Science.gov

Sample records for plasma-transferred arc weld-surfacing

  1. NiCrSiB Coatings Deposited by Plasma Transferred Arc on Different Steel Substrates

    NASA Astrophysics Data System (ADS)

    Reinaldo, P. R.; D'Oliveira, A. S. C. M.

    2013-02-01

    Colmonoy 6 (NiCrSiB) is a Ni-based alloy recognized for its superior mechanical properties, attributed to the presence of a dispersion of hard carbides and borides, which is strongly dependent on processing technique. This work gathered microstructure data from the literature and analyzed Colmonoy 6 coatings deposited by plasma transferred arc hardfacing. The aim of the study was to determine the influence of PTA deposition parameters and substrate chemical composition on NiCrSiB coating characteristics. Coatings were characterized in terms of their hardness, dilution, and microstructure, as well as mass loss during abrasive sliding wear tests. The results showed that coating performance is strongly dependent on the chemical composition of the substrate. Carbon steel substrate yielded coatings with greater wear resistance. Processing parameters also alter the performance of coatings, and the lower current and lower travel speed result in reduced mass loss.

  2. Plasma transferred arc rotary furnace for {open_quotes}corium{close_quotes} melting

    SciTech Connect

    Kassabji, F.; Cognet, G.; Jegou, C.; Roubaud, A.

    1995-12-31

    This paper presents a new plasma transferred arc rotary furnace equipment installed for the CEA in the research Centre of Cadarache in France; this project is conducted with EDF technical assistance. It is constructed by GEC-ALSTHOM for the total project and TETRONICS for plasma systems. This furnace is the central unit of a new facility, VULCANO E-30, prototype of a larger one, built in order to study the key phenomena involved in the behaviour and cooling of CORIUM at temperatures up to 3000{degrees}C. This centrifugal and tilted furnace is water cooled in a double shielded jacket. A self crucible is made up by the centrifugation of the powder material. A 300kW transferred arc is created between two plasma electrodes-torches allowing the creation of a plasma column at a high and relatively homogeneous temperature. The furnace is equipped by a product feeder at one of its extremities and by a boarded telemtry system allowing the transmission by infrared signals of the temperature measurements.

  3. Micro-Plasma Transferred Arc Additive Manufacturing for Die and Mold Surface Remanufacturing

    NASA Astrophysics Data System (ADS)

    Jhavar, Suyog; Paul, Christ Prakash; Jain, Neelesh Kumar

    2016-05-01

    Micro-plasma transferred arc (µPTA) additive manufacturing is one of the newest options for remanufacturing of dies and molds surfaces in the near-millimeter range leading to extended usage of the same. We deployed an automatic micro-plasma deposition setup to deposit a wire of 300 µm of AISI P20 tool steel on the substrate of same material for the potential application in remanufacturing of the die and mold surface. Our present research effort is to establish µPTA additive manufacturing as a viable economical and cleaner methodology for potential industrial applications. We undertook the optimization of single weld bead geometry as the first step in our present study. Bead-on-plate trials were conducted to deposit single bead geometry at various processing parameters. The bead geometry (shape and size) and dilution were measured and the parametric dependence was derived. A set of parameters leading to reproducible regular and smooth single bead geometry were identified and used to prepare a thin wall for mechanical testing. The deposits were subjected to material characterization such as microscopic studies, micro-hardness measurements and tensile testing. The process was compared qualitatively with other deposition processes involving high-energy density beams and was found to be advantageous in terms of low initial and running costs with comparable properties. The outcome of the study confirmed the process capability of µPTA deposition leading to deployment of cost-effective and environmentally friendlier technology for die and mold remanufacturing.

  4. Micro-Plasma Transferred Arc Additive Manufacturing for Die and Mold Surface Remanufacturing

    NASA Astrophysics Data System (ADS)

    Jhavar, Suyog; Paul, Christ Prakash; Jain, Neelesh Kumar

    2016-07-01

    Micro-plasma transferred arc ( µPTA) additive manufacturing is one of the newest options for remanufacturing of dies and molds surfaces in the near-millimeter range leading to extended usage of the same. We deployed an automatic micro-plasma deposition setup to deposit a wire of 300 µm of AISI P20 tool steel on the substrate of same material for the potential application in remanufacturing of the die and mold surface. Our present research effort is to establish µPTA additive manufacturing as a viable economical and cleaner methodology for potential industrial applications. We undertook the optimization of single weld bead geometry as the first step in our present study. Bead-on-plate trials were conducted to deposit single bead geometry at various processing parameters. The bead geometry (shape and size) and dilution were measured and the parametric dependence was derived. A set of parameters leading to reproducible regular and smooth single bead geometry were identified and used to prepare a thin wall for mechanical testing. The deposits were subjected to material characterization such as microscopic studies, micro-hardness measurements and tensile testing. The process was compared qualitatively with other deposition processes involving high-energy density beams and was found to be advantageous in terms of low initial and running costs with comparable properties. The outcome of the study confirmed the process capability of µPTA deposition leading to deployment of cost-effective and environmentally friendlier technology for die and mold remanufacturing.

  5. Multi-Scale-Structured Composite Coatings by Plasma-Transferred Arc for Nuclear Applications

    NASA Astrophysics Data System (ADS)

    Werry, A.; Chazelas, C.; Denoirjean, A.; Valette, S.; Vardelle, A.; Meillot, E.

    2016-01-01

    In nuclear plants, the replacement of hardfacing Stellite, a cobalt-based alloy, on parts of the piping system in connection with the reactor has been investigated since the late 60's. Various Fe-based or Ni-based alloys, Co-free or with a low content of Co, have been developed but with mechanical properties generally lower than that of Stellites. The 4th generation nuclear plants impose additional or more stringent requirements for hardfacing materials. Plasma-transferred arc (PTA) coatings of cobalt-free nickel-based alloys with the addition of sub-micrometric or micrometric alumina particles are thought to be a potential solution for tribological applications in the primary system of sodium-cooled fast reactors. In this study, PTA coatings of nickel-based alloys reinforced with alumina particles were deposited on 316L stainless steel substrates. Under the conditions of this study, the addition of alumina particles resulted in a refinement of coating microstructure and the improvement of their resistance to abrasive wear. However, it does not bring about any change in coating micro-hardness.

