set in terms of pumped groundwater quality from offsite wells. Results are reported from field studies conducted over a 5-year period at a brominated DNAPL (tetrabromoethane, TBA; and tribromoethene, TriBE) site located in suburban Perth, Western Australia. Groundwater fluxes (qw; L3/L2/T) and mass fluxes (Jc; M/L2/T) of dissolved brominated compounds were simultaneously estimated by deploying Passive Flux Meters (PFMs) in wells in a heterogeneous layered aquifer. PFMs were deployed in control plane (CP) wells immediately down-gradient of the source zone, before (2006) and after (2011) 69-85% of the source mass was removed, mainly by groundwater pumping from the source zone. The high-resolution (26-cm depth interval) measures of qw and Jc along the source CP allowed investigation of the DNAPL source-zone architecture and impacts of source mass removal. Comparable estimates of total mass discharge (MD; M/T) across the source zone CP reduced from 104 g day- 1 to 24-31 g day- 1 (70-77% reductions). Importantly, this mass discharge reduction was consistent with the estimated proportion of source mass remaining at the site (15-31%). That is, a linear relationship between mass discharge and source mass is suggested. The spatial detail of groundwater and mass flux distributions also

  3. Mass discharge assessment at a brominated DNAPL site: Effects of known DNAPL source mass removal.

    PubMed

    Johnston, C D; Davis, G B; Bastow, T P; Woodbury, R J; Rao, P S C; Annable, M D; Rhodes, S

    2014-08-01

    Management and closure of contaminated sites is increasingly being proposed on the basis of mass flux of dissolved contaminants in groundwater. Better understanding of the links between source mass removal and contaminant mass fluxes in groundwater would allow greater acceptance of this metric in dealing with contaminated sites. Our objectives here were to show how measurements of the distribution of contaminant mass flux and the overall mass discharge emanating from the source under undisturbed groundwater conditions could be related to the processes and extent of source mass depletion. In addition, these estimates of mass discharge were sought in the application of agreed remediation targets set in terms of pumped groundwater quality from offsite wells. Results are reported from field studies conducted over a 5-year period at a brominated DNAPL (tetrabromoethane, TBA; and tribromoethene, TriBE) site located in suburban Perth, Western Australia. Groundwater fluxes (qw; L(3)/L(2)/T) and mass fluxes (Jc; M/L(2)/T) of dissolved brominated compounds were simultaneously estimated by deploying Passive Flux Meters (PFMs) in wells in a heterogeneous layered aquifer. PFMs were deployed in control plane (CP) wells immediately down-gradient of the source zone, before (2006) and after (2011) 69-85% of the source mass was removed, mainly by groundwater pumping from the source zone. The high-resolution (26-cm depth interval) measures of qw and Jc along the source CP allowed investigation of the DNAPL source-zone architecture and impacts of source mass removal. Comparable estimates of total mass discharge (MD; M/T) across the source zone CP reduced from 104gday(-1) to 24-31gday(-1) (70-77% reductions). Importantly, this mass discharge reduction was consistent with the estimated proportion of source mass remaining at the site (15-31%). That is, a linear relationship between mass discharge and source mass is suggested. The spatial detail of groundwater and mass flux distributions

  4. Perspective: The physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine

    NASA Astrophysics Data System (ADS)

    Laroussi, M.; Lu, X.; Keidar, M.

    2017-07-01

    Low temperature plasmas have been used in various plasma processing applications for several decades. But it is only in the last thirty years or so that sources generating such plasmas at atmospheric pressure in reliable and stable ways have become more prevalent. First, in the late 1980s, the dielectric barrier discharge was used to generate relatively large volume diffuse plasmas at atmospheric pressure. Then, in the early 2000s, plasma jets that can launch cold plasma plumes in ambient air were developed. Extensive experimental and modeling work was carried out on both methods and much of the physics governing such sources was elucidated. Starting in the mid-1990s, low temperature plasma discharges have been used as sources of chemically reactive species that can be transported to interact with biological media, cells, and tissues and induce impactful biological effects. However, many of the biochemical pathways whereby plasma affects cells remain not well understood. This situation is changing rather quickly because the field, known today as "plasma medicine," has experienced exponential growth in the last few years thanks to a global research community that engaged in fundamental and applied research involving the use of cold plasma for the inactivation of bacteria, dental applications, wound healing, and the destruction of cancer cells/tumors. In this perspective, the authors first review the physics as well as the diagnostics of the principal plasma sources used in plasma medicine. Then, brief descriptions of their biomedical applications are presented. To conclude, the authors' personal assessment of the present status and future outlook of the field is given.

  5. ECR Plasma Source for Heavy Ion Beam Charge Neutralization

    NASA Astrophysics Data System (ADS)

    Efthimion, P. C.; Gilson, E.; Grisham, L.; Davidson, R. C.; Yu, S.; Logan, B. G.

    2002-11-01

    Highly ionized plasmas are being considered as a medium for charge neutralizing heavy ion beams in order to focus beyond the space-charge limit. Calculations suggest that plasma at a density of 1 - 100 times the ion beam density and at a length ˜ 0.1-0.5 m would be suitable for achieving a high level of charge neutralization. An ECR source has been built at the Princeton Plasma Physics Laboratory (PPPL) to support a joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 1-10 gauss. The goal is to operate the source at pressures ˜ 10-5 Torr at full ionization. The initial operation of the source has been at pressures of 10-4 - 10-1 Torr. Electron densities in the range of 10^8 - 10^11 cm-3 have been achieved. Low-pressure operation is important to reduce ion beam ionization. A cusp magnetic field has been installed to improve radial confinement and reduce the field strength on the beam axis. In addition, axial confinement is believed to be important to achieve lower-pressure operation. At moderate pressures (> 1 mTorr) the wave damping is collisional, and at low pressures (< 1 mTorr) there is a distinct electron cyclotron resonance. The source has recently been configured to operate with 2.45 GHz microwaves with similar results. At the present operating range the source can simulate the plasma produced by photo-ionization in the target chamber.

  6. Combustion flame-plasma hybrid reactor systems, and chemical reactant sources

    DOEpatents

    Kong, Peter C

    2013-11-26

    Combustion flame-plasma hybrid reactor systems, chemical reactant sources, and related methods are disclosed. In one embodiment, a combustion flame-plasma hybrid reactor system comprising a reaction chamber, a combustion torch positioned to direct a flame into the reaction chamber, and one or more reactant feed assemblies configured to electrically energize at least one electrically conductive solid reactant structure to form a plasma and feed each electrically conductive solid reactant structure into the plasma to form at least one product is disclosed. In an additional embodiment, a chemical reactant source for a combustion flame-plasma hybrid reactor comprising an elongated electrically conductive reactant structure consisting essentially of at least one chemical reactant is disclosed. In further embodiments, methods of forming a chemical reactant source and methods of chemically converting at least one reactant into at least one product are disclosed.

  7. Public Data Set: Impedance of an Intense Plasma-Cathode Electron Source for Tokamak Plasma Startup

    DOE Data Explorer

    Hinson, Edward T. [University of Wisconsin-Madison] (ORCID:000000019713140X); Barr, Jayson L. [University of Wisconsin-Madison] (ORCID:0000000177685931); Bongard, Michael W. [University of Wisconsin-Madison] (ORCID:0000000231609746); Burke, Marcus G. [University of Wisconsin-Madison] (ORCID:0000000176193724); Fonck, Raymond J. [University of Wisconsin-Madison] (ORCID:0000000294386762); Perry, Justin M. [University of Wisconsin-Madison] (ORCID:0000000171228609)

    2016-05-31

    This data set contains openly-documented, machine readable digital research data corresponding to figures published in E.T. Hinson et al., 'Impedance of an Intense Plasma-Cathode Electron Source for Tokamak Plasma Startup,' Physics of Plasmas 23, 052515 (2016).

  8. Progress in the Development of a High Power Helicon Plasma Source for the Materials Plasma Exposure Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goulding, Richard Howell; Caughman, John B.; Rapp, Juergen

    Proto-MPEX is a linear plasma device being used to study a novel RF source concept for the planned Material Plasma Exposure eXperiment (MPEX), which will address plasma-materials interaction (PMI) for nuclear fusion reactors. Plasmas are produced using a large diameter helicon source operating at a frequency of 13.56 MHz at power levels up to 120 kW. In recent experiments the helicon source has produced deuterium plasmas with densities up to ~6 × 1019 m–3 measured at a location 2 m downstream from the antenna and 0.4 m from the target. Previous plasma production experiments on Proto-MPEX have generated lower densitymore » plasmas with hollow electron temperature profiles and target power deposition peaked far off axis. The latest experiments have produced flat Te profiles with a large portion of the power deposited on the target near the axis. This and other evidence points to the excitation of a helicon mode in this case.« less

  9. Neutral and Plasma Sources in the Saturn's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Jurac, S.; Johnson, R. E.

    1999-05-01

    The heavy ion plasma in Saturnian inner magnetosphere is derived from the icy satellites and ring particles imbedded in the plasma. Recent Hubble Space Telescope measurements of the densities of neutral OH molecules which co-exist with and are precursors of the plasma ions have constrained models for the plasma sources. Richardson et al (1998) considered all existing HST observations and derived water-like neutral densities and estimated required sources to maintain equilibrium. Their neutral densities show maximum close to Enceladus (where the E-ring density peaks) and their total neutral source rate needed to maintain neutrals in steady state is for an order of magnitude larger than source rate given by Shi et al (1995). We model the sputtering of water-ice using the recently developed Monte-Carlo collisional transport code, and calculate neutral supply rates from sputtering of Enceladus and the E-ring. This collisional code, used previously to evaluate sputtering from the interstellar grains (Jurac et al, 1998) is modified to include electronic processes relevant to water-ice sputtering, and then applied to the E-ring grains. It is shown that the grain erosion rate increases substantially when the ion penetration depth becomes comparable to the grain radius. The sputtering and collection rates for plasma ions and neutrals are evaluated and it is shown that the E-ring might be the dominant source of water-like neutrals in the Saturnian magnetosphere. We also describe competition between grain growth and erosion and discuss implications to the existing E-ring evolutionary models. References: Jurac S., R. E. Johnson, B. Donn; Astroph. J. 503, 247, 1998 Richardson, J. D., A. Eviatar, M. A. McGrath, V. M. Vasyliunas; J. Geophys. Res., 103, 20245, 1998 Shi, M., R.A. Baragiola, D.E. Grosjean, R.E. Johnson, S. Jurac and J. Schou; J. Geophys. Res., 100, 26387, 1995.

  10. Plasma wake field XUV radiation source

    DOEpatents

    Prono, Daniel S.; Jones, Michael E.

    1997-01-01

    A XUV radiation source uses an interaction of electron beam pulses with a gas to create a plasma radiator. A flowing gas system (10) defines a circulation loop (12) with a device (14), such as a high pressure pump or the like, for circulating the gas. A nozzle or jet (16) produces a sonic atmospheric pressure flow and increases the density of the gas for interacting with an electron beam. An electron beam is formed by a conventional radio frequency (rf) accelerator (26) and electron pulses are conventionally formed by a beam buncher (28). The rf energy is thus converted to electron beam energy, the beam energy is used to create and then thermalize an atmospheric density flowing gas to a fully ionized plasma by interaction of beam pulses with the plasma wake field, and the energetic plasma then loses energy by line radiation at XUV wavelengths Collection and focusing optics (18) are used to collect XUV radiation emitted as line radiation when the high energy density plasma loses energy that was transferred from the electron beam pulses to the plasma.

  11. Plasma surface cleaning using microwave plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, C.C.; Haselton, H.H.; Nelson, W.D.

    1993-11-01

    In a microwave electron cyclotron resonance (ECR) plasma source, reactive plasmas of oxygen and its mixture with argon are used for plasma-cleaning experiments. Aluminum test samples (0.95 {times} 1.9 cm) were coated with thin films ({le} 20 {mu}m in thickness) of Shell Vitrea oil and cleaned by using such reactive plasmas. The plasma cleaning was done in various discharge conditions with fixed microwave power, rf power, biased potential, gas pressures (0.5 and 5 mtorr), and operating time up to 35 min. The status of plasma cleaning has been monitored by using mass spectroscopy. Mass loss of the samples after plasmamore » cleaning was measured to estimate cleaning rates. Measured clean rates of low pressure (0.5 mtorr) argon/oxygen plasmas were as high as 2.7 {mu}/min. X-ray photoelectron spectroscopy was used to determine cleanliness of the sample surfaces and confirm the effectiveness of plasma cleaning in achieving atomic levels of surface cleanliness. In this paper, significant results are reported and discussed.« less

  12. ECR Plasma Source for Heavy Ion Beam Charge Neutralization

    NASA Astrophysics Data System (ADS)

    Efthimion, P. C.; Gilson, E.; Grishman, L.; Kolchin, P.; Davidson, R. C.

    2002-01-01

    Highly ionized plasmas are being considered as a medium for charge neutralizing heavy ion beams in order to focus beyond the space-charge limit. Calculations suggest that plasma at a density of 1 - 100 times the ion beam density and at a length of approximately 0.1-2 m would be suitable for achieving a high level of charge neutralization. An ECR source has been built at the Princeton Plasma Physics Laboratory (PPPL) to support a joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 1-10 gauss. The goal is to operate the source at pressures of approximately 10-6 torr at full ionization. The initial operation of the source has been at pressures of 10-4 - 10-1. Electron densities in the range of 108 - 1011 per cubic centimeter have been achieved. Low-pressure operation is important to reduce ion beam ionization. A cusp magnetic field has been installed to improve radial confinement and reduce the field strength on the beam axis. In addition, axial confinement is believed to be important to achieve lower-pressure operation. To further improve breakdown at low pressure, a weak electron source will be placed near the end of the ECR source.

  13. On the possibility of the multiple inductively coupled plasma and helicon plasma sources for large-area processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jin-Won; Lee, Yun-Seong, E-mail: leeeeys@kaist.ac.kr; Chang, Hong-Young

    2014-08-15

    In this study, we attempted to determine the possibility of multiple inductively coupled plasma (ICP) and helicon plasma sources for large-area processes. Experiments were performed with the one and two coils to measure plasma and electrical parameters, and a circuit simulation was performed to measure the current at each coil in the 2-coil experiment. Based on the result, we could determine the possibility of multiple ICP sources due to a direct change of impedance due to current and saturation of impedance due to the skin-depth effect. However, a helicon plasma source is difficult to adapt to the multiple sources duemore » to the consistent change of real impedance due to mode transition and the low uniformity of the B-field confinement. As a result, it is expected that ICP can be adapted to multiple sources for large-area processes.« less

  14. Study on deposition of Al2O3 films by plasma-assisted atomic layer with different plasma sources

    NASA Astrophysics Data System (ADS)

    Haiying, WEI; Hongge, GUO; Lijun, SANG; Xingcun, LI; Qiang, CHEN

    2018-04-01

    In this paper, Al2O3 thin films are deposited on a hydrogen-terminated Si substrate by using two home-built electron cyclotron resonance (ECR) and magnetic field enhanced radio frequency plasma-assisted atomic layer deposition (PA-ALD) devices with Al(CH3)3 (trimethylaluminum, TMA) and oxygen plasma used as precursor and oxidant, respectively. The thickness, chemical composition, surface morphology and group reactions are characterized by in situ spectroscopic ellipsometer, x-ray photoelectric spectroscopy, atomic force microscopy, scanning electron microscopy, a high-resolution transmission electron microscope and in situ mass spectrometry (MS), respectively. We obtain that both ECR PA-ALD and the magnetic field enhanced PA-ALD can deposit thin films with high density, high purity, and uniformity at a high deposition rate. MS analysis reveals that the Al2O3 deposition reactions are not simple reactions between TMA and oxygen plasma to produce alumina, water and carbon dioxide. In fact, acetylene, carbon monoxide and some other by-products also appear in the exhaustion gas. In addition, the presence of bias voltage has a certain effect on the deposition rate and surface morphology of films, which may be attributed to the presence of bias voltage controlling the plasma energy and density. We conclude that both plasma sources have a different deposition mechanism, which is much more complicated than expected.

  15. Model for a transformer-coupled toroidal plasma source

    NASA Astrophysics Data System (ADS)

    Rauf, Shahid; Balakrishna, Ajit; Chen, Zhigang; Collins, Ken

    2012-01-01

    A two-dimensional fluid plasma model for a transformer-coupled toroidal plasma source is described. Ferrites are used in this device to improve the electromagnetic coupling between the primary coils carrying radio frequency (rf) current and a secondary plasma loop. Appropriate components of the Maxwell equations are solved to determine the electromagnetic fields and electron power deposition in the model. The effect of gas flow on species transport is also considered. The model is applied to 1 Torr Ar/NH3 plasma in this article. Rf electric field lines form a loop in the vacuum chamber and generate a plasma ring. Due to rapid dissociation of NH3, NHx+ ions are more prevalent near the gas inlet and Ar+ ions are the dominant ions farther downstream. NH3 and its by-products rapidly dissociate into small fragments as the gas flows through the plasma. With increasing source power, NH3 dissociates more readily and NHx+ ions are more tightly confined near the gas inlet. Gas flow rate significantly influences the plasma characteristics. With increasing gas flow rate, NH3 dissociation occurs farther from the gas inlet in regions with higher electron density. Consequently, more NH4+ ions are produced and dissociation by-products have higher concentrations near the outlet.

  16. Development of a novel low-flow ion source/sampling cone geometry for inductively coupled plasma mass spectrometry and application in hyphenated techniques

    NASA Astrophysics Data System (ADS)

    Pfeifer, Thorben; Janzen, Rasmus; Steingrobe, Tobias; Sperling, Michael; Franze, Bastian; Engelhard, Carsten; Buscher, Wolfgang

    2012-10-01

    A novel ion source/sampling cone device for inductively coupled plasma mass spectrometry (ICP-MS) especially operated in the hyphenated mode as a detection system coupled with different separation modules is presented. Its technical setup is described in detail. Its main feature is the very low total argon consumption of less than 1.5 L min- 1, leading to significant reduction of operational costs especially when time-consuming speciation analysis is performed. The figures of merit of the new system with respect to sensitivity, detection power, long-term stability and working range were explored. Despite the profound differences of argon consumption of the new system in comparison to the conventional ICP-MS system, many of the characteristic features of the conventional ICP-MS could be maintained to a great extent. To demonstrate the ion source's capabilities, it was used as an element-selective detector for gas (GC) and high performance liquid chromatography (HPLC) where organic compounds of mercury and cobalt, respectively, were separated and detected with the new low-flow ICP-MS detection system. The corresponding chromatograms are shown. The applicability for trace element analysis has been validated with the certified reference material NIST 1643e.

  17. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and its Application in Life Sciences

    NASA Astrophysics Data System (ADS)

    Xu, Gu-feng; Wang, Hong-mei

    2001-08-01

    Inductively-coupled plasma mass spectrometry (ICP-MS) has made much progress since its birth in the late 1990s. This paper will give a rather systematic overview on the use of this technique in new devices and technologies related to plasma source, sample-introducing device and detecting spectrometer etc. In this overview, an emphasis will be put on the evaluation of the ICP-MS technique in combination with a series of physical, chemical and biological techniques, such as laser ablation (LA), capillary electrophoresis (CE) and high performance liquid chromatograph (HPLC), along with their representative high accuracy and high sensitivity. Finally, comprehensive and fruitful applications of the ICP-MS and its combinative techniques in the detection of trace metallic elements and isotopes in complex biological and environmental samples will be revealed.

  18. Measurement and Visualization of Mass Transport for the Flowing Atmospheric Pressure Afterglow (FAPA) Ambient Mass-Spectrometry Source

    PubMed Central

    Pfeuffer, Kevin P.; Ray, Steven J.; Hieftje, Gary M.

    2014-01-01

    Ambient desorption/ionization mass spectrometry (ADI-MS) has developed into an important analytical field over the last nine years. The ability to analyze samples under ambient conditions while retaining the sensitivity and specificity of mass spectrometry has led to numerous applications and a corresponding jump in the popularity of this field. Despite the great potential of ADI-MS, problems remain in the areas of ion identification and quantification. Difficulties with ion identification can be solved through modified instrumentation, including accurate-mass or MS/MS capabilities for analyte identification. More difficult problems include quantification due to the ambient nature of the sampling process. To characterize and improve sample volatilization, ionization, and introduction into the mass-spectrometer interface, a method of visualizing mass transport into the mass spectrometer is needed. Schlieren imaging is a well-established technique that renders small changes in refractive index visible. Here, schlieren imaging was used to visualize helium flow from a plasma-based ADI-MS source into a mass spectrometer while ion signals were recorded. Optimal sample positions for melting-point capillary and transmission-mode (stainless steel mesh) introduction were found to be near (within 1 mm of) the mass spectrometer inlet. Additionally, the orientation of the sampled surface plays a significant role. More efficient mass transport resulted for analyte deposits directly facing the MS inlet. Different surfaces (glass slide and rough surface) were also examined; for both it was found that the optimal position is immediately beneath the MS inlet. PMID:24658804

  19. Measurement and visualization of mass transport for the flowing atmospheric pressure afterglow (FAPA) ambient mass-spectrometry source.

    PubMed

    Pfeuffer, Kevin P; Ray, Steven J; Hieftje, Gary M

    2014-05-01

    Ambient desorption/ionization mass spectrometry (ADI-MS) has developed into an important analytical field over the last 9 years. The ability to analyze samples under ambient conditions while retaining the sensitivity and specificity of mass spectrometry has led to numerous applications and a corresponding jump in the popularity of this field. Despite the great potential of ADI-MS, problems remain in the areas of ion identification and quantification. Difficulties with ion identification can be solved through modified instrumentation, including accurate-mass or MS/MS capabilities for analyte identification. More difficult problems include quantification because of the ambient nature of the sampling process. To characterize and improve sample volatilization, ionization, and introduction into the mass spectrometer interface, a method of visualizing mass transport into the mass spectrometer is needed. Schlieren imaging is a well-established technique that renders small changes in refractive index visible. Here, schlieren imaging was used to visualize helium flow from a plasma-based ADI-MS source into a mass spectrometer while ion signals were recorded. Optimal sample positions for melting-point capillary and transmission-mode (stainless steel mesh) introduction were found to be near (within 1 mm of) the mass spectrometer inlet. Additionally, the orientation of the sampled surface plays a significant role. More efficient mass transport resulted for analyte deposits directly facing the MS inlet. Different surfaces (glass slide and rough surface) were also examined; for both it was found that the optimal position is immediately beneath the MS inlet.

  20. Measurement and Visualization of Mass Transport for the Flowing Atmospheric Pressure Afterglow (FAPA) Ambient Mass-Spectrometry Source

    NASA Astrophysics Data System (ADS)

    Pfeuffer, Kevin P.; Ray, Steven J.; Hieftje, Gary M.

    2014-05-01

    Ambient desorption/ionization mass spectrometry (ADI-MS) has developed into an important analytical field over the last 9 years. The ability to analyze samples under ambient conditions while retaining the sensitivity and specificity of mass spectrometry has led to numerous applications and a corresponding jump in the popularity of this field. Despite the great potential of ADI-MS, problems remain in the areas of ion identification and quantification. Difficulties with ion identification can be solved through modified instrumentation, including accurate-mass or MS/MS capabilities for analyte identification. More difficult problems include quantification because of the ambient nature of the sampling process. To characterize and improve sample volatilization, ionization, and introduction into the mass spectrometer interface, a method of visualizing mass transport into the mass spectrometer is needed. Schlieren imaging is a well-established technique that renders small changes in refractive index visible. Here, schlieren imaging was used to visualize helium flow from a plasma-based ADI-MS source into a mass spectrometer while ion signals were recorded. Optimal sample positions for melting-point capillary and transmission-mode (stainless steel mesh) introduction were found to be near (within 1 mm of) the mass spectrometer inlet. Additionally, the orientation of the sampled surface plays a significant role. More efficient mass transport resulted for analyte deposits directly facing the MS inlet. Different surfaces (glass slide and rough surface) were also examined; for both it was found that the optimal position is immediately beneath the MS inlet.

  1. RF Antenna Design for a Helicon Plasma Source

    NASA Astrophysics Data System (ADS)

    Godden, Katarina; Stassel, Brendan; Warta, Daniel; Yep, Isaac; Hicks, Nathaniel; Munk, Jens

    2017-10-01

    A helicon plasma source is under development for the new Plasma Science and Engineering Laboratory at the University of Alaska Anchorage. The helicon source is of a type comprising Pyrex and stainless steel cylindrical sections, joined to an ultrahigh vacuum chamber. A radio frequency (RF) helical antenna surrounds the Pyrex chamber, as well as DC solenoidal magnetic field coils. This presentation focuses on the design of the RF helical antenna and RF matching network, such that helicon wave power is coupled to argon plasma with minimal reflected power to the RF amplifier. The amplifier output is selectable between 2-30 MHz, with forward c.w. power up to 1.5 kW. Details and computer simulation of the antenna geometry, materials, and power matching will be presented, as well as the matching network of RF transmission line, tuning capacitors, and cooling system. An initial computational study of power coupling to the plasma will also be described. Supported by U.S. NSF/DOE Partnership in Basic Plasma Science and Engineering Grant PHY-1619615, by the Alaska Space Grant Program, and by UAA Innovate 2017.

  2. Invited article: Characterization of background sources in space-based time-of-flight mass spectrometers.

    PubMed

    Gilbert, J A; Gershman, D J; Gloeckler, G; Lundgren, R A; Zurbuchen, T H; Orlando, T M; McLain, J; von Steiger, R

    2014-09-01

    For instruments that use time-of-flight techniques to measure space plasma, there are common sources of background signals that evidence themselves in the data. The background from these sources may increase the complexity of data analysis and reduce the signal-to-noise response of the instrument, thereby diminishing the science value or usefulness of the data. This paper reviews several sources of background commonly found in time-of-flight mass spectrometers and illustrates their effect in actual data using examples from ACE-SWICS and MESSENGER-FIPS. Sources include penetrating particles and radiation, UV photons, energy straggling and angular scattering, electron stimulated desorption of ions, ion-induced electron emission, accidental coincidence events, and noise signatures from instrument electronics. Data signatures of these sources are shown, as well as mitigation strategies and design considerations for future instruments.

  3. Very Large Area/Volume Microwave ECR Plasma and Ion Source

    NASA Technical Reports Server (NTRS)

    Foster, John E. (Inventor); Patterson, Michael J. (Inventor)

    2009-01-01

    The present invention is an apparatus and method for producing very large area and large volume plasmas. The invention utilizes electron cyclotron resonances in conjunction with permanent magnets to produce dense, uniform plasmas for long life ion thruster applications or for plasma processing applications such as etching, deposition, ion milling and ion implantation. The large area source is at least five times larger than the 12-inch wafers being processed to date. Its rectangular shape makes it easier to accommodate to materials processing than sources that are circular in shape. The source itself represents the largest ECR ion source built to date. It is electrodeless and does not utilize electromagnets to generate the ECR magnetic circuit, nor does it make use of windows.

  4. Effect of source tuning parameters on the plasma potential of heavy ions in the 18 GHz high temperature superconducting electron cyclotron resonance ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodrigues, G.; Mathur, Y.; Kumar, Sarvesh

    2012-03-15

    Plasma potentials for various heavy ions have been measured using the retarding field technique in the 18 GHz high temperature superconducting ECR ion source, PKDELIS [C. Bieth, S. Kantas, P. Sortais, D. Kanjilal, G. Rodrigues, S. Milward, S. Harrison, and R. McMahon, Nucl. Instrum. Methods B 235, 498 (2005); D. Kanjilal, G. Rodrigues, P. Kumar, A. Mandal, A. Roy, C. Bieth, S. Kantas, and P. Sortais, Rev. Sci. Instrum. 77, 03A317 (2006)]. The ion beam extracted from the source is decelerated close to the location of a mesh which is polarized to the source potential and beams having different plasmamore » potentials are measured on a Faraday cup located downstream of the mesh. The influence of various source parameters, viz., RF power, gas pressure, magnetic field, negative dc bias, and gas mixing on the plasma potential is studied. The study helped to find an upper limit of the energy spread of the heavy ions, which can influence the design of the longitudinal optics of the high current injector being developed at the Inter University Accelerator Centre. It is observed that the plasma potentials are decreasing for increasing charge states and a mass effect is clearly observed for the ions with similar operating gas pressures. In the case of gas mixing, it is observed that the plasma potential minimizes at an optimum value of the gas pressure of the mixing gas and the mean charge state maximizes at this value. Details of the measurements carried out as a function of various source parameters and its impact on the longitudinal optics are presented.« less

  5. Simulating Sources of Superstorm Plasmas

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching

    2008-01-01

    We evaluated the contributions to magnetospheric pressure (ring current) of the solar wind, polar wind, auroral wind, and plasmaspheric wind, with the surprising result that the main phase pressure is dominated by plasmaspheric protons. We used global simulation fields from the LFM single fluid ideal MHD model. We embedded the Comprehensive Ring Current Model within it, driven by the LFM transpolar potential, and supplied with plasmas at its boundary including solar wind protons, polar wind protons, auroral wind O+, and plasmaspheric protons. We included auroral outflows and acceleration driven by the LFM ionospheric boundary condition, including parallel ion acceleration driven by upward currents. Our plasmasphere model runs within the CRCM and is driven by it. Ionospheric sources were treated using our Global Ion Kinetics code based on full equations of motion. This treatment neglects inertial loading and pressure exerted by the ionospheric plasmas, and will be superceded by multifluid simulations that include those effects. However, these simulations provide new insights into the respective role of ionospheric sources in storm-time magnetospheric dynamics.

  6. A tandem mirror plasma source for hybrid plume plasma studies

    NASA Technical Reports Server (NTRS)

    Yang, T. F.; Chang, F. R.; Miller, R. H.; Wenzel, K. W.; Krueger, W. A.

    1985-01-01

    A tandem mirror device to be considered as a hot plasma source for the hybrid plume rocket concept is discussed. The hot plamsa from this device is injected into an exhaust duct, which will interact with an annular hypersonic layer of neutral gas. The device can be used to study the dynamics of the hybrid plume, and to verify the numerical predictions obtained with computer codes. The basic system design is also geared towards low weight and compactness, and high power density at the exhaust. The basic structure of the device consists of four major subsystems: (1) an electric power supply; (2) a low temperature, high density plasma gun, such as a stream gun, an MPD source or gas cell; (3) a power booster in the form of a tandem mirror machine; and (4) an exhaust nozzle arrangement. The configuration of the tandem mirror section is shown.

  7. Relationship between mass-flux reduction and source-zone mass removal: analysis of field data.

    PubMed

    Difilippo, Erica L; Brusseau, Mark L

    2008-05-26

    The magnitude of contaminant mass-flux reduction associated with a specific amount of contaminant mass removed is a key consideration for evaluating the effectiveness of a source-zone remediation effort. Thus, there is great interest in characterizing, estimating, and predicting relationships between mass-flux reduction and mass removal. Published data collected for several field studies were examined to evaluate relationships between mass-flux reduction and source-zone mass removal. The studies analyzed herein represent a variety of source-zone architectures, immiscible-liquid compositions, and implemented remediation technologies. There are two general approaches to characterizing the mass-flux-reduction/mass-removal relationship, end-point analysis and time-continuous analysis. End-point analysis, based on comparing masses and mass fluxes measured before and after a source-zone remediation effort, was conducted for 21 remediation projects. Mass removals were greater than 60% for all but three of the studies. Mass-flux reductions ranging from slightly less than to slightly greater than one-to-one were observed for the majority of the sites. However, these single-snapshot characterizations are limited in that the antecedent behavior is indeterminate. Time-continuous analysis, based on continuous monitoring of mass removal and mass flux, was performed for two sites, both for which data were obtained under water-flushing conditions. The reductions in mass flux were significantly different for the two sites (90% vs. approximately 8%) for similar mass removals ( approximately 40%). These results illustrate the dependence of the mass-flux-reduction/mass-removal relationship on source-zone architecture and associated mass-transfer processes. Minimal mass-flux reduction was observed for a system wherein mass removal was relatively efficient (ideal mass-transfer and displacement). Conversely, a significant degree of mass-flux reduction was observed for a site wherein mass

  8. Model for a transformer-coupled toroidal plasma source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauf, Shahid; Balakrishna, Ajit; Chen Zhigang

    2012-01-15

    A two-dimensional fluid plasma model for a transformer-coupled toroidal plasma source is described. Ferrites are used in this device to improve the electromagnetic coupling between the primary coils carrying radio frequency (rf) current and a secondary plasma loop. Appropriate components of the Maxwell equations are solved to determine the electromagnetic fields and electron power deposition in the model. The effect of gas flow on species transport is also considered. The model is applied to 1 Torr Ar/NH{sub 3} plasma in this article. Rf electric field lines form a loop in the vacuum chamber and generate a plasma ring. Due tomore » rapid dissociation of NH{sub 3}, NH{sub x}{sup +} ions are more prevalent near the gas inlet and Ar{sup +} ions are the dominant ions farther downstream. NH{sub 3} and its by-products rapidly dissociate into small fragments as the gas flows through the plasma. With increasing source power, NH{sub 3} dissociates more readily and NH{sub x}{sup +} ions are more tightly confined near the gas inlet. Gas flow rate significantly influences the plasma characteristics. With increasing gas flow rate, NH{sub 3} dissociation occurs farther from the gas inlet in regions with higher electron density. Consequently, more NH{sub 4}{sup +} ions are produced and dissociation by-products have higher concentrations near the outlet.« less

  9. X-ray source characterization of aluminum X-pinch plasmas driven by the 0. 5 TW LION accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, N.; Hammer, D.A.; Kalantar, D.H.

    1989-12-01

    Recent experiments at Cornell have been performed to investigate X-pinch plasmas as intense x-ray sources which might be used to pump resonant photoexcitation lasers. Crossed Al wires have been driven by up to 600 kA current for 40 ns. High density bright spots are observed at the crossing point(s). Various diagnostics were used to characterize the X-pinch plasmas as a function of initial mass loading for several specific wire configurations. The optimum mass loading for different ionization stages of Al, and the total x-ray energy yields, which are on the order of hundreds of Joules, were examined. Estimates of plasmamore » density, {similar to}10{sup 20} cm{sup {minus}3}, and temperature, about 400 eV, were obtained.« less

  10. Mirror-field confined compact plasma source using permanent magnet for plasma processings.

    PubMed

    Goto, Tetsuya; Sato, Kei-Ichiro; Yabuta, Yuki; Sugawa, Shigetoshi

    2016-12-01

    A mirror-field confined compact electron cyclotron resonance (ECR) plasma source using permanent magnets was developed, aiming for the realization of high-quality plasma processings where high-density reactive species are supplied to a substrate with minimizing the ion bombardment damages. The ECR position was located between a microwave transmissive window and a quartz limiter, and plasmas were transported from the ECR position to a midplane of the magnetic mirror field through the quartz limiter. Thus, a radius of core plasma could be determined by the limiter, which was 15 mm in this study. Plasma parameters were investigated by the Langmuir probe measurement. High-density plasma larger than 10 11 cm -3 could be produced by applying 5.85-GHz microwave power of 10 W or more. For the outside region of the core plasma where a wafer for plasma processings will be set at, the ion current density was decreased dramatically with distance from the core plasma and became smaller by approximately two orders of magnitude that in the core plasma region for the radial position of 40 mm, suggesting the realization of reduction in ion bombardment damages.

  11. Matrix effects in inductively coupled plasma mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiaoshan

    1995-07-07

    The inductively coupled plasma is an electrodeless discharge in a gas (usually Ar) at atmospheric pressure. Radio frequency energy generated by a RF power source is inductively coupled to the plasma gas through a water cooled load coil. In ICP-MS the "Fassel" TAX quartz torch commonly used in emission is mounted horizontally. The sample aerosol is introduced into the central flow, where the gas kinetic temperature is about 5000 K. The aerosol is vaporized, atomized, excited and ionized in the plasma, and the ions are subsequently extracted through two metal apertures (sampler and skimmer) into the mass spectrometer. In ICP-MS,more » the matrix effects, or non-spectroscopic interferences, can be defined as the type of interferences caused by dissolved concomitant salt ions in the solution. Matrix effects can be divided into two categories: (1) signal drift due to the deposition of solids on the sampling apertures; and/or (2) signal suppression or enhancement by the presence of the dissolved salts. The first category is now reasonably understood. The dissolved salts, especially refractory oxides, tend to deposit on the cool tip of the sampling cone. The clogging of the orifices reduces the ion flow into the ICP-MS, lowers the pressure in the first stage of ICP-MS, and enhances the level of metal oxide ions. Because the extent of the clogging increases with the time, the signal drifts down. Even at the very early stage of the development of ICP-MS, matrix effects had been observed. Houk et al. found out that the ICP-MS was not tolerant to solutions containing significant amounts of dissolved solids.« less

  12. Dynamic Response of a Magnetized Plasma to AN External Source: Application to Space and Solid State Plasmas

    NASA Astrophysics Data System (ADS)

    Zhou, Huai-Bei

    This dissertation examines the dynamic response of a magnetoplasma to an external time-dependent current source. To achieve this goal a new method which combines analytic and numerical techniques to study the dynamic response of a 3-D magnetoplasma to a time-dependent current source imposed across the magnetic field was developed. The set of the cold electron and/or ion plasma equations and Maxwell's equations are first solved analytically in (k, omega)^ace; inverse Laplace and 3 -D complex Fast Fourier Transform (FFT) techniques are subsequently used to numerically transform the radiation fields and plasma currents from the (k, omega) ^ace to the (r, t) space. The dynamic responses of the electron plasma and of the compensated two-component plasma to external current sources are studied separately. The results show that the electron plasma responds to a time -varying current source imposed across the magnetic field by exciting whistler/helicon waves and forming of an expanding local current loop, induced by field aligned plasma currents. The current loop consists of two anti-parallel field-aligned current channels concentrated at the ends of the imposed current and a cross-field current region connecting these channels. The latter is driven by an electron Hall drift. A compensated two-component plasma responds to the same current source as following: (a) For slow time scales tau > Omega_sp{i}{-1} , it generates Alfven waves and forms a non-local current loop in which the ion polarization currents dominate the cross-field current; (b) For fast time scales tau < Omega_sp{i}{-1} , the dynamic response of the compensated two-component plasma is the same as that of the electron plasma. The characteristics of the current closure region are determined by the background plasma density, the magnetic field and the time scale of the current source. This study has applications to a diverse range of space and solid state plasma problems. These problems include current closure

  13. Harnessing mass differential confinement effects in magnetized rotating plasmas to address new separation needs

    NASA Astrophysics Data System (ADS)

    Gueroult, R.; Rax, J.-M.; Zweben, S. J.; Fisch, N. J.

    2018-01-01

    The ability to separate large volumes of mixed species based on atomic mass appears desirable for a variety of emerging applications with high societal impact. One possibility to meet this objective consists in leveraging mass differential effects in rotating plasmas. Beyond conventional centrifugation, rotating plasmas offer in principle additional ways to separate elements based on mass. Single ion orbits show that ion radial mass separation in a uniform magnetized plasma column can be achieved by applying a tailored electric potential profile across the column, or by driving a rotating magnetic field within the column. Furthermore, magnetic pressure and centrifugal effects can be combined in a non-uniform geometry to separate ions based on mass along the field lines. Practical application of these separation schemes hinges on the ability to produce the desirable electric and magnetic field configuration within the plasma column.

  14. Dependence of the source performance on plasma parameters at the BATMAN test facility

    NASA Astrophysics Data System (ADS)

    Wimmer, C.; Fantz, U.

    2015-04-01

    The investigation of the dependence of the source performance (high jH-, low je) for optimum Cs conditions on the plasma parameters at the BATMAN (Bavarian Test MAchine for Negative hydrogen ions) test facility is desirable in order to find key parameters for the operation of the source as well as to deepen the physical understanding. The most relevant source physics takes place in the extended boundary layer, which is the plasma layer with a thickness of several cm in front of the plasma grid: the production of H-, its transport through the plasma and its extraction, inevitably accompanied by the co-extraction of electrons. Hence, a link of the source performance with the plasma parameters in the extended boundary layer is expected. In order to characterize electron and negative hydrogen ion fluxes in the extended boundary layer, Cavity Ring-Down Spectroscopy and Langmuir probes have been applied for the measurement of the H- density and the determination of the plasma density, the plasma potential and the electron temperature, respectively. The plasma potential is of particular importance as it determines the sheath potential profile at the plasma grid: depending on the plasma grid bias relative to the plasma potential, a transition in the plasma sheath from an electron repelling to an electron attracting sheath takes place, influencing strongly the electron fraction of the bias current and thus the amount of co-extracted electrons. Dependencies of the source performance on the determined plasma parameters are presented for the comparison of two source pressures (0.6 Pa, 0.45 Pa) in hydrogen operation. The higher source pressure of 0.6 Pa is a standard point of operation at BATMAN with external magnets, whereas the lower pressure of 0.45 Pa is closer to the ITER requirements (p ≤ 0.3 Pa).

  15. RF-Plasma Source Commissioning in Indian Negative Ion Facility

    NASA Astrophysics Data System (ADS)

    Singh, M. J.; Bandyopadhyay, M.; Bansal, G.; Gahlaut, A.; Soni, J.; Kumar, Sunil; Pandya, K.; Parmar, K. G.; Sonara, J.; Yadava, Ratnakar; Chakraborty, A. K.; Kraus, W.; Heinemann, B.; Riedl, R.; Obermayer, S.; Martens, C.; Franzen, P.; Fantz, U.

    2011-09-01

    The Indian program of the RF based negative ion source has started off with the commissioning of ROBIN, the inductively coupled RF based negative ion source facility under establishment at Institute for Plasma research (IPR), India. The facility is being developed under a technology transfer agreement with IPP Garching. It consists of a single RF driver based beam source (BATMAN replica) coupled to a 100 kW, 1 MHz RF generator with a self excited oscillator, through a matching network, for plasma production and ion extraction and acceleration. The delivery of the RF generator and the RF plasma source without the accelerator, has enabled initiation of plasma production experiments. The recent experimental campaign has established the matching circuit parameters that result in plasma production with density in the range of 0.5-1×1018/m3, at operational gas pressures ranging between 0.4-1 Pa. Various configurations of the matching network have been experimented upon to obtain a stable operation of the set up for RF powers ranging between 25-85 kW and pulse lengths ranging between 4-20 s. It has been observed that the range of the parameters of the matching circuit, over which the frequency of the power supply is stable, is narrow and further experiments with increased number of turns in the coil are in the pipeline to see if the range can be widened. In this paper, the description of the experimental system and the commissioning data related to the optimisation of the various parameters of the matching network, to obtain stable plasma of required density, are presented and discussed.

  16. Modeling of low pressure plasma sources for microelectronics fabrication

    NASA Astrophysics Data System (ADS)

    Agarwal, Ankur; Bera, Kallol; Kenney, Jason; Likhanskii, Alexandre; Rauf, Shahid

    2017-10-01

    Chemically reactive plasmas operating in the 1 mTorr-10 Torr pressure range are widely used for thin film processing in the semiconductor industry. Plasma modeling has come to play an important role in the design of these plasma processing systems. A number of 3-dimensional (3D) fluid and hybrid plasma modeling examples are used to illustrate the role of computational investigations in design of plasma processing hardware for applications such as ion implantation, deposition, and etching. A model for a rectangular inductively coupled plasma (ICP) source is described, which is employed as an ion source for ion implantation. It is shown that gas pressure strongly influences ion flux uniformity, which is determined by the balance between the location of plasma production and diffusion. The effect of chamber dimensions on plasma uniformity in a rectangular capacitively coupled plasma (CCP) is examined using an electromagnetic plasma model. Due to high pressure and small gap in this system, plasma uniformity is found to be primarily determined by the electric field profile in the sheath/pre-sheath region. A 3D model is utilized to investigate the confinement properties of a mesh in a cylindrical CCP. Results highlight the role of hole topology and size on the formation of localized hot-spots. A 3D electromagnetic plasma model for a cylindrical ICP is used to study inductive versus capacitive power coupling and how placement of ground return wires influences it. Finally, a 3D hybrid plasma model for an electron beam generated magnetized plasma is used to understand the role of reactor geometry on plasma uniformity in the presence of E  ×  B drift.

  17. Modeling of negative ion transport in a plasma source

    NASA Astrophysics Data System (ADS)

    Riz, David; Paméla, Jérôme

    1998-08-01

    A code called NIETZSCHE has been developed to simulate the negative ion transport in a plasma source, from their birth place to the extraction holes. The ion trajectory is calculated by numerically solving the 3-D motion equation, while the atomic processes of destruction, of elastic collision H-/H+ and of charge exchange H-/H0 are handled at each time step by a Monte-Carlo procedure. This code can be used to calculate the extraction probability of a negative ion produced at any location inside the source. Calculations performed with NIETZSCHE have allowed to explain, either quantitatively or qualitatively, several phenomena observed in negative ion sources, such as the isotopic H-/D- effect, and the influence of the plasma grid bias or of the magnetic filter on the negative ion extraction. The code has also shown that in the type of sources contemplated for ITER, which operate at large arc power densities (>1 W cm-3), negative ions can reach the extraction region provided if they are produced at a distance lower than 2 cm from the plasma grid in the case of «volume production» (dissociative attachment processes), or if they are produced at the plasma grid surface, in the vicinity of the extraction holes.

  18. Improving low-level plasma protein mass spectrometry-based detection for candidate biomarker discovery and validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Page, Jason S.; Kelly, Ryan T.; Camp, David G.

    2008-09-01

    Methods. To improve the detection of low abundance protein candidate biomarker discovery and validation, particularly in complex biological fluids such as blood plasma, increased sensitivity is desired using mass spectrometry (MS)-based instrumentation. A key current limitation on the sensitivity of electrospray ionization (ESI) MS is due to the fact that many sample molecules in solution are never ionized, and the vast majority of the ions that are created are lost during transmission from atmospheric pressure to the low pressure region of the mass analyzer. Two key technologies, multi-nanoelectrospray emitters and the electrodynamic ion funnel have recently been developed and refinedmore » at Pacific Northwest National Laboratory (PNNL) to greatly improve the ionization and transmission efficiency of ESI MS based analyses. Multi-emitter based ESI enables the flow from a single source (typically a liquid chromatography [LC] column) to be divided among an array of emitters (Figure 1). The flow rate delivered to each emitter is thus reduced, allowing the well-documented benefits of nanoelectrospray 1 for both sensitivity and quantitation to be realized for higher flow rate separations. To complement the increased ionization efficiency afforded by multi-ESI, tandem electrodynamic ion funnels have also been developed at PNNL, and shown to greatly improve ion transmission efficiency in the ion source interface.2, 3 These technologies have been integrated into a triple quadrupole mass spectrometer for multiple reaction monitoring (MRM) of probable biomarker candidates in blood plasma and show promise for the identification of new species even at low level concentrations.« less

  19. Comprehensive blood plasma lipidomics by liquid chromatography/quadrupole time-of-flight mass spectrometry.

    PubMed

    Sandra, Koen; Pereira, Alberto Dos Santos; Vanhoenacker, Gerd; David, Frank; Sandra, Pat

    2010-06-18

    A lipidomics strategy, combining high resolution reversed-phase liquid chromatography (RPLC) with high resolution quadrupole time-of-flight mass spectrometry (QqTOF), is described. The method has carefully been assessed in both a qualitative and a quantitative fashion utilizing human blood plasma. The inherent low technical variability associated with the lipidomics method allows to measure 65% of the features with an intensity RSD value below 10%. Blood plasma lipid spike-in experiments demonstrate that relative concentration differences smaller than 25% can readily be revealed by means of a t-test. Utilizing an advanced identification strategy, it is shown that the detected features mainly originate from (lyso-)phospholipids, sphingolipids, mono-, di- and triacylglycerols and cholesterol esters. The high resolution offered by the up-front RPLC step further allows to discriminate various isomeric species associated with the different lipid classes. The added value of utilizing a Jetstream electrospray ionization (ESI) source over a regular ESI source in lipidomics is for the first time demonstrated. In addition, the application of ultra high performance LC (UHPLC) up to 1200bar to extend the peak capacity or increase productivity is discussed. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  20. Inductively coupled plasma mass spectrometry (ICP MS): a versatile tool.

    PubMed

    Ammann, Adrian A

    2007-04-01

    Inductively coupled plasma (ICP) mass spectrometry (MS) is routinely used in many diverse research fields such as earth, environmental, life and forensic sciences and in food, material, chemical, semiconductor and nuclear industries. The high ion density and the high temperature in a plasma provide an ideal atomizer and element ionizer for all types of samples and matrices introduced by a variety of specialized devices. Outstanding properties such as high sensitivity (ppt-ppq), relative salt tolerance, compound-independent element response and highest quantitation accuracy lead to the unchallenged performance of ICP MS in efficiently detecting, identifying and reliably quantifying trace elements. The increasing availability of relevant reference compounds and high separation selectivity extend the molecular identification capability of ICP MS hyphenated to species-specific separation techniques. While molecular ion source MS is specialized in determining the structure of unknown molecules, ICP MS is an efficient and highly sensitive tool for target-element orientated discoveries of relevant and unknown compounds. This special-feature, tutorial article presents the principle and advantages of ICP MS, highlighting these using examples from recently published investigations. Copyright 2007 John Wiley & Sons, Ltd.

  1. Light source employing laser-produced plasma

    DOEpatents

    Tao, Yezheng; Tillack, Mark S

    2013-09-17

    A system and a method of generating radiation and/or particle emissions are disclosed. In at least some embodiments, the system includes at least one laser source that generates a first pulse and a second pulse in temporal succession, and a target, where the target (or at least a portion the target) becomes a plasma upon being exposed to the first pulse. The plasma expand after the exposure to the first pulse, the expanded plasma is then exposed to the second pulse, and at least one of a radiation emission and a particle emission occurs after the exposure to the second pulse. In at least some embodiments, the target is a solid piece of material, and/or a time period between the first and second pulses is less than 1 microsecond (e.g., 840 ns).

  2. Development of a 1-m plasma source for heavy ion beam charge neutralization

    NASA Astrophysics Data System (ADS)

    Efthimion, Philip C.; Gilson, Erik P.; Grisham, Larry; Davidson, Ronald C.; Yu, Simon; Waldron, William; Grant Logan, B.

    2005-05-01

    Highly ionized plasmas are being employed as a medium for charge neutralizing heavy ion beams in order to focus to a small spot size. Calculations suggest that plasma at a density of 1-100 times the ion beam density and at a length ˜0.1-1 m would be suitable for achieving a high level of charge neutralization. A radio frequency (RF) source was constructed at the Princeton Plasma Physics Laboratory (PPPL) in support of the joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization. Pulsing the source enabled operation at pressures ˜10 -6 Torr with plasma densities of 10 11 cm -3. Near 100% ionization was achieved. The plasma was 10 cm in length, but future experiments require a source 1 m long. The RF source does not easily scale to the length. Consequently, large-volume plasma sources based upon ferroelectric ceramics are being considered. These sources have the advantage of being able to increase the length of the plasma and operate at low neutral pressures. The source will utilize the ferroelectric ceramic BaTiO 3 to form metal plasma. A 1 m long section of the drift tube inner surface of NTX will be covered with ceramic. A high voltage (˜1-5 kV) is applied between the drift tube and the front surface of the ceramic by placing a wire grid on the front surface. Plasma densities of 10 12 cm -3 and neutral pressures ˜10 -6 Torr are expected. A test stand to produce 20 cm long plasma is being constructed and will be tested before a 1 m long source is developed.

