Science.gov

Sample records for plasma surface engineering

  1. Impulse Plasma In Surface Engineering - a review

    NASA Astrophysics Data System (ADS)

    Zdunek, K.; Nowakowska-Langier, K.; Chodun, R.; Okrasa, S.; Rabinski, M.; Dora, J.; Domanowski, P.; Halarowicz, J.

    2014-11-01

    The article describes the view of the plasma surface engineering, assuming the role of non-thermal energy effects in the synthesis of materials and coatings deposition. In the following study it was underlined that the vapor excitation through the application of an electric field during coatings deposition gives new possibilities for coatings formation. As an example the IPD method was chosen. During the IPD (Impulse Plasma Deposition) the impulse plasma is generated in the coaxial accelerator by strong periodic electrical pulses. The impulse plasma is distributed in the form of energetic plasma pockets. Due to the almost completely ionization of gas, the nucleation of new phases takes place on ions directly in the plasma itself. As a result the coatings of metastable materials with nano-amorphous structure and excellent adhesion to the non-heated intentionally substrates could be deposited. Recently the novel way of impulse plasma generation during the coatings deposition was proposed and developed by our group. An efficient tool for plasma process control, the plasma forming gas injection to the interelectrode space was used. Periodic changing the gas pressure results in increasing both the degree of dispersion and the dynamics of the plasma pulses. The advantage of the new technique in deposition of coatings with exceptionally good properties has been demonstrated in the industrial scale not only in the case of the IPD method but also in the case of very well known magnetron sputtering method.

  2. Plasma engineered surfaces for orthopedic devices.

    PubMed

    Farhat, Susan; Gilliam, Mary; Samaniego, Cheryl; Dwarshuis, Nate; Carson, Julia; Peterson, Benjamin; Zand, Ali

    2016-06-01

    Atmospheric pressure plasma was used to graft various biocompatible polymers to the surface of ultra-high molecular weight polyethylene (UHMWPE). Polymers used as grafts in this study were poly(2-hydroxyethylmethacrylate) (PHEMA) and polyethylene glycol (PEG). A significant decrease in contact angle was noted for grafted surfaces, indicating increased hydrophilicity. Surface functionalities were verified using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The wear properties of the coatings were determined by weight loss under conditions of a random motion pin-on-plate apparatus with the coated polyethylene plaques immersed in DI water. Based on these tests, the grafted surfaces exhibited an improved resistance to wear, compared to UHMWPE. Cell viability studies were used to confirm that the plasma treatment had no negative effects on the surface bio-toxicity. Based on the results, it is anticipated that the incorporation of these biocompatible polymer-grafted UHMWPE surfaces in metal-on-plastic orthopedic implants should improve their performance and longevity. PMID:26999407

  3. Plasma deposition of thin film multilayers for surface engineering

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, R.; Kumar, Sushil

    2012-06-01

    Plasma surface Engineering for enhancing optical and tribological behaviour of a surface is discussed. Specifically, it is shown how optimized PECVD processing can produce sophisticated Rugate filters and AR coatings on plastic lenses. It is found that multilayer Diamond Like Carbon coatings (DLC), in a functionally graded geometry, obtained by a combination of plasma intensive processing, not only can impart high value of hardness to a surface but also wear protection at high contact loads.

  4. Environmentally friendly plasma-based surface engineering technologies

    NASA Astrophysics Data System (ADS)

    Drenik, A.; Mozetic, M.; Vesel, A.; Cvelbar, U.

    2010-01-01

    Weakly ionised reactive plasmas are characterised by a very low degree of ionization, which rarely exceeds the order of 10-4, and by a very high degree of dissociation, which often reaches values above 50%. Thus the most numerous plasma species are free neutral atoms originated from the dissociation of the source gas molecules. Neutral atoms are chemically very reactive species, which makes such plasma suitable for material processing. At the same time the neutral atoms have a low kinetic energy and therefore they cannot penetrate into the bulk material, so their effect is restricted to the topmost atomic layers of the material surface hence weakly ionised, reactive plasmas are suitable for surface engineering. Here we present examples of weakly ionised plasma applications as environmentally friendly alternatives to processes that otherwise utilise aggressive chemicals and produce toxic waste.

  5. IPD -The Use of Impulse Plasma in Surface Engineering

    NASA Astrophysics Data System (ADS)

    Zdunek, Krzysztof

    2008-10-01

    It is evident that impulse plasma ensures both the highest level of nonequilibrity and highest level of vapour ionisation. These conditions seemed to be especially suitable for synthetizing the phases with high energetic barrier of nucleation process. In our methods, called by us as the Impulse Plasma Deposition (IPD) the impulse plasma is generated and accelerated in a coaxial accelerator. The only source of electric energy in the plasma process is condenser battery charged to the voltage of order of kVs. During the discharge of condensers individual plasmoids are being accelerated in the coaxial generator by the Ampere force to the speed of the order of 10^4 ms-1 and directed to the non-heated substrate. The most characteristic feature of the is that the synthesis proceeds in the impulse plasma itself, with the participation of ions. The crystallization on ions (ionization degree of the impulse plasma is equal to 100%) makes individual plasmoids to be strongly enriched rather in clusters or particles agglomerates with dimensions of order of single nms than the atoms. Because of the very short life time of plasmoids (approx. 10-4 sec each) the surface coalescence of particles delivered to the substrate has a limited character. As a consequence the material of the layer has nanocrystalline, globular morphology.

  6. Surface engineering of glazing materials and structures using plasma processes

    SciTech Connect

    Anders, Andre; Monteiro, Othon R.

    2003-04-10

    A variety of coatings is commercially produced on a very large scale, including transparent conducting oxides and multi-layer silver-based low-emissivity and solar control coatings. A very brief review of materials and manufacturing process is presented and illustrated by ultrathin silver films and chevron copper films. Understanding the close relation between manufacturing processes and bulk and surface properties of materials is crucial for film growth and self-assembly processes.

  7. Plasma Surface Interactions and Life-Limiting Phenomena in Ion Engines

    NASA Astrophysics Data System (ADS)

    Polk, James

    2000-10-01

    Ion propulsion is entering an age of application in NASA's planetary program as a key technology being demonstrated on Deep Space 1 (DS1). The single ion thruster on DS1 propelled it to an encounter with the asteroid Braille in July 1999 and is now used to provide the Delta-V for a flyby of the comet Borrelly in 2001. It will deliver a total Delta-V of 4.5 km/s to the 486 kg spacecraft in this mission while consuming less than 81 kg of xenon. With this demonstration, ion propulsion is now being considered for a range of future planetary missions. The high specific impulse capability of ion thrusters makes it possible to perform demanding outer planet and sample return missions with smaller, less expensive launch vehicles and shorter trip times. However, the low thrust levels that ion engines provide necessitate long burn times, typically thousands of hours per engine. Many of the potential failure modes that limit ion engine life are driven by plasma-surface interactions. The experimental characterization of wear processes from ground testing and current theoretical understanding of the erosion mechanisms will be discussed in this presentation.

  8. Plasma engineering for MARS

    SciTech Connect

    Carlson, G.A.; Baldwin, D.E.; Barr, W.L.

    1983-03-24

    The two-year Mirror Advanced Reactor Study (MARS) has resulted in the conceptual design of a commercial, electricity-producing fusion reactor based on tandem mirror confinement. The physics basis for the MARS reactor was developed through work in two highly coupled areas of plasma engineering: magnetics and plasma performance.

  9. Magnetic Lens For Plasma Engine

    NASA Technical Reports Server (NTRS)

    Sercel, Joel C.

    1992-01-01

    Low-field electromagnet coils placed downstream of plasma engine, polarized oppositely to higher-field but smaller radius coil in nozzle of engine, reduces divergence of plasma jet, thereby increasing efficiency of engine. Concept tested by computer simulation based on simplified mathematical model of plasma, engine, and coils.

  10. Magnesium: Engineering the Surface

    NASA Astrophysics Data System (ADS)

    Chen, X. B.; Yang, H. Y.; Abbott, T. B.; Easton, M. A.; Birbilis, N.

    2012-06-01

    Magnesium (Mg) and its alloys provide numerous benefits as lightweight materials; however, industrial deployment of Mg in most instances requires anticorrosion coatings. Engineering the Mg surface is an area that has been undergoing intense research recently. Surface engineering commences with the "pretreatment" step, which can be used to modify the surface composition and morphology, resulting in surface enrichment or depletion of alloying elements. Following this, electrochemical plating (including electro- and electroless plating) and conversion coatings have emerged as common means of coating Mg. In this study, we present the key aspects relating to the science and technology associated with pretreatment, electrochemical plating, and conversion coatings. This is followed by experimental examples of engineered surfaces of industrial relevance.

  11. Plasma surface modification of polymers

    NASA Technical Reports Server (NTRS)

    Hirotsu, T.

    1980-01-01

    Thin plasma polymerization films are discussed from the viewpoint of simplicity in production stages. The application of selective, absorbent films and films used in selective permeability was tested. The types of surface modification of polymers discussed are: (1) plasma etching, (2) surface coating by plasma polymerized thin films, and (3) plasma activation surface graft polymerization.

  12. Plasma interactions and surface/material effects

    NASA Technical Reports Server (NTRS)

    Mandel, M.; Chutjian, A.; Hall, W.; Leung, P.; Robinson, P.; Stevens, N. J.

    1986-01-01

    A discussion on plasma interactions and surface/material effects is summarized. The key issues in this area were: (1) the lack of data on the material properties of common spacecraft surface materials; (2) lack of understanding of the contamination and decontamination processes; and (3) insufficient analytical tools to model synergistic phenomena related to plasma interactions. Without an adequate database of material properties, accurate system performance predictions cannot be made. The interdisciplinary nature of the surface-plasma interactions area makes it difficult to plan and maintain a coherent theoretical and experimental program. The shuttle glow phenomenon is an excellent example of an unanticipated, complex interaction involving synergism between surface and plasma effects. Building an adequate technology base for understanding and predicting surface-plasma interactions will require the coordinated efforts of engineers, chemists, and physicists. An interdisciplinary R and D program should be organized to deal with similar problems that the space systems of the 21st century may encounter.

  13. Surface currents on ideal plasmas

    SciTech Connect

    Webster, Anthony J.

    2010-11-15

    The surface (or 'skin') current that can flow at a perturbed interface between plasma and vacuum is considered in the approximation where a surface marks a sharp transition from plasma to vacuum. A short magnetohydrodynamic calculation gives an exact and general expression for the component perpendicular to the average of the magnetic field either side of the surface, finding it proportional to the edge plasma pressure. A consequence is that for all plasmas with zero surface current at equilibrium, the surface current associated with any linear instability will flow parallel to the magnetic field. The surface current is calculated for a simple but realistic model of a cylindrical plasma, and found to depend on the type of instability, and consequently on the particular plasma equilibrium. This is illustrated for two well known cases.

  14. Plasma igniter for internal-combustion engines

    NASA Technical Reports Server (NTRS)

    Breshears, R. R.; Fitzgerald, D. J.

    1978-01-01

    Hot ionized gas (plasma) ignites air/fuel mixture in internal combustion engines more effectively than spark. Electromagnetic forces propel plasma into combustion zone. Combustion rate is not limited by flame-front speed.

  15. Method for generating surface plasma

    DOEpatents

    Miller, Paul A.; Aragon, Ben P.

    2003-05-27

    A method for generating a discharge plasma which covers a surface of a body in a gas at pressures from 0.01 Torr to atmospheric pressure, by applying a radio frequency power with frequencies between approximately 1 MHz and 10 GHz across a plurality of paired insulated conductors on the surface. At these frequencies, an arc-less, non-filamentary plasma can be generated to affect the drag characteristics of vehicles moving through the gas. The plasma can also be used as a source in plasma reactors for chemical reaction operations.

  16. Limitations of threshold voltage engineering of AlGaN/GaN heterostructures by dielectric interface charge density and manipulation by oxygen plasma surface treatments

    NASA Astrophysics Data System (ADS)

    Lükens, G.; Yacoub, H.; Kalisch, H.; Vescan, A.

    2016-05-01

    The interface charge density between the gate dielectric and an AlGaN/GaN heterostructure has a significant impact on the absolute value and stability of the threshold voltage Vth of metal-insulator-semiconductor (MIS) heterostructure field effect transistor. It is shown that a dry-etching step (as typically necessary for normally off devices engineered by gate-recessing) before the Al2O3 gate dielectric deposition introduces a high positive interface charge density. Its origin is most likely donor-type trap states shifting Vth to large negative values, which is detrimental for normally off devices. We investigate the influence of oxygen plasma annealing techniques of the dry-etched AlGaN/GaN surface by capacitance-voltage measurements and demonstrate that the positive interface charge density can be effectively compensated. Furthermore, only a low Vth hysteresis is observable making this approach suitable for threshold voltage engineering. Analysis of the electrostatics in the investigated MIS structures reveals that the maximum Vth shift to positive voltages achievable is fundamentally limited by the onset of accumulation of holes at the dielectric/barrier interface. In the case of the Al2O3/Al0.26Ga0.74N/GaN material system, this maximum threshold voltage shift is limited to 2.3 V.

  17. Gas Plasma Surface Chemistry for Biological Assays.

    PubMed

    Sahagian, Khoren; Larner, Mikki

    2015-01-01

    Biological systems respond to and interact with surfaces. Gas plasma provides a scalable surface treatment method for designing interactive surfaces. There are many commercial examples of plasma-modified products. These include well plates, filtration membranes, dispensing tools, and medical devices. This chapter presents an overview of gas plasma technology and provides a guide to using gas plasma for modifying surfaces for research or product development. PMID:26160577

  18. Argonne Plasma Engineering Experiment (APEX) Tokamak

    SciTech Connect

    Norem, J.H.; Balka, L.J.; Kulovitz, E.E.; Magill, S.R.; McGhee, D.G.; Moretti, A.; Praeg, W.F.

    1981-03-01

    The Argonne Plasma Engineering Experiment (APEX) Tokamak was designed to provide hot plasmas for reactor-relevant experiments with rf heating (current drive) and plasma wall experiments, principally in-situ low-Z wall coating and maintenance. The device, sized to produce energetic plasmas at minimum cost, is small (R = 51 cm, r = 15 cm) but capable of high currents (100 kA) and long pulse durations (100 ms). A design using an iron central core with no return legs, pure tension tapewound toroidal field coils, digital radial position control, and UHV vacuum technology was used. Diagnostics include monochrometers, x-ray detectors, and a microwave interferometer and radiometer for density and temperature measurements. Stable 100 ms shots were produced with electron temperatures in the range 500 to 1000 eV. Initial results included studies of thermal desorption and recoating of wall materials.

  19. Plasma Diagnostics Development for Advanced Rocket Engines

    NASA Astrophysics Data System (ADS)

    Glover, Timothy; Kittrell, Carter; Chan, Anthony; Chang-Diaz, Franklin

    2000-10-01

    The VASIMR (Variable Specific Impulse Magnetoplasma Rocket) engine is a next-generation rocket engine under development at the Johnson Space Center's Advanced Space Propulsion Laboratory. With an exhaust velocity up to 50 times that of chemical rocket engines such as the Space Shuttle Main Engine, the VASIMR concept promises fast, efficient interplanetary flight. Rice University has participated in VASIMR research since 1996 and at present is developing two new diagnostic probes: a retarding potential analyzer to measure the velocity of ions in the rocket's exhaust, and a moveable optical probe to examine the spectrum of the rocket's helicon plasma source. In support of the probe development, a test facility is under construction at Rice, consisting of a small electric rocket engine firing into a 2-m vacuum chamber. This engine, the MPD (magnetoplasmadynamic) thruster, dates from the 1960's and provides a well-characterized source plasma for testing of the probes under development. We present details of the ion energy analyzer and the facility under construction at Rice.

  20. Plasma igniter for internal combustion engine

    NASA Technical Reports Server (NTRS)

    Fitzgerald, D. J.; Breshears, R. R. (Inventor)

    1978-01-01

    An igniter for the air/fuel mixture used in the cylinders of an internal combustion engine is described. A conventional spark is used to initiate the discharge of a large amount of energy stored in a capacitor. A high current discharge of the energy in the capacitor switched on by a spark discharge produces a plasma and a magnetic field. The resultant combined electromagnetic current and magnetic field force accelerates the plasma deep into the combustion chamber thereby providing an improved ignition of the air/fuel mixture in the chamber.

  1. Practical applications of plasma surface modification

    SciTech Connect

    Smith, M.D.

    1993-12-01

    Radio frequency activated gas plasma is an environmentally conscious manufacturing process which provides surface treatments for improved product quality. Plasma processing offers significant potential for reducing the use of solvents and other wet processing chemicals now used in surface treatments such as cleaning, activation for bonding, and moisture removal. Plasma treatments are generally accomplished without creating hazardous waste streams to dispose of. Plasma process development and application is ongoing at Allied Signal Inc., Kansas City Division.

  2. Antiproton powered propulsion with magnetically confined plasma engines

    NASA Technical Reports Server (NTRS)

    Lapointe, Michael R.

    1989-01-01

    Matter-antimatter annihilation releases more energy per unit mass than any other method of energy production, making it an attractive energy source for spacecraft propulsion. In the magnetically confined plasma engine, antiproton beams are injected axially into a pulsed magnetic mirror system, where they annihilate with an initially neutral hydrogen gas. The resulting charged annihilation products transfer energy to the hydrogen propellant, which is then exhausted through one end of the pulsed mirror system to provide thrust. The calculated energy transfer efficiencies for a low number density (10(14)/cu cm) hydrogen propellant are insufficient to warrant operating the engine in this mode. Efficiencies are improved using moderate propellant number densities (10(16)/cu cm), but the energy transferred to the plasma in a realistic magnetic mirror system is generally limited to less than 2 percent of the initial proton-antiproton annihilation energy. The energy transfer efficiencies are highest for high number density (10(18)/cu cm) propellants, but plasma temperatures are reduced by excessive radiation losses. Low to moderate thrust over a wide range of specific impulse can be generated with moderate propellant number densities, while higher thrust but lower specific impulse may be generated using high propellant number densities. Significant mass will be required to shield the superconducting magnet coils from the high energy gamma radiation emitted by neutral pion decay. The mass of such a radiation shield may dominate the total engine mass, and could severely diminish the performance of antiproton powered engines which utilize magnetic confinement. The problem is compounded in the antiproton powered plasma engine, where lower energy plasma bremsstrahlung radiation may cause shield surface ablation and degradation.

  3. Antiproton powered propulsion with magnetically confined plasma engines

    SciTech Connect

    Lapointe, M.R.

    1989-08-01

    Matter-antimatter annihilation releases more energy per unit mass than any other method of energy production, making it an attractive energy source for spacecraft propulsion. In the magnetically confined plasma engine, antiproton beams are injected axially into a pulsed magnetic mirror system, where they annihilate with an initially neutral hydrogen gas. The resulting charged annihilation products transfer energy to the hydrogen propellant, which is then exhausted through one end of the pulsed mirror system to provide thrust. The calculated energy transfer efficiencies for a low number density (10(14)/cu cm) hydrogen propellant are insufficient to warrant operating the engine in this mode. Efficiencies are improved using moderate propellant number densities (10(16)/cu cm), but the energy transferred to the plasma in a realistic magnetic mirror system is generally limited to less than 2 percent of the initial proton-antiproton annihilation energy. The energy transfer efficiencies are highest for high number density (10(18)/cu cm) propellants, but plasma temperatures are reduced by excessive radiation losses. Low to moderate thrust over a wide range of specific impulse can be generated with moderate propellant number densities, while higher thrust but lower specific impulse may be generated using high propellant number densities. Significant mass will be required to shield the superconducting magnet coils from the high energy gamma radiation emitted by neutral pion decay. The mass of such a radiation shield may dominate the total engine mass, and could severely diminish the performance of antiproton powered engines which utilize magnetic confinement. The problem is compounded in the antiproton powered plasma engine, where lower energy plasma bremsstrahlung radiation may cause shield surface ablation and degradation.

  4. Optimal Distributed Excitation of Surface Wave Plasmas

    NASA Astrophysics Data System (ADS)

    Bowers, K. J.; Birdsall, C. K.

    2000-10-01

    Surface wave sustained plasmas are an emerging technology for next generation sources for material processing. There is promise of producing high density, uniform sheath plasmas at low neutral pressures over large target surface areas. Such plasmas are being produced by distributed arrays of slot antennas by numerous groups. However, work remains to obtain the optimal surface wave frequency and wave vector for sustaining a plasma. In this work, the optimal phase shift between slot antennas in a surface wave plasma is being sought using 2d3v PIC-MCC simulation. A long plasma loaded planar metal waveguide with a distributed exciting structure along one wall is modeled in these simulations. Of particular interest is the wave-particle interaction of electrons in the high energy tail of the velocity distribution (responsible for ionization in low pressure discharges) with driven low phase velocity (v << c) surface waves.

  5. Plasma heat pump and heat engine

    SciTech Connect

    Avinash, K.

    2010-08-15

    A model system where cold charged particles are locally confined in a volume V{sub P} within a warm plasma of volume V (V{sub P}<plasma heat and vice versa. Two applications of this theory are, first we propose a pumping device which heats plasmas by an adiabatic/isothermal compression of fields. Heating power ranging from a few hundred watts to a few kilowatts is possible with the present day technology. Second, we discuss the feasibility of constructing an electrostatic heat engine which converts plasma heat into mechanical work via plasma electric fields. Effects of P{sub E} are shown to be observable in colloidal solutions.

  6. Surface plasma wave excitation via laser irradiated overdense plasma foil

    SciTech Connect

    Kumar, Pawan; Tripathi, V. K.

    2012-04-09

    A laser irradiated overdense plasma foil is seen to be susceptible to parametric excitation of surface plasma wave (SPW) and ion acoustic wave (IAW) on the ion plasma period time scale. The SPW is localised near the front surface of the foil while IAW extends upto the rear. The evanescent laser field and the SPW exert a ponderomotive force on electrons driving the IAW. The density perturbation associated with the latter beats with the laser induced oscillatory electron velocity to drive the SPW. At relativistic laser intensity, the growth rate is of the order of ion plasma frequency.

  7. Superhydrophobic surfaces engineered using diatomaceous earth.

    PubMed

    Oliveira, Nuno M; Reis, Rui L; Mano, João F

    2013-05-22

    We present a simple method to prepare superhydrophobic surfaces using siliceous exoskeleton of diatoms, a widespread group of algae. This makes diatomaceous earth an accessible and cheap natural material. A micro/nanoscale hierarchical topography was achieved by coating a glass surface with diatomaceous earth, giving rise to a superhydrophilic surface. Superhydrophobic surfaces were obtained by a further surface chemical modification through fluorosilanization. The wettability of the superhydrophobic surface can be modified by Argon plasma treatment in a controlled way by exposure time variation. The chemical surface modification by fluorosilanization and posterior fluorinated SH surface modification by plasma treatment was analyzed by XPS. Using appropriated hollowed masks only specific areas on the surface were exposed to plasma permitting to pattern hydrophilic features with different geometries on the superhydrophobic surface. We showed that the present strategy can be also applied in other substrates, including thermoplastics, enlarging the potential applicability of the resulting surfaces. PMID:23647196

  8. Surface studies of plasma processed Nb samples

    SciTech Connect

    Tyagi, Puneet V; Doleans, Marc; Hannah, Brian S; Afanador, Ralph; Stewart, Stephen; Mammosser, John; Howell, Matthew P; Saunders, Jeffrey W; Degraff, Brian D; Kim, Sang-Ho

    2015-01-01

    Contaminants present at top surface of superconducting radio frequency (SRF) cavities can act as field emitters and restrict the cavity accelerating gradient. A room temperature in-situ plasma processing technology for SRF cavities aiming to clean hydrocarbons from inner surface of cavities has been recently developed at the Spallation Neutron Source (SNS). Surface studies of the plasma processed Nb samples by Secondary ion mass spectrometry (SIMS) and Scanning Kelvin Probe (SKP) showed that the NeO2 plasma processing is very effective to remove carbonaceous contaminants from top surface and improves the surface work function by 0.5 to 1.0 eV.

  9. Overview of surface engineering and wear

    SciTech Connect

    Budinski, K.G.

    1996-12-31

    Surface engineering is a multidiscipline activity aimed at tailoring the properties or surfaces of engineering materials to improve their function or service life. As applied to metals, surface engineering includes processes such as plating, diffusion treatment, physical and chemical vapor deposition, ion implantation, thermal spray coatings, selective hardening, hardfacing, and a variety of less-used and proprietary processes. These processes will be described briefly and it is shown that each process has a niche where it works better or is more cost effective than competing surface engineering treatments or bulk materials. This paper reviews the various forms of wear that occur in industrial environments. Techniques are described to match available surface engineering processes with wear situations. The goal is to present selection guidelines for machine designers and industrial operating personnel on the use of surface engineering to solve wear problems.

  10. Plasma modification of polymethylmethacrylate and polythyleneterephthalate surfaces

    NASA Astrophysics Data System (ADS)

    Groning, P.; Collaud, M.; Dietler, G.; Schlapbach, L.

    1994-07-01

    Noble gas (He, Ar, Xe) and reactive gas (O2, N2) plasma treatments of polymethylmethacrylate (PMMA) and polyethyleneterephthalate (PET) surfaces were performed in an electron-cyclotron-resonance plasma. In situ surface analysis by x-ray photoelectron spectroscopy reveals well-defined surface compositions. From these measurements it is concluded that, independently of the plasma gas, the plasma ions easily decompose the ester group in PMMA in its constituents by an ion-electron recombination process, while in PET the ester decomposition is less pronounced. The difference is ascribed to the presence in PET of a phenyl ring, which protects the ester group by various mechanisms. The study of O2 plasma treatments shows that the equilibrium between the depletion of oxygen and the incorporation of the reactive species in the polymer surface is solely determined by the ion current. The plasma-polymer interactions are qualtitatively explained by simple rules of intermolecular forces and ion-electron recombination phenomena.

  11. Surface modification of polymeric materials by cold atmospheric plasma jet

    NASA Astrophysics Data System (ADS)

    Kostov, K. G.; Nishime, T. M. C.; Castro, A. H. R.; Toth, A.; Hein, L. R. O.

    2014-09-01

    In this work we report the surface modification of different engineering polymers, such as, polyethylene terephthalate (PET), polyethylene (PE) and polypropylene (PP) by an atmospheric pressure plasma jet (APPJ). It was operated with Ar gas using 10 kV, 37 kHz, sine wave as an excitation source. The aim of this study is to determine the optimal treatment conditions and also to compare the polymer surface modification induced by plasma jet with the one obtained by another atmospheric pressure plasma source - the dielectric barrier discharge (DBD). The samples were exposed to the plasma jet effluent using a scanning procedure, which allowed achieving a uniform surface modification. The wettability assessments of all polymers reveal that the treatment leads to reduction of more than 40° in the water contact angle (WCA). Changes in surface composition and chemical bonding were analyzed by x-ray photoelectron spectroscopy (XPS) and Fourier-Transformed Infrared spectroscopy (FTIR) that both detected incorporation of oxygen-related functional groups. Surface morphology of polymer samples was investigated by Atomic Force Microscopy (AFM) and an increase of polymer roughness after the APPJ treatment was found. The plasma-treated polymers exhibited hydrophobic recovery expressed in reduction of the O-content of the surface upon rinsing with water. This process was caused by the dissolution of low molecular weight oxidized materials (LMWOMs) formed on the surface as a result of the plasma exposure.

  12. An overview of advanced surface engineering technologies for protection against wear

    SciTech Connect

    Seitzman, L.E.

    1995-12-31

    Advanced engineering processes used to produce wear-resistant surfaces are reviewed. These include coating techniques, such as thermal spray, sol-gel, physical vapor deposition, and plasma-assisted chemical vapor deposition. Surface modification treatments such as ion implantation, ion beam mixing, and centrifugal casting, are also considered. The coating techniques of evaporation, plasma-assisted deposition, and ion-beam-assisted deposition are used to examine the optimization of process complexity and control. Examples of commercial facilities and applications for advanced surface engineering are also described. Two issues affecting the expansion of commercial opportunities for surface engineering -- quality control and meaningful surface engineering properties -- are discussed. 67 refs., 5 figs.

  13. Dust release from surfaces exposed to plasma

    SciTech Connect

    Flanagan, T. M.; Goree, J.

    2006-12-15

    Micrometer-sized particles adhered to a surface can be released when exposed to plasma. In an experiment with a glass surface coated with lunar-simulant dust, it was found that particle release requires exposure to both plasma and an electron beam. The dust release rate diminishes almost exponentially in time, which is consistent with a random process. As proposed here, charges of particles adhered to the surface fluctuate. These charges experience a fluctuating electric force that occasionally overcomes the adhesive van der Waals force, causing particle release. The release rate increases with plasma density, so that plasma cleaning is feasible at high plasma densities. Applications of this cleaning include controlling particulate contamination in semiconductor manufacturing, dust mitigation in the exploration of the moon and Mars, and dusty plasmas.

  14. Multidimensional Plasma Sheaths over Electrically Inhomogeneous Surfaces

    NASA Astrophysics Data System (ADS)

    Economou, Demetre

    2004-09-01

    Multidimensional plasma sheaths are encountered in a number of applications including plasma immersion ion implantation, extraction of ions (or plasma) through grids, MEMS fabrication, neutral beam sources, and plasma in contact with internal reactor parts (e.g., wafer chuck edge). The sheath may be multidimensional when: (a) plasma is in contact with surface topography, and the size of the topographical features is comparable to or larger than the plasma sheath thickness, or (b) the surface is flat but inhomogeneous, i.e., a conducting surface next to an insulating surface. In either case, the flux, energy and angular distributions of energetic species incident on the substrate are of primary importance. These quantities depend critically on the shape of the meniscus (plasma-sheath boundary) formed over the surface. A two-dimensional fluid/Monte Carlo simulation model was developed to study multidimensional sheaths. The radio frequency (RF) sheath potential evolution, and ion density and flux profiles over the surface were predicted with a self-consistent fluid simulation. The trajectories of ions and energetic neutrals (resulting by ion neutralization on surfaces or charge exchange collisions in the gas phase) were then followed with a Monte Carlo simulation. Ion flow and energy and angular distributions of ions bombarding a flat but electrically inhomogeneous surface will be reported in detail. Ion flow over trenches and holes will also be reported. Work supported by the NSF, Sandia National Laboratories and NIST.

  15. Free-Radical-Induced Grafting from Plasma Polymer Surfaces.

    PubMed

    Khelifa, Farid; Ershov, Sergey; Habibi, Youssef; Snyders, Rony; Dubois, Philippe

    2016-03-23

    With the advances in science and engineering in the second part of the 20th century, emerging plasma-based technologies continuously find increasing applications in the domain of polymer chemistry, among others. Plasma technologies are predominantly used in two different ways: for the treatment of polymer substrates by a reactive or inert gas aiming at a specific surface functionalization or for the synthesis of a plasma polymer with a unique set of properties from an organic or mixed organic-inorganic precursor. Plasma polymer films (PPFs), often deposited by plasma-enhanced chemical vapor deposition (PECVD), currently attract a great deal of attention. Such films are widely used in various fields for the coating of solid substrates, including membranes, semiconductors, metals, textiles, and polymers, because of a combination of interesting properties such as excellent adhesion, highly cross-linked structures, and the possibility of tuning properties by simply varying the precursor and/or the synthesis parameters. Among the many appealing features of plasma-synthesized and -treated polymers, a highly reactive surface, rich in free radicals arising from deposition/treatment specifics, offers a particular advantage. When handled carefully, these reactive free radicals open doors to the controllable surface functionalization of materials without affecting their bulk properties. The goal of this review is to illustrate the increasing application of plasma-based technologies for tuning the surface properties of polymers, principally through free-radical chemistry. PMID:26943005

  16. Focusing of Intense Laser via Parabolic Plasma Concave Surface

    NASA Astrophysics Data System (ADS)

    Zhou, Weimin; Gu, Yuqiu; Wu, Fengjuan; Zhang, Zhimeng; Shan, Lianqiang; Cao, Leifeng; Zhang, Baohan

    2015-12-01

    Since laser intensity plays an important role in laser plasma interactions, a method of increasing laser intensity - focusing of an intense laser via a parabolic plasma concave surface - is proposed and investigated by three-dimensional particle-in-cell simulations. The geometric focusing via a parabolic concave surface and the temporal compression of high harmonics increased the peak intensity of the laser pulse by about two orders of magnitude. Compared with the improvement via laser optics approaches, this scheme is much more economic and appropriate for most femtosecond laser facilities. supported by National Natural Science Foundation of China (Nos. 11174259, 11175165), and the Dual Hundred Foundation of China Academy of Engineering Physics

  17. RF plasma heating improvement with EBG surfaces

    NASA Astrophysics Data System (ADS)

    Guadamuz, Saul; Milanesio, Daniele; Maggiora, Riccardo

    2008-11-01

    High impedance surfaces or electromagnetic band gap (EBG) surfaces have proved themselves to be useful in wireless communications applications due to their unique characteristics such as no propagating surface wave support, no conduction of RF current for a given bandwidth, in-phase electromagnetic reflection and non-inverted image of the electric charge in front of them [1]. These characteristics make possible to design compact antennas achieving better performance in terms of radiation and input impedance. ICRF plasma heating antennas in fusion experiments can take advantage of using EBG surfaces. One of the main issues in ICRF plasma heating is the low power coupling of the plasma facing antenna. The adoption of EBG surfaces in the antenna structure and the advantages offered by a predictive designing tool as TOPICA [2] offer the possibility to improve significantly the coupled power to plasma. [1] IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2059--2074, Nov. 1999. [2] Nucl. Fusion, 46 (2006) S476.

  18. First international conference on surface engineering

    SciTech Connect

    Bucklow, I.A.

    1986-01-01

    This book contains 21 papers. Some of the titles are: The production of MCrAlHf diffusion coating in a single step pack process; Boride surface modifications; Surface boronising of metals and alloys; Hot zirconium cathode sputtered layers for useful surface modification; and Ceramics and cements in surface engineering.

  19. Surface rheological observations on human plasma.

    PubMed

    Matrai, A; Warburton, B; Dormandy, J A

    1984-01-01

    The weak interactions between plasma proteins are of possible importance both in haemorheology and in the pathology of several diseases. The use of surface rheology is a convenient way to study the forces arising between surface adsorbed protein molecules. A surface rheological measuring head has been designed for the Contraves LS-30 viscometer. Plasma samples of healthy human subjects showed a rapidly developing viscous surface layer with a mean peak value of 2.10(-3) Ns/m surface viscosity at 30- 60 seconds. After that the viscosity of the surface layer gradually decreased to zero between 8-20 minutes. The rate of the observed decrease was not related to shearing. There was no difference between samples anticoagulated with heparin or EDTA. The time course of the described phenomenon coincides with that of thrombocyte and white cell adherence to solid surfaces exposed to plasma. PMID:6591960

  20. Plasma Igniter for Reliable Ignition of Combustion in Rocket Engines

    NASA Technical Reports Server (NTRS)

    Martin, Adam; Eskridge, Richard

    2011-01-01

    A plasma igniter has been developed for initiating combustion in liquid-propellant rocket engines. The device propels a hot, dense plasma jet, consisting of elemental fluorine and fluorine compounds, into the combustion chamber to ignite the cold propellant mixture. The igniter consists of two coaxial, cylindrical electrodes with a cylindrical bar of solid Teflon plastic in the region between them. The outer electrode is a metal (stainless steel) tube; the inner electrode is a metal pin (mild steel, stainless steel, tungsten, or thoriated-tungsten). The Teflon bar fits snugly between the two electrodes and provides electrical insulation between them. The Teflon bar may have either a flat surface, or a concave, conical surface at the open, down-stream end of the igniter (the igniter face). The igniter would be mounted on the combustion chamber of the rocket engine, either on the injector-plate at the upstream side of the engine, or on the sidewalls of the chamber. It also might sit behind a valve that would be opened just prior to ignition, and closed just after, in order to prevent the Teflon from melting due to heating from the combustion chamber.

  1. Surface-Plasma Interaction on the Moon

    SciTech Connect

    Horanyi, M.; Wang, X.; Robertson, S.; Sternovsky, Z.

    2008-09-07

    The electrostatic levitation and transport of lunar dust remains a controversial science issue since the Apollo era. As a function of time and location, the lunar surface is exposed to solar wind plasma, UV radiation, and/or the plasma environment of our magnetosphere. Dust grains on the lunar surface emit and absorb plasma particles and are exposed to solar UV photons. There are several in situ and remote sensing observations that indicate that dusty plasma processes are responsible for the mobilization and transport of lunar soil. We briefly discuss the existing observations, and report on a series of experiments that address some of the most relevant processes acting on dusty surfaces exposed to plasmas and UV radiation.

  2. Plasma-Sprayed Coatings on Porous Surfaces

    NASA Technical Reports Server (NTRS)

    Leibert, C. H.

    1986-01-01

    Need for combining benefits of duplex thermal-barrier coatings with film cooling on gas-turbine vanes and blades stimulated development of improved method for plasma spraying these coatings. Method reduces blocking of holes by plasma-sprayed material and at same time reduces base-metal oxidation during coating operation. Features provide potential for increased engine efficiency and power, reduced fuel consumption, use of less costly materials or construction procedures, and extended life and durability.

  3. Surface plasma source with anode layer plasma accelerator

    SciTech Connect

    Dudnikov, Vadim

    2012-02-15

    Proposed plasma generation system can be used for high current negative ion beam production and for directed deposition by flux of sputtered neutrals and negative ions. The main mechanism of negative ion formation in surface plasma sources is the secondary emission from low work function surface bombarded by a flux of positive ion or neutrals. The emission of negative ions is enhanced significantly by introducing a small amount of cesium or other substance with low ionization potential. In the proposed source are used positive ions generated by Hall drift plasma accelerator (anode layer plasma accelerator or plasma accelerator with insulated channel, with cylindrical or race track configuration of emission slit). The target-emitter is bombarded by the ion beam accelerated in crossed ExB fields. Negative ions are extracted from the target surface with geometrical focusing and are accelerated by negative voltage applied between emitter and plasma, contacting with the plasma accelerator. Hall drift ion source has a special design with a space for passing of the emitted negative ions and sputtered particles through the positive ion source.

  4. Resonances and surface waves in bounded plasmas

    SciTech Connect

    Bowers, K.J.; Qui, D.W.; Smith, H.B.; Birdsall, C.K.

    1999-07-01

    Surface waves provide a promising means of creating large, area plasmas. These waves can uniformly distribute the excitation energy and while presenting a small resistance and zero reactance to the driving source. Experimentally and in the simulations, the electron temperature is low (like 1--3 eV) as is the plasma potential (like 10 Te). The use of surface waves experimentally, and now industrially, to sustain large area plasma sources with device size is comparable to free space wavelength have motivated the authors to refine the theories of [1] and [2] to be fully electromagnetic. The wave dispersion predicted by the electromagnetic theory differs from the predictions of the prior theories and the results illuminate limitations of the electrostatic model. The use of surface waves have also motivated them to explore the mechanisms by which surface waves heat the plasma. In the 1d electrostatic simulations high velocity electron bunches are formed in the sheaths and are alternatively accelerated from each sheath into the bulk plasma each RF cycle. They speculate similar mechanisms provide the ionization in surface wave discharges. They also see in these simulations the plasma makes an abrupt transition from capacitively coupled to resistively coupled and the series resonance locks onto the drive frequency; these abrupt transitions resemble mode-jumping seen experimentally in large area sources. Furthermore, the density profile of the plasma tracks the drive frequency while in the resonant mode giving a new mechanism by which the plasma parameters can be controlled. They are currently investigating the effect of the driving electrode shape has on these resonances and conducting 2d simulations of a large area surface wave source to explore the ignition of surface wave devices and how the plasma fills in the device.

  5. Plasma Treatment of Niobium SRF Cavity Surfaces

    SciTech Connect

    J. Upadhyay, M. Raskovic, L. Vuskovic, S. Popovic, A.-M. Valente-Feliciano, L. Phillips

    2010-05-01

    Plasma based surface modification provides an excellent opportunity to eliminate non- superconductive pollutants in the penetration depth region of the SRF cavity surface and to remove mechanically damaged surface layer improving surface roughness. We have demonstrated on flat samples that plasma etching in Ar / Cl2 of bulk Nb is a viable alternative surface preparation technique to BCP and EP methods, with comparable etching rates. The geometry of SRF cavities made of bulk Nb defines the use of asymmetric RF discharge configuration for plasma etching. In a specially designed single cell cavity with sample holders, discharge parameters are combined with etched surface diagnostics to obtain optimum combination of etching rates, roughness and homogeneity in a variety of discharge types, conditions, and sequences. The optimized experimental conditions will ultimately be applied to single cell SRF cavities.

  6. Surface engineering with soft matter

    NASA Astrophysics Data System (ADS)

    Genzer, Jan

    2005-03-01

    In my presentation, I will outline several novel strategies facilitating the generation of functional polymeric surfaces. In particular, I will present and discuss simple methodologies leading to the formation of complex surface assemblies of surface-tethered polymers with continuous variation of physico- chemical properties (e.g., wettability, molecular weight, grafting density, composition). I will illustrate how these grafted “gradient” surfaces can be utilized to control the spatial distribution of adsorbates, such as nanoparticles and proteins, and administer the proliferation of living cells on the surfaces. Furthermore, I will illustrate how flexible elastomeric networks can be utilized to tailor the grafting density of oligomers or polymers, create responsive (``smart'') surfaces, and generate topographically corrugated surfaces comprising multidimensional cascades of wrinkles. Application of these wrinkled surfaces for material assembly will also be demonstrated.

  7. Incorporating swarm data into plasma models and plasma surface interactions

    NASA Astrophysics Data System (ADS)

    Makabe, Toshiaki

    2009-10-01

    Since the mid-1980s, modeling of non-equilibrium plasmas in a collisional region driven at radio frequency has been developed at pressure greater than ˜Pa. The collisional plasma has distinct characteristics induced by a quantum property of each of feed gas molecules through collisions with electrons or heavy particles. That is, there exists a proper function caused by chemically active radicals, negative-ions, and radiations based on a molecular quantum structure through short-range interactions mainly with electrons. This differs from high-density, collisionless plasma controlled by the long-range Coulomb interaction. The quantum property in the form of the collision cross section is the first essential through swarm parameters in order to investigate the collisional plasma structure and to predict the function. These structure and function, of course, appear under a self- organized spatiotemporal distribution of electrons and positive ions subject to electromagnetic theory, i.e., bulk-plasma and ion-sheath. In a plasma interacting with a surface, the flux, energy and angle of particles incident on a surface are basic quantities. It will be helpful to learn the limits of the swarm data in a quasi-equilibrium situation and to find a way out of the difficulty, when we predict the collisional plasma, the function, and related surface processes. In this talk we will discuss some of these experiences in the case of space and time varying radiofrequency plasma and the micro/nano-surface processes. This work is partly supported by Global-COE program in Keio University, granted by MEXT Japan.

  8. RF models for plasma-surface interactions

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Smithe, David; Lin, Ming-Chieh; Kruger, Scott; Stoltz, Peter

    2013-09-01

    Computational models for DC and oscillatory (RF-driven) sheath potentials, arising at metal or dielectric-coated surfaces in contact with plasma, are developed within the VSim code and applied in parameter regimes characteristic of fusion plasma experiments and plasma processing scenarios. Results from initial studies quantifying the effects of various dielectric wall coating materials and thicknesses on these sheath potentials, as well as on the ensuing flux of plasma particles to the wall, are presented. As well, the developed models are used to model plasma-facing ICRF antenna structures in the ITER device; we present initial assessments of the efficacy of dielectric-coated antenna surfaces in reducing sputtering-induced high-Z impurity contamination of the fusion reaction. Funded by U.S. DoE via a Phase I SBIR grant, award DE-SC0009501.

  9. Surface plasma functionalization influences macrophage behavior on carbon nanowalls.

    PubMed

    Ion, Raluca; Vizireanu, Sorin; Stancu, Claudia Elena; Luculescu, Catalin; Cimpean, Anisoara; Dinescu, Gheorghe

    2015-03-01

    The surfaces of carbon nanowall samples as scaffolds for tissue engineering applications were treated with oxygen or nitrogen plasma to improve their wettability and to functionalize their surfaces with different functional groups. X-ray photoelectron spectroscopy and water contact angle results illustrated the effective conversion of the carbon nanowall surfaces from hydrophobic to hydrophilic and the incorporation of various amounts of carbon, oxygen and nitrogen functional groups during the treatments. The early inflammatory responses elicited by un-treated and modified carbon nanowall surfaces were investigated by quantifying tumor necrosis factor-alpha and macrophage inflammatory protein-1 alpha released by attached RAW 264.7 macrophage cells. Scanning electron microscopy and fluorescence studies were employed to investigate the changes in macrophage morphology and adhesive properties, while MTT assay was used to quantify cell proliferation. All samples sustained macrophage adhesion and growth. In addition, nitrogen plasma treatment was more beneficial for cell adhesion in comparison with un-modified carbon nanowall surfaces. Instead, oxygen plasma functionalization led to increased macrophage adhesion and spreading suggesting a more activated phenotype, confirmed by elevated cytokine release. Thus, our findings showed that the chemical surface alterations which occur as a result of plasma treatment, independent of surface wettability, affect macrophage response in vitro. PMID:25579904

  10. Plasma Sensor Measurements in Pulse Detonation Engines

    NASA Astrophysics Data System (ADS)

    Matlis, Eric; Marshall, Curtis; Corke, Thomas; Gogineni, Sivaram

    2014-11-01

    Measurements have been conducted in a pulse detonation and rotating detonation engine using a newly developed plasma sensor. This sensor relies on the novel approach of using an ac-driven, weakly-ionized electrical discharge as the main sensing element. The advantages of this approach include a native high bandwidth of 1 MHz without the need for electronic frequency compensation, a dual-mode capability that provides sensitivity to multiple flow parameters, including velocity, pressure, temperature, and gas-species, and a simple and robust design making it very cost effective. The sensor design is installation-compatible with conventional sensors commonly used in gas-turbine research such as the Kulite dynamic pressure sensor while providing much better longevity. Developmental work was performed in high temperature facilities that are relevant to the propulsion and high-speed research community. This includes tests performed in a J85 augmentor at full afterburner and pulse-detonation engines at the University of Cincinnati (UC) at temperatures approaching 2760°C (5000°F).

  11. Surface Engineering: A Rapidly Developing Discipline.

    ERIC Educational Resources Information Center

    Bell, T.

    1987-01-01

    Reviews the scope and dimensions of engineering new surface technologies. Focuses specifically on thermochemical treatments. Identifies the more widely used thermochemical treatments and describes the nitrocarburising and bonding treatments in particular. (ML)

  12. Surface Plasma Source Electrode Activation by Surface Impurities

    SciTech Connect

    Dudnikov, Vadim; Han, Baoxi; Johnson, Rolland P.; Murray Jr, S N; Pennisi, Terry R; Santana, Manuel; Stockli, Martin P; Welton, Robert F

    2011-01-01

    In experiments with RF saddle antenna surface plasma sources (SPS), the efficiency of H- ion generation was increased by up to a factor of 5 by long time plasma electrode activation, without adding Cs from Cs supply, by heating the collar to high temperature using hot air flow and plasma discharge. Without cracking or heating the cesium ampoule, but likely with Cs recovery from impurities, the achieved energy efficiency was comparable to that of conventionally cesiated SNS RF sources with an external or internal Cs supply. In the experiments, perfect cesiation was produced (without additional Cs supply) by the collection and trapping of traces of remnant cesium compounds from SPS surfaces.

  13. Characteristics of Surface Sterilization using ECR Plasma

    NASA Astrophysics Data System (ADS)

    Yonesu, Akira; Hara, Kazufumi; Nishikawa, Tatsuya; Hayashi, Nobuya

    2015-09-01

    Plasma sterilization techniques have superior characteristics such as a short treatment times, non-toxicity and low thermal damages on the sterilized materials. In plasma sterilization, microorganisms can be sterilized by active radicals, energetic charged particles, and vacuum UV radiation. The influence of each factor depends on the plasma operating parameters. Microwave discharges under the electron cyclotron resonance (ECR) condition produce higher electron temperature and density plasma as compared with other plasma generation techniques. In the present study, characteristics of surface sterilization using ECR plasma have been investigated.The experiment was performed in the vacuum chamber which contains a magnet holder. A pair of rectangular Sm-Co permanent magnets is aligned parallel to each other within the magnet holder. The region of the magnetic field for ECR exists near the magnet holder surface. When the microwave is introduced into the vacuum chamber, a ECR plasma is produced around surface of the magnet holder. High energy electrons and oxygen radicals were observed at ECR zone by electric probe method and optical spectroscopic method. Biological indicators (B.I.) having spore of 106 was sterilized in 2min for oxygen discharge. The temperature of the B.I. installation position was about 55°. The sterilization was achieved by the effect of oxygen radicals and high energy electrons.

  14. Measurements of an expanding surface flashover plasma

    SciTech Connect

    Harris, J. R.

    2014-05-21

    A better understanding of vacuum surface flashover and the plasma produced by it is of importance for electron and ion sources, as well as advanced accelerators and other vacuum electronic devices. This article describes time-of-flight and biased-probe measurements made on the expanding plasma generated from a vacuum surface flashover discharge. The plasma expanded at velocities of 1.2–6.5 cm/μs, and had typical densities of 10{sup 10}–10{sup 12} cm{sup −3}. The expansion velocity of the plasma leading edge often exhibited a sharp increase at distances of about 50 mm from the discharge site. Comparison with biased-probe data suggests that, under most conditions, the plasma leading edge was dominated by negative ions, with the apparent increase in velocity being due to fast H{sup −} overtaking slower, heavier ions. In some cases, biased-probe data also showed abrupt discontinuities in the plasma energy distribution co-located with large changes in the intercepted plasma current, suggesting the presence of a shock in the leading edge of the expanding plasma.

  15. First international conference on surface engineering

    SciTech Connect

    Bucklow, I.A.

    1986-01-01

    This book contains 17 papers. Some of the titles are: Protection of CEGB boiler tubes by plasma spraying--present status; Flame spraying and its development into a mechanized/automated operation; Surface evaluation using non-destructive optical methods; An erosion analysis of waste gas turbine movable blades; and Determination of surface integrities by ferromagnetic quantities.

  16. Surface plasma source with saddle antenna radio frequency plasma generator.

    PubMed

    Dudnikov, V; Johnson, R P; Murray, S; Pennisi, T; Piller, C; Santana, M; Stockli, M; Welton, R

    2012-02-01

    A prototype RF H(-) surface plasma source (SPS) with saddle (SA) RF antenna is developed which will provide better power efficiency for high pulsed and average current, higher brightness with longer lifetime and higher reliability. Several versions of new plasma generators with small AlN discharge chambers and different antennas and magnetic field configurations were tested in the plasma source test stand. A prototype SA SPS was installed in the Spallation Neutron Source (SNS) ion source test stand with a larger, normal-sized SNS AlN chamber that achieved unanalyzed peak currents of up to 67 mA with an apparent efficiency up to 1.6 mA∕kW. Control experiments with H(-) beam produced by SNS SPS with internal and external antennas were conducted. A new version of the RF triggering plasma gun has been designed. A saddle antenna SPS with water cooling is fabricated for high duty factor testing. PMID:22380221

  17. Surface plasma source with saddle antenna radio frequency plasma generator

    SciTech Connect

    Dudnikov, V.; Johnson, R. P.; Murray, S.; Pennisi, T.; Piller, C.; Santana, M.; Stockli, M.; Welton, R.

    2012-02-15

    A prototype RF H{sup -} surface plasma source (SPS) with saddle (SA) RF antenna is developed which will provide better power efficiency for high pulsed and average current, higher brightness with longer lifetime and higher reliability. Several versions of new plasma generators with small AlN discharge chambers and different antennas and magnetic field configurations were tested in the plasma source test stand. A prototype SA SPS was installed in the Spallation Neutron Source (SNS) ion source test stand with a larger, normal-sized SNS AlN chamber that achieved unanalyzed peak currents of up to 67 mA with an apparent efficiency up to 1.6 mA/kW. Control experiments with H{sup -} beam produced by SNS SPS with internal and external antennas were conducted. A new version of the RF triggering plasma gun has been designed. A saddle antenna SPS with water cooling is fabricated for high duty factor testing.

  18. The Lunar Surface: A Dusty Plasma Laboratory

    NASA Astrophysics Data System (ADS)

    Horanyi, M.; Brain, D.; Kempf, S.; Munsat, T.; Robertson, S. H.; Sternovsky, Z.

    2011-12-01

    The lunar surface is an excellent laboratory to study dusty plasma processes that are relevant to all airless planetary objects. The solar wind and UV radiation lead to charging of exposed surfaces, and the formation of plasma sheaths above them. Near-surface intense electric fields are thought to be capable of mobilizing and transporting small charged dust particles. Remote sensing and in situ observations indicating dust transport on the Moon date back to the Apollo era and remain highly controversial. There are many unresolved issues about the physical processes that have to this point prevented the development of a coherent explanation for the existing observations. Dust transport on airless bodies can significantly alter our interpretation of spectral identification of asteroids, the small-scale surface features of Mercury, and the Martian moons Phobos and Deimos. Understanding the behavior of dust laden plasma sheaths is of interest in basic plasma and planetary sciences, and holds the key to efficient dust hazard mitigation for the long-term use of optical and mechanical equipment used for robotic and/or human exploration. NASA Lunar Science Institute's Colorado Center of Lunar Dust is focused on experimental and theoretical investigations of dusty plasmas, and the effects of hypervelocity dust impacts on surfaces. This presentation will describe a series of small-scale laboratory experiments investigating the properties of photoelectron sheaths, and the emergence of intense electric fields near boundaries of lit and dark surfaces and regions shielded and exposed to the solar wind plasma flow. Our progress in the analysis and interpretation of the laboratory observations using simple analytic models and complex plasma simulation tools indicates that these models can be used to predict the expected properties of the lunar near-surface environment with increasing confidence. Based on our laboratory and theoretical efforts, we will also report on the status of

  19. Surface modification by plasma immersion ion processing

    NASA Astrophysics Data System (ADS)

    Walter, Kevin C.; Lee, Deok H.; He, X. M.; Baker, N. P.; Nastasi, Michael; Munson, C. P.; Scarborough, W. K.; Tuszewski, M.; Wood, B. P.

    1998-09-01

    Los Alamos National Laboratory is actively researching a surface modification technique called plasma immersion ion processing (PIIP). PIIP is the latest innovation of the plasma source ion implantation (PSII) approach to surface modification. Like PSII, PIIP allows the modification of large areas and non-planar surface geometries, however PIIP is primarily a coating deposition technology rather than solely an ion implantation technology. PIIP utilizes a pulsed-bias on a target to extract ions out of plasma for ion implantation and coating deposition. Plasmas can be made by capacitive or inductive radio frequency sources or by initiating a glow discharge during each pulse of high voltage. Plasmas of hydrocarbon gases have been used to deposit adherent diamond-like carbon (DLC) coating son a variety of ferrous and non-ferrous materials. Instead of sputter depositing interlayers to improve the adhesion of DLC, PIIP uses ion implantation to create a graded interface between the metallic substrate and the DLC coating. Demonstrating the scaleability of PIIP, a 3 m2 area has been simultaneously coated with an adherent DLC coating approximately 7 micrometers thick. Plasmas of diborane and acetylene mixtures are being used to develop deposition processes for boron-carbide coatings. Through the use of organometallics and inorganic gases, other coatings are possible. The PIIP deposition conditions, composition and tribological properties of DLC and boron-carbide coatings will be highlighted.

  20. Tabletability Modulation Through Surface Engineering.

    PubMed

    Osei-Yeboah, Frederick; Sun, Changquan Calvin

    2015-08-01

    Poor powder tabletability is a common problem that challenges the successful development of high-quality tablet products. Using noncompressible microcrystalline cellulose beads, we demonstrate that surface coating is an effective strategy for modulating tabletability, almost at will, through judicious selection of coating material. This strategy has broad applicability as tabletability of such particles is dictated by the properties of the outermost layer coat regardless the nature of the core. PMID:26059496

  1. Polymer surface modification by plasmas and photons

    NASA Astrophysics Data System (ADS)

    Chan, C.-M.; Ko, T.-M.; Hiraoka, H.

    1996-05-01

    Polymers have been applied successfully in fields such as adhesion, biomaterials, protective coatings, friction and wear, composites, microelectronic devices, and thin-film technology. In general, special surface properties with regard to chemical composition, hydrophilicity, roughness, crystallinity, conductivity, lubricity, and cross-linking density are required for the success of these applications. Polymers very often do not possess the surface properties needed for these applications. However, they have excellent bulk physical and chemical properties, are inexpensive, and are easy to process. For these reasons, surface modification techniques which can transform these inexpensive materials into highly valuable finished products have become an important part of the plastics and many other industries. In recent years, many advances have been made in developing surface treatments to alter the chemical and physical properties of polymer surfaces without affecting bulk properties. Common surface modification techniques include treatments by flame, corona, plasmas, photons, electron beams, ion beams, X-rays, and γ-rays. Plasma treatment is probably the most versatile surface treatment technique. Different types of gases such as argon, oxygen, nitrogen, fluorine, carbon dioxide, and water can produce the unique surface properties required by various applications. For example, oxygen-plasma treatment can increase the surface energy of polymers, whereas fluorine-plasma treatment can decrease the surface energy and improve the chemical inertness. Cross-linking at a polymer surface can be introduced by an inert-gas plasma. Modification by plasma treatment is usually confined to the top several hundred ångströms and does not affect the bulk properties. The main disadvantage of this technique is that it requires a vacuum system, which increases the cost of operation. Thin polymer films with unique chemical and physical properties are produced by plasma polymerization

  2. Surface Plasma Source Electrode Activation by Surface Impurities

    SciTech Connect

    Dudnikov, Vadim; Johnson, Rolland P.; Han, B.; Murray, S. N.; Pennisi, T. R.; Santana, M.; Stockli, Martin P.; Welton, R. F.

    2011-09-26

    In experiments with RF saddle antenna surface plasma sources (SPS), the efficiency of H{sup -} ion generation was increased by up to a factor of 5 by plasma electrode 'activation', without supplying additional Cs, by heating the collar to high temperature for several hours using hot air flow and plasma discharge. Without cracking or heating the cesium ampoule, but likely with Cs recovery from impurities, the achieved energy efficiency was comparable to that of conventionally cesiated SNS RF sources with an external or internal Cs supply. In the experiments, optimum cesiation was produced (without additional Cs) by the collection and trapping of traces of remnant cesium compounds from SPS surfaces. Such activation by accumulation of impurities on electrode surfaces can be a reason for H{sup -} emission enhancement in other so-called 'volume' negative ion sources.

  3. Bactericidal effects of plasma-modified surface chemistry of silicon nanograss

    NASA Astrophysics Data System (ADS)

    Ostrikov, Kola; Macgregor-Ramiasa, Melanie; Cavallaro, Alex; (Ken Ostrikov, Kostya; Vasilev, Krasimir

    2016-08-01

    The surface chemistry and topography of biomaterials regulate the adhesion and growth of microorganisms in ways that are still poorly understood. Silicon nanograss structures prepared via inductively coupled plasma etching were coated with plasma deposited nanometer-thin polymeric films to produce substrates with controlled topography and defined surface chemistry. The influence of surface properties on Staphylococcus aureus proliferation is demonstrated and explained in terms of nanograss substrate wetting behaviour. With the combination of the nanograss topography; hydrophilic plasma polymer coatings enhanced antimicrobial activity while hydrophobic coatings reduced it. This study advances the understanding of the effects of surface wettability on the bactericidal properties of reactive nano-engineered surfaces.

  4. Metal surface nitriding by laser induced plasma

    NASA Astrophysics Data System (ADS)

    Thomann, A. L.; Boulmer-Leborgne, C.; Andreazza-Vignolle, C.; Andreazza, P.; Hermann, J.; Blondiaux, G.

    1996-10-01

    We study a nitriding technique of metals by means of laser induced plasma. The synthesized layers are composed of a nitrogen concentration gradient over several μm depth, and are expected to be useful for tribological applications with no adhesion problem. The nitriding method is tested on the synthesis of titanium nitride which is a well-known compound, obtained at present by many deposition and diffusion techniques. In the method of interest, a laser beam is focused on a titanium target in a nitrogen atmosphere, leading to the creation of a plasma over the metal surface. In order to understand the layer formation, it is necessary to characterize the plasma as well as the surface that it has been in contact with. Progressive nitrogen incorporation in the titanium lattice and TiN synthesis are studied by characterizing samples prepared with increasing laser shot number (100-4000). The role of the laser wavelength is also inspected by comparing layers obtained with two kinds of pulsed lasers: a transversal-excited-atmospheric-pressure-CO2 laser (λ=10.6 μm) and a XeCl excimer laser (λ=308 nm). Simulations of the target temperature rise under laser irradiation are performed, which evidence differences in the initial laser/material interaction (material heated thickness, heating time duration, etc.) depending on the laser features (wavelength and pulse time duration). Results from plasma characterization also point out that the plasma composition and propagation mode depend on the laser wavelength. Correlation of these results with those obtained from layer analyses shows at first the important role played by the plasma in the nitrogen incorporation. Its presence is necessary and allows N2 dissociation and a better energy coupling with the target. Second, it appears that the nitrogen diffusion governs the nitriding process. The study of the metal nitriding efficiency, depending on the laser used, allows us to explain the differences observed in the layer features

  5. Surface modification of nanoporous alumina membranes by plasma polymerization

    NASA Astrophysics Data System (ADS)

    Losic, Dusan; Cole, Martin A.; Dollmann, Björn; Vasilev, Krasimir; Griesser, Hans J.

    2008-06-01

    The deposition of plasma polymer coatings onto porous alumina (PA) membranes was investigated with the aim of adjusting the surface chemistry and the pore size of the membranes. PA membranes from commercial sources with a range of pore diameters (20, 100 and 200 nm) were used and modified by plasma polymerization using n-heptylamine (HA) monomer, which resulted in a chemically reactive polymer surface with amino groups. Heptylamine plasma polymer (HAPP) layers with a thickness less than the pore diameter do not span the pores but reduce their diameter. Accordingly, by adjusting the deposition time and thus the thickness of the plasma polymer coating, it is feasible to produce any desired pore diameter. The structural and chemical properties of modified membranes were studied by scanning electron microscopy (SEM), atomic force microscopy (AFM) and x-ray electron spectroscopy (XPS). The resultant PA membranes with specific surface chemistry and controlled pore size are applicable for molecular separation, cell culture, bioreactors, biosensing, drug delivery, and engineering complex composite membranes.

  6. Plasma surface figuring of large optical components

    NASA Astrophysics Data System (ADS)

    Jourdain, R.; Castelli, M.; Morantz, P.; Shore, P.

    2012-04-01

    Fast figuring of large optical components is well known as a highly challenging manufacturing issue. Different manufacturing technologies including: magnetorheological finishing, loose abrasive polishing, ion beam figuring are presently employed. Yet, these technologies are slow and lead to expensive optics. This explains why plasma-based processes operating at atmospheric pressure have been researched as a cost effective means for figure correction of metre scale optical surfaces. In this paper, fast figure correction of a large optical surface is reported using the Reactive Atom Plasma (RAP) process. Achievements are shown following the scaling-up of the RAP figuring process to a 400 mm diameter area of a substrate made of Corning ULE®. The pre-processing spherical surface is characterized by a 3 metres radius of curvature, 2.3 μm PVr (373nm RMS), and 1.2 nm Sq nanometre roughness. The nanometre scale correction figuring system used for this research work is named the HELIOS 1200, and it is equipped with a unique plasma torch which is driven by a dedicated tool path algorithm. Topography map measurements were carried out using a vertical work station instrumented by a Zygo DynaFiz interferometer. Figuring results, together with the processing times, convergence levels and number of iterations, are reported. The results illustrate the significant potential and advantage of plasma processing for figuring correction of large silicon based optical components.

  7. Role of surface temperature in fluorocarbon plasma-surface interactions

    SciTech Connect

    Nelson, Caleb T.; Overzet, Lawrence J.; Goeckner, Matthew J.

    2012-07-15

    This article examines plasma-surface reaction channels and the effect of surface temperature on the magnitude of those channels. Neutral species CF{sub 4}, C{sub 2}F{sub 6}, and C{sub 3}F{sub 8} are produced on surfaces. The magnitude of the production channel increases with surface temperature for all species, but favors higher mass species as the temperature is elevated. Additionally, the production rate of CF{sub 2} increases by a factor of 5 as the surface temperature is raised from 25 Degree-Sign C to 200 Degree-Sign C. Fluorine density, on the other hand, does not change as a function of either surface temperature or position outside of the plasma glow. This indicates that fluorine addition in the gas-phase is not a dominant reaction. Heating reactors can result in higher densities of depositing radical species, resulting in increased deposition rates on cooled substrates. Finally, the sticking probability of the depositing free radical species does not change as a function of surface temperature. Instead, the surface temperature acts together with an etchant species (possibly fluorine) to elevate desorption rates on that surface at temperatures lower than those required for unassisted thermal desorption.

  8. Surface engineering of aluminum alloys for automotive engine applications

    NASA Astrophysics Data System (ADS)

    Nayak, S.; Dahotre, Narendra B.; Dahotre, Narendra B.

    2004-01-01

    The modification and refinement of surface and subsurface microstructure in Al-Si-based cast alloys via laser-induced rapid solidification can create a natural topography suitable for engine applications. The differential wear of the soft aluminum phase, hard silicon, and CuAl in the cell, along with the divorced eutectic nanostructure in the intercellular region, is expected to produce and replenish microfluidic channels and pits for efficient oil retention, spreading, and lubrication.

  9. Plasma-surface interaction in heptane

    NASA Astrophysics Data System (ADS)

    Hamdan, A.; Kosior, F.; Noel, C.; Henrion, G.; Audinot, J.-N.; Gries, T.; Belmonte, T.

    2013-06-01

    The main processes related to discharges between pin and plate electrodes in hydrocarbon liquid (heptane) are modelled for micro-gap (from 10 to 100 μm) conditions. When a plasma channel hits the surface, a micro-crater is created. The different phenomena controlling the geometry (shape and dimension) of a single crater are described and included in a theoretical model developed for the specific case of pure aluminium. The influence of the most important parameters affecting the geometry of the crater is discussed. Among them, one finds the pressure exerted by the plasma on the liquid metal. It is found that the distribution of the pressure applied on the liquid pool changes significantly the way the plasma shapes the pool. It is assumed that at high charges, the pressure profile is tilted from the channel axis, leading to the formation of a central protrusion. On the other hand, we demonstrate that Thomson-Marangoni forces play an important role for crater diameters smaller than 5 μm. Then, the choice of the first derivative of the surface tension with respect to the temperature is a key factor. This effect is strongly related to the way convection displaces matter in the liquid pool. Finally, the quenching step is sufficiently fast to freeze the liquid shape as soon as the plasma vanishes.

  10. Forty years of surface plasma source development

    SciTech Connect

    Dudnikov, Vadim

    2012-02-15

    The cesiation effect, a significant enhancement of negative ion emission from a gas discharge with decrease of co-extracted electron current below negative ion current, was observed for the first time on July 1, 1971 by placing into the discharge a compound with 1 mg of cesium. Subsequent developments of surface plasma sources (SPS) for highly efficient negative ion production caused by the interaction of plasma particles with electrodes on which the adsorbed cesium reduced the surface work function are described. In the last 40 years, the intensity of negative ion beams has increased by cesiation up to 10{sup 4} times from 3 mA to tens of amperes. Here, the main attention is concentrated on earlier SPS developments because recent results are well known and widely available.

  11. Plasma technology for increase of operating high pressure fuel pump diesel engines

    NASA Astrophysics Data System (ADS)

    Solovev, R. Y.; Sharifullin, S. N.; Adigamov, N. R.

    2016-01-01

    This paper presents the results of a change in the service life of high pressure fuel pumps of diesel engines on the working surface of the plunger which a wear resistant dielectric plasma coatings based on silicon oxycarbonitride. Such coatings possess high wear resistance, chemical inertness and low friction.

  12. Front surface thermal property measurements of air plasma spray coatings

    SciTech Connect

    Bennett, Ted; Kakuda, Tyler; Kulkarni, Anand

    2009-04-15

    A front-surface measurement for determining the thermal properties of thermal barrier coatings has been applied to air plasma spray coatings. The measurement is used to determine all independent thermal properties of the coating simultaneously. Furthermore, with minimal requirements placed on the sample and zero sample preparation, measurements can be made under previously impossible conditions, such as on serviceable engine parts. Previous application of this technique was limited to relatively thin coatings, where a one-dimensional heat transfer model is applied. In this paper, the influence of heat spreading on the measurement of thicker coatings is investigated with the development of a two-dimensional heat transfer model.

  13. Investigation of plasma-surface interaction at plasma beam facilities

    NASA Astrophysics Data System (ADS)

    Kurnaev, V.; Vizgalov, I.; Gutorov, K.; Tulenbergenov, T.; Sokolov, I.; Kolodeshnikov, A.; Ignashev, V.; Zuev, V.; Bogomolova, I.; Klimov, N.

