Sample records for plasma special calculations

  1. Online plasma calculator

    NASA Astrophysics Data System (ADS)

    Wisniewski, H.; Gourdain, P.-A.

    2017-10-01

    APOLLO is an online, Linux based plasma calculator. Users can input variables that correspond to their specific plasma, such as ion and electron densities, temperatures, and external magnetic fields. The system is based on a webserver where a FastCGI protocol computes key plasma parameters including frequencies, lengths, velocities, and dimensionless numbers. FastCGI was chosen to overcome security problems caused by JAVA-based plugins. The FastCGI also speeds up calculations over PHP based systems. APOLLO is built upon the WT library, which turns any web browser into a versatile, fast graphic user interface. All values with units are expressed in SI units except temperature, which is in electron-volts. SI units were chosen over cgs units because of the gradual shift to using SI units within the plasma community. APOLLO is intended to be a fast calculator that also provides the user with the proper equations used to calculate the plasma parameters. This system is intended to be used by undergraduates taking plasma courses as well as graduate students and researchers who need a quick reference calculation.

  2. Plasma Physics Calculations on a Parallel Macintosh Cluster

    NASA Astrophysics Data System (ADS)

    Decyk, Viktor; Dauger, Dean; Kokelaar, Pieter

    2000-03-01

    We have constructed a parallel cluster consisting of 16 Apple Macintosh G3 computers running the MacOS, and achieved very good performance on numerically intensive, parallel plasma particle-in-cell simulations. A subset of the MPI message-passing library was implemented in Fortran77 and C. This library enabled us to port code, without modification, from other parallel processors to the Macintosh cluster. For large problems where message packets are large and relatively few in number, performance of 50-150 MFlops/node is possible, depending on the problem. This is fast enough that 3D calculations can be routinely done. Unlike Unix-based clusters, no special expertise in operating systems is required to build and run the cluster. Full details are available on our web site: http://exodus.physics.ucla.edu/appleseed/.

  3. Plasma Physics Calculations on a Parallel Macintosh Cluster

    NASA Astrophysics Data System (ADS)

    Decyk, Viktor K.; Dauger, Dean E.; Kokelaar, Pieter R.

    We have constructed a parallel cluster consisting of 16 Apple Macintosh G3 computers running the MacOS, and achieved very good performance on numerically intensive, parallel plasma particle-in-cell simulations. A subset of the MPI message-passing library was implemented in Fortran77 and C. This library enabled us to port code, without modification, from other parallel processors to the Macintosh cluster. For large problems where message packets are large and relatively few in number, performance of 50-150 Mflops/node is possible, depending on the problem. This is fast enough that 3D calculations can be routinely done. Unlike Unix-based clusters, no special expertise in operating systems is required to build and run the cluster. Full details are available on our web site: http://exodus.physics.ucla.edu/appleseed/.

  4. Special issue on the spectroscopy of transient plasmas

    NASA Astrophysics Data System (ADS)

    Bailey, James; Hoarty, David; Mancini, Roberto; Yoneda, Hitoki

    2015-01-01

    Experimental and theoretical papers are invited for a special issue of Journal of Physics B: Atomic, Molecular and Optical Physics on Spectroscopy of Transient Plasmas, covering plasma conditions produced by pulsed laboratory sources including for example, short and long pulse lasers; pulsed power devices; FELs; XFELs and ion beams. The full range of plasma spectroscopy from the optical range up to high energy bremsstrahlung radiation will be covered. The deadline for submitting to this special issue is 1 March 2015. (Expected web publication: autumn 2015). Late submissions will be considered for the journal, but may not be included in the special issue. All submitted articles will be fully refereed to the journal's usual high standards. Upon publication, the issue will be widely promoted to the atomic, molecular and optical physics community, ensuring that your work receives maximum visibility. Articles should be submitted at http://mc04.manuscriptcentral.com/jphysb-iop. Should you have any questions regarding the preparation of manuscripts or the suitability of your work for this Issue, please do not hesitate to contact the J. Phys. B: At. Mol. Opt. Editorial team (jphysb@iop.org). We look forward to hearing from you and hope that we can welcome you as a contributing author.

  5. The calculation of thermophysical properties of nickel plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apfelbaum, E. M.

    2015-09-15

    The thermophysical properties of Nickel plasma have been calculated for the temperatures 10–60 kK and densities less than 1 g/cm{sup 3}. These properties are the pressure, internal energy, heat capacity, and the electronic transport coefficients (electrical conductivity, thermal conductivity, and thermal power). The thermodynamic values have been calculated by means of the chemical model, which also allows one to obtain the ionic composition of considered plasma. The composition has been used to calculate the electronic transport coefficients within the relaxation time approximation. The results of the present investigation have been compared with the calculations of other researchers and available data ofmore » measurements.« less

  6. Numerical band structure calculations of plasma metamaterials

    NASA Astrophysics Data System (ADS)

    Pederson, Dylan; Kourtzanidis, Konstantinos; Raja, Laxminarayan

    2015-09-01

    Metamaterials (MM) are materials engineered to display negative macroscopic permittivity and permeability. These materials allow for designed control over electromagnetic energy flow, especially at frequencies where natural materials do not interact. Plasmas have recently found application in MM as a negative permittivity component. The permittivity of a plasma depends on its electron density, which can be controlled by an applied field. This means that plasmas can be used in MM to actively control the transmission or reflection of incident waves. This work focuses on a plasma MM geometry in which microplasmas are generated in perforations in a metal plate. We characterizethis material by its band structure, which describes its interaction with incident waves. The plasma-EM interactions are obtained by coupling Maxwell's equations to a simplified plasma momentum equation. A plasma density profile is prescribed, and its effect on the band structure is investigated. The band structure calculations are typically done for static structures, whereas our current density responds to the incident waves. The resulting band structures are compared with experimental results.

  7. Calculations of Alfven Wave Driving Forces, Plasma Flow and Current Drive in Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Elfimov, Artur; Galvao, Ricardo; Amarante-Segundo, Gesil; Nascimento, Ivan

    2000-10-01

    A general form of time-averaged poloidal ponderomotive forces induced by fast and kinetic Alfvin waves by direct numerical calculations and in geometric optics approximation are analyzed on the basis of the collisionless two fluid (ions and electrons) magneto-hydrodynamics equation. Analytical approximations are used to clarify the effect of Larmour radius on radio-frequency (RF) ponderomotive forces and on poloidal flows induced by them in tokamak plasmas.The RF ponderomotive force is expressed as a sum of a gradient part and of a wave momentum transfer force, which is proportional to wave dissipation. The gradient electromagnetic stress force is combined with fluid dynamic (Reynolds) stress force. It is shown that accounting only Reynolds stress term can overestimate the plasma flow and it is found that the finite ion Larmor radius effect play fundamental role in ponderomotive forces that can drive a poloidal flow, which is larger than a flow driven by a wave momentum transfer force. Finally, balancing the RF forces by the electron-ion friction and viscous force the current and plasma flows driven by ponderomotive forces are calculated for tokamak plasmas, using a kinetic code [Phys. Plasmas, v.6 (1999) p.2437]. Strongly sheared current and plasma flow waves is found.

  8. Calculation of electronic transport coefficients of Ag and Au plasma.

    PubMed

    Apfelbaum, E M

    2011-12-01

    The thermoelectric transport coefficients of silver and gold plasma have been calculated within the relaxation-time approximation. We considered temperatures of 10-100 kK and densities of ρ plasma composition was calculated using a corresponding system of coupled mass action laws, including the atom ionization up to +4. For momentum cross sections of electron-atom scattering we used the most accurate expressions available. The results of our modeling have been compared with other researchers' data whenever possible.

  9. Numerical calculation on infrared characteristics of the special vehicle exhaust system

    NASA Astrophysics Data System (ADS)

    Feng, Yun-song; Li, Xiao-xia; Jin, Wei

    2017-10-01

    For mastery of infrared radiation characteristics and flow field of the special vehicle exhaust system, first, a physical model of the special vehicle exhaust system is established with the Gambit, and the mathematical model of flow field is determined. Secondly, software Fluent6.3 is used to simulated the 3-D exterior flow field of the special vehicle exhaust system, and the datum of flow field, such as temperature, pressure and density, are obtained. Thirdly, based on the plume temperature, the special vehicle exhaust space is divided. The exhaust is equivalent to a gray-body. A calculating model of the vehicle exhaust infrared radiation is established, and the exhaust infrared radiation characteristics are calculated by the software MATLAB, then the spatial distribution curves are drawn. Finally, the numerical results are analyzing, and the basic laws of the special vehicle exhaust infrared radiation are explored. The results show that with the increase of the engine speed, the temperature of the exhaust pipe wall of the special vehicle increases, and the temperature and pressure of the exhaust gas flow field increase, which leads to the enhancement of the infrared radiation intensity

  10. High-voltage plasma interactions calculations using NASCAP/LEO

    NASA Technical Reports Server (NTRS)

    Mandell, M. J.; Katz, I.

    1990-01-01

    This paper reviews four previous simulations (two laboratory and two space-flight) of interactions of a high-voltage spacecraft with a plasma under low-earth orbit conditions, performed using a three-dimensional computer code NASCAP/LEO. Results show that NASCAP/LEO can perform meaningful simulations of high-voltage plasma interactions taking into account three-dimensional effects of geometry, spacecraft motion, and magnetic field. Two new calculations are presented: (1) for current collection by 1-mm pinholes in wires (showing that a pinhole in a wire can collect far more current than a similar pinhole in a flat plate); and (2) current collection by Charge-2 mother vehicle launched in December 1985. It is shown that the Charge-2 calculations predicted successfully ion collection at negative bias, the floating potential of a probe outside or inside the sheath under negative bias conditions, and magnetically limited electron collection under electron beam operation at high altitude.

  11. Numerical calculation of charge exchange cross sections for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Mendez, Luis

    2016-09-01

    The diagnostics of impurity density and temperature in the plasma core in tokamak plasmas is carried out by applying the charge exchange recombination spectroscopy (CXRS) technique, where a fast beam of H atoms collides with the plasma particles leading to electron capture reactions with the impurity ions. The diagnostics is based on the emission of the excited ions formed in the electron capture. The application of the CXRS requires the knowledge of accurate state-selective cross sections, which in general are not accessible experimentally, and the calculation of cross sections for the high n capture levels, required for the diagnostics in the intermediate energy domain of the probe beam, is particularly difficult. In this work, we present a lattice numerical method to solve the time dependent Schrödinger equation. The method is based on the GridTDSE package, it is applicable in the wide energy range 1 - 500 keV/u and can be used to assess the accuracy of previous calculations. The application of the method will be illustrated with calculations for collisions of multiply charged ions with H. Work partially supported by project ENE2014-52432-R (Secretaria de Estado de I+D+i, Spain).

  12. 40 CFR 75.75 - Additional ozone season calculation procedures for special circumstances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Additional ozone season calculation... § 75.75 Additional ozone season calculation procedures for special circumstances. (a) The owner or operator of a unit that is required to calculate ozone season heat input for purposes of providing data...

  13. 40 CFR 75.75 - Additional ozone season calculation procedures for special circumstances.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Additional ozone season calculation... § 75.75 Additional ozone season calculation procedures for special circumstances. (a) The owner or operator of a unit that is required to calculate ozone season heat input for purposes of providing data...

  14. 40 CFR 75.75 - Additional ozone season calculation procedures for special circumstances.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Additional ozone season calculation... § 75.75 Additional ozone season calculation procedures for special circumstances. (a) The owner or operator of a unit that is required to calculate ozone season heat input for purposes of providing data...

  15. 40 CFR 75.75 - Additional ozone season calculation procedures for special circumstances.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Additional ozone season calculation... § 75.75 Additional ozone season calculation procedures for special circumstances. (a) The owner or operator of a unit that is required to calculate ozone season heat input for purposes of providing data...

  16. 40 CFR 75.75 - Additional ozone season calculation procedures for special circumstances.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Additional ozone season calculation... § 75.75 Additional ozone season calculation procedures for special circumstances. (a) The owner or operator of a unit that is required to calculate ozone season heat input for purposes of providing data...

  17. Calculation of two-dimension radial electric field in boundary plasmas by using BOUT++

    NASA Astrophysics Data System (ADS)

    Li, N. M.; Xu, X. Q.; Rognlien, T. D.; Gui, B.; Sun, J. Z.; Wang, D. Z.

    2018-07-01

    The steady state radial electric field (Er) is calculated by coupling a plasma transport model with the quasi-neutrality constraint and the vorticity equation within the BOUT++ framework. Based on the experimentally measured plasma density and temperature profiles in Alcator C-Mod discharges, the effective radial particle and heat diffusivities are inferred from the set of plasma transport equations. The effective diffusivities are then extended into the scrape-off layer (SOL) to calculate the plasma density, temperature and flow profiles across the separatrix into the SOL with the electrostatic sheath boundary conditions (SBC) applied on the divertor plates. Given these diffusivities, the electric field can be calculated self-consistently across the separatrix from the vorticity equation with SBC coupled to the plasma transport equations. The sheath boundary conditions act to generate a large and positive Er in the SOL, which is consistent with experimental measurements. The effect of magnetic particle drifts is shown to play a significant role on local particle transport and Er by inducing a net particle flow in both the edge and SOL regions.

  18. Determination of HF artificial ionospheric turbulence characteristics using comparison of calculated plasma wave decay rates with the measured see decay rates

    NASA Astrophysics Data System (ADS)

    Grach, Savely; Bareev, Denis; Gavrilenko, Vladimir; Sergeev, Evgeny

    Damping rates of plasma waves with ω ˜ ωuh (ω is the plasma wave frequency, ωuh is the upper hybrid frequency) were calculated for frequencies close to and distant from the double resonance where ωuh ˜ nωce (ωce is the electron cyclotron frequency, n=4,5 are the gyroharmonic num-bers). The calculations were performed numerically on the base of full plasma wave dispersion relation not restricted by both the 'long wave limit' and 'short wave limit', i.e. a fulfillment of the inequalities |∆| |k |vTe and |∆| |k |vTe was not required. Here ∆ = ω - nωce , vTe = (Te /me )1/2 is the electron thermal velocity and k is the projection of the wave vector onto the magnetic field direction. It is shown that the plasma wave damping rates do not differ noticeably from ones calculated under the long wave and short wave limits. The results obtained are compared with the data of the relaxation of the stimulated electromagnetic emission (SEE) after the pump wave turn off, which demonstrate an essential decrease of the relaxation time near 4th electron gyroharmonic, so far as the SEE relaxation is attributed to the damping of plasma waves responsible for the SEE generation. The comparison allows to determine characteristics of plasma waves mostly contributing to the SEE generation, such as wave numbers and the angles between the wave vectors and geomagnetic field, and the altitude region of the SEE source. The dependence of the decay rate on ∆ can be applied also to interpretation of the SEE spectral shape at different pump frequencies near gyroharmonics. The work is supported by RFBR grants 10-02-00642, 09-02-01150 and Federal Special-purpose Program "Scientific and pedagogical personnel of innovative Russia".

  19. Improved Frequency Fluctuation Model for Spectral Line Shape Calculations in Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Ferri, S.; Calisti, A.; Mossé, C.; Talin, B.; Lisitsa, V.

    2010-10-01

    A very fast method to calculate spectral line shapes emitted by plasmas accounting for charge particle dynamics and effects of an external magnetic field is proposed. This method relies on a new formulation of the Frequency Fluctuation Model (FFM), which yields to an expression of the dynamic line profile as a functional of the static distribution function of frequencies. This highly efficient formalism, not limited to hydrogen-like systems, allows to calculate pure Stark and Stark-Zeeman line shapes for a wide range of density, temperature and magnetic field values, which is of importance in plasma physics and astrophysics. Various applications of this method are presented for conditions related to fusion plasmas.

  20. Spectroscopic studies of GTA welding plasmas. Temperature calculation and dilution measurement

    NASA Astrophysics Data System (ADS)

    Lacroix, D.; Boudot, C.; Jeandel, G.

    1999-10-01

    A spectroscopic study of the GTAW plasma-plume created during the welding of stainless steel and other materials (iron, nickel and chromium) has been carried out. The spectra of these plasmas have been studied for several welding parameters. Temperature calculations are based on the observation of relative intensities and shapes of the emission peaks. We assume that the plasma is in local thermal equilibrium. The temperature is calculated with the Boltzmann plot method from twelve iron emission lines (in the range 368 385 nm): it varies between 9650 and 12 100 K. Dilution experiments have been carried out. We checked the mixing of metals: during welding of two different metallic plates and during welding with an Inconel wire. Dilution is monitored following the intensity of some characteristic emission lines (chromium and nickel). Comparison of spectroscopic results and metallographic ones is made.

  1. Calculation of plasma dielectric response in inhomogeneous magnetic field near electron cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Evstatiev, Evstati; Svidzinski, Vladimir; Spencer, Andy; Galkin, Sergei

    2014-10-01

    Full wave 3-D modeling of RF fields in hot magnetized nonuniform plasma requires calculation of nonlocal conductivity kernel describing the dielectric response of such plasma to the RF field. In many cases, the conductivity kernel is a localized function near the test point which significantly simplifies numerical solution of the full wave 3-D problem. Preliminary results of feasibility analysis of numerical calculation of the conductivity kernel in a 3-D hot nonuniform magnetized plasma in the electron cyclotron frequency range will be reported. This case is relevant to modeling of ECRH in ITER. The kernel is calculated by integrating the linearized Vlasov equation along the unperturbed particle's orbits. Particle's orbits in the nonuniform equilibrium magnetic field are calculated numerically by one of the Runge-Kutta methods. RF electric field is interpolated on a specified grid on which the conductivity kernel is discretized. The resulting integrals in the particle's initial velocity and time are then calculated numerically. Different optimization approaches of the integration are tested in this feasibility analysis. Work is supported by the U.S. DOE SBIR program.

  2. Representation of the Geosynchronous Plasma Environment in Spacecraft Charging Calculations

    NASA Technical Reports Server (NTRS)

    Davis, V. A.; Mandell, M. J.; Thomsen, M. F.

    2006-01-01

    Historically, our ability to predict and postdict spacecraft surface charging has been limited by the characterization of the plasma environment. One difficulty lies in the common practice of fitting the plasma data to a Maxwellian or Double Maxwellian distribution function, which may not represent the data well for charging purposes. We use electron and ion flux spectra measured by the Los Alamos National Laboratory (LANL) Magnetospheric Plasma Analyzer (MPA) to examine how the use of different spectral representations of the charged particle environment in computations of spacecraft potentials during magnetospheric substorms affects the accuracy of the results. We calculate the spacecraft potential using both the measured fluxes and several different fits to these fluxes. These measured fluxes have been corrected for the difference between the measured and calculated potential. The potential computed using the measured fluxes and the best available material properties of graphite carbon, with a secondary electron escape fraction of 81%, is within a factor of three of the measured potential for 87% of the data. Potentials calculated using a Kappa function fit to the incident electron flux distribution function and a Maxwellian function fit to the incident ion flux distribution function agree with measured potentials nearly as well as do potentials calculated using the measured fluxes. Alternative spectral representations gave less accurate estimates of potential. The use of all the components of the net flux, along with spacecraft specific average material properties, gives a better estimate of the spacecraft potential than the high energy flux alone.

  3. Calculation of Transport Coefficients in Dense Plasma Mixtures

    NASA Astrophysics Data System (ADS)

    Haxhimali, T.; Cabot, W. H.; Caspersen, K. J.; Greenough, J.; Miller, P. L.; Rudd, R. E.; Schwegler, E. R.

    2011-10-01

    We use classical molecular dynamics (MD) to estimate species diffusivity and viscosity in mixed dense plasmas. The Yukawa potential is used to describe the screened Coulomb interaction between the ions. This potential has been used widely, providing the basis for models of dense stellar materials, inertial confined plasmas, and colloidal particles in electrolytes. We calculate transport coefficients in equilibrium simulations using the Green- Kubo relation over a range of thermodynamic conditions including the viscosity and the self - diffusivity for each component of the mixture. The interdiffusivity (or mutual diffusivity) can then be related to the self-diffusivities by using a generalization of the Darken equation. We have also employed non-equilibrium MD to estimate interdiffusivity during the broadening of the interface between two regions each with a high concentration of either species. Here we present results for an asymmetric mixture between Ar and H. These can easily be extended to other plasma mixtures. A main motivation for this study is to develop accurate transport models that can be incorporated into the hydrodynamic codes to study hydrodynamic instabilities. We use classical molecular dynamics (MD) to estimate species diffusivity and viscosity in mixed dense plasmas. The Yukawa potential is used to describe the screened Coulomb interaction between the ions. This potential has been used widely, providing the basis for models of dense stellar materials, inertial confined plasmas, and colloidal particles in electrolytes. We calculate transport coefficients in equilibrium simulations using the Green- Kubo relation over a range of thermodynamic conditions including the viscosity and the self - diffusivity for each component of the mixture. The interdiffusivity (or mutual diffusivity) can then be related to the self-diffusivities by using a generalization of the Darken equation. We have also employed non-equilibrium MD to estimate interdiffusivity during

  4. Efficient calculation of atomic rate coefficients in dense plasmas

    NASA Astrophysics Data System (ADS)

    Aslanyan, Valentin; Tallents, Greg J.

    2017-03-01

    Modelling electron statistics in a cold, dense plasma by the Fermi-Dirac distribution leads to complications in the calculations of atomic rate coefficients. The Pauli exclusion principle slows down the rate of collisions as electrons must find unoccupied quantum states and adds a further computational cost. Methods to calculate these coefficients by direct numerical integration with a high degree of parallelism are presented. This degree of optimization allows the effects of degeneracy to be incorporated into a time-dependent collisional-radiative model. Example results from such a model are presented.

  5. Errors in calculated oncotic pressure of dog plasma.

    PubMed

    Gabel, J C; Scott, R L; Adair, T H; Drake, R E; Traber, D L

    1980-12-01

    Several equations to calculate plasma oncotic pressure (pi) from the total protein concentration (C) have been previously described. These equations were derived empirically from samples with a wide range of C obtained by diluting or concentrating normal plasma samples. To test these equations over a range of naturally occurring C, we measured C and pi of plasma samples from 40 dogs. C ranged from 5.3 to 8.7 g/dl and averaged 6.5 +/- 0.1 (mean +/- SE) and pi averaged 17.9 +/- 0.3 mmHg. The regression equation was pi = 78.14 + 1.67 C (r = 0.74). pi increased with C much less than predicted with the commonly used equations. The albumin-to-globulin concentration ratios (A/G), determined in 27 of the dogs, decreased with increasing C (A/G = 1.56-0.128 C, r = 0.62). The lower A/G at the higher C's could cause the lower than predicted increase in pi with C, because the equations were developed from data in which A/G was constant.

  6. Atomic structure data based on average-atom model for opacity calculations in astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Trzhaskovskaya, M. B.; Nikulin, V. K.

    2018-03-01

    Influence of the plasmas parameters on the electron structure of ions in astrophysical plasmas is studied on the basis of the average-atom model in the local thermodynamic equilibrium approximation. The relativistic Dirac-Slater method is used for the electron density estimation. The emphasis is on the investigation of an impact of the plasmas temperature and density on the ionization stages required for calculations of the plasmas opacities. The level population distributions and level energy spectra are calculated and analyzed for all ions with 6 ≤ Z ≤ 32 occurring in astrophysical plasmas. The plasma temperature range 2 - 200 eV and the density range 2 - 100 mg/cm3 are considered. The validity of the method used is supported by good agreement between our values of ionization stages for a number of ions, from oxygen up to uranium, and results obtained earlier by various methods among which are more complicated procedures.

  7. Calculation of impurity poloidal rotation from measured poloidal asymmetries in the toroidal rotation of a tokamak plasma.

    PubMed

    Chrystal, C; Burrell, K H; Grierson, B A; Groebner, R J; Kaplan, D H

    2012-10-01

    To improve poloidal rotation measurement capabilities on the DIII-D tokamak, new chords for the charge exchange recombination spectroscopy (CER) diagnostic have been installed. CER is a common method for measuring impurity rotation in tokamak plasmas. These new chords make measurements on the high-field side of the plasma. They are designed so that they can measure toroidal rotation without the need for the calculation of atomic physics corrections. Asymmetry between toroidal rotation on the high- and low-field sides of the plasma is used to calculate poloidal rotation. Results for the main impurity in the plasma are shown and compared with a neoclassical calculation of poloidal rotation.

  8. A project based on multi-configuration Dirac-Fock calculations for plasma spectroscopy

    NASA Astrophysics Data System (ADS)

    Comet, M.; Pain, J.-C.; Gilleron, F.; Piron, R.

    2017-09-01

    We present a project dedicated to hot plasma spectroscopy based on a Multi-Configuration Dirac-Fock (MCDF) code, initially developed by J. Bruneau. The code is briefly described and the use of the transition state method for plasma spectroscopy is detailed. Then an opacity code for local-thermodynamic-equilibrium plasmas using MCDF data, named OPAMCDF, is presented. Transition arrays for which the number of lines is too large to be handled in a Detailed Line Accounting (DLA) calculation can be modeled within the Partially Resolved Transition Array method or using the Unresolved Transition Arrays formalism in jj-coupling. An improvement of the original Partially Resolved Transition Array method is presented which gives a better agreement with DLA computations. Comparisons with some absorption and emission experimental spectra are shown. Finally, the capability of the MCDF code to compute atomic data required for collisional-radiative modeling of plasma at non local thermodynamic equilibrium is illustrated. In addition to photoexcitation, this code can be used to calculate photoionization, electron impact excitation and ionization cross-sections as well as autoionization rates in the Distorted-Wave or Close Coupling approximations. Comparisons with cross-sections and rates available in the literature are discussed.

  9. Programmable calculator software for computation of the plasma binding of ligands.

    PubMed

    Conner, D P; Rocci, M L; Larijani, G E

    1986-01-01

    The computation of the extent of plasma binding of a ligand to plasma constituents using radiolabeled ligand and equilibrium dialysis is complex and tedious. A computer program for the HP-41C Handheld Computer Series (Hewlett-Packard) was developed to perform these calculations. The first segment of the program constructs a standard curve for quench correction of post-dialysis plasma and buffer samples, using either external standard ratio (ESR) or sample channels ratio (SCR) techniques. The remainder of the program uses the counts per minute, SCR or ESR, and post-dialysis volume of paired plasma and buffer samples generated from the dialysis procedure to compute the extent of binding after correction for background radiation, counting efficiency, and intradialytic shifts of fluid between plasma and buffer compartments during dialysis. This program greatly simplifies the analysis of equilibrium dialysis data and has been employed in the analysis of dexamethasone binding in normal and uremic sera.

  10. Calculation of gas-flow in plasma reactor for carbon partial oxidation

    NASA Astrophysics Data System (ADS)

    Bespala, Evgeny; Myshkin, Vyacheslav; Novoselov, Ivan; Pavliuk, Alexander; Makarevich, Semen; Bespala, Yuliya

    2018-03-01

    The paper discusses isotopic effects at carbon oxidation in low temperature non-equilibrium plasma at constant magnetic field. There is described routine of experiment and defined optimal parameters ensuring maximum enrichment factor at given electrophysical, gas-dynamic, and thermodymanical parameters. It has been demonstrated that at high-frequency generator capacity of 4 kW, supply frequency of 27 MHz and field density of 44 mT the concentration of paramagnetic heavy nuclei 13C in gaseous phase increases up to 1.78 % compared to 1.11 % for natural concentration. Authors explain isotopic effect decrease during plasmachemical separation induced by mixing gas flows enriched in different isotopes at the lack of product quench. With the help of modeling the motion of gas flows inside the plasma-chemical reactor based on numerical calculation of Navier-Stokes equation authors determine zones of gas mixing and cooling speed. To increase isotopic effects and proportion of 13C in gaseous phase it has been proposed to use quench in the form of Laval nozzle of refractory steel. The article represents results on calculation of optimal Laval Nozzle parameters for plasma-chemical reactor of chosen geometry of. There are also given dependences of quench time of products on pressure at the diffuser output and on critical section diameter. Authors determine the location of quench inside the plasma-chemical reactor in the paper.

  11. 29 CFR 825.802 - Special rules for airline flight crew employees, calculation of leave.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., calculation of leave. 825.802 Section 825.802 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR OTHER LAWS THE FAMILY AND MEDICAL LEAVE ACT OF 1993 Special Rules Applicable..., calculation of leave. (a) Amount of leave. (1) An eligible airline flight crew employee is entitled to 72 days...

  12. 29 CFR 825.802 - Special rules for airline flight crew employees, calculation of leave.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., calculation of leave. 825.802 Section 825.802 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR OTHER LAWS THE FAMILY AND MEDICAL LEAVE ACT OF 1993 Special Rules Applicable..., calculation of leave. (a) Amount of leave. (1) An eligible airline flight crew employee is entitled to 72 days...

  13. Self-diffusion and conductivity in an ultracold strongly coupled plasma: Calculation by the method of molecular dynamics

    NASA Astrophysics Data System (ADS)

    Zelener, B. B.; Zelener, B. V.; Manykin, E. A.; Bronin, S. Ya; Bobrov, A. A.; Khikhlukha, D. R.

    2018-01-01

    We present results of calculations by the method of molecular dynamics of self-diffusion and conductivity of electron and ion components of ultracold plasma in a comparison with available theoretical and experimental data. For the ion self-diffusion coefficient, good agreement was obtained with experiments on ultracold plasma. The results of the calculation of self-diffusion also agree well with other calculations performed for the same values of the coupling parameter, but at high temperatures. The difference in the results of the conductivity calculations on the basis of the current autocorrelation function and on the basis of the diffusion coefficient is discussed.

  14. Calculation and observation of thermal electrostatic noise in solar wind plasma

    NASA Technical Reports Server (NTRS)

    Kellogg, P. J.

    1981-01-01

    Calculations, both approximate algebraic and numerical, have been carried out for the noise due to electrostatic waves incident on a dipole antenna. The noise is calculated both for a thermal equilibrium plasma, and one having several components at different temperatures. The results are compared with measurements from the IMP-6 satellite. In various frequency ranges, the noise power is dominated by Langmuir oscillations, by electron acoustic waves and by ion acoustic waves. The measurements are consistent with all of these, although the ion waves are not definitely observed, due to interference from shot noise.

  15. Simulations of dusty plasmas using a special-purpose computer system designed for gravitational N-body problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, K.; Mizuno, Y.; Hibino, S.

    2006-01-15

    Simulations of dusty plasmas were performed using GRAPE-6, a special-purpose computer designed for gravitational N-body problems. The collective behavior of dust particles, which are injected into the plasma, was studied by means of three-dimensional computer simulations. As an example of a dusty plasma simulation, experiments on Coulomb crystals in plasmas are simulated. Formation of a quasi-two-dimensional Coulomb crystal has been observed under typical laboratory conditions. Another example was to simulate movement of dust particles in plasmas under microgravity conditions. Fully three-dimensional spherical structures of dust clouds have been observed. For the simulation of a dusty plasma in microgravity with 3x10{supmore » 4} particles, GRAPE-6 can perform the whole operation 1000 times faster than by using a Pentium 4 1.6 GHz processor.« less

  16. Comparison of three rf plasma impedance monitors on a high phase angle planar inductively coupled plasma source

    NASA Astrophysics Data System (ADS)

    Uchiyama, H.; Watanabe, M.; Shaw, D. M.; Bahia, J. E.; Collins, G. J.

    1999-10-01

    Accurate measurement of plasma source impedance is important for verification of plasma circuit models, as well as for plasma process characterization and endpoint detection. Most impedance measurement techniques depend in some manner on the cosine of the phase angle to determine the impedance of the plasma load. Inductively coupled plasmas are generally highly inductive, with the phase angle between the applied rf voltage and the rf current in the range of 88 to near 90 degrees. A small measurement error in this phase angle range results in a large error in the calculated cosine of the angle, introducing large impedance measurement variations. In this work, we have compared the measured impedance of a planar inductively coupled plasma using three commercial plasma impedance monitors (ENI V/I probe, Advanced Energy RFZ60 and Advanced Energy Z-Scan). The plasma impedance is independently verified using a specially designed match network and a calibrated load, representing the plasma, to provide a measurement standard.

  17. Optimization of air plasma reconversion of UF6 to UO2 based on thermodynamic calculations

    NASA Astrophysics Data System (ADS)

    Tundeshev, Nikolay; Karengin, Alexander; Shamanin, Igor

    2018-03-01

    The possibility of plasma-chemical conversion of depleted uranium-235 hexafluoride (DUHF) in air plasma in the form of gas-air mixtures with hydrogen is considered in the paper. Calculation of burning parameters of gas-air mixtures is carried out and the compositions of mixtures obtained via energy-efficient conversion of DUHF in air plasma are determined. With the help of plasma-chemical conversion, thermodynamic modeling optimal composition of UF6-H2-Air mixtures and its burning parameters, the modes for production of uranium dioxide in the condensed phase are determined. The results of the conducted researches can be used for creation of technology for plasma-chemical conversion of DUHF in the form of air-gas mixtures with hydrogen.

  18. Relativistic Many-Body Approach to Calculating Radiation and Autoionization Probabilities, Electron Collision Strengths For Multicharged Ions in a Plasma: Debae Approximation

    NASA Astrophysics Data System (ADS)

    Glushkov, Alexander; Loboda, Andrey; Nikola, Ludmila

    2011-10-01

    We present the uniform energy approach, formally based on the gauge-invariant relativistic many-body perturbation theory for the calculation of the radiative and autoionization probabilities, electron collision strengths and rate coefficients in a multicharged ions (in a collisionally pumped plasma). An account for the plasma medium influence is carried out within a Debae shielding approach. The aim is to study, in a uniform manner, elementary processes responsible for emission-line formation in a plasma. The energy shift due to the collision is arisen at first in the second PT order in the form of integral on the scattered electron energy. The cross-section is linked with imaginary part of the scattering energy shift. The electron collision excitation cross-sections and rate coefficients for some plasma Ne-, Ar-like multicharged ions are calculated within relativistic energy approach. We present the results of calculation the autoionization resonances energies and widths in heavy He-like multicharged ions and rare-earth atoms of Gd and Tm. To test the results of calculations we compare the obtained data for some Ne-like ions with other authors' calculations and available experimental data for a wide range of plasma conditions.

  19. Preface to Special Topic: Advances in Radio Frequency Physics in Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Tuccillo, Angelo A.; Phillips, Cynthia K.; Ceccuzzi, Silvio

    2014-06-01

    It has long been recognized that auxiliary plasma heating will be required to achieve the high temperature, high density conditions within a magnetically confined plasma in which a fusion "burn" may be sustained by copious fusion reactions. Consequently, the application of radio and microwave frequency electromagnetic waves to magnetically confined plasma, commonly referred to as RF, has been a major part of the program almost since its inception in the 1950s. These RF waves provide heating, current drive, plasma profile control, and Magnetohydrodynamics (MHD) stabilization. Fusion experiments employ electromagnetic radiation in a wide range of frequencies, from tens of MHz to hundreds of GHz. The fusion devices containing the plasma are typically tori, axisymmetric or non, in which the equilibrium magnetic fields are composed of a strong toroidal magnetic field generated by external coils, and a poloidal field created, at least in the symmetric configurations, by currents flowing in the plasma. The waves are excited in the peripheral regions of the plasma, by specially designed launching structures, and subsequently propagate into the core regions, where resonant wave-plasma interactions produce localized heating or other modification of the local equilibrium profiles. Experimental studies coupled with the development of theoretical models and advanced simulation codes over the past 40+ years have led to an unprecedented understanding of the physics of RF heating and current drive in the core of magnetic fusion devices. Nevertheless, there are serious gaps in our knowledge base that continue to have a negative impact on the success of ongoing experiments and that must be resolved as the program progresses to the next generation devices and ultimately to "demo" and "fusion power plant." A serious gap, at least in the ion cyclotron (IC) range of frequencies and partially in the lower hybrid frequency ranges, is the difficulty in coupling large amount of power to the

  20. Refined Calculations of Secondary Nuclear Reactions in Magneto-Inertial Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Schmit, Paul; Knapp, Patrick; Hansen, Stephanie; Gomez, Matthew; Hahn, Kelly; Sinars, Daniel; Peterson, Kyle; Slutz, Stephen; Sefkow, Adam; Awe, Thomas; Harding, Eric; Jennings, Christopher

    2014-10-01

    Diagnosing the degree of magnetic flux compression at stagnation in magneto-inertial fusion (MIF) is critical for charting the performance of any MIF concept. In pure deuterium plasma, the transport of high-energy tritons produced by the aneutronic DD fusion reaction depends strongly on the magnetic field. The tritons probe and occasionally react with the fuel, emitting secondary DT neutrons. We show that the DT/DD neutron yield ratio and the secondary DT neutron spectra can be used to infer the magnetic field-radius product (BR), the critical confinement parameter for MIF. The amount of fuel-pusher mix also can be constrained by secondary reactions. We discuss the sensitivity to plasma inhomogeneities of the calculations and outline methods to relate secondary yields to alpha particle energy deposition in ignition-relevant experiments employing DT fuel. We compare our calculations to recent tests of the Magnetized Liner Inertial Fusion (MagLIF) concept on the Z Pulsed Power Facility. Supported in part by the SNL Truman Fellowship, which is part of the LDRD Program, and sponsored by Sandia Corporation (a wholly owned subsidiary of Lockheed Martin Corporation) as Operator of SNL under its U.S. DoE Contract No. DE-AC04-94AL85000.

  1. Binary collision rates of relativistic thermal plasmas. I Theoretical framework

    NASA Technical Reports Server (NTRS)

    Dermer, C. D.

    1985-01-01

    Binary collision rates for arbitrary scattering cross sections are derived in the case of a beam of particles interacting with a Maxwell-Boltzmann (MB) plasma, or in the case of two MB plasmas interacting at generally different temperatures. The expressions are valid for all beam energies and plasma temperatures, from the nonrelativistic to the extreme relativistic limits. The calculated quantities include the reaction rate, the energy exchange rate, and the average rate of change of the squared transverse momentum component of a monoenergetic particle beam as a result of scatterings with particles of a MB plasma. Results are specialized to elastic scattering processes, two-temperature reaction rates, or the cold plasma limit, reproducing previous work.

  2. Ion cyclotron emission from energetic fusion products in tokamak plasmas: A full-wave calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batchelor, D.B.; Jaeger, E.F.; Colestock, P.L.

    1989-06-01

    A full-wave ion cyclotron resonant heating (ICRH) code has been modified to allow calculation of cyclotron emission from energetic ions in tokamaks. The immediate application is to fusion alpha particles in near-ignition devices. This permits detailed evaluation of proposed alpha particle diagnostics (Proceedings of the Thirteenth European Conference on Controlled Fusion and Plasma Heating, Schliersee, Federal Republic of Germany, 1986, edited by G. Briffod and M. Kaufmann (European Physical Society, Petit-Lancy, Switzerland, 1986), Part 1, Vol. 2, p. 37.) This full-wave approach automatically takes into account wall reflections, standing waves, and plasma absorption and overcomes the difficulties inherent in attemptingmore » to apply conventional geometrical optics to long wavelengths. By calculating the coherent radiation field caused by an ensemble of localized current sources (and retaining the phase information), the directivity of pickup antennas is correctly represented.« less

  3. Core Physics and Kinetics Calculations for the Fissioning Plasma Core Reactor

    NASA Technical Reports Server (NTRS)

    Butler, C.; Albright, D.

    2007-01-01

    Highly efficient, compact nuclear reactors would provide high specific impulse spacecraft propulsion. This analysis and numerical simulation effort has focused on the technical feasibility issues related to the nuclear design characteristics of a novel reactor design. The Fissioning Plasma Core Reactor (FPCR) is a shockwave-driven gaseous-core nuclear reactor, which uses Magneto Hydrodynamic effects to generate electric power to be used for propulsion. The nuclear design of the system depends on two major calculations: core physics calculations and kinetics calculations. Presently, core physics calculations have concentrated on the use of the MCNP4C code. However, initial results from other codes such as COMBINE/VENTURE and SCALE4a. are also shown. Several significant modifications were made to the ISR-developed QCALC1 kinetics analysis code. These modifications include testing the state of the core materials, an improvement to the calculation of the material properties of the core, the addition of an adiabatic core temperature model and improvement of the first order reactivity correction model. The accuracy of these modifications has been verified, and the accuracy of the point-core kinetics model used by the QCALC1 code has also been validated. Previously calculated kinetics results for the FPCR were described in the ISR report, "QCALC1: A code for FPCR Kinetics Model Feasibility Analysis" dated June 1, 2002.

  4. A New Kinetic Simulation Model with Self-Consistent Calculation of Regolith Layer Charging for Moon-Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Han, D.; Wang, J.

    2015-12-01

    The moon-plasma interactions and the resulting surface charging have been subjects of extensive recent investigations. While many particle-in-cell (PIC) based simulation models have been developed, all existing PIC simulation models treat the surface of the Moon as a boundary condition to the plasma flow. In such models, the surface of the Moon is typically limited to simple geometry configurations, the surface floating potential is calculated from a simplified current balance condition, and the electric field inside the regolith layer cannot be resolved. This paper presents a new full particle PIC model to simulate local scale plasma flow and surface charging. A major feature of this new model is that the surface is treated as an "interface" between two mediums rather than a boundary, and the simulation domain includes not only the plasma but also the regolith layer and the bedrock underneath it. There are no limitations on the surface shape. An immersed-finite-element field solver is applied which calculates the regolith surface floating potential and the electric field inside the regolith layer directly from local charge deposition. The material property of the regolith layer is also explicitly included in simulation. This new model is capable of providing a self-consistent solution to the plasma flow field, lunar surface charging, the electric field inside the regolith layer and the bedrock for realistic surface terrain. This new model is applied to simulate lunar surface-plasma interactions and surface charging under various ambient plasma conditions. The focus is on the lunar terminator region, where the combined effects from the low sun elevation angle and the localized plasma wake generated by plasma flow over a rugged terrain can generate strongly differentially charged surfaces and complex dust dynamics. We discuss the effects of the regolith properties and regolith layer charging on the plasma flow field, dust levitation, and dust transport.

  5. Mental Calculation Strategies of a Student Attending a Special School for the Intellectually Disabled

    ERIC Educational Resources Information Center

    Rumiati, Rumi; Wright, Robert J.

    2014-01-01

    Pat was a 19-year-old attending a Special School for the Intellectually Disabled in Indonesia. She was interviewed by the first author regarding her mental calculation strategies when solving 1- and 2-digit addition and subtraction problems. Results indicate that she was able to see ten as a unit composed of ten ones and was facile in using…

  6. [Plasma temperature calculation and coupling mechanism analysis of laser-double wire hybrid welding].

    PubMed

    Zheng, Kai; Li, Huan; Yang, Li-Jun; Gu, Xiao-Yan; Gao, Ying

    2013-04-01

    The plasma radiation of laser-double wire hybrid welding was collected by using fiber spectrometer, the coupling mechanism of arc with laser was studied through high-speed photography during welding process, and the temperature of hybrid plasma was calculated by using the method of Boltzmann plot. The results indicated that with laser hybrid, luminance was enhanced; radiation intensity became stronger; arc was attracted to the laser point; cross section contracted and arc was more stable. The laser power, welding current and arc-arc distance are important factors that have great influence on electron temperature. Increase in the laser power, amplification of welding current and reduction of arc-arc distance can all result in the rise of temperature.

  7. Non-linear theory of a cavitated plasma wake in a plasma channel for special applications and control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Johannes, E-mail: thomas@tp1.uni-duesseldorf.de; Pronold, Jari; Pukhov, Alexander

    2016-05-15

    We introduce a complete semi-analytical model for a cavitated electron wake driven by an electron beam in a radially inhomogeneous plasma. The electron response to the driver, dynamics of electrons in a thin sheath surrounding the cavity, as well as accelerating and focusing fields inside the cavity are calculated in the quasistatic approximation. Our theory holds for arbitrary radial density profiles and reduces to known models in the limit of a homogeneous plasma. A free-propagating blow-out in an evacuated channel experiences longitudinal squeezing, qualitatively the same as observed in particle-in-cell simulations for the laser pulse-driven case [Pukhov et al., Phys.more » Rev. Lett. 113, 245003 (2014)]. Our model also permits qualitative interpretation of the earlier observed cancellation of the focusing gradient in the cavity [Pukhov et al., Phys. Rev. Lett. 113, 245003 (2014)]. In this work, we show the underlying mechanism that causes the radial fields in the vacuum part of a channel to become defocussing.« less

  8. Non-linear theory of a cavitated plasma wake in a plasma channel for special applications and control

    NASA Astrophysics Data System (ADS)

    Thomas, Johannes; Kostyukov, Igor Yu.; Pronold, Jari; Golovanov, Anton; Pukhov, Alexander

    2016-05-01

    We introduce a complete semi-analytical model for a cavitated electron wake driven by an electron beam in a radially inhomogeneous plasma. The electron response to the driver, dynamics of electrons in a thin sheath surrounding the cavity, as well as accelerating and focusing fields inside the cavity are calculated in the quasistatic approximation. Our theory holds for arbitrary radial density profiles and reduces to known models in the limit of a homogeneous plasma. A free-propagating blow-out in an evacuated channel experiences longitudinal squeezing, qualitatively the same as observed in particle-in-cell simulations for the laser pulse-driven case [Pukhov et al., Phys. Rev. Lett. 113, 245003 (2014)]. Our model also permits qualitative interpretation of the earlier observed cancellation of the focusing gradient in the cavity [Pukhov et al., Phys. Rev. Lett. 113, 245003 (2014)]. In this work, we show the underlying mechanism that causes the radial fields in the vacuum part of a channel to become defocussing.

  9. Combining mass spectrometry diagnostic and density functional theory calculations for a better understanding of the plasma polymerization of ethyl lactate.

    PubMed

    Ligot, S; Guillaume, M; Gerbaux, P; Thiry, D; Renaux, F; Cornil, J; Dubois, P; Snyders, R

    2014-04-17

    The focus of this work is on the growth mechanism of ethyl lactate-based plasma polymer film (ELPPF) that could be used as barrier coatings. In such an application, the ester density of the plasma polymer has to be controlled to tune the degradation rate of the material. Our strategy consists of correlating the plasma chemistry evaluated by RGA mass spectrometry and understanding, via DFT calculations, the chemistry of the synthesized thin films. The theoretical calculations helped us to understand the plasma chemistry in plasma ON and OFF conditions. From these data it is unambiguously shown that the signal m/z 75 can directly be correlated with the precursor density in the plasma phase. The combination of XPS and chemical derivatization experiments reveal that the ester content in the ELPFF can be tailored from 2 to 18 at. % by decreasing the RF power, which is perfectly correlated with the evolution of the plasma chemistry. Our results also highlight that the ELPPF chemistry, especially the ester content, is affected by the plasma mode of operation (continuous or pulsed discharge, at similar injected mean power) for similar ester content in the plasma. This could be related to different energy conditions at the interface of the growing films that could affect the sticking coefficient of the ester-bearing fragments.

  10. Current collection from an unmagnetized plasma: A tutorial

    NASA Technical Reports Server (NTRS)

    Whipple, Elden C.

    1990-01-01

    The current collected by a body in an unmagnetized plasma depends in general on: (1) the properties of the plasma; (2) the properties of the body; and (3) the properties of any neutral species that are present. The important plasma properties are the velocity distributions of the plasma particles at a location remote from the body (at infinity), and the Debye length which determines the importance of plasma space charge effects. The important body properties are its surface characteristics, namely the conductivity and secondary yield coefficients. The neutral species affect the current through collisions which impede the flow of current and possibly through ionization of the neutrals which can enhance the current. The technique for calculating the current collected by a body in a plasma is reviewed with special attention given to the distinction between orbit limited and space charge limited regimes, the asymptotic variation of the potential with distance from a body, and the concept of a sheath.

  11. Calculation of thermodynamic functions of aluminum plasma for high-energy-density systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shumaev, V. V., E-mail: shumaev@student.bmstu.ru

    The results of calculating the degree of ionization, the pressure, and the specific internal energy of aluminum plasma in a wide temperature range are presented. The TERMAG computational code based on the Thomas–Fermi model was used at temperatures T > 105 K, and the ionization equilibrium model (Saha model) was applied at lower temperatures. Quantitatively similar results were obtained in the temperature range where both models are applicable. This suggests that the obtained data may be joined to produce a wide-range equation of state.

  12. Photon emission from quark-gluon plasma out of equilibrium

    NASA Astrophysics Data System (ADS)

    Hauksson, Sigtryggur; Jeon, Sangyong; Gale, Charles

    2018-01-01

    The photon emission from a nonequilibrium quark-gluon plasma is analyzed. We derive an integral equation that describes photon production through quark-antiquark annihilation and quark bremsstrahlung. It includes coherence between different scattering sites, also known as the Landau-Pomeranchuk-Migdal effect. These leading-order processes are studied for the first time together in an out-of-equilibrium field theoretical treatment that enables the inclusion of viscous corrections to the calculation of electromagnetic emission rates. In the special case of an isotropic, viscous, plasma the integral equation only depends on three constants, which capture the nonequilibrium nature of the medium.

  13. Coulomb Logarithm in Nonideal and Degenerate Plasmas

    NASA Astrophysics Data System (ADS)

    Filippov, A. V.; Starostin, A. N.; Gryaznov, V. K.

    2018-03-01

    Various methods for determining the Coulomb logarithm in the kinetic theory of transport and various variants of the choice of the plasma screening constant, taking into account and disregarding the contribution of the ion component and the boundary value of the electron wavevector are considered. The correlation of ions is taken into account using the Ornstein-Zernike integral equation in the hypernetted-chain approximation. It is found that the effect of ion correlation in a nondegenerate plasma is weak, while in a degenerate plasma, this effect must be taken into account when screening is determined by the electron component alone. The calculated values of the electrical conductivity of a hydrogen plasma are compared with the values determined experimentally in the megabar pressure range. It is shown that the values of the Coulomb logarithm can indeed be smaller than unity. Special experiments are proposed for a more exact determination of the Coulomb logarithm in a magnetic field for extremely high pressures, for which electron scattering by ions prevails.

  14. Calculation of sheath and wake structure about a pillbox-shaped spacecraft in a flowing plasma

    NASA Technical Reports Server (NTRS)

    Parker, L. W.

    1977-01-01

    A computer program was used for studies of the disturbed zones around bodies in flowing plasmas, particularly spacecraft and their associated sheaths and wakes. The program solved a coupled Poisson-Vlasov system of nonlinear partial differential integral equations to obtain distributions of electric potential and ion and electron density about a finite length cylinder in a plasma flow at arbitrary ion Mach numbers. The approach was applicable to a larger range of parameters than other available approaches. In sample calculations, bodies up to 100 Debye lengths in radius were treated, that is, larger than any previously treated realistically. Applications were made to in-situ satellite experiments.

  15. Preface to Special Topic: Plasmas for Medical Applications

    NASA Astrophysics Data System (ADS)

    Keidar, Michael; Robert, Eric

    2015-12-01

    Intense research effort over last few decades in low-temperature (or cold) atmospheric plasma application in bioengineering led to the foundation of a new scientific field, plasma medicine. Cold atmospheric plasmas (CAP) produce various chemically reactive species including reactive oxygen species (ROS) and reactive nitrogen species (RNS). It has been found that these reactive species play an important role in the interaction of CAP with prokaryotic and eukaryotic cells triggering various signaling pathways in cells.

  16. Calculation of low-Z impurity pellet induced fluxes of charge exchange neutral particles escaping from magnetically confined toroidal plasmas.

    PubMed

    Goncharov, P R; Ozaki, T; Sudo, S; Tamura, N; Tolstikhina, I Yu; Sergeev, V Yu

    2008-10-01

    Measurements of energy- and time-resolved neutral hydrogen and helium fluxes from an impurity pellet ablation cloud, referred to as pellet charge exchange or PCX experiments, can be used to study local fast ion energy distributions in fusion plasmas. The estimation of the local distribution function f(i)(E) of fast ions entering the cloud requires knowledge of both the fraction F(0)(E) of incident ions exiting the cloud as neutral atoms and the attenuation factor A(E,rho) describing the loss of fast atoms in the plasma. Determination of A(E,rho), in turn, requires the total stopping cross section sigma(loss) of neutral atoms in the plasma and the Jacobian reflecting the measurement geometry and the magnetic surface shape. The obtained functions F(0)(E) and A(E,rho) enter multiplicatively into the probability density for escaping neutral particle kinetic energy. A general calculation scheme has been developed and realized as a FORTRAN code, which is to be applied for the calculation of f(i)(E) from PCX experimental results obtained with low-Z impurity pellets.

  17. Calculations of the Electron Energy Distribution Function in a Uranium Plasma by Analytic and Monte Carlo Techniques. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bathke, C. G.

    1976-01-01

    Electron energy distribution functions were calculated in a U235 plasma at 1 atmosphere for various plasma temperatures and neutron fluxes. The distributions are assumed to be a summation of a high energy tail and a Maxwellian distribution. The sources of energetic electrons considered are the fission-fragment induced ionization of uranium and the electron induced ionization of uranium. The calculation of the high energy tail is reduced to an electron slowing down calculation, from the most energetic source to the energy where the electron is assumed to be incorporated into the Maxwellian distribution. The pertinent collisional processes are electron-electron scattering and electron induced ionization and excitation of uranium. Two distinct methods were employed in the calculation of the distributions. One method is based upon the assumption of continuous slowing and yields a distribution inversely proportional to the stopping power. An iteration scheme is utilized to include the secondary electron avalanche. In the other method, a governing equation is derived without assuming continuous electron slowing. This equation is solved by a Monte Carlo technique.

  18. EDITORIAL: Non-thermal plasma-assisted fuel conversion for green chemistry Non-thermal plasma-assisted fuel conversion for green chemistry

    NASA Astrophysics Data System (ADS)

    Nozaki, Tomohiro; Gutsol, Alexander

    2011-07-01

    This special issue is based on the symposium on Non-thermal Plasma Assisted Fuel Conversion for Green Chemistry, a part of the 240th ACS National Meeting & Exposition held in Boston, MA, USA, 22-26 August 2010. Historically, the Division of Fuel Chemistry of the American Chemical Society (ACS) has featured three plasma-related symposia since 2000, and has launched special issues in Catalysis Today on three occasions: 'Catalyst Preparation using Plasma Technologies', Fall Meeting, Washington DC, USA, 2000. Special issue in Catalysis Today 72 (3-4) with 12 peer-reviewed articles. 'Plasma Technology and Catalysis', Spring Meeting, New Orleans, LA, USA, 2003. Special issue in Catalysis Today 89 (1-2) with more than 30 peer-reviewed articles. 'Utilization of Greenhouse Gases II' (partly focused on plasma-related technologies), Spring Meeting, Anaheim, CA, USA, 2004. Special issue in Catalysis Today 98 (4) with 25 peer-reviewed articles. This time, selected presentations are published in this Journal of Physics D: Applied Physics special issue. An industrial material and energy conversion technology platform is established on thermochemical processes including various catalytic reactions. Existing industry-scale technology is already well established; nevertheless, further improvement in energy efficiency and material saving has been continuously demanded. Drastic reduction of CO2 emission is also drawing keen attention with increasing recognition of energy and environmental issues. Green chemistry is a rapidly growing research field, and frequently highlights renewable bioenergy, bioprocesses, solar photocatalysis of water splitting, and regeneration of CO2 into useful chemicals. We would also like to emphasize 'plasma catalysis' of hydrocarbon resources as an important part of the innovative next-generation green technologies. The peculiarity of non-thermal plasma is that it can generate reactive species almost independently of reaction temperature. Plasma

  19. Beta electron fluxes inside a magnetic plasma cavern: Calculation and comparison with experiment

    NASA Astrophysics Data System (ADS)

    Stupitskii, E. L.; Smirnov, E. V.; Kulikova, N. A.

    2010-12-01

    We study the possibility of electrostatic blanking of beta electrons in the expanding spherical blob of a radioactive plasma in a rarefied ionosphere. From numerical studies on the dynamics of beta electrons departing a cavern, we obtain the form of a function that determines the portion of departing electrons and calculate the flux density of beta electrons inside the cavern in relation to the Starfish Prime nuclear blast. We show that the flux density of electrons in geomagnetic flux tubes and inside the cavern depend on a correct allowance for the quantity of beta electrons returning to the cavern. On the basis of a physical analysis, we determine the approximate criterion for the return of electrons from a geomagnetic flux tube to the cavern. We compare calculation results in terms of the flux density of beta electrons inside the cavern with the recently published experimental results from operation Starfish Prime.

  20. Determinination of plasma osmolality and agreement between measured and calculated values in healthy adult Hispaniolan Amazon parrots (Amazona ventralis).

    PubMed

    Acierno, Mark J; Mitchell, Mark A; Freeman, Diana M; Schuster, Patricia J; Guzman, David Sanchez-Migallon; Tully, Thomas N

    2009-09-01

    To determine plasma osmolality in healthy adult Hispaniolan Amazon parrots (Amazona ventralis) and validate osmolality equations in these parrots. 20 healthy adult Hispaniolan Amazon parrots. A blood sample (0.5 mL) was collected from the right jugular vein of each parrot and placed into a lithium heparin microtainer tube. Samples were centrifuged, and plasma was harvested and frozen at -30 degrees C. Samples were thawed, and plasma osmolality was measured in duplicate with a freezing-point depression osmometer. The mean value was calculated for the 2 osmolality measurements. Plasma osmolality values were normally distributed, with a mean +/- SD of 326.0 +/- 6.878 mOsm/kg. The equations (2 x [Na(+) + K(+)]) + (glucose/18), which resulted in bias of 2.3333 mOsm/kg and limits of agreement of -7.0940 to 11.7606 mOsm/kg, and (2 x [Na(+) + K(+)]) + (uric acid concentration/16.8) + (glucose concentration/18), which resulted in bias of 5.8117 mOsm/kg and limits of agreement of -14.6640 to 3.0406 mOsm/kg, yielded calculated values that were in good agreement with the measured osmolality. IV administration of large amounts of hypotonic fluids can have catastrophic consequences. Osmolality of the plasma from parrots in this study was significantly higher than that of commercially available prepackaged fluids. Therefore, such fluids should be used with caution in Hispaniolan Amazon parrots as well as other psittacines. Additional studies are needed to determine whether the estimation of osmolality has the same clinical value in psittacines as it does in other animals.

  1. EDITORIAL: Plasma jets and plasma bullets Plasma jets and plasma bullets

    NASA Astrophysics Data System (ADS)

    Kong, M. G.; Ganguly, B. N.; Hicks, R. F.

    2012-06-01

    -mentioned early studies has witnessed a considerable and exciting growth in terms of new phenomena observed, new physics and chemistry uncovered, new plasma jet sources conceived, and new applications developed. Examples include the observations of plasma bullets on a nanosecond scale [16], the similarity of plasma bullets to streamers [17], arrays of plasma jets as metamaterials [18], and a rapid increase of applications in biomedicine [19]. However the considerable growth in the research of plasma jets has not been adequately supported, so far, by a sound fundamental underpinning, partly resulting from a somewhat underdevelopment of effective diagnostics and modelling tools. Recognizing the critical importance of basic science for future growth of low-temperature plasma jet technology, this special issue on plasma jets and bullets aims to address some of the most important fundamental questions. Many of the special issue papers continue the established line of investigation to characterize the formation of plasma bullets, using typically ultrafast imaging, electrical detection including electric field and plasma conductivity measurement, and optical emission spectrometry [20]-[26]. These offer strong experimental evidence for the well-known hypothesis that a plasma jet is a form of streamer, and that the ionization wave plays a critical role in their formation. The interaction of two parallel plasma jets [27] and manipulation of plasma jet characteristics [28, 29] are also reported using a similar combination of experimental techniques. Some of the common characteristics of plasma jets are summarized in a review paper in this special issue [30]. A somewhat different line of investigation is employed in a detailed experimental characterization of deterministic chaos in atmospheric plasma jets [31], one of the few non-bullet modes of plasma jets. Although chaos in ionized gases have been observed in other types of discharge plasmas, their applications have not so far been linked

  2. Estimation of HF artificial ionospheric turbulence characteristics using comparison of calculated plasma wave decay rates with the measured decay rates of the stimulated electromagnetic emission

    NASA Astrophysics Data System (ADS)

    Bareev, D. D.; Gavrilenko, V. G.; Grach, S. M.; Sergeev, E. N.

    2016-02-01

    It is shown experimentally that the relaxation time of the stimulated electromagnetic emission (SEE) after the pump wave turn off decreases when frequency of the electromagnetic wave, responsible for the SEE generation (pump wave f0 or diagnostic wave fdw) approaches 4th harmonic of the electron cyclotron frequency fce . Since the SEE relaxation is determined by the damping rate of plasma waves with the same frequency, responsible for the SEE generation, we calculated damping rates of plasma waves with ω ∼ωuh (ω is the plasma wave frequency, ωuh is the upper hybrid frequency) for frequencies close to and distant from the double resonance where ωuh ∼ 4ωce (ωce = 2 πfce). The calculations were performed numerically on the base of linear plasma wave dispersion relation at arbitrary ratio between | Δ | = ω - 4ωce and |k‖ |VTe (VTe is the electron thermal speed and k‖ is the projection of the wave vector onto the magnetic field direction. A comparison of calculation and experimental results has shown that obtained frequency dependence of the SEE decay rate is similar to the damping rate frequency dependence for plasma waves with wave vectors directed at the angles 60-70° to the magnetic field, and gives a strong hint that oblique upper hybrid plasma waves should be responsible for the SEE generation.

  3. Plasma generating apparatus for large area plasma processing

    DOEpatents

    Tsai, C.C.; Gorbatkin, S.M.; Berry, L.A.

    1991-07-16

    A plasma generating apparatus for plasma processing applications is based on a permanent magnet line-cusp plasma confinement chamber coupled to a compact single-coil microwave waveguide launcher. The device creates an electron cyclotron resonance (ECR) plasma in the launcher and a second ECR plasma is created in the line cusps due to a 0.0875 tesla magnetic field in that region. Additional special magnetic field configuring reduces the magnetic field at the substrate to below 0.001 tesla. The resulting plasma source is capable of producing large-area (20-cm diam), highly uniform (.+-.5%) ion beams with current densities above 5 mA/cm[sup 2]. The source has been used to etch photoresist on 5-inch diam silicon wafers with good uniformity. 3 figures.

  4. Plasma generating apparatus for large area plasma processing

    DOEpatents

    Tsai, Chin-Chi; Gorbatkin, Steven M.; Berry, Lee A.