  3. Iogenic Plasma and its Rotation-Driven Transport in Jupiter's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Smyth, William H.

    2001-01-01

    Model calculations are reported for the Iogenic plasma source created by atomic oxygen and sulfur above Io's exobase in the corona and extended clouds (Outer Region). On a circumplanetary scale, two-dimensional distributions produced by integrating the proper three dimensional rate information for electron impact and charge exchange processes along the magnetic field lines are presented for the pickup ion rates, the net-mass and total-mass loading rates, the mass per unit magnetic flux rate, the pickup conductivity, the radial pickup current, and the net-energy loading rate for the plasma torus. All of the two-dimensional distributions are highly peaked at Io's location and hence highly asymmetric about Jupiter. The Iogenic plasma source is also calculated on a much smaller near-Io scale to investigate the structure of the highly peak rates centered about lo's instantaneous location. The Iogenic plasma source for the Inner Region (pickup rates produced below Io's exobase) is, however, expected to be the dominant source near lo for the formation of the plasma torus ribbon and to be a comparable source, if not a larger contributor, to the energy budget of the plasma torus, so as to provide the necessary power to sustain the plasma torus radiative loss rate.

  4. Shunting arc plasma source for pure carbon ion beam.

    PubMed

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse.

  5. Shunting arc plasma source for pure carbon ion beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koguchi, H.; Sakakita, H.; Kiyama, S.

    2012-02-15

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm{sup 2} at the peak of the pulse.

  6. Ion heating and short wavelength fluctuations in a helicon plasma source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scime, E. E.; Carr, J. Jr.; Galante, M.

    2013-03-15

    For typical helicon source parameters, the driving antenna can couple to two plasma modes; the weakly damped 'helicon' wave, and the strongly damped, short wavelength, slow wave. Here, we present direct measurements, obtained with two different techniques, of few hundred kHz, short wavelength fluctuations that are parametrically driven by the primary antenna and localized to the edge of the plasma. The short wavelength fluctuations appear for plasma source parameters such that the driving frequency is approximately equal to the lower hybrid frequency. Measurements of the steady-state ion temperature and fluctuation amplitude radial profiles suggest that the anomalously high ion temperaturesmore » observed at the edge of helicon sources result from damping of the short wavelength fluctuations. Additional measurements of the time evolution of the ion temperature and fluctuation profiles in pulsed helicon source plasmas support the same conclusion.« less

  7. Dropper for micron and submicron size powders for a plasma mass filter

    NASA Astrophysics Data System (ADS)

    Evans, Eugene S.; Zweben, Stewart J.; Gueroult, Renaud; Fisch, Nathaniel J.; Levinton, Fred

    2014-10-01

    The goal of the Plasma Mass Filter (PMF) experiment at PPPL, in collaboration with Nova Photonics, Inc., is to achieve separation between high-Z and low-Z atoms, for possible application to processing of nuclear waste to remove the highly radioactive high-Z components. The PMF features a rotating plasma column in which centrifugal forces push high-mass ions out of the plasma radially, while low-mass ions exit the plasma axially. In order to control the injection location, high-Z materials are introduced in powder form into the PMF plasma. The current experiment is limted to ~1 kW RF, giving a calculated maximum flow rate of ~0.1 mg/s. An electron temperature of a few eV and assumptions about the residence time of the dust particles in the PMF plasma limits the calculated maximum particle size to ~1 μm. While previous dusty plasma experiments have dealt with particles on the order of 2-3 μm, submicron particles are comparatively more difficult to manipulate under vacuum due to increased Van Der Waals and electrostatic forces. A powder dropper capable of reliably dropping micron and submicron-size particles at this flow rate is being developed, consisting of a mesh-bottomed container that is coupled to vibration motors. This work supported by DOE contract DE-AC02-09CH11466.

  8. Liquid Sampling-Atmospheric Pressure Glow Discharge (LS-APGD) Ionization Source for Elemental Mass Spectrometry: Preliminary Parametric Evaluation and Figures of Merit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quarles, C. Derrick; Carado, Anthony J.; Barinaga, Charles J.

    2012-01-01

    A new, low power ionization source for the elemental analysis of aqueous solutions has recently been described. The liquid sampling-atmospheric pressure glow discharge (LS-APGD) source operates at relatively low currents (<20 mA) and solution flow rates (<50 μL min-1), yielding a relatively simple alternative for atomic mass spectrometry applications. The LS-APGD has been interfaced to what is otherwise an organic, LC-MS mass analyzer, the Thermo Scientific Exactive Orbitrap without any modifications; other than removing the electrospray ionization (ESI) source supplied with that instrument. A glow discharge is initiated between the surface of the test solution exiting a glass capillary andmore » a metallic counter electrode mounted at a 90° angle and separated by a distance of ~5 mm. As with any plasma-based ionization source, there are key discharge operation and ion sampling parameters that affect the intensity and composition of the derived mass spectra; including signal-to-background ratios. We describe here a preliminary parametric evaluation of the roles of discharge current, solution flow rate, argon sheath gas flow rate, and ion sampling distance as they apply on this mass analyzer system. A cursive evaluation of potential matrix effects due to the presence of easily ionized elements (EIEs) indicate that sodium concentrations of up to 500 μg mL-1 generally cause suppressions of less than 50%, dependant upon the analyte species. Based on the results of this series of studies, preliminary limits of detection (LOD) have been established through the generation of calibration functions. Whilst solution-based concentrations LOD levels of 0.02 – 2 μg mL-1 3 are not impressive on the surface, the fact that they are determined via discrete 5 μL injections leads to mass-based detection limits at picogram to singlenanogram levels. The overhead costs associated with source operation (10 W d.c. power, solution flow rates of <50 μL min-1, and gas flow rates

  9. ECR plasma source for heavy ion beam charge neutralization

    NASA Astrophysics Data System (ADS)

    Efthimion, Philip C.; Gilson, Erik; Grisham, Larry; Kolchin, Pavel; Davidson, Ronald C.; Yu, Simon; Logan, B. Grant

    2003-01-01

    Highly ionized plasmas are being considered as a medium for charge neutralizing heavy ion beams in order to focus beyond the space-charge limit. Calculations suggest that plasma at a density of 1 100 times the ion beam density and at a length [similar]0.1 2 m would be suitable for achieving a high level of charge neutralization. An Electron Cyclotron Resonance (ECR) source has been built at the Princeton Plasma Physics Laboratory (PPPL) to support a joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 1 10 gauss. The goal is to operate the source at pressures [similar]10[minus sign]6 Torr at full ionization. The initial operation of the source has been at pressures of 10[minus sign]4 10[minus sign]1 Torr. Electron densities in the range of 108 to 1011 cm[minus sign]3 have been achieved. Low-pressure operation is important to reduce ion beam ionization. A cusp magnetic field has been installed to improve radial confinement and reduce the field strength on the beam axis. In addition, axial confinement is believed to be important to achieve lower-pressure operation. To further improve breakdown at low pressure, a weak electron source will be placed near the end of the ECR source. This article also describes the wave damping mechanisms. At moderate pressures (> 1 mTorr), the wave damping is collisional, and at low pressures (< 1 mTorr) there is a distinct electron cyclotron resonance.

  10. Modeling of negative ion transport in a plasma source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riz, David; Departement de Recherches sur la Fusion Controelee CE Cadarache, 13108 St Paul lez Durance; Pamela, Jerome

    1998-08-20

    A code called NIETZSCHE has been developed to simulate the negative ion transport in a plasma source, from their birth place to the extraction holes. The ion trajectory is calculated by numerically solving the 3-D motion equation, while the atomic processes of destruction, of elastic collision H{sup -}/H{sup +} and of charge exchange H{sup -}/H{sup 0} are handled at each time step by a Monte-Carlo procedure. This code can be used to calculate the extraction probability of a negative ion produced at any location inside the source. Calculations performed with NIETZSCHE have allowed to explain, either quantitatively or qualitatively, severalmore » phenomena observed in negative ion sources, such as the isotopic H{sup -}/D{sup -} effect, and the influence of the plasma grid bias or of the magnetic filter on the negative ion extraction. The code has also shown that in the type of sources contemplated for ITER, which operate at large arc power densities (>1 W cm{sup -3}), negative ions can reach the extraction region provided if they are produced at a distance lower than 2 cm from the plasma grid in the case of 'volume production' (dissociative attachment processes), or if they are produced at the plasma grid surface, in the vicinity of the extraction holes.« less

  11. Molecularly imprinted polymers as selective adsorbents for ambient plasma mass spectrometry.

    PubMed

    Cegłowski, Michał; Smoluch, Marek; Reszke, Edward; Silberring, Jerzy; Schroeder, Grzegorz

    2017-05-01

    The application of molecularly imprinted polymers (MIPs) as molecular scavengers for ambient plasma ionization mass spectrometry has been reported for the first time. MIPs were synthesized using methacrylic acid as functional monomer; nicotine, propyphenazone, or methylparaben as templates; ethylene glycol dimethacrylate as a cross-linker; and 2,2'-azobisisobutyronitrile as polymerization initiator. To perform ambient plasma ionization experiments, a setup consisting of the heated crucible, a flowing atmospheric-pressure afterglow (FAPA) plasma ion source, and a quadrupole ion trap mass spectrometer has been used. The heated crucible with programmable temperature allows for desorption of the analytes from MIPs structure which results in their direct introduction into the ion stream. Limits of detection, linearity of the proposed analytical procedure, and selectivities have been determined for three analytes: nicotine, propyphenazone, and methylparaben. The analytes used were chosen from various classes of organic compounds to show the feasibility of the analytical procedure. The limits of detections (LODs) were 10 nM, 10, and 0.5 μM for nicotine, propyphenazone, and methylparaben, respectively. In comparison with the measurements performed for the non-imprinted polymers, the values of LODs were improved for at least one order of magnitude due to preconcentration of the sample and reduction of background noise, contributing to signal suppression. The described procedure has shown linearity in a broad range of concentrations. The overall time of single analysis is short and requires ca. 5 min. The developed technique was applied for the determination of nicotine, propyphenazone, and methylparaben in spiked real-life samples, with recovery of 94.6-98.4%. The proposed method is rapid, sensitive, and accurate which provides a new option for the detection of small organic compounds in various samples. Graphical abstract The experimental setup used for analysis.

  12. Laboratory Plasma Source as an MHD Model for Astrophysical Jets

    NASA Technical Reports Server (NTRS)

    Mayo, Robert M.

    1997-01-01

    The significance of the work described herein lies in the demonstration of Magnetized Coaxial Plasma Gun (MCG) devices like CPS-1 to produce energetic laboratory magneto-flows with embedded magnetic fields that can be used as a simulation tool to study flow interaction dynamic of jet flows, to demonstrate the magnetic acceleration and collimation of flows with primarily toroidal fields, and study cross field transport in turbulent accreting flows. Since plasma produced in MCG devices have magnetic topology and MHD flow regime similarity to stellar and extragalactic jets, we expect that careful investigation of these flows in the laboratory will reveal fundamental physical mechanisms influencing astrophysical flows. Discussion in the next section (sec.2) focuses on recent results describing collimation, leading flow surface interaction layers, and turbulent accretion. The primary objectives for a new three year effort would involve the development and deployment of novel electrostatic, magnetic, and visible plasma diagnostic techniques to measure plasma and flow parameters of the CPS-1 device in the flow chamber downstream of the plasma source to study, (1) mass ejection, morphology, and collimation and stability of energetic outflows, (2) the effects of external magnetization on collimation and stability, (3) the interaction of such flows with background neutral gas, the generation of visible emission in such interaction, and effect of neutral clouds on jet flow dynamics, and (4) the cross magnetic field transport of turbulent accreting flows. The applicability of existing laboratory plasma facilities to the study of stellar and extragalactic plasma should be exploited to elucidate underlying physical mechanisms that cannot be ascertained though astrophysical observation, and provide baseline to a wide variety of proposed models, MHD and otherwise. The work proposed herin represents a continued effort on a novel approach in relating laboratory experiments to

  13. Development of alternative plasma sources for cavity ring-down measurements of mercury.

    PubMed

    Duan, Yixiang; Wang, Chuji; Scherrer, Susan T; Winstead, Christopher B

    2005-08-01

    We have been exploring innovative technologies for elemental and hyperfine structure measurements using cavity ring-down spectroscopy (CRDS) combined with various plasma sources. A laboratory CRDS system utilizing a tunable dye laser is employed in this work to demonstrate the feasibility of the technology. An in-house fabricated sampling system is used to generate aerosols from solution samples and introduce the aerosols into the plasma source. The ring-down signals are monitored using a photomultiplier tube and recorded using a digital oscilloscope interfaced to a computer. Several microwave plasma discharge devices are tested for mercury CRDS measurement. Various discharge tubes have been designed and tested to reduce background interference and increase the sample path length while still controlling turbulence generated from the plasma gas flow. Significant background reduction has been achieved with the implementation of the newly designed tube-shaped plasma devices, which has resulted in a detection limit of 0.4 ng/mL for mercury with the plasma source CRDS. The calibration curves obtained in this work readily show that linearity over 2 orders of magnitude can be obtained with plasma-CRDS for mercury detection. In this work, the hyperfine structure of mercury at the experimental plasma temperatures is clearly identified. We expect that plasma source cavity ring-down spectroscopy will provide enhanced capabilities for elemental and isotopic measurements.

  14. Microwave plasma source for neutral-beam injection systems

    NASA Astrophysics Data System (ADS)

    1981-08-01

    The overall program is described and the technical and programmatic reasons for the decision to pursue both the RFI and ECH sources into the current hydrogen test stage is discussed. The general characteristics of plasma sources in the parameter regime of interest for neutral beam applications are considered. The operational characteristics, advantages and potential problems of RFI and ECH sources are discussed.

  15. Development of high-density helicon plasma sources and their applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinohara, Shunjiro; Hada, Tohru; Motomura, Taisei

    2009-05-15

    We report on the development of unique, high-density helicon plasma sources and describe their applications. Characterization of one of the largest helicon plasma sources yet constructed is made. Scalings of the particle production efficiency are derived from various plasma production devices in open literature and our own data from long and short cylinder devices, i.e., high and low values of the aspect ratio A (the ratio of the axial length to the diameter), considering the power balance in the framework of a simple diffusion model. A high plasma production efficiency is demonstrated, and we clarify the structures of the excitedmore » waves in the low A region down to 0.075 (the large device diameter of 73.8 cm with the axial length as short as 5.5 cm). We describe the application to plasma propulsion using a new concept that employs no electrodes. A very small diameter (2.5 cm) helicon plasma with 10{sup 13} cm{sup -3} density is produced, and the preliminary results of electromagnetic plasma acceleration are briefly described.« less

  16. Ion mass separation modeling inside a plasma separator

    NASA Astrophysics Data System (ADS)

    Gavrikov, A. V.; Sidorov, V. S.; Smirnov, V. P.; Tarakanov, V. P.

    2018-01-01

    The results have been obtained in a continuation of the work for ion trajectories calculation in crossed electric and magnetic fields and also in a close alignment with the plasma separation study development. The main task was to calculate trajectories of ions of the substance imitating spent nuclear fuel in order to find a feasible plasma separator configuration. The three-dimensional modeling has been made with KARAT code in a single-particle approximation. The calculations have been performed under the following conditions. Magnetic field is produced by 2 coils of wire, the characteristic field strength in a uniform area is 1.4 kG. Electric field is produced by several electrodes (axial ones, anode shell and capacitor sheets) with electric potential up to 500 V. The characteristic linear size of the cylindrical separator area is ∼ 100 cm. The characteristic size of injection region is ∼ 1 cm. Spatial position of the injection region is inside the separator. The injection direction is along magnetic lines. Injected particles are single-charged ions with energies from 0 to 20 eV with atomic masses A = 150 and 240. Wide spreading angle range was investigated. As a result of simulation a feasible separator configuration was found. This configuration allows to achieve more than 10 cm spatial division distance for the separated ions and is fully compliant with and supplementary to the vacuum arc-based ion source research.

  17. High Resolution Studies of the Origins of Polyatomic Ions in Inductively Coupled Plasma-Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferguson, Jill Wisnewski

    2006-01-01

    The inductively coupled plasma (ICP) is an atmospheric pressure ionization source. Traditionally, the plasma is sampled via a sampler cone. A supersonic jet develops behind the sampler, and this region is pumped down to a pressure of approximately one Torr. A skimmer cone is located inside this zone of silence to transmit ions into the mass spectrometer. The position of the sampler and skimmer cones relative to the initial radiation and normal analytical zones of the plasma is key to optimizing the useful analytical signal [1]. The ICP both atomizes and ionizes the sample. Polyatomic ions form through ion-molecule interactionsmore » either in the ICP or during ion extraction [l]. Common polyatomic ions that inhibit analysis include metal oxides (MO +), adducts with argon, the gas most commonly used to make up the plasma, and hydride species. While high resolution devices can separate many analytes from common interferences, this is done at great cost in ion transmission efficiency--a loss of 99% when using high versus low resolution on the same instrument [2]. Simple quadrupole devices, which make up the bulk of ICP-MS instruments in existence, do not present this option. Therefore, if the source of polyatomic interferences can be determined and then manipulated, this could potentially improve the figures of merit on all ICP-MS devices, not just the high resolution devices often utilized to study polyatomic interferences.« less

  18. Design of a high particle flux hydrogen helicon plasma source for used in plasma materials interaction studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goulding, R. H.; Chen, G.; Meitner, S.

    2009-11-26

    Existing linear plasma materials interaction (PMI) facilities all use plasma sources with internal electrodes. An rf-based helicon source is of interest because high plasma densities can be generated with no internal electrodes, allowing true steady state operation with minimal impurity generation. Work has begun at Oak Ridge National Laboratory (ORNL) to develop a large (15 cm) diameter helicon source producing hydrogen plasmas with parameters suitable for use in a linear PMI device: n{sub e}{>=}10{sup 19} m{sup -3}, T{sub e} = 4-10 eV, particle flux {gamma}{sub p}>10{sup 23}m{sup -3} s{sup -1}, and magnetic field strength |B| up to 1 T inmore » the source region. The device, whose design is based on a previous hydrogen helicon source operated at ORNL[1], will operate at rf frequencies in the range 10-26 MHz, and power levels up to {approx}100 kW. Limitations in cooling will prevent operation for pulses longer than several seconds, but a major goal will be the measurement of power deposition on device structures so that a later steady state version can be designed. The device design, the diagnostics to be used, and results of rf modeling of the device will be discussed. These include calculations of plasma loading, resulting currents and voltages in antenna structures and the matching network, power deposition profiles, and the effect of high |B| operation on power absorption.« less

  19. Comparison in the analytical performance between krypton and argon glow discharge plasmas as the excitation source for atomic emission spectrometry.

    PubMed

    Wagatsuma, Kazuaki

    2009-04-01

    The emission characteristics of ionic lines of nickel, cobalt, and vanadium were investigated when argon or krypton was employed as the plasma gas in glow discharge optical emission spectrometry. A dc Grimm-style lamp was employed as the excitation source. Detection limits of the ionic lines in each iron-matrix alloy sample were compared between the krypton and the argon plasmas. Particular intense ionic lines were observed in the emission spectra as a function of the discharge gas (krypton or argon), such as the Co II 258.033 nm for krypton and the Co II 231.707 nm for argon. The explanation for this is that collisions with the plasma gases dominantly populate particular excited levels of cobalt ion, which can receive the internal energy from each gas ion selectively, for example, the 3d(7)4p (3)G(5) (6.0201 eV) for krypton and the 3d(7)4p (3)G(4) (8.0779 eV) for argon. In the determination of nickel as well as cobalt in iron-matrix samples, more sensitive ionic lines could be found in the krypton plasma rather than the argon plasma. Detection limits in the krypton plasma were 0.0039 mass% Ni for the Ni II 230.299-nm line and 0.002 mass% Co for the Co II 258.033-nm line. However, in the determination of vanadium, the argon plasma had better analytical performance, giving a detection limit of 0.0023 mass% V for the V II 309.310-nm line.

  20. Marginal instability threshold condition of the aperiodic ordinary mode in equal-mass plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vafin, S.; Schlickeiser, R.; Yoon, P. H.

    The purely growing ordinary (O) mode instability for counter-streaming bi-Maxwellian plasma particle distribution functions has recently received renewed attention due to its importance for the solar wind plasma. Here, the analytical marginal instability condition is derived for magnetized plasmas consisting of equal-mass charged particles, distributed in counter-streams with equal temperatures. The equal-mass composition assumption enormously facilitates the theoretical analysis due to the equality of the values of the electron and positron (positive and negative ion) plasma and gyrofrequencies. The existence of a new instability domain of the O-mode at small plasma beta values is confirmed, when the parallel counter-stream freemore » energy exceeds the perpendicular bi-Maxwellian free energy.« less

  1. Method of high-precision microsampled blood and plasma mass densitometry

    NASA Technical Reports Server (NTRS)

    Hinghofer-Szalkay, H.

    1986-01-01

    The reliability of the mechanical oscillator technique for blood and plasma density measurements on samples of volumes less than 0.1 ml is examined, and a precision of 0.001 g/l is found if plasma-isodensic heparin solution and siliconized densitometers are employed. Sources of measurement errors in the density determinations include storage of plasma samples, inhomogeneity of blood samples, and density reading before adequate temperature equilibration. In tests of plasma sample storage, the best reproducibility was obtained with samples kept at 4 C. Linear correlations were found between plasma density and plasma protein concentration, blood density and blood hemoglobin concentration, and erythrocyte density and MCHC.

  2. Response of Jupiter's Aurora to Plasma Mass Loading Rate Monitored by the Hisaki Satellite During Io's Volcanic Event

    NASA Astrophysics Data System (ADS)

    Kimura, T.; Yoshioka, K.; Tsuchiya, F.; Hiraki, Y.; Tao, C.; Murakami, G.; Yamazaki, A.; Fujimoto, M.; Badman, S. V.; Delamere, P. A.; Bagenal, F.

    2016-12-01

    Plasma production and transfer processes in the planetary and stellar magnetospheres are essential for understanding the space environments around the celestial bodies. It is hypothesized that the mass of plasma loaded from Io's volcano to Jupiter's rotating magnetosphere is recurrently ejected as blobs from the distant tail region of the magnetosphere. The plasma ejections are possibly triggered by the magnetic reconnections, which are followed by the particle energization, bursty planetward plasma flow, and resultant auroral emissions. They are referred to as the 'energetic events'. However, there has been no evidence that the plasma mass loading actually causes the energetic events because of lack of the simultaneous observation of them. This study presents that the recurrent transient auroras, which are possibly representative for the energetic events, are closely associated with the mass loading. Continuous monitoring of the aurora and Io plasma torus indicates onset of the recurrent auroras when accumulation of the loaded plasma mass reaches the canonical total mass of the magnetosphere. This onset condition implies that the fully filled magnetosphere overflows the plasma mass accompanying the energetic events.

  3. Operation of the ORNL High Particle Flux Helicon Plasma Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goulding, R. H.; Biewer, T. M.; Caughman, J. B. O.

    2011-12-23

    A high power, high particle flux rf-based helicon plasma source has been constructed at ORNL and operated at power levels up to 30 kW. High-density hydrogen and helium plasmas have been produced. The source has been designed as the basis for a linear plasma materials interaction (PMI) test facility that will generate particle fluxes {Gamma}{sub p}10{sup 23} m{sup -3} s{sup -1}, and utilize additional ion and electron cyclotron heating to produce high parallel (to the magnetic field) heat fluxes of {approx}10 MW/m{sup 2}. An rf-based source for PMI research is of interest because high plasma densities are generated with nomore » internal electrodes, allowing true steady state operation with minimal impurity generation. The ORNL helicon source has a diameter of 15 cm and to-date has operated at a frequency f = 13.56 MHz, with magnetic field strength |B| in the antenna region up to {approx}0.15 T. Maximum densities of 3x10{sup 19} m{sup -3} in He and 2.5x10{sup 19} m{sup -3} in H have been achieved. Radial density profiles have been seen to be dependent on the axial |B| profile.« less

  4. Operation of the ORNL High Particle Flux Helicon Plasma Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goulding, Richard Howell; Biewer, Theodore M; Caughman, John B

    2011-01-01

    A high power, high particle flux rf-based helicon plasma source has been constructed at ORNL and operated at power levels up to 30 kW. High-density hydrogen and helium plasmas have been produced. The source has been designed as the basis for a linear plasma materials interaction (PMI) test facility that will generate particle fluxes Gamma(p) > 10(23) M-3 s(-1), and utilize additional ion and electron cyclotron heating to produce high parallel (to the magnetic field) heat fluxes of similar to 10 MW/m(2). An rf-based source for PMI research is of interest because high plasma densities are generated with no internalmore » electrodes, allowing true steady state operation with minimal impurity generation. The ORNL helicon source has a diameter of 15 cm and to-date has operated at a frequency f = 13.56 MHz, with magnetic field strength vertical bar B vertical bar in the antenna region up to similar to 0.15 T. Maximum densities of 3 x 10(19) M-3 in He and 2.5 x 10(19) m(-3) in H have been achieved. Radial density profiles have been seen to be dependent on the axial vertical bar B vertical bar profile.« less

  5. Modeling of negative ion transport in a plasma source (invited)

    NASA Astrophysics Data System (ADS)

    Riz, David; Paméla, Jérôme

    1998-02-01

    A code called NIETZSCHE has been developed to simulate the negative ion transport in a plasma source, from their birth place to the extraction holes. The H-/D- trajectory is calculated by numerically solving the 3D motion equation, while the atomic processes of destruction, of elastic collision with H+/D+ and of charge exchange with H0/D0 are handled at each time step by a Monte Carlo procedure. This code can be used to calculate the extraction probability of a negative ion produced at any location inside the source. Calculations performed with NIETZSCHE have been allowed to explain, either quantitatively or qualitatively, several phenomena observed in negative ion sources, such as the isotopic H-/D- effect, and the influence of the plasma grid bias or of the magnetic filter on the negative ion extraction. The code has also shown that, in the type of sources contemplated for ITER, which operate at large arc power densities (>1 W cm-3), negative ions can reach the extraction region provided they are produced at a distance lower than 2 cm from the plasma grid in the case of volume production (dissociative attachment processes), or if they are produced at the plasma grid surface, in the vicinity of the extraction holes.

  6. Impurities, temperature, and density in a miniature electrostatic plasma and current source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Den Hartog, D.J.; Craig, D.J.; Fiksel, G.

    1996-10-01

    We have spectroscopically investigated the Sterling Scientific miniature electrostatic plasma source-a plasma gun. This gun is a clean source of high density (10{sup 19} - 10{sup 20} m{sup -3}), low temperature (5 - 15 eV) plasma. A key result of our investigation is that molybdenum from the gun electrodes is largely trapped in the internal gun discharge; only a small amount escapes in the plasma flowing out of the gun. In addition, the gun plasma parameters actually improve (even lower impurity contamination and higher ion temperature) when up to 1 kA of electron current is extracted from the gun viamore » the application of an external bias. This improvement occurs because the internal gun anode no longer acts as the current return for the internal gun discharge. The gun plasma is a virtual plasma electrode capable of sourcing an electron emission current density of 1 kA/cm{sup 2}. The high emission current, small size (3 - 4 cm diameter), and low impurity generation make this gun attractive for a variety of fusion and plasma technology applications.« less

  7. Numerical Analysis of Plasma Transport in Tandem Volume Magnetic Multicusp Ion Sources

    DTIC Science & Technology

    1992-03-01

    the results of the model are qualitatively correct. Boltzmann Equation, Ion Sources, Plasma Simulation, Electron Temperature, Plasma Density, Ion Temperature, Hydrogen Ions, Magnetic Filters, Hydrogen Plasma Chemistry .

  8. Characterization of atomic oxygen from an ECR plasma source

    NASA Astrophysics Data System (ADS)

    Naddaf, M.; Bhoraskar, V. N.; Mandale, A. B.; Sainkar, S. R.; Bhoraskar, S. V.

    2002-11-01

    A low-power microwave-assisted electron cyclotron resonance (ECR) plasma system is shown to be a powerful and effective source of atomic oxygen (AO) useful in material processing. A 2.45 GHz microwave source with maximum power of 600 W was launched into the cavity to generate the ECR plasma. A catalytic nickel probe was used to determine the density of AO. The density of AO is studied as a function of pressure and axial position of the probe in the plasma chamber. It was found to vary from ~1×1020 to ~10×1020 atom m-3 as the plasma pressure was varied from 0.8 to 10 mTorr. The effect of AO in oxidation of silver is investigated by gravimetric analysis. The stoichiometric properties of the oxide are studied using the x-ray photoelectron spectroscopy as well as energy dispersive x-ray analysis. The degradation of the silver surface due to sputtering effect was viewed by scanning electron spectroscopy. The sputtering yield of oxygen ions in the plasma is calculated using the TRIM code. The effects of plasma pressure and the distance from the ECR zone on the AO density were also investigated. The density of AO measured by oxidation of silver is in good agreement with results obtained from the catalytic nickel probe.

  9. Optimizing laser produced plasmas for efficient extreme ultraviolet and soft X-ray light sources

    NASA Astrophysics Data System (ADS)

    Sizyuk, Tatyana; Hassanein, Ahmed

    2014-08-01

    Photon sources produced by laser beams with moderate laser intensities, up to 1014 W/cm2, are being developed for many industrial applications. The performance requirements for high volume manufacture devices necessitate extensive experimental research supported by theoretical plasma analysis and modeling predictions. We simulated laser produced plasma sources currently being developed for several applications such as extreme ultraviolet lithography using 13.5% ± 1% nm bandwidth, possibly beyond extreme ultraviolet lithography using 6.× nm wavelengths, and water-window microscopy utilizing 2.48 nm (La-α) and 2.88 nm (He-α) emission. We comprehensively modeled plasma evolution from solid/liquid tin, gadolinium, and nitrogen targets as three promising materials for the above described sources, respectively. Results of our analysis for plasma characteristics during the entire course of plasma evolution showed the dependence of source conversion efficiency (CE), i.e., laser energy to photons at the desired wavelength, on plasma electron density gradient. Our results showed that utilizing laser intensities which produce hotter plasma than the optimum emission temperatures allows increasing CE for all considered sources that, however, restricted by the reabsorption processes around the main emission region and this restriction is especially actual for the 6.× nm sources.

  10. The effect of mass loading on the temperature of a flowing plasma. [in vicinity of Io

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.; Kivelson, Margaret G.; Walker, Raymond J.

    1989-01-01

    How the addition of ions at rest (mass loading) affects the temperature of a flowing plasma in a MHD approximation is investigated, using analytic theory and time dependent, three-dimensional MHD simulations of plasma flow past Io. The MHD equations show that the temperature can increase or decrease relative to the background, depending on the local sonic Mach number M(S), of the flow. For flows with M(S) of greater than sq rt 9/5 (when gamma = 5/3), mass loading increases the plasma temperature. However, the simulations show a nonlinear response to the addition of mass. If the mass loading rate is large enough, the temperature increase may be smaller than expected, or the temperature may actually decrease, because a large mass loading rate slows the flow and decreases the thermal energy of the newly created plasma.

  11. L-shell spectroscopic diagnostics of radiation from krypton HED plasma sources.

    PubMed

    Petkov, E E; Safronova, A S; Kantsyrev, V L; Shlyaptseva, V V; Rawat, R S; Tan, K S; Beiersdorfer, P; Hell, N; Brown, G V

    2016-11-01

    X-ray spectroscopy is a useful tool for diagnosing plasma sources due to its non-invasive nature. One such source is the dense plasma focus (DPF). Recent interest has developed to demonstrate its potential application as a soft x-ray source. We present the first spectroscopic studies of krypton high energy density plasmas produced on a 3 kJ DPF device in Singapore. In order to diagnose spectral features, and to obtain a more comprehensive understanding of plasma parameters, a new non-local thermodynamic equilibrium L-shell kinetic model for krypton was developed. It has the capability of incorporating hot electrons, with different electron distribution functions, in order to examine the effects that they have on emission spectra. To further substantiate the validity of this model, it is also benchmarked with data gathered from experiments on the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory, where data were collected using the high resolution EBIT calorimeter spectrometer.

  12. L-shell spectroscopic diagnostics of radiation from krypton HED plasma sources

    DOE PAGES

    Petkov, E. E.; Safronova, A. S.; Kantsyrev, V. L.; ...

    2016-08-09

    We report that X-ray spectroscopy is a useful tool for diagnosing plasma sources due to its non-invasive nature. One such source is the dense plasma focus (DPF). Recent interest has developed to demonstrate its potential application as a soft x-ray source. We present the first spectroscopic studies of krypton high energy density plasmas produced on a 3 kJ DPF device in Singapore. In order to diagnose spectral features, and to obtain a more comprehensive understanding of plasma parameters, a new non-local thermodynamic equilibrium L-shell kinetic model for krypton was developed. It has the capability of incorporating hot electrons, with differentmore » electron distribution functions, in order to examine the effects that they have on emission spectra. Finally, to further substantiate the validity of this model, it is also benchmarked with data gathered from experiments on the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory, where data were collected using the high resolution EBIT calorimeter spectrometer.« less

  13. L-shell spectroscopic diagnostics of radiation from krypton HED plasma sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petkov, E. E., E-mail: emilp@unr.edu; Safronova, A. S.; Kantsyrev, V. L.

    2016-11-15

    X-ray spectroscopy is a useful tool for diagnosing plasma sources due to its non-invasive nature. One such source is the dense plasma focus (DPF). Recent interest has developed to demonstrate its potential application as a soft x-ray source. We present the first spectroscopic studies of krypton high energy density plasmas produced on a 3 kJ DPF device in Singapore. In order to diagnose spectral features, and to obtain a more comprehensive understanding of plasma parameters, a new non-local thermodynamic equilibrium L-shell kinetic model for krypton was developed. It has the capability of incorporating hot electrons, with different electron distribution functions,more » in order to examine the effects that they have on emission spectra. To further substantiate the validity of this model, it is also benchmarked with data gathered from experiments on the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory, where data were collected using the high resolution EBIT calorimeter spectrometer.« less

  14. Investigation of large-area multicoil inductively coupled plasma sources using three-dimensional fluid model

    NASA Astrophysics Data System (ADS)

    Brcka, Jozef

    2016-07-01

    A multi inductively coupled plasma (ICP) system can be used to maintain the plasma uniformity and increase the area processed by a high-density plasma. This article presents a source in two different configurations. The distributed planar multi ICP (DM-ICP) source comprises individual ICP sources that are not overlapped and produce plasma independently. Mutual coupling of the ICPs may affect the distribution of the produced plasma. The integrated multicoil ICP (IMC-ICP) source consists of four low-inductance ICP antennas that are superimposed in an azimuthal manner. The identical geometry of the ICP coils was assumed in this work. Both configurations have highly asymmetric components. A three-dimensional (3D) plasma model of the multicoil ICP configurations with asymmetric features is used to investigate the plasma characteristics in a large chamber and the operation of the sources in inert and reactive gases. The feasibility of the computational calculation, the speed, and the computational resources of the coupled multiphysics solver are investigated in the framework of a large realistic geometry and complex reaction processes. It was determined that additional variables can be used to control large-area plasmas. Both configurations can form a plasma, that azimuthally moves in a controlled manner, the so-called “sweeping mode” (SM) or “polyphase mode” (PPM), and thus they have the potential for large-area and high-density plasma applications. The operation in the azimuthal mode has the potential to adjust the plasma distribution, the reaction chemistry, and increase or modulate the production of the radicals. The intrinsic asymmetry of the individual coils and their combined operation were investigated within a source assembly primarily in argon and CO gases. Limited investigations were also performed on operation in CH4 gas. The plasma parameters and the resulting chemistry are affected by the geometrical relation between individual antennas. The aim of

  15. Beam current enhancement of microwave plasma ion source utilizing double-port rectangular cavity resonator.

    PubMed

    Lee, Yuna; Park, Yeong-Shin; Jo, Jong-Gab; Yang, J J; Hwang, Y S

    2012-02-01

    Microwave plasma ion source with rectangular cavity resonator has been examined to improve ion beam current by changing wave launcher type from single-port to double-port. The cavity resonators with double-port and single-port wave launchers are designed to get resonance effect at TE-103 mode and TE-102 mode, respectively. In order to confirm that the cavities are acting as resonator, the microwave power for breakdown is measured and compared with the E-field strength estimated from the HFSS (High Frequency Structure Simulator) simulation. Langmuir probe measurements show that double-port cavity enhances central density of plasma ion source by modifying non-uniform plasma density profile of the single-port cavity. Correspondingly, beam current from the plasma ion source utilizing the double-port resonator is measured to be higher than that utilizing single-port resonator. Moreover, the enhancement in plasma density and ion beam current utilizing the double-port resonator is more pronounced as higher microwave power applied to the plasma ion source. Therefore, the rectangular cavity resonator utilizing the double-port is expected to enhance the performance of plasma ion source in terms of ion beam extraction.

  16. Beam current enhancement of microwave plasma ion source utilizing double-port rectangular cavity resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Yuna; Park, Yeong-Shin; Jo, Jong-Gab

    2012-02-15

    Microwave plasma ion source with rectangular cavity resonator has been examined to improve ion beam current by changing wave launcher type from single-port to double-port. The cavity resonators with double-port and single-port wave launchers are designed to get resonance effect at TE-103 mode and TE-102 mode, respectively. In order to confirm that the cavities are acting as resonator, the microwave power for breakdown is measured and compared with the E-field strength estimated from the HFSS (High Frequency Structure Simulator) simulation. Langmuir probe measurements show that double-port cavity enhances central density of plasma ion source by modifying non-uniform plasma density profilemore » of the single-port cavity. Correspondingly, beam current from the plasma ion source utilizing the double-port resonator is measured to be higher than that utilizing single-port resonator. Moreover, the enhancement in plasma density and ion beam current utilizing the double-port resonator is more pronounced as higher microwave power applied to the plasma ion source. Therefore, the rectangular cavity resonator utilizing the double-port is expected to enhance the performance of plasma ion source in terms of ion beam extraction.« less

  17. A tandem mirror plasma source for a hybrid plume plasma propulsion concept

    NASA Technical Reports Server (NTRS)

    Yang, T. F.; Miller, R. H.; Wenzel, K. W.; Krueger, W. A.; Chang, F. R.

    1985-01-01

    This paper describes a tandem mirror magnetic plasma confinement device to be considered as a hot plasma source for the hybrid plume rocket concept. The hot plasma from this device is injected into an exhaust duct, which will interact with an annular layer of hypersonic neutral gas. Such a device can be used to study the dynamics of the hybrid plume and to experimentally verify the numerical predictions obtained with computer codes. The basic system design is also geared toward being lightweight and compact, as well as having high power density (i.e., several kW/sq cm) at the exhaust. This feature is aimed toward the feasibility of 'space testing'. The plasma is heated by microwaves. A 50 percent heating efficiency can be obtained by using two half-circle antennas. The preliminary Monte Carlo modeling of test particles result reported here indicates that interaction does take place in the exhaust duct. Neutrals gain energy from the ion, which confirms the hybrid plume concept.

  18. Modeling of radiative properties of Sn plasmas for extreme-ultraviolet source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, Akira; Sunahara, Atsushi; Furukawa, Hiroyuki

    Atomic processes in Sn plasmas are investigated for application to extreme-ultraviolet (EUV) light sources used in microlithography. We develop a full collisional radiative (CR) model of Sn plasmas based on calculated atomic data using Hebrew University Lawrence Livermore Atomic Code (HULLAC). Resonance and satellite lines from singly and multiply excited states of Sn ions, which contribute significantly to the EUV emission, are identified and included in the model through a systematic investigation of their effect on the emission spectra. The wavelengths of the 4d-4f+4p-4d transitions of Sn{sup 5+} to Sn{sup 13+} are investigated, because of their importance for determining themore » conversion efficiency of the EUV source, in conjunction with the effect of configuration interaction in the calculation of atomic structure. Calculated emission spectra are compared with those of charge exchange spectroscopy and of laser produced plasma EUV sources. The comparison is also carried out for the opacity of a radiatively heated Sn sample. A reasonable agreement is obtained between calculated and experimental EUV emission spectra observed under the typical condition of EUV sources with the ion density and ionization temperature of the plasma around 10{sup 18} cm{sup -3} and 20 eV, respectively, by applying a wavelength correction to the resonance and satellite lines. Finally, the spectral emissivity and opacity of Sn plasmas are calculated as a function of electron temperature and ion density. The results are useful for radiation hydrodynamics simulations for the optimization of EUV sources.« less

  19. Ions beams and ferroelectric plasma sources

    NASA Astrophysics Data System (ADS)

    Stepanov, Anton

    Near-perfect space-charge neutralization is required for the transverse compression of high perveance ion beams for ion-beam-driven warm dense matter experiments, such as the Neutralized Drift Compression eXperiment (NDCX). Neutralization can be accomplished by introducing a plasma in the beam path, which provides free electrons that compensate the positive space charge of the ion beam. In this thesis, charge neutralization of a 40 keV, perveance-dominated Ar+ beam by a Ferroelectric Plasma Source (FEPS) is investigated. First, the parameters of the ion beam, such as divergence due to the extraction optics, charge neutralization fraction, and emittance were measured. The ion beam was propagated through the FEPS plasma, and the effects of charge neutralization were inferred from time-resolved measurements of the transverse beam profile. In addition, the dependence of FEPS plasma parameters on the configuration of the driving pulser circuit was studied to optimize pulser design. An ion accelerator was constructed that produced a 30-50 keV Ar + beam with pulse duration <300 mus and dimensionless perveance Q up to 8 x 10-4. Transverse profile measurements 33 cm downstream of the ion source showed that the dependence of beam radius on Q was consistent with space charge expansion. It was concluded that the beam was perveance-dominated with a charge neutralization fraction of approximately zero in the absence of neutralizing plasma. Since beam expansion occurred primarily due to space charge, the decrease in effective perveance due to neutralization by FEPS plasma can be inferred from the reduction in beam radius. Results on propagation of the ion beam through FEPS plasma demonstrate that after the FEPS is triggered, the beam radius decreases to its neutralized value in about 5 mus. The duration of neutralization was about 10 mus at a charging voltage VFEPS = 5.5 kV and 35 mus at VFEPS = 6.5 kV. With VFEPS = 6.5 kV, the transverse current density profile 33 cm downstream

  20. Direct targeting of human plasma for matrix-assisted laser desorption/ionization and analysis of plasma proteins by time of flight-mass spectrometry.

    PubMed

    Jin, Ya; Manabe, Takashi

    2005-07-01

    A method to analyze human plasma proteins without fractionation, directly applying a plasma-matrix mixture on the target plate of a matrix-assisted laser desorption/ionization-time of flight-mass spectrometer (MALDI-TOF-MS), has been described. Peaks of ionized plasma proteins could not be detected applying a mixture of an undiluted plasma sample and a matrix solution, but they appeared when the plasma was diluted before mixing with the matrix. Tenfold diluted plasma provided well-resolved protein peaks in the m/z range from 4000 to 30,000. The addition of a simple post-crystallization washing procedure performed on the target plate further improved the quality of mass spectra. We numbered 58 peaks in the range of 4-160 kDa and 32 out of which were assigned to the plasma protein species which have been reported. Especially high sensitivity and resolution were obtained in the region < 30 kDa, where multiple isoforms of apolipoprotein A-I, apolipoprotein A-II, apolipoprotein C-I, apolipoprotein C-II, apolipoprotein C-III, and transthyretin could be assigned. Various post-translational modifications are involved in the isoforms, e.g., proteolytic cleavage, glycosylation and chemical modifications. This method will become complementary with the present electrophoretic techniques, especially for the analysis of low-molecular-mass proteins.

  1. Microwave plasma torch mass spectrometry for the direct detection of copper and molybdenum ions in aqueous liquids.

    PubMed

    Xiong, Xiaohong; Jiang, Tao; Zhou, Runzhi; Wang, Shangxian; Zou, Wei; Zhu, Zhiqiang

    2016-05-01

    Microwave plasma torch (MPT) is a simple and low power-consumption ambient ion source. And the MPT Mass spectra of many metal elements usually exhibit some novel features different from their inductively coupled plasma (ICP) mass spectra, which may be helpful for metal element analysis. Here, we presented the results about the MPT mass spectra of copper and molybdenum elements by a linear ion trap mass spectrometer (LTQ). The generated copper or molybdenum contained ions in plasma were characterized further in collision-induced dissociated (CID) experiments. These researches built a novel, direct and sensitive method for the direct analysis of trace levels of copper and molybdenum in aqueous liquids. Quantitative results showed that the limit of detection (LOD) by using MS(2) procedure was estimated to be 0.265 µg/l (ppb) for copper and 0.497 µg/l for molybdenum. The linear dynamics ranges cover at least 2 orders of magnitude and the analysis of a single aqueous sample can be completed in 5-6 min with a reasonable semi-quantitative sense. Two practical aqueous samples, milk and urine, were also analyzed qualitatively with reasonable recovery rates and RSD. These experimental data demonstrated that the MPT MS is able to turn into a promising and hopeful tool in field analysis of copper and molybdenum ions in water and some aqueous media, and can be applied in many fields, such as environmental controlling, hydrogeology, and water quality inspection. Moreover, MPT MS could also be used as the supplement of ICP-MS for the rapid and in-situ analysis of metal ions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Non-thermal atmospheric pressure HF plasma source: generation of nitric oxide and ozone for bio-medical applications

    NASA Astrophysics Data System (ADS)

    Kühn, S.; Bibinov, N.; Gesche, R.; Awakowicz, P.

    2010-01-01

    A new miniature high-frequency (HF) plasma source intended for bio-medical applications is studied using nitrogen/oxygen mixture at atmospheric pressure. This plasma source can be used as an element of a plasma source array for applications in dermatology and surgery. Nitric oxide and ozone which are produced in this plasma source are well-known agents for proliferation of the cells, inhalation therapy for newborn infants, disinfection of wounds and blood ozonation. Using optical emission spectroscopy, microphotography and numerical simulation, the gas temperature in the active plasma region and plasma parameters (electron density and electron distribution function) are determined for varied nitrogen/oxygen flows. The influence of the gas flows on the plasma conditions is studied. Ozone and nitric oxide concentrations in the effluent of the plasma source are measured using absorption spectroscopy and electro-chemical NO-detector at variable gas flows. Correlations between plasma parameters and concentrations of the particles in the effluent of the plasma source are discussed. By varying the gas flows, the HF plasma source can be optimized for nitric oxide or ozone production. Maximum concentrations of 2750 ppm and 400 ppm of NO and O3, correspondingly, are generated.

  3. Dense plasma focus (DPF) accelerated non radio isotopic radiological source

    DOEpatents

    Rusnak, Brian; Tang, Vincent

    2017-01-31

    A non-radio-isotopic radiological source using a dense plasma focus (DPF) to produce an intense z-pinch plasma from a gas, such as helium, and which accelerates charged particles, such as generated from the gas or injected from an external source, into a target positioned along an acceleration axis and of a type known to emit ionizing radiation when impinged by the type of accelerated charged particles. In a preferred embodiment, helium gas is used to produce a DPF-accelerated He2+ ion beam to a beryllium target, to produce neutron emission having a similar energy spectrum as a radio-isotopic AmBe neutron source. Furthermore, multiple DPFs may be stacked to provide staged acceleration of charged particles for enhancing energy, tunability, and control of the source.

  4. Radiative decay of keV-mass sterile neutrino in magnetized electron plasma

    NASA Astrophysics Data System (ADS)

    Dobrynina, Alexandra; Mikheev, Nicolay; Raffelt, Georg

    2017-10-01

    The radiative decay of sterile neutrinos with typical masses of 10 keV is investigated in the presence of an external magnetic field and degenerate electron plasma. Full account is taken of the modified photon dispersion relation relative to vacuum. The limiting cases of relativistic and nonrelativistic plasma are analyzed. The decay rate calculated in a strongly magnetized plasma, as a function of the electron number density, is compared with the unmagnetized plasma limit. It is found that the presence of the strong magnetic field in the electron plasma suppresses the catalyzing influence of the plasma by itself on the sterile-neutrino decay rate.

  5. Determining Mass and Persistence of a Reactive Brominated-Solvent DNAPL Source Using Mass Depletion-Mass Flux Reduction Relationships During Pumping

    NASA Astrophysics Data System (ADS)

    Johnston, C. D.; Davis, G. B.; Bastow, T.; Annable, M. D.; Trefry, M. G.; Furness, A.; Geste, Y.; Woodbury, R.; Rhodes, S.

    2011-12-01

    Measures of the source mass and depletion characteristics of recalcitrant dense non-aqueous phase liquid (DNAPL) contaminants are critical elements for assessing performance of remediation efforts. This is in addition to understanding the relationships between source mass depletion and changes to dissolved contaminant concentration and mass flux in groundwater. Here we present results of applying analytical source-depletion concepts to pumping from within the DNAPL source zone of a 10-m thick heterogeneous layered aquifer to estimate the original source mass and characterise the time trajectory of source depletion and mass flux in groundwater. The multi-component, reactive DNAPL source consisted of the brominated solvent tetrabromoethane (TBA) and its transformation products (mostly tribromoethene - TriBE). Coring and multi-level groundwater sampling indicated the DNAPL to be mainly in lower-permeability layers, suggesting the source had already undergone appreciable depletion. Four simplified source dissolution models (exponential, power function, error function and rational mass) were able to describe the concentration history of the total molar concentration of brominated organics in extracted groundwater during 285 days of pumping. Approximately 152 kg of brominated compounds were extracted. The lack of significant kinetic mass transfer limitations in pumped concentrations was notable. This was despite the heterogeneous layering in the aquifer and distribution of DNAPL. There was little to choose between the model fits to pumped concentration time series. The variance of groundwater velocities in the aquifer determined during a partitioning inter-well tracer test (PITT) were used to parameterise the models. However, the models were found to be relatively insensitive to this parameter. All models indicated an initial source mass around 250 kg which compared favourably to an estimate of 220 kg derived from the PITT. The extrapolated concentrations from the

  6. A comparative study of radiofrequency antennas for Helicon plasma sources

    NASA Astrophysics Data System (ADS)

    Melazzi, D.; Lancellotti, V.

    2015-04-01

    Since Helicon plasma sources can efficiently couple power and generate high-density plasma, they have received interest also as spacecraft propulsive devices, among other applications. In order to maximize the power deposited into the plasma, it is necessary to assess the performance of the radiofrequency (RF) antenna that drives the discharge, as typical plasma parameters (e.g. the density) are varied. For this reason, we have conducted a comparative analysis of three Helicon sources which feature different RF antennas, namely, the single-loop, the Nagoya type-III and the fractional helix. These antennas are compared in terms of input impedance and induced current density; in particular, the real part of the impedance constitutes a measure of the antenna ability to couple power into the plasma. The results presented in this work have been obtained through a full-wave approach which (being hinged on the numerical solution of a system of integral equations) allows computing the antenna current and impedance self-consistently. Our findings indicate that certain combinations of plasma parameters can indeed maximize the real part of the input impedance and, thus, the deposited power, and that one of the three antennas analyzed performs best for a given plasma. Furthermore, unlike other strategies which rely on approximate antenna models, our approach enables us to reveal that the antenna current density is not spatially uniform, and that a correlation exists between the plasma parameters and the spatial distribution of the current density.

  7. CERA-V: Microwave plasma stream source with variable ion energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balmashnov, A.A.