    2015-08-01

    The new Plasma Beam Facility (PBF) has been put into operation for assistance in testing of plasma faced components at Material Science Kazakhstan Tokamak (KTM). PBF includes a powerful electron gun (up to 30 kV, 1 A) and a high vacuum chamber with longitudinal magnetic field coils (up to 0.2 T). The regime of high vacuum electron beam transportation is used for thermal tests with power density at the target surface up to 10 GW/m2. The beam plasma discharge (BPD) regime with a gas-puff is used for generation of intensive ion fluxes up to 3 ṡ 1022 m-2 s-1. Initial tests of the KTM PBF's capabilities were carried out: various discharge regimes, carbon deposits cleaning, simultaneous thermal and ion impacts on radiation cooled refractory targets. With a water-cooled target the KTM PBF could be used for high heat flux tests of materials (validated by the experiment with W mock-up at the PR-2 PBF).

  14. Asphaltene Surface Erosion in Air Plasma

    NASA Astrophysics Data System (ADS)

    Villa, M.; Calixto-Rodriguez, M.; Martinez, H.; Poveda C., J.; Reyes G., P.; Altuzar, P.

    2010-02-01

    Optical emission spectroscopy was applied for plasma characterization during erosion of substrates of asphaltene. The amount of 100 mg of asphaltene was carefully applied to an electrode and exposed to air plasma glow discharge at a pressure of 1.0 Torr. The plasma was generated in a stainless steel discharge chamber by an AC generator with a frequency of 60 Hz and an output power of about 60 W. The electron temperature was found to be 6.88 eV, and the ion density is about 3.5 × 1016 cm-3. As the asphaltene was exposed to the air plasma, the surface was etched. The emission from molecular bands CS2, O3, N2+, NO, O2, CS, S2, CN, C7H7, C2, H2, C2-, NiO, N2 and SO, and atomic line O, were observed and some of them were used to monitor the evolution of asphaltene erosion. The asphaltene weight was reduced gradually with an etching rate of about 0.844 mg/min, during the first 20 min.

  15. A dc Penning surface-plasma source

    SciTech Connect

    Smith, H.V. Jr.; Allison, P.; Geisik, C.; Schmitt, D.R.; Schneider, J.D.; Stelzer, J.E.

    1993-09-01

    After developing a pulsed-8X source for H{sup {minus}} beams, we are now testing a cooled, dc version. The design dc power density on the cathode surface is 900 W/cm{sup 2}, much higher than achieved in any previously-reported Penning surface-plasma source (SPS). The source is designed to accommodate dc arc power levels up to 30 kW by cooling the electrode surfaces with pressurized, hot water. After striking the arc using a 600-V pulser, a 350-V dc power supply is switched in to sustain the 100-V discharge. Now our tests are concentrating on arc pulse lengths {le}1 s. Ultimately, the discharge will be operated dc. The source is described and the initial arc test results are presented.

  16. Engineering microbial surfaces to degrade lignocellulosic biomass.

    PubMed

    Huang, Grace L; Anderson, Timothy D; Clubb, Robert T

    2014-01-01

    Renewable lignocellulosic plant biomass is a promising feedstock from which to produce biofuels, chemicals, and materials. One approach to cost-effectively exploit this resource is to use consolidating bioprocessing (CBP) microbes that directly convert lignocellulose into valuable end products. Because many promising CBP-enabling microbes are non-cellulolytic, recent work has sought to engineer them to display multi-cellulase containing minicellulosomes that hydrolyze biomass more efficiently than isolated enzymes. In this review, we discuss progress in engineering the surfaces of the model microorganisms: Bacillus subtilis, Escherichia coli, and Saccharomyces cerevisiae. We compare the distinct approaches used to display cellulases and minicellulosomes, as well as their surface enzyme densities and cellulolytic activities. Thus far, minicellulosomes have only been grafted onto the surfaces of B. subtilis and S. cerevisiae, suggesting that the absence of an outer membrane in fungi and Gram-positive bacteria may make their surfaces better suited for displaying the elaborate multi-enzyme complexes needed to efficiently degrade lignocellulose. PMID:24430239

  17. Engineering microbial surfaces to degrade lignocellulosic biomass

    PubMed Central

    Huang, Grace L; Anderson, Timothy D; Clubb, Robert T

    2014-01-01

    Renewable lignocellulosic plant biomass is a promising feedstock from which to produce biofuels, chemicals, and materials. One approach to cost-effectively exploit this resource is to use consolidating bioprocessing (CBP) microbes that directly convert lignocellulose into valuable end products. Because many promising CBP-enabling microbes are non-cellulolytic, recent work has sought to engineer them to display multi-cellulase containing minicellulosomes that hydrolyze biomass more efficiently than isolated enzymes. In this review, we discuss progress in engineering the surfaces of the model microorganisms: Bacillus subtilis, Escherichia coli, and Saccharomyces cerevisiae. We compare the distinct approaches used to display cellulases and minicellulosomes, as well as their surface enzyme densities and cellulolytic activities. Thus far, minicellulosomes have only been grafted onto the surfaces of B. subtilis and S. cerevisiae, suggesting that the absence of an outer membrane in fungi and Gram-positive bacteria may make their surfaces better suited for displaying the elaborate multi-enzyme complexes needed to efficiently degrade lignocellulose. PMID:24430239

  18. Two surface plasmon decay of plasma oscillations

    SciTech Connect

    Kluge, T. Metzkes, J.; Zeil, K.; Bussmann, M.; Schramm, U.; Cowan, T. E.

    2015-06-15

    The interaction of ultra-intense lasers with solid foils can be used to accelerate ions to high energies well exceeding 60 MeV [Gaillard et al., Phys. Plasmas 18, 056710 (2011)]. The non-linear relativistic motion of electrons in the intense laser radiation leads to their acceleration and later to the acceleration of ions. Ions can be accelerated from the front surface, the foil interior region, and the foil rear surface (target normal sheath acceleration (TNSA), most widely used), or the foil may be accelerated as a whole if sufficiently thin (radiation pressure acceleration). Here, we focus on the most widely used mechanism for laser ion-acceleration of TNSA. Starting from perfectly flat foils, we show by simulations how electron filamentation at or inside the solid leads to spatial modulations in the ions. The exact dynamics depend very sensitively on the chosen initial parameters which has a tremendous effect on electron dynamics. In the case of step-like density gradients, we find evidence that suggests a two-surface-plasmon decay of plasma oscillations triggering a Raileigh-Taylor-like instability.

  19. Atomically Precise Surface Engineering for Producing Imagers

    NASA Technical Reports Server (NTRS)

    Greer, Frank (Inventor); Jones, Todd J. (Inventor); Nikzad, Shouleh (Inventor); Hoenk, Michael E. (Inventor)

    2015-01-01

    High-quality surface coatings, and techniques combining the atomic precision of molecular beam epitaxy and atomic layer deposition, to fabricate such high-quality surface coatings are provided. The coatings made in accordance with the techniques set forth by the invention are shown to be capable of forming silicon CCD detectors that demonstrate world record detector quantum efficiency (>50%) in the near and far ultraviolet (155 nm-300 nm). The surface engineering approaches used demonstrate the robustness of detector performance that is obtained by achieving atomic level precision at all steps in the coating fabrication process. As proof of concept, the characterization, materials, and exemplary devices produced are presented along with a comparison to other approaches.

  20. Surface modified electrospun nanofibrous scaffolds for nerve tissue engineering

    NASA Astrophysics Data System (ADS)

    Prabhakaran, Molamma P.; Venugopal, J.; Chan, Casey K.; Ramakrishna, S.

    2008-11-01

    The development of biodegradable polymeric scaffolds with surface properties that dominate interactions between the material and biological environment is of great interest in biomedical applications. In this regard, poly-ɛ-caprolactone (PCL) nanofibrous scaffolds were fabricated by an electrospinning process and surface modified by a simple plasma treatment process for enhancing the Schwann cell adhesion, proliferation and interactions with nanofibers necessary for nerve tissue formation. The hydrophilicity of surface modified PCL nanofibrous scaffolds (p-PCL) was evaluated by contact angle and x-ray photoelectron spectroscopy studies. Naturally derived polymers such as collagen are frequently used for the fabrication of biocomposite PCL/collagen scaffolds, though the feasibility of procuring large amounts of natural materials for clinical applications remains a concern, along with their cost and mechanical stability. The proliferation of Schwann cells on p-PCL nanofibrous scaffolds showed a 17% increase in cell proliferation compared to those on PCL/collagen nanofibrous scaffolds after 8 days of cell culture. Schwann cells were found to attach and proliferate on surface modified PCL nanofibrous scaffolds expressing bipolar elongations, retaining their normal morphology. The results of our study showed that plasma treated PCL nanofibrous scaffolds are a cost-effective material compared to PCL/collagen scaffolds, and can potentially serve as an ideal tissue engineered scaffold, especially for peripheral nerve regeneration.

  1. Holography with standing surface plasma waves

    NASA Technical Reports Server (NTRS)

    Cowan, J. J.

    1974-01-01

    Holography with standing surface plasma waves, where both reference and object beams propagate in opposite directions, has been investigated using an Al reflection grating coated with evaporated As2S3 layers. The image, which appears only for p-polarization and at certain critical angles, is enhanced by the Lippman-Bragg effect and by an increase in intensity over ordinary holography approximately equal to the absolute value of the real part of the dielectric constant for Al. Also considered is holography with object light alone in photoresist layers, using the beam-splitting properties of the grating.

  2. Features of semiplanotron surface plasma sources

    SciTech Connect

    Dudnikov, Vadim

    2012-02-15

    Features of the semiplanotron surface plasma sources (SPS) with cesiation used for high efficient negative ion beam production from first development to modern condition are considered. Design features of semiplanotrons SPS with cylindrical and spherical geometric focusing and the features of the negative ion production in the semiplanotrons are reviewed. Several versions of semiplanotrons with efficiency up to 0.1 A of H{sup -} per kW of discharge power are discussed. Modifications of the semiplanotrons for dc operation and for heavy negative ion production are reviewed.

  3. Vacuum plasma spray applications on liquid fuel rocket engines

    NASA Technical Reports Server (NTRS)

    Mckechnie, T. N.; Zimmerman, F. R.; Bryant, M. A.

    1992-01-01

    The vacuum plasma spray process (VPS) has been developed by NASA and Rocketdyne for a variety of applications on liquid fuel rocket engines, including the Space Shuttle Main Engine. These applications encompass thermal barrier coatings which are thermal shock resistant for turbopump blades and nozzles; bond coatings for cryogenic titanium components; wear resistant coatings and materials; high conductivity copper, NaRloy-Z, combustion chamber liners, and structural nickel base material, Inconel 718, for nozzle and combustion chamber support jackets.

  4. Vacuum plasma spray applications on liquid fuel rocket engines

    NASA Astrophysics Data System (ADS)

    McKechnie, T. N.; Zimmerman, F. R.; Bryant, M. A.

    1992-07-01

    The vacuum plasma spray process (VPS) has been developed by NASA and Rocketdyne for a variety of applications on liquid fuel rocket engines, including the Space Shuttle Main Engine. These applications encompass thermal barrier coatings which are thermal shock resistant for turbopump blades and nozzles; bond coatings for cryogenic titanium components; wear resistant coatings and materials; high conductivity copper, NaRloy-Z, combustion chamber liners, and structural nickel base material, Inconel 718, for nozzle and combustion chamber support jackets.

  5. Electroreflectance and the problem of studying plasma-surface interactions

    SciTech Connect

    Preppernau, B.L.

    1995-12-31

    A long standing problem in low-temperature plasma discharge physics is to understand in detail the mutual interaction of real exposed surfaces (electrodes) with the reactive plasma environment. In particular, one wishes to discern the influence of these surfaces on the plasma parameters given their contributions from secondary electrons and ions. This paper briefly reviews the known surface interaction processes as well as currently available diagnostics to study the interface between plasmas and surfaces. Next comes a discussion describing the application of plasma-modulated electroreflectance to this research and some potential experimental techniques.

  6. Engineered Multifunctional Surfaces for Fluid Handling

    NASA Technical Reports Server (NTRS)

    Thomas, Chris; Ma, Yonghui; Weislogel, Mark

    2012-01-01

    Designs incorporating variations in capillary geometry and hydrophilic and/or antibacterial surface properties have been developed that are capable of passive gas/liquid separation and passive water flow. These designs can incorporate capillary grooves and/or surfaces arranged to create linear and circumferential capillary geometry at the micro and macro scale, radial fin configurations, micro holes and patterns, and combinations of the above. The antibacterial property of this design inhibits the growth of bacteria or the development of biofilm. The hydrophilic property reduces the water contact angle with a treated substrate such that water spreads into a thin layer atop the treated surface. These antibacterial and hydrophilic properties applied to a thermally conductive surface, combined with capillary geometry, create a novel heat exchanger capable of condensing water from a humid, two-phase water and gas flow onto the treated heat exchanger surfaces, and passively separating the condensed water from the gas flow in a reduced gravity application. The overall process to generate the antibacterial and hydrophilic properties includes multiple steps to generate the two different surface properties, and can be divided into two major steps. Step 1 uses a magnetron-based sputtering technique to implant the silver atoms into the base material. A layer of silver is built up on top of the base material. Completion of this step provides the antibacterial property. Step 2 uses a cold-plasma technique to generate the hydrophilic surface property on top of the silver layer generated in Step 1. Completion of this step provides the hydrophilic property in addition to the antibacterial property. Thermally conductive materials are fabricated and then treated to create the antibacterial and hydrophilic surface properties. The individual parts are assembled to create a condensing heat exchanger with antibacterial and hydrophilic surface properties and capillary geometry, which is

  7. Molecular engineering of polymersome surface topology.

    PubMed

    Ruiz-Pérez, Lorena; Messager, Lea; Gaitzsch, Jens; Joseph, Adrian; Sutto, Ludovico; Gervasio, Francesco Luigi; Battaglia, Giuseppe

    2016-04-01

    Biological systems exploit self-assembly to create complex structures whose arrangements are finely controlled from the molecular to mesoscopic level. We report an example of using fully synthetic systems that mimic two levels of self-assembly. We show the formation of vesicles using amphiphilic copolymers whose chemical nature is chosen to control both membrane formation and membrane-confined interactions. We report polymersomes with patterns that emerge by engineering interfacial tension within the polymersome surface. This allows the formation of domains whose topology is tailored by chemical synthesis, paving the avenue to complex supramolecular designs functionally similar to those found in viruses and trafficking vesicles. PMID:27152331

  8. Molecular engineering of polymersome surface topology

    PubMed Central

    Ruiz-Pérez, Lorena; Messager, Lea; Gaitzsch, Jens; Joseph, Adrian; Sutto, Ludovico; Gervasio, Francesco Luigi; Battaglia, Giuseppe

    2016-01-01

    Biological systems exploit self-assembly to create complex structures whose arrangements are finely controlled from the molecular to mesoscopic level. We report an example of using fully synthetic systems that mimic two levels of self-assembly. We show the formation of vesicles using amphiphilic copolymers whose chemical nature is chosen to control both membrane formation and membrane-confined interactions. We report polymersomes with patterns that emerge by engineering interfacial tension within the polymersome surface. This allows the formation of domains whose topology is tailored by chemical synthesis, paving the avenue to complex supramolecular designs functionally similar to those found in viruses and trafficking vesicles. PMID:27152331

  9. Biomolecular strategies for cell surface engineering

    NASA Astrophysics Data System (ADS)

    Wilson, John Tanner

    Islet transplantation has emerged as a promising cell-based therapy for the treatment of diabetes, but its clinical efficacy remains limited by deleterious host responses that underlie islet destruction. In this dissertation, we describe the assembly of ultrathin conformal coatings that confer molecular-level control over the composition and biophysicochemical properties of the islet surface with implications for improving islet engraftment. Significantly, this work provides novel biomolecular strategies for cell surface engineering with broad biomedical and biotechnological applications in cell-based therapeutics and beyond. Encapsulation of cells and tissue offers a rational approach for attenuating deleterious host responses towards transplanted cells, but a need exists to develop cell encapsulation strategies that minimize transplant volume. Towards this end, we endeavored to generate nanothin films of diverse architecture with tunable properties on the extracellular surface of individual pancreatic islets through a process of layer-by-layer (LbL) self assembly. We first describe the formation of poly(ethylene glycol) (PEG)-rich conformal coatings on islets via LbL self assembly of poly(L-lysine)-g-PEG(biotin) and streptavidin. Multilayer thin films conformed to the geometrically and chemically heterogeneous islet surface, and could be assembled without loss of islet viability or function. Significantly, coated islets performed comparably to untreated controls in a murine model of allogenic intraportal islet transplantation, and, to our knowledge, this is the first study to report in vivo survival and function of nanoencapsulated cells or cell aggregates. Based on these findings, we next postulated that structurally similar PLL-g-PEG copolymers comprised of shorter PEG grafts might be used to initiate and propagate the assembly of polyelectrolyte multilayer (PEM) films on pancreatic islets, while simultaneously preserving islet viability. Through control of PLL

  10. Near-Surface Engineered Environmental Barrier Integrity

    SciTech Connect

    Piet, S.J.; Breckenridge, R.P.

    2002-05-15

    The INEEL Environmental Systems Research and Analysis (ESRA) program has launched a new R and D project on Near-Surface Engineered Environmental Barrier Integrity to increase knowledge and capabilities for using engineering and ecological components to improve the integrity of near-surface barriers used to confine contaminants from the public and the environment. The knowledge gained and the capabilities built will help verify the adequacy of past remedial decisions and enable improved solutions for future cleanup decisions. The research is planned to (a) improve the knowledge of degradation mechanisms (weathering, biological, geological, chemical, radiological, and catastrophic) in times shorter than service life, (b) improve modeling of barrier degradation dynamics, (c) develop sensor systems to identify degradation prior to failure, and (d) provide a better basis for developing and testing of new barrier systems to increase reliability and reduce the risk of failure. Our project combine s selected exploratory studies (benchtop and field scale), coupled effects accelerated aging testing and the meso-scale, testing of new monitoring concepts, and modeling of dynamic systems. The performance of evapo-transpiration, capillary, and grout-based barriers will be examined.

  11. Near-Surface Engineered Environmental Barrier Integrity

    SciTech Connect

    Piet, Steven James; Breckenridge, Robert Paul; Beller, John Michael; Geesey, Gill Gregroy; Glenn, David Frankie; Jacobson, Jacob Jordan; Martian, Pete; Matthern, Gretchen Elise; Mattson, Earl Douglas; Porro, Indrek; Southworth, Finis Hio; Steffler, Eric Darwin; Stormberg, Angelica Isabel; Stormberg, Gregory John; Versteeg, Roelof Jan; White, Gregory J

    2002-08-01

    The INEEL Environmental Systems Research and Analysis (ESRA) program has launched a new R&D project on Near-Surface Engineered Environmental Barrier Integrity to increase knowledge and capabilities for using engineering and ecological components to improve the integrity of near-surface barriers used to confine contaminants from the public and the environment. The knowledge gained and the capabilities built will help verify the adequacy of past remedial decisions and enable improved solutions for future cleanup decisions. The research is planned to (a) improve the knowledge of degradation mechanisms (weathering, biological, geological, chemical, radiological, and catastrophic) in times shorter than service life, (b) improve modeling of barrier degradation dynamics, (c) develop sensor systems to identify degradation prior to failure, and (d) provide a better basis for developing and testing of new barrier systems to increase reliability and reduce the risk of failure. Our project combines selected exploratory studies (benchtop and field scale), coupled effects accelerated aging testing and the meso-scale, testing of new monitoring concepts, and modeling of dynamic systems. The performance of evapo- transpiration, capillary, and grout-based barriers will be examined.

  12. Metastable states of plasma particles close to a charged surface

    SciTech Connect

    Shavlov, A. V.; Dzhumandzhi, V. A.

    2015-09-15

    The free energy of the plasma particles and the charged surface that form an electroneutral system is calculated on the basis of the Poisson-Boltzmann equation. It is shown that, owing to correlation of light plasma particles near the charged surface and close to heavy particles of high charge, there can be metastable states in plasma. The corresponding phase charts of metastable states of the separate components of plasma, and plasma as a whole, are constructed. These charts depend on temperature, the charge magnitude, the size of the particles, and the share of the charge of the light carriers out of the total charge of the plasma particles.

  13. Surface engineering: a low wearing solution for metal-on-metal hip surface replacements.

    PubMed

    Leslie, Ian J; Williams, Sophie; Brown, Chris; Anderson, James; Isaac, Graham; Hatto, Peter; Ingham, Eileen; Fisher, John

    2009-08-01

    Increased patient blood and serum levels of Co and Cr and dissemination of metal wear particles throughout organs and tissues are the primary concerns with metal-on-metal surface replacements. Surface engineering, providing a ceramic bearing surface on a metal substrate, could provide a solution. This study investigated thick (>10 microm) arc evaporation plasma vapor deposition chromium nitride (CrN) coated surface replacements in terms of wear, ion levels, and wear particles in a 10 million cycle hip simulator study, compared to a contemporary metal-on-metal surface replacement. The ion levels were measured by inductively coupled plasma mass spectroscopy. The wear particles were imaged by field emission gun scanning electron microscopy. The CrN-coated bearings had 80% lower wear than the MoM controls. The Cr and Co ion levels in the lubricant of the CrN bearings were 73 and 98% lower than in the MoM controls. The wear particles produced were in the nanometer size range and round to oval in morphology. The CrN coating could provide a reduction in the wear and ion release of MoM surface replacements, thereby reducing the perceived risks to the patient associated with these prostheses. PMID:19195030

  14. Plasma-Surface Interactions and RF Antennas

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Smithe, D. N.; Beckwith, K.; Davidson, B. D.; Kruger, S. E.; Pankin, A. Y.; Roark, C. M.

    2015-11-01

    Implementation of recently developed finite-difference time-domain (FDTD) modeling techniques on high-performance computing platforms allows RF power flow, and antenna near- and far-field behavior, to be studied in realistic experimental ion-cyclotron resonance heating scenarios at previously inaccessible levels of resolution. We present results and 3D animations of high-performance (10k-100k core) FDTD simulations of Alcator C-Mod's field-aligned ICRF antenna on the Titan supercomputer, considering (a) the physics of slow wave excitation in the immediate vicinity of the antenna hardware and in the scrape-off layer for various edge densities, and (b) sputtering and impurity production, as driven by self-consistent sheath potentials at antenna surfaces. Related research efforts in low-temperature plasma modeling, including the use of proper orthogonal decomposition methods for PIC/fluid modeling and the development of plasma chemistry tools (e.g. a robust and flexible reaction database, principal path reduction analysis capabilities, and improved visualization options), will also be summarized. Supported by U.S. DoE SBIR Phase I/II Award DE-SC0009501 and ALCC/OLCF.

  15. Surface wave and linear operating mode of a plasma antenna

    NASA Astrophysics Data System (ADS)

    Bogachev, N. N.; Bogdankevich, I. L.; Gusein-zade, N. G.; Rukhadze, A. A.

    2015-10-01

    The relation between the propagation conditions of a surface electromagnetic wave along a finiteradius plasma cylinder and the linear operating mode of a plasma antenna is investigated. The solution to the dispersion relation for a surface wave propagating along a finite-radius plasma cylinder is analyzed for weakly and strongly collisional plasmas. Computer simulations of an asymmetrical plasma dipole antenna are performed using the KARAT code, wherein the dielectric properties of plasma are described in terms of the Drude model. The plasma parameters corresponding to the linear operating mode of a plasma antenna are determined. It is demonstrated that the characteristics of the plasma antenna in this mode are close to those of an analogous metal antenna.

  16. Surface wave and linear operating mode of a plasma antenna

    SciTech Connect

    Bogachev, N. N. Bogdankevich, I. L.; Gusein-zade, N. G.; Rukhadze, A. A.

    2015-10-15

    The relation between the propagation conditions of a surface electromagnetic wave along a finiteradius plasma cylinder and the linear operating mode of a plasma antenna is investigated. The solution to the dispersion relation for a surface wave propagating along a finite-radius plasma cylinder is analyzed for weakly and strongly collisional plasmas. Computer simulations of an asymmetrical plasma dipole antenna are performed using the KARAT code, wherein the dielectric properties of plasma are described in terms of the Drude model. The plasma parameters corresponding to the linear operating mode of a plasma antenna are determined. It is demonstrated that the characteristics of the plasma antenna in this mode are close to those of an analogous metal antenna.

  17. Plasma Propulsion Testing Capabilities at Arnold Engineering Development Center

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Dawbarn, Albert; Moeller, Trevor

    2007-01-01

    This paper describes the results of a series of experiments aimed at quantifying the plasma propulsion testing capabilities of a 12-ft diameter vacuum facility (12V) at USAF-Arnold Engineering Development Center (AEDC). Vacuum is maintained in the 12V facility by cryogenic panels lining the interior of the chamber. The pumping capability of these panels was shown to be great enough to support plasma thrusters operating at input electrical power >20 kW. In addition, a series of plasma diagnostics inside the chamber allowed for measurement of plasma parameters at different spatial locations, providing information regarding the chamber's effect on the global plasma thruster flowfield. The plasma source used in this experiment was Hall thruster manufactured by Busek Co. The thruster was operated at up to 20 kW steady-state power in both a lower current and higher current mode. The vacuum level in the chamber never rose above 9 x 10(exp -6) torr during the course of testing. Langmuir probes, ion flux probes, and Faraday cups were used to quantify the plasma parameters in the chamber. We present the results of these measurements and estimates of pumping speed based on the background pressure level and thruster propellant mass flow rate.

  18. Atomic engineering of platinum alloy surfaces.

    PubMed

    Li, Tong; Bagot, P A J; Marquis, E A; Edman Tsang, S C; Smith, G D W

    2013-09-01

    A major practical challenge in heterogeneous catalysis is to minimize the loading of expensive platinum group metals (PGMs) without degrading the overall catalytic efficiency. Gaining a thorough atomic-scale understanding of the chemical/structural changes occurring during catalyst manufacture/operation could potentially enable the design and production of "nano-engineered" catalysts, optimized for cost, stability and performance. In the present study, the oxidation behavior of a Pt-31 at% Pd alloy between 673-1073 K is investigated using atom probe tomography (APT). Over this range of temperatures, three markedly different chemical structures are observed near the surface of the alloy. At 673 K, the surface oxide formed is enriched with Pd, the concentration of which rises further following oxidation at 773 K. During oxidation at 873 K, a thick, stable oxide layer is formed on the surface with a stoichiometry of PdO, beneath which a Pd-depleted (Pt-rich) layer exists. Above 873 K, the surface composition switches to enrichment in Pt, with the Pt content increasing further with increasing oxidation temperature. This treatment suggests a route for tuning the surfaces of Pt-Pd nanoparticles to be either Pd-rich or Pt-rich, simply by adjusting the oxidation temperatures in order to form two different types of core-shell structures. In addition, comparison of the oxidation behavior of Pt-Pd with Pt-Rh and Pd-Rh alloys demonstrates markedly different trends under the same conditions for these three binary alloys. PMID:23276526

  19. Surface Engineering of Liposomes for Stealth Behavior

    PubMed Central

    Nag, Okhil K.; Awasthi, Vibhudutta

    2013-01-01

    Liposomes are used as a delivery vehicle for drug molecules and imaging agents. The major impetus in their biomedical applications comes from the ability to prolong their circulation half-life after administration. Conventional liposomes are easily recognized by the mononuclear phagocyte system and are rapidly cleared from the blood stream. Modification of the liposomal surface with hydrophilic polymers delays the elimination process by endowing them with stealth properties. In recent times, the development of various materials for surface engineering of liposomes and other nanomaterials has made remarkable progress. Poly(ethylene glycol)-linked phospholipids (PEG-PLs) are the best representatives of such materials. Although PEG-PLs have served the formulation scientists amazingly well, closer scrutiny has uncovered a few shortcomings, especially pertaining to immunogenicity and pharmaceutical characteristics (drug loading, targeting, etc.) of PEG. On the other hand, researchers have also begun questioning the biological behavior of the phospholipid portion in PEG-PLs. Consequently, stealth lipopolymers consisting of non-phospholipids and PEG-alternatives are being developed. These novel lipopolymers offer the potential advantages of structural versatility, reduced complement activation, greater stability, flexible handling and storage procedures and low cost. In this article, we review the materials available as alternatives to PEG and PEG-lipopolymers for effective surface modification of liposomes. PMID:24300562

  20. Ion-plasma protective coatings for gas-turbine engine blades

    NASA Astrophysics Data System (ADS)

    Kablov, E. N.; Muboyadzhyan, S. A.; Budinovskii, S. A.; Lutsenko, A. N.

    2007-10-01

    Evaporated, diffusion, and evaporation—diffusion protective and hardening multicomponent ionplasma coatings for turbine and compressor blades and other gas-turbine engine parts are considered. The processes of ion surface treatment (ion etching and ion saturation of a surface in the metallic plasma of a vacuum arc) and commercial equipment for the deposition of coatings and ion surface treatment are analyzed. The specific features of the ion-plasma coatings deposited from the metallic plasma of a vacuum arc are described, and the effect of the ion energy on the phase composition of the coatings and the processes occurring in the surface layer of an article to be treated are discussed. Some properties of ion-plasma coatings designed for various purposes are presented. The ion surface saturation of articles made from structural materials is shown to change the structural and phase states of their surfaces and, correspondingly, the related properties of these materials (i.e., their heat resistance, corrosion resistance, fatigue strength, and so on).

  1. Nanocapillary Atmospheric Pressure Plasma Jet: A Tool for Ultrafine Maskless Surface Modification at Atmospheric Pressure.

    PubMed

    Motrescu, Iuliana; Nagatsu, Masaaki

    2016-05-18

    With respect to microsized surface functionalization techniques we proposed the use of a maskless, versatile, simple tool, represented by a nano- or microcapillary atmospheric pressure plasma jet for producing microsized controlled etching, chemical vapor deposition, and chemical modification patterns on polymeric surfaces. In this work we show the possibility of size-controlled surface amination, and we discuss it as a function of different processing parameters. Moreover, we prove the successful connection of labeled sugar chains on the functionalized microscale patterns, indicating the possibility to use ultrafine capillary atmospheric pressure plasma jets as versatile tools for biosensing, tissue engineering, and related biomedical applications. PMID:27116255

  2. Plasma Assisted Combustion: Fundamental Studies and Engine Applications

    NASA Astrophysics Data System (ADS)

    Lefkowitz, Joseph K.

    Successful and efficient ignition in short residence time environments or ultra-lean mixtures is a key technological challenge for the evolution of advanced combustion devices in terms of both performance and efficiency. To meet this challenge, interest in plasma assisted combustion (PAC) has expanded over the past 20 years. However, understanding of the underlying physical processes of ignition by plasma discharge remains elementary. In order to shed light on the key processes involved, two main thrusts of research were undertaken in this dissertation. First, demonstration of the applicability of plasma discharges in engines and engine-like environments was carried out using a microwave discharge and a nanosecond repetitively pulsed discharge in an internal combustion engine and a pulsed detonation engine, respectively. Major conclusions include the extension of lean ignition limits for both engines, significant reduction of ignition time for mixtures with large minimum ignition energy, and the discovery of the inter-pulse coupling effect of nanosecond repetitively pulsed (NRP) discharges at high frequency. In order to understand the kinetic processes that led to these improvements, the second thrust of research directly explored the chemical kinetic processes of plasma discharges with hydrocarbon fuels. For this purpose, a low pressure flow reactor with a NRP dielectric barrier discharge cell was assembled. The discharge cell was fitted with a Herriott type multipass mirror arrangement, which allowed quantitative laser absorption spectroscopy to be performed in situ during the plasma discharge. Experiments on methane and ethylene mixtures with oxygen, argon, and helium revealed the importance of low temperature oxidation pathways in PAC. In particular, oxygen addition reactions were shown to be of primary importance in the oxidation of these small hydrocarbons in the temperature range of 300-600 K. Kinetic modeling tools, including both a coupled plasma and

  3. Surface electromagnetic wave equations in a warm magnetized quantum plasma

    SciTech Connect

    Li, Chunhua; Yang, Weihong; Wu, Zhengwei; Chu, Paul K.

    2014-07-15

    Based on the single-fluid plasma model, a theoretical investigation of surface electromagnetic waves in a warm quantum magnetized inhomogeneous plasma is presented. The surface electromagnetic waves are assumed to propagate on the plane between a vacuum and a warm quantum magnetized plasma. The quantum magnetohydrodynamic model includes quantum diffraction effect (Bohm potential), and quantum statistical pressure is used to derive the new dispersion relation of surface electromagnetic waves. And the general dispersion relation is analyzed in some special cases of interest. It is shown that surface plasma oscillations can be propagated due to quantum effects, and the propagation velocity is enhanced. Furthermore, the external magnetic field has a significant effect on surface wave's dispersion equation. Our work should be of a useful tool for investigating the physical characteristic of surface waves and physical properties of the bounded quantum plasmas.

  4. Effect of surface derived hydrocarbon impurities on Ar plasma properties

    SciTech Connect

    Fox-Lyon, Nick; Oehrlein, Gottlieb S.; Godyak, Valery

    2014-05-15

    The authors report on Langmuir probe measurements that show that hydrocarbon surfaces in contact with Ar plasma cause changes of electron energy distribution functions due to the flux of hydrogen and carbon atoms released by the surfaces. The authors compare the impact on plasma properties of hydrocarbon species gasified from an etching hydrocarbon surface with injection of gaseous hydrocarbons into Ar plasma. They find that both kinds of hydrocarbon injections decrease electron density and slightly increase electron temperatures of low pressure Ar plasma. For low percentages of impurities (∼1% impurity in Ar plasma explored here), surface-derived hydrocarbon species and gas phase injected hydrocarbon molecules cause similar changes of plasma properties for the same number of hydrocarbon molecules injected into Ar with a decrease in electron density of ∼4%.

  5. Modification of surface properties of polyethylene by Ar plasma discharge

    NASA Astrophysics Data System (ADS)

    Švorčík, V.; Kotál, V.; Slepička, P.; Bláhová, O.; Špírková, M.; Sajdl, P.; Hnatowicz, V.

    2006-03-01

    Polyethylene (PE) surface was modified by Ar plasma discharge. The changes of surface morphology and surface wettability (characterized by contact angle) were followed using AFM microscopy and standard goniometry, respectively. The changes of chemical structure of PE polymeric chain were characterized by FTIR and XPS techniques. A nanoindenter was used to study mechanical properties (microhardness, elasticity module and microscratch test) of modified PE. After exposition to the plasma discharge a fast decline of the contact angle is observed. The decline depends on the discharge power and the time elapsed from the plasma exposition. FTIR and XPS measurements indicate an oxidation of degraded polymeric chains and creation of hydroxyl, carbonyl, ether, ester and carboxyl groups. Surface morphology of modified PE depends on the plasma discharge power and exposure time. Maximum microhardness and elastic module, observed on PE specimens exposed to plasma discharge for 240 s, may be connected with PE crosslinking initiated by plasma discharge.

  6. Plasma technologies application for building materials surface modification

    NASA Astrophysics Data System (ADS)

    Volokitin, G. G.; Skripnikova, N. K.; Volokitin, O. G.; Shehovtzov, V. V.; Luchkin, A. G.; Kashapov, N. F.

    2016-01-01

    Low temperature arc plasma was used to process building surface materials, such as silicate brick, sand lime brick, concrete and wood. It was shown that building surface materials modification with low temperature plasma positively affects frost resistance, water permeability and chemical resistance with high adhesion strength. Short time plasma processing is rather economical than traditional processing thermic methods. Plasma processing makes wood surface uniquely waterproof and gives high operational properties, dimensional and geometrical stability. It also increases compression resistance and decreases inner tensions level in material.

  7. [Ocular surface reconstruction by tissue engineering].

    PubMed

    Kinoshita, Shigeru

    2002-12-01

    Ocular surface reconstruction by tissue engineering using somatic stem cells is a second-generation modality. In order to treat bilaterally affected, severe ocular surface disorders, we investigated the transplantation of two types of cultivated mucosal epithelia: allogenic corneal epithelial stem cells, and autologous oral mucosal epithelial cells. For this, first, we summarized the clinical results of allogenic keratoepithelioplasty and limbal transplantation. In addition, we showed that the immunological shift from Th1 to Th2 by using keyhole limpet hemocyanin was effective in suppressing the incidence of immunological rejection. Second, we investigated the transplantation of cultivated human corneal epithelial stem cells onto amniotic membrane. The cultivated sheet was created by co-culture with 3T3 fibroblasts, using the air-lift method, in cultivating the corneal epithelial stem cell on the amniotic membrane. These cultivated cells demonstrated positive keratin 3 and 12 specific to in vivo corneal epithelium, tight junction related proteins, and telomerase activity. The transplanted allogenic human corneal epithelial sheet survived on the corneal surface in all cases, and was quite effective for achieving ocular surface stability in the acute phase of Stevens-Johnson syndrome, ocular cicatricial pemphigoid, or chemical injury. However, a few cases developed immunological rejection or opportunistic infection. Third, to establish the transplantation of the autologous cultivated oral mucosal epithelial sheet, we performed animal experiments using rabbits. In vitro oral mucosal epithelial sheet showed histology similar to that of in vivo corneal epithelial sheet. It expressed positive keratin 3 as well. Since the autologous transplantation of this sheet survived on the ocular surface with the recovery of corneal transparency, a cultivated oral mucosal epithelium may become a substitute for corneal epithelium. Fourth, we created a cultivated human corneal

  8. Atmospheric pressure plasma treatment of flat aluminum surface

    NASA Astrophysics Data System (ADS)

    Bónová, Lucia; Zahoranová, Anna; Kováčik, Dušan; Zahoran, Miroslav; Mičušík, Matej; Černák, Mirko

    2015-03-01

    The atmospheric pressure ambient air and oxygen plasma treatment of flat aluminum sheets using the so-called Diffuse Coplanar Surface Barrier Discharge (DCSBD) were investigated. The main objective of this study is to show the possibility of using DCSBD plasma source to activate and clean aluminum surface. Surface free energy measurements, X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy coupled with Energy Dispersive X-ray Spectroscopy (SEM/EDX) and Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) were used for the characterization of the aluminum surface chemistry and changes induced by plasma treatment. Short plasma exposure times (several seconds) led to a significant increase in the surface free energy due to changes of its polar components. Various ageing effects, depending on the storage conditions were observed and discussed. Effects of air and oxygen plasmas on the removal of varying degrees of artificial hydrocarbon contamination of aluminum surfaces were investigated by the means of EDX, ATR-FTIR and XPS methods. A significant decrease in the carbon surface content after the plasma treatment indicates a strong plasma cleaning effect, which together with high energy efficiency of the DCSBD plasma source points to potential benefits of DCSBD application in processing of the flat aluminum surfaces.

  9. Effect of plasma surface interactions on PLT plasma parameters

    SciTech Connect

    Meservey, E.B.; Arunasalam, V.; Barnes, C.

    1980-07-01

    This paper gives a brief description of the geometry and parameters of the PLT tokamak, reviews some of the last four years' results that are particularly relevant to plasma-boundary interactions, and then concentrates on two specific problems.

  10. Biocompatibility of Cation Coated on Plasma-Polymerized Ti Surface

    NASA Astrophysics Data System (ADS)

    Lee, Kang; Ko, Yeong-Mu; Kim, Byung-Hoon

    2012-08-01

    In this study, we investigated the bone formation properties and cell responses on Na-, Mg-, K-, and Ca-ion-exchanged carboxyl plasma polymerized titanium (Ti) surfaces. The phase and morphologies of deposits bonelike apatite were significantly influence by the cation species. Na and Mg ions promote bonelike apatite nucleation and growth on plasma-functionalized Ti surfaces in simulated body fluid (SBF) and improves the crystallinity of the bonelike apatite deposited layer. The cell viability tests revealed significantly enhanced viability on the Ca-ion-exchanged plasma-functionalized Ti surface than on any other surface.

  11. Plasma flow interaction with ITER divertor related surfaces

    NASA Astrophysics Data System (ADS)

    Dojčinović, Ivan P.

    2010-11-01

    It has been found that the plasma flow generated by quasistationary plasma accelerators can be used for simulation of high energy plasma interaction with different materials of interest for fusion experiments. It is especially important for the studies of the processes such as ELMs (edge localized modes), plasma disruptions and VDEs (vertical displacement events), during which a significant part of the confined hot plasma is lost from the core to the SOL (scrape off layer) enveloping the core region. Experiments using plasma guns have been used to assess erosion from disruptions and ELMs. Namely, in this experiment modification of different targets, like tungsten, molybdenum, CFC and silicon single crystal surface by the action of hydrogen and nitrogen quasistationary compression plasma flow (CPF) generated by magnetoplasma compressor (MPC) has been studied. MPC plasma flow with standard parameters (1 MJ/m2 in 0.1 ms) can be used for simulation of transient peak thermal loads during Type I ELMs and disruptions. Analysis of the targets erosion, brittle destruction, melting processes, and dust formation has been performed. These surface phenomena are results of specific conditions during CPF interaction with target surface. The investigations are related to the fundamental aspects of high energy plasma flow interaction with different material of interest for fusion. One of the purposes is a study of competition between melting and cleavage of treated solid surface. The other is investigation of plasma interaction with first wall and divertor component materials related to the ITER experiment.

  12. Tritium trapping on the plasma irradiated tungsten surface

    SciTech Connect

    Torikai, Y.; Alimov, V.K.; Penzhorn, R.D.; Isobe, K.; Oyaidzu, M.; Yamanishi, T.; Ueda, Y.; Kurishita, H.; Philipps, V.; Kreter, A.; Zlobinski, M.

    2015-03-15

    Tungsten (W) is a candidate material for plasma-facing high heat-flux structures in future fusion reactors. The aim of this study is to assess how reasonably one can predict the tritium inventory in actual fusion machines using data on the hydrogen isotope inventory obtained in laboratory experiments. W specimens previously exposed to deuterium (D) plasmas both in the TEXTOR tokamak and high flux linear plasma generator (LPG) were subsequently loaded with tritium at 573 K for 3 h. The retention of tritium in the near-surface W layer was examined by imaging plate technique. The study shows that on the TEXTOR-plasma-exposed W surface, tritium was mainly trapped in carbon deposits, and for LPG-plasma-exposed W specimens, tritium was trapped in defects created in the near-surface layer during the course of D plasma exposure.

  13. Plasma surface modification and hydrophobic barrier coating of paper

    NASA Astrophysics Data System (ADS)

    Sahin, Halil Turgut

    2001-07-01

    Development of new technologies for production of alternative paper properties with minimal environmental hazards was the goal of this project. In this study, the utilization of various chemicals under radio frequency (RF) plasma environments was investigated for creation of hydrophobic barrier properties and deposition of electrically conductive conjugated thin layers on the surface of paper. Four basic approaches have been utilized to impart hydrophobic barriers to the paper without affecting bulk properties; argon plasma treatment after Teflon-like chemical; 1,1,1,2 tetrafluoroethane (TFE) predeposition, carbon tetrafluoride (CF4) plasma treatment after TFE pre-deposition, carbon tetrafluoride plasma treatment alone and octamethylcyclotetrasiloxane (OMCTSO) plasma treatment of paper under an RF-glow discharge. The chosen chemicals were found to enhance the properties of the paper substrates and surface analysis aided explanation of the mechanism of hydrophobic barrier improvements on paper. An attempt was also made to prepare oriented thin films of pi-conjugated polymers on paper surfaces with a pulsed plasma technique for incorporation of electrically conductive layers. Progressive changes in composition, with varying plasma duty cycles during the plasma polymerization, were observed with thiophene. The results of this study provide additional support for the unusually good control of film chemistry available via the pulsed plasma technique. Electrical conductivity measurements indicated that fragmented thiophene films were obtained under mild plasma conditions, but the discontinuous thiophene film was found to be oriented. The electrical behavior of the thiophene derived deposited layer was dramatically improved with chemical doping. Correlation of the changes of paper surface properties with changes in plasma parameters are partially explained by based on surface chemistry, although other structural features of the paper morphology were also affected to some

  14. Acellular assessments of engineered-manufactured nanoparticle biological surface reactivity

    EPA Science Inventory

    It is critical to assess the surface properties and reactivity of engineered-manufactured nanoparticles (NPs) as these will influence their interactions with biological systems, biokinetics and toxicity. We examined the physicochemical properties and surface reactivity of metal o...

  15. Surface characterization of plasma-treated polypropylene fibers

    SciTech Connect

    Wei, Q.F

    2004-06-15

    Plasma treatment is increasingly being used for surface modification of different materials in many industries. In this study, different techniques were employed to characterize the surface properties of plasma treated polypropylene fibers. The chemical nature of the fiber sufaces has been investigated by X-ray photoelectron spectroscopy (XPS). The XPS examination indicated the presence of oxygen-containing functional groups on fiber surfaces after plasma treatment. The Atomic Force Microscopy (AFM) scans revealed the evolution of surface morphology under different experimental conditions. A Philips Environmental Scanning Electron Microscopy (ESEM) was also used to study the wetting behavior of the fibers. In the ESEM, relative humidity can be raised to 100% to facilitate the water condensation onto fiber surfaces for wetting observation. The ESEM observation revealed that the plasma treatment significantly altered the surface wettability of polypropylene fibers.

  16. Plasma Treatment of Bulk Niobium Surface for SRF Cavities

    SciTech Connect

    Marija Raskovic; H. Phillips; Anne-Marie Valente

    2006-08-16

    Pulsed electric discharges were used to demonstrate the validity of plasma surface treatment of superconducting radio-frequency cavities. The experiments were performed on disc-shaped Nb samples and compared with identical samples treated with buffer chemical polishing techniques. The results of several standard surface analytical techniques indicate that plasma-treated samples have comparable or superior properties regarding the surface roughness and composition.

  17. Protective coatings of metal surfaces by cold plasma treatment

    NASA Technical Reports Server (NTRS)

    Manory, R.; Grill, A.

    1985-01-01

    The cold plasma techniques for deposition of various types of protective coatings are reviewed. The main advantage of these techniques for deposition of ceramic films is the lower process temperature, which enables heat treating of the metal prior to deposition. In the field of surface hardening of steel, significant reduction of treatment time and energy consumption were obtained. A simple model for the plasma - surface reactions in a cold plasma system is presented, and the plasma deposition techniques are discussed in view of this model.

  18. ADBD plasma surface treatment of PES fabric sheets

    NASA Astrophysics Data System (ADS)

    Píchal, J.; Klenko, Y.

    2009-08-01

    Plasma treatment of textile fabrics is investigated as an alternative to the environmentally hazardous wet chemical fabric treatment and pretreatment processes. Plasma treatment usually results in modification of the uppermost atomic layers of a material surface and leaves the bulk characteristics unaffected. It may result in desirable surface modifications, e.g. surface etching, surface activation, cross-linking, chain scission and oxidation. Presented paper contains results of the applicability study of the atmospheric pressure dielectric discharge (ADBD), i.e. dielectric barrier discharge sustaining in air at atmospheric pressure and ambient temperature for synchronous treatment of several sheets of fabric. For tests sheets of polyester fabric were used. Effectivity of the modification process was determined with hydrophilicity measurements evaluated by means of the drop test. Hydrophilicity of individual sheets of fabric has distinctly increased after plasma treatment. Plasma induced surface changes of textiles were also proven by identification of new functional groups at the modified polyester fabric surface. Existence of new functional groups was detected by ESCA scans. For verification of surface changes we also applied high-resolution microphotography. It has shown distinct variation of the textile surface after plasma treatment. Important aspect for practical application of the plasma treatment is the modification effect time-stability, i.e. time stability of acquired surface changes of the fabric. The recovery of hydrophobicity was fastest in first days after treatment, later gradually diminished until reached almost original untreated state.

  19. Generation of solution plasma over a large electrode surface area

    NASA Astrophysics Data System (ADS)

    Saito, Genki; Nakasugi, Yuki; Akiyama, Tomohiro

    2015-07-01

    Solution plasma has been used in a variety of fields such as nanomaterials synthesis, the degradation of harmful substances, and solution analysis. However, as existing methods are ineffective in generating plasma over a large surface area, this study investigated the contact glow discharge electrolysis, in which the plasma was generated on the electrode surface. To clarify the condition of plasma generation, the effect of electrolyte concentration and temperature on plasma formation was studied. The electrical energy needed for plasma generation is higher than that needed to sustain a plasma, and when the electrolyte temperature was increased from 32 to 90 °C at 0.01 M NaOH solution, the electric power density for vapor formation decreased from 2005 to 774 W/cm2. From these results, we determined that pre-warming of the electrolyte is quite effective in generating plasma at lower power density. In addition, lower electrolyte concentrations required higher power density for vapor formation owing to lower solution conductivity. On the basis these results, a method for large-area and flat-plate plasma generation is proposed in which an initial small area of plasma generation is extended. When used with a plate electrode, a concentration of current to the edge of the plate meant that plasma could be formed by covering the edge of the electrode plate.

  20. Etching of silicon surfaces using atmospheric plasma jets

    NASA Astrophysics Data System (ADS)

    Paetzelt, H.; Böhm, G.; Arnold, Th

    2015-04-01

    Local plasma-assisted etching of crystalline silicon by fine focused plasma jets provides a method for high accuracy computer controlled surface waviness and figure error correction as well as free form processing and manufacturing. We investigate a radio-frequency powered atmospheric pressure He/N2/CF4 plasma jet for the local chemical etching of silicon using fluorine as reactive plasma gas component. This plasma jet tool has a typical tool function width of about 0.5 to 1.8 mm and a material removal rate up to 0.068 mm3 min-1. The relationship between etching rate and plasma jet parameters is discussed in detail regarding gas composition, working distance, scan velocity and RF power. Surface roughness after etching was characterized using atomic force microscopy and white light interferometry. A strong smoothing effect was observed for etching rough silicon surfaces like wet chemically-etched silicon wafer backsides. Using the dwell-time algorithm for a deterministic surface machining by superposition of the local removal function of the plasma tool we show a fast and efficient way for manufacturing complex silicon structures. In this article we present two examples of surface processing using small local plasma jets.

  1. Femtosecond laser-induced electronic plasma at metal surface

    SciTech Connect

    Chen Zhaoyang; Mao, Samuel S.

    2008-08-04

    We develop a theoretical analysis to model plasma initiation at the early stage of femtosecond laser irradiation of metal surfaces. The calculation reveals that there is a threshold intensity for the formation of a microscale electronic plasma at the laser-irradidated metal surface. As the full width at half maximum of a laser pulse increases from 15 to 200 fs, the plasma formation threshold decreases by merely about 20%. The dependence of the threshold intensity on laser pulse width can be attributed to laser-induced surface electron emission, in particular due to the effect of photoelectric effect.

  2. Surface modification of polymer nanofibres by plasma treatment

    NASA Astrophysics Data System (ADS)

    Wei, Q. F.; Gao, W. D.; Hou, D. Y.; Wang, X. Q.

    2005-05-01

    Polymer nanofibres have great potential for technical applications in biomaterials, filtration, composites and electronics. The surface properties of nanofibres are of importance in these applications. In this study, cold gas plasma treatment was used to modify the surface of polyamide 6 nanofibres prepared by electrospinning. The chemical nature of the nanofibre surfaces was examined by X-ray photoelectron spectroscopy (XPS). Atomic force microscopy (AFM) was employed to study the surface characteristics of the fibres. The AFM results indicate a significant change in the morphology of the fibre surface before and after plasma treatment. A Philips Environmental Scanning Electron Microscopy (ESEM) was also used to study the wetting behaviour of the fibres. In the ESEM, relative humidity was raised to 100% to facilitate the water condensation onto fibre surfaces for wetting observation. The ESEM observation revealed that the plasma treatment significantly altered the surface wettability of the polyamide 6 nanofibres

  3. Effect of Energetic Plasma Flux on Flowing Liquid Lithium Surfaces

    NASA Astrophysics Data System (ADS)

    Kalathiparambil, Kishor; Jung, Soonwook; Christenson, Michael; Fiflis, Peter; Xu, Wenyu; Szott, Mathew; Ruzic, David

    2014-10-01

    An operational liquid lithium system with steady state flow driven by thermo-electric magneto-hydrodynamic force and capable of constantly refreshing the plasma exposed surface have been demonstrated at U of I. To evaluate the system performance in reactor relevant conditions, specifically to understand the effect of disruptive plasma events on the performance of the liquid metal PFCs, the setup was integrated to a pulsed plasma generator. A coaxial plasma generator drives the plasma towards a theta pinch which preferentially heats the ions, simulating ELM like flux, and the plasma is further guided towards the target chamber which houses the flowing lithium system. The effect of the incident flux is examined using diagnostic tools including triple Langmuir probe, calorimeter, rogowski coils, Ion energy analyzers, and fast frame spectral image acquisition with specific optical filters. The plasma have been well characterized and a density of ~1021 m-3, with electron temperature ~10 - 20 eV is measured, and final plasma velocities of 34 - 74 kms-1 have been observed. Calorimetric measurements using planar molybdenum targets indicate a maximum plasma energy (with 6 kV plasma gun and 20 kV theta pinch) of 0.08 MJm-2 with plasma divergence effects resulting in marginal reduction of 40 +/- 23 J in plasma energy. Further results from the other diagnostic tools, using the flowing lithium targets and the planar targets coated with lithium will be presented. DOE DE-SC0008587.

  4. Properties of corona discharge plasma near metal surface

    NASA Astrophysics Data System (ADS)

    Lavrinenko, M.; Biktashev, E.; Kirko, D.

    2016-01-01

    Properties of corona discharge near metallic surface were researched. Electrical oscillations in discharge plasma of 1 kHz - 100 MHz rate were registered. Spectrum of electrical oscillations in this range was obtained. Possible plasma waves for observed electronic oscillations explanation are discussed.

  5. Oxygen plasma surface modification enhances immobilization of simvastatin acid.

    PubMed

    Yoshinari, Masao; Hayakawa, Tohru; Matsuzaka, Kenichi; Inoue, Takashi; Oda, Yutaka; Shimono, Masaki; Ide, Takaharu; Tanaka, Teruo

    2006-02-01

    Simvastatin acid (SVA) has been reported to stimulate bone formation with increased expression of BMP-2. Therefore, immobilization of SVA onto dental implants is expected to promote osteogenesis at the bone tissue/implant interface. The aim of this study was to evaluate the immobilization behavior of SVA onto titanium (Ti), O(2)-plasma treated titanium (Ti + O(2)), thin-film coatings of hexamethyldisiloxane (HMDSO), and O(2)-plasma treated HMDSO (HMDSO + O(2)) by using the quartz crystal microbalance-dissipation (QCM-D) technique. HMDSO surfaces were activated by the introduction of an OH group and/or O(2)-functional groups by O(2)-plasma treatment. In contrast, titanium surfaces showed no appreciable compositional changes by O(2)-plasma treatment. The QCM-D technique enabled evaluation even at the adsorption behavior of a substance with a low molecular weight such as simvastatin. The largest amount of SVA was adsorbed on O(2)-plasma treated HMDSO surfaces compared to untreated titanium, HMDSO-coated titanium, and O(2)-plasma treated titanium. These findings suggested that the adsorption of SVA was enhanced on more hydrophilic surfaces concomitant with the presence of an OH group and/or O(2)-functional group resulting from the O(2)-plasma treatment, and that an organic film of HMDSO followed by O(2)-plasma treatment is a promising method for the adsorption of SVA in dental implant systems. PMID:16543663

  6. Charging time for dust grain on surface exposed to plasma

    NASA Astrophysics Data System (ADS)

    Sheridan, T. E.

    2013-04-01

    We consider the charging of a dust grain sitting on a surface exposed to plasma. The stochastic model of Sheridan and Hayes [Appl. Phys. Lett. 98, 091501 (2011)] is solved analytically for the charging time, which is found to be directly proportional to the square root of the electron temperature and inversely proportional to both the grain radius and plasma density.

  7. Plasma Facing Surface Composition During NSTX Li Experiments

    SciTech Connect

    Skinner, C. H.; Sullenberger, R.; Koel, B. E.; Jaworski, M. A.; Kugel, H. W.

    2012-07-20

    Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices. However, the nature of the plasma-lithium surface interaction has been obscured by the difficulty of in-tokamak surface analysis. We report laboratory studies of the chemical composition of lithium surfaces exposed to typical residual gases found in tokamaks. Solid lithium and a molybdenum alloy (TZM) coated with lithium has been examined using x-ray photoelectron spectroscopy, temperature programmed desorption, and Auger electron spectroscopy both in ultrahigh vacuum conditions and after exposure to trace gases. Lithium surfaces near room temperature were oxidized after exposure to 1-2 Langmuirs of oxygen or water vapor. The oxidation rate by carbon monoxide was four times less. Lithiated PFC surfaces in tokamaks will be oxidized in about 100 s depending on the tokamak vacuum conditions.

  8. Surface acoustical intensity measurements on a diesel engine

    NASA Technical Reports Server (NTRS)

    Mcgary, M. C.; Crocker, M. J.

    1980-01-01

    The use of surface intensity measurements as an alternative to the conventional selective wrapping technique of noise source identification and ranking on diesel engines was investigated. A six cylinder, in line turbocharged, 350 horsepower diesel engine was used. Sound power was measured under anechoic conditions for eight separate parts of the engine at steady state operating conditions using the conventional technique. Sound power measurements were repeated on five separate parts of the engine using the surface intensity at the same steady state operating conditions. The results were compared by plotting sound power level against frequency and noise source rankings for the two methods.

  9. Plasma-surface interaction in the context of ITER.

    PubMed

    Kleyn, A W; Lopes Cardozo, N J; Samm, U

    2006-04-21

    The decreasing availability of energy and concern about climate change necessitate the development of novel sustainable energy sources. Fusion energy is such a source. Although it will take several decades to develop it into routinely operated power sources, the ultimate potential of fusion energy is very high and badly needed. A major step forward in the development of fusion energy is the decision to construct the experimental test reactor ITER. ITER will stimulate research in many areas of science. This article serves as an introduction to some of those areas. In particular, we discuss research opportunities in the context of plasma-surface interactions. The fusion plasma, with a typical temperature of 10 keV, has to be brought into contact with a physical wall in order to remove the helium produced and drain the excess energy in the fusion plasma. The fusion plasma is far too hot to be brought into direct contact with a physical wall. It would degrade the wall and the debris from the wall would extinguish the plasma. Therefore, schemes are developed to cool down the plasma locally before it impacts on a physical surface. The resulting plasma-surface interaction in ITER is facing several challenges including surface erosion, material redeposition and tritium retention. In this article we introduce how the plasma-surface interaction relevant for ITER can be studied in small scale experiments. The various requirements for such experiments are introduced and examples of present and future experiments will be given. The emphasis in this article will be on the experimental studies of plasma-surface interactions. PMID:16633660

  10. Enhanced surface functionality via plasma modification and plasma deposition techniques to create more biologically relevant materials

    NASA Astrophysics Data System (ADS)

    Shearer, Jeffrey C.

    Functionalizing nanoparticles and other unusually shaped substrates to create more biologically relevant materials has become central to a wide range of research programs. One of the primary challenges in this field is creating highly functionalized surfaces without modifying the underlying bulk material. Traditional wet chemistry techniques utilize thin film depositions to functionalize nanomaterials with oxygen and nitrogen containing functional groups, such as --OH and --NHx. These functional groups can serve to create surfaces that are amenable to cell adhesion or can act as reactive groups for further attachment of larger structures, such as macromolecules or antiviral agents. Additional layers, such as SiO2, are often added between the nanomaterial and the functionalized coating to act as a barrier films, adhesion layers, and to increase overall hydrophilicity. However, some wet chemistry techniques can damage the bulk material during processing. This dissertation examines the use of plasma processing as an alternative method for producing these highly functionalized surfaces on nanoparticles and polymeric scaffolds through the use of plasma modification and plasma enhanced chemical vapor deposition techniques. Specifically, this dissertation will focus on (1) plasma deposition of SiO2 barrier films on nanoparticle substrates; (2) surface functionalization of amine and alcohol groups through (a) plasma co-polymerization and (b) plasma modification; and (3) the design and construction of plasma hardware to facilitate plasma processing of nanoparticles and polymeric scaffolds. The body of work presented herein first examines the fabrication of composite nanoparticles by plasma processing. SiOxC y and hexylamine films were coated onto TiO2 nanoparticles to demonstrate enhanced water dispersion properties. Continuous wave and pulsed allyl alcohol plasmas were used to produce highly functionalized Fe2 O3 supported nanoparticles. Specifically, film composition was

  11. Influence of emitted electrons transiting between surfaces on plasma-surface interaction

    SciTech Connect

    Campanell, Michael; Wang, Hongyue

    2013-09-02

    Emitted electrons are accelerated back into the plasma by the sheath. If their mean free path is large, they can propagate directly to another surface without suffering collisions. We analyze the effects of “transit” on plasma-surface interaction. When transit occurs, surfaces exchanging electrons are intricately coupled. All surfaces float more negatively than they would if the emission collisionally remixed with the bulk plasma. Asymmetries of the system drive a net “transit current” between the surfaces, which influences their potential difference. The larger the initial energy spread of the emitted electrons, the larger the potential difference.

  12. Influence of emitted electrons transiting between surfaces on plasma-surface interaction

    NASA Astrophysics Data System (ADS)

    Campanell, Michael; Wang, Hongyue

    2013-09-01

    Emitted electrons are accelerated back into the plasma by the sheath. If their mean free path is large, they can propagate directly to another surface without suffering collisions. We analyze the effects of "transit" on plasma-surface interaction. When transit occurs, surfaces exchanging electrons are intricately coupled. All surfaces float more negatively than they would if the emission collisionally remixed with the bulk plasma. Asymmetries of the system drive a net "transit current" between the surfaces, which influences their potential difference. The larger the initial energy spread of the emitted electrons, the larger the potential difference.

  13. [The biologic functional surfaces and their applications in tissue engineering].

    PubMed

    Yao, Fanglian; Chen, Man; Zhang, Hong; Zhang, Haiyue; An, Xiaoyan; Yao, Kangde

    2007-10-01

    The construction of biologic functional surfaces of materials, from the visual angle of material science, is aimed to make the biomaterials adapted by tissues, and to endow them with dynamic conformity; moreover, from the view-point of clinical applications, it is the functional surface to join the environmental tissues with the implanted material, playing the role of artificial extracellular matrix (ECM). The architecture of biologic functional surface is very important in tissue engineering science. Here the primary concepts of biological surface science and the construction and application of biofunctional surfaces in tissue engineering are reviewed. PMID:18027721

  14. Helium segregation on surfaces of plasma-exposed tungsten

    NASA Astrophysics Data System (ADS)

    Maroudas, Dimitrios; Blondel, Sophie; Hu, Lin; Hammond, Karl D.; Wirth, Brian D.

    2016-02-01

    We report a hierarchical multi-scale modeling study of implanted helium segregation on surfaces of tungsten, considered as a plasma facing component in nuclear fusion reactors. We employ a hierarchy of atomic-scale simulations based on a reliable interatomic interaction potential, including molecular-statics simulations to understand the origin of helium surface segregation, targeted molecular-dynamics (MD) simulations of near-surface cluster reactions, and large-scale MD simulations of implanted helium evolution in plasma-exposed tungsten. We find that small, mobile He n (1  ⩽  n  ⩽  7) clusters in the near-surface region are attracted to the surface due to an elastic interaction force that provides the thermodynamic driving force for surface segregation. This elastic interaction force induces drift fluxes of these mobile He n clusters, which increase substantially as the migrating clusters approach the surface, facilitating helium segregation on the surface. Moreover, the clusters’ drift toward the surface enables cluster reactions, most importantly trap mutation, in the near-surface region at rates much higher than in the bulk material. These near-surface cluster dynamics have significant effects on the surface morphology, near-surface defect structures, and the amount of helium retained in the material upon plasma exposure. We integrate the findings of such atomic-scale simulations into a properly parameterized and validated spatially dependent, continuum-scale reaction-diffusion cluster dynamics model, capable of predicting implanted helium evolution, surface segregation, and its near-surface effects in tungsten. This cluster-dynamics model sets the stage for development of fully atomistically informed coarse-grained models for computationally efficient simulation predictions of helium surface segregation, as well as helium retention and surface morphological evolution, toward optimal design of plasma facing components.

  15. Helium segregation on surfaces of plasma-exposed tungsten.

    PubMed

    Maroudas, Dimitrios; Blondel, Sophie; Hu, Lin; Hammond, Karl D; Wirth, Brian D

    2016-02-17

    We report a hierarchical multi-scale modeling study of implanted helium segregation on surfaces of tungsten, considered as a plasma facing component in nuclear fusion reactors. We employ a hierarchy of atomic-scale simulations based on a reliable interatomic interaction potential, including molecular-statics simulations to understand the origin of helium surface segregation, targeted molecular-dynamics (MD) simulations of near-surface cluster reactions, and large-scale MD simulations of implanted helium evolution in plasma-exposed tungsten. We find that small, mobile He n (1⩽  n  ⩽  7) clusters in the near-surface region are attracted to the surface due to an elastic interaction force that provides the thermodynamic driving force for surface segregation. This elastic interaction force induces drift fluxes of these mobile He n clusters, which increase substantially as the migrating clusters approach the surface, facilitating helium segregation on the surface. Moreover, the clusters' drift toward the surface enables cluster reactions, most importantly trap mutation, in the near-surface region at rates much higher than in the bulk material. These near-surface cluster dynamics have significant effects on the surface morphology, near-surface defect structures, and the amount of helium retained in the material upon plasma exposure. We integrate the findings of such atomic-scale simulations into a properly parameterized and validated spatially dependent, continuum-scale reaction-diffusion cluster dynamics model, capable of predicting implanted helium evolution, surface segregation, and its near-surface effects in tungsten. This cluster-dynamics model sets the stage for development of fully atomistically informed coarse-grained models for computationally efficient simulation predictions of helium surface segregation, as well as helium retention and surface morphological evolution, toward optimal design of plasma facing components. PMID:26794828

  16. Helium segregation on surfaces of plasma-exposed tungsten

    DOE PAGESBeta

    Maroudas, Dimitrios; Blondel, Sophie; Hu, Lin; Hammond, Karl D.; Wirth, Brian D.

    2016-01-21

    Here we report a hierarchical multi-scale modeling study of implanted helium segregation on surfaces of tungsten, considered as a plasma facing component in nuclear fusion reactors. We employ a hierarchy of atomic-scale simulations based on a reliable interatomic interaction potential, including molecular-statics simulations to understand the origin of helium surface segregation, targeted molecular-dynamics (MD) simulations of near-surface cluster reactions, and large-scale MD simulations of implanted helium evolution in plasma-exposed tungsten. We find that small, mobile He-n (1 <= n <= 7) clusters in the near-surface region are attracted to the surface due to an elastic interaction force that provides themore » thermodynamic driving force for surface segregation. Elastic interaction force induces drift fluxes of these mobile Hen clusters, which increase substantially as the migrating clusters approach the surface, facilitating helium segregation on the surface. Moreover, the clusters' drift toward the surface enables cluster reactions, most importantly trap mutation, in the near-surface region at rates much higher than in the bulk material. Moreover, these near-surface cluster dynamics have significant effects on the surface morphology, near-surface defect structures, and the amount of helium retained in the material upon plasma exposure. We integrate the findings of such atomic-scale simulations into a properly parameterized and validated spatially dependent, continuum-scale reaction-diffusion cluster dynamics model, capable of predicting implanted helium evolution, surface segregation, and its near-surface effects in tungsten. This cluster-dynamics model sets the stage for development of fully atomistically informed coarse-grained models for computationally efficient simulation predictions of helium surface segregation, as well as helium retention and surface morphological evolution, toward optimal design of plasma facing components.« less

  17. A Nanosecond Pulsed Plasma Brush for Surface Decontamination

    NASA Astrophysics Data System (ADS)

    Neuber, Johanna; Malik, Muhammad; Song, Shutong; Jiang, Chunqi

    2015-11-01

    This work optimizes a non-thermal, atmospheric pressure plasma brush for surface decontamination. The generated plasma plumes with a maximum length of 2 cm are arranged in a 5 cm long, brush-like array. The plasma was generated in ambient air with <= 10 kV, 200 ns pulses at a repetition rate of 1.5 kHz. The energy per pulse and average power are in the range of 1-3 mJ and 0.5-1.5 W, respectively. Helium containing varying concentrations of water vapor was evaluated as the carrier gas and was fed into the plasma chamber at a rate varying between 1 to 7 SLPM. Optimization of the cold plasma brush for surface decontamination was tested in a study of the plasma inactivation of two common pathogens, Staphylococcus aureus and Acinetobacter baumannii. Laminate surfaces inoculated with over-night cultured bacteria were subject to the plasma treatment for varying water concentrations in He, flow rates and discharge voltages. It was found that increasing the water content of the feed gas greatly enhanced the bactericidal effect. Emission spectroscopy was performed to identify the reactive plasma species that contribute to this variation. Additional affiliation: Frank Reidy Research Center for Bioelectrics

  18. Strongly Emitting Surfaces Unable to Float below Plasma Potential

    NASA Astrophysics Data System (ADS)

    Campanell, M. D.; Umansky, M. V.