  6. Homogeneity of metal matrix composites deposited by plasma transferred arc welding

    NASA Astrophysics Data System (ADS)

    Wolfe, Tonya Brett Bunton

    Tungsten carbide-based metal matrix composite coatings are deposited by PTAW (Plasma Transferred Arc Welding) on production critical components in oil sands mining. Homogeneous distribution of the reinforcement particles is desirable for optimal wear resistance in order to reduce unplanned maintenance shutdowns. The homogeneity of the coating can be improved by controlling the heat transfer, solidification rate of the process and the volume fraction of carbide. The degree of settling of the particles in the deposit was quantified using image analysis. The volume fraction of carbide was the most significant factor in obtaining a homogeneous coating. Lowering the current made a modest improvement in homogeneity. Changes made in other operational parameters did not effect significant changes in homogeneity. Infrared thermography was used to measure the temperature of the surface of the deposit during the welding process. The emissivity of the materials was required to acquire true temperature readings. The emissivity of the deposit was measured using laser reflectometry and was found to decrease from 0.8 to 0.2 as the temperature increased from 900°C to 1200°C. A correction algorithm was applied to calculate the actual temperature of the surface of the deposit. The corrected temperature did increase as the heat input of the weld increased. A one dimensional mathematical model of the settling profile and solidification of the coatings was developed. The model considers convective and radiative heat input from the plasma, the build-up of the deposit, solidification of the deposit and the settling of the WC particles within the deposit. The model had very good agreement with the experimental results of the homogeneity of the carbide as a function of depth. This fundamental model was able to accurately predict the particle homogeneity of an MMC deposited by an extremely complicated process. It was shown that the most important variable leading to a homogeneous coating

  7. Coating Bores of Light Metal Engine Blocks with a Nanocomposite Material using the Plasma Transferred Wire Arc Thermal Spray Process

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Ernst, F.; Zwick, J.; Schlaefer, T.; Cook, D.; Nassenstein, K.; Schwenk, A.; Schreiber, F.; Wenz, T.; Flores, G.; Hahn, M.

    2008-09-01

    Engine blocks of modern passenger car engines are generally made of light metal alloys, mostly hypoeutectic AlSi-alloys. Due to their low hardness, these alloys do not meet the tribological requirements of the system cylinder running surface—piston rings—lubricating oil. In order to provide a suitable cylinder running surface, nowadays cylinder liners made of gray cast iron are pressed in or cast into the engine block. A newer approach is to apply thermal spray coatings onto the cylinder bore walls. Due to the geometric conditions, the coatings are applied with specifically designed internal diameter thermal spray systems. With these processes a broad variety of feedstock can be applied, whereas mostly low-alloyed carbon steel feedstock is being used for this application. In the context of this work, an iron-based wire feedstock has been developed, which leads to a nanocrystalline coating. The application of this material was carried out with the Plasma Transferred Wire Arc system. AlMgSi0.5 liners were used as substrates. The coating microstructure and the properties of the coatings were analyzed.

  8. Thermal Fatigue Testing of Plasma Transfer Arc Stellite Coatings on Hot Work Tool Steels under Steel Thixoforming Conditions

    NASA Astrophysics Data System (ADS)

    Birol, Yucel; Kayihan, Agca B.

    2011-11-01

    The thermal fatigue performance of Stellite 12 coating deposited on X32CrMoV33 hot work tool steel via the plasma transfer arc (PTA) process was investigated under steel thixoforming conditions. Stellite 12 coating has made a favorable impact on the thermal fatigue performance of the X32CrMoV33 hot work tool steel. The latter survived steel thixoforming conditions lasting much longer, for a total of 5000 cycles, when coated with a PTA Stellite 12 layer. This marked improvement is attributed to the higher resistance to oxidation and to temper softening of the Stellite 12 alloy. The Cr-rich oxides, which form during thermal cycling, provide adequate protection to high-temperature oxidation. In contrast to hot work tool steel, Stellite 12 alloy enjoys hardening upon thermal exposure under steel thixoforming conditions. This increase in the strength of the coating is produced by the formation of carbides and contributes to the superior thermal fatigue resistance of the Stellite 12 alloy. When the crack finally initiates, it propagates via the fracture of hard interdendritic carbides. The transformation of M7C3 to M23C6, which is more voluminous than M7C3, promotes crack propagation.

  9. Microstructure and high-temperature wear properties of in situ TiC composite coatings by plasma transferred arc surface alloying on gray cast iron

    NASA Astrophysics Data System (ADS)

    Zhao, Hang; Li, Jian-jun; Zheng, Zhi-zhen; Wang, Ai-hua; Huang, Qi-wen; Zeng, Da-wen

    2015-12-01

    In this work, an in situ synthesized TiC-reinforced metal matrix composite (MMC) coating of approximately 350-400 µm thickness was fabricated on a gray cast iron (GCI) substrate by plasma transferred arc (PTA) surface alloying of Ti-Fe alloy powder. Microhardness tests showed that the surface hardness increased approximately four-fold after the alloying treatment. The microstructure of the MMC coating was mainly composed of residual austenite, acicular martensite, and eutectic ledeburite. Scanning electron microscopy (SEM) and X-ray diffraction analyzes revealed that the in situ TiC particles, which were formed by direct reaction of Ti with carbon originally contained in the GCI, was uniformly distributed at the boundary of residual austenite in the alloying zone. Pin-on-disc high-temperature wear tests were performed on samples both with and without the MMC coating at room temperature and at elevated temperatures (473 K and 623 K), and the wear behavior and mechanism were investigated. The results showed that, after the PTA alloying treatment, the wear resistance of the samples improved significantly. On the basis of our analysis of the composite coatings by optical microscopy, SEM with energy-dispersive X-ray spectroscopy, and microhardness measurements, we attributed this improvement of wear resistance to the transformation of the microstructure and to the presence of TiC particles.

  10. Mechanical shielding reduces weld surface cracking in 6061 T6 aluminum

    NASA Technical Reports Server (NTRS)

    Hill, J. E.

    1968-01-01

    Mechanical shield of high melting point material protects 6061-T6 aluminum welded with high frequency ac tungsten arc equipment. It is held in place around the weld bead area and eliminates heat check cracks.

  11. Cathodic arcs

    SciTech Connect

    Anders, Andre

    2003-10-29

    Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas standout due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bias. Industrial processes often use cathodic arc plasma in reactive mode. In contrast, the science of arcs has focused on the case of vacuum arcs. Future research directions include closing the knowledge gap for reactive mode, large area coating, linear sources and filters, metal plasma immersion process, with application in high-tech and biomedical fields.

  12. Cloud Arcs

    Atmospheric Science Data Center

    2013-04-19

    ... causing much of the air near the centers of the arcs to rise. This air spreads out horizontally in all directions as it rises and ... is now quite weak and on meeting the undisturbed air it can rise again slightly - possibly assisting in the formation of new small cumulus ...