    1991-01-01

    A plasma generating apparatus for plasma processing applications is based on a permanent magnet line-cusp plasma confinement chamber coupled to a compact single-coil microwave waveguide launcher. The device creates an electron cyclotron resonance (ECR) plasma in the launcher and a second ECR plasma is created in the line cusps due to a 0.0875 tesla magnetic field in that region. Additional special magnetic field configuring reduces the magnetic field at the substrate to below 0.001 tesla. The resulting plasma source is capable of producing large-area (20-cm diam), highly uniform (.+-.5%) ion beams with current densities above 5 mA/cm.sup.2. The source has been used to etch photoresist on 5-inch diam silicon wafers with good uniformity.

  5. On the Runge-Lenz-Pauli vector operator as an aid to the calculation of atomic processes in laboratory and astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Hey, J. D.

    2015-09-01

    On the basis of the original definition and analysis of the vector operator by Pauli (1926 Z. Phys. 36 336-63), and further developments by Flamand (1966 J. Math. Phys. 7 1924-31), and by Becker and Bleuler (1976 Z. Naturforsch. 31a 517-23), we consider the action of the operator on both spherical polar and parabolic basis state wave functions, both with and without direct use of Pauli’s identity (Valent 2003 Am. J. Phys. 71 171-75). Comparison of the results, with the aid of two earlier papers (Hey 2006 J. Phys. B: At. Mol. Opt. Phys. 39 2641-64, Hey 2007 J. Phys. B: At. Mol. Opt. Phys. 40 4077-96), yields a convenient ladder technique in the form of a recurrence relation for calculating the transformation coefficients between the two sets of basis states, without explicit use of generalized hypergeometric functions. This result is therefore very useful for application to Stark effect and impact broadening calculations applied to high-n radio recombination lines from tenuous space plasmas. We also demonstrate the versatility of the Runge-Lenz-Pauli vector operator as a means of obtaining recurrence relations between expectation values of successive powers of quantum mechanical operators, by using it to provide, as an example, a derivation of the Kramers-Pasternack relation. It is suggested that this operator, whose potential use in Stark- and Zeeman-effect calculations for magnetically confined fusion edge plasmas (Rosato, Marandet and Stamm 2014 J. Phys. B: At. Mol. Opt. Phys. 47 105702) and tenuous space plasmas ( H II regions) has not been fully explored and exploited, may yet be found to yield a number of valuable results for applications to plasma diagnostic techniques based upon rate calculations of atomic processes.

  6. Density functional theory calculations of continuum lowering in strongly coupled plasmas.

    PubMed

    Vinko, S M; Ciricosta, O; Wark, J S

    2014-03-24

    An accurate description of the ionization potential depression of ions in plasmas due to their interaction with the environment is a fundamental problem in plasma physics, playing a key role in determining the ionization balance, charge state distribution, opacity and plasma equation of state. Here we present a method to study the structure and position of the continuum of highly ionized dense plasmas using finite-temperature density functional theory in combination with excited-state projector augmented-wave potentials. The method is applied to aluminium plasmas created by intense X-ray irradiation, and shows excellent agreement with recently obtained experimental results. We find that the continuum lowering for ions in dense plasmas at intermediate temperatures is larger than predicted by standard plasma models and explain this effect through the electronic structure of the valence states in these strong-coupling conditions.

  7. Individual specialization in diet by a generalist marine predator reflects specialization in foraging behaviour.

    PubMed

    Woo, Kerry J; Elliott, Kyle Hamish; Davidson, Melissa; Gaston, Anthony J; Davoren, Gail K

    2008-11-01

    1. We studied chick diet in a known-age, sexed population of a long-lived seabird, the Brünnich's guillemot (Uria lomvia), over 15 years (N = 136; 1993-2007) and attached time-depth-temperature recorders to examine foraging behaviour in multiple years (N = 36; 2004-07). 2. Adults showed specialization in prey fed to offspring, described by multiple indices calculated over 15 years: 27% of diet diversity was attributable to among-individual variation (within-individual component of total niche width = 0.73); average similarity of an individual's diet to the overall diet was 65% (mean proportional similarity between individuals and population = 0.65); diet was significantly more specialized than expected for 70% of individuals (mean likelihood = 0.53). These indices suggest higher specialization than the average for an across-taxa comparison of 49 taxa. 3. Foraging behaviour varied along three axes: flight time, dive depth and dive shape. Individuals showed specialized individual foraging behaviour along each axis. These foraging strategies were reflected in the prey type delivered to their offspring and were maintained over scales of hours to years. 4. Specialization in foraging behaviour and diet was greater over short time spans (hours, days) than over long time spans (years). Regardless of sex or age, the main component of variation in foraging behaviour and chick diet was between individuals. 5. Plasma stable isotope values were similar across years, within a given individual, and variance was low relative to that expected from prey isotope values, suggesting adult diet specialized across years. Stable isotope values were similar among individuals that fed their nestlings similar prey items and there was no difference in trophic level between adults and chicks. We suggest that guillemots specialize on a single foraging strategy regardless of whether chick-provisioning and self-feeding. With little individual difference in body mass and physiology

  8. Use of a Microsoft Excel based add-in program to calculate plasma sinistrin clearance by a two-compartment model analysis in dogs.

    PubMed

    Steinbach, Sarah M L; Sturgess, Christopher P; Dunning, Mark D; Neiger, Reto

    2015-06-01

    Assessment of renal function by means of plasma clearance of a suitable marker has become standard procedure for estimation of glomerular filtration rate (GFR). Sinistrin, a polyfructan solely cleared by the kidney, is often used for this purpose. Pharmacokinetic modeling using adequate software is necessary to calculate disappearance rate and half-life of sinistrin. The purpose of this study was to describe the use of a Microsoft excel based add-in program to calculate plasma sinistrin clearance, as well as additional pharmacokinetic parameters such as transfer rates (k), half-life (t1/2) and volume of distribution (Vss) for sinistrin in dogs with varying degrees of renal function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Calculation of the spatial resolution in two-photon absorption spectroscopy applied to plasma diagnosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Lechuga, M.; Laser Processing Group, Instituto de Óptica “Daza de Valdés,” CSIC, 28006-Madrid; Fuentes, L. M.

    2014-10-07

    We report a detailed characterization of the spatial resolution provided by two-photon absorption spectroscopy suited for plasma diagnosis via the 1S-2S transition of atomic hydrogen for optogalvanic detection and laser induced fluorescence (LIF). A precise knowledge of the spatial resolution is crucial for a correct interpretation of measurements, if the plasma parameters to be analysed undergo strong spatial variations. The present study is based on a novel approach which provides a reliable and realistic determination of the spatial resolution. Measured irradiance distribution of laser beam waists in the overlap volume, provided by a high resolution UV camera, are employed tomore » resolve coupled rate equations accounting for two-photon excitation, fluorescence decay and ionization. The resulting three-dimensional yield distributions reveal in detail the spatial resolution for optogalvanic and LIF detection and related saturation due to depletion. Two-photon absorption profiles broader than the Fourier transform-limited laser bandwidth are also incorporated in the calculations. The approach allows an accurate analysis of the spatial resolution present in recent and future measurements.« less

  10. Calculation of current collected in a dilute plasma through a pinhole in the insulation covering a high-voltage surface

    NASA Technical Reports Server (NTRS)

    Fralick, G. C.

    1975-01-01

    A procedure is described for calculating the current collected by a pinhole defect in the insulation covering a high voltage surface. The results apply to a satellite at geosynchronous altitude where the effects of satellite motion and collective plasma effects on the collected current may be ignored.

  11. Point-of-injury Use of Reconstituted Freeze Dried Plasma as a Resuscitative Fluid: A Special Report for Prehospital Trauma Care

    DTIC Science & Technology

    2013-01-01

    Point-of-injury use of reconstituted freeze dried plasma as a resuscitative fluid: A special report for prehospital trauma care Elon Glassberg, MD...in- jury as part of the multidisciplinary efforts to improve trauma victims’ outcome. BACKGROUND Trauma is the leading cause of death among adults be...diabetes.1 Managing the burden of injuries from decades of wars has underscored the importance of trauma research aimed at reducing morbidity and

  12. Radiation characteristics of femtosecond laser-induced plasma channel Vee antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choe, Yun-Sik; Department of Physics, University of Science, Pyongyang, North Korea; Hao, Zuoqiang

    A virtual reconfigurable plasma Vee antenna consisting of a set of laser plasma filaments produced by femtosecond laser pulses in air is investigated in this paper. The calculation results show that radiation pattern becomes more complex and gain shows initially rapid rise but gradually saturate as the leg length increases, but the pattern and gain are not seriously affected by the plasma conductivity; particularly, the gain of the Vee antenna with plasma conductivity σ = 100S/m can reach about 80% of that of a copper antenna. Radiation efficiency of the antenna has shown a strong dependence on radius of the antenna leg,more » and an efficiency of 65%, considered to have a proper performance, can be obtained with the channel radius of about 10 mm. Apex angle variation can lead to significant change of the radiation pattern and influence the gain; the best apex angle corresponding to maximal gain and good directivity for the third resonance antenna leg length is found to be at 74° at 600 MHz and σ = 100 S/m. The calculation has shown that at terawatt laser power level, the plasma channel conductivity is close to that of conventional plasma antenna, and peak gain of the Vee antenna is more than 8 dB with a good directivity. In addition, the radiation pattern of special Vee antennas with apex angle 180°-dipole antennas, for first and third resonance leg lengths, is compared and underneath physics of the difference is given. The laser-induced plasma channel antenna is especially suitable for achieving good directivity and gain, which has advantage over conventional plasma antenna with gas discharge tube or metal antenna.« less

  13. Plasma oscillations in spherical Gaussian shaped ultracold neutral plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Tianxing; Lu, Ronghua, E-mail: lurh@siom.ac.cn; Guo, Li

    2016-04-15

    The collective plasma oscillations are investigated in ultracold neutral plasma with a non-uniform density profile. Instead of the plane configuration widely used, we derive the plasma oscillation equations with spherically symmetric distribution and Gaussian density profile. The damping of radial oscillation is found. The Tonks–Dattner resonances of the ultracold neutral plasma with an applied RF field are also calculated.

  14. Plasma-Jet Magneto-Inertial Fusion Burn Calculations

    NASA Astrophysics Data System (ADS)

    Santarius, John

    2010-11-01

    Several issues exist related to using plasma jets to implode a Magneto-Inertial Fusion (MIF) liner onto a magnetized plasmoid and compress it to fusion-relevant temperatures [1]. The poster will explore how well the liner's inertia provides transient plasma confinement and affects the burn dynamics. The investigation uses the University of Wisconsin's 1-D Lagrangian radiation-hydrodynamics code, BUCKY, which solves single-fluid equations of motion with ion-electron interactions, PdV work, table-lookup equations of state, fast-ion energy deposition, pressure contributions from all species, and one or two temperatures. Extensions to the code include magnetic field evolution as the plasmoid compresses plus dependence of the thermal conductivity on the magnetic field. [4pt] [1] Y.C. F. Thio, et al.,``Magnetized Target Fusion in a Spheroidal Geometry with Standoff Drivers,'' in Current Trends in International Fusion Research, E. Panarella, ed. (National Research Council of Canada, Ottawa, Canada, 1999), p. 113.

  15. Preface to Special Topic: Collective Effects in Particle Beams and Nonneutral Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilson, Erik P.; Qin, Hong

    Nonneutral plasmas are plasma systems in which there is no overall charge neutrality, including the limit of systems that are fully unneutralized in which there are particles of only a single sign of charge. Here, examples of nonneutral plasmas include charged-particle beams, pure electron plasmas, pure positron plasmas, and pure-ion plasmas consisting of a variety of ion charge states in a single trap. A key feature of nonneutral plasmas which distinguishes them from quasineutral plasmas is that their self-electric and self-magnetic fields can play a dominant role in the behavior of the system. Moreover, single-component plasmas can be confined inmore » states of global thermal equilibrium, enabling detailed theoretical and experimental studies of fundamental plasma phenomena and precise testing of models.« less

  16. Preface to Special Topic: Collective Effects in Particle Beams and Nonneutral Plasmas

    DOE PAGES

    Gilson, Erik P.; Qin, Hong

    2018-01-30

    Nonneutral plasmas are plasma systems in which there is no overall charge neutrality, including the limit of systems that are fully unneutralized in which there are particles of only a single sign of charge. Here, examples of nonneutral plasmas include charged-particle beams, pure electron plasmas, pure positron plasmas, and pure-ion plasmas consisting of a variety of ion charge states in a single trap. A key feature of nonneutral plasmas which distinguishes them from quasineutral plasmas is that their self-electric and self-magnetic fields can play a dominant role in the behavior of the system. Moreover, single-component plasmas can be confined inmore » states of global thermal equilibrium, enabling detailed theoretical and experimental studies of fundamental plasma phenomena and precise testing of models.« less

  17. 10 CFR 766.102 - Calculation methodology.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Calculation methodology. 766.102 Section 766.102 Energy DEPARTMENT OF ENERGY URANIUM ENRICHMENT DECONTAMINATION AND DECOMMISSIONING FUND; PROCEDURES FOR SPECIAL ASSESSMENT OF DOMESTIC UTILITIES Procedures for Special Assessment § 766.102 Calculation methodology. (a...

  18. 10 CFR 766.102 - Calculation methodology.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Calculation methodology. 766.102 Section 766.102 Energy DEPARTMENT OF ENERGY URANIUM ENRICHMENT DECONTAMINATION AND DECOMMISSIONING FUND; PROCEDURES FOR SPECIAL ASSESSMENT OF DOMESTIC UTILITIES Procedures for Special Assessment § 766.102 Calculation methodology. (a...

  19. 10 CFR 766.102 - Calculation methodology.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Calculation methodology. 766.102 Section 766.102 Energy DEPARTMENT OF ENERGY URANIUM ENRICHMENT DECONTAMINATION AND DECOMMISSIONING FUND; PROCEDURES FOR SPECIAL ASSESSMENT OF DOMESTIC UTILITIES Procedures for Special Assessment § 766.102 Calculation methodology. (a...

  20. 10 CFR 766.102 - Calculation methodology.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Calculation methodology. 766.102 Section 766.102 Energy DEPARTMENT OF ENERGY URANIUM ENRICHMENT DECONTAMINATION AND DECOMMISSIONING FUND; PROCEDURES FOR SPECIAL ASSESSMENT OF DOMESTIC UTILITIES Procedures for Special Assessment § 766.102 Calculation methodology. (a...

  1. Waterspout as a special type of atmospheric aerosol dusty plasma

    NASA Astrophysics Data System (ADS)

    Rantsev-Kartinov, Valentin A.

    2004-11-01

    An analysis of databases of photographic images of oceanic surface revealed the presence of oceanic skeletal structures (OSS) [1] Rantsev-Kartinov V.A., Preprint . The OSSs presumably differ from the formerly found skeletal structures (SS) (Phys. Lett. A 306 (2002) 175) only by the fact that OSS are filled in with the closely packed blocks of a smaller size, up to thin, tens of microns-sized capillaries. The SSs in the Earth atmosphere were suggested [1] to be produced during atmospheric electricity activity by the volcanic-born dust. The fall-out of such SSs on the oceanic surface is a material source of OSS. Here we suggest that an OSS block [1] in the form of vertically oriented floating cylinder may be a stimulator of waterspout (WS). The main body of WS may be interpreted as a special type of atmospheric aerosol dusty plasma, and WS column - as a long-lived filament, being formed in the process of electric breakdown between the cloud and oceanic surface. The charged water drops aerosol may behave similar to microdust and lift upward to the cloud by the electrostatic force. With such a capillary&;electrostatic model of WS, it appears possible to interpret many effects related to WS.

  2. Neoclassical orbit calculations with a full-f code for tokamak edge plasmas

    NASA Astrophysics Data System (ADS)

    Rognlien, T. D.; Cohen, R. H.; Dorr, M.; Hittinger, J.; Xu, X. Q.; Collela, P.; Martin, D.

    2008-11-01

    Ion distribution function modifications are considered for the case of neoclassical orbit widths comparable to plasma radial-gradient scale-lengths. Implementation of proper boundary conditions at divertor plates in the continuum TEMPEST code, including the effect of drifts in determining the direction of total flow, enables such calculations in single-null divertor geometry, with and without an electrostatic potential. The resultant poloidal asymmetries in densities, temperatures, and flows are discussed. For long-time simulations, a slow numerical instability develops, even in simplified (circular) geometry with no endloss, which aids identification of the mixed treatment of parallel and radial convection terms as the cause. The new Edge Simulation Laboratory code, expected to be operational, has algorithmic refinements that should address the instability. We will present any available results from the new code on this problem as well as geodesic acoustic mode tests.

  3. Time-dependent calculations of molten pool formation and thermal plasma with metal vapour in gas tungsten arc welding

    NASA Astrophysics Data System (ADS)

    Tanaka, M.; Yamamoto, K.; Tashiro, S.; Nakata, K.; Yamamoto, E.; Yamazaki, K.; Suzuki, K.; Murphy, A. B.; Lowke, J. J.

    2010-11-01

    A gas tungsten arc (GTA) was modelled taking into account the contamination of the plasma by metal vapour from the molten anode. The whole region of GTA atmosphere including the tungsten cathode, the arc plasma and the anode was treated using a unified numerical model. A viscosity approximation was used to express the diffusion coefficient in terms of viscosity of the shielding gas and metal vapour. The transient two-dimensional distributions of temperature, velocity of plasma flow and iron vapour concentration were predicted, together with the molten pool as a function of time for a 150 A arc current at atmospheric pressure, both for helium and argon gases. It was shown that the thermal plasma in the GTA was influenced by iron vapour from the molten pool surface and that the concentration of iron vapour in the plasma was dependent on the temperature of the molten pool. GTA on high sulfur stainless steel was calculated to discuss the differences between a low sulfur and a high sulfur stainless steel anode. Helium was selected as the shielding gas because a helium GTA produces more metal vapour than an argon GTA. In the GTA on a high sulfur stainless steel anode, iron vapour and current path were constricted. Radiative emission density in the GTA on high sulfur stainless steel was also concentrated in the centre area of the arc plasma together with the iron vapour although the temperature distributions were almost the same as that in the case of a low sulfur stainless steel anode.

  4. LEOrbit: A program to calculate parameters relevant to modeling Low Earth Orbit spacecraft-plasma interaction

    NASA Astrophysics Data System (ADS)

    Marchand, R.; Purschke, D.; Samson, J.

    2013-03-01

    Understanding the physics of interaction between satellites and the space environment is essential in planning and exploiting space missions. Several computer models have been developed over the years to study this interaction. In all cases, simulations are carried out in the reference frame of the spacecraft and effects such as charging, the formation of electrostatic sheaths and wakes are calculated for given conditions of the space environment. In this paper we present a program used to compute magnetic fields and a number of space plasma and space environment parameters relevant to Low Earth Orbits (LEO) spacecraft-plasma interaction modeling. Magnetic fields are obtained from the International Geophysical Reference Field (IGRF) and plasma parameters are obtained from the International Reference Ionosphere (IRI) model. All parameters are computed in the spacecraft frame of reference as a function of its six Keplerian elements. They are presented in a format that can be used directly in most spacecraft-plasma interaction models. Catalogue identifier: AENY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 270308 No. of bytes in distributed program, including test data, etc.: 2323222 Distribution format: tar.gz Programming language: FORTRAN 90. Computer: Non specific. Operating system: Non specific. RAM: 7.1 MB Classification: 19, 4.14. External routines: IRI, IGRF (included in the package). Nature of problem: Compute magnetic field components, direction of the sun, sun visibility factor and approximate plasma parameters in the reference frame of a Low Earth Orbit satellite. Solution method: Orbit integration, calls to IGRF and IRI libraries and transformation of coordinates from geocentric to spacecraft

  5. Discontinuous Galerkin algorithms for fully kinetic plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juno, J.; Hakim, A.; TenBarge, J.

    Here, we present a new algorithm for the discretization of the non-relativistic Vlasov–Maxwell system of equations for the study of plasmas in the kinetic regime. Using the discontinuous Galerkin finite element method for the spatial discretization, we obtain a high order accurate solution for the plasma's distribution function. Time stepping for the distribution function is done explicitly with a third order strong-stability preserving Runge–Kutta method. Since the Vlasov equation in the Vlasov–Maxwell system is a high dimensional transport equation, up to six dimensions plus time, we take special care to note various features we have implemented to reduce the costmore » while maintaining the integrity of the solution, including the use of a reduced high-order basis set. A series of benchmarks, from simple wave and shock calculations, to a five dimensional turbulence simulation, are presented to verify the efficacy of our set of numerical methods, as well as demonstrate the power of the implemented features.« less

  6. Discontinuous Galerkin algorithms for fully kinetic plasmas

    DOE PAGES

    Juno, J.; Hakim, A.; TenBarge, J.; ...

    2017-10-10

    Here, we present a new algorithm for the discretization of the non-relativistic Vlasov–Maxwell system of equations for the study of plasmas in the kinetic regime. Using the discontinuous Galerkin finite element method for the spatial discretization, we obtain a high order accurate solution for the plasma's distribution function. Time stepping for the distribution function is done explicitly with a third order strong-stability preserving Runge–Kutta method. Since the Vlasov equation in the Vlasov–Maxwell system is a high dimensional transport equation, up to six dimensions plus time, we take special care to note various features we have implemented to reduce the costmore » while maintaining the integrity of the solution, including the use of a reduced high-order basis set. A series of benchmarks, from simple wave and shock calculations, to a five dimensional turbulence simulation, are presented to verify the efficacy of our set of numerical methods, as well as demonstrate the power of the implemented features.« less

  7. KINETIC-J: A computational kernel for solving the linearized Vlasov equation applied to calculations of the kinetic, configuration space plasma current for time harmonic wave electric fields

    NASA Astrophysics Data System (ADS)

    Green, David L.; Berry, Lee A.; Simpson, Adam B.; Younkin, Timothy R.

    2018-04-01

    We present the KINETIC-J code, a computational kernel for evaluating the linearized Vlasov equation with application to calculating the kinetic plasma response (current) to an applied time harmonic wave electric field. This code addresses the need for a configuration space evaluation of the plasma current to enable kinetic full-wave solvers for waves in hot plasmas to move beyond the limitations of the traditional Fourier spectral methods. We benchmark the kernel via comparison with the standard k →-space forms of the hot plasma conductivity tensor.

  8. Emission coefficients of low temperature thermal iron plasma

    NASA Astrophysics Data System (ADS)

    Mościcki, T.; Hoffman, J.; Szymański, Z.

    2004-03-01

    Iron plasma appears during material processing with laser, electric are etc., and has considerable influence on the processing conditions. In this paper emission coefficients of low temperature thermal iron plasma at atmospheric pressure are presented. Net emission coefficients ɛ N have been calculated for pure iron plasma as well as for Fe-Ar and Fe-He plasma mixtures. To calculate the recombination radiation the knowledge of the Biberman factors ξ {fb/z}( T e, λ) is necessary and they have been calculated from the iron photo-ionization cross sections. The calculations allow estimation of energy losses, energy radiated by plasma plume and its comparison with the energy absorbed from laser beam.

  9. Characterization of hot dense plasma with plasma parameters

    NASA Astrophysics Data System (ADS)

    Singh, Narendra; Goyal, Arun; Chaurasia, S.

    2018-05-01

    Characterization of hot dense plasma (HDP) with its parameters temperature, electron density, skin depth, plasma frequency is demonstrated in this work. The dependence of HDP parameters on temperature and electron density is discussed. The ratio of the intensities of spectral lines within HDP is calculated as a function of electron temperature. The condition of weakly coupled for HDP is verified by calculating coupling constant. Additionally, atomic data such as transition wavelength, excitation energies, line strength, etc. are obtained for Be-like ions on the basis of MCDHF method. In atomic data calculations configuration interaction and relativistic effects QED and Breit corrections are newly included for HDP characterization and this is first result of HDP parameters from extreme ultraviolet (EUV) radiations.

  10. Submillimeter Spectroscopic Study of Semiconductor Processing Plasmas

    NASA Astrophysics Data System (ADS)

    Helal, Yaser H.

    Plasmas used for manufacturing processes of semiconductor devices are complex and challenging to characterize. The development and improvement of plasma processes and models rely on feedback from experimental measurements. Current diagnostic methods are not capable of measuring absolute densities of plasma species with high resolution without altering the plasma, or without input from other measurements. At pressures below 100 mTorr, spectroscopic measurements of rotational transitions in the submillimeter/terahertz (SMM) spectral region are narrow enough in relation to the sparsity of spectral lines that absolute specificity of measurement is possible. The frequency resolution of SMM sources is such that spectral absorption features can be fully resolved. Processing plasmas are a similar pressure and temperature to the environment used to study astrophysical species in the SMM spectral region. Many of the molecular neutrals, radicals, and ions present in processing plasmas have been studied in the laboratory and their absorption spectra have been cataloged or are in the literature for the purpose of astrophysical study. Recent developments in SMM devices have made its technology commercially available for applications outside of specialized laboratories. The methods developed over several decades in the SMM spectral region for these laboratory studies are directly applicable for diagnostic measurements in the semiconductor manufacturing industry. In this work, a continuous wave, intensity calibrated SMM absorption spectrometer was developed as a remote sensor of gas and plasma species. A major advantage of intensity calibrated rotational absorption spectroscopy is its ability to determine absolute concentrations and temperatures of plasma species from first principles without altering the plasma environment. An important part of this work was the design of the optical components which couple 500 - 750 GHz radiation through a commercial inductively coupled plasma

  11. Analysis of plasmas generated by fission fragments. [nuclear pumped lasers and helium plasma

    NASA Technical Reports Server (NTRS)

    Deese, J. E.; Hassan, H. A.

    1977-01-01

    A kinetic model is developed for a plasma generated by fission fragments and the results are employed to study helium plasma generated in a tube coated with fissionable material. Because both the heavy particles and electrons play important roles in creating the plasma, their effects are considered simultaneously. The calculations are carried out for a range of neutron fluxes and pressures. In general, the predictions of the theory are in good agreement with available intensity measurements. Moreover, the theory predicts the experimentally measured inversions. However, the calculated gain coefficients are such that lasing is not expected to take place in a helium plasma generated by fission fragments. The effects of an externally applied electric field are also considered.

  12. Plasma-Sheath Model

    NASA Astrophysics Data System (ADS)

    Riemann, Karl-Ulrich

    2012-10-01

    In typical gas discharges a quasineutral plasma is shielded from a negativ absorbing wall by a thin positive sheath that is nearly planar and collision-free. The subdivision of ``plasma'' and ``sheath'' was introduced by Langmuir and is based on a small ratio of the electron Debye lenghth λD to the dominant competing characteristic plasma length l. Depending on the special conditions, l may represent, e.g., the plasma extension, the ionization length, the ion mean free path, the ion gyro radius, or a geometric length. Strictly speaking, this subdivion is possible only in the asymptotic limit λD/l->0. The asymptotic analysis results in singularities at the ``sheath edge'' closely related to the ``Bohm criterion.'' Due to these singularities a direct smooth matching of the separate plasma and sheath soltions is not possible. To obtain a consistent smooth transition, the singular sheath edge must be bridged by an additinal narrow ``intermediate'' model zone accounting both for plasma processes (e.g., collisions) and for the first build up of space charge. Due to this complexity and to different interpretations of the ``classical'' papers by Langmuir and Bohm, the asymptotic plasma-sheath concept and the definition of the sheath edge were questioned and resulted in controversies during the last two decades. We discuss attempts to re-define the sheath edge, to account for finite values of λD/l in the Bohm criterion, and demonstrate the consistent matching of plasma and sheath. The investigations of the plasma-sheath transition discussed so far are based on a simplified fluid analysis that cannot account for the essential inhomogeneity of the boundary layer and for the dominant role of slow ions in space charge formation. Therefore we give special emphasis to the kinetic theory of the plasma-sheath transition. Unfortunately this approach results in an additional mathematical difficulty caused by ions with zero velocity. We discuss attempts to avoid this singularity by

  13. Consensus clinical recommendations for the management of plasma lipid disorders in the Middle East.

    PubMed

    Al Sayed, Nasreen; Al Waili, Khalid; Alawadi, Fatheya; Al-Ghamdi, Saeed; Al Mahmeed, Wael; Al-Nouri, Fahad; Al Rukhaimi, Mona; Al-Rasadi, Khalid; Awan, Zuhier; Farghaly, Mohamed; Hassanein, Mohamed; Sabbour, Hani; Zubaid, Mohammad; Barter, Philip

    2016-12-15

    Plasma lipid disorders are key risk factors for the development of atherosclerotic cardiovascular disease (ASCVD) and are prevalent in the Middle East, with rates increasing in recent decades. Despite this, no region-specific guidelines for managing plasma lipids exist and there is a lack of use of guidelines developed in other regions. A multidisciplinary panel of regional experts was convened to develop consensus clinical recommendations for the management of plasma lipids in the Middle East. The panel considered existing international guidelines and regional clinical experience to develop recommendations. The panel's recommendations include plasma lipid screening, ASCVD risk calculation and treatment considerations. The panel recommend that plasma lipid levels should be measured in all at-risk patients and at regular intervals in all adults from the age of 20years. A scoring system should be used to calculate ASCVD risk that includes known lipid and non-lipid risk factors. Primary treatment targets include low-density lipoprotein cholesterol and non-high-density lipoprotein cholesterol. Lifestyle modifications should be first-line treatment for all patients; the first-line pharmacological treatment targeting plasma lipids in patients at moderate-to-high risk of ASCVD is statin therapy, with a number of adjunctive or second-line agents available. Guidance is also provided on the management of underlying conditions and special populations; of particular pertinence in the region are familial hypercholesterolaemia, diabetes and metabolic dyslipidaemia. These consensus clinical recommendations provide practicing clinicians with comprehensive, region-specific guidance to improve the detection and management of plasma lipid disorders in patients in the Middle East. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  14. Special issue: diagnostics of atmospheric pressure microplasmas

    NASA Astrophysics Data System (ADS)

    Bruggeman, Peter; Czarnetzki, Uwe; Tachibana, Kunihide

    2013-11-01

    In recent decades, a strong revival of non-equilibrium atmospheric pressure plasma studies has developed in the form of microplasmas. Microplasmas have typical scales of 1 mm or less and offer a very exciting research direction in the field of plasma science and technology as the discharge physics can be considerably different due to high collisionality and the importance of plasma-surface interaction. These high-pressure small-scale plasmas have a diverse range of physical and chemical properties. This diversity coincides with various applications including light/UV sources [1], material processing [2], chemical analysis [3], material synthesis [4], electromagnetics [5], combustion [6] and even medicine [7]. At atmospheric pressure, large scale plasmas have the tendency to become unstable due to the high collision rates leading to enhanced heating and ionization compared to their low-pressure counterparts. As low-pressure plasmas typically operate in reactors with sizes of tens of centimetres, scaling up the pressure to atmospheric pressure the size of the plasma reduces to typical sizes below 1 mm. A natural approach of stabilizing atmospheric pressure plasmas is thus the use of microelectrode geometries. Traditionally microplasmas have been produced in confined geometries which allow one to stabilize dc excited discharges. This stabilization is intrinsically connected to the large surface-to-volume ratio which enhances heat transfer and losses of charged and excited species to the walls. Currently challenging boundaries are pushed by producing microcavity geometries with dimensions of the order of 1 µm [8]. The subject of this special issue, diagnostics of microplasmas, is motivated by the many challenges in microplasma diagnostics in view of the complex chemistry and strong spatial (and even temporal) gradients of species densities and plasma properties. Atmospheric pressure plasmas have a very long history dating back more than 100 years, with early work of

  15. Which is safer source plasma for manufacturing in China: apheresis plasma or recovered plasma?

    PubMed

    Liu, Yu; Li, Changqing; Wang, Ya; Zhang, Yan; Wu, Binting; Ke, Ling; Xu, Min; Liu, Gui; Liu, Zhong

    2016-05-01

    In most countries, the plasma for derivative production includes two types of plasma, apheresis plasma (AP) and recovered plasma (RP). However, the plasma recovered from whole blood is not permitted for manufacture in China. Because of the lack of source plasma and the surplus of RP, the Chinese government is considering allowing RP as an equivalent source for the production of plasma derivatives. It is known that human blood can be contaminated by various infectious agents. The objective of the study was to evaluate if infectious risk would increase by enacting this policy. The samples from the two types of blood donors from January 1 to December 31, 2013, were collected. Supplementary testing was conducted and the residual risk (RR) of human immunodeficiency virus (HIV), hepatitis B virus, and hepatitis C virus (HCV) in the two types of blood donors and donations were calculated through the incidence-window period model. Prevalence of the markers of hepatitis E virus, hepatitis A virus, severe fever with thrombocytopenia syndrome bunyavirus, cytomegalovirus, B19, and West Nile virus was calculated. No significant difference was found in the RR of the three pathogens in the two types of blood donors. However, after the quarantine period, the RR of HCV and HIV in AP was significantly lower than that in RP. A quarantine period of 2 years will make the infectious risk of RP not significantly different than that of AP. Our data demonstrate that allowing RP to be used for the manufacture of plasma derivatives will not increase its infectious disease risk if coupled with a 2-year inventory hold. © 2016 AABB.

  16. Laser-plasma interactions in magnetized environment

    NASA Astrophysics Data System (ADS)

    Shi, Yuan; Qin, Hong; Fisch, Nathaniel J.

    2018-05-01

    Propagation and scattering of lasers present new phenomena and applications when the plasma medium becomes strongly magnetized. With mega-Gauss magnetic fields, scattering of optical lasers already becomes manifestly anisotropic. Special angles exist where coherent laser scattering is either enhanced or suppressed, as we demonstrate using a cold-fluid model. Consequently, by aiming laser beams at special angles, one may be able to optimize laser-plasma coupling in magnetized implosion experiments. In addition, magnetized scattering can be exploited to improve the performance of plasma-based laser pulse amplifiers. Using the magnetic field as an extra control variable, it is possible to produce optical pulses of higher intensity, as well as compress UV and soft x-ray pulses beyond the reach of other methods. In even stronger giga-Gauss magnetic fields, laser-plasma interaction enters a relativistic-quantum regime. Using quantum electrodynamics, we compute a modified wave dispersion relation, which enables correct interpretation of Faraday rotation measurements of strong magnetic fields.

  17. Electrostatic ion thruster optics calculations

    NASA Technical Reports Server (NTRS)

    Whealton, John H.; Kirkman, David A.; Raridon, R. J.

    1992-01-01

    Calculations have been performed which encompass both a self-consistent ion source extraction plasma sheath and the primary ion optics including sheath and electrode-induced aberrations. Particular attention is given to the effects of beam space charge, accelerator geometry, and properties of the downstream plasma sheath on the position of the electrostatic potential saddle point near the extractor electrode. The electron blocking potential blocking is described as a function of electrode thickness and secondary plasma processes.

  18. Development of atmospheric pressure large area plasma jet for sterilisation and investigation of molecule and plasma interaction

    NASA Astrophysics Data System (ADS)

    Zerbe, Kristina; Iberler, Marcus; Jacoby, Joachim; Wagner, Christopher

    2016-09-01

    The intention of the project is the development and improvement of an atmospheric plasma jet based on various discharge forms (e.g. DBD, RF, micro-array) for sterilisation of biomedical equipment and investigation of biomolecules under the influence of plasma stress. The major objective is to design a plasma jet with a large area and an extended length. Due to the success on small scale plasma sterilisation the request of large area plasma has increased. Many applications of chemical disinfection in environmental and medical cleaning could thereby be complemented. Subsequently, the interaction between plasma and biomolecules should be investigated to improve plasma strerilisation. Special interest will be on non equilibrium plasma electrons affecting the chemical bindings of organic molecules.

  19. Modelling of plasma-based dry reforming: how do uncertainties in the input data affect the calculation results?

    NASA Astrophysics Data System (ADS)

    Wang, Weizong; Berthelot, Antonin; Zhang, Quanzhi; Bogaerts, Annemie

    2018-05-01

    One of the main issues in plasma chemistry modeling is that the cross sections and rate coefficients are subject to uncertainties, which yields uncertainties in the modeling results and hence hinders the predictive capabilities. In this paper, we reveal the impact of these uncertainties on the model predictions of plasma-based dry reforming in a dielectric barrier discharge. For this purpose, we performed a detailed uncertainty analysis and sensitivity study. 2000 different combinations of rate coefficients, based on the uncertainty from a log-normal distribution, are used to predict the uncertainties in the model output. The uncertainties in the electron density and electron temperature are around 11% and 8% at the maximum of the power deposition for a 70% confidence level. Still, this can have a major effect on the electron impact rates and hence on the calculated conversions of CO2 and CH4, as well as on the selectivities of CO and H2. For the CO2 and CH4 conversion, we obtain uncertainties of 24% and 33%, respectively. For the CO and H2 selectivity, the corresponding uncertainties are 28% and 14%, respectively. We also identify which reactions contribute most to the uncertainty in the model predictions. In order to improve the accuracy and reliability of plasma chemistry models, we recommend using only verified rate coefficients, and we point out the need for dedicated verification experiments.

  20. Calculating the radiation characteristics of accelerated electrons in laser-plasma interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X. F.; Graduate School of Engineering, Utsunomiya University, 7-1-2 Yohtoh, Utsunomiya 321-8585; Yu, Q.

    2016-03-15

    In this paper, we studied the characteristics of radiation emitted by electrons accelerated in a laser–plasma interaction by using the Lienard–Wiechert field. In the interaction of a laser pulse with a underdense plasma, electrons are accelerated by two mechanisms: direct laser acceleration (DLA) and laser wakefield acceleration (LWFA). At the beginning of the process, the DLA electrons emit most of the radiation, and the DLA electrons emit a much higher peak photon energy than the LWFA electrons. As the laser–plasma interaction progresses, the LWFA electrons become the major radiation emitter; however, even at this stage, the contribution from DLA electronsmore » is significant, especially to the peak photon energy.« less

  1. Interaction of Intense Lasers with Plasmas

    NASA Astrophysics Data System (ADS)

    Shvets, Gennady

    1995-01-01

    This thesis addresses two important topics in nonlinear laser plasma physics: the interaction of intense lasers with a non thermal homogeneous plasma, the excitation of laser wakefields in hollow plasma channels, and the stability of channel guided propagation of laser pulses. In the first half of this thesis a new theoretical approach to the nonlinear interaction of intense laser pulses with underdense plasmas is developed. Unlike previous treatments, this theory is three-dimensional, relativistically covariant, and does not assume that a<<1, where a=eA/mc^2 is a dimensionless vector potential. This formalism borrows the diagrammatic techniques from quantum field theory, yet remains classical. This classical field theory, which treats cold plasma as a relativistic field interacting with the electromagnetic fields, introduces an artificial length scale which is smaller than any physically relevant spatial scale. By adopting a special (Arnowitt -Fickler) gauge, electromagnetic waves in a cold relativistic plasma are separated into "photons" and "plasmons" which are the relativistic extensions of electrostatic and electromagnetic waves in a cold stationary plasma. The field-theoretical formalism is applied to a variety of nonlinear problems including harmonic generation, parametric instabilities, and nonlinear corrections to the index of refraction. For the first time the rate of the second harmonic emission from a homogeneous plasma is calculated and its dependence on the polarization of the incident radiation is studied. An experimental check of this calculation is suggested, based on the predicted non-linear polarization rotation (the second harmonic is emitted polarized perpendicularly to polarization of the incident signal). The concept of renormalization is applied to the plasma and electromagnetic radiation (photons and plasmons). To the lowest order, this corresponds to relativistically correcting the electron mass for its oscillation in an intense EM field

  2. Plasma universe

    NASA Technical Reports Server (NTRS)

    Alfven, H.

    1986-01-01

    Traditionally the views on the cosmic environent have been based on observations in the visual octave of the electromagnetic spectrum, during the last half-century supplemented by infrared and radio observations. Space research has opened the full spectrum. Of special importance are the X-ray-gamma-ray regions, in which a number of unexpected phenomena have been discovered. Radiations in these regions are likely to originate mainly from magnetised cosmic plasmas. Such a medium may also emit synchrotron radiation which is observable in the radio region. If a model of the universe is based on the plasma phenomena mentioned it is found that the plasma universe is drastically different from the traditional visual universe. Information about the plasma universe can also be obtained by extrapolation of laboratory experiments and magnetospheric in situ measurements of plasmas. This approach is possible because it is likely that the basic properties of plasmas are the same everywhere. In order to test the usefulness of the plasma universe model it is applied to cosmogony. Such an approach seems to be rather successful. For example, the complicated structure of the Saturnian C ring can be accounted for. It is possible to reconstruct certain phenomena 4 to 5 billions of years ago with an accuracy of better than 1%.

  3. A mass balance approach for calculation of recovery and binding enables the use of ultrafiltration as a rapid method for measurement of plasma protein binding for even highly lipophilic compounds.

    PubMed

    Wang, Changguang; Williams, Noelle S

    2013-03-05

    The aim of this study is to further validate the use of ultrafiltration (UF) as a method for determining plasma protein binding (PPB) by demonstrating that non-specific binding (NSB) is not a limitation, even for highly lipophilic compounds, because NSB sites on the apparatus are passivated in the presence of plasma. Mass balance theory was used to calculate recovery of 20 commercial and seven investigational compounds during ultrafiltration in the presence and absence of plasma. PPB was also measured using this mass balance approach for comparison to PPB determined by rapid equilibrium dialysis (RED) and as found in the literature. Compound recovery during UF was dramatically different in the presence and absence of plasma for compounds with high NSB in PBS only. A comparison of PPB calculated by ultrafiltration with literature values or calculated by RED gave concordant results. Discrepancies could be explained by changes in pH, insufficient time to equilibrium, or compound instability during RED, problems which were circumvented by ultrafiltration. Therefore, NSB, as measured by the traditional incubation of compound in PBS, need not be an issue when choosing UF as a PPB assay method. It is more appropriate to calculate compound recovery from the device in plasma as measured by mass balance to determine the suitability of the method for an individual compound. The speed with which UF can be conducted additionally avoids changes in pH or compound loss that can occur with other methods. The mass balance approach to UF is thus a preferred method for rapid determination of PPB. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Special methods for aerodynamic-moment calculations from parachute FSI modeling

    NASA Astrophysics Data System (ADS)

    Takizawa, Kenji; Tezduyar, Tayfun E.; Boswell, Cody; Tsutsui, Yuki; Montel, Kenneth

    2015-06-01

    The space-time fluid-structure interaction (STFSI) methods for 3D parachute modeling are now at a level where they can bring reliable, practical analysis to some of the most complex parachute systems, such as spacecraft parachutes. The methods include the Deforming-Spatial-Domain/Stabilized ST method as the core computational technology, and a good number of special FSI methods targeting parachutes. Evaluating the stability characteristics of a parachute based on how the aerodynamic moment varies as a function of the angle of attack is one of the practical analyses that reliable parachute FSI modeling can deliver. We describe the special FSI methods we developed for this specific purpose and present the aerodynamic-moment data obtained from FSI modeling of NASA Orion spacecraft parachutes and Japan Aerospace Exploration Agency (JAXA) subscale parachutes.

  5. FOREWORD: 23rd National Symposium on Plasma Science & Technology (PLASMA-2008)

    NASA Astrophysics Data System (ADS)

    Das, A. K.

    2010-01-01

    The Twentieth Century has been a defining period for Plasma Science and Technology. The state of ionized matter, so named by Irving Langmuir in the early part of twentieth century, has now evolved in to a multidisciplinary area with scientists and engineers from various specializations working together to exploit the unique properties of the plasma medium. There have been great improvements in the basic understanding of plasmas as a many body system bound by complex collective Coulomb interactions of charges, atoms, molecules, free radicals and photons. Simultaneously, many advanced plasma based technologies are increasingly being implemented for industrial and societal use. The emergence of the multination collaborative project International Thermonuclear Experimental Reactor (ITER) project has provided the much needed boost to the researchers working on thermonuclear fusion plasmas. In addition, the other plasma applications like MHD converters, hydrogen generation, advanced materials (synthesis, processing and surface modification), environment (waste beneficiation, air and water pollution management), nanotechnology (synthesis, deposition and etching), light production, heating etc are actively being pursued in governmental and industrial sectors. For India, plasma science and technology has traditionally remained an important area of research. It was nearly a century earlier that the Saha ionization relation pioneered the way to interpret experimental data from a vast range of near equilibrium plasmas. Today, Indian research contributions and technology demonstration capabilities encompass thermonuclear fusion devices, nonlinear plasma phenomena, plasma accelerators, beam plasma interactions, dusty and nonneutral plasmas, industrial plasmas and plasma processing of materials, nano synthesis and structuring, astrophysical and space plasmas etc. India's participation in the ITER programme is now reflected in increased interest in the research and development

  6. 46 CFR 174.360 - Calculations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Dry Cargo Ships § 174.360 Calculations. Each ship to... for that ship by the International Convention for the Safety of Life at Sea, 1974, as amended, chapter...

  7. ECR Plasma Sterilisation, Argon and Nitrogen Treated Plasma

    NASA Astrophysics Data System (ADS)

    Helhel, Selcuk; Oksuz, Lutfi; Cerezci, Osman; Rad, Abbas Y.

    2004-09-01

    ECR type plasma system was built to produce plasma in axial direction. Plasma was initiated in a specially designed Nickel - Chrome cylindrical vacuum tube which is being driven through dielectric window by 2.45GHz commercial magnetron source. Tube is also surrounded by a coil driving 150ADC to generate approximately 875Gauss magnetic field at the center. Langmuir probe and ICCD for optical spectrometry were used to characterize internal parameters like electron density, electron temperature and different characteristics of the plasma. Bacillus Subtilis var nigar, bacillus Stearothermophilus, bacillus pumilus E601, Escherichia coli and staphylococcus aureus type bacteria were selected as a reference. Each is resistant for different actions while the Bacilus cereus is the most resistant bacteria for microwave interaction. This study presents the effect of system on used bacteria. Those are gram positive and gram negative bacteria that refers to structure of cell wall. The sterilization efficacy of Argon type ECR plasma was found to be over 99, 5% in Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis (vegetative cell), Bacillus cereus (vegetative cell), Bacillus pumilus and Escherichia coli. System response type is less than 2 minutes.

  8. Electric Calculators; Business Education: 7718.06.

    ERIC Educational Resources Information Center

    McShane, Jane

    The course was developed to instruct students in the use of mechanical and/or electronic printing calculators, electronic display calculators, and rotary calculators to solve special business problems with occupational proficiency. Included in the document are a list of performance objectives, a course content outline, suggested learning…

  9. Theoretical relation between halo current-plasma energy displacement/deformation in EAST

    NASA Astrophysics Data System (ADS)

    Khan, Shahab Ud-Din; Khan, Salah Ud-Din; Song, Yuntao; Dalong, Chen

    2018-04-01

    In this paper, theoretical model for calculating halo current has been developed. This work attained novelty as no theoretical calculations for halo current has been reported so far. This is the first time to use theoretical approach. The research started by calculating points for plasma energy in terms of poloidal and toroidal magnetic field orientations. While calculating these points, it was extended to calculate halo current and to developed theoretical model. Two cases were considered for analyzing the plasma energy when flows down/upward to the diverter. Poloidal as well as toroidal movement of plasma energy was investigated and mathematical formulations were designed as well. Two conducting points with respect to (R, Z) were calculated for halo current calculations and derivations. However, at first, halo current was established on the outer plate in clockwise direction. The maximum generation of halo current was estimated to be about 0.4 times of the plasma current. A Matlab program has been developed to calculate halo current and plasma energy calculation points. The main objective of the research was to establish theoretical relation with experimental results so as to precautionary evaluate the plasma behavior in any Tokamak.

  10. Plasma Sources for Medical Applications - A Comparison of Spot Like Plasmas and Large Area Plasmas

    NASA Astrophysics Data System (ADS)

    Weltmann, Klaus-Dieter

    2015-09-01

    Plasma applications in life science are currently emerging worldwide. Whereas today's commercially available plasma surgical technologies such as argon plasma coagulation (APC) or ablation are mainly based on lethal plasma effects on living systems, the newly emerging therapeutic applications will be based on selective, at least partially non-lethal, possibly stimulating plasma effects on living cells and tissue. Promising results could be obtained by different research groups worldwide revealing a huge potential for the application of low temperature atmospheric pressure plasma in fields such as tissue engineering, healing of chronic wounds, treatment of skin diseases, tumor treatment based on specific induction of apoptotic processes, inhibition of biofilm formation and direct action on biofilms or treatment of dental diseases. The development of suitable and reliable plasma sources for the different therapies requires an in-depth knowledge of their physics, chemistry and parameters. Therefore much basic research still needs to be conducted to minimize risk and to provide a scientific fundament for new plasma-based medical therapies. It is essential to perform a comprehensive assessment of physical and biological experiments to clarify minimum standards for plasma sources for applications in life science and for comparison of different sources. One result is the DIN-SPEC 91315, which is now open for further improvements. This contribution intends to give an overview on the status of commercial cold plasma sources as well as cold plasma sources still under development for medical use. It will discuss needs, prospects and approaches for the characterization of plasmas from different points of view. Regarding the manageability in everyday medical life, atmospheric pressure plasma jets (APPJ) and dielectric barrier discharges (DBD) are of special interest. A comprehensive risk-benefit assessment including the state of the art of commercial sources for medical use

  11. Development of FullWave : Hot Plasma RF Simulation Tool

    NASA Astrophysics Data System (ADS)

    Svidzinski, Vladimir; Kim, Jin-Soo; Spencer, J. Andrew; Zhao, Liangji; Galkin, Sergei

    2017-10-01

    Full wave simulation tool, modeling RF fields in hot inhomogeneous magnetized plasma, is being developed. The wave equations with linearized hot plasma dielectric response are solved in configuration space on adaptive cloud of computational points. The nonlocal hot plasma dielectric response is formulated in configuration space without limiting approximations by calculating the plasma conductivity kernel based on the solution of the linearized Vlasov equation in inhomogeneous magnetic field. This approach allows for better resolution of plasma resonances, antenna structures and complex boundaries. The formulation of FullWave and preliminary results will be presented: construction of the finite differences for approximation of derivatives on adaptive cloud of computational points; model and results of nonlocal conductivity kernel calculation in tokamak geometry; results of 2-D full wave simulations in the cold plasma model in tokamak geometry using the formulated approach; results of self-consistent calculations of hot plasma dielectric response and RF fields in 1-D mirror magnetic field; preliminary results of self-consistent simulations of 2-D RF fields in tokamak using the calculated hot plasma conductivity kernel; development of iterative solver for wave equations. Work is supported by the U.S. DOE SBIR program.

  12. Calculation of intrinsic stresses in the diamond-like coatings produced by plasma ion deposition in modes of DC and pulse bias potentials

    NASA Astrophysics Data System (ADS)

    Kalinichenko, A. A.; Perepelkin, S. S.; Strel'nitskij, V. E.

    2015-04-01

    The formula derivation for calculation of intrinsic stress in diamond-like coatings deposited from the ion flux in modes of continuous and pulsed potentials in view of process of defects formation is given. The criterion of applicability of obtained formula allowing to determine critical parameters of the pulsed potential mode is suggested. Results of calculation of stresses in diamond-like coatings at deposition of low-energy ions C+ from filtered vacuum arc plasma are adduced. The influence of the bias potential, repetition frequency and pulse duration, on the value of intrinsic stress is discussed. Qualitative agreement of calculated stress and experimental data is stated. The important role of deposition temperature in control of intrinsic stress in deposited coating is noted.

  13. Determination of plasma density from data on the ion current to cylindrical and planar probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voloshin, D. G., E-mail: dvoloshin@mics.msu.su; Vasil’eva, A. N.; Kovalev, A. S.

    2016-12-15

    To improve probe methods of plasma diagnostics, special probe measurements were performed and numerical models describing ion transport to a probe with allowance for collisions were developed. The current–voltage characteristics of cylindrical and planar probes were measured in an RF capacitive discharge in argon at a frequency of 81 MHz and plasma densities of 10{sup 10}–10{sup 11} cm{sup –3}, typical of modern RF reactors. 1D and 2D numerical models based on the particle-in-cell method with Monte Carlo collisions for simulating ion motion and the Boltzmann equilibrium for electrons are developed to describe current collection by a probe. The models weremore » used to find the plasma density from the ion part of the current–voltage characteristic, study the effect of ion collisions, and verify simplified approaches to determining the plasma density. A 1D hydrodynamic model of the ion current to a cylindrical probe with allowance for ion collisions is proposed. For a planar probe, a method to determine the plasma density from the averaged numerical results is developed. A comparative analysis of different approaches to calculating the plasma density from the ion current to a probe is performed.« less

  14. Decimals, Denominators, Demons, Calculators, and Connections

    ERIC Educational Resources Information Center

    Sparrow, Len; Swan, Paul

    2005-01-01

    The authors provide activities for overcoming some fraction misconceptions using calculators specially designed for learners in primary years. The writers advocate use of the calculator as a way to engage children in thinking about mathematics. By engaging with a calculator as part of mathematics learning, children are learning about and using the…

  15. Structure of micro-instabilities in tokamak plasmas: Stiff transport or plasma eruptions?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickinson, D., E-mail: dd502@york.ac.uk; EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB; Roach, C. M.

    2014-01-15

    Solutions to a model 2D eigenmode equation describing micro-instabilities in tokamak plasmas are presented that demonstrate a sensitivity of the mode structure and stability to plasma profiles. In narrow regions of parameter space, with special plasma profiles, a maximally unstable mode is found that balloons on the outboard side of the tokamak. This corresponds to the conventional picture of a ballooning mode. However, for most profiles, this mode cannot exist, and instead, a more stable mode is found that balloons closer to the top or bottom of the plasma. Good quantitative agreement with a 1D ballooning analysis is found, providedmore » the constraints associated with higher order profile effects, often neglected, are taken into account. A sudden transition from this general mode to the more unstable ballooning mode can occur for a critical flow shear, providing a candidate model for why some experiments observe small plasma eruptions (Edge Localised Modes, or ELMs) in place of large Type I ELMs.« less

  16. Structuring in complex plasma for nonlinearly screened dust particles

    NASA Astrophysics Data System (ADS)

    Tsytovich, Vadim; Gusein-zade, Namik

    2014-03-01

    An explanation is proposed for the recently discovered effect of spontaneous dusty plasma structuring (and the appearance of compact dust structures) under conditions of nonlinear dust screening. Physical processes are considered that make homogenous dusty plasma universally unstable and lead to the appearance of structures. It is shown for the first time that the efficiency of structuring increases substantially in the presence of plasma flows caused by the charging of nonlinearly screened dust grains. General results are obtained for arbitrary nonlinear screening, and special attention is paid to the model of nonlinear screening often used since 1964. The growth rate of structuring instability is derived. It is shown that, in the case of nonlinear screening, the structuring has a threshold determined by the friction of grains against the neutral gas. The theoretically obtained threshold agrees with recent experimental observations. The dispersion relation for dusty plasma structuring is shown to be similar to the dispersion relation for gravitational instability with an effective gravitational constant. The effective dust attraction caused by this instability is shown to be collective, and the dependence of the effective gravitational constant on the dust-to-ion density ratio is found explicitly for the first time. It is demonstrated that the proposed method of calculation of dust attraction by using the effective gravitational constant is the most efficient and straightforward. Understanding of the role of nonlinear screening gives deeper physical grounds for the theoretical interpretation of the observed phenomenon of dust crystal formation in complex plasmas.

  17. Calculating phase equilibrium properties of plasma pseudopotential model using hybrid Gibbs statistical ensemble Monte-Carlo technique

    NASA Astrophysics Data System (ADS)

    Butlitsky, M. A.; Zelener, B. B.; Zelener, B. V.

    2015-11-01

    Earlier a two-component pseudopotential plasma model, which we called a “shelf Coulomb” model has been developed. A Monte-Carlo study of canonical NVT ensemble with periodic boundary conditions has been undertaken to calculate equations of state, pair distribution functions, internal energies and other thermodynamics properties of the model. In present work, an attempt is made to apply so-called hybrid Gibbs statistical ensemble Monte-Carlo technique to this model. First simulation results data show qualitatively similar results for critical point region for both methods. Gibbs ensemble technique let us to estimate the melting curve position and a triple point of the model (in reduced temperature and specific volume coordinates): T* ≈ 0.0476, v* ≈ 6 × 10-4.

  18. Specialized minimal PDFs for optimized LHC calculations.

    PubMed

    Carrazza, Stefano; Forte, Stefano; Kassabov, Zahari; Rojo, Juan

    2016-01-01

    We present a methodology for the construction of parton distribution functions (PDFs) designed to provide an accurate representation of PDF uncertainties for specific processes or classes of processes with a minimal number of PDF error sets: specialized minimal PDF sets, or SM-PDFs. We construct these SM-PDFs in such a way that sets corresponding to different input processes can be combined without losing information, specifically as regards their correlations, and that they are robust upon smooth variations of the kinematic cuts. The proposed strategy never discards information, so that the SM-PDF sets can be enlarged by the addition of new processes, until the prior PDF set is eventually recovered for a large enough set of processes. We illustrate the method by producing SM-PDFs tailored to Higgs, top-quark pair, and electroweak gauge boson physics, and we determine that, when the PDF4LHC15 combined set is used as the prior, around 11, 4, and 11 Hessian eigenvectors, respectively, are enough to fully describe the corresponding processes.

  19. An investigation of transient pressure and plasma properties in a pinched plasma column. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Stover, E. K.; York, T. M.

    1971-01-01

    The transient pinched plasma column generated in a linear Z-pinch was studied experimentally and analytically. The plasma column was investigated experimentally with the following plasma diagnostics: a special rapid response pressure transducer, a magnetic field probe, a voltage probe and discharge luminosity. Axial pressure profiles on the discharge chamber axis were used to identify three characteristic regions of plasma column behavior; they were in temporal sequence: strong axial pressure asymmetry noted early in plasma column lifetime followed by plasma heating in which there is a rapid rise in static pressure and a slight decrease static pressure before plasma column breakup. Plasma column lifetime was approximately 5 microseconds. The axial pressure asymmetry was attributed to nonsimultaneous pinching of the imploding current sheet along the discharge chamber axis. The rapid heating is attributed in part to viscous effects introduced by radial gradients in the axial streaming velocity. Turbulent heating arising from discharge current excitation of the ion acoustic wave instability is also considered a possible heating mechanism.

  20. Numerical calculations of turbulent swirling flow

    NASA Technical Reports Server (NTRS)

    Kubo, I.; Gouldin, F. C.

    1974-01-01

    Description of a numerical technique for solving axisymmetric, incompressible, turbulent swirling flow problems. Isothermal flow calculations are presented for a coaxial flow configuration of special interest. The calculation results are discussed in regard to their implications for the design of gas turbine combustors.

  1. [Master files: less paper, more substance. Special rules for special medicines: Plasma Master File and Vaccine Antigen Master File].

    PubMed

    Seitz, Rainer; Haase, M

    2008-07-01

    The process of reviewing the European pharmaceutical legislation resulted in a codex, which contains two new instruments related to marketing authorisation of biological medicines: Plasma Master File (PMF) and Vaccine Antigen Master File (VAMF). In the manufacture of plasma derivatives (e. g. coagulation factors, albumin, immunoglobulins), usually the same starting material, i. e. a plasma pool, is used for several products. In the case of vaccines, the same active substance, i.e. vaccine antigen, may be included in several combination vaccine products. The intention behind the introduction of PMF and VAMF was to avoid unnecessary and redundant documentation, and to improve and harmonise assessment by means of procedures for certification of master files on the community level.

  2. Calculation of the non-inductive current profile in high-performance NSTX plasmas

    NASA Astrophysics Data System (ADS)

    Gerhardt, S. P.; Fredrickson, E.; Gates, D.; Kaye, S.; Menard, J.; Bell, M. G.; Bell, R. E.; Le Blanc, B. P.; Kugel, H.; Sabbagh, S. A.; Yuh, H.

    2011-03-01

    The constituents of the current profile have been computed for a wide range of high-performance plasmas in NSTX (Ono et al 2000 Nucl. Fusion 40 557); these include cases designed to maximize the non-inductive fraction, pulse length, toroidal-β or stored energy. In the absence of low-frequency MHD activity, good agreement is found between the reconstructed current profile and that predicted by summing the independently calculated inductive, pressure-driven and neutral beam currents, without the need to invoke any anomalous beam ion diffusion. Exceptions occur, for instance, when there are toroidal Alfvén eigenmode avalanches or coupled m/n = 1/1 + 2/1 kink-tearing modes. In these cases, the addition of a spatially and temporally dependent fast-ion diffusivity can reduce the core beam current drive, restoring agreement between the reconstructed profile and the summed constituents, as well as bringing better agreement between the simulated and measured neutron emission rate. An upper bound on the fast-ion diffusivity of ~0.5-1 m2 s-1 is found in 'MHD-free' discharges, based on the neutron emission, the time rate of change in the neutron signal when a neutral beam is stepped and reconstructed on-axis current density.

  3. PULSION® HP: Tunable, High Productivity Plasma Doping

    NASA Astrophysics Data System (ADS)

    Felch, S. B.; Torregrosa, F.; Etienne, H.; Spiegel, Y.; Roux, L.; Turnbaugh, D.

    2011-01-01

    Plasma doping has been explored for many implant applications for over two decades and is now being used in semiconductor manufacturing for two applications: DRAM polysilicon counter-doping and contact doping. The PULSION HP is a new plasma doping tool developed by Ion Beam Services for high-volume production that enables customer control of the dominant mechanism—deposition, implant, or etch. The key features of this tool are a proprietary, remote RF plasma source that enables a high density plasma with low chamber pressure, resulting in a wide process space, and special chamber and wafer electrode designs that optimize doping uniformity.

  4. Plasma treatments of dressings for wound healing: a review.

    PubMed

    Eswaramoorthy, Nithya; McKenzie, David R

    2017-12-01

    This review covers the use of plasma technology relevant to the preparation of dressings for wound healing. The current state of knowledge of plasma treatments that have potential to provide enhanced functional surfaces for rapid and effective healing is summarized. Dressings that are specialized to the needs of individual cases of chronic wounds such as diabetic ulcers are a special focus. A summary of the biology of wound healing and a discussion of the various types of plasmas that are suitable for the customizing of wound dressings are given. Plasma treatment allows the surface energy and air permeability of the dressing to be controlled, to ensure optimum interaction with the wound. Plasmas also provide control over the surface chemistry and in cases where the plasma creates energetic ion bombardment, activation with long-lived radicals that can bind therapeutic molecules covalently to the surface of the dressing. Therapeutic innovations enabled by plasma treatment include the attachment of microRNA or antimicrobial peptides. Bioactive molecules that promote subsequent cell adhesion and proliferation can also be bound, leading to the recruitment of cells to the dressing that may be stem cells or patient-derived cells. The presence of a communicating cell population expressing factors promotes healing.