    2016-02-01

    An important unresolved question in plasma physics concerns the effect of strong electron emission on plasma-surface interactions. Previous papers reported solutions with negative and positive floating potentials relative to the plasma edge. The two models give very different predictions for particle and energy balance. Here we show that the positive potential state is the only possible equilibrium in general. Even if a negative floating potential existed at t =0 , the ionization collisions near the surface will force a transition to the positive floating potential state. This transition is demonstrated with a new simulation code.

  19. Strongly Emitting Surfaces Unable to Float below Plasma Potential

    DOE PAGESBeta

    Campanell, M. D.; Umansky, M. V.

    2016-02-25

    One important unresolved question in plasma physics concerns the effect of strong electron emission on plasma-surface interactions. Previous papers reported solutions with negative and positive floating potentials relative to the plasma edge. For these two models a very different predictions for particle and energy balance is given. Here we show that the positive potential state is the only possible equilibrium in general. Even if a negative floating potential existed at t=0, the ionization collisions near the surface will force a transition to the positive floating potential state. Moreover, this transition is demonstrated with a new simulation code.

  20. Real-time measurements of plasma/surface interaction by plasma-amplified photoelectron detection

    NASA Astrophysics Data System (ADS)

    Selwyn, G. S.; Ai, B. D.; Singh, J.

    1988-06-01

    A new method, based on the photoelectric effect, is described for real-time, in situ monitoring of metal or semiconductor surfaces during plasma exposure. As an example of the application of this technique, the effect of both sputter and reactive gas plasma exposure is studied for graphite, silicon, and aluminum surfaces. Results are consistent with the formation of a surface-passivating layer of fluoride on aluminum and penetration of fluorine into the silicon bulk during exposure to the CF4+Ar etching plasma. An application of this technique for endpoint detection monitoring is described.

  1. Plasma temperature rise toward the plasma-facing surface

    NASA Astrophysics Data System (ADS)

    Nishijima, D.; Doerner, R. P.; Seraydarian, R. P.; De Temmerman, G.; van der Meiden, H. J.

    2015-08-01

    Detailed measurements of axial electron temperature, Te, profiles in the presheath region were carried out using a Langmuir probe and the line intensity ratio technique for both He I (728.1 nm/706.5 nm) and Be II (467.3 nm/313.1 nm). The results show that Te increases toward the material surface, which contradicts the standard picture that Te is constant along the magnetic field in the sheath-limited regime. While no target bias voltage, Vb, dependence is seen, the Te rise becomes more prominent with decreasing neutral pressure. Similarly, the ion temperature, Ti, evaluated from Doppler broadening of a He II line emission at 468.6 nm is found to increase toward the surface, but also does not depend on Vb. Possible mechanisms of the Te and Ti rise as well as validity of the line intensity ratio technique near the material surface are discussed.

  2. Plasma treatment of polymers for surface and adhesion improvement

    NASA Astrophysics Data System (ADS)

    Hegemann, Dirk; Brunner, Herwig; Oehr, Christian

    2003-08-01

    Different plasma treatments in a rf discharge of Ar, He, or N 2 are used to etch, cross-link, and activate polymers like PC, PP, EPDM, PE, PS, PET and PMMA. Due to the numerous ways a plasma interacts with the polymer surface, the gas type and the plasma conditions must be adjusted on the polymer type to minimize degradation and aging effects. Wetting and friction properties of polymers can be improved by a simple plasma treatment, demonstrated on PC and EPDM, respectively. However, the deposition of ultra-thin layers by plasma enables the adjustment of wetting properties, using siloxane-based or fluorocarbon films, and further reduction of the friction coefficient, applying siloxane or a-C:H coatings. Nevertheless, the adhesion of plasma-deposited coatings should be regarded, which can be enhanced by depositing a graded layer.

  3. Plasma Flow Interaction With Iter Divertor Related Surfaces

    NASA Astrophysics Data System (ADS)

    Dojcinovic, I. P.

    2010-07-01

    It has been found that the plasma flow generated by quasistationary plasma accelerators can be used for simulation of high energy plasma interaction with different materials of interest for fusion experiments (Arkhipov et al. 2000, Federici et al. 2005). It is especially important for the studies of the processes such as ELMs (edge localized modes), plasma disruptions and VDEs (vertical displacement events), during which a significant part of the confined hot plasma is lost from the core to the SOL (scrape off layer) enveloping the core region. Experiments using plasma guns have been used to assess erosion from disruptions and ELMs. Namely, in this experiment modification of different targets, like molybdenum, CFC and silicon single crystal surface by the action of hydrogen and nitrogen quasistationary compression plasma flow (CPF) generated by magnetoplasma compressor (MPC) has been studied. MPC plasma flow with standard parameters (1 MJ/m^2 in 0.1 ms) can be used for simulation of transient peak thermal loads during Type I ELMs and disruptions (Dojcinovic et al. 2007). Analysis of the targets erosion, brittle destruction, melting processes, and dust formation has been performed (Dojcinovic et al. 2006). These surface phenomena are results of specific conditions during CPF interaction with target surface. The investigations are related to the fundamental aspects of high energy plasma flow interaction with different material of interest for fusion. One of the purposes is a study of competition between melting and cleavage of treated solid surface. The other is investigation of plasma interaction with first wall and divertor component materials related to the ITER experiment.

  4. Plasma modification of HEMA and EOEMA surface properties

    NASA Astrophysics Data System (ADS)

    Svorcik, V.; Kolarova, K.; Dvorankova, B.; Michalek, J.; Krumbholcova, E.; Hnatowicz, V.

    2006-01-01

    Process of plasma etching of poly(2-hydroxyethylmethacrylate) (HEMA) and poly(2-ethyloxyethyl methacrylate) (EOEMA) in Ar atmosphere at room temperature was studied. Ablation of the samples exposed to the plasma was determined by gravimetry, surface wettability by goniometry, chemical structure by FTIR spectroscopy and surface morphology by Scanning Electron (SEM) microscopy. Adhesion and proliferation of 3T3 mouse fibroblasts was studied in vitro in order to determine biological activity of plasma-modified HEMA and EOEMA substrates. It was demonstrated that the plasma etching leads to oxidation of HEMA and to an increase of its wettability. More estheric structures are produced in EOEMA. For both polymers, a surface layer similar to 2 mu m thick is ablated after plasma etching for 400 s. The etching changes the sample surface morphology and its biological activity. The surface becomes smoother after etching. The results obtained after 3T3 cells cultivation show that the plasma etching decreases cell adhesion and increases cell proliferation in comparison with pristine polymers.

  5. [Effect of radio frequency discharge plasma on surface properties and biocompatibility of polycaprolactone matrices].

    PubMed

    Bolbasov, E N; Antonova, L V; Matveeva, V G; Novikov, V A; Shesterikov, E V; Bogomolova, N L; Golovkin, A S; Tverdohlebov, S I; Barbarash, O L; Barbarash, L S

    2016-01-01

    Surface modification of bioresorbable polymer material (polycaprolactone, PCL) with abnormal glow discharge, initiated during radio-frequency magnetron sputtering of a hydroxyapatite target was investigated. Plasma treatment resulted in an increase of surface roughness of PCL, crystallite size, the surface free energy and hydrophilicity. Increased treatment time (30, 60, 150 seconds) provoked the polymer surface saturation with the sputtering target ions (calcium, phosphorus). The assessment of plasma exposure of PCL surface on bone marrow multipotent mesenchymal stromal cells behavior (BM MSCs) has been performed. Modification of the polymer surface with the abnormal glow discharge stimulated adhesion and subsequent proliferation of BM MSCs; thus, maximum values were achieved with the surface treatment for 60 s. This type of plasma modification did not affect cell viability (apoptosis, necrosis). Thus, the surface modification with abnormal glow discharge, initiated during radio-frequency magnetron sputtering of a hydroxyapatite target, appear to be a promising method of surface modification of bioresorbable polymer material (PCL) for tissue engineering. PMID:26973188

  6. Surface Wave Plasma Driven by Ring Dielectric Line for Producing Dense, Large Area, Uniform Plasmas

    NASA Astrophysics Data System (ADS)

    Matsumoto, Naoki

    1999-10-01

    Surface Wave excited Plasma (SWP), has been put into practice as a plasma source for the fabrication process of ULSI and LCD devices. This plasma has several advanced features: 1) Very high electron density with relatively low electron temperature; 2) Very uniform plasma density over large areas; 3) Operation from gas pressure of few mT to the order of thousands of mT. We present a newly developed microwave driven surface wave plasma source called a Ring Dielectric Line (RDL). The RDL is a metal ring wave-guide, filled with dielectric material, driven by a microwave. Slots for coupling the microwave power are symmetrically arrayed under the dielectric, facing towards the processing chamber. The electromagnetic power generates an electromagnetic surface wave, which in turn excites a plasma surface wave on the bottom side of the quartz plate in the processing chamber. In terms of its plasma characteristics, the uniformly distributed argon plasma with wide range of pressure of 20, 40 and 80mT as well as with high density about 5×10^17/m^3 over the cutoff density was observed. The electron temperature was about 2eV. In addition, in the 5000-minutes continuous running test for C_4F8 etching, it achieved repeatability of +/-0.7% and non-uniformity of about +/-3%.

  7. Integrating Surface Modeling into the Engineering Design Graphics Curriculum

    ERIC Educational Resources Information Center

    Hartman, Nathan W.

    2006-01-01

    It has been suggested there is a knowledge base that surrounds the use of 3D modeling within the engineering design process and correspondingly within engineering design graphics education. While solid modeling receives a great deal of attention and discussion relative to curriculum efforts, and rightly so, surface modeling is an equally viable 3D…

  8. Particle based plasma simulation for an ion engine discharge chamber

    NASA Astrophysics Data System (ADS)

    Mahalingam, Sudhakar

    Design of the next generation of ion engines can benefit from detailed computer simulations of the plasma in the discharge chamber. In this work a complete particle based approach has been taken to model the discharge chamber plasma. This is the first time that simplifying continuum assumptions on the particle motion have not been made in a discharge chamber model. Because of the long mean free paths of the particles in the discharge chamber continuum models are questionable. The PIC-MCC model developed in this work tracks following particles: neutrals, singly charged ions, doubly charged ions, secondary electrons, and primary electrons. The trajectories of these particles are determined using the Newton-Lorentz's equation of motion including the effects of magnetic and electric fields. Particle collisions are determined using an MCC statistical technique. A large number of collision processes and particle wall interactions are included in the model. The magnetic fields produced by the permanent magnets are determined using Maxwell's equations. The electric fields are determined using an approximate input electric field coupled with a dynamic determination of the electric fields caused by the charged particles. In this work inclusion of the dynamic electric field calculation is made possible by using an inflated plasma permittivity value in the Poisson solver. This allows dynamic electric field calculation with minimal computational requirements in terms of both computer memory and run time. In addition, a number of other numerical procedures such as parallel processing have been implemented to shorten the computational time. The primary results are those modeling the discharge chamber of NASA's NSTAR ion engine at its full operating power. Convergence of numerical results such as total number of particles inside the discharge chamber, average energy of the plasma particles, discharge current, beam current and beam efficiency are obtained. Steady state results for

  9. First international conference on surface engineering

    SciTech Connect

    Bucklow, I.A.

    1986-01-01

    This book contains 12 papers. Some of the titles are: Applications of electroslag cladding; Study on the cutting of self-fluxing alloy by CBN tools; Nickel alloy hardfacing of stainless steel: Present state and future perspective on surfacing rolling mill rolls in Czechoslovakia; and The use of solid state MIG power supply for wear-resistant alloy surfacing.

  10. The surface modification of clay particles by RF plasma technique

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Keol

    In this study, the surface coatings of ball clay, organoclay and exfoliated clay prepared by sol-gel process were done by RF plasma polymerization to improve the surface activity of the clay filler. Characterization of the above plasma-treated clays has been carried out by various techniques. The effects of plasma-treated clays as substitute of carbon black in styrene-butadiene rubber (SBR) and ethylene-propylene-diene monomer (EPDM) on the curing and mechanical properties were investigated. After plasma treatment, the tensile properties of organo and exfoliated clay were not unsatisfactory to that of carbon black filler system. Moreover, only 10 phr filler loading of plasma-treated organoclay in EPDM vulcanizates showed better results than 40 phr filler loading of carbon black in EPDM vulcanizates. The main objective of this study was to verify the applicability of the plasma technique for modifying clay surfaces for their use in the tire manufacturing industry. Another purpose was to reveal the advantage of the plasma technique used to obtain modified-clay and improved properties that those materials can display.

  11. Dust generation at interaction of plasma jet with surfaces

    NASA Astrophysics Data System (ADS)

    Ticos, Catalin; Toader, Dorina; Banu, Nicoleta; Scurtu, Adrian; Oane, Mihai

    2013-10-01

    Coatings of W and C with widths of a few microns will be exposed to plasma jet for studying the erosion of the surface and detachment of micron size dust particles. A coaxial plasma gun has been built inside a vacuum chamber for producing supersonic plasma jets. Its design is based on a 50 kJ coaxial plasma gun which has been successfully used for accelerating hypervelocity dust. Initial shots were carried out for a capacitor bank with C = 12 μF and charged up to 2 kV. Currents of tens of amps were measured with a Rogowsky coil and plasma flow speeds of 4 km/s were inferred from high-speed images of jet propagation. An upgrade consisting in adding capacitors in parallel will be performed in order to increase the energy up to 2 kJ. A coil will be installed at the gun muzzle to compress the plasma flow and increase the energy density of the jet on the sample surface. A CCD camera with a maximum recording speed of 100 k fps and a maximum resolution of 1024 × 1024 pixels was set for image acquisition of the plasma and dust. A laser system used to illuminate the ejected dust from the surface includes a laser diode emitting at 650 nm with a beam power of 25 mW. The authors acknowledge support from EURATOM WP13-IPH-A03-P2-02-BS22.

  12. Surface transport in plasma-balls

    NASA Astrophysics Data System (ADS)

    Armas, Jay; Bhattacharya, Jyotirmoy; Kundu, Nilay

    2016-06-01

    We study the surface transport properties of stationary localized configurations of relativistic fluids to the first two non-trivial orders in a derivative expansion. By demanding that these finite lumps of relativistic fluid are described by a thermal partition function with arbitrary stationary background metric and gauge fields, we are able to find several constraints among surface transport coefficients. At leading order, besides recovering the surface thermodynamics, we obtain a generalization of the Young-Laplace equation for relativistic fluid surfaces, by considering a temperature dependence in the surface tension, which is further generalized in the context of superfluids. At the next order, for uncharged fluids in 3+1 dimensions, we show that besides the 3 independent bulk transport coefficients previously known, a generic localized configuration is characterized by 3 additional surface transport coefficients, one of which may be identified with the surface modulus of rigidity. Finally, as an application, we study the effect of temperature dependence of surface tension on some explicit examples of localized fluid configurations, which are dual to certain non-trivial black hole solutions via the AdS/CFT correspondence.

  13. Mechanistic Study of Plasma Damage of Low k Dielectric Surfaces

    SciTech Connect

    Bao Junjing; Shi Hualiang; Huang Huai; Ho, P. S.; Liu Junjun; Goodner, M. D.; Moinpour, M.; Kloster, G. M.

    2007-10-31

    Plasma damage to low k dielectric materials was investigated from a mechanistic point of view. Low k dielectric films were treated by plasma Ar, O{sub 2}, N{sub 2}/H{sub 2}, N{sub 2} and H{sub 2} in a standard RIE chamber and the damage was characterized by Angle Resolved X-ray Photoelectron Spectroscopy (ARXPS), X-Ray Reflectivity (XRR), Fourier Transform Infrared Spectroscopy (FTIR) and Contact Angle measurements. Both carbon depletion and surface densification were observed on the top surface of damaged low k materials while the bulk remained largely unaffected. Plasma damage was found to be a complicated phenomenon involving both chemical and physical effects, depending on chemical reactivity and the energy and mass of the plasma species. A downstream hybrid plasma source with separate ions and atomic radicals was employed to study their respective roles in the plasma damage process. Ions were found to play a more important role in the plasma damage process. The dielectric constant of low k materials can increase up to 20% due to plasma damage and we attributed this to the removal of the methyl group making the low k surface hydrophilic. Annealing was generally effective in mitigating moisture uptake to restore the k value but the recovery was less complete for higher energy plasmas. Quantum chemistry calculation confirmed that physisorbed water in low k materials induces the largest increase of dipole moments in comparison with changes of surface bonding configurations, and is primarily responsible for the dielectric constant increase.

  14. ANNUAL REPORT. ATMOSPHERIC-PRESSURE PLASMA CLEANING OF CONTAMINATED SURFACES

    EPA Science Inventory

    The objective of this work is to demonstrate a practical, atmospheric pressure plasma tool for the surface decontamination of nuclear waste. Decontamination of radioactive materials that have accumulated on the surfaces of equipment and structures is a challenging and costly unde...

  15. Bone tissue response to plasma-nitrided titanium implant surfaces.

    PubMed

    Ferraz, Emanuela Prado; Sverzut, Alexander Tadeu; Freitas, Gileade Pereira; Sá, Juliana Carvalho; Alves, Clodomiro; Beloti, Marcio Mateus; Rosa, Adalberto Luiz

    2015-01-01

    A current goal of dental implant research is the development of titanium (Ti) surfaces to improve osseointegration. Plasma nitriding treatments generate surfaces that favor osteoblast differentiation, a key event to the process of osteogenesis. Based on this, it is possible to hypothesize that plasma-nitrided Ti implants may positively impact osseointegration. Objective The aim of this study was to evaluate the in vivo bone response to Ti surfaces modified by plasma-nitriding treatments. Material and Methods Surface treatments consisted of 20% N2 and 80% H2, 450°C and 1.5 mbar during 1 h for planar and 3 h for hollow cathode. Untreated surface was used as control. Ten implants of each surface were placed into rabbit tibiae and 6 weeks post-implantation they were harvested for histological and histomorphometric analyses. Results Bone formation was observed in contact with all implants without statistically significant differences among the evaluated surfaces in terms of bone-to-implant contact, bone area between threads, and bone area within the mirror area. Conclusion Our results indicate that plasma nitriding treatments generate Ti implants that induce similar bone response to the untreated ones. Thus, as these treatments improve the physico-chemical properties of Ti without affecting its biocompatibility, they could be combined with modifications that favor bone formation in order to develop new implant surfaces. PMID:25760262

  16. Bone tissue response to plasma-nitrided titanium implant surfaces

    PubMed Central

    FERRAZ, Emanuela Prado; SVERZUT, Alexander Tadeu; FREITAS, Gileade Pereira; SÁ, Juliana Carvalho; ALVES, Clodomiro; BELOTI, Marcio Mateus; ROSA, Adalberto Luiz

    2015-01-01

    A current goal of dental implant research is the development of titanium (Ti) surfaces to improve osseointegration. Plasma nitriding treatments generate surfaces that favor osteoblast differentiation, a key event to the process of osteogenesis. Based on this, it is possible to hypothesize that plasma-nitrided Ti implants may positively impact osseointegration. Objective The aim of this study was to evaluate the in vivo bone response to Ti surfaces modified by plasma-nitriding treatments. Material and Methods Surface treatments consisted of 20% N2 and 80% H2, 450°C and 1.5 mbar during 1 h for planar and 3 h for hollow cathode. Untreated surface was used as control. Ten implants of each surface were placed into rabbit tibiae and 6 weeks post-implantation they were harvested for histological and histomorphometric analyses. Results Bone formation was observed in contact with all implants without statistically significant differences among the evaluated surfaces in terms of bone-to-implant contact, bone area between threads, and bone area within the mirror area. Conclusion Our results indicate that plasma nitriding treatments generate Ti implants that induce similar bone response to the untreated ones. Thus, as these treatments improve the physico-chemical properties of Ti without affecting its biocompatibility, they could be combined with modifications that favor bone formation in order to develop new implant surfaces. PMID:25760262

  17. Plasma assisted surface coating/modification processes - An emerging technology

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1987-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation. These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  18. Plasma assisted surface coating/modification processes: An emerging technology

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1986-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation). These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  19. Ambient non-thermal plasma for metal surface treatment

    NASA Astrophysics Data System (ADS)

    Nuamatha, Prasad; Pashaie, Bijan; Dhali, Shirshak; Dave, Bakul

    2002-10-01

    Atmospheric pressure discharge in Argon/Hydrogen and Argon/Oxygen mixture is used to clean metal surfaces prior to applying coating. Dielectric barrier discharges driven by low frequency (4 kHz) and RF (13.45 MHz) are used for the treatment. Plasma treatment removes organic contaminants from the surface of the steel and could provide an alternative to chemical cleaning. Peel tests indicate that Argon/Hydrogen plasma produces the strongest coatings. This would suggest that hydrogen plays a role in etching the surface of the metal. XPS results of surfaces coated with adhesives show that plasma treatment is capable of removing ester like compounds without the need for chemicals. The effect of both oxidizing and reducing atmospher will be discussed.

  20. Antiproton powered propulsion with magnetically confined plasma engines

    NASA Technical Reports Server (NTRS)

    Lapointe, Michael R.

    1989-01-01

    The reaction of the matter-antimatter annihilation, with its specific energy being over 250 times the specific energy released in nuclear fusion, is considered as an energy source for spacecraft propulsion. A concept of a magnetically confined pulsed plasma engine is described. In this concept, antiproton beams are injected axially into a pulsed magnetic mirror system, where they annihilate with an initially neutral hydrogen gas; the resulting charge annihilation products transfer energy to the hydrogen propellant, which is then exhausted through one end of the pulsed mirror system to provide thrust. Numerical simulations were developed to calculate the annihilation rate of antiprotons in hydrogen and to follow the resulting ion, muon, and electron/positron number density evolutions.

  1. Antiproton powered propulsion with magnetically confined plasma engines

    SciTech Connect

    Lapointe, M.R.

    1989-01-01

    The reaction of the matter-antimatter annihilation, with its specific energy being over 250 times the specific energy released in nuclear fusion, is considered as an energy source for spacecraft propulsion. A concept of a magnetically confined pulsed plasma engine is described. In this concept, antiproton beams are injected axially into a pulsed magnetic mirror system, where they annihilate with an initially neutral hydrogen gas; the resulting charge annihilation products transfer energy to the hydrogen propellant, which is then exhausted through one end of the pulsed mirror system to provide thrust. Numerical simulations were developed to calculate the annihilation rate of antiprotons in hydrogen and to follow the resulting ion, muon, and electron/positron number density evolutions. 22 refs.

  2. High speed cine film studies of plasma behaviour and plasma surface interactions in tokamaks

    NASA Astrophysics Data System (ADS)

    Goodall, D. H. J.

    1982-12-01

    High speed cine photography is a useful diagnostic aid for studying plasma behaviour and plasma surface interactions. Several workers have filmed discharges in tokamaks including ASDEX, DITE, DIVA, ISX, JFT2, TFR and PLT. These films are discussed and examples given of the observed phenomena which include plasma limiter interactions, diverted discharges, disruptions, magnetic islands and moving glowing objects often known as 'UFOs'. Examples of plasma structures in ASDEX and DITE not previously published are also given. The paper also reports experiments in DITE to determine the origin of UFOs.

  3. Solar energy converter using surface plasma waves

    NASA Technical Reports Server (NTRS)

    Anderson, L. M. (Inventor)

    1984-01-01

    Sunlight is dispersed over a diffraction grating formed on the surface of a conducting film on a substrate. The angular dispersion controls the effective grating period so that a matching spectrum of surface plasmons is excited for parallel processing on the conducting film. The resulting surface plasmons carry energy to an array of inelastic tunnel diodes. This solar energy converter does not require different materials for each frequency band, and sunlight is directly converted to electricity in an efficient manner by extracting more energy from the more energetic photons.

  4. Plasma lithography--thin-film patterning of polymeric biomaterials by RF plasma polymerization I: Surface preparation and analysis.

    PubMed

    Goessl, A; Garrison, M D; Lhoest, J B; Hoffman, A S

    2001-01-01

    Plasma lithography, combining plasma deposition with photolithography, is described as a versatile method to manufacture all-polymeric substrates with thin-film patterns for applications in biomedical engineering. Patterns of a hydrophobic fluorocarbon plasma polymer with feature sizes between 5 and 100 microm were deposited on a base substrate in a lift-off process: an intermediate tetraglyme plasma polymer layer provides non-fouling properties to the base substrate. Careful analysis of critical process parameters identified the narrow window of process conditions that led to the formation of functional surface patterns. High pattern fidelity, aspect ratios, and resolution of the patterns are demonstrated by atomic force microscopy. Electron spectroscopy for chemical analysis (ESCA) and secondary ion mass spectroscopy (SIMS) were used to characterize the surfaces, showing good retention of the original chemical structure of the pattern components throughout the process. SIMS imaging was used for specific chemical imaging of the components. Potential applications for the patterned polymer films, e.g., for studying cell behavior in vitro in dependence of shape and size of adhering cells, are discussed. PMID:11587037

  5. A surface-modified poly(ɛ-caprolactone) scaffold comprising variable nanosized surface-roughness using a plasma treatment.

    PubMed

    Jeon, HoJun; Lee, Hyeongjin; Kim, GeunHyung

    2014-12-01

    Melt-plotted poly (ɛ-caprolactone) (PCL) has been widely applied in various tissue regenerations. However, its hydrophobic nature has hindered its usage in wider tissue engineering applications. In this study, we present the development of a porous and multilayered PCL scaffold, which shows outstanding hydrophilic properties and has a roughened surface consisting of homogeneously distributed nanosized pits. The scaffold was obtained using an innovative oxygen plasma treatment. This technology can induce variable nanoscale surface roughness, which is difficult from traditional plasma treatment. Osteoblast-like cells were cultured on the scaffolds and several cellular responses (cell viability, fluorescence images [live/dead cells, nucleus, and actin cytoskeleton], ALP activity, and calcium mineralization) were assessed for untreated PCL and conventionally plasma-treated PCL scaffolds. The data indicated that an appropriate roughness (654 ± 91 nm) of the PCL scaffold processed with the new plasma treatment induced more advantageous responses for the cells, compared with untreated scaffolds and traditional plasma-treated scaffolds. PMID:24635019

  6. Surface erosion caused on Mars from Viking descent engine plume

    NASA Technical Reports Server (NTRS)

    Hutton, R. E.; Moore, H. J.; Scott, R. F.; Shorthill, R. W.; Spitzer, C. R.

    1980-01-01

    During the Martian landings the descent engine plumes on Viking Lander 1 (VL-1) and Viking Lander 2 (VL-2) eroded the Martian surface materials. This had been anticipated and investigated both analytically and experimentally during the design phase of the Viking spacecraft. This paper presents data on erosion obtained during the tests of the Viking descent engine and the evidence for erosion by the descent engines of VL-1 and VL-2 on Mars. From these and other results, it is concluded that there are four distinct surface materials on Mars: (1) drift materials, (2) crusty to cloddy material, (3) blocky material, and (4) rock.

  7. Applications of yeast surface display for protein engineering

    PubMed Central

    Cherf, Gerald M.; Cochran, Jennifer R.

    2015-01-01

    The method of displaying recombinant proteins on the surface of Saccharomyces cerevisiae via genetic fusion to an abundant cell wall protein, a technology known as yeast surface display, or simply, yeast display, has become a valuable protein engineering tool for a broad spectrum of biotechnology and biomedical applications. This review focuses on the use of yeast display for engineering protein affinity, stability, and enzymatic activity. Strategies and examples for each protein engineering goal are discussed. Additional applications of yeast display are also briefly presented, including protein epitope mapping, identification of protein-protein interactions, and uses of displayed proteins in industry and medicine. PMID:26060074

  8. Surface erosion caused on Mars from Viking descent engine plume

    USGS Publications Warehouse

    Hutton, R.E.; Moore, H.J.; Scott, R.F.; Shorthill, R.W.; Spitzer, C.R.

    1980-01-01

    During the Martian landings the descent engine plumes on Viking Lander 1 (VL-1) and Viking Lander 2 (VL-2) eroded the Martian surface materials. This had been anticipated and investigated both analytically and experimentally during the design phase of the Viking spacecraft. This paper presents data on erosion obtained during the tests of the Viking descent engine and the evidence for erosion by the descent engines of VL-1 and VL-2 on Mars. From these and other results, it is concluded that there are four distinct surface materials on Mars: (1) drift material, (2) crusty to cloddy material, (3) blocky material, and (4) rock. ?? 1980 D. Reidel Publishing Co.

  9. Lunar surface engineering properties experiment definition

    NASA Technical Reports Server (NTRS)

    Mitchell, J. K.; Goodman, R. E.; Hurlbut, F. C.; Houston, W. N.; Willis, D. R.; Witherspoon, P. A.; Hovland, H. J.

    1971-01-01

    Research on the mechanics of lunar soils and on developing probes to determine the properties of lunar surface materials is summarized. The areas of investigation include the following: soil simulation, soil property determination using an impact penetrometer, soil stabilization using urethane foam or phenolic resin, effects of rolling boulders down lunar slopes, design of borehole jack and its use in determining failure mechanisms and properties of rocks, and development of a permeability probe for measuring fluid flow through porous lunar surface materials.

  10. Induced hydrophobic recovery of oxygen plasma-treated surfaces

    PubMed Central

    Guckenberger, David J.; Berthier, Erwin; Young, Edmond W. K.; Beebe, David J.

    2014-01-01

    Plasma treatment is a widely used method in microfabrication laboratories and the plasticware industry to functionalize surfaces for device bonding and preparation for mammalian cell culture. However, spatial control of plasma treatment is challenging because it typically requires a tedious masking step that is prone to alignment errors. Currently, there are no available methods to actively revert a surface from a treated hydrophilic state to its original hydrophobic state. Here, we describe a method that relies on physical contact treatment (PCT) to actively induce hydrophobic recovery of plasma-treated surfaces. PCT involves applying brushing and peeling processes with common wipers and tapes to reverse the wettability of hydrophilized surfaces while simultaneously preserving hydrophilicity of non-contacted surfaces. We demonstrate that PCT is a user-friendly method that allows 2D and 3D surface patterning of hydrophobic regions, and the protection of hydrophilic surfaces from unwanted PCT-induced recovery. This method will be useful in academic and industrial settings where plasma treatment is frequently used. PMID:22592853

  11. Helium atmospheric pressure plasma jets touching dielectric and metal surfaces

    NASA Astrophysics Data System (ADS)

    Norberg, Seth A.; Johnsen, Eric; Kushner, Mark J.

    2015-07-01

    Atmospheric pressure plasma jets (APPJs) are being investigated in the context plasma medicine and biotechnology applications, and surface functionalization. The composition of the surface being treated ranges from plastics, liquids, and biological tissue, to metals. The dielectric constant of these materials ranges from as low as 1.5 for plastics to near 80 for liquids, and essentially infinite for metals. The electrical properties of the surface are not independent variables as the permittivity of the material being treated has an effect on the dynamics of the incident APPJ. In this paper, results are discussed from a computational investigation of the interaction of an APPJ incident onto materials of varying permittivity, and their impact on the discharge dynamics of the plasma jet. The computer model used in this investigation solves Poisson's equation, transport equations for charged and neutral species, the electron energy equation, and the Navier-Stokes equations for the neutral gas flow. The APPJ is sustained in He/O2 = 99.8/0.2 flowing into humid air, and is directed onto dielectric surfaces in contact with ground with dielectric constants ranging from 2 to 80, and a grounded metal surface. Low values of relative permittivity encourage propagation of the electric field into the treated material and formation and propagation of a surface ionization wave. High values of relative permittivity promote the restrike of the ionization wave and the formation of a conduction channel between the plasma discharge and the treated surface. The distribution of space charge surrounding the APPJ is discussed.

  12. Investigation of an Oscillating Surface Plasma for Turbulent Drag Reduction

    NASA Technical Reports Server (NTRS)

    Wilkinson, Stephen P.

    2003-01-01

    An oscillating, weakly ionized surface plasma has been investigated for use in turbulent boundary layer viscous drag reduction. The study was based on reports showing that mechanical spanwise oscillations of a wall can reduce viscous drag due to a turbulent boundary layer by up to 40%. It was hypothesized that the plasma induced body force in high electric field gradients of a surface plasma along strip electrodes could also be configured to oscillate the flow. Thin dielectric panels with millimeter-scale, flush- mounted, triad electrode arrays with one and two-phase high voltage excitation were tested. Results showed that while a small oscillation could be obtained, the effect was lost at a low frequency (less than 100Hz). Furthermore, a mean flow was generated during the oscillation that complicates the effect. Hot-wire and pitot probe diagnostics are presented along with phase-averaged images revealing plasma structure.

  13. Pair Plasmas in the Central Engine of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Tsuruta, S.; Tritz, B. G.

    1993-01-01

    As the most promising model for the X-ray emission from a class of Active Galactic Nuclei (AGNs) represented by radio-quiet quasars and Seyfert nuclei, here we introduce the non-thermal pair cascade model, where soft photons are Comptonized by non-thermal electron-positron pair plasmas produced by (gamma)-rays. After summarizing the simplest model of this kind, the "homogeneous spherical cascade model", our most recent work on the "surface cascade model" is presented, where a geometrical effect is introduced. Many characteristics of this model are qualitatively similar to the homogeneous cascade model. However, an important difference is that (gamma)-ray depletion is much more efficient in the surface cascade, and consequently this model naturally satisfies the severe observational constraint imposed by the (gamma)-ray background radiation.

  14. Quantification of air plasma chemistry for surface disinfection

    NASA Astrophysics Data System (ADS)

    Pavlovich, Matthew J.; Clark, Douglas S.; Graves, David B.

    2014-12-01

    Atmospheric-pressure air plasmas, created by a variety of discharges, are promising sources of reactive species for the emerging field of plasma biotechnology because of their convenience and ability to operate at ambient conditions. One biological application of ambient-air plasma is microbial disinfection, and the ability of air plasmas to decontaminate both solid surfaces and liquid volumes has been thoroughly established in the literature. However, the mechanism of disinfection and which reactive species most strongly correlate with antimicrobial effects are still not well understood. We describe quantitative gas-phase measurements of plasma chemistry via infrared spectroscopy in confined volumes, focusing on air plasma generated via surface micro-discharge (SMD). Previously, it has been shown that gaseous chemistry is highly sensitive to operating conditions, and the measurements we describe here extend those findings. We quantify the gaseous concentrations of ozone (O3) and nitrogen oxides (NO and NO2, or NOx) throughout the established ‘regimes’ for SMD air plasma chemistry: the low-power, ozone-dominated mode; the high-power, nitrogen oxides-dominated mode; and the intermediate, unstable transition region. The results presented here are in good agreement with previously published experimental studies of aqueous chemistry and parameterized models of gaseous chemistry. The principal finding of the present study is the correlation of bacterial inactivation on dry surfaces with gaseous chemistry across these time and power regimes. Bacterial decontamination is most effective in ‘NOx mode’ and less effective in ‘ozone mode’, with the weakest antibacterial effects in the transition region. Our results underscore the dynamic nature of air plasma chemistry and the importance of careful chemical characterization of plasma devices intended for biological applications.

  15. Plasma-surface interactions under extreme conditions: challenges and opportunities

    NASA Astrophysics Data System (ADS)

    de Temmerman, Gregory

    2013-09-01

    In a fusion reactor, power from the hot core plasma has to be exhausted by the plasma-facing components which are exposed to extreme heat (>10MW.m-2) and particle fluxes (up to 1024m-2s-1 or 1.6×105A.m-2) - orders of magnitude higher than in conventional plasma processing technique. Much of the fundamentals of the materials behaviour under such extreme ion irradiation conditions is not yet fully understood and limits our ability to develop materials able to survive those conditions. Combining a high efficiency plasma source and a strong magnetic field, linear plasma devices (LPD) allow to reproduce and even exceed the conditions expected in a fusion reactor. Owing to the good access to the plasma-material interaction zone for diagnostics and sample manipulation, those devices allow advanced experiments necessary to the fundamental understanding of plasma-surface interactions. In addition, the ion flux is such that a direct comparison with MD modelling, traditionally hampered by the large gap between fluxes in model and experiments, is now possible. This presentation will give an overview of the research performed to understand materials behaviour under extreme conditions with a focus on irradiation-driven modifications of metals. In parallel, the non-equilibrium conditions induced by the surface bombardment by extreme fluxes of low-energy particles open a novel route for the synthesis of advanced nanostructured materials, an illustration of which will be given.

  16. Lithium-based surfaces controlling fusion plasma behavior at the plasma-material interface

    SciTech Connect

    Allain, Jean Paul; Taylor, Chase N.

    2012-05-15

    The plasma-material interface and its impact on the performance of magnetically confined thermonuclear fusion plasmas are considered to be one of the key scientific gaps in the realization of nuclear fusion power. At this interface, high particle and heat flux from the fusion plasma can limit the material's lifetime and reliability and therefore hinder operation of the fusion device. Lithium-based surfaces are now being used in major magnetic confinement fusion devices and have observed profound effects on plasma performance including enhanced confinement, suppression and control of edge localized modes (ELM), lower hydrogen recycling and impurity suppression. The critical spatial scale length of deuterium and helium particle interactions in lithium ranges between 5-100 nm depending on the incident particle energies at the edge and magnetic configuration. Lithium-based surfaces also range from liquid state to solid lithium coatings on a variety of substrates (e.g., graphite, stainless steel, refractory metal W/Mo/etc., or porous metal structures). Temperature-dependent effects from lithium-based surfaces as plasma facing components (PFC) include magnetohydrodynamic (MHD) instability issues related to liquid lithium, surface impurity, and deuterium retention issues, and anomalous physical sputtering increase at temperatures above lithium's melting point. The paper discusses the viability of lithium-based surfaces in future burning-plasma environments such as those found in ITER and DEMO-like fusion reactor devices.

  17. Atmospheric pressure plasma cleaning of contamination surfaces. 1997 mid-year progress report

    SciTech Connect

    Selwyn, G.S.; Hicks, R.

    1997-06-01

    'Goals of the project are to (1) identify the key physics and chemistry underlying the use of high pressure plasmas for etching removal of actinides and actinide surrogates; and (2) identify key surface reactions and plasma physics necessary for optimization of the atmospheric pressure plasma jet. Technical description of the work decommissioning of transuranic waste (TRU) into low-level radioactive waste (LLW) represents the largest cleanup cost associated with the nuclear weapons complex. This work is directed towards developing a low-cost plasma technology capable of converting TRU into LLW, based upon highly selective plasma etching of plutonium and other actinides from contaminated surfaces. In this way, only the actinide material is removed, leaving the surface less contaminated. The plasma etches actinide material by producing a volatile halide compound, which may be efficiently trapped using filters. To achieve practical, low-cost operation of a plasma capable of etching actinide materials, the authors have developed a y-mode, resonant-cavity, atmospheric pressure plasma jet (APPJ). In contrast to conventional, low pressure plasmas, the APPJ produces a purely-chemical effluent free of ions, and so achieves very high selectivity and produces negligible damage to the surface. Since the jet operates outside a chamber, many nuclear wastes may be treated including machinery, duct-work, concrete and other building materials. In some cases, it may be necessary to first remove paint from contaminated surfaces using a plasma selective for that surface, then to switch to the actinide etching chemistry for removal of actinide contamination. The goal of this work is to develop the underlying science required for maturation of this technology and to establish early version engineering prototypes. Accomplishments to Date The authors have made significant progress in this program. The work conducted jointly at Los Alamos and at UCLA. This has been facilitated by exchange

  18. Surface Plasma Treatment of Polyimide Film for Cu Metallization

    NASA Astrophysics Data System (ADS)

    Cho, Sang-Jin; Choi, Jin-Woo; Bae, In-Seob; Nguyen, Trieu; Boo, Jin-Hyo

    2011-01-01

    Surface modification of polyimide films by oxygen/argon atmospheric pressure plasma (APP) was studied for copper metallization under several conditions, including plasma treatment time, gas ratio, and power of radio frequency (RF; 13.56 MHz) plasma. The effects of APP treatments on the surface properties of polyimide (PI) films were investigated in terms of Fourier-transform infrared (FT-IR) spectroscopy, atomic force microscopy (AFM), and contact angle measurements. The results showed that the root-mean-squared (RMS) roughness of untreated PI films was 1.48 nm, increasing to 2.08, 2.17, and 2.57 nm after plasma treatment at 200, 400, and 600 W, respectively. At the same time, the contact angle of untreated PI film was 73.0° and reduced to 25.9, 20.3, and 17.3° after plasma treatment at 200, 400, and 600 W, respectively. The lowest contact angle and the maximum RMS roughness were 13° and 8.50 nm, respectively. Those values were achieved by oxygen/argon APP at an RF plasma power of 600 W and with 50 repetitions. Also, X-ray diffraction (XRD) was used to examine the Cu surface structure in the Cu/PI system to indicate the quality of Cu foil. The highest I(111)/I(200) ratio was 1.89 at an RF power of 600 W by oxygen/argon APP treatment.

  19. Modification of polytetrafluoroethylene surfaces using H2S plasma treatment

    NASA Astrophysics Data System (ADS)

    Vesel, Alenka; Kovac, Janez; Zaplotnik, Rok; Modic, Martina; Mozetic, Miran

    2015-12-01

    A process for modifying the surface properties of polytetrafluoroethylene (PTFE) polymer using sulfur-containing gaseous plasma is presented in this paper. Samples of PTFE foils were treated in pure H2S gaseous plasma sustained by an electrode-less radio-frequency discharge in the E-mode. The samples were kept at a floating potential. X-ray photoelectron spectroscopy, secondary ion mass spectrometry and atomic force microscopy were used to determine the evolution of the surface functionalities and morphology. An extremely thin film of chemically bonded sulfur was formed on the surface after a few seconds of plasma treatment, whereas a treatment duration of more than a minute resulted in the deposition of pure sulfur. The deposited film remained as thin as a few nanometers, even after half an hour of treatment.

  20. Topographies of plasma-hardened surfaces of poly(dimethylsiloxane)

    SciTech Connect

    Goerrn, Patrick; Wagner, Sigurd

    2010-11-15

    We studied the formation of surface layers hardened by plasma-enhanced oxidation of the silicone elastomer poly(dimethylsiloxane). We explored the largest parameter space surveyed to date. The surface layers may wrinkle, crack, or both, under conditions that at times are controlled by design, but more often have been discovered by trial-and-error. We find four distinct topographies: flat/wrinkled/cracked/cracked and wrinkled. Each topography is clearly separated in the space of plasma dose versus plasma pressure. We analyzed wrinkle amplitude and wavelength by atomic force microscopy in the tapping mode. From these dimensions we calculated the elastic modulus and thickness of the hard surface layer, and inferred a graded hardness, by employing a modified theoretical model. Our main result is the identification of the parameters under which the technologically important pure wrinkled, crack-free topography is obtained.

  1. Surface erosion studies in a plasma-propellant interaction experiment

    SciTech Connect

    Bourham, M.A.; Gilligan, J.G.; Edwards, C.M.; Nahm, M.L.

    1994-12-31

    Efforts in plasma-chemical launchers are of growing interest for hypersonic mass acceleration technology. Energy transfer and mixing processes in plasma-propellant reactions are complex. The key to successful operation of electrothermal-chemical launchers (ETC) is to enhance and control the burn rate through plasma injection into the propellant. The injected plasma, as an external heat source, is usually produced from an electrothermal source ET plasma. Critical components of ETC launchers are subject to heat fluxes produced by the ET source and the additional heat generated during the combustion of the propellant. A plasma-propellant interaction experiment, PIPE, has been operated to explore the erosion behavior of candidate barrel materials under typical ETC combustion environment. The electrothermal plasma source injects a high density, low temperature plasma into a solid propellant that is followed by a material test stand. The burn rate of the propellant is calculated for each shot and the material erosion is evaluated via weight loss. The chamber pressure, discharge current and voltage, and temperature increase of the material are measured for each shot. Various coated material surfaces have been tested. Experiments were conducted on two samples of each coating, with and without propellant.

  2. Stability of plasma treated superhydrophobic surfaces under different ambient conditions.

    PubMed

    Chen, Faze; Liu, Jiyu; Cui, Yao; Huang, Shuai; Song, Jinlong; Sun, Jing; Xu, Wenji; Liu, Xin

    2016-05-15

    Plasma hydrophilizing of superhydrophobic substrates has become an important area of research, for example, superhydrophobic-(super)hydrophilic patterned surfaces have significant practical applications such as lab-on-chip systems, cell adhesion, and control of liquid transport. However, the stability of plasma-induced hydrophilicity is always considered as a key issue since the wettability tends to revert back to the untreated state (i.e. aging behavior). This paper focuses on the stability of plasma treated superhydrophobic surface under different ambient conditions (e.g. temperature and relative humidity). Water contact angle measurement and X-ray photoelectron spectroscopy are used to monitor the aging process. Results show that low temperature and low relative humidity are favorable to retard the aging process and that pre-storage at low temperature (-10°C) disables the treated surface to recover superhydrophobicity. When the aging is performed in water, a long-lasting hydropholicity is obtained. As the stability of plasma-induced hydrophilcity over a desired period of time is a very important issue, this work will contribute to the optimization of storage conditions of plasma treated superhydrophobic surfaces. PMID:26945118

  3. Properties of surface modes in one dimensional plasma photonic crystals

    SciTech Connect

    Shukla, S.; Prasad, S. Singh, V.

    2015-02-15

    Properties of surface modes supported at the interface of air and a semi-infinite one dimensional plasma photonic crystal are analyzed. The surface mode equation is obtained by using transfer matrix method and applying continuity conditions of electric fields and its derivatives at the interface. It is observed that with increase in the width of cap layer, frequencies of surface modes are shifted towards lower frequency side, whereas increase in tangential component of wave-vector increases the mode frequency and total energy carried by the surface modes. With increase in plasma frequency, surface modes are found to shift towards higher frequency side. The group velocity along interface is found to control by cap layer thickness.

  4. Plasma-driven tunable liquid adhesion of superoleophobic aluminum surfaces

    NASA Astrophysics Data System (ADS)

    Yang, Jin; Song, Haojie; Tang, Hua; Ji, Haiyan; Li, Changsheng

    2013-09-01

    With the aim of tuning adhesion with various liquids, we develop a convenient route to achieve sliding superoleophobicity and sticky superoleophobicity on the aluminum surfaces by surface fluorination and masked plasma treatment. Droplets of various liquids, such as oils, organic liquids, and water, can be tuned between rolling state and pinned state on the superoleophobic surfaces. The tunable adhesion of the superoleophobic surface is demonstrated by visible experimental results and measurements. The key to this effect is the combination of the oleophobic domains produced by masked plasma treatment as well as a permanently superoleophobic substrate and the hierarchical texture. Our results gave a useful attempt in understanding the fabrication principle of preparing superoleophobic surfaces with tunable liquid adhesion.

  5. Laser Surface Engineering of Magnesium Alloys: A Review

    NASA Astrophysics Data System (ADS)

    Singh, Ashish; Harimkar, Sandip P.

    2012-06-01

    Magnesium (Mg) and its alloys are well known for their high specific strength and low density. However, widespread applications of Mg alloys in structural components are impeded by their insufficient wear and corrosion resistance. Various surface engineering approaches, including electrochemical processes (plating, conversion coatings, hydriding, and anodizing), gas-phase deposition (thermal spray, chemical vapor deposition, physical vapor deposition, diamond-like coatings, diffusion coatings, and ion implantation), and organic polymer coatings (painting and powder coating), have been used to improve the surface properties of Mg and its alloys. Recently, laser surface engineering approaches are attracting significant attention because of the wide range of possibilities in achieving the desired microstructural and compositional modifications through a range of laser-material interactions (surface melting, shock peening, and ablation). This article presents a review of various laser surface engineering approaches such as laser surface melting, laser surface alloying, laser surface cladding, laser composite surfacing, and laser shock peening used for surface modification of Mg alloys. The laser-material interactions, microstructural/compositional changes, and properties development (mostly corrosion and wear resistance) accompanied with each of these approaches are reviewed.

  6. Tribology of engineered surfaces in aggressive environments

    NASA Astrophysics Data System (ADS)

    Mitchell, Nathan Phillip

    To improve the performance of sliding systems, surface modifications and coatings are often applied to opposing surfaces. This thesis focuses on characterizing two tribo-systems (DLC-DLC and steel micropatterns-flat) under their predicted application environments. The first section is focused on friction testing of micropatterned surfaces for orthopaedic device design, the second section elucidates how the sliding of diamond-like-carbon (DLC) coatings changes with temperature and humidity. The experimental design and major results of these sections are as follows. (1) The use of micropatterning to create uniform surface morphologies has been cited as yielding improvements in the coefficient of friction during high velocity sliding contact. Studies have not been preformed to determine if these micropatterns could also be useful in biomedical applications, such as total joint replacement surfaces, where the lower sliding velocities are used. In this study, the effect of pattern geometry, feature size and lubricant on contact friction and surface damage was investigated using 316L steel in sliding contact with a stainless steel and polyethylene pins. Using a novel proprietary forming process that creates millions of microstructures in parallel, a variety of micropatterned surfaces were fabricated to study the influence of shape (oval, circular, square), geometry (depressions, pillars) and feature size (10, 50 and 100 um) on both contact friction and surface damage. The coefficients of friction were measured for each surface/lubricant/pin system using a CETR scratch testing system. Results showed that round depressions with diameters of 10 μm had a significantly lower steady state coefficient of friction than the non-patterned substrates or substrates with greater diameter depression patterns. (2) The use of diamond-like carbon (DLC) has been cited as a friction and wear reducing coating during sliding contact and is widely used in the hard disk drive (HDD) industry

  7. Plasma Surface Chemical Treatment of Electrospun Poly(l-Lactide) Microfibrous Scaffolds for Enhanced Cell Adhesion, Growth, and Infiltration

    PubMed Central

    Cheng, Qian; Lee, Benjamin Li-Ping; Yan, Zhiqiang; Li, Song

    2013-01-01

    Poly(l-lactide) (PLLA) microfibrous scaffolds produced by electrospinning were treated with mild Ar or Ar-NH3/H2 plasmas to enhance cell attachment, growth, and infiltration. Goniometry, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) measurements were used to evaluate the modification of the scaffold surface chemistry by plasma treatment. AFM and XPS measurements showed that both plasma treatments increased the hydrophilicity without affecting the integrity of the fibrous structure and the fiber roughness, whereas Ar-NH3/H2 plasma treatment also resulted in surface functionalization with amine groups. Culture studies of bovine aorta endothelial cells and bovine smooth muscle cells on the plasma-treated PLLA scaffolds revealed that both Ar and Ar-NH3/H2 plasma treatments promoted cell spreading during the initial stage of cell attachment and, more importantly, increased the cell growth rate, especially for Ar plasma treatment. In vitro cell infiltration studies showed that both plasma treatments effectively enhanced cell migration into the microfibrous scaffolds. In vivo experiments involving the subcutaneous implantation of plasma-treated PLLA scaffolds under the skin of Sprague-Dawley rats also showed increased cell infiltration. The results of this study indicate that surface treatment of PLLA microfibrous scaffolds with mild Ar or Ar-NH3/H2 plasmas may have important implications in tissue engineering. Further modifications with bioactive factors should improve the functions of the scaffolds for specific applications. PMID:23281641

  8. Effect of plasma surface modification on the biocompatibility of UHMWPE.

    PubMed

    Kaklamani, G; Mehrban, N; Chen, J; Bowen, J; Dong, H; Grover, L; Stamboulis, A

    2010-10-01

    In this paper active screen plasma nitriding (ASPN) is used to chemically modify the surface of UHMWPE. This is an unexplored and new area of research. ASPN allows the homogeneous treatment of any shape or surface at low temperature; therefore, it was thought that ASPN would be an effective technique to modify organic polymer surfaces. ASPN experiments were carried out at 120 °C using a dc plasma nitriding unit with a 25% N(2) and 75% H(2) atmosphere at 2.5 mbar of pressure. UHMWPE samples treated for different time periods were characterized by nanoindentation, FTIR, XPS, interferometry and SEM. A 3T3 fibroblast cell line was used for in vitro cell culture experiments. Nanoindentation of UHMWPE showed that hardness and elastic modulus increased with ASPN treatment compared to the untreated material. FTIR spectra did not show significant differences between the untreated and treated samples; however, some changes were observed at 30 min of treatment in the range of 1500-1700 cm(-1) associated mainly with the presence of N-H groups. XPS studies showed that nitrogen was present on the surface and its amount increased with treatment time. Interferometry showed that no significant changes were observed on the surfaces after the treatment. Finally, cell culture experiments and SEM showed that fibroblasts attached and proliferated to a greater extent on the plasma-treated surfaces leading to the conclusion that ASPN surface treatment can potentially significantly improve the biocompatibility behaviour of polymeric materials. PMID:20876959

  9. Influence of plasma surface interactions on tokamak startup

    SciTech Connect

    Goswami, Rajiv

    2013-08-15

    The startup phase of a tokamak is a complex phenomenon involving burnthrough of the low-Z impurities and rampup of I{sub p}, the plasma current. The design considerations of a tokamak are closely connected with the startup modeling. Plasma evolution is analysed using a zero-dimensional model. The particle and energy balance is considered of two subclasses of plasmas which are penetrable by neutral gas, together with another component, neutrals trapped in the wall. The first subclass includes plasmas being penetrated by slow neutrals of (∼few eV) temperature. The second includes plasmas being penetrated only by fast neutrals having a temperature comparable to that of the ions. The impact of impurities on energy balance is considered through their generation by ion induced desorption of adsorbed oxygen on the first wall and physical and chemical sputtering of carbon. The paper demonstrates self-consistently that the evolution of initial phase of the discharge is intimately linked to the condition of the plasma facing components (PFCs) and the resultant plasma surface interactions.

  10. Surface Modification of Block Copolymer Through Sulfur Containing Plasma Treatment.

    PubMed

    Choi, Sang Wook; Shin, Jae Hee; Jeon, Min Hwan; Mun, Jeong Ho; Kim, Sang Ouk; Yeom, Geun Young; Kim, Kyong Nam

    2015-10-01

    Some of the important issues of block copolymer (BCP) as an application to the potential low cost next generation lithography are thermal stability and deformation during pattern transfer process in addition to defect density, line edge/width roughness, etc. In this study, sulfur containing plasma treatment was used to modify the BCP and the effects of the plasma on the properties of plasma treated BCP were investigated. The polystyrene hole pattern obtained from polystyrene polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) was initially degraded when the polystyrene hole was annealed at 190 °C for 15 min. However, when the hole pattern was treated using sulfur containing plasmas using H2S or SF6 up to 2 min, possibly due to the sulfurization of the polystyrene hole surface, no change in the hole pattern was observed after the annealing even though there is a slight change in hole shapes during the plasma treatment. The optimized plasma treated polystyrene pattern showed the superior characteristics as the mask layer by showing better thermal stability, higher chemical inertness, and higher etch selectivity during plasma etching. PMID:26726468

  11. Monitoring plasma treatment of thin films by surface plasmon resonance

    SciTech Connect

    Laha, Ranjit; Manivannan, A.; Kasiviswanathan, S.

    2014-03-15

    We report the surface plasmon resonance (SPR) measurements during plasma treatment of thin films by an indigenously designed setup. From the measurements on Al (6.3 nm)/Ag (38 nm) bi-layer at a pressure of 0.02 mbar, the SPR position was found to be shifted by ∼20° after a plasma treatment of ∼7 h. The formation of oxide layers during plasma oxidation was confirmed by glancing angle x-ray diffraction (GXRD) measurements. Combined analysis of GXRD and SPR data confirmed that while top Al layer enables controlling plasma oxidation of Ag, the setup enables monitoring the same. The setup designed is a first of its kind for in situ SPR studies where creation of low pressure is a prerequisite.

  12. A complex plasma device of large surface area

    SciTech Connect

    Nakamura, Y.; Ishihara, O.

    2008-03-15

    A novel complex plasma device (YCOPEX) to create two-dimensional monolayer plasma crystals of a large surface area of 15x90 cm{sup 2} is described. The YCOPEX, in which a plasma is produced by a rf discharge of argon gas, is designed to utilize gravitational force to study fundamental physics of complex plasmas. The device may be used for observation of spatial change of a phase state, propagation of waves, and collisions of flowing dust particles with an obstacle. As an example of experiments, neutral drag forces on microspheres are measured using the gravitational force on those particles. The obtained neutral drag force agrees reasonably with the values estimated from Epstein's formula.

  13. Confinement of Non-neutral Plasmas in Stellarator Magnetic Surfaces

    NASA Astrophysics Data System (ADS)

    Brenner, Paul

    2011-12-01

    The Columbia Non-neutral Torus (CNT) is the first experiment designed to create and study small Debye length non-neutral plasmas confined by magnetic surfaces. This thesis describes experimental confinement studies of non-neutral plasmas on magnetic surfaces in CNT. Open orbits exist in CNT resulting in electron loss rates that are much faster than initially predicted. For this reason a conforming boundary was designed and installed to address what is believed to be the primary cause of open orbits: the existence of a sizable mismatch between the electrostatic potential surfaces and the magnetic surfaces. After installation a record confinement time of 337 ms was measured, more than an order of magnitude improvement over the previous 20 ms record. This improvement was a combination of the predicted improvement in orbit quality, a reduced Debye length that resulted in decreased transport due to the perturbing insulated rods, and improved operating parameters not indicative of any new physics. The perturbation caused by the insulated rods that hold emitters on axis in CNT is a source of electron transport and would provide a loss mechanism for positrons in future positron-electron plasma experiments. For these reasons an emitter capable of creating plasmas then being removed faster than the confinement time was built and installed. Measurements of plasma decay after emitter retraction indicate that ion accumulation reduces the length of time that plasmas are confined. Plasmas have been measured after retraction with decay times as long as 92 ms after the emitter has left the last closed flux surface. Experimental observations show that obstructing one side of an emitting filament with a nearby insulator substantially improves confinement. As a result, experiments have been performed to determine whether a two stream instability affects confinement in CNT. Results indicate that the improvement is not caused by reducing a two stream instability. Instead, the

  14. Surface cleaning for enhanced adhesion to packaging surfaces: Effect of oxygen and ammonia plasma

    SciTech Connect

    Gaddam, Sneha; Dong, Bin; Driver, Marcus; Kelber, Jeffry; Kazi, Haseeb

    2015-03-15

    The effects of direct plasma chemistries on carbon removal from silicon nitride (SiN{sub x}) and oxynitride (SiO{sub x}N{sub y}) surfaces have been studied by in-situ x-ray photoelectron spectroscopy (XPS) and ex-situ contact angle measurements. The data indicate that O{sub 2} and NH{sub 3} capacitively coupled plasmas are effective at removing adventitious carbon from silicon nitride (SiN{sub x}) and Si oxynitride (SiO{sub x}N{sub y}) surfaces. O{sub 2} plasma treatment results in the formation of a silica overlayer. In contrast, the exposure to NH{sub 3} plasma results in negligible additional oxidation of the SiN{sub x} or SiO{sub x}N{sub y} surface. Ex-situ contact angle measurements show that SiN{sub x} and SiO{sub x}N{sub y} surfaces exposed to oxygen plasma are initially more hydrophilic than surfaces exposed to NH{sub 3} plasma, indicating that the O{sub 2} plasma-induced SiO{sub 2} overlayer is highly reactive toward ambient. At longer ambient exposures (≳10 h), however, surfaces treated by either O{sub 2} or NH{sub 3} plasma exhibit similar steady state contact angles, correlated with rapid uptake of adventitious carbon, as determined by XPS. Surface passivation by exposure to molecular hydrogen prior to ambient exposure significantly retards the increase in contact angle upon exposure to ambient. The results suggest a practical route to enhancing the time available for effective bonding to surfaces in microelectronics packaging applications.

  15. Plasma generation for controlled microwave-reflecting surfaces in plasma antennas

    SciTech Connect

    Bliokh, Yury P.; Felsteiner, Joshua; Slutsker, Yakov Z.

    2014-04-28

    The idea of replacing metal antenna elements with equivalent plasma objects has long been of interest because of the possibility of switching the antenna on and off. In general, two kinds of designs have so far been reported: (a) Separate plasma “wires” which are thin glass tubes filled with gas, where plasma appears due to discharge inside. (b) Reflecting surfaces, consisting of tightly held plasma wires or specially designed large discharge devices with magnetic confinement. The main disadvantages of these antennas are either large weight and size or too irregular surfaces for proper reflection. To design a microwave plasma antenna in the most common radar wavelength range of 1–3 cm with a typical gain of 30 dB, a smooth plasma mirror having a 10–30 cm diameter and a proper curvature is required. The plasma density must be 10{sup 12}–10{sup 14} cm{sup −3} in order to exceed the critical density for the frequency of the electromagnetic wave. To achieve this we have used a ferromagnetic inductively coupled plasma (FICP) source, where a thin magnetic core of a large diameter is fully immersed in the plasma. In the present paper, we show a way to adapt the FICP source for creating a flat switchable microwave plasma mirror with an effective diameter of 30 cm. This mirror was tested as a microwave reflector and there was found no significant difference when compared with a copper plate having the same diameter.

  16. Surface Modifications of Polyester Films by Ammonia Plasma

    NASA Astrophysics Data System (ADS)

    Narushima, Kazuo; Yamashita, Nanami; Fukuoka, Megumi; Inagaki, Norihiro; Isono, Yoshihiro; Islam, Mohammed Rafiqul

    2007-07-01

    Effects of treatment using ammonia plasma on poly(lactic acid) (PLA), poly(ethylene terephthalate) (PET), and liquid-crystal polymer (LCP) were investigated to elucidate differences related to polymer structures and the mode of introduction of nitrogen functional groups onto the polyester surfaces. Nitrogen functional groups were introduced into PET and LCP, but were not introduced into PLA. Those results indicate reductions in the contact angle for PET and LCP. No decrease in the contact angle was observed for PLA. Reasons for differences in attachment of nitrogen functional groups by ammonia plasma processing on polyester surfaces were discussed. The respective actions of active species were investigated for radicals, electrons, and ions in plasma.

  17. Influence of plasma treatment time on plasma induced vapor phase grafting modification of PBO fiber surface

    NASA Astrophysics Data System (ADS)

    Song, B.; Meng, L. H.; Huang, Y. D.

    2012-05-01

    The surface of poly-p-phenylene benzobisthiazole (PBO) fibers was treated through oxygen plasma induced vapor phase grafting (PIVPG) method under various oxygen plasma pre-treatment time conditions. The surface chemical composition, surface morphologies and surface free energy of pristine and treated PBO fibers were studied using X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, and Cahn DCAA system. The mechanics property of these fibers was evaluated by tensile strength and interfacial shear strength (IFSS). It was found that the surface characteristics of treated PBO fibers occurred significant change compare with the pristine PBO fibers. After treatment, the polar functional groups were introduced on the fiber surface. Carbon concentration decreased; oxygen concentration and elemental ratio of oxygen to carbon increased. Acrylic acid can react with the activated PBO fibers surface, which led to the fiber surface roughness increased. The surface free energy increased from 41.4 mN/m to 62.8 mN/m when PBO fibers were plasma pre-treated for 10 min, while the IFSS of PBO fibers with epoxy resin increased from 36.6 MPa to 55.8 MPa. Therefore, PIVPG can be used to enhance the interfacial bond between PBO fibers and epoxy resin.

  18. Surface plasmon oscillations on a quantum plasma half-space

    SciTech Connect

    Moradi, Afshin

    2015-01-15

    We investigate the propagation of surface electrostatic oscillations on a quantum plasma half-space, taking into account the quantum effects. We derive the quantum surface wave frequencies of the system, by means the quantum hydrodynamic theory in conjunction with the Poisson equation and applying the appropriate additional quantum boundary conditions. Numerical results show in the presence of the slow nonlocal variations, plasmon wave energies of the system are significantly modified and plasmonic oscillations with blue-shifted frequencies emerge.

  19. Surface Modification by Atmospheric Pressure Plasma for Improved Bonding

    NASA Astrophysics Data System (ADS)

    Williams, Thomas Scott

    An atmospheric pressure plasma source operating at temperatures below 150?C and fed with 1.0-3.0 volume% oxygen in helium was used to activate the surfaces of the native oxide on silicon, carbon-fiber reinforced epoxy composite, stainless steel type 410, and aluminum alloy 2024. Helium and oxygen were passed through the plasma source, whereby ionization occurred and ˜10 16 cm-3 oxygen atoms, ˜1015 cm -3 ozone molecules and ˜1016 cm-3 metastable oxygen molecules (O21Deltag) were generated. The plasma afterglow was directed onto the substrate material located 4 mm downstream. Surface properties of the plasma treated materials have been investigated using water contact angle (WCA), atomic force microscopy (AFM), infrared spectroscopy (IR), and x-ray photoelectron spectroscopy (XPS). The work presented herein establishes atmospheric-pressure plasma as a surface preparation technique that is well suited for surface activation and enhanced adhesive bond strength in a variety of materials. Atmospheric plasma activation presents an environmentally friendly alternative to wet chemical and abrasive methods of surface preparation. Attenuated total internal reflection infrared spectroscopy was used to study the aging mechanism of the native oxide on silicon. During storage at ambient conditions, the water contact angle of a clean surface increased from <5° to 40° over a period of 12 hours. When stored under a nitrogen purge, the water contact angle of a clean surface increased from <5° to 30° over a period of 40-60 hours. The change in contact angle resulted from the adsorption of nonanal onto the exposed surface hydroxyl groups. The rate of adsorption of nonanal under a nitrogen purged atmosphere ranged from 0.378+/-0.011 hr-1 to 0.182+/-0.008 hr -1 molecules/(cm2•s), decreasing as the fraction of hydrogen-bonded hydroxyl groups increased from 49% to 96% on the SiO 2 surface. The adsorption of the organic contaminant could be suppressed indefinitely by storing the

  20. Compact surface plasma H- ion source with geometrical focusing

    NASA Astrophysics Data System (ADS)

    Dudnikov, V.; Dudnikova, G.

    2016-02-01

    Factors limiting operating lifetime of a Compact Surface Plasma Sources (CSPS) are analyzed and possible treatments for lifetime enhancement are considered. Increased cooling permeate increased discharge power and increased beam intensity and duty factor. A design of an advanced CSPS with geometrical focusing of H- flux is presented.

  1. Atmospheric oxygen plasma activation of silicon (100) surfaces

    SciTech Connect

    Habib, Sara B.; Gonzalez, Eleazar II; Hicks, Robert F.

    2010-05-15

    Silicon (100) surfaces were converted to a hydrophilic state with a water contact angle of <5 deg. by treatment with a radio frequency, atmospheric pressure helium, and oxygen plasma. A 2 in. wide plasma beam, operating at 250 W, 1.0 l/min O{sub 2}, 30 l/min He, and a source-to-sample distance of 3{+-}0.1 mm, was scanned over the sample at 100{+-}2 mm/s. Plasma oxidation of HF-etched silicon caused the dispersive component of the surface energy to decrease from 55.1 to 25.8 dyn/cm, whereas the polar component of the surface energy increased from 0.3 to 42.1 dyn/cm. X-ray photoelectron spectroscopy revealed that the treatment generated a monolayer of covalently bonded oxygen on the Si(100) surface 0.15{+-}0.10 nm thick. The surface oxidation kinetics have been measured by monitoring the change in water contact angle with treatment time, and are consistent with a process that is limited by the mass transfer of ground-state oxygen atoms to the silicon surface.