  13. Effect of PTA Hardfaced Interlayer Thickness on Ballistic Performance of Shielded Metal Arc Welded Armor Steel Welds

    NASA Astrophysics Data System (ADS)

    Balakrishnan, M.; Balasubramanian, V.; Madhusudhan Reddy, G.

    2013-03-01

    Ballistic performance of armor steel welds is very poor due to the usage of low strength and low hardness austenitic stainless steel fillers, which are traditionally used to avoid hydrogen induced cracking. In the present investigation, an attempt has been made to study the effect of plasma transferred arc hardfaced interlayer thickness on ballistic performance of shielded metal arc welded armor steel weldments. The usefulness of austenitic stainless steel buttering layer on the armor grade quenched and tempered steel base metal was also considered in this study. Joints were fabricated using three different thickness (4, 5.5, and 7 mm) hardfaced middle layer by plasma transferred arc hardfacing process between the top and bottom layers of austenitic stainless steel using shielded metal arc welding process. Sandwiched joint, in addition with the buttering layer served the dual purpose of weld integrity and ballistic immunity due to the high hardness of hardfacing alloy and the energy absorbing capacity of soft backing weld deposits. This paper will provide some insight into the usefulness of austenitic stainless steel buttering layer on the weld integrity and plasma transferred arc hardfacing layer on ballistic performance enhancement of armor steel welds.

  14. Influence of Plasma Remelting on the Microstructure and Cavitation Resistance of Arc-Sprayed Fe-Mn-Cr-Si Alloy

    NASA Astrophysics Data System (ADS)

    Pukasiewicz, A. G. M.; Alcover, P. R. C.; Capra, A. R.; Paredes, R. S. C.

    2014-01-01

    Surface remelting is an important technique for modifying the microstructure of thermally sprayed coatings as it reduces the porosity and promotes a metallurgical bond between substrate and coating. Many studies have been carried out in the field of materials selection and surface engineering in an attempt to reduce cavitation damage. In this work, an Fe-Mn-Cr-Si alloy was deposited by arc spraying and then remelted by a plasma-transferred arc process. The base metal was a soft martensitic stainless steel. The influence of remelting current on coating and base metal microstructure and cavitation resistance was studied. The use of a lower mean current and a pulsed arc reduced the thickness of the heat-affected zone. In specimens remelted with constant arc current, dendrites were aligned parallel to the path followed by the plasma torch; while in those remelted with a pulsed plasma arc, the alignment of the microstructure was disrupted. The use of a higher peak current in pulsed-current plasma transferred arc remelting reduced mass loss due to cavitation. Fe-Mn-Cr-Si coatings exhibited cavitation-induced hardening, with martensite formation during cavitation tests. This transformation helps to increase the cavitation resistance of the remelted coating compared with the soft martensitic stainless steel base metal.

  15. Weld arc simulator

    DOEpatents

    Burr, Melvin J.

    1990-01-30

    An arc voltage simulator for an arc welder permits the welder response to a variation in arc voltage to be standardized. The simulator uses a linear potentiometer connected to the electrode to provide a simulated arc voltage at the electrode that changes as a function of electrode position.

  16. Gas arc constriction for plasma arc welding

    NASA Technical Reports Server (NTRS)

    McGee, William F. (Inventor); Rybicki, Daniel J. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has an inert gas applied circumferentially about the arc column externally of the constricting nozzle so as to apply a constricting force on the arc after it has exited the nozzle orifice and downstream of the auxiliary shielding gas. The constricting inert gas is supplied to a plenum chamber about the body of the torch and exits through a series of circumferentially disposed orifices in an annular wall forming a closure at the forward end of the constricting gas plenum chamber. The constricting force of the circumferential gas flow about the arc concentrates and focuses the arc column into a more narrow and dense column of energy after exiting the nozzle orifice so that the arc better retains its energy density prior to contacting the workpiece.

  17. Rotating arc spark plug

    DOEpatents

    Whealton, John H.; Tsai, Chin-Chi

    2003-05-27

    A spark plug device includes a structure for modification of an arc, the modification including arc rotation. The spark plug can be used in a combustion engine to reduce emissions and/or improve fuel economy. A method for operating a spark plug and a combustion engine having the spark plug device includes the step of modifying an arc, the modifying including rotating the arc.

  18. DC arc weld starter

    DOEpatents

    Campiotti, Richard H.; Hopwood, James E.

    1990-01-01

    A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.

  19. [Arc welder's lung].

    PubMed

    Molinari, Luciana; Alvarez, Clarisa; Semeniuk, Guillermo B

    2010-01-01

    Pneumoconiosis of electric arc welder or siderotic pneumoconiosis was described by Doig and McLaughlin in 1936 as a lung disease caused by chronic inhalation of iron fumes in electric arc welders. We present a case report of electric arc welder siderosis associated with high levels of ferritin, without findings of iron deposit in any other organ. PMID:21163741

  20. Rethinking Recycling in Arcs

    NASA Astrophysics Data System (ADS)

    Kelemen, P.; Behn, M. D.; Jagoutz, O.

    2012-12-01

    Hacker et al EPSL 2011 and Behn et al Nature Geosci 2011 investigated pathways for return of buoyant, subducted material to arc crust. These include (1) diapirs rising into the hot mantle wedge, with extensive melts adding a component to arc magmas, (2) flow of material back up a relatively cold "subduction channel", adding solids to the lower crust and small-degree partial melts to the upper crust, (3) flow from the forearc along the base of arc crust, and (4) imbrication of forearc material into arc crust. These processes add felsic, incompatible-element-rich components to arc crust. The flux of incompatible elements such as Th in arc lavas, thought to be mainly recycled from subducted sediments, is > sediment subduction flux. There are large uncertainties: arc crustal growth rates are imprecise; young, primitive arc lavas may not be representative of magmatic flux into arc crust; sediment subduction flux may have varied. Nevertheless, this result is found for all arcs examined, using recently published growth rates. Perhaps arc growth rates that include subduction erosion are systematically overestimated. Instead or in addition, maybe significant Th comes from material other than sediments. Here, we consider the implications of pathways 1-4 for arc growth rates and incompatible element enrichment, in the context of subduction erosion and arc-arc collision. Subducting arc lithologies can become separated, with only felsic components returned to arc crust. Buoyant lithologies are mobile in viscous instabilities at > 700-800°C. Whereas thin layers such as sediments may become mobile all at once, instabilities may periodically strip the hottest parts from the top of thick buoyant layers, replacing them with hot mantle. In arc-arc collision, the top of a subducting plate starts at about 0°C on the seafloor, so heating is slow. In subduction erosion, forearc material in the subducting package can be > 200°C before erosion so buoyant lithologies reach 700-800