  5. International Workshop on Magneto-Plasma Aerodynamics (8th)

    DTIC Science & Technology

    2010-05-14

    outer conductor of coaxial waveguide. (b) (1 − 3) − different positions of a plasma channel in nonsteady-state plasmatron. The microwave power is...out at MIPT. Nanosecond DBD discharge in a special coaxial geometry of electrodes was used to produce a thin layer of quasi-uniform plasma in the...discharge cell, diagnostics means, high-voltage sources and commutation units. Cell commutation was effected by a plasma gun actuated by a start unit

  6. High Speed Photographic Analysis Of Railgun Plasmas

    NASA Astrophysics Data System (ADS)

    Macintyre, I. B.

    1985-02-01

    Various experiments are underway at the Materials Research Laboratories, Australian Department of Defence, to develop a theory for the behaviour and propulsion action of plasmas in rail guns. Optical recording and imaging devices, with their low vulnerability to the effects of magnetic and electric fields present in the vicinity of electromagnetic launchers, have proven useful as diagnostic tools. This paper describes photoinstrumentation systems developed to provide visual qualitative assessment of the behaviour of plasma travelling along the bore of railgun launchers. In addition, a quantitative system is incorporated providing continuous data (on a microsecond time scale) of (a) Length of plasma during flight along the launcher bore. (b) Velocity of plasma. (c) Distribution of plasma with respect to time after creation. (d) Plasma intensity profile as it travels along the launcher bore. The evolution of the techniques used is discussed. Two systems were employed. The first utilized a modified high speed streak camera to record the light emitted from the plasma, through specially prepared fibre optic cables. The fibre faces external to the bore were then imaged onto moving film. The technique involved the insertion of fibres through the launcher body to enable the plasma to be viewed at discrete positions as it travelled along the launcher bore. Camera configuration, fibre optic preparation and experimental results are outlined. The second system utilized high speed streak and framing photography in conjunction with accurate sensitometric control procedures on the recording film. The two cameras recorded the plasma travelling along the bore of a specially designed transparent launcher. The streak camera, fitted with a precise slit size, recorded a streak image of the upper brightness range of the plasma as it travelled along the launcher's bore. The framing camera recorded an overall view of the launcher and the plasma path, to the maximum possible, governed by

  7. Preface to advances in numerical simulation of plasmas

    NASA Astrophysics Data System (ADS)

    Parker, Scott E.; Chacon, Luis

    2016-10-01

    This Journal of Computational Physics Special Issue, titled ;Advances in Numerical Simulation of Plasmas,; presents a snapshot of the international state of the art in the field of computational plasma physics. The articles herein are a subset of the topics presented as invited talks at the 24th International Conference on the Numerical Simulation of Plasmas (ICNSP), August 12-14, 2015 in Golden, Colorado. The choice of papers was highly selective. The ICNSP is held every other year and is the premier scientific meeting in the field of computational plasma physics.

  8. First-principles calculation of the reflectance of shock-compressed xenon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norman, G. E.; Saitov, I. M., E-mail: saitovilnur@gmail.com; Stegailov, V. V.

    2015-05-15

    Within electron density functional theory (DFT), the reflectance of radiation from shock-compressed xenon plasma is calculated. The dependence of the reflectance on the frequency of the incident radiation and on the plasma density is considered. The Fresnel formula is used. The expression for the longitudinal dielectric tensor in the long-wavelength limit is used to calculate the imaginary part of the dielectric function (DF). The real part of the DF is determined by the Kramers-Kronig transformation. The results are compared with experimental data. An approach is proposed to estimate the plasma frequency in shock-compressed xenon.

  9. Plasma Dynamics of the Arc-Driven Rail Gun

    DTIC Science & Technology

    1980-09-01

    Authors’ unpublished calculations. 11. A.B. Cambel , Plasma Physics and Magnetofluidmechanics (McGraw-Hill New York, 1963), Chap. 8. ’ 16 k T P = (1 +cO...Energy, and Forces (Wiley, New York, 1960), Chap. 9. 10. Authors’ unpublished calculations. 11. A.B. Cambel , Plasma Physics and Magnetofluidmechanics

  10. Linus cycle calculations including plasma transport and resistive flux loss in an incompressible liner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quimby, D.C.; Hoffman, A.L.; Vlases, G.C.

    1980-08-01

    In the LINUS fusion reactor concept, a rotating liquid metal liner is used for reversible mechanical compression of thermonuclear plasmas, where a vacuum field buffer zone is used between the plasma and wall to reduce transport losses. A one-dimensional plasma transport and burn code, including incompressible liner dynamics with heat transfer and temperature dependent flux diffusion in the liquid metal, is used to model LINUS cycles. The effects of compressibility are treated as a perturbation. Numerical coefficients are derived for simple LINUS scaling laws. The particular case of plasma contact with the liquid metal is studied to determine the effectmore » on LINUS performance.« less

  11. Dayside ionosphere of Titan: Impact on calculated plasma densities due to variations in the model parameters

    NASA Astrophysics Data System (ADS)

    Mukundan, Vrinda; Bhardwaj, Anil

    2018-01-01

    A one dimensional photochemical model for the dayside ionosphere of Titan has been developed for calculating the density profiles of ions and electrons under steady state photochemical equilibrium condition. We concentrated on the T40 flyby of Cassini orbiter and used the in-situ measurements from instruments onboard Cassini as input to the model. An energy deposition model is employed for calculating the attenuated photon flux and photoelectron flux at different altitudes in Titan's ionosphere. We used the Analytical Yield Spectrum approach for calculating the photoelectron fluxes. Volume production rates of major primary ions, like, N2+, N+ , CH4+, CH3+, etc due to photon and photoelectron impact are calculated and used as input to the model. The modeled profiles are compared with the Cassini Ion Neutral Mass Spectrometer (INMS) and Langmuir Probe (LP) measurements. The calculated electron density is higher than the observation by a factor of 2 to 3 around the peak. We studied the impact of different model parameters, viz. photoelectron flux, ion production rates, electron temperature, dissociative recombination rate coefficients, neutral densities of minor species, and solar flux on the calculated electron density to understand the possible reasons for this discrepancy. Recent studies have shown that there is an overestimation in the modeled photoelectron flux and N2+ ion production rates which may contribute towards this disagreement. But decreasing the photoelectron flux (by a factor of 3) and N2+ ion production rate (by a factor of 2) decreases the electron density only by 10 to 20%. Reduction in the measured electron temperature by a factor of 5 provides a good agreement between the modeled and observed electron density. The change in HCN and NH3 densities affects the calculated densities of the major ions (HCNH+ , C2H5+, and CH5+); however the overall impact on electron density is not appreciable ( < 20%). Even though increasing the dissociative

  12. Space-plasma campaign on UCLA's Large Plasma Device (LAPD)

    NASA Astrophysics Data System (ADS)

    Koepke, M. E.; Finnegan, S. M.; Knudsen, D. J.; Vincena, S.

    2007-05-01

    Knudsen [JGR, 1996] describes a potential role for stationary Alfvén (StA) waves in auroral arcs' frequency dependence. Magnetized plasmas are predicted to support electromagnetic perturbations that are static in a fixed frame if there is uniform background plasma convection. These stationary waves should not be confused with standing waves that oscillate in time with a fixed, spatially varying envelope. Stationary waves have no time variation in the fixed frame. In the drifting frame, there is an apparent time dependence as plasma convects past fixed electromagnetic structures. We describe early results from an experimental campaign to reproduce in the lab the basic conditions necessary for the creation of StA waves, namely quasi-steady-state convection across magnetic field-aligned current channels. We show that an off-axis, fixed channel of electron current (and depleted density) is created in the Large Plasma Device Upgrade (LAPD) at UCLA, using a small, heated, oxide-coated electrode at one plasma-column end and we show that the larger plasma column rotates about its cylindrical axis from a radial electric field imposed by a special termination electrode on the same end. Initial experimentation with plasma-rotation-inducing termination electrodes began in May 2006 in the West Virginia Q Machine, leading to two designs that, in January 2007, were tested in LAPD. The radial profile of azimuthal velocity was consistent with predictions of rigid-body rotation. Current-channel experiments in LAPD, in August 2006, showed that inertial Alfvén waves could be concentrated in an off-axis channel of electron current and depleted plasma density. These experimental results will be presented and discussed. This research is supported by DOE and NSF.

  13. Photon Throughput Calculations for a Spherical Crystal Spectrometer

    NASA Astrophysics Data System (ADS)

    Gilman, C. J.; Bitter, M.; Delgado-Aparicio, L.; Efthimion, P. C.; Hill, K.; Kraus, B.; Gao, L.; Pablant, N.

    2017-10-01

    X-ray imaging crystal spectrometers of the type described in Refs. have become a standard diagnostic for Doppler measurements of profiles of the ion temperature and the plasma flow velocities in magnetically confined, hot fusion plasmas. These instruments have by now been implemented on major tokamak and stellarator experiments in Korea, China, Japan, and Germany and are currently also being designed by PPPL for ITER. A still missing part in the present data analysis is an efficient code for photon throughput calculations to evaluate the chord-integrated spectral data. The existing ray tracing codes cannot be used for a data analysis between shots, since they require extensive and time consuming numerical calculations. Here, we present a detailed analysis of the geometrical properties of the ray pattern. This method allows us to minimize the extent of numerical calculations and to create a more efficient code. This work was performed under the auspices of the U.S. Department of Energy by Princeton Plasma Physics Laboratory under contract DE-AC02-09CH11466.

  14. PREFACE: Special issue: CAMOP-MOLEC XVII Special issue: CAMOP-MOLEC XVII

    NASA Astrophysics Data System (ADS)

    Vasyutinskii, Oleg

    2009-10-01

    This special issue of CAMOP/Physica Scripta presents highlights from the scientific contributions presented at the European Conference on Dynamics of Molecular Systems (MOLEC XVII) held on 23-29 August 2008 at St Petersburg, Russia. This meeting was the seventeenth in a series of biannual meetings that started in 1976, when the first conference was held in Trento, Italy. Subsequent meetings were held at Brandbjerg Hojskole (Denmark), Oxford (UK), Nijmegen (The Netherlands), Jerusalem (Israel), Aussois (France), Assisi (Italy), Bernkastel-Kues (Germany), Prague (Czech Republic), Salamanca (Spain), Nyborg Strand (Denmark), Bristol (UK), Jerusalem (Israel), Istanbul (Turkey), Nunspeet (The Netherlands) and Trento (Italy). In 2008, the meeting was jointly organized by scientists from the Ioffe Institute, Russian Academy of Sciences, St Petersburg, Herzen State University, St Petersburg, Moscow State University, St Petersburg Polytechnical University, and St Petersburg State University. About 150 scientists from 21 countries visited Pushkin, a beautiful suburb of St Petersburg near the famous palace of Empress Catherine II, and discussed the state of the art and trends in the field, as well as new methods and applications, during 24 plenary lectures, 36 hot topic talks and two evening poster sessions. A special event was the presentation of the MOLEC XVII award to Professor Grabriel Balint-Kurti for his outstanding contributions to the theory of reaction dynamics and molecular photodissociation. Further information is available from the homepage of the meeting: http://www.ioffe.ru/MOLEC17/. This special issue covers different aspects of atomic and molecular interactions, with emphasis on both experimental and theoretical studies of the dynamics of elastic, inelastic and reactive encounters between atoms, molecules, ions, clusters and surfaces. More specifically, it includes molecular collisions in different environments; plasma, atmospheric, interstellar and combustion

  15. Plasmas for medicine

    NASA Astrophysics Data System (ADS)

    von Woedtke, Th.; Reuter, S.; Masur, K.; Weltmann, K.-D.

    2013-09-01

    Plasma medicine is an innovative and emerging field combining plasma physics, life science and clinical medicine. In a more general perspective, medical application of physical plasma can be subdivided into two principal approaches. (i) “Indirect” use of plasma-based or plasma-supplemented techniques to treat surfaces, materials or devices to realize specific qualities for subsequent special medical applications, and (ii) application of physical plasma on or in the human (or animal) body to realize therapeutic effects based on direct interaction of plasma with living tissue. The field of plasma applications for the treatment of medical materials or devices is intensively researched and partially well established for several years. However, plasma medicine in the sense of its actual definition as a new field of research focuses on the use of plasma technology in the treatment of living cells, tissues, and organs. Therefore, the aim of the new research field of plasma medicine is the exploitation of a much more differentiated interaction of specific plasma components with specific structural as well as functional elements or functionalities of living cells. This interaction can possibly lead either to stimulation or inhibition of cellular function and be finally used for therapeutic purposes. During recent years a broad spectrum of different plasma sources with various names dedicated for biomedical applications has been reported. So far, research activities were mainly focused on barrier discharges and plasma jets working at atmospheric pressure. Most efforts to realize plasma application directly on or in the human (or animal) body for medical purposes is concentrated on the broad field of dermatology including wound healing, but also includes cancer treatment, endoscopy, or dentistry. Despite the fact that the field of plasma medicine is very young and until now mostly in an empirical stage of development yet, there are first indicators of its enormous

  16. The charge imbalance in ultracold plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Tianxing; Lu, Ronghua, E-mail: lurh@siom.ac.cn; Guo, Li

    2016-09-15

    Ultracold plasmas are regarded as quasineutral but not strictly neutral. The results of charge imbalance in the expansion of ultracold plasmas are reported. The calculations are performed by a full molecular-dynamics simulation. The details of the electron velocity distributions are calculated without the assumption of electron global thermal equilibrium and Boltzmann distribution. Spontaneous evolutions of the charge imbalance from the initial states with perfect neutrality are given in the simulations. The expansion of outer plasma slows down with the charge imbalance. The influences of plasma size and parameters on the charge imbalance are discussed. The radial profiles of electron temperaturemore » are given for the first time, and the self-similar expansion can still occur even if there is no global thermal equilibrium. The electron disorder induced heating is also found in the simulation.« less

  17. Benchmarking kinetic calculations of resistive wall mode stability

    NASA Astrophysics Data System (ADS)

    Berkery, J. W.; Liu, Y. Q.; Wang, Z. R.; Sabbagh, S. A.; Logan, N. C.; Park, J.-K.; Manickam, J.; Betti, R.

    2014-05-01

    Validating the calculations of kinetic resistive wall mode (RWM) stability is important for confidently predicting RWM stable operating regions in ITER and other high performance tokamaks for disruption avoidance. Benchmarking the calculations of the Magnetohydrodynamic Resistive Spectrum—Kinetic (MARS-K) [Y. Liu et al., Phys. Plasmas 15, 112503 (2008)], Modification to Ideal Stability by Kinetic effects (MISK) [B. Hu et al., Phys. Plasmas 12, 057301 (2005)], and Perturbed Equilibrium Nonambipolar Transport PENT) [N. Logan et al., Phys. Plasmas 20, 122507 (2013)] codes for two Solov'ev analytical equilibria and a projected ITER equilibrium has demonstrated good agreement between the codes. The important particle frequencies, the frequency resonance energy integral in which they are used, the marginally stable eigenfunctions, perturbed Lagrangians, and fluid growth rates are all generally consistent between the codes. The most important kinetic effect at low rotation is the resonance between the mode rotation and the trapped thermal particle's precession drift, and MARS-K, MISK, and PENT show good agreement in this term. The different ways the rational surface contribution was treated historically in the codes is identified as a source of disagreement in the bounce and transit resonance terms at higher plasma rotation. Calculations from all of the codes support the present understanding that RWM stability can be increased by kinetic effects at low rotation through precession drift resonance and at high rotation by bounce and transit resonances, while intermediate rotation can remain susceptible to instability. The applicability of benchmarked kinetic stability calculations to experimental results is demonstrated by the prediction of MISK calculations of near marginal growth rates for experimental marginal stability points from the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)].

  18. Plasma-Powder Feedstock Interaction During Plasma Spray-Physical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Hongbo; Zhang, Baopeng

    2017-02-01

    Plasma spray-physical vapor deposition is a new process developed to produce coatings from the vapor phase. To achieve deposition from the vapor phase, the plasma-feedstock interaction inside the plasma torch, i.e., from the powder injection point to the nozzle exit, is critical. In this work, the plasma characteristics and the momentum and heat transfer between the plasma and powder feedstock at different torch input power levels were investigated theoretically to optimize the net plasma torch power, among other important factors such as the plasma gas composition, powder feed rate, and carrier gas. The plasma characteristics were calculated using the CEA2 code, and the plasma-feedstock interaction was studied inside the torch nozzle at low-pressure (20-25 kPa) conditions. A particle dynamics model was introduced to compute the particle velocity, coupled with Xi Chen's drag model for nonevaporating particles. The results show that the energy transferred to the particles and the coating morphology are greatly influenced by the plasma gas characteristics and the particle dynamics inside the nozzle. The heat transfer between the plasma gas and feedstock material increased with the net torch power up to an optimum at 64 kW, at which a maximum of 3.4% of the available plasma energy was absorbed by the feedstock powder. Experimental results using agglomerated 7-8 wt.% yttria-stabilized zirconia (YSZ) powder as feedstock material confirmed the theoretical predictions.

  19. Lithium line radiation in turbulent edge plasmas: Effects of low and high frequency temperature fluctuations

    NASA Astrophysics Data System (ADS)

    Rosato, J.; Capes, H.; Catoire, F.; Kadomtsev, M. B.; Levashova, M. G.; Lisitsa, V. S.; Marandet, Y.; Rosmej, F. B.; Stamm, R.

    2011-08-01

    In lithium-wall-conditioned tokamaks, the line radiation due to the intrinsic impurities (Li/Li+/Li++) plays a significant role on the power balance. Calculations of the radiation losses are usually performed using a stationary collisional-radiative model, assuming constant values for the plasma parameters (Ne, Te,…). Such an approach is not suitable for turbulent plasmas where the various parameters are time-dependent. This is critical especially for the edge region, where the fluctuation rates can reach several tens of percents [e.g. J.A. Boedo, J. Nucl. Mater. 390-391 (2009) 29-37]. In this work, the role of turbulence on the radiated power is investigated with a statistical formalism. A special emphasis is devoted to the role of temperature fluctuations, successively for low-frequency fluctuations and in the general case where the characteristic turbulence frequencies can be comparable to the collisional and radiative rates.

  20. Electron Temperature and Plasma Flow Measurements of NIF Hohlraum Plasmas

    NASA Astrophysics Data System (ADS)

    Barrios, M. A.; Liedahl, D. A.; Schneider, M. B.; Jones, O.; Brow, G. V.; Regan, S. P.; Fournier, K. B.; Moore, A. S.; Ross, J. S.; Eder, D.; Landen, O.; Kauffman, R. L.; Nikroo, A.; Kroll, J.; Jaquez, J.; Huang, H.; Hansen, S. B.; Callahan, D. A.; Hinkel, D. E.; Bradley, D.; Moody, J. D.; LLNL Collaboration; LLE Collaboration; GA Collaboration; SNL Collaboration

    2016-10-01

    Characterizing the plasma conditions inside NIF hohlraums, in particular mapping the plasma Te, is critical to gaining insight into mechanisms that affect energy coupling and transport in the hohlraum. The dot spectroscopy platform provides a temporal history of the localized Te and plasma flow inside a NIF hohlraum, by introducing a Mn-Co tracer dot, at strategic locations inside the hohlraum, that comes to equilibrium with the local plasma. K-shell X-ray spectroscopy of the tracer dot is recorded onto an absolutely calibrated X-ray streak spectrometer. Isoelectronic and interstage line ratios are used to infer localized Te through comparison with atomic physics calculations using SCRAM. Time resolved X-ray images are simultaneously taken of the expanding dot, providing plasma (ion) flow information. We present recent results provided by this platform and compare with simulations using HYDRA. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  1. Impact of special aviation gymnastics instruments training on selected hormones in cadets' blood serum and plasma.

    PubMed

    Wochyński, Zbigniew; Sobiech, Krzysztof

    2017-06-19

    This study has aimed at investigating the impact of the Special Aviation Gymnastics Instruments (SAGI) training scheme on the blood serum cortisol, testosterone, insulin, and plasma adrenaline, noradrenaline, and dopamine in comparison with a control group. Fifty-five cadets, aged 20 years old, participated in the study. Cadets were divided into 2 groups: A (N = 41) - the SAGI-trained, and B (N = 14) - the control group. In both groups, blood was the examined material, sampled twice: before the training session (BT) and after the training session (AT), at the beginning (training session I), during (training session II), and after completion of the SAGI training session (training session III). Commercially available kits were used for assaying serum cortisol, testosterone, and insulin as well as plasma adrenaline, noradrenaline, and dopamine. Cadets' physical fitness was assessed by means of Aero-Synthetic Efficiency Tests. In group A, a significant decrease in serum cortisol (training session III) and insulin in three training sessions AT in comparison with the values BT was seen. A statistically significant increase in testosterone and catecholamines was noted in all 3 training sessions AT in comparison with the values BT. In group B, a statistically significant increase in cortisol (training session II), testosterone, and catecholamines was observed in all 3 training sessions AT vs. the values in training session BT. In group B, serum levels of all assayed hormones were higher in training session III than those in group A. In the examined group, the SAGI training produced fewer hormonal changes dependent on the intensity and exercise type and physical efficiency improvement than in the control group. Int J Occup Med Environ Health 2017;30(4):655-664. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  2. Power and Particle Balance Calculations with Impurities in NSTX

    NASA Astrophysics Data System (ADS)

    Holland, C. G.; Maingi, R.; Owen, L. W.; Kaye, S. M.

    1998-11-01

    We reported the development C. Holland, et. al., Bull. Am. Phys. Soc. 42 (1997) 1927. and application R. Maingi et al., Proc. 3rd International Workshop on Spherical Tori, Sept. 3-5, 1997, St. Petersburg, Russia. of a Graphical User Interface to assess the important terms for edge and divertor plasma calculations for NSTX with the b2.5 edge plasma transport code B. Braams, Contrib. Plasma Phys. 36 (1996) 276.. The goals of those calculations were to estimate the worst case peak heat flux for plasma-facing component design, and the radiation requirements to reduce the peak heat flux. In this study we present the first simulations with intrinsic carbon impurity radiation. We find in general that the intrinsic carbon radiation should be sufficient to provide a wide operation window for the NSTX device. Details of the relative importance of heat flux transport mechanisms as determined with the GUI will be presented.

  3. Shock heating of the solar wind plasma

    NASA Technical Reports Server (NTRS)

    Whang, Y. C.; Liu, Shaoliang; Burlaga, L. F.

    1990-01-01

    The role played by shocks in heating solar-wind plasma is investigated using data on 413 shocks which were identified from the plasma and magnetic-field data collected between 1973 and 1982 by Pioneer and Voyager spacecraft. It is found that the average shock strength increased with the heliocentric distance outside 1 AU, reaching a maximum near 5 AU, after which the shock strength decreased with the distance; the entropy of the solar wind protons also reached a maximum at 5 AU. An MHD simulation model in which shock heating is the only heating mechanism available was used to calculate the entropy changes for the November 1977 event. The calculated entropy agreed well with the value calculated from observational data, suggesting that shocks are chiefly responsible for heating solar wind plasma between 1 and 15 AU.

  4. Discontinuous model with semi analytical sheath interface for radio frequency plasma

    NASA Astrophysics Data System (ADS)

    Miyashita, Masaru

    2016-09-01

    Sumitomo Heavy Industries, Ltd. provide many products utilizing plasma. In this study, we focus on the Radio Frequency (RF) plasma source by interior antenna. The plasma source is expected to be high density and low metal contamination. However, the sputtering the antenna cover by high energy ion from sheath voltage still have been problematic. We have developed the new model which can calculate sheath voltage wave form in the RF plasma source for realistic calculation time. This model is discontinuous that electronic fluid equation in plasma connect to usual passion equation in antenna cover and chamber with semi analytical sheath interface. We estimate the sputtering distribution based on calculated sheath voltage waveform by this model, sputtering yield and ion energy distribution function (IEDF) model. The estimated sputtering distribution reproduce the tendency of experimental results.

  5. Calculating Pressure-Driven Current Near Magnetic Islands for 3D MHD Equilibria

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Dhanush; Reiman, Allan

    2016-10-01

    In general, 3D MHD equilibria in toroidal plasmas do not result in nested pressure surfaces. Instead, islands and chaotic regions appear in the equilibrium. Near small magnetic islands, the pressure varies within the flux surfaces, which has a significant effect on the pressure-driven current, introducing singularities. Previously, the MHD equilibrium current near a magnetic island was calculated, including the effect of ``stellarator symmetry,'' wherein the singular components of the pressure-driven current vanish [A. H. Reiman, Phys. Plasmas 23, 072502 (2016)]. Here we first solve for pressure in a cylindrical plasma from the heat diffusion equation, after adding a helical perturbation. We then numerically calculate the corresponding Pfirsch-Schluter current. At the small island limit, we compare the pressure-driven current with the previously calculated solution, and far from the island, we recover the solution for nested flux surfaces. Lastly, we compute the current for a toroidal plasma for symmetric and non-symmetric geometries.

  6. Modeling RF Fields in Hot Plasmas with Parallel Full Wave Code

    NASA Astrophysics Data System (ADS)

    Spencer, Andrew; Svidzinski, Vladimir; Zhao, Liangji; Galkin, Sergei; Kim, Jin-Soo

    2016-10-01

    FAR-TECH, Inc. is developing a suite of full wave RF plasma codes. It is based on a meshless formulation in configuration space with adapted cloud of computational points (CCP) capability and using the hot plasma conductivity kernel to model the nonlocal plasma dielectric response. The conductivity kernel is calculated by numerically integrating the linearized Vlasov equation along unperturbed particle trajectories. Work has been done on the following calculations: 1) the conductivity kernel in hot plasmas, 2) a monitor function based on analytic solutions of the cold-plasma dispersion relation, 3) an adaptive CCP based on the monitor function, 4) stencils to approximate the wave equations on the CCP, 5) the solution to the full wave equations in the cold-plasma model in tokamak geometry for ECRH and ICRH range of frequencies, and 6) the solution to the wave equations using the calculated hot plasma conductivity kernel. We will present results on using a meshless formulation on adaptive CCP to solve the wave equations and on implementing the non-local hot plasma dielectric response to the wave equations. The presentation will include numerical results of wave propagation and absorption in the cold and hot tokamak plasma RF models, using DIII-D geometry and plasma parameters. Work is supported by the U.S. DOE SBIR program.

  7. Determination of Plasma Screening Effects for Thermonuclear Reactions in Laser-generated Plasmas

    NASA Astrophysics Data System (ADS)

    Wu, Yuanbin; Pálffy, Adriana

    2017-03-01

    Due to screening effects, nuclear reactions in astrophysical plasmas may behave differently than in the laboratory. The possibility to determine the magnitude of these screening effects in colliding laser-generated plasmas is investigated theoretically, having as a starting point a proposed experimental setup with two laser beams at the Extreme Light Infrastructure facility. A laser pulse interacting with a solid target produces a plasma through the Target Normal Sheath Acceleration scheme, and this rapidly streaming plasma (ion flow) impacts a secondary plasma created by the interaction of a second laser pulse on a gas jet target. We model this scenario here and calculate the reaction events for the astrophysically relevant reaction 13C(4He, n)16O. We find that it should be experimentally possible to determine the plasma screening enhancement factor for fusion reactions by detecting the difference in reaction events between two scenarios of ion flow interacting with the plasma target and a simple gas target. This provides a way to evaluate nuclear reaction cross-sections in stellar environments and can significantly advance the field of nuclear astrophysics.

  8. Endoplasmic Reticulum-Plasma Membrane Contacts Regulate Cellular Excitability.

    PubMed

    Dickson, Eamonn J

    2017-01-01

    Cells that have intrinsic electrical excitability utilize changes in membrane potential to communicate with neighboring cells and initiate cellular cascades. Excitable cells like neurons and myocytes have evolved highly specialized subcellular architectures to translate these electrical signals into cellular events. One such structural specialization is sarco-/endoplasmic reticulum-plasma membrane contact sites. These membrane contact sites are positioned by specific membrane-membrane tethering proteins and contain an ever-expanding list of additional proteins that organize information transfer across the junctional space (~ 15-25 nm distance) to shape membrane identity and control cellular excitability. In this chapter we discuss how contacts between the sarco-/endoplasmic reticulum and plasma membrane are essential for regulated excitation-contraction coupling in striated muscle and control of lipid-dependent ion channels.

  9. Departure from corotation of the Io plasma torus - Local plasma production

    NASA Technical Reports Server (NTRS)

    Pontius, D. H., Jr.; Hill, T. W.

    1982-01-01

    The departure of the Jovian magnetosphere from rigid corotation is adequately explained by outward plasma transport at distances where L is greater than approximately 10. The departure of 5% observed in the Io plasma torus, however, is too large to be accounted for simply by plasma transport. Local plasma production is proposed as the main factor determining the corotation lag in the torus. The outward pick-up current provided by ionization of neutral atoms is calculated and related to the current produced in the ionosphere by the corotation lag. This leads to an expression giving the corotation lag of the torus as a function of radial distance. Charge transfer is found to be an important process, allowing the majority of the torus mass to be ejected from the magnetosphere in a neutral state. Thus, the mass loading rate is found to be several times that inferred from examination of the corotation lag associated with outward plasma transport.

  10. Transport in a toroidally confined pure electron plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crooks, S.M.; ONeil, T.M.

    1996-07-01

    O{close_quote}Neil and Smith [T.M. O{close_quote}Neil and R.A. Smith, Phys. Plasmas {bold 1}, 8 (1994)] have argued that a pure electron plasma can be confined stably in a toroidal magnetic field configuration. This paper shows that the toroidal curvature of the magnetic field of necessity causes slow cross-field transport. The transport mechanism is similar to magnetic pumping and may be understood by considering a single flux tube of plasma. As the flux tube of plasma undergoes poloidal {ital E}{bold {times}}{ital B} drift rotation about the center of the plasma, the length of the flux tube and the magnetic field strength withinmore » the flux tube oscillate, and this produces corresponding oscillations in {ital T}{sub {parallel}} and {ital T}{sub {perpendicular}}. The collisional relaxation of {ital T}{sub {parallel}} toward {ital T}{sub {perpendicular}} produces a slow dissipation of electrostatic energy into heat and a consequent expansion (cross-field transport) of the plasma. In the limit where the cross section of the plasma is nearly circular the radial particle flux is given by {Gamma}{sub {ital r}}=1/2{nu}{sub {perpendicular},{parallel}}{ital T}({ital r}/{rho}{sub 0}){sup 2}{ital n}/({minus}{ital e}{partial_derivative}{Phi}/{partial_derivative}{ital r}), where {nu}{sub {perpendicular},{parallel}} is the collisional equipartition rate, {rho}{sub 0} is the major radius at the center of the plasma, and {ital r} is the minor radius measured from the center of the plasma. The transport flux is first calculated using this simple physical picture and then is calculated by solving the drift-kinetic Boltzmann equation. This latter calculation is not limited to a plasma with a circular cross section. {copyright} {ital 1996 American Institute of Physics.}« less

  11. A new linear plasma device for various edge plasma studies at SWIP

    NASA Astrophysics Data System (ADS)

    Xu, Min; Zheng, Pengfei; Tynan, George; Che, Tong; Wang, Zhanhui; Guo, Dong; Wei, Ran

    2017-10-01

    To facilitate the plasma-material interactions (PMI) studies, Southwestern Institute of Physics (SWIP) has constructed a linear plasma device. It is comprised of a source chamber (Φ 0.4 m), a target chamber (Φ 0.9 m), 15 magnets with different sizes, and power supplies with the total power of a few hundred kilowatts, etc. A maximum magnetic field of 0.3 Tesla along the axial direction can be produced. The current of each of the 15 magnets can be independently controlled. More than 60 ports are available for diagnostics, with the sizes vary from Φ 50 mm to Φ 150 mm. Rectangular ports of 190 mm × 270 mm are also available. 12 ports looking at the sample holder are specially designed for ion beam injection, of which the axes are 25 to the chamber axis. The device is equipped with a LaB6 hot cathode plasma source, which is able to generate steady-state H/D/He plasmas with a diameter of Φ 100 mm, density of 1x1019 /m3 , and a particle flux of 1022 1023 n/m2 .s. The electron temperature is usually a few eV. Further, a Helicon RF plasma source is also planned for plasma transport studies. Int'l Sci & Tech Cooperation Program of China (No. 2015DFA61760).

  12. Influence of emissivity on behavior of metallic dust particles in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Y.; Smirnov, R. D.; Pigarov, A. Yu.

    Influence of thermal radiation emissivity on the lifetime of a dust particle in plasmas is investigated for different fusion relevant metals (Li, Be, Mo, and W). The thermal radiation is one of main cooling mechanisms of the dust in plasmas especially for dust with evaporation temperature higher than 2500 K. In this paper, the temperature- and radius-dependent emissivity of dust particles is calculated using Mie theory and temperature-dependent optical constants for the above metallic materials. The lifetime of a dust particle in uniform plasmas is estimated with the calculated emissivity using the dust transport code DUSTT[A. Pigarov et al., Physicsmore » of Plasmas 12, 122508 (2005)], considering other dust cooling and destruction processes such as physical and chemical sputtering, melting and evaporation, electron emission etc. The use of temperature-dependent emissivity calculated with Mie theory provides a longer lifetime of the refractory metal dust particle compared with that obtained using conventional emissivity constants in the literature. The dynamics of heavy metal dust particles are also presented using the calculated emissivity in a tokamak plasma.« less

  13. Disassembly time of deuterium-cluster-fusion plasma irradiated by an intense laser pulse.

    PubMed

    Bang, W

    2015-07-01

    Energetic deuterium ions from large deuterium clusters (>10nm diameter) irradiated by an intense laser pulse (>10(16)W/cm(2)) produce DD fusion neutrons for a time interval determined by the geometry of the resulting fusion plasma. We present an analytical solution of this time interval, the plasma disassembly time, for deuterium plasmas that are cylindrical in shape. Assuming a symmetrically expanding deuterium plasma, we calculate the expected fusion neutron yield and compare with an independent calculation of the yield using the concept of a finite confinement time at a fixed plasma density. The calculated neutron yields agree quantitatively with the available experimental data. Our one-dimensional simulations indicate that one could expect a tenfold increase in total neutron yield by magnetically confining a 10-keV deuterium fusion plasma for 10ns.

  14. Exact special twist method for quantum Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Dagrada, Mario; Karakuzu, Seher; Vildosola, Verónica Laura; Casula, Michele; Sorella, Sandro

    2016-12-01

    We present a systematic investigation of the special twist method introduced by Rajagopal et al. [Phys. Rev. B 51, 10591 (1995), 10.1103/PhysRevB.51.10591] for reducing finite-size effects in correlated calculations of periodic extended systems with Coulomb interactions and Fermi statistics. We propose a procedure for finding special twist values which, at variance with previous applications of this method, reproduce the energy of the mean-field infinite-size limit solution within an adjustable (arbitrarily small) numerical error. This choice of the special twist is shown to be the most accurate single-twist solution for curing one-body finite-size effects in correlated calculations. For these reasons we dubbed our procedure "exact special twist" (EST). EST only needs a fully converged independent-particles or mean-field calculation within the primitive cell and a simple fit to find the special twist along a specific direction in the Brillouin zone. We first assess the performances of EST in a simple correlated model such as the three-dimensional electron gas. Afterwards, we test its efficiency within ab initio quantum Monte Carlo simulations of metallic elements of increasing complexity. We show that EST displays an overall good performance in reducing finite-size errors comparable to the widely used twist average technique but at a much lower computational cost since it involves the evaluation of just one wave function. We also demonstrate that the EST method shows similar performances in the calculation of correlation functions, such as the ionic forces for structural relaxation and the pair radial distribution function in liquid hydrogen. Our conclusions point to the usefulness of EST for correlated supercell calculations; our method will be particularly relevant when the physical problem under consideration requires large periodic cells.

  15. A self-consistent view on plasma-neutral interaction near a wall: plasma acceleration by momentum removal and heating by cold walls

    NASA Astrophysics Data System (ADS)

    van Rooij, Gerard; den Harder, Niek; Minea, Teofil; Shumack, Amy; de Blank, H.; Plasma Physics Team

    2014-10-01

    In plasma physics, material walls are generally regarded as perfect sinks for charged particles and their energy. A special case arises when the wall efficiently reflects the neutralized plasma particles (with a significant portion of their kinetic energy) and at the same time the upstream plasma is of sufficiently high density to yield strong neutral-ion coupling (i.e. reflected energy and momentum will not escape from the plasma). Under these conditions, plasma-surface interaction will feedback to the upstream plasma and a self-consistent view on the coupling between plasma and neutrals is required for correct prediction of plasma conditions and plasma-surface interaction. Here, an analytical and numerical study of the fluid equations is combined with experiments (in hydrogen and argon) to construct such a self-consistent view. It shows how plasma momentum removal builds up upstream pressure and causes plasma acceleration towards the wall. It also shows how energy reflection causes plasma heating, which recycles part of the reflected power to the wall and induces additional flow acceleration due to local sound speed increase. The findings are relevant as generic textbook example and are at play in the boundary plasma of fusion devices.

  16. Energy distributions and radiation transport in uranium plasmas

    NASA Technical Reports Server (NTRS)

    Miley, G. H.; Bathke, C.; Maceda, E.; Choi, C.

    1976-01-01

    An approximate analytic model, based on continuous electron slowing, has been used for survey calculations. Where more accuracy is required, a Monte Carlo technique is used which combines an analytic representation of Coulombic collisions with a random walk treatment of inelastic collisions. The calculated electron distributions have been incorporated into another code that evaluates both the excited atomic state densities within the plasma and the radiative flux emitted from the plasma.

  17. Study of ND3-enhanced MAR processes in D2-N2 plasmas to induce plasma detachment

    NASA Astrophysics Data System (ADS)

    Abe, Shota; Chakraborty Thakur, Saikat; Doerner, Russ; Tynan, George

    2017-10-01

    The Molecular Assisted Recombination (MAR) process is thought to be a main channel of volumetric recombination to induce the plasma detachment operation. Authors have focused on a new plasma recombination process supported by ammonia molecules, which will be formed by impurity seeding of N2 for controlling divertor plasma temperature and heat loads in ITER. This ammonia-enhanced MAR process would occur throughout two steps. In this study, the first step of the new MAR process is investigated in low density plasmas (Ne 1016 m-3, Te 4 eV) fueled by D2 and N2. Ion and neutral densities are measured by a calibrated Electrostatic Quadrupole Plasma (EQP) analyzer, combination of an ion energy analyzer and mass spectrometer. The EQP shows formation of ND3 during discharges. Ion densities calculated by a rate equation model are compared with experimental results. We find that the model can reproduce the observed ion densities in the plasma. The model calculation shows that the dominant neutralization channel of Dx+(x =1-3) ions in the volume is the formation of NDy+(y =3 or 4) throughout charge/D+ exchange reactions with ND3. Furthermore, high density plasmas (Ne 1016 m-3) have been achieved to investigate electron-impact dissociative recombination processes of formed NDy+,which is the second step of this MAR process.

  18. Modeling the mechanical behavior of ceramic and heterophase structures manufactured using selective laser sintering and spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir A.; Skripnyak, Evgeniya G.; Skripnyak, Vladimir V.; Vaganova, Irina K.

    A model for predicting mechanical properties of ultra-high temperature ceramics and composites manufactured by selective laser sintering (SLS) and spark plasma sintering (SPS) under shock loading is presented. The model takes into account the porous structure, the specific volume and average sizes of phases, and the temperature of sintering. Residual stresses in ceramic composites reinforced with particles of refractory borides, carbides and nitrides after SLS or SPS were calculated. It is shown that the spall strength of diboride-zirconium matrix composites can be increased by the decreasing of porosity and the introduction of inclusions of specially selected refractory strengthening phases.

  19. Coating of plasma polymerized film

    NASA Technical Reports Server (NTRS)

    Morita, S.; Ishibashi, S.

    1980-01-01

    Plasma polymerized thin film coating and the use of other coatings is suggested for passivation film, thin film used for conducting light, and solid body lubrication film of dielectrics of ultra insulators for electrical conduction, electron accessories, etc. The special features of flow discharge development and the polymerized film growth mechanism are discussed.

  20. Simulation of laser interaction with ablative plasma and hydrodynamic behavior of laser supported plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong Huifeng; Yuan Hong; Tang Zhiping

    When an intense laser beam irradiates on a solid target, ambient air ionizes and becomes plasma, while part of the target rises in temperature, melts, vaporizes, ionizes, and yet becomes plasma. A general Godunov finite difference scheme WENO (Weighted Essentially Non-Oscillatory Scheme) with fifth-order accuracy is used to simulate 2-dimensional axis symmetrical laser-supported plasma flow field in the process of laser ablation. The model of the calculation of ionization degree of plasma and the interaction between laser beam and plasma are considered in the simulation. The numerical simulations obtain the profiles of temperature, density, and velocity at different times whichmore » show the evolvement of the ablative plasma. The simulated results show that the laser energy is strongly absorbed by plasma on target surface and that the velocity of laser supported detonation (LSD) wave is half of the ideal LSD value derived from Chapman-Jouguet detonation theory.« less

  1. Studies on plasma profiles and its effect on dust charging in hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Kakati, B.; Kausik, S. S.; Saikia, B. K.; Bandyopadhay, M.

    2010-02-01

    Plasma profiles and its influence on dust charging are studied in hydrogen plasma. The plasma is produced in a high vacuum device by a hot cathode discharge method and is confined by a cusped magnetic field cage. A cylindrical Espion advanced Langmuir probe having 0.15 mm diameter and 10.0 mm length is used to study the plasma parameters for various discharge conditions. Optimum operational discharge parameters in terms of charging of the dust grains are studied. The charge on the surface of the dust particle is calculated from the capacitance model and the current by the dust grains is measured by the combination of a Faraday cup and an electrometer. Unlike our previous experiments in which dust grains were produced in-situ, here a dust dropper is used to drop the dust particles into the plasma.

  2. Plasma lipoproteins and the synthesis and turnover of plasma triglyceride in normal and genetically obese mice

    PubMed Central

    Salmon, D. Michael W.; Hems, Douglas A.

    1973-01-01

    1. Lipoproteins in the plasma of mice were characterized by agarose-gel chromatography and polyacrylamide-gel electrophoresis: genetically obese (ob/ob) mice exhibited hyperlipoproteinaemia (compared with lean mice), largely owing to an increase in the concentration of cholesterol in high-density lipoprotein. Plasma concentrations of triglyceride and phospholipid were not markedly increased in genetically obese mice. 2. The formation of glycerolipids in liver and plasma was investigated with 14C-labelled precursors. The synthesis of hepatic triglyceride and phospholipid from glucose or palmitate was enhanced in ob/ob mice, compared with lean mice. The rate of entry of triglyceride into plasma, calculated from the time-course of incorporation of 14C from [14C]palmitate into plasma triglyceride, was increased in ob/ob mice (0.5μmol of fatty acid/min, compared with 0.2 in lean mice). 3. The removal from plasma of murine lipoprotein triglyceride-[14C]fatty acid was increased in ob/ob mice (half-time 2.2min, compared with 7.2min in lean mice). Similar results were obtained with an injected lipid emulsion (Intralipid). 4. From these measurements, estimates of the rates of turnover of plasma triglyceride in mice (fed on a mixed diet, female, 3 months old) are about 1.0μmol of fatty acid/min in ob/ob mice, and 0.25 in lean mice. 5. The major precursor of hepatic and plasma triglyceride in lean and ob/ob mice was calculated to be plasma free fatty acid. 6. These results are discussed, in connexion with the role of the liver in triglyceride metabolism in mice, especially in relation to genetic obesity. PMID:4360712

  3. Laser Plasma Heating.

    DTIC Science & Technology

    The heating of a plasma by a laser is studied, assuming the classical inverse bremsstrahlung mechanism for transfer of energy from laser photons to electron thermal energy. Emphasis is given to CO2 laser heating of the dense plasma focus (DPF) device. Particular attention is paid to the contribution of impurities to the radiation output of the DPF. A steady-state CORONA model is discussed and used to generate a computer program, CORONA, which calculates species densities as a function of electron temperature. (Author)

  4. Collisional Ionization Equilibrium for Optically Thin Plasmas

    NASA Technical Reports Server (NTRS)

    Bryans, P.; Mitthumsiri, W.; Savin, D. W.; Badnell, N. R.; Gorczyca, T. W.; Laming, J. M.

    2006-01-01

    Reliably interpreting spectra from electron-ionized cosmic plasmas requires accurate ionization balance calculations for the plasma in question. However, much of the atomic data needed for these calculations have not been generated using modern theoretical methods and their reliability are often highly suspect. We have utilized state-of-the-art calculations of dielectronic recombination (DR) rate coefficients for the hydrogenic through Na-like ions of all elements from He to Zn. We have also utilized state-of-the-art radiative recombination (RR) rate coefficient calculations for the bare through Na-like ions of all elements from H to Zn. Using our data and the recommended electron impact ionization data of Mazzotta et al. (1998), we have calculated improved collisional ionization equilibrium calculations. We compare our calculated fractional ionic abundances using these data with those presented by Mazzotta et al. (1998) for all elements from H to Ni, and with the fractional abundances derived from the modern DR and RR calculations of Gu (2003a,b, 2004) for Mg, Si, S, Ar, Ca, Fe, and Ni.

  5. Performance of a plasma fluid code on the Intel parallel computers

    NASA Technical Reports Server (NTRS)

    Lynch, V. E.; Carreras, B. A.; Drake, J. B.; Leboeuf, J. N.; Liewer, P.

    1992-01-01

    One approach to improving the real-time efficiency of plasma turbulence calculations is to use a parallel algorithm. A parallel algorithm for plasma turbulence calculations was tested on the Intel iPSC/860 hypercube and the Touchtone Delta machine. Using the 128 processors of the Intel iPSC/860 hypercube, a factor of 5 improvement over a single-processor CRAY-2 is obtained. For the Touchtone Delta machine, the corresponding improvement factor is 16. For plasma edge turbulence calculations, an extrapolation of the present results to the Intel (sigma) machine gives an improvement factor close to 64 over the single-processor CRAY-2.

  6. EFFECTS OF LASER RADIATION ON MATTER: Calculation of the gain of a C VI laser plasma expanding as a cylinder and a cylindrical layer

    NASA Astrophysics Data System (ADS)

    Gulov, A. V.; Derzhiev, V. I.; Zhidkov, A. G.; Pritula, A. G.; Chekmezov, A. N.; Yakovlenko, Sergei I.

    1990-08-01

    Calculations are reported of the gain due to the 3-2 transition in the C VI ion in an expanding plasma cylinder or a cylindrical layer. Under the conditions in the experiments at the Rutherford Appleton Laboratory (Chilton, England) amplification was observed as a result of evaporation of a fairly thin (~ 0.1 μm) cylindrical layer. A peak of the gain was reached in a relatively short time (~ 0.1 ns).

  7. Slide Rule For Calculating Curing Schedules

    NASA Technical Reports Server (NTRS)

    Heater, Don

    1995-01-01

    Special-purpose slide rule devised for calculating schedules for storing and curing adhesives, sealants, and other materials characterized by known curing times and shelf lives. Prevents mistakes commonly made in determining storage and curing schedules.

  8. Linear theory of plasma Čerenkov masers

    NASA Astrophysics Data System (ADS)

    Birau, M.

    1996-11-01

    A different theoretical model of Čerenkov instability in the linear amplification regime of plasma Čerenkov masers is developed. The model assumes a cold relativistic annular electron beam propagating through a column of cold dense plasma, the two bodies being immersed in an infinite magnetic guiding field inside a perfect cylindrical waveguide. In order to simplify the calculations, a radial rectangular distribution of plasma and beam density is assumed and only azimuthal symmetric modes are under investigation. The model's difference consists of taking into account the whole plasma and beam electromagnetic structures in the interpretation of the Čerenkov instability. This model leads to alternative results such as the possibility of emission at several frequencies. In addition, the electric field is calculated taking into account its radial phase dependence, so that a map of the field in the interaction region can be presented.

  9. Disassembly time of deuterium-cluster-fusion plasma irradiated by an intense laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bang, W.

    Energetic deuterium ions from large deuterium clusters (>10 nm diameter) irradiated by an intense laser pulse (>10¹⁶ W/cm²) produce DD fusion neutrons for a time interval determined by the geometry of the resulting fusion plasma. We show an analytical solution of this time interval, the plasma disassembly time, for deuterium plasmas that are cylindrical in shape. Assuming a symmetrically expanding deuterium plasma, we calculate the expected fusion neutron yield and compare with an independent calculation of the yield using the concept of a finite confinement time at a fixed plasma density. The calculated neutron yields agree quantitatively with the availablemore » experimental data. Our one-dimensional simulations indicate that one could expect a tenfold increase in total neutron yield by magnetically confining a 10 - keV deuterium fusion plasma for 10 ns.« less

  10. Disassembly time of deuterium-cluster-fusion plasma irradiated by an intense laser pulse

    DOE PAGES

    Bang, W.

    2015-07-02

    Energetic deuterium ions from large deuterium clusters (>10 nm diameter) irradiated by an intense laser pulse (>10¹⁶ W/cm²) produce DD fusion neutrons for a time interval determined by the geometry of the resulting fusion plasma. We show an analytical solution of this time interval, the plasma disassembly time, for deuterium plasmas that are cylindrical in shape. Assuming a symmetrically expanding deuterium plasma, we calculate the expected fusion neutron yield and compare with an independent calculation of the yield using the concept of a finite confinement time at a fixed plasma density. The calculated neutron yields agree quantitatively with the availablemore » experimental data. Our one-dimensional simulations indicate that one could expect a tenfold increase in total neutron yield by magnetically confining a 10 - keV deuterium fusion plasma for 10 ns.« less

  11. Gyrokinetic water-bag modeling of a plasma column: Magnetic moment distribution and finite Larmor radius effects

    NASA Astrophysics Data System (ADS)

    Klein, R.; Gravier, E.; Morel, P.; Besse, N.; Bertrand, P.

    2009-08-01

    Describing turbulent transport in fusion plasmas is a major concern in magnetic confinement fusion. It is now widely known that kinetic and fluid descriptions can lead to significantly different properties. Although more accurate, the kinetic calculation of turbulent transport is much more demanding of computer resources than fluid simulations. An alternative approach is based on a water-bag representation of the distribution function that is not an approximation but rather a special class of initial conditions, allowing one to reduce the full kinetic Vlasov equation into a set of hydrodynamics equations while keeping its kinetic character [P. Morel, E. Gravier, N. Besse et al., Phys. Plasmas 14, 112109 (2007)]. In this paper, the water-bag concept is used in a gyrokinetic context to study finite Larmor radius effects with the possibility of using the full Larmor radius distribution instead of an averaged Larmor radius. The resulting model is used to study the ion temperature gradient (ITG) instability.

  12. Full Wave Parallel Code for Modeling RF Fields in Hot Plasmas

    NASA Astrophysics Data System (ADS)

    Spencer, Joseph; Svidzinski, Vladimir; Evstatiev, Evstati; Galkin, Sergei; Kim, Jin-Soo

    2015-11-01

    FAR-TECH, Inc. is developing a suite of full wave RF codes in hot plasmas. It is based on a formulation in configuration space with grid adaptation capability. The conductivity kernel (which includes a nonlocal dielectric response) is calculated by integrating the linearized Vlasov equation along unperturbed test particle orbits. For Tokamak applications a 2-D version of the code is being developed. Progress of this work will be reported. This suite of codes has the following advantages over existing spectral codes: 1) It utilizes the localized nature of plasma dielectric response to the RF field and calculates this response numerically without approximations. 2) It uses an adaptive grid to better resolve resonances in plasma and antenna structures. 3) It uses an efficient sparse matrix solver to solve the formulated linear equations. The linear wave equation is formulated using two approaches: for cold plasmas the local cold plasma dielectric tensor is used (resolving resonances by particle collisions), while for hot plasmas the conductivity kernel is calculated. Work is supported by the U.S. DOE SBIR program.

  13. Study of evaporating the irradiated graphite in equilibrium low-temperature plasma

    NASA Astrophysics Data System (ADS)

    Bespala, E. V.; Novoselov, I. Yu.; Pavlyuk, A. O.; Kotlyarevskiy, S. G.

    2018-01-01

    The paper describes a problem of accumulation of irradiated graphite due to operation of uranium-graphite nuclear reactors. The main noncarbon contaminants that contribute to the overall activity of graphite elements are iso-topes 137Cs, 60Co, 90Sr, 36Cl, and 3H. A method was developed for processing of irradiated graphite ensuring the volu-metric decontamination of samples. The calculation results are presented for equilibrium composition of plasma-chemical reactions in systems "irradiated graphite-argon" and "irradiated graphite-helium" for a wide range of tem-peratures. The paper describes a developed mathematical model for the process of purification of a porous graphite surface treated by equilibrium low-temperature plasma. The simulation results are presented for the rate of sublimation of radioactive contaminants as a function of plasma temperature and plasma flow velocity when different plasma-forming gases are used. The extraction coefficient for the contaminant 137Cs from the outer side of graphite pores was calculated. The calculations demonstrated the advantages of using a lighter plasma forming gas, i.e., helium.

  14. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Formation of amplified spontaneous radiation in an expanding laser plasma allowing for refraction

    NASA Astrophysics Data System (ADS)

    Gulov, A. V.; Derzhiev, V. I.; Zhidkov, A. G.; Terskikh, A. O.; Yakovlenko, Sergei I.

    1990-06-01

    Calculations are made of the divergence of amplified spontaneous radiation in a laser plasma allowing for refraction by free electrons. An analysis is made of the divergence of the radiation generated due to a 3p→3s' transition in neon-like ions. Calculations are made of the divergence of the radiation due to the 4→3 transition in the O VIII ion allowing for refraction during expansion of a Formvar plasma.

  15. Turbulent complex (dusty) plasma

    NASA Astrophysics Data System (ADS)

    Zhdanov, Sergey; Schwabe, Mierk

    2017-04-01

    As a paradigm of complex system dynamics, solid particles immersed into a weakly ionized plasma, so called complex (dusty) plasmas, were (and continue to be) a subject of many detailed studies. Special types of dynamical activity have been registered, in particular, spontaneous pairing, entanglement and cooperative action of a great number of particles resulting in formation of vortices, self-propelling, tunneling, and turbulent movements. In the size domain of 1-10 mkm normally used in experiments with complex plasmas, the characteristic dynamic time-scale is of the order of 0.01-0.1 s, and these particles can be visualized individually in real time, providing an atomistic (kinetic) level of investigations. The low-R turbulent flow induced either by the instability in a complex plasma cloud or formed behind a projectile passing through the cloud is a typical scenario. Our simulations showed formation of a fully developed system of vortices and demonstrated that the velocity structure functions scale very close to the theoretical predictions. As an important element of self-organization, cooperative and turbulent particle motions are present in many physical, astrophysical, and biological systems. Therefore, experiments with turbulent wakes and turbulent complex plasma oscillations are a promising mean to observe and study in detail the anomalous transport on the level of individual particles.

  16. Collisionless Coupling between Explosive Debris Plasma and Magnetized Ambient Plasma

    NASA Astrophysics Data System (ADS)

    Bondarenko, Anton

    2016-10-01

    The explosive expansion of a dense debris plasma cloud into relatively tenuous, magnetized, ambient plasma characterizes a wide variety of astrophysical and space phenomena, including supernova remnants, interplanetary coronal mass ejections, and ionospheric explosions. In these rarified environments, collective electromagnetic processes rather than Coulomb collisions typically mediate the transfer of momentum and energy from the debris plasma to the ambient plasma. In an effort to better understand the detailed physics of collisionless coupling mechanisms in a reproducible laboratory setting, the present research jointly utilizes the Large Plasma Device (LAPD) and the Phoenix laser facility at UCLA to study the super-Alfvénic, quasi-perpendicular expansion of laser-produced carbon (C) and hydrogen (H) debris plasma through preformed, magnetized helium (He) ambient plasma via a variety of diagnostics, including emission spectroscopy, wavelength-filtered imaging, and magnetic field induction probes. Large Doppler shifts detected in a He II ion spectral line directly indicate initial ambient ion acceleration transverse to both the debris plasma flow and the background magnetic field, indicative of a fundamental process known as Larmor coupling. Characterization of the laser-produced debris plasma via a radiation-hydrodynamics code permits an explicit calculation of the laminar electric field in the framework of a ``hybrid'' model (kinetic ions, charge-neutralizing massless fluid electrons), thus allowing for a simulation of the initial response of a distribution of He II test ions. A synthetic Doppler-shifted spectrum constructed from the simulated velocity distribution of the accelerated test ions excellently reproduces the spectroscopic measurements, confirming the role of Larmor coupling in the debris-ambient interaction.

  17. Opacity Measurement and Theoretical Investigation of Hot Silicon Plasma

    NASA Astrophysics Data System (ADS)

    Xiong, Gang; Yang, Jiamin; Zhang, Jiyan; Hu, Zhimin; Zhao, Yang; Qing, Bo; Yang, Guohong; Wei, Minxi; Yi, Rongqing; Song, Tianming; Li, Hang; Yuan, Zheng; Lv, Min; Meng, Xujun; Xu, Yan; Wu, Zeqing; Yan, Jun

    2016-01-01

    We report on opacity measurements of a silicon (Si) plasma at a temperature of (72 ± 5) eV and a density of (6.0 ± 1.2) mg cm-3 in the photon energy range of 1790-1880 eV. A 23 μg cm-2 Si foil tamped by 50 μg cm-2 CH layers on each side was heated to a hot-dense plasma state by X-ray radiation emitted from a D-shaped gold cavity that was irradiated by intense lasers. Absorption lines of 1s - 2p transitions of Si xiii to Si ix ions have been measured using point-projection spectroscopy. The transmission spectrum of the silicon plasma was determined by comparing the light passing through the plasma to the light from the same shot passing by the plasma. The density of the Si plasma was determined experimentally by side-on radiography and the temperature was estimated from the radiation flux data. Radiative hydrodynamic simulations were performed to obtain the temporal evolutions of the density and temperature of the Si plasma. The experimentally obtained transmission spectra of the Si sample plasma have been reproduced using a detailed term account model with the local thermodynamic equilibrium approximation. The energy levels, oscillator strengths and photoionization cross-sections used in the calculation were generated by the flexible atomic code. The experimental transmission spectrum was compared with the theoretical calculation and good agreement was found. The present experimental spectrum and theoretical calculation were also compared with the new opacities available in the Los Alamos OPLIB database.

  18. Foundations of High-Pressure Thermal Plasmas

    NASA Astrophysics Data System (ADS)

    Murphy, Anthony B.; Uhrlandt, Dirk

    2018-06-01

    An introduction to the main methods used to produce, model and measure thermal plasmas is provided, with emphasis on the differences between thermal plasmas and other types of processing plasmas. The critical properties of thermal plasmas are explained in physical terms and their importance in different applications is considered. The characteristics, and advantages and disadvantages, of the different main types of thermal plasmas (transferred and non-transferred arcs, radio-frequency inductively-coupled plasmas and microwave plasmas) are discussed. The methods by which flow is stabilized in arc plasmas are considered. The important concept of local thermodynamic equilibrium (LTE) is explained, leading into a discussion of the importance of thermophysical properties, and their calculation in LTE and two-temperature plasmas. The standard equations for modelling thermal plasmas are presented and contrasted with those used for non-equilibrium plasmas. Treatments of mixed-gas and non-LTE plasmas are considered, as well as the sheath regions adjacent to electrodes. Finally, the main methods used for electrical, optical, spectroscopic and laser diagnostics of thermal plasmas are briefly introduced, with an emphasis on the required assumptions for their reliable implementation, and the specific requirements of thermal plasmas.

  19. Wall ablation of heated compound-materials into non-equilibrium discharge plasmas

    NASA Astrophysics Data System (ADS)

    Wang, Weizong; Kong, Linghan; Geng, Jinyue; Wei, Fuzhi; Xia, Guangqing

    2017-02-01

    The discharge properties of the plasma bulk flow near the surface of heated compound-materials strongly affects the kinetic layer parameters modeled and manifested in the Knudsen layer. This paper extends the widely used two-layer kinetic ablation model to the ablation controlled non-equilibrium discharge due to the fact that the local thermodynamic equilibrium (LTE) approximation is often violated as a result of the interaction between the plasma and solid walls. Modifications to the governing set of equations, to account for this effect, are derived and presented by assuming that the temperature of the electrons deviates from that of the heavy particles. The ablation characteristics of one typical material, polytetrafluoroethylene (PTFE) are calculated with this improved model. The internal degrees of freedom as well as the average particle mass and specific heat ratio of the polyatomic vapor, which strongly depends on the temperature, pressure and plasma non-equilibrium degree and plays a crucial role in the accurate determination of the ablation behavior by this model, are also taken into account. Our assessment showed the significance of including such modifications related to the non-equilibrium effect in the study of vaporization of heated compound materials in ablation controlled arcs. Additionally, a two-temperature magneto-hydrodynamic (MHD) model accounting for the thermal non-equilibrium occurring near the wall surface is developed and applied into an ablation-dominated discharge for an electro-thermal chemical launch device. Special attention is paid to the interaction between the non-equilibrium plasma and the solid propellant surface. Both the mass exchange process caused by the wall ablation and plasma species deposition as well as the associated momentum and energy exchange processes are taken into account. A detailed comparison of the results of the non-equilibrium model with those of an equilibrium model is presented. The non-equilibrium results

  20. PREFACE: 31st European Physical Society Conference on Plasma Physics

    NASA Astrophysics Data System (ADS)

    Dendy, Richard

    2004-12-01

    This special issue of Plasma Physics and Controlled Fusion comprises refereed papers contributed by invited speakers at the 31st European Physical Society Conference on Plasma Physics. The conference was jointly hosted by the Rutherford Appleton Laboratory, by the EURATOM/UKAEA Fusion Association and by Imperial College London, where it took place from 28 June to 2 July 2004. The overall agenda for this conference was set by the Board of the Plasma Physics Division of the European Physical Society, chaired by Friedrich Wagner (MPIPP, Garching) and his successor Jo Lister (CRPP, Lausanne). It built on developments in recent years, by further increasing the scientific diversity of the conference programme, whilst maintaining its depth and quality. A correspondingly diverse Programme Committee was set up, whose members are listed below. The final task of the Programme Committee has been the preparation of this special issue. In carrying out this work, as in preparing the scientific programme of the conference, the Programme Committee formed specialist subcommittees representing the different fields of plasma science. The chairmen of these subcommittees, in particular, accepted a very heavy workload on behalf of their respective research communities. It is a great pleasure to take this opportunity to thank: Emilia R Solano (CIEMAT, Madrid), magnetic confinement fusion; Jürgen Meyer-ter-Vehn (MPQ, Garching), laser-plasma interaction and beam plasma physics; and Jean-Luc Dorier (CRPP, Lausanne), dusty plasmas. The relatively few papers in astrophysical and basic plasma physics were co-ordinated by a small subcommittee which I led. Together with Peter Norreys (RAL, Chilton), we five constitute the editorial team for this special issue. The extensive refereeing load, compressed into a short time interval, was borne by the Programme Committee members and by many other experts, to whom this special issue owes much. We are also grateful to the Local Organizing Committee

  1. Emission current formation in plasma electron emitters

    NASA Astrophysics Data System (ADS)

    Gruzdev, V. A.; Zalesski, V. G.