  2. Surface Structure and Surface Electronic States Related to Plasma Cleaning of Silicon and Germanium

    NASA Astrophysics Data System (ADS)

    Cho, Jaewon

    This thesis discusses the surface structure and the surface electronic states of Si and Ge(100) surfaces as well as the effects of oxidation process on the silicon oxide/Si(100) interface structure. The H-plasma exposure was performed in situ at low temperatures. The active species, produced in the H-plasma by the rf-excitation of H_2 gas, not only remove microcontaminants such as oxygen and carbon from the surface, but also passivate the surface with atomic hydrogen by satisfying the dangling bonds of the surface atoms. The surfaces were characterized by Angle Resolved UV-Photoemission Spectroscopy (ARUPS) and Low Energy Electron Diffraction (LEED). In the case of Si(100), H-plasma exposure produced ordered H-terminated crystallographic structures with either a 2 x 1 or 1 x 1 LEED pattern. The hydride phases, found on the surfaces of the cleaned Si(100), were shown to depend on the temperature of the surface during H-plasma cleaning. The electronic states for the monohydride and dihydride phases were identified by ARUPS. When the plasma cleaned surface was annealed, the phase transition from the dihydride to monohydride was observed. The monohydride Si-H surface bond was stable up to 460^circC, and the dangling bond surface states were identified after annealing at 500^circC which was accompanied by the spectral shift. The H-terminated surface were characterized to have a flat band structure. For the Ge(100) surface, an ordered 2 x 1 monohydride phase was obtained from the surface cleaned at 180 ^circC. After plasma exposure at <=170^circC a 1 x 1 surface was observed, but the ARUPS indicated that the surface was predominantly composed of disordered monohydride structures. After annealing above the H-dissociation temperatures, the shift in the spectrum was shown to occur with the dangling bond surface states. The H-terminated surfaces were identified to be unpinned. The interface structure of silicon oxide/Si(100) was studied using ARUPS. Spectral shifts were

  3. Materials and surface modification for tissue engineered vascular scaffolds.

    PubMed

    Li, Zhong-Kui; Wu, Zhong-Shi; Lu, Ting; Yuan, Hao-Yong; Tang, Hao; Tang, Zhen-Jie; Tan, Ling; Wang, Bin; Yan, Si-Ming

    2016-10-01

    Although vascular implantation has been used as an effective treatment for cardiovascular disease for many years, off-the-shelf and regenerable vascular scaffolds are still not available. Tissue engineers have tested various materials and methods of surface modification in the attempt to develop a scaffold that is more suitable for implantation. Extracellular matrix-based natural materials and biodegradable polymers, which are the focus of this review, are considered to be suitable materials for production of tissue-engineered vascular grafts. Various methods of surface modification that have been developed will also be introduced, their impacts will be summarized and assessed, and challenges for further research will briefly be discussed. PMID:27484610

  4. Surface-engineering of lentiviral vectors.

    PubMed

    Verhoeyen, Els; Cosset, François-Loïc

    2004-02-01

    Vectors derived from retroviridae offer particularly flexible properties in gene transfer applications given the numerous possible associations of various viral surface glycoproteins (determining cell tropism) with different types of retroviral cores (determining genome replication and integration). Lentiviral vectors should be preferred gene delivery vehicles over vectors derived from onco-retroviruses such as murine leukemia viruses (MLVs) that cannot transduce non-proliferating target cells. Generating lentiviral vectors pseudotyped with different viral glycoproteins (GPs) may modulate the physicochemical properties of the vectors, their interaction with the host immune system and their host range. There are however important gene transfer restrictions to some non-proliferative tissues or cell types and recent studies have shown that progenitor hematopoietic stem cells in G(0), non-activated primary blood lymphocytes or monocytes were not transducible by lentiviral vectors. Moreover, lentiviral vectors that have the capacity to deliver transgenes into specific tissues are expected to be of great value for various gene transfer applications in vivo. Several innovative approaches have been explored to overcome such problems that have given rise to novel concepts in the field and have provided promising results in preliminary evaluations in vivo. Here we review the different approaches explored to upgrade lentiviral vectors, aiming at developing vectors suitable for in vivo gene delivery. PMID:14978753

  5. Controlled Tethering Molecules via Crystal Surface Engineering

    NASA Astrophysics Data System (ADS)

    Cheng, Stephen Z. D.; Zheng, Joseph X.; Chen, William Y.

    2004-03-01

    So far, almost all experiments in tethering chain molecules onto substrates are via "grafting to" or "grafting from" polymerizations in addition to physical absorption. Issues concerning the uniformity of the tethered chain density and the molecular weight distribution of the chains tethered by polymerization always undermine the properties experimentally observed. We proposed a novel design to precisely control the tethering density of polystyrene (PS) brushes on a poly(ethylene oxide) (PEO) or a poly(L-lactic acid) (PLLA) lamellar crystal basal surface using PEO-b-PS or PLLA-b-PS diblock copolymers. As the crystallization temperature (Tc) increased in either a PEO-b-PS/mixed solution (chrolobenzene/octane) or a PLLA-b-PS/amyl acetate solution, the PEO or PLLA lamellar thickness (d) increased, and correspondingly, the number of folds per PEO or PLLA block was reduced. The reduced tethered density (Σ*) of the PS brushes thus increased. At an onset where the PS brushes are overcrowded within the solution, a drastic slope change in the relationship between (d)-1 and Tc occurs in both cases at a Σ* between 3 - 4. This illustrates that the weak to intermediate interaction changes of the PS brushes with their neighbors may be universally represented.

  6. Supersonic metal plasma impact on a surface: An optical investigation of the pre-surface region

    SciTech Connect

    Fusion Science Group, AFRD; Plasma Applications Group, AFRD; Ni, Pavel A.; Anders, Andre

    2009-12-15

    Aluminum plasma, produced in high vacuum by a pulsed, filtered cathodic arc plasma source, was directed onto a wall where if formed a coating. The accompanying ?optical flare? known from the literature was visually observed, photographed, and spectroscopically investigated with appropriately high temporal (1 ?s) and spatial (100 ?m) resolution. Consistent with other observations using different techniques, it was found that the impact of the fully ionized plasma produces metal neutrals as well as desorbed gases, both of which interact with the incoming plasma. Most effectively are charge exchange collisions between doubly charged aluminum and neutral aluminum, which lead to a reduction of the flow of doubly charged before they reach the wall, and a reduction of neutrals as the move away from the surface. Those plasma-wall interactions are relevant for coating processes as well as for interpreting the plasma properties such as ion charge state distributions.

  7. Engineered Surfaces for Mitigation of Insect Residue Adhesion

    NASA Technical Reports Server (NTRS)

    Siochi, Emilie J.; Smith, Joseph G.; Wohl, Christopher J.; Gardner, J. M.; Penner, Ronald K.; Connell, John W.

    2013-01-01

    Maintenance of laminar flow under operational flight conditions is being investigated under NASA s Environmentally Responsible Aviation (ERA) Program. Among the challenges with natural laminar flow is the accretion of residues from insect impacts incurred during takeoff or landing. Depending on air speed, temperature, and wing structure, the critical residue height for laminar flow disruption can be as low as 4 microns near the leading edge. In this study, engineered surfaces designed to minimize insect residue adhesion were examined. The coatings studied included chemical compositions containing functional groups typically associated with abhesive (non-stick) surfaces. To reduce surface contact by liquids and enhance abhesion, the engineered surfaces consisted of these coatings doped with particulate additives to generate random surface topography, as well as coatings applied to laser ablated surfaces having precision patterned topographies. Performance evaluation of these surfaces included contact angle goniometry of pristine coatings and profilometry of surfaces after insect impacts were incurred in laboratory scale tests, wind tunnel tests and flight tests. The results illustrate the complexity of designing antifouling surfaces for effective insect contamination mitigation under dynamic conditions and suggest that superhydrophobic surfaces may not be the most effective solution for preventing insect contamination on aircraft wing leading edges.

  8. Particle engineering in pharmaceutical solids processing: surface energy considerations.

    PubMed

    Williams, Daryl R

    2015-01-01

    During the past 10 years particle engineering in the pharmaceutical industry has become a topic of increasing importance. Engineers and pharmacists need to understand and control a range of key unit manufacturing operations such as milling, granulation, crystallisation, powder mixing and dry powder inhaled drugs which can be very challenging. It has now become very clear that in many of these particle processing operations, the surface energy of the starting, intermediate or final products is a key factor in understanding the processing operation and or the final product performance. This review will consider the surface energy and surface energy heterogeneity of crystalline solids, methods for the measurement of surface energy, effects of milling on powder surface energy, adhesion and cohesion on powder mixtures, crystal habits and surface energy, surface energy and powder granulation processes, performance of DPI systems and finally crystallisation conditions and surface energy. This review will conclude that the importance of surface energy as a significant factor in understanding the performance of many particulate pharmaceutical products and processes has now been clearly established. It is still nevertheless, work in progress both in terms of development of methods and establishing the limits for when surface energy is the key variable of relevance. PMID:25876912

  9. Helium atmospheric pressure plasma jets touching dielectric and metal surfaces

    SciTech Connect

    Norberg, Seth A. Johnsen, Eric; Kushner, Mark J.

    2015-07-07

    Atmospheric pressure plasma jets (APPJs) are being investigated in the context plasma medicine and biotechnology applications, and surface functionalization. The composition of the surface being treated ranges from plastics, liquids, and biological tissue, to metals. The dielectric constant of these materials ranges from as low as 1.5 for plastics to near 80 for liquids, and essentially infinite for metals. The electrical properties of the surface are not independent variables as the permittivity of the material being treated has an effect on the dynamics of the incident APPJ. In this paper, results are discussed from a computational investigation of the interaction of an APPJ incident onto materials of varying permittivity, and their impact on the discharge dynamics of the plasma jet. The computer model used in this investigation solves Poisson's equation, transport equations for charged and neutral species, the electron energy equation, and the Navier-Stokes equations for the neutral gas flow. The APPJ is sustained in He/O{sub 2} = 99.8/0.2 flowing into humid air, and is directed onto dielectric surfaces in contact with ground with dielectric constants ranging from 2 to 80, and a grounded metal surface. Low values of relative permittivity encourage propagation of the electric field into the treated material and formation and propagation of a surface ionization wave. High values of relative permittivity promote the restrike of the ionization wave and the formation of a conduction channel between the plasma discharge and the treated surface. The distribution of space charge surrounding the APPJ is discussed.

  10. Contributions of gas-phase plasma chemistry to surface modifications and gas-surface interactions: investigations of fluorocarbon rf plasmas

    NASA Astrophysics Data System (ADS)

    Cuddy, Michael F., II

    The fundamental aspects of inductively coupled fluorocarbon (FC) plasma chemistry were examined, with special emphasis on the contributions of gas-phase species to surface modifications. Characterization of the gas-phase constituents of single-source CF4-, C2F6-, C3F 8-, and C3F6-based plasmas was performed using spectroscopic and mass spectrometric techniques. The effects of varying plasma parameters, including applied rf power (P) and system pressure (p) were examined. Optical emission spectroscopy (OES) and laser-induced fluorescence (LIF) spectroscopy were employed to monitor the behavior of excited and ground CFx (x = 1,2) radicals, respectively. Mass spectrometric techniques, including ion energy analyses, elucidated behaviors of nascent ions in the FC plasmas. These gas-phase data were correlated with the net effect of substrate processing for Si and ZrO2 surfaces. Surface-specific analyses were performed for post-processed substrates via x-ray photoelectron spectroscopy (XPS) and contact angle goniometry. Generally, precursors with lower F/C ratios tended to deposit robust FC films of high surface energy. Precursors of higher F/C ratio, such as CF4, were associated with etching or removal of material from surfaces. Nonetheless, a net balance between deposition of FC moieties and etching of material exists for each plasma system. The imaging of radicals interacting with surfaces (IRIS) technique provided insight into the phenomena occurring at the interface of the plasma gas-phase and substrate of interest. IRIS results demonstrate that CFx radicals scatter copiously, with surface scatter coefficients, S, generally greater than unity under most experimental conditions. Such considerable S values imply surface-mediated production of the CFx radicals at FC-passivated sites. It is inferred that the primary route to surface production of CFx arises from energetic ion bombardment and ablation of surface FC films. Other factors which may influence the observed CFx

  11. Modeling RF-induced Plasma-Surface Interactions with VSim

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Smithe, David N.; Pankin, Alexei Y.; Roark, Christine M.; Stoltz, Peter H.; Zhou, Sean C.-D.; Kruger, Scott E.

    2014-10-01

    An overview of ongoing enhancements to the Plasma Discharge (PD) module of Tech-X's VSim software tool is presented. A sub-grid kinetic sheath model, developed for the accurate computation of sheath potentials near metal and dielectric-coated walls, enables the physical effects of DC and RF sheath dynamics to be included in macroscopic-scale plasma simulations that need not explicitly resolve sheath scale lengths. Sheath potential evolution, together with particle behavior near the sheath (e.g. sputtering), can thus be simulated in complex, experimentally relevant geometries. Simulations of RF sheath-enhanced impurity production near surfaces of the C-Mod field-aligned ICRF antenna are presented to illustrate the model; impurity mitigation techniques are also explored. Model extensions to capture the physics of secondary electron emission and of multispecies plasmas are summarized, together with a discussion of improved tools for plasma chemistry and IEDF/EEDF visualization and modeling. The latter tools are also highly relevant for commercial plasma processing applications. Ultimately, we aim to establish VSimPD as a robust, efficient computational tool for modeling fusion and industrial plasma processes. Supported by U.S. DoE SBIR Phase I/II Award DE-SC0009501.

  12. Surface Modification by Atmospheric Pressure Plasma for Improved Bonding

    NASA Astrophysics Data System (ADS)

    Williams, Thomas Scott

    An atmospheric pressure plasma source operating at temperatures below 150?C and fed with 1.0-3.0 volume% oxygen in helium was used to activate the surfaces of the native oxide on silicon, carbon-fiber reinforced epoxy composite, stainless steel type 410, and aluminum alloy 2024. Helium and oxygen were passed through the plasma source, whereby ionization occurred and ˜10 16 cm-3 oxygen atoms, ˜1015 cm -3 ozone molecules and ˜1016 cm-3 metastable oxygen molecules (O21Deltag) were generated. The plasma afterglow was directed onto the substrate material located 4 mm downstream. Surface properties of the plasma treated materials have been investigated using water contact angle (WCA), atomic force microscopy (AFM), infrared spectroscopy (IR), and x-ray photoelectron spectroscopy (XPS). The work presented herein establishes atmospheric-pressure plasma as a surface preparation technique that is well suited for surface activation and enhanced adhesive bond strength in a variety of materials. Atmospheric plasma activation presents an environmentally friendly alternative to wet chemical and abrasive methods of surface preparation. Attenuated total internal reflection infrared spectroscopy was used to study the aging mechanism of the native oxide on silicon. During storage at ambient conditions, the water contact angle of a clean surface increased from <5° to 40° over a period of 12 hours. When stored under a nitrogen purge, the water contact angle of a clean surface increased from <5° to 30° over a period of 40-60 hours. The change in contact angle resulted from the adsorption of nonanal onto the exposed surface hydroxyl groups. The rate of adsorption of nonanal under a nitrogen purged atmosphere ranged from 0.378+/-0.011 hr-1 to 0.182+/-0.008 hr -1 molecules/(cm2•s), decreasing as the fraction of hydrogen-bonded hydroxyl groups increased from 49% to 96% on the SiO 2 surface. The adsorption of the organic contaminant could be suppressed indefinitely by storing the

  13. Manipulating superconductivity in ruthenates through Fermi surface engineering

    NASA Astrophysics Data System (ADS)

    Hsu, Yi-Ting; Cho, Weejee; Rebola, Alejandro Federico; Burganov, Bulat; Adamo, Carolina; Shen, Kyle M.; Schlom, Darrell G.; Fennie, Craig J.; Kim, Eun-Ah

    2016-07-01

    The key challenge in superconductivity research is to go beyond the historical mode of discovery-driven research. We put forth a new strategy, which is to combine theoretical developments in the weak-coupling renormalization-group approach with the experimental developments in lattice-strain-driven Fermi surface engineering. For concreteness we theoretically investigate how superconducting tendencies will be affected by strain engineering of ruthenates' Fermi surface. We first demonstrate that our approach qualitatively reproduces recent experiments under uniaxial strain. We then note that the order of a few percent strain, readily accessible to epitaxial thin films, can bring the Fermi surface close to van Hove singularity. Using the experimental observation of the change in the Fermi surface under biaxial epitaxial strain and ab initio calculations, we predict Tc for triplet pairing to be maximized by getting close to the van Hove singularities without tuning on to the singularity.

  14. Nano-Engineering Biocompatibility of Implant Surfaces for Enhanced Biointegration

    NASA Astrophysics Data System (ADS)

    Sabirianov, Renat; Rubinstein, Alexander; Namavar, Fereydoon

    2010-03-01

    This paper is part of continuing efforts to explain and determine the molecular mechanisms of enhanced cell adhesion and growth that we observed for our engineered nanocrystalline coatings. We performed the first-principles quantum-mechanical calculations of the nanocrystallite of the nanostructured ZrO2. We show that contrary to the smooth surface, the calculated charge density and the electrostatic potential vary rather significantly on the topological features of nanostructured ZrO2 surface. Based on our findings for ZrO2 and the concept of electrostatic and steric complementarity which have been found very successful in analysis of protein-protein interactions, we propose to extend these ideas to protein adhesion on inorganic implant. These concepts may also explain the enhanced adhesion of cells to the engineered nanostructured surfaces compared to conventional smooth surfaces.

  15. Study on Glow Discharge Plasma Used in Polyester Surface Modification

    NASA Astrophysics Data System (ADS)

    Liu, Wenzheng; Lei, Xiao; Zhao, Qiang

    2016-01-01

    To achieve an atmospheric pressure glow discharge (APGD) in air and modify the surface of polyester thread using plasma, the electric field distribution and discharge characteristics under different conditions were studied. We found that the region with a strong electric field, which was formed in a tiny gap between two electrodes constituting a line-line contact electrode structure, provided the initial electron for the entire discharge process. Thus, the discharge voltage was reduced. The dielectric barrier of the line-line contact electrodes can inhibit the generation of secondary electrons. Thus, the transient current pulse discharge was reduced significantly, and an APGD in air was achieved. We designed double layer line-line contact electrodes, which can generate the APGD on the surface of a material under treatment directly. A noticeable change in the surface morphology of polyester fiber was visualized with the aid of a scanning electron microscope (SEM). Two electrode structures - the multi-row line-line and double-helix line-line contact electrodes - were designed. A large area of the APGD plasma with flat and curved surfaces can be formed in air using these contact electrodes. This can improve the efficiency of surface treatment and is significant for the application of the APGD plasma in industries.

  16. Plasma Surface Modification for Immobilization of Bone Morphogenic Protein-2 on Polycaprolactone Scaffolds

    NASA Astrophysics Data System (ADS)

    Kim, Byung Hoon; Myung, Sung Woon; Jung, Sang Chul; Ko, Yeong Mu

    2013-11-01

    The immobilization of recombinant human bone formation protein-2 (rhBMP-2) on polycaprolactone (PCL) scaffolds was performed by plasma polymerization. RhBMP-2, which induces osteoblast differentiation in various cell types, is a growth factor that plays an important role in bone formation and repair. The surface of the PCL scaffold was functionalized with the carboxyl groups of plasma-polymerized acrylic acid (PPAA) thin films. Plasma polymerization was carried out at a discharge power of 60 W at an acrylic acid flow rate of 7 sccm for 5 min. The PPAA thin film exhibited moderate hydrophilic properties and possessed a high density of carboxyl groups. Carboxyl groups and rhBMP-2 on the PCL scaffolds surface were identified by attenuated total reflection Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, respectively. The alkaline phosphatase activity assay showed that the rhBMP-2 immobilized PCL scaffold increased the level of MG-63 cell differentiation. Plasma surface modification for the preparation of biomaterials, such as biofunctionalized polymer scaffolds, can be used for the binding of bioactive molecules in tissue engineering.

  17. Efficient needle plasma actuators for flow control and surface cooling

    NASA Astrophysics Data System (ADS)

    Zhao, Pengfei; Portugal, Sherlie; Roy, Subrata

    2015-07-01

    We introduce a milliwatt class needle actuator suitable for plasma channels, vortex generation, and surface cooling. Electrode configurations tested for a channel configuration show 1400% and 300% increase in energy conversion efficiency as compared to conventional surface and channel corona actuators, respectively, generating up to 3.4 m/s air jet across the channel outlet. The positive polarity of the needle is shown to have a beneficial effect on actuator efficiency. Needle-plate configuration is demonstrated for improving cooling of a flat surface with a 57% increase in convective heat transfer coefficient. Vortex generation by selective input signal manipulation is also demonstrated.

  18. Response of nickel surface to pulsed fusion plasma radiations

    SciTech Connect

    Niranjan, Ram Rout, R. K. Srivastava, R. Gupta, Satish C.; Chakravarthy, Y.; Patel, N. N.; Alex, P.

    2014-04-24

    Nickel based alloys are being projected as suitable materials for some components of the next generation fusion reactor because of compatible thermal, electrical and mechanical properties. Pure nickel material is tested here for possibility of similar application purpose. Nickel samples (> 99.5 % purity) are exposed here to plasma radiations produced due to D-D fusion reaction inside an 11.5 kJ plasma focus device. The changes in the physical properties of the nickel surface at microscopic level which in turn change the mechanical properties are analyzed using scanning electron microscope, optical microscope, glancing incident X-ray diffractometer and Vicker's hardness gauge. The results are reported here.

  19. Plasma printing: patterned surface functionalisation and coating at atmospheric pressure.

    PubMed

    Penache, C; Gessner, C; Betker, T; Bartels, V; Hollaender, A; Klages, C-P

    2004-08-01

    A new plasma-based micropatterning technique, here referred to as plasma printing, combines the well known advantages given by the nonequilibrium character of a dielectric barrier discharge (DBD) and its operation inside small gas volumes with dimension between tens and hundreds of micrometres. The discharge is run at atmospheric pressure and can be easily implemented for patterned surface treatment with applications in biotechnology and microtechnology. In this work the local modification of dielectric substrates, e.g. polymeric films, is addressed with respect to coating and chemical functionalisation, immobilisation of biomolecules and area-selective electroless plating. PMID:16475858

  20. Plasma Surface Modification of Polyaramid Fibers for Protective Clothing

    NASA Astrophysics Data System (ADS)

    Widodo, Mohamad

    2011-12-01

    The purpose of this research was to develop a novel process that would achieve biocidal properties on Kevlar fabric via atmospheric pressure plasma jet (APPJ) induced-graft polymerization of monomers. In the course of the study, experiments were carried out to understand plasma-monomer-substrate interactions, particularly, how each of the main parameters in the plasma processing affects the formation of surface radicals and eventually the degree of graft polymerization of monomers. The study also served to explore the possibility of developing plasma-initiated and plasma-controlled graft polymerization for continuous operation. In this regards, three methods of processing were studied, which included two-step plasma graft-polymerization with immersion, two-step and one-step plasma graft-polymerization with pad-dry. In general, plasma treatment did not cause visible damage to the surface of Kevlar fibers, except for the appearance of tiny globules distributed almost uniformly indicating a minor effect of plasma treatment to the surface morphology of the polymer. From the examination of SEM images, however, it was found that a very localized surface etching seemed to have taken place, especially at high RF power (800 W) and long time of exposure (60 s), even in plasma downstream mode of operation. It was suggested that a small amount of charged particles might have escaped and reached the substrate surface. High density of surface radicals, which is the prerequisite for high graft density and high antimicrobial activity, was achieved by the combination of high RF power and short exposure time or low RF power and long time of exposure. This was a clear indication that the formation of surface radicals is a function of amount of the dissipated energy, which also explained the two-factor interaction between the two process parameters. XPS results showed that hydrolysis of the anilide bond of PPTA chains took place to some extent on the surface of Kevlar, leading to the

  1. Atmospheric-Pressure Plasma Cleaning of Contaminated Surfaces

    SciTech Connect

    Robert F. Hicks; Hans W. Herrmann

    2003-12-15

    The purpose of this project was to demonstrate a practical, environmentally benigh technology for the surface decontamination and decommissioning of radioactive waste. A low temperature, atmospheric pressure plasma has been developed with initial support from the DOE, Environmental Management Sciences Program. This devise selectively etches radioactive metals from surfaces, rendering objects radiation free and suitable for decommissioning. The volatile reaction products are captured on filters, which yields a tremendous reduction in the volume of the waste. The technology shows a great potential for accelerating the clean-up effort for the equipment and structures contaminated with radioactive materials within the DOE complex. The viability of this technology has been demonstrated by selectively and rapidly stripping uranium from stainless steel surfaces at low temperature. Studies on uranium oxide have shown that etch rates of 4.0 microns per minute can be achieved at temperature below 473 K. Over the past three years, we have made numerous improvements in the design of the atmospheric pressure plasma source. We are now able to scale up the plasma source to treat large surface areas.

  2. Neoclassical transport in toroidal plasmas with nonaxisymmetric flux surfaces

    NASA Astrophysics Data System (ADS)

    Belli, E. A.; Candy, J.

    2015-05-01

    The capability to treat nonaxisymmetric flux surface geometry has been added to the drift-kinetic code NEO (Belli and Candy 2008 Plasma Phys. Control. Fusion 50 095010). Geometric quantities (i.e. metric elements) are supplied by a recently-developed local 3D equilibrium solver, allowing neoclassical transport coefficients to be systematically computed while varying the 3D plasma shape in a simple and intuitive manner. Code verification is accomplished via detailed comparison with 3D Pfirsch-Schlüter theory. A discussion of the various collisionality regimes associated with 3D transport is given, with an emphasis on non-ambipolar particle flux, neoclassical toroidal viscosity, energy flux and bootstrap current. Finally, we compute the transport in the presence of ripple-type perturbations in a DIII-D-like H-mode edge plasma.

  3. Characteristics of surface sterilization using electron cyclotron resonance plasma

    NASA Astrophysics Data System (ADS)

    Yonesu, Akira; Hara, Kazufumi; Nishikawa, Tatsuya; Hayashi, Nobuya

    2016-07-01

    The characteristics of surface sterilization using electron cyclotron resonance (ECR) plasma were investigated. High-energy electrons and oxygen radicals were observed in the ECR zone using electric probe and optical emission spectroscopic methods. A biological indicator (BI), Geobacillus stearothermophilus, containing 1 × 106 spores was sterilized in 120 s by exposure to oxygen discharges while maintaining a temperature of approximately 55 °C at the BI installation position. Oxygen radicals and high-energy electrons were found to be the sterilizing species in the ECR region. It was demonstrated that the ECR plasma could be produced in narrow tubes with an inner diameter of 5 mm. Moreover, sterilization tests confirmed that the spores present inside the narrow tube were successfully inactivated by ECR plasma irradiation.

  4. Surface analysis of polymers treated by remote atmospheric pressure plasma.

    PubMed

    Gonzalez, Eleazar; Hicks, Robert F

    2010-03-01

    The surfaces of high-density polyethylene (HDPE), poly(methyl methacrylate) (PMMA), and polyethersulfone (PES) were treated with a low-temperature, atmospheric pressure oxygen and helium plasma. The polymers were exposed to the downstream afterglow of the plasma, which contained primarily oxygen atoms and metastable oxygen molecules ((1)Delta(g) O(2)), and no ions or electrons. X-ray photoelectron spectroscopy (XPS) of HDPE revealed that 20% of the carbon atoms were converted into oxidized functional groups, with about half of these being carboxylic acids. Attenuated total reflection infrared spectroscopy of all three polymers was obtained in order to determine the types of functional groups formed by atmospheric plasma exposure. It was found that the polymers were rapidly oxidized with addition of alcohols, ketones, and carboxylic acids to the carbon backbone. Chain scission occurred on HDPE and PMMA, while on PES the aromatic groups underwent ring-opening and insertion of carboxylic acid. PMID:19950952

  5. Surface wave propagation characteristics in atmospheric pressure plasma column

    NASA Astrophysics Data System (ADS)

    Pencheva, M.; Benova, E.; Zhelyazkov, I.

    2007-04-01

    In the typical experiments of surface wave sustained plasma columns at atmospheric pressure the ratio of collision to wave frequency (ν/ω) is much greater than unity. Therefore, one might expect that the usual analysis of the wave dispersion relation, performed under the assumption ν/ω = 0, cannot give adequate description of the wave propagation characteristics. In order to study these characteristics we have analyzed the wave dispersion relationship for arbitrary ν/ω. Our analysis includes phase and wave dispersion curves, attenuation coefficient, and wave phase and group velocities. The numerical results show that a turning back point appears in the phase diagram, after which a region of backward wave propagation exists. The experimentally observed plasma column is only in a region where wave propagation coefficient is higher than the attenuation coefficient. At the plasma column end the electron density is much higher than that corresponding to the turning back point and the resonance.

  6. Improved ion acceleration via laser surface plasma waves excitation

    SciTech Connect

    Bigongiari, A.

    2013-05-15

    The possibility of enhancing the emission of the ions accelerated in the interaction of a high intensity ultra-short (<100 fs) laser pulse with a thin target (<10λ{sub 0}), via surface plasma wave excitation is investigated. Two-dimensional particle-in-cell simulations are performed for laser intensities ranging from 10{sup 19} to 10{sup 20} Wcm{sup −2}μm{sup 2}. The surface wave is resonantly excited by the laser via the coupling with a modulation at the target surface. In the cases where the surface wave is excited, we find an enhancement of the maximum ion energy of a factor ∼2 compared to the cases where the target surface is flat.

  7. Application of pulsed plasma NO{sub x} reduction to diesel engine exhaust

    SciTech Connect

    Wallman, P.H.; Penetrante, B.M.; Vogtlin, G.E.; Hsiao, M.C.

    1993-10-11

    We have studied the effect of pulsed plasma discharges on gas mixtures simulating diesel engine exhaust by modeling and by experiment. Our modeling results have shown that the pulsed plasma can convert NO{sub x} to N{sub 2} using the nitrogen itself as a reductant. However, this process is energetically unfavorable for the plasma regime of our measurements. In our experiments we found that addition of hydrocarbons improves substantially the energy efficiency of pulsed plasma NO{sub x} reduction. Real exhaust gas contains some gaseous hydrocarbons and carbon monoxide that may prove sufficient for improving the energy efficiency of the ``right`` pulsed plasma reduction process.

  8. Characterization of microwave discharge plasmas for surface processing

    NASA Astrophysics Data System (ADS)

    Nikolic, Milka

    We have developed several diagnostic techniques to characterize two types of microwave (MW) discharge plasmas: a supersonic flowing argon MW discharge maintained in a cylindrical quartz cavity at frequency ƒ = 2.45 GHz and a pulse repetitive MW discharge in air at ƒ = 9.5 GHz. Low temperature MW discharges have been proven to posses attractive properties for plasma cleaning and etching of niobium surfaces of superconductive radio frequency (SRF) cavities. Plasma based surface modification technologies offer a promising alternative for etching and cleaning of SRF cavities. These technologies are low cost, environmentally friendly and easily controllable, and present a possible alternative to currently used acid based wet technologies, such as buffered chemical polishing (BCP), or electrochemical polishing (EP). In fact, weakly ionized. non-equilibrium, and low temperature gas discharges represent a powerful tool for surface processing due to the strong chemical reactivity of plasma radicals. Therefore, characterizing these discharges by applying non-perturbing, in situ measurement techniques is of vital importance. Optical emission spectroscopy has been employed to analyze the molecular structure and evaluate rotational and vibrational temperatures in these discharges. The internal plasma structure was studied by applying a tomographic numerical method based on the two-dimensional Radon formula. An automated optical measurement system has been developed for reconstruction of local plasma parameters. It was found that excited argon states are concentrated near the tube walls, thus confirming the assumption that the post discharge plasma is dominantly sustained by a travelling surface wave. Employing a laser induced fluorescence technique in combination with the time synchronization device allowed us to obtain time-resolved population densities of some excited atomic levels in argon. We have developed a technique for absolute measurements of electron density based

  9. Yeast surface display for protein engineering and characterization.

    PubMed

    Gai, S Annie; Wittrup, K Dane

    2007-08-01

    Yeast surface display is being employed to engineer desirable properties into proteins for a broad variety of applications. Labeling with soluble ligands enables rapid and quantitative analysis of yeast-displayed libraries by flow cytometry, while cell-surface selections allow screening of libraries with insoluble or even as-yet-uncharacterized binding targets. In parallel, the utilization of yeast surface display for protein characterization, including in particular the mapping of functional epitopes mediating protein-protein interactions, represents a significant recent advance. PMID:17870469

  10. Cell surface engineering of microorganisms towards adsorption of heavy metals.

    PubMed

    Li, Peng-Song; Tao, Hu-Chun

    2015-06-01

    Heavy metal contamination has become a worldwide environmental concern due to its toxicity, non-degradability and food-chain bioaccumulation. Conventional physical and chemical treatment methods for heavy metal removal have disadvantages such as cost-intensiveness, incomplete removal, secondary pollution and the lack of metal specificity. Microbial biomass-based biosorption is one of the approaches gaining increasing attention because it is effective, cheap, and environmental friendly and can work well at low concentrations. To enhance the adsorption properties of microbial cells to heavy metal ions, the cell surface display of various metal-binding proteins/peptides have been performed using a cell surface engineering approach. The surface engineering of Gram-negative bacteria, Gram-positive bacteria and yeast towards the adsorption of heavy metals are reviewed in this article. The problems and future perspectives of this technology are discussed. PMID:23915280

  11. Study of atmospheric pressure weakly ionized plasma as surface compatibilization technique for improved plastic composites loaded with cellulose based fillers

    NASA Astrophysics Data System (ADS)

    Lekobou, William Pimakouon

    Atmospheric pressure plasmas have gained considerable interest from researchers recently for their unique prospective of engineering surfaces with plasma without the need of vacuum systems. They offer the advantage of low energy consumption, minimal capital cost and their simplicity as compared to conventional low pressure plasmas make them easy to upscale from laboratory to industry size. The present dissertation summarizes results of our attempt at applying atmospheric pressure weakly ionized plasma (APWIP) to the engineering of plastic composites filled with cellulose based substrates. An APWIP reactor was designed and built based on a multipoint-to-grounded ring and screen configurations. The carrier gas was argon and acetylene serves as the precursor molecule. The APWIP reactors showed capability of depositing plasma polymerized coating rich in carbon on substrates positioned within the electrode gap as well as downstream of the plasma discharge into the afterglow region. Our findings show that films grow by forming islands which for prolonged deposition time grow into thin films showing nodules, aggregates of nodules and microspheres. They also show chemical structure similar to films deposited from hydrocarbons with other conventional plasma techniques. The plasma polymerized deposits were used on substrates to modify their surface properties. Results show the surface of wood veneer and wood flour can be finely tuned from hydrophilic to hydrophobic. It was achieved by altering the topography of the surfaces along with their chemical composition. The wettability of wood veneer was investigated with contact angle measurements on capacitive drops and the capillary effect was utilized to assess surface properties of wood flour exposed to the discharges.

  12. Surface wave propagation in non-ideal plasmas

    NASA Astrophysics Data System (ADS)

    Pandey, B. P.; Dwivedi, C. B.

    2015-03-01

    The properties of surface waves in a partially ionized, compressible magnetized plasma slab are investigated in this work. The waves are affected by the non-ideal magnetohydrodynamic (MHD) effects which causes finite drift of the magnetic field in the medium. When the magnetic field drift is ignored, the characteristics of the wave propagation in a partially ionized plasma fluid is similar to the fully ionized ideal MHD except now the propagation properties depend on the fractional ionization as well as on the compressibility of the medium. The phase velocity of the sausage and kink waves increases marginally (by a few per cent) due to the compressibility of the medium in both ideal as well as Hall-diffusion-dominated regimes. However, unlike ideal regime, only waves below certain cut-off frequency can propagate in the medium in Hall dominated regime. This cut-off for a thin slab has a weak dependence on the plasma beta whereas for thick slab no such dependence exists. More importantly, since the cut-off is introduced by the Hall diffusion, the fractional ionization of the medium is more important than the plasma compressibility in determining such a cut-off. Therefore, for both compressible as well incompressible medium, the surface modes of shorter wavelength are permitted with increasing ionization in the medium. We discuss the relevance of these results in the context of solar photosphere-chromosphere.

  13. Lunar Surface Access Module Pump-Fed Engine Turbopump Technology

    NASA Technical Reports Server (NTRS)

    Thornton, Randall J.

    2007-01-01

    The need for a high specific impulse LOX/LH2 pump-fed lunar lander engine has been established by NASA for the new Exploration architecture. Preliminary studies indicate that a 4 engine cluster in the thrust range of 9,000-lbf each is a likely configuration for the main propulsion of the manned lunar lander vehicle. The main Lunar Surface Access Module engines will likely be responsible for mid-course correction burns, lunar orbit insertion burns, a deorbit burn, and the powered descent to the lunar surface. This multi-task engine philosophy imposes a wide throttling requirement on the engines in the range of 10:1. Marshall Space Flight Center has initiated an internal effort to mature the technologies needed for full scale development of such a LOX/LH2 pump-fed engine. In particular, a fuel turbopump is being designed and fabricated at MSFC to address the issues that a small high speed turbopump of this class will face. These issues include adequate throttling performance of the pump and turbine over a very wide operating range. The small scale of the hardware presents issues including performance scaling, and manufacturing issues like that will challenge the traditional methods we have used to fabricate and assemble larger scale turbopumps. The small high speed turbopump being developed at MSFC will operate at speeds greater than 100,000-rpm. These speeds create issues that include structural dynamics and high cycle fatigue as well as rotordynamic stability. The fuel turbopump development at MSFC will address these issues, and plans are in work for component level testing as well as operation in a test bed engine environment. The fuel turbopump design is nearing completion and described herein.

  14. Molecular engineering and characterization of self-assembled biorecognition surfaces

    NASA Astrophysics Data System (ADS)

    Pan, Sheng

    The development of molecular engineering techniques for the fabrication of biomaterial surfaces is of importance in the field of biomaterials. It offers opportunities for better understanding of biological processes on material surfaces and rational design of contemporary biomaterials. Our work in this area aims to develop novel engineering strategies to design biorecognition surfaces via self-assembly and surface derivatization. Fundamental issues regarding self-assembled monolayer (SAM) structure, formation kinetics, and chemical derivatization were investigated systematically using electron spectroscopy for chemical analysis (ESCA), time-of-flight secondary ion mass spectrometry (TOF-SIMS), infrared reflection absorption spectroscopy (IRAS), atomic force microscopy (AFM), and contact angle measurements. Novel engineering concepts based on multifunctionality and statistical pattern matching were introduced and applied to develop biomimetic surfaces. Our study illustrated that molecules underwent structural transition and orientation development during self-assembly formation, from a disordered, low-density, more liquid-like structure to a highly ordered, closed-packed crystalline-like structure. Surface properties, such as wettability and the reactivity of outermost functional groups can be related to film structure, packing density, as well as molecular orientation. Given the order and organization of SAMs, the accessibility and reactivity of the outermost functional groups, reaction kinetics, stoichiometry, and SAMs stability were studied systematically by surface derivatization of trifluoroacetic anhydride (TFAA). The TFAA derivatization reactions exhibited rapid kinetics on the hydroxyl-terminated SAMs. The data from complementary surface analytical techniques consistently indicated a nearly complete surface reaction. Biomimetic surfaces were made by random immobilization of amino acid of arginine (R), glycine (G), and aspartic acid (D) on well-defined SAMs

  15. Diagnostics of plasma-biological surface interactions in low pressure and atmospheric pressure plasmas

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kenji; Hori, Masaru

    2014-08-01

    Mechanisms of plasma-surface interaction are required to understand in order to control the reactions precisely. Recent progress in atmospheric pressure plasma provides to apply as a tool of sterilization of contaminated foodstuffs. To use the plasma with safety and optimization, the real time in situ detection of free radicals - in particular dangling bonds by using the electron-spin-resonance (ESR) technique has been developed because the free radical plays important roles for dominantly biological reactions. First, the kinetic analysis of free radicals on biological specimens such as fungal spores of Penicillium digitatum interacted with atomic oxygen generated plasma electric discharge. We have obtained information that the in situ real time ESR signal from the spores was observed and assignable to semiquinone radical with a g-value of around 2.004 and a line width of approximately 5G. The decay of the signal was correlated with a link to the inactivation of the fungal spore. Second, we have studied to detect chemical modification of edible meat after the irradiation. Using matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF-MS) and ESR, signals give qualification results for chemical changes on edible liver meat. The in situ real-time measurements have proven to be a useful method to elucidate plasma-induced surface reactions on biological specimens.

  16. Lunar Surface Access Module Descent Engine Turbopump Technology: Detailed Design

    NASA Technical Reports Server (NTRS)

    Alvarez, Erika; Forbes, John C.; Thornton, Randall J.

    2010-01-01

    The need for a high specific impulse LOX/LH2 pump-fed lunar lander engine has been established by NASA for the new lunar exploration architecture. Studies indicate that a 4-engine cluster in the thrust range of 9,000-lbf each is a candidate configuration for the main propulsion of the manned lunar lander vehicle. The lander descent engine will be required to perform multiple burns including the powered descent onto the lunar surface. In order to achieve the wide range of thrust required, the engines must be capable of throttling approximately 10:1. Working under internal research and development funding, NASA Marshall Space Flight Center (MSFC) has been conducting the development of a 9,000-lbf LOX/LH2 lunar lander descent engine technology testbed. This paper highlights the detailed design and analysis efforts to develop the lander engine Fuel Turbopump (FTP) whose operating speeds range from 30,000-rpm to 100,000-rpm. The capability of the FTP to operate across this wide range of speeds imposes several structural and dynamic challenges, and the small size of the FTP creates scaling and manufacturing challenges that are also addressed in this paper.

  17. Lunar Surface Access Module Descent Engine Turbopump Technology: Detailed Design

    NASA Technical Reports Server (NTRS)

    Alarez, Erika; Thornton, Randall J.; Forbes, John C.

    2008-01-01

    The need for a high specific impulse LOX/LH2 pump-fed lunar lander engine has been established by NASA for the new lunar exploration architecture. Studies indicate that a 4-engine cluster in the thrust range of 9,000-lbf each is a candidate configuration for the main propulsion of the manned lunar lander vehicle. The lander descent engine will be required to perform minor mid-course corrections, a Lunar Orbit Insertion (LOI) burn, a de-orbit burn, and the powered descent onto the lunar surface. In order to achieve the wide range of thrust required, the engines must be capable of throttling approximately 10:1. Working under internal research and development funding, NASA Marshall Space Flight Center (MSFC) has been conducting the development of a 9,000-lbf LOX/LH2 lunar lander descent engine testbed. This paper highlights the detailed design and analysis efforts to develop the lander engine Fuel Turbopump (FTP) whose operating speeds range from 30,000-rpm to 100,000-rpm. The capability of the FTP to operate across this wide range of speeds imposes several structural and dynamic challenges, and the small size of the FTP creates scaling and manufacturing challenges that are also addressed in this paper.

  18. Radical surface interactions in industrial silicon plasma etch reactors

    NASA Astrophysics Data System (ADS)

    Cunge, G.; Vempaire, D.; Ramos, R.; Touzeau, M.; Joubert, O.; Bodard, P.; Sadeghi, N.

    2010-06-01

    Silicon etching in Cl2-based plasmas is an important step for the fabrication of IC circuits but the plasma surface interactions involved in this process remain poorly understood. Based on the developments in plasma and reactor wall diagnostics, this paper reviews the recent progress in the understanding of radicals' interactions with surfaces during silicon etching processes. X-ray photoelectron spectroscopy analysis of the reactor walls shows that during Si etching in Cl2/O2 plasmas, the initial Al2O3 chamber walls are coated with a thin SiOCl layer. Broadband absorption spectroscopy with UV light emitting diodes is used to measure the densities of SiClX radicals (X = 0-2) and Cl2 molecules in steady state plasmas running with the chamber walls coated with different materials. To estimate the surface sticking/recombination probability of these radicals on different surfaces, we have performed time-resolved absorption measurements in the afterglow of pulsed discharges. Our work, in agreement with previous results, shows that the Cl2/Cl density ratio in the discharge is driven mainly by the chemical nature of the chamber walls explaining why process drifts are often observed in Cl2/O2 plasmas. The recombination coefficient of Cl atoms on SiOCl surfaces is about 0.007, while it is about 0.1 on clean walls (AlF3). Based on these results, we discuss the best strategy leading to reproducible process control, the present strategy being a systematic reactor cleaning/conditioning between wafers. The SiOCl layer deposition mechanism is then discussed in detail. The sticking coefficient of SiCl on this surface is near unity, while SiCl2 appears to be weakly reactive toward it. Therefore, SiCl (and SiCl+ ions) are the main vectors of Si deposition on the reactor walls, where their subsequent oxidization by O atoms leads to the formation of a SiOCl deposit. Furthermore, we show that SiCl reaction in the plasma volume with Cl2, through the exchange reaction SiCl + Cl2 → Si

  19. Current Density and Plasma Displacement Near Perturbed Rational Surface

    SciTech Connect

    A.H. Boozer and N. Pomphrey

    2010-10-10

    The current density in the vicinity of a rational surface of a force-free magnetic field subjected to an ideal perturbation is shown to be the sum of both a smooth and a delta-function distribution, which give comparable currents. The maximum perturbation to the smooth current density is comparable to a typical equilibrium current density and the width of the layer in which the current flows is shown to be proportional to the perturbation amplitude. In the standard linearized theory, the plasma displacement has an unphysical jump across the rational surface, but the full theory gives a continuous displacement.

  20. Optical excitation of surface plasma waves without grating structures

    NASA Astrophysics Data System (ADS)

    Deng, Hai-Yao; Liu, Feng; Wakabayashi, Katsunori

    2016-05-01

    Surface plasma waves (SPWs) are usually discussed in the context of a metal in contact with a dielectric. However, they can also exist between two metals. In this work we study these bimetallic waves. We find that their dispersion curve always cuts the light line, which allows direct optical coupling without surface grating structures. We propose practical schemes to excite them and the excitation efficiency is estimated. We also show that these waves can be much less lossy than conventional SPWs and their losses can be systematically controlled, a highly desirable attribute in applications. Conducting metal oxides seem fit for experimental studies.

  1. Recent advances in engineering topography mediated antibacterial surfaces

    PubMed Central

    Hasan, Jafar

    2015-01-01

    The tendency of bacterial cells to adhere and colonize a material surface leading to biofilm formation is a fundamental challenge underlying many different applications including microbial infections associated with biomedical devices and products. Although, bacterial attachment to surfaces has been extensively studied in the past, the effect of surface topography on bacteria–material interactions has received little attention until more recently. We review the recent progress in surface topography based approaches for engineering antibacterial surfaces. Biomimicry of antibacterial surfaces in nature is a popular strategy. Whereas earlier endeavors in the field aimed at minimizing cell attachment, more recent efforts have focused on developing bactericidal surfaces. However, not all such topography mediated bactericidal surfaces are necessarily cytocompatible thus underscoring the need for continued efforts for research in this area for developing antibacterial and yet cytocompatible surfaces for use in implantable biomedical applications. This mini-review provides a brief overview of the current strategies and challenges in the emerging field of topography mediated antibacterial surfaces. PMID:26372264

  2. Recent advances in engineering topography mediated antibacterial surfaces

    NASA Astrophysics Data System (ADS)

    Hasan, Jafar; Chatterjee, Kaushik

    2015-09-01

    The tendency of bacterial cells to adhere and colonize a material surface leading to biofilm formation is a fundamental challenge underlying many different applications including microbial infections associated with biomedical devices and products. Although, bacterial attachment to surfaces has been extensively studied in the past, the effect of surface topography on bacteria-material interactions has received little attention until more recently. We review the recent progress in surface topography based approaches for engineering antibacterial surfaces. Biomimicry of antibacterial surfaces in nature is a popular strategy. Whereas earlier endeavors in the field aimed at minimizing cell attachment, more recent efforts have focused on developing bactericidal surfaces. However, not all such topography mediated bactericidal surfaces are necessarily cytocompatible thus underscoring the need for continued efforts for research in this area for developing antibacterial and yet cytocompatible surfaces for use in implantable biomedical applications. This mini-review provides a brief overview of the current strategies and challenges in the emerging field of topography mediated antibacterial surfaces.

  3. Recent advances in engineering topography mediated antibacterial surfaces.

    PubMed

    Hasan, Jafar; Chatterjee, Kaushik

    2015-10-14

    The tendency of bacterial cells to adhere and colonize a material surface leading to biofilm formation is a fundamental challenge underlying many different applications including microbial infections associated with biomedical devices and products. Although, bacterial attachment to surfaces has been extensively studied in the past, the effect of surface topography on bacteria-material interactions has received little attention until more recently. We review the recent progress in surface topography based approaches for engineering antibacterial surfaces. Biomimicry of antibacterial surfaces in nature is a popular strategy. Whereas earlier endeavors in the field aimed at minimizing cell attachment, more recent efforts have focused on developing bactericidal surfaces. However, not all such topography mediated bactericidal surfaces are necessarily cytocompatible thus underscoring the need for continued efforts for research in this area for developing antibacterial and yet cytocompatible surfaces for use in implantable biomedical applications. This mini-review provides a brief overview of the current strategies and challenges in the emerging field of topography mediated antibacterial surfaces. PMID:26372264

  4. Plasma surface kinetics studies of silicon dioxide etch process in inductively coupled fluorocarbon plasmas

    NASA Astrophysics Data System (ADS)

    Chang, Won-Seok; Yu, Dong-Hun; Cho, Deog-Gyun; Yook, Yeong-Geun; Chun, Poo-Reum; Lee, Se-Ah; Kwon, Deuk-Chul; Im, Yeon-Ho

    2013-09-01

    With continuous decrease of nanoscale design rule, plasma etching processes to form high aspect ratio contact hole still remains a challenge to overcome their inherent drawbacks such as bowing and twisted feature. Due to their complexities there still exist big gaps between current research status and predictable modeling of this process. To address this issue, we proposed a surface kinetic model of silicon nitride etch process under inductively coupled fluorocarbon plasmas. For this work, the cut-off probe and quadrapole mass spectroscopy were used for measuring electrical plasma properties, the ion and neutral radical species. Furthermore, the systematic surface analysis was performed to investigate the thickness and chemical bonding of polymer passivation layer during the etch process. The proposed semi-global surface kinetic model can consider deposition of polymer passivation layer and silicon nitride etching self-consistently. The predicted modeling results showed good agreement with experimental data. We believe that our research will provide valuable information to avoid the empirical development of plasma etching process.

  5. Comparative study of NO removal in surface-plasma and volume-plasma reactors based on pulsed corona discharges.

    PubMed

    Malik, Muhammad Arif; Kolb, Juergen F; Sun, Yaohong; Schoenbach, Karl H

    2011-12-15

    Nitric oxide (NO) conversion has been studied for two different types of atmospheric-pressure pulsed-corona discharges, one generates a surface-plasma and the other provides a volume-plasma. For both types of discharges the energy cost for NO removal increases with decreasing oxygen concentration and initial concentration of NO. However, the energy cost for volume plasmas for 50% NO removal, EC(50), from air was found to be 120 eV/molecule, whereas for the surface plasma, it was only 70 eV/molecule. A smaller difference in energy cost, but a higher efficiency for removal of NO was obtained in a pure nitrogen atmosphere, where NO formation is restricted due to the lack of oxygen. For the volume plasma, EC(50) in this case was measured at 50 eV/molecule, and for the surface plasma it was 40 eV/molecule. Besides the higher NO removal efficiency of surface plasmas compared to volume plasmas, the energy efficiency of surface-plasmas was found to be almost independent of the amount of electrical energy deposited in the discharge, whereas the efficiency for volume plasmas decreases considerably with increasing energy. This indicates the possibility of operating surface plasma discharges at high energy densities and in more compact reactors than conventional volume discharges. PMID:21982539

  6. The influence of surface properties on the plasma dynamics in radio-frequency driven oxygen plasmas: Measurements and simulations

    SciTech Connect

    Greb, Arthur; Niemi, Kari; O'Connell, Deborah; Gans, Timo

    2013-12-09

    Plasma parameters and dynamics in capacitively coupled oxygen plasmas are investigated for different surface conditions. Metastable species concentration, electronegativity, spatial distribution of particle densities as well as the ionization dynamics are significantly influenced by the surface loss probability of metastable singlet delta oxygen (SDO). Simulated surface conditions are compared to experiments in the plasma-surface interface region using phase resolved optical emission spectroscopy. It is demonstrated how in-situ measurements of excitation features can be used to determine SDO surface loss probabilities for different surface materials.

  7. Sterilization of Surfaces with a Handheld Atmospheric Pressure Plasma

    NASA Astrophysics Data System (ADS)

    Hicks, Robert; Habib, Sara; Chan, Wai; Gonzalez, Eleazar; Tijerina, A.; Sloan, Mark

    2009-10-01

    Low temperature, atmospheric pressure plasmas have shown great promise for decontaminating the surfaces of materials and equipment. In this study, an atmospheric pressure, oxygen and argon plasma was investigated for the destruction of viruses, bacteria, and spores. The plasma was operated at an argon flow rate of 30 L/min, an oxygen flow rate of 20 mL/min, a power density of 101.0 W/cm^3 (beam area = 5.1 cm^2), and at a distance from the surface of 7.1 mm. An average 6log10 reduction of viable spores was obtained after only 45 seconds of exposure to the reactive gas. By contrast, it takes more than 35 minutes at 121^oC to sterilize anthrax in an autoclave. The plasma properties were investigated by numerical modeling and chemical titration with nitric oxide. The numerical model included a detailed reaction mechanism for the discharge as well as for the afterglow. It was predicted that at a delivered power density of 29.3 W/cm^3, 30 L/min argon, and 0.01 volume% O2, the plasma generated 1.9 x 10^14 cm-3 O atoms, 1.6 x 10^12 cm-3 ozone, 9.3 x 10^13 cm-3 O2(^1δg), and 2.9 x 10^12 cm-3 O2(^1σ^+g) at 1 cm downstream of the source. The O atom density measured by chemical titration with NO was 6.0 x 10^14 cm-3 at the same conditions. It is believe that the oxygen atoms and the O2(^1δg) metastables were responsible for killing the anthrax and other microorganisms.

  8. Polymer brush gradients grafted from plasma-polymerized surfaces.

    PubMed

    Coad, Bryan R; Bilgic, Tugba; Klok, Harm-Anton

    2014-07-22

    A new method for generating a surface density gradient of polymer chains is presented. A substrate-independent polymer deposition technique was used to coat materials with a chemical gradient based on plasma copolymerization of 1,7-octadiene and allylamine. This provided a uniform chemical gradient to which initiators for atom transfer radical polymerization (ATRP) were immobilized. After surface-initiated atom transfer radical polymerization (SI-ATRP), poly(2-hydroxyethyl methacrylate) (PHEMA) chains were grafted from the surface and the measured thickness profiles provided direct evidence for how surface crowding provides an entropic driving force resulting in chain extension away from the surface. Film thicknesses were found to increase with the position along the gradient surface, reflecting the gradual transition from collapsed to more extended surface-tethered polymer chains as the grafting density increased. The method described is novel in that the approach provides covalent linkages from the polymer coating to the substrate and is not limited to a particular surface chemistry of the starting material. PMID:24967529

  9. Retention of Sputtered Molybdenum on Ion Engine Discharge Chamber Surfaces

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Dever, Joyce A.; Power, John L.

    2001-01-01

    Grit-blasted anode surfaces are commonly used in ion engines to ensure adherence of sputtered coatings. Next generation ion engines will require higher power levels, longer operating times, and thus there will likely be thicker sputtered coatings on their anode surfaces than observed to date on 2.3 kW-class xenon ion engines. The thickness of coatings on the anode of a 10 kW, 40-centimeter diameter thruster, for example, may be 22 micrometers or more after extended operation. Grit-blasted wire mesh, titanium, and aluminum coupons were coated with molybdenum at accelerated rates to establish coating stability after the deposition process and after thermal cycling tests. These accelerated deposition rates are roughly three orders of magnitude more rapid than the rates at which the screen grid is sputtered in a 2.3 kW-class, 30-centimeter diameter ion engine. Using both RF and DC sputtering processes, the molybdenum coating thicknesses ranged from 8 to 130 micrometers, and deposition rates from 1.8 micrometers per hour to 5.1 micrometers per hour. In all cases, the molybdenum coatings were stable after the deposition process, and there was no evidence of spalling of the coatings after 20 cycles from about -60 to +320 C. The stable, 130 micrometer molybdenum coating on wire mesh is 26 times thicker than the thickest coating found on the anode of a 2.3 kW, xenon ion engine that was tested for 8200 hr. Additionally, this coating on wire mesh coupon is estimated to be a factor of greater than 4 thicker than one would expect to obtain on the anode of the next generation ion engine which may have xenon throughputs as high as 550 kg.

  10. Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces

    NASA Technical Reports Server (NTRS)

    Dussinger, Peter M.; Lindemuth, James E.

    1997-01-01

    The principal objective of this Phase 2 SBIR program was to develop and demonstrate a practically insoluble coating for nickel-based superalloys for Stirling engine heat pipe applications. Specific technical objectives of the program were: (1) Determine the solubility corrosion rates for Nickel 200, Inconel 718, and Udimet 72OLI in a simulated Stirling engine heat pipe environment, (2) Develop coating processes and techniques for capillary groove and screen wick structures, (3) Evaluate the durability and solubility corrosion rates for capillary groove and screen wick structures coated with an insoluble coating in cylindrical heat pipes operating under Stirling engine conditions, and (4) Design and fabricate a coated full-scale, partial segment of the current Stirling engine heat pipe for the Stirling Space Power Convertor program. The work effort successfully demonstrated a two-step nickel aluminide coating process for groove wick structures and interior wall surfaces in contact with liquid metals; demonstrated a one-step nickel aluminide coating process for nickel screen wick structures; and developed and demonstrated a two-step aluminum-to-nickel aluminide coating process for nickel screen wick structures. In addition, the full-scale, partial segment was fabricated and the interior surfaces and wick structures were coated. The heat pipe was charged with sodium, processed, and scheduled to be life tested for up to ten years as a Phase 3 effort.

  11. Engineered microtopographies and surface chemistries direct cell attachment and function

    NASA Astrophysics Data System (ADS)

    Magin, Chelsea Marie

    Harrison, in 1914, first recognized that cells respond to physicochemical cues such as substratum topography when he observed that fibroblasts elongated while cultured on spider silk. Recently, techniques developed in the micro-electronics industry have been used to create molds for producing microscaled topographies with various shapes and spatial arrangements. Although these patterning techniques are well-established, very little is known about the mechanisms underlying cell sensing and response to microtopographies. In this work cellular micro-environments with varying surface topographies and chemistries were evaluated with marine organisms and mammalian cells to investigate cellular sensing and response. Biofouling---the accumulation of micro-organisms, plants, and animals on submerged surfaces---is an environmental and economic concern. Engineered topographies, replicated in polydimethylsiloxane elastomer (PDMSe) and functionalized poly(ethylene glycol)-dimethacrylate (PEGDMA) hydrogels, were evaluated for inhibition of marine fouling organism attachment. Microtopographies replicated in PDMSe inhibited attachment of the marine bacterium, Cobetia marina up to 99% versus smooth. The average normalized attachment densities of cells of C. marina and zoospores of the green algae Ulva on PDMSe topographies scaled inversely with the Engineered Roughness Index (ERIII), a representation of surface energy. Attachment densities of Ulva from four assays and C. marina from two growth phases to PDMSe surfaces scaled inversely with one equation: ERI II multiplied by the Reynolds number of the organism (Re) (R 2 = 0.77). The same microtopographies created in PDMSe reduced the initial attachment density and attachment strength of cells of the diatoms Navicula incerta and Seminavis robusta compared to smooth PDMSe. The average normalized attachment density of Navicula after exposure to shear stress (48 Pa) was correlated with the contact area between the diatom and a

  12. Operations of the ATS-6 ion engine and plasma bridge neutralizer at geosynchronous altitude

    NASA Technical Reports Server (NTRS)

    Olsen, R. C.

    1978-01-01

    The ion engine on ATS-6 has been operated in daylight and eclipse. The effect on particle fluxes to the spacecraft was monitored. This data provides information on the potential of the spacecraft with respect to the ambient plasma and the local electric fields caused by the charge distribution on the spacecraft. Operation of the ion engine and/or the neutralizer clamps the spacecraft within a few volts of the ambient plasma potential. Operation of only the neutralizer tends to reduce the differential charge on the satellite, whereas operation of the ion engine reduces it below the sensitivity limit of the detectors.

  13. The plasma footprint of an atmospheric pressure plasma jet on a flat polymer substrate and its relation to surface treatment

    NASA Astrophysics Data System (ADS)

    Onyshchenko, Iuliia; Nikiforov, Anton Yu.; De Geyter, Nathalie; Morent, Rino

    2016-08-01

    The aim of this work is to show the correlation between the plasma propagation in the footprint of an atmospheric pressure plasma jet on a flat polymer surface and the plasma treatment impact on the polymer properties. An argon plasma jet working in open air is used as plasma source, while PET thin films are used a substrates for plasma treatment. Light emission photographs are taken with an ICCD camera to have a close look at the generated structures in the plasma jet footprint on the surface. Water contact angle (WCA) measurement and X-ray photoelectron spectroscopy (XPS) analysis are also performed to obtain information about the impact of the plasma treatment on the PET surface characteristics. A variation in ICCD camera gate duration (1 µs, 100 µs, 50 ms) results in the photographs of the different plasma structures occurring during the plasma propagation on the flat PET surface. Contact angle measurements provide results on improvement of the PET hydrophilic character, while XPS analysis shows the distribution of atomic elements on the treated substrate surface. Light emission images help explaining the obtained WCA and XPS results. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  14. Development of an electrospray approach to deposit complex molecules on plasma modified surfaces

    NASA Astrophysics Data System (ADS)

    Kitching, K. J.; Lee, H.-N.; Elam, W. T.; Johnston, E. E.; MacGregor, H.; Miller, R. J.; Turecek, F.; Ratner, B. D.

    2003-11-01

    Two established techniques have been coupled to allow surfaces to be precision engineered. Electrospray ionization to bring large, complex, intact molecular ions into the gas phase has been interfaced with a radio frequency (rf) plasma reactor to treat surfaces making them receptive to the deposition of active biomolecules. The new instrument has been designed and used successfully to deposit a number of high molecular weight molecules including the polysaccharide, sodium hyaluronan (HA), that has an important role in a number of physiological functions. Substrate material is treated using a rf glow discharge plasma chamber, to clean and activate the surface in a controlled manner, then exposed to a beam of multiply charged ions in the gas phase that have been generated using electrospray techniques. The ions are deposited gently onto the substrate and become covalently bound. The molecular integrity and stability of HA surfaces prepared in this way was established using x-ray photoelectron spectroscopy, changes in the observed contact angle, time-of-flight secondary ion mass spectrometry, scanning electron microscopy, and a biological assay-platelet adhesion to the surface.

  15. Wave processes in dusty plasma near the Moon's surface

    NASA Astrophysics Data System (ADS)

    Morozova, T. I.; Kopnin, S. I.; Popel, S. I.

    2015-10-01

    A plasma—dust system in the near-surface layer on the illuminated side of the Moon is described. The system involves photoelectrons, solar-wind electrons and ions, neutrals, and charged dust grains. Linear and nonlinear waves in the plasma near the Moon's surface are discussed. It is noticed that the velocity distribution of photoelectrons can be represented as a superposition of two distribution functions characterized by different electron temperatures: lower energy electrons are knocked out of lunar regolith by photons with energies close to the work function of regolith, whereas higher energy electrons are knocked out by photons corresponding to the peak at 10.2 eV in the solar radiation spectrum. The anisotropy of the electron velocity distribution function is distorted due to the solar wind motion with respect to photoelectrons and dust grains, which leads to the development of instability and excitation of high-frequency oscillations with frequencies in the range of Langmuir and electromagnetic waves. In addition, dust acoustic waves can be excited, e.g., near the lunar terminator. Solutions in the form of dust acoustic solitons corresponding to the parameters of the dust—plasma system in the near-surface layer of the illuminated Moon's surface are found. Ranges of possible Mach numbers and soliton amplitudes are determined.

  16. Surface engineering of the quality factor of metal coated microcantilevers

    SciTech Connect

    Ergincan, O.; Kooi, B. J.; Palasantzas, G.

    2014-12-14

    We performed noise measurements to obtain the quality factor (Q) and frequency shift of gold coated microcantilevers before and after surface modification using focused ion beam. As a result of our studies, it is demonstrated that surface engineering offers a promising method to control and increase the Q factor up to 50% for operation in vacuum. Surface modification could also lead to deviations from the known Q ∼ P{sup −1} behavior at low vacuum pressures P within the molecular regime. Finally, at higher pressures within the continuum regime, where Q is less sensitive to surface changes, a power scaling Q ∼ P{sup c} with c ≈ 0.3 was found instead of c = 0.5. The latter is explained via a semi-empirical formulation to account for continuum dissipation mechanisms at significant Reynolds numbers Re ∼ 1.

  17. Full Elastic Waveform Search Engine for Near Surface Imaging

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Zhang, X.

    2014-12-01

    For processing land seismic data, the near-surface problem is often very complex and may severely affect our capability to image the subsurface. The current state-of-the-art technology for near surface imaging is the early arrival waveform inversion that solves an acoustic wave-equation problem. However, fitting land seismic data with acoustic wavefield is sometimes invalid. On the other hand, performing elastic waveform inversion is very time-consuming. Similar to a web search engine, we develop a full elastic waveform search engine that includes a large database with synthetic elastic waveforms accounting for a wide range of interval velocity models in the CMP domain. With each CMP gather of real data as an entry, the search engine applies Multiple-Randomized K-Dimensional (MRKD) tree method to find approximate best matches to the entry in about a second. Interpolation of the velocity models at CMP positions creates 2D or 3D Vp, Vs, and density models for the near surface area. The method does not just return one solution; it gives a series of best matches in a solution space. Therefore, the results can help us to examine the resolution and nonuniqueness of the final solution. Further, this full waveform search method can avoid the issues of initial model and cycle skipping that the method of full waveform inversion is difficult to deal with.

  18. Carbon deposition on metallic surfaces studied by RF plasma discharge

    NASA Astrophysics Data System (ADS)

    Cairns, J. A.; Coad, J. P.; Richards, E. W. T.; Stenhouse, I. A.

    1980-12-01

    The accumulation of carbonaceous deposits on surfaces exposed to gases containing hydrocarbons or carbon monoxide, such as the stainless steel fuel pins in an advanced gas-cooled nuclear reactor, is investigated by means of an RF plasma discharge system. Specimens of the 20/25/Nb steel used for the fuel pins and of copper were subjected to an RF plasma discharge of a CO/CH4 gas mixture, and the amounts and compositions of the deposits formed were determined. The steel is observed to acquire a significant deposit of carbon after 4 h in the discharge, while the copper remained essentially clean. When the steel is coated with a silica layer, however, it is also found to remain clean throughout its exposure, while nearby uncoated steel specimens were contaminated. Spectroscopic examination of the light emitted from the plasma in the vicinity of the specimens indicates that the carbonaceous deposition is induced largely by the catalytic activity of the steel surface itself, and that deposition can be prevented by the use of suitable coatings.

  19. Plasma decontamination of uranium oxide from stainless steel surfaces

    SciTech Connect

    Veilleux, J.M.; El-Genk, M.S.; Chamberlin, E.P.

    1997-12-01

    The U.S. Department of Energy (DOE) is expected to have 845000 m{sup 3} of transuranic (TRU) waste by the year 2000 that has accumulated during the development and assembly of the nation`s nuclear stockpile. The TRU disposal costs alone range up to $28000/m{sup 3}, which could be reduced to $1800/m{sup 3} or less by treating and converting the material to low-level waste. Plasma-based processes have been shown to remove plutonium and uranium surface contaminants from metallic components and could be used to treat TRU with significant cost avoidance, estimated at over $1.0 billion. Martz and Hess conducted the initial work of plutonium etching in low-power radio-frequency (rf) plasma with etch rates ranging from 0.007 to 0.025 kg/m{sup 2}{center_dot}h. Veilleux et al. reported that plasma decontamination of uranium from the interior of aluminum objects results in etch rates an order of magnitude greater. The current work reports on removal rates of uranium from stainless steel surfaces and includes estimates of the etch rates and characteristic times for removal.

  20. Engineered Rydberg Atom-Surface Interactions Using Metamaterials

    NASA Astrophysics Data System (ADS)

    Chao, Yuanxi; Sheng, Jiteng; Sedlacek, Jonathan; Shaffer, James

    2016-05-01

    We report on studies of Rydberg atom-surface interactions aimed at engineering Rydberg atom coupling to metamaterials. Rydberg atoms posses large electric dipole moments that can be strongly coupled to the tightly confined electromagnetic fields of surface phonon polariton (SPhP) modes of a properly constructed piezoelectric superlattice (PSL). Coupling of Rb87 Rydberg atoms, typically in microwave range, to real SPhP resonances on a periodically poled lithium niobate surface is studied theoretically for different periodic domain and surface orientations. Coupling constants, much larger than the dissipation of the atom-surface system, are calculated for atom-surface separations in the near field. This remarkable result opens up a simple way to design and conduct experiments to study the atom-surface interactions in the strong coupling regime which is usually hard to reach in other systems. The light-matter interaction described can be used for a quantum hybrid system that has potential applications for quantum photonic devices. Experimental studies of surfaces showing the efficacy of our calculations are also presented. This work is supported by AFOSR.

  1. First wall and limiter surfaces for plasma devices

    DOEpatents

    Krauss, Alan R.; Gruen, Dieter M.

    1983-01-01

    For a plasma device, a surface of a first wall or limiter with reduced loss of metal by erosion is provided by forming a monolayer of an alkali or alkaline earth metal on a substrate of a more negative metal. The surface exhibits a reduced loss of metal by erosion and particularly by sputtering and an increased secondary ion/neutral ratio resulting in a greater return of atoms escaping from the surface. In another aspect of the invention, the substrate includes a portion of the second metal and serves to replenish the surface layer with atoms of the second metal. In one process associated with self-generating desired surface, the metals as an alloy are selected to provide a first layer having a high concentration of the second metal in contrast to a very low concentration in the second layer and bulk to result in a surface with a monolayer of the second metal. When the combination of metals results in an intermetallic compound, selective removal of the first metal during an initial bombardment stage provides the surface layer with a predominance of the second metal.