    1996-01-01

    A microwave plasma stream source with variable ion energy operated under low magnetic field electron cyclotron resonance conditions has been developed. A two mode resonant cavity (TE{sub 111}, {ital E}{sub 010}) was used. It was established that overdense plasma creation (TE{sub 111}) and high energy in-phase space localized electron plasma oscillations ({ital E}{sub 010}) in a decreased magnetic field lead to the potential for ion energy variation from 10 to 300 eV (up to 1 A of ion current, and a plasma cross section of 75 cm{sup 2}, hydrogen) by varying the TE{sub 111}, {ital E}{sub 010} power, the valuemore » of the magnetic field, and pressure. The threshold level of {ital E}{sub 010}-mode power was also determined. An application of this CERA-V source to hydrogenation of semiconductor devices without deterioration of surface layers by ions and fast atoms is under investigation. {copyright} {ital 1996 American Vacuum Society}« less

  8. Method and apparatus for plasma source ion implantation

    DOEpatents

    Conrad, J.R.

    1988-08-16

    Ion implantation into surfaces of three-dimensional targets is achieved by forming an ionized plasma about the target within an enclosing chamber and applying a pulse of high voltage between the target and the conductive walls of the chamber. Ions from the plasma are driven into the target object surfaces from all sides simultaneously without the need for manipulation of the target object. Repetitive pulses of high voltage, typically 20 kilovolts or higher, causes the ions to be driven deeply into the target. The plasma may be formed of a neutral gas introduced into the evacuated chamber and ionized therein with ionizing radiation so that a constant source of plasma is provided which surrounds the target object during the implantation process. Significant increases in the surface hardness and wear characteristics of various materials are obtained with ion implantation in this manner. 7 figs.

  9. Method and apparatus for plasma source ion implantation

    DOEpatents

    Conrad, John R.

    1988-01-01

    Ion implantation into surfaces of three-dimensional targets is achieved by forming an ionized plasma about the target within an enclosing chamber and applying a pulse of high voltage between the target and the conductive walls of the chamber. Ions from the plasma are driven into the target object surfaces from all sides simultaneously without the need for manipulation of the target object. Repetitive pulses of high voltage, typically 20 kilovolts or higher, causes the ions to be driven deeply into the target. The plasma may be formed of a neutral gas introduced into the evacuated chamber and ionized therein with ionizing radiation so that a constant source of plasma is provided which surrounds the target object during the implantation process. Significant increases in the surface hardness and wear characteristics of various materials are obtained with ion implantation in this manner.

  10. Characteristics of laser-induced plasma as a spectroscopic light emission source

    NASA Astrophysics Data System (ADS)

    Ma, Q. L.; Motto-Ros, V.; Lei, W. Q.; Wang, X. C.; Boueri, M.; Laye, F.; Zeng, C. Q.; Sausy, M.; Wartelle, A.; Bai, X. S.; Zheng, L. J.; Zeng, H. P.; Baudelet, M.; Yu, J.

    2012-05-01

    Laser-induced plasma is today a widespread spectroscopic emission source. It can be easily generated using compact and reliable nanosecond pulsed lasers and finds applications in various domains with laser-induced breakdown spectroscopy (LIBS). It is however such a particular medium which is intrinsically a transient and non-point light emitting source. Its timeand space-resolved diagnostics is therefore crucial for its optimized use. In this paper, we review our work on the investigation of the morphology and the evolution of the plasma. Different time scales relevant for the description of the plasma's kinetics and dynamics are covered by suitable techniques. Our results show detailed evolution and transformation of the plasma with high temporal and spatial resolutions. The effects of the laser parameters as well as the background gas are particularly studied.

  11. Erosion resistant nozzles for laser plasma extreme ultraviolet (EUV) sources

    DOEpatents

    Kubiak, Glenn D.; Bernardez, II, Luis J.

    2000-01-04

    A gas nozzle having an increased resistance to erosion from energetic plasma particles generated by laser plasma sources. By reducing the area of the plasma-facing portion of the nozzle below a critical dimension and fabricating the nozzle from a material that has a high EUV transmission as well as a low sputtering coefficient such as Be, C, or Si, it has been shown that a significant reduction in reflectance loss of nearby optical components can be achieved even after exposing the nozzle to at least 10.sup.7 Xe plasma pulses.

  12. Improvement of a plasma uniformity of the 2nd ion source of KSTAR neutral beam injector.

    PubMed

    Jeong, S H; Kim, T S; Lee, K W; Chang, D H; In, S R; Bae, Y S

    2014-02-01

    The 2nd ion source of KSTAR (Korea Superconducting Tokamak Advanced Research) NBI (Neutral Beam Injector) had been developed and operated since last year. A calorimetric analysis revealed that the heat load of the back plate of the ion source is relatively higher than that of the 1st ion source of KSTAR NBI. The spatial plasma uniformity of the ion source is not good. Therefore, we intended to identify factors affecting the uniformity of a plasma density and improve it. We estimated the effects of a direction of filament current and a magnetic field configuration of the plasma generator on the plasma uniformity. We also verified that the operation conditions of an ion source could change a uniformity of the plasma density of an ion source.

  13. Deuteron Beam Source Based on Mather Type Plasma Focus

    NASA Astrophysics Data System (ADS)

    Lim, L. K.; Yap, S. L.; Wong, C. S.; Zakaullah, M.

    2013-04-01

    A 3 kJ Mather type plasma focus system filled with deuterium gas is operated at pressure lower than 1 mbar. Operating the plasma focus in a low pressure regime gives a consistent ion beam which can make the plasma focus a reliable ion beam source. In our case, this makes a good deuteron beam source, which can be utilized for neutron generation by coupling a suitable target. This paper reports ion beam measurements obtained at the filling pressure of 0.05-0.5 mbar. Deuteron beam energy is measured by time of flight technique using three biased ion collectors. The ion beam energy variation with the filling pressure is investigated. Deuteron beam of up to 170 keV are obtained with the strongest deuteron beam measured at 0.1 mbar, with an average energy of 80 keV. The total number of deuterons per shot is in the order of 1018 cm-2.

  14. Glow plasma trigger for electron cyclotron resonance ion sources.

    PubMed

    Vodopianov, A V; Golubev, S V; Izotov, I V; Nikolaev, A G; Oks, E M; Savkin, K P; Yushkov, G Yu

    2010-02-01

    Electron cyclotron resonance ion sources (ECRISs) are particularly useful for nuclear, atomic, and high energy physics, as unique high current generators of multicharged ion beams. Plasmas of gas discharges in an open magnetic trap heated by pulsed (100 micros and longer) high power (100 kW and higher) high-frequency (greater than 37.5 GHz) microwaves of gyrotrons is promising in the field of research in the development of electron cyclotron resonance sources for high charge state ion beams. Reaching high ion charge states requires a decrease in gas pressure in the magnetic trap, but this method leads to increases in time, in which the microwave discharge develops. The gas breakdown and microwave discharge duration becomes greater than or equal to the microwave pulse duration when the pressure is decreased. This makes reaching the critical plasma density initiate an electron cyclotron resonance (ECR) discharge during pulse of microwave gyrotron radiation with gas pressure lower than a certain threshold. In order to reduce losses of microwave power, it is necessary to shorten the time of development of the ECR discharge. For fast triggering of ECR discharge under low pressure in an ECRIS, we initially propose to fill the magnetic trap with the plasmas of auxiliary pulsed discharges in crossed ExB fields. The glow plasma trigger of ECR based on a Penning or magnetron discharge has made it possible not only to fill the trap with plasma with density of 10(12) cm(-3), required for a rapid increase in plasma density and finally for ECR discharge ignition, but also to initially heat the plasma electrons to T(e) approximately = 20 eV.

  15. Aptamer-facilitated mass cytometry.

    PubMed

    Mironov, Gleb G; Bouzekri, Alexandre; Watson, Jessica; Loboda, Olga; Ornatsky, Olga; Berezovski, Maxim V

    2018-05-01

    Mass cytometry is a novel cell-by-cell analysis technique, which uses elemental tags instead of fluorophores. Sample cells undergo rapid ionization in inductively coupled plasma and the ionized elemental tags are then analyzed by means of time-of-flight mass spectrometry. Benefits of the mass cytometry approach are in no need for compensation, the high number of detection channels (up to 100) and low background noise. In this work, we applied a biotinylated aptamer against human PTK7 receptor for characterization of positive (human acute lymphoblastic leukemia) and negative (human Burkitt's lymphoma) cells by a mass cytometry instrument. Our proof of principal experiments showed that biotinylated aptamers in conjunction with metal-labeled neutravidin can be successfully utilized for mass cytometry experiments at par with commercially available antibodies. Graphical abstract Biotinylated aptamers in conjunction with metal-labeled neutravidin bind to cell biomarkers, and then injected into the inductively coupled plasma (ICP) source, where cells are vaporized, atomized, and ionized in the plasma for subsequent mass spectrometry (MS) analysis of lanthanide metals.

  16. A source to deliver mesoscopic particles for laser plasma studies

    NASA Astrophysics Data System (ADS)

    Gopal, R.; Kumar, R.; Anand, M.; Kulkarni, A.; Singh, D. P.; Krishnan, S. R.; Sharma, V.; Krishnamurthy, M.

    2017-02-01

    Intense ultrashort laser produced plasmas are a source for high brightness, short burst of X-rays, electrons, and high energy ions. Laser energy absorption and its disbursement strongly depend on the laser parameters and also on the initial size and shape of the target. The ability to change the shape, size, and material composition of the matter that absorbs light is of paramount importance not only from a fundamental physics point of view but also for potentially developing laser plasma sources tailored for specific applications. The idea of preparing mesoscopic particles of desired size/shape and suspending them in vacuum for laser plasma acceleration is a sparsely explored domain. In the following report we outline the development of a delivery mechanism of microparticles into an effusive jet in vacuum for laser plasma studies. We characterise the device in terms of particle density, particle size distribution, and duration of operation under conditions suitable for laser plasma studies. We also present the first results of x-ray emission from micro crystals of boric acid that extends to 100 keV even under relatively mild intensities of 1016 W/cm2.

  17. High Power Light Gas Helicon Plasma Source For VASMIR

    NASA Technical Reports Server (NTRS)

    Squire, J. P.; Chang-Diaz, F. R.; Glover, T. W.; Jacobson, V. T.; McCaskill, G. E.; Winter, D. S.; Baity, F. W.; Carter, M. D.; Goulding, R. H.

    2004-01-01

    The VASIMR space propulsion development effort relies on a high power (greater than 10kW) helicon source to produce a dense flowing plasma (H, D and He) target for ion cyclotron resonance (ICR) acceleration of the ions. Subsequent expansion in an expanding magnetic field (magnetic nozzle) converts ion lunetic energy to directed momentum. This plasma source must have critical features to enable an effective propulsion device. First, it must ionize most of the input neutral flux of gas, thus producing a plasma stream with a high degree of ionization for application of ICR power. This avoids propellant waste and potential power losses due to charge exchange. Next, the plasma stream must flow into a region of high magnetic field (approximately 0.5 T) for efficient ICR acceleration. Third, the ratio of input power to plasma flux must be low, providing an energy per ion-electron pair approaching 100 eV. Lastly, the source must be robust and capable of very long life-times (years). In our helicon experiment (VX-10) we have measured a ratio of input gas to plasma flux near 100%. The plasma flows from the helicon region (B approximately 0.1 T) into a region with a peak magnetic field of 0.8 T. The energy input per ion-electron pair has been measured at 300 plus or minus 100 eV. Recent results at Oak Ridge National Laboratory (ORNL) show an enhanced efficiency mode of operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter and operates up to 3.5 kW of input power. An upgrade to a power level of 10 kW is underway. Much of our recent work has been with a Boswell double-saddle antenna design. We are also converting the antenna design to a helical type. With these modifications, we anticipate an improvement in the ionization efficiency. This paper presents the results from scaling the helicon in the VX-10 device from 3.5 to 10 kW. We also compare the operation with a double-saddle to a helical antenna design. Finally, we

  18. Plasma Sources and Magnetospheric Consequences at Saturn

    NASA Astrophysics Data System (ADS)

    Thomsen, M. F.

    2012-12-01

    Saturn's magnetospheric dynamics are dominated by two facts: 1) the planet rotates very rapidly (~10-hour period); and 2) the moon Enceladus, only 500 km in diameter, orbits Saturn at a distance of 4 Rs. This tiny moon produces jets of water through cracks in its icy surface, filling a large water-product torus of neutral gas that surrounds Saturn near Enceladus' orbit. Through photoionization and electron-impact ionization, the torus forms the dominant source of Saturn's magnetospheric plasma. This inside-out loading of plasma, combined with the rapid rotation of the magnetic field, leads to outward transport through a nearly continuous process of discrete flux-tube interchange. The magnetic flux that returns to the inner magnetosphere during interchange events brings with it hotter, more-tenuous plasma from the outer magnetosphere. When dense, relatively cold plasma from the inner magnetosphere flows outward in the tail region, the magnetic field is often not strong enough to confine it, and magnetic reconnection allows the plasma to break off in plasmoids that escape the magnetospheric system. This complicated ballet of production, transport, and loss is carried on continuously. In this talk we will investigate its temporal variability, on both short and long timescales.

  19. Determination of the mass of globular cluster X-ray sources

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Hertz, P.; Steiner, J. E.; Murray, S. S.; Lightman, A. P.

    1984-01-01

    The precise positions of the luminous X-ray sources in eight globular clusters have been measured with the Einstein X-Ray Observatory. When combined with similarly precise measurements of the dynamical centers and core radii of the globular clusters, the distribution of the X-ray source mass is determined to be in the range 0.9-1.9 solar mass. The X-ray source positions and the detailed optical studies indicate that (1) the sources are probably all of similar mass, (2) the gravitational potentials in these high-central density clusters are relatively smooth and isothermal, and (3) the X-ray sources are compact binaries and are probably formed by tidal capture.

  20. Desorption corona beam ionization source for mass spectrometry.

    PubMed

    Wang, Hua; Sun, Wenjian; Zhang, Junsheng; Yang, Xiaohui; Lin, Tao; Ding, Li

    2010-04-01

    A novel Desorption Corona Beam Ionization (DCBI) source for direct analysis of samples from surface in mass spectrometry is reported. The DCBI source can work under ambient conditions without time-consuming sample pretreatments. The source shares some common features with another ionization source - Direct Analysis in Real Time (DART), developed earlier. For example, helium was used as the discharge gas (although only corona discharge is involved in the present source), and heating of the discharge gas is required for sample desorption. However, the difference between the two sources is substantial. In the present source, a visible thin corona beam extending out around 1 cm can be formed by using a hollow needle/ring electrode structure. This feature would greatly facilitate localizing sampling areas and performing imaging/profiling experiments. The DCBI source is also capable of performing progressive temperature scans between room temperature and 450 degrees C in order to sequentially desorb samples from the surface and, therefore, to achieve a rough separation of the individual components in a complex mixture, resulting in less congestion in the mass spectrum acquired. Mass spectra for a broad range of compounds (pesticides, veterinary additives, OTC drugs, explosive materials) have been acquired using the DCBI source. For most of the compounds tested, the heater temperature required for efficient desorption is at least 150 degrees C. The molecular weight of the sample that can be desorbed/ionized is normally below 600 dalton even at the highest heater temperature, which is mainly limited by the volatility of the sample.

  1. High Power LaB6 Plasma Source Performance for the Lockheed Martin Compact Fusion Reactor Experiment

    NASA Astrophysics Data System (ADS)

    Heinrich, Jonathon

    2016-10-01

    Lockheed Martin's Compact Fusion Reactor (CFR) concept is a linear encapsulated ring cusp. Due to the complex field geometry, plasma injection into the device requires careful consideration. A high power thermionic plasma source (>0.25MW; >10A/cm2) has been developed with consideration to phase space for optimal coupling. We present the performance of the plasma source, comparison with alternative plasma sources, and plasma coupling with the CFR field configuration. ©2016 Lockheed Martin Corporation. All Rights Reserved.

  2. Formation of Nitrogen Oxides in an Apokamp-Type Plasma Source

    NASA Astrophysics Data System (ADS)

    Sosnin, É. A.; Goltsova, P. A.; Panarin, V. A.; Skakun, V. S.; Tarasenko, V. F.; Didenko, M. V.

    2017-08-01

    Using optical and chemical processes, the composition of the products of decay of the atmospheric-pressure non-equilibrium plasma is determined in a pulsed, high-voltage discharge in the modes of apokampic and corona discharges. It is shown that the products of decay primarily contain nitrogen oxides NO x, and in the mode of the corona discharge - ozone. Potential applications of this source of plasma are discussed with respect to plasma processing of the seeds of agricultural crops.

  3. Numerical simulation for the influence of laser-induced plasmas addition on air mass capture of hypersonic inlet

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Dou, Zhiguo; Li, Qian

    2012-03-01

    The theory of laser-induced plasmas addition to hypersonic airflow off a vehicle to increase air mass capture and improve the performance of hypersonic inlets at Mach numbers below the design value is explored. For hypersonic vehicles, when flying at mach numbers lower than the design one, we can increase the mass capture ratio of inlet through laser-induced plasmas injection to the hypersonic flow upstream of cowl lip to form a virtual cowl. Based on the theory, the model of interaction between laser-induced plasmas and hypersonic flow was established. The influence on the effect of increasing mass capture ratio was studied at different positions of laser-induced plasmas region for the external compression hypersonic inlet at Mach 5 while the design value is 6, the power of plasmas was in the range of 1-8mJ. The main results are as follows: 1. the best location of the plasma addition region is near the intersection of the nose shock of the vehicle with the continuation of the cowl line, and slightly below that line. In that case, the shock generated by the heating is close to the shock that is a reflection of the vehicle nose shock off the imaginary solid surface-extension of the cowl. 2. Plasma addition does increase mass capture, and the effect becomes stronger as more energy is added, the peak value appeared when the power of plasma was about 4mJ, when the plasma energy continues to get stronger, the mass capture will decline slowly.

  4. Numerical simulation for the influence of laser-induced plasmas addition on air mass capture of hypersonic inlet

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Dou, Zhiguo; Li, Qian

    2011-11-01

    The theory of laser-induced plasmas addition to hypersonic airflow off a vehicle to increase air mass capture and improve the performance of hypersonic inlets at Mach numbers below the design value is explored. For hypersonic vehicles, when flying at mach numbers lower than the design one, we can increase the mass capture ratio of inlet through laser-induced plasmas injection to the hypersonic flow upstream of cowl lip to form a virtual cowl. Based on the theory, the model of interaction between laser-induced plasmas and hypersonic flow was established. The influence on the effect of increasing mass capture ratio was studied at different positions of laser-induced plasmas region for the external compression hypersonic inlet at Mach 5 while the design value is 6, the power of plasmas was in the range of 1-8mJ. The main results are as follows: 1. the best location of the plasma addition region is near the intersection of the nose shock of the vehicle with the continuation of the cowl line, and slightly below that line. In that case, the shock generated by the heating is close to the shock that is a reflection of the vehicle nose shock off the imaginary solid surface-extension of the cowl. 2. Plasma addition does increase mass capture, and the effect becomes stronger as more energy is added, the peak value appeared when the power of plasma was about 4mJ, when the plasma energy continues to get stronger, the mass capture will decline slowly.

  5. Mass spectrometric identification of diagnostic markers for chronic prostatitis in seminal plasma by analysis of seminal plasma protein clinical samples.

    PubMed

    Rokka, A; Mehik, A; Tonttila, P; Vaarala, M

    2017-08-15

    There are few specific diagnostic markers for chronic prostatitis. Therefore, we used mass spectrometry to evaluate differences in seminal plasma protein expression among patients with prostatitis and young and middle-aged healthy controls. We analysed pooled seminal plasma protein samples from four prostatitis patients (two pools), three young controls (one pool), and three middle-aged controls (one pool). The samples were analysed by liquid chromatography-tandem mass spectrometry. Of the 349 proteins identified, 16 were differentially expressed between the two control pools. Five proteins were up- or down-regulated in both of the prostatitis pools compared to middle-aged controls but not between young and middle-aged pools. Progestagen-associated endometrial protein (PAEP) was over-expressed in prostatitis samples compared to young and middle-aged controls. Our findings and those of previous studies indicate that PAEP is a potential seminal plasma marker for chronic prostatitis. In conclusion, we found age-related changes in seminal plasma protein expression. PAEP expression in seminal plasma should be investigated further to evaluate its potential as a diagnostic marker for chronic prostatitis.

  6. Applications of plasma sources for nitric oxide medicine

    NASA Astrophysics Data System (ADS)

    Vasilets, Victor; Shekhter, Anatoly; Pekshev, Alexander

    2013-09-01

    Nitric oxide (NO) has important roles in the function of many tissues and organs. Wound healing processes are always accompanying by the increase of nitric oxide concentration in wound tissue. These facts suggest a possible therapeutic use of various NO donors for the acceleration of the wound healing and treatment of other diseases. Our previous studies indicated that gaseous NO flow produced by air-plasma generators acts beneficially on the wound healing. This beneficial effect could be caused by the mechanism involving peroxynitrite as an intermediate. As a result of mobilization of various antioxidant reactions more endogenous NO molecules become available as signaling molecules. to regulate the metabolic processes in wound tissue. In this paper different air plasma sources generated therapeutic concentrations of NO are discussed. The concentration of NO and other therapeutically important gas products are estimated by thermodynamic simulation. Synergy effects of NO with other plasma components are discussed as a factor enhancing therapeutic results. Some new medical application of plasma devices are presented. Advanced Plasma Therapies Inc.

  7. Quantification of lipoic acid in plasma by high-performance liquid chromatography-electrospray ionization mass spectrometry.

    PubMed

    Chen, Jun; Jiang, Wenming; Cai, Jia; Tao, Weixing; Gao, Xiaoling; Jiang, Xinguo

    2005-09-25

    A sensitive and specific liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) method has been developed and validated for the identification and quantification of lipoic acid (LA) in human plasma. LA and the internal standard, naproxen, were extracted from a 500 microl plasma sample by one-step deproteination using acetonitrile. Chromatographic separation was performed on a Zorbax SB-C(18) Column (100 mmx3.0mm i.d. with 3.5 microm particle size) with the mobile phase consisting of acetonitrile and 0.1% acetic acid (pH 4, adjusted with ammonia solution) (65:35, v/v), and the flow rate was set at 0.3 ml/min. Detection was performed on a single quadrupole mass spectrometer by selected ion monitoring (SIM) mode via electrospray ionization (ESI) source. The method was linear over the concentration range of 5-10,000 ng/ml for LA. The intra- and inter-day precisions were less than 7% and accuracy ranged from -7.87 to 9.74% at the LA concentrations tested. The present method provides a relatively simple and sensitive assay with short turn-around time. The method has been successfully applied to a clinical pharmacokinetic study of LA in 10 healthy subjects.

  8. Modeling the chemistry of plasma polymerization using mass spectrometry.

    PubMed

    Ihrig, D F; Stockhaus, J; Scheide, F; Winkelhake, Oliver; Streuber, Oliver

    2003-04-01

    The goal of the project is a solvent free painting shop. The environmental technologies laboratory is developing processes of plasma etching and polymerization. Polymerized thin films are first-order corrosion protection and primer for painting. Using pure acetylene we get very nice thin films which were not bonded very well. By using air as bulk gas it is possible to polymerize, in an acetylene plasma, well bonded thin films which are stable first-order corrosion protections and good primers. UV/Vis spectroscopy shows nitrogen oxide radicals in the emission spectra of pure nitrogen and air. But nitrogen oxide is fully suppressed in the presence of acetylene. IR spectroscopy shows only C=O, CH(2) and CH(3) groups but no nitrogen species. With the aid of UV/Vis spectra and the chemistry of ozone formation it is possible to define reactive traps and steps, molecule depletion and processes of proton scavenging and proton loss. Using a numerical model it is possible to evaluate these processes and to calculate theoretical mass spectra. Adjustment of theoretical mass spectra to real measurements leads to specific channels of polymerization which are driven by radicals especially the acetyl radical. The estimated theoretical mass spectra show the specific channels of these chemical processes. It is possible to quantify these channels. This quantification represents the mass flow through this chemical system. With respect to these chemical processes it is possible to have an idea of pollutant production processes.

  9. Enhanced confinement in electron cyclotron resonance ion source plasma.

    PubMed

    Schachter, L; Stiebing, K E; Dobrescu, S

    2010-02-01

    Power loss by plasma-wall interactions may become a limitation for the performance of ECR and fusion plasma devices. Based on our research to optimize the performance of electron cyclotron resonance ion source (ECRIS) devices by the use of metal-dielectric (MD) structures, the development of the method presented here, allows to significantly improve the confinement of plasma electrons and hence to reduce losses. Dedicated measurements were performed at the Frankfurt 14 GHz ECRIS using argon and helium as working gas and high temperature resistive material for the MD structures. The analyzed charge state distributions and bremsstrahlung radiation spectra (corrected for background) also clearly verify the anticipated increase in the plasma-electron density and hence demonstrate the advantage by the MD-method.

  10. Measurement of free radical kinetics in pulsed plasmas by UV and VUV absorption spectroscopy and by modulated beam mass spectrometry

    NASA Astrophysics Data System (ADS)

    Cunge, G.; Bodart, P.; Brihoum, M.; Boulard, F.; Chevolleau, T.; Sadeghi, N.

    2012-04-01

    This paper reviews recent progress in the development of time-resolved diagnostics to probe high-density pulsed plasma sources. We focus on time-resolved measurements of radicals' densities in the afterglow of pulsed discharges to provide useful information on production and loss mechanisms of free radicals. We show that broad-band absorption spectroscopy in the ultraviolet and vacuum ultraviolet spectral domain and threshold ionization modulated beam mass spectrometry are powerful techniques for the determination of the time variation of the radicals' densities in pulsed plasmas. The combination of these complementary techniques allows detection of most of the reactive species present in industrial etching plasmas, giving insights into the physico-chemistry reactions involving these species. As an example, we discuss briefly the radicals' kinetics in the afterglow of a SiCl4/Cl2/Ar discharge.

  11. Direct and Sensitive Detection of CWA Simulants by Active Capillary Plasma Ionization Coupled to a Handheld Ion Trap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wolf, Jan-Christoph; Etter, Raphael; Schaer, Martin; Siegenthaler, Peter; Zenobi, Renato

    2016-07-01

    An active capillary plasma ionization (ACI) source was coupled to a handheld mass spectrometer (Mini 10.5; Aston Labs, West Lafayette, IN, USA) and applied to the direct gas-phase detection and quantification of chemical warfare agent (CWA) related chemicals. Complementing the discontinuous atmospheric pressure interface (DAPI) of the Mini 10.5 mass spectrometer with an additional membrane pump, a quasi-continuous sample introduction through the ACI source was achieved. Nerve agent simulants (three dialkyl alkylphosphonates, a dialkyl phosporamidate, and the pesticide dichlorvos) were detected at low gas-phase concentrations with limits of detection ranging from 1.0 μg/m3 to 6.3 μg/m3. Our results demonstrate a sensitivity enhancement for portable MS-instrumentation by using an ACI source, enabling direct, quantitative measurements of volatile organic compounds. Due to its high sensitivity, selectivity, low power consumption (<80 W) and weight (<13 kg), this instrumentation has the potential for direct on-site CWA detection as required by military or civil protection.

  12. Self-consistent multidimensional electron kinetic model for inductively coupled plasma sources

    NASA Astrophysics Data System (ADS)

    Dai, Fa Foster

    Inductively coupled plasma (ICP) sources have received increasing interest in microelectronics fabrication and lighting industry. In 2-D configuration space (r, z) and 2-D velocity domain (νθ,νz), a self- consistent electron kinetic analytic model is developed for various ICP sources. The electromagnetic (EM) model is established based on modal analysis, while the kinetic analysis gives the perturbed Maxwellian distribution of electrons by solving Boltzmann-Vlasov equation. The self- consistent algorithm combines the EM model and the kinetic analysis by updating their results consistently until the solution converges. The closed-form solutions in the analytical model provide rigorous and fast computing for the EM fields and the electron kinetic behavior. The kinetic analysis shows that the RF energy in an ICP source is extracted by a collisionless dissipation mechanism, if the electron thermovelocity is close to the RF phase velocities. A criterion for collisionless damping is thus given based on the analytic solutions. To achieve uniformly distributed plasma for plasma processing, we propose a novel discharge structure with both planar and vertical coil excitations. The theoretical results demonstrate improved uniformity for the excited azimuthal E-field in the chamber. Non-monotonic spatial decay in electric field and space current distributions was recently observed in weakly- collisional plasmas. The anomalous skin effect is found to be responsible for this phenomenon. The proposed model successfully models the non-monotonic spatial decay effect and achieves good agreements with the measurements for different applied RF powers. The proposed analytical model is compared with other theoretical models and different experimental measurements. The developed model is also applied to two kinds of ICP discharges used for electrodeless light sources. One structure uses a vertical internal coil antenna to excite plasmas and another has a metal shield to prevent the

  13. Micrometeorite erosion of the man rings as a source of plasma in the inner Saturnian plasma torus

    NASA Technical Reports Server (NTRS)

    Pospieszalska, M. K.; Johnson, R. E.

    1991-01-01

    Micrometeorite bombardment is presently suggested to be a source of water molecules and molecular ions in the region between the outer edge of the main rings of Saturn and Encedalus, adding to those neutrals and plasma that are generated by the sputtering of icy satellites. In view of uncertainties concerning the magnitude and distribution of the ring source, an examination is conducted of limiting cases. The implications of such cases for the Cassini division are calculated, and a discussion of their possible relevance to the region's neutral and plasma cloud is presented.

  14. Real-time breath analysis with active capillary plasma ionization-ambient mass spectrometry.

    PubMed

    Bregy, Lukas; Sinues, Pablo Martinez-Lozano; Nudnova, Maryia M; Zenobi, Renato

    2014-06-01

    On-line analysis of exhaled human breath is a growing area in analytical science, for applications such as fast and non-invasive medical diagnosis and monitoring. In this work, we present a novel approach based on ambient ionization of compounds in breath and subsequent real-time mass spectrometric analysis. We introduce a plasma ionization source for this purpose, which has no need for additional gases, is very small, and is easily interfaced with virtually any commercial atmospheric pressure ionization mass spectrometer (API-MS) without major modifications. If an API-MS instrument exists in a laboratory, the cost to implement this technology is only around [Formula: see text]500, far less than the investment for a specialized mass spectrometric system designed for volatile organic compounds (VOCs) analysis. In this proof-of-principle study we were able to measure mass spectra of exhaled human breath and found these to be comparable to spectra obtained with other electrospray-based methods. We detected over 100 VOCs, including relevant metabolites like fatty acids, with molecular weights extending up to 340 Da. In addition, we were able to monitor the time-dependent evolution of the peaks and show the enhancement of the metabolism after a meal. We conclude that this approach may complement current methods to analyze breath or other types of vapors, offering an affordable option to upgrade any pre-existing API-MS to a real-time breath analyzer.

  15. Preliminary Study of a Hybrid Helicon-ECR Plasma Source

    NASA Astrophysics Data System (ADS)

    M. Hala, A.; Oksuz, L.; Ximing, Zhu

    2016-08-01

    A new type of hybrid discharge is experimentally investigated in this work. A helicon source and an electron cyclotron resonance (ECR) source were combined to produce plasma. As a preliminary study of this type of plasma, the optical emission spectroscopy (OES) method was used to obtain values of electron temperature and density under a series of typical conditions. Generally, it was observed that the electron temperature decreases and the electron density increases as the pressure increased. When increasing the applied power at a certain pressure, the average electron density at certain positions in the discharge does not increase significantly possibly due to the high degree of neutral depletion. Electron temperature increased with power in the hybrid mode. Possible mechanisms of these preliminary observations are discussed.

  16. A liquid chromatography method with single quadrupole mass spectrometry for quantitative determination of indomethacin in maternal plasma and urine of pregnant patients

    PubMed Central

    Wang, Xiaoming; Vernikovskaya, Daria I.; Nanovskaya, Tatiana N.; Rytting, Erik; Hankins, Gary D.V.; Ahmed, Mahmoud S.

    2013-01-01

    A liquid chromatography with single quadrupole mass spectrometry method was developed for the quantitative determination of indomethacin in the maternal plasma and urine of pregnant patients under treatment. A deuterium-labeled isotope of indomethacin (d4-indomethacin) was used as an internal standard. The maternal plasma and urine samples were acidified with 1.0 MHCl then extracted with chloroform to achieve the extraction recovery range of 94% to 104% with variation less than 11%. Chromatographic separation was achieved by a Waters Symmetry C18 column with isocratic elution of 0.05% (v/v) formic acid aqueous solution and acetonitrile (47:53, v/v). An in-source fragmentation was applied on the single quadrupole mass spectrometer equipped with an electrospray ionization source at positive mode. The LC-ESI-MS quantification was performed in the selected ion monitoring mode targeting ions at m/z 139 for indomethacin and m/z 143 for its internal standard. The calibration curves were linear in the concentration ranges between 14.8 and 2.97×103 ng/mL for plasma samples and between 10.5 and 4.21×103 ng/mL for urine samples. The relative standard deviation of this method was less than 8% for intra- and inter-day assays, and the accuracy ranged between 90% and 108%. PMID:23474812

  17. Narrow bandwidth Laser-Plasma Accelerator driven Thomson photon source development

    NASA Astrophysics Data System (ADS)

    Geddes, C. G. R.; Tsai, H.-E.; Otero, G.; Liu, X.; van Tilborg, J.; Toth, Cs.; Vay, J.-L.; Lehe, R.; Schroeder, C. B.; Esarey, E.; Friedman, A.; Grote, D. P.; Leemans, W. P.

    2017-10-01

    Compact, high-quality photon sources at MeV energies can be provided by Thomson scattering of a laser from the electron beam of a Laser-Plasma Accelerator (LPA). Recent experiments and simulations demonstrate controllable LPAs in the energy range appropriate to MeV sources. Simulations indicate that high flux with narrow energy spread can be achieved via control of the scattering laser pulse shape and laser guiding, and that undesired background bremsstrahlung can be mitigated by plasma based deceleration of the electron beam after photon production. Construction of experiments and laser capabilities to combine these elements will be presented, along with initial operations, towards a compact photon source system. Work supported by US DOE NNSA DNN R&D and by Sc. HEP under contract DE-AC02-05CH11231.

  18. Spectral lines and characteristic of temporal variations in photoionized plasmas induced with laser-produced plasma extreme ultraviolet source

    NASA Astrophysics Data System (ADS)

    Saber, I.; Bartnik, A.; Wachulak, P.; Skrzeczanowski, W.; Jarocki, R.; Fiedorowicz, H.

    2017-11-01

    Spectral lines for Kr/Ne/H2 photoionized plasma in the ultraviolet and visible (UV/Vis) wavelength ranges have been created using a laser-produced plasma (LPP) EUV source. The source is based on a double-stream gas puff target irradiated with a commercial Nd:YAG laser. The laser pulses were focused onto a gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Spectral lines from photoionization in neutral Kr/Ne/H2 and up to few charged states were observed. The intense emission lines were associated with the Kr transition lines. Experimental and theoretical investigations on intensity variations for some ionic lines are presented. A decrease in the intensity with the delay time between the laser pulse and the spectrum acquisition was revealed. Electron temperature and electron density in the photoionized plasma have been estimated from the characteristic emission lines. Temperature was obtained using Boltzmann plot method, assuming that the population density of atoms and ions are considered in a local thermodynamic equilibrium (LTE). Electron density was calculated from the Stark broadening profile. The temporal evaluation of the plasma and the way of optimizing the radiation intensity of LPP EUV sources is discussed.

  19. Porcelain-coated antenna for radio-frequency driven plasma source

    DOEpatents

    Leung, Ka-Ngo; Wells, Russell P.; Craven, Glen E.

    1996-01-01

    A new porcelain-enamel coated antenna creates a clean plasma for volume or surface-conversion ion sources. The porcelain-enamel coating is hard, electrically insulating, long lasting, non fragile, and resistant to puncture by high energy ions in the plasma. Plasma and ion production using the porcelain enamel coated antenna is uncontaminated with filament or extraneous metal ion because the porcelain does not evaporate and is not sputtered into the plasma during operation. Ion beams produced using the new porcelain-enamel coated antenna are useful in ion implantation, high energy accelerators, negative, positive, or neutral beam applications, fusion, and treatment of chemical or radioactive waste for disposal. For ion implantation, the appropriate species ion beam generated with the inventive antenna will penetrate large or small, irregularly shaped conducting objects with a narrow implantation profile.

  20. Numerical study of the inductive plasma coupling to ramp up the plasma density for the Linac4 H- ion source

    NASA Astrophysics Data System (ADS)

    Ohta, M.; Mattei, S.; Yasumoto, M.; Hatayama, A.; Lettry, J.

    2014-02-01

    In the Linac4 H- ion source, the plasma is generated by an RF antenna operated at 2 MHz. In order to investigate the conditions necessary for ramping up the plasma density of the Linac4 H- ion source in the low plasma density, a numerical study has been performed for a wide range of parameter space of RF coil current and initial pressure from H2 gas injection. We have employed an Electromagnetic Particle in Cell model, in which the collision processes have been calculated by a Monte Carlo method. The results have shown that the range of initial gas pressure from 2 to 3 Pa is suitable for ramping up plasma density via inductive coupling.

  1. Measurements and modeling of the impact of weak magnetic fields on the plasma properties of a planar slot antenna driven plasma source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshikawa, Jun, E-mail: jun.yoshikawa@tel.com; Susa, Yoshio; Ventzek, Peter L. G.

    The radial line slot antenna plasma source is a type of surface wave plasma source driven by a planar slot antenna. Microwave power is transmitted through a slot antenna structure and dielectric window to a plasma characterized by a generation zone adjacent to the window and a diffusion zone that contacts a substrate. The diffusion zone is characterized by a very low electron temperature. This renders the source useful for soft etch applications and thin film deposition processes requiring low ion energy. Another property of the diffusion zone is that the plasma density tends to decrease from the axis tomore » the walls under the action of ambipolar diffusion at distances far from where the plasma is generated. A previous simulation study [Yoshikawa and. Ventzek, J. Vac. Sci. Technol. A 31, 031306 (2013)] predicted that the anisotropy in transport parameters due to weak static magnetic fields less than 50 G could be leveraged to manipulate the plasma profile in the radial direction. These simulations motivated experimental tests in which weak magnetic fields were applied to a radial line slot antenna source. Plasma absorption probe measurements of electron density and etch rate showed that the magnetic fields remote from the wafer were able to manipulate both parameters. A summary of these results is presented in this paper. Argon plasma simulation trends are compared with experimental plasma and etch rate measurements. A test of the impact of magnetic fields on charge up damage showed no perceptible negative effect.« less

  2. Quantitative aspects of inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Bulska, Ewa; Wagner, Barbara

    2016-10-01

    Accurate determination of elements in various kinds of samples is essential for many areas, including environmental science, medicine, as well as industry. Inductively coupled plasma mass spectrometry (ICP-MS) is a powerful tool enabling multi-elemental analysis of numerous matrices with high sensitivity and good precision. Various calibration approaches can be used to perform accurate quantitative measurements by ICP-MS. They include the use of pure standards, matrix-matched standards, or relevant certified reference materials, assuring traceability of the reported results. This review critically evaluates the advantages and limitations of different calibration approaches, which are used in quantitative analyses by ICP-MS. Examples of such analyses are provided. This article is part of the themed issue 'Quantitative mass spectrometry'.

  3. Hot plasma associated with a coronal mass ejection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landi, E.; Miralles, M. P.; Raymond, J. C.

    2013-11-20

    We analyze coordinated observations from the EUV Imaging Spectrometer (EIS) and X-Ray Telescope (XRT) on board Hinode of an X-ray Plasma Ejection (XPE) that occurred during the coronal mass ejection (CME) event of 2008 April 9. The XPE was trailing the CME core from behind, following the same trajectory, and could be identified both in EIS and XRT observations. Using the EIS spectrometer, we have determined the XPE plasma parameters, measuring the electron density, thermal distribution, and elemental composition. We have found that the XPE composition and electron density were very similar to those of the pre-event active region plasma.more » The XPE temperature was higher, and its thermal distribution peaked at around 3 MK; also, typical flare lines were absent from EIS spectra, indicating that any XPE component with temperatures in excess of 5 MK was likely either faint or absent. We used XRT data to investigate the presence of hotter plasma components in the XPE that could have gone undetected by EIS and found that—if at all present—these components have small emission measure values and their temperature is in the 8-12.5 MK range. The very hot plasma found in earlier XPE observations obtained by Yohkoh seems to be largely absent in this CME, although plasma ionization timescales may lead to non-equilibrium ionization effects that could make bright lines from ions formed in a 10 MK plasma not detectable by EIS. Our results supersede the XPE findings of Landi et al., who studied the same event with older response functions for the XRT Al-poly filter; the differences in the results stress the importance of using accurate filter response functions.« less

  4. Comparison of three rf plasma impedance monitors on a high phase angle planar inductively coupled plasma source

    NASA Astrophysics Data System (ADS)

    Uchiyama, H.; Watanabe, M.; Shaw, D. M.; Bahia, J. E.; Collins, G. J.

    1999-10-01

    Accurate measurement of plasma source impedance is important for verification of plasma circuit models, as well as for plasma process characterization and endpoint detection. Most impedance measurement techniques depend in some manner on the cosine of the phase angle to determine the impedance of the plasma load. Inductively coupled plasmas are generally highly inductive, with the phase angle between the applied rf voltage and the rf current in the range of 88 to near 90 degrees. A small measurement error in this phase angle range results in a large error in the calculated cosine of the angle, introducing large impedance measurement variations. In this work, we have compared the measured impedance of a planar inductively coupled plasma using three commercial plasma impedance monitors (ENI V/I probe, Advanced Energy RFZ60 and Advanced Energy Z-Scan). The plasma impedance is independently verified using a specially designed match network and a calibrated load, representing the plasma, to provide a measurement standard.

  5. An Electrothermal Plasma Source Developed for Simulation of Transient Heat Loads in Future Large Fusion Devices

    NASA Astrophysics Data System (ADS)

    Gebhart, Trey; Baylor, Larry; Winfrey, Leigh

    2016-10-01

    The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. In this work, an electrothermal (ET) plasma source has been designed as a possible transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime, which is driven by a DC capacitive discharge. The current travels through the 4mm bore of a boron nitride liner and subsequently ablates and ionizes the liner material. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have a duration of 1ms at full-width half maximum. The peak currents and maximum source energies seen in this system are 2kA and 5kJ. The goal of this work is to show that the ET source produces electron densities and heat fluxes that are comparable to transient events in future large magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each test shot using infrared imaging and optical spectroscopy techniques. This work will compare the ET source output (heat flux, temperature, and density) with and without an applied magnetic field. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.

  6. Plasmas in compact traps: From ion sources to multidisciplinary research

    NASA Astrophysics Data System (ADS)

    Mascali, D.; Musumarra, A.; Leone, F.; Galatà, A.; Romano, F. P.; Gammino, S.

    2017-09-01

    In linear (minimum-B) magneto-static traps dense and hot plasmas are heated by electromagnetic radiation in the GHz domain via the Electron Cyclotron Resonance (ECR). The values of plasma density, temperature and confinement times ( n_eτ_i>10^{13} cm ^{-3} s; T_e>10 keV) are similar to the ones of thermonuclear plasmas. The research in this field -devoted to heating and confinement optimization- has been supported by numerical modeling and advanced diagnostics, for probing the plasma especially in a non-invasive way. ECR-based systems are nowadays able to produce extremely intense (tens or hundreds of mA) beams of light ions (p, d, He), and relevant currents of heavier elements (C, O, N) up to heavy ions like Xe, Pb, U. Such beams can be extracted from the trap by a proper electrostatic system. The above-mentioned properties make these plasmas very attractive for interdisciplinary researches also, such as i) nuclear decays rates measurements in stellar-like conditions, ii) energy conversion studies, being exceptional sources of short-wavelength electromagnetic radiation (EUV, X-rays, hard X-rays and gammas, useful in material science and archaeometry), iii) environments allowing precise spectroscopical measurements as benchmarks for magnetized astrophysical plasmas. The talk will give an overview about the state-of-the-art in the field of intense ion sources, and some new perspectives for interdisciplinary research, with a special attention to the developments based at INFN-LNS.

  7. Ultra-Sensitive Elemental Analysis Using Plasmas 4.Application of Inductively Coupled Plasma Mass Spectrometry to the Study of Environmental Radioactivity

    NASA Astrophysics Data System (ADS)

    Yoshida, Satoshi

    Applications of inductively coupled plasma mass spectrometry (ICP-MS) to the determination of long-lived radionuclides in environmental samples were summarized. In order to predict the long-term behavior of the radionuclides, related stable elements were also determined. Compared with radioactivity measurements, the ICP-MS method has advantages in terms of its simple analytical procedures, prompt measurement time, and capability of determining the isotope ratio such as240Pu/239Pu, which can not be separated by radiation. Concentration of U and Th in Japanese surface soils were determined in order to determine the background level of the natural radionuclides. The 235U/238U ratio was successfully used to detect the release of enriched U from reconversion facilities to the environment and to understand the source term. The 240Pu/239Pu ratios in environmental samples varied widely depending on the Pu sources. Applications of ICP-MS to the measurement of I and Tc isotopes were also described. The ratio between radiocesium and stable Cs is useful for judging the equilibrium of deposited radiocesium in a forest ecosystem.

  8. Plasma particle sources due to interactions with neutrals in a turbulent scrape-off layer of a toroidally confined plasma

    NASA Astrophysics Data System (ADS)

    Thrysøe, A. S.; Løiten, M.; Madsen, J.; Naulin, V.; Nielsen, A. H.; Rasmussen, J. Juul

    2018-03-01

    The conditions in the edge and scrape-off layer (SOL) of magnetically confined plasmas determine the overall performance of the device, and it is of great importance to study and understand the mechanics that drive transport in those regions. If a significant amount of neutral molecules and atoms is present in the edge and SOL regions, those will influence the plasma parameters and thus the plasma confinement. In this paper, it is displayed how neutrals, described by a fluid model, introduce source terms in a plasma drift-fluid model due to inelastic collisions. The resulting source terms are included in a four-field drift-fluid model, and it is shown how an increasing neutral particle density in the edge and SOL regions influences the plasma particle transport across the last-closed-flux-surface. It is found that an appropriate gas puffing rate allows for the edge density in the simulation to be self-consistently maintained due to ionization of neutrals in the confined region.

  9. Cometary particulate analyzer. [mass spectrometry of laser plasmas

    NASA Technical Reports Server (NTRS)

    Friichtenicht, J. F.; Miller, D. J.; Utterback, N. G.

    1979-01-01

    A concept for determining the relative abundance of elements contained in cometary particulates was evaluated. The technique utilizes a short, high intensity burst of laser radiation to vaporize and ionize collected particulate material. Ions extracted from this laser produced plasma are analyzed in a time of flight mass spectrometer to yield an atomic mass spectrum representative of the relative abundance of elements in the particulates. Critical aspects of the development of this system are determining the ionization efficiencies for various atomic species and achieving adequate mass resolution. A technique called energy-time focus, which utilizes static electric fields to alter the length of the ion flight path in proportion to the ion initial energy, was used which results in a corresponding compression to the range of ion flight times which effectively improves the inherent resolution. Sufficient data were acquired to develop preliminary specifications for a flight experiment.

  10. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-05-01

    An electrostatic size classification technique was used to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Size-segregated particles were counted with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized by the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10- 5 to 10- 11. Free molecular heat and mass transfer theory was applied, but

  11. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    DOE PAGES

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-03-02

    We used an electrostatic size classification technique to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Moreover, we counted size-segregated particles with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized bymore » the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10 -5 to 10 -11. Free molecular heat and mass transfer theory was

  12. On the density limit in the helicon plasma sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotelnikov, Igor A., E-mail: I.A.Kotelnikov@inp.nsk.su

    2014-12-15

    Existence of the density limit in the helicon plasma sources is revisited. The low- and high-frequency regimes of a helicon plasma source operation are distinguished. In the low-frequency regime with ω<√(ω{sub ci}ω{sub ce}), the density limit is deduced from the Golant-Stix criterion of the accessibility of the lower hybrid resonance. In the high-frequency case, ω>√(ω{sub ci}ω{sub ce}), an appropriate limit is given by the Shamrai-Taranov criterion. Both these criteria are closely related to the phenomenon of the coalescence of the helicon wave with the Trivelpiece-Gould mode. We draw a conclusion that the derived density limits are not currently achieved inmore » existing devices, perhaps, because of high energy cost of gas ionization.« less

  13. Negative hydrogen ion production in a helicon plasma source

    NASA Astrophysics Data System (ADS)

    Santoso, J.; Manoharan, R.; O'Byrne, S.; Corr, C. S.

    2015-09-01

    In order to develop very high energy (>1 MeV) neutral beam injection systems for applications, such as plasma heating in fusion devices, it is necessary first to develop high throughput negative ion sources. For the ITER reference source, this will be realised using caesiated inductively coupled plasma devices, containing either hydrogen or deuterium discharges, operated with high rf input powers (up to 90 kW per driver). It has been suggested that due to their high power coupling efficiency, helicon devices may be able to reduce power requirements and potentially obviate the need for caesiation due to the high plasma densities achievable. Here, we present measurements of negative ion densities in a hydrogen discharge produced by a helicon device, with externally applied DC magnetic fields ranging from 0 to 8.5 mT at 5 and 10 mTorr fill pressures. These measurements were taken in the magnetised plasma interaction experiment at the Australian National University and were performed using the probe-based laser photodetachment technique, modified for the use in the afterglow of the plasma discharge. A peak in the electron density is observed at ˜3 mT and is correlated with changes in the rf power transfer efficiency. With increasing magnetic field, an increase in the negative ion fraction from 0.04 to 0.10 and negative ion densities from 8 × 1014 m-3 to 7 × 1015 m-3 is observed. It is also shown that the negative ion densities can be increased by a factor of 8 with the application of an external DC magnetic field.

  14. Inductively coupled plasma mass spectrometry for stable isotope metabolic tracer studies of living systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luong, Elise

    1999-05-10

    This dissertation focuses on the development of methods for stable isotope metabolic tracer studies in living systems using inductively coupled plasma single and dual quadrupole mass spectrometers. Sub-nanogram per gram levels of molybdenum (Mo) from human blood plasma are isolated by the use of anion exchange alumina microcolumns. Million-fold more concentrated spectral and matrix interferences such as sodium, chloride, sulfate, phosphate, etc. in the blood constituents are removed from the analyte. The recovery of Mo from the alumina column is 82 ± 5% (n = 5). Isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS) is utilized for the quantitative ultra-tracemore » concentration determination of Mo in bovine and human blood samples. The average Mo concentration in reference bovine serum determined by this method is 10.2 ± 0.4 ng/g, while the certified value is 11.5 ± 1.1 ng/g (95% confidence interval). The Mo concentration of one pool of human blood plasma from two healthy male donors is 0.5 ± 0.1 ng/g. The inductively coupled plasma twin quadrupole mass spectrometer (ICP-TQMS) is used to measure the carbon isotope ratio from non-volatile organic compounds and bio-organic molecules to assess the ability as an alternative analytical method to gas chromatography combustion isotope ratio mass spectrometry (GC-combustion-IRMS). Trytophan, myoglobin, and β-cyclodextrin are chosen for the study, initial observation of spectral interference of 13C + with 12C 1H + comes from the incomplete dissociation of myoglobin and/or β-cyclodextrin.« less

  15. Impedance of an intense plasma-cathode electron source for tokamak startup

    NASA Astrophysics Data System (ADS)

    Hinson, E. T.; Barr, J. L.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Perry, J. M.