    2010-12-01

    A model of the plasma electron emitter is considered, in which the current redistribution over electrodes of the emitter gas-discharge structure and weak electric field formation in plasma are taken into account as functions of the emission current. The calculated and experimental dependences of the switching parameters, extraction efficiency, and strength of the electric field in plasma on the accelerating voltage and geometrical sizes of the emission channel are presented.

  2. A model of electron collecting plasma contractors

    NASA Technical Reports Server (NTRS)

    Davis, V. A.; Katz, I.; Mandell, M. J.; Parks, D. E.

    1989-01-01

    A model of plasma contractors is being developed, which can be used to describe electron collection in a laboratory test tank and in the space environment. To validate the model development, laboratory experiments are conducted in which the source plasma is separated from the background plasma by a double layer. Model calculations show that an increase in ionization rate with potential produces a steep rise in collected current with increasing potential.

  3. Titanium nitride plasma-chemical synthesis with titanium tetrachloride raw material in the DC plasma-arc reactor

    NASA Astrophysics Data System (ADS)

    Kirpichev, D. E.; Sinaiskiy, M. A.; Samokhin, A. V.; Alexeev, N. V.

    2017-04-01

    The possibility of plasmochemical synthesis of titanium nitride is demonstrated in the paper. Results of the thermodynamic analysis of TiCl4 - H2 - N2 system are presented; key parameters of TiN synthesis process are calculated. The influence of parameters of plasma-chemical titanium nitride synthesis process in the reactor with an arc plasmatron on characteristics on the produced powders is experimentally investigated. Structure, chemical composition and morphology dependencies on plasma jet enthalpy, stoichiometric excess of hydrogen and nitrogen in a plasma jet are determined.

  4. Investigation of the AC Plasma Torch Working Conditions for the Plasma Chemical Applications

    NASA Astrophysics Data System (ADS)

    Safronov, A. A.; Vasilieva, O. B.; Dudnik, J. D.; E Kuznetsov, V.; Shiryaev, V. N.; Subbotin, D. I.; Pavlov, A. V.

    2017-04-01

    The presented design and parameters of a three-phase AC plasma torch with the power up to 500 kW, flow rate of air 30-50 g/s (temperature up to 5000 K) could be used in different plasma chemical processes. Range of measured plasma temperature is 3500-5000 K. The paper presents investigations of the plasma torch operation modes for its application in plasma chemical technologies. Plasma chemical technologies for various purposes (processing, destruction of various wastes, including technological and hazardous waste, conversion or production of chemicals to obtain nanoscale materials, etc.) are very promising in terms of the process efficiency. Their industrial use is difficult due to the lack of inexpensive and reliable plasma torches providing the desired level of temperature, enthalpy of the working gas and other necessary conditions for the process. This problem can be solved using a considered design of a three-phase alternating current plasma torch with power of 150-500 kW with working gas flow rate of 30-50 g/s with mass average temperature up to 5000K on the basis of which an industrial plasma chemical plant can be created. The basis of the plasma torch operation is a railgun effect that is the principle of arc movement in the field of its own current field. Thanks to single supply of power to the arc, arcs forming in the discharge chamber of the plasma torch move along the electrodes under the action of electrodynamic forces resulting from the interaction of the arc current with its own magnetic field. Under the condition of the three-phase supply voltage, arc transits from the electrode to the electrode with change in the anodic and cathodic phases with frequency of 300 Hz. A special feature of this design is the ability to organize the movement of the arc attachment along the electrode, thus ensuring an even distribution of the thermal load and thus achieve long time of continuous operation of the plasma torch. The parameters of the plasma jet of the

  5. Theory of Electromagnetic Surface Waves in Plasma with Smooth Boundaries

    NASA Astrophysics Data System (ADS)

    Kuzelev, M. V.

    2018-05-01

    A theory of nonpotential surface waves in plasma with smooth boundaries is developed. The complex frequencies of surface waves for plasma systems of different geometries and different profiles of the plasma density are calculated. Expressions for the rates of collisionless damping of surface waves due to their resonance interaction with local plasma waves of continuous spectrum are obtained. The influence of collisions in plasma is also considered.

  6. Simulating the dynamics of complex plasmas.

    PubMed

    Schwabe, M; Graves, D B

    2013-08-01

    Complex plasmas are low-temperature plasmas that contain micrometer-size particles in addition to the neutral gas particles and the ions and electrons that make up the plasma. The microparticles interact strongly and display a wealth of collective effects. Here we report on linked numerical simulations that reproduce many of the experimental results of complex plasmas. We model a capacitively coupled plasma with a fluid code written for the commercial package comsol. The output of this model is used to calculate forces on microparticles. The microparticles are modeled using the molecular dynamics package lammps, which we extended to include the forces from the plasma. Using this method, we are able to reproduce void formation, the separation of particles of different sizes into layers, lane formation, vortex formation, and other effects.

  7. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Thresholds of surface plasma formation by the interaction of laser pulses with a metal

    NASA Astrophysics Data System (ADS)

    Borets-Pervak, I. Yu; Vorob'ev, V. S.

    1995-04-01

    An analysis is made of a model of the formation of a surface laser plasma which takes account of the heating and vaporisation of thermally insulated surface microdefects. This model is used in an interpretation of experiments in which such a plasma has been formed by irradiation of a titanium target with microsecond CO2 laser pulses. A comparison with the experimental breakdown intensities is used to calculate the average sizes of microdefects and their concentration: the results are in agreement with the published data. The dependence of the delay time of plasma formation on the total energy in a laser pulse is calculated.

  8. Electromagnetic resonances of plasma column between two metallic plates

    NASA Astrophysics Data System (ADS)

    Dvinin, Sergey; Dovzhenko, Vitaly; Sinkevich, Oleg

    2015-09-01

    It is known that there are two types of electrodynamic resonances of bounded supercritical plasma, placed between the two metal planes are possible. The first type is associated with the excitation of surface waves propagating along the lateral surface. The second one is caused by standing surface waves in the sheath at plasma-metal boundary. This work is concerned with theoretical study of the resonance properties of plasma slab in cases where both effects can be observed together. Resonance densities and frequencies are calculated. Solution of Maxwell's equations is demonstrated that directions of energy flows in first and second cases are opposite. Energy transfer to lateral surface waves is prevailing, if the field frequency is higher than the frequency, corresponding to the geometric plasma-sheath resonance. Amplitude of waves at plasma metal boundary becomes greater in opposite case. Discharge properties in both cases are calculated including joint excitation.

  9. A Special Trinomial Expansion

    ERIC Educational Resources Information Center

    Ayoub, Ayoub B.

    2006-01-01

    In this article, the author takes up the special trinomial (1 + x + x[squared])[superscript n] and shows that the coefficients of its expansion are entries of a Pascal-like triangle. He also shows how to calculate these entries recursively and explicitly. This article could be used in the classroom for enrichment. (Contains 1 table.)

  10. Charge-exchange plasma generated by an ion thruster

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1977-01-01

    The charge exchange plasma generated by an ion thruster was investigated experimentally using both 5 cm and 15 cm thrusters. Results are shown for wide ranges of radial distance from the thruster and angle from the beam direction. Considerations of test environment, as well as distance from the thruster, indicate that a valid simulation of a thruster on a spacecraft was obtained. A calculation procedure and a sample calculation of charge exchange plasma density and saturation electron current density are included.

  11. Properties and Commercial Application of Manual Plasma Hardening

    NASA Astrophysics Data System (ADS)

    Korotkov, V. A.

    2016-11-01

    A new method and a device for plasma hardening of various parts are considered. Installation of the new device does not require too much investment (the active mechanical productions are appropriate for its accommodation) and special choice of personnel (welders train to use it without difficulty). Plasma hardening does not deform and worsen the smoothness of the surface, which makes it possible to employ many hardened parts without finishing mechanical treatment required after bulk or induction hardening. The hardened layer (about 1 mm) produced by plasma hardening exhibits better wear resistance than after bulk hardening with tempering, which prolongs the service life of the parts.

  12. Dust cloud evolution in sub-stellar atmospheres via plasma deposition and plasma sputtering

    NASA Astrophysics Data System (ADS)

    Stark, C. R.; Diver, D. A.

    2018-04-01

    Context. In contemporary sub-stellar model atmospheres, dust growth occurs through neutral gas-phase surface chemistry. Recently, there has been a growing body of theoretical and observational evidence suggesting that ionisation processes can also occur. As a result, atmospheres are populated by regions composed of plasma, gas and dust, and the consequent influence of plasma processes on dust evolution is enhanced. Aim. This paper aims to introduce a new model of dust growth and destruction in sub-stellar atmospheres via plasma deposition and plasma sputtering. Methods: Using example sub-stellar atmospheres from DRIFT-PHOENIX, we have compared plasma deposition and sputtering timescales to those from neutral gas-phase surface chemistry to ascertain their regimes of influence. We calculated the plasma sputtering yield and discuss the circumstances where plasma sputtering dominates over deposition. Results: Within the highest dust density cloud regions, plasma deposition and sputtering dominates over neutral gas-phase surface chemistry if the degree of ionisation is ≳10-4. Loosely bound grains with surface binding energies of the order of 0.1-1 eV are susceptible to destruction through plasma sputtering for feasible degrees of ionisation and electron temperatures; whereas, strong crystalline grains with binding energies of the order 10 eV are resistant to sputtering. Conclusions: The mathematical framework outlined sets the foundation for the inclusion of plasma deposition and plasma sputtering in global dust cloud formation models of sub-stellar atmospheres.

  13. Laser-Plasma Interactions in Magnetized Environment

    NASA Astrophysics Data System (ADS)

    Shi, Yuan

    2017-10-01

    Propagation and scattering of lasers present new phenomena and applications when the plasma medium becomes magnetized. Starting from mega-Gauss magnetic fields, laser scattering becomes manifestly anisotropic [arXiv 1705.09758]. By arranging beams at special angles, one may be able to optimize laser-plasma coupling in magnetized environment. In stronger giga-Gauss magnetic field, laser propagation becomes modified by relativistic quantum effects [PRA 94.012124]. The modified wave dispersion relation enables correct interpretation of Faraday rotation measurements of strong magnetic fields, as well as correct extraction of plasma parameters from the X-ray spectra of pulsars. In addition, magnetized plasmas can be utilized to mediate laser pulse compression [PRE 95.023211]. Using magnetic resonances, it is not only possible to produce optic pulses of higher intensity, but also possible to amplify UV and soft X-ray pulses that cannot be compressed using existing technology. This research is supported by NNSA Grant No. DE-NA0002948 and DOE Research Grant No. DEAC02- 09CH11466.

  14. Continuum Lowering and Fermi-Surface Rising in Strongly Coupled and Degenerate Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, S. X.

    Here, continuum lowering is a well-known and important physics concept that describes the ionization potential depression (IPD) in plasmas caused by thermal-/pressure-induced ionization of outer-shell electrons. The existing IPD models are often used to characterize plasma conditions and to gauge opacity calculations. Recent precision measurements have revealed deficits in our understanding of continuum lowering in dense hot plasmas. However, these investigations have so far been limited to IPD in strongly coupled but nondegenerate plasmas. Here, we report a first-principles study of the K-edge shifting in both strongly coupled and fully degenerate carbon plasmas, with quantum molecular dynamics (QMD) calculations basedmore » on the all-electron density-functional theory (DFT). The resulted K-edge shifting versus plasma density, as a probe to the continuum lowering and the Fermi-surface rising, is found to be significantly different from predictions of existing IPD models. In contrast, a simple model of “single atom in box” (SAIB), developed in this work, accurately predicts K-edge locations as what ab-initio calculations provide.« less

  15. Continuum Lowering and Fermi-Surface Rising in Strongly Coupled and Degenerate Plasmas

    DOE PAGES

    Hu, S. X.

    2017-08-10

    Here, continuum lowering is a well-known and important physics concept that describes the ionization potential depression (IPD) in plasmas caused by thermal-/pressure-induced ionization of outer-shell electrons. The existing IPD models are often used to characterize plasma conditions and to gauge opacity calculations. Recent precision measurements have revealed deficits in our understanding of continuum lowering in dense hot plasmas. However, these investigations have so far been limited to IPD in strongly coupled but nondegenerate plasmas. Here, we report a first-principles study of the K-edge shifting in both strongly coupled and fully degenerate carbon plasmas, with quantum molecular dynamics (QMD) calculations basedmore » on the all-electron density-functional theory (DFT). The resulted K-edge shifting versus plasma density, as a probe to the continuum lowering and the Fermi-surface rising, is found to be significantly different from predictions of existing IPD models. In contrast, a simple model of “single atom in box” (SAIB), developed in this work, accurately predicts K-edge locations as what ab-initio calculations provide.« less

  16. Continuum Lowering and Fermi-Surface Rising in Strongly Coupled and Degenerate Plasmas

    NASA Astrophysics Data System (ADS)

    Hu, S. X.

    2017-08-01

    Continuum lowering is a well known and important physics concept that describes the ionization potential depression (IPD) in plasmas caused by thermal- or pressure-induced ionization of outer-shell electrons. The existing IPD models are often used to characterize plasma conditions and to gauge opacity calculations. Recent precision measurements have revealed deficits in our understanding of continuum lowering in dense hot plasmas. However, these investigations have so far been limited to IPD in strongly coupled but nondegenerate plasmas. Here, we report a first-principles study of the K -edge shifting in both strongly coupled and fully degenerate carbon plasmas, with quantum molecular dynamics calculations based on the all-electron density-functional theory. The resulting K -edge shifting versus plasma density, as a probe to the continuum lowering and the Fermi-surface rising, is found to be significantly different from predictions of existing IPD models. In contrast, a simple model of "single-atom-in-box," developed in this work, accurately predicts K -edge locations as ab initio calculations provide.

  17. Helium-like magnesium embedded in strongly coupled plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, Sukhamoy

    2016-05-06

    In recent days, with the advent of the x-ray free electron laser (FEL) with Linac coherent light source (LCLS) and the Orion laser, experimental studies on atomic systems within strongly coupled plasma environment with remarkable improvement in accuracy as compared to earlier experiments have become possible. In these kinds of experiments, hydrogen-like and helium-like spectral lines are used for determination of plasma parameters such as temperature, density. Accurate theoretical calculations are, therefore, necessary for such kind of studies within a dense plasma environment. In this work, ab initio calculations are carried out in the framework of the Rayleigh-Ritz variation principlemore » to estimate the ground state energy of helium-like magnesium within strongly coupled plasma environment. Explicitly correlated wave functions in Hylleraas coordinates have been used to incorporate the effect of electron correlation. The ion-sphere model potential that confines the central positive ion in a finite domain filled with plasma electrons has been adopted to mimic the strongly coupled plasma environment. Thermodynamic pressure ’felt’ by the ion in the ground states due to the confinement inside the ion spheres is also estimated.« less

  18. Thermophysics Characterization of Multiply Ionized Air Plasma Absorption of Laser Radiation

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Rhodes, Robert; Turner, Jim (Technical Monitor)

    2002-01-01

    The impact of multiple ionization of air plasma on the inverse Bremsstrahlung absorption of laser radiation is investigated for air breathing laser propulsion. Thermochemical properties of multiply ionized air plasma species are computed for temperatures up to 200,000 deg K, using hydrogenic approximation of the electronic partition function; And those for neutral air molecules are also updated for temperatures up to 50,000 deg K, using available literature data. Three formulas for absorption are calculated and a general formula is recommended for multiple ionization absorption calculation. The plasma composition required for absorption calculation is obtained by increasing the degree of ionization sequentially, up to quadruple ionization, with a series of thermal equilibrium computations. The calculated second ionization absorption coefficient agrees reasonably well with that of available data. The importance of multiple ionization modeling is demonstrated with the finding that area under the quadruple ionization curve of absorption is found to be twice that of single ionization. The effort of this work is beneficial to the computational plasma aerodynamics modeling of laser lightcraft performance.

  19. Formation of a dual-stage pinch-accelerator in a Z-pinch (plasma focus) device

    NASA Astrophysics Data System (ADS)

    Behbahani, R. A.; Hirose, A.; Xiao, C.

    2018-01-01

    A novel dense plasma focus configuration with two separate concentric current sheet run-down regions has been demonstrated to produce several consecutive plasma focusing events. In a proof-of-principle experiment on a low-energy plasma focus device, the measured tube voltages and discharge current have been explained by using circuit analyses of the device. Based on the calculated plasma voltages the occurrence of flash-over phase, axial phase, and compression phase has been discussed. The electrical signals along with the calculated plasma voltages suggest the occurrence of several focusing events in the new structure.

  20. Hollow cathodes as electron emitting plasma contactors Theory and computer modeling

    NASA Technical Reports Server (NTRS)

    Davis, V. A.; Katz, I.; Mandell, M. J.; Parks, D. E.

    1987-01-01

    Several researchers have suggested using hollow cathodes as plasma contactors for electrodynamic tethers, particularly to prevent the Shuttle Orbiter from charging to large negative potentials. Previous studies have shown that fluid models with anomalous scattering can describe the electron transport in hollow cathode generated plasmas. An improved theory of the hollow cathode plasmas is developed and computational results using the theory are compared with laboratory experiments. Numerical predictions for a hollow cathode plasma source of the type considered for use on the Shuttle are presented, as are three-dimensional NASCAP/LEO calculations of the emitted ion trajectories and the resulting potentials in the vicinity of the Orbiter. The computer calculations show that the hollow cathode plasma source makes vastly superior contact with the ionospheric plasma compared with either an electron gun or passive ion collection by the Orbiter.

  1. Initial Simulations of RF Waves in Hot Plasmas Using the FullWave Code

    NASA Astrophysics Data System (ADS)

    Zhao, Liangji; Svidzinski, Vladimir; Spencer, Andrew; Kim, Jin-Soo

    2017-10-01

    FullWave is a simulation tool that models RF fields in hot inhomogeneous magnetized plasmas. The wave equations with linearized hot plasma dielectric response are solved in configuration space on adaptive cloud of computational points. The nonlocal hot plasma dielectric response is formulated by calculating the plasma conductivity kernel based on the solution of the linearized Vlasov equation in inhomogeneous magnetic field. In an rf field, the hot plasma dielectric response is limited to the distance of a few particles' Larmor radii, near the magnetic field line passing through the test point. The localization of the hot plasma dielectric response results in a sparse matrix of the problem thus significantly reduces the size of the problem and makes the simulations faster. We will present the initial results of modeling of rf waves using the Fullwave code, including calculation of nonlocal conductivity kernel in 2D Tokamak geometry; the interpolation of conductivity kernel from test points to adaptive cloud of computational points; and the results of self-consistent simulations of 2D rf fields using calculated hot plasma conductivity kernel in a tokamak plasma with reduced parameters. Work supported by the US DOE ``SBIR program.

  2. 46 CFR 174.055 - Calculation of wind heeling moment (Hm).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Calculation of wind heeling moment (Hm). 174.055 Section 174.055 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling...

  3. Local thermodynamic equilibrium in rapidly heated high energy density plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aslanyan, V.; Tallents, G. J.

    Emission spectra and the dynamics of high energy density plasmas created by optical and Free Electron Lasers (FELs) depend on the populations of atomic levels. Calculations of plasma emission and ionization may be simplified by assuming Local Thermodynamic Equilibrium (LTE), where populations are given by the Saha-Boltzmann equation. LTE can be achieved at high densities when collisional processes are much more significant than radiative processes, but may not be valid if plasma conditions change rapidly. A collisional-radiative model has been used to calculate the times taken by carbon and iron plasmas to reach LTE at varying densities and heating rates.more » The effect of different energy deposition methods, as well as Ionization Potential Depression are explored. This work shows regimes in rapidly changing plasmas, such as those created by optical lasers and FELs, where the use of LTE is justified, because timescales for plasma changes are significantly longer than the times needed to achieve an LTE ionization balance.« less

  4. Development of a fluid model for DC arc plasma torches and its integration with downstream models of atmospheric plasma spray particle plumes

    NASA Astrophysics Data System (ADS)

    Cannamela, Michael J., III

    The plasma spray process uses plasma flames to melt micron sized particles of e.g. ceramic and propel the droplets to impinge upon and freeze to the target workpiece, forming a functional coating. Variations in the process arise from many sources, and because sensing of the process is imperfect one is motivated to pursue a modeling approach. This dissertation models the major elements of the process; the torch that produces the plasma flame, the jet of hot plasma issuing from the torch, and the plume of particles conveyed and heated by the jet. The plasma in the torch is modeled by a one-fluid magnetohydrodynamic (MHD) approach and it is found that the MHD equations can accurately predict the power dissipated in the bulk of the plasma, while special treatment is required in regions near the electrodes. Treatment of the cathode region is eased since it can be de-coupled from the bulk flow. Treatment of the anode region aims to extract the correct amount of power from the plasma. With MHD in the bulk and these special conditions at the electrode boundaries, the net power into the plasma can be matched with experiment. For one simulation of an SG-100 torch operating at 500A, the measured net power was 7.0kW while the computed net power was 7.1kW. Using outlet information from the torch, the impact of plasma arc oscillations on the free jet and on the in-flight particle states is predicted. The model of the plasma jet is validated against the existing LAVA code, and is able to predict the fraction of entrained air in the jet to within 20% of the experimental value. The variations in particle states due to the arc fluctuations are found to be similar in size to variations due to changes in particle injection velocity, and so cannot be neglected when considering particle state distributions. The end result of this work is to make available a complete chain of models for the plasma spray process, from torch input conditions to in-flight particle state.

  5. A spectral Poisson solver for kinetic plasma simulation

    NASA Astrophysics Data System (ADS)

    Szeremley, Daniel; Obberath, Jens; Brinkmann, Ralf

    2011-10-01

    Plasma resonance spectroscopy is a well established plasma diagnostic method, realized in several designs. One of these designs is the multipole resonance probe (MRP). In its idealized - geometrically simplified - version it consists of two dielectrically shielded, hemispherical electrodes to which an RF signal is applied. A numerical tool is under development which is capable of simulating the dynamics of the plasma surrounding the MRP in electrostatic approximation. In this contribution we concentrate on the specialized Poisson solver for that tool. The plasma is represented by an ensemble of point charges. By expanding both the charge density and the potential into spherical harmonics, a largely analytical solution of the Poisson problem can be employed. For a practical implementation, the expansion must be appropriately truncated. With this spectral solver we are able to efficiently solve the Poisson equation in a kinetic plasma simulation without the need of introducing a spatial discretization.

  6. Two-Dimensional One-Component Plasma on Flamm's Paraboloid

    NASA Astrophysics Data System (ADS)

    Fantoni, Riccardo; Téllez, Gabriel

    2008-11-01

    We study the classical non-relativistic two-dimensional one-component plasma at Coulomb coupling Γ=2 on the Riemannian surface known as Flamm's paraboloid which is obtained from the spatial part of the Schwarzschild metric. At this special value of the coupling constant, the statistical mechanics of the system are exactly solvable analytically. The Helmholtz free energy asymptotic expansion for the large system has been found. The density of the plasma, in the thermodynamic limit, has been carefully studied in various situations.

  7. Stability of plasma cylinder with current in a helical plasma flow

    NASA Astrophysics Data System (ADS)

    Leonovich, Anatoly S.; Kozlov, Daniil A.; Zong, Qiugang

    2018-04-01

    Stability of a plasma cylinder with a current wrapped by a helical plasma flow is studied. Unstable surface modes of magnetohydrodynamic (MHD) oscillations develop at the boundary of the cylinder enwrapped by the plasma flow. Unstable eigenmodes can also develop for which the plasma cylinder is a waveguide. The growth rate of the surface modes is much higher than that for the eigenmodes. It is shown that the asymmetric MHD modes in the plasma cylinder are stable if the velocity of the plasma flow is below a certain threshold. Such a plasma flow velocity threshold is absent for the symmetric modes. They are unstable in any arbitrarily slow plasma flows. For all surface modes there is an upper threshold for the flow velocity above which they are stable. The helicity index of the flow around the plasma cylinder significantly affects both the Mach number dependence of the surface wave growth rate and the velocity threshold values. The higher the index, the lower the upper threshold of the velocity jump above which the surface waves become stable. Calculations have been carried out for the growth rates of unstable oscillations in an equilibrium plasma cylinder with current serving as a model of the low-latitude boundary layer (LLBL) of the Earth's magnetic tail. A tangential discontinuity model is used to simulate the geomagnetic tail boundary. It is shown that the magnetopause in the geotail LLBL is unstable to a surface wave (having the highest growth rate) in low- and medium-speed solar wind flows, but becomes stable to this wave in high-speed flows. However, it can remain weakly unstable to the radiative modes of MHD oscillations.

  8. Damping Measurements of Plasma Modes

    NASA Astrophysics Data System (ADS)

    Anderegg, F.; Affolter, M.; Driscoll, C. F.

    2010-11-01

    For azimuthally symmetric plasma modes in a magnesium ion plasma, confined in a 3 Tesla Penning-Malmberg trap with a density of n ˜10^7cm-3, we measure a damping rate of 2s-1< γ< 10^4s-1 over a wide range in temperature (5 x10-6 eV< T < 5eV) and aspect ratio (0.25 < α< 25), with a wave amplitude of δn / n ˜5%. Changing the aspect ratio, α= Lp/ 2rp, of the plasma column, alters the frequency of the mode from 16 KHz to 192 KHz. The oscillatory fluid displacement is small compared to the wavelength of the mode; in contrast, the fluid velocity, δvf, can be large compared to v. The real part of the frequency satisfies a linear dispersion relation. In long thin plasmas (α> 10) these modes are Trivelpiece-Gould (TG) modes, and for smaller values of α they are Dubin spheroidal modes. However the damping appears to be non-linear; initially large waves have weaker exponential damping, which is not yet understood. Recent theoryootnotetextM.W. Anderson and T.M. O'Neil, Phys. Plasmas 14, 112110 (2007). calculates the damping of TG modes expected from viscosity due to ion-ion collisions; but the measured damping, while having a similar temperature and density dependence, is about 40 times larger than calculated. This discrepancy might be due to an external damping mechanism.

  9. General very special relativity in Finsler cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kouretsis, A. P.; Stathakopoulos, M.; Stavrinos, P. C.

    2009-05-15

    General very special relativity (GVSR) is the curved space-time of very special relativity (VSR) proposed by Cohen and Glashow. The geometry of general very special relativity possesses a line element of Finsler geometry introduced by Bogoslovsky. We calculate the Einstein field equations and derive a modified Friedmann-Robertson-Walker cosmology for an osculating Riemannian space. The Friedmann equation of motion leads to an explanation of the cosmological acceleration in terms of an alternative non-Lorentz invariant theory. A first order approach for a primordial-spurionic vector field introduced into the metric gives back an estimation of the energy evolution and inflation.

  10. Spectroscopic Diagnostics of Electric Fields in the Plasma of Current Sheets

    NASA Astrophysics Data System (ADS)

    Gavrilenko, Valeri; Kyrie, Natalya P.; Frank, Anna G.; Oks, Eugene

    2004-11-01

    Spectroscopic measurements of electric fields (EFs) in current sheet plasmas were performed in the CS-3D device. The device is intended to study the evolution of current sheets and the magnetic reconnection phenomena. We used the broadening of spectral lines (SLs) of HeII ions for diagnostics of EFs in the current sheet middle plane, and the broadening of SLs of HeI atoms for detection of EFs in the current sheet peripheral regions. For detection of EFs in current sheet plasma, we used SLs of HeII ions at 468.6; 320.3 and 656.0 nm, as well as SLs of HeI atoms at 667.8; 587.6; 492.2 and 447.1 nm. The latter two lines are of a special interest since their profiles include the dipole-forbidden components along with the allowed components. The experimental data have been analyzed by using the numerical calculations based on the Model Microfield Method. The maximum plasma density in the middle of the sheet was in the range (2-8) × 10^16 cm-3, the density in the peripheral regions was (1-2)×10^15 cm-3, and the strength of the quasi-one-dimensional anomalous electric fields in the peripheral regions reached the value of 100 kV/cm. Supported by CRDF, grant RU-P1-2594-MO-04; by the RFBR, grant 03-02-17282; and by the ISTC, project 2098.

  11. Investigation of Nonideal Plasma Properties

    DTIC Science & Technology

    1981-05-01

    5-8) of nonideal cesium and noble gas plasmas available , theoretical explanations of these results are still missing. The momentum and energy...solution. In the following, the momentum relaxation time and the electrical conductivity of (i) classical and (ii) quantum plasmas is calculated for... momentum <mv > of the electrons (m is the electron mass and e > 0 is the elementary charge) a = (ne 2/m)T. () The relaxation time T is determined by

  12. CALL FOR PAPERS: Special cluster issue on `Experimental studies of zonal flow and turbulence'

    NASA Astrophysics Data System (ADS)

    Itoh, S.-I.

    2005-07-01

    Plasma Physics and Controlled Fusion (PPCF) invites submissions on the topic of `Experimental studies of zonal flow and turbulence', for consideration for a special topical cluster of articles to be published early in 2006. The topical cluster will be published in an issue of PPCF, combined with regular articles. The Guest Editor for the special cluster will be S-I Itoh, Kyushu University, Japan. There has been remarkable progress in the area of structure formation by turbulence. One of the highlights has been the physics of zonal flow and drift wave turbulence in toroidal plasmas. Extensive theoretical as well as computational studies have revealed the various mechanisms in turbulence and zonal flows. At the same time, experimental research on the zonal flow, geodesic acoustic modes and generation of global electric field by turbulence has evolved rapidly. Fast growth in reports of experimental results has stimulated further efforts to develop increased knowledge and systematic understanding. Each paper considered for the special cluster should describe the present research status and new scientific knowledge/results from the authors on experimental studies of zonal flow, geodesic acoustic modes and generation of electric field by turbulence (including studies of Reynolds-Maxwell stresses, etc). Manuscripts submitted to this special cluster in Plasma Physics and Controlled Fusion will be refereed according to the normal criteria and procedures of the journal. The Guest Editor guides the progress of the cluster from the initial open call, through the standard refereeing process, to publication. To be considered for inclusion in the special cluster, articles must be submitted by 2 September 2005 and must clearly state `for inclusion in the Turbulent Plasma Cluster'. Articles submitted after this deadline may not be included in the cluster issue but may be published in a later issue of the journal. Please submit your manuscript electronically via our web site at www

  13. X-ray diagnostics of hohlraum plasma flow

    NASA Astrophysics Data System (ADS)

    Back, C. A.; Glenzer, S. H.; Landen, O. L.; MacGowan, B. J.; Shepard, T. D.

    1997-01-01

    In this study we use spectroscopy and x-ray imaging to investigate the macroscopic plasma flow in mm-sized laser-produced hohlraum plasmas. By using multiple diagnostics to triangulate the emission on a single experiment, we can pinpoint the position of dopants placed inside the hohlraum. X-ray emission from the foil has been used in the past to measure electron temperature. Here we analyze the spatial movement of dopant plasmas for comparison to hydrodynamic calculations.

  14. Properties of thermal air plasma with admixing of copper and carbon

    NASA Astrophysics Data System (ADS)

    Fesenko, S.; Veklich, A.; Boretskij, V.; Cressault, Y.; Gleizes, A.; Teulet, Ph

    2014-11-01

    This paper deals with investigations of air plasma with admixing of copper and carbon. Model plasma source unit with real breaking arc was used for the simulation of real discharges, which can be occurred during sliding of Cu-C composite electrodes on copper wire at electromotive vehicles. The complex technique of plasma property studies is developed. From one hand, the radial profiles of temperature and electron density in plasma of electric arc discharge in air between Cu-C composite and copper electrodes in air flow were measured by optical spectroscopy techniques. From another hand, the radial profiles of electric conductivity of plasma mixture were calculated by solution of energy balance equation. It was assumed that the thermal conductivity of air plasma is not depending on copper or carbon vapor admixtures. The electron density is obtained from electric conductivity profiles by calculation in assumption of local thermodynamic equilibrium in plasma. Computed in such way radial profiles of electron density in plasma of electric arc discharge in air between copper electrodes were compared with experimentally measured profiles. It is concluded that developed techniques of plasma diagnostics can be reasonably used in investigations of thermal plasma with copper and carbon vapors.

  15. Evidence cross-validation and Bayesian inference of MAST plasma equilibria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nessi, G. T. von; Hole, M. J.; Svensson, J.

    2012-01-15

    In this paper, current profiles for plasma discharges on the mega-ampere spherical tokamak are directly calculated from pickup coil, flux loop, and motional-Stark effect observations via methods based in the statistical theory of Bayesian analysis. By representing toroidal plasma current as a series of axisymmetric current beams with rectangular cross-section and inferring the current for each one of these beams, flux-surface geometry and q-profiles are subsequently calculated by elementary application of Biot-Savart's law. The use of this plasma model in the context of Bayesian analysis was pioneered by Svensson and Werner on the joint-European tokamak [Svensson and Werner,Plasma Phys. Controlledmore » Fusion 50(8), 085002 (2008)]. In this framework, linear forward models are used to generate diagnostic predictions, and the probability distribution for the currents in the collection of plasma beams was subsequently calculated directly via application of Bayes' formula. In this work, we introduce a new diagnostic technique to identify and remove outlier observations associated with diagnostics falling out of calibration or suffering from an unidentified malfunction. These modifications enable a good agreement between Bayesian inference of the last-closed flux-surface with other corroborating data, such as that from force balance considerations using EFIT++[Appel et al., ''A unified approach to equilibrium reconstruction'' Proceedings of the 33rd EPS Conference on Plasma Physics (Rome, Italy, 2006)]. In addition, this analysis also yields errors on the plasma current profile and flux-surface geometry as well as directly predicting the Shafranov shift of the plasma core.« less

  16. Numerical model of the plasma formation at electron beam welding

    NASA Astrophysics Data System (ADS)

    Trushnikov, D. N.; Mladenov, G. M.

    2015-01-01

    The model of plasma formation in the keyhole in liquid metal as well as above the electron beam welding zone is described. The model is based on solution of two equations for the density of electrons and the mean electron energy. The mass transfer of heavy plasma particles (neutral atoms, excited atoms, and ions) is taken into account in the analysis by the diffusion equation for a multicomponent mixture. The electrostatic field is calculated using the Poisson equation. Thermionic electron emission is calculated for the keyhole wall. The ionization intensity of the vapors due to beam electrons and high-energy secondary and backscattered electrons is calibrated using the plasma parameters when there is no polarized collector electrode above the welding zone. The calculated data are in good agreement with experimental data. Results for the plasma parameters for excitation of a non-independent discharge are given. It is shown that there is a need to take into account the effect of a strong electric field near the keyhole walls on electron emission (the Schottky effect) in the calculation of the current for a non-independent discharge (hot cathode gas discharge). The calculated electron drift velocities are much bigger than the velocity at which current instabilities arise. This confirms the hypothesis for ion-acoustic instabilities, observed experimentally in previous research.

  17. Numerical model of the plasma formation at electron beam welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trushnikov, D. N., E-mail: trdimitr@yandex.ru; The Department for Welding Production and Technology of Constructional Materials, Perm National Research Polytechnic University, Perm 614990; Mladenov, G. M., E-mail: gmmladenov@abv.bg

    2015-01-07

    The model of plasma formation in the keyhole in liquid metal as well as above the electron beam welding zone is described. The model is based on solution of two equations for the density of electrons and the mean electron energy. The mass transfer of heavy plasma particles (neutral atoms, excited atoms, and ions) is taken into account in the analysis by the diffusion equation for a multicomponent mixture. The electrostatic field is calculated using the Poisson equation. Thermionic electron emission is calculated for the keyhole wall. The ionization intensity of the vapors due to beam electrons and high-energy secondarymore » and backscattered electrons is calibrated using the plasma parameters when there is no polarized collector electrode above the welding zone. The calculated data are in good agreement with experimental data. Results for the plasma parameters for excitation of a non-independent discharge are given. It is shown that there is a need to take into account the effect of a strong electric field near the keyhole walls on electron emission (the Schottky effect) in the calculation of the current for a non-independent discharge (hot cathode gas discharge). The calculated electron drift velocities are much bigger than the velocity at which current instabilities arise. This confirms the hypothesis for ion-acoustic instabilities, observed experimentally in previous research.« less

  18. 3D magnetospheric parallel hybrid multi-grid method applied to planet–plasma interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leclercq, L., E-mail: ludivine.leclercq@latmos.ipsl.fr; Modolo, R., E-mail: ronan.modolo@latmos.ipsl.fr; Leblanc, F.

    2016-03-15

    We present a new method to exploit multiple refinement levels within a 3D parallel hybrid model, developed to study planet–plasma interactions. This model is based on the hybrid formalism: ions are kinetically treated whereas electrons are considered as a inertia-less fluid. Generally, ions are represented by numerical particles whose size equals the volume of the cells. Particles that leave a coarse grid subsequently entering a refined region are split into particles whose volume corresponds to the volume of the refined cells. The number of refined particles created from a coarse particle depends on the grid refinement rate. In order tomore » conserve velocity distribution functions and to avoid calculations of average velocities, particles are not coalesced. Moreover, to ensure the constancy of particles' shape function sizes, the hybrid method is adapted to allow refined particles to move within a coarse region. Another innovation of this approach is the method developed to compute grid moments at interfaces between two refinement levels. Indeed, the hybrid method is adapted to accurately account for the special grid structure at the interfaces, avoiding any overlapping grid considerations. Some fundamental test runs were performed to validate our approach (e.g. quiet plasma flow, Alfven wave propagation). Lastly, we also show a planetary application of the model, simulating the interaction between Jupiter's moon Ganymede and the Jovian plasma.« less

  19. Finite element study of three dimensional radiative nano-plasma flow subject to Hall and ion slip currents

    NASA Astrophysics Data System (ADS)

    Nawaz, M.; Zubair, T.

    In this article, we developed a computer code of Galerikan Finite Element method (GFEM) for three dimensional flow equations of nano-plasma fluid (blood) in the presence of uniform applied magnetic field when Hall and ion slip current are significant. Lorentz force is calculated through generalized Ohm's law with Maxwell equations. A series of numerical simulations are carried out to search ηmax and algebraic equations are solved by Gauss-Seidel method with simulation tolerance 10-8 . Simulated results for special case have an excellent agreement with the already published results. Velocity components and temperature of the nano-plasma (blood) are influenced significantly by the inclusion of nano-particles of Copper (Cu) and Silver (Ag). Heat enhancement is observed when copper and silver nonmagnetic nanoparticles are used instead of simple base fluid (conventional fluid). Radiative nature of nano-plasma in the presence of magnetic field causes a decrease in the temperature due to the transfer of heat by the electromagnetic waves. In contrast to this, due to heat dissipated by Joule heating and viscous dissipation phenomena, temperature of nano-plasmaincreases as thermal radiation parameter is increased. Thermal boundary layer thickness can be controlled by using radiative fluid instead of non-radiative fluid. Momentum boundary layer thickness can be reduced by increasing the intensity of the applied magnetic field. Temperature of plasma in the presence magnetic field is higher than the plasma in the absence of magnetic field.

  20. In situ Observations of Magnetosonic Waves Modulated by Background Plasma Density

    NASA Astrophysics Data System (ADS)

    Yu, X.; Yuan, Z.; Huang, S.; Wang, D.; Funsten, H. O.

    2017-12-01

    We report in situ observations by the Van Allen Probe mission that magnetosonic (MS) waves are clearly relevant to appear relevant to the background plasma number density. As the satellite moved across dense and tenuous plasma alternatively, MS waves occurred only in lower density region. As the observed protons with 'ring' distributions provide free energy, local linear growth rates are calculated and show that magnetosonic waves can be locally excited in tenuous plasma. With variations of the background plasma density, the temporal variations of local wave growth rates calculated with the observed proton ring distributions, show a remarkable agreement with those of the observed wave amplitude. Therefore, the paper provides a direct proof that background plasma densities can modulate the amplitudes of magnetosonic waves through controlling the wave growth rates.

  1. 75 FR 66743 - Office of Special Education and Rehabilitative Services; List of Correspondence

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... DEPARTMENT OF EDUCATION Office of Special Education and Rehabilitative Services; List of..., 2010 to National Association of State Directors of Special Education Executive Director Bill East, reiterating that the calculation of State financial support for special education and related services for...

  2. Deposition of diamond-like films by ECR microwave plasma

    NASA Technical Reports Server (NTRS)

    Shing, Yuh-Han (Inventor); Pool, Frederick S. (Inventor)

    1995-01-01

    Hard amorphous hydrogenated carbon, diamond-like films are deposited using an electron cyclotron resonance microwave plasma with a separate radio frequency power bias applied to a substrate stage. The electron cyclotron resonance microwave plasma yields low deposition pressure and creates ion species otherwise unavailable. A magnetic mirror configuration extracts special ion species from a plasma chamber. Different levels of the radio frequency power bias accelerate the ion species of the ECR plasma impinging on a substrate to form different diamond-like films. During the deposition process, a sample stage is maintained at an ambient temperature of less than 100.degree. C. No external heating is applied to the sample stage. The deposition process enables diamond-like films to be deposited on heat-sensitive substrates.

  3. Mechanisms of Plasma Acceleration in Coronal Jets

    NASA Astrophysics Data System (ADS)

    Soto, N.; Reeves, K.; Savcheva, A. S.

    2016-12-01

    Jets are small explosions that occur frequently in the Sun possibly driven by the local reconfiguration of the magnetic field, or reconnection. There are two types of coronal jets: standard jets and blowout jets. The purpose of this project is to determine which mechanisms accelerate plasma in two different jets, one that occurred in January 17, 2015 at the disk of the sun and another in October 24, 2015 at the limb. Two possible acceleration mechanisms are chromospheric evaporation and magnetic acceleration. Using SDO/AIA, Hinode/XRT and IRIS data, we create height-time plots, and calculate the velocities of each wavelength for both jets. We calculate the potential magnetic field of the jet and the general region around it to gain a more detailed understanding of its structure, and determine if the jet is likely to be either a standard or blowout jet. Finally, we calculate the magnetic field strength for different heights along the jet spire, and use differential emission measures to calculate the plasma density. Once we have these two values, we calculate the Alfven speed. When analyzing our results we are looking for certain patterns in our velocities. If the plasma in a jet is accelerated by chromospheric evaporation, we expect the velocities to increase as function of temperature, which is what we observed in the October 24th jet. The magnetic models for this jet also show the Eiffel Tower shaped structure characteristic of standard jets, which tend to have plasma accelerated by this mechanism. On the other hand, if the acceleration mechanism were magnetic acceleration, we would expect the velocities to be similar regardless of temperature. For the January 17th jet, we saw that along the spire, the velocities where approximately 200 km/s in all wavelengths, but the velocities of hot plasma detected at the base were closer to the Alfven speed, which was estimated to be about 2,000 km/s. These observations suggest that the plasma in the January 17th jet is

  4. EDITORIAL: The 9th Workshop on Frontiers in Low Temperature Plasma Diagnostics The 9th Workshop on Frontiers in Low Temperature Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    SAME ADDRESS--> Nader Sadeghi,

  1. Note: Additionally refined new possibilities of plasma probe diagnostics

    NASA Astrophysics Data System (ADS)

    Riaby, V. A.; Savinov, V. P.; Masherov, P. E.; Yakunin, V. G.

    2018-03-01

    In two previous Notes published in this journal, a method of measuring probe sheath thickness and ion mass was described using Langmuir probe diagnostics in low pressure xenon plasma close to Maxwellian substance. According to the first Note, this method includes two stages: (i) in a special experiment with known ion mass, the Bohm and Child-Langmuir-Boguslavsky (CLB) equations for cylindrical Langmuir probes used in this xenon plasma were solved jointly to determine the probe sheath thicknesses and Bohm coefficient CBCyl ≈ 1.13; and (ii) in a general experiment, with known CBCyl, the same equations could be solved to obtain the probe sheath thicknesses and the mean ion mass. In the second Note, the (i) stage of this method was refined: the results of the CLB probe sheath model application, which were termed "evaluations," were corrected using the step-front probe sheath model, which was closer to reality in the special experiment with the xenon plasma. This process resulted in a Bohm coefficient of CBCyl ≈ 1.23 for the cylindrical probe. In the present Note, corrected xenon plasma parameters without the influence of the bare probe protective shield were used for the (i) stage of this diagnostic method. This action also refined the Bohm coefficient, lowering it to CBCyl ≈ 0.745 for cylindrical probes. This advance makes the new diagnostics method more objective and reliable.

  2. Low voltage operation of plasma focus.

    PubMed

    Shukla, Rohit; Sharma, S K; Banerjee, P; Das, R; Deb, P; Prabahar, T; Das, B K; Adhikary, B; Shyam, A

    2010-08-01

    Plasma foci of compact sizes and operating with low energies (from tens of joules to few hundred joules) have found application in recent years and have attracted plasma-physics scientists and engineers for research in this direction. We are presenting a low energy and miniature plasma focus which operates from a capacitor bank of 8.4 muF capacity, charged at 4.2-4.3 kV and delivering approximately 52 kA peak current at approximately 60 nH calculated circuit inductance. The total circuit inductance includes the plasma focus inductance. The reported plasma focus operates at the lowest voltage among all reported plasma foci so far. Moreover the cost of capacitor bank used for plasma focus is nearly 20 U.S. dollars making it very cheap. At low voltage operation of plasma focus, the initial breakdown mechanism becomes important for operation of plasma focus. The quartz glass tube is used as insulator and breakdown initiation is done on its surface. The total energy of the plasma focus is approximately 75 J. The plasma focus system is made compact and the switching of capacitor bank energy is done by manual operating switch. The focus is operated with hydrogen and deuterium filled at 1-2 mbar.

  3. Simulation of rarefied low pressure RF plasma flow around the sample

    NASA Astrophysics Data System (ADS)

    Zheltukhin, V. S.; Shemakhin, A. Yu

    2017-01-01

    The paper describes a mathematical model of the flow of radio frequency plasma at low pressure. The hybrid mathematical model includes the Boltzmann equation for the neutral component of the RF plasma, the continuity and the thermal equations for the charged component. Initial and boundary conditions for the corresponding equations are described. The electron temperature in the calculations is 1-4 eV, atoms temperature in the plasma clot is (3-4) • 103 K, in the plasma jet is (3.2-10) • 102 K, the degree of ionization is 10-7-10-5, electron density is 1015-1019 m-3. For calculations plasma parameters is developed soft package on C++ program language, that uses the OpenFOAM library package. Simulations for the vacuum chamber in the presence of a sample and the free jet flow were carried out.

  4. Modeling of radiative properties of Sn plasmas for extreme-ultraviolet source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, Akira; Sunahara, Atsushi; Furukawa, Hiroyuki

    Atomic processes in Sn plasmas are investigated for application to extreme-ultraviolet (EUV) light sources used in microlithography. We develop a full collisional radiative (CR) model of Sn plasmas based on calculated atomic data using Hebrew University Lawrence Livermore Atomic Code (HULLAC). Resonance and satellite lines from singly and multiply excited states of Sn ions, which contribute significantly to the EUV emission, are identified and included in the model through a systematic investigation of their effect on the emission spectra. The wavelengths of the 4d-4f+4p-4d transitions of Sn{sup 5+} to Sn{sup 13+} are investigated, because of their importance for determining themore » conversion efficiency of the EUV source, in conjunction with the effect of configuration interaction in the calculation of atomic structure. Calculated emission spectra are compared with those of charge exchange spectroscopy and of laser produced plasma EUV sources. The comparison is also carried out for the opacity of a radiatively heated Sn sample. A reasonable agreement is obtained between calculated and experimental EUV emission spectra observed under the typical condition of EUV sources with the ion density and ionization temperature of the plasma around 10{sup 18} cm{sup -3} and 20 eV, respectively, by applying a wavelength correction to the resonance and satellite lines. Finally, the spectral emissivity and opacity of Sn plasmas are calculated as a function of electron temperature and ion density. The results are useful for radiation hydrodynamics simulations for the optimization of EUV sources.« less

  5. Dielectric Yagi-Uda nanoantennas driven by electron-hole plasma photoexcitation

    NASA Astrophysics Data System (ADS)

    Li, S.; Lepeshov, S.; Savelev, R.; Baranov, D.; Belov, P.; Krasnok, A.

    2017-11-01

    All-dielectric nanophotonics based on high-index dielectric nanoparticles became a powerful platform for modern light science, providing many fascinating applications, including high-efficient nanoantennas and metamaterials. High-index dielectric nanostructures are of a special interest for nonlinear nanophotonics, where they demonstrate special types of optical nonlinearity, such as electron-hole plasma photoexcitation, which are not inherent to plasmonic nanostructures. Here, we propose a novel type of highly tunable all-dielectric Yagi-Uda nanoantennas, consisting of a chain of Si nanoparticles exciting by an electric dipole source, which allow tuning of their radiating properties via electron-hole plasma photoexcitation. We theoretically and numerically demonstrate the tuning of radiation power patterns and the Purcell effect by additional pumping of several boundary nanoparticles with relatively low peak intensities of fs-laser.

  6. Influence of Chemical Precleaning on the Plasma Treatment Efficiency of Aluminum by RF Plasma Pencil

    NASA Astrophysics Data System (ADS)

    Vadym, Prysiazhnyi; Pavel, Slavicek; Eliska, Mikmekova; Milos, Klima

    2016-04-01

    This paper is aimed to show the influence of initial chemical pretreatment prior to subsequent plasma activation of aluminum surfaces. The results of our study showed that the state of the topmost surface layer (i.e. the surface morphology and chemical groups) of plasma modified aluminum significantly depends on the chemical precleaning. Commonly used chemicals (isopropanol, trichlorethane, solution of NaOH in deionized water) were used as precleaning agents. The plasma treatments were done using a radio frequency driven atmospheric pressure plasma pencil developed at Masaryk University, which operates in Ar, Ar/O2 gas mixtures. The effectiveness of the plasma treatment was estimated by the wettability measurements, showing high wettability improvement already after 0.3 s treatment. The effects of surface cleaning (hydrocarbon removal), surface oxidation and activation (generation of OH groups) were estimated using infrared spectroscopy. The changes in the surface morphology were measured using scanning electron microscopy. Optical emission spectroscopy measurements in the near-to-surface region with temperature calculations showed that plasma itself depends on the sample precleaning procedure.

  7. TOPICAL REVIEW: Plasma assisted ignition and combustion

    NASA Astrophysics Data System (ADS)

    Starikovskaia, S. M.

    2006-08-01

    In recent decades particular interest in applications of nonequilibrium plasma for the problems of plasma-assisted ignition and plasma-assisted combustion has been observed. A great amount of experimental data has been accumulated during this period which provided the grounds for using low temperature plasma of nonequilibrium gas discharges for a number of applications at conditions of high speed flows and also at conditions similar to automotive engines. The paper is aimed at reviewing the data obtained and discusses their treatment. Basic possibilities of low temperature plasma to ignite gas mixtures are evaluated and historical references highlighting pioneering works in the area are presented. The first part of the review discusses plasmas applied to plasma-assisted ignition and combustion. The paper pays special attention to experimental and theoretical analysis of some plasma parameters, such as reduced electric field, electron density and energy branching for different gas discharges. Streamers, pulsed nanosecond discharges, dielectric barrier discharges, radio frequency discharges and atmospheric pressure glow discharges are considered. The second part depicts applications of discharges to reduce the ignition delay time of combustible mixtures, to ignite transonic and supersonic flows, to intensify ignition and to sustain combustion of lean mixtures. The results obtained by different authors are cited, and ways of numerical modelling are discussed. Finally, the paper draws some conclusions on the main achievements and prospects of future investigations in the field.

  8. Ionization potential depression and optical spectra in a Debye plasma model

    NASA Astrophysics Data System (ADS)

    Lin, Chengliang; Röpke, Gerd; Reinholz, Heidi; Kraeft, Wolf-Dietrich

    2017-11-01

    We show how optical spectra in dense plasmas are determined by the shift of energy levels as well as the broadening owing to collisions with the plasma particles. In lowest approximation, the interaction with the plasma particles is described by the RPA dielectric function, leading to the Debye shift of the continuum edge. The bound states remain nearly un-shifted, their broadening is calculated in Born approximation. The role of ionization potential depression as well as the Inglis-Teller effect are shown. The model calculations have to be improved going beyond the lowest (RPA) approximation when applying to WDM spectra.

  9. Stopping power in D6Li plasmas for target ignition studies

    NASA Astrophysics Data System (ADS)

    Cortez, Ross J.; Cassibry, Jason T.

    2018-02-01

    The ability to calculate the range of charged fusion products in a target is critical when estimating driver requirements. Additionally, charged particle ranges are a determining factor in the possibility that a burn front will propagate through the surrounding cold fuel layer, igniting the plasma. Performance parameters of the plasma, such as yield, gain, etc therefore rely on accurate knowledge of particle ranges and stopping power over a wide range of densities and temperatures. Further, this knowledge is essential in calculating ignition conditions for a given target design. In this paper, stopping power is calculated for DD and D6Li plasmas using a molecular dynamics based model. Emphasis is placed on solid D6Li which has been recently considered as a fuel option for fusion propulsion systems.

  10. UAH mathematical model of the variable polarity plasma ARC welding system calculation

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1994-01-01

    Significant advantages of Variable Polarity Plasma Arc (VPPA) welding process include faster welding, fewer repairs, less joint preparation, reduced weldment distortion, and absence of porosity. A mathematical model is presented to analyze the VPPA welding process. Results of the mathematical model were compared with the experimental observation accomplished by the GDI team.

  11. A transverse Kelvin-Helmholtz instability in a magnetized plasma

    NASA Technical Reports Server (NTRS)

    Kintner, P.; Dangelo, N.

    1977-01-01

    An analysis is conducted of the transverse Kelvin-Helmholtz instability in a magnetized plasma for unstable flute modes. The analysis makes use of a two-fluid model. Details regarding the instability calculation are discussed, taking into account the ion continuity and momentum equations, the solution of a zero-order and a first-order component, and the properties of the solution. It is expected that the linear calculation conducted will apply to situations in which the plasma has experienced no more than a few growth periods.

  12. 7 CFR 760.506 - Payment calculations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... who meets all of the requirements of § 760.504(b) or be considered the owner of the trees under... AGRICULTURE SPECIAL PROGRAMS INDEMNITY PAYMENT PROGRAMS Tree Assistance Program § 760.506 Payment calculations. (a) Payment to an eligible orchardist or nursery tree grower for the cost of replanting or...

  13. 7 CFR 760.506 - Payment calculations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... who meets all of the requirements of § 760.504(b) or be considered the owner of the trees under... AGRICULTURE SPECIAL PROGRAMS INDEMNITY PAYMENT PROGRAMS Tree Assistance Program § 760.506 Payment calculations. (a) Payment to an eligible orchardist or nursery tree grower for the cost of replanting or...

  14. 7 CFR 760.506 - Payment calculations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... who meets all of the requirements of § 760.504(b) or be considered the owner of the trees under... AGRICULTURE SPECIAL PROGRAMS INDEMNITY PAYMENT PROGRAMS Tree Assistance Program § 760.506 Payment calculations. (a) Payment to an eligible orchardist or nursery tree grower for the cost of replanting or...

  15. 7 CFR 760.506 - Payment calculations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... who meets all of the requirements of § 760.504(b) or be considered the owner of the trees under... AGRICULTURE SPECIAL PROGRAMS INDEMNITY PAYMENT PROGRAMS Tree Assistance Program § 760.506 Payment calculations. (a) Payment to an eligible orchardist or nursery tree grower for the cost of replanting or...

  16. Increasing Stabilized Performance Of Amorphous Silicon Based Devices Produced By Highly Hydrogen Diluted Lower Temperature Plasma Deposition.

    DOEpatents

    Li, Yaun-Min; Bennett, Murray S.; Yang, Liyou

    1999-08-24

    High quality, stable photovoltaic and electronic amorphous silicon devices which effectively resist light-induced degradation and current-induced degradation, are produced by a special plasma deposition process. Powerful, efficient single and multi-junction solar cells with high open circuit voltages and fill factors and with wider bandgaps, can be economically fabricated by the special plasma deposition process. The preferred process includes relatively low temperature, high pressure, glow discharge of silane in the presence of a high concentration of hydrogen gas.

  17. Increased Stabilized Performance Of Amorphous Silicon Based Devices Produced By Highly Hydrogen Diluted Lower Temperature Plasma Deposition.

    DOEpatents

    Li, Yaun-Min; Bennett, Murray S.; Yang, Liyou

    1997-07-08

    High quality, stable photovoltaic and electronic amorphous silicon devices which effectively resist light-induced degradation and current-induced degradation, are produced by a special plasma deposition process. Powerful, efficient single and multi-junction solar cells with high open circuit voltages and fill factors and with wider bandgaps, can be economically fabricated by the special plasma deposition process. The preferred process includes relatively low temperature, high pressure, glow discharge of silane in the presence of a high concentration of hydrogen gas.

  18. X-ray spectroscopy diagnostics of a recombining plasma in laboratory astrophysics studies

    NASA Astrophysics Data System (ADS)

    Ryazantsev, S. N.; Skobelev, I. Yu.; Faenov, A. Ya.; Pikuz, T. A.; Grum-Grzhimailo, A. N.; Pikuz, S. A.

    2015-12-01

    The investigation of a recombining laser plasma is topical primarily because it can be used to simulate the interaction between plasma jets in astrophysical objects. It has been shown that the relative intensities of transitions of a resonance series of He-like multicharged ions can be used for the diagnostics of the recombining plasma. It has been found that the intensities of the indicated transitions for ions with the nuclear charge number Z n ~ 10 are sensitive to the plasma density in the range N e ~ 1016-1020 cm-3 at temperatures of 10-100 eV. The calculations performed for the F VIII ion have determined the parameters of plasma jets created at the ELFIE nanosecond laser facility (Ecole Polytechnique, France) in order to simulate astrophysical phenomena. The resulting universal calculation dependences can be used to diagnose different recombining plasmas containing helium-like fluorine ions.

  19. [A comparative analysis of the passive electric probe detection and spectrum diagnosis of laser-induced plasma].

    PubMed

    Liu, Tong; Yang, Li-Jun; Wang, Li-Jun; Wang, Lang-Ping

    2014-02-01

    An approach to detecting laser-induced plasma using passive probe was brought up. The plasma of laser welding was studied by using a synchronous electric and spectral information acquisition system, the laser-induced plasma was detected by a passive electric probe and fiber spectrometer, the electrical signal was analyzed on the basis of the theory of plasma sheath, and the temperature of laser-induced plasma was calculated by using the method of relative spectral intensity. The analysis results from electrical signal and spectral one were compared. Calculation results of three kinds of surface circumstances, which were respectively coated by KF, TiO2 and without coating, were compared. The factors affecting the detection accuracy were studied. The results indicated that the results calculated by passive probe matched that by spectral signal basically, and the accuracy was affected by ions mass of the plasma. The designed passive electric probe can be used to reflect the continuous fluctuation of electron temperature of the generated plasma, and monitor the laser-induced plasma.

  20. Analytical study of spheroidal dust grains in plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahed, H.; Mahmoodi, J.; Sobhanian, S.

    2006-05-15

    Using the modified spheroidal equations, the potential of a spheroidal conducting grain, floated in a plasma, is calculated. The electric field and capacitance for both prolate and oblate spheroidal grains are investigated. The solutions, obtained up to the second-order approximation, show that the plasma screening causes the equipotential surfaces around the grain to be more elongated or flattened than the potential spheroids of the Laplace equation. This leads to the variation of the plasma concentration around the grain.

  1. Polarimetric Thomson scattering for high Te fusion plasmas

    NASA Astrophysics Data System (ADS)

    Giudicotti, L.

    2017-11-01

    Polarimetric Thomson scattering (TS) is a technique for the analysis of TS spectra in which the electron temperature Te is determined from the depolarization of the scattered radiation, a relativistic effect noticeable only in very hot (Te >= 10 keV) fusion plasmas. It has been proposed as a complementary technique to supplement the conventional spectral analysis in the ITER CPTS (Core Plasma Thomson Scattering) system for measurements in high Te, low ne plasma conditions. In this paper we review the characteristics of the depolarized TS radiation with special emphasis to the conditions of the ITER CPTS system and we describe a possible implementation of this diagnostic method suitable to significantly improve the performances of the conventional TS spectral analysis in the high Te range.

  2. System analysis of plasma centrifuges and sputtering

    NASA Technical Reports Server (NTRS)

    Hong, S. H.

    1978-01-01

    System analyses of cylindrical plasma centrifuges are presented, for which the velocity field and electromagnetic fields are calculated. The effects of different electrode geometrics, induced magnetic fields, Hall-effect, and secondary flows are discussed. It is shown that speeds of 10000 m/sec can be achieved in plasma centrifuges, and that an efficient separation of U238 and U235 in uranium plasmas is feasible. The external boundary-value problem for the deposition of sputtering products is reduced to a Fredholm integral equation, which is solved analytically by means of the method of successive approximations.

  3. [Temperature measurement of DC argon plasma jet].

    PubMed

    Yan, Jian-Hua; Pan, Xin-Chao; Ma, Zeng-Yi; Tu, Xin; Cen, Ke-Fa

    2008-01-01

    The electron temperature of DC arc plasma jet is an important parameter, which determines the characteristics of plasma jet. The measurement of emission spectrum was performed to obtain the spectral intensities of some Ar lines and the method of diagrammatic view of Boltzmann was adopted to calculate the electron temperature. The results indicated that the electron temperature dropped at different speed along with the axes of the plasma jet and rose rapidly when the current was increased, and it also rose when the flowrate of argon was increased.