  2. Ion Dynamics and ICRH Heating in the Exhaust Plasma of The VASIMR Engine

    NASA Astrophysics Data System (ADS)

    Bering, E. A., III; Chang-Díaz, F. R.; Squire, J. P.; Jacobson, V.; Ilin, A.; Winter, D. S.; Bengtson, R. D.; Gibson, J. N.; Glober, T. W.; Brukardt, M.; Rodriguez, W.

    2002-01-01

    The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) is a high power, radio frequency-driven magnetoplasma rocket, capable of Isp/thrust modulation at constant power. The plasma is produced by an integrated helicon discharge. However, the bulk of the plasma energy is added in a separate downstream stage by ion cyclotron resonance heating (ICRH.) Axial momentum is obtained by the adiabatic expansion of the plasma in a magnetic nozzle. Exhaust variation in the VASIMR is primarily achieved by the selective partitioning of the RF power to the helicon and ICRH systems, with the proper adjustment of the propellant flow. A laboratory simulation of the 25 kW proof of concept VASIMIR engine has been under development and test at NASA-JSC for several years. Experimentally, high density, stable plasma discharges have been generated in Helium, Hydrogen, Deuterium, Argon and Xenon. This paper will review the plasma diagnostic results obtained in 2000-2002 in a continuing series of performance optimization and design development studies. Available plasma diagnostics include a triple probe, a Mach probe, a bolometer, a television monitor, an H- photometer, a spectrometer, neutral gas pressure and flow measurements, several gridded energy analyzers (retarding potential analyzer or RPA), a surface recombination probe system, an emission probe, a directional, steerable RPA and other diagnostics. Reciprocating Langmuir and Mach probes are the primary plasma diagnostics. The Langmuir probe measures electron density and temperature profiles while the Mach probe measures flow profiles. Together this gives total plasma particle flux. An array of thermocouples provides a temperature map of the system. Ion flow velocities are estimated through three techniques: Mach probes, retarding potential analyzer, and spectroscopic measurements. During 2000-2002, we have performed a series of experiments on the VASIMR apparatus with several objectives, to explore the parameter space that

  3. Atmospheric-Pressure Plasma Cleaning of Contaminated Surfaces

    SciTech Connect

    Robert F. Hicks; Gary S. Selwyn

    2001-01-09

    Project was to develop a low-cost, environmentally benign technology for the decontamination and decommissioning of transuranic waste. With the invention of the atmospheric-pressure plasma jet the goal was achieved. This device selectively etches heavy metals from surfaces, rendering objects radiation free and suitable for decommissioning. The volatile reaction products are captured on filters, which yields a tremendous reduction in the volume of the waste. Studies on tantalum, a surrogate material for plutonium, have shown that etch rate of 6.0 microns per minute can be achieved under mild conditions. Over the past three years, we have made numerous improvements in the design of the plasma jet. It may now be operated for hundreds of hours and not undergo any degradation in performance. Furthermore, small compact units have been developed, which are easily deployed in the field.

  4. Cleaning of optical surfaces by capacitively coupled RF discharge plasma

    SciTech Connect

    Yadav, P. K. Rai, S. K.; Nayak, M.; Lodha, G. S.; Kumar, M.; Chakera, J. A.; Naik, P. A.; Mukherjee, C.

    2014-04-24

    In this paper, we report cleaning of carbon capped molybdenum (Mo) thin film by in-house developed radio frequency (RF) plasma reactor, at different powers and exposure time. Carbon capped Mo films were exposed to oxygen plasma for different durations at three different power settings, at a constant pressure. After each exposure, the thickness of the carbon layer and the roughness of the film were determined by hard x-ray reflectivity measurements. It was observed that most of the carbon film got removed in first 15 minutes exposure. A high density layer formed on top of the Mo film was also observed and it was noted that this layer cannot be removed by successive exposures at different powers. A significant improvement in interface roughness with a slight improvement in top film roughness was observed. The surface roughness of the exposed and unexposed samples was also confirmed by atomic force microscopy measurements.

  5. Review: engineering particles using the aerosol-through-plasma method

    SciTech Connect

    Phillips, Jonathan; Luhrs, Claudia C; Richard, Monique

    2009-01-01

    For decades, plasma processing of materials on the nanoscale has been an underlying enabling technology for many 'planar' technologies, particularly virtually every aspect of modern electronics from integrated-circuit fabrication with nanoscale elements to the newest generation of photovoltaics. However, it is only recent developments that suggest that plasma processing can be used to make 'particulate' structures of value in fields, including catalysis, drug delivery, imaging, higher energy density batteries, and other forms of energy storage. In this paper, the development of the science and technology of one class of plasma production of particulates, namely, aerosol-through-plasma (A-T-P), is reviewed. Various plasma systems, particularly RF and microwave, have been used to create nanoparticles of metals and ceramics, as well as supported metal catalysts. Gradually, the complexity of the nanoparticles, and concomitantly their potential value, has increased. First, unique two-layer particles were generated. These were postprocessed to create unique three-layer nanoscale particles. Also, the technique has been successfully employed to make other high-value materials, including carbon nanotubes, unsupported graphene, and spherical boron nitride. Some interesting plasma science has also emerged from efforts to characterize and map aerosol-containing plasmas. For example, it is clear that even a very low concentration of particles dramatically changes plasma characteristics. Some have also argued that the local-thermodynamic-equilibrium approach is inappropriate to these systems. Instead, it has been suggested that charged- and neutral-species models must be independently developed and allowed to 'interact' only in generation terms.

  6. Improving the work function of the niobium surface of SRF cavities by plasma processing

    DOE PAGESBeta

    Tyagi, P. V.; Doleans, M.; Hannah, B.; Afanador, R.; McMahan, C.; Stewart, S.; Mammosser, J.; Howell, M.; Saunders, J.; Degraff, B.; et al

    2016-01-01

    An in situ plasma processing technique using chemically reactive oxygen plasma to remove hydrocarbons from superconducting radio frequency cavity surfaces at room temperature was developed at the spallation neutron source, at Oak Ridge National Laboratory. To understand better the interaction between the plasma and niobium surface, surface studies on small samples were performed. In this article, we report the results from those surface studies. The results show that plasma processing removes hydrocarbons from top surface and improves the surface work function by 0.5₋1.0 eV. Improving the work function of RF surface of cavities can help to improve their operational performance.

  7. Improving the work function of the niobium surface of SRF cavities by plasma processing

    NASA Astrophysics Data System (ADS)

    Tyagi, P. V.; Doleans, M.; Hannah, B.; Afanador, R.; McMahan, C.; Stewart, S.; Mammosser, J.; Howell, M.; Saunders, J.; Degraff, B.; Kim, S.-H.

    2016-04-01

    An in situ plasma processing technique using chemically reactive oxygen plasma to remove hydrocarbons from superconducting radio frequency cavity surfaces at room temperature has been developed at the spallation neutron source, at Oak Ridge National Laboratory. To understand better the interaction between the plasma and niobium surface, surface studies on small samples were performed. In this article, we report the results from those surface studies. The results show that plasma processing removes hydrocarbons from top surface and improves the surface work function by 0.5-1.0 eV. Improving the work function of RF surface of cavities can help to improve their operational performance.

  8. Surface Engineering of Nanostructured Titanium Implants with Bioactive Ions.

    PubMed

    Kim, H-S; Kim, Y-J; Jang, J-H; Park, J-W

    2016-05-01

    Surface nanofeatures and bioactive ion chemical modification are centrally important in current titanium (Ti) oral implants for enhancing osseointegration. However, it is unclear whether the addition of bioactive ions definitively enhances the osteogenic capacity of a nanostructured Ti implant. We systematically investigated the osteogenesis process of human multipotent adipose stem cells triggered by bioactive ions in the nanostructured Ti implant surface. Here, we report that bioactive ion surface modification (calcium [Ca] or strontium [Sr]) and resultant ion release significantly increase osteogenic activity of the nanofeatured Ti surface. We for the first time demonstrate that ion modification actively induces focal adhesion development and expression of critical adhesion–related genes (vinculin, talin, and RHOA) of human multipotent adipose stem cells, resulting in enhanced osteogenic differentiation on the nanofeatured Ti surface. It is also suggested that fibronectin adsorption may have only a weak effect on early cellular events of mesenchymal stem cells (MSCs) at least in the case of the nanostructured Ti implant surface incorporating Sr. Moreover, results indicate that Sr overrides the effect of Ca and other important surface factors (i.e., surface area and wettability) in the osteogenesis function of various MSCs (derived from human adipose, bone marrow, and murine bone marrow). In addition, surface engineering of nanostructured Ti implants using Sr ions is expected to exert additional beneficial effects on implant bone healing through the proper balancing of the allocation of MSCs between adipogenesis and osteogenesis. This work provides insight into the future surface design of Ti dental implants using surface bioactive ion chemistry and nanotopography. PMID:26961491

  9. Characteristics of the surface plasma wave in a self-gravitating magnetized dusty plasma slab

    SciTech Connect

    Lee, Myoung-Jae; Jung, Young-Dae

    2015-11-15

    The dispersion properties of surface dust ion-acoustic waves in a self-gravitating magnetized dusty plasma slab are investigated. The dispersion relation is derived by using the low-frequency magnetized dusty dielectric function and the surface wave dispersion integral for the slab geometry. We find that the self-gravitating effect suppresses the frequency of surface dust ion-acoustic wave for the symmetric mode in the long wavelength regime, whereas it hardly changes the frequency for the anti-symmetric mode. As the slab thickness and the wave number increase, the surface wave frequency slowly decreases for the symmetric mode but increases significantly for the anti-symmetric mode. The influence of external magnetic field is also investigated in the case of symmetric mode. We find that the strength of the magnetic field enhances the frequency of the symmetric-mode of the surface plasma wave. The increase of magnetic field reduces the self-gravitational effect and thus the self-gravitating collapse may be suppressed and the stability of dusty objects in space is enhanced.

  10. Blistering on tungsten surface exposed to high flux deuterium plasma

    NASA Astrophysics Data System (ADS)

    Xu, H. Y.; Liu, W.; Luo, G. N.; Yuan, Y.; Jia, Y. Z.; Fu, B. Q.; De Temmerman, G.

    2016-04-01

    The blistering behaviour of tungsten surfaces exposed to very high fluxes (1-2 × 1024/m2/s) of low energy (38 eV) deuterium plasmas was investigated as a function of ion fluence (0.2-7 × 1026 D/m2) and surface temperature (423-873 K). Blisters were observed under all conditions, especially up to temperatures of 873 K. The blister parameters are evaluated with blister size, blister density and surface coverage. The blister size always peaked at less than 0.5 μm and no blister larger than 10 μm is observed even at high fluence. The blister densities are found in high magnitude of 106 blisters/m2, with the surface coverages lower than 2%. The formation of cracks in the sub-surface region was observed by cross-section imaging. Changes in blister size and shape with fluence and temperature suggest processes of predominantly nucleation and subsequent growth of blisters. The smaller blister size is considered to be caused by a combination of flux-related effects such as enhanced defect formation in the near surface region, reduced deuterium diffusivity and relatively short exposure times.

  11. An Integrated Surface Engineering Technology Development for Improving Energy Efficiency of Engine Components

    SciTech Connect

    Stephen Hsu; Liming Chang; Huan Zhan

    2009-05-31

    Frictional losses are inherent in most practical mechanical systems. The ability to control friction offers many opportunities to achieve energy conservation. Over the years, materials, lubricants, and surface modifications have been used to reduce friction in automotive and diesel engines. However, in recent years, progress in friction reduction technology has slowed because many of the inefficiencies have been eliminated. A new avenue for friction reduction is needed. Designing surfaces specifically for friction reduction with concomitant enhanced durability for various engine components has emerged recently as a viable opportunity due to advances in fabrication and surface finishing techniques. Recently, laser ablated dimples on surfaces have shown friction reduction properties and have been demonstrated successfully in conformal contacts such as seals where the speed is high and the load is low. The friction reduction mechanism in this regime appears to depend on the size, patterns, and density of dimples in the contact. This report describes modeling efforts in characterizing surface textures and understanding their mechanisms for enhanced lubrication under high contact pressure conditions. A literature survey is first presented on the development of descriptors for irregular surface features. This is followed by a study of the hydrodynamic effects of individual micro-wedge dimples using the analytical solution of the 1-D Reynolds equation and the determination of individual components of the total friction resistance. The results obtained provide a better understanding of the dimple orientation effects and the approach which may be used to further compare the friction reduction provided by different texture patterns.

  12. Dependence of LTX plasma performance on surface conditions as determined by in situ analysis of plasma facing components

    NASA Astrophysics Data System (ADS)

    Lucia, M.; Kaita, R.; Majeski, R.; Bedoya, F.; Allain, J. P.; Abrams, T.; Bell, R. E.; Boyle, D. P.; Jaworski, M. A.; Schmitt, J. C.

    2015-08-01

    The Materials Analysis and Particle Probe (MAPP) diagnostic has been implemented on the Lithium Tokamak Experiment (LTX) at PPPL, providing the first in situ X-ray photoelectron spectroscopy (XPS) surface characterization of tokamak plasma facing components (PFCs). MAPP samples were exposed to argon glow discharge conditioning (GDC), lithium evaporations, and hydrogen tokamak discharges inside LTX. Samples were analyzed with XPS, and alterations to surface conditions were correlated against observed LTX plasma performance changes. Argon GDC caused the accumulation of nm-scale metal oxide layers on the PFC surface, which appeared to bury surface carbon and oxygen contamination and thus improve plasma performance. Lithium evaporation led to the rapid formation of a lithium oxide (Li2O) surface; plasma performance was strongly improved for sufficiently thick evaporative coatings. Results indicate that a 5 h argon GDC or a 50 nm evaporative lithium coating will both significantly improve LTX plasma performance.

  13. Plasma behavior in the boundary layer near a railgun surface

    SciTech Connect

    Kang, S.W.; McCallen, R. )

    1989-01-01

    Viscous flow and thermal characteristics are theoretically analyzed for the plasma behind a moving projectile inside a railgun. When only convective effects are included in the turbulent boundary layer analysis, the results suggest a temperature maximum in the wall region for very high velocity flows. The case of radiative as well as convective transport has also been investigated for an optically thick boundary layer flow by application of an approximate method. Results show a sizable effect of radiation on the flow characteristics, especially on the heat transfer rate to the railgun surface.

  14. Plasma behavior in the boundary layer near a railgun surface

    SciTech Connect

    Kang, Sang-Wook; McCallen, R.E.

    1988-03-01

    Viscous flow and thermal characteristics are theoretically analyzed for the plasma behind a moving projectile inside a railgun. When only convective effects are included in the turbulent boundary layer analysis, the results suggest a temperature maximum in the wall region for very high velocity flows. The case of radiative as well as convective transport has also been investigated for an optically-thick boundary layer flow by application of an approximate method. Results show a sizable effect of radiation on the flow characteristics, especially on the heat-transfer rate to the railgun surface. 7 refs., 2 figs.

  15. Surface hardening of cutting elements agricultural machinery vibro arc plasma

    NASA Astrophysics Data System (ADS)

    Sharifullin, S. N.; Adigamov, N. R.; Adigamov, N. N.; Solovev, R. Y.; Arakcheeva, K. S.

    2016-01-01

    At present, the state technical policy aimed at the modernization of worn equipment, including agriculture, based on the use of high-performance technology called nanotechnology. By upgrading worn-out equipment meant restoring it with the achievement of the above parameters passport. The existing traditional technologies are not suitable for the repair of worn-out equipment modernization. This is especially true of imported equipment. Out here alone - is the use of high-performance technologies. In this paper, we consider the use of vibro arc plasma for surface hardening of cutting elements of agricultural machinery.

  16. Engineering the Microstructure of Solution Precursor Plasma-Sprayed Coatings

    NASA Astrophysics Data System (ADS)

    Bertolissi, G.; Chazelas, C.; Bolelli, G.; Lusvarghi, L.; Vardelle, M.; Vardelle, A.

    2012-12-01

    This study examines the fundamental reactions that occur in-flight during the solution precursor plasma spraying (SPPS) of solutions containing Zr- and Y-based salts in water or ethanol solvent. The effect of plasma jet composition (pure Ar, Ar-H2 and Ar-He-H2 mixtures) on the mechanical break-up and thermal treatment of the solution, mechanically injected in the form of a liquid stream, was investigated. Observation of the size evolution of the solution droplets in the plasma flow by means of a laser shadowgraphy technique, showed that droplet break-up was more effective and solvent evaporation was faster when the ethanol-based solution was injected into binary or ternary plasma gas mixtures. In contrast with water-based solutions, residual liquid droplets were always detected at the substrate location. The morphology and structure of the material deposited onto stainless steel substrates during single-scan experiments were characterised by SEM, XRD and micro-Raman spectroscopy and were shown to be closely related to in-flight droplet behaviour. In-flight pyrolysis and melting of the precursor led to well-flattened splats, whereas residual liquid droplets at the substrate location turned into non pyrolysed inclusions. The latter, although subsequently pyrolysed by the plasma heat during the deposition of entire coatings, resulted in porous "sponge-like" structures in the deposit.

  17. Enhanced biocompatibility of TiO2 surfaces by highly reactive plasma

    NASA Astrophysics Data System (ADS)

    Junkar, Ita; Kulkarni, Mukta; Drašler, Barbara; Rugelj, Neža; Recek, Nina; Drobne, Damjana; Kovač, Janez; Humpolicek, Petr; Iglič, Aleš; Mozetič, Miran

    2016-06-01

    In the present study the biological response to various nanotopographic features after gaseous plasma treatment were studied. The usefulness of nanostructured surfaces for implantable materials has already been acknowledged, while less is known on the combined effect of nanostructured plasma modified surfaces. In the present work the influence of oxygen plasma treatment on nanostructured titanium oxide (TiO2) surfaces was studied. Characterization of the TiO2 surface chemical composition and morphological features was analyzed after plasma modification by x-ray photoelectron spectroscopy and by scanning electron microscopy while surface wettability was studied with measuring the water contact angle. Cell adhesion and morphology was assessed from images taken with scanning electron microscopy, whereas cell viability was measured with a calorimetric assay. The obtained results showed that oxygen plasma treatment of TiO2 nanotube surfaces significantly influences the adhesion and morphology of osteoblast-like cells in comparison to untreated nanostructured surfaces. Marked changes in surface composition of plasma treated surfaces were observed, as plasma treatment removed hydrocarbon contamination and removed fluorine impurities, which were present due to the electrochemical anodization process. However no differences in wettability of untreated and plasma treated surfaces were noticed. Treatment with oxygen plasma stimulated osteoblast-like cell adhesion and spreading on the nanostructured surface, suggesting the possible use of oxygen plasma surface treatment to enhance osteoblast-like cell response.

  18. Plasma treatments of wool fiber surface for microfluidic applications

    SciTech Connect

    Jeon, So-Hyoun; Hwang, Ki-Hwan; Lee, Jin Su; Boo, Jin-Hyo; Yun, Sang H.

    2015-09-15

    Highlights: • We used atmospheric plasma for tuning the wettability of wool fibers. • The wicking rates of the wool fibers increased with increasing treatment time. • The increasing of wettability results in removement of fatty acid on the wool surface. - Abstract: Recent progress in health diagnostics has led to the development of simple and inexpensive systems. Thread-based microfluidic devices allow for portable and inexpensive field-based technologies enabling medical diagnostics, environmental monitoring, and food safety analysis. However, controlling the flow rate of wool thread, which is a very important part of thread-based microfluidic devices, is quite difficult. For this reason, we focused on thread-based microfluidics in the study. We developed a method of changing the wettability of hydrophobic thread, including wool thread. Thus, using natural wool thread as a channel, we demonstrate herein that the manipulation of the liquid flow, such as micro selecting and micro mixing, can be achieved by applying plasma treatment to wool thread. In addition to enabling the flow control of the treated wool channels consisting of all natural substances, this procedure will also be beneficial for biological sensing devices. We found that wools treated with various gases have different flow rates. We used an atmospheric plasma with O{sub 2}, N{sub 2} and Ar gases.

  19. Directional transport of impinging capillary jet on wettability engineered surfaces

    NASA Astrophysics Data System (ADS)

    Ghosh, Aritra; Chatterjee, Souvick; Sinha Mahapatra, Pallab; Ganguly, Ranjan; Megaridis, Constantine

    2015-11-01

    Impingement of capillary jet on a surface is important for applications like heat transfer, or for liquid manipulation in bio-microfluidic devices. Using wettability engineered surfaces, we demonstrate pump-less and directional transport of capillary jet on a flat surface. Spatial contrast of surface energy and a wedge-shape geometry of the wettability confined track on the substrate facilitate formation of instantaneous spherical bulges upon jet impingement; these bulges are further transported along the superhydrophilic tracks due to Laplace pressure gradient. Critical condition warranted for formation of liquid bulge along the varying width of the superhydrophilic track is calculated analytically and verified experimentally. The work throws light on novel fluid phenomena of unidirectional jet impingement on wettability confined surfaces and provides a platform for innovative liquid manipulation technique for further application. By varying the geometry and wettability contrast on the surface, one can achieve volume flow rates of ~ O(100 μL/sec) and directionally guided transport of the jet liquid, pumplessly at speeds of ~ O(10cm/sec).

  20. Current density and plasma displacement near perturbed rational surfaces

    SciTech Connect

    Boozer, Allen H.; Pomphrey, Neil

    2010-11-15

    The current density in the vicinity of a rational surface of a force-free magnetic field subjected to an ideal perturbation is shown to be the sum of both a smooth and a delta-function distribution, which give comparable currents. The maximum perturbation to the smooth current density is comparable to a typical equilibrium current density and the width of the layer in which the current flows is shown to be proportional to the perturbation amplitude. In the standard linearized theory, the plasma displacement has an unphysical jump across the rational surface, but the full theory gives a continuous displacement. A resolution of the paradox of a jump in the displacement is required for interpreting perturbed tokamak equilibria.

  1. Plasma-induced conversion of surface-adsorbed hydrocarbons

    SciTech Connect

    Sackinger, W.M.

    1992-07-01

    Experimental results are reported for an electrical device for direct conversion of methane into higher hydrocarbons. A microchannel plate is excited with electrons from a photoemissive source, and electron impact ionization of methane on the inner surfaces of the microchannels creates an ion feedback process. The resulting low-density plasma creates higher hydrocarbons when charged particles impact the surfaces at grazing incidence. The production Of C{sub 2} to C{sub 8}-containing gases was noted, with a selectivity for C{sub 2} of 39% in one case. The proportions of converted products and the conversion rates depend upon the electrical voltage, the microchannel geometry, and the operating pressure. Conversion rates increase with operating pressure.

  2. Plasma-induced conversion of surface-adsorbed hydrocarbons

    SciTech Connect

    Sackinger, W.M.

    1992-01-01

    Experimental results are reported for an electrical device for direct conversion of methane into higher hydrocarbons. A microchannel plate is excited with electrons from a photoemissive source, and electron impact ionization of methane on the inner surfaces of the microchannels creates an ion feedback process. The resulting low-density plasma creates higher hydrocarbons when charged particles impact the surfaces at grazing incidence. The production Of C{sub 2} to C{sub 8}-containing gases was noted, with a selectivity for C{sub 2} of 39% in one case. The proportions of converted products and the conversion rates depend upon the electrical voltage, the microchannel geometry, and the operating pressure. Conversion rates increase with operating pressure.

  3. Ion extraction from a saddle antenna RF surface plasma source

    NASA Astrophysics Data System (ADS)

    Dudnikov, V.; Johnson, R. P.; Han, B.; Murray, S.; Pennisi, T.; Piller, C.; Santana, M.; Stockli, M.; Welton, R.; Breitschopf, J.; Dudnikova, G.

    2015-04-01

    Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H+ and H- ion generation around 3 to 5 mA/cm2 per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H- ion production efficiency and SPS reliability and availability. At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm2 per kW of RF power at 13.56 MHz. Initial cesiation of the SPS was performed by heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power ˜1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with ˜4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H- beam without intensity degradation was demonstrated in the AlN discharge chamber for a long time at high discharge power in an RF SPS with an external antenna. Continuous wave (CW) operation of the SA SPS has been tested on the small test stand. The general design of the CW SA SPS is based on the pulsed version. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. CW operation with negative ion extraction was tested with RF power up to 1.8 kW from the generator (˜1.2 kW in the plasma) with production up to Ic=7 mA. Long term operation was tested with 1.2 kW from the RF generator (˜0.8 kW in the plasma) with production of Ic=5 mA, Iex ˜15 mA (Uex=8 kV, Uc=14 kV).

  4. Ion extraction from a saddle antenna RF surface plasma source

    SciTech Connect

    Dudnikov, V. Johnson, R. P.; Han, B.; Murray, S.; Pennisi, T.; Piller, C.; Santana, M.; Stockli, M.; Welton, R.; Breitschopf, J.; Dudnikova, G.

    2015-04-08

    Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H{sup +} and H{sup −} ion generation around 3 to 5 mA/cm{sup 2} per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H{sup −} ion production efficiency and SPS reliability and availability. At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm{sup 2} per kW of RF power at 13.56 MHz. Initial cesiation of the SPS was performed by heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power ∼1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with ∼4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H{sup −} beam without intensity degradation was demonstrated in the AlN discharge chamber for a long time at high discharge power in an RF SPS with an external antenna. Continuous wave (CW) operation of the SA SPS has been tested on the small test stand. The general design of the CW SA SPS is based on the pulsed version. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. CW operation with negative ion extraction was tested with RF power up to 1.8 kW from the generator (∼1.2 kW in the plasma) with production up to Ic=7 mA. Long term operation was tested with 1.2 kW from the RF generator (∼0.8 kW in the plasma) with production of Ic=5 mA, Iex ∼15 mA (Uex=8 kV, Uc=14 kV)

  5. Focal Adhesion of Osteoblastic Cells on Titanium Surface with Amine Functionalities Formed by Plasma Polymerization

    NASA Astrophysics Data System (ADS)

    Song, Heesang; Jung, Sang Chul; Kim, Byung Hoon

    2012-08-01

    To enhance the focal adhesion of osteoblastic cells on a titanium surface, plasma polymerized allyl amine (AAm) thin films were deposited by plasma polymerization. This plasma polymer functionalization of titanium is advantageous for osteoblastic focal adhesion formation. Such Ti surfaces are useful for the fabrication of titanium-based dental implants for enhancement of osseointegration.

  6. Surface engineered porous silicon for stable, high performance electrochemical supercapacitors

    PubMed Central

    Oakes, Landon; Westover, Andrew; Mares, Jeremy W.; Chatterjee, Shahana; Erwin, William R.; Bardhan, Rizia; Weiss, Sharon M.; Pint, Cary L.

    2013-01-01

    Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate a universal route to transform porous silicon (P-Si) into stable electrodes for electrochemical devices through growth of an ultra-thin, conformal graphene coating on the P-Si surface. This graphene coating simultaneously passivates surface charge traps and provides an ideal electrode-electrolyte electrochemical interface. This leads to 10–40X improvement in energy density, and a 2X wider electrochemical window compared to identically-structured unpassivated P-Si. This work demonstrates a technique generalizable to mesoporous and nanoporous materials that decouples the engineering of electrode structure and electrochemical surface stability to engineer performance in electrochemical environments. Specifically, we demonstrate P-Si as a promising new platform for grid-scale and integrated electrochemical energy storage. PMID:24145684

  7. Surface engineered porous silicon for stable, high performance electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Oakes, Landon; Westover, Andrew; Mares, Jeremy W.; Chatterjee, Shahana; Erwin, William R.; Bardhan, Rizia; Weiss, Sharon M.; Pint, Cary L.

    2013-10-01

    Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate a universal route to transform porous silicon (P-Si) into stable electrodes for electrochemical devices through growth of an ultra-thin, conformal graphene coating on the P-Si surface. This graphene coating simultaneously passivates surface charge traps and provides an ideal electrode-electrolyte electrochemical interface. This leads to 10-40X improvement in energy density, and a 2X wider electrochemical window compared to identically-structured unpassivated P-Si. This work demonstrates a technique generalizable to mesoporous and nanoporous materials that decouples the engineering of electrode structure and electrochemical surface stability to engineer performance in electrochemical environments. Specifically, we demonstrate P-Si as a promising new platform for grid-scale and integrated electrochemical energy storage.

  8. Surface engineered porous silicon for stable, high performance electrochemical supercapacitors.

    PubMed

    Oakes, Landon; Westover, Andrew; Mares, Jeremy W; Chatterjee, Shahana; Erwin, William R; Bardhan, Rizia; Weiss, Sharon M; Pint, Cary L

    2013-01-01

    Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate a universal route to transform porous silicon (P-Si) into stable electrodes for electrochemical devices through growth of an ultra-thin, conformal graphene coating on the P-Si surface. This graphene coating simultaneously passivates surface charge traps and provides an ideal electrode-electrolyte electrochemical interface. This leads to 10-40X improvement in energy density, and a 2X wider electrochemical window compared to identically-structured unpassivated P-Si. This work demonstrates a technique generalizable to mesoporous and nanoporous materials that decouples the engineering of electrode structure and electrochemical surface stability to engineer performance in electrochemical environments. Specifically, we demonstrate P-Si as a promising new platform for grid-scale and integrated electrochemical energy storage. PMID:24145684

  9. Establishment of cell surface engineering and its development.

    PubMed

    Ueda, Mitsuyoshi

    2016-07-01

    Cell surface display of proteins/peptides has been established based on mechanisms of localizing proteins to the cell surface. In contrast to conventional intracellular and extracellular (secretion) expression systems, this method, generally called an arming technology, is particularly effective when using yeasts as a host, because the control of protein folding that is often required for the preparation of proteins can be natural. This technology can be employed for basic and applied research purposes. In this review, I describe various strategies for the construction of engineered yeasts and provide an outline of the diverse applications of this technology to industrial processes such as the production of biofuels and chemicals, as well as bioremediation and health-related processes. Furthermore, this technology is suitable for novel protein engineering and directed evolution through high-throughput screening, because proteins/peptides displayed on the cell surface can be directly analyzed using intact cells without concentration and purification. Functional proteins/peptides with improved or novel functions can be created using this beneficial, powerful, and promising technique. PMID:27305282

  10. Advanced Vacuum Plasma Spray (VPS) for a Robust, Longlife and Safe Space Shuttle Main Engine (SSME)

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Elam, Sandra K.; McKechnie, Timothy N.; Power, Christopher A.

    2010-01-01

    In 1984, the Vacuum Plasma Spray Lab was built at NASA/Marshall Space Flight Center for applying durable, protective coatings to turbine blades for the space shuttle main engine (SSME) high pressure fuel turbopump. Existing turbine blades were cracking and breaking off after five hot fire tests while VPS coated turbine blades showed no wear or cracking after 40 hot fire tests. Following that, a major manufacturing problem of copper coatings peeling off the SSME Titanium Main Fuel Valve Housing was corrected with a tenacious VPS copper coating. A patented VPS process utilizing Functional Gradient Material (FGM) application was developed to build ceramic lined metallic cartridges for space furnace experiments, safely containing gallium arsenide at 1260 degrees centigrade. The VPS/FGM process was then translated to build robust, long life, liquid rocket combustion chambers for the space shuttle main engine. A 5K (5,000 Lb. thrust) thruster with the VPS/FGM protective coating experienced 220 hot firing tests in pristine condition with no wear compared to the SSME which showed blanching (surface pulverization) and cooling channel cracks in less than 30 of the same hot firing tests. After 35 of the hot firing tests, the injector face plates disintegrated. The VPS/FGM process was then applied to spraying protective thermal barrier coatings on the face plates which showed 50% cooler operating temperature, with no wear after 50 hot fire tests. Cooling channels were closed out in two weeks, compared to one year for the SSME. Working up the TRL (Technology Readiness Level) to establish the VPS/FGM process as viable technology, a 40K thruster was built and is currently being tested. Proposed is to build a J-2X size liquid rocket engine as the final step in establishing the VPS/FGM process TRL for space flight.

  11. Apparatus for coating a surface with a metal utilizing a plasma source

    DOEpatents

    Brown, Ian G.; MacGill, Robert A.; Galvin, James E.

    1991-01-01

    An apparatus and method for coating or layering a surface with a metal utilizing a metal vapor vacuum arc plasma source. The apparatus includes a trigger mechanism for actuating the metal vacuum vapor arc plasma source in a pulsed mode at a predetermined rate. The surface or substrate to be coated or layered is supported in position with the plasma source in a vacuum chamber. The surface is electrically biased for a selected period of time during the pulsed mode of operation of the plasma source. Both the pulsing of the metal vapor vacuum arc plasma source and the electrical biasing of the surface are synchronized for selected periods of time.

  12. Insoluble coatings for Stirling engine heat pipe condenser surfaces

    NASA Astrophysics Data System (ADS)

    Dussinger, Peter M.

    1993-09-01

    The work done by Thermacore, Inc., Lancaster, Pennsylvania, for the Phase 1, 1992 SBIR National Aeronautics and Space Administration Contract, 'Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces' is described. The work was performed between January 1992 and July 1992. Stirling heat engines are being developed for electrical power generation use on manned and unmanned earth orbital and planetary missions. Dish Stirling solar systems and nuclear reactor Stirling systems are two of the most promising applications of the Stirling engine electrical power generation technology. The sources of thermal energy used to drive the Stirling engine typically are non-uniform in temperature and heat flux. Liquid metal heat pipe receivers are used as thermal transformers and isothermalizers to deliver the thermal energy at a uniform high temperature to the heat input section of the Stirling engine. The use of a heat pipe receiver greatly enhances system efficiency and potential life span. One issue that is raised during the design phase of heat pipe receivers is the potential solubility corrosion of the Stirling engine heat input section by the liquid metal working fluid. This Phase 1 effort initiated a program to evaluate and demonstrate coatings, applied to nickel based Stirling engine heater head materials, that are practically 'insoluble' in sodium, potassium, and NaK. This program initiated a study of nickel aluminide as a coating and developed and demonstrated a heat pipe test vehicle that can be used to test candidate materials and coatings. Nickel 200 and nickel aluminide coated Nickel 200 were tested for 1000 hours at 800 C at a condensation heat flux of 25 W/sq cm. Subsequent analyses of the samples showed no visible sign of solubility corrosion of either coated or uncoated samples. The analysis technique, photomicrographs at 200X, has a resolution of better than 2.5 microns (.0001 in). The results indicate that the heat pipe environment is not directly

  13. Insoluble coatings for Stirling engine heat pipe condenser surfaces

    NASA Technical Reports Server (NTRS)

    Dussinger, Peter M.

    1993-01-01

    The work done by Thermacore, Inc., Lancaster, Pennsylvania, for the Phase 1, 1992 SBIR National Aeronautics and Space Administration Contract, 'Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces' is described. The work was performed between January 1992 and July 1992. Stirling heat engines are being developed for electrical power generation use on manned and unmanned earth orbital and planetary missions. Dish Stirling solar systems and nuclear reactor Stirling systems are two of the most promising applications of the Stirling engine electrical power generation technology. The sources of thermal energy used to drive the Stirling engine typically are non-uniform in temperature and heat flux. Liquid metal heat pipe receivers are used as thermal transformers and isothermalizers to deliver the thermal energy at a uniform high temperature to the heat input section of the Stirling engine. The use of a heat pipe receiver greatly enhances system efficiency and potential life span. One issue that is raised during the design phase of heat pipe receivers is the potential solubility corrosion of the Stirling engine heat input section by the liquid metal working fluid. This Phase 1 effort initiated a program to evaluate and demonstrate coatings, applied to nickel based Stirling engine heater head materials, that are practically 'insoluble' in sodium, potassium, and NaK. This program initiated a study of nickel aluminide as a coating and developed and demonstrated a heat pipe test vehicle that can be used to test candidate materials and coatings. Nickel 200 and nickel aluminide coated Nickel 200 were tested for 1000 hours at 800 C at a condensation heat flux of 25 W/sq cm. Subsequent analyses of the samples showed no visible sign of solubility corrosion of either coated or uncoated samples. The analysis technique, photomicrographs at 200X, has a resolution of better than 2.5 microns (.0001 in). The results indicate that the heat pipe environment is not directly

  14. Plasma-Surface Interactions in Hollow Cathode Discharges for Electric Propulsion

    NASA Astrophysics Data System (ADS)

    Capece, Angela Maria

    Electric thrusters generate high exhaust velocities and can achieve specific impulses in excess of 1000 s. The low thrust generation and high specific impulse make electric propulsion ideal for interplanetary missions, spacecraft station keeping, and orbit raising maneuvers. Consequently, these devices have been used on a variety of space missions including Deep Space 1, Dawn, and hundreds of commercial spacecraft in Earth orbit. In order to provide the required total impulses, thruster burn time can often exceed 10,000 hours, making thruster lifetime essential. One of the main life-limiting components on ion engines is the hollow cathode, which serves as the electron source for ionization of the xenon propellant gas. Reactive contaminants such as oxygen can modify the cathode surface morphology and degrade the electron emission properties. Hollow cathodes that operate with reactive impurities in the propellant will experience higher operating temperatures, which increase evaporation of the emission materials and reduce cathode life. A deeper understanding of the mechanisms initiating cathode failure will improve thruster operation, increase lifetime, and ultimately reduce cost. A significant amount of work has been done previously to understand the effects of oxygen poisoning on vacuum cathodes; however, the xenon plasma adds complexity, and its role during cathode poisoning is not completely understood. The work presented here represents the first attempt at understanding how oxygen impurities in the xenon discharge plasma alter the emitter surface and affect operation of a 4:1:1 BaO-CaO-Al2O3 hollow cathode. A combination of experimentation and modeling was used to investigate how oxygen impurities in the discharge plasma alter the emitter surface and reduce the electron emission capability. The experimental effort involved operating a 4:1:1 hollow cathode at various conditions with oxygen impurities in the xenon flow. Since direct measurements of the emitter

  15. Optimization of Amino Group Introduction onto Polyurethane Surface Using Ammonia and Argon Surface-Wave Plasma

    NASA Astrophysics Data System (ADS)

    Ogino, Akihisa; Noguchi, Suguru; Nagatsu, Masaaki

    2011-08-01

    Effects of hydrogen and NHx species produced by a surface-wave excited Ar/NH3 plasma on amino group introduction onto a polyurethane surface were studied by comparing the results of optical emission spectroscopy (OES) and primary amino group concentration. For increasing the introduced primary amino group concentration on the surface, the monitoring and control of the concentration of NHx species as a precursor and that of atomic hydrogen as an etchant are important. From the results of X-ray photoelectron spectroscopy (XPS) and OES analysis, the primary amino group concentration and the emission intensity of Hβ reached a minimum and a maximum, respectively, at around 25% NH3 gas mixture ratio. An excess of atomic hydrogen over nitrogen grafting species might reduce the amino group selectivity and N/C surface density. To increase the concentration of NHx species produced in a plasma, the enhancement of NHx generation by the Penning effect was examined by adding Ar gas. As a result, the primary amino group concentration increased with the increase in the emission intensity of NH. However, the amino group selectivity became lower than that in the case of pure NH3 plasma treatment since not only the primary amino group concentration but also the secondary and tertiary amino group concentrations increased with the enhanced decomposition of NH3 by Ar metastables.

  16. Surface modification of argon/oxygen plasma treated vulcanized ethylene propylene diene polymethylene surfaces for improved adhesion with natural rubber

    NASA Astrophysics Data System (ADS)

    Basak, Ganesh C.; Bandyopadhyay, Abhijit; Neogi, Sudarsan; Bhowmick, Anil K.

    2011-01-01

    Vulcanized ethylene propylene diene polymethylene (EPDM) rubber surface was treated in a radio frequency capacitatively coupled low pressure argon/oxygen plasma to improve adhesion with compounded natural rubber (NR) during co-vulcanization. The plasma modified surfaces were analyzed by means of contact angle measurement, surface energy, attenuated total reflection-infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersive X-ray sulfur mapping and atomic force microscopy. Several experimental variables such as plasma power, length of exposure time and composition of the argon-oxygen gas mixture were considered. It was delineated that plasma treatment changed both surface composition and roughness, and consequently increased peel strength. The change in surface composition was mainly ascribed to the formation of C-O and -Cdbnd O functional groups on the vulcanized surfaces. A maximum of 98% improvement in peel strength was observed after plasma treatment.

  17. Ocular surface reconstruction using stem cell and tissue engineering.

    PubMed

    Nakamura, Takahiro; Inatomi, Tsutomu; Sotozono, Chie; Koizumi, Noriko; Kinoshita, Shigeru

    2016-03-01

    Most human sensory information is gained through eyesight, and integrity of the ocular surface, including cornea and conjunctiva, is known to be indispensable for good vision. It is believed that severe damage to corneal epithelial stem cells results in devastating ocular surface disease, and many researchers and scientists have tried to reconstruct the ocular surface using medical and surgical approaches. Ocular surface reconstruction via regenerative therapy is a newly developed medical field that promises to be the next generation of therapeutic modalities, based on the use of tissue-specific stem cells to generate biological substitutes and improve tissue functions. The accomplishment of these objectives depends on three key factors: stem cells, which have highly proliferative capacities and longevities; the substrates determining the environmental niche; and growth factors that support them appropriately. This manuscript describes the diligent development of ocular surface reconstruction using tissue engineering techniques, both past and present, and discusses and validates their future use for regenerative therapy in this field. PMID:26187034

  18. Tests of engines have stationary plasma in simulated space environment

    NASA Astrophysics Data System (ADS)

    Valentian, Dominique

    1995-03-01

    The SEP (European Company of Propulsion) developed a testing facility making it possible to carry out the acceptance tests of engines SPT 100 and the tests of development of an engine of second generation SPT MK 2. This installation results from the modification of an existing vacuum chamber. It is fitted with a cryogenic pump of great capacity making it possible to pump Xenon effectively, of a balance of measurement of pushed and an automatic system of control of test. The results obtained are compared favorably with those recorded on bulkier installations with the USA and in Russia.

  19. Study of plasma modified-PTFE for biological applications: relationship between protein resistant properties, plasma treatment, surface composition and surface roughness

    PubMed Central

    Vandencasteele, Nicolas; Nisol, Bernard; Viville, Pascal; Lazzaroni, Roberto; Castner, David G.; Reniers, François

    2013-01-01

    PTFE samples were treated by low-pressure, O2 RF plasmas. The adsorption of BSA was used as a probe for the protein resistant properties. The exposure of PTFE to an O2 plasma leads to an increase in the chamber pressure. OES reveals the presence of CO, CO2 and F in the gas phase, indicating a strong etching of the PTFE surface by the O2 plasma. Furthermore, the high resolution C1s spectrum shows the appearance of CF3, CF and C-CF components in addition to the CF2 component, which is consistent with etching of the PTFE surface. WCA as high as 160° were observed, indicating a superhydrophobic behaviour. AFM Images of surfaces treated at high plasma power showed a increase in roughness. Lower amounts of BSA adsorption were detected on high power, O2 plasma-modified PTFE samples compared to low power, oxygen plasma-modified ones. PMID:24795545

  20. Plasma-assisted heterogeneous catalysis for NOx reduction in lean-burn engine exhaust

    SciTech Connect

    Penetrante, B.M.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E.; Wan, C.Z.; Rice, G.W.; Voss, K.E.

    1997-12-31

    This paper discusses the combination of a plasma with a catalyst to improve the reduction of NO{sub x} under lean-burn conditions. The authors have been investigating the effects of a plasma on the NO{sub x} reduction activity and temperature operating window of various catalytic materials. One of the goals is to develop a fundamental understanding of the interaction between the gas-phase plasma chemistry and the heterogeneous chemistry on the catalyst surface. The authors have observed that plasma assisted heterogeneous catalysis can facilitate NO{sub x} reduction under conditions that normally make it difficult for either the plasma or the catalyst to function by itself. By systematically varying the plasma electrode and catalyst configuration, they have been able to elucidate the process by which the plasma chemistry affects the chemical reduction of NO{sub x} on the catalyst surface. They have discovered that the main effect of the plasma is to induce the gas-phase oxidation of NO to NO{sub 21}. The reduction of NO{sub x} to N{sub 2} is then accomplished by heterogeneous reaction of O with activated hydrocarbons on the catalyst surface. The use of a plasma opens the opportunity for a new class of catalysts that are potentially more durable, more active, more selective and more sulfur-tolerant compared to conventional lean-NO{sub x} catalysts.

  1. Surface damage characteristics of CFC and tungsten with repetitive ELM-like pulsed plasma irradiation

    NASA Astrophysics Data System (ADS)

    Kikuchi, Y.; Nishijima, D.; Nakatsuka, M.; Ando, K.; Higashi, T.; Ueno, Y.; Ishihara, M.; Shoda, K.; Nagata, M.; Kawai, T.; Ueda, Y.; Fukumoto, N.; Doerner, R. P.

    2011-08-01

    Surface damage of carbon fiber composite (CFC) and tungsten (W) due to repetitive ELM-like pulsed plasma irradiation has been investigated by using a magnetized coaxial plasma gun. CX2002U CFC and stress-relieved W samples were exposed to repetitive pulsed deuterium plasmas with duration of ˜0.5 ms, incident ion energy of ˜30 eV, and surface absorbed energy density of ˜0.3-0.7 MJ/m2. Bright spots on a CFC surface during pulsed plasma exposures were clearly observed with a high-speed camera, indicating a local surface heating. No melting of a W surface was observed under a single plasma pulse exposure at energy density of ˜0.7 MJ/m2, although cracks were formed. Cracking of the W surface grew with repetitive pulsed plasma exposures. Subsequently, the surface melted due to localized heat absorption.

  2. Controllable surface morphology and properties via mist polymerization on a plasma-treated polymethyl methacrylate surface.

    PubMed

    Wan, S J; Wang, L; Xu, X J; Zhao, C H; Liu, X D

    2014-02-14

    Surface modification by grafting polymers on solid materials is an important strategy used to improve surface properties. This article reports that under appropriate conditions, very thin layers with desired morphologies may be constructed on a plasma-treated substrate by feeding a small quantity of a monomer with a mist stream carrying droplets produced from monomer solutions. We investigate the effects of process parameters that affect layer morphology, including exposure time to the mist stream, concentration of the monomer solution, and solvent selectivity. For a methyl methacrylate solution in ethanol, nanoparticles are uniformly grown with increasing monomer concentration or exposure time and finally form a porous layer at 3.65 mol L(-1) for 30 min. Decreasing solvent polarity not only affects surface morphology, but also increases hydrophobicity of the resulting surface. With 2,2,3,4,4,4-hexafluorobutyl methacrylate as the monomer, SEM and AFM micrographs indicated that mist polymerization results in numerous microspheres on the activated surface. These experimental results were interpreted by a mechanism in terms of an in situ polymerization accompanied by a phase transformation of the resulting polymer. Specifically, plasma treatment provides highly active cations and radicals to initiate very rapid polymerization, and the resulting polymers are consequently deposited from the liquid onto the surface under phase transition mechanisms. PMID:24835436

  3. Tuning Surface Properties of Low Dimensional Materials via Strain Engineering.

    PubMed

    Yang, Shengchun; Liu, Fuzhu; Wu, Chao; Yang, Sen

    2016-08-01

    The promising and versatile applications of low dimensional materials are largely due to their surface properties, which along with their underlying electronic structures have been well studied. However, these materials may not be directly useful for applications requiring properties other than their natal ones. In recent years, strain has been shown to be an additionally useful handle to tune the physical and chemical properties of materials by changing their geometric and electronic structures. The strategies for producing strain are summarized. Then, the electronic structure of quasi-two dimensional layered non-metallic materials (e.g., graphene, MX2, BP, Ge nanosheets) under strain are discussed. Later, the strain effects on catalytic properties of metal-catalyst loaded with strain are focused on. Both experimental and computational perspectives for dealing with strained systems are covered. Finally, an outlook on engineering surface properties utilizing strain is provided. PMID:27376498

  4. Pulsed and continuous wave acrylic acid radio frequency plasma deposits: plasma and surface chemistry.

    PubMed

    Voronin, Sergey A; Zelzer, Mischa; Fotea, Catalin; Alexander, Morgan R; Bradley, James W

    2007-04-01

    Plasma polymers have been formed from acrylic acid using a pulsed power source. An on-pulse duration of 100 micros was used with a range of discharge off-times between 0 (continuous wave) and 20,000 micros. X-ray photoelectron spectroscopy (XPS) has been used in combination with trifluoroethanol (TFE) derivatization to quantify the surface concentration of the carboxylic acid functionality in the deposit. Retention of this functionality from the monomer varied from 2% to 65%. When input power was expressed as the time-averaged energy per monomer molecule, E(mean), the deposit chemistry achieved could be described using a single relationship for all deposition conditions. Deposition rates were monitored using a quartz crystal microbalance, which revealed a range from 20 to 200 microg m(-2) s(-1), and these fell as COOH functional retention increased. The flow rate was found to be the major determinant of the deposition rate, rather than being uniquely defined by E(mean), connected to the rate at which fresh monomer enters the system in the monomer deficient regime. The neutral species were collected in a time-averaged manner. As the energy delivered per molecule in the system (E(mean)) decreased, the amount of intact monomer increased, with the average neutral mass approaching 72 amu as E(mean) tends to zero. No neutral oligomeric species were detected. Langmuir probes have been used to determine the temporal evolution of the density and temperature of the electrons in the plasma and the plasma potential adjacent to the depositing film. It has been found that even 500 micros into the afterglow period that ionic densities are still significant, 5-10% of the on-time density, and that ion accelerating sheath potentials fall from 40 V in the on-time to a few volts in the off-time. We have made the first detailed, time- and energy-resolved mass spectrometry measurements in depositing acrylic acid plasma. These have allowed us to identify and quantify the positive ion

  5. Strategies in biomimetic surface engineering of nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Gong, Yong-Kuan; Winnik, Françoise M.

    2012-01-01

    Engineered nanoparticles (NPs) play an increasingly important role in biomedical sciences and in nanomedicine. Yet, in spite of significant advances, it remains difficult to construct drug-loaded NPs with precisely defined therapeutic effects, in terms of release time and spatial targeting. The body is a highly complex system that imposes multiple physiological and cellular barriers to foreign objects. Upon injection in the blood stream or following oral administation, NPs have to bypass numerous barriers prior to reaching their intended target. A particularly successful design strategy consists in masking the NP to the biological environment by covering it with an outer surface mimicking the composition and functionality of the cell's external membrane. This review describes this biomimetic approach. First, we outline key features of the composition and function of the cell membrane. Then, we present recent developments in the fabrication of molecules that mimic biomolecules present on the cell membrane, such as proteins, peptides, and carbohydrates. We present effective strategies to link such bioactive molecules to the NPs surface and we highlight the power of this approach by presenting some exciting examples of biomimetically engineered NPs useful for multimodal diagnostics and for target-specific drug/gene delivery applications. Finally, critical directions for future research and applications of biomimetic NPs are suggested to the readers.

  6. Characterization of the human plasma phosphoproteome using linear ion trap mass spectrometry and multiple search engines.

    PubMed

    Carrascal, Montserrat; Gay, Marina; Ovelleiro, David; Casas, Vanessa; Gelpí, Emilio; Abian, Joaquin

    2010-02-01

    Major plasma protein families play different roles in blood physiology and hemostasis and in immunodefense. Other proteins in plasma can be involved in signaling as chemical messengers or constitute biological markers of the status of distant tissues. In this respect, the plasma phosphoproteome holds potentially relevant information on the mechanisms modulating these processes through the regulation of protein activity. In this work we describe for the first time a collection of phosphopeptides identified in human plasma using immunoaffinity separation of the seven major serum protein families from other plasma proteins, SCX fractionation, and TiO(2) purification prior to LC-MS/MS analysis. One-hundred and twenty-seven phosphosites in 138 phosphopeptides mapping 70 phosphoproteins were identified with FDR < 1%. A high-confidence collection of phosphosites was obtained using a combined search with the OMSSA, SEQUEST, and Phenyx search engines. PMID:19941383

  7. Sporicidal properties from surface micro-discharge plasma under different plasma conditions at different humidities

    NASA Astrophysics Data System (ADS)

    Jeon, J.; Klaempfl, T. G.; Zimmermann, J. L.; Morfill, G. E.; Shimizu, T.

    2014-10-01

    In the current study, bacterial endospores of Geobacillus stearothermophilus are exposed to the surface micro-discharge plasma for 5 min and the humidity and power consumption are varied. At the low humidity of 5.5 ± 0.5 g m-3, almost no sporicidal effect (<0.5 log) is observed. At the high humidity of 17.9 ± 0.6 g m-3, the spore reduction increases monotonically up to 3.5 log with increasing power consumption. At a humidity of 10.4 ± 0.6 g m-3, the spores are inactivated in a limited range of power consumption with a maximum reduction of ˜2.5 log. The survival curves show a single-slope decrease of the spores. The contribution of heat and UV to the sporicidal effect as well as the inactivation of spores by the short-lived species from the plasma are ruled out. The concentration of ozone, one indicator for the long-lived species, is measured and no correlation with the sporicidal effect is found. In conclusion, water-related reactive species, e.g. hydrogen peroxide, appear to be responsible for the sporicidal effect under the investigated conditions. Furthermore, condensation of water at high humidity enables the plasma-activated water containing both long-lived and short-lived reactive species to contribute to the sporicidal effect.

  8. Surface modification of porous poly(tetrafluoroethylene) film via cold plasma treatment

    NASA Astrophysics Data System (ADS)

    Shi, Tongna; Shao, Meiling; Zhang, Hongrui; Yang, Qing; Shen, Xinyuan

    2011-12-01

    In this study, cold plasma technology was applied for the surface modification of porous polytetrafluoroethylene (PTFE) film to improve the hydrophilicity. The surface properties of PTFE, modified by air, helium (He) or acrylic acid (AAc), were investigated with scanning electron microscopy (SEM), scanning probe microscope (SPM), in situ X-ray photoelectron spectroscopy (XPS) and water contact angle measurements. The changes of the surface property before and after plasma treatment were discussed. According to SEM and SPM measurements, the surface roughness increased at different levels after plasma treatment. Compared to air and AAc plasma treatment, the He plasma treatment introduced large amounts of oxygen into the surface, as known from XPS results. Contact angle measurements revealed that the hydrophilicity of the PTFE film surface was greatly improved due to the surface roughness and changes of chemical elements on the PTFE surface.

  9. Covalent immobilization of liposomes on plasma functionalized metallic surfaces.

    PubMed

    Mourtas, S; Kastellorizios, M; Klepetsanis, P; Farsari, E; Amanatides, E; Mataras, D; Pistillo, B R; Favia, P; Sardella, E; d'Agostino, R; Antimisiaris, S G

    2011-05-01

    A method was developed to functionalize biomedical metals with liposomes. The novelty of the method includes the plasma-functionalization of the metal surface with proper chemical groups to be used as anchor sites for the covalent immobilization of the liposomes. Stainless steel (SS-316) disks were processed in radiofrequency glow discharges fed with vapors of acrylic acid to coat them with thin adherent films characterized by surface carboxylic groups, where liposomes were covalently bound through the formation of amide bonds. For this, liposomes decorated with polyethylene glycol molecules bearing terminal amine-groups were prepared. After ensuring that the liposomes remain intact, under the conditions applying for immobilization; different attachment conditions were evaluated (incubation time, concentration of liposome dispersion) for optimization of the technique. Immobilization of calcein-entrapping liposomes was evaluated by monitoring the percent of calcein attached on the surfaces. Best results were obtained when liposome dispersions with 5mg/ml (liposomal lipid) concentration were incubated on each disk for 24h at 37°C. The method is proposed for developing drug-eluting biomedical materials or devices by using liposomes that have appropriate membrane compositions and are loaded with drugs or other bioactive agents. PMID:21273051

  10. Surface energy increase of oxygen-plasma-treated PET

    SciTech Connect

    Cioffi, M.O.H.; Voorwald, H.J.C.; Mota, R.P

    2003-03-15

    Prosthetic composite is a widely used biomaterial that satisfies the criteria for application as an organic implant without adverse reactions. Polyethylene therephthalate (PET) fiber-reinforced composites have been used because of the excellent cell adhesion, biodegradability and biocompatibility. The chemical inertness and low surface energy of PET in general are associated with inadequate bonds for polymer reinforcements. It is recognized that the high strength of composites, which results from the interaction between the constituents, is directly related to the interfacial condition or to the interphase. A radio frequency plasma reactor using oxygen was used to treat PET fibers for 5, 20, 30 and 100 s. The treatment conditions were 13.56 MHz, 50 W, 40 Pa and 3.33x10{sup -7} m{sup 3}/s. A Rame-Hart goniometer was used to measure the contact angle and surface energy variation of fibers treated for different times. The experimental results showed contact angle values from 47 deg. to 13 deg. and surface energies from 6.4x10{sup -6} to 8.3x10{sup -6} J for the range of 5 to 100 s, respectively. These results were confirmed by the average ultimate tensile strength of the PET fiber/ polymethylmethacrylate (PMMA) matrix composite tested in tensile mode and by scanning electron microscopy.

  11. Investigation of the process of plasma-electrolyte formation surface microrelief of cobalt chromium alloy

    NASA Astrophysics Data System (ADS)

    Kashapov, L. N.; Kashapov, N. F.; Kashapov, R. N.

    2014-11-01

    The goal is to investigate the possibilities of plasma-electrolytic formation of microrelief for replacement method of sandblasting. We found that with the cathode mode of plasma electrolytic surface treatment, CoCr-alloy has two kinds of structures: "porous" and "reflow". "Reflow" the surface was also covered with tubercles, the size of 200 - 300 nm. Analysis of roughness parameters and surface microrelief showed the possibility of replacing the sandblasting on the plasma-electrolytic treatment.

  12. Plasma conversion of methane into higher hydrocarbons at surfaces

    SciTech Connect

    Sackinger, W.M.; Kamath, V.A.

    1995-12-31

    Natural gas is widely abundant, is easily withdrawn from reservoirs, is commonly produced as an associated gas along with crude oil production, and is found in many geologic settings as a resource separate from oil. A much larger fraction of the natural gas may be produced from a gas reservoir, as compared with a crude oil reservoir. However, natural gas is normally transported by pipeline, and the energy throughput of such a pipeline is perhaps only 20% to 30% of the throughput of an oil pipeline of the same size and cost. Gas is difficult to transport in moderate quantities at low cost, as it must either have a special pipeline or must be liquified into LNG, shipped in cryogenic LNG tankers, and regasified chemical stability of methane has made it difficult to convert it directly into conventional hydrocarbon fuel mixtures, and has also impeded its use as a feedstock for petrochemical production. Experiments are described in which a methane plasma is created, and the resulting methyl and hydrogen ions have been accelerated within a microchannel array so that they interact with neutral methane molecules on the inside surfaces of the microchannels. No catalysts are used, and the device operates at room temperature. Impact energies of the ions are in the range of 15 ev to greater than 100 ev, and the energy delivered in the interaction at the surfaces has caused the production of larger hydrocarbon molecules, such as C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and C{sub 2}H{sub 6}, along with C{sub 3}, C{sub 4}, C{sub 5}, C{sub 6}, C{sub 7}, and C{sub 8} molecules. Conversion effectiveness is greater at higher pressure, due to the increased ionic activity. The costs of production of the plasma conversion devices are projected to be quite low, and the technology appears to be commercially and economically feasible.

  13. Influence of different surface modification treatments on silk biotextiles for tissue engineering applications.

    PubMed

    Ribeiro, Viviana P; Almeida, Lília R; Martins, Ana R; Pashkuleva, Iva; Marques, Alexandra P; Ribeiro, Ana S; Silva, Carla J; Bonifácio, Graça; Sousa, Rui A; Reis, Rui L; Oliveira, Ana L

    2016-04-01

    Biotextile structures from silk fibroin have demonstrated to be particularly interesting for tissue engineering (TE) applications due to their high mechanical strength, interconnectivity, porosity, and ability to degrade under physiological conditions. In this work, we described several surface treatments of knitted silk fibroin (SF) scaffolds, namely sodium hydroxide (NaOH) solution, ultraviolet radiation exposure in an ozone atmosphere (UV/O3) and oxygen (O2) plasma treatment followed by acrylic acid (AAc), vinyl phosphonic acid (VPA), and vinyl sulfonic acid (VSA) immersion. The effect of these treatments on the mechanical properties of the textile constructs was evaluated by tensile tests in dry and hydrated states. Surface properties such as morphology, topography, wettability and elemental composition were also affected by the applied treatments. The in vitro biological behavior of L929 fibroblasts revealed that cells were able to adhere and spread both on the untreated and surface-modified textile constructs. The applied treatments had different effects on the scaffolds' surface properties, confirming that these modifications can be considered as useful techniques to modulate the surface of biomaterials according to the targeted application. PMID:25939722

  14. Bacterial response to different surface chemistries fabricated by plasma polymerization on electrospun nanofibers.

    PubMed

    Abrigo, Martina; Kingshott, Peter; McArthur, Sally L

    2015-01-01

    Control over bacterial attachment and proliferation onto nanofibrous materials constitutes a major challenge for a variety of applications, including filtration membranes, protective clothing, wound dressings, and tissue engineering scaffolds. To develop effective devices, the interactions that occur between bacteria and nanofibers with different morphological and physicochemical properties need to be investigated. This paper explores the influence of fiber surface chemistry on bacterial behavior. Different chemical functionalities were generated on the surface of electrospun polystyrene nanofibers through plasma polymerization of four monomers (acrylic acid, allylamine, 1,7-octadiene, and 1,8-cineole). The interactions of Escherichia coli with the surface modified fibers were investigated through a combination of scanning electron microscopy and confocal laser scanning microscopy. Fiber wettability, surface charge, and chemistry were found to affect the ability of bacterial cells to attach and proliferate throughout the nanofiber meshes. The highest proportion of viable cells attachment occurred on the hydrophilic amine rich coating, followed by the hydrophobic octadiene. The acrylic acid coating rich in carboxyl groups showed a significantly lower attraction of bacterial cells. The 1,8-cineole retained the antibacterial activity of the monomer, resulting with a high proportion of dead isolated cells attached onto the fibers. Results showed that the surface chemistry properties of nanofibrous membranes can be strategically tuned to control bacterial behavior. PMID:26251319

  15. T55-L-712 turbine engine compressor housing refurbishment-plasma spray project

    NASA Technical Reports Server (NTRS)

    Leissler, George W.; Yuhas, John S.

    1988-01-01

    A study was conducted to assess the feasibility of reclaiming T55-L-712 turbine engine compressor housings with an 88 wt percent aluminum to 12 wt percent silicon alloy applied by a plasma spray process. Tensile strength testing was conducted on as-sprayed and thermally cycled test specimens which were plasma sprayed with 0.020 to 0.100 in. coating thicknesses. Satisfactory tensile strength values were observed in the as-sprayed tensile specimens. There was essentially no decrease in tensile strength after thermally cycling the tensile specimens. Furthermore, compressor housings were plasma sprayed and thermally cycled in a 150-hr engine test and a 200-hr actual flight test during which the turbine engine was operated at a variety of loads, speeds and torques. The plasma sprayed coating system showed no evidence of degradation or delamination from the compressor housings. As a result of these tests, a procedure was designed and developed for the application of an aluminum-silicon alloy in order to reclaim T55-L-712 turbine engine compressor housings.

  16. Engineered plasma interactions for geomagnetic propulsion of ultra small satellites

    NASA Astrophysics Data System (ADS)

    Palmer, Jeremy A.; Boerner, Jeremiah J.; Hughes, Thomas P.; Bennett, Guy R.

    2013-05-01

    Previous astrophysical studies have explained the orbital dynamics of particles that acquire a high electrostatic charge. In low Earth orbit, the charge collected by a microscopic particle or an ultra-small, low-mass satellite interacts with the geomagnetic field to induce the Lorentz force which, in the ideal case, may be exploited as a form of propellantless propulsion. Efficient mechanisms for negative and positive electrostatic charging of a so-called attosatellite are proposed considering material, geometry, and emission interactions with the ionosphere's neutral plasma with characteristic Debye length. A novel model-based plasma physics study was undertaken to optimize the positive charge mechanism quantified by the system charge-to-mass ratio. In the context of the practical system design considered, a positive charge-to-mass ratio on the order of 1.9x10-9 C/kg is possible with maximum spacecraft potential equal to the sum of the kinetic energy of electrons from active field emission (+43V) and less than +5V from passive elements. The maximum positive potential is less than what is possible with negative electrostatic charging due to differences in thermal velocity and number density of electronic and ionic species. These insights are the foundation of a practical system design.

  17. Surface modification of a polyamide 6 film by He/CF 4 plasma using atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Gao, Zhiqiang; Sun, Jie; Peng, Shujing; Yao, Lan; Qiu, Yiping

    2009-12-01

    Polyamide 6 (PA 6) films are treated with helium(He)/CF 4 plasma at atmospheric pressure. The samples are treated at different treatment times. The surface modification of the PA 6 films is evaluated by water contact angle, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The etching rate is used to study the etching effect of He/CF 4 plasma on the PA 6 films. The T-peel strengths of the control and plasma treated films are measured to show the surface adhesion properties of the films. As the treatment time increases, the etching rate decreases steadily, the contact angle decreases initially and then increases, while the T-peel strength increases first and then decreases. AFM analyses show that the surface roughness increases after the plasma treatment. XPS analyses reveal substantial incorporation of fluorine and/or oxygen atoms to the polymer chains on the film surfaces.

  18. Study on Surface Modification of Polymer Films by Using Atmospheric Plasma Jet Source

    NASA Astrophysics Data System (ADS)

    Takemura, Yuichiro; Yamaguchi, Naohiro; Hara, Tamio

    2008-07-01

    Reactive gas plasma treatments of poly(ethylene terephthalate) (PET) and polyimide (Kapton) have been performed using an atmospheric plasmas jet source. Characteristics of surface modification have been examined by changing the distance between the plasma jet source and the treated sample, and by changing the working gas spaces. Simultaneously, each plasma jet source has been investigated by space-resolving spectroscopy in the UV/visible region. Polymer surfaces have been analyzed by X-ray photoelectron spectroscopy (XPS). A marked improvement in the hydrophilicity of the polymer surfaces has been made by using N2 or O2 plasma jet source with a very short exposure time of about 0.01 s, whereas the less improvement has been obtained using on air plasma jet source because of NOx compound production. Changes in the chemical states of C of the polymer surfaces have been observed in XPS spectra after N2 plasma jet spraying.

  19. Ground Simulations of Near-Surface Plasma Field and Charging at the Lunar Terminator

    NASA Astrophysics Data System (ADS)

    Polansky, J.; Ding, N.; Wang, J.; Craven, P.; Schneider, T.; Vaughn, J.

    2012-12-01

    Charging in the lunar terminator region is the most complex and is still not well understood. In this region, the surface potential is sensitively influenced by both solar illumination and plasma flow. The combined effects from localized shadow generated by low sun elevation angles and localized wake generated by plasma flow over the rugged terrain can generate strongly differentially charged surfaces. Few models currently exist that can accurately resolve the combined effects of plasma flow and solar illumination over realistic lunar terminator topographies. This paper presents an experimental investigation of lunar surface charging at the terminator region in simulated plasma environments in a vacuum chamber. The solar wind plasma flow is simulated using an electron bombardment gridded Argon ion source. An electrostatic Langmuir probe, nude Faraday probes, a floating emissive probe, and retarding potential analyzer are used to quantify the plasma flow field. Surface potentials of both conducting and dielectric materials immersed in the plasma flow are measured with a Trek surface potential probe. The conducting material surface potential will simultaneously be measured with a high impedance voltmeter to calibrate the Trek probe. Measurement results will be presented for flat surfaces and objects-on-surface for various angles of attack of the plasma flow. The implications on the generation of localized plasma wake and surface charging at the lunar terminator will be discussed. (This research is supported by the NASA Lunar Advanced Science and Exploration Research program.)

  20. Wettability and XPS analyses of nickel-phosphorus surfaces after plasma treatment: An efficient approach for surface qualification in mechatronic processes

    NASA Astrophysics Data System (ADS)

    Vivet, L.; Joudrier, A.-L.; Bouttemy, M.; Vigneron, J.; Tan, K. L.; Morelle, J. M.; Etcheberry, A.; Chalumeau, L.