    2016-05-01

    An impedance model is formulated and tested for the ˜1 kV , 1 kA/cm2 , arc-plasma cathode electron source used for local helicity injection tokamak startup. A double layer sheath is established between the high-density arc plasma ( narc≈1021 m-3 ) within the electron source, and the less dense external tokamak edge plasma ( nedge≈1018 m-3 ) into which current is injected at the applied injector voltage, Vinj . Experiments on the Pegasus spherical tokamak show that the injected current, Iinj , increases with Vinj according to the standard double layer scaling Iinj˜Vinj3 /2 at low current and transitions to Iinj˜Vinj1 /2 at high currents. In this high current regime, sheath expansion and/or space charge neutralization impose limits on the beam density nb˜Iinj/Vinj1 /2 . For low tokamak edge density nedge and high Iinj , the inferred beam density nb is consistent with the requirement nb≤nedge imposed by space-charge neutralization of the beam in the tokamak edge plasma. At sufficient edge density, nb˜narc is observed, consistent with a limit to nb imposed by expansion of the double layer sheath. These results suggest that narc is a viable control actuator for the source impedance.

  16. Injection of auxiliary electrons for increasing the plasma density in highly charged and high intensity ion sources.

    PubMed

    Odorici, F; Malferrari, L; Montanari, A; Rizzoli, R; Mascali, D; Castro, G; Celona, L; Gammino, S; Neri, L

    2016-02-01

    Different electron guns based on cold- or hot-cathode technologies have been developed since 2009 at INFN for operating within ECR plasma chambers as sources of auxiliary electrons, with the aim of boosting the source performances by means of a higher plasma lifetime and density. Their application to microwave discharge ion sources, where plasma is not confined, has required an improvement of the gun design, in order to "screen" the cathode from the plasma particles. Experimental tests carried out on a plasma reactor show a boost of the plasma density, ranging from 10% to 90% when the electron guns are used, as explained by plasma diffusion models.

  17. Magnetic plasma confinement for laser ion source.

    PubMed

    Okamura, M; Adeyemi, A; Kanesue, T; Tamura, J; Kondo, K; Dabrowski, R

    2010-02-01

    A laser ion source (LIS) can easily provide a high current beam. However, it has been difficult to obtain a longer beam pulse while keeping a high current. On occasion, longer beam pulses are required by certain applications. For example, more than 10 micros of beam pulse is required for injecting highly charged beams to a large sized synchrotron. To extend beam pulse width, a solenoid field was applied at the drift space of the LIS at Brookhaven National Laboratory. The solenoid field suppressed the diverging angle of the expanding plasma and the beam pulse was widened. Also, it was observed that the plasma state was conserved after passing through a few hundred gauss of the 480 mm length solenoid field.

  18. Porcelain-coated antenna for radio-frequency driven plasma source

    DOEpatents

    Leung, K.N.; Wells, R.P.; Craven, G.E.

    1996-12-24

    A new porcelain-enamel coated antenna creates a clean plasma for volume or surface-conversion ion sources. The porcelain-enamel coating is hard, electrically insulating, long lasting, non fragile, and resistant to puncture by high energy ions in the plasma. Plasma and ion production using the porcelain enamel coated antenna is uncontaminated with filament or extraneous metal ions because the porcelain does not evaporate and is not sputtered into the plasma during operation. Ion beams produced using the new porcelain-enamel coated antenna are useful in ion implantation, high energy accelerators, negative, positive, or neutral beam applications, fusion, and treatment of chemical or radioactive waste for disposal. For ion implantation, the appropriate species ion beam generated with the inventive antenna will penetrate large or small, irregularly shaped conducting objects with a narrow implantation profile. 8 figs.

  19. Influence of heat and particle fluxes nonlocality on spatial distribution of plasma density in two-chamber inductively coupled plasma sources

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, A. A.; Serditov, K. Yu.

    2012-07-01

    This study presents 2D simulations of the two-chamber inductively coupled plasma source where power is supplied in the small discharge chamber and extends by electron thermal conductivity mechanism to the big diffusion chamber. Depending on pressure, two main scenarios of plasma density and its spatial distribution behavior were identified. One case is characterized by the localization of plasma in the small driver chamber where power is deposed. Another case describes when the diffusion chamber becomes the main source of plasma with maximum of the electron density. The differences in spatial distribution are caused by local or non-local behavior of electron energy transport in the discharge volume due to different characteristic scale of heat transfer with electronic conductivity.

  20. Experimental characterization of hollow-cathode plasma sources at Frascati

    NASA Technical Reports Server (NTRS)

    Vannaroni, G.; Cosmovici, C. B.; Bonifazi, C.; Mccoy, J.

    1988-01-01

    An experimental characterization has been conducted for hollow cathodes applicable as plasma contactors on Space Shuttle-based experiments. The diagnostics tests were conducted in an 0.5 cu m vacuum chamber by means of Langmuir probes at various distances from the source. Two electron populations are noted, one in the 0.3-1 eV and the other in the 7-11 eV temperature range. Current developments in the design of plasma chambers incorporating magnetic field compensation are noted.

  1. Determination of clebopride in plasma by capillary gas chromatography-negative-ion chemical ionization mass spectrometry.

    PubMed

    Robinson, P R; Jones, M D; Maddock, J

    1988-11-18

    A procedure for the analysis of clebopride in plasma using capillary gas chromatography-negative-ion chemical ionization mass spectrometry has been developed. Employing an ethoxy analogue as internal standard, the two compounds were extracted from basified plasma using dichloromethane. Subsequent reaction with heptafluorobutyryl imidazole produced volatile monoheptafluorobutyryl derivatives whose ammonia negative-ion mass spectra proved ideal for selected-ion monitoring. The recovery of clebopride from plasma at 0.536 nmol/l was found to be 85.5 +/- 0.9% (n = 3) whilst measurement down to 0.268 nmol/l was possible with a coefficient of variation of 7.9%. Plasma levels of the compound are reported in two volunteers following ingestion of 1 mg of clebopride as the malate salt.

  2. FAR-TECH's Nanoparticle Plasma Jet System and its Application to Disruptions, Deep Fueling, and Diagnostics

    NASA Astrophysics Data System (ADS)

    Thompson, J. R.; Bogatu, I. N.; Galkin, S. A.; Kim, J. S.

    2012-10-01

    Hyper-velocity plasma jets have potential applications in tokamaks for disruption mitigation, deep fueling and diagnostics. Pulsed power based solid-state sources and plasma accelerators offer advantages of rapid response and mass delivery at high velocities. Fast response is critical for some disruption mitigation scenario needs, while high velocity is especially important for penetration into tokamak plasma and its confining magnetic field, as in the case of deep fueling. FAR-TECH is developing the capability of producing large-mass hyper-velocity plasma jets. The prototype solid-state source has produced: 1) >8.4 mg of H2 gas only, and 2) >25 mg of H2 and >180 mg of C60 in a H2/C60 gas mixture. Using a coaxial plasma gun coupled to the source, we have successfully demonstrated the acceleration of composite H/C60 plasma jets, with momentum as high as 0.6 g.km/s, and containing an estimated C60 mass of ˜75 mg. We present the status of FAR-TECH's nanoparticle plasma jet system and discuss its application to disruptions, deep fueling, and diagnostics. A new TiH2/C60 solid-state source capable of generating significantly higher quantities of H2 and C60 in <0.5 ms will be discussed.

  3. Theoretical models of the electrical discharge machining process. III. The variable mass, cylindrical plasma model

    NASA Astrophysics Data System (ADS)

    Eubank, Philip T.; Patel, Mukund R.; Barrufet, Maria A.; Bozkurt, Bedri

    1993-06-01

    A variable mass, cylindrical plasma model (VMCPM) is developed for sparks created by electrical discharge in a liquid media. The model consist of three differential equations—one each from fluid dynamics, an energy balance, and the radiation equation—combined with a plasma equation of state. A thermophysical property subroutine allows realistic estimation of plasma enthalpy, mass density, and particle fractions by inclusion of the heats of dissociation and ionization for a plasma created from deionized water. Problems with the zero-time boundary conditions are overcome by an electron balance procedure. Numerical solution of the model provides plasma radius, temperature, pressure, and mass as a function of pulse time for fixed current, electrode gap, and power fraction remaining in the plasma. Moderately high temperatures (≳5000 K) and pressures (≳4 bar) persist in the sparks even after long pulse times (to ˜500 μs). Quantitative proof that superheating is the dominant mechanism for electrical discharge machining (EDM) erosion is thus provided for the first time. Some quantitative inconsistencies developed between our (1) cathode, (2) anode, and (3) plasma models (this series) are discussed with indication as to how they will be rectified in a fourth article to follow shortly in this journal. While containing oversimplifications, these three models are believed to contain the respective dominant physics of the EDM process but need be brought into numerical consistency for each time increment of the numerical solution.

  4. Deuterium-lithium plasma as a source of fusion neutrons

    NASA Astrophysics Data System (ADS)

    Chirkov, A. Yu; Vesnin, V. R.

    2017-11-01

    The concepts of deuterium-tritium (D-T) fusion neutron source are currently developed for hybrid fusion-fission systems and the waste transmutation ones. The need to use tritium technologies is a deterrent factor in this promising direction of energy production. Potential possibilities of using systems that do not require tritium developments are of a significant interest. A deuterium-deuterium (D-D) reaction is considered for the use in demonstration fusion neutron sources. The product of this reaction is tritium, which will burn in the plasma with the emission of fast neutrons. D-D reaction is significantly slower then D-T reaction. Present study shows an increase in neutron yield using a powerful injection of the beam of deuterium atoms. The reactions of the deuterium with lithium isotopes are considered. In some of these reactions, fast neutrons can be obtained. The results of the calculation of the neutron yield from the deuterium lithium plasma are discussed. The estimates of the parameters needed for the realization of a source of fusion neutrons are presented.

  5. Injection of auxiliary electrons for increasing the plasma density in highly charged and high intensity ion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odorici, F., E-mail: fabrizio.odorici@bo.infn.it; Malferrari, L.; Montanari, A.

    Different electron guns based on cold- or hot-cathode technologies have been developed since 2009 at INFN for operating within ECR plasma chambers as sources of auxiliary electrons, with the aim of boosting the source performances by means of a higher plasma lifetime and density. Their application to microwave discharge ion sources, where plasma is not confined, has required an improvement of the gun design, in order to “screen” the cathode from the plasma particles. Experimental tests carried out on a plasma reactor show a boost of the plasma density, ranging from 10% to 90% when the electron guns are used,more » as explained by plasma diffusion models.« less

  6. Quantitative aspects of inductively coupled plasma mass spectrometry

    PubMed Central

    Wagner, Barbara

    2016-01-01

    Accurate determination of elements in various kinds of samples is essential for many areas, including environmental science, medicine, as well as industry. Inductively coupled plasma mass spectrometry (ICP-MS) is a powerful tool enabling multi-elemental analysis of numerous matrices with high sensitivity and good precision. Various calibration approaches can be used to perform accurate quantitative measurements by ICP-MS. They include the use of pure standards, matrix-matched standards, or relevant certified reference materials, assuring traceability of the reported results. This review critically evaluates the advantages and limitations of different calibration approaches, which are used in quantitative analyses by ICP-MS. Examples of such analyses are provided. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644971

  7. Spatial distribution of the RF power absorbed in a helicon plasma source

    NASA Astrophysics Data System (ADS)

    Aleksenko, O. V.; Miroshnichenko, V. I.; Mordik, S. N.

    2014-08-01

    The spatial distributions of the RF power absorbed by plasma electrons in an ion source operating in the helicon mode (ω ci < ω < ω ce < ω pe ) are studied numerically by using a simplified model of an RF plasma source in an external uniform magnetic field. The parameters of the source used in numerical simulations are determined by the necessity of the simultaneous excitation of two types of waves, helicons and Trivelpiece-Gould modes, for which the corresponding transparency diagrams are used. The numerical simulations are carried out for two values of the working gas (helium) pressure and two values of the discharge chamber length under the assumption that symmetric modes are excited. The parameters of the source correspond to those of the injector of the nuclear scanning microprobe operating at the Institute of Applied Physics, National Academy of Sciences of Ukraine. It is assumed that the mechanism of RF power absorption is based on the acceleration of plasma electrons in the field of a Trivelpiece-Gould mode, which is interrupted by pair collisions of plasma electrons with neutral atoms and ions of the working gas. The simulation results show that the total absorbed RF power at a fixed plasma density depends in a resonant manner on the magnetic field. The resonance is found to become smoother with increasing working gas pressure. The distributions of the absorbed RF power in the discharge chamber are presented. The achievable density of the extracted current is estimated using the Bohm criterion.

  8. Plasma Radiation Source on the Basis of the Gas Puff with Outer Plasma Shell in the Circuit of a Mega-Ampere Load Current Doubler

    NASA Astrophysics Data System (ADS)

    Kokshenev, V. A.; Labetsky, A. Yu.; Shishlov, A. V.; Kurmaev, N. E.; Fursov, F. I.; Cherdizov, R. K.

    2017-12-01

    Characteristics of Z-pinch plasma radiation in the form of a double shell neon gas puff with outer plasma shell are investigated in the microsecond implosion mode. Experiments are performed using a GIT-12 mega-joule generator with load current doubler having a ferromagnetic core at implosion currents up to 5 MA. Conditions for matching of the nonlinear load with the mega-ampere current multiplier circuit are determined. The load parameters (plasma shell characteristics and mass and geometry of gas puff shells) are optimized on the energy supplied to the gas puff and n energy characteristics of radiation. It is established that the best modes of K-shell radiation in neon are realized for such radial distribution of the gas-puff material at which the compression velocity of the shell is close to a constant and amounts to 27-30 cm/μs. In these modes, up to 40% of energy supplied to the gas puff is converted into K-shell radiation. The reasons limiting the efficiency of the radiation source with increasing implosion current are analyzed. A modernized version of the energy supply from the current doubler to the Z-pinch is proposed.

  9. Atmospheric pressure plasma jet with high-voltage power supply based on piezoelectric transformer.

    PubMed

    Babij, Michał; Kowalski, Zbigniew W; Nitsch, Karol; Silberring, Jerzy; Gotszalk, Teodor

    2014-05-01

    The dielectric barrier discharge plasma jet, an example of the nonthermal atmospheric pressure plasma jet (APPJ), generates low-temperature plasmas that are suitable for the atomization of volatile species and can also be served as an ionization source for ambient mass and ion mobility spectrometry. A new design of APPJ for mass spectrometry has been built in our group. In these plasma sources magnetic transformers (MTs) and inductors are typically used in power supplies but they present several drawbacks that are even more evident when dealing with high-voltage normally used in APPJs. To overcome these disadvantages, high frequency generators with the absence of MT are proposed in the literature. However, in the case of miniaturized APPJs these conventional power converters, built of ferromagnetic cores and inductors or by means of LC resonant tank circuits, are not so useful as piezoelectric transformer (PT) based power converters due to bulky components and small efficiency. We made and examined a novel atmospheric pressure plasma jet with PT supplier served as ionization source for ambient mass spectrometry, and especially mobile spectrometry where miniaturization, integration of components, and clean plasma are required. The objective of this paper is to describe the concept, design, and implementation of this miniaturized piezoelectric transformer-based atmospheric pressure plasma jet.

  10. The role of plasma/neutral source and loss processes in shaping the giant planet magnetospheres

    NASA Astrophysics Data System (ADS)

    Delamere, P. A.

    2014-12-01

    The giant planet magnetospheres are filled with neutral and ionized gases originating from satellites orbiting deep within the magnetosphere. The complex chemical and physical pathways for the flow of mass and energy in this partially ionized plasma environment is critical for understanding magnetospheric dynamics. The flow of mass at Jupiter and Saturn begins, primarily, with neutral gases emanating from Io (~1000 kg/s) and Enceladus (~200 kg/s). In addition to ionization losses, the neutral gases are absorbed by the planet, its rings, or escape at high speeds from the magnetosphere via charge exchange reactions. The net result is a centrifugally confined torus of plasma that is transported radially outward, distorting the magnetic field into a magnetodisc configuration. Ultimately the plasma is lost to the solar wind. A critical parameter for shaping the magnetodisc and determining its dynamics is the radial plasma mass transport rate (~500 kg/s and ~50 kg/s for Jupiter and Saturn respectively). Given the plasma transport rates, several simple properties of the giant magnetodiscs can be estimated including the physical scale of the magnetosphere, the magnetic flux transport, and the magnitude of azimuthal magnetic field bendback. We will discuss transport-related magnetic flux conservation and the mystery of plasma heating—two critical issues for shaping the giant planet magnetospheres.

  11. Ion source for high-precision mass spectrometry

    DOEpatents

    Todd, Peter J.; McKown, Henry S.; Smith, David H.

    1984-01-01

    The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit.

  12. Explosive detection using a novel dielectric barrier discharge ionisation source for mass spectrometry.

    PubMed

    Fletcher, Carl; Sleeman, Richard; Luke, John; Luke, Peter; Bradley, James W

    2018-03-01

    The detection of explosives is of great importance, as is the need for sensitive, reliable techniques that require little or no sample preparation and short run times for high throughput analysis. In this work, a novel ionisation source is presented based on a dielectric barrier discharge (DBD). This not only affects desorption and ionisation but also forms an ionic wind, providing mass transportation of ions towards the mass spectrometer. Furthermore, the design incorporates 2 asymmetric alumina sheets, each containing 3 DBDs, so that a large surface area can be analysed. The DBD operates in ambient air, overcoming the limitation of other plasma-based techniques which typically analyse smaller surface areas and require solvents or gases. A range of explosives across 4 different functional groups was analysed using the DBD with low limits of detection for cyclotrimethylene trinitramine (RDX) (100 pg), pentaerythritol trinitrate (PETN) (100 pg), hexamethylene triperoxide diamide (HMTD) (1 ng), and trinitrotoluene (TNT) (5 ng). Detection was achieved without any sample preparation or the addition of reagents to facilitate adduct formation. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Study on monatomic fraction improvement with alumina layer on metal electrode in hydrogen plasma ion source.

    PubMed

    Jung, Bong-Ki; Chung, Kyoung-Jae; Dang, Jeong-Jeung; Hwang, Y S

    2012-02-01

    A high monatomic beam fraction is an important factor in a hydrogen ion source to increase the application efficiency. The monatomic fraction of hydrogen plasmas with different plasma electrode materials is measured in a helicon plasma ion source, and aluminum shows the highest value compared to that with the other metals such as copper and molybdenum. Formation of an aluminum oxide layer on the aluminum electrode is determined by XPS analysis, and the alumina layer is verified as the high monatomic fraction. Both experiments and numerical simulations conclude that a low surface recombination coefficient of the alumina layer on the plasma electrode is one of the most important parameters for increasing the monatomic fraction in hydrogen plasma ion sources.

  14. Modeling the influence of coupled mass transfer processes on mass flux downgradient of heterogeneous DNAPL source zones

    NASA Astrophysics Data System (ADS)

    Yang, Lurong; Wang, Xinyu; Mendoza-Sanchez, Itza; Abriola, Linda M.

    2018-04-01

    Sequestered mass in low permeability zones has been increasingly recognized as an important source of organic chemical contamination that acts to sustain downgradient plume concentrations above regulated levels. However, few modeling studies have investigated the influence of this sequestered mass and associated (coupled) mass transfer processes on plume persistence in complex dense nonaqueous phase liquid (DNAPL) source zones. This paper employs a multiphase flow and transport simulator (a modified version of the modular transport simulator MT3DMS) to explore the two- and three-dimensional evolution of source zone mass distribution and near-source plume persistence for two ensembles of highly heterogeneous DNAPL source zone realizations. Simulations reveal the strong influence of subsurface heterogeneity on the complexity of DNAPL and sequestered (immobile/sorbed) mass distribution. Small zones of entrapped DNAPL are shown to serve as a persistent source of low concentration plumes, difficult to distinguish from other (sorbed and immobile dissolved) sequestered mass sources. Results suggest that the presence of DNAPL tends to control plume longevity in the near-source area; for the examined scenarios, a substantial fraction (43.3-99.2%) of plume life was sustained by DNAPL dissolution processes. The presence of sorptive media and the extent of sorption non-ideality are shown to greatly affect predictions of near-source plume persistence following DNAPL depletion, with plume persistence varying one to two orders of magnitude with the selected sorption model. Results demonstrate the importance of sorption-controlled back diffusion from low permeability zones and reveal the importance of selecting the appropriate sorption model for accurate prediction of plume longevity. Large discrepancies for both DNAPL depletion time and plume longevity were observed between 2-D and 3-D model simulations. Differences between 2- and 3-D predictions increased in the presence of

  15. Dependence of Microlensing on Source Size and Lens Mass

    NASA Astrophysics Data System (ADS)

    Congdon, A. B.; Keeton, C. R.

    2007-11-01

    In gravitational lensed quasars, the magnification of an image depends on the configuration of stars in the lensing galaxy. We study the statistics of the magnification distribution for random star fields. The width of the distribution characterizes the amount by which the observed magnification is likely to differ from models in which the mass is smoothly distributed. We use numerical simulations to explore how the width of the magnification distribution depends on the mass function of stars, and on the size of the source quasar. We then propose a semi-analytic model to describe the distribution width for different source sizes and stellar mass functions.

  16. Investigation of rf power absorption in the plasma of helicon ion source.

    PubMed

    Mordyk, S; Alexenko, O; Miroshnichenko, V; Storizhko, V; Stepanov, K; Olshansky, V

    2008-02-01

    The simulations of the spatial distribution of rf power absorbed in a helicon ion source reveal a correlation between the depth of penetration of rf power into the plasma and the tilt angle of lines of force of the outer magnetic field. The deeper field penetration and greater power absorption were observed at large tilt angles of the field line to the plasma surface. The evaluations as to the possibility of excitation of helicon waves in compact rf ion sources were performed.

  17. Three-dimensional modeling of a negative ion source with a magnetic filter: impact of biasing the plasma electrode on the plasma asymmetry

    NASA Astrophysics Data System (ADS)

    Fubiani, G.; Boeuf, J. P.

    2015-10-01

    The effect on the plasma characteristics of biasing positively the plasma electrode (PE) in negative ion sources with a magnetic filter is analysed using a 3D particle-in-cell model with Monte-Carlo collisions (PIC-MCC). We specialize to the one driver (i.e. one inductively coupled radio-frequency discharge) BATMAN negative ion source and the 4-drivers (large volume) ELISE device. Both are ITER prototype high power tandem-type negative ion sources developed for the neutral beam injector (NBI) system. The plasma is generated in the driver and diffuses inside the second chamber which is magnetized. Asymmetric plasma profiles originate from the formation of an electric field transverse to the electron current flowing through the magnetic filter (Hall effect). The model shows that the importance of the asymmetry increases with the PE bias potential, i.e. with the electron flow from the driver to the extraction region and depends on the shape of the magnetic filter field. We find that although the plasma density and potential profiles may be more or less asymmetric depending on the filter field configuration, the electron current to the plasma grid is always strongly asymmetric.

  18. Investigating the influence of DNAPL spill characteristics on source zone architecture and mass removal in pool-dominated source zones

    NASA Astrophysics Data System (ADS)

    Wallace, K. A.; Abriola, L.; Chen, M.; Ramsburg, A.; Pennell, K. D.; Christ, J.

    2009-12-01

    Multiphase, compositional simulators were employed to investigate the spill characteristics and subsurface properties that lead to pool-dominated, dense non-aqueous phase liquid (DNAPL) source zone architectures. DNAPL pools commonly form at textural interfaces where low permeability lenses restrict the vertical migration of DNAPL, allowing for DNAPL to accumulate, reaching high saturation. Significant pooling has been observed in bench-scale experiments and field settings. However, commonly employed numerical simulations rarely predict the pooling suspected in the field. Given the importance of pooling on the efficacy of mass recovery and the down-gradient contaminant signal, it is important to understand the predominant factors affecting the creation of pool-dominated source zones and their subsequent mass discharge. In this work, contaminant properties, spill characteristics and subsurface permeability were varied to investigate the factors contributing to the development of a pool-dominated source zone. DNAPL infiltration and entrapment simulations were conducted in two- and three-dimensional domains using the University of Texas Chemical Compositional (UTCHEM) simulator. A modified version of MT3DMS was then used to simulate DNAPL dissolution and mass discharge. Numerical mesh size was varied to investigate the importance of numerical model parameters on simulations results. The temporal evolution of commonly employed source zone architecture metrics, such as the maximum DNAPL saturation, first and second spatial moments, and fraction of DNAPL mass located in pools, was monitored to determine how the source zone architecture evolved with time. Mass discharge was monitored to identify the link between source zone architecture and down-gradient contaminant flux. Contaminant characteristics and the presence of extensive low permeability lenses appeared to have the most influence on the development of a pool-dominated source zone. The link between DNAPL mass

  19. Identification of phosphorylated butyrylcholinesterase in human plasma using immunoaffinity purification and mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aryal, Uma K.; Lin, Chiann Tso; Kim, Jong Seo

    2012-04-20

    Paraoxon (diethyl 4-nitrophenyl phosphate) is an active metabolite of the common insecticide parathion and is acutely toxic due to the inhibition of cholinesterase (ChE) activity in the nervous systems. The Inhibition of butyrylcholinesterase (BChE) activity by paraoxon is due to the formation of phosphorylated BChE adduct, and the detection of the phosphorylated BChE adduct in human plasma can serve as an exposure biomarker of organophosphate pesticides and nerve agents. In this study, we performed immunoaffinity purification and liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis for identifying phosphorylated BChE in human plasma treated by paraoxon. BChE was captured by biotinylated anti-BChEmore » polyclonal antibodies conjugated to streptavidin magnetic beads. Western blot analysis showed that the antibody was effective to recognize both native and modified BChE with high specificity. The exact phosphorylation site of BChE was confirmed on Serine 198 by MS/MS with a 108 Da modification mass and accurately measured parent ion masses. The phosphorylated BChE peptide was also successfully detected in the immunoaffinity purified sample from paraoxon treated human plasma. Thus, immunoaffinity purification combined with mass spectrometry represents a viable approach for the detection of paraoxon-modified BChE and other forms of modified BChE as exposure biomarkers of organophosphates and nerve agents.« less

  20. Material impacts and heat flux characterization of an electrothermal plasma source with an applied magnetic field

    NASA Astrophysics Data System (ADS)

    Gebhart, T. E.; Martinez-Rodriguez, R. A.; Baylor, L. R.; Rapp, J.; Winfrey, A. L.

    2017-08-01

    To produce a realistic tokamak-like plasma environment in linear plasma device, a transient source is needed to deliver heat and particle fluxes similar to those seen in an edge localized mode (ELM). ELMs in future large tokamaks will deliver heat fluxes of ˜1 GW/m2 to the divertor plasma facing components at a few Hz. An electrothermal plasma source can deliver heat fluxes of this magnitude. These sources operate in an ablative arc regime which is driven by a DC capacitive discharge. An electrothermal source was configured with two pulse lengths and tested under a solenoidal magnetic field to determine the resulting impact on liner ablation, plasma parameters, and delivered heat flux. The arc travels through and ablates a boron nitride liner and strikes a tungsten plate. The tungsten target plate is analyzed for surface damage using a scanning electron microscope.

  1. Ion source for high-precision mass spectrometry

    DOEpatents

    Todd, P.J.; McKown, H.S.; Smith, D.H.

    1982-04-26

    The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit. 2 figures, 3 tables.

  2. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry.

    PubMed

    Bandura, Dmitry R; Baranov, Vladimir I; Ornatsky, Olga I; Antonov, Alexei; Kinach, Robert; Lou, Xudong; Pavlov, Serguei; Vorobiev, Sergey; Dick, John E; Tanner, Scott D

    2009-08-15

    A novel instrument for real time analysis of individual biological cells or other microparticles is described. The instrument is based on inductively coupled plasma time-of-flight mass spectrometry and comprises a three-aperture plasma-vacuum interface, a dc quadrupole turning optics for decoupling ions from neutral components, an rf quadrupole ion guide discriminating against low-mass dominant plasma ions, a point-to-parallel focusing dc quadrupole doublet, an orthogonal acceleration reflectron analyzer, a discrete dynode fast ion detector, and an 8-bit 1 GHz digitizer. A high spectrum generation frequency of 76.8 kHz provides capability for collecting multiple spectra from each particle-induced transient ion cloud, typically of 200-300 micros duration. It is shown that the transients can be resolved and characterized individually at a peak frequency of 1100 particles per second. Design considerations and optimization data are presented. The figures of merit of the instrument are measured under standard inductively coupled plasma (ICP) operating conditions (<3% cerium oxide ratio). At mass resolution (full width at half-maximum) M/DeltaM > 900 for m/z = 159, the sensitivity with a standard sample introduction system of >1.4 x 10(8) ion counts per second per mg L(-1) of Tb and an abundance sensitivity of (6 x 10(-4))-(1.4 x 10(-3)) (trailing and leading masses, respectively) are shown. The mass range (m/z = 125-215) and abundance sensitivity are sufficient for elemental immunoassay with up to 60 distinct available elemental tags. When <15 elemental tags are used, a higher sensitivity mode at lower resolution (M/DeltaM > 500) can be used, which provides >2.4 x 10(8) cps per mg L(-1) of Tb, at (1.5 x 10(-3))-(5.0 x 10(-3)) abundance sensitivity. The real-time simultaneous detection of multiple isotopes from individual 1.8 microm polystyrene beads labeled with lanthanides is shown. A real time single cell 20 antigen expression assay of model cell lines and leukemia

  3. Frequency-tuning radiofrequency plasma source operated in inductively-coupled mode under a low magnetic field

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazunori; Nakano, Yudai; Ando, Akira

    2017-07-01

    A radiofrequency (rf) inductively-coupled plasma source is operated with a frequency-tuning impedance matching system, where the rf frequency is variable in the range of 20-50 MHz and the maximum power is 100 W. The source consists of a 45 mm-diameter pyrex glass tube wound by an rf antenna and a solenoid providing a magnetic field strength in the range of 0-200 Gauss. A reflected rf power for no plasma case is minimized at the frequency of ˜25 MHz, whereas the frequency giving the minimum reflection with the high density plasma is about 28 MHz, where the density jump is observed when minimizing the reflection. A high density argon plasma above 1× {{10}12} cm-3 is successfully obtained in the source for the rf power of 50-100 W, where it is observed that an external magnetic field of a few tens of Gauss yields the highest plasma density in the present configuration. The frequency-tuning plasma source is applied to a compact and high-speed silicon etcher in an Ar-SF6 plasma; then the etching rate of 8~μ m min-1 is obtained for no bias voltage to the silicon wafer, i.e. for the case that a physical ion etching process is eliminated.

  4. Development and studies on a compact electron cyclotron resonance plasma source

    NASA Astrophysics Data System (ADS)

    Ganguli, A.; Tarey, R. D.; Arora, N.; Narayanan, R.

    2016-04-01

    It is well known that electron cyclotron resonance (ECR) produced plasmas are efficient, high-density plasma sources and have many industrial applications. The concept of a portable compact ECR plasma source (CEPS) would thus become important from an application point of view. This paper gives details of such a CEPS that is both portable and easily mountable on a chamber of any size. It uses a fully integrated microwave line operating at 2.45 GHz, up to 800 W, cw. The required magnetic field is produced by a set of suitably designed NdFeB ring magnets; the device has an overall length of  ≈60 cm and weighs  ≈14 kg including the permanent magnets. The CEPS was attached to a small experimental chamber to judge its efficacy for plasma production. In the pressure range of 0.5-10 mTorr and microwave power of  ≈400-500 W the experiments indicate that the CEPS is capable of producing high-density plasma (≈9  ×  1011-1012 cm-3) with bulk electron temperature in the range  ≈2-3 eV. In addition, a warm electron population with density and temperature in the range ≈7  ×  108-109 cm-3 and  ≈45-80 eV, respectively has been detected. This warm population plays an important role at high pressures in maintaining the high-density plasma, when plasma flow from the CEPS into the test chamber is strongly affected.

  5. Identification of peptidase substrates in human plasma by FTMS based differential mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yates, Nathan A.; Deyanova, Ekaterina G.; Geissler, Wayne; Wiener, Matthew C.; Sachs, Jeffrey R.; Wong, Kenny K.; Thornberry, Nancy A.; Sinha Roy, Ranabir; Settlage, Robert E.; Hendrickson, Ronald C.

    2007-01-01

    Approximately 2% of the human genome encodes for proteases. Unfortunately, however, the biological roles of most of these enzymes remain poorly defined, since the physiological substrates are typically unknown and are difficult to identify using traditional methods. We have developed a proteomics experiment based on FTMS profiling and differential mass spectrometry (dMS) to identify candidate endogenous substrates of proteases using fractionated human plasma as the candidate substrate pool. Here we report proof-of-concept experiments for identifying in vitro substrates of aminopeptidase P2, (APP2) and dipeptidyl peptidase 4 (DPP-4), a peptidase of therapeutic interest for the treatment of type 2 diabetes. For both proteases, previously validated peptide substrates spiked into the human plasma pool were identified. Of note, the differential mass spectrometry experiments also identified novel substrates for each peptidase in the subfraction of human plasma. Targeted MS/MS analysis of these peptides in the complex human plasma pool and manual confirmation of the amino acid sequences led to the identification of these substrates. The novel DPP-4 substrate EPLGRQLTSGP was chemically synthesized and cleavage kinetics were determined in an in vitro DPP-4 enzyme assay. The apparent second order rate constant (kcat/KM) for DPP-4-mediated cleavage was determined to be 2.3 x 105 M-1 s-1 confirming that this peptide is efficiently processed by the peptidase in vitro. Collectively, these results demonstrate that differential mass spectrometry has the potential to identify candidate endogenous substrates of target proteases from a human plasma pool. Importantly, knowledge of the endogenous substrates can provide useful insight into the biology of these enzymes and provides useful biomarkers for monitoring their activity in vivo.

  6. Magnetic-Nozzle Studies for Fusion Propulsion Applications: Gigawatt Plasma Source Operation and Magnetic Nozzle Analysis

    NASA Technical Reports Server (NTRS)

    Gilland, James H.; Mikekkides, Ioannis; Mikellides, Pavlos; Gregorek, Gerald; Marriott, Darin

    2004-01-01

    This project has been a multiyear effort to assess the feasibility of a key process inherent to virtually all fusion propulsion concepts: the expansion of a fusion-grade plasma through a diverging magnetic field. Current fusion energy research touches on this process only indirectly through studies of plasma divertors designed to remove the fusion products from a reactor. This project was aimed at directly addressing propulsion system issues, without the expense of constructing a fusion reactor. Instead, the program designed, constructed, and operated a facility suitable for simulating fusion reactor grade edge plasmas, and to examine their expansion in an expanding magnetic nozzle. The approach was to create and accelerate a dense (up to l0(exp 20)/m) plasma, stagnate it in a converging magnetic field to convert kinetic energy to thermal energy, and examine the subsequent expansion of the hot (100's eV) plasma in a subsequent magnetic nozzle. Throughout the project, there has been a parallel effort between theoretical and numerical design and modelling of the experiment and the experiment itself. In particular, the MACH2 code was used to design and predict the performance of the magnetoplasmadynamic (MPD) plasma accelerator, and to design and predict the design and expected behavior for the magnetic field coils that could be added later. Progress to date includes the theoretical accelerator design and construction, development of the power and vacuum systems to accommodate the powers and mass flow rates of interest to out research, operation of the accelerator and comparison to theoretical predictions, and computational analysis of future magnetic field coils and the expected performance of an integrated source-nozzle experiment.

  7. Matilda: A mass filtered nanocluster source

    NASA Astrophysics Data System (ADS)

    Kwon, Gihan

    Cluster science provides a good model system for the study of the size dependence of electronic properties, chemical reactivity, as well as magnetic properties of materials. One of the main interests in cluster science is the nanoscale understanding of chemical reactions and selectivity in catalysis. Therefore, a new cluster system was constructed to study catalysts for applications in renewable energy. Matilda, a nanocluster source, consists of a cluster source and a Retarding Field Analyzer (RFA). A moveable AJA A310 Series 1"-diameter magnetron sputtering gun enclosed in a water cooled aggregation tube served as the cluster source. A silver coin was used for the sputtering target. The sputtering pressure in the aggregation tube was controlled, ranging from 0.07 to 1torr, using a mass flow controller. The mean cluster size was found to be a function of relative partial pressure (He/Ar), sputtering power, and aggregation length. The kinetic energy distribution of ionized clusters was measured with the RFA. The maximum ion energy distribution was 2.9 eV/atom at a zero pressure ratio. At high Ar flow rates, the mean cluster size was 20 ˜ 80nm, and at a 9.5 partial pressure ratio, the mean cluster size was reduced to 1.6nm. Our results showed that the He gas pressure can be optimized to reduce the cluster size variations. Results from SIMION, which is an electron optics simulation package, supported the basic function of an RFA, a three-element lens and the magnetic sector mass filter. These simulated results agreed with experimental data. For the size selection experiment, the channeltron electron multiplier collected ionized cluster signal at different positions during Ag deposition on a TEM grid for four and half hours. The cluster signal was high at the position for neutral clusters, which was not bent by a magnetic field, and the signal decreased rapidly far away from the neutral cluster region. For cluster separation according to mass to charge ratio in a

  8. Determination of 90Sr and Pu isotopes in contaminated groundwater samples by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Zoriy, Miroslav V.; Ostapczuk, Peter; Halicz, Ludwik; Hille, Ralf; Becker, J. Sabine

    2005-04-01

    A sensitive analytical method for determining the artificial radionuclides 90Sr, 239Pu and 240Pu at the ultratrace level in groundwater samples from the Semipalatinsk Test Site area in Kazakhstan by double-focusing sector field inductively coupled plasma mass spectrometry (ICP-SFMS) was developed. In order to avoid possible isobaric interferences at m/z 90 for 90Sr determination (e.g. 90Zr+, 40Ar50Cr+, 36Ar54Fe+, 58Ni16O2+, 180Hf2+, etc.), the measurements were performed at medium mass resolution under cold plasma conditions. Pu was separated from uranium by means of extraction chromatography using Eichrom TEVA resin with a recovery of 83%. The limits of detection for 90Sr, 239Pu and 240Pu in water samples were determined as 11, 0.12 and 0.1 fg ml-1, respectively. Concentrations of 90Sr and 239Pu in contaminated groundwater samples ranged from 18 to 32 and from 28 to 856 fg ml-1, respectively. The 240Pu/239Pu isotopic ratio in groundwater samples was measured as 0.17. This isotope ratio indicates that the most probable source of contamination of the investigated groundwater samples was the nuclear weapons tests at the Semipalatinsk Test Site conducted by the USSR in the 1960s.

  9. Interchange Reconnection Associated with a Confined Filament Eruption: Implications for the Source of Transient Cold-dense Plasma in Solar Winds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Ruisheng; Chen, Yao; Wang, Bing

    The cold-dense plasma is occasionally detected in the solar wind with in situ data, but the source of the cold-dense plasma remains illusive. Interchange reconnections (IRs) between closed fields and nearby open fields are known to contribute to the formation of solar winds. We present a confined filament eruption associated with a puff-like coronal mass ejection (CME) on 2014 December 24. The filament underwent successive activations and finally erupted, due to continuous magnetic flux cancelations and emergences. The confined erupting filament showed a clear untwist motion, and most of the filament material fell back. During the eruption, some tiny blobsmore » escaped from the confined filament body, along newly formed open field lines rooted around the south end of the filament, and some bright plasma flowed from the north end of the filament to remote sites at nearby open fields. The newly formed open field lines shifted southward with multiple branches. The puff-like CME also showed multiple bright fronts and a clear southward shift. All the results indicate an intermittent IR existed between closed fields of the confined erupting filament and nearby open fields, which released a portion of filament material (blobs) to form the puff-like CME. We suggest that the IR provides a possible source of cold-dense plasma in the solar wind.« less

  10. Determination of tiropramide in human plasma by liquid chromatography-tandem mass spectrometry.

    PubMed

    Lee, Hye Won; Ji, Hye Young; Kim, Hee Hyun; Cho, Hea-Young; Lee, Yong-Bok; Lee, Hye Suk

    2003-11-05

    A rapid, sensitive and selective liquid chromatography-tandem mass spectrometric (LC/MS/MS) method for the determination of tiropramide in human plasma was developed. Tiropramide and internal standard, cisapride were extracted from human plasma by liquid-liquid extraction and analyzed on a Luna C8 column with the mobile phase of acetonitrile-ammonium formate (10mM, pH 4.5) (50:50, v/v). The analytes was detected using an electrospray ionization tandem mass spectrometry in the multiple-reaction-monitoring mode. The standard curve was linear (r=0.998) over the concentration range of 2.0-200 ng/ml. The intra- and inter-assay coefficients of variation ranged from 2.8 to 7.8 and 6.7 to 8.9%, respectively. The recoveries of tiropramide ranged from 50.2 to 53.1%, with that of cisapride (internal standard) being 60.9+/-5.3%. The lower limit of quantification for tiropramide was 2.0 ng/ml using 100 microl plasma sample. This method was applied to the pharmacokinetic study of tiropramide in human.

  11. Negative hydrogen ion production in a helicon plasma source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santoso, J., E-mail: Jesse.Santoso@anu.edu.au; Corr, C. S.; Manoharan, R.

    2015-09-15

    In order to develop very high energy (>1 MeV) neutral beam injection systems for applications, such as plasma heating in fusion devices, it is necessary first to develop high throughput negative ion sources. For the ITER reference source, this will be realised using caesiated inductively coupled plasma devices, containing either hydrogen or deuterium discharges, operated with high rf input powers (up to 90 kW per driver). It has been suggested that due to their high power coupling efficiency, helicon devices may be able to reduce power requirements and potentially obviate the need for caesiation due to the high plasma densities achievable. Here,more » we present measurements of negative ion densities in a hydrogen discharge produced by a helicon device, with externally applied DC magnetic fields ranging from 0 to 8.5 mT at 5 and 10 mTorr fill pressures. These measurements were taken in the magnetised plasma interaction experiment at the Australian National University and were performed using the probe-based laser photodetachment technique, modified for the use in the afterglow of the plasma discharge. A peak in the electron density is observed at ∼3 mT and is correlated with changes in the rf power transfer efficiency. With increasing magnetic field, an increase in the negative ion fraction from 0.04 to 0.10 and negative ion densities from 8 × 10{sup 14 }m{sup −3} to 7 × 10{sup 15 }m{sup −3} is observed. It is also shown that the negative ion densities can be increased by a factor of 8 with the application of an external DC magnetic field.« less

  12. Material impacts and heat flux characterization of an electrothermal plasma source with an applied magnetic field

    DOE PAGES

    Gebhart, T. E.; Martinez-Rodriguez, R. A.; Baylor, L. R.; ...

    2017-08-11

    To produce a realistic tokamak-like plasma environment in linear plasma device, a transient source is needed to deliver heat and particle fluxes similar to those seen in an edge localized mode (ELM). ELMs in future large tokamaks will deliver heat fluxes of ~1 GW/m 2 to the divertor plasma facing components at a few Hz. An electrothermal plasma source can deliver heat fluxes of this magnitude. These sources operate in an ablative arc regime which is driven by a DC capacitive discharge. An electrothermal source was configured in this paper with two pulse lengths and tested under a solenoidal magneticmore » field to determine the resulting impact on liner ablation, plasma parameters, and delivered heat flux. The arc travels through and ablates a boron nitride liner and strikes a tungsten plate. Finally, the tungsten target plate is analyzed for surface damage using a scanning electron microscope.« less

  13. Material impacts and heat flux characterization of an electrothermal plasma source with an applied magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gebhart, T. E.; Martinez-Rodriguez, R. A.; Baylor, L. R.

    To produce a realistic tokamak-like plasma environment in linear plasma device, a transient source is needed to deliver heat and particle fluxes similar to those seen in an edge localized mode (ELM). ELMs in future large tokamaks will deliver heat fluxes of ~1 GW/m 2 to the divertor plasma facing components at a few Hz. An electrothermal plasma source can deliver heat fluxes of this magnitude. These sources operate in an ablative arc regime which is driven by a DC capacitive discharge. An electrothermal source was configured in this paper with two pulse lengths and tested under a solenoidal magneticmore » field to determine the resulting impact on liner ablation, plasma parameters, and delivered heat flux. The arc travels through and ablates a boron nitride liner and strikes a tungsten plate. Finally, the tungsten target plate is analyzed for surface damage using a scanning electron microscope.« less

  14. Characterization of Plasma Membrane Proteins from Ovarian Cancer Cells Using Mass Spectrometry

    DOE PAGES

    Springer, David L.; Auberry, Deanna L.; Ahram, Mamoun; ...

    2004-01-01

    To determine how the repertoire of plasma membrane proteins change with disease state, specifically related to cancer, several methods for preparation of plasma membrane proteins were evaluated. Cultured cells derived from stage IV ovarian tumors were grown to 90% confluence and harvested in buffer containing CHAPS detergent. This preparation was centrifuged at low speed to remove insoluble cellular debris resulting in a crude homogenate. Glycosylated proteins in the crude homogenate were selectively enriched using lectin affinity chromatography. The crude homogenate and the lectin purified sample were prepared for mass spectrometric evaluation. The general procedure for protein identification began with trypsinmore » digestion of protein fractions followed by separation by reversed phase liquid chromatography that was coupled directly to a conventional tandem mass spectrometer (i.e. LCQ ion trap). Mass and fragmentation data for the peptides were searched against a human proteome data base using the informatics program SEQUEST. Using this procedure 398 proteins were identified with high confidence, including receptors, membrane-associated ligands, proteases, phosphatases, as well as structural and adhesion proteins. Results indicate that lectin chromatography provides a select subset of proteins and that the number and quality of the identifications improve as does the confidence of the protein identifications for this subset. These results represent the first step in development of methods to separate and successfully identify plasma membrane proteins from advanced ovarian cancer cells. Further characterization of plasma membrane proteins will contribute to our understanding of the mechanisms underlying progression of this deadly disease and may lead to new targeted interventions as well as new biomarkers for diagnosis.« less

  15. Hundred joules plasma focus device as a potential pulsed source for in vitro cancer cell irradiation

    NASA Astrophysics Data System (ADS)

    Jain, J.; Moreno, J.; Andaur, R.; Armisen, R.; Morales, D.; Marcelain, K.; Avaria, G.; Bora, B.; Davis, S.; Pavez, C.; Soto, L.

    2017-08-01

    Plasma focus devices may arise as useful source to perform experiments aimed to study the effects of pulsed radiation on human cells in vitro. In the present work, a table top hundred joules plasma focus device, namely "PF-400J", was adapted to irradiate colorectal cancer cell line, DLD-1. For pulsed x-rays, the doses (energy absorbed per unit mass, measured in Gy) were measured using thermoluminescence detectors (TLD-100 dosimeters). The neutron fluence and the average energy were used to estimate the pulsed neutron doses. Fifty pulses of x-rays (0.12 Gy) and fifty pulses of neutrons (3.5 μGy) were used to irradiate the cancer cells. Irradiation-induced DNA damage and cell death were assessed at different time points after irradiation. Cell death was observed using pulsed neutron irradiation, at ultralow doses. Our results indicate that the PF-400J can be used for in vitro assessment of the effect of pulsed radiation in cancer cell research.

  16. Quantitative determination of famotidine in human maternal plasma, umbilical cord plasma and urine using high-performance liquid chromatography - mass spectrometry

    PubMed Central

    Wang, Xiaoming; Rytting, Erik; Abdelrahman, Doaa R.; Nanovskaya, Tatiana N.; Hankins, Gary D.V.; Ahmed, Mahmoud S.

    2013-01-01

    The liquid chromatography with electrospray ionization mass spectrometry for the quantitative determination of famotidine in human urine, maternal and umbilical cord plasma was developed and validated. The plasma samples were alkalized with ammonium hydroxide and extracted twice with ethyl acetate. The extraction recovery of famotidine in maternal and umbilical cord plasma ranged from 53% to 64% and 72% to 79%, respectively. Urine samples were directly diluted with the initial mobile phase then injected into the HPLC system. Chromatographic separation of famotidine was achieved by using a Phenomenex Synergi™ Hydro-RP™ column with a gradient elution of acetonitrile and 10 mM ammonium acetate aqueous solution (pH 8.3, adjusted with ammonium hydroxide). Mass Spectrometric detection of famotidine was set in the positive mode and used a selected ion monitoring method. Carbon-13-labeled famotidine was used as internal standard. The calibration curves were linear (r2> 0.99) in the concentration ranges of 0.631-252 ng/mL for umbilical and maternal plasma samples, and of 0.075-30.0 μg/mL for urine samples. The relative deviation of method was less than 14% for intra- and inter-day assays, and the accuracy ranged between 93% and 110%. The matrix effect of famotidine in human urine, maternal and umbilical cord plasma is less than 17%. PMID:23401067

  17. Impedance of an intense plasma-cathode electron source for tokamak startup

    DOE PAGES

    Hinson, Edward Thomas; Barr, Jayson L.; Bongard, Michael W.; ...

    2016-05-31

    In this study, an impedance model is formulated and tested for the ~1kV, ~1kA/cm 2, arc-plasma cathode electron source used for local helicity injection tokamak startup. A double layer sheath is established between the high-density arc plasma (n arc ≈ 10 21 m -3) within the electron source, and the less dense external tokamak edge plasma (n edge ≈ 10 18 m -3) into which current is injected at the applied injector voltage, V inj. Experiments on the Pegasus spherical tokamak show the injected current, I inj, increases with V inj according to the standard double layer scaling I injmore » ~ V inj 3/2 at low current and transitions to I inj ~ V inj 1/2 at high currents. In this high current regime, sheath expansion and/or space charge neutralization impose limits on the beam density n b ~ I inj/V inj 1/2. For low tokamak edge density n edge and high I inj, the inferred beam density n b is consistent with the requirement n b ≤ n edge imposed by space-charge neutralization of the beam in the tokamak edge plasma. At sufficient edge density, n b ~ n arc is observed, consistent with a limit to n b imposed by expansion of the double layer sheath. These results suggest that n arc is a viable control actuator for the source impedance.« less

  18. Measurements of ion energies during plasma heating of the Proto-MPEX High Intensity Plasma Source

    NASA Astrophysics Data System (ADS)

    Caughman, J. B. O.; Goulding, R. H.; Biewer, T. M.; Bigelow, T. S.; Caneses, J.; Diem, S. J.; Green, D. L.; Isler, R. C.; Rapp, J.; Piotrowicz, P.; Beers, C. J.; Kafle, N.; Showers, M. A.

    2017-10-01

    The Prototype Materials Plasma Exposure eXperiment (Proto-MPEX) is a linear high-intensity RF plasma source that combines a high-density helicon plasma generator with ion and electron heating sections. It is being used to study the physics of heating over-dense plasmas in a linear configuration with the goal of delivering a plasma heat flux of 10 MW/m2 at a target. The helicon plasma is produced by coupling 13.56 MHz RF power at levels >100 kW. Additional heating is provided by ion cyclotron heating (ICH) ( 25 kW) and electron Bernstein wave (EBW) heating ( 25 kW) at 28 GHz. Measurements of the ion energy distribution with a retarding field energy analyzer (RFEA) show an increase in ion energies in the edge of the plasma when ICH is applied, which is consistent with COMSOL modeling of the power deposition from the antenna. Views of the target plate with an infrared camera show an increase in the surface temperature at large radii during ICH, and these areas map back to magnetic field lines near the antenna. The change in the power deposition at the target during ICH is compared with Thomson Scattering and RFEA measurements near the target. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC-05-00OR22725.