  1. Arc initiation in cathodic arc plasma sources

    DOEpatents

    Anders, Andre

    2002-01-01

    A "triggerless" arc initiation method and apparatus is based on simply switching the arc supply voltage to the electrodes (anode and cathode). Neither a mechanical trigger electrode nor a high voltage flashover from a trigger electrode is required. A conducting path between the anode and cathode is provided, which allows a hot spot to form at a location where the path connects to the cathode. While the conductive path is eroded by the cathode spot action, plasma deposition ensures the ongoing repair of the conducting path. Arc initiation is achieved by simply applying the relatively low voltage of the arc power supply, e.g. 500 V-1 kV, with the insulator between the anode and cathode coated with a conducting layer and the current at the layer-cathode interface concentrated at one or a few contact points. The local power density at these contact points is sufficient for plasma production and thus arc initiation. A conductive surface layer, such as graphite or the material being deposited, is formed on the surface of the insulator which separates the cathode from the anode. The mechanism of plasma production (and arc initiation) is based on explosive destruction of the layer-cathode interface caused by joule heating. The current flow between the thin insulator coating and cathode occurs at only a few contact points so the current density is high.

  2. Monitoring ARC services with GangliARC

    NASA Astrophysics Data System (ADS)

    Cameron, D.; Karpenko, D.

    2012-12-01

    Monitoring of Grid services is essential to provide a smooth experience for users and provide fast and easy to understand diagnostics for administrators running the services. GangliARC makes use of the widely-used Ganglia monitoring tool to present web-based graphical metrics of the ARC computing element. These include statistics of running and finished jobs, data transfer metrics, as well as showing the availability of the computing element and hardware information such as free disk space left in the ARC cache. Ganglia presents metrics as graphs of the value of the metric over time and shows an easily-digestable summary of how the system is performing, and enables quick and easy diagnosis of common problems. This paper describes how GangliARC works and shows numerous examples of how the generated data can quickly be used by an administrator to investigate problems. It also presents possibilities of combining GangliARC with other commonly-used monitoring tools such as Nagios to easily integrate ARC monitoring into the regular monitoring infrastructure of any site or computing centre.

  3. Long arc stabilities with various arc gas flow rates

    NASA Astrophysics Data System (ADS)

    Maruyama, K.; Takeda, K.; Sugimoto, M.; Noguchi, Y.

    2014-11-01

    A new arc torch for use in magnetically driven arc device was developed with a commercially available TIG welding arc torch. The torch has a water-cooling system to the torch nozzle and has a nozzle nut to supply a swirling-free plasma gas flow. Its endurance against arc thermal load is examined. Features of its generated arc are investigated.

  4. Welding arc plasma physics

    NASA Technical Reports Server (NTRS)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  5. TIGER Arc Modification Application

    SciTech Connect

    Armstrong, Hillary

    1995-03-06

    The application enables the geometric correction of TIGER arcs to a more accurate spatial data set. This is done in a structured automated environment according to Census Bureau guidelines and New Mexico state GIS standards. Arcs may be deleted, added, combined, split, and moved relative to a coverage or image displayed in the background.

  6. Lazy arc consistency

    SciTech Connect

    Schiex, T.; Gaspin, C.; Regin, J.C.; Verfaillie, G.

    1996-12-31

    Arc consistency filtering is widely used in the framework of binary constraint satisfaction problems: with a low complexity, inconsistency may be detected and domains are filtered. In this paper, we show that when detecting inconsistency is the objective, a systematic domain filtering is useless and a lazy approach is more adequate. Whereas usual arc consistency algorithms produce the maximum arc consistent sub-domain, when it exists, we propose a method, called LAC{tau}, which only looks for any arc consistent sub-domain. The algorithm is then extended to provide the additional service of locating one variable with a minimum domain cardinality in the maximum arc consistent sub-domain, without necessarily computing all domain sizes. Finally, we compare traditional AC enforcing and lazy AC enforcing using several benchmark problems, both randomly generated CSP and real life problems.

  7. Welding arc initiator

    DOEpatents

    Correy, Thomas B.

    1989-01-01

    An improved inert gas shielded tungsten arc welder is disclosed of the type wherein a tungsten electrode is shielded within a flowing inert gas, and, an arc, following ignition, burns between the energized tungsten electrode and a workpiece. The improvement comprises in combination with the tungsten electrode, a starting laser focused upon the tungsten electrode which to ignite the electrode heats a spot on the energized electrode sufficient for formation of a thermionic arc. Interference problems associated with high frequency starters are thus overcome.

  8. Welding arc initiator

    DOEpatents

    Correy, T.B.

    1989-05-09

    An improved inert gas shielded tungsten arc welder is disclosed of the type wherein a tungsten electrode is shielded within a flowing inert gas, and, an arc, following ignition, burns between the energized tungsten electrode and a workpiece. The improvement comprises in combination with the tungsten electrode, a starting laser focused upon the tungsten electrode which to ignite the electrode heats a spot on the energized electrode sufficient for formation of a thermionic arc. Interference problems associated with high frequency starters are thus overcome. 3 figs.

  9. Electric arc saw apparatus

    DOEpatents

    Deichelbohrer, Paul R [Richland, WA

    1986-01-01

    A portable, hand held electric arc saw has a small frame for supporting an electrically conducting rotary blade which serves as an electrode for generating an electric arc to erode a workpiece. Electric current is supplied to the blade by biased brushes and a slip ring which are mounted in the frame. A pair of freely movable endless belts in the form of crawler treads stretched between two pulleys are used to facilitate movement of the electric arc saw. The pulleys are formed of dielectric material to electrically insulate the crawler treads from the frame.

  10. Metal halide arc discharge lamp having short arc length

    NASA Technical Reports Server (NTRS)

    Muzeroll, Martin E. (Inventor)

    1994-01-01

    A metal halide arc discharge lamp includes a sealed light-transmissive outer jacket, a light-transmissive shroud located within the outer jacket and an arc tube assembly located within the shroud. The arc tube assembly includes an arc tube, electrodes mounted within the arc tube and a fill material for supporting an arc discharge. The electrodes have a spacing such that an electric field in a range of about 60 to 95 volts per centimeter is established between the electrodes. The diameter of the arc tube and the spacing of the electrodes are selected to provide an arc having an arc diameter to arc length ratio in a range of about 1.6 to 1.8. The fill material includes mercury, sodium iodide, scandium tri-iodide and a rare gas, and may include lithium iodide. The lamp exhibits a high color rendering index, high lumen output and high color temperature.