    2013-06-01

    Electroless nickel-high-phosphorus Ni-P plating is known for its physical properties. In case of electronic and mechatronic assembly processes achieved under ambient conditions the wettability of the Ni-P layer under ambient temperature and ambient air stays a point of surface quality investigation. This contribution will be devoted to the study of the surface properties of Ni-P films for which we performed air plasma treatment. We focus our attention on the evolution of the surface wettability, using the classical sessile drop technique. Interpreting the results with the OWRK model we extract the polar and disperse surface tension components from which we deduced typical evolution of the surface properties with the different treatment settings. By controlling the variations of the parameters of the plasma exposure we are able to change the responses of our Ni-P sample from total hydrophobic to total hydrophilic behaviours. All the intermediate states can be reached by adapting the treatment parameters. So it is demonstrated that the apparent Ni-P surface properties can be fully adapted and the surface setting can be well characterized by wettability measurements. To deep our knowledge of the surface modifications induced by plasma we performed parallel SEM and XPS analyses which provide informations on the structure and the chemical composition of the surface for each set of treatment parameters. Using this double approach we were able to propose a correlation between the evolution of surface chemical composition and surface wettability which are completely governed by the plasma treatment conditions. Chemical parameters as the elimination of the carbon contamination, the progressive surface oxidation, and the slight incorporation of nitrogen due to the air plasma interaction are well associated with the evolution of the wettability properties. So a complete engineering for the Ni-P surface preparation has been established. The sessile drop method can be

  1. Engineering design constraints of the lunar surface environment

    NASA Technical Reports Server (NTRS)

    Morrison, D. A.

    1992-01-01

    Living and working on the lunar surface will be difficult. Design of habitats, machines, tools, and operational scenarios in order to allow maximum flexibility in human activity will require paying attention to certain constraints imposed by conditions at the surface and the characteristics of lunar material. Primary design drivers for habitat, crew health and safety, and crew equipment are: ionizing radiation, the meteoroid flux, and the thermal environment. Secondary constraints for engineering derive from: the physical and chemical properties of lunar surface materials, rock distributions and regolith thicknesses, topography, electromagnetic properties, and seismicity. Protection from ionizing radiation is essential for crew health and safety. The total dose acquired by a crew member will be the sum of the dose acquired during EVA time (when shielding will be least) plus the dose acquired during time spent in the habitat (when shielding will be maximum). Minimizing the dose acquired in the habitat extends the time allowable for EVA's before a dose limit is reached. Habitat shielding is enabling, and higher precision in predicting secondary fluxes produced in shielding material would be desirable. Means for minimizing dose during a solar flare event while on extended EVA will be essential. Early warning of the onset of flare activity (at least a half-hour is feasible) will dictate the time available to take mitigating steps. Warning capability affects design of rovers (or rover tools) and site layout. Uncertainty in solar flare timing is a design constraint that points to the need for quickly accessible or constructible safe havens.

  2. Plasma treatment induces internal surface modifications of electrospun poly(L-lactic) acid scaffold to enhance protein coating

    NASA Astrophysics Data System (ADS)

    Jin Seo, Hyok; Hee Lee, Mi; Kwon, Byeong-Ju; Kim, Hye-Lee; Jin Lee, Seung; Kim, Bong-Jin; Wang, Kang-Kyun; Kim, Yong-Rok; Park, Jong-Chul

    2013-08-01

    Advanced biomaterials should also be bioactive with regard to desirable cellular responses, such as selective protein adsorption and cell attachment, proliferation, and differentiation. To enhance cell-material interactions, surface modifications have commonly been performed. Among the various surface modification approaches, atmospheric pressure glow discharge plasma has been used to change a hydrophobic polymer surface to a hydrophilic surface. Poly(L-lactic acid) (PLLA)-derived scaffolds lack cell recognition signals and the hydrophobic nature of PLLA hinders cell seeding. To make PLLA surfaces more conducive to cell attachment and spreading, surface modifications may be used to create cell-biomaterial interfaces that elicit controlled cell adhesion and maintain differentiated phenotypes. In this study, (He) gaseous atmospheric plasma glow discharge was used to change the characteristics of a 3D-type polymeric scaffold from hydrophobic to hydrophilic on both the outer and inner surfaces of the scaffold and the penetration efficiency with fibronectin was investigated. Field-emission scanning electron microscope images showed that some grooves were formed on the PLLA fibers after plasma treatment. X-ray photoelectron spectroscopy data also showed chemical changes in the PLLA structure. After plasma treatment, -CN (285.76 eV) was increased in C1s and -NH2 (399.70 eV) was increased significantly and -N=CH (400.80 eV) and -NH3+ (402.05 eV) were newly appeared in N1s. These changes allowed fibronectin to penetrate into the PLLA scaffold; this could be observed by confocal microscopy. In conclusion, helium atmospheric pressure plasma treatment was effective in modifying the polymeric scaffold, making it hydrophilic, and this treatment can also be used in tissue engineering research as needed to make polymers hydrophilic.

  3. Plasma treatment induces internal surface modifications of electrospun poly(L-lactic) acid scaffold to enhance protein coating

    SciTech Connect

    Jin Seo, Hyok; Hee Lee, Mi; Kwon, Byeong-Ju; Kim, Hye-Lee; Park, Jong-Chul; Jin Lee, Seung; Kim, Bong-Jin; Wang, Kang-Kyun; Kim, Yong-Rok

    2013-08-21

    Advanced biomaterials should also be bioactive with regard to desirable cellular responses, such as selective protein adsorption and cell attachment, proliferation, and differentiation. To enhance cell-material interactions, surface modifications have commonly been performed. Among the various surface modification approaches, atmospheric pressure glow discharge plasma has been used to change a hydrophobic polymer surface to a hydrophilic surface. Poly(L-lactic acid) (PLLA)-derived scaffolds lack cell recognition signals and the hydrophobic nature of PLLA hinders cell seeding. To make PLLA surfaces more conducive to cell attachment and spreading, surface modifications may be used to create cell-biomaterial interfaces that elicit controlled cell adhesion and maintain differentiated phenotypes. In this study, (He) gaseous atmospheric plasma glow discharge was used to change the characteristics of a 3D-type polymeric scaffold from hydrophobic to hydrophilic on both the outer and inner surfaces of the scaffold and the penetration efficiency with fibronectin was investigated. Field-emission scanning electron microscope images showed that some grooves were formed on the PLLA fibers after plasma treatment. X-ray photoelectron spectroscopy data also showed chemical changes in the PLLA structure. After plasma treatment, -CN (285.76 eV) was increased in C1s and -NH{sub 2} (399.70 eV) was increased significantly and –N=CH (400.80 eV) and –NH{sub 3}{sup +} (402.05 eV) were newly appeared in N1s. These changes allowed fibronectin to penetrate into the PLLA scaffold; this could be observed by confocal microscopy. In conclusion, helium atmospheric pressure plasma treatment was effective in modifying the polymeric scaffold, making it hydrophilic, and this treatment can also be used in tissue engineering research as needed to make polymers hydrophilic.

  4. Development of improved-durability plasma sprayed ceramic coatings for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.; Ruckle, D. L.

    1980-01-01

    As part of a NASA program to reduce fuel consumption of current commercial aircraft engines, methods were investigated for improving the durability of plasma sprayed ceramic coatings for use on vane platforms in the JT9D turbofan engine. Increased durability concepts under evaluation include use of improved strain tolerant microstructures and control of the substrate temperature during coating application. Initial burner rig tests conducted at temperatures of 1010 C (1850 F) indicate that improvements in cyclic life greater than 20:1 over previous ceramic coating systems were achieved. Three plasma sprayed coating systems applied to first stage vane platforms in the high pressure turbine were subjected to a 100-cycle JT9D engine endurance test with only minor damage occurring to the coatings.

  5. Development of improved-durability plasma sprayed ceramic coatings for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.; Ruckle, D. L.

    1980-01-01

    An investigation is reported of improving the durability of plasma sprayed ceramic coatings for the vane platforms in the JT9d turbofan engine. The program aims for reduced fuel consumption of commercial aircraft engines; the use of improved strain tolerant microstructures and control of the substrate temperature during coating application are being evaluated. The initial burner rig tests at temperatures up to 1010 C indicated that improvements in cyclic life greater than 20:1 over previous ceramic coatings were achieved. Three plasma sprayed coating systems applied to first stage vane platforms in the high pressure turbine were subjected to a 1000-cycle JT9D engine endurance test with only minor damage occurring to the coatings.

  6. Surface modification of a biomedical poly(ether)urethane by a remote air plasma

    NASA Astrophysics Data System (ADS)

    Gray, J. E.; Norton, P. R.; Griffiths, K.

    2003-07-01

    Plasma modification of polymer surfaces is widely used, but the plasma/polymer interaction is very complex and still not fully understood. In this paper, the interaction of a biomedical poly(ether)urethane with a remote air plasma treatment has been studied. Atomic force microscopy studies show the domain structure of the polymer as well as the absence of any surface roughening due to plasma treatment. Contact angle goniometry shows an improved wettability of the surface after plasma treatment. X-ray photoelectron spectroscopy indicates an increase in CO and CC at the surface, as well as the presence of new functional groups such as alcohols, ketones, aldehydes and imines. There is also evidence that the energy imparted to the polymer during plasma treatment causes surface segregation of polyol segments.

  7. Modification of surface properties of polyamide 6 films with atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Gao, Zhiqiang

    2011-05-01

    To investigate the effect of the different plasma gases treatment on the surface modification of atmospheric pressure plasma, polyamide 6 films were treated using pure helium (He), He/O 2 and He/CF 4, respectively. Atomic force microscopy (AFM) showed rougher surface, while X-ray photoelectron spectroscopy (XPS) revealed increased oxygen and fluorine contents after the plasma treatments. The plasma treated samples had lower water contact angles and higher T-peel strength than that of the control. The addition of small amount of O 2 or CF 4 to He plasma increases the effectiveness of the plasma treatment in polymer surface modification in terms of surface roughness, surface hydrophilic groups, etching rate, water contact angle and bonding strength.

  8. Surface Engineering of Graphene-Based Nanomaterials for Biomedical Applications

    PubMed Central

    2015-01-01

    Graphene-based nanomaterials have attracted tremendous interest over the past decade due to their unique electronic, optical, mechanical, and chemical properties. However, the biomedical applications of these intriguing nanomaterials are still limited due to their suboptimal solubility/biocompatibility, potential toxicity, and difficulties in achieving active tumor targeting, just to name a few. In this Topical Review, we will discuss in detail the important role of surface engineering (i.e., bioconjugation) in improving the in vitro/in vivo stability and enriching the functionality of graphene-based nanomaterials, which can enable single/multimodality imaging (e.g., optical imaging, positron emission tomography, magnetic resonance imaging) and therapy (e.g., photothermal therapy, photodynamic therapy, and drug/gene delivery) of cancer. Current challenges and future research directions are also discussed and we believe that graphene-based nanomaterials are attractive nanoplatforms for a broad array of future biomedical applications. PMID:25117569

  9. Reduction of NOx and PM in marine diesel engine exhaust gas using microwave plasma

    NASA Astrophysics Data System (ADS)

    Balachandran, W.; FInst, P.; Manivannan, N.; Beleca, R.; Abbod, M.

    2015-10-01

    Abatement of NOx and particulate matters (PM) of marine diesel exhaust gas using microwave (MW) non-thermal plasma is presented in this paper. NOx mainly consist of NO and less concentration of NO2 in a typical two stoke marine diesel engine and microwave plasma generation can completely remove NO. MW was generated using two 2kW microwave sources and a saw tooth passive electrode. Passive electrode was used to generate high electric field region within microwave environment where high energetic electrons (1-3eV) are produced for the generation of non-thermal plasma (NTP). 2kW gen-set diesel exhaust gas was used to test our pilot-scale MW plasma reactor. The experimental results show that almost 100% removal of NO is possible for the exhaust gas flow rate of 60l/s. It was also shown that MW can significantly remove soot particles (PM, 10nm to 365nm) entrained in the exhaust gas of 200kW marine diesel engine with 40% engine load and gas flow rate of 130l/s. MW without generating plasma showed reduction up to 50% reduction of PM and with the plasma up to 90% reduction. The major challenge in these experiments was that igniting the desired plasma and sustaining it with passive electrodes for longer period (10s of minutes) as it required fine tuning of electrode position, which was influenced by many factors such as gas flow rate, geometry of reactor and MW power.

  10. Current Status of Divertor Plasma Simulator (DiPS-2) for Dust Interactions with Plasma and Surfaces

    NASA Astrophysics Data System (ADS)

    Kang, In Je; Cho, Soon-Gook; Bae, Min Keun; Lee, Dong-Han; Kim, Sang-You; Hong, Sung-Hoon; Choi, Heung-Gyoon; Lho, Tae-Hyup; Chung, Kyu-Sun

    2015-09-01

    The divertor plasma simulator (DiPS-2) which is a linear plasma machine with ~ 8 MW/m2 power density emitted from a DC plasma discharge source with a LaB6 cathode is under installation for experiments of dust interactions with plasma and surfaces in fusion research fields. Specifications of DiPS-2 have weakly magnetized helium plasmas (density ~ 1013 cm3, electron temperature ~ 1 - 10 eV, particle flux ~ 1023/(sec .m2), which are of the order of plasma parameters in a typical divertor. Currently, a vacuum chamber with the diameter of 560 mm and the length of 800 mm called as ``dust interaction with surface chamber (DiSC)'' is being setup to an end flange of DiPS-2. The DiSC has a load-lock system for easily changing material targets and plasma diagnostics systems such as laser induced fluorescence (LIF), laser Thomson scattering (LTS), thermocouples and fast scanning probes (FSP) with SP, TP and MP. Using the measured dust and plasma parameters, SOL heat flux width (λq) and sheath heat transmission factor (γs) will be experimentally deduced for the analysis of the dust effects to plasmas. Initial probe data will be addressed.

  11. Plasma-Surface Interactions and Impact on Electron Energy Distribution Function

    NASA Astrophysics Data System (ADS)

    Fox-Lyon, N. A.; Oehrlein, G. S.; Ning, N.; Graves, D. B.; Godyak, V.

    2011-10-01

    The goal of this work is to explore the role of surface processes in influencing characteristic electron energy distribution functions (EEDF).As a model system, we use a well characterized, inductively coupled plasma system to examine Ar/H2 (or D2) discharges interacting with a-C:H films. The modification/erosion of a-C:H surfaces is monitored in real time by ellipsometry and the effects of gas mixtures and surface generated carbon on plasma parameters (Te, plasma density, EEDF) are probed with Langmuir probe measurements. We find that plasma density decreased greatly (from 1011 to 109 per cm3) with small H2 additions to Ar plasma (conditions: 10-30 mTorr, 300-600 W source power). The electron temperature was shown to increase with H2 flow. At high H2 flows, the electron energy distribution transitions from Maxwellian distribution to a two-temperature distribution. The addition of 1-20 % CH4 into H2 plasma shows an increase in plasma density and a change in the electron temperature. The hydrocarbon erosion products of a-C:H films in H2 plasma are found to cause a similar effect on plasma properties as CH4 addition. These observations indicate that prediction/control of EEDF for plasmas interacting with reactive bounding surfaces requires an understanding of the consequences of the plasma-surface interactions.

  12. Improvement of early cell adhesion on Thai silk fibroin surface by low energy plasma.

    PubMed

    Amornsudthiwat, Phakdee; Mongkolnavin, Rattachat; Kanokpanont, Sorada; Panpranot, Joongjai; Wong, Chiow San; Damrongsakkul, Siriporn

    2013-11-01

    Low energy plasma has been introduced to treat the surface of Thai silk fibroin which should be enhanced for cell adhesion due to its native hydrophobic surface. Plasma surface treatment could introduce desirable hydrophilic functionalities on the surface without using any chemicals. In this work, nitrogen glow discharge plasma was generated by a low energy AC50Hz power supply system. The plasma operating conditions were optimized to reach the highest nitrogen active species by using optical emission spectroscopy. X-ray photoelectron spectroscopy (XPS) revealed that amine, hydroxyl, ether, and carboxyl groups were induced on Thai silk fibroin surface after plasma treatment. The results on Fourier transform infrared attenuated total reflection (FTIR-ATR) spectroscopy confirmed that the plasma treated effects were only on the outermost layer since there was no change in the bulk chemistry. The surface topography was insignificantly changed from the detection with atomic force microscopy (AFM). The plasma-treated effects were the improved surface wettability and cell adhesion. After a 90-s treatment, the water contact angle was at 20°, while the untreated surface was at 70°. The early cell adhesion of L929 mouse fibroblast was accelerated. L929 cells only took 3h to reach 100% cell adhesion on 90 s N2 plasma-treated surface, while there was less than 50% cell adhesion on the untreated Thai silk fibroin surface after 6h of culture. The cell adhesion results were in agreement with the cytoskeleton development. L929 F-actin was more evident on 90 s N2 plasma-treated surface than others. It could be concluded that a lower energy AC50Hz plasma system enhanced early L929 mouse fibroblast adhesion on Thai silk fibroin surface without any significant change in surface topography and bulk chemistry. PMID:23893032

  13. Online Coupling of Flow-Field Flow Fractionation and Single Particle Inductively Coupled Plasma-Mass Spectrometry: Characterization of Nanoparticle Surface Coating Thickness and Aggregation State

    EPA Science Inventory

    Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...

  14. Plasma-Wave Terahertz Detection Mediated by Topological Insulators Surface States.

    PubMed

    Viti, Leonardo; Coquillat, Dominique; Politano, Antonio; Kokh, Konstantin A; Aliev, Ziya S; Babanly, Mahammad B; Tereshchenko, Oleg E; Knap, Wojciech; Chulkov, Evgueni V; Vitiello, Miriam S

    2016-01-13

    Topological insulators (TIs) represent a novel quantum state of matter, characterized by edge or surface-states, showing up on the topological character of the bulk wave functions. Allowing electrons to move along their surface, but not through their inside, they emerged as an intriguing material platform for the exploration of exotic physical phenomena, somehow resembling the graphene Dirac-cone physics, as well as for exciting applications in optoelectronics, spintronics, nanoscience, low-power electronics, and quantum computing. Investigation of topological surface states (TSS) is conventionally hindered by the fact that in most of experimental conditions the TSS properties are mixed up with those of bulk-states. Here, we activate, probe, and exploit the collective electronic excitation of TSS in the Dirac cone. By engineering Bi2Te(3-x)Sex stoichiometry, and by gating the surface of nanoscale field-effect-transistors, exploiting thin flakes of Bi2Te2.2Se0.8 or Bi2Se3, we provide the first demonstration of room-temperature terahertz (THz) detection mediated by overdamped plasma-wave oscillations on the "activated" TSS of a Bi2Te2.2Se0.8 flake. The reported detection performances allow a realistic exploitation of TSS for large-area, fast imaging, promising superb impacts on THz photonics. PMID:26678677

  15. Control of electrical transport mechanisms at metal-zinc oxide interfaces by subsurface defect engineering with remote plasma treatment

    NASA Astrophysics Data System (ADS)

    Mosbacker, Howard Lee, IV

    ZnO has received renewed attention in recent years due its exciting properties as a wide band gap semiconductor. ZnO has several advantages over GaN including the availability of substrates, a room temperature excitonic emission, and an environmentally benign chemistry. ZnO applications include efficient blue light emitters, surface acoustic wave devices, transparent conductors, high power transistors, and solid state white lighting. Despite this versatility, several hurdles remain before device realization. Firstly, ZnO is almost always p-type. Although high quality n-type ZnO is abundant, there is no stable and reliable p-type doping scheme. Secondly, research into high quality Ohmic and Schottky contacts has been limited. Although there is an abundance of literature, there has yet to be an attempt to understand the physical and chemical mechanisms at metal- ZnO interfaces. In this work, plasma processing techniques are adopted to ZnO. These cold plasmas allow for room temperature modification of the subsurface. Implanting hydrogen has identified it as a primary n-type dopant responsible for a large fraction of the n-type conductivity. Oxygen plasma treatment has yielded an Ohmic to Schottky conversion by reducing oxygen defects at the near surface. Deposition of metals on clean and ordered surfaces reveal the importance that defects play at the metal-semiconductor interface. Higher concentrations of defects promote reactions. This increased reaction eutectic forming and oxide forming. Understanding the nature of the metal allows for engineering of high quality blocking contacts. These contacts can provide added thermal stability to devices. Subsurface introduction of hydrogen and nitrogen provide a potential roadmap to p-type doping and high quality Schottky contacts. Overall, control of transport properties and contact integrity is achieved by remote plasma processing.

  16. Measurement of Plasma Clotting Using Shear Horizontal Surface Acoustic Wave Sensor

    NASA Astrophysics Data System (ADS)

    Nagayama, Tatsuya; Kondoh, Jun; Oonishi, Tomoko; Hosokawa, Kazuya

    2013-07-01

    The monitoring of blood coagulation is important during operation. In this study, a shear horizontal surface acoustic wave (SH-SAW) sensor is applied to monitor plasma clotting. An SH-SAW sensor with a metallized surface for mechanical perturbation detection can detect plasma clotting. As plasma clotting is a gel formation reaction, the SH-SAW sensor detects viscoelastic property changes. On the other hand, an SH-SAW sensor with a free surface for electrical perturbation detection detects only the liquid mixing effect. No electrical property changes due to plasma clotting are obtained using this sensor. A planar electrochemical sensor is also used to monitor plasma clotting. In impedance spectral analysis, plasma clotting is measured. However, in the measurement of time responses, no differences between clotting and nonclotting are obtained. Therefore, the SH-SAW sensor is useful for monitoring plasma clotting.

  17. Rocket Engine Turbine Blade Surface Pressure Distributions Experiment and Computations

    NASA Technical Reports Server (NTRS)

    Hudson, Susan T.; Zoladz, Thomas F.; Dorney, Daniel J.; Turner, James (Technical Monitor)

    2002-01-01

    Understanding the unsteady aspects of turbine rotor flow fields is critical to successful future turbine designs. A technology program was conducted at NASA's Marshall Space Flight Center to increase the understanding of unsteady environments for rocket engine turbines. The experimental program involved instrumenting turbine rotor blades with miniature surface mounted high frequency response pressure transducers. The turbine model was then tested to measure the unsteady pressures on the rotor blades. The data obtained from the experimental program is unique in two respects. First, much more unsteady data was obtained (several minutes per set point) than has been possible in the past. Also, an extensive steady performance database existed for the turbine model. This allowed an evaluation of the effect of the on-blade instrumentation on the turbine's performance. A three-dimensional unsteady Navier-Stokes analysis was also used to blindly predict the unsteady flow field in the turbine at the design operating conditions and at +15 degrees relative incidence to the first-stage rotor. The predicted time-averaged and unsteady pressure distributions show good agreement with the experimental data. This unique data set, the lessons learned for acquiring this type of data, and the improvements made to the data analysis and prediction tools are contributing significantly to current Space Launch Initiative turbine airflow test and blade surface pressure prediction efforts.

  18. Engineered antifouling microtopographies: surface pattern effects on cell distribution.

    PubMed

    Decker, Joseph T; Sheats, Julian T; Brennan, Anthony B

    2014-12-23

    Microtopography has been observed to lead to altered attachment behavior for marine fouling organisms; however, quantification of this phenomenon is lacking in the scientific literature. Here, we present quantitative measurement of the disruption of normal attachment behavior of the fouling algae Ulva linza by antifouling microtopographies. The distribution of the diatom Navicula incerta was shown to be unaffected by the presence of topography. The radial distribution function was calculated for both individual zoospores and cells as well as aggregates of zoospores from attachment data for a variety topographic configurations and at a number of different attachment densities. Additionally, the screening distance and maximum values were mapped according to the location of zoospore aggregates within a single unit cell. We found that engineered topographies decreased the distance between spore aggregates compared to that for a smooth control surface; however, the distributions for individual spores were unchanged. We also found that the local attachment site geometry affected the screening distance for aggregates of zoospores, with certain geometries decreasing screening distance and others having no measurable effect. The distribution mapping techniques developed and explored in this article have yielded important insight into the design parameters for antifouling microtopographies that can be implemented in the next generation of antifouling surfaces. PMID:25420235

  19. Efficiency of surface cleaning by a glow discharge for plasma spraying coating

    NASA Astrophysics Data System (ADS)

    Kadyrmetov, A. M.; Kashapov, N. F.; Sharifullin, S. N.; Saifutdinov, A. I.; Fadeev, S. A.

    2016-06-01

    The article presents the results of experimental studies of the quality of cleaning steel surfaces by a glow discharge for plasma spraying. Shows the results of measurements of the angle of surface wetting and bond strength of the plasma coating to the surface treated. The dependence of the influence of the glow discharge power, chamber pressure, distance between the electrodes and the processing time of the surface on cleaning efficiency. Optimal fields of factors is found. It is shown increase joint strength coating and base by 30-80% as a result of cleaning the substrate surface by a glow discharge plasma spraying.

  20. Long-term reduction in poly(dimethylsiloxane) surface hydrophobicity via cold-plasma treatments.

    PubMed

    Larson, B J; Gillmor, S D; Braun, J M; Cruz-Barba, L E; Savage, D E; Denes, F S; Lagally, M G

    2013-10-22

    Poly(dimethylsiloxane), PDMS, a versatile elastomer, is the polymer of choice for microfluidic systems. It is inexpensive, relatively easy to pattern, and permeable to oxygen. Unmodified PDMS is highly hydrophobic. It is typically exposed to an oxygen plasma to reduce this hydrophobicity. Unfortunately, the PDMS surface soon returns to its original hydrophobic state. We present two alternative plasma treatments that yield long-term modification of the wetting properties of a PDMS surface. An oxygen plasma pretreatment followed by exposure to a SiCl4 plasma and an oxygen-CCl4 mixture plasma both cause a permanent reduction in the hydrophobicity of the PDMS surface. We investigate the properties of the plasma-treated surfaces with X-ray photoelectron spectroscopy (XPS) and contact angle measurements. We propose that the plasma treated PDMS surface is a dynamic mosaic of high- and low-contact-angle functionalities. The SiCl4 and CCl4 plasmas attach polar groups that block coverage of the surface by low-molecular-weight groups that exist in PDMS. We describe an application that benefits from these new plasma treatments, the use of a PDMS stencil to form dense arrays of DNA on a surface. PMID:24063604

  1. Stability of Atmospheric-Pressure Plasma Induced Changes on Polycarbonate Surfaces

    NASA Technical Reports Server (NTRS)

    Sharma, Rajesh; Holcomb, Edward; Trigwell, Steve

    2006-01-01

    Polycarbonate films are subjected to plasma treatment in a number of applications such as improving adhesion between polycarbonate and silicon alloy in protective and optical coatings. The changes in surface chemistry due to plasma treatment have tendency to revert back. Thus stability of the plasma induced changes on polymer surfaces over desired time period is very important. The objective of this study was to examine the effect of ageing on atmospheric pressure helium-plasma treated polycarbonate (PC) sample as a function of treatment time. The ageing effects were studied over a period of 10 days. The samples were plasma treated for 0.5, 2, 5 and 10 minutes. Contact angle measurements were made to study surface energy changes. Modification of surface chemical structure was examined using, X-ray Photoelectron Spectroscopy (XPS). Contact angle measurements on untreated and plasma treated surfaces were made immediately, 24, 48, 72 and 96 hrs after treatment. Contact angle decreased from 93 deg for untreated sample to 30 deg for sample plasma treated for 10 minutes. After 10 days the contact angles for the 10 minute plasma treated sample increased to 67 deg, but it never reverted back to that of untreated surface. Similarly the O/C ratio increased from 0.136 for untreated sample to 0.321 for 10 minute plasma treated sample indication increase in surface energy.

  2. Plasma Science and Applications at the Intel International Science and Engineering Fair

    NASA Astrophysics Data System (ADS)

    Berry, Lee

    2005-10-01

    The Coalition for Plasma Science (CPS) has established a plasma prize at the Intel International Science and Engineering Fair (ISEF). This year's prize was awarded for projects in simulated ball lightning and plasma thrusters. The CPS is a broadly-based group of institutions and individuals whose goal is to increase the understanding of plasmas for non-technical audiences. In addition to the ISEF plasma award, CPS activities include maintaining a website, http://www.plasmacoalition.org; developing educational literature; organizing educational luncheon presentations for Members of Congress and their staffs; and responding to questions about plasmas that are received by the CPS e-mail or toll-free number. The success of these activities depend on the voluntary labor of CPS members and associates. These volunteers include the ISEF judges, whom the APS/DPP and the IEEE/PSAC helped identify. Please send an e-mail to the CPS at CPS@plasmacoalition.org for information if you would like to become involved in spreading the good word about plasmas.

  3. Effect of reactive species on surface crosslinking of plasma-treated polymers investigated by surface force microscopy

    SciTech Connect

    Tajima, S.; Komvopoulos, K.

    2006-09-18

    Polymer surface modification by ions, uncharged particles, and photons of inductively coupled Ar plasma was investigated with a surface force microscope. Optical windows consisting of crystals with different cutoff wavelengths and a metal shield were used to deconvolute the effects of the various plasma species on the modification of the surface nanomechanical properties of polyethylene. The extent of surface crosslinking was related to the frictional energy dissipated during nanoscratching. It is shown that surface crosslinking is primarily due to the simultaneous effects of uncharged particles and vacuum ultraviolet photons, while the ion bombardment effect is secondary.

  4. Surface Modification of Material by Irradiation of Low Power Atmospheric Pressure Plasma Jet

    SciTech Connect

    Akamatsu, Hiroshi; Ichikawa, Kazunori; Azuma, Kingo; Onoi, Masahiro

    2010-10-13

    Application of a low power atmospheric pressure plasma jet for surface modifications of acrylic, aluminum, and highly crystalline graphite has been carried out experimentally. The plasma jet was generated with batteries-driven high voltage modulator. The power consumed for the plasma generation was estimated to be 0.12 W. The plasma had hydroxyl radicals, which is known as a strong oxider from an observation of optical emission spectrum. After the irradiation of the plasma, the surfaces of acrylic and aluminum became to be hydrophilic from the compartment of contact angle of water on these surfaces. The surface of highly crystalline graphite irradiated by the plasma jet had oxygen-rich functional groups such as C-O, C = O, and O = C-O.

  5. Surface hardening induced by high flux plasma in tungsten revealed by nano-indentation

    NASA Astrophysics Data System (ADS)

    Terentyev, D.; Bakaeva, A.; Pardoen, T.; Favache, A.; Zhurkin, E. E.

    2016-08-01

    Surface hardness of tungsten after high flux deuterium plasma exposure has been characterized by nanoindentation. The effect of plasma exposure was rationalized on the basis of available theoretical models. Resistance to plastic penetration is enhanced within the 100 nm sub-surface region, attributed to the pinning of geometrically necessary dislocations on nanometric deuterium cavities - signature of plasma-induced defects and deuterium retention. Sub-surface extension of thereby registered plasma-induced damage is in excellent agreement with the results of alternative measurements. The study demonstrates suitability of nano-indentation to probe the impact of deposition of plasma-induced defects in tungsten on near surface plasticity under ITER-relevant plasma exposure conditions.

  6. Monitoring Surface Condition of Plasma Grid of a Negative Hydrogen Ion Source

    SciTech Connect

    Wada, M.; Kasuya, T.; Tokushige, S.; Kenmotsu, T.

    2011-09-26

    Surface condition of a plasma grid in a negative hydrogen ion source is controlled so as to maximize the beam current under a discharge operation with introducing Cs into the ion source. Photoelectric current induced by laser beams incident on the plasma grid can produce a signal to monitor the surface condition, but the signal detection can be easily hindered by plasma noise. Reduction in size of a detection electrode embedded in the plasma grid can improve signal-to-noise ratio of the photoelectric current from the electrode. To evaluate the feasibility of monitoring surface condition of a plasma gird by utilizing photoelectric effect, a small experimental setup capable of determining quantum yields of a surface in a cesiated plasma environment is being assembled. Some preliminary test results of the apparatus utilizing oxide cathodes are reported.

  7. Effect of atmospheric oxidative plasma treatments on polypropylenic fibers surface: Characterization and reaction mechanisms

    NASA Astrophysics Data System (ADS)

    Nisticò, Roberto; Magnacca, Giuliana; Faga, Maria Giulia; Gautier, Giovanna; D'Angelo, Domenico; Ciancio, Emanuele; Lamberti, Roberta; Martorana, Selanna

    2013-08-01

    Atmospheric pressure plasma-dielectric barrier discharge (APP-DBD, open chamber configuration) was used to functionalize polypropylene (PP) fibers surface in order to generate oxidized-reactive groups such as hydroperoxides, alcohols and carbonyl species (i.e. ketones and others). Such a species increased the surface polarity, without causing material degradation. Three different types of plasma mixture (He, He/O2, He/O2/H2O) under three different values of applied power (750, 1050, 1400 W) were investigated. The formed plasma species (O2+, O single atom and OH radical) and their distribution were monitored via optical emission spectrometry (OES) measurements, and the plasma effects on PP surface species formation were followed by X-ray photoemission spectroscopy (XPS). Results allowed to better understand the reaction pathways between plasma phase and PP fibers. In fact, two reaction mechanisms were proposed, the first one concerning the plasma phase reactions and the second one involving material surface modifications.

  8. Wear Protection of AJ62 Mg Engine Blocks using Plasma Electrolytic Oxidation Process

    NASA Astrophysics Data System (ADS)

    Zhang, Peng

    2011-12-01

    In order to reduce the fuel consumption and pollution, automotive companies are developing magnesium-intensive components. However, due to the low wear resistance of the magnesium (Mg) alloys, Mg cylinder bores are vulnerable to the sliding wear attack. In this thesis, two approaches were used to protect the cylinder bores, made of a new developed Mg engine alloy AJ62 (MgA16Mn0.34Sr2). The first one was to use a Plasma Electrolytic Oxidation (PEO) process to produce oxide coatings on the Mg bores. The wear properties of the PEO coatings were evaluated by sliding wear tests under the boundary lubrication condition at the room and elevated temperatures. It was found that due to the substrate softening and the vaporization loss of the lubricant, the tribological properties of the PEO coatings were deteriorated at the elevated temperature. In order to optimize the PEO process, a statistical method (Response surface method) was used to analyze the effects of the 4 main PEO process parameters with 2 levels for each and their interactions on the tribological properties of the PEO coatings at the room and elevated temperatures, individually. A cylinder liner made of an economical metal-matrix composite (MMC) was another approach to improve the wear resistance of the Mg cylinder bore. In this thesis, an A1383/SiO2 MMC was designed to replace the expensive Alusil alloy used in the BMW Mg/Al composite engine to build the cylinder liner. To further increase the wear resistance of the MMC, PEO process was also used to form an oxide coating on the MMC. The effects of the SiO 2 content and coating thickness on the tribological properties of the MMC were studied. To evaluate the wear properties of the optimal PEO coated Mg coupons and the MMC with the oxide coatings, Alusil and cast iron, currently used on the cylinder bores of the commercial aluminum engines, were used as reference materials. The optimal PEO coated Mg coupons and the oxidized MMC showed their advantages over the

  9. Electromagnetic wave band structure due to surface plasmon resonances in a complex plasma

    NASA Astrophysics Data System (ADS)

    Vladimirov, S. V.; Ishihara, O.

    2016-07-01

    The dielectric properties of complex plasma containing either metal or dielectric spherical inclusions (macroparticles, dust) are investigated. We focus on surface plasmon resonances on the macroparticle surfaces and their effect on electromagnetic wave propagation. It is demonstrated that the presence of surface plasmon oscillations can significantly modify plasma electromagnetic properties by resonances and cutoffs in the effective permittivity. This leads to related branches of electromagnetic waves and to the wave band gaps. The conditions necessary to observe the band-gap structure in laboratory dusty plasma and/or space (cosmic) dusty plasmas are discussed.

  10. Electromagnetic wave band structure due to surface plasmon resonances in a complex plasma.

    PubMed

    Vladimirov, S V; Ishihara, O

    2016-07-01

    The dielectric properties of complex plasma containing either metal or dielectric spherical inclusions (macroparticles, dust) are investigated. We focus on surface plasmon resonances on the macroparticle surfaces and their effect on electromagnetic wave propagation. It is demonstrated that the presence of surface plasmon oscillations can significantly modify plasma electromagnetic properties by resonances and cutoffs in the effective permittivity. This leads to related branches of electromagnetic waves and to the wave band gaps. The conditions necessary to observe the band-gap structure in laboratory dusty plasma and/or space (cosmic) dusty plasmas are discussed. PMID:27575225

  11. Surface Modification of Polypropylene Membrane by RF Methane/Oxygen Mixture Plasma Treatment

    NASA Astrophysics Data System (ADS)

    Tsai, Ching-Yuan; Juang, Ruey-Shin; Huang, Chun

    2011-08-01

    The hydrophilic surface modification of micro-porous polypropylene (PP) membranes is achieved by low-pressure 13.56 MHz RF methane (CH4)/oxygen (O2) gas mixture plasma treatment. The changes in surface wettability and surface free energy were examined by static contact angle analysis. The static water contact angle of the plasma modified membrane notably decreased with increases in treatment time and plasma power. The obvious increase in the surface energy of polypropylene membranes due to CH4/O2 mixture gas plasma treatments was also observed. Optical emission spectroscopy (OES) was used to analyze the chemical species of CH4/O2 mixture gas plasma treatment. The variations in the surface morphology and chemical structure of the micro-porous PP membranes were confirmed by confocal laser scanning microscopy (CLSM), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) measurements. XPS analysis showed significantly higher surface concentrations of oxygen functional groups for CH4/O2 mixture gas plasma-modified polypropylene membrane surfaces than for the originally unmodified polypropylene membrane surface. The experimental results show the important role of chemical species in the interaction between a CH4/O2 mixture gas plasma and a membrane surface, which can be controlled by surface modification to tailor the hydrophilicity of the membrane to the requirements of various applications.

  12. Study of plasma formation in CW CO2 laser beam-metal surface interaction

    NASA Astrophysics Data System (ADS)

    Azharonok, V. V.; Vasilchenko, Zh V.; Golubev, Vladimir S.; Gresev, A. N.; Zabelin, Alexandre M.; Chubrik, N. I.; Shimanovich, V. D.

    1994-04-01

    An interaction of the cw CO2 laser beam and a moving metal surface has been studied. The pulsed and thermodynamical parameters of the surface plasma were investigated by optical and spectroscopical methods. The subsonic radiation wave propagation in the erosion plasma torch has been studied.

  13. Improved performance of organic light-emitting devices with plasma treated ITO surface and plasma polymerized methyl methacrylate buffer layer

    NASA Astrophysics Data System (ADS)

    Lim, Jae-Sung; Shin, Paik-Kyun

    2007-02-01

    Transparent indium-tin-oxide (ITO) anode surface was modified using O 3 plasma and organic ultra-thin buffer layers were deposited on the ITO surface using 13.56 MHz rf plasma polymerization technique. A plasma polymerized methyl methacrylate (ppMMA) ultra-thin buffer layer was deposited between the ITO anode and hole transporting layer (HTL). The plasma polymerization of the buffer layer was carried out at a homemade capacitively coupled plasma (CCP) equipment. N, N'-Diphenyl- N, N'-bis(3-methylphenyl)-1,1'-diphenyl-4,4'-diamine (TPD) as HTL, Tris(8-hydroxy-quinolinato)aluminum (Alq 3) as both emitting layer (EML)/electron transporting layer (ETL), and aluminum layer as cathode were deposited using thermal evaporation technique. Electroluminescence (EL) efficiency, operating voltage and stability of the organic light-emitting devices (OLEDs) were investigated in order to study the effect of the plasma surface treatment of the ITO anode and role of plasma polymerized methyl methacrylate as an organic ultra-thin buffer layer.

  14. Propagation of surface waves in two-plasma systems bounded by a metallic enclosure

    NASA Astrophysics Data System (ADS)

    Margot, Joëlle; Stafford, Luc; Johnston, Tudor W.

    1999-10-01

    The excitation of surface waves (SW) has been the object of intensive research over the last twenty to thirty years because of their interest in sustaining plasmas under various experimental conditions and configurations. Since the pioneering work having reported the theoretical existence of surface waves in 1959 (Trivelpiece and Gould), it is commonly believed that such waves only exist in plasmas bounded by a dielectric layer. However, some recent numerical and experimental investigations by the groups of Birdsall and Sugai, respectively, indicate that surface waves can be excited in plasmas bounded by a metallic enclosure, the plasma sheath then acting as a dielectric layer. In this presentation, we generalize the theory of surface waves to plasma-plasma-metal configurations in cylindrical geometry. Using a full electromagnetic approach in the cold plasma approximation, we search for SW or pseudo-SW solutions (i.e. solutions that tend toward pure surface waves when the permittivity of the outer plasma approaches unity). We thus determine the dispersion and attenuation characteristics of the waves. We explore situations in which the inner plasma column is either overdense or underdense and we investigate the influence of a magnetic field axial to the plasma columns.

  15. Comment on "Surface electromagnetic wave equations in a warm magnetized quantum plasma" [Phys. Plasmas 21, 072114 (2014)

    NASA Astrophysics Data System (ADS)

    Moradi, Afshin

    2016-07-01

    In a recent article [C. Li et al., Phys. Plasmas 21, 072114 (2014)], Li et al. studied the propagation of surface waves on a magnetized quantum plasma half-space in the Voigt configuration (in this case, the magnetic field is parallel to the surface but is perpendicular to the direction of propagation). Here, we present a fresh look at the problem and obtain a new form of dispersion relation of surface waves of the system. We find that our new dispersion relation does not agree with the result obtained by Li et al.

  16. The effect of microscopic texture on the direct plasma surface passivation of Si solar cells

    NASA Astrophysics Data System (ADS)

    Mehrabian, S.; Xu, S.; Qaemi, A. A.; Shokri, B.; Chan, C. S.; Ostrikov, K.

    2013-04-01

    Textured silicon surfaces are widely used in manufacturing of solar cells due to increasing the light absorption probability and also the antireflection properties. However, these Si surfaces have a high density of surface defects that need to be passivated. In this study, the effect of the microscopic surface texture on the plasma surface passivation of solar cells is investigated. The movement of 105 H+ ions in the texture-modified plasma sheath is studied by Monte Carlo numerical simulation. The hydrogen ions are driven by the combined electric field of the plasma sheath and the textured surface. The ion dynamics is simulated, and the relative ion distribution over the textured substrate is presented. This distribution can be used to interpret the quality of the Si dangling bonds saturation and consequently, the direct plasma surface passivation.

  17. The effect of microscopic texture on the direct plasma surface passivation of Si solar cells

    SciTech Connect

    Mehrabian, S.; Xu, S.; Qaemi, A. A.; Shokri, B.; Chan, C. S.; Ostrikov, K.

    2013-04-15

    Textured silicon surfaces are widely used in manufacturing of solar cells due to increasing the light absorption probability and also the antireflection properties. However, these Si surfaces have a high density of surface defects that need to be passivated. In this study, the effect of the microscopic surface texture on the plasma surface passivation of solar cells is investigated. The movement of 10{sup 5} H{sup +} ions in the texture-modified plasma sheath is studied by Monte Carlo numerical simulation. The hydrogen ions are driven by the combined electric field of the plasma sheath and the textured surface. The ion dynamics is simulated, and the relative ion distribution over the textured substrate is presented. This distribution can be used to interpret the quality of the Si dangling bonds saturation and consequently, the direct plasma surface passivation.

  18. Surface modification of fluorosilicone acrylate RGP contact lens via low-temperature argon plasma

    NASA Astrophysics Data System (ADS)

    Yin, Shiheng; Wang, Yingjun; Ren, Li; Zhao, Lianna; Kuang, Tongchun; Chen, Hao; Qu, Jia

    2008-11-01

    A fluorosilicone acrylate rigid gas permeable (RGP) contact lens was modified via argon plasma to improve surface hydrophilicity and resistance to protein deposition. The influence of plasma treatment on surface chemical structure, hydrophilicity and morphology of RGP lens was investigated by X-ray photoelectron spectrometer (XPS), contact angle measurements and scanning electron microscope (SEM), respectively. The contact angle results showed that the hydrophilicity of the contact lens was improved after plasma treatment. XPS results indicated that the incorporation of oxygen-containing groups on surface and the transformation of silicone into hydrophilic silicate after plasma treatment are the main reasons for the surface hydrophilicity improvement. SEM results showed that argon plasma with higher power could lead to surface etching.

  19. Plasma sprayed coatings as surface treatments of aluminum adherends

    SciTech Connect

    Davis, G.D.; Whisnant, P.L.; Groff, G.B.; Shaffer, D.K.

    1996-12-31

    Plasma sprayed coatings have been evaluated as surface treatments for aluminum substrates being prepared for adhesive bonding. Blends of an aluminum-silicon alloy and polyester give the best performance. To establish durability performance, wedge tests were done using four common epoxy adhesives without primers. In all cases, the 60%Al-Si/40%polyester coating gave results superior to those of FPL-etched specimens and, in some cases, performance equivalent to PAA specimens. This roughness provides excellent opportunity for mechanical interlocking or physical bonding and allows a complex interphase to be formed as the adhesive penetrates into the coating. Crack growth measurements and subsequent failure analysis using x-ray photoelectron spectroscopy (XPS) indicate that crack propagation occurs within this complex interphase. The results also show that the aluminum and polyester components are synergistic and blends of the two give better performance than either component by itself The aluminum gives strength to the coating while the polyester provides toughness and improves moisture resistance.

  20. Permanent hydrophilization of outer and inner surfaces of polytetrafluoroethylene tubes using ambient air plasma generated by surface dielectric barrier discharges

    SciTech Connect

    Pavliňák, D.; Galmiz, O.; Zemánek, M.; Brablec, A.; Čech, J.; Černák, M.

    2014-10-13

    We present an atmospheric pressure ambient air plasma technique developed for technically simple treatment of inner and/or outer surfaces of plastic tubes and other hollow dielectric bodies. It is based on surface dielectric barrier discharge generating visually diffuse plasma layers along the treated dielectric surfaces using water-solution electrodes. The observed visual uniformity and measured plasma rotational and vibrational temperatures of 333 K and 2350 K indicate that the discharge can be readily applied to material surface treatment without significant thermal effect. This is exemplified by the obtained permanent surface hydrophilization of polytetrafluoroethylene tubes related to the replacement of a high fraction (more than 80%) of the surface fluorine determined by X-ray photoelectron spectroscopy. A tentative explanation of the discharge mechanism based on high-speed camera observations and the discharge current and voltage of measurements is outlined.

  1. Effect of plasma grid bias on extracted currents in the RF driven surface-plasma negative ion source.

    PubMed

    Belchenko, Yu; Ivanov, A; Sanin, A; Sotnikov, O; Shikhovtsev, I

    2016-02-01

    Extraction of negative ions from the large inductively driven surface-plasma negative ion source was studied. The dependencies of the extracted currents vs plasma grid (PG) bias potential were measured for two modifications of radio-frequency driver with and without Faraday screen, for different hydrogen feeds and for different levels of cesium conditioning. The maximal PG current was independent of driver modification and it was lower in the case of inhibited cesium. The maximal extracted negative ion current depends on the potential difference between the near-PG plasma and the PG bias potentials, while the absolute value of plasma potential in the driver and in the PG area is less important for the negative ion production. The last conclusion confirms the main mechanism of negative ion production through the surface conversion of fast atoms. PMID:26932001

  2. Effect of plasma grid bias on extracted currents in the RF driven surface-plasma negative ion source

    NASA Astrophysics Data System (ADS)

    Belchenko, Yu.; Ivanov, A.; Sanin, A.; Sotnikov, O.; Shikhovtsev, I.

    2016-02-01

    Extraction of negative ions from the large inductively driven surface-plasma negative ion source was studied. The dependencies of the extracted currents vs plasma grid (PG) bias potential were measured for two modifications of radio-frequency driver with and without Faraday screen, for different hydrogen feeds and for different levels of cesium conditioning. The maximal PG current was independent of driver modification and it was lower in the case of inhibited cesium. The maximal extracted negative ion current depends on the potential difference between the near-PG plasma and the PG bias potentials, while the absolute value of plasma potential in the driver and in the PG area is less important for the negative ion production. The last conclusion confirms the main mechanism of negative ion production through the surface conversion of fast atoms.

  3. Instabilities in uranium plasma and the gas-core nuclear rocket engine

    NASA Technical Reports Server (NTRS)

    Tidman, D. A.

    1972-01-01

    The nonlinear evolution of unstable sound waves in a uranium plasma has been calculated using a multiple time-scale asymptotic expansion scheme. The fluid equations used include the fission power density, radiation diffusion, and the effects of the changing degree of ionization of the uranium atoms. The nonlinear growth of unstable waves is shown to be limited by mode coupling to shorter wavelength waves which are damped by radiation diffusion. This mechanism limits the wave pressure fluctuations to values of order delta P/P approximates 0.00001 in the plasma of a typical gas-core nuclear rocket engine. The instability is thus not expected to present a control problem for this engine.

  4. Surface modification of gutta-percha cones by non-thermal plasma.

    PubMed

    Prado, Maíra; Menezes, Marilia Santana de Oliveira; Gomes, Brenda Paula Figueiredo de Almeida; Barbosa, Carlos Augusto de Melo; Athias, Leonardo; Simão, Renata Antoun

    2016-11-01

    This study was designed to evaluate the effects of Oxygen and Argon plasma on gutta-percha surfaces. A total of 185 flat smooth gutta-percha surfaces were used. Samples were divided into groups: control: no plasma treatment; Oxygen: treatment with Oxygen plasma for 1min; Argon: treatment with Argon plasma for 1min. Samples were evaluated topographically by scanning electron microscopy and atomic force microscopy; and chemically by Fourier Transform-infrared Spectroscopy. A goniometer was used to determine the surface free energy and the wettability of the endodontic sealers. Additionally 60 bovine teeth were filled using pellets of gutta-percha (control, oxygen and argon plasma) and the sealers. Teeth were evaluated by push-out and microleakage tests. Data were statistically analyzed using specific tests. Argon plasma did not change the surface topography, while Oxygen plasma led to changes. Both treatments chemically modified the gutta-percha surface. Argon and Oxygen plasma increased the surface free energy and favored the wettability of AH Plus and Pulp Canal Sealer EWT. Regarding bond strength analysis, for AH Plus sealer, both plasma treatments on gutta-percha favored the bond strength to dentin. However, for Pulp Canal Sealer, there is no statistically significant influence. For leakage test, dye penetration occurred between sealer and dentin in all groups. In conclusion, Oxygen plasma led to both topographic and chemical changes in the gutta-percha surface, while Argon plasma caused only chemical changes. Both treatments increased the surface free energy, favoring the wettability of AH Plus and Pulp Canal Sealer EWT sealers and influenced positively in the adhesion and leakage. PMID:27524029

  5. Note: A single-chamber tool for plasma activation and surface functionalization in microfabrication

    PubMed Central

    Bowman, Adam J.; Scherrer, Joseph R.; Reiserer, Ronald S.

    2015-01-01

    We present a simple apparatus for improved surface modification of polydimethylsiloxane (PDMS) microfluidic devices. A single treatment chamber for plasma activation and chemical/physical vapor deposition steps minimizes the time-dependent degradation of surface activation that is inherent in multi-chamber techniques. Contamination and deposition irregularities are also minimized by conducting plasma activation and treatment phases in the same vacuum environment. An inductively coupled plasma driver allows for interchangeable treatment chambers. Atomic force microscopy confirms that silane deposition on PDMS gives much better surface quality than standard deposition methods, which yield a higher local roughness and pronounced irregularities in the surface. PMID:26133881

  6. Note: A single-chamber tool for plasma activation and surface functionalization in microfabrication

    NASA Astrophysics Data System (ADS)

    Bowman, Adam J.; Scherrer, Joseph R.; Reiserer, Ronald S.

    2015-06-01

    We present a simple apparatus for improved surface modification of polydimethylsiloxane (PDMS) microfluidic devices. A single treatment chamber for plasma activation and chemical/physical vapor deposition steps minimizes the time-dependent degradation of surface activation that is inherent in multi-chamber techniques. Contamination and deposition irregularities are also minimized by conducting plasma activation and treatment phases in the same vacuum environment. An inductively coupled plasma driver allows for interchangeable treatment chambers. Atomic force microscopy confirms that silane deposition on PDMS gives much better surface quality than standard deposition methods, which yield a higher local roughness and pronounced irregularities in the surface.

  7. Silicon surface periodic structures produced by plasma flow induced capillary waves

    SciTech Connect

    Dojcinovic, I. P.; Kuraica, M. M.; Obradovic, B. M.; Puric, J.

    2006-08-14

    Silicon single crystal surface modification by the action of nitrogen quasistationary compression plasma flow generated by a magnetoplasma compressor is studied. It has been found that highly oriented silicon periodic cylindrical shape structures are produced during a single pulse surface treatment. The periodical structure formation can be related to the driven capillary waves quenched during fast cooling and resolidification phase of the plasma flow interaction with silicon surface. These waves are induced on the liquid silicon surface due to the compression plasma flow intrinsic oscillations.

  8. Note: A single-chamber tool for plasma activation and surface functionalization in microfabrication

    SciTech Connect

    Bowman, Adam J.; Scherrer, Joseph R.; Reiserer, Ronald S.

    2015-06-15

    We present a simple apparatus for improved surface modification of polydimethylsiloxane (PDMS) microfluidic devices. A single treatment chamber for plasma activation and chemical/physical vapor deposition steps minimizes the time-dependent degradation of surface activation that is inherent in multi-chamber techniques. Contamination and deposition irregularities are also minimized by conducting plasma activation and treatment phases in the same vacuum environment. An inductively coupled plasma driver allows for interchangeable treatment chambers. Atomic force microscopy confirms that silane deposition on PDMS gives much better surface quality than standard deposition methods, which yield a higher local roughness and pronounced irregularities in the surface.

  9. In situ X-ray Photoemission Spectroscopy Analysis of Aromatic Polyester Surface Treated with Argon Plasma

    NASA Astrophysics Data System (ADS)

    Narushima, Kazuo; Okamoto, Nanami

    2013-10-01

    Effects of surface modification treatment by argon plasma processing of two types of aromatic polyester, poly(ethylene terephthalate) (PET) and poly(oxybenzonate-co-oxynaphthoate) (POCO), were investigated. This paper presents a description of our experiment and a discussion of the surface modification mechanism, which uses a simple and inexpensive procedure to conduct analysis without breaking vacuum after plasma processing. In situ analysis of the chemical composition of a polymer surface was attempted without exposing the sample to air after argon plasma processing. In particular, the respective actions of each active species were investigated for electrons and ions in argon plasma. Electrons and ions in argon plasma break some polymer bonds. Specifically, ester groups are broken and oxygen atoms are kicked out in PET and POCO. No oxygen functional group is formed after argon plasma processing, but such groups are formed if the sample is exposed to air.

  10. Enzyme sensitive, surface engineered nanoparticles for enhanced delivery of camptothecin.

    PubMed

    Yu, Hongliang; Chen, Jiao; Liu, Sen; Lu, Qian; He, Jian; Zhou, Zhengyang; Hu, Yong

    2015-10-28

    To achieve a drug delivery system combining the programmable long circulation and targeting ability, surface engineering nanoparticles (NPs), having a sandwich structure consisting of a long circulating outmost layer, a targeting middle layer and a hydrophobic innermost core were constructed by mixing a matrix metalloproteinase MMP2 and MMP9-sensitive copolymers (mPEG-Pep-PCL) and folate receptor targeted copolymers (FA-PEG-PCL). Their physiochemical traits including morphology, particle size, drug loading content, and in vitro release profiles were studied. In vitro studies validated that the inhibition efficiency of tumor cells was effectively correlated with NP concentrations. Furthermore, The PEG layer would detach from the NPs due to the up-regulated extracellular MMP2 and MMP9 in tumors, resulting in the exposure of folate to enhance the cellular internalization via folate receptor mediated endocytosis, which accelerated the release rate of CPT in vivo. The antitumor efficacy, tumor targeting ability and bio-distribution of the NPs were examined in a B16 melanoma cells xenograft mouse model. These NPs showed improved tumor target ability and enhanced aggregation of camptothecin (CPT) in tumor site and prominent suppression of tumor growth. Thus this mPEG-Pep-PCL@FA-PEG-PCL core-shell structure NP could be a better candidate for the tumor specific delivery of hydrophobic drug. PMID:26282096

  11. Control of magnetohydrodynamic stability by phase space engineering of energetic ions in tokamak plasmas.

    PubMed

    Graves, J P; Chapman, I T; Coda, S; Lennholm, M; Albergante, M; Jucker, M

    2012-01-01

    Virtually collisionless magnetic mirror-trapped energetic ion populations often partially stabilize internally driven magnetohydrodynamic disturbances in the magnetosphere and in toroidal laboratory plasma devices such as the tokamak. This results in less frequent but dangerously enlarged plasma reorganization. Unique to the toroidal magnetic configuration are confined 'circulating' energetic particles that are not mirror trapped. Here we show that a newly discovered effect from hybrid kinetic-magnetohydrodynamic theory has been exploited in sophisticated phase space engineering techniques for controlling stability in the tokamak. These theoretical predictions have been confirmed, and the technique successfully applied in the Joint European Torus. Manipulation of auxiliary ion heating systems can create an asymmetry in the distribution of energetic circulating ions in the velocity orientated along magnetic field lines. We show the first experiments in which large sawtooth collapses have been controlled by this technique, and neoclassical tearing modes avoided, in high-performance reactor-relevant plasmas. PMID:22233634

  12. Plasma-assisted physical vapor deposition surface treatments for tribological control

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis

    1990-01-01

    In any mechanical or engineering system where contacting surfaces are in relative motion, adhesion, wear, and friction affect reliability and performance. With the advancement of space age transportation systems, the tribological requirements have dramatically increased. This is due to the optimized design, precision tolerance requirements, and high reliability expected for solid lubricating films in order to withstand hostile operating conditions (vacuum, high-low temperatures, high loads, and space radiation). For these problem areas the ion-assisted deposition/modification processes (plasma-based and ion beam techniques) offer the greatest potential for the synthesis of thin films and the tailoring of adherence and chemical and structural properties for optimized tribological performance. The present practices and new approaches of applying soft solid lubricant and hard wear resistant films to engineering substrates are reviewed. The ion bombardment treatments have increased film adherence, lowered friction coefficients, and enhanced wear life of the solid lubricating films such as the dichalcogenides (MoS2) and the soft metals (Au, Ag, Pb). Currently, sputtering is the preferred method of applying MoS2 films; and ion plating, the soft metallic films. Ultralow friction coefficients (less than 0.01) were achieved with sputtered MoS2. Further, new diamond-like carbon and BN lubricating films are being developed by using the ion assisted deposition techniques.

  13. Dusty Plasma Technology of DCM with Nanostructure Surface Layer Production

    SciTech Connect

    Gavrikov, A. V.; Ivanov, A. S.; Petrov, O. F.; Shulga, Yu. M.; Starostin, A. N.; Fortov, V. E.

    2008-09-07

    The technique of disperse composite material (DCM) production was developed. The technique based on using special dusty plasma trap in RF plasma, in which fine particles levitate and are exposed by the atomic beam. The two types of covering were obtained: ''cauliflower'' or smooth, depending on process condition.

  14. Impact of an atmospheric argon plasma jet on a dielectric surface and desorption of organic molecules

    NASA Astrophysics Data System (ADS)

    Damany, Xavier; Pasquiers, Stéphane; Blin-Simiand, Nicole; Bauville, Gérard; Bournonville, Blandine; Fleury, Michel; Jeanney, Pascal; Santos Sousa, João

    2016-08-01

    The propagation of a DC-pulsed argon plasma jet through the surrounding ambient air, and its interaction with an ungrounded glass plate placed on the jet trajectory, was studied by means of fast imaging. The surface plays an important role in the spatio-temporal characteristics of the plasma. Indeed, for an argon jet propagating perpendicularly to the surface, the plasma jet structure changes from filamentary to diffuse when the distance between the nozzle of the capillary tube and the surface is short (≤10 mm). Changing the angle between the capillary tube and the glass plate, and varying the gas flow rate strongly affects the spatial extension of the plasma that develops on the surface. This surface plasma propagates while the plasma in the argon jet is maintained with the same luminous intensity. Finally, this plasma jet shows interesting characteristics for desorption of low volatile organic molecules such as bibenzyl. A maximum removal of bibenzyl is located at the intersection area between the jet axis and the glass surface, and some of the initially deposited molecules are found intact in gas phase. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  15. Chrome and Zinc Contaminants Removal from Silicon (100) Surfaces by Remote Plasma Cleaning Techniques

    NASA Astrophysics Data System (ADS)

    Lee, Seungwook; Lee, Jaegab; Lee, Chongmu

    2001-06-01

    Removal of Cr and Zn impurities on Si surfaces using remote plasma H2 was investigated. Si surfaces were contaminated intentionally with low-purity acetone. To determine the optimum process conditions, remote plasma H2 cleaning was conducted for various rf powers and plasma exposure times. After remote plasma H2 cleaning, Si surfaces were analyzed by total X-ray reflection fluorescence (TXRF), surface photovoltage (SPV) and atomic force microscopy (AFM). The concentrations of Cr and Zn impurities were reduced by more than a factor of 2 and the minority carrier lifetime increased. Also the root-mean-square (RMS) roughness decreased by more than 30% after the remote plasma H2 cleaning. TXRF analysis results show that remote plasma H2 cleaning is effective in eliminating Cr and Zn impurities from the Si surface only if it is performed under optimum process conditions. AFM analysis results also show that remote plasma H2 cleaning causes no damage to the Si surface. Cr and Zn impurities on the Si substrate are considered to be contaminated as forms of hydroxides, silioxides and oxides on chemical oxides formed during intentional chemical contamination. The removal mechanism of Cr and Zn impurities using remote plasma H2 treatments is proposed for the lift-off during the removal of underlying chemical oxides.

  16. Engine classification using vibrations measured by Laser Doppler Vibrometer on different surfaces

    NASA Astrophysics Data System (ADS)

    Wei, J.; Liu, Chi-Him; Zhu, Zhigang; Vongsy, Karmon; Mendoza-Schrock, Olga

    2015-05-01

    In our previous studies, vehicle surfaces' vibrations caused by operating engines measured by Laser Doppler Vibrometer (LDV) have been effectively exploited in order to classify vehicles of different types, e.g., vans, 2-door sedans, 4-door sedans, trucks, and buses, as well as different types of engines, such as Inline-four engines, V-6 engines, 1-axle diesel engines, and 2-axle diesel engines. The results are achieved by employing methods based on an array of machine learning classifiers such as AdaBoost, random forests, neural network, and support vector machines. To achieve effective classification performance, we seek to find a more reliable approach to pick authentic vibrations of vehicle engines from a trustworthy surface. Compared with vibrations directly taken from the uncooperative vehicle surfaces that are rigidly connected to the engines, these vibrations are much weaker in magnitudes. In this work we conducted a systematic study on different types of objects. We tested different types of engines ranging from electric shavers, electric fans, and coffee machines among different surfaces such as a white board, cement wall, and steel case to investigate the characteristics of the LDV signals of these surfaces, in both the time and spectral domains. Preliminary results in engine classification using several machine learning algorithms point to the right direction on the choice of type of object surfaces to be planted for LDV measurements.

  17. Final report of ''Fundamental Surface Reaction Mechanisms in Fluorocarbon Plasma-Based Processing''

    SciTech Connect

    Gottlieb S. Oehrlein; H. Anderson; J. Cecchi; D. Graves

    2004-09-21

    This report provides a summary of results obtained in research supported by contract ''Fundamental Surface Reaction Mechanisms in Fluorocarbon Plasma-Based Processing'' (Contract No. DE-FG0200ER54608). In this program we advanced significantly the scientific knowledge base on low pressure fluorocarbon plasmas used for patterning of dielectric films and for producing fluorocarbon coatings on substrates. We characterized important neutral and ionic gas phase species that are incident at the substrate, and the processes that occur at relevant surfaces in contact with the plasma. The work was performed through collaboration of research groups at three universities where significantly different, complementary tools for plasma and surface characterization, computer simulation of plasma and surface processes exist. Exchange of diagnostic tools and experimental verification of key results at collaborating institutions, both experimentally and by computer simulations, was an important component of the approach taken in this work.

  18. Modification of silicon carbide surfaces by atmospheric pressure plasma for composite applications.

    PubMed

    Rodriguez-Santiago, Victor; Vargas-Gonzalez, Lionel; Bujanda, Andres A; Baeza, Jose A; Fleischman, Michelle S; Yim, Jacqueline H; Pappas, Daphne D

    2013-06-12

    In this study, we explore the use of atmospheric pressure plasmas for enhancing the adhesion of SiC surfaces using a urethane adhesive, as an alternative to grit-blasting. Surface analysis showed that He-O2 plasma treatments resulted in a hydrophilic surface mostly by producing SiOx. Four-point bending tests and bonding pull tests were carried out on control, grit-blasted, and plasma-treated surfaces. Grit-blasted samples showed enhanced bonding but also a decrease in flexural strength. Plasma treated samples did not affect the flexural strength of the material and showed an increase in bonding strength. These results suggest that atmospheric pressure plasma treatment of ceramic materials is an effective alternative to grit-blasting for adhesion enhancement. PMID:23639326

  19. Method for atmospheric pressure reactive atom plasma processing for surface modification

    DOEpatents

    Carr, Jeffrey W.

    2009-09-22

    Reactive atom plasma processing can be used to shape, polish, planarize and clean the surfaces of difficult materials with minimal subsurface damage. The apparatus and methods use a plasma torch, such as a conventional ICP torch. The workpiece and plasma torch are moved with respect to each other, whether by translating and/or rotating the workpiece, the plasma, or both. The plasma discharge from the torch can be used to shape, planarize, polish, and/or clean the surface of the workpiece, as well as to thin the workpiece. The processing may cause minimal or no damage to the workpiece underneath the surface, and may involve removing material from the surface of the workpiece.

  20. Apparatus for coating a surface with a metal utilizing a plasma source

    DOEpatents

    Brown, I.G.; MacGill, R.A.; Galvin, J.E.

    1991-05-07

    An apparatus and method are disclosed for coating or layering a surface with a metal utilizing a metal vapor vacuum arc plasma source. The apparatus includes a trigger mechanism for actuating the metal vacuum vapor arc plasma source in a pulsed mode at a predetermined rate. The surface or substrate to be coated or layered is supported in position with the plasma source in a vacuum chamber. The surface is electrically biased for a selected period of time during the pulsed mode of operation of the plasma source. Both the pulsing of the metal vapor vacuum arc plasma source and the electrical biasing of the surface are synchronized for selected periods of time. 10 figures.

  1. Dust Effects on Surface Charging in Plasmas: Laboratory and Numerical Investigations

    NASA Astrophysics Data System (ADS)

    Chou, K.; Wang, J.; Yu, W.; Han, D.

    2014-12-01

    There are many situations that a spacecraft surface would be covered by a layer of dusts, such as that around a comet and and on the surfaces of the Moon and asteroids. Previous studies of surface charging in plasmas have mostly considered a "clean" conducting or dielectric surface. On the other hand, studies of dust charging in plasmas have mostly considered that of single, isolated dust grains (the "dust-in-plasma" condition), where a dust grain is electrically isolated from its neighboring dusts. This paper considers the charging of a surface covered by a layer of dust grains (the "dusty-surface" condition), where the inter-dust distance is almost zero but the dust grains do not form a solid surface. Under such a condition, the sheath of each individual dust particles overlap to form one single sheath and the charging of individual dust grains is strongly affected by that of the neighboring dust grains and the surface. Experiments and numerical simulations are carried out to understand the charging of both conducting and dielectric dusty surfaces. Surface charging measurements will be presented for different dust layer thickness, dust grain size, dust density, and different ambient plasma conditions. The effect of the existence of a dusty layer on surface potential as well as the difference between charging of a single dust-in-plasma and that of a dust grain as part of a dusty surface will also be discussed.