  19. Compact quasi-monoenergetic photon sources from laser-plasma accelerators for nuclear detection and characterization

    NASA Astrophysics Data System (ADS)

    Geddes, Cameron G. R.; Rykovanov, Sergey; Matlis, Nicholas H.; Steinke, Sven; Vay, Jean-Luc; Esarey, Eric H.; Ludewigt, Bernhard; Nakamura, Kei; Quiter, Brian J.; Schroeder, Carl B.; Toth, Csaba; Leemans, Wim P.

    2015-05-01

    Near-monoenergetic photon sources at MeV energies offer improved sensitivity at greatly reduced dose for active interrogation, and new capabilities in treaty verification, nondestructive assay of spent nuclear fuel and emergency response. Thomson (also referred to as Compton) scattering sources are an established method to produce appropriate photon beams. Applications are however restricted by the size of the required high-energy electron linac, scattering (photon production) system, and shielding for disposal of the high energy electron beam. Laser-plasma accelerators (LPAs) produce GeV electron beams in centimeters, using the plasma wave driven by the radiation pressure of an intense laser. Recent LPA experiments are presented which have greatly improved beam quality and efficiency, rendering them appropriate for compact high-quality photon sources based on Thomson scattering. Designs for MeV photon sources utilizing the unique properties of LPAs are presented. It is shown that control of the scattering laser, including plasma guiding, can increase photon production efficiency. This reduces scattering laser size and/or electron beam current requirements to scale compatible with the LPA. Lastly, the plasma structure can decelerate the electron beam after photon production, reducing the size of shielding required for beam disposal. Together, these techniques provide a path to a compact photon source system.

  20. Crux: Rapid Open Source Protein Tandem Mass Spectrometry Analysis

    PubMed Central

    2015-01-01

    Efficiently and accurately analyzing big protein tandem mass spectrometry data sets requires robust software that incorporates state-of-the-art computational, machine learning, and statistical methods. The Crux mass spectrometry analysis software toolkit (http://cruxtoolkit.sourceforge.net) is an open source project that aims to provide users with a cross-platform suite of analysis tools for interpreting protein mass spectrometry data. PMID:25182276

  1. Characterization of an atmospheric pressure air plasma source for polymer surface modification

    NASA Astrophysics Data System (ADS)

    Yang, Shujun; Tang, Jiansheng

    2013-10-01

    An atmospheric pressure air plasma source was generated through dielectric barrier discharge (DBD). It was used to modify polyethyleneterephthalate (PET) surfaces with very high throughput. An equivalent circuit model was used to calculate the peak average electron density. The emission spectrum from the plasma was taken and the main peaks in the spectrum were identified. The ozone density in the down plasma region was estimated by Absorption Spectroscopy. NSF and ARC-ODU

  2. Development of a plasma generator for a long pulse ion source for neutral beam injectors.

    PubMed

    Watanabe, K; Dairaku, M; Tobari, H; Kashiwagi, M; Inoue, T; Hanada, M; Jeong, S H; Chang, D H; Kim, T S; Kim, B R; Seo, C S; Jin, J T; Lee, K W; In, S R; Oh, B H; Kim, J; Bae, Y S

    2011-06-01

    A plasma generator for a long pulse H(+)/D(+) ion source has been developed. The plasma generator was designed to produce 65 A H(+)/D(+) beams at an energy of 120 keV from an ion extraction area of 12 cm in width and 45 cm in length. Configuration of the plasma generator is a multi-cusp bucket type with SmCo permanent magnets. Dimension of a plasma chamber is 25 cm in width, 59 cm in length, and 32.5 cm in depth. The plasma generator was designed and fabricated at Japan Atomic Energy Agency. Source plasma generation and beam extraction tests for hydrogen coupling with an accelerator of the KSTAR ion source have been performed at the KSTAR neutral beam test stand under the agreement of Japan-Korea collaborative experiment. Spatial uniformity of the source plasma at the extraction region was measured using Langmuir probes and ±7% of the deviation from an averaged ion saturation current density was obtained. A long pulse test of the plasma generation up to 200 s with an arc discharge power of 70 kW has been successfully demonstrated. The arc discharge power satisfies the requirement of the beam production for the KSTAR NBI. A 70 keV, 41 A, 5 s hydrogen ion beam has been extracted with a high arc efficiency of 0.9 -1.1 A/kW at a beam extraction experiment. A deuteron yield of 77% was measured even at a low beam current density of 73 mA/cm(2). © 2011 American Institute of Physics

  3. Atmospheric pressure plasma jet with high-voltage power supply based on piezoelectric transformer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babij, Michał; Kowalski, Zbigniew W., E-mail: zbigniew.w.kowalski@pwr.wroc.pl; Nitsch, Karol

    The dielectric barrier discharge plasma jet, an example of the nonthermal atmospheric pressure plasma jet (APPJ), generates low-temperature plasmas that are suitable for the atomization of volatile species and can also be served as an ionization source for ambient mass and ion mobility spectrometry. A new design of APPJ for mass spectrometry has been built in our group. In these plasma sources magnetic transformers (MTs) and inductors are typically used in power supplies but they present several drawbacks that are even more evident when dealing with high-voltage normally used in APPJs. To overcome these disadvantages, high frequency generators with themore » absence of MT are proposed in the literature. However, in the case of miniaturized APPJs these conventional power converters, built of ferromagnetic cores and inductors or by means of LC resonant tank circuits, are not so useful as piezoelectric transformer (PT) based power converters due to bulky components and small efficiency. We made and examined a novel atmospheric pressure plasma jet with PT supplier served as ionization source for ambient mass spectrometry, and especially mobile spectrometry where miniaturization, integration of components, and clean plasma are required. The objective of this paper is to describe the concept, design, and implementation of this miniaturized piezoelectric transformer-based atmospheric pressure plasma jet.« less

  4. [Experimental investigation of laser plasma soft X-ray source with gas target].

    PubMed

    Ni, Qi-liang; Gong, Yan; Lin, Jing-quan; Chen, Bo; Cao, Jian-lin

    2003-02-01

    This paper describes a debris-free laser plasma soft X-ray source with a gas target, which has high operating frequency and can produce strong soft X-ray radiation. The valve of this light source is drived by a piezoelectrical ceramic whose operating frequency is up to 400 Hz. In comparison with laser plasma soft X-ray sources using metal target, the light source is debris-free. And it has higher operating frequency than gas target soft X-ray sources whose nozzle is controlled by a solenoid valve. A channel electron multiplier (CEM) operating in analog mode is used to detect the soft X-ray generated by the laser plasma source, and the CEM's output is fed to to a charge-sensitive preamplifier for further amplification purpose. Output charges from the CEM are proportional to the amplitude of the preamplifier's output voltage. Spectra of CO2, Xe and Kr at 8-14 nm wavelength which can be used for soft X-ray projection lithography are measured. The spectrum for CO2 consists of separate spectral lines originate mainly from the transitions in Li-like and Be-like ions. The Xe spectrum originating mainly from 4d-5f, 4d-4f, 4d-6p and 4d-5p transitions in multiply charged xenon ions. The spectrum for Kr consists of separate spectral lines and continuous broad spectra originating mainly from the transitions in Cu-, Ni-, Co- and Fe-like ions.

  5. Characterisation of an ion source on the Helix MC Plus noble gas mass spectrometer - pressure dependent mass discrimination

    NASA Astrophysics Data System (ADS)

    Zhang, X.

    2017-12-01

    Characterisation of an ion source on the Helix MC Plusnoble gas mass spectrometer - pressure dependent mass discrimination Xiaodong Zhang* dong.zhang@anu.edu.au Masahiko Honda Masahiko.honda@anu.edu.au Research School of Earth Sciences, The Australian National University, Canberra, Australia To obtain reliable measurements of noble gas elemental and isotopic abundances in a geological sample it is essential that the mass discrimination (instrument-induced isotope fractionation) of the mass spectrometer remain constant over the working range of noble gas partial pressures. It is known, however, that there are pressure-dependent variations in sensitivity and mass discrimination in conventional noble gas mass spectrometers [1, 2, 3]. In this study, we discuss a practical approach to ensuring that the pressure effect in the Helix MC Plus high resolution, multi-collector noble gas mass spectrometer is minimised. The isotopic composition of atmospheric Ar was measured under a range of operating conditions to test the effects of different parameters on Ar mass discrimination. It was found that the optimised ion source conditions for pressure independent mass discrimination for Ar were different from those for maximised Ar sensitivity. The optimisation can be achieved by mainly adjusting the repeller voltage. It is likely that different ion source settings will be required to minimise pressure-dependent mass discrimination for different noble gases. A recommended procedure for tuning an ion source to reduce pressure dependent mass discrimination will be presented. References: Honda M., et al., Geochim. Cosmochim. Acta, 57, 859 -874, 1993. Burnard P. G., and Farley K. A., Geochemistry Geophysics Geosystems, Volume 1, 2000GC00038, 2000. Mabry J., et al., Journal of Analytical Atomic Spectrometry, 27, 1012 - 1017, 2012.

  6. Development and analytical characterization of a Grimm-type glow discharge ion source operated with high gas flow rates and coupled to a mass spectrometer with high mass resolution1

    NASA Astrophysics Data System (ADS)

    Beyer, Claus; Feldmann, Ingo; Gilmour, Dave; Hoffmann, Volker; Jakubowski, Norbert

    2002-10-01

    A Grimm-type glow discharge ion source has been developed and was coupled to a commercial inductively coupled plasma mass spectrometer (ICP-MS) with high mass resolution (Axiom, ThermoElemental, Winsford, UK) by exchanging the front plate of the ICP-MS interface system only. In addition to high discharge powers of up to 70 W, which are typical for a Grimm-type design, this source could be operated with relative high gas flow rates of up to 240 ml min -1. In combination with a high discharge voltage the signal intensities are reaching a constant level within the first 20 s after the discharge has started. An analytical characterization of this source is given utilizing a calibration using the steel standard reference material NIST 1261A-1265A. The sensitivity for the investigated elements measured with a resolution of 4000 is in the range of 500-6000 cps μg -1 g -1, and a relative standard deviation (R.S.D.) of the measured isotope relative to Fe of less than 8% for the major and minor components of the sample has been achieved. Limits of detection at ng g -1 levels could be obtained.

  7. Atomic processes and equation of state of high Z plasmas for EUV sources and their effects on the spatial and temporal evolution of the plasmas

    NASA Astrophysics Data System (ADS)

    Sasaki, Akira; Sunahara, Atushi; Furukawa, Hiroyuki; Nishihara, Katsunobu; Nishikawa, Takeshi; Koike, Fumihiro

    2016-03-01

    Laser-produced plasma (LPP) extreme ultraviolet (EUV) light sources have been intensively investigated due to potential application to next-generation semiconductor technology. Current studies focus on the atomic processes and hydrodynamics of plasmas to develop shorter wavelength sources at λ = 6.x nm as well as to improve the conversion efficiency (CE) of λ = 13.5 nm sources. This paper examines the atomic processes of mid-z elements, which are potential candidates for λ = 6.x nm source using n=3-3 transitions. Furthermore, a method to calculate the hydrodynamics of the plasmas in terms of the initial interaction between a relatively weak prepulse laser is presented.

  8. Versatile plasma ion source with an internal evaporator

    NASA Astrophysics Data System (ADS)

    Turek, M.; Prucnal, S.; Drozdziel, A.; Pyszniak, K.

    2011-04-01

    A novel construction of an ion source with an evaporator placed inside a plasma chamber is presented. The crucible is heated to high temperatures directly by arc discharge, which makes the ion source suitable for substances with high melting points. The compact ion source enables production of intense ion beams for wide spectrum of solid elements with typical separated beam currents of ˜100-150 μA for Al +, Mn +, As + (which corresponds to emission current densities of 15-25 mA/cm 2) for the extraction voltage of 25 kV. The ion source works for approximately 50-70 h at 100% duty cycle, which enables high ion dose implantation. The typical power consumption of the ion source is 350-400 W. The paper presents detailed experimental data (e.g. dependences of ion currents and anode voltages on discharge and filament currents and magnetic flux densities) for Cr, Fe, Al, As, Mn and In. The discussion is supported by results of Monte Carlo method based numerical simulation of ionisation in the ion source.

  9. A compact tunable polarized X-ray source based on laser-plasma helical undulators

    PubMed Central

    Luo, J.; Chen, M.; Zeng, M.; Vieira, J.; Yu, L. L.; Weng, S. M.; Silva, L. O.; Jaroszynski, D. A.; Sheng, Z. M.; Zhang, J.

    2016-01-01

    Laser wakefield accelerators have great potential as the basis for next generation compact radiation sources because of their extremely high accelerating gradients. However, X-ray radiation from such devices still lacks tunability, especially of the intensity and polarization distributions. Here we propose a tunable polarized radiation source based on a helical plasma undulator in a plasma channel guided wakefield accelerator. When a laser pulse is initially incident with a skew angle relative to the channel axis, the laser and accelerated electrons experience collective spiral motions, which leads to elliptically polarized synchrotron-like radiation with flexible tunability on radiation intensity, spectra and polarization. We demonstrate that a radiation source with millimeter size and peak brilliance of 2 × 1019 photons/s/mm2/mrad2/0.1% bandwidth can be made with moderate laser and electron beam parameters. This brilliance is comparable with third generation synchrotron radiation facilities running at similar photon energies, suggesting that laser plasma based radiation sources are promising for advanced applications. PMID:27377126

  10. Physical Foundations of Plasma Microwave Sources Based on Anomalous Doppler Effect

    DTIC Science & Technology

    2007-09-17

    International Science and Technology Center ( ISTC ), Moscow. ISTC Project A-1512p Physical Foundations of Plasma Microwave Sources Based on Anomalous...07 – 31-Aug-07 5a. CONTRACT NUMBER ISTC Registration No: A-1512p 5b. GRANT NUMBER 4. TITLE AND SUBTITLE Physical foundations of plasma microwave... ISTC 05-7008 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES

  11. RF plasma modeling of the Linac4 H- ion source

    NASA Astrophysics Data System (ADS)

    Mattei, S.; Ohta, M.; Hatayama, A.; Lettry, J.; Kawamura, Y.; Yasumoto, M.; Schmitzer, C.

    2013-02-01

    This study focuses on the modelling of the ICP RF-plasma in the Linac4 H- ion source currently being constructed at CERN. A self-consistent model of the plasma dynamics with the RF electromagnetic field has been developed by a PIC-MCC method. In this paper, the model is applied to the analysis of a low density plasma discharge initiation, with particular interest on the effect of the external magnetic field on the plasma properties, such as wall loss, electron density and electron energy. The employment of a multi-cusp magnetic field effectively limits the wall losses, particularly in the radial direction. Preliminary results however indicate that a reduced heating efficiency results in such a configuration. The effect is possibly due to trapping of electrons in the multi-cusp magnetic field, preventing their continuous acceleration in the azimuthal direction.

  12. AutoLens: Automated Modeling of a Strong Lens's Light, Mass and Source

    NASA Astrophysics Data System (ADS)

    Nightingale, J. W.; Dye, S.; Massey, Richard J.

    2018-05-01

    This work presents AutoLens, the first entirely automated modeling suite for the analysis of galaxy-scale strong gravitational lenses. AutoLens simultaneously models the lens galaxy's light and mass whilst reconstructing the extended source galaxy on an adaptive pixel-grid. The method's approach to source-plane discretization is amorphous, adapting its clustering and regularization to the intrinsic properties of the lensed source. The lens's light is fitted using a superposition of Sersic functions, allowing AutoLens to cleanly deblend its light from the source. Single component mass models representing the lens's total mass density profile are demonstrated, which in conjunction with light modeling can detect central images using a centrally cored profile. Decomposed mass modeling is also shown, which can fully decouple a lens's light and dark matter and determine whether the two component are geometrically aligned. The complexity of the light and mass models are automatically chosen via Bayesian model comparison. These steps form AutoLens's automated analysis pipeline, such that all results in this work are generated without any user-intervention. This is rigorously tested on a large suite of simulated images, assessing its performance on a broad range of lens profiles, source morphologies and lensing geometries. The method's performance is excellent, with accurate light, mass and source profiles inferred for data sets representative of both existing Hubble imaging and future Euclid wide-field observations.

  13. Plasma shape control by pulsed solenoid on laser ion source

    NASA Astrophysics Data System (ADS)

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-09-01

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  14. Microlensing of an extended source by a power-law mass distribution

    NASA Astrophysics Data System (ADS)

    Congdon, Arthur B.; Keeton, Charles R.; Osmer, S. J.

    2007-03-01

    Microlensing promises to be a powerful tool for studying distant galaxies and quasars. As the data and models improve, there are systematic effects that need to be explored. Quasar continuum and broad-line regions may respond differently to microlensing due to their different sizes; to understand this effect, we study microlensing of finite sources by a mass function of stars. We find that microlensing is insensitive to the slope of the mass function but does depend on the mass range. For negative-parity images, diluting the stellar population with dark matter increases the magnification dispersion for small sources and decreases it for large sources. This implies that the quasar continuum and broad-line regions may experience very different microlensing in negative-parity lensed images. We confirm earlier conclusions that the surface brightness profile and geometry of the source have little effect on microlensing. Finally, we consider non-circular sources. We show that elliptical sources that are aligned with the direction of shear have larger magnification dispersions than sources with perpendicular alignment, an effect that becomes more prominent as the ellipticity increases. Elongated sources can lead to more rapid variability than circular sources, which raises the prospect of using microlensing to probe source shape.

  15. Determination of rutin in rat plasma by ultra performance liquid chromatography tandem mass spectrometry and application to pharmacokinetic study.

    PubMed

    Chen, Mengchun; Zhang, Xiaoqian; Wang, Hao; Lin, Baoli; Wang, Shuanghu; Hu, Guoxin

    2015-04-01

    A sensitive and rapid ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS-MS) method for the determination of rutin in rat plasma was developed and validated. After addition of tolbutamide as internal standard (IS), protein precipitation by acetonitrile was used as sample preparation. The chromatographic separation was performed on an Acquity UPLC BEH C18 column (2.1 × 50 mm, 1.7 μm particle size), using acetonitrile-0.1% formic acid as the mobile phase with gradient elution, delivered at a flow-rate of 0.4 mL/min. Mass spectrometric analysis was performed using a XEVO TQD mass spectrometer coupled with an electro-spray ionization (ESI) source in the positive ion mode. The MRM transitions of m/z 610.91→302.98 and m/z 271.2→155.1 were used to quantify for rutin and tolbutamide, respectively. This assay method has been fully validated in terms of specificity, linearity, recovery and matrix effect, accuracy, precision and stability. Calibration curves were linear in the concentration ranges of 25-2000 ng/mL for rutin. Only 3 min was needed for an analytical run. This developed method was successfully used for determination of rutin in rat plasma for pharmacokinetic study. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Electron beam extraction on plasma cathode electron sources system

    NASA Astrophysics Data System (ADS)

    Purwadi, Agus; Taufik, M., Lely Susita R.; Suprapto, Saefurrochman, H., Anjar A.; Wibowo, Kurnia; Aziz, Ihwanul; Siswanto, Bambang

    2017-03-01

    ELECTRON BEAM EXTRACTION ON PLASMA CATHODE ELECTRON SOURCES SYSTEM. The electron beam extraction through window of Plasma Generator Chamber (PGC) for Pulsed Electron Irradiator (PEI) device and simulation of plasma potential has been studied. Plasma electron beam is extracted to acceleration region for enlarging their power by the external accelerating high voltage (Vext) and then it is passed foil window of the PEI for being irradiated to any target (atmospheric pressure). Electron beam extraction from plasma surface must be able to overcome potential barrier at the extraction window region which is shown by estimate simulation (Opera program) based on data of plasma surface potential of 150 V with Ueks values are varied by 150 kV, 175 kV and 200 kV respectively. PGC is made of 304 stainless steel with cylindrical shape in 30 cm of diameter, 90 cm length, electrons extraction window as many as 975 holes on the area of (15 × 65) cm2 with extraction hole cell in 0.3 mm of radius each other, an cylindrical shape IEP chamber is made of 304 stainless steel in 70 cm diameter and 30 cm length. The research result shown that the acquisition of electron beam extraction current depends on plasma parameters (electron density ne, temperature Te), accelerating high voltage Vext, the value of discharge parameter G, anode area Sa, electron extraction window area Se and extraction efficiency value α.

  17. Estimation of the quantification uncertainty from flow injection and liquid chromatography transient signals in inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Laborda, Francisco; Medrano, Jesús; Castillo, Juan R.

    2004-06-01

    The quality of the quantitative results obtained from transient signals in high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS) and flow injection-inductively coupled plasma mass spectrometry (FI-ICPMS) was investigated under multielement conditions. Quantification methods were based on multiple-point calibration by simple and weighted linear regression, and double-point calibration (measurement of the baseline and one standard). An uncertainty model, which includes the main sources of uncertainty from FI-ICPMS and HPLC-ICPMS (signal measurement, sample flow rate and injection volume), was developed to estimate peak area uncertainties and statistical weights used in weighted linear regression. The behaviour of the ICPMS instrument was characterized in order to be considered in the model, concluding that the instrument works as a concentration detector when it is used to monitorize transient signals from flow injection or chromatographic separations. Proper quantification by the three calibration methods was achieved when compared to reference materials, although the double-point calibration allowed to obtain results of the same quality as the multiple-point calibration, shortening the calibration time. Relative expanded uncertainties ranged from 10-20% for concentrations around the LOQ to 5% for concentrations higher than 100 times the LOQ.

  18. Correlation of wave propagation modes in helicon plasma with source tube lengths

    NASA Astrophysics Data System (ADS)

    Niu, Chen; Zhao, Gao; Wang, Yu; Liu, Zhongwei; Chen, Qiang

    2017-01-01

    Helicon wave plasma demonstrates lots of advantages in high coupling efficiency, high density, and low magnetic field. However, the helicon wave plasma still meets challenges in applications of material deposition, surface treatment, and electromagnetic thrusters owing to the changeable coupled efficiency and the remarkable non-uniformity. In this paper, we explore the wave propagation characterization by the B-dot probe in various lengths of source tubes. We find that in a long source tube the standing wave appears under the antenna zone, while the traveling wave is formed out of the antenna region. The apparent modulation of wave amplitude is formed in upstream rather than in downstream of the antenna. In a short source tube, however, there is only standing wave propagation.

  19. Plasma Diagnostics: Use and Justification in an Industrial Environment

    NASA Astrophysics Data System (ADS)

    Loewenhardt, Peter

    1998-10-01

    The usefulness and importance of plasma diagnostics have played a major role in the development of plasma processing tools in the semiconductor industry. As can be seen through marketing materials from semiconductor equipment manufacturers, results from plasma diagnostic equipment can be a powerful tool in selling the technological leadership of tool design. Some diagnostics have long been used for simple process control such as optical emission for endpoint determination, but in recent years more sophisticated and involved diagnostic tools have been utilized in chamber and plasma source development and optimization. It is now common to find an assortment of tools at semiconductor equipment companies such as Langmuir probes, mass spectrometers, spatial optical emission probes, impedance, ion energy and ion flux probes. An outline of how the importance of plasma diagnostics has grown at an equipment manufacturer over the last decade will be given, with examples of significant and useful results obtained. Examples will include the development and optimization of an inductive plasma source, trends and hardware effects on ion energy distributions, mass spectrometry influences on process development and investigations of plasma-wall interactions. Plasma diagnostic focus, in-house development and proliferation in an environment where financial justification requirements are both strong and necessary will be discussed.

  20. Plasma ignition and steady state simulations of the Linac4 H- ion source

    NASA Astrophysics Data System (ADS)

    Mattei, S.; Ohta, M.; Yasumoto, M.; Hatayama, A.; Lettry, J.; Grudiev, A.

    2014-02-01

    The RF heating of the plasma in the Linac4 H- ion source has been simulated using a particle-in-cell Monte Carlo collision method. This model is applied to investigate the plasma formation starting from an initial low electron density of 1012 m-3 and its stabilization at 1018 m-3. The plasma discharge at low electron density is driven by the capacitive coupling with the electric field generated by the antenna, and as the electron density increases the capacitive electric field is shielded by the plasma and induction drives the plasma heating process. Plasma properties such as e-/ion densities and energies, sheath formation, and shielding effect are presented and provide insight to the plasma properties of the hydrogen plasma.

  1. Neutral Beam Source and Target Plasma for Development of a Local Electric Field Fluctuation Diagnostic

    NASA Astrophysics Data System (ADS)

    Bakken, M. R.; Burke, M. G.; Fonck, R. J.; Lewicki, B. T.; Rhodes, A. T.; Winz, G. R.

    2016-10-01

    A new diagnostic measuring local E-> (r , t) fluctuations is being developed for plasma turbulence studies in tokamaks. This is accomplished by measuring fluctuations in the separation of the π components in the Hα motional Stark spectrum. Fluctuations in this separation are expected to be Ẽ / ẼEMSE 10-3EMSE 10-3 . In addition to a high throughput, high speed spectrometer, the project requires a low divergence (Ω 0 .5°) , 80 keV, 2.5 A H0 beam and a target plasma test stand. The beam employs a washer-stack arc ion source to achieve a high species fraction at full energy. Laboratory tests of the ion source demonstrate repeatable plasmas with Te 10 eV and ne 1.6 ×1017 m-3, sufficient for the beam ion optics requirements. Te and ne scalings of the ion source plasma are presented with respect to operational parameters. A novel three-phase resonant converter power supply will provide 6 mA/cm2 of 80 keV H0 at the focal plane for pulse lengths up to 15 ms, with low ripple δV / 80 keV 0.05 % at 280 kHz. Diagnostic development and validation tests will be performed on a magnetized plasma test stand with 0.5 T field. The test chamber will utilize a washer-stack arc source to produce a target plasma comparable to edge tokamak plasmas. A bias-plate with programmable power supply will be used to impose Ẽ within the target plasma. Work supported by US DOE Grant DE-FG02-89ER53296.

  2. Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources

    DOEpatents

    Alton, G.D.

    1998-11-24

    Microwave injection methods are disclosed for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant ``volume`` ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources. 5 figs.

  3. Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources

    DOEpatents

    Alton, Gerald D.

    1998-01-01

    Microwave injection methods for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant "volume" ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources.

  4. Axial momentum lost to a lateral wall of a helicon plasma source.

    PubMed

    Takahashi, Kazunori; Chiba, Aiki; Komuro, Atsushi; Ando, Akira

    2015-05-15

    Momentum exerted to a lateral wall of a helicon plasma source is individually measured for argon, krypton, and xenon gases. A significant loss of the axial plasma momentum to the lateral wall, which has been assumed to be negligible, is experimentally identified when an axially asymmetric density profile is formed in the source. This indicates that the radially lost ions deliver not only the radial momentum but also the axial momentum to the lateral wall. The formation of the axial asymmetry causing the momentum loss is interpreted with competition between the magnetic field and neutral depletion effects.

  5. Broadband near-field infrared spectroscopy with a high temperature plasma light source.

    PubMed

    Lahneman, D J; Huffman, T J; Xu, Peng; Wang, S L; Grogan, T; Qazilbash, M M

    2017-08-21

    Scattering-type scanning near-field optical microscopy (S-SNOM) has enormous potential as a spectroscopy tool in the infrared spectral range where it can probe phonon resonances and carrier dynamics at the nanometer lengths scales. However, its applicability is limited by the lack of practical and affordable table-top light sources emitting intense broadband infrared radiation in the 100 cm -1 to 2,500 cm -1 spectral range. This paper introduces a high temperature plasma light source that is both ultra-broadband and has much more radiant power in the infrared spectral range than conventional, table-top thermal light sources such as the globar. We implement this plasma lamp in our near-field optical spectroscopy set up and demonstrate its capability as a broadband infrared nano-spectroscopy light source by obtaining near-field infrared amplitude and phase spectra of the phonon resonances of SiO 2 and SrTiO 3 .

  6. Plasma diagnosis from thermal noise and limits on dust flux or mass in comet Giacobini-Zinner

    NASA Technical Reports Server (NTRS)

    Meyer-Vernet, N.; Couturier, P.; Hoang, S.; Perche, C.; Steinberg, J. L.; Fainberg, J.

    1986-01-01

    Thermal noise spectroscopy was used to measure the density and temperature of the main (cold) electron plasma population during two hours around the point of closest approach of the International Cometary Explorer (ICE) to comet Giacobini-Zinner. The time resolution was 18 seconds in the plasma tail and 54 seconds elsewhere. Near the tail axis, the maximum plasma density was 670/cu cm and the temperature slightly above one volt. Away from the axis, the plasma density dropped to 100/cu cm over 2000 km, then decreased to 10/cu cm over 15,000 km; at the plasma tail, the density fluctuated between 10 and 30/cu cm, and the temperature, between 100,000 and 400,000 K. No evidence was found of grain impact on the spacecraft or antennas in the plasma tail. This yields an upper limit for the dust flux or particle mass, indicating either fluxes or masses in the tail smaller than those implied by models or an anomalous grain structure. Outside the tail, and particularly near 100,000 km from its axis, impulsive noises indicating plasma turbulence were observed.

  7. Plasma volume methodology: Evans blue, hemoglobin-hematocrit, and mass density transformations

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Hinghofer-Szalkay, H.

    1985-01-01

    Methods for measuring absolute levels and changes in plasma volume are presented along with derivations of pertinent equations. Reduction in variability of the Evans blue dye dilution technique using chromatographic column purification suggests that the day-to-day variability in the plasma volume in humans is less than + or - 20 m1. Mass density determination using the mechanical-oscillator technique provides a method for measuring vascular fluid shifts continuously for assessing the density of the filtrate, and for quantifying movements of protein across microvascular walls. Equations for the calculation of volume and density of shifted fluid are presented.

  8. Effects of Mass Flow Rate on the Thermal-Flow Characteristics of Microwave CO2 Plasma.

    PubMed

    Hong, Chang-Ki; Na, Young-Ho; Uhm, Han-Sup; Kim, Youn-Jea

    2015-03-01

    In this study, the thermal-flow characteristics of atmospheric pressure microwave CO2 plasma were numerically investigated by simulation. The electric and gas flow fields in the reaction chamber with a microwave axial injection torch operated at 2.45 GHz were simulated. The microwave launcher had the standard rectangular waveguide WR340 geometry. The simulation was performed by using the COMSOL Multiphysics plasma model with various mass flow rates of CO2. The electric fields, temperature profiles and the density of electrons were graphically depicted for different CO2 inlet mass flow rates.

  9. Energization of the Ring Current through Convection of Substorm Enhancements of the Plasma Sheet Source.

    NASA Astrophysics Data System (ADS)

    Menz, A.; Kistler, L. M.; Mouikis, C.; Spence, H. E.; Henderson, M. G.; Matsui, H.

    2017-12-01

    It has been shown that electric field strength and night-side plasma sheet density are the two best predictors of the adiabatic energy gain of the ring current during geomagnetic storms (Liemohn and Khazanov, 2005). While H+ dominates the ring current during quiet times, O+ can contribute substantially during geomagnetic storms. Substorm activity provides a mechanism to enhance the energy density of O+ in the plasma sheet during geomagnetic storms, which is then convected adiabatically into the inner-magnetosphere. Using the Van Allen Probes data in the the plasma sheet source region (defined as L>5.5 during storms) and the inner magnetosphere, along with LANL-GEO data to identify substorm injection times, we show that adiabatic convection of O+ enhancements in the source region can explain the observed enhancements in the inner magnetosphere. We use the UNH-IMEF electric field model to calculate drift times from the source region to the inner magnetosphere to test whether enhancements in the inner-magnetosphere can be explained by dipolarization driven enhancements in the plasma sheet source hours before.

  10. Mass spectrometric studies of SiO2 deposition in an indirect plasma enhanced LPCVD system

    NASA Technical Reports Server (NTRS)

    Iyer, R.; Lile, D. L.; Mcconica, C. M.

    1993-01-01

    Reaction pathways for the low temperature deposition of SiO2 from silane and indirect plasma-excited oxygen-nitrogen mixtures are proposed based on experimental evidence gained from mass spectrometry in an indirect plasma enhanced chemical vapor deposition chamber. It was observed that about 80-85 percent of the silane was oxidized to byproduct hydrogen and only about 15-20 percent to water. Such conversion levels have led us to interpret that silanol (SiH3OH) could be the precursor for SiO2 film deposition, rather than siloxane /(SiH3)2O/ which has generally been cited in the literature. From mass spectrometry, we have also shown the effects of the plasma, and of mixing small amounts of N2 with the oxygen flow, in increasing the deposition rate of SiO2. Free radical reaction of nitric oxide, synthesized from the reaction of oxygen and nitrogen in the plasma chamber, and an *ncrease in atomic oxygen concentration, are believed to be the reasons for these SiO2 deposition rate increases. Through mass spectrometry we have, in addition, been able to identify products, presumably originating from terminating reactions, among a sequence of chemical reactions proposed for the deposition of SiO2.

  11. Arc plasma generator of atomic driver for steady-state negative ion source.

    PubMed

    Ivanov, A A; Belchenko, Yu I; Davydenko, V I; Ivanov, I A; Kolmogorov, V V; Listopad, A A; Mishagin, V V; Putvinsky, S V; Shulzhenko, G I; Smirnov, A

    2014-02-01

    The paper reviews the results of development of steady-state arc-discharge plasma generator with directly heated LaB6 cathode. This arc-discharge plasma generator produces a plasma jet which is to be converted into an atomic one after recombination on a metallic plate. The plate is electrically biased relative to the plasma in order to control the atom energies. Such an intensive jet of hydrogen atoms can be used in negative ion sources for effective production of negative ions on a cesiated surface of plasma grid. All elements of the plasma generator have an augmented water cooling to operate in long pulse mode or in steady state. The thermo-mechanical stresses and deformations of the most critical elements of the plasma generator were determined by simulations. Magnetic field inside the discharge chamber was optimized to reduce the local power loads. The first tests of the steady-state arc plasma generator prototype have performed in long-pulse mode.

  12. Immunodepletion Plasma Proteomics by TripleTOF 5600 and Orbitrap Elite/LTQ-Orbitrap Velos/Q Exactive Mass Spectrometers

    PubMed Central

    Patel, Bhavinkumar B.; Kelsen, Steven G.; Braverman, Alan; Swinton, Derrick J.; Gafken, Philip R.; Jones, Lisa A.; Lane, William S.; Neveu, John M.; Leung, Hon-Chiu E.; Shaffer, Scott A.; Leszyk, John D.; Stanley, Bruce A.; Fox, Todd E.; Stanley, Anne; Hall, Michael J.; Hampel, Heather; South, Christopher D.; de la Chapelle, Albert; Burt, Randall W.; Jones, David A.; Kopelovich, Levy; Yeung, Anthony T.

    2013-01-01

    Plasma proteomic experiments performed rapidly and economically using several of the latest high-resolution mass spectrometers were compared. Four quantitative hyperfractionated plasma proteomics experiments were analyzed in replicates by two AB SCIEX TripleTOF 5600 and three Thermo Scientific Orbitrap (Elite/LTQ-Orbitrap Velos/Q Exactive) instruments. Each experiment compared two iTRAQ isobaric-labeled immunodepleted plasma proteomes, provided as 30 labeled peptide fractions. 480 LC-MS/MS runs delivered >250 GB of data in two months. Several analysis algorithms were compared. At 1 % false discovery rate, the relative comparative findings concluded that the Thermo Scientific Q Exactive Mass Spectrometer resulted in the highest number of identified proteins and unique sequences with iTRAQ quantitation. The confidence of iTRAQ fold-change for each protein is dependent on the overall ion statistics (Mascot Protein Score) attainable by each instrument. The benchmarking also suggested how to further improve the mass spectrometry parameters and HPLC conditions. Our findings highlight the special challenges presented by the low abundance peptide ions of iTRAQ plasma proteome because the dynamic range of plasma protein abundance is uniquely high compared with cell lysates, necessitating high instrument sensitivity. PMID:24004147

  13. A mass of less than 15 solar masses for the black hole in an ultraluminous X-ray source.

    PubMed

    Motch, C; Pakull, M W; Soria, R; Grisé, F; Pietrzyński, G

    2014-10-09

    Most ultraluminous X-ray sources have a typical set of properties not seen in Galactic stellar-mass black holes. They have luminosities of more than 3 × 10(39) ergs per second, unusually soft X-ray components (with a typical temperature of less than about 0.3 kiloelectronvolts) and a characteristic downturn in their spectra above about 5 kiloelectronvolts. Such puzzling properties have been interpreted either as evidence of intermediate-mass black holes or as emission from stellar-mass black holes accreting above their Eddington limit, analogous to some Galactic black holes at peak luminosity. Recently, a very soft X-ray spectrum was observed in a rare and transient stellar-mass black hole. Here we report that the X-ray source P13 in the galaxy NGC 7793 is in a binary system with a period of about 64 days and exhibits all three canonical properties of ultraluminous sources. By modelling the strong optical and ultraviolet modulations arising from X-ray heating of the B9Ia donor star, we constrain the black hole mass to be less than 15 solar masses. Our results demonstrate that in P13, soft thermal emission and spectral curvature are indeed signatures of supercritical accretion. By analogy, ultraluminous X-ray sources with similar X-ray spectra and luminosities of up to a few times 10(40) ergs per second can be explained by supercritical accretion onto massive stellar-mass black holes.

  14. Non-thermal atmospheric pressure plasma source techniques on 3,7- bis (dimethylamino)-phenothiazin-5-ium chloride

    NASA Astrophysics Data System (ADS)

    Kotowich, Steven

    Studies of a non-thermal atmospheric pressure plasma source on an organic heterocycle were conducted to determine reaction parameters and rearrangement conditions. The target compound 3,7-bis(dimethylamino)-phenothiazin-5-ium chloride, commonly referred to as methylene blue, was determine to polymerize after exposure to a non-thermal atmospheric pressure plasma source. The presence of charge retention and a free electron radical were detected inherent to the polymer. Evaluation of the structure and mechanism of the polymer were also presented for evidence and clarification. Additional description of the plasma source environment was correlated to the manipulation of the target compound.

  15. Determination of albendazole sulfoxide in human plasma by using liquid chromatography-tandem mass spectrometry.

    PubMed

    Saraner, Nihal; Özkan, Güler Yağmur; Güney, Berrak; Alkan, Erkin; Burul-Bozkurt, Nihan; Sağlam, Onursal; Fikirdeşici, Ezgi; Yıldırım, Mevlüt

    2016-06-01

    A rapid, simple and sensitive method was developed and validated using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for determination of albendazole sulfoxide (ABZOX) in human plasma. The plasma samples were extracted by protein precipitation using albendazole sulfoxide-d3 as internal standard (IS). The chromatographic separation was performed on Waters Xbridge C18Column (100×4.6mm, 3.5μm) with a mobile phase consisting of ammonia solution, water and methanol at a flow rate of 0.70mL/min. ABZOX was detected and identified by mass spectrometry with electrospray ionization (ESI) in positive ion and multiple-reaction monitoring (MRM) mode. The method was linear in the range of 3-1500ng/mL for ABZOX. This method was successfully applied to the bioequivalence study in human plasma samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Extractive alkylation of 6-mercaptopurine and determination in plasma by gas chromatography-mass spectrometry.

    PubMed

    Floberg, S; Hartvig, P; Lindström, B; Lönner-Holm, G; Odlind, B

    1981-09-11

    An analytical procedure was developed for the determination of 6-mercaptopurine in plasma. Owing to the polar character and low plasma concentration of the compound, extraction and derivatization was carried out directly from the plasma sample by extractive alkylation. Determination was made using gas chromatography-mass spectrometry with multiple-ion detection. Conditions with respect to the rate of formation and the stability of the derivative formed in the extractive alkylation step were evaluated. The selectively of the method to azathioprine and to metabolites was thoroughly investigated. No 6-mercaptopurine was formed from azathioprine added to water or plasma and run through the method. The method enables the detection of 2 ng of 6 mercaptopurine in a 1.0-ml plasma sample. Quantitative determinations were done down to 10 ng/ml 6 mercaptopurine in plasma.

  17. Plasma shape control by pulsed solenoid on laser ion source

    DOE PAGES

    Sekine, M.; Ikeda, S.; Romanelli, M.; ...

    2015-05-28

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. It was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled bymore » the pulsed magnetic field. Thus, this approach may also be useful to reduce beam emittance of a LIS.« less

  18. Capillary electrophoresis-high resolution sector field inductively coupled plasma mass spectrometry.

    PubMed

    Sonke, Jeroen E; Salters, Vincent J M

    2007-08-03

    The background and applications of high resolution sector field inductively coupled plasma mass spectrometry (HR-ICP-MS) as a detector for capillary (CE) and gel electrophoretic separations are reviewed. Notable progress has been made in the fields of bioinorganic and environmental (geo-) chemistry. Metallomics, the study of metal species interactions and functions in biological systems, puts substantial technical demands on speciation analysis. The combination of high species resolving power (CE) and high sensitivity-high mass resolving power (HR-ICP-MS) provides a solid base to meet such demands.

  19. Mass Transfer Limited Enhanced Bioremediation at Dnapl Source Zones: a Numerical Study

    NASA Astrophysics Data System (ADS)

    Kokkinaki, A.; Sleep, B. E.

    2011-12-01

    The success of enhanced bioremediation of dense non-aqueous phase liquids (DNAPLs) relies on accelerating contaminant mass transfer from the organic to the aqueous phase, thus enhancing the depletion of DNAPL source zones compared to natural dissolution. This is achieved by promoting biological activity that reduces the contaminant's aqueous phase concentration. Although laboratory studies have demonstrated that high reaction rates are attainable by specialized microbial cultures in DNAPL source zones, field applications of the technology report lower reaction rates and prolonged remediation times. One possible explanation for this phenomenon is that the reaction rates are limited by the rate at which the contaminant partitions from the DNAPL to the aqueous phase. In such cases, slow mass transfer to the aqueous phase reduces the bioavailability of the contaminant and consequently decreases the potential source zone depletion enhancement. In this work, the effect of rate limited mass transfer on bio-enhanced dissolution of DNAPL chlorinated ethenes is investigated through a numerical study. A multi-phase, multi-component groundwater transport model is employed to simulate DNAPL mass depletion for a range of source zone scenarios. Rate limited mass transfer is modeled by a linear driving force model, employing a thermodynamic approach for the calculation of the DNAPL - water interfacial area. Metabolic reductive dechlorination is modeled by Monod kinetics, considering microbial growth and self-inhibition. The model was utilized to identify conditions in which mass transfer, rather than reaction, is the limiting process, as indicated by the bioavailability number. In such cases, reaction is slower than expected, and further increase in the reaction rate does not enhance mass depletion. Mass transfer rate limitations were shown to affect both dechlorination and microbial growth kinetics. The complex dynamics between mass transfer, DNAPL transport and distribution, and

  20. Long-Lived Plasma Formations in the Atmosphere as an Alternative Energy Source

    NASA Astrophysics Data System (ADS)

    Dvornikov, M. S.; Mekhdieva, G. Sh.; Agamalieva, L. A.

    2018-01-01

    A model of a stable plasma formation, based on radial quantum oscillations of charged particles, is discussed. The given plasmoid is described with the help of the nonlinear Schrödinger equation. A new phenomenon of effective attraction between oscillating charged particles is considered within the framework of the proposed model. The possible existence of a composite plasma structure is also discussed. Hypotheses about using the obtained results to describe natural long-lived plasma formations which can serve as alternative energy sources are advanced.

  1. Effect of plasma grid bias on extracted currents in the RF driven surface-plasma negative ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belchenko, Yu., E-mail: belchenko@inp.nsk.su; Ivanov, A.; Sanin, A.

    2016-02-15

    Extraction of negative ions from the large inductively driven surface-plasma negative ion source was studied. The dependencies of the extracted currents vs plasma grid (PG) bias potential were measured for two modifications of radio-frequency driver with and without Faraday screen, for different hydrogen feeds and for different levels of cesium conditioning. The maximal PG current was independent of driver modification and it was lower in the case of inhibited cesium. The maximal extracted negative ion current depends on the potential difference between the near-PG plasma and the PG bias potentials, while the absolute value of plasma potential in the drivermore » and in the PG area is less important for the negative ion production. The last conclusion confirms the main mechanism of negative ion production through the surface conversion of fast atoms.« less

  2. Mass ablation and magnetic flux losses through a magnetized plasma-liner wall interface

    NASA Astrophysics Data System (ADS)

    García-Rubio, F.; Sanz, J.

    2017-07-01

    The understanding of energy and magnetic flux losses in a magnetized plasma medium confined by a cold wall is of great interest in the success of magnetized liner inertial fusion (MagLIF). In a MagLIF scheme, the fuel is magnetized and subsonically compressed by a cylindrical liner. Magnetic flux conservation is degraded by the presence of gradient-driven transport processes such as thermoelectric effects (Nernst) and magnetic field diffusion. In previous publications [Velikovich et al., Phys. Plasmas 22, 042702 (2015)], the evolution of a hot magnetized plasma in contact with a cold solid wall (liner) was studied using the classical collisional Braginskii's plasma transport equations in one dimension. The Nernst term degraded the magnetic flux conservation, while both thermal energy and magnetic flux losses were reduced with the electron Hall parameter ωeτe with a power-law asymptotic scaling (ωeτe)-1/2. In the analysis made in the present paper, we consider a similar situation, but with the liner being treated differently. Instead of a cold solid wall acting as a heat sink, we model the liner as a cold dense plasma with low thermal conduction (that could represent the cryogenic fuel layer added on the inner surface of the liner in a high-gain MagLIF configuration). Mass ablation comes into play, which adds notably differences to the previous analysis. The direction of the plasma motion is inverted, but the Nernst term still convects the magnetic field towards the liner. Magnetization suppresses the Nernst velocity and improves the magnetic flux conservation. Thermal energy in the hot plasma is lost in heating the ablated material. When the electron Hall parameter is large, mass ablation scales as (ωeτe)-3/10, while both the energy and magnetic flux losses are reduced with a power-law asymptotic scaling (ωeτe)-7/10.

  3. Pressure and current effects on the thermal efficiency of an MPD arc used as a plasma source

    NASA Technical Reports Server (NTRS)

    Pivirotto, T. J.

    1972-01-01

    Measurements of arc voltage and energy loss to the cooled electrodes of a magnetoplasmadynamic (MPD) arc, operating without an applied magnetic field, were made at chamber pressures of 26 to 950 torr, argon mass flow rates of 0.08 to 44 g/s and current of 200 to 2000 A. The resulting arc thermal efficiency varied from 22% at a chamber pressure of 26 torr to 88% at 950 torr. Thermal efficiency was only weakly dependent on arc current. It is concluded that the MPD arc operating without an applied magnetic field and at higher pressure than normally used in thruster applications is a reliable and efficient steady-state plasma source.

  4. Characteristics of the Plasma Source for Ground Ionosphere Simulation Surveyed by Disk-Type Langmuir Probe

    NASA Astrophysics Data System (ADS)

    Ryu, Kwangsun; Lee, Junchan; Kim, Songoo; Chung, Taejin; Shin, Goo-Hwan; Cha, Wonho; Min, Kyoungwook; Kim, Vitaly P.

    2017-12-01

    A space plasma facility has been operated with a back-diffusion-type plasma source installed in a mid-sized vacuum chamber with a diameter of 1.5 m located in Satellite Technology Research Center (SaTReC), Korea Advanced Institute of Science and Technology (KAIST). To generate plasma with a temperature and density similar to the ionospheric plasma, nickel wires coated with carbonate solution were used as filaments that emit thermal electrons, and the accelerated thermal electrons emitted from the heated wires collide with the neutral gas to form plasma inside the chamber. By using a disk-type Langmuir probe installed inside the vacuum chamber, the generation of plasma similar to the space environment was validated. The characteristics of the plasma according to the grid and plate anode voltages were investigated. The grid voltage of the plasma source is realized as a suitable parameter for manipulating the electron density, while the plate voltage is suitable for adjusting the electron temperature. A simple physical model based on the collision cross-section of electron impact on nitrogen molecule was established to explain the plasma generation mechanism.

  5. Iron-Isotopic Fractionation Studies Using Multiple Collector Inductively Coupled Plasma Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Anbar, A. D.; Zhang, C.; Barling, J.; Roe, J. E.; Nealson, K. H.

    1999-01-01

    The importance of Fe biogeochemistry has stimulated interest in Fe isotope fractionation. Recent studies using thermal ionization mass spectrometry (TIMS) and a "double spike" demonstrate the existence of biogenic Fe isotope effects. Here, we assess the utility of multiple-collector inductively-coupled plasma mass spectrometry(MC-ICP-MS) with a desolvating sample introduction system for Fe isotope studies, and present data on Fe biominerals produced by a thermophilic bacterium. Additional information is contained in the original extended abstract.

  6. BMI, body fat mass and plasma leptin level in relation to cardiovascular diseases risk factors among adolescents in Taitung.

    PubMed

    Wu, Ya-Ke; Chu, Nain-Feng; Huang, Ya-Hsien; Syu, Jhu-Ting; Chang, Jin-Biou

    2016-01-01

    To investigate the risk factors associated with cardiovascular diseases and its relation to BMI, body fat mass and plasma leptin level among adolescents in Taitung, Taiwan. A cross-sectional Taitung Children Heart Study for 500 young adolescents between ages 13 and 15 was conducted. Gender-specific regression models were used to determine the associations between BMI, percentage of body fat mass, plasma leptin level and seven CVDs risk factors (systolic and diastolic blood pressure, mean arterial pressure, triglycerides, total cholesterol, HDL-cholesterol and LDL-cholesterol) before and after adjusting for weight status and age. After adjusting for weight status and age, BMI was positively associated with systolic BP, triglycerides, LDL-cholesterol levels but negatively associated with HDL-cholesterol level in boys while positively associated with systolic and diastolic BP, mean arterial pressure, and LDL-cholesterol level in girls. The percentage of body fat mass was positively associated with triglycerides, total cholesterol, and LDL-cholesterol in boys while positively associated with systolic BP, total cholesterol, and LDL-cholesterol in girls. Plasma leptin was positively associated with triglycerides, total cholesterol and LDL-cholesterol in boys but no statistically significant associations with CVDs risk factors in girls. A strong relationship between the percentage of body fat mass and plasma leptin appeared among all participants (r=0.59, p<0.01). BMI, body fat mass and plasma leptin level may be used to identify certain CVDs risk factors among Taitung adolescents. Future researches could consider measuring body fat mass in the relationship of CVDs risk factors instead of plasma leptin among young adolescents. Copyright © 2015 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  7. Liquid chromatography-electrospray mass spectrometry determination of carbamazepine, oxcarbazepine and eight of their metabolites in human plasma.