  11. Filtered cathodic arc source

    DOEpatents

    Falabella, Steven; Sanders, David M.

    1994-01-01

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45.degree. to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.

  12. Filtered cathodic arc source

    DOEpatents

    Falabella, S.; Sanders, D.M.

    1994-01-18

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge is described. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45[degree] to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles. 3 figures.

  13. Filtered cathodic arc source

    SciTech Connect

    Falabella, S.; Sanders, D.M.

    1992-12-31

    Disclosed is a continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45{degrees} to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.

  14. Electric arc saw apparatus

    DOEpatents

    Deichelbohrer, P.R.

    1983-08-08

    A portable, hand-held electric arc saw apparatus comprising a small frame for supporting an electrically conducting rotary blade which serves as an electrode for generating an electric arc between the blade and a workpiece of opposite polarity. Electrically conducting means are provided on said frame for transmitting current to said blade. A pair of freely movable endless belts in the form of crawler treads are employed to facilitate movement of the apparatus relative to the workpiece.

  15. The statistical difference between bending arcs and regular polar arcs

    NASA Astrophysics Data System (ADS)

    Kullen, A.; Fear, R. C.; Milan, S. E.; Carter, J. A.; Karlsson, T.

    2015-12-01

    In this work, the Polar UVI data set by Kullen et al. (2002) of 74 polar arcs is reinvestigated, focusing on bending arcs. Bending arcs are typically faint and form (depending on interplanetary magnetic field (IMF) By direction) on the dawnside or duskside oval with the tip of the arc splitting off the dayside oval. The tip subsequently moves into the polar cap in the antisunward direction, while the arc's nightside end remains attached to the oval, eventually becoming hook-shaped. Our investigation shows that bending arcs appear on the opposite oval side from and farther sunward than most regular polar arcs. They form during By-dominated IMF conditions: typically, the IMF clock angle increases from 60 to 90° about 20 min before the arc forms. Antisunward plasma flows from the oval into the polar cap just poleward of bending arcs are seen in Super Dual Auroral Radar Network data, indicating dayside reconnection. For regular polar arcs, recently reported characteristics are confirmed in contrast to bending arcs. This includes plasma flows along the nightside oval that originate close to the initial arc location and a significant delay in the correlation between IMF By and initial arc location. In our data set, the highest correlations are found with IMF By appearing at least 1-2 h before arc formation. In summary, bending arcs are distinctly different from regular arcs and cannot be explained by existing polar arc models. Instead, these results are consistent with the formation mechanism described in Carter et al. (2015), suggesting that bending arcs are caused by dayside reconnection.

  16. ALICE—ARC integration

    NASA Astrophysics Data System (ADS)

    Anderlik, C.; Gregersen, A. R.; Kleist, J.; Peters, A.; Saiz, P.

    2008-07-01

    AliEn or Alice Environment is the Grid middleware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The inter-operation has two aspects, one is the data management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. Therefore, we will concentrate on the second part. Solving it, was somewhat cumbersome, mainly due to the different computing models employed by AliEn and ARC. AliEN uses an Agent based pull model while ARC handles jobs through the more 'traditional' push model. The solution comes as a module implementing the functionalities necessary to achieve AliEn job submission and management to ARC enabled sites.

  17. Consolidating NASA's Arc Jets

    NASA Technical Reports Server (NTRS)

    Balboni, John A.; Gokcen, Tahir; Hui, Frank C. L.; Graube, Peter; Morrissey, Patricia; Lewis, Ronald

    2015-01-01

    The paper describes the consolidation of NASA's high powered arc-jet testing at a single location. The existing plasma arc-jet wind tunnels located at the Johnson Space Center were relocated to Ames Research Center while maintaining NASA's technical capability to ground-test thermal protection system materials under simulated atmospheric entry convective heating. The testing conditions at JSC were reproduced and successfully demonstrated at ARC through close collaboration between the two centers. New equipment was installed at Ames to provide test gases of pure nitrogen mixed with pure oxygen, and for future nitrogen-carbon dioxide mixtures. A new control system was custom designed, installed and tested. Tests demonstrated the capability of the 10 MW constricted-segmented arc heater at Ames meets the requirements of the major customer, NASA's Orion program. Solutions from an advanced computational fluid dynamics code were used to aid in characterizing the properties of the plasma stream and the surface environment on the calorimeters in the supersonic flow stream produced by the arc heater.

  18. Vacuum arc deposition devices

    SciTech Connect

    Boxman, R.L.; Zhitomirsky, V.N.

    2006-02-15

    The vacuum arc is a high-current, low-voltage electrical discharge which produces a plasma consisting of vaporized and ionized electrode material. In the most common cathodic arc deposition systems, the arc concentrates at minute cathode spots on the cathode surface and the plasma is emitted as a hypersonic jet, with some degree of contamination by molten droplets [known as macroparticles (MPs)] of the cathode material. In vacuum arc deposition systems, the location and motion of the cathode spots are confined to desired surfaces by an applied magnetic field and shields around undesired surfaces. Substrates are mounted on a holder so that they intercept some portion of the plasma jet. The substrate often provides for negative bias to control the energy of depositing ions and heating or cooling to control the substrate temperature. In some systems, a magnetic field is used to guide the plasma around an obstacle which blocks the MPs. These elements are integrated with a deposition chamber, cooling, vacuum gauges and pumps, and power supplies to produce a vacuum arc deposition system.

  19. Liquation Cracking in Arc and Friction-Stir Welding of Mg-Zn Alloys

    NASA Astrophysics Data System (ADS)

    Wagner, Dustin C.; Chai, Xiao; Tang, Xin; Kou, Sindo

    2015-01-01

    As compared to Al alloys, which are known to be susceptible to liquation ( i.e., liquid formation) and liquation-induced cracking, most Mg alloys have a lower eutectic temperature and thus are likely to be even more susceptible. The present study was conducted to study liquation and liquation cracking in Mg alloys during arc welding and friction-stir welding (FSW). Binary Mg-Zn alloys were selected as a model material in view of their very low eutectic temperature of 613 K (340 °C). Mg-Zn alloys with 2, 4, and 6 wt pct of Zn were cast and welded in the as-cast condition by both gas-tungsten arc welding (GTAW) and FSW. A simple test for liquation cracking was developed, which avoided interference by solidification cracking in the nearby fusion zone. Liquation and liquation cracking in GTAW were found to be in the decreasing order of Mg-6Zn, Mg-4Zn, and Mg-2Zn. Liquation cracking occurred in FSW of Mg-6Zn but not Mg-4Zn or Mg-2Zn. Instead of a continuous ribbon-like flash connected to the weld edge, small chips, and powder covered the weld surface of Mg-6Zn. The results from GTAW and FSW were discussed in light of the binary Mg-Zn phase diagram and the curves of temperature vs fraction solid during solidification.