  4. On thermalization of electron-positron-photon plasma

    NASA Astrophysics Data System (ADS)

    Siutsou, I. A.; Aksenov, A. G.; Vereshchagin, G. V.

    2015-12-01

    Recently a progress has been made in understanding thermalization mechanism of relativistic plasma starting from a non-equilibrium state. Relativistic Boltzmann equations were solved numerically for homogeneous isotropic plasma with collision integrals for two- and three-particle interactions calculated from the first principles by means of QED matrix elements. All particles were assumed to fulfill Boltzmann statistics. In this work we follow plasma thermalization by accounting for Bose enhancement and Pauli blocking in particle interactions. Our results show that particle in equilibrium reach Bose-Einstein distribution for photons, and Fermi-Dirac one for electrons, respectively.

  5. Circulation Plasma Centrifuge with Product Flow

    NASA Astrophysics Data System (ADS)

    Borisevich, V. D.; Potanin, E. P.

    2018-05-01

    We have analyzed the isotope separation in a high-frequency plasma circulating centrifuge operating with a product flow. The rotation of a weakly ionized plasma is ensured by a rotating magnetic field, while the countercurrent flow (circulation) is produced by a traveling magnetic field. We have calculated the dependences of the enrichment factor and the separative power of the centrifuge on a product flow. The optimal characteristics of the separation unit have been determined.

  6. Singularity embedding method in potential flow calculations

    NASA Technical Reports Server (NTRS)

    Jou, W. H.; Huynh, H.

    1982-01-01

    The so-called H-type mesh is used in a finite-element (or finite-volume) calculation of the potential flow past an airfoil. Due to coordinate singularity at the leading edge, a special singular trial function is used for the elements neighboring the leading edge. The results using the special singular elements are compared to those using the regular elements. It is found that the unreasonable pressure distribution obtained by the latter is removed by the embedding of the singular element. Suggestions to extend the present method to transonic cases are given.

  7. Toward the automated analysis of plasma physics problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mynick, H.E.

    1989-04-01

    A program (CALC) is described, which carries out nontrivial plasma physics calculations, in a manner intended to emulate the approach of a human theorist. This includes the initial process of gathering the relevant equations from a plasma knowledge base, and then determining how to solve them. Solution of the sets of equations governing physics problems, which in general have a nonuniform,irregular structure, not amenable to solution by standardized algorithmic procedures, is facilitated by an analysis of the structure of the equations and the relations among them. This often permits decompositions of the full problem into subproblems, and other simplifications inmore » form, which renders the resultant subsystems soluble by more standardized tools. CALC's operation is illustrated by a detailed description of its treatment of a sample plasma calculation. 5 refs., 3 figs.« less

  8. Formation of Plasma Around a Small Meteoroid: Simulation and Theory

    NASA Astrophysics Data System (ADS)

    Sugar, G.; Oppenheim, M. M.; Dimant, Y. S.; Close, S.

    2018-05-01

    High-power large-aperture radars detect meteors by reflecting radio waves off dense plasma that surrounds a hypersonic meteoroid as it ablates in the Earth's atmosphere. If the plasma density profile around the meteoroid is known, the plasma's radar cross section can be used to estimate meteoroid properties such as mass, density, and composition. This paper presents head echo plasma density distributions obtained via two numerical simulations of a small ablating meteoroid and compares the results to an analytical solution found in Dimant and Oppenheim (2017a, https://doi.org/10.1002/2017JA023960, 2017b, https://doi.org/10.1002/2017JA023963). The first simulation allows ablated meteoroid particles to experience only a single collision to match an assumption in the analytical solution, while the second is a more realistic simulation by allowing multiple collisions. The simulation and analytical results exhibit similar plasma density distributions. At distances much less than λT, the average distance an ablated particle travels from the meteoroid before a collision with an atmospheric particle, the plasma density falls off as 1/R, where R is the distance from the meteoroid center. At distances substantially greater than λT, the plasma density profile has an angular dependence, falling off as 1/R2 directly behind the meteoroid, 1/R3 in a plane perpendicular to the meteoroid's path that contains the meteoroid center, and exp[-1.5(R/λT2/3)]/R in front of the meteoroid. When used for calculating meteoroid masses, this new plasma density model can give masses that are orders of magnitude different than masses calculated from a spherically symmetric Gaussian distribution, which has been used to calculate masses in the past.

  9. Driven waves in a two-fluid plasma

    NASA Astrophysics Data System (ADS)

    Roberge, W. G.; Ciolek, Glenn E.

    2007-12-01

    We study the physics of wave propagation in a weakly ionized plasma, as it applies to the formation of multifluid, magnetohydrodynamics (MHD) shock waves. We model the plasma as separate charged and neutral fluids which are coupled by ion-neutral friction. At times much less than the ion-neutral drag time, the fluids are decoupled and so evolve independently. At later times, the evolution is determined by the large inertial mismatch between the charged and neutral particles. The neutral flow continues to evolve independently; the charged flow is driven by and slaved to the neutral flow by friction. We calculate this driven flow analytically by considering the special but realistic case where the charged fluid obeys linearized equations of motion. We carry out an extensive analysis of linear, driven, MHD waves. The physics of driven MHD waves is embodied in certain Green functions which describe wave propagation on short time-scales, ambipolar diffusion on long time-scales and transitional behaviour at intermediate times. By way of illustration, we give an approximate solution for the formation of a multifluid shock during the collision of two identical interstellar clouds. The collision produces forward and reverse J shocks in the neutral fluid and a transient in the charged fluid. The latter rapidly evolves into a pair of magnetic precursors on the J shocks, wherein the ions undergo force-free motion and the magnetic field grows monotonically with time. The flow appears to be self-similar at the time when linear analysis ceases to be valid.

  10. Unique variable polarity plasma arc welding for space shuttle

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.

    1985-01-01

    Since the introduction of the Plasma Arc Torch in 1955 and subsequent to the work at Boeing in the 1960's, significant improvements crucial to success have been made in the Variable Polarity Plasma Arc (VPPA) Process at the Marshall Space Flight Center. Several very important advantages to this process are given, and the genesis of PA welding, the genesis of VPPA welding, special equiment requirements, weld property development, results with other aluminum alloys, and the eventual successful VPPA transition to production operations are discussed.

  11. Validation of NASCAP-2K Spacecraft-Environment Interactions Calculations

    NASA Technical Reports Server (NTRS)

    Davis, V. A.; Mandell, M. J.; Gardner, B. M.; Mikellides, I. G.; Neergaard, L. F.; Cooke, D. L.; Minor, J.

    2004-01-01

    The recently released Nascap-2k, version 2.0, three-dimensional computer code models interactions between spacecraft surfaces and low-earth-orbit, geosynchronous, auroral, and interplanetary plasma environments. It replaces the earlier three-dimensional spacecraft interactions codes NASCAP/GEO, NASCAP/LEO, POLAR, and DynaPAC. Nascap-2k has improved numeric techniques, a modern user interface, and a simple, interactive satellite surface definition module (Object ToolKit). We establish the accuracy of Nascap-2k both by comparing computed currents and potentials with analytic results and by comparing Nascap-2k results with published calculations using the earlier codes. Nascap-2k predicts Langmuir-Blodgett or Parker-Murphy current collection for a nearly spherical (100 surfaces) satellite in a short Debye length plasma depending on the absence or presence of a magnetic field. A low fidelity (in geometry and time) Nascap-2k geosynchronous charging calculation gives the same results as the corresponding low fidelity NASCAP/GEO calculation. A high fidelity calculation (using the Nascap-2k improved geometry and time stepping capabilities) gives higher potentials, which are more consistent with typical observations. Nascap-2k predicts the same current as a function of applied potential as was observed and calculated by NASCAP/LEO for the SPEAR I rocket with a bipolar sheath. A Nascap-2k DMSP charging calculation gives results similar to those obtained using POLAR and consistent with observation.

  12. Modeling of negative ion transport in a plasma source

    NASA Astrophysics Data System (ADS)

    Riz, David; Paméla, Jérôme

    1998-08-01

    A code called NIETZSCHE has been developed to simulate the negative ion transport in a plasma source, from their birth place to the extraction holes. The ion trajectory is calculated by numerically solving the 3-D motion equation, while the atomic processes of destruction, of elastic collision H-/H+ and of charge exchange H-/H0 are handled at each time step by a Monte-Carlo procedure. This code can be used to calculate the extraction probability of a negative ion produced at any location inside the source. Calculations performed with NIETZSCHE have allowed to explain, either quantitatively or qualitatively, several phenomena observed in negative ion sources, such as the isotopic H-/D- effect, and the influence of the plasma grid bias or of the magnetic filter on the negative ion extraction. The code has also shown that in the type of sources contemplated for ITER, which operate at large arc power densities (>1 W cm-3), negative ions can reach the extraction region provided if they are produced at a distance lower than 2 cm from the plasma grid in the case of «volume production» (dissociative attachment processes), or if they are produced at the plasma grid surface, in the vicinity of the extraction holes.

  13. Efficiency of a hybrid-type plasma-assisted fuel reformation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matveev, I.B.; Serbin, S.I.; Lux, S.M.

    2008-12-15

    The major advantages of a new plasma-assisted fuel reformation system are its cost effectiveness and technical efficiency. Applied Plasma Technologies has proposed its new highly efficient hybrid-type plasma-assisted system for organic fuel combustion and gasification. The system operates as a multimode multipurpose reactor in a wide range of plasma feedstock gases and turndown ratios. This system also has convenient and simultaneous feeding of several reagents in the reaction zone such as liquid fuels, coal, steam, and air. A special methodology has been developed for such a system in terms of heat balance evaluation and optimization. This methodology considers all existingmore » and possible energy streams, which could influence the system's efficiency. The developed hybrid-type plasma system could be suitable for combustion applications, mobile and autonomous small- to mid-size liquid fuel and coal gasification modules, hydrogen-rich gas generators, waste-processing facilities, and plasma chemical reactors.« less

  14. The analysis of thermoplastic characteristics of special polymer sulfur composite

    NASA Astrophysics Data System (ADS)

    Książek, Mariusz

    2017-01-01

    Specific chemical environments step out in the industry objects. Portland cement composites (concrete and mortar) were impregnated by using the special polymerized sulfur and technical soot as a filler (polymer sulfur composite). Sulfur and technical soot was applied as the industrial waste. Portland cement composites were made of the same aggregate, cement and water. The process of special polymer sulfur composite applied as the industrial waste is a thermal treatment process in the temperature of about 150-155°C. The result of such treatment is special polymer sulfur composite in a liquid state. This paper presents the plastic constants and coefficients of thermal expansion of special polymer sulfur composites, with isotropic porous matrix, reinforced by disoriented ellipsoidal inclusions with orthotropic symmetry of the thermoplastic properties. The investigations are based on the stochastic differential equations of solid mechanics. A model and algorithm for calculating the effective characteristics of special polymer sulfur composites are suggested. The effective thermoplastic characteristics of special polymer sulfur composites, with disoriented ellipsoidal inclusions, are calculated in two stages: First, the properties of materials with oriented inclusions are determined, and then effective constants of a composite with disoriented inclusions are determined on the basis of the Voigt or Rice scheme. A brief summary of new products related to special polymer sulfur composites is given as follows: Impregnation, repair, overlays and precast polymer concrete will be presented. Special polymer sulfur as polymer coating impregnation, which has received little attention in recent years, currently has some very interesting applications.

  15. Electromagnetic fluctuations in magnetized plasmas. I. The rigorous relativistic kinetic theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlickeiser, R., E-mail: rsch@tp4.rub.de, E-mail: yoonp@umd.edu; Yoon, P. H., E-mail: rsch@tp4.rub.de, E-mail: yoonp@umd.edu; School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701

    2015-07-15

    Using the system of the Klimontovich and Maxwell equations, the general linear fluctuation theory for magnetized plasmas is developed. General expressions for the electromagnetic fluctuation spectra (electric and magnetic fields) from uncorrelated plasma particles in plasmas with a uniform magnetic field are derived, which are covariantly correct within the theory of special relativity. The general fluctuation spectra hold for plasmas of arbitrary composition, arbitrary momentum dependences of the plasma particle distribution functions, and arbitrary orientations of the wave vector with respect to the uniform magnetic field. Moreover, no restrictions on the values of the real and the imaginary parts ofmore » the frequency are made. The derived fluctuation spectra apply to both non-collective fluctuations and collective plasma eigenmodes in magnetized plasmas. In the latter case, kinetic equations for the components of fluctuating electric and magnetic fields in magnetized plasmas are derived that include the effect of spontaneous emission and absorption. In the limiting case of an unmagnetized plasmas, the general fluctuation spectra correctly reduce to the unmagnetized fluctuation spectra derived before.« less

  16. [Calculating the stark broadening of welding arc spectra by Fourier transform method].

    PubMed

    Pan, Cheng-Gang; Hua, Xue-Ming; Zhang, Wang; Li, Fang; Xiao, Xiao

    2012-07-01

    It's the most effective and accurate method to calculate the electronic density of plasma by using the Stark width of the plasma spectrum. However, it's difficult to separate Stark width from the composite spectrum linear produced by several mechanisms. In the present paper, Fourier transform was used to separate the Lorentz linear from the spectrum observed, thus to get the accurate Stark width. And we calculated the distribution of the TIG welding arc plasma. This method does not need to measure arc temperature accurately, to measure the width of the plasma spectrum broadened by instrument, and has the function to reject the noise data. The results show that, on the axis, the electron density of TIG welding arc decreases with the distance from tungsten increasing, and changes from 1.21 X 10(17) cm(-3) to 1.58 x 10(17) cm(-3); in the radial, the electron density decreases with the distance from axis increasing, and near the tungsten zone the biggest electronic density is off axis.

  17. NLTE opacity calculations: C-Si and C-Ge mixtures

    NASA Astrophysics Data System (ADS)

    Jarrah, W.; Benredjem, D.; Pain, J.-C.; Dubau, J.

    2017-09-01

    The opacity is an important issue in the knowledge of the radiative properties of ICF and astrophysical plasmas. We present the opacity of dopants (silicon, germanium) embedded in the ablator of some ICF capsules. In recent works, Hill and Rose calculated the opacity of silicon in LTE and non-LTE plasmas, while Minguez and co-workers focused on the opacity of carbon. We have used the Cowan code to calculate the atomic structure of carbon, silicon and germanium in various ionic stages. The cross-sections of atomic processes (collisional excitation, collisional ionization) are obtained by fitting the values given by the code FAC to the Van Regemorter-like formulas of Sampson and Zhang. A corrected Gaunt factor is then obtained. A collisional-radiative code was developed in order to obtain the ionic populations, the level populations and the opacity. Line broadening and line shift are taken into account. The ionization potential depression is included in our calculations. The effect of a radiation field on the opacity is examined.

  18. Inertial Currents in Isotropic Plasma

    NASA Technical Reports Server (NTRS)

    Heinemann, M.; Erickson, G. M.; Pontius, D. H., Jr.

    1993-01-01

    The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasma, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, MED plasma. Solutions are developed by taking the MHD limit of two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.

  19. Inertial currents in isotropic plasma

    NASA Technical Reports Server (NTRS)

    Heinemann, M.; Erickson, G. M.; Pontius, D. H. JR.

    1994-01-01

    The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasma, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, magnetohyrodynamic (MHD) plasma. Solutions are developed by taking the MHD limit of two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.

  20. Inertial currents in isotropic plasma

    NASA Technical Reports Server (NTRS)

    Heinemann, M.; Erickson, G. M.; Pontius, D. H., Jr.

    1994-01-01

    The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasmas, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, MHD plasma. Solutions are developed by taking the MHD limit ot two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.

  1. The MaPLE device of Saha Institute of Nuclear Physics: construction and its plasma aspects.

    PubMed

    Pal, Rabindranath; Biswas, Subir; Basu, Subhasis; Chattopadhyay, Monobir; Basu, Debjyoti; Chaudhuri, Manis; Chowdhuri, Manis

    2010-07-01

    The Magnetized Plasma Linear Experimental (MaPLE) device is a low cost laboratory plasma device at Saha Institute of Nuclear Physics fabricated in-house with the primary aim of studying basic plasma physics phenomena such as plasma instabilities, wave propagation, and their nonlinear behavior in magnetized plasma regime in a controlled manner. The machine is specially designed to be a versatile laboratory device that can provide a number of magnetic and electric scenario to facilitate such studies. A total of 36 number of 20-turn magnet coils, designed such as to allow easy handling, is capable of producing a uniform, dc magnetic field of about 0.35 T inside the plasma chamber of diameter 0.30 m. Support structure of the coils is planned in an innovative way facilitating straightforward fabrication and easy positioning of the coils. Further special feature lies in the arrangement of the spacers between the coils that can be maneuvered rather easily to create different magnetic configurations. Various methods of plasma production can be suitably utilized according to the experimental needs at either end of the vacuum vessel. In the present paper, characteristics of a steady state plasma generated by electron cyclotron resonance method using 2.45 GHz microwave power are presented. Scans using simple probe drives revealed that a uniform and long plasma column having electron density approximately 3-5x10(10) cm(-3) and temperature approximately 7-10 eV, is formed in the center of the plasma chamber which is suitable for wave launching experiments.

  2. Demonstration of the hollow channel plasma wakefield accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gessner, Spencer J.

    2016-09-17

    A plasma wakefield accelerator is a device that converts the energy of a relativistic particle beam into a large-amplitude wave in a plasma. The plasma wave, or wakefield, supports an enormous electricfield that is used to accelerate a trailing particle beam. The plasma wakefield accelerator can therefore be used as a transformer, transferring energy from a high-charge, low-energy particle beam into a high-energy, low-charge particle beam. This technique may lead to a new generation of ultra-compact, high-energy particle accelerators. The past decade has seen enormous progress in the field of plasma wakefield acceleration with experimental demonstrations of the acceleration ofmore » electron beams by several gigaelectron-volts. The acceleration of positron beams in plasma is more challenging, but also necessary for the creation of a high-energy electron-positron collider. Part of the challenge is that the plasma responds asymmetrically to electrons and positrons, leading to increased disruption of the positron beam. One solution to this problem, first proposed over twenty years ago, is to use a hollow channel plasma which symmetrizes the response of the plasma to beams of positive and negative charge, making it possible to accelerate positrons in plasma without disruption. In this thesis, we describe the theory relevant to our experiment and derive new results when needed. We discuss the development and implementation of special optical devices used to create long plasma channels. We demonstrate for the first time the generation of meter-scale plasma channels and the acceleration of positron beams therein.« less

  3. Iogenic Plasma and its Rotation-Driven Transport in Jupiter's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Smyth, William H.

    2001-01-01

    Model calculations are reported for the Iogenic plasma source created by atomic oxygen and sulfur above Io's exobase in the corona and extended clouds (Outer Region). On a circumplanetary scale, two-dimensional distributions produced by integrating the proper three dimensional rate information for electron impact and charge exchange processes along the magnetic field lines are presented for the pickup ion rates, the net-mass and total-mass loading rates, the mass per unit magnetic flux rate, the pickup conductivity, the radial pickup current, and the net-energy loading rate for the plasma torus. All of the two-dimensional distributions are highly peaked at Io's location and hence highly asymmetric about Jupiter. The Iogenic plasma source is also calculated on a much smaller near-Io scale to investigate the structure of the highly peak rates centered about lo's instantaneous location. The Iogenic plasma source for the Inner Region (pickup rates produced below Io's exobase) is, however, expected to be the dominant source near lo for the formation of the plasma torus ribbon and to be a comparable source, if not a larger contributor, to the energy budget of the plasma torus, so as to provide the necessary power to sustain the plasma torus radiative loss rate.

  4. Photon polarizability and its effect on the dispersion of plasma waves

    NASA Astrophysics Data System (ADS)

    Dodin, I. Y.; Ruiz, D. E.

    2017-04-01

    High-frequency photons travelling in plasma exhibit a linear polarizability that can influence the dispersion of linear plasma waves. We present a detailed calculation of this effect for Langmuir waves as a characteristic example. Two alternative formulations are given. In the first formulation, we calculate the modified dispersion of Langmuir waves by solving the governing equations for the electron fluid, where the photon contribution enters as a ponderomotive force. In the second formulation, we provide a derivation based on the photon polarizability. Then, the calculation of ponderomotive forces is not needed, and the result is more general.

  5. Photon polarizability and its effect on the dispersion of plasma waves

    DOE PAGES

    Dodin, I. Y.; Ruiz, D. E.

    2017-03-06

    High-frequency photons travelling in plasma exhibit a linear polarizability that can influence the dispersion of linear plasma waves. We present a detailed calculation of this effect for Langmuir waves as a characteristic example. Here, two alternative formulations are given. In the first formulation, we calculate the modified dispersion of Langmuir waves by solving the governing equations for the electron fluid, where the photon contribution enters as a ponderomotive force. In the second formulation, we provide a derivation based on the photon polarizability. Then, the calculation of ponderomotive forces is not needed, and the result is more general.

  6. 34 CFR Appendix B to Part 300 - Proportionate Share Calculation

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 2 2014-07-01 2013-07-01 true Proportionate Share Calculation B Appendix B to Part 300... CHILDREN WITH DISABILITIES Pt. 300, App. B Appendix B to Part 300—Proportionate Share Calculation Each LEA... special education and related services under Part B, as compared with the total number of eligible...

  7. Plasma membrane signaling in HIV-1 infection.

    PubMed

    Abbas, Wasim; Herbein, Georges

    2014-04-01

    Plasma membrane is a multifunctional structure that acts as the initial barrier against infection by intracellular pathogens. The productive HIV-1 infection depends upon the initial interaction of virus and host plasma membrane. Immune cells such as CD4+ T cells and macrophages contain essential cell surface receptors and molecules such as CD4, CXCR4, CCR5 and lipid raft components that facilitate HIV-1 entry. From plasma membrane HIV-1 activates signaling pathways that prepare the grounds for viral replication. Through viral proteins HIV-1 hijacks host plasma membrane receptors such as Fas, TNFRs and DR4/DR5, which results in immune evasion and apoptosis both in infected and uninfected bystander cells. These events are hallmark in HIV-1 pathogenesis that leads towards AIDS. The interplay between HIV-1 and plasma membrane signaling has much to offer in terms of viral fitness and pathogenicity, and a better understanding of this interplay may lead to development of new therapeutic approaches. This article is part of a Special Issue entitled: Viral Membrane Proteins - Channels for Cellular Networking. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Numerical and Experimental Investigation on the Attenuation of Electromagnetic Waves in Unmagnetized Plasmas Using Inductively Coupled Plasma Actuator

    NASA Astrophysics Data System (ADS)

    Lin, Min; Xu, Haojun; Wei, Xiaolong; Liang, Hua; Song, Huimin; Sun, Quan; Zhang, Yanhua

    2015-10-01

    The attenuation of electromagnetic (EM) waves in unmagnetized plasma generated by an inductively coupled plasma (ICP) actuator has been investigated both theoretically and experimentally. A numerical study is conducted to investigate the propagation of EM waves in multilayer plasma structures which cover a square flat plate. Experimentally, an ICP actuator with dimensions of 20 cm×20 cm×4 cm is designed to produce a steady plasma slab. The attenuation of EM waves in the plasma generated by the ICP actuator is measured by a reflectivity arch test method at incident waves of 2.3 GHz and 10.1 GHz, respectively. A contrastive analysis of calculated and measured results of these incident wave frequencies is presented, which suggests that the experiment accords well with our theory. As expected, the plasma slab generated by the ICP actuator can effectively attenuate the EM waves, which may have great potential application prospects in aircraft stealth. supported by National Natural Science Foundation of China (Nos. 51276197, 11472306 and 11402301)

  9. Calculations of heavy ion charge state distributions for nonequilibrium conditions

    NASA Technical Reports Server (NTRS)

    Luhn, A.; Hovestadt, D.

    1985-01-01

    Numerical calculations of the charge state distributions of test ions in a hot plasma under nonequilibrium conditions are presented. The mean ionic charges of heavy ions for finite residence times in an instantaneously heated plasma and for a non-Maxwellian electron distribution function are derived. The results are compared with measurements of the charge states of solar energetic particles, and it is found that neither of the two simple cases considered can explain the observations.

  10. Note: Additionally refined new possibilities of plasma probe diagnostics.

    PubMed

    Riaby, V A; Savinov, V P; Masherov, P E; Yakunin, V G

    2018-03-01

    In two previous Notes published in this journal, a method of measuring probe sheath thickness and ion mass was described using Langmuir probe diagnostics in low pressure xenon plasma close to Maxwellian substance. According to the first Note, this method includes two stages: (i) in a special experiment with known ion mass, the Bohm and Child-Langmuir-Boguslavsky (CLB) equations for cylindrical Langmuir probes used in this xenon plasma were solved jointly to determine the probe sheath thicknesses and Bohm coefficient C BCyl ≈ 1.13; and (ii) in a general experiment, with known C BCyl , the same equations could be solved to obtain the probe sheath thicknesses and the mean ion mass. In the second Note, the (i) stage of this method was refined: the results of the CLB probe sheath model application, which were termed "evaluations," were corrected using the step-front probe sheath model, which was closer to reality in the special experiment with the xenon plasma. This process resulted in a Bohm coefficient of C BCyl ≈ 1.23 for the cylindrical probe. In the present Note, corrected xenon plasma parameters without the influence of the bare probe protective shield were used for the (i) stage of this diagnostic method. This action also refined the Bohm coefficient, lowering it to C BCyl ≈ 0.745 for cylindrical probes. This advance makes the new diagnostics method more objective and reliable.

  11. Research on the FDTD method of scattering effects of obliquely incident electromagnetic waves in time-varying plasma sheath on collision and plasma frequencies

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Guo, Li-xin; Li, Jiang-ting

    2017-04-01

    This study analyzes the scattering characteristics of obliquely incident electromagnetic (EM) waves in a time-varying plasma sheath. The finite-difference time-domain algorithm is applied. According to the empirical formula of the collision frequency in a plasma sheath, the plasma frequency, temperature, and pressure are assumed to vary with time in the form of exponential rise. Some scattering problems of EM waves are discussed by calculating the radar cross section (RCS) of the time-varying plasma. The laws of the RCS varying with time are summarized at the L and S wave bands.

  12. [Fundamentals of plasma chemistry and its application to drug engineering].

    PubMed

    Kuzuya, M

    1996-04-01

    In this review, our novel research works in both low temperature plasma chemistry and solid state plasma chemistry were described. As for low temperature plasma, the ESR study on plasma-induced radicals of several selected conventional polymers was shown including the detailed analyses of the radical structure and the mechanism by which the radicals were formed on typical degradable methacrylic polymers and cross-linkable polystyrene. One of the pharmaceutical applications of the plasma processing for drug delivery system (DDS) was also described, which includes the preparations of double-compressed tablet consisting of drugs as a core material and various types of polymers as a wall material followed by plasma-irradiation on such a tablet. As for solid state plasma, the detailed reaction mechanism of solid state mechanochemical polymerization was shown including the solid state single electron transfer and the special feature of the resulting polymers. The structural criteria for polymerizable monomer derived from the quantum chemical considerations were also established. Based on the above findings, we synthesized various polymeric prodrugs by mechanochemical polymerization and studied the nature of hydrolyses (drug release).

  13. Plasma diagnostics from intensities of resonance line series of He-like ions

    NASA Astrophysics Data System (ADS)

    Ryazantsev, S. N.; Skobelev, I. Yu.; Faenov, A. Ya.; Grum-Grzhimailo, A. N.; Pikuz, T. A.; Pikuz, S. A.

    2017-04-01

    The possibility of using the relative intensities of the 1 snp 1P1-1 s 2 1S0 transitions with n = 3-6 in He-like multicharged ions to diagnose plasma in a nonstationary ionization state is considered. The calculations performed for F VIII ions show that, at electron temperatures of T e = 10-100 eV, the intensity ratios are sensitive to the plasma electron density in the range of N e = 1016-1020 cm-3. The universal calculated dependences can be used to diagnose various kinds of recombining or ionizing plasmas containing such ions.

  14. Plasma Chamber Design and Fabrication Activities

    NASA Astrophysics Data System (ADS)

    Parodi, B.; Bianchi, A.; Cucchiaro, A.; Coletti, A.; Frosi, P.; Mazzone, G.; Pizzuto, A.; Ramogida, G.; Coppi, B.

    2006-10-01

    A fabrication procedure for a typical Plasma Chamber (PC) sector has been developed to cover all the manufacturing phases, from the raw materials specification (including metallurgical processes) to the machining operations, acceptance procedures and vacuum tests. Basically, the sector is made of shaped elements (forged or rolled) welded together using special fixtures and then machined to achieve the final dimensional accuracy. An upgraded design of the plasma chamber's vertical support that can withstand the estimated electromagnetic loads (Eddy and Halo current plus horizontal net force resulting from the worst plasma disruption scenario VDE, Vertical Displacement Event) has been completed. The maintenance of the radial support can take place hands-on with a direct access from outside the cryostat. With the present design, vacuum tightness is achieved by welding conducted with automatic welding heads. On the outer surface of the PC a dedicated duct system, filled by helium gas, is included to cool down the PC to room temperature when needed.

  15. Analysis of plasma characteristics and conductive mechanism of laser assisted pulsed arc welding

    NASA Astrophysics Data System (ADS)

    Liu, Shuangyu; Chen, Shixian; Wang, Qinghua; Li, Yanqing; Zhang, Hong; Ding, Hongtao

    2017-05-01

    This study aims to investigate the arc plasma shape and the spectral characteristics during the laser assisted pulsed arc welding process. The arc plasma shape was synchronously observed using a high speed camera, and the emission spectrum of plasma was obtained by spectrometer. The well-known Boltzmann plot method and Stark broadening were used to calculate the electron temperature and density respectively. The conductive mechanism of arc ignition in laser assisted arc hybrid welding was investigated, and it was found that the plasma current moved to the arc anode under the action of electric field. Thus, a significant parabolic channel was formed between the keyhole and the wire tip. This channel became the main method of energy transformation between the arc and the molten pool. The calculation results of plasma resistivity show that the laser plasma has low resistivity as the starting point of conductive channel formation. When the laser pulse duration increases, the intensity of the plasma radiation spectrum and the plasma electron density will increase, and the electron temperature will decrease.

  16. Positron induced scattering cross sections for hydrocarbons relevant to plasma

    NASA Astrophysics Data System (ADS)

    Singh, Suvam; Antony, Bobby

    2018-05-01

    This article explores positron scattering cross sections by simple hydrocarbons such as ethane, ethene, ethyne, propane, and propyne. Chemical erosion processes occurring on the surface due to plasma-wall interactions are an abundant source of hydrocarbon molecules which contaminate the hydrogenic plasma. These hydrocarbons play an important role in the edge plasma region of Tokamak and ITER. In addition to this, they are also one of the major components in the planetary atmospheres and astrophysical mediums. The present work focuses on calculation of different positron impact interactions with simple hydrocarbons in terms of the total cross section (Qtot), elastic cross section (Qel), direct ionization cross section (Qion), positronium formation cross section (Qps), and total ionization cross section (Qtion). Knowing that the positron-plasma study is one of the trending fields, the calculated data have diverse plasma and astrophysical modeling applications. A comprehensive study of Qtot has been provided where the inelastic cross sections have been reported for the first time. Comparisons are made with those available from the literature, and a good agreement is obtained with the measurements.

  17. Non-linear wave interaction in a plasma column

    NASA Technical Reports Server (NTRS)

    Larsen, J.-M.; Crawford, F. W.

    1979-01-01

    Non-linear three-wave interaction is analysed for propagation along a cylindrical plasma column surrounded by an infinite dielectric, in the absence of a static magnetic field. An averaged-Lagrangian method is used, and the results are specialized to parametric interaction and mode conversion, assuming an undepleted pump wave. The theory for these two types of interactions is extended to include imperfect synchronism, and the effects of loss. Computations are presented indicating that parametric growth rates of the order of a fraction of a decibel per centimeter should be obtainable for plausible laboratory plasma column parameters.

  18. Investigations of the surface activation of thermoplastic polymers by atmospheric pressure plasma treatment with a stationary plasma jet

    NASA Astrophysics Data System (ADS)

    Moritzer, Elmar; Nordmeyer, Timo; Leister, Christian; Schmidt, Martin Andreas; Grishin, Artur; Knospe, Alexander

    2016-03-01

    The production of high-quality thermoplastic parts often requires an additional process step after the injection molding stage. This may be a coating, bonding process or a 2K-injection moulding process. A commonly used process to improve the bond strength is atmospheric pressure plasma treatment. A variety of applications are realized with the aid of CNC systems. Although they ensure excellent reproducibility, they make it difficult to implement inline applications. This paper therefore examines the possibility of surface treatment using a stationary plasma jet. However, before it is possible to integrate this technology into a production process, preliminary trials need to be carried out to establish which factors influence the process. Experimental tests were performed using a special test set-up, enabling geometric, plasma-specific parameters to be identified. These results can help with the practical integration of this technology into existing production processes.

  19. Mechanism for Plasma Etching of Shallow Trench Isolation Features in an Inductively Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Agarwal, Ankur; Rauf, Shahid; He, Jim; Choi, Jinhan; Collins, Ken

    2011-10-01

    Plasma etching for microelectronics fabrication is facing extreme challenges as processes are developed for advanced technological nodes. As device sizes shrink, control of shallow trench isolation (STI) features become more important in both logic and memory devices. Halogen-based inductively coupled plasmas in a pressure range of 20-60 mTorr are typically used to etch STI features. The need for improved performance and shorter development cycles are placing greater emphasis on understanding the underlying mechanisms to meet process specifications. In this work, a surface mechanism for STI etch process will be discussed that couples a fundamental plasma model to experimental etch process measurements. This model utilizes ion/neutral fluxes and energy distributions calculated using the Hybrid Plasma Equipment Model. Experiments are for blanket Si wafers in a Cl2/HBr/O2/N2 plasma over a range of pressures, bias powers, and flow rates of feedstock gases. We found that kinetic treatment of electron transport was critical to achieve good agreement with experiments. The calibrated plasma model is then coupled to a string-based feature scale model to quantify the effect of varying process parameters on the etch profile. We found that the operating parameters strongly influence critical dimensions but have only a subtle impact on the etch depths.

  20. Enhanced magnetic field probe array for improved excluded flux calculations on the C-2U advanced beam-driven field-reversed configuration plasma experiment

    NASA Astrophysics Data System (ADS)

    Roche, T.; Thompson, M. C.; Mendoza, R.; Allfrey, I.; Garate, E.; Romero, J.; Douglass, J.

    2016-11-01

    External flux conserving coils were installed onto the exterior of the C-2U [M. W. Binderbauer et al., Phys. Plasmas 22, 056110 (2015)] confinement vessel to increase the flux confinement time of the system. The 0.5 in. stainless steel vessel wall has a skin time of ˜5 ms. The addition of the external copper coils effectively increases this time to ˜7 ms. This led to better-confined/longer-lived field-reversed configuration (FRC) plasmas. The fringing fields generated by the external coils have the side effect of rendering external field measurements invalid. Such measurements were key to the previous method of excluded flux calculation [M. C. Thompson et al., Rev. Sci. Instrum. 83, 10D709 (2012)]. A new array of B-dot probes and Rogowski coils were installed to better determine the amount of flux leaked out of the system and ultimately provide a more robust measurement of plasma parameters related to pressure balance including the excluded flux radius. The B-dot probes are surface mountable chip inductors with inductance of 33 μH capable of measuring the DC magnetic field and transient field, due to resistive current decay in the wall/coils, when coupled with active integrators. The Rogowski coils measure the total change in current in each external coil (150 A/2 ms). Currents were also actively driven in the external coils. This renders the assumption of total flux conservation invalid which further complicates the analysis process. The ultimate solution to these issues and the record breaking resultant FRC lifetimes will be presented.

  1. Enhanced magnetic field probe array for improved excluded flux calculations on the C-2U advanced beam-driven field-reversed configuration plasma experiment.

    PubMed

    Roche, T; Thompson, M C; Mendoza, R; Allfrey, I; Garate, E; Romero, J; Douglass, J

    2016-11-01

    External flux conserving coils were installed onto the exterior of the C-2U [M. W. Binderbauer et al., Phys. Plasmas 22, 056110 (2015)] confinement vessel to increase the flux confinement time of the system. The 0.5 in. stainless steel vessel wall has a skin time of ∼5 ms. The addition of the external copper coils effectively increases this time to ∼7 ms. This led to better-confined/longer-lived field-reversed configuration (FRC) plasmas. The fringing fields generated by the external coils have the side effect of rendering external field measurements invalid. Such measurements were key to the previous method of excluded flux calculation [M. C. Thompson et al., Rev. Sci. Instrum. 83, 10D709 (2012)]. A new array of B-dot probes and Rogowski coils were installed to better determine the amount of flux leaked out of the system and ultimately provide a more robust measurement of plasma parameters related to pressure balance including the excluded flux radius. The B-dot probes are surface mountable chip inductors with inductance of 33 μH capable of measuring the DC magnetic field and transient field, due to resistive current decay in the wall/coils, when coupled with active integrators. The Rogowski coils measure the total change in current in each external coil (150 A/2 ms). Currents were also actively driven in the external coils. This renders the assumption of total flux conservation invalid which further complicates the analysis process. The ultimate solution to these issues and the record breaking resultant FRC lifetimes will be presented.

  2. Inductively coupled plasma mass spectrometry (ICP MS): a versatile tool.

    PubMed

    Ammann, Adrian A

    2007-04-01

    Inductively coupled plasma (ICP) mass spectrometry (MS) is routinely used in many diverse research fields such as earth, environmental, life and forensic sciences and in food, material, chemical, semiconductor and nuclear industries. The high ion density and the high temperature in a plasma provide an ideal atomizer and element ionizer for all types of samples and matrices introduced by a variety of specialized devices. Outstanding properties such as high sensitivity (ppt-ppq), relative salt tolerance, compound-independent element response and highest quantitation accuracy lead to the unchallenged performance of ICP MS in efficiently detecting, identifying and reliably quantifying trace elements. The increasing availability of relevant reference compounds and high separation selectivity extend the molecular identification capability of ICP MS hyphenated to species-specific separation techniques. While molecular ion source MS is specialized in determining the structure of unknown molecules, ICP MS is an efficient and highly sensitive tool for target-element orientated discoveries of relevant and unknown compounds. This special-feature, tutorial article presents the principle and advantages of ICP MS, highlighting these using examples from recently published investigations. Copyright 2007 John Wiley & Sons, Ltd.

  3. A computer model of solar panel-plasma interactions

    NASA Technical Reports Server (NTRS)

    Cooke, D. L.; Freeman, J. W.

    1980-01-01

    High power solar arrays for satellite power systems are presently being planned with dimensions of kilometers, and with tens of kilovolts distributed over their surface. Such systems face many plasma interaction problems, such as power leakage to the plasma, particle focusing, and anomalous arcing. These effects cannot be adequately modeled without detailed knowledge of the plasma sheath structure and space charge effects. Laboratory studies of 1 by 10 meter solar array in a simulated low Earth orbit plasma are discussed. The plasma screening process is discussed, program theory is outlined, and a series of calibration models is presented. These models are designed to demonstrate that PANEL is capable of accurate self consistant space charge calculations. Such models include PANEL predictions for the Child-Langmuir diode problem.

  4. EDITORIAL 37th European Physical Society Conference on Plasma Physics 37th European Physical Society Conference on Plasma Physics

    NASA Astrophysics Data System (ADS)

    Mendonça, Tito; Hidalgo, Carlos

    2010-12-01

    Introduction We are very pleased to present this special issue of Plasma Physics and Controlled Fusion dedicated to another annual EPS Plasma Physics Division Conference. It contains the invited papers of the 37th Conference, which was held at the Helix Arts Centre of the Dublin City University Campus, in Dublin, Ireland, from 21 to 25 June 2010. It was locally organized by a team drawn from different Irish institutions, led by Dublin City University and Queen's University Belfast. This team was coordinated by Professor Miles Turner (DCU), with the help of Dr Deborah O'Connell (QUB) as Scientific Secretary, and Ms Samantha Fahy (DCU) as Submissions Secretary. It attracted a large number of delegates (nearly 750), coming from 37 countries. Our Irish hosts provided an excellent atmosphere for the conference and social programme, very helpful for promoting personal links between conference participants. The Conference hosted three satellite meetings, and two special evening sessions. The satellite meetings were the Third Workshop on Plasma for Environmental Issues, the International Workshop on the Role of Arcing and Hot Spots in Magnetic Fusion Devices, and the Workshop on Electric Fields, Turbulence and Self-Organization in Magnetic Plasmas. The aim of this annual EPS Conference is to bring together the different communities of plasma physicists, in order to stimulate cross-collaboration and to promote in an integrated way this area of science. As in previous Conferences, we tried to attract the more relevant researchers and to present the latest developments in plasma physics and related areas. The Programme Committee was divided into four sub-committees, representing the main areas of plasma science. These four areas were magnetic confinement fusion (MCF), still the dominant area of this Conference with the largest number of participants, beam plasma and inertial fusion (BPIF), low temperature plasmas (LTP), which attracted a significant and growing number of

  5. Plasma characteristics in the discharge region of a 20 A emission current hollow cathode

    NASA Astrophysics Data System (ADS)

    Mingming, SUN; Tianping, ZHANG; Xiaodong, WEN; Weilong, GUO; Jiayao, SONG

    2018-02-01

    Numerical calculation and fluid simulation methods were used to obtain the plasma characteristics in the discharge region of the LIPS-300 ion thruster’s 20 A emission current hollow cathode and to verify the structural design of the emitter. The results of the two methods indicated that the highest plasma density and electron temperature, which improved significantly in the orifice region, were located in the discharge region of the hollow cathode. The magnitude of plasma density was about 1021 m-3 in the emitter and orifice regions, as obtained by numerical calculations, but decreased exponentially in the plume region with the distance from the orifice exit. Meanwhile, compared to the emitter region, the electron temperature and current improved by about 36% in the orifice region. The hollow cathode performance test results were in good agreement with the numerical calculation results, which proved that that the structural design of the emitter and the orifice met the requirements of a 20 A emission current. The numerical calculation method can be used to estimate plasma characteristics in the preliminary design stage of hollow cathodes.

  6. Diagnostics of cathode material loss in cutting plasma torch

    NASA Astrophysics Data System (ADS)

    Gruber, J.; Šonský, J.; Hlína, J.

    2014-07-01

    A cutting plasma torch was observed in several ways by a high-speed camera with a focus on the cathode area. In the first experiment, the plasma arc between the nozzle tip and anode was recorded in a series of duty cycles ranging from new unworn cathodes to cathode failure due to wear and material loss. In the second experiment, we used a specially modified nozzle to observe the inside area between the cathode and the nozzle exit through a fused silica window. Finally, using tilted view, we observed a pool of molten hafnium at the cathode tip during the plasma torch operation. The process of cathode material melting, droplet formation, their expulsion and rate of cathode material loss was examined.

  7. Implementation of a plasma-neutral model in NIMROD

    NASA Astrophysics Data System (ADS)

    Taheri, S.; Shumlak, U.; King, J. R.

    2016-10-01

    Interaction between plasma fluid and neutral species is of great importance in the edge region of magnetically confined fusion plasmas. The presence of neutrals can have beneficial effects such as fueling burning plasmas and quenching the disruptions in tokamaks, as well as deleterious effects like depositing high energy particles on the vessel wall. The behavior of edge plasmas in magnetically confined systems has been investigated using computational approaches that utilize the fluid description for the plasma and Monte Carlo transport for neutrals. In this research a reacting plasma-neutral model is implemented in NIMROD to study the interaction between plasma and neutral fluids. This model, developed by E. T. Meier and U. Shumlak, combines a single-fluid magnetohydrodynamic (MHD) plasma model with a gas dynamic neutral fluid model which accounts for electron-impact ionization, radiative recombination, and resonant charge exchange. Incorporating this model into NIMROD allows the study of the interaction between neutrals and plasma in a variety of plasma science problems. An accelerated plasma moving through a neutral gas background in a coaxial electrode configuration is modeled, and the results are compared with previous calculations from the HiFi code.

  8. Numerical study of the inductive plasma coupling to ramp up the plasma density for the Linac4 H- ion source

    NASA Astrophysics Data System (ADS)

    Ohta, M.; Mattei, S.; Yasumoto, M.; Hatayama, A.; Lettry, J.

    2014-02-01

    In the Linac4 H- ion source, the plasma is generated by an RF antenna operated at 2 MHz. In order to investigate the conditions necessary for ramping up the plasma density of the Linac4 H- ion source in the low plasma density, a numerical study has been performed for a wide range of parameter space of RF coil current and initial pressure from H2 gas injection. We have employed an Electromagnetic Particle in Cell model, in which the collision processes have been calculated by a Monte Carlo method. The results have shown that the range of initial gas pressure from 2 to 3 Pa is suitable for ramping up plasma density via inductive coupling.

  9. Three-dimensional modeling of a negative ion source with a magnetic filter: impact of biasing the plasma electrode on the plasma asymmetry

    NASA Astrophysics Data System (ADS)

    Fubiani, G.; Boeuf, J. P.

    2015-10-01

    The effect on the plasma characteristics of biasing positively the plasma electrode (PE) in negative ion sources with a magnetic filter is analysed using a 3D particle-in-cell model with Monte-Carlo collisions (PIC-MCC). We specialize to the one driver (i.e. one inductively coupled radio-frequency discharge) BATMAN negative ion source and the 4-drivers (large volume) ELISE device. Both are ITER prototype high power tandem-type negative ion sources developed for the neutral beam injector (NBI) system. The plasma is generated in the driver and diffuses inside the second chamber which is magnetized. Asymmetric plasma profiles originate from the formation of an electric field transverse to the electron current flowing through the magnetic filter (Hall effect). The model shows that the importance of the asymmetry increases with the PE bias potential, i.e. with the electron flow from the driver to the extraction region and depends on the shape of the magnetic filter field. We find that although the plasma density and potential profiles may be more or less asymmetric depending on the filter field configuration, the electron current to the plasma grid is always strongly asymmetric.

  10. Cascade generation in Al laser induced plasma

    NASA Astrophysics Data System (ADS)

    Nagli, Lev; Gaft, Michael; Raichlin, Yosef; Gornushkin, Igor

    2018-05-01

    We found cascade IR generation in Al laser induced plasma. This generation includes doublet transitions 3s 25s 2S1/2 → 3s24p 2P1/2,3/2 → 3s24s 2S1/2; corresponding to strong lines at 2110 and 2117 nm, and much weaker lines at 1312-1315 nm. The 3s25s2S 1/2 starting IR generation level is directly pumped from the 3s23p 2P3/2 ground level. The starting level for UV generation at 396.2 nm (transitions 3s24s 2S1/2 → 4p 2P3/2) is populated due to the fast collisional processes in the plasma plume. These differences led to different time and special dependences on the lasing in the IR and UV spectral range within the aluminum laser induced plasma.

  11. Modeling of negative ion transport in a plasma source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riz, David; Departement de Recherches sur la Fusion Controelee CE Cadarache, 13108 St Paul lez Durance; Pamela, Jerome

    1998-08-20

    A code called NIETZSCHE has been developed to simulate the negative ion transport in a plasma source, from their birth place to the extraction holes. The ion trajectory is calculated by numerically solving the 3-D motion equation, while the atomic processes of destruction, of elastic collision H{sup -}/H{sup +} and of charge exchange H{sup -}/H{sup 0} are handled at each time step by a Monte-Carlo procedure. This code can be used to calculate the extraction probability of a negative ion produced at any location inside the source. Calculations performed with NIETZSCHE have allowed to explain, either quantitatively or qualitatively, severalmore » phenomena observed in negative ion sources, such as the isotopic H{sup -}/D{sup -} effect, and the influence of the plasma grid bias or of the magnetic filter on the negative ion extraction. The code has also shown that in the type of sources contemplated for ITER, which operate at large arc power densities (>1 W cm{sup -3}), negative ions can reach the extraction region provided if they are produced at a distance lower than 2 cm from the plasma grid in the case of 'volume production' (dissociative attachment processes), or if they are produced at the plasma grid surface, in the vicinity of the extraction holes.« less

  12. EDITORIAL: Laser and plasma accelerators Laser and plasma accelerators

    NASA Astrophysics Data System (ADS)

    Bingham, Robert

    2009-02-01

    This special issue on laser and plasma accelerators illustrates the rapid advancement and diverse applications of laser and plasma accelerators. Plasma is an attractive medium for particle acceleration because of the high electric field it can sustain, with studies of acceleration processes remaining one of the most important areas of research in both laboratory and astrophysical plasmas. The rapid advance in laser and accelerator technology has led to the development of terawatt and petawatt laser systems with ultra-high intensities and short sub-picosecond pulses, which are used to generate wakefields in plasma. Recent successes include the demonstration by several groups in 2004 of quasi-monoenergetic electron beams by wakefields in the bubble regime with the GeV energy barrier being reached in 2006, and the energy doubling of the SLAC high-energy electron beam from 42 to 85 GeV. The electron beams generated by the laser plasma driven wakefields have good spatial quality with energies ranging from MeV to GeV. A unique feature is that they are ultra-short bunches with simulations showing that they can be as short as a few femtoseconds with low-energy spread, making these beams ideal for a variety of applications ranging from novel high-brightness radiation sources for medicine, material science and ultrafast time-resolved radiobiology or chemistry. Laser driven ion acceleration experiments have also made significant advances over the last few years with applications in laser fusion, nuclear physics and medicine. Attention is focused on the possibility of producing quasi-mono-energetic ions with energies ranging from hundreds of MeV to GeV per nucleon. New acceleration mechanisms are being studied, including ion acceleration from ultra-thin foils and direct laser acceleration. The application of wakefields or beat waves in other areas of science such as astrophysics and particle physics is beginning to take off, such as the study of cosmic accelerators considered

  13. Dispersion relations for electromagnetic wave propagation in chiral plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, M. X.; Guo, B., E-mail: binguo@whut.edu.cn; Peng, L.

    2014-11-15

    The dispersion relations for electromagnetic wave propagation in chiral plasmas are derived using a simplified method and investigated in detail. With the help of the dispersion relations for each eignwave, we explore how the chiral plasmas exhibit negative refraction and investigate the frequency region for negative refraction. The results show that chirality can induce negative refraction in plasmas. Moreover, both the degree of chirality and the external magnetic field have a significant effect on the critical frequency and the bandwidth of the frequency for negative refraction in chiral plasmas. The parameter dependence of the effects is calculated and discussed.

  14. Alfven wave dispersion behavior in single- and multicomponent plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahbarnia, K.; Grulke, O.; Klinger, T.

    Dispersion relations of driven Alfven waves (AWs) are measured in single- and multicomponent plasmas consisting of mixtures of argon, helium, and oxygen in a magnetized linear cylindrical plasma device VINETA [C. Franck, O. Grulke, and T. Klinger, Phys. Plasmas 9, 3254 (2002)]. The decomposition of the measured three-dimensional magnetic field fluctuations and the corresponding parallel current pattern reveals that the wave field is a superposition of L- and R-wave components. The dispersion relation measurements agree well with calculations based on a multifluid Hall-magnetohydrodynamic model if the plasma resistivity is correctly taken into account.

  15. Effects of neutral distribution and external magnetic field on plasma momentum in electrodeless plasma thrusters

    NASA Astrophysics Data System (ADS)

    Takase, Kazuki; Takahashi, Kazunori; Takao, Yoshinori

    2018-02-01

    The effects of neutral distribution and an external magnetic field on plasma distribution and thruster performance are numerically investigated using a particle-in-cell simulation with Monte Carlo collisions (PIC-MCC) and the direct simulation Monte Carlo (DSMC) method. The modeled thruster consists of a quartz tube 1 cm in diameter and 3 cm in length, where a double-turn rf loop antenna is wound at the center of the tube and a solenoid is placed between the loop antenna and the downstream tube exit. A xenon propellant is introduced from both the upstream and downstream sides of the thruster, and the flow rates are varied while maintaining the total gas flow rate of 30 μg/s. The PIC-MCC calculations have been conducted using the neutral distribution obtained from the DSMC calculations, which were applied with different strengths of the magnetic field. The numerical results show that both the downstream gas injection and the external magnetic field with a maximum strength near the thruster exit lead to a shift of the plasma density peak from the upstream to the downstream side. Consequently, a larger total thrust is obtained when increasing the downstream gas injection and the magnetic field strength, which qualitatively agrees with a previous experiment using a helicon plasma source.

  16. Plasma volume during stress in man - Osmolality and red cell volume

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Convertino, V. A.; Mangseth, G. R.

    1979-01-01

    The purpose was (1) to test the hypothesis that in man there is a range of plasma osmolality within which the red cell volume (RCV) and mean corpuscular volume (MCV) remain essentially constant and (2) to determine the upper limit of this range. During a variety of stresses - submaximal and maximal exercise, heat and altitude exposure, +Gz acceleration, and tilting - changes in plasma osmolality between -1 and +13 mosmol/kg resulted in essentially no change in the regression of percent change in plasma volume (PV) calculated from a change in hematocrit (Hct) on that calculated from a change in Hct + hemoglobin (Hb), i.e., the RCV and MCV were constant. Factors that do not influence RCV are the level of metabolism, heat exposure at rest, and short-term orthostasis (heat-to-foot acceleration). Factors that may influence RCV are exposure to high altitude and long-term orthostasis (head-up tilting). Factors that definitely influence RCV are prior dehydration and extended periods of stress. Thus, either the Hct or the Hct + Hb equations can be used to calculate percent changes in PV under short-term periods of stress when the change in plasma osmolality is less than 13 mosmol/kg.

  17. Modeling of negative ion transport in a plasma source (invited)

    NASA Astrophysics Data System (ADS)

    Riz, David; Paméla, Jérôme

    1998-02-01

    A code called NIETZSCHE has been developed to simulate the negative ion transport in a plasma source, from their birth place to the extraction holes. The H-/D- trajectory is calculated by numerically solving the 3D motion equation, while the atomic processes of destruction, of elastic collision with H+/D+ and of charge exchange with H0/D0 are handled at each time step by a Monte Carlo procedure. This code can be used to calculate the extraction probability of a negative ion produced at any location inside the source. Calculations performed with NIETZSCHE have been allowed to explain, either quantitatively or qualitatively, several phenomena observed in negative ion sources, such as the isotopic H-/D- effect, and the influence of the plasma grid bias or of the magnetic filter on the negative ion extraction. The code has also shown that, in the type of sources contemplated for ITER, which operate at large arc power densities (>1 W cm-3), negative ions can reach the extraction region provided they are produced at a distance lower than 2 cm from the plasma grid in the case of volume production (dissociative attachment processes), or if they are produced at the plasma grid surface, in the vicinity of the extraction holes.

  18. Effect of substrate preheating temperature and coating thickness on residual stress in plasma sprayed hydroxyapatite coating

    NASA Astrophysics Data System (ADS)

    Tang, Dapei

    2015-07-01

    A thermal-mechanical coupling model was developed based on thermal-elastic- plastic theory according the special process of plasma spraying Hydroxyapatite (HA) coating upon Ti-6Al-4V substrate. On the one hand, the classical Fourier transient heat conduction equation was modified by introducing the effect item of deformation on temperature, on the other hand, the Johnson-Cook model, suitable for high temperature and high strain rate conditions, was used as constitutive equation after considering temperature softening effect, strain hardening effect and strain rate reinforcement effect. Based on the above coupling model, the residual stress field within the HA coating was simulated by using finite element method (FEM). Meanwhile, the substrate preheating temperature and coating thickness on the influence of residual stress components were calculated, respectively. The failure modes of coating were also preliminary analyzed. In addition, in order to verify the reliability of calculation, the material removal measurement technique was applied to determine the residual stress of HA coating near the interface. Some important conclusions are obtained.

  19. Plasma Onco-Immunotherapy: Novel Approach to Cancer Treatment

    NASA Astrophysics Data System (ADS)

    Fridman, Alexander

    2015-09-01

    Presentation is reviewing the newest results obtained by researchers of A.J. Drexel Plasma Institute on direct application of non-thermal plasma for direct treatment of different types of cancer by means of specific stimulation of immune system in the frameworks of the so-called onco-immunotherapy. Especial attention is paid to analysis of depth of penetration of different plasma-medical effects, from ROS, RNS, and ions to special biological signaling and immune system related processes. General aspects of the plasma-stimulation of immune system are discussed, pointing out specific medical applications. Most of experiments have been carried out using nanosecond pulsed DBD at low power and relatively low level of treatment doses, guaranteeing non-damage no-toxicity treatment regime. The nanosecond pulsed DBD physics is discussed mostly regarding its space uniformity and control of plasma parameters relevant to plasma medical treatment, and especially relevant to depth of penetration of different plasma medical effects. Detailed mechanism of the plasma-induced onco-immunotherapy has been suggested based upon preliminary in-vitro experiments with DBD treatment of different cancer cells. Sub-elements of this mechanism related to activation of macrophages and dendritic cells, specific stressing of cancer cells and the immunogenic cell death (ICD) are to be discussed based on results of corresponding in-vitro experiments. In-vivo experiments focused on the plasma-induced onco-immunotherapy were carried out in collaboration with medical doctors from Jefferson University hospital of Philadelphia. Todays achievements and nearest future prospective of clinical test focused on plasma-controlled cancer treatment are discussed in conclusion.

  20. Electron-ion collision-frequency for x-ray Thomson scattering in dense plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faussurier, Gérald, E-mail: gerald.faussurier@cea.fr; Blancard, Christophe

    2016-01-15

    Two methods are presented to calculate the electron-ion collision-frequency in dense plasmas using an average-atom model. The first one is based on the Kubo-Greenwood approach. The second one uses the Born and Lenard-Balescu approximations. The two methods are used to calculate x-ray Thomson scattering spectra. Illustrations are shown for dense beryllium and aluminum plasmas. Comparisons with experiment are presented in the case of an x-ray Thomson scattering spectrum.

  1. Electromagnetic analysis of the plasma chamber of an ECR-based charge breeder

    NASA Astrophysics Data System (ADS)

    Galatà, A.; Patti, G.; Celona, L.; Mascali, D.; Neri, L.; Torrisi, G.

    2016-02-01

    The optimization of the efficiency of an ECR-based charge breeder is a twofold task: efforts must be paid to maximize the capture of the injected 1+ ions by the confined plasma and to produce high charge states to allow post-acceleration at high energies. Both tasks must be faced by studying in detail the electrons heating dynamics, influenced by the microwave-to-plasma coupling mechanism. Numerical simulations are a powerful tools for obtaining quantitative information about the wave-to-plasma interaction process: this paper presents a numerical study of the microwaves propagation and absorption inside the plasma chamber of the PHOENIX charge breeder, which the selective production of exotic species project, under construction at Legnaro National Laboratories, will adopt as charge breeder. Calculations were carried out with a commercial 3D FEM solver: first, all the resonant frequencies were determined by considering a simplified plasma chamber; then, the realistic geometry was taken into account, including a cold plasma model of increasing complexity. The results gave important information about the power absorption and losses and will allow the improvement of the plasma model to be used in a refined step of calculation reproducing the breeding process itself.

  2. Dense simple plasmas as high-temperature liquid simple metals

    NASA Technical Reports Server (NTRS)

    Perrot, F.

    1990-01-01

    The thermodynamic properties of dense plasmas considered as high-temperature liquid metals are studied. An attempt is made to show that the neutral pseudoatom picture of liquid simple metals may be extended for describing plasmas in ranges of densities and temperatures where their electronic structure remains 'simple'. The primary features of the model when applied to plasmas include the temperature-dependent self-consistent calculation of the electron charge density and the determination of a density and temperature-dependent ionization state.

  3. The classical equation of state of fully ionized plasmas

    NASA Astrophysics Data System (ADS)

    Eisa, Dalia Ahmed

    2011-03-01

    The aim of this paper is to calculate the analytical form of the equation of state until the third virial coefficient of a classical system interacting via an effective potential of fully Ionized Plasmas. The excess osmotic pressure is represented in the forms of a convergent series expansions in terms of the plasma Parameter μ _{ab} = {{{e_a e_b χ } over {DKT}}}, where χ2 is the square of the inverse Debye radius. We consider only the thermal equilibrium plasma.

  4. GRAPE-4: A special-purpose computer for gravitational N-body problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makino, Junichiro; Taiji, Makoto; Ebisuzaki, Toshikazu

    1995-12-01

    We describe GRAPE-4, a special-purpose computer for gravitational N-body simulations. In gravitational N-body simulations, almost all computing time is spent for the calculation of interaction between particles. GRAPE-4 is a specialized hardware to calculate the interaction between particles. It is used with a general-purpose host computer that performs all calculations other than the force calculation. With this architecture, it is relatively easy to realize a massively parallel system. In 1991, we developed the GRAPE-3 system with the peak speed equivalent to 14.4 Gflops. It consists of 48 custom pipelined processors. In 1992 we started the development of GRAPE-4. The GRAPE-4more » system will consist of 1920 custom pipeline chips. Each chip has the speed of 600 Mflops, when operated on 30 MHz clock. A prototype system with two custom LSIs has been completed July 1994, and the full system is now under manufacturing.« less

  5. Axisymmetric Eigenmodes of Spheroidal Pure Electron Plasmas

    NASA Astrophysics Data System (ADS)

    Kawai, Yosuke; Saitoh, Haruhiko; Yoshida, Zensho; Kiwamoto, Yasuhito

    2010-11-01

    The axisymmetric electrostatic eigenmodes of spheroidal pure electron plasmas have been studied experimentally. It is confirmed that the observed spheroidal plasma attains a theoretically expected equilibrium density distribution, with the exception of a low-density halo distribution surrounding the plasma. When the eigenmode frequency observed for the plasma is compared with the frequency predicted by the dispersion relation derived under ideal conditions wherein the temperature is zero and the boundary is located at an infinite distance from the plasma, it is observed that the absolute value of the observed frequency is systematically higher than the theoretical prediction. Experimental examinations and numerical calculations indicate that the upward shift of the eigenmode frequency cannot be accounted for solely by the finite temperature effect, but is significantly affected by image charges induced on the conducting boundary and the resulting distortion of the density profile from the theoretical expectation.

  6. The Evolution of the Plasma Sheet Ion Composition: Storms and Recoveries: Plasma Sheet Ion Composition

    DOE PAGES

    Denton, M. H.; Thomsen, M. F.; Reeves, G. D.; ...