  2. An overview of the VASIMR engine: High power space propulsion with RF plasma generation and heating

    NASA Astrophysics Data System (ADS)

    Díaz, F. R. Chang

    2001-10-01

    The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) is a high power, radio frequency-driven magnetoplasma rocket, capable of exhaust modulation at constant power. While the plasma is produced by a helicon discharge, the bulk of the energy is added in a separate downstream stage by ion cyclotron resonance heating (ICRH). Axial momentum is obtained by the adiabatic expansion of the plasma in a magnetic nozzle. Exhaust variation in the VASIMR is primarily achieved by the selective partitioning of the RF power to the helicon and ICRH systems, with the proper adjustment of the propellant flow. However, other complementary techniques are also being studied. Operational and performance considerations favor the light gases. The physics and engineering of this device have been under study since the late 1970s. A NASA-led, research effort, involving several terms in the United States, continues to explore the scientific and technological foundations of this concept. The research involves theory, experiment, engineering design, mission analysis, and technology development. Experimentally, high density, stable plasma discharges have been generated in Helium, Hydrogen and Deuterium, as well as mixtures of these gases. Key issues involve the optimization of the helicon discharge for high-density operation and the efficient coupling of ICRH to the plasma, prior to acceleration by the magnetic nozzle. Theoretically, the dynamics of the magnetized plasma are being studied from kinetic and fluid perspectives. Plasma acceleration by the magnetic nozzle and subsequent detachment has been demonstrated in numerical simulations. These results are presently undergoing experimental verification. A brisk technology development effort for space-qualified, compact, solid-state RF equipment, and high temperature superconducting magnets is under way in support of this project. A conceptual point design for an early space demonstrator on the International Space Station has been defined

  3. Covalent immobilisation of VEGF on plasma-coated electrospun scaffolds for tissue engineering applications.

    PubMed

    Guex, A G; Hegemann, D; Giraud, M N; Tevaearai, H T; Popa, A M; Rossi, R M; Fortunato, G

    2014-11-01

    Recent findings in the field of biomaterials and tissue engineering provide evidence that surface immobilised growth factors display enhanced stability and induce prolonged function. Cell response can be regulated by material properties and at the site of interest. To this end, we developed scaffolds with covalently bound vascular endothelial growth factor (VEGF) and evaluated their mitogenic effect on endothelial cells in vitro. Nano- (254±133 nm) or micro-fibrous (4.0±0.4 μm) poly(ɛ-caprolactone) (PCL) non-wovens were produced by electrospinning and coated in a radio frequency (RF) plasma process to induce an oxygen functional hydrocarbon layer. Implemented carboxylic acid groups were converted into amine-reactive esters and covalently coupled to VEGF by forming stable amide bonds (standard EDC/NHS chemistry). Substrates were analysed by X-ray photoelectron spectroscopy (XPS), enzyme-linked immuno-assays (ELISA) and immunohistochemistry (anti-VEGF antibody and VEGF-R2 binding). Depending on the reaction conditions, immobilised VEGF was present at 127±47 ng to 941±199 ng per substrate (6mm diameter; concentrations of 4.5 ng mm(-2) or 33.3 ng mm(-2), respectively). Immunohistochemistry provided evidence for biological integrity of immobilised VEGF. Endothelial cell number of primary endothelial cells or immortalised endothelial cells were significantly enhanced on VEGF-functionalised scaffolds compared to native PCL scaffolds. This indicates a sustained activity of immobilised VEGF over a culture period of nine days. We present a versatile method for the fabrication of growth factor-loaded scaffolds at specific concentrations. PMID:25454657

  4. Poly (ethylene terephthalate) decomposition process in oxygen plasma; emission spectroscopic and surface analysis for oxygen-plasma reaction

    NASA Astrophysics Data System (ADS)

    Kumagai, Hidetoshi; Hiroki, Denbo; Fujii, Nobuyuki; Kobayashi, Takaomi

    2004-01-01

    Emission spectroscopy was applied to observe the reaction process of poly (ethylene terephthalate) (PET) in an oxygen (O2) plasma generated by a microwave discharge. As the PET was exposed in the O2 plasma flow, light emitted from the PET surface was monitored. In the diagnosis measurement, several emission peaks assigned to the Hα atomic line at 652 nm, Hβ at 486 nm, OH (2Σ-->2Π) transition near 244-343 nm and CO (b3 Σ-->a3 Σ) near 283-370 nm were observed and measured at various discharge times. These results indicated that after the plasma etching, the PET sample was decomposed by the oxygen plasma reaction, and then, hydrogen abstraction and carbon oxidation processes. We also observed the time profile of oxygen atom, as the atom-emission intensity at 777 nm was monitored. As Hβ atomic and OH molecule lines appeared in the presence of PET, the O atom intensity was significantly reduced. In the surface analysis on Fourier transform infrared and x-ray photoelectron spectroscopy measurements, it was found that for the PET surface treated by O2 plasma containing excited atomic oxygen species, ester bands were broken and carbonization formed on the PET surface. .

  5. Glow discharge plasma treatment for surface cleaning and modification of metallic biomaterials.

    PubMed

    Aronsson, B O; Lausmaa, J; Kasemo, B

    1997-04-01

    Glow discharge plasma treatment is a frequently used method for cleaning, preparation, and modification of biomaterial and implant surfaces. The merits of such treatments are, however, strongly dependent on the process parameters. In the present work the possibilities, limitations, and risks of plasma treatment for surface preparation of metallic materials are investigated experimentally using titanium as a model system, and also discussed in more general terms. Samples were treated by different low-pressure direct current plasmas and analyzed using Auger electron spectroscopy (AES), x-ray photoelectron spectroscopy (XPS), atomic force microscopy, scanning electron microscopy, and light microscopy. The plasma system is a home-built, ultra-high vacuum-compatible system that allows sample introduction via a load-lock, and precise control of pressure, gas composition and flow rate, etc. This system allows uniform treatment of cylindrical and screw-shaped samples. With appropriate plasma parameters, argon plasma remove all chemical traces from former treatments (adsorbed contaminants and other impurities, and native oxide layers), in effect producing cleaner and more well-controlled surfaces than with conventional preparation methods. Removal (sputtering) rates up to 30 nm/min are possible. However, when inappropriate plasma parameters are used, the result may be increased contamination and formation of unintentional or undesired surface layers (e.g., carbides and nitrides). Plasma-cleaned surfaces provide a clean and reproducible starting condition for further plasma treatments to form well-controlled surface layers. Oxidation in pure O2 (thermally or in oxygen plasmas) results in uniform and stoichiometric TiO2 surface oxide layers of reproducible composition and thicknesses in the range 0.5-150 nm, as revealed by AES and XPS analyses. Titanium nitride layers were prepared by using N2 plasmas. While mild plasma treatments leave the surface microstructure unaffected

  6. Effects of low-temperature surface-wave plasma treatment with various gases on surface modification of chitosan

    NASA Astrophysics Data System (ADS)

    Ogino, Akihisa; Kral, Martin; Yamashita, Mitsuji; Nagatsu, Masaaki

    2008-12-01

    The effect of low-temperature surface-wave plasma treatment with various gases on surface modification of chitosan was investigated using the surface-wave plasma. Chitosan is a nontoxic, biocompatible and biodegradable polymer. It is thought that an increase in amino groups, a key constituent of chitosan molecules, will be useful for biomedical applications, such as improvement of blood clotting properties, drug delivery system, prodrug using derivatization and so on. In this study, therefore, we have focused on the amino group introduction on chitosan surface by using Ar, O 2, NH 3 and NH 3-He mixed gas plasmas. The experimental results of X-ray photoelectron spectroscopy measurements showed that N/C atomic ratio increased from 6.8% to 14.7% after NH 3 plasma treatment. With O 2 plasma treatment, the surface roughness of chitosan film was significantly modified from 1.96 nm to 14.6 nm. The blood clotting time of the sample treated by NH 3 and He plasma with O 2 pretreatment was reduced to 55.2% of that of untreated one.

  7. Negative ion surface production on carbon materials in hydrogen plasma: a thermodesorption analysis of carbon surface states

    NASA Astrophysics Data System (ADS)

    Cartry, Gilles; Achkasov, Kostiantyn; Pardanaud, Cédric; Layet, Jean-Marc; Simonin, Alain; Gicquel, Alix; Saidi, Othmen; Bisson, Régis; Angot, Thierry; PIIM Collaboration; IRFM Collaboration; LSPM Collaboration

    2014-10-01

    Negative ion surface production in plasmas has been studied in the context of fusion where H-surface production in cesium-seeded plasmas is of a primary interest for neutral beam injection devices. Although surface production is much lower in Cs-free plasmas, it may be non-negligible. Indeed it has been observed that significant numbers of H-ions can be created on a graphite surface upon positive ion bombardment in H2 plasmas. Graphite material has been compared to a large variety of diamond layers, in particular poly-crystalline boron-doped and non-doped diamond thin films. It has been shown an enhancement of the negative-ion yield by a factor 5 for diamond materials at high temperature, while the yield continuously decreases for graphite. The difference is due to the different properties of the pristine materials but also to the modifications bring by the plasma to the materials during exposure. In order to study in detail these modifications, plasma exposed samples have been analyzed by Raman spectroscopy and Temperature Programmed Desorption (TPD). These diagnostics helped to trace the surface state changes of the materials and identify the reasons for the elevated negative ion production at high temperature on diamonds.

  8. Influence of surface conditions on plasma dynamics and electron heating in a radio-frequency driven capacitively coupled oxygen plasma

    NASA Astrophysics Data System (ADS)

    Greb, Arthur; Gibson, Andrew Robert; Niemi, Kari; O'Connell, Deborah; Gans, Timo

    2015-08-01

    The impact of changing surface condition on plasma dynamics and electron heating is investigated by means of numerical simulations, based on a semi-kinetic fluid model approach, and compared with measurements of the nanosecond electron dynamics in the plasma-surface interface region using phase resolved optical emission spectroscopy (PROES). The simulations are conducted in a one-dimensional domain and account for a geometrical asymmetry comparable to the experimental setup of a radio-frequency driven capacitively coupled plasma in a gaseous electronics conference reference cell. A simple reaction scheme is considered, including electrons, \\text{O}2+ positive ions, {{\\text{O}}-} negative ions and {{\\text{O}}2}{≤ft(1Δ\\right)} metastable singlet delta oxygen (SDO) as individual species. The role of surface loss and effective lifetime of SDO is discussed. To simulate different surface conditions, the SDO surface loss probability and the secondary electron emission coefficient were varied in the model. It is found that a change in surface condition significantly influences the metastable concentration, electronegativity, spatial particle distributions and densities as well as the ionization and electron heating dynamics. The excitation dynamics obtained from simulations are compared with PROES measurements. This allows to determine experimentally relevant SDO surface loss probabilities and secondary electron emission coefficient values in-situ and is demonstrated for two different surface materials, namely aluminum and Teflon.

  9. Microwave engineering of plasma-assisted CVD reactors for diamond deposition

    NASA Astrophysics Data System (ADS)

    Silva, F.; Hassouni, K.; Bonnin, X.; Gicquel, A.

    2009-09-01

    The unique properties of CVD diamond make it a compelling choice for high power electronics. In order to achieve industrial use of CVD diamond, one must simultaneously obtain an excellent control of the film purity, very low defect content and a sufficiently rapid growth rate. Currently, only microwave plasma-assisted chemical vapour deposition (MPACVD) processes making use of resonant cavity systems provide enough atomic hydrogen to satisfy these requirements. We show in this paper that the use of high microwave power density (MWPD) plasmas is necessary to promote atomic hydrogen concentrations that are high enough to ensure the deposition of high purity diamond films at large growth rates. Moreover, the deposition of homogeneous films on large surfaces calls for the production of plasma with appropriate shapes and large volumes. The production of such plasmas needs generating a fairly high electric field over extended regions and requires a careful design of the MW coupling system, especially the cavity. As far as MW coupling efficiency is concerned, the presence of a plasma load represents a mismatching perturbation to the cavity. This perturbation is especially important at high MWPD where the reflected fraction of the input power may be quite high. This mismatch can lead to a pronounced heating of the reactor walls. It must therefore be taken into account from the very beginning of the reactor design. This requires the implementation of plasma modelling tools coupled to detailed electromagnetic simulations. This is discussed in section 3. We also briefly discuss the operating principles of the main commercial plasma reactors before introducing the reactor design methodology we have developed. Modelling results for a new generation of reactors developed at LIMHP, working at very high power density, will be presented. Lastly, we show that scaling up this type of reactor to lower frequencies (915 MHz) can result in high density plasmas allowing for fast and

  10. Microwave engineering of plasma-assisted CVD reactors for diamond deposition.

    PubMed

    Silva, F; Hassouni, K; Bonnin, X; Gicquel, A

    2009-09-01

    The unique properties of CVD diamond make it a compelling choice for high power electronics. In order to achieve industrial use of CVD diamond, one must simultaneously obtain an excellent control of the film purity, very low defect content and a sufficiently rapid growth rate. Currently, only microwave plasma-assisted chemical vapour deposition (MPACVD) processes making use of resonant cavity systems provide enough atomic hydrogen to satisfy these requirements. We show in this paper that the use of high microwave power density (MWPD) plasmas is necessary to promote atomic hydrogen concentrations that are high enough to ensure the deposition of high purity diamond films at large growth rates. Moreover, the deposition of homogeneous films on large surfaces calls for the production of plasma with appropriate shapes and large volumes. The production of such plasmas needs generating a fairly high electric field over extended regions and requires a careful design of the MW coupling system, especially the cavity. As far as MW coupling efficiency is concerned, the presence of a plasma load represents a mismatching perturbation to the cavity. This perturbation is especially important at high MWPD where the reflected fraction of the input power may be quite high. This mismatch can lead to a pronounced heating of the reactor walls. It must therefore be taken into account from the very beginning of the reactor design. This requires the implementation of plasma modelling tools coupled to detailed electromagnetic simulations. This is discussed in section 3. We also briefly discuss the operating principles of the main commercial plasma reactors before introducing the reactor design methodology we have developed. Modelling results for a new generation of reactors developed at LIMHP, working at very high power density, will be presented. Lastly, we show that scaling up this type of reactor to lower frequencies (915 MHz) can result in high density plasmas allowing for fast and

  11. Comparison between helium and argon plasma jets on improving the hydrophilic property of PMMA surface

    NASA Astrophysics Data System (ADS)

    Wang, Ruixue; Shen, Yuan; Zhang, Cheng; Yan, Ping; Shao, Tao

    2016-03-01

    In this paper, a plasma jet driven by an in-house developed microsecond pulse is used for polymethyl methacrylate (PMMA) surface modification. The hydrophilic modification effects of He and Ar plasma jets are compared under the same condition. The He and Ar plasma jets are characterized by optical emission spectrometer (OES). Water contact angle (WCA) measurement is used to evaluate the wettability of PMMA samples. The evolution on morphology and chemical composition of PMMA before and after plasma treatment are also analyzed. The OES results demonstrate that He plasma is composed with higher intensities of reactive species, like OH, O, N2 and N2+ than that of Ar plasma and show a better modification effect. In addition, it is observed that the surface roughness and oxygen-containing groups like Csbnd O/Csbnd OH and Odbnd Csbnd O increase on the PMMA surface after plasma treatment, which are responsible for the hydrophilic modification. During the storage, the WCA of each sample increases gradually for both He and Ar plasma treatments. The He plasma treated PMMA also shows a slower aging effect than that of Ar plasma treated PMMA.

  12. Generation of dusty plasmas in supercritical carbon dioxide using surface dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Matsubayashi, Yasuhito; Urabe, Keiichiro; Stauss, Sven; Terashima, Kazuo

    2015-11-01

    Dusty plasmas are a class of plasmas that not only have repercussions for many branches of plasma science and technology, but also thermodynamics and statistical mechanics. However, in ground-based experiments, gravity influences the dynamics and formation of plasma crystals, and the realization of zero-gravity dusty plasmas in space is very costly and time-consuming. To overcome some of these limitations, we propose dusty plasmas in supercritical fluids as a means for realizing ground-based experiments under pseudo-microgravity conditions, to study the formation and self-organization of plasma crystals. Dusty plasmas were realized by using surface dielectric barrier discharges (DBDs) generated in supercritical carbon dioxide (\\text{scC}{{\\text{O}}2} ), and the motion of fine particles above the electrode surface was studied by high-speed imaging. The plasmas deposited charge on the particles, and the particles formed a self-organized structure above the surface DBD reactor. The particle charge estimated from the analysis of particle motion was on the order of  -104 to -105 e C, and the estimation of the Coulomb coupling parameter of the charged particles with a value of 102 to 104 confirmed the formation of strongly coupled plasmas.

  13. Surface modification of polypropylene separators in lithium-ion batteries using inductively coupled plasma treatment.

    PubMed

    Son, Jinyoung; Kim, Min-Sik; Lee, Hyun Woo; Yu, Jong-Sung; Kwon, Kwang-Ho

    2014-12-01

    We describe herein an improvement in the surface wettability of plasma-treated separators for use in lithium-ion batteries. We treated the separators with an O2/Ar inductively coupled plasma to increase their surface energy. The plasma treatment on the separator and plasma diagnostic experiments were performed in an inductively coupled plasma (ICP) reactor. The fraction of Ar in the O2/Ar plasma was changed from 0% to 100%. The plasma diagnostics were performed using optical emission spectroscopy and a double Langmuir probe. To confirm the morphological change of the separator membrane by the plasma treatment, we used the scanning electron microscopy. The surface energy measurements were performed using the drop method. We found that the plasma treatment transformed the separator from a hydrophobic membrane to a hydrophilic one, thereby achieving high separator wettability. After the treatment of the separators with O2/Ar plasma, the batteries exhibited better cycle performance and rate capacity than those employing the untreated ones. PMID:25971067

  14. The relationship between cellular adhesion and surface roughness in polystyrene modified by microwave plasma radiation

    PubMed Central

    Biazar, Esmaeil; Heidari, Majid; Asefnezhad, Azadeh; Montazeri, Naser

    2011-01-01

    Background: Surface modification of medical polymers can improve biocompatibility. Pure polystyrene is hydrophobic and cannot provide a suitable environment for cell cultures. The conventional method for surface modification of polystyrene is treatment with plasma. In this study, conventional polystyrene was exposed to microwave plasma treatment with oxygen and argon gases for 30, 60, and 180 seconds. Methods and results: Attenuated total reflection Fourier transform infrared spectra investigations of irradiated samples indicated clearly the presence of functional groups. Atomic force microscopic images of samples irradiated with inert and active gases indicated nanometric surface topography. Samples irradiated with oxygen plasma showed more roughness (31 nm) compared with those irradiated with inert plasma (16 nm) at 180 seconds. Surface roughness increased with increasing duration of exposure, which could be due to reduction of the contact angle of samples irradiated with oxygen plasma. Contact angle analysis showed reduction in samples irradiated with inert plasma. Samples irradiated with oxygen plasma showed a lower contact angle compared with those irradiated by argon plasma. Conclusion: Cellular investigations with unrestricted somatic stem cells showed better adhesion, cell growth, and proliferation for samples radiated by oxygen plasma with increasing duration of exposure than those of normal samples. PMID:21698084

  15. Coupled interactions between tungsten surfaces and transient high-heat-flux deuterium plasmas

    NASA Astrophysics Data System (ADS)

    Takamura, S.; Uesugi, Y.

    2015-03-01

    Fundamental studies on the interactions between transient deuterium-plasma heat pulses and tungsten surfaces were carried out in terms of electrical, mechanical and thermal response in a compact plasma device AIT-PID (Aichi Institute of Technology-Plasma Irradiation Device). Firstly, electron-emission-induced surface-temperature increase is discussed in the surface-temperature range near tungsten's melting point, which is accomplished by controlling the sheath voltage and power transmission factor. Secondly, anomalous penetration of tungsten atomic efflux into the surrounding plasma was observed in addition to a normal layered population; it is discussed in terms of the effect of substantial tungsten influx into the deuterium plasma, which causes dissipation of plasma electron energy. Thirdly, a momentum input from pulsed plasma onto a tungsten target was observed visually. The force is estimated numerically by the accelerated ion flow to the target as well as the reaction of tungsten-vapour efflux. Finally, a discussion follows on the effects of the plasma heat pulses on the morphology of tungsten surface (originally a helium-induced ‘fuzzy’ nanostructure). A kind of bifurcated effect is obtained: melting and annealing. Open questions remain for all the phenomena observed, although sheath-voltage-dependent plasma-heat input may be a key parameter. Discussions on all these phenomena are provided by considering their implications to tokamak fusion devices.

  16. Surface Plasma Arc by Radio-Frequency Control Study (SPARCS)

    SciTech Connect

    Ruzic, David N.

    2013-04-29

    This paper is to summarize the work carried out between April 2012 and April 2013 for development of an experimental device to simulate interactions of o -normal detrimental events in a tokamak and ICRF antenna. The work was mainly focused on development of a pulsed plasma source using theta pinch and coaxial plasma gun. This device, once completed, will have a possible application as a test stand for high voltage breakdown of an ICRF antenna in extreme events in a tokamak such as edge-localized modes or disruption. Currently, DEVeX does not produce plasma with high temperature enough to requirement for an ELM simulator. However, theta pinch is a good way to produce high temperature ions. The unique characteristic of plasma heating by a theta pinch is advantageous for an ELM simulator due to its effective ion heating. The objective of the proposed work, therefore, is to build a test facility using the existing theta pinch facility in addition to a coaxial plasma gun. It is expected to produce a similar pulsed-plasma heat load to the extreme events in tokamaks and to be applied for studying interactions of hot plasma and ICRF antennas.

  17. Self-Cleaning Features of Plasma-Treated Surfaces with Self-Assembled Monolayer Coating

    NASA Astrophysics Data System (ADS)

    Lee, Sang‑Joon; Paik, Bu‑Geun; Kim, Guk‑Bae; Jang, Young‑Gil

    2006-02-01

    A biomimic surface was coated onto a poly(tetrafluoroethylene) (PTFE) substrate. The coated PTFE surface was found to have nanoscale roughness and high hydrophobicity. In the first preparation step, the PTFE surface was modified by plasma etching. A self-assembled monolayer (SAM) of octadecyltrichlorosilane (ODTS) was then deposited onto the modified surface with a thickness of a 2-3 nm. This surface was found to have self-cleaning features similar to those of a lotus leaf. The self-cleaning features were confirmed by comparing the contact and sliding angles of the original PTFE surface, a PTFE surface plasma treated, and a PTFE surface plasma treated and SAM coated. The PTFE surface treated with plasma and SAM coated had an increased contact angle and a decreased sliding angle compared with the other surfaces. It also exhibited increased stability and slow aging. The quantity of oxygen-containing groups that can be greatly influenced by plasma treatment, SAM coating, and aging, seems to play an important role in surface modification.

  18. Surface modification of polyester fabric with plasma pretreatment and carbon nanotube coating for antistatic property improvement

    NASA Astrophysics Data System (ADS)

    Wang, C. X.; Lv, J. C.; Ren, Y.; Zhi, T.; Chen, J. Y.; Zhou, Q. Q.; Lu, Z. Q.; Gao, D. W.; Jin, L. M.

    2015-12-01

    This study introduced a green method to prepare antistatic polyester (PET) fabrics by plasma pretreatment and single-walled carbon nanotube (SWCNT) coating. The influences of plasma conditions and SWCNT coating parameters on antistatic property of PET fabrics were investigated. PET fabrics were pretreated under various plasma conditions such as different treatment times, output powers and working gases, and then SWCNT coating on the plasma treated PET fabrics was carried out by coating-dry-cure using various coating parameters including different SWCNT concentrations, curing times and curing temperatures. PET fabrics were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and volume resistivity. SEM and XPS analysis of the plasma treated PET fabrics revealed the increase in surface roughness and oxygen/nitrogen containing groups on the PET fiber surface. SEM and XPS analysis of the plasma treated and SWCNT coated PET fabrics indicated the SWCNT coating on PET fiber surface. The plasma treated and SWCNT coated PET fabrics exhibited a good antistatic property, which increased and then decreased with the increasing plasma treatment time and output power. The antistatic property of the O2 plasma treated and SWCNT coated PET fabric was better and worse than that of N2 or Ar plasma treated and SWCNT coated PET fabric in the shorter treatment time and the longer treatment time, respectively. In addition, the antistatic property of the plasma treated and SWCNT coated PET fabrics also increased with the increasing SWCNT concentration, curing time and curing temperature in the range studied. Plasma conditions and SWCNT coating parameters had signally influence on the antistatic property of plasma treated and SWCNT coated PET fabrics. Therefore, adequate parameters should be carefully selected for the optimum antistatic property of the plasma treated and SWCNT coated PET fabrics.

  19. Coating Bores of Light Metal Engine Blocks with a Nanocomposite Material using the Plasma Transferred Wire Arc Thermal Spray Process

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Ernst, F.; Zwick, J.; Schlaefer, T.; Cook, D.; Nassenstein, K.; Schwenk, A.; Schreiber, F.; Wenz, T.; Flores, G.; Hahn, M.

    2008-09-01

    Engine blocks of modern passenger car engines are generally made of light metal alloys, mostly hypoeutectic AlSi-alloys. Due to their low hardness, these alloys do not meet the tribological requirements of the system cylinder running surface—piston rings—lubricating oil. In order to provide a suitable cylinder running surface, nowadays cylinder liners made of gray cast iron are pressed in or cast into the engine block. A newer approach is to apply thermal spray coatings onto the cylinder bore walls. Due to the geometric conditions, the coatings are applied with specifically designed internal diameter thermal spray systems. With these processes a broad variety of feedstock can be applied, whereas mostly low-alloyed carbon steel feedstock is being used for this application. In the context of this work, an iron-based wire feedstock has been developed, which leads to a nanocrystalline coating. The application of this material was carried out with the Plasma Transferred Wire Arc system. AlMgSi0.5 liners were used as substrates. The coating microstructure and the properties of the coatings were analyzed.

  20. Strategies to improve the adhesion of rubbers to adhesives by means of plasma surface modification

    NASA Astrophysics Data System (ADS)

    Martín-Martínez, J. M.; Romero-Sánchez, M. D.

    2006-05-01

    The surface modifications produced by treatment of a synthetic sulfur vulcanized styrene-butadiene rubber with oxidizing (oxygen, air, carbon dioxide) and non oxidizing (nitrogen, argon) RF low pressure plasmas, and by treatment with atmospheric plasma torch have been assessed by ATR-IR and XPS spectroscopy, SEM, and contact angle measurements. The effectiveness of the low pressure plasma treatment depended on the gas atmosphere used to generate the plasma. A lack of relationship between surface polarity and wettability, and peel strength values was obtained, likely due to the cohesive failure in the rubber obtained in the adhesive joints. In general, acceptable adhesion values of plasma treated rubber were obtained for all plasmas, except for nitrogen plasma treatment during 15 minutes due to the creation of low molecular weight moieties on the outermost rubber layer. A toluene wiping of the N{2 } plasma treated rubber surface for 15 min removed those moieties and increased adhesion was obtained. On the other hand, the treatment of the rubber with atmospheric pressure by means of a plasma torch was proposed. The wettability of the rubber was improved by decreasing the rubber-plasma torch distance and by increasing the duration because a partial removal of paraffin wax from the rubber surface was produced. The rubber surface was oxidized by the plasma torch treatment, and the longer the duration of the plasma torch treatment, the higher the degree of surface oxidation (mainly creation of C O moieties). However, although the rubber surface was effectively modified by the plasma torch treatment, the adhesion was not greatly improved, due to the migration of paraffin wax to the treated rubber-polyurethane adhesive interface once the adhesive joint was produced. On the other hand, the extended treatment with plasma torch facilitated the migration of zinc stearate to the rubber-adhesive interface, also contributing to deteriorate the adhesion in greater extent. Finally

  1. Plasma bromination of HOPG surfaces: A NEXAFS and synchrotron XPS study

    NASA Astrophysics Data System (ADS)

    Lippitz, Andreas; Friedrich, Jörg F.; Unger, Wolfgang E. S.

    2013-05-01

    Br bonding on plasma brominated graphite surfaces has been studied by using Near Edge X-ray Absorption Fine Structure (NEXAFS) and X-ray Photoelectron Spectroscopy (XPS). Br2 and bromoform were used as plasma gases in an r.f. cw low pressure plasma process. Kr plasma had been used to study separately the physical and chemical plasma etching effects. At early steps of plasma bromination which lead to only small XPS Br surface concentration values a quick decay of aromaticity has been observed. At low Br surface concentration radical or even electrophilic addition of bromine onto sp2 carbon atoms is discussed as the dominating reaction pathway. At higher Br surface concentrations the inherent formation of sp3 defects in the graphene network by chemical etching processes promotes nucleophilic substitution of bromine at sp3 carbons as a competing reaction pathway. Both reaction pathways lead to C-Br species characterized by the same Br 3d XPS binding energy. However more than one Br 3d component in XP spectra has been found at lower Br2 plasma induced Br surface concentrations and complexation of bromine at HOPG is assumed as a third way of interaction with Br2 plasma.

  2. Colloidal microcapsules: Surface engineering of nanoparticles for interfacial assembly

    NASA Astrophysics Data System (ADS)

    Patra, Debabrata

    2011-12-01

    Colloidal Microcapsules (MCs), i.e. capsules stabilized by nano-/microparticle shells are highly modular inherently multi-scale constructs with applications in many areas of material and biological sciences e.g. drug delivery, encapsulation and microreactors. These MCs are fabricated by stabilizing emulsions via self-assembly of colloidal micro/nanoparticles at liquid-liquid interface. In these systems, colloidal particles serve as modular building blocks, allowing incorporation of the particle properties into the functional capabilities of the MCs. As an example, nanoparticles (NPs) can serve as appropriate antennae to induce response by external triggers (e.g. magnetic fields or laser) for controlled release of encapsulated materials. Additionally, the dynamic nature of the colloidal assembly at liquid-liquid interfaces result defects free organized nanostructures with unique electronic, magnetic and optical properties which can be tuned by their dimension and cooperative interactions. The physical properties of colloidal microcapsules such as permeability, mechanical strength, and biocompatibility can be precisely controlled through the proper choice of colloids and preparation conditions for their. This thesis illustrates the fabrication of stable and robust MCs through via chemical crosslinking of the surface engineered NPs at oil-water interface. The chemical crosslinking assists NPs to form a stable 2-D network structure at the emulsion interface, imparting robustness to the emulsions. In brief, we developed the strategies for altering the nature of chemical interaction between NPs at the emulsion interface and investigated their role during the self-assembly process. Recently, we have fabricated stable colloidal microcapsule (MCs) using covalent, dative as well as non-covalent interactions and demonstrated their potential applications including encapsulation, size selective release, functional devices and biocatalysts.

  3. Plasma Science and Applications at the Intel International Science and Engineering Fair

    NASA Astrophysics Data System (ADS)

    Berry, Lee

    2007-11-01

    Three years ago, the Coalition for Plasma Science (CPS) established a plasma prize at the Intel International Science and Engineering Fair. The APS/DPP and the IEEE/PSAC have helped make this effort a success by helping to identify judges. Each year since then, the number of plasma-related projects has increased. This year's prize was awarded for an instrument that, based on the ratio of spectral emission in two bands, detects when a high-pressure street light is about to fail. This allows time for an, efficient, scheduled replacement rather that an emergency service call. The CPS is a broadly-based group of institutions and individuals whose goal is to increase the understanding of plasmas for non-technical audiences. CPS activities include maintaining a website, http://www.plasmacoalition.org, developing educational literature, organizing educational luncheon presentations for Members of Congress and their staffs, and responding to questions about plasmas that are received by the CPS e-mail or toll-free number. The science fair prize and other CPS activities depend on the voluntary labor of CPS members and associates. New participants are needed to expand CPS activities and reach a larger audience. Send an e-mail to the CPS at CPS@plasmacoalition.org for information.

  4. Surface characterization and adhesion of oxygen plasma-modified LARC-TPI

    NASA Technical Reports Server (NTRS)

    Chin, J. W.; Wightman, J. P.

    1992-01-01

    LARC-TPI, an aromatic thermoplastic polyimide, was exposed to an oxygen plasma as a surface pretreatment for adhesive bonding. Chemical and physical changes which occurred in the polyimide surface as a result of the plasma treatment were investigated using X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IR-RAS), contact-angle analysis, ellipsometry, and high resolution SEM. A 180-deg peel test with an acrylate-based pressure sensitive adhesive as a flexible adherent was utilized to study the interactions of the plasma-treated polyimide surface with other polymeric materials. The surface characterization and adhesion testing results showed that the oxygen plasma treatment, while creating a more hydrophilic, polar surface, also caused chain scission, resulting in the formation of a weak boundary layer which inhibited adhesion.

  5. Silicon Surface Modification Using C4F8+O2 Plasma for Nano-Imprint Lithography.

    PubMed

    Lee, Junmyung; Efremov, Alexander; Lee, Jaemin; Yeom, Geun Young; Kwon, Kwang-Ho

    2015-11-01

    The investigation of C4F8+O2 feed gas composition on both plasma parameters and plasma treated silicon surface characteristics was carried out. The combination of plasma diagnostics by Langmuir probes and plasma modeling indicated that an increase in O2 mixing ratio results in monotonically decreasing densities of CF(x) (x = 1-3) radicals as well as in non-monotonic behavior of F atom density. The surface characterization by X-ray photoelectron spectroscopy and contact angle measurements showed that the C4F8+O2 mixtures with less than 60% 02 result in modification of Si surfaces due to the deposition of the FC polymer films while the change of O2 mixing ratio in the range of 30%-60% provides an effective adjustment of the surface characteristics such as surface energy, contact angle, etc. PMID:26726589

  6. Low-pressure sustainment of surface-wave microwave plasma with modified microwave coupler

    NASA Astrophysics Data System (ADS)

    Sasai, Kensuke; Suzuki, Haruka; Toyoda, Hirotaka

    2016-01-01

    Sustainment of long-scale surface-wave plasma (SWP) at pressures below 1 Pa is investigated for the application of the SWP as an assisting plasma source for roll-to-roll sputter deposition. A modified microwave coupler (MMC) for easier surface-wave propagation is proposed, on the basis of the concept of the power direction alignment of the slot antenna and surface-wave propagation. The superiority of the MMC-SWP over conventional SWPs is shown at a sustainment pressure as low as 0.6 Pa and an electron density as high as 3 × 1017 m-3. A polymer film is treated with the MMC-SWP at a low pressure of 0.6 Pa, and surface modification at a low pressure is proved using Ar plasma. These results show the availability of the MMC-SWP as the surface treatment plasma source that is compatible with sputter deposition in the same processing chamber.

  7. Solar Wind Access to Lunar Polar Craters: Feedback Between Surface Charging and Plasma Expansion

    NASA Technical Reports Server (NTRS)

    Zimmerman, M. I.; Farrell, W. M.; Stubbs, T. J.; Halekas, J. S.; Jackson, T. L.

    2011-01-01

    Determining the plasma environment within permanently shadowed lunar craters is critical to understanding local processes such as surface charging, electrostatic dust transport, volatile sequestration, and space weathering. In order to investigate the nature of this plasma environment, the first two-dimensional kinetic simulations of solar wind expansion into a lunar crater with a self-consistent plasma-surface interaction have been undertaken. The present results reveal how the plasma expansion into a crater couples with the electrically-charged lunar surface to produce a quasi-steady wake structure. In particular, there is a negative feedback between surface charging and ambipolar wake potential that allows an equilibrium to be achieved, with secondary electron emission strongly moderating the process. A range of secondary electron yields is explored, and two distinct limits are highlighted in which either surface charging or ambipoiar expansion is responsible for determining the overall wake structure.

  8. Surface modification of poly(ethylene terephthalate) fibers induced by radio frequency air plasma treatment

    NASA Astrophysics Data System (ADS)

    Riccardi, Claudia; Barni, Ruggero; Selli, Elena; Mazzone, Giovanni; Massafra, Maria Rosaria; Marcandalli, Bruno; Poletti, Giulio

    2003-04-01

    The surface chemical and physical modifications of poly(ethylene terephthalate) (PET) fibers induced by radiofrequency air plasma treatments were correlated with the characteristics of the discharge parameters and the chemical composition of the plasma itself, to identify the plasma-induced surface processes prevailing under different operating conditions. Treated polymer surfaces were characterized by water droplet absorption time measurements and XPS analysis, as a function of the aging time in different media, and by AFM analysis. They exhibited a remarkable increase in hydrophilicity, accompanied by extensive etching and by the implantation of both oxygen- and nitrogen-containing polar groups. Etching was mainly a consequence of ion bombardment, yielding low molecular weight, water soluble oxidation products, while surface chemical modifications were mainly due to the action of neutral species on the plasma-activated polymer surface.

  9. Non-thermal plasma technology for the development of antimicrobial surfaces: a review

    NASA Astrophysics Data System (ADS)

    Nikiforov, Anton; Deng, Xiaolong; Xiong, Qing; Cvelbar, U.; DeGeyter, N.; Morent, R.; Leys, Christophe

    2016-05-01

    Antimicrobial coatings are in high demand in many fields including the biomaterials and healthcare sectors. Within recent progress in nanoscience and engineering at the nanoscale, preparation of nanocomposite films containing metal nanoparticles (such as silver nanoparticles, copper nanoparticles, zinc oxide nanoparticles) is becoming an important step in manufacturing biomaterials with high antimicrobial activity. Controlled release of antibiotic agents and eliminating free nanoparticles are of equal importance for engineering antimicrobial nanocomposite materials. Compared to traditional chemical ‘wet’ methods, plasma deposition and plasma polymerization are promising approaches for the fabrication of nanocomposite films with the advantages of gas phase dry processes, effective use of chemicals and applicability to various substrates. In this article, we present a short overview of state-of-the-art engineering of antimicrobial materials based on the use of non-thermal plasmas at low and atmospheric pressure.

  10. Stability studies of plasma modification effects of polylactide and polycaprolactone surface layers

    NASA Astrophysics Data System (ADS)

    Moraczewski, Krzysztof; Stepczyńska, Magdalena; Malinowski, Rafał; Rytlewski, Piotr; Jagodziński, Bartłomiej; Żenkiewicz, Marian

    2016-07-01

    The article presents results of research on the stability of oxygen plasma modification effects of polylactide and polycaprolactone surface layers. The modified samples were aged for three, six or nine weeks. The studies were carried out using scanning electron microscopy, goniometry and Fourier transform infrared spectroscopy. Studies have shown that the plasma modification has significant impact on the geometric structure and chemical composition of the surface, wettability and surface energy of tested polymers. The modification effects are not permanent. It has been observed that over time the effects of plasma modification fade. Studies have shown that modifying effect lasts longer in the case of polycaprolactone.

  11. Applicability of random sequential adsorption algorithm for simulation of surface plasma polishing kinetics

    NASA Astrophysics Data System (ADS)

    Minárik, Stanislav; Vaňa, Dušan

    2015-11-01

    Applicability of random sequential adsorption (RSA) model for the material removal during a surface plasma polishing is discussed. The mechanical nature of plasma polishing process is taken into consideration in modified version of RSA model. During the plasma polishing the surface layer is aligned such that molecules of material are removed from the surface mechanically as a consequence of the surface deformation induced by plasma particles impact. We propose modification of RSA technique to describe the reduction of material on the surface provided that sequential character of molecules release from the surface is maintained throughout the polishing process. This empirical model is able to estimate depth profile of material density on the surface during the plasma polishing. We have shown that preliminary results obtained from this model are in good agreement with experimental results. We believe that molecular dynamics simulation of the polishing process, possibly also other types of surface treatment, can be based on this model. However influence of material parameters and processing conditions (including plasma characteristics) must be taken into account using appropriate model variables.

  12. Surface modification of polypropylene non-woven fabric using atmospheric nitrogen dielectric barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Wang, Kunlei; Wang, Wenchun; Yang, Dezheng; Huo, Yan; Wang, Dezhen

    2010-09-01

    In this paper, a dielectric barrier discharge operating in nitrogen at atmospheric pressure has been used to improve the surface hydrophilic property of polypropylene (PP) non-woven fabric. The changes in the hydrophilic property of the modified PP samples are investigated by the contact angle measurements and the variation of water contact angle is obtained as a function of the energy density; micrographs of the PP before and after plasma treatment are observed by scanning electron microscopy (SEM) and the chemical composition of the PP surface before and after plasma treatment is also analyzed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The results show that the surface hydrophilic property of the PP samples is greatly improved with plasma treatment for a few seconds, as evidenced by the fact that the contact angle of the treated PP samples significantly decreases after plasma treatment. The analysis of SEM shows that the surface roughness of the treated PP samples increases due to bonding and etching in plasma processing. The analyses of FTIR and the C1s peak in the high-resolution XPS indicate that oxygen-containing and nitrogen-containing polar functional groups are introduced into PP surface in plasma processing. It can be concluded that the surface hydrophilic property of the modified PP samples has been obviously improved due to the introduction of oxygen-containing and nitrogen-containing polar groups and the increase of the surface roughness on the PP surface.

  13. Nanomechanical and nanotribological properties of plasma nanotextured superhydrophilic and superhydrophobic polymeric surfaces

    NASA Astrophysics Data System (ADS)

    Skarmoutsou, A.; Charitidis, C. A.; Gnanappa, A. K.; Tserepi, A.; Gogolides, E.

    2012-12-01

    Oxygen plasma-induced surface modification of polymethylmethacrylate (PMMA), under plasma conditions favouring (maximizing) roughness formation, has been shown to create textured surfaces of roughness size and morphology dependent on the plasma-treatment time and subsequent morphology stabilization procedure. Superhydrophobic or superhydrophilic surfaces can thus be obtained, with potential applications in antireflective self-cleaning surfaces, microfluidics, wetting-dewetting control, anti-icing etc, necessitating determination of their mechanical properties. In this study, nanoindentation is used to determine the reduced modulus and hardness of the surface, while nanoscratch tests are performed to measure the coefficient of friction. The data are combined to assess the wear behaviour of such surfaces as a first guide for their practical applications. Short-time plasma treatment slightly changes mechanical, tribological and wear properties compared to untreated PMMA. However, a significant decrease in the reduced modulus and hardness and an increase in the coefficient of friction are observed after long plasma-treatment times. The C4F8 plasma deposited thin hydrophobic layer on the polymeric surfaces (untreated and treated) reveals good adhesion, while its mechanical properties are greatly influenced by the substrate; it is also found that it effectively protects the polymeric surfaces, reducing plastic deformation.

  14. Nanomechanical and nanotribological properties of plasma nanotextured superhydrophilic and superhydrophobic polymeric surfaces.

    PubMed

    Skarmoutsou, A; Charitidis, C A; Gnanappa, A K; Tserepi, A; Gogolides, E

    2012-12-21

    Oxygen plasma-induced surface modification of polymethylmethacrylate (PMMA), under plasma conditions favouring (maximizing) roughness formation, has been shown to create textured surfaces of roughness size and morphology dependent on the plasma-treatment time and subsequent morphology stabilization procedure. Superhydrophobic or superhydrophilic surfaces can thus be obtained, with potential applications in antireflective self-cleaning surfaces, microfluidics, wetting-dewetting control, anti-icing etc, necessitating determination of their mechanical properties. In this study, nanoindentation is used to determine the reduced modulus and hardness of the surface, while nanoscratch tests are performed to measure the coefficient of friction. The data are combined to assess the wear behaviour of such surfaces as a first guide for their practical applications. Short-time plasma treatment slightly changes mechanical, tribological and wear properties compared to untreated PMMA. However, a significant decrease in the reduced modulus and hardness and an increase in the coefficient of friction are observed after long plasma-treatment times. The C(4)F(8) plasma deposited thin hydrophobic layer on the polymeric surfaces (untreated and treated) reveals good adhesion, while its mechanical properties are greatly influenced by the substrate; it is also found that it effectively protects the polymeric surfaces, reducing plastic deformation. PMID:23196721

  15. Landau damping of the dust-acoustic surface waves in a Lorentzian dusty plasma slab

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2016-01-01

    Landau damping of a dust-acoustic surface wave propagating at the interfaces of generalized Lorentzian dusty plasma slab bounded by a vacuum is kinetically derived as the surface wave displays the symmetric and the anti-symmetric mode in a plasma slab. In the limiting case of small scaled wave number, we have found that Landau damping is enhanced as the slab thickness is increased. In particular, the damping of anti-symmetric mode is much stronger for a Lorentzian plasma than for a Maxwellian plasma. We have also found that the damping is more affected by superthermal particles in a Lorentzian plasma than by a Maxwellian plasma for both of the symmetric and the anti-symmetric cases. The variations of Landau damping with various parameters are also discussed.

  16. Surface treatment of aramid fiber by air dielectric barrier discharge plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Jia, Caixia; Chen, Ping; Liu, Wei; Li, Bin; Wang, Qian

    2011-02-01

    Aramid fiber samples are treated by air dielectric barrier discharge (DBD) plasma at atmospheric pressure; the plasma treatment time is investigated as the major parameter. The effects of this treatment on the fiber surface physical and chemical properties are studied by using surface characterization techniques. Scanning electron microscopy (SEM) is performed to determine the surface morphology changes, X-ray photoelectron spectroscopy (XPS) is analyzed to reveal the surface chemical composition variations and dynamic contact angle analysis (DCAA) is used to examine the changes of the fiber surface wettability. In addition, the wetting behavior of a kind of thermoplastic resin, poly(phthalazinone ether sulfone ketone) (PPESK), on aramid fiber surface is also observed by SEM photos. The study shows that there seems to be an optimum treatment condition for surface modification of aramid fiber by the air DBD plasma. In this paper, after the 12 s, 27.6 W/cm3 plasma treatment the aramid fiber surface roughness is significantly improved, some new oxygen-containing groups such as C-O, Cdbnd O and Odbnd C-O are generated on the fiber surface and the fiber surface wettability is greatly enhanced, which results in the better wetting behavior of PPESK resin on the plasma-treated aramid fiber.

  17. Modification of the Surface Properties of Polyimide Films using POSS Deposition and Oxygen Plasma Exposure

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J.; Belcher, Marcus A.; Ghose, Sayata; Connell, John W.

    2008-01-01

    Topographically rich surfaces were generated by spray-coating organic solutions of a polyhedral oligomeric silsesquioxane, octakis (dimethylsilyloxy) silsesquioxane (POSS), on Kapton HN films and exposing them to radio frequency generated oxygen plasma. Changes in both surface chemistry and topography were observed. High-resolution scanning electron microscopy indicated substantial modification of the POSS-coated polyimide surface topographies as a result of oxygen plasma exposure. Water contact angles varied from 104 deg for unexposed POSS-coated surfaces to approximately 5 deg, for samples exposed for 5 h. Modulation of the dispersive and polar contributions to the surface energy was determined using van Oss Good Chaudhury theory.

  18. Plasma-surface interactions in TFTR D-T experiments

    SciTech Connect

    Owens, D.K.; Adler, H.; Alling, P.

    1995-03-01

    TFTR has begun its campaign to study deuterium-tritium fusion under reactor-like conditions. Variable amounts of deuterium and tritium neutral beam power have been used to maximize fusion power, study alpha heating, investigate alpha particle confinement, and search for alpha driven plasma instabilities. Additional areas of study include energy and particle transport and confinement, ICRF heating schemes for DT plasmas, tritium retention, and fusion in high {beta}{sub p} plasmas. The majority of this work is done in the TFTR supershot confinement regime. To obtain supershots, extensive limiter conditioning using helium fueled ohmic discharges and lithium pellet injection into ohmic and neutral beam heated plasmas is performed, resulting in a low recycling limiter. The relationship between recycling and core plasma confinement has been studied by using helium, deuterium and high-Z gas puffs to simulate high recycling limiter conditions. These studies show that confinement in TFTR supershots is very sensitive to the influx of neutral particles at the plasma edge.

  19. High-order harmonics from laser-irradiated plasma surfaces

    SciTech Connect

    Teubner, U.; Gibbon, P.

    2009-04-15

    The investigation of high-order harmonic generation (HHG) of femtosecond laser pulses by means of laser-produced plasmas is surveyed. This kind of harmonic generation is an alternative to the HHG in gases and shows significantly higher conversion efficiency. Furthermore, with plasma targets there is no limitation on applicable laser intensity and thus the generated harmonics can be much more intense. In principle, harmonic light may also be generated at relativistic laser intensity, in which case their harmonic intensities may even exceed that of the focused laser pulse by many orders of magnitude. This phenomenon presents new opportunities for applications such as nonlinear optics in the extreme ultraviolet region, photoelectron spectroscopy, and opacity measurements of high-density matter with high temporal and spatial resolution. On the other hand, HHG is strongly influenced by the laser-plasma interaction itself. In particular, recent results show a strong correlation with high-energy electrons generated during the interaction process. The harmonics are a promising tool for obtaining information not only on plasma parameters such as the local electron density, but also on the presence of large electric and magnetic fields, plasma waves, and the (electron) transport inside the target. This paper reviews the theoretical and experimental progress on HHG via laser-plasma interactions and discusses the prospects for applying HHG as a short-wavelength, coherent optical tool.

  20. Contribution of material's surface layer on charge state distribution in laser ablation plasma.

    PubMed

    Kumaki, Masafumi; Steski, Dannie; Ikeda, Shunsuke; Kanesue, Takeshi; Okamura, Masahiro; Washio, Masakazu

    2016-02-01

    To generate laser ablation plasma, a pulse laser is focused onto a solid target making a crater on the surface. However, not all the evaporated material is efficiently converted to hot plasma. Some portion of the evaporated material could be turned to low temperature plasma or just vapor. To investigate the mechanism, we prepared an aluminum target coated by thin carbon layers. Then, we measured the ablation plasma properties with different carbon thicknesses on the aluminum plate. The results showed that C(6+) ions were generated only from the surface layer. The deep layers (over 250 nm from the surface) did not provide high charge state ions. On the other hand, low charge state ions were mainly produced by the deeper layers of the target. Atoms deeper than 1000 nm did not contribute to the ablation plasma formation. PMID:26931982

  1. Experimental bench modeling of a plasma environment and solar batteries influence on ISS surface electric breakdowns

    NASA Astrophysics Data System (ADS)

    Homin, Taras; Tverdokhlebova, Ekaterina; Korsun, Anatolii; Borisov, Broris; Garkusha, Valerii; Rusakov, Anatolii; Sizov, Aleksandr; Jurchenko, Nikolai

    Most of the surface of all International Space Station segments are coated with thin dielectric films. The cathode potential drop collects a surface charge on the coatings. The coated parts of the ISS frame are electric capacities that accumulate high charge and energy. These surfaces is plasma capacitors. The plasma capacitors breakdowns generate powerful impulsive discharges that is a threat to space-suit and ISS systems. It is necessary to know all breakdown characteristics to forecast the disturbance and damaging effects on space-suit and ISS systems. We examine their characteristics in bench experiments. The spectrum of the electromagnetic emission arising at a plasma capacitor breakdown is determined. There are peaks of the high-frequency oscillations in spectrum caused by interactions of an electron beam and plasma. Low-frequency oscillations are generated by oscillations in the virtual contour consisting of plasma capacities and inductances.

  2. Characterization of an atmospheric pressure air plasma source for polymer surface modification

    NASA Astrophysics Data System (ADS)

    Yang, Shujun; Tang, Jiansheng

    2013-10-01

    An atmospheric pressure air plasma source was generated through dielectric barrier discharge (DBD). It was used to modify polyethyleneterephthalate (PET) surfaces with very high throughput. An equivalent circuit model was used to calculate the peak average electron density. The emission spectrum from the plasma was taken and the main peaks in the spectrum were identified. The ozone density in the down plasma region was estimated by Absorption Spectroscopy. NSF and ARC-ODU

  3. The Effect of Plasma Surface Treatment on a Porous Green Ceramic Film with Polymeric Binder Materials

    NASA Astrophysics Data System (ADS)

    Jeong, Woo Yun

    2013-06-01

    To reduce time and energy during thermal binder removal in the ceramic process, plasma surface treatment was applied before the lamination process. The adhesion strength in the lamination films was enhanced by oxidative plasma treatment of the porous green ceramic film with polymeric binding materials. The oxygen plasma characteristics were investigated through experimental parameters and weight loss analysis. The experimental results revealed the need for parameter analysis, including gas material, process time, flow rate, and discharge power, and supported a mechanism consisting of competing ablation and deposition processes. The weight loss analysis was conducted for cyclic plasma treatment rather than continuous plasma treatment for the purpose of improving the film's permeability by suppressing deposition of the ablated species. The cyclic plasma treatment improved the permeability compared to the continuous plasma treatment.

  4. Screening rat mesenchymal stem cell attachment and differentiation on surface chemistries using plasma polymer gradients.

    PubMed

    Wang, Peng-Yuan; Clements, Lauren R; Thissen, Helmut; Tsai, Wei-Bor; Voelcker, Nicolas H

    2015-01-01

    It is well known that the surface chemistry of biomaterials is important for both initial cell attachment and the downstream cell response. Surface chemistry gradients are a new format that allows the screening of the subtleties of cell-surface interactions in high throughput. In this study, two surface chemical gradients were fabricated using diffusion control during plasma polymerization via a tilted mask. Acrylic acid (AA) plasma polymer gradients were coated on a uniform 1,7-octadiene (OD) plasma polymer layer to generate OD-AA plasma polymer gradients, whilst diethylene glycol dimethyl ether (DG) plasma polymer gradients were coated on a uniform AA plasma polymer layer to generate AA-DG plasma polymer gradients. Gradient surfaces were characterized by X-ray photoelectron spectroscopy, infrared microscopy mapping, profilometry, water contact angle (WCA) goniometry and atomic force microscopy. Cell attachment density and differentiation into osteo- and adipo-lineages of rat-bone-marrow mesenchymal stem cells (rBMSCs) was studied on gradients. Cell adhesion after 24 h culture was sensitive to the chemical gradients, resulting in a cell density gradient along the substrate. The slope of the cell density gradient changed between 24 and 6 days due to cell migration and growth. Induction of rBMSCs into osteoblast- and adipocyte-like cells on the two plasma polymer gradients suggested that osteogenic differentiation was sensitive to local cell density, but adipogenic differentiation was not. Using mixed induction medium (50% osteogenic and 50% adipogenic medium), thick AA plasma polymer coating (>40 nm thickness with ∼11% COOH component and 35° WCA) robustly supported osteogenic differentiation as determined by colony formation and calcium deposition. This study establishes a simple but powerful approach to the formation of plasma polymer based gradients, and demonstrates that MSC behavior can be influenced by small changes in surface chemistry. PMID:25246312

  5. Material Surface Characteristics and Plasma Performance in the Lithium Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Lucia, Matthew James

    The performance of a tokamak plasma and the characteristics of the surrounding plasma facing component (PFC) material surfaces strongly influence each other. Despite this relationship, tokamak plasma physics has historically been studied more thoroughly than PFC surface physics. The disparity is particularly evident in lithium PFC research: decades of experiments have examined the effect of lithium PFCs on plasma performance, but the understanding of the lithium surface itself is much less complete. This latter information is critical to identifying the mechanisms by which lithium PFCs affect plasma performance. This research focused on such plasma-surface interactions in the Lithium Tokamak Experiment (LTX), a spherical torus designed to accommodate solid or liquid lithium as the primary PFC. Surface analysis was accomplished via the novel Materials Analysis and Particle Probe (MAPP) diagnostic system. In a series of experiments on LTX, the MAPP x-ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS) capabilities were used for in vacuo interrogation of PFC samples. This represented the first application of XPS and TDS for in situ surface analysis of tokamak PFCs. Surface analysis indicated that the thin (dLi ˜ 100nm) evaporative lithium PFC coatings in LTX were converted to Li2O due to oxidizing agents in both the residual vacuum and the PFC substrate. Conversion was rapid and nearly independent of PFC temperature, forming a majority Li2O surface within minutes and an entirely Li2O surface within hours. However, Li2O PFCs were still capable of retaining hydrogen and sequestering impurities until the Li2 O was further oxidized to LiOH, a process that took weeks. For hydrogen retention, Li2O PFCs retained H+ from LTX plasma discharges, but no LiH formation was observed. Instead, results implied that H+ was only weakly-bound, such that it almost completely outgassed as H 2 within minutes. For impurity sequestration, LTX plasma performance

  6. Development of micro-engineered textured tungsten surfaces for high heat flux applications

    NASA Astrophysics Data System (ADS)

    Sharafat, Shahram; Aoyama, Aaron; Williams, Brian; Ghoniem, Nasr

    2013-11-01

    Surface micro-engineering can enhance the thermo-mechanical performance of plasma facing components (PFCs). For example, castellation of a surface can reduce thermal stress due to high heat loads and thus provide higher thermo-mechanical resilience. Recently, fabrication of a variety of micro-sized refractory dendrites with reproducible geometric characteristics (e.g., density, length, height, and aspect ratio) has been demonstrated. In contrast to flat surfaces exposed to high heat loads, dendrites deform independently to minimize near-surface thermal stress, which results in improved thermo-mechanical performance. Thus, the use of dendrites offers a unique micro-engineering approach to enhance the performance of PFC structures. A brief overview of W, Re, and Mo dendritic structures is given along with micrographs that show dendrite-coated surfaces. The thermal responses of representative dendrite structures are analyzed as a function of aspect ratios and dendrite geometry. The heat-management capability of needle-like dendrites exposed to a surface energy of up to 1 MJ/m2 is analyzed and compared to a flat surface. It is concluded that dendrite structures can significantly reduce thermal stress in the substrate when compared to flat surfaces. Implications of dendritic surfaces on sputter erosion rates are also discussed briefly. Higher heat load capability, due to increased surface area and quasi-volumetric heat deposition instead of purely surface loading. Reduced potential for crack initiation, due to the presence of the dendrites, which absorb most of the heat and then conduct it to the substrate. In effect, the dendritic surface is the ultimate in "castellated" (tiled) surfaces, which reduce thermal stresses and thus cracking. Reduced subsurface implantation depth of high-energy helium. A high aspect ratio (height/diameter) dendrite has very shallow ion impingement angles along the sides, which results in a significant reduction in the depth of penetration of

  7. Production of a biofunctional titanium surface using plasma electrolytic oxidation and glow-discharge plasma for biomedical applications.

    PubMed

    Beline, Thamara; Marques, Isabella da Silva Vieira; Matos, Adaias O; Ogawa, Erika S; Ricomini-Filho, Antônio P; Rangel, Elidiane C; da Cruz, Nilson Cristino; Sukotjo, Cortino; Mathew, Mathew T; Landers, Richard; Consani, Rafael L X; Mesquita, Marcelo Ferraz; Barão, Valentim Adelino Ricardo

    2016-03-01

    In this study, the authors tested the hypotheses that plasma electrolytic oxidation (PEO) and glow-discharge plasma (GDP) would improve the electrochemical, physical, chemical, and mechanical properties of commercially pure titanium (cpTi), and that blood protein adsorption on plasma-treated surfaces would increase. Machined and sandblasted surfaces were used as controls. Standard electrochemical tests were conducted in artificial saliva (pHs of 3.0, 6.5, and 9.0) and simulated body fluid. Surfaces were characterized by scanning electron microscopy, energy-dispersive spectroscopy, x-ray photoelectron spectroscopy, atomic force microscopy, x-ray diffraction, profilometry, Vickers microhardness, and surface energy. For biological assay, the adsorption of blood serum proteins (i.e., albumin, fibrinogen, and fibronectin) was tested. Higher values of polarization resistance and lower values of capacitance were noted for the PEO and GDP groups (p < 0.05). Acidic artificial saliva reduced the corrosion resistance of cpTi (p < 0.05). PEO and GDP treatments improved the surface properties by enrichment of the surface chemistry with bioactive elements and increased surface energy. PEO produced a porous oxide layer (5-μm thickness), while GDP created a very thin oxide layer (0.76-μm thickness). For the PEO group, the authors noted rutile and anatase crystalline structures that may be responsible for the corrosion barrier improvement and increased microhardness values. Plasma treatments were able to enhance the surface properties and electrochemical stability of titanium, while increasing protein adsorption levels. PMID:26984234

  8. Oxygen post-treatment of plastic surface coated with plasma polymerized silicon-containing monomers

    NASA Technical Reports Server (NTRS)

    Wydeven, T. J.; Hollanhan, J. R., Jr. (Inventor)

    1979-01-01

    The abrasion resistance of plastic surfaces coated with polymerized organosilanes can be significantly improved by post-treatment of the polymerized silane in an oxygen plasma. For optical purposes, the advantages of this post-treatment are developed with a transparent polycarbonate resin substrate coated with plasma polymerized vinyltrimethoxysilane.

  9. Plasma-surface interactions for top-down and bottom-up nanofabrication

    NASA Astrophysics Data System (ADS)

    Ono, Kouichi

    2015-09-01

    Plasma processing is now widely employed for the fabrication of nanostructures in diverse fields of micro/nanoelectronic, optoelectronic, energy conversion, and sensing devices. The top-down plasma processes are indispensable in today's microelectronics industry, relying on the use of primarily anisotropic plasma etching following the lithography to define mask patterns; in some cases, self-assembled masks are served for the subsequent etching. The bottom-up ones are often employed to synthesize nanostructures such as nanotubes and nanowires, relying on the use of plasma enhanced chemical vapor deposition and plasma sputtering on self-assembled as well as lithographically formed patterns of metal catalysts. Moreover, the mask-less top-down approaches have recently been demonstrated to form nanopillars and periodic nanoripples, and the catalyst-free bottom-up approaches have been demonstrated to form nanowires. This talk is concerned with the current understanding and future prospects for plasma-surface interactions responsible for these top-down and bottom-up plasma nanofabrication processes, with attention placed on the fabrication of nanoscale fins and gates and also nanowires of silicon. On nanometer scale, ions and neutrals incident on surfaces are few in number during processing; thus, the nanoscale plasma-surface interactions concerned are stochastic, owing to the temporal as well as spatial uniformity of the incident flux and angle of them on surfaces being processed at nanoscale.

  10. Multi-surface topography targeted plateau honing for the processing of cylinder liner surfaces of automotive engines

    NASA Astrophysics Data System (ADS)

    Lawrence, K. Deepak; Ramamoorthy, B.

    2016-03-01

    Cylinder bores of automotive engines are 'engineered' surfaces that are processed using multi-stage honing process to generate multiple layers of micro geometry for meeting the different functional requirements of the piston assembly system. The final processed surfaces should comply with several surface topographic specifications that are relevant for the good tribological performance of the engine. Selection of the process parameters in three stages of honing to obtain multiple surface topographic characteristics simultaneously within the specification tolerance is an important module of the process planning and is often posed as a challenging task for the process engineers. This paper presents a strategy by combining the robust process design and gray-relational analysis to evolve the operating levels of honing process parameters in rough, finish and plateau honing stages targeting to meet multiple surface topographic specifications on the final running surface of the cylinder bores. Honing experiments were conducted in three stages namely rough, finish and plateau honing on cast iron cylinder liners by varying four honing process parameters such as rotational speed, oscillatory speed, pressure and honing time. Abbott-Firestone curve based functional parameters (Rk, Rpk, Rvk, Mr1 and Mr2) coupled with mean roughness depth (Rz, DIN/ISO) and honing angle were measured and identified as the surface quality performance targets to be achieved. The experimental results have shown that the proposed approach is effective to generate cylinder liner surface that would simultaneously meet the explicit surface topographic specifications currently practiced by the industry.

  11. Surface treatment of a titanium implant using low temperature atmospheric pressure plasmas

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-Young; Tang, Tianyu; Ok, Jung-Woo; Kim, Dong-Hyun; Lee, Ho-Jun; Lee, Hae June

    2015-09-01

    During the last two decades, atmospheric pressure plasmas(APP) are widely used in diverse fields of biomedical applications, reduction of pollutants, and surface treatment of materials. Applications of APP to titanium surface of dental implants is steadily increasing as it renders surfaces wettability and modifies the oxide layer of titanium that hinders the interaction with cells and proteins. In this study, we have treated the titanium surfaces of screw-shaped implant samples using a plasma jet which is composed of a ceramic coaxial tube of dielectrics, a stainless steel inner electrode, and a coper tube outer electrode. The plasma ignition occurred with Ar gas flow between two coaxial metal electrodes and a sinusoidal bias voltage of 3 kV with a frequency of 20 kHz. Titanium materials used in this study are screw-shaped implants of which diameter and length are 5 mm and 13 mm, respectively. Samples were mounted at a distance of 5 mm below the plasma source, and the plasma treatment time was set to 3 min. The wettability of titanium surface was measured by the moving speed of water on its surface, which is enhanced by plasma treatment. The surface roughness was also measured by atomic force microscopy. The optimal condition for wettability change is discussed.

  12. Study of the plasma surface interactions by the "spinning wall" technique

    NASA Astrophysics Data System (ADS)

    Guha, Joydeep

    For the past few decades plasma etching has emerged as a dominant processing step in integrated-circuit (IC) device manufacturing. Due to the presence of reactive radicals and ions, plasmas are rich in chemistry and are widely used to etch sub-micron size features with complete fidelity. Radicals such as Cl, F, O etc. are the active species in the plasma that reacts with the material in the presence of ions forming volatile products, which leads to material removal. However, in these low pressure plasmas the radicals are lost to the reactor walls, which affect their number densities in the plasma. An important parameter to quantify radical loss at the surface is the recombination coefficient, gamma, defined as the probability per collision with the surface that an impinging radical will recombine. The surface in contact with the plasma interacts with the radicals, neutrals, ions, electrons, photons etc., which makes the measurement of kinetic parameter like the atom recombination probability a real challenge. A new technique has been developed to study the plasma-surface interactions in-situ. In this technique a cylindrical substrate is rapidly rotated between the plasma and differentially pumped diagnostic chambers, allowing portions of the surface to be periodically exposed to the plasma and then analyzed by desorption mass spectrometry and Auger electron spectroscopy. The time elapsed between the plasma exposure and subsequent analysis is controlled by varying the rotation frequency of the substrate. Using this technique Langmuir-Hinshelwood atom recombination probabilities have been measured in O2, Cl2, O2/Cl 2, Cl2/Ar and O2/Ar plasmas. A variety of diagnostic techniques have been used to analyze the plasmas. The gas temperature ( Tg) was measured by adding a trace amount of N2 (5%) to the plasma and measuring the emission of the N2 second positive system C 3piu, nu' → B 3pig, nu'' in the ultraviolet region. The electron densities (ne) were measured using a

  13. The effect of plasma-nitrided titanium surfaces on osteoblastic cell adhesion, proliferation, and differentiation.

    PubMed

    Ferraz, Emanuela P; Sa, Juliana C; de Oliveira, Paulo T; Alves, Clodomiro; Beloti, Marcio M; Rosa, Adalberto L

    2014-04-01

    In this study, we evaluated the effect of new plasma-nitrided Ti surfaces on the progression of osteoblast cultures, including cell adhesion, proliferation and differentiation. Ti surfaces were treated using two plasma-nitriding protocols, hollow cathode for 3 h (HC 3 h) and 1 h (HC 1 h) and planar for 1 h. Untreated Ti surfaces were used as control. Cells derived from human alveolar and rat calvarial bones were cultured on Ti surfaces for periods of up to 14 days and the following parameters were evaluated: cell morphology, adhesion, spreading and proliferation, alkaline phosphatase (ALP) activity, extracellular matrix mineralization, and gene expression of key osteoblast markers. Plasma-nitriding treatments resulted in Ti surfaces with distinct physicochemical characteristics. The cell adhesion and ALP activity were higher on plasma-nitrided Ti surfaces compared with untreated one, whereas cell proliferation and extracellular matrix mineralization were not affected by the treatments. In addition, the plasma-nitrided Ti surfaces increased the ALP, reduced the osteocalcin and did not affect the Runx2 gene expression. We have shown that HC 3 h and planar Ti surfaces slightly favored the osteoblast differentiation process, and then these surfaces should be considered for further investigation using preclinical models. PMID:23625878

  14. Modeling and simulation of high-frequency surface waves in bounded plasmas

    NASA Astrophysics Data System (ADS)

    Cooperberg, David Jeffrey

    In the work presented here, we shall make a careful examination of an intrinsic property of bounded plasmas. Specifically, we will be studying a set of high frequency (electron) waves which propagate at the boundary of metal bounded plasmas. This study relies heavily on particle- in-cell simulation wit;h Monte-Carlo collisions (PIC-MCC) (1-3). Among the benefits of the PIC-MCC scheme are an adherence to first-principles, which allows a wide range of kinetic behavior to be accurately modeled including the electron energy probability function which is known to depart from Maxwellian in low pressure discharges (58) (85). This work has two main objectives. The first is to clarify the structure of these waves. It is also hoped that this use of simulation in the study of electron surface waves will further our general understanding of these waves in both metal and dielectric bound plasmas. Our second objective is to study how these natural modes may be used to sustain a plasma discharge suitable for plasma processing. Current 'surface wave plasmas' are produced in glass tubes (42). Our analysis of surface waves in planar metal bounded plasma slabs enables us to simulate new types of surface wave sustained discharges which may operate at low pressures with low sheath potentials and may be scalable to large areas without compromising plasma uniformity. An outline of this work follows. Chapter 1 presents an overview of past and current work on electron surface oscillations and waves in bounded plasmas. In Chapter 2 we initiate our study of waves in the metal bound slab using a matrix sheath model. Next a more realistic model for the plasma and sheath is developed in Chapter 3. The result is the identification of a new set of surface modes which exist only in the non-uniform, thermal, bounded plasma. We then move from the study of surface wave characteristics to a study of surface wave sustained discharges. In Chapter 4 we consider the 1d3v plasma which is sustained at the

  15. Plasma-surface interactions during Si etching in Cl- and Br-based plasmas: An empirical and atomistic study

    NASA Astrophysics Data System (ADS)

    Tsuda, Hirotaka; Nagaoka, Tatsuya; Miyata, Hiroki; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi

    2009-10-01

    Nanometer-scale control of Si etching in Cl2- and HBr-containing plasmas is indispensable in the fabrication of gate electrodes and shallow trench isolation. There are profile anomalies of sidewalls such as tapering, bowing, footing (or corner rounding), and notching, which largely affect the critical dimension. There are also anomalies of bottom surfaces such as microtrenching and roughness (or residues), which affect the bottom uniformity, and lead to recess and damage in gate fabrication. Atomic-scale cellular model (ASCeM) based on the Monte Carlo method has been developed to simulate plasma-surface interactions and the profile evolution during etching, including passivation layer formation, and also ion reflection and penetration on feature surfaces. We have also studied atomistic plasma-surface interactions by classical molecular dynamics (MD) simulation, where an improved Stillinger-Weber interatomic potential was newly developed. The numerical results were compared with etching experiments and also with surface diagnostics including in-situ Fourier-transform-infrared reflection absorption spectroscopy (FTIR-RAS), to reveal the origin of profile anomalies on feature surfaces during etching, and then to achieve the precise control of etched profiles.