  20. Pulsed Long Arc Welding

    NASA Astrophysics Data System (ADS)

    Krampit, N. Yu

    2016-04-01

    The paper presents a method and an appliance for pulsed arc welding. The method supports dosage of energy required for melting each bead of electrode metal starting from the detachment of a bead. The appliance including a sensor to register bead detachment shows this moment due to the voltage burst in the arc space. Transferred beads of electrode metal are of similar size because of the dosage of energy used for melting each bead, as the consequence, the process is more stable and starting conditions to transfer electrode metal are similar, as the result, a produced weld is improved.

  1. Arc electrode interaction study

    NASA Technical Reports Server (NTRS)

    Zhou, X.; Berns, D.; Heberlein, J.

    1994-01-01

    The project consisted of two parts: (1) the cathode interaction studies which were a continuation of previous work and had the objective of increasing our understanding of the microscopic phenomena controlling cathode erosion in arc jet thrusters, and (2) the studies of the anode attachment in arc jet thrusters. The cathode interaction studies consisted of (1) a continuation of some modeling work in which the previously derived model for the cathode heating was applied to some specific gases and electrode materials, and (2) experimental work in which various diagnostics was applied to the cathode. The specific diagnostics used were observation of the cathode tip during arcing using a Laser Strobe Video system in conjunction with a tele-microscope, a monochromator with an optical multichannel analyzer for the determination of the cathode temperature distribution, and various ex situ materials analysis methods. The emphasis of our effort was shifted to the cathode materials analysis because a parallel project was in place during the second half of 1993 with a visiting scientist pursuing arc electrode materials studies. As a consequence, the diagnostic investigations of the arc in front of the cathode had to be postponed to the first half of 1994, and we are presently preparing these measurements. The results of last year's study showed some unexpected effects influencing the cathode erosion behavior, such as increased erosion away from the cathode tip, and our understanding of these effects should improve our ability to control cathode erosion. The arc jet anode attachment studies concentrated on diagnostics of the instabilities in subsonic anode attachment arc jet thrusters, and were supplemental measurements to work which was performed by one of the authors who spent the summer as an intern at NASA Lewis Research Center. A summary of the results obtained during the internship are included because they formed an integral part of the study. Two tasks for 1994, the

  2. Gas tungsten arc welder

    DOEpatents

    Christiansen, D.W.; Brown, W.F.

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  3. Arc Length Gone Global

    ERIC Educational Resources Information Center

    Boudreaux, Gregory M.; Wells, M. Scott

    2007-01-01

    Everyone with a thorough knowledge of single variable calculus knows that integration can be used to find the length of a curve on a given interval, called its arc length. Fortunately, if one endeavors to pose and solve more interesting problems than simply computing lengths of various curves, there are techniques available that do not require an…

  4. Thermal Arc Spray Overview

    NASA Astrophysics Data System (ADS)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati

    2013-06-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  5. Variable polarity arc welding

    NASA Technical Reports Server (NTRS)

    Bayless, E. O., Jr.

    1991-01-01

    Technological advances generate within themselves dissatisfactions that lead to further advances in a process. A series of advances in welding technology which culminated in the Variable Polarity Plasma Arc (VPPA) Welding Process and an advance instituted to overcome the latest dissatisfactions with the process: automated VPPA welding are described briefly.

  6. Evolution of magnetically rotating arc into large area arc plasma

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Li, Wan-Wan; Zhang, Xiao-Ning; Zha, Jun; Xia, Wei-Dong

    2015-06-01

    An arc channel tends to shrink due to its conductivity increasing with the increase of temperature. In this study, to generate large area arc plasma, we construct a magnetically rotating arc plasma generator, which mainly consists of a lanthanide tungsten cathode (13 mm in diameter), a concentric cylindrical graphite anode chamber (60 mm in diameter) and a solenoid coil for producing an axial magnet field. By controlling the cold gas flow, the magnetically rotating arc evolves from constricted mode to diffuse mode, which almost fills the whole arc chamber cross section. Results show that the diffuse arc plasma has better uniformity and stability. The formation mechanism of large area arc plasma is discussed in this paper. Project supported by the National Natural Science Foundation of China (Grant Nos. 11035005, 11475174, and 50876101) and the Science Instrument Foundation of the Chinese Academy of Sciences (Grant No. Y201162).

  7. Hall-effect arc protector

    DOEpatents

    Rankin, R.A.; Kotter, D.K.

    1997-05-13

    The Hall-Effect Arc Protector is used to protect sensitive electronics from high energy arcs. The apparatus detects arcs by monitoring an electrical conductor, of the instrument, for changes in the electromagnetic field surrounding the conductor which would be indicative of a possible arcing condition. When the magnitude of the monitored electromagnetic field exceeds a predetermined threshold, the potential for an instrument damaging are exists and the control system logic activates a high speed circuit breaker. The activation of the breaker shunts the energy imparted to the input signal through a dummy load to the ground. After the arc condition is terminated, the normal signal path is restored. 2 figs.

  8. Hall-effect arc protector

    DOEpatents

    Rankin, Richard A.; Kotter, Dale K.

    1997-01-01

    The Hall-Effect Arc Protector is used to protect sensitive electronics from high energy arcs. The apparatus detects arcs by monitoring an electrical conductor, of the instrument, for changes in the electromagnetic field surrounding the conductor which would be indicative of a possible arcing condition. When the magnitude of the monitored electromagnetic field exceeds a predetermined threshold, the potential for an instrument damaging are exists and the control system logic activates a high speed circuit breaker. The activation of the breaker shunts the energy imparted to the input signal through a dummy load to the ground. After the arc condition is terminated, the normal signal path is restored.

  9. HOLLOW CARBON ARC DISCHARGE

    DOEpatents

    Luce, J.S.

    1960-10-11

    A device is described for producing an energetic, direct current, hollow, carbon-arc discharge in an evacuated container and within a strong magnetic field. Such discharges are particularly useful not only in dissociation and ionization of high energy molecular ion beams, but also in acting as a shield or barrier against the instreaming of lowenergy neutral particles into a plasma formed within the hollow discharge when it is used as a dissociating mechanism for forming the plasma. There is maintained a predetermined ratio of gas particles to carbon particles released from the arc electrodes during operation of the discharge. The carbon particles absorb some of the gas particles and are pumped along and by the discharge out of the device, with the result that smaller diffusion pumps are required than would otherwise be necessary to dispose of the excess gas.