    2017-10-03

    The ion plasma sheet (~few hundred eV to ~few 10s keV) is usually dominated by H + ions. Here, changes in ion composition within the plasma sheet are explored both during individual events, and statistically during 54 calm-to-storm events and during 21 active-to-calm events. Ion composition data from the HOPE (Helium, Oxygen, Proton, Electron) instruments onboard Van Allen Probes satellites provide exceptional spatial and temporal resolution of the H +, O +, and He + ion fluxes in the plasma sheet. H+ shown to be the dominant ion in the plasma sheet in the calm-to-storm transition. However, the energy-flux ofmore » each ion changes in a quasi-linear manner during extended calm intervals. Heavy ions (O + and He +) become increasingly important during such periods as charge-exchange reactions result in faster loss for H + than for O + or He +. Results confirm previous investigations showing that the ion composition of the plasma sheet can be largely understood (and predicted) during calm intervals from knowledge of: (a) the composition of previously injected plasma at the onset of calm conditions, and (b) use of simple drift-physics models combined with calculations of charge-exchange losses.« less

  7. The Evolution of the Plasma Sheet Ion Composition: Storms and Recoveries: Plasma Sheet Ion Composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denton, M. H.; Thomsen, M. F.; Reeves, G. D.

    The ion plasma sheet (~few hundred eV to ~few 10s keV) is usually dominated by H + ions. Here, changes in ion composition within the plasma sheet are explored both during individual events, and statistically during 54 calm-to-storm events and during 21 active-to-calm events. Ion composition data from the HOPE (Helium, Oxygen, Proton, Electron) instruments onboard Van Allen Probes satellites provide exceptional spatial and temporal resolution of the H +, O +, and He + ion fluxes in the plasma sheet. H+ shown to be the dominant ion in the plasma sheet in the calm-to-storm transition. However, the energy-flux ofmore » each ion changes in a quasi-linear manner during extended calm intervals. Heavy ions (O + and He +) become increasingly important during such periods as charge-exchange reactions result in faster loss for H + than for O + or He +. Results confirm previous investigations showing that the ion composition of the plasma sheet can be largely understood (and predicted) during calm intervals from knowledge of: (a) the composition of previously injected plasma at the onset of calm conditions, and (b) use of simple drift-physics models combined with calculations of charge-exchange losses.« less

  8. No strict requirement for eosinophils for bone marrow plasma cell survival.

    PubMed

    Bortnick, Alexandra; Chernova, Irene; Spencer, Sean P; Allman, David

    2018-02-14

    Lasting antibody responses are maintained by long-lived plasma cells, which are thought to lodge in the BM in specialized survival niches. Eosinophils have been reported to function as a critical component of the BM survival niche where they are thought to provide pro-survival signals to nearby plasma cells. Recent study shows that many BM plasma cells are recently generated and chiefly short-lived cells, raising the possibility that rare plasma cell-eosinophil interactions are a rate-limiting step needed to establish lasting humoral immunity. To address these issues, we examined the impact of eosinophil depletion on short- and long-lived BM plasma cells in the context of antibody responses induced by both T-cell dependent and T-cell independent antigens. Surprisingly, our results failed to support a role for eosinophils in either plasma cell generation or survival. These studies included examination of plasma cell frequencies in mice lacking eosinophils either after antibody-mediated depletion, or due to mutation of the GATA1 locus. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. [Research on the identification method of LTE condition in the laser-induced plasma].

    PubMed

    Fan, Juan-juan; Huang, Dan; Wang, Xin; Zhang, Lei; Ma, Wei-guang; Dong, Lei; Yin, Wang-bao; Jia, Suo-tang

    2014-12-01

    Because of the poor accuracy of the commonly used Boltzmann plot method and double-line method, the Boltzmann-Maxwell distribution combined with the Saha-Eggert formula is proposed to improve the measurement accuracy of the plasma temperature; the simple algorithm for determining the linewidth of the emission line was established according to the relationship between the area and the peak value of the Gaussian formula, and the plasma electron density was calculated through the Stark broadening of the spectral lines; the method for identifying the plasma local thermal equilibrium (LTE) condition was established based on the McWhirter criterion. The experimental results show that with the increase in laser energy, the plasma temperature and electron density increase linearly; when the laser energy changes within 127~510 mJ, the plasma electron density changes in the range of 1.30532X10(17)~1.87322X10(17) cm(-3), the plasma temperature changes in the range of 12586~12957 K, and all the plasma generated in this experiment meets the LTE condition threshold according to the McWhirter criterion. For element Al, there exist relatively few observable lines at the same ionization state in the spectral region of the spectrometer, thus it is unable to use the Boltzmann plane method to calculate temperature. One hundred sets of Al plasma spectra were used for temperature measurement by employing the Saha-Boltzmann method and the relative standard deviation (RSD) value is 0.4%, and compared with 1.3% of the double line method, the accuracy has been substantially increased. The methods proposed can be used for rapid plasma temperature and electron density calculation, the LTE condition identification, and are valuable in studies such as free calibration, spectral effectiveness analysis, spectral temperature correction, the best collection location determination, LTE condition distribution in plasma, and so on.

  10. Foundations of modelling of nonequilibrium low-temperature plasmas

    NASA Astrophysics Data System (ADS)

    Alves, L. L.; Bogaerts, A.; Guerra, V.; Turner, M. M.

    2018-02-01

    This work explains the need for plasma models, introduces arguments for choosing the type of model that better fits the purpose of each study, and presents the basics of the most common nonequilibrium low-temperature plasma models and the information available from each one, along with an extensive list of references for complementary in-depth reading. The paper presents the following models, organised according to the level of multi-dimensional description of the plasma: kinetic models, based on either a statistical particle-in-cell/Monte-Carlo approach or the solution to the Boltzmann equation (in the latter case, special focus is given to the description of the electron kinetics); multi-fluid models, based on the solution to the hydrodynamic equations; global (spatially-average) models, based on the solution to the particle and energy rate-balance equations for the main plasma species, usually including a very complete reaction chemistry; mesoscopic models for plasma-surface interaction, adopting either a deterministic approach or a stochastic dynamical Monte-Carlo approach. For each plasma model, the paper puts forward the physics context, introduces the fundamental equations, presents advantages and limitations, also from a numerical perspective, and illustrates its application with some examples. Whenever pertinent, the interconnection between models is also discussed, in view of multi-scale hybrid approaches.

  11. Plasma influence on the dispersion properties of finite-length, corrugated waveguides

    NASA Astrophysics Data System (ADS)

    Shkvarunets, A.; Kobayashi, S.; Weaver, J.; Carmel, Y.; Rodgers, J.; Antonsen, T. M., Jr.; Granatstein, V. L.; Destler, W. W.; Ogura, K.; Minami, K.

    1996-03-01

    We present an experimental study of the electromagnetic properties of transverse magnetic modes in a corrugated-wall cavity filled with a radially inhomogeneous plasma. The shifts of the resonant frequencies of a finite-length, corrugated cavity were measured as a function of the background plasma density and the dispersion diagram was reconstructed up to a peak plasma density of 1012 cm-3. Good agreement with a calculated dispersion diagram is obtained for plasma densities below 5×1011 cm-3.

  12. Structural response calculations for a reverse ballistics test of an earth penetrator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alves, D.F.; Goudreau, G.L.

    1976-08-01

    A dynamic response calculation has been performed on a half-scale earth penetrator to be tested on a reverse ballistics test in Aug. 1976. In this test a 14 in. dia sandstone target is fired at the EP at 1800 ft/sec at normal impact. Basically two types of calculations were made. The first utilized an axisymmetric, finite element code DTVIS2 in the dynamic mode and with materials having linear elastic properties. CRT's radial and axial force histories were smoothed to eliminate grid encounter frequency and applied to the nodal points along the nose of the penetrator. Given these inputs DTVIS2 thenmore » calculated the internal dynamic response. Secondly, SAP4, a structural analysis code, is utilized to calculate axial frequencies and mode shapes of the structure. A special one dimensional display facilitates interpretation of the mode shape. DTVIS2 and SAP4 use a common mesh description. Special considerations in the calculation are the assessment of the effect of gaps and preload and the internal axial sliding of components.« less

  13. Diagnostic value of plasma morphology in patients with coronary heart disease

    NASA Astrophysics Data System (ADS)

    Malinova, Lidia I.; Sergeeva, Yuliya V.; Simonenko, Georgy V.; Tuchin, Valery V.; Denisova, Tatiana P.

    2006-08-01

    Blood plasma can be considered as a special water system with self-organization possibilities. Plasma slides as the results of wedge dehydration reflect its stereochemical interaction and their study can be used in diagnostic processes. 46 patients with coronary heart disease were studied. The main group was formed of men in age ranged from 54 to 72 years old with stable angina pectoris of II and III functional class (by Canadian classification) (n=25). The group of compare was of those who was hospitalized with diagnosis of acute coronary syndrome, men in age range 40-82. Clinical examination, basic biochemical tests and functional plasma morphology characteristics were studied. A number of qualitative and quantitative differences of blood plasma morphology of patients with chronic and acute coronary disease forms was revealed.

  14. Vibrational multiconfiguration self-consistent field theory: implementation and test calculations.

    PubMed

    Heislbetz, Sandra; Rauhut, Guntram

    2010-03-28

    A state-specific vibrational multiconfiguration self-consistent field (VMCSCF) approach based on a multimode expansion of the potential energy surface is presented for the accurate calculation of anharmonic vibrational spectra. As a special case of this general approach vibrational complete active space self-consistent field calculations will be discussed. The latter method shows better convergence than the general VMCSCF approach and must be considered the preferred choice within the multiconfigurational framework. Benchmark calculations are provided for a small set of test molecules.

  15. Special Libraries and the Corporate Political Process.

    ERIC Educational Resources Information Center

    White, Herbert S.

    1984-01-01

    This examination of the position of the special library and its services in the corporate setting highlights reasons why libraries are often taken for granted, library's role in corporate financial calculations, generalizations concerning librarian characteristics, and situations that may indicate trouble for a library that is not serving its…

  16. 12 CFR 327.15 - Emergency special assessments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... basis points on each insured depository institution based on the institution's assessment base... level which shall be close to zero or negative at the end of a calendar quarter, an emergency special... institutions based on each institution's assessment base calculated pursuant to § 327.5 for the corresponding...

  17. Enhanced magnetic field probe array for improved excluded flux calculations on the C-2U advanced beam-driven field-reversed configuration plasma experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roche, T., E-mail: troche@trialphaenergy.com; Thompson, M. C.; Mendoza, R.

    2016-11-15

    External flux conserving coils were installed onto the exterior of the C-2U [M. W. Binderbauer et al., Phys. Plasmas 22, 056110 (2015)] confinement vessel to increase the flux confinement time of the system. The 0.5 in. stainless steel vessel wall has a skin time of ∼5 ms. The addition of the external copper coils effectively increases this time to ∼7 ms. This led to better-confined/longer-lived field-reversed configuration (FRC) plasmas. The fringing fields generated by the external coils have the side effect of rendering external field measurements invalid. Such measurements were key to the previous method of excluded flux calculation [M.more » C. Thompson et al., Rev. Sci. Instrum. 83, 10D709 (2012)]. A new array of B-dot probes and Rogowski coils were installed to better determine the amount of flux leaked out of the system and ultimately provide a more robust measurement of plasma parameters related to pressure balance including the excluded flux radius. The B-dot probes are surface mountable chip inductors with inductance of 33 μH capable of measuring the DC magnetic field and transient field, due to resistive current decay in the wall/coils, when coupled with active integrators. The Rogowski coils measure the total change in current in each external coil (150 A/2 ms). Currents were also actively driven in the external coils. This renders the assumption of total flux conservation invalid which further complicates the analysis process. The ultimate solution to these issues and the record breaking resultant FRC lifetimes will be presented.« less

  18. Plasma MRI Experiments at UW-Madison

    NASA Astrophysics Data System (ADS)

    Flanagan, K.; Clark, M.; Desangles, V.; Siller, R.; Wallace, J.; Weisberg, D.; Forest, C. B.

    2015-11-01

    Experiments for driving Keplerian-like flow profiles on both the Plasma Couette Experiment Upgrade (PCX-U) and the Wisconsin Plasma Astrophysics Laboratory (WiPAL) user facility are described. Instead of driving flow at the boundaries, as is typical in many liquid metal Couette experiments, a global drive is implemented. A large radial current is drawn across a small axial field generating torque across the whole profile. This global electrically driven flow is capable of producing profiles similar to Keplerian flow. PCX-U has been purposely constructed for MRI experiments, while similar experiments on the WiPAL device show the versatility of the user facility and provide a larger plasma volume. Numerical calculations show the predicted parameter spaces for exciting the MRI in these plasmas and the equilibrium flow profiles expected. In both devices, relevant MRI parameters appear to be within reach of typical operating characteristics.

  19. A tesselation-based model for intensity estimation and laser plasma interactions calculations in three dimensions

    NASA Astrophysics Data System (ADS)

    Colaïtis, A.; Chapman, T.; Strozzi, D.; Divol, L.; Michel, P.

    2018-03-01

    A three-dimensional laser propagation model for computation of laser-plasma interactions is presented. It is focused on indirect drive geometries in inertial confinement fusion and formulated for use at large temporal and spatial scales. A modified tesselation-based estimator and a relaxation scheme are used to estimate the intensity distribution in plasma from geometrical optics rays. Comparisons with reference solutions show that this approach is well-suited to reproduce realistic 3D intensity field distributions of beams smoothed by phase plates. It is shown that the method requires a reduced number of rays compared to traditional rigid-scale intensity estimation. Using this field estimator, we have implemented laser refraction, inverse-bremsstrahlung absorption, and steady-state crossed-beam energy transfer with a linear kinetic model in the numerical code Vampire. Probe beam amplification and laser spot shapes are compared with experimental results and pf3d paraxial simulations. These results are promising for the efficient and accurate computation of laser intensity distributions in holhraums, which is of importance for determining the capsule implosion shape and risks of laser-plasma instabilities such as hot electron generation and backscatter in multi-beam configurations.

  20. Atomic rate coefficients in a degenerate plasma

    NASA Astrophysics Data System (ADS)

    Aslanyan, Valentin; Tallents, Greg

    2015-11-01

    The electrons in a dense, degenerate plasma follow Fermi-Dirac statistics, which deviate significantly in this regime from the usual Maxwell-Boltzmann approach used by many models. We present methods to calculate the atomic rate coefficients for the Fermi-Dirac distribution and present a comparison of the ionization fraction of carbon calculated using both models. We have found that for densities close to solid, although the discrepancy is small for LTE conditions, there is a large divergence from the ionization fraction by using classical rate coefficients in the presence of strong photoionizing radiation. We have found that using these modified rates and the degenerate heat capacity may affect the time evolution of a plasma subject to extreme ultraviolet and x-ray radiation such as produced in free electron laser irradiation of solid targets.

  1. Iterative methods for plasma sheath calculations: Application to spherical probe

    NASA Technical Reports Server (NTRS)

    Parker, L. W.; Sullivan, E. C.

    1973-01-01

    The computer cost of a Poisson-Vlasov iteration procedure for the numerical solution of a steady-state collisionless plasma-sheath problem depends on: (1) the nature of the chosen iterative algorithm, (2) the position of the outer boundary of the grid, and (3) the nature of the boundary condition applied to simulate a condition at infinity (as in three-dimensional probe or satellite-wake problems). Two iterative algorithms, in conjunction with three types of boundary conditions, are analyzed theoretically and applied to the computation of current-voltage characteristics of a spherical electrostatic probe. The first algorithm was commonly used by physicists, and its computer costs depend primarily on the boundary conditions and are only slightly affected by the mesh interval. The second algorithm is not commonly used, and its costs depend primarily on the mesh interval and slightly on the boundary conditions.

  2. Secondary antiproton production in relativistic plasmas

    NASA Technical Reports Server (NTRS)

    Dermer, C. D.; Ramaty, R.

    1985-01-01

    The possibility is investigated that the reported excess low energy antiproton component of the cosmic radiation results from proton-proton (p-p) interactions in relativistic plasmas. Because of both target and projectile motion in such plasmas, the antiproton production threshold in the frame of the plasma is much lower than the threshold of antiproton production in cosmic ray interactions with ambient matter. The spectrum of the resultant antiprotons therefore extends to much lower energy than in the cosmic ray case. The antiproton spectrum is calculated for relativistic thermal plasmas and the spectrum is estimated for relativistic nonthermal plasmas. As possible production sites, matter accreting onto compact objects located in the galaxy is considered. Possible overproduction of gamma rays from associated neutral pion production can be avoided if the site is optically thick to the photons but not to the antiprotons. A possible scenario involves a sufficiently large photon density that the neutral pion gamma rays are absorbed by photon-photon pair production. Escape of the antiprotons to the interstellar medium can be mediated by antineutron production.

  3. Production of organic compounds in plasmas: A comparison among electric sparks, laser-induced plasmas and UV light

    NASA Technical Reports Server (NTRS)

    Scattergood, T. W.; Mckay, C. P.; Borucki, W. J.; Giver, L. P.; Vanghyseghem, H.; Parris, J. E.; Miller, S. L.

    1991-01-01

    In order to study the production of organic compounds in plasmas (and shocks), various mixtures of N2, CH4, and H2, modeling the atmosphere of Titan, were exposed to discrete sparks, laser-induced plasmas (LIP) and ultraviolet light. The yields of HCN and simple hydrocarbons were measured and compared to those calculated from a simple quenched thermodynamic equilibrium model. The agreement between experiment and theory was fair for HCN and C2H2. However, the yields of C2H6 and other hydrocarbons were much higher than those predicted by the model. Our experiments suggest that photolysis by ultraviolet light from the plasma is an important process in the synthesis. This was confirmed by the photolysis of gas samples exposed to the light, but not to the plasma or shock waves. The results of these experiments demonstrate that, in addition to the well-known efficient synthesis of organic compounds in plasmas, the yields of saturated species, e.g., ethane, may be higher than predicted by theory and that LIP provide a convenient and clean way of simulating planetary lightning and impact plasmas in the laboratory.

  4. Strongly coupled colloidal plasmas

    NASA Astrophysics Data System (ADS)

    Thomas, Hubertus M.; Morfill, Gregor E.; Konopka, Uwe; Rothermel, Hermann; Zuzic, Milenko

    1998-11-01

    The research of strongly coupled effects in colloidal plasmas started a few years ago with the discovery of the Coulomb crystallization of micron-sized particles in a plasma. The particles are charged negatively to a few thousands of electron charges due to the flux of electrons and ions from the plasma and then react via their Coulomb-potentials. The Coulomb coupling parameter Γ - which is the ratio of the Coulomb energy between two neighboring particles to their thermal energy - could be much larger than the critical value of 172 (calculated for an one-component-plasma). That means that Coulomb-crystallization can be achieved easily. Such systems, which reach equilibrium very rapidly and can be easily tuned between their ordered and disordered states, are ideally suited for investigating the processes underlying the solid-to-liquid phase transition. Furthermore, the strongly coupled collidal plasma can be excited externally and the response can be studied in great detail dynamically. Gravity plays an important role for the production and stability of plasma crystals. In laboratory plasmas gravity has to be balanced out by the electrostatic field in the sheath of the electrodes of the experimental apparatus. Thus, in the vertical direction only monolayer crystals or crystals with a few lattice layers can be formed. This restricts the analysis to processes in 2-dimensional or ``2 1/2-dimensional'' crystals (e.g. the physics of monolayers, nano-crystals or grain boundaries). Under zero gravity larger (volume) systems are possible and the field of plasma crystal research can be extended to include the physics of 3-dimensional systems. We performed the worldwide first experiments under zero-g conditions on parabolic flights and two sounding rockets. During these experiments the behaviour of dust particles in a rf-discharge under zero-g conditions was investigated. Very interesting experiments were performed, which are possible only under low gravity conditions.

  5. Physics of Nonmagnetic Relativistic Thermal Plasmas. Ph.D. Thesis - Calif. Univ., San Diego

    NASA Technical Reports Server (NTRS)

    Dermer, C. D.

    1984-01-01

    A detailed treatment of the kinematics of relativistic systems of particles and photons is presented. In the case of a relativistic Maxwell-Boltzmann distribution of particles, the reaction rate and luminosity are written as single integrals over the invariant cross section, and the production spectrum is written as a double integral over the cross section differential in the energy of the produced particles (or photons) in the center-of-momentum system of two colliding particles. The results are applied to the calculation of the annihilation spectrum of a thermal electron-positron plasma, confirming previous numerical and analytic results. Relativistic thermal electron-ion and electron-electron bremsstrahlung are calculated exactly to lowest order, and relativistic thermal electron-positron bremsstrahlung is calculated in an approximate fashion. An approximate treatment of relativistic Comptonization is developed. The question of thermalization of a relativistic plasma is considered. A formula for the energy loss or exchange rate from the interaction of two relativistic Maxwell-Boltzmann plasmas at different temperatures is derived. Application to a stable, uniform, nonmagnetic relativistic thermal plasma is made. Comparison is made with other studies.

  6. Generalized Lenard-Balescu calculations of electron-ion temperature relaxation in beryllium plasma.

    PubMed

    Fu, Zhen-Guo; Wang, Zhigang; Li, Da-Fang; Kang, Wei; Zhang, Ping

    2015-09-01

    The problem of electron-ion temperature relaxation in beryllium plasma at various densities (0.185-18.5g/cm^{3}) and temperatures [(1.0-8)×10^{3} eV] is investigated by using the generalized Lenard-Balescu theory. We consider the correlation effects between electrons and ions via classical and quantum static local field corrections. The numerical results show that the electron-ion pair distribution function at the origin approaches the maximum when the electron-electron coupling parameter equals unity. The classical result of the Coulomb logarithm is in agreement with the quantum result in both the weak (Γ_{ee}<10^{-2}) and strong (Γ_{ee}>1) electron-electron coupling ranges, whereas it deviates from the quantum result at intermediate values of the coupling parameter (10^{-2}<Γ_{ee}<1). We find that with increasing density of Be, the Coulomb logarithm will decrease and the corresponding relaxation rate ν_{ie} will increase. In addition, a simple fitting law ν_{ie}/ν_{ie}^{(0)}=a(ρ_{Be}/ρ_{0})^{b} is determined, where ν_{ie}^{(0)} is the relaxation rate corresponding to the normal metal density of Be and ρ_{0}, a, and b are the fitting parameters related to the temperature and the degree of ionization 〈Z〉 of the system. Our results are expected to be useful for future inertial confinement fusion experiments involving Be plasma.

  7. Observation of plasma toroidal-momentum dissipation by neoclassical toroidal viscosity.

    PubMed

    Zhu, W; Sabbagh, S A; Bell, R E; Bialek, J M; Bell, M G; LeBlanc, B P; Kaye, S M; Levinton, F M; Menard, J E; Shaing, K C; Sontag, A C; Yuh, H

    2006-06-09

    Dissipation of plasma toroidal angular momentum is observed in the National Spherical Torus Experiment due to applied nonaxisymmetric magnetic fields and their plasma-induced increase by resonant field amplification and resistive wall mode destabilization. The measured decrease of the plasma toroidal angular momentum profile is compared to calculations of nonresonant drag torque based on the theory of neoclassical toroidal viscosity. Quantitative agreement between experiment and theory is found when the effect of toroidally trapped particles is included.

  8. Laboratory study of collisionless coupling between explosive debris plasma and magnetized ambient plasma

    NASA Astrophysics Data System (ADS)

    Bondarenko, A. S.; Schaeffer, D. B.; Everson, E. T.; Clark, S. E.; Lee, B. R.; Constantin, C. G.; Vincena, S.; Van Compernolle, B.; Tripathi, S. K. P.; Winske, D.; Niemann, C.

    2017-08-01

    The explosive expansion of a localized plasma cloud into a relatively tenuous, magnetized, ambient plasma characterizes a variety of astrophysical and space phenomena. In these rarified environments, collisionless electromagnetic processes rather than Coulomb collisions typically mediate the transfer of momentum and energy from the expanding "debris" plasma to the surrounding ambient plasma. In an effort to better understand the detailed physics of collisionless coupling mechanisms, compliment in situ measurements of space phenomena, and provide validation of previous computational and theoretical work, the present research jointly utilizes the Large Plasma Device and the Raptor laser facility at the University of California, Los Angeles to study the super-Alfvénic, quasi-perpendicular expansion of laser-produced carbon (C) and hydrogen (H) debris plasma through preformed, magnetized helium (He) ambient plasma via a variety of diagnostics, including emission spectroscopy, wavelength-filtered imaging, and a magnetic flux probe. Doppler shifts detected in a He1+ ion spectral line indicate that the ambient ions initially accelerate transverse to both the debris plasma flow and the background magnetic field. A qualitative analysis in the framework of a "hybrid" plasma model (kinetic ions and inertia-less fluid electrons) demonstrates that the ambient ion trajectories are consistent with the large-scale laminar electric field expected to develop due to the expanding debris. In particular, the transverse ambient ion motion provides direct evidence of Larmor coupling, a collisionless momentum exchange mechanism that has received extensive theoretical and numerical investigation. In order to quantitatively evaluate the observed Doppler shifts, a custom simulation utilizing a detailed model of the laser-produced debris plasma evolution calculates the laminar electric field and computes the initial response of a distribution of ambient test ions. A synthetic Doppler

  9. Beam-plasma dielectric tensor with Mathematica

    NASA Astrophysics Data System (ADS)

    Bret, A.

    2007-03-01

    We present a Mathematica notebook allowing for the symbolic calculation of the 3×3 dielectric tensor of an electron-beam plasma system in the fluid approximation. Calculation is detailed for a cold relativistic electron beam entering a cold magnetized plasma, and for arbitrarily oriented wave vectors. We show how one can elaborate on this example to account for temperatures, arbitrarily oriented magnetic field or a different kind of plasma. Program summaryTitle of program: Tensor Catalog identifier: ADYT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYT_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: Computers: Any computer running Mathematica 4.1. Tested on DELL Dimension 5100 and IBM ThinkPad T42. Installations: ETSI Industriales, Universidad Castilla la Mancha, Ciudad Real, Spain Operating system under which the program has been tested: Windows XP Pro Programming language used: Mathematica 4.1 Memory required to execute with typical data: 7.17 Mbytes No. of bytes in distributed program, including test data, etc.: 33 439 No. of lines in distributed program, including test data, etc.: 3169 Distribution format: tar.gz Nature of the physical problem: The dielectric tensor of a relativistic beam plasma system may be quite involved to calculate symbolically when considering a magnetized plasma, kinetic pressure, collisions between species, and so on. The present Mathematica notebook performs the symbolic computation in terms of some usual dimensionless variables. Method of solution: The linearized relativistic fluid equations are directly entered and solved by Mathematica to express the first-order expression of the current. This expression is then introduced into a combination of Faraday and Ampère-Maxwell's equations to give the dielectric tensor. Some additional manipulations are needed to express the result in terms of the

  10. Sterilization by pure oxygen plasma and by oxygen-hydrogen peroxide plasma: an efficacy study.

    PubMed

    Boscariol, M R; Moreira, A J; Mansano, R D; Kikuchi, I S; Pinto, T J A

    2008-04-02

    Plasma is an innovative sterilization method characterized by a low toxicity to operators and patients, and also by its operation at temperatures close to room temperatures. The use of different parameters for this method of sterilization and the corresponding results were analyzed in this study. A low-pressure inductive discharge was used to study the plasma sterilization processes. Oxygen and a mixture of oxygen and hydrogen peroxide were used as plasma source gases. The efficacy of the processes using different combinations of parameters such as plasma-generation method, type of gas, pressure, gas flow rate, temperature, power, and exposure time was evaluated. Two phases were developed for the processes, one using pure oxygen and the other a mixture of gases. Bacillus subtilis var. niger ATCC 9372 (Bacillus atrophaeus) spores inoculated on glass coverslips were used as biological indicators to evaluate the efficacy of the processes. All cycles were carried out in triplicate for different sublethal exposure times to calculate the D value by the enumeration method. The pour-plate technique was used to quantify the spores. D values of between 8 and 3 min were obtained. Best results were achieved at high power levels (350 and 400 W) using pure oxygen, showing that plasma sterilization is a promising alternative to other sterilization methods.

  11. Comparative analyses of plasma probe diagnostics techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godyak, V. A.; Alexandrovich, B. M.

    The subject of this paper is a comparative analysis of the plasma parameters inferred from the classical Langmuir probe procedure, from different theories of the ion current to the probe, and from measured electron energy distribution function (EEDF) obtained by double differentiation of the probe characteristic. We concluded that the plasma parameters inferred from the classical Langmuir procedure can be subjected to significant inaccuracy due to the non-Maxwellian EEDF, uncertainty of locating the plasma potential, and the arbitrariness of the ion current approximation. The plasma densities derived from the ion part of the probe characteristics diverge by as much asmore » an order of magnitude from the density calculated according to Langmuir procedure or calculated as corresponding integral of the measured EEDF. The electron temperature extracted from the ion part is always subjected to uncertainty. Such inaccuracy is attributed to modification of the EEDF for fast electrons due to inelastic electron collisions, and to deficiencies in the existing ion current theories; i.e., unrealistic assumptions about Maxwellian EEDFs, underestimation of the ion collisions and the ion ambipolar drift, and discounting deformation of the one-dimensional structure of the region perturbed by the probe. We concluded that EEDF measurement is the single reliable probe diagnostics for the basic research and industrial applications of highly non-equilibrium gas discharge plasmas. Examples of EEDF measurements point up importance of examining the probe current derivatives in real time and reiterate significance of the equipment technical characteristics, such as high energy resolution and wide dynamic range.« less

  12. Comparative analyses of plasma probe diagnostics techniques

    NASA Astrophysics Data System (ADS)

    Godyak, V. A.; Alexandrovich, B. M.

    2015-12-01

    The subject of this paper is a comparative analysis of the plasma parameters inferred from the classical Langmuir probe procedure, from different theories of the ion current to the probe, and from measured electron energy distribution function (EEDF) obtained by double differentiation of the probe characteristic. We concluded that the plasma parameters inferred from the classical Langmuir procedure can be subjected to significant inaccuracy due to the non-Maxwellian EEDF, uncertainty of locating the plasma potential, and the arbitrariness of the ion current approximation. The plasma densities derived from the ion part of the probe characteristics diverge by as much as an order of magnitude from the density calculated according to Langmuir procedure or calculated as corresponding integral of the measured EEDF. The electron temperature extracted from the ion part is always subjected to uncertainty. Such inaccuracy is attributed to modification of the EEDF for fast electrons due to inelastic electron collisions, and to deficiencies in the existing ion current theories; i.e., unrealistic assumptions about Maxwellian EEDFs, underestimation of the ion collisions and the ion ambipolar drift, and discounting deformation of the one-dimensional structure of the region perturbed by the probe. We concluded that EEDF measurement is the single reliable probe diagnostics for the basic research and industrial applications of highly non-equilibrium gas discharge plasmas. Examples of EEDF measurements point up importance of examining the probe current derivatives in real time and reiterate significance of the equipment technical characteristics, such as high energy resolution and wide dynamic range.

  13. Heat flux viscosity in collisional magnetized plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C., E-mail: cliu@pppl.gov; Fox, W.; Bhattacharjee, A.

    2015-05-15

    Momentum transport in collisional magnetized plasmas due to gradients in the heat flux, a “heat flux viscosity,” is demonstrated. Even though no net particle flux is associated with a heat flux, in a plasma there can still be momentum transport owing to the velocity dependence of the Coulomb collision frequency, analogous to the thermal force. This heat-flux viscosity may play an important role in numerous plasma environments, in particular, in strongly driven high-energy-density plasma, where strong heat flux can dominate over ordinary plasma flows. The heat flux viscosity can influence the dynamics of the magnetic field in plasmas through themore » generalized Ohm's law and may therefore play an important role as a dissipation mechanism allowing magnetic field line reconnection. The heat flux viscosity is calculated directly using the finite-difference method of Epperlein and Haines [Phys. Fluids 29, 1029 (1986)], which is shown to be more accurate than Braginskii's method [S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)], and confirmed with one-dimensional collisional particle-in-cell simulations. The resulting transport coefficients are tabulated for ease of application.« less

  14. Numerical Model of the Plasma Sheath Generated by the Plasma Source Instrument Aboard the Polar Satellite

    NASA Technical Reports Server (NTRS)

    Leung, Wing C.; Singh, Nagendra; Moore, Thomas E.; Craven, Paul D.

    2000-01-01

    The plasma sheath generated by the operation of the Plasma Source Instrument (PSI) aboard the POLAR satellite is studied by using a 3-dimensional Particle-In-Cell (PIC) code. When the satellite passes through the region of low density plasma, the satellite charges to positive potentials as high as 4050Volts due to the photoelectrons emission. In such a case, ambient core ions cannot accurately be measured or detected. The goal of the onboard PSI is to reduce the floating potential of the satellite to a sufficiently low value so that the ions in the polar wind become detectable. When the PSI is operated, an ion-rich Xenon plasma is ejected from the satellite, such that the floating potential of the satellite is reduced and is maintained at about 2Volts. Accordingly, in our 3-dimensional PIC simulation, we considered that the potential of the satellite is 2Volts as a fixed bias. Considering the relatively high density of the Xenon plasma in the sheath (approx. 10 - 10(exp 3)/cc), the ambient plasma of low density (less than 1/cc) is neglected. In the simulations, the electric fields and plasma dynamics are calculated self-consistently. We found that an "Apple" shape positive potential sheath forms surrounding the satellite. In the region near the PSI emission, a high positive potential hill develops. Near the Thermal Ion Detection Experiment (TIDE) detector away from the PSI, the potentials are sufficiently low for the ambient polar wind ions to reach it. In the simulations, it takes about a hundred electron gyroperiods for the sheath to reach a quasi-steady state. This time is approximately the time taken by the heavy Xe(+) ions to expand up to about one average Larmor radius of electrons from the satellite surface. Using the steady state sheath, we performed trajectory calculations to characterize the detector response to a highly supersonic polar wind flow. The detected ions' velocity distribution shows significant deviations from a shifted Maxwellian in the

  15. Numerical Model of the Plasma Sheath Generated by the Plasma Source Instrument Aboard the Polar Satellite

    NASA Technical Reports Server (NTRS)

    Singh, N.; Leung, W. C.; Moore, T. E.; Craven, P. D.

    2001-01-01

    The plasma sheath generated by the operation of the Plasma Source Instrument (PSI) aboard the Polar satellite is studied by using a three-dimensional particle-in-cell (PIC) code. When the satellite passes through the region of low-density plasma, the satellite charges to positive potentials as high as 40-50 V, owing to the photoelectron emission. In such a case, ambient core ions cannot accurately be measured or detected. The goal of the onboard PSI is to reduce the floating potential of the satellite to a sufficiently low value so that the ions in the polar wind become detectable. When the PSI is operated, ion-rich xenon plasma is ejected from the satellite, such that the floating potential of the satellite is reduced and is maintained at approximately 2 V. Accordingly, in our three-dimensional PIC simulation we considered that the potential of the satellite is 2 V as a fixed bias. Considering the relatively high density of the xenon plasma in the sheath (10-10(exp 3)/cc), the ambient plasma of low density (<1/cc) is neglected. In the simulations the electric fields and plasma dynamics are calculated self-consistently. We found that an 'apple'-shape positive potential sheath forms surrounding the satellite. In the region near the PSI emission a high positive potential hill develops. Near the Thermal Ion Dynamics Experiment detector away from the PSI, the potentials are sufficiently low for the ambient polar wind ions to reach it. In the simulations it takes only about a couple of tens of electron gyroperiods for the sheath to reach a quasi steady state. This time is approximately the time taken by the heavy Xe(+) ions to expand up to about one average Larmor radius of electrons from the satellite surface. After this time the expansion of the sheath in directions transverse to the ambient magnetic field slows down because the electrons are magnetized. Using the quasi steady sheath, we performed trajectory calculations to characterize the detector response to a

  16. Micrometeorite erosion of the man rings as a source of plasma in the inner Saturnian plasma torus

    NASA Technical Reports Server (NTRS)

    Pospieszalska, M. K.; Johnson, R. E.

    1991-01-01

    Micrometeorite bombardment is presently suggested to be a source of water molecules and molecular ions in the region between the outer edge of the main rings of Saturn and Encedalus, adding to those neutrals and plasma that are generated by the sputtering of icy satellites. In view of uncertainties concerning the magnitude and distribution of the ring source, an examination is conducted of limiting cases. The implications of such cases for the Cassini division are calculated, and a discussion of their possible relevance to the region's neutral and plasma cloud is presented.

  17. Potential of an emissive cylindrical probe in plasma.

    PubMed

    Fruchtman, A; Zoler, D; Makrinich, G

    2011-08-01

    The floating potential of an emissive cylindrical probe in a plasma is calculated for an arbitrary ratio of Debye length to probe radius and for an arbitrary ion composition. In their motion to the probe the ions are assumed to be collisionless. For a small Debye length, a two-scale analysis for the quasineutral plasma and for the sheath provides analytical expressions for the emitted and collected currents and for the potential as functions of a generalized mass ratio. For a Debye length that is not small, it is demonstrated that, as the Debye length becomes larger, the probe potential approaches the plasma potential and that the ion density near the probe is not smaller but rather is larger than it is in the plasma bulk.

  18. Investigation on Plasma Jet Flow Phenomena During DC Air Arc Motion in Bridge-Type Contacts

    NASA Astrophysics Data System (ADS)

    Zhai, Guofu; Bo, Kai; Chen, Mo; Zhou, Xue; Qiao, Xinlei

    2016-05-01

    Arc plasma jet flow in the air was investigated under a bridge-type contacts in a DC 270 V resistive circuit. We characterized the arc plasma jet flow appearance at different currents by using high-speed photography, and two polished contacts were used to search for the relationship between roughness and plasma jet flow. Then, to make the nature of arc plasma jet flow phenomena clear, a simplified model based on magnetohydrodynamic (MHD) theory was established and calculated. The simulated DC arc plasma was presented with the temperature distribution and the current density distribution. Furthermore, the calculated arc flow velocity field showed that the circular vortex was an embodiment of the arc plasma jet flow progress. The combined action of volume force and contact surface was the main reason of the arc jet flow. supported by National Natural Science Foundation of China (Nos. 51307030, 51277038)

  19. Simple equation for calculation of plasma clearance for evaluation of renal function without urine collection in rats.

    PubMed

    Liu, Xiang; Peng, Dejun; Tian, Hao; Lu, Chengyu

    2017-01-01

    To develop an equation for the evaluation of renal function in rats using three dilutions of plasma samples and to validate this method by comparison with a reference method. The investigation was conducted in Sprague-Dawley (SD) rats after delivery of three doses of iohexol, with blood samples collected before and after dosage using a quantitative blood collection method. Plasma iohexol concentrations were detected by high performance liquid chromatography (HPLC). The extraction recovery of iohexol from plasma was >97.30% and the calibration curve was linear (r 2  = 0.9997) over iohexol concentrations ranging from 10 to 1000 µg/mL. The method had an RE of <9.310 and intra- and inter-day RSD of <5.137% and <3.693%, respectively. The plasma clearance values obtained from the equation correlated closely (r = 0.763) with those obtained using the reference method. The relatively correlation in the results obtained using the method under investigation and the reference method indicate that this new equation can be used for preliminary assessment of renal function in rats. © 2016 Asian Pacific Society of Nephrology.

  20. Bactericidal active ingredient in cryopreserved plasma-treated water with the reduced-pH method for plasma disinfection

    NASA Astrophysics Data System (ADS)

    Kitano, Katsuhisa; Ikawa, Satoshi; Nakashima, Yoichi; Tani, Atsushi; Yokoyama, Takashi; Ohshima, Tomoko

    2016-09-01

    For the plasma disinfection of human body, plasma sterilization in liquid is crucial. We found that the plasma-treated water (PTW) has strong bactericidal activity under low pH condition. Physicochemical properties of PTW is discussed based on chemical kinetics. Lower temperature brings longer half-life and the bactericidal activity of PTW can be kept by cryopreservation. High performance PTW, corresponding to the disinfection power of 22 log reduction (B. subtilis spore), can be obtained by special plasma system equipped with cooling device. This is equivalent to 65% H2O2, 14% sodium hypochlorite and 0.33% peracetic acid, which are deadly poison for human. But, it is deactivated soon at higher temperature (4 sec. at body temperature), and toxicity to human body seems low. For dental application, PTW was effective on infected models of human extracted tooth. Although PTW has many chemical components, respective chemical components in PTW were isolated by ion chromatography. In addition to peaks of H2O2, NO2- and NO3-, a specific peak was detected. and only this fraction had bactericidal activity. Purified active ingredient of PTW is the precursor of HOO, and further details will be discussed in the presentation. MEXT (15H03583, 23340176, 25108505). NCCE (23-A-15).

  1. Electromagnetic analysis of the plasma chamber of an ECR-based charge breeder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galatà, A., E-mail: alessio.galata@lnl.infn.it; Patti, G.; Celona, L.

    2016-02-15

    The optimization of the efficiency of an ECR-based charge breeder is a twofold task: efforts must be paid to maximize the capture of the injected 1+ ions by the confined plasma and to produce high charge states to allow post-acceleration at high energies. Both tasks must be faced by studying in detail the electrons heating dynamics, influenced by the microwave-to-plasma coupling mechanism. Numerical simulations are a powerful tools for obtaining quantitative information about the wave-to-plasma interaction process: this paper presents a numerical study of the microwaves propagation and absorption inside the plasma chamber of the PHOENIX charge breeder, which themore » selective production of exotic species project, under construction at Legnaro National Laboratories, will adopt as charge breeder. Calculations were carried out with a commercial 3D FEM solver: first, all the resonant frequencies were determined by considering a simplified plasma chamber; then, the realistic geometry was taken into account, including a cold plasma model of increasing complexity. The results gave important information about the power absorption and losses and will allow the improvement of the plasma model to be used in a refined step of calculation reproducing the breeding process itself.« less

  2. A time-dependent anisotropic plasma chemistry model of the Io plasma torus

    NASA Astrophysics Data System (ADS)

    Arridge, C. S.

    2016-12-01

    The physics of the Io plasma torus is typically modelled using one box neutral-plasma chemistry models, often referred to as neutral cloud theory models (e.g., Barbosa 1994; Delamere and Bagenal 2003). These models incorporate electron impact and photoionisation, charge exchange, molecular dissociation/recombination reactions, atomic radiatiative losses and Coulomb collisional heating. Isotropic Maxwellian distributions are usually assumed in the implementation of these models. Observationally a population of suprathermal electrons has been identified in the plasma torus and theoretically they have been shown to be important in reproducing the observed ionisation balance in the torus (e.g., Barbosa 1994). In this paper we describe an anisotropic plasma chemistry model for the Io torus that is inspired by ion cyclotron wave observations (Huddleston et al. 1994; Leisner et al. 2011), ion anisotropies due to pick up (Wilson et al. 2008), and theoretical ideas on the maintenance of the suprathermal electron population (Barbosa 1994). We present both steady state calculations and also time varying solutions (e.g., Delamere et al. 2004) where increases in the neutral source rate in the torus generates perturbations in ion anisotropies that subsequently decay over a timescale much longer than the duration of the initial perturbation. We also present a method for incorporating uncertainties in reaction rates into the model.

  3. Measurements of continuum lowering in solid-density plasmas created from elements and compounds

    DOE PAGES

    Ciricosta, O.; Vinko, S. M.; Barbrel, B.; ...

    2016-05-23

    The effect of a dense plasma environment on the energy levels of an embedded ion is usually described in terms of the lowering of its continuum level. For strongly coupled plasmas, the phenomenon is intimately related to the equation of state; hence, an accurate treatment is crucial for most astrophysical and inertial-fusion applications, where the case of plasma mixtures is of particular interest. In this study, we present an experiment showing that the standard density-dependent analytical models are inadequate to describe solid-density plasmas at the temperatures studied, where the reduction of the binding energies for a given species is unaffectedmore » by the different plasma environment (ion density) in either the element or compounds of that species, and can be accurately estimated by calculations only involving the energy levels of an isolated neutral atom. Lastly, the results have implications for the standard approaches to the equation of state calculations.« less

  4. Electromagnetic Wave Transmittance Control using Anisotropic Plasma Lattice

    NASA Astrophysics Data System (ADS)

    Matlis, Eric; Corke, Thomas; Hoffman, Anthony

    2017-11-01

    Experiments of transmission through a lattice array of plasma columns have shown an absorption band close to the plasma frequency at 14 GHz. The beam was oriented at a 35° incident angle to the planar plasma cell. These experiments were designed to determine if the observed absorption was the result of the isotropic plasma medium or that of an anisotropic metamaterial. Transmission of the microwave energy was not consistent with an isotropic material in which absorption would monotonically increase below the plasma frequency. The experimental results are supported by an anisotropic model which was developed for the plasma permittivity using an effective medium approximation. The plasma columns were modeled as uniform rods with permittivity described by a Drude model while the components of the permittivity tensor was calculated using the Maxwell-Garnett effective medium theory. Electron densities of n = 4 x1012 cm-3 were assumed which is consistent with prior experimental measurements. This model confirms the existence of non-zero imaginary wave vector k in a narrow region centered about 14 GHz.

  5. Mechanisms underlying anomalous diffusion in the plasma membrane.

    PubMed

    Krapf, Diego

    2015-01-01

    The plasma membrane is a complex fluid where lipids and proteins undergo diffusive motion critical to biochemical reactions. Through quantitative imaging analyses such as single-particle tracking, it is observed that diffusion in the cell membrane is usually anomalous in the sense that the mean squared displacement is not linear with time. This chapter describes the different models that are employed to describe anomalous diffusion, paying special attention to the experimental evidence that supports these models in the plasma membrane. We review models based on anticorrelated displacements, such as fractional Brownian motion and obstructed diffusion, and nonstationary models such as continuous time random walks. We also emphasize evidence for the formation of distinct compartments that transiently form on the cell surface. Finally, we overview heterogeneous diffusion processes in the plasma membrane, which have recently attracted considerable interest. Copyright © 2015. Published by Elsevier Inc.

  6. The discharge characteristics in nitrogen helicon plasma

    NASA Astrophysics Data System (ADS)

    Zhao, Gao; Wang, Huihui; Si, Xinlu; Ouyang, Jiting; Chen, Qiang; Tan, Chang

    2017-12-01

    Discharge characteristics of helicon plasma in nitrogen and argon-nitrogen mixtures were investigated experimentally by using a Langmuir probe, a B-dot probe, and an optical emission spectrum. Helicon wave discharge is confirmed by the changes of electron density and electromagnetic signal amplitude with the increasing RF power, which shows three discharge stages in nitrogen, corresponding to E-mode, H-mode, and W-mode discharges in helicon plasma, respectively. Discharge images in the radial cross section at different discharge modes through an intensified charge coupled device (ICCD) show a rapid increase in luminous intensity along with the RF power. When the nitrogen discharge is in the W-mode, the images show that the strongest luminance locates near the plasma boundary and no blue core appears in the axial center of tube, which is always observed in argon W-mode discharge. The "big blue" or blue core is a special character in helicon plasma, but it has not been observed in nitrogen helicon plasma. In nitrogen-argon mixtures, a weak blue core is observed in ICCD images since the nitrogen content is increased. The electric field turns to the periphery in the distribution of the radial field and the electron temperature decreases with the increasing nitrogen content, especially when the blue core disappears. The different behaviors of the electron impact and the energy consumption in nitrogen helicon plasma are suggested to be responsible for the decrease in electron energy and the change in the electric field distribution.

  7. Investigating the Response and Expansion of Plasma Plumes in a Mesosonic Plasma Using the Situational Awareness Sensor Suite for the ISS (SASSI)

    NASA Technical Reports Server (NTRS)

    Gilchrist, Brian E.; Hoegy, W. R.; Krause, L. Habash; Minow, J. I.; Coffey, V. N.

    2014-01-01

    To study the complex interactions between the space environment surrounding the International Space Station (ISS) and the ISS space vehicle, we are exploring a specialized suite of plasma sensors, manipulated by the Space Station Remote Manipulator System (SSRMS) to probe the near-ISS mesosonic plasma ionosphere moving past the ISS. It is proposed that SASSI consists of the NASA Marshall Space Flight Center's (MSFC's) Thermal Ion Capped Hemispherical Spectrometer (TICHS), Thermal Electron Capped Hemispherical Spectrometer (TECHS), Charge Analyzer Responsive to Local Oscillations (CARLO), the Collimated PhotoElectron Gun (CPEG), and the University of Michigan Advanced Langmuir Probe (ALP). There are multiple expected applications for SASSI. Here, we will discuss the study of fundamental plasma physics questions associated with how an emitted plasma plume (such as from the ISS Plasma Contactor Unit (PCU)) responds and expands in a mesosonic magnetoplasma as well as emit and collect current. The ISS PCU Xe plasma plume drifts through the ionosphere and across the Earth's magnetic field, resulting in complex dynamics. This is of practical and theoretical interest pertaining to contamination concerns (e.g. energetic ion scattering) and the ability to collect and emit current between the spacecraft and the ambient plasma ionosphere. This impacts, for example, predictions of electrodynamic tether current performance using plasma contactors as well as decisions about placing high-energy electric propulsion thrusters on ISS. We will discuss the required measurements and connection to proposed instruments for this study.

  8. Plasma propulsion for space applications

    NASA Astrophysics Data System (ADS)

    Fruchtman, Amnon

    2000-04-01

    The various mechanisms for plasma acceleration employed in electric propulsion of space vehicles will be described. Special attention will be given to the Hall thruster. Electric propulsion utilizes electric and magnetic fields to accelerate a propellant to a much higher velocity than chemical propulsion does, and, as a result, the required propellant mass is reduced. Because of limitations on electric power density, electric thrusters will be low thrust engines compared with chemical rockets. The large jet velocity and small thrust of electric thrusters make them most suitable for space applications such as station keeping of GEO communication satellites, low orbit drag compensation, orbit raising and interplanetary missions. The acceleration in the thruster is either thermal, electrostatic or electromagnetic. The arcjet is an electrothermal device in which the propellant is heated by an electric arc and accelerated while passing through a supersonic nozzle to a relatively low velocity. In the Pulsed Plasma Thruster a solid propellant is accelerated by a magnetic field pressure in a way that is similar in principle to pulsed acceleration of plasmas in other, very different devices, such as the railgun or the plasma opening switch. Magnetoplasmadynamic thrusters also employ magnetic field pressure for the acceleration but with a reasonable efficiency at high power only. In an ion thruster ions are extracted from a plasma through a double grid structure. Ion thrusters provide a high jet velocity but the thrust density is low due to space-charge limitations. The Hall thruster, which in recent years has enjoyed impressive progress, employs a quasi-neutral plasma, and therefore is not subject to a space-charge limit on the current. An applied radial magnetic field impedes the mobility of the electrons so that the applied potential drops across a large region inside the plasma. Methods for separately controlling the profiles of the electric and the magnetic fields will

  9. Simple, miniaturized blood plasma extraction method.

    PubMed

    Kim, Jin-Hee; Woenker, Timothy; Adamec, Jiri; Regnier, Fred E

    2013-12-03

    A rapid plasma extraction technology that collects a 2.5 μL aliquot of plasma within three minutes from a finger-stick derived drop of blood was evaluated. The utility of the plasma extraction cards used was that a paper collection disc bearing plasma was produced that could be air-dried in fifteen minutes and placed in a mailing envelop for transport to an analytical laboratory. This circumvents the need for venipuncture and blood collection in specialized vials by a phlebotomist along with centrifugation and refrigerated storage. Plasma extraction was achieved by applying a blood drop to a membrane stack through which plasma was drawn by capillary action. During the course of plasma migration to a collection disc at the bottom of the membrane stack blood cells were removed by a combination of adsorption and filtration. After the collection disc filled with an aliquot of plasma the upper membranes were stripped from the collection card and the collection disc was air-dried. Intercard differences in the volume of plasma collected varied approximately 1% while volume variations of less than 2% were seen with hematocrit levels ranging from 20% to 71%. Dried samples bearing metabolites and proteins were then extracted from the disc and analyzed. 25-Hydroxy vitamin D was quantified by LC-MS/MS analysis following derivatization with a secosteroid signal enhancing tag that imparted a permanent positive charge to the vitamin and reduced the limit of quantification (LOQ) to 1 pg of collected vitamin on the disc; comparable to values observed with liquid-liquid extraction (LLE) of a venipuncture sample. A similar study using conventional proteomics methods and spectral counting for quantification was conducted with yeast enolase added to serum as an internal standard. The LOQ with extracted serum samples for enolase was 1 μM, linear from 1 to 40 μM, the highest concentration examined. In all respects protein quantification with extracted serum samples was comparable to

  10. Lenard-Balescu calculations and classical molecular dynamics simulations of electrical and thermal conductivities of hydrogen plasmas

    DOE PAGES

    Whitley, Heather D.; Scullard, Christian R.; Benedict, Lorin X.; ...

    2014-12-04

    Here, we present a discussion of kinetic theory treatments of linear electrical and thermal transport in hydrogen plasmas, for a regime of interest to inertial confinement fusion applications. In order to assess the accuracy of one of the more involved of these approaches, classical Lenard-Balescu theory, we perform classical molecular dynamics simulations of hydrogen plasmas using 2-body quantum statistical potentials and compute both electrical and thermal conductivity from out particle trajectories using the Kubo approach. Our classical Lenard-Balescu results employing the identical statistical potentials agree well with the simulations.

  11. Modeling Cl2/O2/Ar inductively coupled plasmas used for silicon etching: effects of SiO2 chamber wall coating

    NASA Astrophysics Data System (ADS)

    Tinck, S.; Boullart, W.; Bogaerts, A.

    2011-08-01

    In this paper, simulations are performed to gain a better insight into the properties of a Cl2/Ar plasma, with and without O2, during plasma etching of Si. Both plasma and surface properties are calculated in a self-consistent manner. Special attention is paid to the behavior of etch products coming from the wafer or the walls, and how the chamber walls can affect the plasma and the resulting etch process. Two modeling cases are considered. In the first case, the reactor walls are defined as clean (Al2O3), whereas in the second case a SiO2 coating is introduced on the reactor walls before the etching process, so that oxygen will be sputtered from the walls and introduced into the plasma. For this reason, a detailed reaction set is presented for a Cl2/O2/Ar plasma containing etched species, as well as an extensive reaction set for surface processes, including physical and chemical sputtering, chemical etching and deposition processes. Density and flux profiles of various species are presented for a better understanding of the bulk plasma during the etching process. Detailed information is also given on the composition of the surfaces at various locations of the reactor, on the etch products in the plasma and on the surface loss probabilities of the plasma species at the walls, with different compositions. It is found that in the clean chamber, walls are mostly chlorinated (Al2Cl3), with a thin layer of etch products residing on the wall. In the coated chamber, an oxy-chloride layer is grown on the walls for a few nanometers during the etching process. The Cl atom wall loss probability is found to decrease significantly in the coated chamber, hence increasing the etch rate. SiCl2, SiCl4 and SiCl3 are found to be the main etch products in the plasma, with the fraction of SiCl2 being always slightly higher. The simulation results compare well with experimental data available from the literature.

  12. Numerical simulation and analysis of electromagnetic-wave absorption of a plasma slab created by a direct-current discharge with gridded anode

    NASA Astrophysics Data System (ADS)

    Yuan, Chengxun; Tian, Ruihuan; Eliseev, S. I.; Bekasov, V. S.; Bogdanov, E. A.; Kudryavtsev, A. A.; Zhou, Zhongxiang

    2018-03-01

    In this paper, we present investigation of a direct-current discharge with a gridded anode from the point of view of using it as a means of creating plasma coating that could efficiently absorb incident electromagnetic (EM) waves. A single discharge cell consists of two parallel plates, one of which (anode) is gridded. Electrons emitted from the cathode surface are accelerated in the short interelectrode gap and are injected into the post-anode space, where they lose acquired energy on ionization and create plasma. Numerical simulations were used to investigate the discharge structure and obtain spatial distributions of plasma density in the post-anode space. The numerical model of the discharge was based on a simple hybrid approach which takes into account non-local ionization by fast electrons streaming from the cathode sheath. Specially formulated transparency boundary conditions allowed performing simulations in 1D. Simulations were carried out in air at pressures of 10 Torr and higher. Analysis of the discharge structure and discharge formation is presented. It is shown that using cathode materials with lower secondary emission coefficients can allow increasing the thickness of plasma slabs for the same discharge current, which can potentially enhance EM wave absorption. Spatial distributions of electron density obtained during simulations were used to calculate attenuation of an incident EM wave propagating perpendicularly to the plasma slab boundary. It is shown that plasma created by means of a DC discharge with a gridded anode can efficiently absorb EM waves in the low frequency range (6-40 GHz). Increasing gas pressure results in a broader range of wave frequencies (up to 500 GHz) where a considerable attenuation is observed.

  13. Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Zhu, Fengsen; Tu, Xin; Bo, Zheng; Cen, Kefa; Li, Xiaodong

    2016-05-01

    In this work, a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions. The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals, high speed photography, and optical emission spectroscopic diagnostics. Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g., 10-20 L/min) to maintain a long arc length and reasonable plasma discharge zone, in this RGA system, a lower gas flow rate (e.g., 2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions. Two different motion patterns can be clearly observed in the N2 and air RGA plasmas. The time-resolved arc voltage signals show that three different arc dynamic modes, the arc restrike mode, takeover mode, and combined modes, can be clearly identified in the RGA plasmas. The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate. supported by National Natural Science Foundation of China (No. 51576174), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120101110099) and the Fundamental Research Funds for the Central Universities (No. 2015FZA4011)

  14. Dynamics of tokamak plasma surface current in 3D ideal MHD model

    NASA Astrophysics Data System (ADS)

    Galkin, Sergei A.; Svidzinski, V. A.; Zakharov, L. E.

    2013-10-01

    Interest in the surface current which can arise on perturbed sharp plasma vacuum interface in tokamaks was recently generated by a few papers (see and references therein). In dangerous disruption events with plasma-touching-wall scenarios, the surface current can be shared with the wall leading to the strong, damaging forces acting on the wall A relatively simple analytic definition of δ-function surface current proportional to a jump of tangential component of magnetic field nevertheless leads to a complex computational problem on the moving plasma-vacuum interface, requiring the incorporation of non-linear 3D plasma dynamics even in one-fluid ideal MHD. The Disruption Simulation Code (DSC), which had recently been developed in a fully 3D toroidal geometry with adaptation to the moving plasma boundary, is an appropriate tool for accurate self-consistent δfunction surface current calculation. Progress on the DSC-3D development will be presented. Self-consistent surface current calculation under non-linear dynamics of low m kink mode and VDE will be discussed. Work is supported by the US DOE SBIR grant #DE-SC0004487.

  15. Correlation of III/V semiconductor etch results with physical parameters of high-density reactive plasmas excited by electron cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Gerhard, FRANZ; Ralf, MEYER; Markus-Christian, AMANN

    2017-12-01

    Reactive ion etching is the interaction of reactive plasmas with surfaces. To obtain a detailed understanding of this process, significant properties of reactive composite low-pressure plasmas driven by electron cyclotron resonance (ECR) were investigated and compared with the radial uniformity of the etch rate. The determination of the electronic properties of chlorine- and hydrogen-containing plasmas enabled the understanding of the pressure-dependent behavior of the plasma density and provided better insights into the electronic parameters of reactive etch gases. From the electrical evaluation of I(V) characteristics obtained using a Langmuir probe, plasmas of different compositions were investigated. The standard method of Druyvesteyn to derive the electron energy distribution functions by the second derivative of the I(V) characteristics was replaced by a mathematical model which has been evolved to be more robust against noise, mainly, because the first derivative of the I(V) characteristics is used. Special attention was given to the power of the energy dependence in the exponent. In particular, for plasmas that are generated by ECR with EM modes, the existence of Maxwellian distribution functions is not to be taken as a self-evident fact, but the bi-Maxwellian distribution was proven for Ar- and Kr-stabilized plasmas. In addition to the electron temperature, the global uniform discharge model has been shown to be useful for calculating the neutral gas temperature. To what extent the invasive method of using a Langmuir probe could be replaced with the non-invasive optical method of emission spectroscopy, particularly actinometry, was investigated, and the resulting data exhibited the same relative behavior as the Langmuir data. The correlation with etchrate data reveals the large chemical part of the removal process—most striking when the data is compared with etching in pure argon. Although the relative amount of the radial variation of plasma density and

  16. Radiative decay of keV-mass sterile neutrino in magnetized electron plasma

    NASA Astrophysics Data System (ADS)

    Dobrynina, Alexandra; Mikheev, Nicolay; Raffelt, Georg

    2017-10-01

    The radiative decay of sterile neutrinos with typical masses of 10 keV is investigated in the presence of an external magnetic field and degenerate electron plasma. Full account is taken of the modified photon dispersion relation relative to vacuum. The limiting cases of relativistic and nonrelativistic plasma are analyzed. The decay rate calculated in a strongly magnetized plasma, as a function of the electron number density, is compared with the unmagnetized plasma limit. It is found that the presence of the strong magnetic field in the electron plasma suppresses the catalyzing influence of the plasma by itself on the sterile-neutrino decay rate.

  17. Shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures

    NASA Astrophysics Data System (ADS)

    Haxhimali, Tomorr; Rudd, Robert E.; Cabot, William H.; Graziani, Frank R.

    2015-11-01

    We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 1025 ions/cc. The motion of 30 000-120 000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We systematically study different mixtures through a series of simulations with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. In the more strongly coupled plasmas, the kinetic theory does not agree well with the MD results. We develop a simple model that interpolates between classical kinetic theories at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated, ranging from moderately weakly coupled to moderately strongly coupled asymmetric plasma mixtures.

  18. PO calculation for reduction in radar cross section of hypersonic targets using RAM

    NASA Astrophysics Data System (ADS)

    Liu, Song-hua; Guo, Li-xin; Pan, Wei-tao; Chen, Wei; Xiao, Yi-fan

    2018-06-01

    The radar cross section (RCS) reduction of hypersonic targets by radar absorbing materials (RAM) coating under different reentry cases is analyzed in the C and X bands frequency range normally used for radar detection. The physical optics method is extended to both the inhomogeneous plasma sheath and RAM layer present simultaneously. The simulation results show that the absorbing coating can reduce the RCS of the plasma cloaking system and its effectiveness is related to the maximum plasma frequency. Moreover, the amount of the RCS decrease, its maxima, and the corresponding optimal RAM thickness depend on the non-uniformity and parameters of the plasma sheath. In addition, the backward RCS of the flight vehicle shrouded by plasma shielding and man-made absorber is calculated and compared to the bare cone.