  16. Surface modification of Raw and Frit glazes by non-thermal helium plasma jet

    NASA Astrophysics Data System (ADS)

    Ghasemi, M.; Sohbatzadeh, F.; Mirzanejhad, S.

    2015-06-01

    In this study, non-thermal atmospheric pressure plasma jet (APPJ) was utilized to improve the adhesion of Raw and Frit glazes. These glazes are widely used in industry to make chinaware, decorative dishes and tiles applied at wall and floor. As they should be painted before use, increasing their adhesive properties leads to a better paint durability. Electrical and optical characteristics of the plasma jet are investigated to optimize for efficient treatment. Contact angle measurement and surface energy calculation demonstrate a drastic increase after the plasma treatment indicating wettability and paintability enhancement. Moreover, atomic force microscopy and X-ray photoelectron spectroscopy analyses were performed on the specimens to explore the influence of helium plasma jet on the physical and chemical properties of the glazes, microscopically. AFM analysis reveals surface etching resulted from the bombardment of the solid surfaces by the APPJ using helium fed gas. The process aims to enhance adhesive properties of glaze surfaces.

  17. in situ plasma removal of surface contaminants from ion trap electrodes

    SciTech Connect

    Haltli, Raymond A.

    2015-04-01

    This research resulted in a construction and implementation of an in situ plasma discharge to remove surface contaminants from electrodes in an ion trapping experimental system is presented with results.

  18. Disentangling fluxes of energy and matter in plasma-surface interactions: Effect of process parameters

    SciTech Connect

    Wolter, M.; Levchenko, I.; Ostrikov, K.; Kersten, H.; Kumar, S.

    2010-09-15

    The possibility to discriminate between the relative importance of the fluxes of energy and matter in plasma-surface interaction is demonstrated by the energy flux measurements in low-temperature plasmas ignited by the radio frequency discharge (power and pressure ranges 50-250 W and 8-11.5 Pa) in Ar, Ar+H{sub 2}, and Ar+H{sub 2}+CH{sub 4} gas mixtures typically used in nanoscale synthesis and processing of silicon- and carbon-based nanostructures. It is shown that by varying the gas composition and pressure, the discharge power, and the surface bias one can effectively control the surface temperature and the matter supply rates. The experimental findings are explained in terms of the plasma-specific reactions in the plasma bulk and on the surface.

  19. Plasma surface functionalization and dyeing kinetics of Pan-Pmma copolymers

    NASA Astrophysics Data System (ADS)

    Labay, C.; Canal, C.; Rodríguez, C.; Caballero, G.; Canal, J. M.

    2013-10-01

    Fiber surface modification with air corona plasma has been studied through dyeing kinetics under isothermal conditions at 30 °C on an acrylic-fiber fabric with a cationic dye (CI Basic Blue 3) analyzing the absorption, desorption and fixing on the surface of molecules having defined cationic character. The initial dyeing rate in the first 60 s indicates an increase of 58.3% in the dyeing rate due to the effect of corona plasma on the acrylic fiber surface. At the end of the dyeing process, the plasma-treated fabrics absorb 24.7% more dye, and the K/S value of the acrylic fabric increases by 8.8%. With selected dyestuff molecules, new techniques can be designed to amplify the knowledge about plasma-treated surface modifications of macromolecules.

  20. Influence of the Combustion Energy Release on Surface Accelerations of an HCCI Engine

    SciTech Connect

    Massey, Jeffery A; Eaton, Scott J; Wagner, Robert M

    2009-01-01

    Large cyclic variability along with increased combustion noise present in low temperature combustion (LTC) modes of internal combustion engines has driven the need for fast response, robust sensors for diagnostics and feedback control. Accelerometers have been shown as a possible technology for diagnostics and feedback control of advanced LTC operation in internal combustion engines. To make better use of this technology, an improved understanding is necessary of the effect of energy release from the combustion process on engine surface vibrations. This study explores the surface acceleration response for a single-cylinder engine operating with homogeneous charge compression ignition (HCCI) combustion. Preliminary investigation of the engine surface accelerations is conducted using a finite element analysis of the engine cylinder jacket along with consideration of cylindrical modes of the engine cylinder. Measured in-cylinder pressure is utilized as a load input to the FE model to provide an initial comparison of the computed and measured surface accelerations. Additionally, the cylindrical cavity resonant modes of the engine geometry are computed and the in-cylinder pressure frequency content is examined to verify this resonant behavior. Experimental correlations between heat release and surface acceleration metrics are then used to identify specific acceleration frequency bands in which characteristics of the combustion heat release process is detected with minimal structural resonant influence. Investigation of a metric capable of indicting combustion phasing is presented. Impact of variations in the combustion energy release process on the surface accelerations is discussed.

  1. Effect of Surface Impulsive Thermal Loads on Fatigue Behavior of Constant Volume Propulsion Engine Combustor Materials

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Miller, Robert A.; Ghosn, Louis J.; Kalluri, Sreeramesh

    2004-01-01

    The development of advanced high performance constant-volume-combustion-cycle engines (CVCCE) requires robust design of the engine components that are capable of enduring harsh combustion environments under high frequency thermal and mechanical fatigue conditions. In this study, a simulated engine test rig has been established to evaluate thermal fatigue behavior of a candidate engine combustor material, Haynes 188, under superimposed CO2 laser surface impulsive thermal loads (30 to 100 Hz) in conjunction with the mechanical fatigue loads (10 Hz). The mechanical high cycle fatigue (HCF) testing of some laser pre-exposed specimens has also been conducted under a frequency of 100 Hz to determine the laser surface damage effect. The test results have indicated that material surface oxidation and creep-enhanced fatigue is an important mechanism for the surface crack initiation and propagation under the simulated CVCCE engine conditions.

  2. Effects of piston surface treatments on performance and emissions of a methanol-fueled, direct injection, stratified charge engine

    SciTech Connect

    West, B.; Green, J.B.

    1994-07-01

    The purpose of this study was to investigate the effects of thermal barrier coatings and/or surface treatments on the performance and emissions of a methanol-fueled, direct-injection, stratified-charge (DISC) engine. A Ricardo Hydra Mark III engine was used for this work and in previous experiments at Oak Ridge National Laboratory (ORNL). The primary focus of the study was to examine the effects of various piston insert surface treatments on hydrocarbon (HC) and oxides of nitrogen (NO{sub x}) emissions. Previous studies have shown that engines of this class have a tendency to perform poorly at low loads and have high unburned fuel emissions. A blank aluminum piston was modified to employ removable piston bowl inserts. Four different inserts were tested in the experiment: aluminum, stainless steel with a 1.27-mm (0.050-in.) air gap (to act as a thermal barrier), and two stainless steel/air-gap inserts with coatings. Two stainless steel inserts were dimensionally modified to account for the coating thickness (1.27-mm) and coated identically with partially stabilized zirconia (PSZ). One of the coated inserts then had an additional seal-coat applied. The coated inserts were otherwise identical to the stainless steel/air-gap insert (i.e., they employed the same 1.27-mm air gap). Thermal barrier coatings were employed in an attempt to increase combustion chamber surface temperatures, thereby reducing wall quenching and promoting more complete combustion of the fuel in the quench zone. The seal-coat was applied to the zirconia to reduce the surface porosity; previous research suggested that despite the possibly higher surface temperatures obtainable with a ceramic coating, the high surface area of a plasma-sprayed coating may actually allow fuel to adhere to the surface and increase the unburned fuel emissions and fuel consumption.

  3. The exchange-correlation effects on surface plasmon oscillations in semi-bounded quantum plasma

    SciTech Connect

    Shahmansouri, Mehran

    2015-09-15

    We studied the surface plasmon waves in a quantum plasma half-space by considering the effects of exchange and correlation for the electrons. We used a quantum hydrodynamic approach, including the full set of Maxwell equations and considering two new quantities (measuring the exchange and correlation effects) in addition to the Fermi electron temperature and the quantum Bohm potential, to derive the dispersion relation for the surface plasmon waves. It was found that the exchange-correlation effects significantly modified the behavior of surface plasmon waves. We showed that the frequency of surface plasmon wave was down-shifted by the exchange-correlation effects. On the other hand, the quantum effects (including of the exchange-correlation effects and the quantum Bohm potential) was seen to cause an increase in the phase speed of surface plasmon waves. Our results can help to understand the propagation properties of surface waves in intense laser produced solid density plasmas and metallic plasmas.

  4. Hydrogen desorption kinetics for aqueous hydrogen fluoride and remote hydrogen plasma processed silicon (001) surfaces

    SciTech Connect

    King, Sean W. Davis, Robert F.; Carter, Richard J.; Schneider, Thomas P.; Nemanich, Robert J.

    2015-09-15

    The desorption kinetics of molecular hydrogen (H{sub 2}) from silicon (001) surfaces exposed to aqueous hydrogen fluoride and remote hydrogen plasmas were examined using temperature programmed desorption. Multiple H{sub 2} desorption states were observed and attributed to surface monohydride (SiH), di/trihydride (SiH{sub 2/3}), and hydroxide (SiOH) species, subsurface hydrogen trapped at defects, and hydrogen evolved during the desorption of surface oxides. The observed surface hydride species were dependent on the surface temperature during hydrogen plasma exposure with mono, di, and trihydride species being observed after low temperature exposure (150 °C), while predominantly monohydride species were observed after higher temperature exposure (450 °C). The ratio of surface versus subsurface H{sub 2} desorption was also found to be dependent on the substrate temperature with 150 °C remote hydrogen plasma exposure generally leading to more H{sub 2} evolved from subsurface states and 450 °C exposure leading to more H{sub 2} desorption from surface SiH{sub x} species. Additional surface desorption states were observed, which were attributed to H{sub 2} desorption from Si (111) facets formed as a result of surface etching by the remote hydrogen plasma or aqueous hydrogen fluoride treatment. The kinetics of surface H{sub 2} desorption were found to be in excellent agreement with prior investigations of silicon surfaces exposed to thermally generated atomic hydrogen.

  5. Plasma-enhanced synthesis of surfaces that kill bacteria on contact

    NASA Astrophysics Data System (ADS)

    Jampala, Soujanya Naga

    High incidences of microbial contamination and infections are a major concern in all existing and evolving technologies of medicine and biology. The propensity towards infections is directly related to bacterial colonization and biofilms on surfaces. This dissertation presents the development of surfaces that can kill bacteria on contact by using cold plasma technology. Quaternary ammonium (QA) groups are known to exhibit antibacterial characteristics in water-based environments. To overcome the limitations of residual toxicity, alternative strategies involving covalent attachment of QA groups to metallic and cellulosic surfaces have been developed. Low pressure, non-equilibrium plasma-enhanced functionalization and subsequent ex situ chemical reactions were designed for step-by-step "bottom-up" chemical synthesis of QA groups covalently anchored to surfaces. The plasma processes under selected discharge parameters generated structure- and functionality-controlled crosslinked networks of macromolecular layers with high concentrations of reactive amine groups. Subsequent derivatization of the plasma-deposited films with alkyl halides yielded surface-bound QA groups rendering surfaces with high bactericidal efficacy against Gram-positive Staphylococcus aureus and Gram-negative Klebsiella pneumoniae. Stainless steel and cotton surfaces sequentially treated with ethylene diamine plasma, n-hexyl bromide and methyl iodide exhibited at least 99.9% and 98% kill of S. aureus and K. pneumoniae respectively. The influence of chemical architecture of QA groups with different alkyl substituents on the efficacy of bactericidal surfaces was quantified. Results from this work will permit the development of novel plasma-aided technologies for the synthesis of antibacterial surfaces with potential biomedical applications. The cold plasma approach can be used on any solid material surfaces including polymers, metals, ceramics and semiconductors.

  6. Lithium Surface Coatings for Improved Plasma Performance in NSTX

    SciTech Connect

    Kugel, H W; Ahn, J -W; Allain, J P; Bell, R; Boedo, J; Bush, C; Gates, D; Gray, T; Kaye, S; Kaita, R; LeBlanc, B; Maingi, R; Majeski, R; Mansfield, D; Menard, J; Mueller, D; Ono, M; Paul, S; Raman, R; Roquemore, A L; Ross, P W; Sabbagh, S; Schneider, H; Skinner, C H; Soukhanovskii, V; Stevenson, T; Timberlake, J; Wampler, W R

    2008-02-19

    NSTX high-power divertor plasma experiments have shown, for the first time, significant and frequent benefits from lithium coatings applied to plasma facing components. Lithium pellet injection on NSTX introduced lithium pellets with masses 1 to 5 mg via He discharges. Lithium coatings have also been applied with an oven that directed a collimated stream of lithium vapor toward the graphite tiles of the lower center stack and divertor. Lithium depositions from a few mg to 1 g have been applied between discharges. Benefits from the lithium coating were sometimes, but not always seen. These improvements sometimes included decreases plasma density, inductive flux consumption, and ELM frequency, and increases in electron temperature, ion temperature, energy confinement and periods of MHD quiescence. In addition, reductions in lower divertor D, C, and O luminosity were measured.

  7. Sputter-produced plasma as a measure of satellite surface composition - The Cassini mission

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.; Sittler, E. C., Jr.

    1990-01-01

    Measurements of the co-orbiting neutral cloud or the plasma produced by sputtering of the icy Saturnian satellites can be used to determine the relative abundance of a minority surface species which would be difficult to determine from reflectance spectra. This is due to the fact that the sputter source rates, hence the plasma supply rates, are directly proportional to the bulk concentrations of mixed solids or clathrates, although the surface grains may be depleted in the most volatile species.

  8. Surface modification of several dental substrates by non-thermal, atmospheric plasma brush

    PubMed Central

    Chen, Mingsheng; Zhang, Ying; Driver, M. Sky; Caruso, Anthony N.; Yu, Qingsong; Wang, Yong

    2013-01-01

    Objective The purpose of this study was to reveal the effectiveness of non-thermal atmospheric plasma brush in surface wettability and modification of four dental substrates. Methods Specimens of dental substrates including dentin, enamel, and two composites Filtek Z250, Filtek LS Silorane were prepared (~2 mm thick, ~10 mm diameter). The prepared surfaces were treated for 5–45 s with a non-thermal atmospheric plasma brush working at temperatures from 36 to 38 °C. The plasma-treatment effects on these surfaces were studied with contact-angle measurement, X-ray photoemission spectroscopy (XPS) and scanning electron microscopy (SEM). Results The non-thermal atmospheric argon plasma brush was very efficient in improving the surface hydrophilicity of four substrates studied. The results indicated that water contact angle values decreased considerably after only 5 s plasma treatment of all these substrates. After 30 s treatment, the values were further reduced to <5°, which was close to a value for super hydrophilic surfaces. XPS analysis indicated that the percent of elements associated with mineral in dentin/enamel or fillers in the composites increased. In addition, the percent of carbon (%C) decreased while %O increased for all four substrates. As a result, the O/C ratio increased dramatically, suggesting that new oxygen-containing polar moieties were formed on the surfaces after plasma treatment. SEM surface images indicated that no significant morphology change was induced on these dental substrates after exposure to plasmas. Significance Without affecting the bulk properties, a super-hydrophilic surface could be easily achieved by the plasma brush treatment regardless of original hydrophilicity/hydrophobicity of dental substrates tested. PMID:23755823

  9. The CPS Plasma Award at the Intel Science and Engineering Fair

    NASA Astrophysics Data System (ADS)

    Berry, Lee

    2012-10-01

    For the past eight years, the Coalition for Plasma Science (CPS) has presented an award for a plasma project at the Intel International Science and Engineering Fair (ISEF). We reported on the first five years of this award at the 2009 DPP Symposium. Pulsed neutron-producing experiments are a recurring topic, with the efforts now turning to applications. The most recent award at the Pittsburgh ISEF this past May was given for analysis of data from Brookhaven's Relativistic Heavy Ion Collider. The effort had the goal of understanding the fluid properties of the quark-gluon plasma. All of the CPS award-winning projects so far have been based on experiments, with four awards going to women students and four to men. In 2009 we noted that the number and quality of projects was improving. Since then, as we we predicted (hoped for), that trend has continued. The CPS looks forward to continuing its work with students who are excited about the possibilities of plasma. You too can share this excitement by judging at the 2013 fair in Phoenix on May 12-17. Information may be obtained by emailing cps@plasmacoalition.org.

  10. Development of super-clean diesel engine and combustor using nonthermal plasma hybrid aftertreatment

    NASA Astrophysics Data System (ADS)

    Okubo, Masaaki

    2015-10-01

    One of important and successful environmental applications of atmospheric-pressure corona discharge or plasma is electrostatic precipitator (ESP), which have been widely used for coal- or oil-fired boilers in electric power plants and particulate matter control emitted from industries such as glass melting furnace system, etc. In the ESPs, steady high voltage is usually applied to a pair of electrodes (at least, one of these has sharp edge). Unsteady pulsed high voltage is often applied for the collection of high-resistivity particulate matter (PM) to avoid reverse corona phenomena which reduce the collection efficiency of the ESPs. It was found that unsteady high voltage can treat hazardous gaseous components (NOx, SOx, hydrocarbon, and CO, etc.) in the exhaust gas, and researches were shifted from PM removal to hazardous gases aftertreatment with unsteady corona discharge induced plasmas. In the paper, recent results on diesel engine and industrial boiler emission controls are mainly reviewed among these our research topics.

  11. Method For Plasma Source Ion Implantation And Deposition For Cylindrical Surfaces

    DOEpatents

    Fetherston, Robert P. , Shamim, Muhammad M. , Conrad, John R.

    1997-12-02

    Uniform ion implantation and deposition onto cylindrical surfaces is achieved by placing a cylindrical electrode in coaxial and conformal relation to the target surface. For implantation and deposition of an inner bore surface the electrode is placed inside the target. For implantation and deposition on an outer cylindrical surface the electrode is placed around the outside of the target. A plasma is generated between the electrode and the target cylindrical surface. Applying a pulse of high voltage to the target causes ions from the plasma to be driven onto the cylindrical target surface. The plasma contained in the space between the target and the electrode is uniform, resulting in a uniform implantation or deposition of the target surface. Since the plasma is largely contained in the space between the target and the electrode, contamination of the vacuum chamber enclosing the target and electrodes by inadvertent ion deposition is reduced. The coaxial alignment of the target and the electrode may be employed for the ion assisted deposition of sputtered metals onto the target, resulting in a uniform coating of the cylindrical target surface by the sputtered material. The independently generated and contained plasmas associated with each cylindrical target/electrode pair allows for effective batch processing of multiple cylindrical targets within a single vacuum chamber, resulting in both uniform implantation or deposition, and reduced contamination of one target by adjacent target/electrode pairs.

  12. Stability of silanols and grafted alkylsilane monolayers on plasma-activated mica surfaces.

    PubMed

    Liberelle, Benoît; Banquy, Xavier; Giasson, Suzanne

    2008-04-01

    We investigated the effect of physical and chemical modifications of mica surfaces induced by water vapor-based plasma treatments on the stability of silanols and grafted alkylsilane monolayers. The plasma-activated substrates were characterized using XPS, TOF-SIMS, and contact angle measurements. They revealed a large surface coverage of silanol groups (Si-OH) and a loss of aluminum atoms compared to freshly cleaved mica surfaces. The stability of plasma-induced silanol groups was investigated by contact angle measurements using ethylene glycol as a probe liquid. The Si-OH surface coverage decreased rapidly under vacuum or thermal treatment to give rise to hydrophobic dehydrated surfaces. The stability of end-grafted monofunctionalized n-alkylsilanes was investigated in different solvents and at different pH using water contact angle measurements. The degrafting of alkylsilanes from the activated mica was promoted in acidic aqueous solutions. This detachment was associated with the hydrolysis of covalent bonds between the alkylsilanes and the mica surface. The monolayer stability was enhanced by increasing the length of the alkyl chains that probably act as a hydrophobic protective layer against hydrolysis reactions. Stable alkylsilane monolayers in water with pH greater than 5.5 were obtained on mica surfaces activated at low plasma pressure. We attributed this stability to the loss of surface Al atoms induced by the plasma treatment. PMID:18303926

  13. Thermal shock behaviour of blisters on W surface during combined steady-state/pulsed plasma loading

    NASA Astrophysics Data System (ADS)

    Jia, Y. Z.; Liu, W.; Xu, B.; Luo, G.-N.; Li, C.; Qu, S. L.; Morgan, T. W.; De Temmerman, G.

    2015-09-01

    The thermal shock behaviour of blister-covered W surfaces during combined steady-state/pulsed plasma loading was studied by scanning electron microscopy and electron backscatter diffraction. The W samples were first exposed to steady-state D plasma to induce blisters on the surface, and then the blistered surfaces were exposed to steady-state/pulsed plasma. Growth and cracking of blisters were observed after the exposure to the steady-state/pulsed plasma, while no obvious damage occurred on the surface area not covered with blisters. The results confirm that blisters induced by D plasma might represent weak spots on the W surface when exposed to transient heat load of ELMs. The cracks on blisters were different from the cracks due to the transient heat loads reported before, and they were assumed to be caused by stress and strain due to the gas expansion inside the blisters during the plasma pulses. Moreover, most of cracks were found to appear on the blisters formed on grains with surface orientation near [1 1 1].

  14. Adsorption of protein streptavidin to the plasma treated surface of polystyrene

    NASA Astrophysics Data System (ADS)

    Vesel, Alenka; Elersic, Kristina

    2012-05-01

    Immobilization of protein streptavidin to the surface of polystyrene (PS) polymer was studied by X-ray photoelectron spectroscopy (XPS). Two different protocols were used to attach streptavidin to the PS surface: physical adsorption and chemical coupling. In both cases the surface properties of PS samples were modified by exposure to cold oxygen plasma for 10 s. Plasma was created in oxygen at 75 Pa by en electrode-less RF discharge. The RF generator operated at 27.12 MHz and the nominal power was about 120 W. The electron temperature was about 3 eV, the plasma density was about 3 × 1015 m-3 and the neutral oxygen atom density was about 3 × 1021 m-3. Oxygen plasma treatment caused formation of O-rich functional groups on the surface of PS. The concentration of oxygen was determined by XPS and was about 28 at.%. A thin film of streptavidin was deposited by physical adsorption and chemical bonding. The appearance of streptavidin on the surface was determined from XPS spectra measuring the ratio between N and C peaks. The plasma treatment caused poor adsorption and but strong chemisorption of streptavidin. The results were explained by specific interaction of protein with polar functional groups on the surface of PS after plasma treatment.

  15. Enhanced cell adhesion to silicone implant material through plasma surface modification.

    PubMed

    Hauser, J; Zietlow, J; Köller, M; Esenwein, S A; Halfmann, H; Awakowicz, P; Steinau, H U

    2009-12-01

    Silicone implant material is widely used in the field of plastic surgery. Despite its benefits the lack of biocompatibility this material still represents a major problem. Due to the surface characteristics of silicone, protein adsorption and cell adhesion on this polymeric material is rather low. The aim of this study was to create a stable collagen I surface coating on silicone implants via glow-discharge plasma treatment in order to enhance cell affinity and biocompatibility of the material. Non-plasma treated, collagen coated and conventional silicone samples (non-plasma treated, non-coated) served as controls. After plasma treatment the change of surface free energy was evaluated by drop-shape analysis. The quality of the collagen coating was analysed by electron microscopy and Time-Of-Flight Secondary Ion Mass Spectrometry. For biocompatibility tests mouse fibroblasts 3T3 were cultivated on the different silicone surfaces and stained with calcein-AM and propidium iodine to evaluate cell viability and adherence. Analysis of the different surfaces revealed a significant increase in surface free energy after plasma pre-treatment. As a consequence, collagen coating could only be achieved on the plasma activated silicone samples. The in vitro tests showed that the collagen coating led to a significant increase in cell adhesion and cell viability. PMID:19641852

  16. Investigation on three-dimensional surface roughness evaluation of engineering ceramic for rotary ultrasonic grinding machining

    NASA Astrophysics Data System (ADS)

    Wei, Shiliang; Zhao, Hong; Jing, Juntao

    2015-12-01

    Surface roughness has considerable influence on its quality and function of products in precision and ultra-precision machining, and the same situation applies to engineering ceramic for rotary ultrasonic grinding machining (RUGM). This paper presents a new parameter, called fractal root mean square deviation, for evaluating engineering ceramic three-dimensional (3D) surface roughness of RUGM. Based on engineering ceramics surface of RUGM is typical isotropic, the mathematical model of fractal root mean square deviation was established, and it possesses double characteristics of absolute measurement and multi-scale. Then validation has been implemented, and fractal root mean square deviation is superior to evaluate engineering ceramic 3D surface roughness with better resolution and sensitivity. Furthermore, the relationship between main factor parameters and fractal root mean square deviation was proposed. The evaluation parameter and the results could be implemented in practice to get higher quality surface.

  17. Modeling study on the surface morphology evolution during removing the optics surface/subsurface damage using atmospheric pressure plasma processing

    NASA Astrophysics Data System (ADS)

    Xin, Qiang; Su, Xing; Wang, Bo

    2016-09-01

    Plasma processing has been widely reported as an effective tool in relieving or removing surface/subsurface damage induced by previous mechanical machining process. However, the surface morphology evolution during removing the damage using plasma processing is rarely reported. In this research, this procedure is studied based on experiments and robust numerical models developed on the basis of Level Set Method (LSM). Even if some unique properties of plasma etching are observed, such as particle redistribution, the dominant role of isotropic etching of plasma processing is verified based on experiments and 2D LSM simulations. With 2D LSM models, the damage removal process under various damage characteristics is explored in detail. Corresponding peak-to-valley roughness evolution is investigated as well. Study on morphology evolution is also conducted through the comparison between experiments and 3D LSM computations. The modeling results and experiments show good agreement with each other. The trends of simulated roughness evolution agree with the experiments as well. It is revealed that the plasma processing may end up with a planar surface depending on the damage characteristics. The planarization procedure can be divided into four parts: crack opening and pit formation; pit coalescing and shallow pits subsumed by deep ones; morphology duplicate etching; and finally a planar and damage free surface.

  18. PREFACE: 13th International Conference on Metrology and Properties of Engineering Surfaces

    NASA Astrophysics Data System (ADS)

    Leach, Richard

    2011-08-01

    The 13th International Conference on Metrology and Properties of Engineering Surfaces focused on the progress in surface metrology, surface characterisation instrumentation and properties of engineering surfaces. The conference provided an international forum for academics, industrialists and engineers from different disciplines to meet and exchange their ideas, results and latest research. The conference was held at Twickenham Stadium, situated approximately six miles from Heathrow Airport and approximately three miles from the National Physical Laboratory (NPL). This was the thirteenth in the very successful series of conferences, which have firmly established surface topography as a new and exciting interdisciplinary field of scientific and technological studies. Scientific Themes: Surface, Micro and Nano Metrology Measurement and Instrumentation Metrology for MST Devices Freeform Surface Measurement and Characterisation Uncertainty, Traceability and Calibration AFM/SPM Metrology Tribology and Wear Phenomena Functional Applications Stylus and Optical Instruments

  19. Correlation of H/sup -/ production and the work function of a surface in a hydrogen plasma

    SciTech Connect

    Wada, M.

    1983-03-01

    Surface-plasma negative hydrogen ion sources are being developed as possible parts for future neutral beam systems. In these ion sources, negative hydrogen ions (H/sup -/) are produced at low work function metal surfaces immersed in hydrogen plasmas. To investigate the correlation between the work function and the H/sup -/ production at the surface with a condition similar to the one in the actual plasma ion source, these two parameters were simultaneously measured in the hydrogen plasma environment.

  20. Floating surface potential of spherical dust grains in magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Lange, Dennie

    2016-01-01

    A particle-in-cell (PIC) simulation study of the charging processes of spherical dust grains in a magnetized plasma environment is presented. Different magnetic field strengths with corresponding electron/ion gyration radii of smaller, the same or larger size than the grain radius and the plasma Debye length are examined. The magnetized plasma is created by overlapping the simulation box with a homogeneous, constant magnetic field. The charging currents are significantly reduced in the presence of a magnetic field, resulting in a more negative grain floating potential. Indeed, the most probable electron gyration radius is always smaller than that of ions in a Maxwellian plasma: however, it is demonstrated that the situation of simultaneous magnetized electron but an unmagnetized ion charging current never exists. The simulation results do not fit with a modified orbital motion limited (OML) theory approach for this situation, since the ion current is significantly reduced due to the increase of the gyration radius in the potential field of the dust grain. For very small gyration radii, the simulation results are in good agreement with a modified OML approach for both magnetized electron and ion charging currents.

  1. ATMOSPHERIC-PRESSURE PLASMA CLEANING OF CONTAMINATED SURFACES

    EPA Science Inventory

    Decommissioning of transuranic waste (TRU) into low-level radioactive waste (LLW) represents the largest cleanup cost associated with the nuclear weapons complex. We are developing a low-cost technology for converting TRU into LLW based on the selective plasma etching of plutoniu...

  2. RF Models for Plasma-Surface Interactions in VSim

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Smithe, D. N.; Pankin, A. Y.; Roark, C. M.; Zhou, C. D.; Stoltz, P. H.; Kruger, S. E.

    2014-10-01

    An overview of ongoing enhancements to the Plasma Discharge (PD) module of Tech-X's VSim software tool is presented. A sub-grid kinetic sheath model, developed for the accurate computation of sheath potentials near metal and dielectric-coated walls, enables the physical effects of DC and RF sheath physics to be included in macroscopic-scale plasma simulations that need not explicitly resolve sheath scale lengths. Sheath potential evolution, together with particle behavior near the sheath, can thus be simulated in complex geometries. Generalizations of the model to include sputtering, secondary electron emission, and effects from multiple ion species and background magnetic fields are summarized; related numerical results are also presented. In addition, improved tools for plasma chemistry and IEDF/EEDF visualization and modeling are discussed, as well as our initial efforts toward the development of hybrid fluid/kinetic transition capabilities within VSim. Ultimately, we aim to establish VSimPD as a robust, efficient computational tool for modeling industrial plasma processes. Supported by US DoE SBIR-I/II Award DE-SC0009501.

  3. Plasma relaxation mechanics of pulsed high power microwave surface flashover

    SciTech Connect

    Beeson, S.; Dickens, J.; Neuber, A.

    2013-09-15

    Microwave transmission and reflection characteristics of pulsed radio frequency field generated plasmas are elucidated for air, N{sub 2}, and He environments under pressure conditions ranging from 10 to 600 torr. The pulsed, low temperature plasma is generated along the atmospheric side of the dielectric boundary between the source (under vacuum) and the radiating environment with a thickness on the order of 5 mm and a cross sectional area just smaller than that of the waveguide. Utilizing custom multi-standard waveguide couplers and a continuous low power probing source, the scattering parameters were measured before, during, and after the high power microwave pulse with emphasis on the latter. From these scattering parameters, temporal electron density estimations (specifically the longitudinal integral of the density) were calculated using a 1D plane wave-excited model for analysis of the relaxation processes associated. These relaxation characteristics ultimately determine the maximum repetition rate for many pulsed electric field applications and thus are applicable to a much larger scope in the plasma community than just those related to high power microwaves. This manuscript discusses the diagnostic setup for acquiring the power measurements along with a detailed description of the kinematic and chemical behavior of the plasma as it decays down to its undisturbed state under various gas type and pressure conditions.

  4. Polymerization and surface modification by low pressure plasma technique

    NASA Astrophysics Data System (ADS)

    Tsafack, M.-J.; Hochart, F.; Levalois-Grützmacher, J.

    2004-06-01

    A durable water repellent, stain resistant or flame retardant character can be conferred to polyacrylonitrile (PAN) textiles by using the plasma induced graft polymerization technique. The monomers used are perfluoroalkylacrylate, (meth)acrylate phosphates, and phosphonates which are well known to be effective for the waterproofing and the fireproofing of polymeric substrates, respectively.

  5. The relationship between cellular adhesion and surface roughness for polyurethane modified by microwave plasma radiation

    PubMed Central

    Keshel, Saeed Heidari; Azhdadi, S Neda Kh; Asefnezhad, Azadeh; Sadraeian, Mohammad; Montazeri, Mohamad; Biazar, Esmaeil

    2011-01-01

    Surface modification of medical polymers is carried out to improve biocompatibility. In this study, conventional polyurethane was exposed to microwave plasma treatment with oxygen and argon gases for 30 seconds and 60 seconds. Attenuated total reflection Fourier transform infrared spectra investigations of irradiated samples indicated the presence of functional groups. Atomic force microscope images of samples irradiated with inert and active gases indicated the nanometric topography of the sample surfaces. Samples irradiated by oxygen plasma indicated high roughness compared with those irradiated by inert plasma for the different lengths of time. In addition, surface roughness increased with time, which can be due to a reduction of contact angle of samples irradiated by oxygen plasma. Contact angle analysis indicated a reduction in samples irradiated with both types of plasma. However, samples irradiated with oxygen plasma indicated lower contact angle compared with those irradiated by argon plasma. Cellular investigations with unrestricted somatic stem cells showed better adhesion, cell growth, and proliferation among samples radiated by oxygen plasma for longer than for normal samples. PMID:21556340

  6. Influence of irradiation conditions on plasma evolution in laser-surface interaction

    NASA Astrophysics Data System (ADS)

    Hermann, J.; Boulmer-Leborgne, C.; Dubreuil, B.; Mihailescu, I. N.

    1993-09-01

    The plasma plume induced by pulsed CO2 laser irradiation of a Ti target at power densities up to 4×108 W cm-2 was studied by emission spectroscopy. Time- and space-resolved measurements were performed by varying laser intensity, laser temporal pulse shape, ambient gas pressure, and the nature of the ambient gas. Experimental results are discussed by comparison with usual models. We show that shock wave and plasma propagation depend critically on the ratio Ivap/Ii, Ivap being the intensity threshold for surface vaporization and Ii the plasma ignition threshold of the ambient gas. Spectroscopic diagnostics of the helium breakdown plasma show maximum values of electron temperature and electron density in the order of kTe˜10 eV and ne=1018 cm-3, respectively. The plasma cannot be described by local thermodynamic equilibrium modeling. Nevertheless, excited metal atoms appear to be in equilibrium with electrons, hence, they can be used like a probe to measure the electron temperature. In order to get information on the role of the plasma in the laser-surface interaction, Ti surfaces were investigated by microscopy after irradiation. Thus an enhanced momentum transfer from the plasma to the target due to the recoil pressure of the breakdown plasma could be evidenced.

  7. Electric propulsion. [pulsed plasma thruster and electron bombardment ion engine for MSAT attitude control and stationkeeping

    NASA Technical Reports Server (NTRS)

    1982-01-01

    An alternative propulsion subsystem for MSAT is presented which has a potential of reducing the satellite weight by more than 15%. The characteristics of pulsed plasma and ion engines are described and used to estimate of the mass of the propellant and thrusters for attitude control and stationkeeping functions for MSAT. Preliminary estimates indicate that the electric propulsion systems could also replace the large momentum wheels necessary to counteract the solar pressure; however, the fine pointing wheels would be retained. Estimates also show that either electric propulsion system can save approximately 18% to 20% of the initial 4,000 kg mass. The issues that require further experimentation are mentioned.

  8. Plasma engineering models of tandem mirror devices with high-field test-cell inserts

    SciTech Connect

    Fenstermacher, M.E.; Campbell, R.B.

    1985-04-03

    Plasma physics and engineering models of tandem mirror devices operated with a high-field technology test-cell insert in the central cell, which have been incorporated recently in the TMRBAR tandem mirror reactor physics code, are described. The models include particle and energy balance in the test-cell region as well as the interactions between the test-cell particles and those flowing through the entire device. The code calculations yield consistent operating parameters for the test-cell, central cell, and end cell systems. A benchmark case for the MFTF-..cap alpha..+T configuration is presented which shows good agreement between the code results and previous calculations.

  9. Elastic-plastic adhesive impacts of tungsten dust with metal surfaces in plasma environments

    NASA Astrophysics Data System (ADS)

    Ratynskaia, S.; Tolias, P.; Shalpegin, A.; Vignitchouk, L.; De Angeli, M.; Bykov, I.; Bystrov, K.; Bardin, S.; Brochard, F.; Ripamonti, D.; den Harder, N.; De Temmerman, G.

    2015-08-01

    Dust-surface collisions impose size selectivity on the ability of dust grains to migrate in scrape-off layer and divertor plasmas and to adhere to plasma-facing components. Here, we report first experimental evidence of dust impact phenomena in plasma environments concerning low-speed collisions of tungsten dust with tungsten surfaces: re-bouncing, adhesion, sliding and rolling. The results comply with the predictions of the model of elastic-perfectly plastic adhesive spheres employed in the dust dynamics code MIGRAINe for sub- to several meters per second impacts of micrometer-range metal dust.

  10. Evaluation of plasma pressure of high current low inductance vacuum spark on cathode surface

    NASA Astrophysics Data System (ADS)

    Sarantsev, S. A.

    2016-01-01

    This paper presents evaluation of the plasma pressure in a high current, low inductance vacuum spark on the cathode surface (the electrode material is steel). Calculations are provided for the first half period of the discharge, wherein the cathode surface is subjected to the most severe impacts (micropinches are created resulting in high-energy plasma beams). The evaluations were made using the experimental data obtained on the Pion device. The data of electrical measurements of the discharge current, the average plasma flow values obtained with the multi-grid probe and the data from a cathode macrostructure study were used. The results are given for different values of the discharge current.

  11. Plasma-implantation-based surface modification of metals with single-implantation mode

    NASA Astrophysics Data System (ADS)

    Tian, X. B.; Cui, J. T.; Yang, S. Q.; Fu, Ricky K. Y.; Chu, Paul K.

    2004-12-01

    Plasma ion implantation has proven to be an effective surface modification technique. Its biggest advantage is the capability to treat the objects with irregular shapes without complex manipulation of target holder. Many metal materials such as aluminum, stainless steel, tool steel, titanium, magnesium etc, has been treated using this technique to improve their wear-resistance, corrosion-resistance, fatigue-resistance, oxidation-resistance, bio-compatiblity etc. However in order to achieve thicker modified layers, hybrid processes combining plasma ion implantation with other techniques have been frequently employed. In this paper plasma implantation based surface modification of metals using single-implantation mode is reviewed.

  12. Low Temperature Plasma-Surface Interactions: From Computer Chips to Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Graves, David

    2014-05-01

    Low temperature plasmas (LTPs) are virtually always bounded by surfaces and the nature of the interaction often dominates the plasma physics, chemistry and applications. In this talk, I will present an overview of low temperature plasma-surface interactions with an emphasis on what has been learned during the last several decades. The remarkable evolution of low pressure LTP etching technology and more recent developments in biomedical applications of atmospheric pressure LTP will serve as key examples. This work was supported by DoE and NSF.

  13. Negative ion production in the RF multiaperture surface-plasma source

    NASA Astrophysics Data System (ADS)

    Abdrashitov, G.; Belchenko, Yu.; Dranichnikov, A.; Ivanov, A.; Gorbovsky, A.; Kapitonov, V.; Kolmogorov, V.; Kondakov, A.; Konstantinov, S.; Sanin, A.; Selivanov, A.; Selivanov, P.; Shikhovtsev, I.; Sotnikov, O.; Stupishin, N.; Tiunov, M.; Binderbauer, M.; Putvinski, S.; Smirnov, A.; Sevier, L.

    2015-04-01

    The experiments on negative hydrogen ion beam production in a multi-aperture long-pulse surface-plasma source are described. H- ions are produced on the surface of a plasma grid covered by cesium and illuminated by fast plasma particles. The source uses a radio-frequency driver to generate plasma. A composite magnet system made of external permanent magnets confines and filters electrons in the plasma region, and deflects them in the extraction area. A multiaperture, multi-electrode ion optical system is used for beam formation. The electrode heating and cooling during long pulses is accomplished by circulating a heat transfer fluid through channels drilled in the electrodes bodies. H- ions extraction through a single aperture and 21 apertures was performed and studied. A stable H- beam with the current up to 0.7 A, energy up to 74 kV, and pulse duration up to 7 s was routinely obtained

  14. Negative ion production in the RF multiaperture surface-plasma source

    SciTech Connect

    Abdrashitov, G.; Belchenko, Yu. Dranichnikov, A.; Gorbovsky, A.; Kapitonov, V.; Kolmogorov, V.; Kondakov, A.; Konstantinov, S.; Sanin, A.; Selivanov, A.; Selivanov, P.; Shikhovtsev, I.; Stupishin, N.; Tiunov, M.; Ivanov, A.; Sotnikov, O.; Binderbauer, M.; Putvinski, S.; Smirnov, A.; Sevier, L.

    2015-04-08

    The experiments on negative hydrogen ion beam production in a multi-aperture long-pulse surface-plasma source are described. H- ions are produced on the surface of a plasma grid covered by cesium and illuminated by fast plasma particles. The source uses a radio-frequency driver to generate plasma. A composite magnet system made of external permanent magnets confines and filters electrons in the plasma region, and deflects them in the extraction area. A multiaperture, multi-electrode ion optical system is used for beam formation. The electrode heating and cooling during long pulses is accomplished by circulating a heat transfer fluid through channels drilled in the electrodes bodies. H- ions extraction through a single aperture and 21 apertures was performed and studied. A stable H- beam with the current up to 0.7 A, energy up to 74 kV, and pulse duration up to 7 s was routinely obtained.

  15. Removal of Nitrogen Oxides in Diesel Engine Exhaust by Plasma Assisted Molecular Sieves

    NASA Astrophysics Data System (ADS)

    Rajanikanth, B. S.; Ravi, V.

    2002-08-01

    This paper reports the studies conducted on removal of oxides of nitrogen (NOx) from diesel engine exhaust using electrical discharge plasma combined with adsorbing materials such as molecular sieves. This study is being reported for the first time. The exhaust is taken from a diesel engine of 6 kW under no load conditions. The characteristic behavior of a pulse energized dielectric barrier discharge reactor in the diesel exhaust treatment is reported. The NOx removal was not significant (36%) when the reactor without any packing was used. However, when the reactor was packed with molecular sieves (MS -3A, -4A & -13X), the NOx removal efficiency was increased to 78% particularly at a temperature of 200 °C. The studies were conducted at different temperatures and the results were discussed.

  16. Surface-confined activation of ultra low-k dielectrics in CO2 plasma

    NASA Astrophysics Data System (ADS)

    Sun, Yiting; Krishtab, Mikhail; Mankelevich, Yuri; Zhang, Liping; De Feyter, Steven; Baklanov, Mikhail; Armini, Silvia

    2016-06-01

    An approach allowing surface-confined activation of porous organosilicate based low-k dielectrics is proposed and studied. By examining the plasma damage mechanism of low-k, we came up with an initial idea that the main requirements for the surface-confined modification would be the high reactivity and high recombination rate of the plasma species. Based on this concept, CO2 plasma was selected and benchmarked with several other plasmas. It is demonstrated that a short exposure of organosilicate low-k films to CO2 plasma enables high surface hydrophilicity with limited bulk modification. CO2+ ions predominantly formed in this plasma have high oxidation potential and efficiently remove surface -CH3 groups from low-k. At the same time, the CO2+ ions get easily discharged (deactivated) during their collisions with pore walls and therefore have very limited probability of penetration into the low-k bulk. Low concentration of oxygen radicals is another factor avoiding the bulk damage. The chemical reactions describing the interactions between CO2 plasma and low-k dielectrics are proposed.

  17. Surface modification and stability of detonation nanodiamonds in microwave gas discharge plasma

    NASA Astrophysics Data System (ADS)

    Stanishevsky, Andrei V.; Walock, Michael J.; Catledge, Shane A.

    2015-12-01

    Detonation nanodiamonds (DND), with low hydrogen content, were exposed to microwave plasma generated in pure H2, N2, and O2 gases and their mixtures, and investigated using X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Raman, and X-ray photoelectron spectroscopies. Considerable alteration of the DND surface was observed under the plasma conditions for all used gases, but the diamond structure of the DND particle core was preserved in most cases. The stabilizing effect of H2 in H2/N2 and H2/O2 binary gas plasmas on the DND structure and the temperature-dependent formation of various CNHx surface groups in N2 and H2/N2 plasmas were observed and discussed for the first time. DND surface oxidation and etching were the main effects of O2 plasma, whereas the N2 plasma led to DND surfaces rich in amide groups below 1073 K and nitrile groups at higher temperatures. Noticeable graphitization of the DND core structure was detected only in N2 plasma when the substrate temperature was above 1103 K.

  18. The iterative Monte Carlo technique for collisionless plasma flow to a surface

    SciTech Connect

    Pitcher, C.S.

    1993-03-01

    A new technique for modelling the boundary plasma of magnetic fusion devices is described. The technique represents a natural extension of existing Monte Carlo codes, which are presently constrained to have the plasma background specified by either measurements or predictions from plasma fluid codes. The new approach, the Iterative Monte Carlo (IMC) technique, self-consistently determines the ambipolar electric field in the plasma by feeding back into the simulation the evolving plasma density using the Boltzmann relation. The IMC technique is applied, for demonstrative purposes, to the problem of collisionless one-dimensional plasma flow to a surface. Such a problem has previously been solved exactly using kinetic approaches in the published literature using two different particle source functions. Good agreement between the IMC results and the exact solutions is obtained.

  19. Low-Temperature Sterilization with Surface-Wave-Excited Oxygen Plasma

    NASA Astrophysics Data System (ADS)

    Nagatsu, Masaaki; Terashita, Fumie; Koide, Yukio

    2003-07-01

    Low-temperature plasma sterilization has been experimentally demonstrated using surface-wave plasma excited by a 2.45 GHz microwave. With the spores of Bacillus stearothermophilus and Bacillus subtilis as biological indicators, we have carried out the plasma sterilization experiments by varying the irradiation period of oxygen plasma discharges. It was experimentally confirmed that the spores with a population of 1.5 × 106 were sterilized by irradiating them with oxygen plasma discharges generated with a microwave power of 700 W at a pressure of 60-80 mTorr for 3 min or longer. From the scanning electron microscopy (SEM) analysis of the spores, we found that the sterilized spores clearly had different sizes and shapes compared with those before the plasma irradiation. Furthermore, present experiments suggested that the changes of spore shapes were mainly attributed to the reactive interactions with oxygen radicals.

  20. Impact of Plasma Surface Treatment on Bamboo Charcoal/silver Nanocomposite

    NASA Astrophysics Data System (ADS)

    Vignesh, K.; Vijayalakshmi, K. A.; Karthikeyan, N.

    2016-10-01

    Bamboo charcoal (BC) accompanied silver (Ag) nanocomposite is synthesized through sol-gel method. The produced BC/Ag nanocomposite was surface modified by air and oxygen plasma treatments. Silver ions (Ag+) will serve to improve the antibacterial activity as well as the surface area of BC. Plasma treatment has improved the surface functional groups, crystalline intensity and antibacterial activity of the prepared nanocomposite. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) studies show that Ag nanoparticles have good agreement with BC and the particle size has a mean diameter of 20-40nm. We observe the carboxyl functional groups in Fourier transform infrared spectroscopy (FTIR) after the oxygen plasma treatment. Moreover surface area and adsorption were analyzed by using the Brunauer, Emmett and Teller (BET) surface area (SBET) and UV-Vis spectroscopy.

  1. Suppression of surface crystallization on borosilicate glass using RF plasma treatment

    NASA Astrophysics Data System (ADS)

    Yoo, Sunghyun; Ji, Chang-Hyeon; Jin, Joo-Young; Kim, Yong-Kweon

    2014-10-01

    Surface crystallization on a commercial grade borosilicate glass wafer, Borofloat® 33, is effectively prevented against 3 h of thermal reflow process at 850 °C. Surface plasma treatment with three different reactive gases, CF4, SF6, and Cl2, has been performed prior to the annealing. The effect of plasma treatment on surface ion concentration and nucleation of cristobalite were examined through optical microscope and x-ray photoemission spectroscopy. The dominant cause that suppresses crystallization was verified to be the increase of surface ion concentration of alumina during the plasma treatment. Both CF4 and SF6 treatment of no less than 30 s showed significant efficacy in suppressing crystallization by a factor of more than 112. Average surface roughness and the optical transparency were also enhanced by a factor of 15 and 3, respectively, compared to untreated sample.

  2. Surface modification of polyester synthetic leather with tetramethylsilane by atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Kan, C. W.; Kwong, C. H.; Ng, S. P.

    2015-08-01

    Much works have been done on synthetic materials but scarcely on synthetic leather owing to its surface structures in terms of porosity and roughness. This paper examines the use of atmospheric pressure plasma (APP) treatment for improving the surface performance of polyester synthetic leather by use of a precursor, tetramethylsilane (TMS). Plasma deposition is regarded as an effective, simple and single-step method with low pollution. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) confirm the deposition of organosilanes on the sample's surface. The results showed that under a particular combination of treatment parameters, a hydrophobic surface was achieved on the APP treated sample with sessile drop static contact angle of 138°. The hydrophobic surface is stable without hydrophilic recovery 30 days after plasma treatment.

  3. Surface composition XPS analysis of a plasma treated polystyrene: Evolution over long storage periods.

    PubMed

    Ba, Ousmane M; Marmey, Pascal; Anselme, Karine; Duncan, Anthony C; Ponche, Arnaud

    2016-09-01

    A polystyrene surface (PS) was initially treated by cold nitrogen and oxygen plasma in order to incorporate in particular amine and hydroxyl functions, respectively. The evolution of the chemical nature of the surface was further monitored over a long time period (580 days) by chemical assay, XPS and contact angle measurements. Surface density quantification of primary amine groups was performed using three chemical amine assays: 4-nitrobenzaldehyde (4-NBZ), Sulfo succinimidyl 6-[3'(2 pyridyldithio)-pionamido] hexanoate (Sulfo-LC-SPDP) and iminothiolane (ITL). The results showed amine densities were in the range of 2 per square nanometer (comparable to the results described in the literature) after 5min of nitrogen plasma treatment. Over the time period investigated, chemical assays, XPS and contact angles suggest a drastic significant evolution of the chemical nature of the surface within the first two weeks. Beyond that time period and up to almost two years, nitrogen plasma modified substrates exhibits a slow and continuous oxidation whereas oxygen plasma modifed polystyrene surface is chemically stable after two weeks of storage. The latter appeared to "ease of" showing relatively mild changes within the one year period. Our results suggest that it may be preferable to wait for a chemical "stabilization" period of two weeks before subsequent covalent immobilization of proteins onto the surface. The originality of this work resides in the study of the plasma treated surface chemistry evolution over long periods of storage time (580 days) considerably exceeding those described in the literature. PMID:27131091

  4. Dependence of Lunar Surface Charging on Solar Wind Plasma Conditions and Solar Irradiation

    NASA Technical Reports Server (NTRS)

    Stubbs, T. J.; Farrell, W. M.; Halekas, J. S.; Burchill, J. K.; Collier, M. R.; Zimmerman, M. I.; Vondrak, R. R.; Delory, G. T.; Pfaff, R. F.

    2014-01-01

    The surface of the Moon is electrically charged by exposure to solar radiation on its dayside, as well as by the continuous flux of charged particles from the various plasma environments that surround it. An electric potential develops between the lunar surface and ambient plasma, which manifests itself in a near-surface plasma sheath with a scale height of order the Debye length. This study investigates surface charging on the lunar dayside and near-terminator regions in the solar wind, for which the dominant current sources are usually from the pohotoemission of electrons, J(sub p), and the collection of plasma electrons J(sub e) and ions J(sub i). These currents are dependent on the following six parameters: plasma concentration n(sub 0), electron temperature T(sub e), ion temperature T(sub i), bulk flow velocity V, photoemission current at normal incidence J(sub P0), and photo electron temperature T(sub p). Using a numerical model, derived from a set of eleven basic assumptions, the influence of these six parameters on surface charging - characterized by the equilibrium surface potential, Debye length, and surface electric field - is investigated as a function of solar zenith angle. Overall, T(sub e) is the most important parameter, especially near the terminator, while J(sub P0) and T(sub p) dominate over most of the dayside.

  5. Adhesive Stretchable Printed Conductive Thin Film Patterns on PDMS Surface with an Atmospheric Plasma Treatment.

    PubMed

    Li, Chun-Yi; Liao, Ying-Chih

    2016-05-11

    In this study, a plasma surface modification with printing process was developed to fabricate printed flexible conductor patterns or devices directly on polydimethylsiloxane (PDMS) surface. An atmospheric plasma treatment was first used to oxidize the PDMS surface and create a hydrophilic silica surface layer, which was confirmed with photoelectron spectra. The plasma operating parameters, such as gas types and plasma powers, were optimized to obtain surface silica layers with the longest lifetime. Conductive paste with epoxy resin was screen-printed on the plasma-treated PDMS surface to fabricate flexible conductive tracks. As a result of the strong binding forces between epoxy resin and the silica surface layer, the printed patterns showed great adhesion on PDMS and were undamaged after several stringent adhesion tests. The printed conductive tracks showed strong mechanical stability and exhibited great electric conductivity under bending, twisting, and stretching conditions. Finally, a printed pressure sensor with good sensitivity and a fast response time was fabricated to demonstrate the capability of this method for the realization of printed electronic devices. PMID:27082455

  6. Surface modifications of fusion reactor relevant materials on exposure to fusion grade plasma in plasma focus device

    NASA Astrophysics Data System (ADS)

    Niranjan, Ram; Rout, R. K.; Srivastava, R.; Chakravarthy, Y.; Mishra, P.; Kaushik, T. C.; Gupta, Satish C.

    2015-11-01

    An 11.5 kJ plasma focus (PF) device was used here to irradiate materials with fusion grade plasma. The surface modifications of different materials (W, Ni, stainless steel, Mo and Cu) were investigated using various available techniques. The prominent features observed through the scanning electron microscope on the sample surfaces were erosions, cracks, blisters and craters after irradiations. The surface roughness of the samples increased multifold after exposure as measured by the surface profilometer. The X-ray diffraction analysis indicated the changes in the microstructures and the structural phase transformation in surface layers of the samples. We observed change in volumes of austenite and ferrite phases in the stainless steel sample. The energy dispersive X-ray spectroscopic analysis suggested alloying of the surface layer of the samples with elements of the PF anode. We report here the comparative analysis of the surface damages of materials with different physical, thermal and mechanical properties. The investigations will be useful to understand the behavior of the perspective materials for future fusion reactors (either in pure form or in alloy) over the long operations.

  7. The DIPSI (Direct Implicit Plasma Surface Interactions) computer code user's manual

    SciTech Connect

    Procassini, R.J. . Dept. of Nuclear Engineering); Cohen, B.I. )

    1990-06-01

    DIPSI (Direct Implicit Plasma Surface Interactions) is a one-dimensional, bounded particle-in-cell (PIC) simulation code designed to investigate the interaction of plasma with a solid surface, such as a limiter or divertor plate in a tokamak fusion device. Plasma confinement and transport may be studied in a system which includes an applied magnetic field (oriented normal to the solid surface) and/or a self-consistent electrostatic potential. The PIC code DIPSI is an offshoot of the PIC code TESS (Tandem Experiment Simulation Studies) which was developed to study plasma confinement in mirror devices. The codes DIPSI and TESS are direct descendants of the PIC code ES1 that was created by A. B. Langdon. This document provides the user with a brief description of the methods used in the code and a tutorial on the use of the code. 11 refs., 2 tabs.

  8. Reflective optical probing of laser-driven plasmas at the rear surface of solid targets

    NASA Astrophysics Data System (ADS)

    Metzkes, J.; Zeil, K.; Kraft, S. D.; Rehwald, M.; Cowan, T. E.; Schramm, U.

    2016-03-01

    In this paper, a reflective optical pump-probe technique for laser-driven plasmas at solid density target surfaces is presented. The technique is termed high depth-of-field time-resolved microscopy and it exploits the angular redistribution of the probe beam intensity after the probe’s reflection from an expanded and hence non-planar iso-density surface in the plasma. The main application of the robust technique, which uses simple imaging of the probe beam, is the spatio-temporal resolution of the plasma formation and expansion at the target rear surface. Analytic and numerical modeling of the experimental setup are applied for the analysis of the experimental results. The relevance and potential of the optical plasma probing method is highlighted by the application to targets of different geometries, helping to understand the target shape-related differences in the ion acceleration performance.

  9. Numerical investigation of a microwave-band surface plasmon excited on an overdense plasma cylinder

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Ouyang, Ji-Ting

    2016-05-01

    The finite-difference time-domain (FDTD) method was employed to investigate the surface plasmon (SP) of the microwave band excited on an overdense plasma cylinder with various geometric scales. The extinction efficiency was calculated to determine the resonant frequency of the SP. A sequence of angular eigenmodes was observed via field distribution. The effect of plasma frequency and collision rate on the SP was also investigated. The results show that an SP on the cylinder surface can be treated as a standing wave pattern of two surface waves propagating in opposite directions. When the SP is formed around the plasma cylinder, the scatter field can be enhanced significantly. The solid plasma cylinder can be replaced by a hollow one without significant change of the SP’s features, as long as its layer width well exceeds the skin depth.

  10. A direct measurement of the energy flux density in plasma surface interaction

    NASA Astrophysics Data System (ADS)

    Dussart, Remi; Thomann, Anne-Lise; Semmar, Nadjib; Pichon, Laurianne; Bedra, Larbi; Mathias, Jacky; Tessier, Yves; Lefaucheux, Philippe

    2008-10-01

    The energy flux transferred from a plasma to a surface is a key issue for materials processing (sputtering, etching). We present direct measurements made with a Heat Flux Microsensor (HFM) in an Ar plasma interacting with the surface of the sensor. The HFM is a thermopile of about one thousand metal couples mounted in parallel. An Inductively Coupled Plasma in Argon was used to make the experiments. Langmuir probe and tuneable laser diode absorption measurements were carried out to estimate the contribution of ions, neutrals (conduction) and metastables. In order to evaluate the ability of the HFM to measure the part due to chemical reactions, a Si surface in contact with the HFM was submitted to an SF6 plasma. The direct measurements are in good agreement with the estimation we made knowing the etch rate and the enthalpy of the reaction. Finally, tests were performed on a sputtering reactor. Additional energy flux provided by condensing atoms (Pt) was also measured.

  11. Linking PFC surface characteristics and plasma performance in the Lithium Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Lucia, M.; Kaita, R.; Majeski, R.; Boyle, D. P.; Jaworski, M. A.; Schmitt, J. C.; Bedoya, F.; Allain, J. P.

    2015-11-01

    The Lithium Tokamak Experiment (LTX) is a spherical torus magnetic confinement device designed to accommodate lithium as the primary plasma-facing component (PFC). Results are presented from the implementation on LTX of the Materials Analysis and Particle Probe (MAPP), a compact in vacuo surface science diagnostic. With MAPP, in situ surface analysis techniques of x-ray photoelectron spectroscopy and thermal desorption spectroscopy are used to study evolution of the PFC surface chemistry in LTX as a function of varied lithium coating, hydrogen plasma exposure, and PFC surface temperature (20 - 300°C). Surface analysis results are then correlated with various measures of LTX plasma performance, including toroidal plasma current, line-integrated plasma density, and density-normalized impurity emission. Lithium coatings are observed to convert within hours to Li2O by gettering oxygen from both the residual vacuum and the PFC substrate. However, plasma performance remains elevated even with discharges operating against Li2O -coated PFCs. Hydrogen is retained by these Li2O coatings during a discharge, but it is almost completely desorbed as outgassed H2 in the minutes following the discharge; no persistent LiH formation is observed. This work was supported by U.S. DOE contracts DE-AC02-09CH11466, DE-AC52-07NA27344, and DE-SC0010717, as well as by an NSF GRFP fellowship under grant DGE-0646086.

  12. Study of Pulsed vs. RF Plasma Properties for Surface Processing Applications

    NASA Astrophysics Data System (ADS)

    Tang, Ricky; Hopkins, Matthew; Barnat, Edward; Miller, Paul

    2015-09-01

    The ability to manipulate the plasma parameters (density, E/N) was previously demonstrated using a double-pulsed column discharge. Experiments extending this to large-surface plasmas of interest to the plasma processing community were conducted. Differences between an audio-frequency pulsed plasma and a radio-frequency (rf) discharge, both prevalent in plasma processing applications, were studied. Optical emission spectroscopy shows higher-intensity emission in the UV/visible range for the pulsed plasma comparing to the rf plasma at comparable powers. Data suggest that the electron energy is higher for the pulsed plasma leading to higher ionization, resulting in increased ion density and ion flux. Diode laser absorption measurements of the concentration of the 1S5 metastable and 1S4 resonance states of argon (correlated with the plasma E/N) provide comparisons between the excitation/ionization states of the two plasmas. Preliminary modeling efforts suggest that the low-frequency polarity switch causes a much more abrupt potential variation to support interesting transport phenomena, generating a ``wave'' of higher temperature electrons leading to more ionization, as well as ``sheath capture'' of a higher density bolus of ions that are then accelerated during polarity switch.

  13. Surface chemical changes of atmospheric pressure plasma treated rabbit fibres important for felting process

    NASA Astrophysics Data System (ADS)

    Štěpánová, Vlasta; Slavíček, Pavel; Stupavská, Monika; Jurmanová, Jana; Černák, Mirko

    2015-11-01

    We introduce the atmospheric pressure plasma treatment as a suitable procedure for in-line industrial application of rabbit fibres pre-treatment. Changes of rabbit fibre properties due to the plasma treatment were studied in order to develop new technology of plasma-based treatment before felting. Diffuse Coplanar Surface Barrier Discharge (DCSBD) in ambient air at atmospheric pressure was used for plasma treatment. Scanning electron microscopy was used for determination of the fibres morphology before and after plasma treatment. X-ray photoelectron spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy were used for evaluation of reactive groups. The concentration of carbon decreased and conversely the concentration of nitrogen and oxygen increased after plasma treatment. Aging effect of plasma treated fibres was also investigated. Using Washburn method the significant increase of fibres wettability was observed after plasma treatment. New approach of pre-treatment of fibres before felting using plasma was developed. Plasma treatment of fibres at atmospheric pressure can replace the chemical method which consists of application of strong acids on fibres.

  14. Road Surfaces And Earthquake Engineering: A Theoretical And Experimental Study

    SciTech Connect

    Pratico, Filippo Giammaria

    2008-07-08

    As is well known, road surfaces greatly affect vehicle-road interaction. As a consequence, road surfaces have a paramount influence on road safety and pavement management systems. On the other hand, earthquakes produce deformations able to modify road surface structure, properties and performance. In the light of these facts, the main goal of this paper has been confined into the modelling of road surface before, during and after the seismic event. The fundamentals of road surface texture theory have been stated in a general formulation. Models in the field of road profile generation and theoretical properties, before, during and after the earthquake, have been formulated and discussed. Practical applications can be hypothesised in the field of vehicle-road interaction as a result of road surface texture derived from deformations and accelerations caused by seismic or similar events.

  15. Road Surfaces And Earthquake Engineering: A Theoretical And Experimental Study

    NASA Astrophysics Data System (ADS)

    Praticò, Filippo Giammaria

    2008-07-01

    As is well known, road surfaces greatly affect vehicle-road interaction. As a consequence, road surfaces have a paramount influence on road safety and pavement management systems. On the other hand, earthquakes produce deformations able to modify road surface structure, properties and performance. In the light of these facts, the main goal of this paper has been confined into the modelling of road surface before, during and after the seismic event. The fundamentals of road surface texture theory have been stated in a general formulation. Models in the field of road profile generation and theoretical properties, before, during and after the earthquake, have been formulated and discussed. Practical applications can be hypothesised in the field of vehicle—road interaction as a result of road surface texture derived from deformations and accelerations caused by seismic or similar events.

  16. Efficient cesiation in RF driven surface plasma negative ion source

    NASA Astrophysics Data System (ADS)

    Belchenko, Yu.; Ivanov, A.; Konstantinov, S.; Sanin, A.; Sotnikov, O.

    2016-02-01

    Experiments on hydrogen negative ions production in the large radio-frequency negative ion source with cesium seed are described. The system of directed cesium deposition to the plasma grid periphery was used. The small cesium seed (˜0.5 G) provides an enhanced H- production during a 2 month long experimental cycle. The gradual increase of negative ion yield during the long-term source runs was observed after cesium addition to the source. The degraded H- production was recorded after air filling to the source or after the cesium washing away from the driver and plasma chamber walls. The following source conditioning by beam shots produces the gradual recovery of H- yield to the high value. The effect of H- yield recovery after cesium coverage passivation by air fill was studied. The concept of cesium coverage replenishment and of H- yield recovery due to sputtering of cesium from the deteriorated layers is discussed.

  17. Efficient cesiation in RF driven surface plasma negative ion source.

    PubMed

    Belchenko, Yu; Ivanov, A; Konstantinov, S; Sanin, A; Sotnikov, O

    2016-02-01

    Experiments on hydrogen negative ions production in the large radio-frequency negative ion source with cesium seed are described. The system of directed cesium deposition to the plasma grid periphery was used. The small cesium seed (∼0.5 G) provides an enhanced H(-) production during a 2 month long experimental cycle. The gradual increase of negative ion yield during the long-term source runs was observed after cesium addition to the source. The degraded H(-) production was recorded after air filling to the source or after the cesium washing away from the driver and plasma chamber walls. The following source conditioning by beam shots produces the gradual recovery of H(-) yield to the high value. The effect of H(-) yield recovery after cesium coverage passivation by air fill was studied. The concept of cesium coverage replenishment and of H(-) yield recovery due to sputtering of cesium from the deteriorated layers is discussed. PMID:26932015

  18. In situ plasma removal of surface contaminants from ion trap electrodes

    SciTech Connect

    Haltli, Raymond A.

    2015-05-01

    In this thesis, the construction and implementation of an in situ plasma discharge designed to remove surface contaminants from electrodes in an ion trapping experimental system is presented with results. In recent years, many advances have been made in using ion traps for quantum information processing. All of the criteria defined by DiVincenzo for using ion traps for implementing a quantum computer have been individually demonstrated, and in particular surface traps provide a scalable platform for ions. In order to be used for quantum algorithms, trapped ions need to be cooled to their motional (quantum mechanical) ground state. One of the hurdles in integrating surface ion traps for a quantum computer is minimizing electric field noise, which causes the ion to heat out of its motional ground state and which increases with smaller ion-to-electrode distances realized with surface traps. Surface contamination of trap electrodes is speculated to be the primary source of electric field noise. The main goal achieved by this work was to implement an in situ surface cleaning solution for surface electrode ion traps, which would not modify the ion trap electrode surface metal. Care was taken in applying the RF power in order to localize a plasma near the trap electrodes. A method for characterizing the energy of the plasma ions arriving at the ion trap surface is presented and results for plasma ion energies are shown. Finally, a method for quantifying the effectiveness of plasma cleaning of trap electrodes, using the surface analysis technique of X-ray photoelectron spectroscopy for measuring the amount and kind of surface contaminants, is described. A significant advantage of the trap electrode surface cleaning method presented here is the minimal changes necessary for implementation on a working ion trap experimental system.

  19. Enhanced oxygen exchange on surface-engineered yttria-stabilized zirconia.

    PubMed

    Chao, Cheng-Chieh; Park, Joong Sun; Tian, Xu; Shim, Joon Hyung; Gür, Turgut M; Prinz, Fritz B

    2013-03-26

    Ion conducting oxides are commonly used as electrolytes in electrochemical devices including solid oxide fuel cells and oxygen sensors. A typical issue with these oxide electrolytes is sluggish oxygen surface kinetics at the gas-electrolyte interface. An approach to overcome this sluggish kinetics is by engineering the oxide surface with a lower oxygen incorporation barrier. In this study, we engineered the surface doping concentration of a common oxide electrolyte, yttria-stabilized zirconia (YSZ), with the help of atomic layer deposition (ALD). On optimizing the dopant concentration at the surface of single-crystal YSZ, a 5-fold increase in the oxygen surface exchange coefficient of the electrolyte was observed using isotopic oxygen exchange experiments coupled with secondary ion mass spectrometer measurements. The results demonstrate that electrolyte surface engineering with ALD can have a meaningful impact on the performance of electrochemical devices. PMID:23397972

  20. Investigations of the surface activation of thermoplastic polymers by atmospheric pressure plasma treatment with a stationary plasma jet

    NASA Astrophysics Data System (ADS)

    Moritzer, Elmar; Nordmeyer, Timo; Leister, Christian; Schmidt, Martin Andreas; Grishin, Artur; Knospe, Alexander

    2016-03-01

    The production of high-quality thermoplastic parts often requires an additional process step after the injection molding stage. This may be a coating, bonding process or a 2K-injection moulding process. A commonly used process to improve the bond strength is atmospheric pressure plasma treatment. A variety of applications are realized with the aid of CNC systems. Although they ensure excellent reproducibility, they make it difficult to implement inline applications. This paper therefore examines the possibility of surface treatment using a stationary plasma jet. However, before it is possible to integrate this technology into a production process, preliminary trials need to be carried out to establish which factors influence the process. Experimental tests were performed using a special test set-up, enabling geometric, plasma-specific parameters to be identified. These results can help with the practical integration of this technology into existing production processes.