    PubMed

    Breton, Hélène; Cociglio, Marylène; Bressolle, Françoise; Peyriere, Hélène; Blayac, Jean Pierre; Hillaire-Buys, Dominique

    2005-12-15

    Carbamazepine (CBZ) and oxcarbazepine (OXCBZ) are both antiepileptic drugs, which are prescribed as first-line drugs for the treatment of partial and generalized tonic-clonic epileptic seizures. In this paper, a specific and sensitive liquid chromatography-electrospray ionization mass spectrometry method was described for the simultaneous determination of carbamazepine (CBZ), oxcarbazepine (OXCBZ) and eight of their metabolites [CBZ-10,11-epoxide (CBZ-EP), 10,11-dihydro-10,11-trans-dihydroxy-carbamazepine (DiOH-CBZ), 10-hydroxy-10,11-dihydroCBZ (10-OH-CBZ), 2-hydroxycarbamazepine (2-OH-CBZ), 3-hydroxycarbamazepine (3-OH-CBZ), iminostilbene (IM), acridone (AO) and acridine (AI)] in human plasma. The work-up procedure involved a simple precipitation with acetone. Separation of the analytes was achieved within 50 min using a Zorbax eclipse XD8 C8 analytical column. The mobile phase consisted of a mixture of acetonitrile-formate buffer (2 mM, pH 3). Detection was performed using a quadrupole mass spectrometer fitted with an electrospray ion source. Mass spectrometric data were acquired in single ion recording mode at m/z 237 for CBZ, m/z 180 for CBZ-EP and AI, m/z 236 for OXCBZ, m/z 237 for 10-OH-CBZ, m/z 253 for 2-OH-CBZ, 3-OH-CBZ and DiOH-CBZ, m/z 196 for AO and m/z 194 for IM. For all analytes, the drug/internal standard peak height ratios were linked via a quadratic relationship to plasma concentrations. The extraction recovery averaged 90% for CBZ, 80% for OXCBZ and was 80-105% for the metabolites. The lower limit of quantitation was 0.5mg/l for CBZ, 0.4 mg/l for OXCBZ and ranged from 0.02 to 0.3 mg/l for the metabolites. Precision ranged from 2 to 13% and accuracy was between 86 and 112%. This method was found suitable for the analysis of plasma samples collected during therapeutic drug monitoring of patients treated with CBZ or OXCBZ.

  8. Generation of plasma X-ray sources via high repetition rate femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Baguckis, Artūras; Plukis, Artūras; Reklaitis, Jonas; Remeikis, Vidmantas; Giniūnas, Linas; Vengris, Mikas

    2017-12-01

    In this study, we present the development and characterization of Cu plasma X-ray source driven by 20 W average power high repetition rate femtosecond laser in ambient atmosphere environment. The peak Cu- Kα photon flux of 2.3 × 109 photons/s into full solid angle is demonstrated (with a process conversion efficiency of 10-7), using pulses with peak intensity of 4.65 × 1014 W/cm2. Such Cu- Kα flux is significantly larger than others found in comparable experiments, performed in air environment. The effects of resonance plasma absorption process, when optimized, are shown to increase measured flux by the factor of 2-3. The relationship between X-ray photon flux and plasma-driving pulse repetition rate is quasi-linear, suggesting that fluxes could further be increased to 1010 photons/s using even higher average powers of driving radiation. These results suggest that to fully utilize the potential of high repetition rate laser sources, novel target material delivery systems (for example, jet-based ones) are required. On the other hand, this study demonstrates that high energy lasers currently used for plasma X-ray sources can be conveniently and efficiently replaced by high average power and repetition rate laser radiation, as a way to increase the brightness of the generated X-rays.

  9. Thermodynamic Structure of Collision-Dominated Expanding Plasma: Heating of Interplanetary Coronal Mass Injections

    NASA Technical Reports Server (NTRS)

    Liu, Y.; Richardson, J. D.; Belcher, J. W.; Kasper, J. C.; Elliott, H. A.

    2006-01-01

    We investigate the thermodynamic structure of interplanetary coronal mass ejections (ICMEs) using combined surveys of the ejecta between 0.3 and 20 AU. ICMEs are shown to have a moderate expansion in the solar wind compared with theoretical predictions. The expansion seems to be governed by a polytrope with gamma approx. 1.3 in this distance range. We find that Coulomb collisions are important contributors to the ion-ion equilibration process in the ICME plasma. The alpha-proton differential speed quickly drops to below 10 km/s due to strong Coulomb collisions. However, the two species of particles are far from thermal equilibrium with a temperature ratio T(sub alpha/T(sub p) = 4-6, suggestive of a preferential heating of alpha particles. The plasma heating rate as a function of heliocentric &stance required for the temperature profile is deduced by taking into account the expansion and energy transfer between protons and alphas via Coulomb collisions. The turbulence dissipation rate is also inferred from the inertial range power spectrum of magnetic fluctuations within ICMEs. Comparison of the turbulence dissipation rate with the required heating rate shows that turbulence dissipation seems sufficient to explain the ICME heating. Sources powering the turbulence are also investigated by examining the instabilities induced by temperature anisotropies and energy deposition by pickup ions.

  10. Small plasma focus as neutron pulsed source for nuclides identification

    NASA Astrophysics Data System (ADS)

    Milanese, M.; Niedbalski, J.; Moroso, R.; Barbaglia, M.; Mayer, R.; Castillo, F.; Guichón, S.

    2013-10-01

    In this paper, we present preliminary results on the feasibility of employing a low energy (2 kJ, 31 kV) plasma focus device as a portable source of pulsed neutron beams (2.45 MeV) generated by nuclear fusion reactions D-D, for the "in situ" analysis of substances by nuclear activation. This source has the relevant advantage of being pulsed at requirement, transportable, not permanently radioactive, without radioactive waste, cheap, among others. We prove the feasibility of using this source showing several spectra of the characteristic emission line for manganese, gold, lead, and silver.

  11. Small plasma focus as neutron pulsed source for nuclides identification.

    PubMed

    Milanese, M; Niedbalski, J; Moroso, R; Barbaglia, M; Mayer, R; Castillo, F; Guichón, S

    2013-10-01

    In this paper, we present preliminary results on the feasibility of employing a low energy (2 kJ, 31 kV) plasma focus device as a portable source of pulsed neutron beams (2.45 MeV) generated by nuclear fusion reactions D-D, for the "in situ" analysis of substances by nuclear activation. This source has the relevant advantage of being pulsed at requirement, transportable, not permanently radioactive, without radioactive waste, cheap, among others. We prove the feasibility of using this source showing several spectra of the characteristic emission line for manganese, gold, lead, and silver.

  12. Multi-elemental analysis of aqueous geochemical samples by quadrupole inductively coupled plasma-mass spectrometry (ICP-MS)

    USGS Publications Warehouse

    Wolf, Ruth E.; Adams, Monique

    2015-01-01

    Typically, quadrupole inductively coupled plasma-mass spectrometry (ICP-MS) is used to determine as many as 57 major, minor, and trace elements in aqueous geochemical samples, including natural surface water and groundwater, acid mine drainage water, and extracts or leachates from geological samples. The sample solution is aspirated into the inductively coupled plasma (ICP) which is an electrodeless discharge of ionized argon gas at a temperature of approximately 6,000 degrees Celsius. The elements in the sample solution are subsequently volatilized, atomized, and ionized by the ICP. The ions generated are then focused and introduced into a quadrupole mass filter which only allows one mass to reach the detector at a given moment in time. As the settings of the mass analyzer change, subsequent masses are allowed to impact the detector. Although the typical quadrupole ICP-MS system is a sequential scanning instrument (determining each mass separately), the scan speed of modern instruments is on the order of several thousand masses per second. Consequently, typical total sample analysis times of 2–3 minutes are readily achievable for up to 57 elements.

  13. Quantitation of iothalamate in urine and plasma using liquid chromatography electrospray tandem mass spectrometry (HPLC-ESI-MS/MS).

    PubMed

    Molinaro, Ross J; Ritchie, James C

    2010-01-01

    The following chapter describes a method to measure iothalamate in plasma and urine samples using high performance liquid chromatography combined with electrospray positive ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Methanol and water are spiked with the internal standard (IS) iohexol. Iothalamate is isolated from plasma after IS spiked methanol extraction and from urine by IS spiked water addition and quick-spin filtration. The plasma extractions are dried under a stream of nitrogen. The residue is reconstituted in ammonium acetate-formic acid-water. The reconstituted plasma and filtered urine are injected into the HPLC-ESI-MS/MS. Iothalamate and iohexol show similar retention times in plasma and urine. Quantification of iothalamate in the samples is made by multiple reaction monitoring using the hydrogen adduct mass transitions, from a five-point calibration curve.

  14. Development of a radio frequency ion source with multi-helicon plasma injectors for neutral beam injection system of Versatile Experiment Spherical Torus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choe, Kyumin; Jung, Bongki; Chung, Kyoung-Jae, E-mail: jkjlsh1@snu.ac.kr

    2014-02-15

    Despite of high plasma density, helicon plasma has not yet been applied to a large area ion source such as a driver for neutral beam injection (NBI) system due to intrinsically poor plasma uniformity in the discharge region. In this study, a radio-frequency (RF) ion source with multi-helicon plasma injectors for high plasma density with good uniformity has been designed and constructed for the NBI system of Versatile Experiment Spherical Torus at Seoul National University. The ion source consists of a rectangular plasma expansion chamber (120 × 120 × 120 mm{sup 3}), four helicon plasma injectors with annular permanent magnetsmore » and RF power system. Main feature of the source is downstream plasma confinement in the cusp magnetic field configuration which is generated by arranging polarities of permanent magnets in the helicon plasma injectors. In this paper, detailed design of the multi-helicon plasma injector and plasma characteristics of the ion source are presented.« less

  15. Development of a radio frequency ion source with multi-helicon plasma injectors for neutral beam injection system of Versatile Experiment Spherical Torus

    NASA Astrophysics Data System (ADS)

    Choe, Kyumin; Jung, Bongki; Chung, Kyoung-Jae; Hwang, Y. S.

    2014-02-01

    Despite of high plasma density, helicon plasma has not yet been applied to a large area ion source such as a driver for neutral beam injection (NBI) system due to intrinsically poor plasma uniformity in the discharge region. In this study, a radio-frequency (RF) ion source with multi-helicon plasma injectors for high plasma density with good uniformity has been designed and constructed for the NBI system of Versatile Experiment Spherical Torus at Seoul National University. The ion source consists of a rectangular plasma expansion chamber (120 × 120 × 120 mm3), four helicon plasma injectors with annular permanent magnets and RF power system. Main feature of the source is downstream plasma confinement in the cusp magnetic field configuration which is generated by arranging polarities of permanent magnets in the helicon plasma injectors. In this paper, detailed design of the multi-helicon plasma injector and plasma characteristics of the ion source are presented.

  16. Development of a radio frequency ion source with multi-helicon plasma injectors for neutral beam injection system of Versatile Experiment Spherical Torus.

    PubMed

    Choe, Kyumin; Jung, Bongki; Chung, Kyoung-Jae; Hwang, Y S

    2014-02-01

    Despite of high plasma density, helicon plasma has not yet been applied to a large area ion source such as a driver for neutral beam injection (NBI) system due to intrinsically poor plasma uniformity in the discharge region. In this study, a radio-frequency (RF) ion source with multi-helicon plasma injectors for high plasma density with good uniformity has been designed and constructed for the NBI system of Versatile Experiment Spherical Torus at Seoul National University. The ion source consists of a rectangular plasma expansion chamber (120 × 120 × 120 mm(3)), four helicon plasma injectors with annular permanent magnets and RF power system. Main feature of the source is downstream plasma confinement in the cusp magnetic field configuration which is generated by arranging polarities of permanent magnets in the helicon plasma injectors. In this paper, detailed design of the multi-helicon plasma injector and plasma characteristics of the ion source are presented.

  17. Treatment in the healing of burns with a cold plasma source

    PubMed Central

    Betancourt-Ángeles, Mario; Peña-Eguiluz, Rosendo; López-Callejas, Régulo; Domínguez-Cadena, Nicasio Alberto; Mercado-Cabrera, Antonio; Muñoz-Infante, Jorge; Rodríguez-Méndez, Benjamín Gonzalo; Valencia-Alvarado, Raúl; Moreno-Tapia, José Alberto

    2017-01-01

    A cold plasma produced with helium gas was applied to two second-degree burns produced with boiling oil. These burns were located on a thigh and a shin of a 59-years-old male person. After the first treatment as benefit the patient neither presented itching nor pain and, after the second treatment, the patient presented new tissue. This result opens the possibilities of the application of a cold plasma source to health burns. PMID:29348977

  18. Response of Jupiter's Aurora to Plasma Mass Loading Rate Monitored by the Hisaki Satellite During Volcanic Eruptions at Io

    NASA Astrophysics Data System (ADS)

    Kimura, T.; Hiraki, Y.; Tao, C.; Tsuchiya, F.; Delamere, P. A.; Yoshioka, K.; Murakami, G.; Yamazaki, A.; Kita, H.; Badman, S. V.; Fukazawa, K.; Yoshikawa, I.; Fujimoto, M.

    2018-03-01

    The production and transport of plasma mass are essential processes in the dynamics of planetary magnetospheres. At Jupiter, it is hypothesized that Io's volcanic plasma carried out of the plasma torus is transported radially outward in the rotating magnetosphere and is recurrently ejected as plasmoid via tail reconnection. The plasmoid ejection is likely associated with particle energization, radial plasma flow, and transient auroral emissions. However, it has not been demonstrated that plasmoid ejection is sensitive to mass loading because of the lack of simultaneous observations of both processes. We report the response of plasmoid ejection to mass loading during large volcanic eruptions at Io in 2015. Response of the transient aurora to the mass loading rate was investigated based on a combination of Hisaki satellite monitoring and a newly developed analytic model. We found that the transient aurora frequently recurred at a 2-6 day period in response to a mass loading increase from 0.3 to 0.5 t/s. In general, the recurrence of the transient aurora was not significantly correlated with the solar wind, although there was an exceptional event with a maximum emission power of 10 TW after the solar wind shock arrival. The recurrence of plasmoid ejection requires the precondition that an amount comparable to the total mass of magnetosphere, 1.5 Mt, is accumulated in the magnetosphere. A plasmoid mass of more than 0.1 Mt is necessary in case that the plasmoid ejection is the only process for mass release.

  19. Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vold, E. L.; Molvig, K.; Joglekar, A. S.

    2015-11-15

    The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion (ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. We have implemented a Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasma viscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasma viscosity andmore » to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasma viscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Plasma viscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and also modifies the flux-limiting needed for electron thermal conduction.« less

  20. Semiconductor and thermoluminescent dosimetry of pulsed soft X ray plasma sources.

    PubMed

    Krása, J; Cejnarová, A; Juha, L; Ryć, L; Scholz, M; Kubes, P

    2002-01-01

    A multichannel detection system having a dynamic range of approximately 1 x 10(-9) Gy --20 Gy was developed with the use of commercially produced Si-photodiodes and TLDs for accurate measurement of X ray energy emitted from plasma-focus facility and from laser-produced plasmas. The proof of linearity of the employed detectors accomplished by a comparison of their responses to a broad band spectrum of X rays emitted from plasmas, is reported. It is demonstrated that TLDs irradiated with no protective filter show an incorrect response due to overloading in the sub-keV range and repopulation of dosimetric peaks induced by the UV radiation. The measurement of the power of undesirable secondary X ray sources driven by the primary plasma inside the interaction chamber was performed on the basis of analysis of space dependence of X ray intensity with respect to the assumed r(-2) decrease in the intensity far away from the plasma.

  1. Development and evaluation of magnesium oxide-based ceramics for chamber parts in mass-production plasma etching equipment

    NASA Astrophysics Data System (ADS)

    Kasashima, Yuji; Tsutsumi, Kota; Mitomi, Shinzo; Uesugi, Fumihiko

    2017-06-01

    In mass-production plasma etching equipment, the corrosion of ceramic chamber parts reduces the production yield of LSI and overall equipment effectiveness (OEE) owing to contamination, short useful life, and particle generation. Novel ceramics that can improve the production yield and OEE are highly required. We develop magnesium oxide (MgO)-based ceramics and evaluate them under mass-production plasma etching conditions. The results of this study indicate that the developed MgO-based ceramics with high mechanical properties and low electric resistivity have a higher resistance to corrosion in plasma etching using CF4 gas than Si and conventional ceramic materials such as aluminum oxide and yttrium oxide.

  2. The Relationship between C_60 Mass Spectrum Intensity and C2 Vibrational Temperature in Microwave Helium Plasmas

    NASA Astrophysics Data System (ADS)

    Ueda, Kengo; Kuwahara, Kiyoshi; Fujiyama, Hiroshi

    1998-10-01

    The soot containing C_60 and C_70 was synthesized in helium plasmas generated in a quartz tube by microwave discharge. We used reticulated vitreous carbon (RVC) that was heated by electric field of TE_10 mode microwave and the plasma. During soot deposition, optical emission of plasmas was observed with a monochromator. The soot deposited on the quartz tube was analyzed by the laser desorption time-of-flight mass-spectroscopy (LD-TOF-MS). Up to the present, the most intense C_60 mass spectrum intensity was obtained for the condition of absorbed microwave power 200W and pressure 100Torr, where C2 vibrational temperature was about 5500K.

  3. Influence of instrumental parameters on the kinetic energy of ions and plasma temperature for a hexapole collision/reaction-cell-based inductively coupled plasma quadrupole mass spectrometer.

    PubMed

    Favre, Georges; Brennetot, René; Chartier, Frédéric; Tortajada, Jeanine

    2009-02-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is widely used in inorganic analytical chemistry for element and/or isotope ratio measurements. The presence of interferences, which is one of the main limitations of this method, has been addressed in recent years with the introduction of collision/reaction cell devices on ICP-MS apparatus. The study of ion-molecule reactions in the gas phase then became of great importance for the development of new analytical strategies. Knowing the kinetic energy and the electronic states of the ions prior to their entrance into the cell, i.e., just before they react, thereby constitutes crucial information for the interpretation of the observed reactivities. Such studies on an ICP-MS commonly used for routine analyses require the determination of the influence of different instrumental parameters on the energy of the ions and on the plasma temperature from where ions are sampled. The kinetic energy of ions prior to their entrance into the cell has been connected to the voltage applied to the hexapole according to a linear relationship determined from measurements of ion energy losses due to collisions with neutral gas molecules. The effects of the plasma forward power, sampling depth, and the addition of a torch shield to the ICP source were then examined. A decrease of the plasma potential due to the torch shielding, already mentioned in the literature, has been quantified in this study at about 3 V.

  4. Quantification of plasma myo-inositol using gas chromatography-mass spectrometry.

    PubMed

    Guo, Jin; Shi, Yingfei; Xu, Chengbao; Zhong, Rugang; Zhang, Feng; Zhang, Ting; Niu, Bo; Wang, Jianhua

    2016-09-01

    Myo-inositol (MI) deficiency is associated with an increased risk for neural tube defects (NTDs), mental disorders and metabolic diseases. We developed a gas chromatography-mass spectrometry (GC-MS) method to detect MI in human plasma, which was accurate, relatively efficient and convenient for clinical application. An external standard method was used for determination of plasma MI. Samples were analyzed by GC-MS after derivatization. The stable-isotope labeled internal standard approach was used to validate the method's accuracy. Alpha fetal protein (AFP) was detected by chemiluminescence immunoassay. The method was validated by determining the linearity, sensitivity and recovery rate. There was a good agreement between the internal standard approach and the present method. The NTD-affected pregnancies showed lower plasma MI (P=0.024) and higher AFP levels (P=0.001) than control. Maternal MI level showed a better discrimination in spina bifida subgroup, while AFP level showed a better discrimination in anencephaly subgroup after stratification analysis. We developed a sensitive and reliable method for the detection of clinical plasma MI, which might be a marker for NTDs screening, and established fundamental knowledge for clinical diagnosis and prevention for the diseases related to disturbed MI metabolism. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Diagnostics of capacitively-coupled hydrocarbon plasmas for deposition of diamond-like carbon films using quadrupole mass spectrometry and Langmuir probe

    NASA Astrophysics Data System (ADS)

    Oda, Akinori; Fukai, Shun; Kousaka, Hiroyuki; Ohta, Takayuki

    2015-09-01

    Diamond-like carbon (DLC) films are the hydrogenated amorphous carbon films, which contains a mixture of sp2- and sp3-bonded carbon. The DLC films have been widely used for various applications, such as automotive, semiconductors, medical devices, since have excellent material properties in lower friction, higher chemical stability, higher hardness, higher wear resistance. Until now, numerous investigations on the DLC films using plasma assisted chemical vapor deposition have been done. For precise control of coating technique of DLC films, it is enormously important to clarify the fundamental properties in hydrocarbon plasmas, as a source of hydrocarbon ions and radicals. In this paper, the fundamental properties in a low pressure radio-frequency hydrocarbon (Ar/CH4 (1 %) gas mixture) plasmas have been diagnosed using a quadrupole mass spectrometer (HIDEN ANARYTICAL Ltd., EQP-300) and Langmuir probe system (HIDEN ANARYTICAL Ltd., ESPion). This work was partly supported by KAKENHI (No.26420247), and a ``Grant for Advanced Industrial Technology Development (No.11B06004d)'' in 2011 from the New Energy and Industrial Technology Development Organization (NEDO) of Japan.

  6. Next generation of Z* modelling tool for high intensity EUV and soft x-ray plasma sources simulations

    NASA Astrophysics Data System (ADS)

    Zakharov, S. V.; Zakharov, V. S.; Choi, P.; Krukovskiy, A. Y.; Novikov, V. G.; Solomyannaya, A. D.; Berezin, A. V.; Vorontsov, A. S.; Markov, M. B.; Parot'kin, S. V.

    2011-04-01

    In the specifications for EUV sources, high EUV power at IF for lithography HVM and very high brightness for actinic mask and in-situ inspections are required. In practice, the non-equilibrium plasma dynamics and self-absorption of radiation limit the in-band radiance of the plasma and the usable radiation power of a conventional single unit EUV source. A new generation of the computational code Z* is currently developed under international collaboration in the frames of FP7 IAPP project FIRE for modelling of multi-physics phenomena in radiation plasma sources, particularly for EUVL. The radiation plasma dynamics, the spectral effects of self-absorption in LPP and DPP and resulting Conversion Efficiencies are considered. The generation of fast electrons, ions and neutrals is discussed. Conditions for the enhanced radiance of highly ionized plasma in the presence of fast electrons are evaluated. The modelling results are guiding a new generation of EUV sources being developed at Nano-UV, based on spatial/temporal multiplexing of individual high brightness units, to deliver the requisite brightness and power for both lithography HVM and actinic metrology applications.

  7. Langmuir probe study of a magnetically enhanced RF plasma source at pressures below 0.1 Pa

    NASA Astrophysics Data System (ADS)

    Kousal, Jaroslav; Tichý, Milan; Šebek, Ondřej; Čechvala, Juraj; Biederman, Hynek

    2011-08-01

    The majority of plasma polymerization sources operate at pressures higher than 1 Pa. At these pressures most common deposition methods do not show significant directionality. One way of enhancing the directional effects is to decrease the working pressure to increase the mean free path of the reactive molecules. The plasma source used in this work was designed to study the plasma polymerization process at pressures below 0.1 Pa. The source consists of the classical radio frequency (RF) (13.56 MHz, capacitive coupled) tubular reactor enhanced by an external magnetic circuit. The working gas is introduced into the discharge by a capillary. This forms a relatively localized zone of higher pressure where the monomer is activated. Due to the magnetic field, the plasma is constricted near the axis of the reactor with nearly collisionless gas flow. The plasma parameters were obtained using a double Langmuir probe. Plasma density in the range ni = 1013-1016 m-3 was obtained in various parts of the discharge under typical conditions. The presence of the magnetic field led to the presence of relatively strong electric fields (103 V m-1) and relatively high electron energies up to several tens of eV in the plasma.

  8. Mass Communication: A Guide to Reference Sources.

    ERIC Educational Resources Information Center

    McGill Univ., Montreal (Quebec). McLennan Library.

    For the study of mass communication in social, cultural and political contexts, this annotated resource guide presents a list of materials available in the McGill University Libraries in Montreal, Canada. As a select bibliography, the guide concentrates on current sources, although some historical coverage of newspaper and journalism is included.…

  9. The retarding ion mass spectrometer on dynamics Explorer-A. [measuring thermal plasma distribution

    NASA Technical Reports Server (NTRS)

    Chappell, C. R.; Fields, S. A.; Baugher, C. R.; Hoffman, J. H.; Hanson, W. B.; Wright, W. W.; Hammack, H. D.; Carignan, G. R.; Nagy, A. F.

    1981-01-01

    An instrument designed to measure the details of the thermal plasma distribution combines the ion temperature-determining capability of the retarding potential analyzer with the compositional capabilities of the mass spectrometer and adds multiple sensor heads to sample all directions relative to the spacecraft ram directions. The retarding ion mass spectrometer, its operational modes and calibration are described as well as the data reduction plan, and the anticipated results.

  10. Development and Evaluation of a Reverse-Entry Ion Source Orbitrap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Poltash, Michael L.; McCabe, Jacob W.; Patrick, John W.; Laganowsky, Arthur; Russell, David H.

    2018-05-01

    As a step towards development of a high-resolution ion mobility mass spectrometer using the orbitrap mass analyzer platform, we describe herein a novel reverse-entry ion source (REIS) coupled to the higher-energy C-trap dissociation (HCD) cell of an orbitrap mass spectrometer with extended mass range. Development of the REIS is a first step in the development of a drift tube ion mobility-orbitrap MS. The REIS approach retains the functionality of the commercial instrument ion source which permits the uninterrupted use of the instrument during development as well as performance comparisons between the two ion sources. Ubiquitin (8.5 kDa) and lipid binding to the ammonia transport channel (AmtB, 126 kDa) protein complex were used as model soluble and membrane proteins, respectively, to evaluate the performance of the REIS instrument. Mass resolution obtained with the REIS is comparable to that obtained using the commercial ion source. The charge state distributions for ubiquitin and AmtB obtained on the REIS are in agreement with previous studies which suggests that the REIS-orbitrap EMR retains native structure in the gas phase.

  11. Development and Evaluation of a Reverse-Entry Ion Source Orbitrap Mass Spectrometer.

    PubMed

    Poltash, Michael L; McCabe, Jacob W; Patrick, John W; Laganowsky, Arthur; Russell, David H

    2018-05-23

    As a step towards development of a high-resolution ion mobility mass spectrometer using the orbitrap mass analyzer platform, we describe herein a novel reverse-entry ion source (REIS) coupled to the higher-energy C-trap dissociation (HCD) cell of an orbitrap mass spectrometer with extended mass range. Development of the REIS is a first step in the development of a drift tube ion mobility-orbitrap MS. The REIS approach retains the functionality of the commercial instrument ion source which permits the uninterrupted use of the instrument during development as well as performance comparisons between the two ion sources. Ubiquitin (8.5 kDa) and lipid binding to the ammonia transport channel (AmtB, 126 kDa) protein complex were used as model soluble and membrane proteins, respectively, to evaluate the performance of the REIS instrument. Mass resolution obtained with the REIS is comparable to that obtained using the commercial ion source. The charge state distributions for ubiquitin and AmtB obtained on the REIS are in agreement with previous studies which suggests that the REIS-orbitrap EMR retains native structure in the gas phase. Graphical Abstract ᅟ.

  12. Development of portable mass spectrometer with electron cyclotron resonance ion source for detection of chemical warfare agents in air.

    PubMed

    Urabe, Tatsuya; Takahashi, Kazuya; Kitagawa, Michiko; Sato, Takafumi; Kondo, Tomohide; Enomoto, Shuichi; Kidera, Masanori; Seto, Yasuo

    2014-01-01

    A portable mass spectrometer with an electron cyclotron resonance ion source (miniECRIS-MS) was developed. It was used for in situ monitoring of trace amounts of chemical warfare agents (CWAs) in atmospheric air. Instrumental construction and parameters were optimized to realize a fast response, high sensitivity, and a small body size. Three types of CWAs, i.e., phosgene, mustard gas, and hydrogen cyanide were examined to check if the mass spectrometer was able to detect characteristic elements and atomic groups. From the results, it was found that CWAs were effectively ionized in the miniECRIS-MS, and their specific signals could be discerned over the background signals of air. In phosgene, the signals of the 35Cl+ and 37Cl+ ions were clearly observed with high dose-response relationships in the parts-per-billion level, which could lead to the quantitative on-site analysis of CWAs. A parts-per-million level of mustard gas, which was far lower than its lethal dosage (LCt50), was successfully detected with a high signal-stability of the plasma ion source. It was also found that the chemical forms of CWAs ionized in the plasma, i.e., monoatomic ions, fragment ions, and molecular ions, could be detected, thereby enabling the effective identification of the target CWAs. Despite the disadvantages associated with miniaturization, the overall performance (sensitivity and response time) of the miniECRIS-MS in detecting CWAs exceeded those of sector-type ECRIS-MS, showing its potential for on-site detection in the future. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror

    NASA Astrophysics Data System (ADS)

    Tsai, Hai-En; Wang, Xiaoming; Shaw, Joseph M.; Li, Zhengyan; Arefiev, Alexey V.; Zhang, Xi; Zgadzaj, Rafal; Henderson, Watson; Khudik, V.; Shvets, G.; Downer, M. C.

    2015-02-01

    We present an in-depth experimental-computational study of the parameters necessary to optimize a tunable, quasi-monoenergetic, efficient, low-background Compton backscattering (CBS) x-ray source that is based on the self-aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The main findings are (1) an LPA driven in the blowout regime by 30 TW, 30 fs laser pulses produce not only a high-quality, tunable, quasi-monoenergetic electron beam, but also a high-quality, relativistically intense (a0 ˜ 1) spent drive pulse that remains stable in profile and intensity over the LPA tuning range. (2) A thin plastic film near the gas jet exit retro-reflects the spent drive pulse efficiently into oncoming electrons to produce CBS x-rays without detectable bremsstrahlung background. Meanwhile, anomalous far-field divergence of the retro-reflected light demonstrates relativistic "denting" of the PM. Exploiting these optimized LPA and PM conditions, we demonstrate quasi-monoenergetic (50% FWHM energy spread), tunable (75-200 KeV) CBS x-rays, characteristics previously achieved only on more powerful laser systems by CBS of a split-off, counter-propagating pulse. Moreover, laser-to-x-ray photon conversion efficiency (˜6 × 10-12) exceeds that of any previous LPA-based quasi-monoenergetic Compton source. Particle-in-cell simulations agree well with the measurements.

  14. Plasma focus sources: Supplement to the Neutron Resonance Radiography Workshop proceedings

    NASA Astrophysics Data System (ADS)

    Nardi, Vittorio; Brzosko, Jan

    1989-01-01

    Since their discovery, plasma focus discharges have been recognized as very intense pulsed sources of deuterium-deuterium (D-D) or deuterium-tritium (D-T) fusion-reaction neutrons, with outstanding capabilities. Specifically, the total neutron emission/shot, Y (sub n), and the rate of neutron emission, Y (sub n), of an optimized plasma focus (PF) are higher than the corresponding quantities observed in any other type of pinched discharge at the same level of powering energy W (sub 0). Recent developments have led to the concept and experimental demonstration of an Advanced Plasma Focus System (APF) that consists of a Mather-geometry plasma focus in which field distortion elements (FDEs) are inserted in the inter-electrode gap for increasing the neutron yield/shot, Y (sub n). The FDE-induced redistribution of the plasma current increases Y (sub n) by a factor approximate to or greater than 5 to 10 above the value obtained without FDEs under otherwise identical conditions of operation of the plasma focus. For example, an APF that is fed by a fast capacitor bank with an energy, W (sub 0) = 6 kJ, and voltage, V (sub 0) = 16.5 kV provides Y (sub n) congruent to 4 x 10 to the 9th D-D neutrons/shot (pure D2 filling) and Y (sub n) = 4 x 10 to the 11th D-T neutrons/shot (filling is 50 pct deuterium and 50 pct tritium). The FDE-induced increase of Y (sub n) for fixed values of (W sub 0, V sub 0), the observed scaling law Y (sub n) proportional to W (sub 0) squared for optimized plasma focus systems, and our experience with neutron scattering in bulk objects lead us to the conclusion that we can use an APF as a source of high-intensity neutron pulses (10 to the 14th n/pulse) in the field off neutron radiography (surface and bulk) with a nanosecond or millisecond time resolution.

  15. Quantitative bioanalysis of strontium in human serum by inductively coupled plasma-mass spectrometry

    PubMed Central

    Somarouthu, Srikanth; Ohh, Jayoung; Shaked, Jonathan; Cunico, Robert L; Yakatan, Gerald; Corritori, Suzana; Tami, Joe; Foehr, Erik D

    2015-01-01

    Aim: A bioanalytical method using inductively-coupled plasma-mass spectrometry to measure endogenous levels of strontium in human serum was developed and validated. Results & methodology: This article details the experimental procedures used for the method development and validation thus demonstrating the application of the inductively-coupled plasma-mass spectrometry method for quantification of strontium in human serum samples. The assay was validated for specificity, linearity, accuracy, precision, recovery and stability. Significant endogenous levels of strontium are present in human serum samples ranging from 19 to 96 ng/ml with a mean of 34.6 ± 15.2 ng/ml (SD). Discussion & conclusion: Calibration procedures and sample pretreatment were simplified for high throughput analysis. The validation demonstrates that the method was sensitive, selective for quantification of strontium (88Sr) and is suitable for routine clinical testing of strontium in human serum samples. PMID:28031925

  16. Development of the front end test stand and vessel for extraction and source plasma analyses negative hydrogen ion sources at the Rutherford Appleton Laboratory.

    PubMed

    Lawrie, S R; Faircloth, D C; Letchford, A P; Perkins, M; Whitehead, M O; Wood, T; Gabor, C; Back, J

    2014-02-01

    The ISIS pulsed spallation neutron and muon facility at the Rutherford Appleton Laboratory (RAL) in the UK uses a Penning surface plasma negative hydrogen ion source. Upgrade options for the ISIS accelerator system demand a higher current, lower emittance beam with longer pulse lengths from the injector. The Front End Test Stand is being constructed at RAL to meet the upgrade requirements using a modified ISIS ion source. A new 10% duty cycle 25 kV pulsed extraction power supply has been commissioned and the first meter of 3 MeV radio frequency quadrupole has been delivered. Simultaneously, a Vessel for Extraction and Source Plasma Analyses is under construction in a new laboratory at RAL. The detailed measurements of the plasma and extracted beam characteristics will allow a radical overhaul of the transport optics, potentially yielding a simpler source configuration with greater output and lifetime.

  17. The Abundance of Helium in the Source Plasma of Solar Energetic Particles

    NASA Astrophysics Data System (ADS)

    Reames, Donald V.

    2017-11-01

    Studies of patterns of abundance enhancements of elements, relative to solar coronal abundances, in large solar energetic-particle (SEP) events, and of their power-law dependence on the mass-to-charge ratio, A/Q, of the ions, have been used to determine the effective source-plasma temperature, T, that defines the Q-values of the ions. We find that a single assumed value for the coronal reference He/O ratio in all SEP events is often inconsistent with the transport-induced power-law trend of the other elements. In fact, the coronal He/O varies rather widely from one SEP event to another. In the large Fe-rich SEP events with T ≈ 3 MK, where shock waves, driven out by coronal mass ejections (CMEs), have reaccelerated residual ions from impulsive suprathermal events that occur earlier in solar active regions, He/O ≈ 90, a ratio similar to that in the slow solar wind, which may also originate from active regions. Ions in the large SEP events with T < 2 MK may be accelerated outside active regions, and have values of 40 ≤ He/O ≤ 60. Mechanisms that determine coronal abundances, including variations of He/O, are likely to occur near the base of the corona (at ≈ 1.1 RS) and thus to affect both SEPs (at 2 - 3 RS) and the solar wind. Other than He, reference coronal abundances for heavier elements show little temperature dependence or systematic difference between SEP events; He, the element with the highest first-ionization potential, is unique. The CME-driven shock waves probe the same regions of space, at ≈ 2 RS near active regions, which are also likely sources of the slow solar wind, providing complementary information on conditions in those regions.

  18. A study of single and binary ion plasma expansion into laboratory-generated plasma wakes

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth Herbert, Jr.

    1988-01-01

    Plasma expansion into the wake of a large rectangular plate immersed in a collisionless, supersonic plasma was investigated in laboratory experiments. The experimental conditions address both single ion and binary ion plasma flows for the case of a body whose size is large in comparison with the Debye length, when the potential difference between the body and the plasma is relatively small. A new plasma source was developed to generate equi-velocity, binary ion plasma flows, which allows access to new parameter space that have previously been unavailable for laboratory studies. Specifically, the new parameters are the ionic mass ratio and the ionic component density ratio. In a series of experiments, a krypton-neon plasma is employed where the ambient density ratio of neon to krypton is varied more than an order of magnitude. The expansion in both the single ion and binary ion plasma cases is limited to early times, i.e., a few ion plasma periods, by the combination of plasma density, plasma drift speed, and vacuum chamber size, which prevented detailed comparison with self-similar theory.

  19. Strong Turbulence in Alkali Halide Negative Ion Plasmas

    NASA Astrophysics Data System (ADS)

    Sheehan, Daniel

    1999-11-01

    Negative ion plasmas (NIPs) are charge-neutral plasmas in which the negative charge is dominated by negative ions rather than electrons. They are found in laser discharges, combustion products, semiconductor manufacturing processes, stellar atmospheres, pulsar magnetospheres, and the Earth's ionosphere, both naturally and man-made. They often display signatures of strong turbulence^1. Development of a novel, compact, unmagnetized alkali halide (MX) NIP source will be discussed, it incorporating a ohmically-heated incandescent (2500K) tantulum solenoid (3cm dia, 15 cm long) with heat shields. The solenoid ionizes the MX vapor and confines contaminant electrons, allowing a very dry (electron-free) source. Plasma densities of 10^10 cm-3 and positive to negative ion mass ratios of 1 <= fracm_+m- <= 20 are achievable. The source will allow tests of strong turbulence theory^2. 1 Sheehan, D.P., et al., Phys. Fluids B5, 1593 (1993). 2 Tsytovich, V. and Wharton, C.W., Comm. Plasma Phys. Cont. Fusion 4, 91 (1978).

  20. Characterizing Long-term Contaminant Mass Discharge and the Relationship Between Reductions in Discharge and Reductions in Mass for DNAPL Source Areas

    PubMed Central

    Matthieu, D.E.; Carroll, K.C.; Mainhagu, J.; Morrison, C.; McMillan, A.; Russo, A.; Plaschke, M.

    2013-01-01

    The objective of this study was to characterize the temporal behavior of contaminant mass discharge, and the relationship between reductions in contaminant mass discharge and reductions in contaminant mass, for a very heterogeneous, highly contaminated source-zone field site. Trichloroethene is the primary contaminant of concern, and several lines of evidence indicate the presence of organic liquid in the subsurface. The site is undergoing groundwater extraction for source control, and contaminant mass discharge has been monitored since system startup. The results show a significant reduction in contaminant mass discharge with time, decreasing from approximately 1 to 0.15 kg/d. Two methods were used to estimate the mass of contaminant present in the source area at the initiation of the remediation project. One was based on a comparison of two sets of core data, collected 3.5 years apart, which suggests that a significant (~80%) reduction in aggregate sediment-phase TCE concentrations occurred between sampling events. The second method was based on fitting the temporal contaminant mass discharge data with a simple exponential source-depletion function. Relatively similar estimates, 784 and 993 kg, respectively, were obtained with the two methods. These data were used to characterize the relationship between reductions in contaminant mass discharge (CMDR) and reductions in contaminant mass (MR). The observed curvilinear relationship exhibits a reduction in contaminant mass discharge essentially immediately upon initiation of mass reduction. This behavior is consistent with a system wherein significant quantities of mass are present in hydraulically poorly accessible domains for which mass removal is influenced by rate-limited mass transfer. The results obtained from the present study are compared to those obtained from other field studies to evaluate the impact of system properties and conditions on mass-discharge and mass-removal behavior. The results indicated that

  1. A Planar Source of Atmospheric-Pressure Plasma Jet

    NASA Astrophysics Data System (ADS)

    Zhdanova, O. S.; Kuznetsov, V. S.; Panarin, V. A.; Skakun, V. S.; Sosnin, E. A.; Tarasenko, V. F.

    2018-01-01

    In a single-barrier discharge with voltage sharpening and low gas consumption (up to 1 L/min), plane atmospheric pressure plasma jets with a width of up to 3 cm and length of up to 4 cm in air are formed in the slit geometry of the discharge zone. The energy, temperature, and spectral characteristics of the obtained jets have been measured. The radiation spectrum contains intense maxima corresponding to vibrational transitions of the second positive system of molecular nitrogen N2 ( C 3Π u → B 3Π g ) and comparatively weak transition lines of the first positive system of the N 2 + ion ( B 2Σ u + → X 2Σ g ). By an example of inactivation of the Staphylococcus aureus culture (strain ATCC 209), it is shown that plasma is a source of chemically active particles providing the inactivation of microorganisms.

  2. Electromagnetic diagnostics of ECR-Ion Sources plasmas: optical/X-ray imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Mascali, D.; Castro, G.; Altana, C.; Caliri, C.; Mazzaglia, M.; Romano, F. P.; Leone, F.; Musumarra, A.; Naselli, E.; Reitano, R.; Torrisi, G.; Celona, L.; Cosentino, L. G.; Giarrusso, M.; Gammino, S.

    2017-12-01

    Magnetoplasmas in ECR-Ion Sources are excited from gaseous elements or vapours by microwaves in the range 2.45-28 GHz via Electron Cyclotron Resonance. A B-minimum, magnetohydrodynamic stable configuration is used for trapping the plasma. The values of plasma density, temperature and confinement times are typically ne= 1011-1013 cm-3, 01 eVplasmas, in the optical/X-ray domain. Fast Silicon Drift detectors with high energy resolution of 125 eV at 5.9 keV have been used for the characterization of plasma emission at 02plasmas have been measured for different values of neutral pressure, microwave power and magnetic field profile (they are critical for high-power proton sources).

  3. Theoretical and experimental studies of a planar inductive coupled rf plasma source as the driver in simulator facility (ISTAPHM) of interactions of waves with the edge plasma on tokamaks

    NASA Astrophysics Data System (ADS)

    Ghanei, V.; Nasrabadi, M. N.; Chin, O.-H.; Jayapalan, K. K.

    2017-11-01

    This research aims to design and build a planar inductive coupled RF plasma source device which is the driver of the simulator project (ISTAPHM) of the interactions between ICRF Antenna and Plasma on tokamak by using the AMPICP model. For this purpose, a theoretical derivation of the distribution of the RF magnetic field in the plasma-filled reactor chamber is presented. An experimental investigation of the field distributions is described and Langmuir measurements are developed numerically. A comparison of theory and experiment provides an evaluation of plasma parameters in the planar ICP reactor. The objective of this study is to characterize the plasma produced by the source alone. We present the results of the first analysis of the plasma characteristics (plasma density, electron temperature, electron-ion collision frequency, particle fluxes and their velocities, stochastic frequency, skin depth and electron energy distribution functions) as function of the operating parameters (injected power, neutral pressure and magnetic field) as measured with fixed and movable Langmuir probes. The plasma is currently produced only by the planar ICP. The exact goal of these experiments is that the produced plasma by external source can exist as a plasma representative of the edge of tokamaks.

  4. 2MASS Extended Source Catalog: Overview and Algorithms

    NASA Technical Reports Server (NTRS)

    Jarrett, T.; Chester, T.; Cutri, R.; Schneider, S.; Skrutskie, M.; Huchra, J.

    1999-01-01

    The 2 Micron All-Sky Survey (2MASS)will observe over one-million galaxies and extended Galactic sources covering the entire sky at wavelenghts between 1 and 2 m. Most of these galaxies, from 70 to 80%, will be newly catalogued objetcs.

  5. Solid-phase microextraction low temperature plasma mass spectrometry for the direct and rapid analysis of chemical warfare simulants in complex mixtures.

    PubMed

    Dumlao, Morphy C; Jeffress, Laura E; Gooding, J Justin; Donald, William A

    2016-06-21

    Solid-phase microextraction (SPME) is directly integrated with low temperature plasma ionisation mass spectrometry to rapidly detect organophosphate chemical warfare agent simulants and their hydrolysis products in chemical mixtures, including urine. In this sampling and ionization method, the fibre serves: (i) to extract molecules from their native environment, and (ii) as the ionization electrode that is used to desorb and ionize molecules directly from the SPME surface. By use of a custom fabricated SPME fibre consisting of a stainless steel needle coated with a Linde Type A (LTA) zeolitic microporous material and low temperature plasma mass spectrometry, protonated dimethyl methylphosphonate (DMMP), diethyl ethylphosphonate (DEEP) and pinacolyl methylphosphonic acid (PinMPA) can be detected at less than 100 ppb directly in water and urine. Organophosphates were not readily detected by this approach using an uncoated needle in negative control experiments. The use of the LTA coating significantly outperformed the use of a high alumina Zeolite Socony Mobil-5 (ZSM-5) coating of comparable thickness that is significantly less polar than LTA. By conditioning the LTA probe by immersion in an aqueous CuSO4 solution, the ion abundance for protonated DMMP increased by more than 300% compared to that obtained without any conditioning. Sample recovery values were between 96 and 100% for each analyte. The detection of chemical warfare agent analogues and hydrolysis products required less than 2 min per sample. A key advantage of this sampling and ionization method is that analyte ions can be directly and rapidly sampled from chemical mixtures, such as urine and seawater, without sample preparation or chromatography for sensitive detection by mass spectrometry. This ion source should prove beneficial for portable mass spectrometry applications because relatively low detection limits can be obtained without the use of compressed gases, fluid pumps, and lasers. Moreover, the

  6. Mass- and energy-analyses of ions from plasma by means of a miniature Thomson spectrometer.

    PubMed

    Sadowski, M J; Czaus, K; Malinowski, K; Skladnik-Sadowska, E; Zebrowski, J

    2009-05-01

    The paper presents an improved version of a miniature mass-spectrometer of the Thomson-type, which has been adopted for ion analysis near the dense plasma region inside a vacuum chamber. Problems connected with the separation of ions from plasma streams are considered. Input diaphragms and pumping systems, needed to ensure good vacuum inside the analyzing region, are described. The application of the miniature Thomson-type analyzer is illustrated by ion parabolas recorded in plasma-focus facility and rod plasma injector experiment. A quantitative analysis of the recorded ion parabolas is presented. Factors influencing accuracy of the ion analysis are discussed and methods of the spectrometer calibration are described.

  7. Two new planar coil designs for a high pressure radio frequency plasma source

    NASA Astrophysics Data System (ADS)

    Munsat, T.; Hooke, W. M.; Bozeman, S. P.; Washburn, S.

    1995-04-01

    Two planar coil designs for a high pressure rf plasma source are investigated using spectroscopic techniques and circuit analysis. In an Ar plasma a truncated version of the commonly used ``spiral'' coil is found to produce improvements in peak electron density of 20% over the full version. A coil with figure-8 geometry is found to move plasma inhomogeneities off of center and produce electron densities comparable to the spiral coils. Both of these characteristics are advantageous in industrial applications. Coil design characteristics for favorable power coupling are also determined, including the necessity of closed hydrodynamic plasma loops and the drawback of closely situated antiparallel coil currents.

  8. The low-cost microwave plasma sources for science and industry applications

    NASA Astrophysics Data System (ADS)

    Tikhonov, V. N.; Aleshin, S. N.; Ivanov, I. A.; Tikhonov, A. V.

    2017-11-01

    Microwave plasma torches proposed in the world market are built according to a scheme that can be called classical: power supply - magnetron head - microwave isolator with water load - reflected power meter - matching device - actual plasma torch - sliding short circuit. The total cost of devices from this list with a microwave generator of 3 kW in the performance, for example, of SAIREM (France), is about 17,000 €. We have changed the classical scheme of the microwave plasmathrone and optimised design of the waveguide channel. As a result, we can supply simple and reliable sources of microwave plasma (complete with our low-budget microwave generator up to 3 kW and a simple plasmathrone of atmospheric pressure) at a price from 3,000 €.

  9. Evaluation of Long-term Performance of Enhanced Anaerobic Source Zone Bioremediation using mass flux

    NASA Astrophysics Data System (ADS)

    Haluska, A.; Cho, J.; Hatzinger, P.; Annable, M. D.

    2017-12-01

    Chlorinated ethene DNAPL source zones in groundwater act as potential long term sources of contamination as they dissolve yielding concentrations well above MCLs, posing an on-going public health risk. Enhanced bioremediation has been applied to treat many source zones with significant promise, but long-term sustainability of this technology has not been thoroughly assessed. This study evaluated the long-term effectiveness of enhanced anaerobic source zone bioremediation at chloroethene contaminated sites to determine if the treatment prevented contaminant rebound and removed NAPL from the source zone. Long-term performance was evaluated based on achieving MCL-based contaminant mass fluxes in parent compound concentrations during different monitoring periods. Groundwater concertation versus time data was compiled for 6-sites and post-remedial contaminant mass flux data was then measured using passive flux meters at wells both within and down-gradient of the source zone. Post-remedial mass flux data was then combined with pre-remedial water quality data to estimate pre-remedial mass flux. This information was used to characterize a DNAPL dissolution source strength function, such as the Power Law Model and the Equilibrium Stream tube model. The six-sites characterized for this study were (1) Former Charleston Air Force Base, Charleston, SC; (2) Dover Air Force Base, Dover, DE; (3) Treasure Island Naval Station, San Francisco, CA; (4) Former Raritan Arsenal, Edison, NJ; (5) Naval Air Station, Jacksonville, FL; and, (6) Former Naval Air Station, Alameda, CA. Contaminant mass fluxes decreased for all the sites by the end of the post-treatment monitoring period and rebound was limited within the source zone. Post remedial source strength function estimates suggest that decreases in contaminant mass flux will continue to occur at these sites, but a mass flux based on MCL levels may never be exceeded. Thus, site clean-up goals should be evaluated as order

  10. Associations of circulating plasma microRNAs with age, body mass index and sex in a population-based study.

    PubMed

    Ameling, Sabine; Kacprowski, Tim; Chilukoti, Ravi Kumar; Malsch, Carolin; Liebscher, Volkmar; Suhre, Karsten; Pietzner, Maik; Friedrich, Nele; Homuth, Georg; Hammer, Elke; Völker, Uwe

    2015-10-14

    Non-cellular blood circulating microRNAs (plasma miRNAs) represent a promising source for the development of prognostic and diagnostic tools owing to their minimally invasive sampling, high stability, and simple quantification by standard techniques such as RT-qPCR. So far, the majority of association studies involving plasma miRNAs were disease-specific case-control analyses. In contrast, in the present study, plasma miRNAs were analysed in a sample of 372 individuals from a population-based cohort study, the Study of Health in Pomerania (SHIP). Quantification of miRNA levels was performed by RT-qPCR using the Exiqon Serum/Plasma Focus microRNA PCR Panel V3.M covering 179 different miRNAs. Of these, 155 were included in our analyses after quality-control. Associations between plasma miRNAs and the phenotypes age, body mass index (BMI), and sex were assessed via a two-step linear regression approach per miRNA. The first step regressed out the technical parameters and the second step determined the remaining associations between the respective plasma miRNA and the phenotypes of interest. After regressing out technical parameters and adjusting for the respective other two phenotypes, 7, 15, and 35 plasma miRNAs were significantly (q < 0.05) associated with age, BMI, and sex, respectively. Additional adjustment for the blood cell parameters identified 12 and 19 miRNAs to be significantly associated with age and BMI, respectively. Most of the BMI-associated miRNAs likely originate from liver. Sex-associated differences in miRNA levels were largely determined by differences in blood cell parameters. Thus, only 7 as compared to originally 35 sex-associated miRNAs displayed sex-specific differences after adjustment for blood cell parameters. These findings emphasize that circulating miRNAs are strongly impacted by age, BMI, and sex. Hence, these parameters should be considered as covariates in association studies based on plasma miRNA levels. The established experimental

  11. Measuring xenon in human plasma and blood by gas chromatography/mass spectrometry.

    PubMed

    Thevis, Mario; Piper, Thomas; Geyer, Hans; Thomas, Andreas; Schaefer, Maximilian S; Kienbaum, Peter; Schänzer, Wilhelm

    2014-07-15

    Due to the favorable pharmacokinetic properties and minimal side effects of xenon, its use in modern anesthesia has been well accepted, and recent studies further demonstrated the intra- and postoperative neuro-, cardio-, and reno-protective action of the noble gas. Since the production of the hypoxia-inducible factor 1α (HIF-1α) and its downstream effector erythropoietin as well as noradrenalin reuptake inhibition have been found to play key roles in this context, the question arose as to whether the use of xenon is a matter for doping controls and preventive doping research. The aim of the present study was hence to evaluate whether the (ab)use of xenon can be detected from doping control samples with the instrumentation commonly available in sports drug testing laboratories. Plasma was saturated with xenon according to reported protocols, and the target analyte was measured by means of gas chromatography/time-of-flight and triple quadrupole mass spectrometry with headspace injection. Recording the accurate mass of three major xenon isotopes at m/z 128.9048, 130.9045 and 131.9042 allowed for the unequivocal identification of the analyte and the detection assay was characterized concerning limit of detection (LOD), intraday precision, and specificity as well as analyte recovery under different storage conditions. Xenon was detected in fortified plasma samples with detection limits of approximately 0.5 nmol/mL to 50 nmol/mL, depending on the type of mass spectrometer used. The method characteristics of intraday precision (coefficient of variation <20%) and specificity demonstrated the fitness-for-purpose of the analytical approach to unambiguously detect xenon at non-physiological concentrations in human plasma and blood. Eventually, authentic plasma and blood samples collected pre-, intra-, and post-operative (4, 8, and 24 h) were positively analyzed after storage for up to 30 h, and provided proof-of-concept for the developed assay. If relevant to

  12. A high brightness source for nano-probe secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Smith, N. S.; Tesch, P. P.; Martin, N. P.; Kinion, D. E.