  10. ARC and Melting Efficiency of Plasma ARC Welds

    NASA Technical Reports Server (NTRS)

    McClure, J. C.; Nunes, A. C.; Evans, D. M.

    1999-01-01

    A series of partial penetration Variable Polarity Plasma Arc welds were made at equal power but various combinations of current and voltage on 2219 Aluminum. Arc efficiency was measured calorimetrically and ranged between 48% and 66% for the conditions of the welds. Arc efficiency depends in different ways on voltage and current. The voltage effect dominates. Raising voltage while reducing current increases arc efficiency. Longer, higher voltage arcs are thought to transfer a greater portion of arc power to the workpiece through shield gas convection. Melting efficiency depends upon weld pool shape as well as arc efficiency. Increased current increases the melting efficiency as it increases the depth to width ratio of the weld pool. Increased plasma gas flow does the same thing. Higher currents are thought to raise arc pressure and depress liquid at the bottom of the weld pool. More arc power then transfers to the workpiece through increasing plasma gas convection. If the power is held constant, the reduced voltage lowers the arc efficiency, while the pool shape change increases the melting efficiency,

  11. Arc jet diagnostics tests

    NASA Technical Reports Server (NTRS)

    Willey, Ronald J.

    1989-01-01

    Two objectives were addressed during a 10 week 1988 NASA/ASEE summer faculty fellowship at the Johnson Space Center Atmospheric Reentry Materials Structures Evaluation Facility (ARMSEF). These objectives were the evaluation of mass spectrometry for the measurement of atomic and molecular species in an arc jet environment, and the determination of atomic recombination coefficients for reaction cured glass (RCG) coated high temperature surface insulation (HRSI) materials subjected to simulated reentry conditions. Evaluation of mass spectrometry for the measurement of atomic and molecular species provided some of the first measurements of point compositions in arc jet tunnel environments. A major objective of this project centered around the sampling residence time. A three staged vacuum sampling system pulled the molecules and atoms from the arc jet to a quadrupole ionization mass spectrometer in 400 milliseconds. Conditions investigated included a composition survey across the nozzle exit at 3 cm z-distance from the nozzle exit for 3 different currents. Also, a point composition survey was taken around a shock created by the presence of a blunt body.

  12. Controlling Arc Length in Plasma Welding

    NASA Technical Reports Server (NTRS)

    Iceland, W. F.

    1986-01-01

    Circuit maintains arc length on irregularly shaped workpieces. Length of plasma arc continuously adjusted by control circuit to maintain commanded value. After pilot arc is established, contactor closed and transfers arc to workpiece. Control circuit then half-wave rectifies ac arc voltage to produce dc control signal proportional to arc length. Circuit added to plasma arc welding machines with few wiring changes. Welds made with circuit cleaner and require less rework than welds made without it. Beads smooth and free of inclusions.

  13. APPARATUS FOR ARC WELDING

    DOEpatents

    Lingafelter, J.W.

    1960-04-01

    An apparatus is described in which a welding arc created between an annular electrode and a workpiece moves under the influence of an electromagnetic field about the electrode in a closed or annular path. This mode of welding is specially suited to the enclosing of nuclear-fuel slugs in a protective casing. For example, a uranium slug is placed in an aluminum can, and an aluminum closure is welded to the open end of the can along a closed or annular path conforming to the periphery of the end closure.

  14. Electric arc heater is self starting

    NASA Technical Reports Server (NTRS)

    Brown, R. D.

    1966-01-01

    Remote method initiates an electric arc over a large range of gaps between two water-cooled electrodes of an arc-heated wind tunnel without disassembling the arc unit. This type of starting system can be used on both three-phase ac arc heaters and dc arc heaters.

  15. Microstructure and Mechanical Properties of Plasma Arc Brazed AISI 304L Stainless Steel and Galvanized Steel Plates

    NASA Astrophysics Data System (ADS)

    Jin, Yajuan; Li, Ruifeng; Yu, Zhishui; Wang, Yu

    2016-04-01

    Plasma arc brazing is used to join the AISI 304L stainless steel and galvanized steel plate butt joints with the CuSi3Mn1 filler wire. The effect of parameters on weld surface appearance, interfacial microstructure, and composition distribution in the joint was studied. The microhardness and mechanical tests were conducted to determine the mechanical properties of the welded specimens. The results indicated that good appearance, bead shape, and sufficient metallurgical bonding could be obtained when the brazing process was performed with a wire feeding speed of 0.8 m/min, plasma gas flow rate of 3.0 l/min, welding current of 100 A, and welding speed of 27 cm/min. During plasma arc brazing process, the top corner of the stainless steel and galvanized steel plate were heated and melted, and the melted quantity of stainless steel was much more than that of the galvanized steel due to the thermal conductivity coefficient difference between the dissimilar materials. The microhardness test results shows that the microhardness value gradually increased from the side of the galvanized steel to the stainless steel in the joint, and it is good for improving the mechanical properties of joint. The tensile strength was a little higher than that of the brazing filler, and the fracture position of weld joint was at the base metal of galvanized steel plate.

  16. Electric arc welding gun

    DOEpatents

    Luttrell, Edward; Turner, Paul W.

    1978-01-01

    This invention relates to improved apparatus for arc welding an interior joint formed by intersecting tubular members. As an example, the invention is well suited for applications where many similar small-diameter vertical lines are to be welded to a long horizontal header. The improved apparatus includes an arc welding gun having a specially designed welding head which is not only very compact but also produces welds that are essentially free from rolled-over solidified metal. The welding head consists of the upper end of the barrel and a reversely extending electrode holder, or tip, which defines an acute angle with the barrel. As used in the above-mentioned example, the gun is positioned to extend upwardly through the vertical member and the joint to be welded, with its welding head disposed within the horizontal header. Depending on the design of the welding head, the barrel then is either rotated or revolved about the axis of the vertical member to cause the electrode to track the joint.

  17. Alternating-Polarity Arc Welding

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.

    1987-01-01

    Brief reversing polarity of welding current greatly improves quality of welds. NASA technical memorandum recounts progress in art of variable-polarity plasma-arc (VPPA) welding, with emphasis on welding of aluminum-alloy tanks. VPPA welders offer important advantages over conventional single-polarity gas/tungsten arc welders.

  18. TAMA. TIGER Arc Modification Application

    SciTech Connect

    Armstrong, H.