  19. Plasma Density Effects on Toroidal Flow Stabilization of Edge Localized Modes

    NASA Astrophysics Data System (ADS)

    Cheng, Shikui; Zhu, Ping; Banerjee, Debabrata

    2016-10-01

    Recent EAST experiments have demonstrated mitigation and suppression of edge localized modes (ELMs) with toroidal rotation flow in higher collisionality regime, suggesting potential roles of plasma density. In this work, the effects of plasma density on the toroidal flow stabilization of the high- n edge localized modes have been extensively studied in linear calculations for a circular-shaped limiter H-mode tokamak, using the initial-value extended MHD code NIMROD. In the single MHD model, toroidal flow has a weak stabilizing effects on the high- n modes. Such a stabilization, however, can be significantly enhanced with the increase in plasma density. Furthermore, our calculations show that the enhanced stabilization of high- n modes from toroidal flow with higher edge plasma density persists in the 2-fluid MHD model. These findings may explain the ELM mitigation and suppression by toroidal rotation in higher collisionality regime due to the enhancement of plasma density obtained in EAST experiment. Supported by the National Magnetic Confinement Fusion Program of China under Grant Nos. 2014GB124002 and 2015GB101004, the 100 Talent Program and the President International Fellowship Initiative of Chinese Academy of Sciences.

  20. Finite temperature static charge screening in quantum plasmas

    NASA Astrophysics Data System (ADS)

    Eliasson, B.; Akbari-Moghanjoughi, M.

    2016-07-01

    The shielding potential around a test charge is calculated, using the linearized quantum hydrodynamic formulation with the statistical pressure and Bohm potential derived from finite temperature kinetic theory, and the temperature effects on the force between ions is assessed. The derived screening potential covers the full range of electron degeneracy in the equation of state of the plasma electrons. An attractive force between shielded ions in an arbitrary degenerate plasma exists below a critical temperature and density. The effect of the temperature on the screening potential profile qualitatively describes the ion-ion bound interaction strength and length variations. This may be used to investigate physical properties of plasmas and in molecular-dynamics simulations of fermion plasma. It is further shown that the Bohm potential including the kinetic corrections has a profound effect on the Thomson scattering cross section in quantum plasmas with arbitrary degeneracy.

  1. Plasma distribution and spacecraft charging modeling near Jupiter

    NASA Technical Reports Server (NTRS)

    Goldstein, R.; Divine, N.

    1977-01-01

    To assess the role of spacecraft charging near Jupiter, the plasma distribution in Jupiter's magnetosphere was modeled using data from the plasma analyzer experiments on Pioneer 10 (published results) and on Pioneer 11 (preliminary results). In the model, electron temperatures are kT = 4 eV throughout, whereas proton temperatures range over 100 or equal to kT or equal to 400 eV. The model fluxes and concentrations vary over three orders of magnitude among several corotating regions, including, in order to increasing distance from Jupiter, a plasma void, plasma sphere, sporadic zone, ring current, current sheet, high latitude plasma and magnetosheath. Intermediate and high energy electrons and protons (to 100 MeV) are modeled as well. The models supply the information for calculating particle fluxes to a spacecraft in the Jovian environment. The particle balance equations (including effects of secondary and photoemission) then determine the spacecraft potential.

  2. Optimization of parameters of special asynchronous electric drives

    NASA Astrophysics Data System (ADS)

    Karandey, V. Yu; Popov, B. K.; Popova, O. B.; Afanasyev, V. L.

    2018-03-01

    The article considers the solution of the problem of parameters optimization of special asynchronous electric drives. The solution of the problem will allow one to project and create special asynchronous electric drives for various industries. The created types of electric drives will have optimum mass-dimensional and power parameters. It will allow one to realize and fulfill the set characteristics of management of technological processes with optimum level of expenses of electric energy, time of completing the process or other set parameters. The received decision allows one not only to solve a certain optimizing problem, but also to construct dependences between the optimized parameters of special asynchronous electric drives, for example, with the change of power, current in a winding of the stator or rotor, induction in a gap or steel of magnetic conductors and other parameters. On the constructed dependences, it is possible to choose necessary optimum values of parameters of special asynchronous electric drives and their components without carrying out repeated calculations.

  3. Radiative processes in the intracluster plasma

    NASA Astrophysics Data System (ADS)

    Itoh, N.; Sakamoto, T.; Kusano, S.; Kawana, Y.; Nozawa, S.

    2002-02-01

    We present useful analytic fitting formulae for the study of the radiative processes which take place in the hot intracluster plasma (the plasma which exists in the clusters of galaxies). The first is for the frequency-integrated emissivity of the relativistic thermal bremsstrahlung. The Gaunt factor for the relativistic thermal bremsstrahlung as a function of the ionic charge Zj, the electron temperature Te, and the photon frequency omega has been recently calculated by us and its analytic fitting formula has been presented. In this paper we will integrate this Gaunt factor over the photon frequency omega and express the results by accurate analytic fitting formulae. These results will be useful when one wishes to evaluate the total amount of energy emitted by the hot intracluster plasma as well as other hot plasmas that exist in supernova remnants. The present results for the frequency-integrated emissivity of the thermal bremsstrahlung generally have accuracy of the order of 0.1%, thus making the present results the most accurate to date that calculate the thermal bremsstrahlung due to electron-ion scattering. The present accurate results will be especially useful for the analysis of the precision data taken by the Chandra X-Ray Observatory and XMM-Newton. The second analytic fitting formula that we will present in this paper is for the thermal Sunyaev-Zeldovich effect for clusters of galaxies. The thermal Sunyaev-Zeldovich effect for clusters of galaxies has been recently calculated with high precision by the present authors as well as by other groups. We have, in particular, presented an analytic fitting formula for this effect. In this paper we will present an analytic fitting formula which has still higher accuracy. The present fitting formula will be particularly suited for the forthcoming measurements of the kinematical Sunyaev-Zeldovich effect such as the BOLOCAM project that will be carried out in the crossover frequency region where the thermal Sunyaev

  4. Flush-mounted probe diagnostics for argon glow discharge plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Liang, E-mail: xld02345@mail.ustc.edu.cn; Cao, Jinxiang; Liu, Yu

    2014-09-15

    A comparison is made between plasma parameters measured by a flush-mounted probe (FP) and a cylindrical probe (CP) in argon glow discharge plasma. Parameters compared include the space potential, the plasma density, and the effective electron temperature. It is found that the ion density determined by the FP agrees well with the electron density determined by the CP in the quasi-neutral plasma to better than 10%. Moreover, the space potential and effective electron temperature calculated from electron energy distribution function measured by the FP is consistent with that measured by the CP over the operated discharge current and pressure ranges.more » These results present the FP can be used as a reliable diagnostic tool in the stable laboratory plasma and also be anticipated to be applied in other complicated plasmas, such as tokamaks, the region of boundary-layer, and so on.« less

  5. Particle transport in DIII-D plasmas

    NASA Astrophysics Data System (ADS)

    Kress, Peter; Mordijck, Saskia

    2017-10-01

    By analyzing the plasma opacity and density evolution during the ELM cycle in DIII-D H-mode plasmas in which the amount of gas fueling was altered, we find evidence for an inward particle pinch at the plasma edge which seems to become more pronounced at higher density. Furthermore, at the plasma edge we find a correlation between the pedestal density and opacity, which measures neutral penetration depth. The changes in edge opacity during an ELM cycle were calculated by using a detailed time history of measured plasma profiles. At the same time, the density evolution during an ELM cycle was investigated. We find that if the edge density increases through an increase in gas fueling, then opacity increases and neutral fueling penetration depth decreases. We also find that density at the top of the pedestal recovers faster following an ELM when the overall density level is higher, leading to a hollow profile inside of the pedestal top. All these results indicate that there must be an inward particle pinch in the pedestal which will be crucial in the fueling of future burning plasma devices. Supported by US DOE DE-SC0007880, DIII-D Grant Number DE-FC02-04ER54698.

  6. Development of full wave code for modeling RF fields in hot non-uniform plasmas

    NASA Astrophysics Data System (ADS)

    Zhao, Liangji; Svidzinski, Vladimir; Spencer, Andrew; Kim, Jin-Soo

    2016-10-01

    FAR-TECH, Inc. is developing a full wave RF modeling code to model RF fields in fusion devices and in general plasma applications. As an important component of the code, an adaptive meshless technique is introduced to solve the wave equations, which allows resolving plasma resonances efficiently and adapting to the complexity of antenna geometry and device boundary. The computational points are generated using either a point elimination method or a force balancing method based on the monitor function, which is calculated by solving the cold plasma dispersion equation locally. Another part of the code is the conductivity kernel calculation, used for modeling the nonlocal hot plasma dielectric response. The conductivity kernel is calculated on a coarse grid of test points and then interpolated linearly onto the computational points. All the components of the code are parallelized using MPI and OpenMP libraries to optimize the execution speed and memory. The algorithm and the results of our numerical approach to solving 2-D wave equations in a tokamak geometry will be presented. Work is supported by the U.S. DOE SBIR program.

  7. Plasma-screening effects on the electron-impact excitation of hydrogenic ions in dense plasmas

    NASA Technical Reports Server (NTRS)

    Jung, Young-Dae

    1993-01-01

    Plasma-screening effects are investigated on electron-impact excitation of hydrogenic ions in dense plasmas. Scaled cross sections Z(exp 4) sigma for 1s yields 2s and 1s yields 2p are obtained for a Debye-Hueckel model of the screened Coulomb interaction. Ground and excited bound wave functions are modified in the screened Coulomb potential (Debye-Hueckel model) using the Ritz variation method. The resulting atomic wave functions and their eigenenergies agree well with the numerical and high-order perturbation theory calculations for the interesting domain of the Debye length not less than 10. The Born approximation is used to describe the continuum states of the projectile electron. Plasma screening effects on the atomic electrons cannot be neglected in the high-density cases. Including these effects, the cross sections are appreciably increased for 1s yields 2s transitions and decreased for 1s yields 2p transitions.

  8. Laser Heating in a Dense Plasma Focus.

    DTIC Science & Technology

    The report is divided in two parts. In the first part an account is given of the measurement of the momentum distribution of the deuterons ejected from a dense plasma focus . The results show the existence of a pronounced non-Maxwellian distribution and a small population of deuterons accelerated to the voltage of the condenser bank. In the second part theoretical calculation of laser heating establish the presence of large density gradient which probably accounts for the large currents detected in such plasmas. (Author)

  9. Color representation and interpretation of special effect coatings.

    PubMed

    Ferrero, A; Perales, E; Rabal, A M; Campos, J; Martínez-Verdú, F M; Chorro, E; Pons, A

    2014-02-01

    A representation of the color gamut of special effect coatings is proposed and shown for six different samples, whose colors were calculated from spectral bidirectional reflectance distribution function (BRDF) measurements at different geometries. The most important characteristic of the proposed representation is that it allows a straightforward understanding of the color shift to be done both in terms of conventional irradiation and viewing angles and in terms of flake-based parameters. A different line was proposed to assess the color shift of special effect coatings on a*,b*-diagrams: the absorption line. Similar to interference and aspecular lines (constant aspecular and irradiation angles, respectively), an absorption line is the locus of calculated color coordinates from measurement geometries with a fixed bistatic angle. The advantages of using the absorption lines to characterize the contributions to the spectral BRDF of the scattering at the absorption pigments and the reflection at interference pigments for different geometries are shown.

  10. Molecular dynamics study of lipid bilayers modeling the plasma membranes of mouse hepatocytes and hepatomas.

    PubMed

    Andoh, Yoshimichi; Aoki, Noriyuki; Okazaki, Susumu

    2016-02-28

    Molecular dynamics (MD) calculations of lipid bilayers modeling the plasma membranes of normal mouse hepatocytes and hepatomas in water have been performed under physiological isothermal-isobaric conditions (310.15 K and 1 atm). The changes in the membrane properties induced by hepatic canceration were investigated and were compared with previous MD calculations included in our previous study of the changes in membrane properties induced by murine thymic canceration. The calculated model membranes for normal hepatocytes and hepatomas comprised 23 and 24 kinds of lipids, respectively. These included phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, lysophospholipids, and cholesterol. We referred to previously published experimental values for the mole fraction of the lipids adopted in the present calculations. The calculated structural and dynamic properties of the membranes such as lateral structure, order parameters, lateral self-diffusion constants, and rotational correlation times all showed that hepatic canceration causes plasma membranes to become more ordered laterally and less fluid. Interestingly, this finding contrasts with the less ordered structure and increased fluidity of plasma membranes induced by thymic canceration observed in our previous MD study.

  11. Molecular dynamics study of lipid bilayers modeling the plasma membranes of mouse hepatocytes and hepatomas

    NASA Astrophysics Data System (ADS)

    Andoh, Yoshimichi; Aoki, Noriyuki; Okazaki, Susumu

    2016-02-01

    Molecular dynamics (MD) calculations of lipid bilayers modeling the plasma membranes of normal mouse hepatocytes and hepatomas in water have been performed under physiological isothermal-isobaric conditions (310.15 K and 1 atm). The changes in the membrane properties induced by hepatic canceration were investigated and were compared with previous MD calculations included in our previous study of the changes in membrane properties induced by murine thymic canceration. The calculated model membranes for normal hepatocytes and hepatomas comprised 23 and 24 kinds of lipids, respectively. These included phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, lysophospholipids, and cholesterol. We referred to previously published experimental values for the mole fraction of the lipids adopted in the present calculations. The calculated structural and dynamic properties of the membranes such as lateral structure, order parameters, lateral self-diffusion constants, and rotational correlation times all showed that hepatic canceration causes plasma membranes to become more ordered laterally and less fluid. Interestingly, this finding contrasts with the less ordered structure and increased fluidity of plasma membranes induced by thymic canceration observed in our previous MD study.

  12. Fields and Plasma Structures Around ``Shining'' Black Holes: Solitary Rings and Tri-dimensional Topologies

    NASA Astrophysics Data System (ADS)

    Coppi, B.

    2012-03-01

    Field and plasma configurations that can be the distinguishing feature of and surround ``shining'' black holes have been identified. Considering the observation of the Quasi Periodic Oscillations that can be associated with inhomogeneous rotating plasmas, tri-dimensional rotating configurations have been looked for and found under special conditions. One is that these configurations are radially localized, such as narrow plasma ring pairs. Another is that the rotation frequency is nearly constant over the rings. Only axisymmetric local configurations consisting of solitary plasma rings or periodic sequences of rings are found when the gradient of the rotation frequency is (locally) significant. Assuming that the plasma pressure is scalar the problem is reduced to the solution of two coupled non-linear differential equations. One, the ``Master Equation'' [1], relates the magnetic surface function to the plasma rotation frequency that is connected to the gravity field. The other, the Vertical Equilibrium Equation, relates the plasma pressure gradient to both the Lorentz force and to the plasma density profile through the gravitational force.[4pt] [1] B. Coppi, Phys. Plasmas 18, 032901 (2011).

  13. EDITORIAL: 80 Years of Plasma 80 Years of Plasma

    NASA Astrophysics Data System (ADS)

    Franklin, R. N.; Braithwaite, N. St J.

    2009-02-01

    currents. The purpose of the series of articles collected in this volume, timed to coincide with the 80th anniversary of the establishment of plasma physics as a distinct discipline, looks at the developments in the understanding principally of (i)-(vi) in the above list, over the intervening period. The first group of articles within this special issue starts with the contribution that Langmuir made during his pre-plasma years to the light bulb and related physical phenomena. Around the same time he conducted a series of elegant studies from which developed the fundamental principles of chemical adsorption and desorption; this work is reviewed in the second article. The topic of the third article is the distinctive character of a 'region containing balanced charges of ions and electrons', especially in the form of non-equilibrium plasma, as a medium in its own right. The next group of articles is concerned with the non-neutral boundary layers between non-equilibrium plasmas and the surfaces adjacent to them. Though the region is continuous, a notional division into quasi-neutral plasma and space-charge sheath continues to stimulate much philosophical debate. The fourth grouping relates to electrical probes and electron kinetics---topics that also owe their origins to the pioneering experimental work of Langmuir. The structure of gas discharge plasmas under a variety of conditions forms the focus of the next group of papers. The final pair of articles is primarily about electrostatic waves in plasmas, and here too Langmuir laid the foundations. We acknowledge that the idea that there should be some recognition of Langmuir's role in plasmas at this time was suggested by Pierre Barroy, who completed his PhD with us in 2003. We would like to thank all contributors to this Special Issue, many of whom have been led to go back and reassess Langmuir's work. His collected papers, published by Pergamon Press in 1961, run to some 12 volumes and it is our intention to deposit a set

  14. A new tritium monitor design based on plasma source ion implantation technique

    NASA Astrophysics Data System (ADS)

    Nassar, Rafat Mohammad

    type of source is different, superior to the line-of-sight implantation and requires no additional beam handling. It is capable of implanting ion species in a broad beam configuration into the entire surface of a target. The technique requires a special ion source with special characteristics of the type obtained from a surfatron plasma source. This ion source has a large high ion density plasma with minimum contamination and produces ions of low temperature. It was constructed to ionize the sampled air and to produce a plasma over a wide range of pressure, 4-0.1 mTorr. A plasma source ion implantation cell was designed and constructed using mathematical modeling with personal computer, to optimize the essential variables of the design and to estimate the implantation rate under different operation conditions. Also, a high voltage pulse modulator was designed and constructed to produce a series of 10 musec pulses (up to 2 MHz) with a maximum magnitude of -60 kV. The developed device was capable of ionizing air samples and implanting the resulting ions into a plastic scintillator. Two different methods to enhance the collection and deposition of the tritium ions, have been proposed and assessed. A movable prototype device for monitoring environmental tritium in air has been designed and constructed. Although this prototype was not fully tested, the primary calculations have shown that measurable concentrations of tritium ions can be collected from an air sample, with tritium activity ranging from 0.3 Bq/cm3 down to 0.03 mBq/cm3, in a short time, to the order of seconds, on-line. This sensitivity fulfills the requirement for environmental monitoring.

  15. The nonlocal electron kinetics for a low-pressure glow discharge dusty plasma

    NASA Astrophysics Data System (ADS)

    Liang, Yonggan; Wang, Ying; Li, Hui; Tian, Ruihuan; Yuan, Chengxun; Kudryavtsev, A. A.; Rabadanov, K. M.; Wu, Jian; Zhou, Zhongxiang; Tian, Hao

    2018-05-01

    The nonlocal electron kinetic model based on the Boltzmann equation is developed in low-pressure argon glow discharge dusty plasmas. The additional electron-dust elastic and inelastic collision processes are considered when solving the kinetic equation numerically. The orbital motion limited theory and collision enhanced collection approximation are employed to calculate the dust surface potential. The electron energy distribution function (EEDF), effective electron temperature Teff, and dust surface potential are investigated under different plasma and dust conditions by solving the Boltzmann and the dust charging current balance equations self-consistently. A comparison of the calculation results obtained from nonlocal and local kinetic models is made. It is shown that the appearance of dust particles leads to a deviation of the EEDF from its original profile for both nonlocal and local kinetic models. With the increase in dust density and size, the effective electron temperature and dust surface potential decrease due to the high-energy electron loss on the dust surface. Meanwhile, the nonlocal and local results differ much from each other under the same calculation condition. It is concluded that, for low-pressure (PR ≤ 1 cm*Torr) glow discharge dusty plasmas, the existence of dust particles will amplify the difference of local and nonlocal EEDFs, which makes the local kinetic model more improper to determine the main parameters of the positive column. The nonlocal kinetic model should be used for the calculation of the EEDFs and dusty plasma parameters.

  16. Computationally efficient description of relativistic electron beam transport in dense plasma

    NASA Astrophysics Data System (ADS)

    Polomarov, Oleg; Sefkov, Adam; Kaganovich, Igor; Shvets, Gennady

    2006-10-01

    A reduced model of the Weibel instability and electron beam transport in dense plasma is developed. Beam electrons are modeled by macro-particles and the background plasma is represented by electron fluid. Conservation of generalized vorticity and quasineutrality of the plasma-beam system are used to simplify the governing equations. Our approach is motivated by the conditions of the FI scenario, where the beam density is likely to be much smaller than the plasma density and the beam energy is likely to be very high. For this case the growth rate of the Weibel instability is small, making the modeling of it by conventional PICs exceedingly time consuming. The present approach does not require resolving the plasma period and only resolves a plasma collisionless skin depth and is suitable for modeling a long-time behavior of beam-plasma interaction. An efficient code based on this reduced description is developed and benchmarked against the LSP PIC code. The dynamics of low and high current electron beams in dense plasma is simulated. Special emphasis is on peculiarities of its non-linear stages, such as filament formation and merger, saturation and post-saturation field and energy oscillations. *Supported by DOE Fusion Science through grant DE-FG02-05ER54840.

  17. Latitudinal oscillations of plasma within the Io torus

    NASA Technical Reports Server (NTRS)

    Cummings, W. D.; Dessler, A. J.; Hill, T. W.

    1980-01-01

    The equilibrium latitude and the period of oscillations about this equilibrium latitude are calculated for a plasma in a centrifugally dominated tilted dipole magnetic field representing Jupiter's inner magnetosphere. It is found that for a hot plasma the equilibrium latitude in the magnetic equator, for a cold plasma it is the centrifugal equator, and for a warm plasma it is somewhere in between. An illustrative model is adopted in which atoms are sputtered from the Jupiter-facing hemisphere of Io and escape Io's gravity to be subsequently ionized some distance from Io. Finally, it is shown that ionization generally does not occur at the equilibrium altitude, and that the resulting latitudinal oscillations provide an explanation for the irregularities in electron concentration within the torus, as reported by the radioastronomy experiment aboard Voyager I.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, A. A., E-mail: aai@a5.kiam.ru; Martynov, A. A., E-mail: martynov@a5.kiam.ru; Medvedev, S. Yu., E-mail: medvedev@a5.kiam.ru

    In the MHD tokamak plasma theory, the plasma pressure is usually assumed to be isotropic. However, plasma heating by neutral beam injection and RF heating can lead to a strong anisotropy of plasma parameters and rotation of the plasma. The development of MHD equilibrium theory taking into account the plasma inertia and anisotropic pressure began a long time ago, but until now it has not been consistently applied in computational codes for engineering calculations of the plasma equilibrium and evolution in tokamak. This paper contains a detailed derivation of the axisymmetric plasma equilibrium equation in the most general form (withmore » arbitrary rotation and anisotropic pressure) and description of the specialized version of the SPIDER code. The original method of calculation of the equilibrium with an anisotropic pressure and a prescribed rotational transform profile is proposed. Examples of calculations and discussion of the results are also presented.« less

  19. Direct-current cathodic vacuum arc system with magnetic-field mechanism for plasma stabilization.

    PubMed

    Zhang, H-S; Komvopoulos, K

    2008-07-01

    Filtered cathodic vacuum arc (FCVA) deposition is characterized by plasma beam directionality, plasma energy adjustment via substrate biasing, macroparticle filtering, and independent substrate temperature control. Between the two modes of FCVA deposition, namely, direct current (dc) and pulsed arc, the dc mode yields higher deposition rates than the pulsed mode. However, maintaining the dc arc discharge is challenging because of its inherent plasma instabilities. A system generating a special configuration of magnetic field that stabilizes the dc arc discharge during film deposition is presented. This magnetic field is also part of the out-of-plane magnetic filter used to focus the plasma beam and prevent macroparticle film contamination. The efficiency of the plasma-stabilizing magnetic-field mechanism is demonstrated by the deposition of amorphous carbon (a-C) films exhibiting significantly high hardness and tetrahedral carbon hybridization (sp3) contents higher than 70%. Such high-quality films cannot be produced by dc arc deposition without the plasma-stabilizing mechanism presented in this study.

  20. Plasma response measurements of non-axisymmetric magnetic perturbations on DIII-D via soft x-ray imaging

    DOE PAGES

    Shafer, Morgan W.; Unterberg, Ezekial A.; Wingen, Andreas; ...

    2014-12-29

    Recent observations on DIII-D have advanced the understanding of plasma response to applied resonant magnetic perturbations (RMPs) in both H-mode and L-mode plasmas. Three distinct 3D features localized in minor radius are imaged via filtered soft x-ray emission: (i) the formation of lobes extending from the unperturbed separatrix in the X-point region at the plasma boundary, (ii) helical kink-like perturbations in the steep-gradient region inside the separatrix, and (iii) amplified islands in the core of a low-rotation L-mode plasma. In this study, these measurements are used to test and to validate plasma response models, which are crucial for providing predictivemore » capability of edge-localized mode control. In particular, vacuum and two-fluid resistive magnetohydrodynamic(MHD) responses are tested in the regions of these measurements. At the plasma boundary in H-mode discharges with n = 3 RMPs applied, measurements compare well to vacuum-field calculations that predict lobe structures. Yet in the steep-gradient region, measurements agree better with calculations from the linear resistive two-fluid MHD code, M3D-C1. Relative to the vacuum fields, the resistive two-fluid MHD calculations show a reduction in the pitch-resonant components of the normal magnetic field (screening), and amplification of non-resonant components associated with ideal kink modes. However, the calculations still over-predict the amplitude of the measuredperturbation by a factor of 4. In a slowly rotating L-mode plasma with n = 1 RMPs, core islands are observed amplified from vacuum predictions. Finally, these results indicate that while the vacuum approach describes measurements in the edge region well, it is important to include effects of extended MHD in the pedestal and deeper in the plasma core.« less

  1. Electron current extraction from a permanent magnet waveguide plasma cathode.

    PubMed

    Weatherford, B R; Foster, J E; Kamhawi, H

    2011-09-01

    An electron cyclotron resonance plasma produced in a cylindrical waveguide with external permanent magnets was investigated as a possible plasma cathode electron source. The configuration is desirable in that it eliminates the need for a physical antenna inserted into the plasma, the erosion of which limits operating lifetime. Plasma bulk density was found to be overdense in the source. Extraction currents over 4 A were achieved with the device. Measurements of extracted electron currents were similar to calculated currents, which were estimated using Langmuir probe measurements at the plasma cathode orifice and along the length of the external plume. The influence of facility effects and trace ionization in the anode-cathode gap are also discussed. © 2011 American Institute of Physics

  2. The Road not Taken: Less Traveled Roads from the TGN to the Plasma Membrane

    PubMed Central

    Spang, Anne

    2015-01-01

    The trans-Golgi network functions in the distribution of cargo into different transport vesicles that are destined to endosomes, lysosomes and the plasma membrane. Over the years, it has become clear that more than one transport pathway promotes plasma membrane localization of proteins. In spite of the importance of temporal and spatial control of protein localization at the plasma membrane, the regulation of sorting into and the formation of different transport containers are still poorly understood. In this review different transport pathways, with a special emphasis on exomer-dependent transport, and concepts of regulation and sorting at the TGN are discussed. PMID:25764365

  3. The Road not Taken: Less Traveled Roads from the TGN to the Plasma Membrane.

    PubMed

    Spang, Anne

    2015-03-10

    The trans-Golgi network functions in the distribution of cargo into different transport vesicles that are destined to endosomes, lysosomes and the plasma membrane. Over the years, it has become clear that more than one transport pathway promotes plasma membrane localization of proteins. In spite of the importance of temporal and spatial control of protein localization at the plasma membrane, the regulation of sorting into and the formation of different transport containers are still poorly understood. In this review different transport pathways, with a special emphasis on exomer-dependent transport, and concepts of regulation and sorting at the TGN are discussed.

  4. Dressed soliton in quantum dusty pair-ion plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Prasanta; Muniandy, S. V.; Wong, C. S.

    Nonlinear propagation of a quantum ion-acoustic dressed soliton is studied in a dusty pair-ion plasma. The Korteweg-de Vries (KdV) equation is derived using reductive perturbation technique. A higher order inhomogeneous differential equation is obtained for the higher order correction. The expression for a dressed soliton is calculated using a renormalization method. The expressions for higher order correction are determined using a series solution technique developed by Chatterjee et al. [Phys. Plasmas 16, 072102 (2009)].

  5. Improvement of technical purpose materials performance characteristics with the radio frequency low pressure plasma

    NASA Astrophysics Data System (ADS)

    Makhotkina, L. Yu; Khristoliubova, V. I.

    2017-11-01

    The main aim of the work is to solve the actual problem of increasing the competitiveness of tanning products by reducing the prime cost and improving the quality of finished products due to the increased durability of the working elements of tanneries. The impact of the low pressure radio frequency (RF) plasma in the processes of treating for modification of the materials for special purposes is considered in the article. The results of working elements of tanneries and the materials for special purposes sample processing by a RF low pressure plasma are described. As a result of leather materials nano structuring and nano modifying physical, mechanical and hygienic characteristics were increased. Processing of the technical purpose materials allows to increase operational performance of products and extend their lifespan.

  6. Colliding Laser-Produced Plasmas on LaPD

    NASA Astrophysics Data System (ADS)

    Collette, Andrew; Gekelman, Walter

    2008-11-01

    The expansion and interaction of dense plasmas in the presence of a magnetized background plasma is important in many astrophysical processes. We describe a series of experiments which involve the collision of two dense (initially n > 10^15cm-3) laser-produced plasmas within an ambient, highly magnetized background plasma at the UCLA Large Plasma Device facility. These plasmas form diamagnetic cavities in which a large fraction of the background field (600G) has been expelled. Fast (3ns) camera observations of this experiment recorded complicated structures, including coherent corrugated structures on the bubble surfaces. The data hint at the presence of turbulence in the interaction. In order to directly investigate the evolution of the magnetic field, we developed a novel diagnostic system composed of small (1-mm) 3-axis differential magnetic field probes, in conjunction with a vacuum ceramic motor system capable of sub-micron positioning accuracy. Using an ensemble of magnetic field data from fixed and movable probes, we calculate the cross-spectral function, from which the dominant modes and ultimately the dispersion relation of waves in this region may be deduced.

  7. Thermodynamic properties and transport coefficients of two-temperature helium thermal plasmas

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoxue; Murphy, Anthony B.; Li, Xingwen

    2017-03-01

    Helium thermal plasmas are in widespread use in arc welding and many other industrial applications. Simulation of these processes relies on accurate plasma property data, such as plasma composition, thermodynamic properties and transport coefficients. Departures from LTE (local thermodynamic equilibrium) generally occur in some regions of helium plasmas. In this paper, properties are calculated allowing for different values of the electron temperature, T e, and heavy-species temperature, T h, at atmospheric pressure from 300 K to 30 000 K. The plasma composition is first calculated using the mass action law, and the two-temperature thermodynamic properties are then derived. The viscosity, diffusion coefficients, electrical conductivity and thermal conductivity of the two-temperature helium thermal plasma are obtained using a recently-developed method that retains coupling between electrons and heavy species by including the electron-heavy-species collision term in the heavy-species Boltzmann equation. It is shown that the viscosity and the diffusion coefficients strongly depend on non-equilibrium ratio θ (θ ={{T}\\text{e}}/{{T}\\text{h}} ), through the plasma composition and the collision integrals. The electrical conductivity, which depends on the electron number density and ordinary diffusion coefficients, and the thermal conductivity have similar dependencies. The choice of definition of the Debye length is shown to affect the electrical conductivity significantly for θ  >  1. By comparing with literature data, it is shown that the coupling between electrons and heavy species has a significant influence on the electrical conductivity, but not on the viscosity. Plasma properties are tabulated in the supplementary data.

  8. PREFACE: 26th Symposium on Plasma Science for Materials (SPSM-26)

    NASA Astrophysics Data System (ADS)

    2014-06-01

    26th Symposium on Plasma Science for Materials (SPSM-26) Takayuki Watanabe The 26th Symposium on Plasma Science for Materials (SPSM-26) was held in Fukuoka, Japan on September 23-24, 2013. SPSM has been held annually since 1988 under the sponsorship of The 153rd Committee on Plasma Materials Science, Japan Society for the Promotion of Science (JSPS). This symposium is one of the major activities of the Committee, which is organized by researchers in academia and industry for the purpose of advancing intersectional scientific information exchange and discussion of science and technology of plasma materials processing. Plasma processing have attracted extensive attention due to their unique advantages, and it is expected to be utilized for a number of innovative industrial applications such as synthesis of high-quality and high-performance nanomaterials. The advantages of plasmas including high chemical reactivity in accordance with required chemical reactions are beneficial for innovative processing. In recent years, plasma materials processing with reactive plasmas has been extensively employed in the fields of environmental issues and biotechnology. This conference seeks to bring different scientific communities together to create a forum for discussing the latest developments and issues. The conference provides a platform for the exploration of both fundamental topics and new applications of plasmas by the contacts between science, technology, and industry. The conference was organized in plenary lectures, invited, contributed oral presentations, and poster sessions. At this meeting, we had 142 participants from 10 countries and 104 presentations, including 11 invited presentations. This year, we arranged special topical sessions that cover Plasma Medicine and Biotechnologies, Business and Academia Cooperation, Plasma with Liquids, Plasma Processes for Nanomaterials, together with Basic, Electronics, and Thermal Plasma sessions. This special issue presents 28

  9. Simulation of Dual-Electrode Capacitively Coupled Plasma Discharges

    NASA Astrophysics Data System (ADS)

    Lu, Yijia; Ji, Linhong; Cheng, Jia

    2016-12-01

    Dual-electrode capacitively coupled plasma discharges are investigated here to lower the non-uniformity of plasma density. The dual-electrode structure proposed by Jung splits the electrode region and increases the flexibility of fine tuning non-uniformity. Different RF voltages, frequencies, phase-shifts and electrode areas are simulated and the influences are discussed. RF voltage and electrode area have a non-monotonic effect on non-uniformity, while frequency has a monotonic effect. Phase-shift has a cyclical influence on non-uniformity. A special combination of 224 V voltage and 11% area ratio with 10 MHz lowers the non-uniformity of the original set (200 V voltage and 0% area ratio with 10 MHz) by 46.5%. The position of the plasma density peak at the probe line has been tracked and properly tuning the phase-shift can obtain the same trace as tuning frequency or voltage. supported by National Natural Science Foundation of China (No. 51405261)

  10. Plasma medicine in the Netherlands

    NASA Astrophysics Data System (ADS)

    Kroesen, Gerrit

    2012-10-01

    Eindhoven, the Netherlands was one of the locations were Plasma Medicine originated: Eva Stoffels was one of the founders of the field. Since then, the attention for the field steadily increased. Nowadays, strong collaborations exist between the Eindhoven University of Technology (TU/e) and the Red Cross Burn Wound Hospital in Beverwijk, the Amsterdam Medical Center, the Maxima Medical Center in Eindhoven, the Radboud University in Nijmegen, the Free University in Amsterdam, and also companies, both large industries (Philips) and SME's (Vabrema, Lavoisier, Plastech). At TU/e we focus on the plasma itself: developing real time non-invasive diagnostics like TALIF, LIF, IF absorption, Thomson, Rayleigh and Raman scattering, mass spectroscopy, etc, while at the same time developing numerical models on the MD2D platform. For the biology, microbiology and medical aspects we rely on our colleagues who have specialized in those areas. Lesions that are studied are burn wounds, permanent inflammations, diabetic feet, skin infections, and internal diseases like Crohn's disease.

  11. Dropper for micron and submicron size powders for a plasma mass filter

    NASA Astrophysics Data System (ADS)

    Evans, Eugene S.; Zweben, Stewart J.; Gueroult, Renaud; Fisch, Nathaniel J.; Levinton, Fred

    2014-10-01

    The goal of the Plasma Mass Filter (PMF) experiment at PPPL, in collaboration with Nova Photonics, Inc., is to achieve separation between high-Z and low-Z atoms, for possible application to processing of nuclear waste to remove the highly radioactive high-Z components. The PMF features a rotating plasma column in which centrifugal forces push high-mass ions out of the plasma radially, while low-mass ions exit the plasma axially. In order to control the injection location, high-Z materials are introduced in powder form into the PMF plasma. The current experiment is limted to ~1 kW RF, giving a calculated maximum flow rate of ~0.1 mg/s. An electron temperature of a few eV and assumptions about the residence time of the dust particles in the PMF plasma limits the calculated maximum particle size to ~1 μm. While previous dusty plasma experiments have dealt with particles on the order of 2-3 μm, submicron particles are comparatively more difficult to manipulate under vacuum due to increased Van Der Waals and electrostatic forces. A powder dropper capable of reliably dropping micron and submicron-size particles at this flow rate is being developed, consisting of a mesh-bottomed container that is coupled to vibration motors. This work supported by DOE contract DE-AC02-09CH11466.

  12. Influence of damping on proton energy loss in plasmas of all degeneracies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barriga-Carrasco, Manuel D.

    2007-07-15

    The purpose of the present paper is to describe the effects of electron-electron collisions on the stopping power of plasmas of any degeneracy. Plasma targets are considered fully ionized so electronic stopping is only due to the free electrons. We focus our analysis on plasmas which electronic density is around solid values n{sub e}{approx_equal}10{sup 23} cm{sup -3} and which temperature is around T{approx_equal}10 eV; these plasmas are in the limit of weakly coupled plasmas. This type of plasma has not been studied extensively though it is very important for inertial confinement fusion. The electronic stopping is obtained from an exactmore » quantum mechanical evaluation, which takes into account the degeneracy of the target plasma, and later it is compared with common classical and degenerate approximations. Differences are around 30% in some cases which can produce bigger mistakes in further energy deposition and projectile range studies. Then we consider electron-electron collisions in the exact quantum mechanical electronic stopping calculation. Now the maximum stopping occurs at velocities smaller than for the calculations without considering collisions for all kinds of plasmas analyzed. The energy loss enhances for velocities smaller than the velocity at maximum while decreases for higher velocities. Latter effects are magnified with increasing collision frequency. Differences with the same results for the case of not taking into account collisions are around 20% in the analyzed cases.« less

  13. Nonlinear dynamics of beam-plasma instability in a finite magnetic field

    NASA Astrophysics Data System (ADS)

    Bogdankevich, I. L.; Goncharov, P. Yu.; Gusein-zade, N. G.; Ignatov, A. M.

    2017-06-01

    The nonlinear dynamics of beam-plasma instability in a finite magnetic field is investigated numerically. In particular, it is shown that decay instability can develop. Special attention is paid to the influence of the beam-plasma coupling factor on the spectral characteristics of a plasma relativistic microwave accelerator (PRMA) at different values of the magnetic field. It is shown that two qualitatively different physical regimes take place at two values of the external magnetic field: B 0 = 4.5 kG (Ω ω B p ) and 20 kG (Ω B ≫ ωp). For B 0 = 4.5 kG, close to the actual experimental value, there exists an optimal value of the gap length between the relativistic electron beam and the plasma (and, accordingly, an optimal value of the coupling factor) at which the PRMA output power increases appreciably, while the noise level decreases.

  14. Calculated Drag of an Aerial Refueling Assembly Through Airplane Performance Analysis

    NASA Technical Reports Server (NTRS)

    Vachon, Jake; Ray, Ronald; Calianno, Carl

    2004-01-01

    This viewgraph document reviews NASA Dryden's work on Aerial refueling, with specific interest in calculating the drag of the refueling system. The aerodynamic drag of an aerial refueling assembly was calculated during the Automated Aerial Refueling project at the NASA Dryden Flight Research Center. An F/A-18A airplane was specially instrumented to obtain accurate fuel flow measurements and to determine engine thrust

  15. In vitro degradation of neurotensin in human plasma.

    PubMed

    Lee, Y C; Uttenthal, L O; Smith, H A; Bloom, S R

    1986-01-01

    To study the degradation of neurotensin in plasma in vitro, fresh human plasma was incubated with neurotensin in the presence and absence of the peptidase inhibitors pepstatin A, EDTA, PMSF and aprotinin. The half-time of disappearance of neurotensin at 37 degrees C was calculated to be 226 min in vitro as opposed to 1.4 min in vivo when measured by radioimmunoassay with a C-terminally directed neurotensin antiserum. Both gel filtration and reversed phase high-pressure liquid chromatography (HPLC) showed that the main degradation product of neurotensin in human plasma in vitro was chromatographically and immunologically identical to neurotensin 1-8 and HPLC also demonstrated the formation of neurotensin 1-11. The loss of neurotensin incubated in human plasma in vitro was greatly reduced by EDTA but not by the other peptidase inhibitors tested. In this respect peptidase(s) responsible for the degradation of neurotensin in plasma differ from those present in brain homogenates. EDTA may be of importance in the preservation of neurotensin in plasma samples.

  16. Designing drug regimens for special intensive care unit populations

    PubMed Central

    Erstad, Brian L

    2015-01-01

    This review is intended to help clinicians design drug regimens for special populations of critically ill patients with extremes of body size, habitus and composition that make drug choice or dosing particularly challenging due to the lack of high-level evidence on which to make well-informed clinical decisions. The data sources included a literature search of MEDLINE and EMBASE with reviews of reference lists of retrieved articles. Abstracts of original research investigations and review papers were reviewed for their relevance to drug choice or dosing in the following special critically ill populations: patients with more severe forms of bodyweight or height, patients with amputations or missing limbs, pregnant patients, and patients undergoing extracorporeal membrane oxygenation or plasma exchange. Relevant papers were retrieved and evaluated, and their associated reference lists were reviewed for citations that may have been missed through the electronic search strategy. Relevant original research investigations and review papers that could be used to formulate general principles for drug choice or dosing in special populations of critically ill patients were extracted. Randomized studies with clinically relevant endpoints were not available for performing quantitative analyses. Critically ill patients with changes in body size, habitus and composition require special consideration when designing medication regimens, but there is a paucity of literature on which to make drug-specific, high-level evidence-based recommendations. Based on the evidence that is available, general recommendations are provided for drug choice or dosing in special critically ill populations. PMID:25938029

  17. Plasma shield lasertripsy: in vitro studies.

    PubMed

    Bhatta, K M; Rosen, D I; Dretler, S P

    1989-10-01

    A technique for safer and more effective pulsed laser lithotripsy of urinary and biliary calculi was investigated in vitro. The technique involves enclosing the distal end of the laser delivery fiber in a "plasma shield." The plasma shield is a specially designed metal cap that serves to transfer the laser-induced mechanical impulse to the calculus while shielding surrounding tissue from direct laser exposure and thermal radiation. The metal cap also offers the advantage of effectively blunting the sharp fiber tip and improving its visualization under fluoroscopy. Plasma shield lithotripsy using a 200 micron quartz fiber inserted into a section of a modified 0.034 in. diameter stainless steel guide wire was tested in vitro on a variety of calculi and compared with results obtained using a 200 micron laser fiber applied directly. Calculi tested included cystine, struvite and calcium oxalate dihydrate urinary stones and pigmented cholesterol gallstones. The laser source was a flashlamp-pumped dye laser producing pulses of 1.2 microsecond duration and operated at a wavelength of 504 nm and pulse repetition frequency of 5 Hz. The results show that plasma shield lasertripsy is as effective as direct lasertripsy for fragmenting gallstones, struvite and calcium oxalate dihydrate calculi, is potentially safer, and can fragment cystine calculi which the pulsed dye laser applied directly cannot.

  18. Relativistic thermal plasmas - Effects of magnetic fields

    NASA Technical Reports Server (NTRS)

    Araki, S.; Lightman, A. P.

    1983-01-01

    Processes and equilibria in finite, relativistic, thermal plasmas are investigated, taking into account electron-positron creation and annihilation, photon production by internal processes, and photon production by a magnetic field. Inclusion of the latter extends previous work on such plasmas. The basic relations for thermal, Comptonized synchrotron emission are analyzed, including emission and absorption without Comptonization, Comptonized thermal synchrotron emission, and the Comptonized synchrotron and bremsstrahlung luminosities. Pair equilibria are calculated, including approximations and dimensionless parameters, the pair balance equation, maximum temperatures and field strengths, and individual models and cooling curves.

  19. Beam-driven acceleration in ultra-dense plasma media

    DOE PAGES

    Shin, Young-Min

    2014-09-15

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 10 25 m -3 and 1.6 x 10 28 m -3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20 % higher acceleration gradient by enlargingmore » the channel radius (r) from 0.2 Ap to 0.6 .Ap in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g. nanotubes) of high electron plasma density.« less

  20. Titan's highly variable plasma environment

    NASA Astrophysics Data System (ADS)

    Wolf, D. A.; Neubauer, F. M.

    1982-02-01

    It is noted that Titan's plasma environment is variable for two reasons. The variability of the solar wind is such that Titan may be located in the outer magnetosphere, the magnetosheath, or the interplanetary medium around noon Saturnian local time. What is more, there are local time variations in Saturn's magnetosphere. The location of the stagnation point of Saturn's magnetosphere is calculated, assuming a terrestrial type magnetosphere. Characteristic plasma parameters along the orbit of Titan are shown for high solar wind pressure. During crossings of the Saturnian magnetopause or bow shock by Titan, abrupt changes in the flow direction and stagnation pressure are expected, as are rapid associated changes in Titan's uppermost atmosphere.

  1. The COMPASS Tokamak Plasma Control Software Performance

    NASA Astrophysics Data System (ADS)

    Valcarcel, Daniel F.; Neto, André; Carvalho, Ivo S.; Carvalho, Bernardo B.; Fernandes, Horácio; Sousa, Jorge; Janky, Filip; Havlicek, Josef; Beno, Radek; Horacek, Jan; Hron, Martin; Panek, Radomir

    2011-08-01

    The COMPASS tokamak has began operation at the IPP Prague in December 2008. A new control system has been built using an ATCA-based real-time system developed at IST Lisbon. The control software is implemented on top of the MARTe real-time framework attaining control cycles as short as 50 μs, with a jitter of less than 1 μs. The controlled parameters, important for the plasma performance, are the plasma current, position of the plasma current center, boundary shape and horizontal and vertical velocities. These are divided in two control cycles: slow at 500 μs and fast at 50 μs. The project has two phases. First, the software implements a digital controller, similar to the analog one used during the COMPASS-D operation in Culham. In the slow cycle, the plasma current and position are measured and controlled with PID and feedforward controllers, respectively, the shaping magnetic field is preprogrammed. The vertical instability and horizontal equilibrium are controlled with the faster 50-μs cycle PID controllers. The second phase will implement a plasma-shape reconstruction algorithm and controller, aiming at optimized plasma performance. The system was designed to be as modular as possible by breaking the functional requirements of the control system into several independent and specialized modules. This splitting enabled tuning the execution of each system part and to use the modules in a variety of applications with different time constraints. This paper presents the design and overall performance of the COMPASS control software.

  2. The Multiple Resonance Probe: A Novel Device for Industry Compatible Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    Brinkmann, Ralf Peter; Storch, Robert; Lapke, Martin; Oberrath, Jens; Schulz, Christian; Styrnoll, Tim; Zietz, Christian; Awakowicz, Peter; Musch, Thomas; Mussenbrock, Thomas; Rolfes, Ilona

    2012-10-01

    To be useful for the supervision or control of technical plasmas, a diagnostic method must be i) robust and stable, ii) insensitive to perturbation by the process, iii) itself not perturbing the process, iv) clearly and easily interpretable without the need for calibration, v) compliant with the requirements of process integration, and, last but not least, vi) economical in terms of investment, footprint, and maintenance. Plasma resonance spectroscopy, exploiting the natural ability of plasmas to resonate on or near the electron plasma frequency, provides a good basis for such an ``industry compatible'' plasma diagnostics. The contribution will describe the general idea of active plasma resonance spectroscopy and introduce a mathematical formalism for its analysis. It will then focus on the novel multipole resonance probe (MRP), where the excited resonances can be classified explicitly and the connection between the probe response and the desired electron density can be cast as a simple formula. The current state of the MRP project will be described, including the experimental characterization of a prototype in comparison with Langmuir probes, and the development of a specialized measurement circuit.

  3. Plasma-assisted oxide removal from ruthenium-coated EUV optics

    NASA Astrophysics Data System (ADS)

    Dolgov, A.; Lee, C. J.; Bijkerk, F.; Abrikosov, A.; Krivtsun, V. M.; Lopaev, D.; Yakushev, O.; van Kampen, M.

    2018-04-01

    An experimental study of oxide reduction at the surface of ruthenium layers on top of multilayer mirrors and thin Ru/Si films is presented. Oxidation and reduction processes were observed under conditions close to those relevant for extreme ultraviolet lithography. The oxidized ruthenium surface was exposed to a low-temperature hydrogen plasma, similar to the plasma induced by extreme ultraviolet radiation. The experiments show that hydrogen ions are the main reducing agent. Furthermore, the addition of hydrogen radicals increases the reduction rate beyond that expected from simple flux calculations. We show that low-temperature hydrogen plasmas can be effective for reducing oxidized top surfaces. Our proof-of-concept experiments show that an in situ, EUV-generated plasma cleaning technology is feasible.

  4. Computation of Electron Impact Ionization Cross sections of Iron Hydrogen Clusters - Relevance in Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Patel, Umang; Joshipura, K. N.

    2017-04-01

    Plasma-wall interaction (PWI) is one of the key issues in nuclear fusion research. In nuclear fusion devices, such as the JET tokamak or the ITER, first-wall materials will be directly exposed to plasma components. Erosion of first-wall materials is a consequence of the impact of hydrogen and its isotopes as main constituents of the hot plasma. Besides the formation of gas-phase atomic species in various charge states, di- and polyatomic molecular species are expected to be formed via PWI processes. These compounds may profoundly disturb the fusion plasma, may lead to unfavorable re-deposition of materials and composites in other areas of the vessel. Interaction between atoms, molecules as well transport of impurities are of interest for modelling of fusion plasma. Qion by electron impact are such process also important in low temperature plasma processing, astrophysics etc. We reported electron impact Qionfor iron hydrogen clusters, FeHn (n = 1 to 10) from ionization threshold to 2000 eV. A semi empirical approach called Complex Scattering Potential - Ionization Contribution (CSP-ic) has been employed for the reported calculation. In context of fusion relevant species Qion were reported for beryllium and its hydrides, tungsten and its oxides and cluster of beryllium-tungsten by Huber et al.. Iron hydrogen clusters are another such species whose Qion were calculated through DM and BEB formalisms, same has been compared with present calculations.

  5. Shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures.

    PubMed

    Haxhimali, Tomorr; Rudd, Robert E; Cabot, William H; Graziani, Frank R

    2015-11-01

    We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 10^{25} ions/cc. The motion of 30,000-120,000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We systematically study different mixtures through a series of simulations with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. In the more strongly coupled plasmas, the kinetic theory does not agree well with the MD results. We develop a simple model that interpolates between classical kinetic theories at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated, ranging from moderately weakly coupled to moderately strongly coupled asymmetric plasma mixtures.

  6. Shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures

    DOE PAGES

    Haxhimali, Tomorr; Rudd, Robert E.; Cabot, William H.; ...

    2015-11-24

    We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100–500 eV and a number density of 10 25 ions/cc. The motion of 30 000–120 000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function,more » a quantity calculated in the equilibrium MD simulations. We systematically study different mixtures through a series of simulations with increasing fraction of the minority high- Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. In the more strongly coupled plasmas, the kinetic theory does not agree well with the MD results. Here, we develop a simple model that interpolates between classical kinetic theories at weak coupling and the Murillo Yukawa viscosity model at higher coupling. Finally, this hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated, ranging from moderately weakly coupled to moderately strongly coupled asymmetric plasma mixtures.« less

  7. Plasma Deflection Test Setup for E-Sail Propulsion Concept

    NASA Technical Reports Server (NTRS)

    Andersen, Allen; Vaughn, Jason; Schneider, Todd; Wright, Ken

    2016-01-01

    The Electronic Sail or E-Sail is a novel propulsion concept based on momentum exchange between fast solar wind protons and the plasma sheath of long positively charged conductors comprising the E-Sail. The effective sail area increases with decreasing plasma density allowing an E-Sail craft to continue to accelerate at predicted ranges well beyond the capabilities of existing electronic or chemical propulsion spacecraft. While negatively charged conductors in plasmas have been extensively studied and flown, the interaction between plasma and a positively charged conductor is not well studied. We present a plasma deflection test method using a differential ion flux probe (DIFP). The DIFP measures the angle and energy of incident ions. The plasma sheath around a charged body can measured by comparing the angular distribution of ions with and without a positively charged test body. These test results will be used to evaluate numerical calculations of expected thrust per unit length of conductor in the solar wind plasma. This work was supported by a NASA Space Technology Research Fellowship.

  8. Simulations of plasma dynamo in cylindrical and spherical geometries

    NASA Astrophysics Data System (ADS)

    Khalzov, Ivan; Forest, Cary; Schnack, Dalton; Ebrahimi, Fatima

    2010-11-01

    We have performed the numerical investigation of plasma flow and possibility of dynamo effect in Madison Plasma Couette Experiment (MPCX) and Madison Plasma Dynamo Experiment (MPDX), which are being installed at the University of Wisconsin- Madison. Using the extended MHD code, NIMROD, we have studied several types of plasma flows appropriate for dynamo excitation. Calculations are done for isothermal compressible plasma model including two-fluid effects (Hall term), which is beyond the standard incompressible MHD picture. It is found that for magnetic Reynolds numbers exceeding the critical one the counter-rotating Von Karman flow (in cylinder) and Dudley- James flow (in sphere) result in self-generation of magnetic field. Depending on geometry and plasma parameters this field can either saturate at certain amplitude corresponding to a new stable equilibrium (laminar dynamo) or lead to turbulent dynamo. It is shown that plasma compressibility results in increase of the critical magnetic Reynolds number while two- fluid effects change the level of saturated dynamo field. The work is supported by NSF.

  9. BRIEF COMMUNICATION: On the drift kinetic equation driven by plasma flows

    NASA Astrophysics Data System (ADS)

    Shaing, K. C.

    2010-07-01

    A drift kinetic equation that is driven by plasma flows has previously been derived by Shaing and Spong 1990 (Phys. Fluids B 2 1190). The terms that are driven by particle speed that is parallel to the magnetic field B have been neglected. Here, such terms are discussed to examine their importance to the equation and to show that these terms do not contribute to the calculations of plasma viscosity in large aspect ratio toroidal plasmas, e.g. tokamaks and stellarators.

  10. Characterization of an atmospheric pressure air plasma source for polymer surface modification

    NASA Astrophysics Data System (ADS)

    Yang, Shujun; Tang, Jiansheng

    2013-10-01

    An atmospheric pressure air plasma source was generated through dielectric barrier discharge (DBD). It was used to modify polyethyleneterephthalate (PET) surfaces with very high throughput. An equivalent circuit model was used to calculate the peak average electron density. The emission spectrum from the plasma was taken and the main peaks in the spectrum were identified. The ozone density in the down plasma region was estimated by Absorption Spectroscopy. NSF and ARC-ODU

  11. Spectroscopic Study of Neon Z-Pinch Plasma for Sodium-Neon Photopumping Experiments

    DTIC Science & Technology

    1992-01-06

    enhancement of the 11-A radiation from the n=4 level of neon when the sodium pump was present. For the 25-GV pump power, theoretical calculations predict...when the neon plasma is photopumped. Extensive theoretical analysis has been devoted to establishing the appropriate conditions for these plasmas. 5 ,44...producing thermonuclear neutrons. 63-65 Extensive theoretical modeling of the stability of these plasmas has guided this work.66 An imploding-liner Z

  12. Power loss of an oscillating electric dipole in a quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghaderipoor, L.; Mehramiz, A.

    2012-12-15

    A system of linearized quantum plasma equations (quantum hydrodynamic model) has been used for investigating the dispersion equation for electrostatic waves in the plasma. Furthermore, dispersion relations and their modifications due to quantum effects are used for calculating the power loss of an oscillating electric dipole. Finally, the results are compared in quantum and classical regimes.

  13. 46 CFR 44.320 - Submission of plans and calculations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Submission of plans and calculations. 44.320 Section 44.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES SPECIAL SERVICE LIMITED DOMESTIC VOYAGES Rules for Assigning Working Freeboards to Hopper Dredges § 44.320 Submission of...

  14. 46 CFR 44.320 - Submission of plans and calculations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Submission of plans and calculations. 44.320 Section 44.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES SPECIAL SERVICE LIMITED DOMESTIC VOYAGES Rules for Assigning Working Freeboards to Hopper Dredges § 44.320 Submission of...

  15. Angular distribution of ions and extreme ultraviolet emission in laser-produced tin droplet plasma

    NASA Astrophysics Data System (ADS)

    Chen, Hong; Wang, Xinbing; Duan, Lian; Lan, Hui; Chen, Ziqi; Zuo, Duluo; Lu, Peixiang

    2015-05-01

    Angular-resolved ion time-of-flight spectra as well as extreme ultraviolet radiation in laser-produced tin droplet plasma are investigated experimentally and theoretically. Tin droplets with a diameter of 150 μm are irradiated by a pulsed Nd:YAG laser. The ion time-of-flight spectra measured from the plasma formed by laser irradiation of the tin droplets are interpreted in terms of a theoretical elliptical Druyvesteyn distribution to deduce ion density distributions including kinetic temperatures of the plasma. The opacity of the plasma for extreme ultraviolet radiation is calculated based on the deduced ion densities and temperatures, and the angular distribution of extreme ultraviolet radiation is expressed as a function of the opacity using the Beer-Lambert law. Our results show that the calculated angular distribution of extreme ultraviolet radiation is in satisfactory agreement with the experimental data.

  16. Numerical calculation on a two-step subdiffusion behavior of lateral protein movement in plasma membranes

    NASA Astrophysics Data System (ADS)

    Sumi, Tomonari; Okumoto, Atsushi; Goto, Hitoshi; Sekino, Hideo

    2017-10-01

    A two-step subdiffusion behavior of lateral movement of transmembrane proteins in plasma membranes has been observed by using single-molecule experiments. A nested double-compartment model where large compartments are divided into several smaller ones has been proposed in order to explain this observation. These compartments are considered to be delimited by membrane-skeleton "fences" and membrane-protein "pickets" bound to the fences. We perform numerical simulations of a master equation using a simple two-dimensional lattice model to investigate the heterogeneous diffusion dynamics behavior of transmembrane proteins within plasma membranes. We show that the experimentally observed two-step subdiffusion process can be described using fence and picket models combined with decreased local diffusivity of transmembrane proteins in the vicinity of the pickets. This allows us to explain the two-step subdiffusion behavior without explicitly introducing nested double compartments.

  17. Measurements of neutral helium density in helicon plasmas.

    PubMed

    Houshmandyar, Saeid; Sears, Stephanie H; Thakur, Saikat Chakraborty; Carr, Jerry; Galante, Matthew E; Scime, Earl E

    2010-10-01

    Laser-induced-fluorescence (LIF) is used to measure the density of helium atoms in a helicon plasma source. For a pump wavelength of 587.725 nm (vacuum) and laser injection along the magnetic field, the LIF signal exhibits a signal decrease at the Doppler shifted central wavelength. The drop in signal results from the finite optical depth of the plasma and the magnitude of the decrease is proportional to the density of excited state neutral atoms. Using Langmuir probe measurements of plasma density and electron temperature and a collisional-radiative model, the absolute ground state neutral density is calculated from the optical depth measurements. Optimal plasma performance, i.e., the largest neutral depletion on the axis of the system, is observed for antenna frequencies of 13.0 and 13.5 MHz and magnetic field strengths of 550-600 G.

  18. Gluon Bremsstrahlung in Weakly-Coupled Plasmas

    NASA Astrophysics Data System (ADS)

    Arnold, Peter

    2009-11-01

    I report on some theoretical progress concerning the calculation of gluon bremsstrahlung for very high energy particles crossing a weakly-coupled quark-gluon plasma. (i) I advertise that two of the several formalisms used to study this problem, the BDMPS-Zakharov formalism and the AMY formalism (the latter used only for infinite, uniform media), can be made equivalent when appropriately formulated. (ii) A standard technique to simplify calculations is to expand in inverse powers of logarithms ln(E/T). I give an example where such expansions are found to work well for ω/T≳10 where ω is the bremsstrahlung gluon energy. (iii) Finally, I report on perturbative calculations of q̂.

  19. A theoretical and experimental investigation of cylindrical electrostatic probes at arbitrary incidence in flowing plasma

    NASA Technical Reports Server (NTRS)

    Jenkins, R. V.; Jones, W. L., Jr.

    1974-01-01

    The theory for calculating the current collected by a negatively biased cylindrical electrostatic probe at an arbitrary angle of attack in a weakley ionized flowing plasma is presented. The theory was constructed by considering both random and directed motion simultaneous with dynamic coupling of the flow properties and of the electric field of the probe. This direct approach yielded a theory that is more general than static plasma theories modified to account for flow. Theoretical calculations are compared with experimental electrostatic probe data obtained in the free stream of an arc-heated hypersonic wind tunnel. The theoretical calculations are based on flow conditions and plasma electron densities measured by an independent microwave interferometer technique. In addition, the theory is compared with laboratory and satellite data previously published by other investigators. In each case the comparison gives good agreement.

  20. Iterative Addition of Kinetic Effects to Cold Plasma RF Wave Solvers

    NASA Astrophysics Data System (ADS)

    Green, David; Berry, Lee; RF-SciDAC Collaboration

    2017-10-01

    The hot nature of fusion plasmas requires a wave vector dependent conductivity tensor for accurate calculation of wave heating and current drive. Traditional methods for calculating the linear, kinetic full-wave plasma response rely on a spectral method such that the wave vector dependent conductivity fits naturally within the numerical method. These methods have seen much success for application to the well-confined core plasma of tokamaks. However, quantitative prediction of high power RF antenna designs for fusion applications has meant a requirement of resolving the geometric details of the antenna and other plasma facing surfaces for which the Fourier spectral method is ill-suited. An approach to enabling the addition of kinetic effects to the more versatile finite-difference and finite-element cold-plasma full-wave solvers was presented by where an operator-split iterative method was outlined. Here we expand on this approach, examine convergence and present a simplified kinetic current estimator for rapidly updating the right-hand side of the wave equation with kinetic corrections. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

  1. Special-purpose computer for holography HORN-2

    NASA Astrophysics Data System (ADS)

    Ito, Tomoyoshi; Eldeib, Hesham; Yoshida, Kenji; Takahashi, Shinya; Yabe, Takashi; Kunugi, Tomoaki

    1996-01-01

    We designed and built a special-purpose computer for holography, HORN-2 (HOlographic ReconstructioN). HORN-2 calculates light intensity at high speed of 0.3 Gflops per one board with single (32-bit floating point) precision. The cost of the board is 500 000 Japanese yen (5000 US dollar). We made three boards. Operating them in parallel, we get about 1 Gflops.