    2008-12-01

    The two most prevalent ion source technologies in the field of surface analysis and surface machining are the Duoplasmatron and the liquid metal ion source (LMIS). There have been many efforts in this area of research to develop an alternative source [ S.K. Guharay, J. Orloff, M. Wada, IEEE Trans. Plasma Sci. 33 (6) (2005) 1911; N.S. Smith, W.P. Skoczylas, S.M. Kellogg, D.E. Kinion, P.P. Tesch, O. Sutherland, A. Aanesland, R.W. Boswell, J. Vac. Sci. Technol. B 24 (6) (2006) 2902-2906] with the brightness of a LMIS and yet the ability to produce secondary ion yield enhancing species such as oxygen. However, to date a viable alternative has not been realized. The high brightness and small virtual source size of the LMIS are advantageous for forming high resolution probes but a significant disadvantage when beam currents in excess of 100 nA are required, due to the effects of spherical aberration from the optical column. At these higher currents a source with a high angular intensity is optimal and in fact the relatively moderate brightness of today's plasma ion sources prevail in this operating regime. Both the LMIS and Duoplasmatron suffer from a large axial energy spread resulting in further limitations when forming focused beams at the chromatic limit where the figure-of-merit is inversely proportional to the square of the energy spread. Also, both of these ion sources operate with a very limited range of ion species. This article reviews some of the latest developments and some future potential in this area of instrument development. Here we present an approach to source development that could lead to oxygen ion beam SIMS imaging with 10 nm resolution, using a 'broad area' RF gas phase ion source.

  13. A contoured gap coaxial plasma gun with injected plasma armature.

    PubMed

    Witherspoon, F Douglas; Case, Andrew; Messer, Sarah J; Bomgardner, Richard; Phillips, Michael W; Brockington, Samuel; Elton, Raymond

    2009-08-01

    A new coaxial plasma gun is described. The long term objective is to accelerate 100-200 microg of plasma with density above 10(17) cm(-3) to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately 200 microg has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.

  14. Dynamics of ion beam charge neutralization by ferroelectric plasma sources

    DOE PAGES

    Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; ...

    2016-04-27

    Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams, as has been demonstrated on the Neutralized Drift Compression Experiment NDCX-I and NDCX-II. This article presents experimental results on charge neutralization of a high-perveance 38 keV Ar + beam by a plasma produced in a FEPS discharge. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable with sufficiently dense FEPS plasma. The transverse electrostatic potential of the ion beam is reduced from 15V before neutralization to 0.3more » V, implying that the energy of the neutralizing electrons is below 0.3 eV. Measurements of the time-evolution of beam radius show that near-complete charge neutralization is established similar to –5 μs after the driving pulse is applied to the FEPS and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub-mu s surface discharge. Measurements of current flow in the driving circuit of the FEPS show the existence of electron emission into vacuum, which lasts for tens of mu s after the high voltage pulse is applied. Lastly, it is argued that the beam is neutralized by the plasma produced by this process and not by a surface discharge plasma that is produced at the instant the high-voltage pulse is applied.« less

  15. Simultaneous determination of iron, cadmium, zinc, copper, nickel, lead, and uranium in seawater by stable isotope dilution spark source mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mykytiuk, A.P.; Russell, D.S.; Sturgeon, R.E.

    Trace concentrations (ng/mL) of Fe, Cd, Zn, Cu, Ni, Pb, U, and Co have been determined in seawater by stable isotope dilution spark source mass spectrometry. The seawater samples were preconcentrated on the ion exchanger Chelex-100 and the concentrate was evaporated on a graphite or silver electrode. The results are compared with those obtained by graphite furnace atomic absorption spectrometry and inductively coupled plasma emission spectrometry. The technique avoids the use of calibration standards and is capable of producing results in cases where the analyte is only partially recovered. 2 tables.

  16. Quantitative, multiplexed workflow for deep analysis of human blood plasma and biomarker discovery by mass spectrometry.

    PubMed

    Keshishian, Hasmik; Burgess, Michael W; Specht, Harrison; Wallace, Luke; Clauser, Karl R; Gillette, Michael A; Carr, Steven A

    2017-08-01

    Proteomic characterization of blood plasma is of central importance to clinical proteomics and particularly to biomarker discovery studies. The vast dynamic range and high complexity of the plasma proteome have, however, proven to be serious challenges and have often led to unacceptable tradeoffs between depth of coverage and sample throughput. We present an optimized sample-processing pipeline for analysis of the human plasma proteome that provides greatly increased depth of detection, improved quantitative precision and much higher sample analysis throughput as compared with prior methods. The process includes abundant protein depletion, isobaric labeling at the peptide level for multiplexed relative quantification and ultra-high-performance liquid chromatography coupled to accurate-mass, high-resolution tandem mass spectrometry analysis of peptides fractionated off-line by basic pH reversed-phase (bRP) chromatography. The overall reproducibility of the process, including immunoaffinity depletion, is high, with a process replicate coefficient of variation (CV) of <12%. Using isobaric tags for relative and absolute quantitation (iTRAQ) 4-plex, >4,500 proteins are detected and quantified per patient sample on average, with two or more peptides per protein and starting from as little as 200 μl of plasma. The approach can be multiplexed up to 10-plex using tandem mass tags (TMT) reagents, further increasing throughput, albeit with some decrease in the number of proteins quantified. In addition, we provide a rapid protocol for analysis of nonfractionated depleted plasma samples analyzed in 10-plex. This provides ∼600 quantified proteins for each of the ten samples in ∼5 h of instrument time.

  17. Studies for the Europagenic Plasma Source in Jupiter's Inner Magnetosphere during the Galileo Europa Mission

    NASA Technical Reports Server (NTRS)

    Smyth, William H.

    2004-01-01

    Progress in research to understand the three-dimensional nature of the Europagenic plasma torus is summarized. Efforts to improve the plasma torus description near Europa's orbit have included a better understanding of Europa's orbit and an improved description of the planetary magnetic field. New plasma torus chemistry for molecular and atomic species has been introduced and implemented in Europa neutral cloud models. Preliminary three-dimensional model calculations for Europa's neutral clouds and their plasma sources are presented.

  18. Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Hai-En; Wang, Xiaoming; Shaw, Joseph M.

    2015-02-15

    We present an in-depth experimental-computational study of the parameters necessary to optimize a tunable, quasi-monoenergetic, efficient, low-background Compton backscattering (CBS) x-ray source that is based on the self-aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The main findings are (1) an LPA driven in the blowout regime by 30 TW, 30 fs laser pulses produce not only a high-quality, tunable, quasi-monoenergetic electron beam, but also a high-quality, relativistically intense (a{sub 0} ∼ 1) spent drive pulse that remains stable in profile and intensity over the LPA tuning range. (2) A thin plastic film near the gas jetmore » exit retro-reflects the spent drive pulse efficiently into oncoming electrons to produce CBS x-rays without detectable bremsstrahlung background. Meanwhile, anomalous far-field divergence of the retro-reflected light demonstrates relativistic “denting” of the PM. Exploiting these optimized LPA and PM conditions, we demonstrate quasi-monoenergetic (50% FWHM energy spread), tunable (75–200 KeV) CBS x-rays, characteristics previously achieved only on more powerful laser systems by CBS of a split-off, counter-propagating pulse. Moreover, laser-to-x-ray photon conversion efficiency (∼6 × 10{sup −12}) exceeds that of any previous LPA-based quasi-monoenergetic Compton source. Particle-in-cell simulations agree well with the measurements.« less

  19. Penning plasma based simultaneous light emission source of visible and VUV lights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vyas, G. L., E-mail: glvyas27@gmail.com; Prakash, R.; Pal, U. N.

    In this paper, a laboratory-based penning plasma discharge source is reported which has been developed in two anode configurations and is able to produce visible and VUV lights simultaneously. The developed source has simultaneous diagnostics facility using Langmuir probe and optical emission spectroscopy. The two anode configurations, namely, double ring and rectangular configurations, have been studied and compared for optimum use of the geometry for efficient light emissions and recording. The plasma is produced using helium gas and admixture of three noble gases including helium, neon, and argon. The source is capable to produce eight spectral lines for pure heliummore » in the VUV range from 20 to 60 nm and total 24 spectral lines covering the wavelength range 20–106 nm for the admixture of gases. The large range of VUV lines is generated from gaseous admixture rather from the sputtered materials. The recorded spectrum shows that the plasma light radiations in both visible and VUV range are larger in double ring configuration than that of the rectangular configurations at the same discharge operating conditions. To clearly understand the difference, the imaging of the discharge using ICCD camera and particle-in-cell simulation using VORPAL have also been carried out. The effect of ion diffusion, metastable collision with the anode wall and the nonlinear effects are correlated to explain the results.« less

  20. A plasma source driven predator-prey like mechanism as a potential cause of spiraling intermittencies in linear plasma devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiser, D.; Ohno, N.; Tanaka, H.

    2014-03-15

    Three-dimensional global drift fluid simulations are carried out to analyze coherent plasma structures appearing in the NAGDIS-II linear device (nagoya divertor plasma Simulator-II). The numerical simulations reproduce several features of the intermittent spiraling structures observed, for instance, statistical properties, rotation frequency, and the frequency of plasma expulsion. The detailed inspection of the three-dimensional plasma dynamics allows to identify the key mechanism behind the formation of these intermittent events. The resistive coupling between electron pressure and parallel electric field in the plasma source region gives rise to a quasilinear predator-prey like dynamics where the axisymmetric mode represents the prey and themore » spiraling structure with low azimuthal mode number represents the predator. This interpretation is confirmed by a reduced one-dimensional quasilinear model derived on the basis of the findings in the full three-dimensional simulations. The dominant dynamics reveals certain similarities to the classical Lotka-Volterra cycle.« less

  1. Low-Molecular-Weight Plasma Proteome Analysis Using Top-Down Mass Spectrometry.

    PubMed

    Cheon, Dong Huey; Yang, Eun Gyeong; Lee, Cheolju; Lee, Ji Eun

    2017-01-01

    While human plasma has a wealth of diagnostic information regarding the state of the human body in heath and disease, low molecular weight (LMW) proteome (<30 kDa) has been shown to contain a rich source of diagnostic biomarkers. Here we describe a protocol for top-down proteomic analysis to identify and characterize the LMW proteoforms present in four types of human plasma samples without immunoaffinity depletion and with depletion of the top two, six, and seven high-abundance proteins. Each type of plasma sample was first fractionated based on molecular weight using gel-eluted liquid fraction entrapment electrophoresis (GELFrEE). Then, the GELFrEE fractions containing up to 30 kDa were subjected to nanocapillary-LC-MS/MS, and the high-resolution MS and MS/MS data were processed using ProSightPC software. As a result, a total of 442 LMW proteins and cleaved products, including those with posttranslational modifications (PTMs) and single amino acid variations (SAAVs), were identified with a threshold E-value of 1 × 10 -4 from the four types of plasma samples.

  2. Dynamics of Ion Beam Charge Neutralization by Ferroelectric Plasma Sources

    NASA Astrophysics Data System (ADS)

    Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; Kaganovich, Igor D.; Davidson, Ronald C.; Ji, Qing; Persaud, Arun; Seidl, Peter A.; Schenkel, Thomas

    2016-10-01

    Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams. Here we present experimental results on charge neutralization of a high-perveance 38 keV Ar+ beam by a FEPS plasma. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable. The transverse electrostatic potential of the ion beam is reduced from 15 V before neutralization to 0.3 V, implying that the energy of the neutralizing electrons is below 0.3 eV. Near-complete charge neutralization is established 5 μs after the driving pulse is applied to the FEPS, and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub- μs surface discharge. Measurements of current flow in the driving circuit of the FEPS suggest that plasma can be generated for tens of μs after the high voltage pulse is applied. This is confirmed by fast photography of the plasma in the 1-meter long FEPS on NDCX-II, where effective charge neutralization of the beam was achieved with the optimized FEPS timing. This work was supported by the Office of Science of the US Department of Energy under contracts DE-AC0209CH11466 (PPPL) and DE-AC0205CH11231 (LBNL).

  3. Applications of inductively coupled plasma mass spectrometry and laser ablation inductively coupled plasma mass spectrometry in materials science

    NASA Astrophysics Data System (ADS)

    Becker, Johanna Sabine

    2002-12-01

    Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) have been applied as the most important inorganic mass spectrometric techniques having multielemental capability for the characterization of solid samples in materials science. ICP-MS is used for the sensitive determination of trace and ultratrace elements in digested solutions of solid samples or of process chemicals (ultrapure water, acids and organic solutions) for the semiconductor industry with detection limits down to sub-picogram per liter levels. Whereas ICP-MS on solid samples (e.g. high-purity ceramics) sometimes requires time-consuming sample preparation for its application in materials science, and the risk of contamination is a serious drawback, a fast, direct determination of trace elements in solid materials without any sample preparation by LA-ICP-MS is possible. The detection limits for the direct analysis of solid samples by LA-ICP-MS have been determined for many elements down to the nanogram per gram range. A deterioration of detection limits was observed for elements where interferences with polyatomic ions occur. The inherent interference problem can often be solved by applying a double-focusing sector field mass spectrometer at higher mass resolution or by collision-induced reactions of polyatomic ions with a collision gas using an ICP-MS fitted with collision cell. The main problem of LA-ICP-MS is quantification if no suitable standard reference materials with a similar matrix composition are available. The calibration problem in LA-ICP-MS can be solved using on-line solution-based calibration, and different procedures, such as external calibration and standard addition, have been discussed with respect to their application in materials science. The application of isotope dilution in solution-based calibration for trace metal determination in small amounts of noble metals has been developed as a new calibration strategy. This review discusses new

  4. When API Mass Spectrometry Meets Super Atmospheric Pressure Ion Sources

    PubMed Central

    Chen, Lee Chuin

    2015-01-01

    In a tutorial paper on the application of free-jet technique for API-MS, John Fenn mentioned that “…for a number of years and a number of reasons, it has been found advantageous in many situations to carry out the ionization process in gas at pressures up to 1000 Torr or more” (Int. J. Mass Spectrom. 200: 459–478, 2000). In fact, the first ESI mass spectrometer constructed by Yamashita and Fenn had a counter-flow curtain gas source at 1050 Torr (ca. 1.4 atm) to sweep away the neutral (J. Phys. Chem. 88: 4451–4459, 1984). For gaseous ionization using electrospray plume, theoretical analysis also shows that “super-atmospheric operation would be more preferable in space-charge-limited situations.”(Int. J. Mass Spectrom. 300: 182–193, 2011). However, electrospray and the corona-based chemical ion source (APCI) in most commercial instrument are basically operated under an atmospheric pressure ambient, perhaps out of the concern of safety, convenience and simplicity in maintenance. Running the ion source at pressure much higher than 1 atm is not so common, but had been done by a number of groups as well as in our laboratory. A brief review on these ion sources will be given in this paper. PMID:26819912

  5. Development of vacuum ultraviolet absorption spectroscopy system for wide measurement range of number density using a dual-tube inductively coupled plasma light source

    NASA Astrophysics Data System (ADS)

    Kuwahara, Akira; Matsui, Makoto; Yamagiwa, Yoshiki

    2012-12-01

    A vacuum ultraviolet absorption spectroscopy system for a wide measurement range of atomic number densities is developed. Dual-tube inductively coupled plasma was used as a light source. The probe beam profile was optimized for the target number density range by changing the mass flow rate of the inner and outer tubes. This system was verified using cold xenon gas. As a result, the measurement number density range was extended from the conventional two orders to five orders of magnitude.

  6. Adaption of a microwave plasma source for low temperature diamond deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulczynski, M.; Reinhard, D.K.; Asmussen, J.

    1996-12-31

    This report describes the adaption of a microwave plasma reactor for low temperature diamond deposition. The reactor is of a resonant cavity design. Three approaches have been taken to establish plasma conditions for diamond deposition on substrates which are in the range of 450 C to 550 C. In the first, the substrate is heated only by the plasma and the source is operated at pressures on the order of 10 torr, such that the volumetric power density is sufficiently low to achieve these temperatures. In the second, the plasma pressure and microwave input power were reduced and a substratemore » heater was used to maintain the desired deposition temperatures. In the third approach, the plasma pressure and microwave power were increased and a substrate cooler was used to keep the substrate temperature in the desired range. Reactor performance and deposition results will be described for the three configurations. For the plasma heated substrate assembly, substrate dimensions were up to 10 cm diameter. For the heated and cooled substrate assemblies, substrate dimensions were up to 7.5 cm diameter. Deposition results on a variety of substrates will be reported including low-temperature substrates such as borosilicate glass.« less

  7. Experimental investigation of differential confinement effects in a rotating helicon plasma

    NASA Astrophysics Data System (ADS)

    Gueroult, Renaud; Evans, Eugene; Zweben, Stewart J.; Fisch, Nathaniel J.; Levinton, Fred

    2014-10-01

    Although plasmas have long been considered for isotope separation, challenges presented by nuclear waste remediation and nuclear spent fuel reprocessing have recently sparked a renewed interest for high-throughput plasma based mass separation techniques. Different filter concepts relying on rotating plasmas have been proposed to address these needs. However, one of the challenges common to these concepts is the need to control the plasma rotation profile, which is generally assumed to be provided by means of dedicated electrodes. An experimental effort aiming to evaluate the practicality of these plasma filter concepts has recently been started at PPPL. For this purpose, a linear helicon plasma source is used in combination with concentric ring electrodes. Preliminary biasing experiments results indicate floating potential profiles locally suitable for mass discrimination for different gas mixtures (Ar/Ne, Ar/N2, Ar/Kr). Radially resolved spectroscopic measurements and neutral gas composition analysis at two different axial positions are being planned to assess the mass separation effect. Work supported by US DOE under Contract No. DE-AC02-09CH11466.

  8. Development of plasma sources for ICRF heating experiment in KMAX mirror device

    NASA Astrophysics Data System (ADS)

    Sun, Xuan; Liu, Ming; Yi, Hongshen; Lin, Munan; Shi, Peiyun

    2016-10-01

    KMAX, Keda Mirror with AXisymmeticity, is a tandem mirror machine with a length of 10 meters and diameters of 1.2 meters in the central cell and 0.3 meters in the mirror throat. In the past experiments, the plasma was generated by helicon wave launched from the west end. We obtained the blue core mode in argon discharge, however, it cannot provide sufficient plasma for hydrogen discharge, which is at least 1012 cm-3 required for effective ICRF heating. Several attempts have thus been tried or under design to increase the central cell's plasma density: (1) a washer gun with aperture of 1cm has been successfully tested, and a plasma density of 1013 cm-3 was achieved in the west cell near the gun, however, the plasma is only 1011 cm-3 in the central cell possible due to the mirror trapping and/or neutral quenching effect (2) a larger washer gun with aperture of 2.5 cm and a higher power capacitor bank are being assembled in order to generate more plasmas. In addition, how to mitigate the neutrals is under consideration (3) A hot cathode is been designed and will be tested in combination with plasma gun or alone. Preliminary results from those plasma sources will be presented and discussed.

  9. Stellar-mass black holes and ultraluminous x-ray sources.

    PubMed

    Fender, Rob; Belloni, Tomaso

    2012-08-03

    We review the likely population, observational properties, and broad implications of stellar-mass black holes and ultraluminous x-ray sources. We focus on the clear empirical rules connecting accretion and outflow that have been established for stellar-mass black holes in binary systems in the past decade and a half. These patterns of behavior are probably the keys that will allow us to understand black hole feedback on the largest scales over cosmological time scales.

  10. Electromagnetic radiation from filamentary sources in the presence of axially magnetized cylindrical plasma scatterers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Es’kin, V. A.; Ivoninsky, A. V.; Kudrin, A. V., E-mail: kud@rf.unn.ru

    Electromagnetic radiation from filamentary electric-dipole and magnetic-current sources of infinite length in the presence of gyrotropic cylindrical scatterers in the surrounding free space is studied. The scatterers are assumed to be infinitely long, axially magnetized circular plasma columns parallel to the axis of the filamentary source. The field and the radiation pattern of each source are calculated in the case where the source frequency is equal to one of the surface plasmon resonance frequencies of the cylindrical scatterers. It is shown that the presence of even a single resonant magnetized plasma scatterer of small electrical radius or a few suchmore » scatterers significantly affects the total fields of the filamentary sources, so that their radiation patterns become essentially different from those in the absence of scatterers or the presence of isotropic scatterers of the same shape and size. It is concluded that the radiation characteristics of the considered sources can efficiently be controlled using their resonance interaction with the neighboring gyrotropic scatterers.« less

  11. Charge plasma based source/drain engineered Schottky Barrier MOSFET: Ambipolar suppression and improvement of the RF performance

    NASA Astrophysics Data System (ADS)

    Kale, Sumit; Kondekar, Pravin N.

    2018-01-01

    This paper reports a novel device structure for charge plasma based Schottky Barrier (SB) MOSFET on ultrathin SOI to suppress the ambipolar leakage current and improvement of the radio frequency (RF) performance. In the proposed device, we employ dual material for the source and drain formation. Therefore, source/drain is divided into two parts as main source/drain and source/drain extension. Erbium silicide (ErSi1.7) is used as main source/drain material and Hafnium metal is used as source/drain extension material. The source extension induces the electron plasma in the ultrathin SOI body resulting reduction of SB width at the source side. Similarly, drain extension also induces the electron plasma at the drain side. This significantly increases the SB width due to increased depletion at the drain end. As a result, the ambipolar leakage current can be suppressed. In addition, drain extension also reduces the parasitic capacitances of the proposed device to improve the RF performance. The optimization of length and work function of metal used in the drain extension is performed to achieve improvement in device performance. Moreover, the proposed device makes fabrication simpler, requires low thermal budget and free from random dopant fluctuations.

  12. Investigation of a measure of robustness in inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Makonnen, Yoseif; Beauchemin, Diane

    2015-01-01

    In industrial/commercial settings where operators often have minimal expertise in inductively coupled plasma (ICP) mass spectrometry (MS), there is a prevalent need for a response factor indicating robust plasma conditions, which is analogous to the Mg II/Mg I ratio in ICP optical emission spectrometry (OES), whereby a Mg II/Mg I ratio of 10 constitutes robust conditions. While minimizing the oxide ratio usually corresponds to robust conditions, there is no specific target value that is widely accepted as indicating robust conditions. Furthermore, tuning for low oxide ratios does not necessarily guarantee minimal matrix effects, as they really address polyatomic interferences. From experiments, conducted in parallel for both MS and OES, there were some element pairs of similar mass and very different ionization potential that were exploited for such a purpose, the rationale being that, if these elements were ionized to the same extent, then that could be indicative of a robust plasma. The Be II/Li I intensity ratio was directly related to the Mg II/Mg I ratio in OES. Moreover, the 9Be+/7Li+ ratio was inversely related to the CeO+/Ce+ and LaO+/La+ oxide ratios in MS. The effects of different matrices (i.e. 0.01-0.1 M Na) were also investigated and compared to a conventional argon plasma optimized for maximum sensitivity. The suppression effect of these matrices was significantly reduced, if not eliminated in the case of 0.01 M Na, when the 9Be+/7Li+ ratio was around 0.30 on the Varian 820 MS instrument. Moreover, a very similar ratio (0.28) increased robustness to the same extent on a completely different ICP-MS instrument (PerkinElmer NEXION). Much greater robustness was achieved using a mixed-gas plasma with nitrogen in the outer gas and either nitrogen or hydrogen as a sheathing gas, as the 9Be+/7Li+ ratio was then around 1.70. To the best of our knowledge, this is the first report on using a simple analyte intensity ratio, 9Be+/7Li+, to gauge plasma robustness.

  13. Electromagnetic fluctuation spectra of collective oscillations in magnetized Maxwellian equal mass plasmas for low-frequency waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vafin, S.; Schlickeiser, R.; Yoon, P. H.

    Recently, the general electromagnetic fluctuation theory for magnetized plasmas has been used to study the steady-state fluctuation spectra and the total intensity of low-frequency collective weakly damped modes for parallel wave vectors in Maxwellian plasmas. Now, we address the same question with respect to an arbitrary direction of the wave-vector. Here, we analyze this problem for equal mass plasmas. These plasmas are a very good tool to study various plasma phenomena, as they considerably facilitate the theoretical consideration and at the same time provide with their clear physical picture. Finally, we compare our results in the limiting case of parallelmore » wave vectors with the previous study.« less

  14. {sup 252}Cf-plasma desorption mass spectra of bacterial oligosaccharides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elkin, Y.N.; Komandrova, N.A.; Tomshich, S.V.

    1994-07-20

    The possibility has been investigated of using the MSBKh instrument ({sup 252}Cf plasma desorption mass spectrometer) for studying the oligosaccharides of the O-specific chains of bacterial lipopolysaccharides. Experimental results on the ionization of galacturonic acid and of neutral and bacterial oligosaccharides containing NHR and COOH groups have been obtained and are discussed. The instrument has been used for estimating the compositions of fractions in the separation of degradation products of O-specific polysaccharide chains and establishing their structures.

  15. The evolution of the storm-time ring current in response to different characteristics of the plasma source

    NASA Astrophysics Data System (ADS)

    Lemon, C.; Chen, M.; O'Brien, T. P.; Toffoletto, F.; Sazykin, S.; Wolf, R.; Kumar, V.

    2006-12-01

    We present simulation results of the Rice Convection Model-Equilibrium (RCM-E) that test and compare the effect on the storm time ring current of varying the plasma sheet source population characteristics at 6.6 Re during magnetic storms. Previous work has shown that direct injection of ionospheric plasma into the ring current is not a significant source of ring current plasma, suggesting that the plasma sheet is the only source. However, storm time processes in the plasma sheet and inner magnetosphere are very complex, due in large part to the feedback interactions between the plasma distribution, magnetic field, and electric field. We are particularly interested in understanding the role of the plasma sheet entropy parameter (PV^{5/3}, where V=\\int ds/B) in determining the strength and distribution of the ring current in both the main and recovery phases of a storm. Plasma temperature and density can be measured from geosynchrorous orbiting satellites, and these are often used to provide boundary conditions for ring current simulations. However, magnetic field measurements in this region are less commonly available, and there is a relatively poor understanding of the interplay between the plasma and the magnetic field during magnetic storms. The entropy parameter is a quantity that incorporates both the plasma and the magnetic field, and understanding its role in the ring current injection and recovery is essential to describing the processes that are occuring during magnetic storms. The RCM-E includes the physics of feedback between the plasma and both the electric and magnetic fields, and is therefore a valuable tool for understanding these complex storm-time processes. By contrasting the effects of different plasma boundary conditions at geosynchronous orbit, we shed light on the physical processes involved in ring current injection and recovery.

  16. Study of negative ion transport phenomena in a plasma source

    NASA Astrophysics Data System (ADS)

    Riz, D.; Paméla, J.

    1996-07-01

    NIETZSCHE (Negative Ions Extraction and Transport ZSimulation Code for HydrogEn species) is a negative ion (NI) transport code developed at Cadarache. This code calculates NI trajectories using a 3D Monte-Carlo technique, taking into account the main destruction processes, as well as elastic collisions (H-/H+) and charge exchanges (H-/H0). It determines the extraction probability of a NI created at a given position. According to the simulations, we have seen that in the case of volume production, only NI produced close to the plasma grid (PG) can be extracted. Concerning the surface production, we have studied how NI produced on the PG and accelerated by the plasma sheath backward into the source could be extracted. We demonstrate that elastic collisions and charge exchanges play an important role, which in some conditions dominates the magnetic filter effect, which acts as a magnetic mirror. NI transport in various conditions will be discussed: volume/surface production, high/low plasmas density, tent filter/transverse filter.

  17. Intense Plasma Waveguide Terahertz Sources for High-Field THz Probe Science with Ultrafast Lasers for Solid State Physics

    DTIC Science & Technology

    2016-08-25

    AFRL-AFOSR-UK-TR-2016-0029 Intense Plasma-Waveguide Terahertz Sources for High-Field THz probe science with ultrafast lasers for Solid State Physics...Plasma-Waveguide Terahertz Sources for High-Field THz probe science with ultrafast lasers for Solid State Physics, 5a.  CONTRACT NUMBER 5b.  GRANT...an existing high energy laser system, has been applied to the study of intense terahertz radiation generated in gaseous plasmas in purpose

  18. The Sun is a plasma diffuser that sorts atoms by mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manuel, O., E-mail: omatumr@yahoo.com; Kamat, S. A.; Mozina, M.

    2006-11-15

    The Sun is a plasma diffuser that selectively moves light elements like H and He and the lighter isotopes of each element to its surface. The Sun formed on the collapsed core of a supernova (SN) and is composed mostly of elements made near the SN core (Fe, O, Ni, Si, and S), like the rocky planets and ordinary meteorites. Neutron emission from the central neutron star triggers a series of reactions that generate solar luminosity, solar neutrinos, solar mass fractionation, and an outpouring of hydrogen in the solar wind. Mass fractionation seems to have operated in the parent starmore » and likely occurs in other stars as well.« less

  19. Electron source for a mini ion trap mass spectrometer

    DOEpatents

    Dietrich, D.D.; Keville, R.F.

    1995-12-19

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  20. Electron source for a mini ion trap mass spectrometer

    DOEpatents

    Dietrich, Daniel D.; Keville, Robert F.

    1995-01-01

    An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.

  1. The open-source neutral-mass spectrometer on Atmosphere Explorer-C, -D, and -E.

    NASA Technical Reports Server (NTRS)

    Nier, A. O.; Potter, W. E.; Hickman, D. R.; Mauersberger, K.

    1973-01-01

    The open-source mass spectrometer will be used to obtain the number densities of the neutral atmospheric gases in the mass range 1 to 48 amu at the satellite location. The ion source has been designed to allow gas particles to enter the ionizing region with the minimum practicable number of prior collisions with surfaces. This design minimizes the loss of atomic oxygen and other reactive species due to reactions with the walls of the ion source. The principal features of the open-source spectrometer and the laboratory calibration system are discussed.

  2. Behaviors of Absolute Densities of N, H, and NH3 at Remote Region of High-Density Radical Source Employing N2-H2 Mixture Plasmas

    NASA Astrophysics Data System (ADS)

    Chen, Shang; Kondo, Hiroki; Ishikawa, Kenji; Takeda, Keigo; Sekine, Makoto; Kano, Hiroyuki; Den, Shoji; Hori, Masaru

    2011-01-01

    For an innovation of molecular-beam-epitaxial (MBE) growth of gallium nitride (GaN), the measurements of absolute densities of N, H, and NH3 at the remote region of the radical source excited by plasmas have become absolutely imperative. By vacuum ultraviolet absorption spectroscopy (VUVAS) at a relatively low pressure of about 1 Pa, we obtained a N atom density of 9×1012 cm-3 for a pure nitrogen gas used, a H atom density of 7×1012 cm-3 for a gas composition of 80% hydrogen mixed with nitrogen gas were measured. The maximum density 2×1013 cm-3 of NH3 was measured by quadruple mass spectrometry (QMS) at H2/(N2+H2)=60%. Moreover, we found that N atom density was considerably affected by processing history, where the characteristic instability was observed during the pure nitrogen plasma discharge sequentially after the hydrogen-containing plasma discharge. These results indicate imply the importance of establishing radical-based processes to control precisely the absolute densities of N, H, and NH3 at the remote region of the radical source.

  3. Reverse-phase liquid chromatography with electrospray ionization/mass spectrometry for the quantification of pseudoephedrine in human plasma and application to a bioequivalence study.

    PubMed

    Kim, Jin-Ki; Jee, Jun-Pil; Park, Jeong-Sook; Kim, Hyung Tae; Kim, Chong-Kook

    2011-01-01

    A sensitive and selective reverse-phase liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) method was developed and validated to quantify pseudoephedrine (CAS 90-82-4) in human plasma. Phenacetin was used as the internal standard (I.S.). Sample preparation was performed with a deproteinization step using acetonitrile. Pseudoephedrine and I.S. were successfully separated using gradient elution with 0.5% trifluoroacetic acid (TFA) in water and 0.5% TFA in methanol at a flow-rate of 0.2 mL/min. Detection was performed on a single quadrupole mass spectrometer by a selected ion monitoring (SIM) mode via electrospray ionization (ESI) source. The ESI source was set at positive ionization mode. The ion signals of m/z 166.3 and 180.2 were measured for the protonated molecular ions of pseudoephedrine and I.S., respectively. The lower limit of quantification (LLOQ) of pseudoephedrine in human plasma was 10 ng/mL and good linearity was observed in the range of concentrations 10-500 ng/mL (R2 = 1). The intra-day accuracy of the drug containing plasma samples was more than 97.60% with a precision of 3.99-11.82%. The inter-day accuracy was 99.36% or more, with a precision of 7.65-18.42%. By using this analytical method, the bioequivalence study of the pseudoephedrine preparation was performed and evaluated by statistical analysis of the log transformed mean ratios of pharmacokinetic parameters. All the results fulfilled the standard criteria of bioequivalence, being within the 80-125% range which is required by the Korea FDA, US FDA, and EMEA to conclude bioequivalence. Consequently, the developed reverse-phase LC-ESI-MS method was successfully applied to bioequivalence studies of pseudoephedrine in healthy male volunteers.

  4. Development of a tactical high-power microwave source using the Plasma Electron Microwave Source (PEMS) concept

    NASA Astrophysics Data System (ADS)

    Dandl, R. A.; Guest, G. E.; Jory, H. R.

    1990-12-01

    The AMPHED facility was used to perform feasibility experiments to explore the generation of high-power microwave pulses from energy stored in a magnetic mirror plasma. The facility uses an open-ended magnetic mirror driven by pulsed or cw c- and x-band sources. Microwave horns were constructed to couple in the frequency range of 2.4 to 4 GHz to whistler waves in the plasma. Spontaneous bursts of microwave radiation in the range of 3 to 5 GHz were observed in the experiments. But the power levels were lower than expected for the whistler wave interaction. It is probable that the hot-electron energy densities achieved were not high enough to approach the threshold of the desired interaction.

  5. Quantitative high-throughput determination of endogenous retinoids in human plasma using triple-stage liquid chromatography/tandem mass spectrometry.

    PubMed

    Gundersen, Thomas E; Bastani, Nasser E; Blomhoff, Rune

    2007-01-01

    A high-throughput ultrasensitive analytical method based on liquid chromatography with positive ion atmospheric pressure chemical ionization (APCI) coupled to tandem mass spectrometric detection (LC/MS/MS) was developed for the determination of all-trans-4-oxo-retinoic acid (at4oxoRA), 13-cis-4-oxo-retinoic acid (13c4oxoRA), 13-cis-retinoic acid (13cRA), all-trans-retinoic acid (atRA) and all-trans-retinol (atROH) in human plasma. A stable isotope of atRA was used as internal standard (IS). The analytes and IS were isolated from 100 microL plasma by acetonitrile mono-phase extraction (MPE) performed in black 96-well microtiterplates. A 100 microL injection was focused on-column and chromatographed on an Agilent ZORBAX SB-C18 rapid-resolution high-throughput (RRHT) column with 1.8-microm particles (4.6 mmx50 mm) maintained at 60 degrees C. The initial mobile phase composition was acetonitrile/water/formic acid (10:90:0.1, v/v/v) delivered at 1.8 mL/min. Elution was accomplished by a fast gradient to acetonitrile/methanol/formic acid (90:10:0.1, v/v/v). The method had a chromatographic total run time of 7 min. An Applied Biosystems 4000 Q TRAP linear tandem mass spectrometer equipped with a heated nebulizer (APCI) ionization source was operated in multiple reaction monitoring (MRM) mode with the precursor-to-product ion transitions m/z 315.4-->297 (4-oxo-retinoic acids), 301.2-->205 (retinoic acids), 305.0-->209 (IS) and 269.2-->93 (retinol) used for quantification. The assay was fully validated and found to have acceptable accuracy, precision, linearity, sensitivity and selectivity. The mean extraction recoveries from spiked plasma samples were 80-105% for the various retinoids at three different levels. The intra-day accuracy of the assay was within 8% of nominal and intra-day precision was better than 8% coefficient of variance (CV) for retinoic acids. Inter-day precision results for quality control samples run over a 12-day period alongside clinical samples

  6. Characteristics of High-Density Helicon Plasma Sources and Their Application to Electrodeless Electric Propulsion

    NASA Astrophysics Data System (ADS)

    Shinohara, S.; Nishida, H.; Nakamura, T.; Mishio, A.; Ishii, H.; Teshigahara, N.; Fujitsuka, H.; Waseda, S.; Tanikawa, T.; Hada, T.; Otsuka, F.; Funaki, I.; Matsuoka, T.; Shamrai, K.; Rudenko, T.

    2012-10-01

    High-density but low temperature helicon plasmas have been proved to be very useful for fundamental research as well as for various applications. First, we introduce our very large helicon sources [1] with a diameter up to 74 cm. For the industrial and propulsion applications, we have reduced the aspect ratio (axial length-to-diameter) down to 0.075, and examined the discharge performance and wave characteristics. Then, we discuss our small helicon sources [1] for developing new electrodeless acceleration schemes. Some experimental and theoretical results [2] by applying the rotating magnetic (or electric) fields to the helicon plasma under the divergent magnetic field will be presented, along with other propulsion schemes. In addition, an initial plasma production experiment with very small diameter will be described.[4pt] [1] S. Shinohara et al., Jpn. J. Appl. Phys. 35 (1996) 4503; Rev. Sci. Instrum. 75 (2004) 1941; Phys. Plasmas 16 (2009) 057104.[0pt] [2] S. Shinohara et al., 32th Int. Electric Propul. Conf., IEPC-2011-056, 2011.

  7. Fast quantification of endogenous carbohydrates in plasma using hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Zhu, Bangjie; Liu, Feng; Li, Xituo; Wang, Yan; Gu, Xue; Dai, Jieyu; Wang, Guiming; Cheng, Yu; Yan, Chao

    2015-01-01

    Endogenous carbohydrates in biosamples are frequently highlighted as the most differential metabolites in many metabolomics studies. A simple, fast, simultaneous quantitative method for 16 endogenous carbohydrates in plasma has been developed using hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry. In order to quantify 16 endogenous carbohydrates in plasma, various conditions, including columns, chromatographic conditions, mass spectrometry conditions, and plasma preparation methods, were investigated. Different conditions in this quantified analysis were performed and optimized. The reproducibility, precision, recovery, matrix effect, and stability of the method were verified. The results indicated that a methanol/acetonitrile (50:50, v/v) mixture could effectively and reproducibly precipitate rat plasma proteins. Cold organic solvents coupled with vortex for 1 min and incubated at -20°C for 20 min were the most optimal conditions for protein precipitation and extraction. The results, according to the linearity, recovery, precision, matrix effect, and stability, showed that the method was satisfactory in the quantification of endogenous carbohydrates in rat plasma. The quantified analysis of endogenous carbohydrates in rat plasma performed excellently in terms of sensitivity, high throughput, and simple sample preparation, which met the requirement of quantification in specific expanded metabolomic studies after the global metabolic profiling research. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The effect of boron supplementation on lean body mass, plasma testosterone levels, and strength in male bodybuilders

    NASA Technical Reports Server (NTRS)

    Ferrando, A. A.; Green, N. R.

    1993-01-01

    The effect of boron supplementation was investigated in 19 male bodybuilders ages 20-27 years. Ten were given a 2.5-mg boron supplement while 9 were given a placebo every day for 7 weeks. Plasma total and free testosterone, plasma boron, lean body mass, and strength measurements were determined on Days 1 and 49 of the study. Plasma boron values were significantly (p < 0.05) different as the experimental group increased from (+/- SD) 20.1 +/- 7.7 ppb pretest to 32.6 +/- 27.6 ppb posttest, while the control group mean decreased from 15.1 +/- 14.4 ppb pretest to 6.3 +/- 5.5 ppb posttest. Analysis of variance indicated no significant effect of boron supplementation on any of the dependent variables. Both groups demonstrated significant increases in total testosterone, lean body mass, 1-RM squat, and 1-RM bench press. The findings suggest that 7 weeks of bodybuilding can increase total testosterone, lean body mass, and strength in lesser trained bodybuilders, and that boron supplementation had no effect on these measures.

  9. The effect of boron supplementation on lean body mass, plasma testosterone levels, and strength in male bodybuilders.

    PubMed

    Ferrando, A A; Green, N R

    1993-06-01

    The effect of boron supplementation was investigated in 19 male bodybuilders ages 20-27 years. Ten were given a 2.5-mg boron supplement while 9 were given a placebo every day for 7 weeks. Plasma total and free testosterone, plasma boron, lean body mass, and strength measurements were determined on Days 1 and 49 of the study. Plasma boron values were significantly (p < 0.05) different as the experimental group increased from (+/- SD) 20.1 +/- 7.7 ppb pretest to 32.6 +/- 27.6 ppb posttest, while the control group mean decreased from 15.1 +/- 14.4 ppb pretest to 6.3 +/- 5.5 ppb posttest. Analysis of variance indicated no significant effect of boron supplementation on any of the dependent variables. Both groups demonstrated significant increases in total testosterone, lean body mass, 1-RM squat, and 1-RM bench press. The findings suggest that 7 weeks of bodybuilding can increase total testosterone, lean body mass, and strength in lesser trained bodybuilders, and that boron supplementation had no effect on these measures.

  10. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE PAGES

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; ...

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~10 6 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10 7 laser pulses, wemore » also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  11. Visible light emission measurements from a dense electrothermal launcher plasma

    NASA Astrophysics Data System (ADS)

    Hankins, O. E.; Bourham, M. A.; Earnhart, J.; Gilligan, J. G.

    1993-01-01

    Measurements of the visible light emission from dense, weakly non-ideal plasmas have been performed on the experimental electrothermal launcher device 'SIRENS'. The plasma is created by the ablation or a Lexan insulator in the source, which then flows through a cylindrical barrel which serves as the material sample. Visible light emission spectra have been observed both in-bore and from the muzzle flash or the barrel, and from the flash or the source. Due to high plasma opacity (the plasma emits as a near blackbody) and absorption by the molecular components of the vapor shield, the hotter core or the arc has been difficult to observe. Recent measurements along the axis or the device indicate time-averaged plasma temperatures in the barrel or about 1 eV for lower energy shots, which agree with experimental measurements of the average heat flux and plasma conductivity along the barrel. Measurements or visible emission from the source indicate time averaged temperatures of 1 to 2 eV which agree with the theoretical estimates derived from ablated mass measurements and calculated estimates derived from plasma conductivity measurements.

  12. The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food samples

    NASA Astrophysics Data System (ADS)

    Voica, C.; Dehelean, A.; Kovacs, M. H.

    2012-02-01

    Food is the primary source of essential elements for humans and it is an important source of exposure to toxic elements. In this context, levels of essential and toxic elements must be determined routinely in consumed food products. The content of trace elements (As, Pb, Cu, Cd, Zn, Sn, Hg) in different types of food samples (e.g. rice, bread, sugar, cheese, milk, butter, wheat, coffee, chocolate, biscuits pasta, etc.) was determined, using inductively coupled plasma mass spectrometry (ICP-MS). Trace element contents in some foods were higher than maximum permissible levels of toxic metals in human food (Cd in bread, Zn in cheese, Cu in coffee, Hg in carrots and peppers).

  13. Development of large volume double ring penning plasma discharge source for efficient light emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prakash, Ram; Vyas, Gheesa Lal; Jain, Jalaj

    In this paper, the development of large volume double ring Penning plasma discharge source for efficient light emissions is reported. The developed Penning discharge source consists of two cylindrical end cathodes of stainless steel having radius 6 cm and a gap 5.5 cm between them, which are fitted in the top and bottom flanges of the vacuum chamber. Two stainless steel anode rings with thickness 0.4 cm and inner diameters 6.45 cm having separation 2 cm are kept at the discharge centre. Neodymium (Nd{sub 2}Fe{sub 14}B) permanent magnets are physically inserted behind the cathodes for producing nearly uniform magnetic fieldmore » of {approx}0.1 T at the center. Experiments and simulations have been performed for single and double anode ring configurations using helium gas discharge, which infer that double ring configuration gives better light emissions in the large volume Penning plasma discharge arrangement. The optical emission spectroscopy measurements are used to complement the observations. The spectral line-ratio technique is utilized to determine the electron plasma density. The estimated electron plasma density in double ring plasma configuration is {approx}2 Multiplication-Sign 10{sup 11} cm{sup -3}, which is around one order of magnitude larger than that of single ring arrangement.« less

  14. Development of large volume double ring penning plasma discharge source for efficient light emissions.

    PubMed

    Prakash, Ram; Vyas, Gheesa Lal; Jain, Jalaj; Prajapati, Jitendra; Pal, Udit Narayan; Chowdhuri, Malay Bikas; Manchanda, Ranjana

    2012-12-01

    In this paper, the development of large volume double ring Penning plasma discharge source for efficient light emissions is reported. The developed Penning discharge source consists of two cylindrical end cathodes of stainless steel having radius 6 cm and a gap 5.5 cm between them, which are fitted in the top and bottom flanges of the vacuum chamber. Two stainless steel anode rings with thickness 0.4 cm and inner diameters 6.45 cm having separation 2 cm are kept at the discharge centre. Neodymium (Nd(2)Fe(14)B) permanent magnets are physically inserted behind the cathodes for producing nearly uniform magnetic field of ~0.1 T at the center. Experiments and simulations have been performed for single and double anode ring configurations using helium gas discharge, which infer that double ring configuration gives better light emissions in the large volume Penning plasma discharge arrangement. The optical emission spectroscopy measurements are used to complement the observations. The spectral line-ratio technique is utilized to determine the electron plasma density. The estimated electron plasma density in double ring plasma configuration is ~2 × 10(11) cm(-3), which is around one order of magnitude larger than that of single ring arrangement.

  15. Characterization of the seminal plasma proteome in men with prostatitis by mass spectrometry

    PubMed Central

    2012-01-01

    Background Prostatitis is an inflammation of the prostate gland which affects approximately 10% of men. Despite its frequency, diagnosing prostatitis and monitoring patient response to treatment remains frustrating. As the prostate contributes a substantial percentage of proteins to seminal plasma, we hypothesized that a protein biomarker of prostatitis might be found by comparing the seminal plasma proteome of patients with and without prostatitis. Results Using mass spectrometry, we identified 1708 proteins in the pooled seminal plasma of 5 prostatitis patients. Comparing this list to a previously published list of seminal plasma proteins in the pooled seminal plasma of 5 healthy, fertile controls yielded 1464 proteins in common, 413 found only in the control group, and 254 found only in the prostatitis group. Applying a set of criteria to this dataset, we generated a high-confidence list of 59 candidate prostatitis biomarkers, 33 of which were significantly increased in prostatitis as compared to control, and 26 of which were decreased. The candidates were analyzed using Gene Ontology and Ingenuity Pathway analysis to delineate their subcellular localizations and functions. Conclusions Thus, in this study, we identified 59 putative biomarkers in seminal plasma that need further validation for diagnosis and monitoring of prostatitis. PMID:22309592

  16. Particle-in-cell code library for numerical simulation of the ECR source plasma

    NASA Astrophysics Data System (ADS)

    Shirkov, G.; Alexandrov, V.; Preisendorf, V.; Shevtsov, V.; Filippov, A.; Komissarov, R.; Mironov, V.; Shirkova, E.; Strekalovsky, O.; Tokareva, N.; Tuzikov, A.; Vatulin, V.; Vasina, E.; Fomin, V.; Anisimov, A.; Veselov, R.; Golubev, A.; Grushin, S.; Povyshev, V.; Sadovoi, A.; Donskoi, E.; Nakagawa, T.; Yano, Y.

    2003-05-01

    The project ;Numerical simulation and optimization of ion accumulation and production in multicharged ion sources; is funded by the International Science and Technology Center (ISTC). A summary of recent project development and the first version of a computer code library for simulation of electron-cyclotron resonance (ECR) source plasmas based on the particle-in-cell method are presented.

  17. Determination of fluspirilene in human plasma by liquid chromatography-tandem mass spectrometry with electrospray ionisation.

    PubMed

    Swart, K J; Sutherland, F C; van Essen, G H; Hundt, H K; Hundt, A F

    1998-12-18

    An ultra-sensitive method for the determination of fluspirilene in plasma was established, using high-performance liquid chromatographic separation with tandem mass spectrometric detection. The samples were extracted with hexane/isoamyl alcohol, separated on a Phenomenex Luna C18 5 mu 150 x 2.1 mm column with a mobile phase consisting of methanol-water-acetic acid (600:400:1) at a flow-rate of 0.3 ml/min. Detection was achieved by a Finnigan Matt mass spectrometer (LCQ) at unit resolution in full scan mode scanning the product ion spectrum from m/z 130-500 and monitoring the transition of the protonated molecular ion at m/z 476.2, to the sum of the largest product ions m/z 371, 342 and 274 (MS-MS). Electrospray ionisation was used for ion production. The mean recovery for fluspirilene was 90% with a lower limit of quantification of 21.50 pg/ml using 1 ml plasma for extraction. This is the first chromatographic method described for the determination of fluspirilene in plasma that is accurate and sensitive enough to be used in pharmacokinetic studies.