  2. [Study on spectrum analysis of X-ray based on rotational mass effect in special relativity].

    PubMed

    Yu, Zhi-Qiang; Xie, Quan; Xiao, Qing-Quan

    2010-04-01

    Based on special relativity, the formation mechanism of characteristic X-ray has been studied, and the influence of rotational mass effect on X-ray spectrum has been given. A calculation formula of the X-ray wavelength based upon special relativity was derived. Error analysis was carried out systematically for the calculation values of characteristic wavelength, and the rules of relative error were obtained. It is shown that the values of the calculation are very close to the experimental values, and the effect of rotational mass effect on the characteristic wavelength becomes more evident as the atomic number increases. The result of the study has some reference meaning for the spectrum analysis of characteristic X-ray in application.

  3. Plasma confinement at JET

    NASA Astrophysics Data System (ADS)

    Nunes, I.; JET Contributors

    2016-01-01

    Operation with a Be/W wall at JET (JET-ILW) has an impact on scenario development and energy confinement with respect to the carbon wall (JET-C). The main differences observed were (1) strong accumulation of W in the plasma core and (2) the need to mitigate the divertor target temperature to avoid W sputtering by Be and other low Z impurities and (3) a decrease of plasma energy confinement. A major difference is observed on the pedestal pressure, namely a reduction of the pedestal temperature which, due to profile stiffness the plasma core temperature is also reduced leading to a degradation of the global confinement. This effect is more pronounced in low β N scenarios. At high β N, the impact of the wall on the plasma energy confinement is mitigated by the weaker plasma energy degradation with power relative to the IPB98(y, 2) scaling calculated empirically for a CFC first wall. The smaller tolerable impurity concentration for tungsten (<10-5) compared to that of carbon requires the use of electron heating methods to prevent W accumulation in the plasma core region as well as gas puffing to avoid W entering the plasma core by ELM flushing and reduction of the W source by decreasing the target temperature. W source and the target temperature can also be controlled by impurity seeding. Nitrogen and Neon have been used and with both gases the reduction of the W source and the target temperature is observed. Whilst more experiments with Neon are necessary to assess its impact on energy confinement, a partial increase of plasma energy confinement is observed with Nitrogen, through the increase of edge temperature. The challenge for scenario development at JET is to extend the pulse length curtailed by its transient behavior (W accumulation or MHD), but more importantly by the divertor target temperature limits. Re-optimisation of the scenarios to mitigate the effect of the change of wall materials maintaining high global energy confinement similar to JET-C is

  4. Inter-conversion of Work and Heat With Plasma Electric Fields

    NASA Astrophysics Data System (ADS)

    Avinash, K.

    2010-11-01

    Thermodynamics of a model system where a group of cold charged particles locally confined in a volume VP within a warm plasma of temperature T and fixed volume V (VP<calculated from first principles. In the homogeneous limit, an equation of state for the ES pressure of charged particles is derived and the internal energy is shown to consist solely of the thermal energy of the back ground plasma. Finally, the direct conversion of plasma heat into mechanical work is demonstrated via a Striling like engine cycle involving ES isothermal compression of plasma electric fields.

  5. Clinical decision support of therapeutic drug monitoring of phenytoin: measured versus adjusted phenytoin plasma concentrations

    PubMed Central

    2012-01-01

    Background Therapeutic drug monitoring of phenytoin by measurement of plasma concentrations is often employed to optimize clinical efficacy while avoiding adverse effects. This is most commonly accomplished by measurement of total phenytoin plasma concentrations. However, total phenytoin levels can be misleading in patients with factors such as low plasma albumin that alter the free (unbound) concentrations of phenytoin. Direct measurement of free phenytoin concentrations in plasma is more costly and time-consuming than determination of total phenytoin concentrations. An alternative to direct measurement of free phenytoin concentrations is use of the Sheiner-Tozer equation to calculate an adjusted phenytoin that corrects for the plasma albumin concentration. Innovative medical informatics tools to identify patients who would benefit from adjusted phenytoin calculations or from laboratory measurement of free phenytoin are needed to improve safety and efficacy of phenytoin pharmacotherapy. The electronic medical record for an academic medical center was searched for the time period from August 1, 1996 to November 30, 2010 for patients who had total phenytoin and free phenytoin determined on the same blood draw, and also a plasma albumin measurement within 7 days of the phenytoin measurements. The measured free phenytoin plasma concentration was used as the gold standard. Results In this study, the standard Sheiner-Tozer formula for calculating an estimated (adjusted) phenytoin level more frequently underestimates than overestimates the measured free phenytoin relative to the respective therapeutic ranges. Adjusted phenytoin concentrations provided superior classification of patients than total phenytoin measurements, particularly at low albumin concentrations. Albumin plasma concentrations up to 7 days prior to total phenytoin measurements can be used for adjusted phenytoin concentrations. Conclusions The results suggest that a measured free phenytoin should be

  6. Shapes of Spectral Lines of Nonuniform Plasma of Electric Arc Discharge Between Copper Electrodes

    NASA Astrophysics Data System (ADS)

    Babich, Ida L.; Boretskij, Viacheslav F.; Veklich, Anatoly N.

    2007-09-01

    The radial profiles of the temperature and electron density in the plasma of the free burning electric arc between copper electrodes are studied by optical spectroscopy techniques. The electron density and the temperature in plasma as initial parameters were used in the calculation of the plasma composition in local thermodynamic equilibrium (LTE) assumption. We used the Saha's equation for copper, nitrogen and oxygen, dissociation equation for nitrogen and oxygen, the equation of plasma electrical neutrality and Dalton's law as well. So, it would be possible to determine the amounts of metal vapours in plasma.

  7. Plasma membrane-associated platforms: dynamic scaffolds that organize membrane-associated events.

    PubMed

    Astro, Veronica; de Curtis, Ivan

    2015-03-10

    Specialized regions of the plasma membrane dedicated to diverse cellular processes, such as vesicle exocytosis, extracellular matrix remodeling, and cell migration, share a few cytosolic scaffold proteins that associate to form large plasma membrane-associated platforms (PMAPs). PMAPs organize signaling events and trafficking of membranes and molecules at specific membrane domains. On the basis of the intrinsic disorder of the proteins constituting the core of these PMAPs and of the dynamics of these structures at the periphery of motile cells, we propose a working model for the assembly and turnover of these platforms. Copyright © 2015, American Association for the Advancement of Science.

  8. Generalized Kinetic Description of Steady-State Collisionless Plasmas

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Liemohn, M. W.; Krivorutsky, E. N.

    1997-01-01

    We present a general solution to the collisionless Boltzmann (Vlasov) equation for a free-flowing plasma along a magnetic field line using Liouville's theorem, allowing for an arbitrary potential structure including non-monotonicities. The constraints of the existing collisionless kinetic transport models are explored, and the need for a more general approach to the problem of self- consistent potential energy calculations is described. Then a technique that handles an arbitrary potential energy distribution along the field line is presented and discussed. For precipitation of magnetospherically trapped hot plasma, this model yields moment calculations that vary by up to a factor of two for various potential energy structures with the same total potential drop. The differences are much greater for the high-latitude outflow scenario, giving order of magnitude variations depending on the shape of the potential energy distribution.

  9. Heavy ion charge-state distribution effects on energy loss in plasmas.

    PubMed

    Barriga-Carrasco, Manuel D

    2013-10-01

    According to dielectric formalism, the energy loss of the heavy ion depends on its velocity and its charge density. Also, it depends on the target through its dielectric function; here the random phase approximation is used because it correctly describes fully ionized plasmas at any degeneracy. On the other hand, the Brandt-Kitagawa (BK) model is employed to depict the projectile charge space distribution, and the stripping criterion of Kreussler et al. is used to determine its mean charge state [Q]. This latter criterion implies that the mean charge state depends on the electron density and temperature of the plasma. Also, the initial charge state of the heavy ion is crucial for calculating [Q] inside the plasma. Comparing our models and estimations with experimental data, a very good agreement is found. It is noticed that the energy loss in plasmas is higher than that in the same cold gas cases, confirming the well-known enhanced plasma stopping (EPS). In this case, EPS is only due to the increase in projectile effective charge Q(eff), which is obtained as the ratio between the energy loss of each heavy ion and that of the proton in the same plasma conditions. The ratio between the effective charges in plasmas and in cold gases is higher than 1, but it is not as high as thought in the past. Finally, another significant issue is that the calculated effective charge in plasmas Q(eff) is greater than the mean charge state [Q], which is due to the incorporation of the BK charge distribution. When estimations are performed without this distribution, they do not fit well with experimental data.

  10. Energy balance in the core of the Saturn plasma sheet: H2O chemistry

    NASA Astrophysics Data System (ADS)

    Shemansky, D. E.; Yoshii, J.; Liu, X.

    2011-10-01

    A model of the weakly ionized plasma at Saturn has been developed to investigate the properties of the system. Energy balance is a critical consideration. The present model is based on two sources of mass, H2O, and HI. H2O is a variable. HI is a significant volume of gas flowing through the plasma imposed by the source at Saturn [1,2,3]. The energy sources are solar radiation and heterogeneous magnetosphere electrons. The model calculations produce energy rates, species partitioning, and relaxation lifetimes. For the first time the state of the ambient plasma sheet electrons is directly connected to the energy forcing functions. Within limits of knowledge, the predicted state of the core region of the plasma sheet in neutral and ionized gas corresponds satisfactorily to observation. The dominant ions in these calculations are H2O+ and H3O+ with lifetimes of several days. The lifetime of H2O is roughly 60 days. In calculations carried out so far the predicted source rate for H2O is lower than the rates quoted from the Enceladus encounters.

  11. Atmospheric pressure plasma accelerates tail regeneration in tadpoles Xenopus laevis

    NASA Astrophysics Data System (ADS)

    Rivie, A.; Martus, K.; Menon, J.

    2017-08-01

    Atmospheric pressure plasma is a partially ionized gas composed of neutral and charged particles, including electrons and ions, as well as reactive oxygen species (ROS). Recently, it is utilized as possible therapy in oncology, sterilization, skin diseases, wound healing and tissue regeneration. In this study we focused on effect of plasma exposure on tail regeneration of tadpoles, Xenopus leavis with special emphasis on role of ROS, antioxidant defenses and morphological features of the regenerate. When amputated region of the tail was exposed to the helium plasma it resulted in a faster rate of growth, elevated ROS and increase in antioxidant enzymes in the regenerate compared to that of untreated control. An increase in nitric oxide (free radical) as well as activity of nitric oxide synthase(s) were observed once the cells of the regeneration blastema - a mass of proliferating cells are ready for differentiation. Microscopically the cells of the regenerate of plasma treated tadpoles show altered morphology and characteristics of cellular hypoxia and oxidative stress. We summarize that plasma exposure accelerates the dynamics of wound healing and tail regeneration through its effects on cell proliferation and differentiation as well as angiogenesis mediated through ROS signaling.

  12. Multi-configuration Dirac-Hartree-Fock (MCDHF) calculations for Ni XXV

    NASA Astrophysics Data System (ADS)

    Singh, Narendra; Aggarwal, Sunny

    2018-03-01

    We present accurate 165 fine-structure energy levels related to the configurations 1s22s2, 1s22p2, 1s2nƖn‧l‧ (n = 2, n‧ = 2, 3, 4, 5, Ɩ = s,p Ɩ‧ = s, p, d, f, g) of Ni XXV which may be useful ion for astrophysical and fusion plasma. For the calculations of energy levels and radiative rates, we have used the multiconfiguration Dirac-Hartree-Fock (MCDHF) method employed in GRASP2K code. The calculations are carried out in the active space approximation with the inclusion of the Breit interaction, the finite nuclear size effect, and quantum electrodynamic corrections. The transition wavelengths, transition probabilities, line strengths, and absorption oscillator strengths are reported for electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1), magnetic quadrupole (M2) transitions from the ground state. We have compared our calculated results with available theoretical and experimental data and good agreement is achieved. We predict new energy levels, oscillator strengths, line strengths and transition probabilities, where no other experimental or theoretical results are available. The present complete set of results should be of great help in line identification and the interpretation of spectra, as well as in the modelling and diagnostics of astrophysical and fusion plasmas.

  13. Sputtering, Plasma Chemistry, and RF Sheath Effects in Low-Temperature and Fusion Plasma Modeling

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Kruger, Scott E.; McGugan, James M.; Pankin, Alexei Y.; Roark, Christine M.; Smithe, David N.; Stoltz, Peter H.

    2016-09-01

    A new sheath boundary condition has been implemented in VSim, a plasma modeling code which makes use of both PIC/MCC and fluid FDTD representations. It enables physics effects associated with DC and RF sheath formation - local sheath potential evolution, heat/particle fluxes, and sputtering effects on complex plasma-facing components - to be included in macroscopic-scale plasma simulations that need not resolve sheath scale lengths. We model these effects in typical ICRF antenna operation scenarios on the Alcator C-Mod fusion device, and present comparisons of our simulation results with experimental data together with detailed 3D animations of antenna operation. Complex low-temperature plasma chemistry modeling in VSim is facilitated by MUNCHKIN, a standalone python/C++/SQL code that identifies possible reaction paths for a given set of input species, solves 1D rate equations for the ensuing system's chemical evolution, and generates VSim input blocks with appropriate cross-sections/reaction rates. These features, as well as principal path analysis (to reduce the number of simulated chemical reactions while retaining accuracy) and reaction rate calculations from user-specified distribution functions, will also be demonstrated. Supported by the U.S. Department of Energy's SBIR program, Award DE-SC0009501.

  14. Application of spatially resolved high resolution crystal spectrometry to inertial confinement fusion plasmas.

    PubMed

    Hill, K W; Bitter, M; Delgado-Aparacio, L; Pablant, N A; Beiersdorfer, P; Schneider, M; Widmann, K; Sanchez del Rio, M; Zhang, L

    2012-10-01

    High resolution (λ∕Δλ ∼ 10 000) 1D imaging x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixel array detector is used world wide for Doppler measurements of ion-temperature and plasma flow-velocity profiles in magnetic confinement fusion plasmas. Meter sized plasmas are diagnosed with cm spatial resolution and 10 ms time resolution. This concept can also be used as a diagnostic of small sources, such as inertial confinement fusion plasmas and targets on x-ray light source beam lines, with spatial resolution of micrometers, as demonstrated by laboratory experiments using a 250-μm (55)Fe source, and by ray-tracing calculations. Throughput calculations agree with measurements, and predict detector counts in the range 10(-8)-10(-6) times source x-rays, depending on crystal reflectivity and spectrometer geometry. Results of the lab demonstrations, application of the technique to the National Ignition Facility (NIF), and predictions of performance on NIF will be presented.

  15. Design of special purpose products made of nanomodified collagen-containing materials with radio-frequency discharge

    NASA Astrophysics Data System (ADS)

    Makhotkina, L. Yu; Sharifullin, S. N.

    2016-06-01

    Research results shows that RF-plasma treatment increases the adhesion of the coating film to the leather uppers and resistance to abrasion and repeated bending of uppers, which define the ability of material to preserve its consumer properties and characterize longer safety of special purpose footwear form during its wearing.

  16. Circulation of Plasma in the Jovian Magnetosphere as Inferred from the Galileo Magnetometer Observations

    NASA Astrophysics Data System (ADS)

    Yu, Z. J.; Russell, C. T.; Kivelson, M. G.; Khurana, K. K.

    2000-10-01

    Massloading of the jovian magnetosphere by the addition of ions at the moon Io is the ultimate engine of the circulation of the magnetospheric plasma. In steady state the radial density profile enables the radial outflow velocity to be calculated from the mass addition rate. Some of these ions are lost from the field lines through pitch angle diffusion. Expected loss rates can be calculated from the fluctuation level in the magnetic field. Radial velocities can be calculated from observations of the Europa wake and force balance in the magnetodisk. The resulting transport times are shorter than the pitch angle scattering loss times so that most of the plasma is transported to the tail and lost by magnetic island formation. In turn the island formation process (reconnection) depletes magnetic field lines making them buoyant and allowing them to "float" back to the inner magnetosphere. In the torus these depleted flux tubes can be seen as thin tubes with stronger than the ambient field strength, implying plasma pressures about 2% of the magnetic field and ion temperatures principally in the range 30-150 eV. When the depleted flux tubes reach the orbit of Io where the energy density of the plasma drops these depleted flux tubes become indistinguishable from the ambient plasma, completing the circulation loop.

  17. Equations of state and diagrams of two-dimensional liquid dusty plasmas

    NASA Astrophysics Data System (ADS)

    Feng, Yan; Lin, Wei; Li, Wei; Wang, Qiaoling

    2016-09-01

    Recently, the pressure of two-dimensional (2D) Yukawa liquids has been calculated from the simulations of isochores [Feng et al., J. Phys. D: Appl. Phys. 49, 235203 (2016)], which is applicable to 2D dusty plasmas. Thus, the equation of state for 2D strongly coupled liquid dusty plasmas is obtained. Isobars and isotherms of 2D liquid dusty plasmas are derived from this equation of state. For 2D liquid dusty plasmas, the surface corresponding to this equation of state has also been obtained in the 3D space of the pressure, the temperature, and the screening parameter which is related to the volume in the equilibrium state.

  18. Response function of modulated grid Faraday cup plasma instruments

    NASA Technical Reports Server (NTRS)

    Barnett, A.; Olbert, S.

    1986-01-01

    Modulated grid Faraday cup plasma analyzers are a very useful tool for making in situ measurements of space plasmas. One of their great attributes is that their simplicity permits their angular response function to be calculated theoretically. An expression is derived for this response function by computing the trajectories of the charged particles inside the cup. The Voyager plasma science experiment is used as a specific example. Two approximations to the rigorous response function useful for data analysis are discussed. Multisensor analysis of solar wind data indicates that the formulas represent the true cup response function for all angles of incidence with a maximum error of only a few percent.

  19. Plasma catalytic reforming of methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromberg, L.; Cohn, D.R.; Rabinovich, A.

    1998-08-01

    Thermal plasma technology can be efficiently used in the production of hydrogen and hydrogen-rich gases from methane and a variety of fuels. This paper describes progress in plasma reforming experiments and calculations of high temperature conversion of methane using heterogeneous processes. The thermal plasma is a highly energetic state of matter that is characterized by extremely high temperatures (several thousand degrees Celsius) and high degree of dissociation and substantial degree of ionization. The high temperatures accelerate the reactions involved in the reforming process. Hydrogen-rich gas (50% H{sub 2}, 17% CO and 33% N{sub 2}, for partial oxidation/water shifting) can bemore » efficiently made in compact plasma reformers. Experiments have been carried out in a small device (2--3 kW) and without the use of efficient heat regeneration. For partial oxidation/water shifting, it was determined that the specific energy consumption in the plasma reforming processes is 16 MJ/kg H{sub 2} with high conversion efficiencies. Larger plasmatrons, better reactor thermal insulation, efficient heat regeneration and improved plasma catalysis could also play a major role in specific energy consumption reduction and increasing the methane conversion. A system has been demonstrated for hydrogen production with low CO content ({approximately} 1.5%) with power densities of {approximately} 30 kW (H{sub 2} HHV)/liter of reactor, or {approximately} 10 m{sup 3}/hr H{sub 2} per liter of reactor. Power density should further increase with increased power and improved design.« less

  20. Discharge dynamics and plasma density recovery by on/off switches of additional gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyo-Chang, E-mail: lhc@kriss.re.kr; Department of Electrical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763; Kwon, Deuk-Chul

    2016-06-15

    Measurement of the plasma density is investigated to study plasma dynamics by adding reactive gas (O{sub 2}) or rare gas (He) in Ar plasmas. When the O{sub 2} or He gas is added, plasma density is suddenly decreased, while the plasma density recovers slowly with gas off. It is found that the recovery time is strongly dependent on the gas flow rate, and it can be explained by effect of gas residence time. When the He gas is off in the Ar plasma, the plasma density is overshot compared to the case of the O{sub 2} gas pulsing due tomore » enhanced ionizations by metastable atoms. Analysis and calculation for correlation between the plasma density dynamics and the gas pulsing are also presented in detail.« less

  1. Colliding Laser-Produced Plasmas on LaPD

    NASA Astrophysics Data System (ADS)

    Collette, Andrew; Gekelman, Walter

    2007-11-01

    The expansion and interaction of dense plasmas in the presence of a magnetized background plasma is important in many astrophysical processes, among them coronal mass ejections and the many examples of plasma jets from astrophotography. Turbulence is expected to be present in many such configurations. We describe a series of experiments which involve the collision of two dense (initially, n > 10^15cm-3) laser-produced plasmas within an ambient, highly magnetized plasma. The laser-produced plasmas form diamagnetic cavities in which a large percentage of the background magnetic field (600G) has been expelled. First-stage observations using a fast (3ns exposure) camera indicate complicated structure at late times, in addition to coherent corrugated structures on the bubble surfaces. The data hint at the presence of turbulence in the interaction. The second stage of observation consists of direct investigation of the magnetic field using probes. A novel diagnostic system composed of small (300-500 micron) 3-axis differential magnetic field probes in conjunction with a ceramic motor system capable of extremely fine (sub-micron) positioning accuracy is currently under development. An ensemble of magnetic field data from fixed and movable probes makes possible the calculation of the cross-spectral function.

  2. An electrothermal plasma model considering polyethylene and copper ablation based on ignition experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Jiangbo; Li, Xingwen; Hang, Yuhua; Yang, Weihong

    2018-06-01

    In order to study the characteristics of electrothermal plasma interaction with energetic materials, especially the ignition ability, a novel model considering polyethylene and copper ablation is developed, and an ignition experiment system is set up. The parameters of the plasma and the surface conditions of the energetic materials are measured in the testing. The results show the measured first peak pressure to be ~2.2 MPa, the second peak pressure to be ~3.9 MPa, and the visible flame velocity to be ~2000 m s‑1. Circular pits of the order of microns and nanometers in size are observed on the surface of the energetic materials. Further, the parameters of the plasma, including static pressure, total pressure, density, temperature, velocity, copper concentration and PE concentration, are calculated and analyzed by the established model, under discharge currents of 9 kA. The simulation is similar to those of experimental results. A shock wave is observed in the experiment and is presented in the calculations; it plays an important role in the performance of the plasma in the nozzle region, where the parameters of the plasma variation trends are very complex. With the aim of obtaining the overall performance of the plasma, the coupling characteristics of multiple parameters must be taken into account, in accordance with the developed electrothermal plasma model.

  3. Filtering of higher-order laser modes using plasma structures

    NASA Astrophysics Data System (ADS)

    Djordjevic, Blagoje; Benedetti, Carlo; Schroeder, Carl; Esarey, Eric; Leemans, Wim

    2017-10-01

    Plasma structures based on leaky channels are proposed to filter higher-order laser mode content. The evolution and propagation of non-Gaussian laser pulses in leaky channels is studied, and it is shown that, for appropriate laser-plasma parameters, the higher-order laser mode content may be removed while the fundamental mode remains well-guided. The behavior of the multi-mode laser pulse is described analytically, including the derivation of the leakage coefficients, and compared to numerical calculations. Gaussian laser pulse propagation, without higher-order mode content, improves guiding in parabolic plasma channels, enabling extended interaction lengths for laser-plasma accelerator applications. This work was supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  4. Applications of plasma core reactors to terrestrial energy systems

    NASA Technical Reports Server (NTRS)

    Latham, T. S.; Biancardi, F. R.; Rodgers, R. J.

    1974-01-01

    Plasma core reactors offer several new options for future energy needs in addition to space power and propulsion applications. Power extraction from plasma core reactors with gaseous nuclear fuel allows operation at temperatures higher than conventional reactors. Highly efficient thermodynamic cycles and applications employing direct coupling of radiant energy are possible. Conceptual configurations of plasma core reactors for terrestrial applications are described. Closed-cycle gas turbines, MHD systems, photo- and thermo-chemical hydrogen production processes, and laser systems using plasma core reactors as prime energy sources are considered. Cycle efficiencies in the range of 50 to 65 percent are calculated for closed-cycle gas turbine and MHD electrical generators. Reactor advantages include continuous fuel reprocessing which limits inventory of radioactive by-products and thorium-U-233 breeder configurations with about 5-year doubling times.-

  5. Analysis of density effects in plasmas and their influence on electron-impact cross sections

    NASA Astrophysics Data System (ADS)

    Belkhiri, M.; Poirier, M.

    2014-12-01

    Density effects in plasmas are analyzed using a Thomas-Fermi approach for free electrons. First, scaling properties are determined for the free-electron potential and density. For hydrogen-like ions, the first two terms of an analytical expansion of this potential as a function of the plasma coupling parameter are obtained. In such ions, from these properties and numerical calculations, a simple analytical fit is proposed for the plasma potential, which holds for any electron density, temperature, and atomic number, at least assuming that Maxwell-Boltzmann statistics is applicable. This allows one to analyze perturbatively the influence of the plasma potential on energies, wave functions, transition rates, and electron-impact collision rates for single-electron ions. Second, plasmas with an arbitrary charge state are considered, using a modified version of the Flexible Atomic Code (FAC) package with a plasma potential based on a Thomas-Fermi approach. Various methods for the collision cross-section calculations are reviewed. The influence of plasma density on these cross sections is analyzed in detail. Moreover, it is demonstrated that, in a given transition, the radiative and collisional-excitation rates are differently affected by the plasma density. Some analytical expressions are proposed for hydrogen-like ions in the limit where the Born or Lotz approximation applies and are compared to the numerical results from the FAC.

  6. Characteristics of a plasma flow field produced by a metal array bridge foil explosion

    NASA Astrophysics Data System (ADS)

    Junying, WU; Long, WANG; Yase, LI; Lijun, YANG; Manzoor, SULTAN; Lang, CHEN

    2018-07-01

    To improve the energy utilization efficiency of metal bridge foil explosion, and increase the function range of plasmas, array bridge foil explosion experiments with different structures were performed. A Schlieren photographic measurement system with a double-pulse laser source was used to observe the flow field of a bridge foil explosion. The evolution laws of plasmas and shock waves generated by array bridge foil explosions of different structures were analyzed and compared. A multi-phase flow calculation model was established to simulate the electrical exploding process of a metal bridge foil. The plasma equation of state was determined by considering the effect of the changing number of particles and Coulomb interaction on the pressure and internal energy. The ionization degree of the plasma was calculated via the Saha–Eggert equation assuming conditions of local thermal equilibrium. The exploding process of array bridge foils was simulated, and the superposition processes of plasma beams were analyzed. The variation and distribution laws of the density, temperature, pressure, and other important parameters were obtained. The results show that the array bridge foil has a larger plasma jet diameter than the single bridge foil for an equal total area of the bridge foil. We also found that the temperature, pressure, and density of the plasma jet’s center region sharply increase because of the superposition of plasma beams.

  7. Plasma Wakefield Acceleration of an Intense Positron Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blue, B

    2004-04-21

    The Plasma Wakefield Accelerator (PWFA) is an advanced accelerator concept which possess a high acceleration gradient and a long interaction length for accelerating both electrons and positrons. Although electron beam-plasma interactions have been extensively studied in connection with the PWFA, very little work has been done with respect to positron beam-plasma interactions. This dissertation addresses three issues relating to a positron beam driven plasma wakefield accelerator. These issues are (a) the suitability of employing a positron drive bunch to excite a wake; (b) the transverse stability of the drive bunch; and (c) the acceleration of positrons by the plasma wakemore » that is driven by a positron bunch. These three issues are explored first through computer simulations and then through experiments. First, a theory is developed on the impulse response of plasma to a short drive beam which is valid for small perturbations to the plasma density. This is followed up with several particle-in-cell (PIC) simulations which study the experimental parameter (bunch length, charge, radius, and plasma density) range. Next, the experimental setup is described with an emphasis on the equipment used to measure the longitudinal energy variations of the positron beam. Then, the transverse dynamics of a positron beam in a plasma are described. Special attention is given to the way focusing, defocusing, and a tilted beam would appear to be energy variations as viewed on our diagnostics. Finally, the energy dynamics imparted on a 730 {micro}m long, 40 {micro}m radius, 28.5 GeV positron beam with 1.2 x 10{sup 10} particles in a 1.4 meter long 0-2 x 10{sup 14} e{sup -}/cm{sup 3} plasma is described. First the energy loss was measured as a function of plasma density and the measurements are compared to theory. Then, an energy gain of 79 {+-} 15 MeV is shown. This is the first demonstration of energy gain of a positron beam in a plasma and it is in good agreement with the

  8. Edge-to-center plasma density ratios in two-dimensional plasma discharges

    NASA Astrophysics Data System (ADS)

    Lucken, R.; Croes, V.; Lafleur, T.; Raimbault, J.-L.; Bourdon, A.; Chabert, P.

    2018-03-01

    Edge-to-center plasma density ratios—so-called h factors—are important parameters for global models of plasma discharges as they are used to calculate the plasma losses at the reactor walls. There are well-established theories for h factors in the one-dimensional (1D) case. The purpose of this paper is to establish h factors in two-dimensional (2D) systems, with guidance from a 2D particle-in-cell (PIC) simulation. We derive analytical solutions of a 2D fluid theory that includes the effect of ion inertia, but assumes a constant (independent of space) ion collision frequency (using an average ion velocity) across the discharge. Predicted h factors from this 2D fluid theory have the same order of magnitude and the same trends as the PIC simulations when the average ion velocity used in the collision frequency is set equal to the ion thermal velocity. The best agreement is obtained when the average ion velocity varies with pressure (but remains independent of space), going from half the Bohm velocity at low pressure, to the thermal velocity at high pressure. The analysis also shows that a simple correction of the widely-used 1D heuristic formula may be proposed to accurately incorporate 2D effects.

  9. Angular distribution of ions and extreme ultraviolet emission in laser-produced tin droplet plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hong; Duan, Lian; Lan, Hui

    Angular-resolved ion time-of-flight spectra as well as extreme ultraviolet radiation in laser-produced tin droplet plasma are investigated experimentally and theoretically. Tin droplets with a diameter of 150 μm are irradiated by a pulsed Nd:YAG laser. The ion time-of-flight spectra measured from the plasma formed by laser irradiation of the tin droplets are interpreted in terms of a theoretical elliptical Druyvesteyn distribution to deduce ion density distributions including kinetic temperatures of the plasma. The opacity of the plasma for extreme ultraviolet radiation is calculated based on the deduced ion densities and temperatures, and the angular distribution of extreme ultraviolet radiation is expressedmore » as a function of the opacity using the Beer–Lambert law. Our results show that the calculated angular distribution of extreme ultraviolet radiation is in satisfactory agreement with the experimental data.« less

  10. EDITORIAL: Invited papers from the 15th International Congress on Plasma Physics combined with the 13th Latin American Workshop on Plasma Physics Invited papers from the 15th International Congress on Plasma Physics combined with the 13th Latin American Workshop on Plasma Physics

    NASA Astrophysics Data System (ADS)

    Soto, Leopoldo

    2011-07-01

    , amongst others, the following topics: fundamentals of plasma physics, fusion plasmas, plasmas in astrophysics and space physics, plasma applications and technologies, complex plasmas, high energy density plasmas, quantum plasmas and laser-plasma interaction. A total of 180 delegates from 34 different countries took part in ICPP-LAWPP-2010, and 60 delegates received financial assistance from the Local Organizing Committee, thanks to the support granted by the International Union for Pure and Applied Physics (IUPAP) and by CCHEN. The ICPP-LAWPP-2010 Program was established by the following Program Committee: • Carlos Alejaldre, ITER • Maria Virginia Alves, Brazil • Julio Herrera, Mexico • Günter Mank, IAEA • George Morales, USA • Padma Kant Shukla, Germany • Guido Van Oost, Belgium • Leopoldo Soto, Chile (Chairman) This Program Committee was formed of selected members from the International Advisory Committee of the ICPP and from the International Advisory Committee of the LAWPP (http://www.icpp-lawpp-2010.cl/page/committees.php). In particular, plenary lectures and invited topical lectures were selected by the Program Committee from a list of nominated lectures presented by the International Advisory Committees of both ICPP and LAWPP. Also, the classification of oral and poster presentations was established by the Program Committee. The Congress included 15 invited plenary talks, 33 invited topical talks, 45 oral contributions, and 160 poster contributions. Most of the plenary and topical lectures are published in this special issue of Plasma Physics and Controlled Fusion. The papers were refereed according to the usual standards of the journal. Prior to ICPP-LAWPP 2010, an important activity usually associated with the Latin American Workshop on Plasma Physics took place. This activity was the LAWPP School on Plasma Physics, which was open to participants from all over the world, providing basic training to students and young researchers. The School was

  11. Plasma membranes as heat stress sensors: from lipid-controlled molecular switches to therapeutic applications.

    PubMed

    Török, Zsolt; Crul, Tim; Maresca, Bruno; Schütz, Gerhard J; Viana, Felix; Dindia, Laura; Piotto, Stefano; Brameshuber, Mario; Balogh, Gábor; Péter, Mária; Porta, Amalia; Trapani, Alfonso; Gombos, Imre; Glatz, Attila; Gungor, Burcin; Peksel, Begüm; Vigh, László; Csoboz, Bálint; Horváth, Ibolya; Vijayan, Mathilakath M; Hooper, Phillip L; Harwood, John L; Vigh, László

    2014-06-01

    The classic heat shock (stress) response (HSR) was originally attributed to protein denaturation. However, heat shock protein (Hsp) induction occurs in many circumstances where no protein denaturation is observed. Recently considerable evidence has been accumulated to the favor of the "Membrane Sensor Hypothesis" which predicts that the level of Hsps can be changed as a result of alterations to the plasma membrane. This is especially pertinent to mild heat shock, such as occurs in fever. In this condition the sensitivity of many transient receptor potential (TRP) channels is particularly notable. Small temperature stresses can modulate TRP gating significantly and this is influenced by lipids. In addition, stress hormones often modify plasma membrane structure and function and thus initiate a cascade of events, which may affect HSR. The major transactivator heat shock factor-1 integrates the signals originating from the plasma membrane and orchestrates the expression of individual heat shock genes. We describe how these observations can be tested at the molecular level, for example, with the use of membrane perturbers and through computational calculations. An important fact which now starts to be addressed is that membranes are not homogeneous nor do all cells react identically. Lipidomics and cell profiling are beginning to address the above two points. Finally, we observe that a deregulated HSR is found in a large number of important diseases where more detailed knowledge of the molecular mechanisms involved may offer timely opportunities for clinical interventions and new, innovative drug treatments. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Radiation from High Temperature Plasmas.

    DTIC Science & Technology

    1980-09-09

    the silicon radiation, both lines and continuum, photoionizes and photoexcites bound levels of the aluminum plasma. This raises the state of...experimental broadening, a program was established to catalog all the spectra calculated theoretically and convolute them with Gaussian broadening... theoretical " spectrum into an observed spectrum as the experimental broadening increases. This evolution is seen in the next section for the case of an

  13. Calculation of solar wind flows about terrestrial planets

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.; Spreiter, J. R.

    1982-01-01

    A computational model was developed for the determination of the plasma and magnetic field properties of the global interaction of the solar wind with terrestrial planetary magneto/ionospheres. The theoretical method is based on an established single fluid, steady, dissipationless, magnetohydrodynamic continuum model, and is appropriate for the calculation of supersonic, super Alfvenic solar wind flow past terrestrial planets. A summary is provided of the important research results.

  14. On the thermodynamic properties of thermal plasma in the flame kernel of hydrocarbon/air premixed gases

    NASA Astrophysics Data System (ADS)

    Askari, Omid; Beretta, Gian Paolo; Eisazadeh-Far, Kian; Metghalchi, Hameed

    2016-07-01

    Thermodynamic properties of hydrocarbon/air plasma mixtures at ultra-high temperatures must be precisely calculated due to important influence on the flame kernel formation and propagation in combusting flows and spark discharge applications. A new algorithm based on the complete chemical equilibrium assumption is developed to calculate the ultra-high temperature plasma composition and thermodynamic properties, including enthalpy, entropy, Gibbs free energy, specific heat at constant pressure, specific heat ratio, speed of sound, mean molar mass, and degree of ionization. The method is applied to compute the thermodynamic properties of H2/air and CH4/air plasma mixtures for different temperatures (1000-100 000 K), different pressures (10-6-100 atm), and different fuel/air equivalence ratios within flammability limit. In calculating the individual thermodynamic properties of the atomic species needed to compute the complete equilibrium composition, the Debye-Huckel cutoff criterion has been used for terminating the series expression of the electronic partition function so as to capture the reduction of the ionization potential due to pressure and the intense connection between the electronic partition function and the thermodynamic properties of the atomic species and the number of energy levels taken into account. Partition functions have been calculated using tabulated data for available atomic energy levels. The Rydberg and Ritz extrapolation and interpolation laws have been used for energy levels which are not observed. The calculated plasma properties are then presented as functions of temperature, pressure and equivalence ratio, in terms of a new set of thermodynamically self-consistent correlations that are shown to provide very accurate fits suitable for efficient use in CFD simulations. Comparisons with existing data for air plasma show excellent agreement.

  15. GPU based 3D feature profile simulation of high-aspect ratio contact hole etch process under fluorocarbon plasmas

    NASA Astrophysics Data System (ADS)

    Chun, Poo-Reum; Lee, Se-Ah; Yook, Yeong-Geun; Choi, Kwang-Sung; Cho, Deog-Geun; Yu, Dong-Hun; Chang, Won-Seok; Kwon, Deuk-Chul; Im, Yeon-Ho

    2013-09-01

    Although plasma etch profile simulation has been attracted much interest for developing reliable plasma etching, there still exist big gaps between current research status and predictable modeling due to the inherent complexity of plasma process. As an effort to address this issue, we present 3D feature profile simulation coupled with well-defined plasma-surface kinetic model for silicon dioxide etching process under fluorocarbon plasmas. To capture the realistic plasma surface reaction behaviors, a polymer layer based surface kinetic model was proposed to consider the simultaneous polymer deposition and oxide etching. Finally, the realistic plasma surface model was used for calculation of speed function for 3D topology simulation, which consists of multiple level set based moving algorithm, and ballistic transport module. In addition, the time consumable computations in the ballistic transport calculation were improved drastically by GPU based numerical computation, leading to the real time computation. Finally, we demonstrated that the surface kinetic model could be coupled successfully for 3D etch profile simulations in high-aspect ratio contact hole plasma etching.

  16. Domestic Supply, Job-Specialization and Sex-Differences in Pay

    ERIC Educational Resources Information Center

    Polavieja, Javier G.

    2009-01-01

    This article proposes an explanation of sex-differences in job-allocation and pay in different institutional contexts. Job-allocation calculations are considered to be related to (1) the distribution of housework and (2) the skill-specialization requirements of jobs. In a context of uncertainty and imperfect information, housework and…

  17. Injection of electrons with predominantly perpendicular energy into an area of toroidal field ripple in a tokamak plasma to improve plasma confinement

    DOEpatents

    Ono, Masayuki; Furth, Harold

    1993-01-01

    An electron injection scheme for controlling transport in a tokamak plasma. Electrons with predominantly perpendicular energy are injected into a ripple field region created by a group of localized poloidal field bending magnets. The trapped electrons then grad-B drift vertically toward the plasma interior until they are detrapped, charging the plasma negative. Calculations indicate that the highly perpendicular velocity electrons can remain stable against kinetic instabilities in the regime of interest for tokamak experiments. The penetration distance can be controlled by controlling the "ripple mirror ratio", the energy of the injected electrons, and their v.sub..perp. /v.sub.51 ratio. In this scheme, the poloidal torque due to the injected radial current is taken by the magnets and not by the plasma. Injection is accomplished by the flat cathode containing an ECH cavity to pump electrons to high v.sub..perp..

  18. Magnetic field diffusion and dissipation in reversed-field plasmas

    NASA Technical Reports Server (NTRS)

    Drake, J. F.; Gladd, N. T.; Huba, J. D.

    1981-01-01

    A diffusion equation is derived which describes the evolution of a magnetic field in a plasma of arbitrary beta and resistivity. The equation is valid for a one-dimensional slab geometry, assumes the plasma remains in quasi-equilibrium throughout its evolution and does not include thermal transport. Scaling laws governing the rate of change of the magnetic energy, particle drift energy, and magnetic flux are calculated. It is found that the magnetic free energy can be substantially larger than the particle drift energy and can be an important energy reservoir in driving plasma instabilities (e.g., the lower-hybrid-drift instability). In addition, the effect of a spatially varying resistivity on the evolution of a reversed-field plasma is studied. The resistivity model used is based upon the anomalous transport properties associated with the nonlocal mode structure of the lower-hybrid-drift instability. The relevance of this research to laboratory plasmas (e.g., theta pinches, reversed-field theta pinches) and space plasmas (e.g., the earth's magnetotail) is discussed.

  19. A note on dust grain charging in space plasmas

    NASA Technical Reports Server (NTRS)

    Rosenberg, M.; Mendis, D. A.

    1992-01-01

    Central to the study of dust-plasma interactions in the solar system is the electrostatic charging of dust grains. While previous calculations have generally assumed that the distributions of electrons and ions in the plasma are Maxwellian, most space plasmas are observed to have non-Maxwellian tails and can often be fit by a generalized Lorentzian (kappa) distribution. Here we use such a distribution to reevaluate the grain potential, under the condition that the dominant currents to the grain are due to electron and ion collection, as is the case in certain regions of space. The magnitude of the grain potential is found to be larger than that in a Maxwellian plasma as long as the electrons are described by a kappa distribution: this enhancement increased with ion mass and decreasing electron kappa. The modification of the grain potential in generalized Lorentzian plasmas has implications for both the physics (e.g., grain growth and disruption) and the dynamics of dust in space plasmas. These are also briefly discussed.

  20. Test Rules Differ between Groups for Special Ed.

    ERIC Educational Resources Information Center

    Samuels, Christina A.

    2013-01-01

    Champions of students with disabilities have long complained that those students are often an afterthought in state testing plans. Only after a test design is completed are educators asked to go back and adapt the questions for a student who is blind, who needs help accessing text or calculating numbers, or who must use a specialized device to…

  1. PREFACE: The 8th Workshop on Frontiers in Low Temperature Plasma Diagnostics The 8th Workshop on Frontiers in Low Temperature Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    Sadeghi, Nader; Czarnetzki, Uwe

    2010-03-01

    The 8th Workshop on Frontiers in Low Temperature Plasma Diagnostics (FLTPD) was held in Blansko, near Brno, Czech Republic. FLTPD is a biennial European event in which scientists working on low temperature plasmas present their recent results, pointing out in particular the originality of the diagnostic techniques used. The idea of starting this series of workshops was born out of a discussion between Frieder Döbele, Bill Graham and one of us when travelling together from Bar Harbor, USA (after the 6th LAPD) to Montreal, Canada, in October 1993. It became evident that we had been lacking a European meeting that could bring together experts in the field of low temperature plasma diagnostics and facilitate sharing the knowledge of these diagnostics with a new generation of scientists. The first FLTPD was held in Les Houches, France, in February 1995. Since then it has been held in the spring of every other year in different European countries, as shown below. The next meeting will be held in Zinnowitz, near Greifswald, Germany, in May 2011. Year Location Chair of LOC 1995 Les Houches, France J Derouard 1997 Bad Honnef, Germany F Döbele 1999 Saillon, Switzerland Ch Hollenstein 2001 Rolduc, The Netherlands R van de Sanden 2003 Specchia, Italy S De Benedictis 2005 Les Houches, France N Sadeghi 2007 Cumbria, United Kingdom M Bowden 2009 Blansko, Czech Republic F Krčma To favour brainstorming and extended discussions between participants, FLTPD meetings have always been organized in isolated locations with the number of attendees limited to about 70. Workshops are held over three and a half days with about ten expert presentations by invited speakers (a few from overseas), as well as short oral or poster contributions. This special issue of Journal of Physics D: Applied Physics contains 20 articles representative of contributions to the last FLTPD in Blansko. All invited speakers and others who gave presentations, as selected by the Scientific Committee, were invited

  2. How Artificial Should the Treatment of a Plasma's Viscosity Be?

    NASA Astrophysics Data System (ADS)

    Whitney, K. G.; Velikovich, A. L.; Thornhill, J. W.; Davis, J.

    1999-11-01

    Electron viscosity dominates over ion viscosity and is important in describing the generation of shock fronts in highly ionizable plasmas. The sizes of shock front jumps in electron and ion temperature are determined from the magnitudes of the heat flow vector and pressure tensor, which, in turn, acquire non-negligible nonlinear contributions from the temperature and density gradients when these gradients are large. Thus, a consistent treatment of steep gradient formation in plasmas must come from investigations that include the effects of these nonlinear contributions to heat and momentum transport. Coefficients for each of five nonlinear contributions to the pressure tensor for an (r,z) Z-pinch geometry are presented and discussed in this talk. Hydrodynamic code calculations generally are not designed to provide a testbed for directly evaluating the kinetic energy dissipation that occurs at shock fronts; therefore, the strength of these nonlinear pressure tensor terms will be estimated by post-processing a Z-pinch hydrodynamics calculation and a steady-state planar shock wave calculation.

  3. Development and validation of UHPLC-MS/MS methods for the quantification of colistin in plasma and dried plasma spots.

    PubMed

    Cangemi, Giuliana; Barco, Sebastiano; Castagnola, Elio; Tripodi, Gino; Favata, Fabio; D'Avolio, Antonio

    2016-09-10

    Quantification of colistin in plasma samples may be very useful in optimizing therapy especially in special patients' population. Nevertheless, therapeutic drug monitoring of colistin is still limited probably for the low number of laboratories which perform this analysis and for high shipment costs. We developed and validated new UHPLC-MS/MS methods to quantify colistin in plasma and in dried plasma spots (DPS) collected on dried sample spots devices (DSSD). Colistin A, Colistin B and polimixin B, used as internal standard, were detected using multiple reaction monitoring (MRM) of the following specific transitions: 585.5→534.9; 576, 578.5→527.9; 568.9 and 602.5→100.9, 551.9, 592.8, respectively. Colistin A and B were extracted from plasma using protein precipitation and from DSSD using an extraction basic solution. Both methods were validated, and the mean intra and inter-day accuracies and precisions were in accordance with FDA and EMA guidelines. Colistin in DPS was found to be stable for at least one week at room temperature (20-25°C). A statistically significant linear correlation was found between colistin extracted from plasma and from DPS [r(2) 0.9864 (P<0.0001, 95% CI 0.9699-0.9939) for colistin A and 0.9695 (P<0.0001, 95% CI 0.9310-0.9866) for colistin B, respectively]. DPS on DSSD represents a safe and cheap strategy to store and ship at room temperature plasma samples. Thus, it is suited for pharmacokinetic studies and therapeutic drug monitoring of colistin. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Electron energy distribution in a helium plasma created by nuclear radiations

    NASA Technical Reports Server (NTRS)

    Lo, R. H.; Miley, G. H.

    1974-01-01

    An integral balance technique for calculation of the electron energy distribution in a radiation-induced plasma is described. Results predict W-values reasonably well and compare favorably with more complicated Monte-Carlo calculations. The distribution found differs from that in a normal electrical discharge and is of interest in radiation-pumped laser research.

  5. Diagnostic principles of four-wave mixing for plasmas

    NASA Astrophysics Data System (ADS)

    Meng, Yuedong; Li, Jiangang; Luo, Jiarong

    1994-11-01

    A new method is used to diagnose plasma density space-profiles that involves phase conjugate reflection of four-wave mixing. Theoretical calculations for plasma parameters in the HT-6M tokamak show that two pump-wave beams (HCN laser), with a power of 1 W together with a signal beam (D2O or CH3F laser) of 0.1 W, can create a reflection of 0.1 to 0.43 mW with a phase conjugate to the signal where the cross section of all external beams is 1 cm2. This means that the reflective ratio of four-wave mixing is two orders larger than the ratio of laser superheating scatter. The lower power laser, therefore, can be used to diagnose plasmas.

  6. Reduction of the ionization energy for 1s-electrons in dense aluminum plasmas

    NASA Astrophysics Data System (ADS)

    Lin, C.; Reinholz, H.; Röpke, G.

    2017-02-01

    The properties of a bound multi-electron system immersed in a plasma environment are strongly modified by the surrounding plasma. In particular, the modification of the ionization energy is described by the electronic self-energy within the framework of the quantum statistical theory. We present the energy shift of the eigenstates and the lowering of the continuum edge of free electrons in a plasma. The reduction of the ionization potential is determined by their difference. This ionization potential depression for the 1s-levels in dense aluminum plasmas is calculated. Comparisons with other theories and the experimental data are shown for aluminum plasma at solid density 2.7 g/cm3.

  7. Ionization-potential depression and dynamical structure factor in dense plasmas

    NASA Astrophysics Data System (ADS)

    Lin, Chengliang; Röpke, Gerd; Kraeft, Wolf-Dietrich; Reinholz, Heidi

    2017-07-01

    The properties of a bound electron system immersed in a plasma environment are strongly modified by the surrounding plasma. The modification of an essential quantity, the ionization energy, is described by the electronic and ionic self-energies, including dynamical screening within the framework of the quantum statistical theory. Introducing the ionic dynamical structure factor as the indicator for the ionic microfield, we demonstrate that ionic correlations and fluctuations play a critical role in determining the ionization potential depression. This is, in particular, true for mixtures of different ions with large mass and charge asymmetry. The ionization potential depression is calculated for dense aluminum plasmas as well as for a CH plasma and compared to the experimental data and more phenomenological approaches used so far.

  8. Dust Acoustic Wave Excitation in a Plasma with Warm Dust

    NASA Astrophysics Data System (ADS)

    Rosenberg, M.; Thomas, E., Jr.; Marcus, L.; Fisher, R.; Williams, J. D.; Merlino, R. L.

    2008-11-01

    Measurements of the dust acoustic wave dispersion relation in dusty plasmas formed in glow discharges at the University of Iowa [1] and Auburn University [2] have shown the importance of finite dust temperature effects. The effect of dust grains with large thermal speeds was taken into account using kinetic theory of the ion-dust streaming instability [3]. The results of analytic and numerical calculations of the dispersion relation based on the kinetic theory will be presented and compared with the experimental results. [1] E. Thomas, Jr., R. Fisher, and R. L. Merlino, Phys. Plasmas 14, 123701 (2007). [2] J. D. Williams, E. Thomas Jr., and L. Marcus, Phys. Plasmas 15, 043704 (2008). [3] M. Rosenberg, E. Thomas Jr., and R. L. Merlino, Phys. Plasmas 15, 073701 (2008).

  9. High-efficiency acceleration in the laser wakefield by a linearly increasing plasma density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Kegong; Wu, Yuchi; Zhu, Bin

    The acceleration length and the peak energy of the electron beam are limited by the dephasing effect in the laser wakefield acceleration with uniform plasma density. Based on 2D-3V particle in cell simulations, the effects of a linearly increasing plasma density on the electron acceleration are investigated broadly. Comparing with the uniform plasma density, because of the prolongation of the acceleration length and the gradually increasing accelerating field due to the increasing plasma density, the electron beam energy is twice higher in moderate nonlinear wakefield regime. Because of the lower plasma density, the linearly increasing plasma density can also avoidmore » the dark current caused by additional injection. At the optimal acceleration length, the electron energy can be increased from 350 MeV (uniform) to 760 MeV (linearly increasing) with the energy spread of 1.8%, the beam duration is 5 fs and the beam waist is 1.25 μm. This linearly increasing plasma density distribution can be achieved by a capillary with special gas-filled structure, and is much more suitable for experiment.« less

  10. Ecological specialization and rarity indices estimated for a large number of plant species in France

    PubMed Central

    Mobaied, Samira; Machon, Nathalie; Porcher, Emmanuelle

    2015-01-01

    The biological diversity of the Earth is being rapidly depleted due to the direct and indirect consequences of human activities. Specialist or rare species are generally thought to be more extinction prone than generalist or common species. Testing this assumption however requires that the rarity and ecological specialization of the species are quantified. Many indices have been developed to classify species as generalists vs. specialists or as rare vs. common, but large data sets are needed to calculate these indices. Here, we present a list of specialization and rarity values for more than 2800 plant species of continental France, which were computed from the large botanical and ecological dataset SOPHY. Three specialization indices were calculated using species co-occurrence data. All three indices are based on (dis)similarity among plant communities containing a focal species, quantified either as beta diversity in an additive (Fridley et al., 2007 [6]) or multiplicative (Zeleny, 2008 [15]) partitioning of diversity or as the multiple site similarity of Baselga et al. (2007) [1]. Species rarity was calculated as the inverse of a species occurrence. PMID:26217738

  11. Savant Syndrome: Case Studies, Hypotheses, and Implications for Special Education.

    ERIC Educational Resources Information Center

    Cheatham, Susan Klug; And Others

    1995-01-01

    The concept of savant syndrome, encompassing those individuals historically known as "idiot savants," is reviewed. Case studies demonstrating special abilities in the areas of calendar calculating, musical ability, artistic talent, memorization, mathematical skills, mechanical achievement, and fine sensory discrimination are discussed,…

  12. Static electric dipole polarizability of lithium atoms in Debye plasmas

    NASA Astrophysics Data System (ADS)

    Ning, Li-Na; Qi, Yue-Ying

    2012-12-01

    The static electric dipole polarizabilities of the ground state and n <= 3 excited states of a lithium atom embedded in a weekly coupled plasma environment are investigated as a function of the plasma screening radium. The plasma screening of the Coulomb interaction is described by the Debye—Hückel potential and the interaction between the valence electron and the atomic core is described by a model potential. The electron energies and wave functions for both the bound and continuum states are calculated by solving the Schrödinger equation numerically using the symplectic integrator. The oscillator strengths, partial-wave, and total static dipole polarizabilities of the ground state and n <= 3 excited states of the lithium atom are calculated. Comparison of present results with those of other authors, when available, is made. The results for the 2s ground state demonstrated that the oscillator strengths and the static dipole polarizabilities from np orbitals do not always increase or decrease with the plasma screening effect increasing, unlike that for hydrogen-like ions, especially for 2s→3p transition there is a zero value for both the oscillator strength and the static dipole polarizability for screening length D = 10.3106a0, which is associated with the Cooper minima.

  13. Properties of air-aluminum thermal plasmas

    NASA Astrophysics Data System (ADS)

    Cressault, Y.; Gleizes, A.; Riquel, G.

    2012-07-01

    We present the calculation and the main results of the properties of air-aluminum thermal plasmas, useful for complete modelling of arc systems involving aluminum contacts. The properties are calculated assuming thermal equilibrium and correspond to the equilibrium composition, thermodynamic functions, transport coefficients including diffusion coefficients and net emission coefficient representing the divergence of the radiative flux in the hottest plasma regions. The calculation is developed in the temperature range between 2000 and 30 000 K, for a pressure range from 0.1 to 1 bar and for several metal mass proportions. As in the case of other metals, the presence of aluminum vapours has a strong influence on three properties at intermediate temperatures: the electron number density, the electrical conductivity and the net emission coefficient. Some comparisons with other metal vapour (Cu, Fe and Ag) properties are made and show the original behaviour for Al-containing mixtures: mass density at high temperatures is low due to the low Al atomic mass; high electrical conductivity at T < 10 000 K due to low ionization potential (around 2 V less for Al than for the other metals); very strong self-absorption of ionized aluminum lines, leading to a net emission coefficient lower than that of pure air when T > 10 000 K, in contrast to copper or iron radiation.

  14. Quark self-energy in an ellipsoidally anisotropic quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Kasmaei, Babak S.; Nopoush, Mohammad; Strickland, Michael

    2016-12-01

    We calculate the quark self-energy in a quark-gluon plasma that possesses an ellipsoidal momentum-space anisotropy in the local rest frame. By introducing additional transverse-momentum anisotropy parameters into the parton distribution functions, we generalize previous results which were obtained for the case of a spheroidal anisotropy. Our results demonstrate that the presence of anisotropies in the transverse directions affects the real and imaginary parts of quark self-energy and, consequently, the self-energy depends on both the polar and azimuthal angles in the local rest frame of the matter. Our results for the quark self-energy set the stage for the calculation of the effects of ellipsoidal momentum-space anisotropy on quark-gluon plasma photon spectra and collective flow.

  15. Forest Service special agents, assistant special agents in charge, senior special agents, and supervisory special agents report: nationwide study

    Treesearch

    Deborah J. Chavez; Joanne F. Tynon

    2007-01-01

    This is the fourth in a series of studies to evaluate perceptions of U.S. Department of Agriculture Forest Service law enforcement personnel of the roles, responsibilities, and issues related to their jobs. An e-mail survey was administered to the 89 Forest Service special agents, assistant special agents in charge, senior special agents, and supervisory special agents...

  16. Injection Molding Parameters Calculations by Using Visual Basic (VB) Programming

    NASA Astrophysics Data System (ADS)

    Tony, B. Jain A. R.; Karthikeyen, S.; Alex, B. Jeslin A. R.; Hasan, Z. Jahid Ali

    2018-03-01

    Now a day’s manufacturing industry plays a vital role in production sectors. To fabricate a component lot of design calculation has to be done. There is a chance of human errors occurs during design calculations. The aim of this project is to create a special module using visual basic (VB) programming to calculate injection molding parameters to avoid human errors. To create an injection mold for a spur gear component the following parameters have to be calculated such as Cooling Capacity, Cooling Channel Diameter, and Cooling Channel Length, Runner Length and Runner Diameter, Gate Diameter and Gate Pressure. To calculate the above injection molding parameters a separate module has been created using Visual Basic (VB) Programming to reduce the human errors. The outcome of the module dimensions is the injection molding components such as mold cavity and core design, ejector plate design.

  17. A Comprehensive Software and Database Management System for Glomerular Filtration Rate Estimation by Radionuclide Plasma Sampling and Serum Creatinine Methods.

    PubMed

    Jha, Ashish Kumar

    2015-01-01

    Glomerular filtration rate (GFR) estimation by plasma sampling method is considered as the gold standard. However, this method is not widely used because the complex technique and cumbersome calculations coupled with the lack of availability of user-friendly software. The routinely used Serum Creatinine method (SrCrM) of GFR estimation also requires the use of online calculators which cannot be used without internet access. We have developed user-friendly software "GFR estimation software" which gives the options to estimate GFR by plasma sampling method as well as SrCrM. We have used Microsoft Windows(®) as operating system and Visual Basic 6.0 as the front end and Microsoft Access(®) as database tool to develop this software. We have used Russell's formula for GFR calculation by plasma sampling method. GFR calculations using serum creatinine have been done using MIRD, Cockcroft-Gault method, Schwartz method, and Counahan-Barratt methods. The developed software is performing mathematical calculations correctly and is user-friendly. This software also enables storage and easy retrieval of the raw data, patient's information and calculated GFR for further processing and comparison. This is user-friendly software to calculate the GFR by various plasma sampling method and blood parameter. This software is also a good system for storing the raw and processed data for future analysis.

  18. Studies for the Europagenic Plasma Source in Jupiter's Inner Magnetosphere during the Galileo Europa Mission

    NASA Technical Reports Server (NTRS)

    Smyth, William H.

    2004-01-01

    Progress in research to understand the three-dimensional nature of the Europagenic plasma torus is summarized. Efforts to improve the plasma torus description near Europa's orbit have included a better understanding of Europa's orbit and an improved description of the planetary magnetic field. New plasma torus chemistry for molecular and atomic species has been introduced and implemented in Europa neutral cloud models. Preliminary three-dimensional model calculations for Europa's neutral clouds and their plasma sources are presented.

  19. Experimental benchmark of the NINJA code for application to the Linac4 H- ion source plasma

    NASA Astrophysics Data System (ADS)

    Briefi, S.; Mattei, S.; Rauner, D.; Lettry, J.; Tran, M. Q.; Fantz, U.

    2017-10-01

    For a dedicated performance optimization of negative hydrogen ion sources applied at particle accelerators, a detailed assessment of the plasma processes is required. Due to the compact design of these sources, diagnostic access is typically limited to optical emission spectroscopy yielding only line-of-sight integrated results. In order to allow for a spatially resolved investigation, the electromagnetic particle-in-cell Monte Carlo collision code NINJA has been developed for the Linac4 ion source at CERN. This code considers the RF field generated by the ICP coil as well as the external static magnetic fields and calculates self-consistently the resulting discharge properties. NINJA is benchmarked at the diagnostically well accessible lab experiment CHARLIE (Concept studies for Helicon Assisted RF Low pressure Ion sourcEs) at varying RF power and gas pressure. A good general agreement is observed between experiment and simulation although the simulated electron density trends for varying pressure and power as well as the absolute electron temperature values deviate slightly from the measured ones. This can be explained by the assumption of strong inductive coupling in NINJA, whereas the CHARLIE discharges show the characteristics of loosely coupled plasmas. For the Linac4 plasma, this assumption is valid. Accordingly, both the absolute values of the accessible plasma parameters and their trends for varying RF power agree well in measurement and simulation. At varying RF power, the H- current extracted from the Linac4 source peaks at 40 kW. For volume operation, this is perfectly reflected by assessing the processes in front of the extraction aperture based on the simulation results where the highest H- density is obtained for the same power level. In surface operation, the production of negative hydrogen ions at the converter surface can only be considered by specialized beam formation codes, which require plasma parameters as input. It has been demonstrated that

  20. M3D-C1 simulations of the plasma response to RMPs in NSTX-U single-null and snowflake divertor configurations

    DOE PAGES

    Canal, G. P.; Ferraro, N. M.; Evans, T. E.; ...

    2017-04-20

    Here in this work, single- and two-fluid resistive magnetohydrodynamic calculations of the plasma response to n = 3 magnetic perturbations in single-null (SN) and snowflake (SF) divertor configurations are compared with those based on the vacuum approach. The calculations are performed using the code M3D-C 1 and are based on simulated NSTX-U plasmas. Significantly different plasma responses were found from these calculations, with the difference between the single- and two-fluid plasma responses being caused mainly by the different screening mechanism intrinsic to each of these models. Although different plasma responses were obtained from these different plasma models, no significant differencemore » between the SN and SF plasma responses were found. However, due to their different equilibrium properties, magnetic perturbations cause the SF configuration to develop additional and longer magnetic lobes in the null-point region than the SN, regardless of the plasma model used. The intersection of these longer and additional lobes with the divertor plates are expected to cause more striations in the particle and heat flux target profiles. In addition, the results indicate that the size of the magnetic lobes, in both single-null and snowflake configurations, are more sensitive to resonant magnetic perturbations than to non-resonant magnetic perturbations.« less