  18. Detection of lung cancer using plasma protein profiling by matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Shevchenko, Valeriy E; Arnotskaya, Natalia E; Zaridze, David G

    2010-01-01

    There are no satisfactory plasma biomarkers which are available for the early detection and monitoring of lung cancer, one of the most frequent cancers worldwide. The aim of this study is to explore the application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF MS) to plasma proteomic patterns to distinguish lung cancer patients from healthy individuals. The EDTA plasma samples have been pre-fractionated using magnetic bead kits functionalized with weak cation exchange coatings. We compiled MS protein profiles for 90 patients with squamous cell carcinomas (SCC) and compared them with profiles from 187 healthy controls. The MALDI-ToF spectra were analyzed statistically using ClinProTools bioinformatics software. Depending on the sample used, up to 441 peaks/spectrum could be detected in a mass range of 1000-20,000 Da; 33 of these proteins had statistically differential expression levels between SCC and control plasma (P < 0.001). The series of the peaks were automatically chosen as potential biomarker patterns in the training set. They allowed the discrimination of plasma samples from healthy control and samples from SCC patients (sensitivity and specificity >90%) in external validation test. These results suggest that plasma MALDI-ToF MS protein profiling can distinguish patients with SCC and also from healthy individuals with relatively high sensitivity and specificity and that MALDI- ToF MS is a potential tool for the screening of lung cancer.

  19. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy

    DOEpatents

    Braymen, Steven D.

    1996-06-11

    A method and apparatus for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization.

  20. Plasma diagnostics of low pressure high power impulse magnetron sputtering assisted by electron cyclotron wave resonance plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stranak, Vitezslav; University of South Bohemia, Institute of Physics and Biophysics, Branisovska 31, 370 05 Ceske Budejovice; Herrendorf, Ann-Pierra

    2012-11-01

    This paper reports on an investigation of the hybrid pulsed sputtering source based on the combination of electron cyclotron wave resonance (ECWR) inductively coupled plasma and high power impulse magnetron sputtering (HiPIMS) of a Ti target. The plasma source, operated in an Ar atmosphere at a very low pressure of 0.03 Pa, provides plasma where the major fraction of sputtered particles is ionized. It was found that ECWR assistance increases the electron temperature during the HiPIMS pulse. The discharge current and electron density can achieve their stable maximum 10 {mu}s after the onset of the HiPIMS pulse. Further, a highmore » concentration of double charged Ti{sup ++} with energies of up to 160 eV was detected. All of these facts were verified experimentally by time-resolved emission spectroscopy, retarding field analyzer measurement, Langmuir probe, and energy-resolved mass spectrometry.« less

  1. Determination of L-ephedrine, pseudoephedrine, and caffeine in rat plasma by liquid chromatography-tandem mass spectrometry.

    PubMed

    Cooper, Stephen D; Fletcher, Brenda L; Silinski, Melanie A Rehder; Brown, Sherri S; Lodge, Jon W; Fernando, Reshan A; Collins, Bradley J

    2011-07-01

    A rapid and simple liquid chromatography tandem mass spectrometry method was developed and validated for the simultaneous determination of L-ephedrine, pseudoephedrine, and caffeine in male Fisher-344 rat plasma at nanogram-per-milliliter concentrations for use in support of toxicology studies. Only 25 μL of plasma is required, and extraction is performed using a simple, single-step protein precipitation. The method was validated over a range of 2.09 to 5460 ng/mL for L-ephedrine, 2.09 to 5050 ng/mL for pseudoephedrine and 2.03 to 5340 ng/mL for caffeine. A binary gradient elution at 0.3 mL/min was used with a Waters XBridge Phenyl (2.1 × 150 mm, 3.5 μm) column and a Waters XBridge Phenyl 2.1- × 10-mm guard column at ambient temperature. The mobile phase consisted of 10 mM ammonium acetate in water (pH 5.0) and methanol. Caffeine trimethyl-(13)C(3) was used as the internal standard. The method was evaluated for linearity, recovery, precision, accuracy, and stability, and it was successfully applied in toxicokinetic studies of ephedrine, administered alone, in combination with caffeine, and in the herbal source Ma Huang.

  2. Online tuning of impedance matching circuit for long pulse inductively coupled plasma source operation—An alternate approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudhir, Dass; Bandyopadhyay, M., E-mail: mainak@ter-india.org; Chakraborty, A.

    2014-01-15

    Impedance matching circuit between radio frequency (RF) generator and the plasma load, placed between them, determines the RF power transfer from RF generator to the plasma load. The impedance of plasma load depends on the plasma parameters through skin depth and plasma conductivity or resistivity. Therefore, for long pulse operation of inductively coupled plasmas, particularly for high power (∼100 kW or more) where plasma load condition may vary due to different reasons (e.g., pressure, power, and thermal), online tuning of impedance matching circuit is necessary through feedback. In fusion grade ion source operation, such online methodology through feedback is notmore » present but offline remote tuning by adjusting the matching circuit capacitors and tuning the driving frequency of the RF generator between the ion source operation pulses is envisaged. The present model is an approach for remote impedance tuning methodology for long pulse operation and corresponding online impedance matching algorithm based on RF coil antenna current measurement or coil antenna calorimetric measurement may be useful in this regard.« less

  3. Inductively coupled plasma mass spectrometry and electrospray mass spectrometry for speciation analysis: applications and instrumentation

    NASA Astrophysics Data System (ADS)

    Rosen, Amy L.; Hieftje, Gary M.

    2004-02-01

    To gain an understanding of the function, toxicity and distribution of trace elements, it is necessary to determine not only the presence and concentration of the elements of interest, but also their speciation, by identifying and characterizing the compounds within which each is present. For sensitive detection of compounds containing elements of interest, inductively coupled plasma mass spectrometry (ICP-MS) is a popular method, and for identification of compounds via determination of molecular weight, electrospray ionization mass spectrometry (ESI-MS) is gaining increasing use. ICP-MS and ESI-MS, usually coupled to a separation technique such as chromatography or capillary electrophoresis, have already been applied to a large number of research problems in such diverse fields as environmental chemistry, nutritional science, and bioinorganic chemistry, but a great deal of work remains to be completed. Current areas of research to which ICP-MS and ESI-MS have been applied are discussed, and the existing instrumentation used to solve speciation problems is described.

  4. Towards a better comprehension of plasma formation and heating in high performances electron cyclotron resonance ion sources (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mascali, D.; Gammino, S.; Celona, L.

    2012-02-15

    Further improvements of electron cyclotron resonance ion sources (ECRIS) output currents and average charge state require a deep understanding of electron and ion dynamics in the plasma. This paper will discuss the most recent advances about modeling of non-classical evidences like the sensitivity of electron energy distribution function to the magnetic field detuning, the influence of plasma turbulences on electron heating and ion confinement, the coupling between electron and ion dynamics. All these issues have in common the non-homogeneous distribution of the plasma inside the source: the abrupt density drop at the resonance layer regulates the heating regimes (from collectivemore » to turbulent), the beam formation mechanism and emittance. Possible means to boost the performances of future ECRIS will be proposed. In particular, the use of Bernstein waves, in preliminary experiments performed at Laboratori Nazionali del Sud (LNS) on MDIS (microwave discharge ion sources)-type sources, has permitted to sustain largely overdense plasmas enhancing the warm electron temperature, which will make possible in principle the construction of sources for high intensity multicharged ions beams with simplified magnetic structures.« less

  5. Color Developing Capacity of Plasma-treated Water as a Source of Nitrite for Meat Curing.

    PubMed

    Jung, Samooel; Kim, Hyun Joo; Park, Sanghoo; Yong, Hae In; Choe, Jun Ho; Jeon, Hee-Joon; Choe, Wonho; Jo, Cheorun

    2015-01-01

    The interaction of plasma with liquid generates nitrogen species including nitrite (NO(-) 2). Therefore, the color developing capacity of plasma-treated water (PTW) as a nitrite source for meat curing was investigated in this study. PTW, which is generated by surface dielectric barrier discharge in air, and the increase of plasma treatment time resulted in increase of nitrite concentration in PTW. The PTW used in this study contains 46 ppm nitrite after plasma treatment for 30 min. To evaluate the effect of PTW on the cured meat color, meat batters were prepared under three different conditions (control, non-cured meat batter; PTW, meat batter cured with PTW; Sodium nitrite, meat batter cured with sodium nitrite). The meat batters were vacuum-packaged and cooked in a water-bath at 80℃ for 30 min. The typical color of cured meat developed in cooked meat batter treated with sodium nitrite or PTW. The lightness (L*) and yellowness (b*) values were similar in all conditions, whereas, the redness (a*) values of cooked meat batter with PTW and sodium nitrite (p<0.05) were significantly higher than the control. These data indicate that PTW can be used as a nitrite source in the curing process of meat without addition of other nitrite sources.

  6. Color Developing Capacity of Plasma-treated Water as a Source of Nitrite for Meat Curing

    PubMed Central

    Jung, Samooel; Kim, Hyun Joo; Park, Sanghoo; Choe, Jun Ho; Jeon, Hee-Joon; Choe, Wonho

    2015-01-01

    The interaction of plasma with liquid generates nitrogen species including nitrite (NO−2). Therefore, the color developing capacity of plasma-treated water (PTW) as a nitrite source for meat curing was investigated in this study. PTW, which is generated by surface dielectric barrier discharge in air, and the increase of plasma treatment time resulted in increase of nitrite concentration in PTW. The PTW used in this study contains 46 ppm nitrite after plasma treatment for 30 min. To evaluate the effect of PTW on the cured meat color, meat batters were prepared under three different conditions (control, non-cured meat batter; PTW, meat batter cured with PTW; Sodium nitrite, meat batter cured with sodium nitrite). The meat batters were vacuum-packaged and cooked in a water-bath at 80℃ for 30 min. The typical color of cured meat developed in cooked meat batter treated with sodium nitrite or PTW. The lightness (L*) and yellowness (b*) values were similar in all conditions, whereas, the redness (a*) values of cooked meat batter with PTW and sodium nitrite (p<0.05) were significantly higher than the control. These data indicate that PTW can be used as a nitrite source in the curing process of meat without addition of other nitrite sources. PMID:26761900

  7. The Human Plasma Proteome Draft of 2017: Building on the Human Plasma PeptideAtlas from Mass Spectrometry and Complementary Assays.

    PubMed

    Schwenk, Jochen M; Omenn, Gilbert S; Sun, Zhi; Campbell, David S; Baker, Mark S; Overall, Christopher M; Aebersold, Ruedi; Moritz, Robert L; Deutsch, Eric W

    2017-12-01

    Human blood plasma provides a highly accessible window to the proteome of any individual in health and disease. Since its inception in 2002, the Human Proteome Organization's Human Plasma Proteome Project (HPPP) has been promoting advances in the study and understanding of the full protein complement of human plasma and on determining the abundance and modifications of its components. In 2017, we review the history of the HPPP and the advances of human plasma proteomics in general, including several recent achievements. We then present the latest 2017-04 build of Human Plasma PeptideAtlas, which yields ∼43 million peptide-spectrum matches and 122,730 distinct peptide sequences from 178 individual experiments at a 1% protein-level FDR globally across all experiments. Applying the latest Human Proteome Project Data Interpretation Guidelines, we catalog 3509 proteins that have at least two non-nested uniquely mapping peptides of nine amino acids or more and >1300 additional proteins with ambiguous evidence. We apply the same two-peptide guideline to historical PeptideAtlas builds going back to 2006 and examine the progress made in the past ten years in plasma proteome coverage. We also compare the distribution of proteins in historical PeptideAtlas builds in various RNA abundance and cellular localization categories. We then discuss advances in plasma proteomics based on targeted mass spectrometry as well as affinity assays, which during early 2017 target ∼2000 proteins. Finally, we describe considerations about sample handling and study design, concluding with an outlook for future advances in deciphering the human plasma proteome.

  8. In Situ NAPL Modification for Contaminant Source-Zone Passivation, Mass Flux Reduction, and Remediation

    NASA Astrophysics Data System (ADS)

    Mateas, D. J.; Tick, G.; Carroll, K. C.

    2016-12-01

    A remediation method was developed to reduce the aqueous solubility and mass-flux of target NAPL contaminants through the in-situ creation of a NAPL mixture source-zone. This method was tested in the laboratory using equilibrium batch tests and two-dimensional flow-cell experiments. The creation of two different NAPL mixture source zones were tested in which 1) volumes of relatively insoluble n-hexadecane (HEX) or vegetable oil (VO) were injected into a trichloroethene (TCE) contaminant source-zone; and 2) pre-determined HEX-TCE and VO-TCE mixture ratio source zones were emplaced into the flow cell prior to water flushing. NAPL-aqueous phase batch tests were conducted prior to the flow-cell experiments to evaluate the effects of various NAPL mixture ratios on equilibrium aqueous-phase concentrations of TCE and toluene (TOL) and to design optimal NAPL (HEX or VO) injection volumes for the flow-cell experiments. Uniform NAPL mixture source-zones were able to quickly decrease contaminant mass-flux, as demonstrated by the emplaced source-zone experiments. The success of the HEX and VO injections to also decrease mass flux was dependent on the ability of these injectants to homogeneously mix with TCE source-zone. Upon injection, both HEX and VO migrated away from the source-zone, to some extent. However, the lack of a steady-state dissolution phase and the inefficient mass-flux-reduction/mass-removal behavior produced after VO injection suggest that VO was more effective than HEX for mixing and partitioning within the source-zone region to form a more homogeneous NAPL mixture with TCE. VO appears to be a promising source-zone injectant-NAPL due to its negligible long-term toxicity and lower mobilization potential.

  9. The results of the study of compact gas-puff and vacuum spark plasma sources of SXR with Glass-Capillary Converters (GCC)

    NASA Astrophysics Data System (ADS)

    Shlyaptseva, Alla; Kantsyrev, Victor; Inozemtsev, Andrei; Petrukhin, Oleg

    1994-06-01

    The results are presented dealing with the working out and study of the SXR compact plasma source. The experimental set up included a compact new 'gas-puff' source with parameters being better than the traditional ones and a new type of SXR source - low-inductance vacuum spark (LIVS) with glass-capillary converters (GCC) of SXR. The compact plasma 'gas-puff' source had the high value of the z approx. (1-2) 10(exp -2) (conversion coefficient of initial energy supply into SXR); a small effective size of emission region and greater resource. The characteristics of LIVS with GCC were studied. GCC consisting of about several hundreds of glass capillaries allowed us to focus SXR, to change the cross section of SXR beams to plasma sources, and to change SXR spectrum. The possibility was shown of using of GCC in plasma diagnostics of powerful plasma devices: for X-ray microscopy and to study the influence of SXR on the solid state surface.

  10. The relationship of endogenous plasma concentrations of β-Hydroxy β-Methyl Butyrate (HMB) to age and total appendicular lean mass in humans.

    PubMed

    Kuriyan, Rebecca; Lokesh, Deepa P; Selvam, Sumithra; Jayakumar, J; Philip, Mamatha G; Shreeram, Sathyavageeswaran; Kurpad, Anura V

    2016-08-01

    The maintenance of muscle mass and muscle strength is important for reducing the risk of chronic diseases. The age- related loss of muscle mass and strength is associated with adverse outcomes of physical disability, frailty and death. β-Hydroxy β-Methyl Butyrate (HMB), a metabolite of leucine, has beneficial effects on muscle mass and strength under various catabolic conditions. The objectives of the present study were to determine if age- related differences existed in endogenous plasma HMB levels, and to assess if HMB levels correlated to total appendicular lean mass and forearm grip strength. Anthropometry, dietary and physical activity assessment, and the estimation of fasting plasma HMB concentrations and handgrip strength were performed on the 305 subjects (children, young adults and older adults). Lean mass, which serves as a surrogate for muscle mass was measured using dual energy X-ray absorptiometry (DEXA). Mean plasma HMB concentrations were significantly lower with increasing age groups, with children having highest mean HMB concentration (p<0.01) followed by young adults and older adults. Female subjects (across all ages) had significantly lower plasma HMB concentrations. A significant positive correlation between HMB concentrations and appendicular lean mass normalized for body weight (%), appendicular lean mass (r=0.37; p<0.001) was observed in the young adults and older adults group. Handgrip strength was positively associated with plasma HMB concentrations in young adults (r=0.58; p<0.01) and the older adults group (r=0.28; p<0.01). The findings of the present study suggest that there is an age- related decline in endogenous HMB concentrations in humans and the HMB concentrations were positively correlated with appendicular lean mass and hand grip strength in young adults and older adults group. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Photostimulation of osteogenic differentiation on silk scaffolds by plasma arc light source.

    PubMed

    Çakmak, Anıl Sera; Çakmak, Soner; Vatansever, H Seda; Gümüşderelioğlu, Menemşe

    2018-05-01

    Low-level laser therapy (LLLT) has been used for more than 30 years to heal wounds. In recent years, LLLT or photostimulation has been indicated as an effective tool for regenerative and dental medicine by using monochromatic light. The aim of this study is to indicate the usability of plasma arc light source for bone regeneration. This is why we used polychromatic light source providing effective wavelengths in the range of 590-1500 nm for cellular response and investigated photostimulation effects on osteogenic differentiation of human mesenchymal stem cells (hMSCs) seeded on 3D silk scaffolds. Cellular responses were examined by using cell culture methods in terms of proliferation, differentiation, and morphological analyses. The results showed that photostimulation with a polychromatic light source (applied for 5 min from the 3rd day after seeding up to the 28th day in 2-day intervals with 92-mW/cm 2 power from 10-cm distance to the cells) enhanced osteogenic differentiation of hMSCs according to higher alkaline phosphatase (ALP) activity, collagen and calcium content, osteogenic gene expressions, and matrix mineralization. In conclusion, we suggest that the plasma arc light source that was used here has a great potential for bone regeneration.

  12. Study of oxygen/tetraethoxysilane plasmas in a helicon reactor using optical emission spectroscopy and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Aumaille, K.; Granier, A.; Schmidt, M.; Grolleau, B.; Vallée, C.; Turban, G.

    2000-08-01

    Oxygen/tetraethoxysilane (O2/TEOS) plasmas created in a low-pressure (2 mTorr) rf helicon reactor have been studied by optical emission spectroscopy and mass spectrometry as a function of the rf (13.56 MHz) power injected into the plasma, which is varied from 25 to 300 W. Complementary measurements for the interpretation of the mass spectrometric data have also been carried out using the threshold ionization mass spectrometry technique. It is shown that valuable information on the parent molecules is obtained by both optical emission spectroscopy and threshold ionization mass spectrometry techniques. At low rf power TEOS molecules and organic compounds like hydrocarbons (CH4, C2H2) and alcohols (CH3CH2OH) as well as H2, H2O, CO, O2, CO2 are observed. At high rf power TEOS and O2 molecules are totally or mostly depleted, the share of hydrocarbons decreases and carbon monoxide, carbon dioxide, water and hydrogen become the essential parts of the gas phase.

  13. Plasma Torch Development Activities at Archimedes

    NASA Astrophysics Data System (ADS)

    Davis Lee, W.; Agnew, Steve; Chamberlin, Fred; Hilsabeck, Terry; Meekins, Mike; Plaisted, Ryan; Putvinski, Sergei; Umstadter, Karl; Yung, Shui

    2004-11-01

    The Archimedes Demonstration Unit (ADU) is a large scale implementation (L ≃ 4.0 m, a ≃ 0.37 m) of the plasma mass filter. The filter concept uses perpendicular \\overrightarrowE and \\overrightarrowB fields to separate material by atomic mass at high throughputs, with applications to nuclear waste remediation. Fueling the filter plasma with molten waste is one of the fundamental challenges of the ADU program, and this has been achieved using an inductively coupled plasma torch. Experiments have been performed with molten NaOH, a primary constituent of the waste to be treated. The melt is pumped to the bottom of the torch and nebulized using a 20 kHz sonic source. The nebulized NaOH mist is then evaporated by the torch and injected into the central region of the ADU. Vapor jet characteristics and ionization rates have been measured. The experimental setup and data will be presented.

  14. Development of a compact permanent magnet helicon plasma source for ion beam bioengineering.

    PubMed

    Kerdtongmee, P; Srinoum, D; Nisoa, M

    2011-10-01

    A compact helicon plasma source was developed as a millimeter-sized ion source for ion beam bioengineering. By employing a stacked arrangement of annular-shaped permanent magnets, a uniform axial magnetic flux density up to 2.8 kG was obtained. A cost effective 118 MHz RF generator was built for adjusting forward output power from 0 to 40 W. The load impedance and matching network were then analyzed. A single loop antenna and circuit matching elements were placed on a compact printed circuit board for 50 Ω impedance matching. A plasma density up to 1.1 × 10(12) cm(-3) in the 10 mm diameter tube under the magnetic flux density was achieved with 35 W applied RF power.

  15. Development of a compact permanent magnet helicon plasma source for ion beam bioengineering

    NASA Astrophysics Data System (ADS)

    Kerdtongmee, P.; Srinoum, D.; Nisoa, M.

    2011-10-01

    A compact helicon plasma source was developed as a millimeter-sized ion source for ion beam bioengineering. By employing a stacked arrangement of annular-shaped permanent magnets, a uniform axial magnetic flux density up to 2.8 kG was obtained. A cost effective 118 MHz RF generator was built for adjusting forward output power from 0 to 40 W. The load impedance and matching network were then analyzed. A single loop antenna and circuit matching elements were placed on a compact printed circuit board for 50 Ω impedance matching. A plasma density up to 1.1 × 1012 cm-3 in the 10 mm diameter tube under the magnetic flux density was achieved with 35 W applied RF power.

  16. Turbulent mass inhomogeneities induced by a point-source

    NASA Astrophysics Data System (ADS)

    Thalabard, Simon

    2018-03-01

    We describe how turbulence distributes tracers away from a localized source of injection, and analyze how the spatial inhomogeneities of the concentration field depend on the amount of randomness in the injection mechanism. For that purpose, we contrast the mass correlations induced by purely random injections with those induced by continuous injections in the environment. Using the Kraichnan model of turbulent advection, whereby the underlying velocity field is assumed to be shortly correlated in time, we explicitly identify scaling regions for the statistics of the mass contained within a shell of radius r and located at a distance ρ away from the source. The two key parameters are found to be (i) the ratio s 2 between the absolute and the relative timescales of dispersion and (ii) the ratio Λ between the size of the cloud and its distance away from the source. When the injection is random, only the former is relevant, as previously shown by Celani et al (2007 J. Fluid Mech. 583 189–98) in the case of an incompressible fluid. It is argued that the space partition in terms of s 2 and Λ is a robust feature of the injection mechanism itself, which should remain relevant beyond the Kraichnan model. This is for instance the case in a generalized version of the model, where the absolute dispersion is prescribed to be ballistic rather than diffusive.

  17. Studies of Ion Beam Charge Neutralization by Ferroelectric Plasma Sources

    NASA Astrophysics Data System (ADS)

    Stepanov, A.; Gilson, E. P.; Grisham, L.; Davidson, R. C.

    2013-10-01

    Space-charge forces limit the possible transverse compression of high perveance ion beams that are used in ion-beam-driven high energy density physics applications; the minimum radius to which a beam can be focused is an increasing function of perveance. The limit can be overcome if a plasma is introduced in the beam path between the focusing element and the target in order to neutralize the space charge of the beam. This concept has been implemented on the Neutralized Drift Compression eXperiment (NDCX) at LBNL using Ferroelectric Plasma Sources (FEPS). In our experiment at PPPL, we propagate a perveance-dominated ion beam through a FEPS to study the effect of the neutralizing plasma on the beam envelope and its evolution in time. A 30-60 keV space-charge-dominated Argon beam is focused with an Einzel lens into a FEPS located at the beam waist. The beam is intercepted downstream from the FEPS by a movable Faraday cup that provides time-resolved 2D current density profiles of the beam spot on target. We report results on: (a) dependence of charge neutralization on FEPS plasma density; (b) effects on beam emittance, and (c) time evolution of the beam envelope after the FEPS pulse. Research supported by the U.S. Department of Energy.

  18. CAPILLARY ELECTROPHORESIS COUPLED ON-LINE WITH INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY FOR ELEMENTAL SPECIATION

    EPA Science Inventory

    A novel interface to connect a capillary electrophoresis (CE) system with an inductively coupled plasma mass spectrometric (ICPMS) detector is reported here. The interface was built using a direct injection nebulizer (DIN) system. In this interface, the CE capillary was placed co...

  19. [Effects of APOC3 polymorphisms on the plasma lipids in healthy adolescents with different body mass index].

    PubMed

    Song, Yong-yan; Gong, Ren-rong; Zhang, Zhen; Li, Yuan-hao; Fan, Mei; Hu, Min-shan; Fang, Ding-zhi

    2015-01-01

    To investigate the possible effects of apolipoprotein C I gene (APOC3) polymorphisms on plasma lipids in healthy adolescents with different body mass index (BMI). Seven hundred and twenty three adolescents were divided into four groups according to BMI: group 1 CBMI= (17.80 +/- 0.75) kg/m2,n=180], group 2 [BMI = (19.39 +/- 0.32) kg/m2, n=182), group 3 [BMI= (20.68 +/- 0.43) kg/m2, n=1813 and group 4 [BMI= (23.40 +/- 2.05) kg/m2 ,n=180J. Fasting venous blood samples were collected, plasma lipids were determined and genome DNA was extracted for determining the genotypes of the APOC3 Sst I and -482C>T polymorphisms by PCR-RFLP. With the elevation of BMI, height and plasma high-density lipoprotein cholesterol decreased significantly (P<0.001 for both), body mass, waist circumference, hip circumference, waist/hip ratio, plasma triglycerides (TG), total cholesterol and low-density lipoprotein cholesterol levels increased significantly (P<0.001 for all). No significant differences in TG levels among Sst I genotypes were observed in group 1, group 2 and group 3; but in group 4, significant differences in TG levels among Sst I genotypes were observed, S2 carriers had higher TG levels than the adolescents with S1S1 genotype. No significant differences in plasma lipids among -482C>T genotypes were observed in all groups. The elevation of plasma TG levels by the S2 allele of APOC3 Sst I polymorphism is associated with BMI. It is possible that the reduction of body mass could favorably modulate the elevation of TG levels by S2 allele in healthy adolescents.

  20. Plasma osmolyte concentrations and rectal gland mass of bull sharks Carcharhinus leucas, captured along a salinity gradient.

    PubMed

    Pillans, Richard D; Franklin, Craig E

    2004-07-01

    Bull sharks (Carcharhinus leucas) were captured across a salinity gradient from freshwater (FW) to seawater (SW). Across all salinities, C. leucas were hyperosmotic to the environment. Plasma osmolarity in FW-captured animals (642 +/- 7 mosM) was significantly reduced compared to SW-captured animals (1067 +/- 21 mosM). In FW animals, sodium, chloride and urea were 208 +/- 3, 203 +/- 3 and 192 +/- 2 mmol l(-1), respectively. Plasma sodium, chloride and urea in SW-captured C. leucas were 289 +/- 3, 296 +/- 6 and 370 +/- 10 mmol l(-1), respectively. The increase in plasma osmolarity between FW and SW was not linear. Between FW (3 mosM) and 24 per thousand SW (676 mosM), plasma osmolarity increased by 22% or 0.92% per 1 per thousand rise in salinity. Between 24 per thousand and 33 per thousand, plasma osmolarity increased by 33% or 4.7% per 1 per thousand rise in salinity, largely due to a sharp increase in plasma urea between 28 per thousand and 33 per thousand. C. leucas moving between FW and SW appear to be faced with three major osmoregulatory challenges, these occur between 0-10 per thousand, 11-20 per thousand and 21-33 per thousand. A comparison between C. leucas captured in FW and estuarine environments (20-28 per thousand ) in the Brisbane River revealed no difference in the mass of rectal glands between these animals. However, a comparison of rectal gland mass between FW animals captured in the Brisbane River and Rio San Juan/Lake Nicaragua showed that animals in the latter system had a significantly smaller rectal gland mass at a given length than animals in the Brisbane River. The physiological challenges and mechanisms required for C. leucas moving between FW and SW, as well as the ecological implications of these data are discussed.

  1. The influence of ambipolarity on plasma confinement and on the performance of electron cyclotron resonance ion sources.

    PubMed

    Schachter, L; Dobrescu, S; Stiebing, K E; Thuillier, T; Lamy, T

    2008-02-01

    Charge diffusion in an electron cyclotron resonance ion source (ECRIS) discharge is usually characterized by nonambipolar behavior. While the ions are transported to the radial walls, electrons are lost axially from the magnetic trap. Global neutrality is maintained via compensating currents in the conducting walls of the vacuum chamber. It is assumed that this behavior reduces the ion breeding times compared to a truly ambipolar plasma. We have carried out a series of dedicated experiments in which the ambipolarity of the ECRIS plasma was influenced by inserting special metal-dielectric structures (MD layers) into the plasma chamber of the Frankfurt 14 GHz ECRIS. The measurements demonstrate the positive influence on the source performance when the ECR plasma is changed toward more ambipolar behavior.

  2. Observation of helicon wave with m = 0 antenna in a weakly magnetized inductively coupled plasma source

    NASA Astrophysics Data System (ADS)

    Ellingboe, Bert; Sirse, Nishant; Moloney, Rachel; McCarthy, John

    2015-09-01

    Bounded whistler wave, called ``helicon wave,'' is known to produce high-density plasmas and has been exploited as a high density plasma source for many applications, including electric propulsion for spacecraft. In a helicon plasma source, an antenna wrapped around the magnetized plasma column launches a low frequency wave, ωce/2 >ωhelicon >ωce/100, in the plasma which is responsible for maintaining high density plasma. Several antenna designs have been proposed in order to match efficiently the wave modes. In our experiment, helicon wave mode is observed using an m = 0 antenna. A floating B dot probe, compensated to the capacitively coupled E field, is employed to measure axial-wave-field-profiles (z, r, and θ components) in the plasma at multiple radial positions as a function of rf power and pressure. The Bθ component of the rf-field is observed to be unaffected as the wave propagates in the axial direction. Power coupling between the antenna and the plasma column is identified and agrees with the E, H, and wave coupling regimes previously seen in M =1 antenna systems. That is, the Bz component of the rf-field is observed at low plasma density as the Bz component from the antenna penetrates the plasma. The Bz component becomes very small at medium density due to shielding at the centre of the plasma column; however, with increasing density, a sudden ``jump'' occurs in the Bz component above which a standing wave under the antenna with a propagating wave away from the antenna are observed.

  3. Quantitative analysis of aberrant protein glycosylation in liver cancer plasma by AAL-enrichment and MRM mass spectrometry.

    PubMed

    Ahn, Yeong Hee; Shin, Park Min; Kim, Yong-Sam; Oh, Na Ree; Ji, Eun Sun; Kim, Kwang Hoe; Lee, Yeon Jung; Kim, Sung Ho; Yoo, Jong Shin

    2013-11-07

    A lectin-coupled mass spectrometry (MS) approach was employed to quantitatively monitor aberrant protein glycosylation in liver cancer plasma. To do this, we compared the difference in the total protein abundance of a target glycoprotein between hepatocellular carcinoma (HCC) plasmas and hepatitis B virus (HBV) plasmas, as well as the difference in lectin-specific protein glycoform abundance of the target glycoprotein. Capturing the lectin-specific protein glycoforms from a plasma sample was accomplished by using a fucose-specific aleuria aurantia lectin (AAL) immobilized onto magnetic beads via a biotin-streptavidin conjugate. Following tryptic digestion of both the total plasma and its AAL-captured fraction of each HCC and HBV sample, targeted proteomic mass spectrometry was conducted quantitatively by a multiple reaction monitoring (MRM) technique. From the MRM-based analysis of the total plasmas and AAL-captured fractions, differences between HCC and HBV plasma groups in fucosylated glycoform levels of target glycoproteins were confirmed to arise from both the change in the total protein abundance of the target proteins and the change incurred by aberrant fucosylation on target glycoproteins in HCC plasma, even when no significant change occurs in the total protein abundance level. Combining the MRM-based analysis method with the lectin-capturing technique proved to be a successful means of quantitatively investigating aberrant protein glycosylation in cancer plasma samples. Additionally, it was elucidated that the differences between HCC and control groups in fucosylated biomarker candidates A1AT and FETUA mainly originated from an increase in fucosylation levels on these target glycoproteins, rather than an increase in the total protein abundance of the target glycoproteins.

  4. A Novel and Rapid Method to Determine Doxycycline in Human Plasma by Liquid Chromatography Tandem Mass Spectrometry

    PubMed Central

    Krishna, A. Chaitanya; Sathiyaraj, M.; Saravanan, R. S.; Chelladurai, R.; Vignesh, R.

    2012-01-01

    A simple, rapid, specific and sensitive liquid chromatography tandem mass spectrometric method has been developed and validated for the determination of doxycycline from the human plasma. Doxycycline is extracted from human plasma by solid phase extraction. Demeclocycline was used as an internal standard. Detection was performed at transitions of 444.800→428.200 for doxycycline and 464.700→448.100 for demeclocycline using mass spectrometry. Chromatographic separation of analyte and internal standard were carried out using a reverse phase C18, column at 0.500 ml/min flow. The assay of doxycycline is linear over the range of 0.055-7.612 μg/ml, with a precision <14.83%, regression coefficient (r2)=0.9961 and the limit of quantification in plasma for doxycycline was 0.055 μg/ml. Mean extraction recovery obtained was 95.55%. Samples are stable at room temperature for 6 h, processed samples were stable at least for 30.20 h and also stable at three freeze-thaw cycles. The method has been used to perform pharmacokinetic and bioequivalence studies in human plasma. PMID:23798780

  5. Synchronization between two coupled direct current glow discharge plasma sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaubey, Neeraj; Mukherjee, S.; Sen, A.

    2015-02-15

    Experimental results on the nonlinear dynamics of two coupled glow discharge plasma sources are presented. A variety of nonlinear phenomena including frequency synchronization and frequency pulling are observed as the coupling strength is varied. Numerical solutions of a model representation of the experiment consisting of two coupled asymmetric Van der Pol type equations are found to be in good agreement with the observed results.

  6. Development of a low-energy and high-current pulsed neutral beam injector with a washer-gun plasma source for high-beta plasma experiments.

    PubMed

    Ii, Toru; Gi, Keii; Umezawa, Toshiyuki; Asai, Tomohiko; Inomoto, Michiaki; Ono, Yasushi

    2012-08-01

    We have developed a novel and economical neutral-beam injection system by employing a washer-gun plasma source. It provides a low-cost and maintenance-free ion beam, thus eliminating the need for the filaments and water-cooling systems employed conventionally. In our primary experiments, the washer gun produced a source plasma with an electron temperature of approximately 5 eV and an electron density of 5 × 10(17) m(-3), i.e., conditions suitable for ion-beam extraction. The dependence of the extracted beam current on the acceleration voltage is consistent with space-charge current limitation, because the observed current density is almost proportional to the 3/2 power of the acceleration voltage below approximately 8 kV. By optimizing plasma formation, we successfully achieved beam extraction of up to 40 A at 15 kV and a pulse length in excess of 0.25 ms. Its low-voltage and high-current pulsed-beam properties enable us to apply this high-power neutral beam injection into a high-beta compact torus plasma characterized by a low magnetic field.

  7. Cluster beam targets for laser plasma extreme ultraviolet and soft x-ray sources

    DOEpatents

    Kublak, G.D.; Richardson, M.C.

    1996-11-19

    Method and apparatus for producing extreme ultraviolet (EUV) and soft x-ray radiation from an ultra-low debris plasma source are disclosed. Targets are produced by the free jet expansion of various gases through a temperature controlled nozzle to form molecular clusters. These target clusters are subsequently irradiated with commercially available lasers of moderate intensity (10{sup 11}--10{sup 12} watts/cm{sup 2}) to produce a plasma radiating in the region of 0.5 to 100 nanometers. By appropriate adjustment of the experimental conditions the laser focus can be moved 10--30 mm from the nozzle thereby eliminating debris produced by plasma erosion of the nozzle. 5 figs.

  8. Cluster beam targets for laser plasma extreme ultraviolet and soft x-ray sources

    DOEpatents

    Kublak, Glenn D.; Richardson, Martin C. (CREOL

    1996-01-01

    Method and apparatus for producing extreme ultra violet (EUV) and soft x-ray radiation from an ultra-low debris plasma source are disclosed. Targets are produced by the free jet expansion of various gases through a temperature controlled nozzle to form molecular clusters. These target clusters are subsequently irradiated with commercially available lasers of moderate intensity (10.sup.11 -10.sup.12 watts/cm.sup.2) to produce a plasma radiating in the region of 0.5 to 100 nanometers. By appropriate adjustment of the experimental conditions the laser focus can be moved 10-30 mm from the nozzle thereby eliminating debris produced by plasma erosion of the nozzle.

  9. Experimental benchmark of the NINJA code for application to the Linac4 H- ion source plasma

    NASA Astrophysics Data System (ADS)

    Briefi, S.; Mattei, S.; Rauner, D.; Lettry, J.; Tran, M. Q.; Fantz, U.

    2017-10-01

    For a dedicated performance optimization of negative hydrogen ion sources applied at particle accelerators, a detailed assessment of the plasma processes is required. Due to the compact design of these sources, diagnostic access is typically limited to optical emission spectroscopy yielding only line-of-sight integrated results. In order to allow for a spatially resolved investigation, the electromagnetic particle-in-cell Monte Carlo collision code NINJA has been developed for the Linac4 ion source at CERN. This code considers the RF field generated by the ICP coil as well as the external static magnetic fields and calculates self-consistently the resulting discharge properties. NINJA is benchmarked at the diagnostically well accessible lab experiment CHARLIE (Concept studies for Helicon Assisted RF Low pressure Ion sourcEs) at varying RF power and gas pressure. A good general agreement is observed between experiment and simulation although the simulated electron density trends for varying pressure and power as well as the absolute electron temperature values deviate slightly from the measured ones. This can be explained by the assumption of strong inductive coupling in NINJA, whereas the CHARLIE discharges show the characteristics of loosely coupled plasmas. For the Linac4 plasma, this assumption is valid. Accordingly, both the absolute values of the accessible plasma parameters and their trends for varying RF power agree well in measurement and simulation. At varying RF power, the H- current extracted from the Linac4 source peaks at 40 kW. For volume operation, this is perfectly reflected by assessing the processes in front of the extraction aperture based on the simulation results where the highest H- density is obtained for the same power level. In surface operation, the production of negative hydrogen ions at the converter surface can only be considered by specialized beam formation codes, which require plasma parameters as input. It has been demonstrated that

  10. Broad-beam high-current dc ion source based on a two-stage glow discharge plasma.

    PubMed

    Vizir, A V; Oks, E M; Yushkov, G Yu

    2010-02-01

    We have designed, made, and demonstrated a broad-beam, dc, ion source based on a two-stage, hollow-cathode, and glow discharges plasma. The first-stage discharge (auxiliary discharge) produces electrons that are injected into the cathode cavity of a second-stage discharge (main discharge). The electron injection causes a decrease in the required operating pressure of the main discharge down to 0.05 mTorr and a decrease in required operating voltage down to about 50 V. The decrease in operating voltage of the main discharge leads to a decrease in the fraction of impurity ions in the ion beam extracted from the main gas discharge plasma to less than 0.2%. Another feature of the source is a single-grid accelerating system in which the ion accelerating voltage is applied between the plasma itself and the grid electrode. The source has produced steady-state Ar, O, and N ion beams of about 14 cm diameter and current of more than 2 A at an accelerating voltage of up to 2 kV.

  11. Study of negative ion transport phenomena in a plasma source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riz, D.; Pamela, J.

    1996-07-01

    NIETZSCHE (Negative Ions Extraction and Transport ZSimulation Code for HydrogEn species) is a negative ion (NI) transport code developed at Cadarache. This code calculates NI trajectories using a 3D Monte-Carlo technique, taking into account the main destruction processes, as well as elastic collisions (H{sup {minus}}/H{sup +}) and charge exchanges (H{sup {minus}}/H{sup 0}). It determines the extraction probability of a NI created at a given position. According to the simulations, we have seen that in the case of volume production, only NI produced close to the plasma grid (PG) can be extracted. Concerning the surface production, we have studied how NImore » produced on the PG and accelerated by the plasma sheath backward into the source could be extracted. We demonstrate that elastic collisions and charge exchanges play an important role, which in some conditions dominates the magnetic filter effect, which acts as a magnetic mirror. NI transport in various conditions will be discussed: volume/surface production, high/low plasmas density, tent filter/transverse filter. {copyright} {ital 1996 American Institute of Physics.}« less

  12. CHROMOSPHERIC NANOFLARES AS A SOURCE OF CORONAL PLASMA. II. REPEATING NANOFLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradshaw, S. J.; Klimchuk, J. A., E-mail: stephen.bradshaw@rice.edu, E-mail: James.A.Klimchuk@nasa.gov

    The million degree plasma of the solar corona must be supplied by the underlying layers of the atmosphere. The mechanism and location of energy release, and the precise source of coronal plasma, remain unresolved. In earlier work, we pursued the idea that warm plasma is supplied to the corona via direct heating of the chromosphere by nanoflares, contrary to the prevailing belief that the corona is heated in situ and the chromosphere is subsequently energized and ablated by thermal conduction. We found that single (low-frequency) chromospheric nanoflares could not explain the observed intensities, Doppler-shifts, and red/blue asymmetries in Fe xiimore » and xiv emission lines. In the present work, we follow up on another suggestion that the corona could be powered by chromospheric nanoflares that repeat on a timescale substantially shorter than the cooling/draining timescale. That is, a single magnetic strand is re-supplied with coronal plasma before the existing plasma has time to cool and drain. We perform a series of hydrodynamic experiments and predict the Fe xii and xiv line intensities, Doppler-shifts, and red/blue asymmetries. We find that our predicted quantities disagree dramatically with observations and fully developed loop structures cannot be created by intermediate- or high-frequency chromospheric nanoflares. We conclude that the mechanism ultimately responsible for producing coronal plasma operates above the chromosphere, but this does not preclude the possibility of a similar mechanism powering the chromosphere, extreme examples of which may be responsible for heating chromospheric plasma to transition region temperatures (e.g., type II spicules)« less

  13. Accessibility condition of wave propagation and multicharged ion production in electron cyclotron resonance ion source plasma.

    PubMed

    Kato, Yushi; Yano, Keisuke; Nishiokada, Takuya; Nagaya, Tomoki; Kimura, Daiju; Kumakura, Sho; Imai, Youta; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu

    2016-02-01

    A new tandem type source of electron cyclotron resonance (ECR) plasmas has been constructing for producing synthesized ion beams in Osaka University. Magnetic mirror field configuration with octupole magnets can be controlled to various shape of ECR zones, namely, in the 2nd stage plasma to be available by a pair mirror and a supplemental coil. Noteworthy correlations between these magnetic configurations and production of multicharged ions are investigated in detail, as well as their optimum conditions. We have been considering accessibility condition of electromagnetic and electrostatic waves propagating in ECR ion source plasma, and then investigated their correspondence relationships with production of multicharged ions. It has been clarified that there exits efficient configuration of ECR zones for producing multicharged ion beams experimentally, and then has been suggested from detail accessibility conditions on the ECR plasma that new resonance, i.e., upper hybrid resonance, must have occurred.

  14. Derivatization of beta-dicarbonyl compound with 2,4-dinitrophenylhydrazine to enhance mass spectrometric detection: application in quantitative analysis of houttuynin in human plasma.

    PubMed

    Duan, Xiaotao; Zhong, Dafang; Chen, Xiaoyan

    2008-06-01

    Houttuynin (decanoyl acetaldehyde), a beta-dicarbonyl compound, is the major antibacterial constituent in the volatile oil of Houttuynina cordata Thunb. In the present work, detection of houttuynin in human plasma based on the chemical derivatization with 2,4-dinitrophenylhydrazine (DNPH) coupled with liquid chromatography/tandem mass spectrometry was described. The primary reaction products between the beta-dicarbonyl compound and DNPH in aqueous phase were identified as heterocyclic structures, of which the mass spectrometric ionization and fragmentation behavior were characterized with the aid of high-resolution multistage mass spectral analysis. For quantification, houttuynin and internal standard (IS, benzophenone) in plasma were firstly converted to their DNPH derivatives without sample purification, then extracted from human plasma with n-hexane and detected by liquid chromatography tandem mass spectrometry performed in selected reaction monitoring (SRM) mode. This method allowed for a lower limit of quantification (LLOQ) of 1.0 ng/ml using 100-microl plasma. The validation results showed high accuracy (%bias < 2.1) and precision (%CV < 7.2) at broad linear dynamic range (1.0-5000 ng/ml). The simple and quantitative derivatization coupled with tandem mass spectrometric analysis facilitates a sensitive and robust method for the determination of plasma houttuynin in pharmacokinetic studies.

  15. Plasma studies of the permanent magnet electron cyclotron resonance ion source at Peking University.

    PubMed

    Ren, H T; Peng, S X; Xu, Y; Zhao, J; Lu, P N; Chen, J; Zhang, A L; Zhang, T; Guo, Z Y; Chen, J E

    2014-02-01

    At Peking University (PKU) we have developed several 2.45 GHz Permanent Magnet Electron Cyclotron Resonance ion sources for PKUNIFTY, SFRFQ, Coupled RFQ&SFRFQ, and Dielectric-Wall Accelerator (DWA) projects (respectively, 50 mA of D(+), 10 mA of O(+), 10 mA of He(+), and 50 mA of H(+)). In order to improve performance of these ion sources, it is necessary to better understand the principal factors that influence the plasma density and the atomic ion fraction. Theoretical analysis about microwave transmission and cut-off inside the discharge chamber were carried out to study the influence of the discharge chamber diameters. As a consequence, experimental studies on plasma density and ion fraction with different discharge chamber sizes have been carried out. Due to the difficulties in measuring plasma density inside the discharge chamber, the output beam current was measured to reflect the plasma density. Experimental results show that the plasma density increases to the maximum and then decreases significantly as the diameter changed from 64 mm to 30 mm, and the atomic ion fraction has the same tendency. The maximum beam intensity was obtained with the diameter of 35 mm, but the maximum atomic ion fraction with a diameter of 40 mm. The experimental results are basically accordant with the theoretical calculation. Details are presented in this paper.

  16. Ultraviolet out-of-band radiation studies in laser tin plasma sources

    NASA Astrophysics Data System (ADS)

    Parchamy, Homaira; Szilagyi, John; Masnavi, Majid; Richardson, Martin

    2017-11-01

    Out-of-band long wavelength emission measurements from high power, high-repetition-rate extreme-ultra-violet lithography (EUVL) laser plasma sources are imperative to estimating heat deposition in EUV mirrors, and the impact of short wavelength light transported through the imaging system to the wafer surface. This paper reports a series of experiments conducted to measure the absolute spectral irradiances of laser-plasmas produced from planar tin targets over the wavelength region of 124 to 164 nm by 1.06 μm wavelength, 10 ns full-width-at-half-maximum Gaussian laser pulses. The use of spherical targets is relevant to the EUVL source scenario. Although plasmas produced from planar surfaces evolve differently, there is a close similarity to the evolution of current from 10.6 μm CO2 laser EUVL sources, which use a pre-pulse from a lower energy solid-state laser to melt and reform an initial spherical droplet into a thin planar disc target. The maximum of radiation conversion efficiency in the 124-164 nm wavelength band (1%/2πsr) occurs at the laser intensity of 1010 W cm-2. A developed collisional-radiative model reveals the strong experimental spectra that originate mainly from the 4d105p2-4d105s5p, 4d105p-4d105s resonance lines, and 4d95p-4d95s unresolved transition arrays from Sn III, Sn IV, and Sn V ions, respectively. The calculated conversion efficiencies using a 2D radiation-hydrodynamics model are in agreement with the measurements. The model predicts the out-of-band (100-400 nm) radiation conversion efficiencies generated by both 1.06 and 10.6 μm pulses. The 10.6 μm laser pulse produces a higher conversion efficiency (12%/2πsr) at the lower laser intensity of 109 W cm-2.

  17. Behavior of moving plasma in solenoidal magnetic field in a laser ion source

    NASA Astrophysics Data System (ADS)

    Ikeda, S.; Takahashi, K.; Okamura, M.; Horioka, K.

    2016-02-01

    In a laser ion source, a solenoidal magnetic field is useful to guide the plasma and to control the extracted beam current. However, the behavior of the plasma drifting in the magnetic field has not been well understood. Therefore, to investigate the behavior, we measured the plasma ion current and the total charge within a single pulse in the solenoid by changing the distance from the entrance of the solenoid to a detector. We observed that the decrease of the total charge along the distance became smaller as the magnetic field became larger and then the charge became almost constant with a certain magnetic flux density. The results indicate that the transverse spreading speed of the plasma decreased with increasing the field and the plasma was confined transversely with the magnetic flux density. We found that the reason of the confinement was not magnetization of ions but an influence induced by electrons.

  18. Behavior of moving plasma in solenoidal magnetic field in a laser ion source.

    PubMed

    Ikeda, S; Takahashi, K; Okamura, M; Horioka, K

    2016-02-01

    In a laser ion source, a solenoidal magnetic field is useful to guide the plasma and to control the extracted beam current. However, the behavior of the plasma drifting in the magnetic field has not been well understood. Therefore, to investigate the behavior, we measured the plasma ion current and the total charge within a single pulse in the solenoid by changing the distance from the entrance of the solenoid to a detector. We observed that the decrease of the total charge along the distance became smaller as the magnetic field became larger and then the charge became almost constant with a certain magnetic flux density. The results indicate that the transverse spreading speed of the plasma decreased with increasing the field and the plasma was confined transversely with the magnetic flux density. We found that the reason of the confinement was not magnetization of ions but an influence induced by electrons.

  19. A Fast Pulse, High Intensity Neutron Source Based Upon The Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Krishnan, M.; Bures, B.; Madden, R.; Blobner, F.; Elliott, K. Wilson

    2009-12-01

    Alameda Applied Sciences Corporation (AASC) has built a bench-top source of fast neutrons (˜10-30 ns, 2.45 MeV), that is portable and can be scaled to operate at ˜100 Hz. The source is a Dense Plasma Focus driven by three different capacitor banks: a 40 J/30 kA/100 Hz driver; a 500 J/130 kA/2 Hz driver and a 3 kJ/350 kA/0.5 Hz driver. At currents of ˜130 kA, this source produces ˜1×107 (DD) n/pulse. The neutron pulse widths are ˜10-30 ns and may be controlled by adjusting the DPF electrode geometry and operating parameters. This paper describes the scaling of the fast neutron output with current from such a Dense Plasma Focus source. For each current and driver, different DPF head designs are required to match to the current rise-time, as the operating pressure and anode radius/shape are varied. Doping of the pure D2 gas fill with Ar or Kr was shown earlier to increase the neutron output. Results are discussed in the light of scaling laws suggested by prior literature.

  20. Observations of Intermediate-mass Black Holes and Ultra-Luminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.

    2003-12-01

    I will review various observations that suggest that intermediate-mass black holes (IMBHs) with masses ˜102-104 M⊙ exist in our Universe. I will also discuss some of the limitations of these observations. HST Observations of excess dark mass in globular cluster cores suggest IMBHs may be responsible, and some mass estimates from lensing experiments are nearly in the IMBH range. The intriguing Ultra-Luminous X-ray sources (ULXs, or IXOs) are off-nuclear X-ray point sources with X-ray luminosities LX ≳ 1039 erg s-1. ULXs are typically rare (1 in every 5 galaxies), and the nature of their ultra-luminous emission is currently debated. I will discuss the evidence for IMBHs in some ULXs, and briefly outline some phenomenology. Finally, I will discuss future observations that can be made to search for IMBHs.