    1994-06-03

    The application enables the geometric correction of TIGER arcs to a more accurate spatial data set. This is done in a structured automated environment according to Census Bureau guidelines and New Mexico state GIS standards. Arcs may be deleted, added, combined, split, and moved relative to a coverage or image displayed in the background.

  19. Of Eggs and Arcs

    NASA Astrophysics Data System (ADS)

    Burns, Joseph A.; Thomas, P. C.; Helfenstein, P.; Tiscareno, M. S.; Hedman, M. M.; Agarwal, M.

    2012-10-01

    New scenarios for the origins of Saturn’s rings/interior moons have directed scientific attention to the region just exterior to Saturn’s main rings. Four satellites (Aegaeon = Ae; Anthe = An; Methone = Me; Pallene = Pa) discovered by the Cassini mission on either side of Mimas’s orbit perhaps comprise a distinct class of ring-moon. They are tiny (R = 0.3-2.5 km); three (AeAnMe) are trapped in co-rotation resonances with Mimas and reside within ring-arcs; and at least two (MePa) have remarkably regular shapes. Images with pixel scales as fine as 27 m taken in May 2012 reveal Methone to be ovoid within 10 m (from sub-pixel limb detection) and devoid of any craters (>130 m) across its 9 km2 of surface; Pallene and even tiny Aegaeon have similar appearances in lesser-quality images. Numerical simulations demonstrate that particles comprising the surrounding ring-arcs populate the same resonances as their embedded moons; escape speeds from the moons are < 0.5 m/s, smaller than the 2 m/s that dynamically characterize the resonant well. We investigate the gentle transfer of particles back and forth between the ring-arcs and any embedded bodies. In this environment, the moons’ shapes are smooth equipotentials; electrostatic effects may also determine how grains settle to surfaces. Considering these shapes to represent equipotential surfaces for rotating, tidally distorted, homogeneous bodies, we infer mean satellite densities of 250+/-60 (Pa), 310+/-30 (Me), and 540+/-120 (Ae) kg m-3. About half of Methone’s leading hemisphere is covered by a sharply bounded, lemon-shaped, relatively dark region, having a form reminiscent of Mimas’s thermal anomaly (Howett et al. 2011). Its (601 nm) albedo is 13% lower than the bounding brighter material. An irregularly shaped, even-darker (by 4%) blotch straddles the apex of the moon’s motion. Impacts with circum-planetary meteoroids and plasma are likely responsible for these features.

  20. Laser Assisted Plasma Arc Welding

    SciTech Connect

    FUERSCHBACH,PHILLIP W.

    1999-10-05

    Experiments have been performed using a coaxial end-effecter to combine a focused laser beam and a plasma arc. The device employs a hollow tungsten electrode, a focusing lens, and conventional plasma arc torch nozzles to co-locate the focused beam and arc on the workpiece. Plasma arc nozzles were selected to protect the electrode from laser generated metal vapor. The project goal is to develop an improved fusion welding process that exhibits both absorption robustness and deep penetration for small scale (< 1.5 mm thickness) applications. On aluminum alloys 6061 and 6111, the hybrid process has been shown to eliminate hot cracking in the fusion zone. Fusion zone dimensions for both stainless steel and aluminum were found to be wider than characteristic laser welds, and deeper than characteristic plasma arc welds.

  1. Arc fault detection system

    DOEpatents

    Jha, K.N.

    1999-05-18

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.

  2. Arc fault detection system

    DOEpatents

    Jha, Kamal N.

    1999-01-01

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.

  3. An arc-sequencing algorithm for intensity modulated arc therapy

    SciTech Connect

    Shepard, D. M.; Cao, D.; Afghan, M. K. N.; Earl, M. A.

    2007-02-15

    Intensity modulated arc therapy (IMAT) is an intensity modulated radiation therapy delivery technique originally proposed as an alternative to tomotherapy. IMAT uses a series of overlapping arcs to deliver optimized intensity patterns from each beam direction. The full potential of IMAT has gone largely unrealized due in part to a lack of robust and commercially available inverse planning tools. To address this, we have implemented an IMAT arc-sequencing algorithm that translates optimized intensity maps into deliverable IMAT plans. The sequencing algorithm uses simulated annealing to simultaneously optimize the aperture shapes and weights throughout each arc. The sequencer enforces the delivery constraints while minimizing the discrepancies between the optimized and sequenced intensity maps. The performance of the algorithm has been tested for ten patient cases (3 prostate, 3 brain, 2 head-and-neck, 1 lung, and 1 pancreas). Seven coplanar IMAT plans were created using an average of 4.6 arcs and 685 monitor units. Additionally, three noncoplanar plans were created using an average of 16 arcs and 498 monitor units. The results demonstrate that the arc sequencer can provide efficient and highly conformal IMAT plans. An average sequencing time of approximately 20 min was observed.

  4. Ionospheric composition in SAR-arcs. [Stable Auroral Red Arcs

    NASA Technical Reports Server (NTRS)

    Raitt, W. J.; Schunk, R. W.; Banks, P. M.

    1976-01-01

    Theoretical ion and electron density profiles in the SAR-arc region are calculated using a model of the ionosphere based on the coupled continuity, momentum, and energy equations for O(+), NO(+), and O2(+). It is found that an increase in the reaction O(+) + N2 yields NO(+) + N, which results from enhanced N2 vibrational excitation due to the high electron temperatures found in SAR arcs, can cause a reduction in F-region electron densities by up to a factor of two. The increase in the O(+) + N2 reaction rate is shown to result in a marked change in the ion composition in SAR arcs, with NO(+) being an important ion up to altitudes of about 350 km at night. Since observed electron-density depressions in SAR arcs generally vary between factors of two and seven, it is concluded that the increase in the O(+) + N2 reaction rate cannot account for these depressions by itself.

  5. Arc spot grouping: An entanglement of arc spot cells

    SciTech Connect

    Kajita, Shin; Hwangbo, Dogyun; Ohno, Noriyasu; Tsventoukh, Mikhail M.; Barengolts, Sergey A.

    2014-12-21

    In recent experiments, clear transitions in velocity and trail width of an arc spot initiated on nanostructured tungsten were observed on the boundary of the thick and thin nanostructured layer regions. The velocity of arc spot was significantly decreased on the thick nanostructured region. It was suggested that the grouping decreased the velocity of arc spot. In this study, we try to explain the phenomena using a simple random walk model that has properties of directionality and self-avoidance. And grouping feature was added by installing an attractive force between spot cells with dealing with multi-spots. It was revealed that an entanglement of arc spot cells decreased the spot velocity, and spot cells tend to stamp at the same location many times.

  6. Arc spot grouping: An entanglement of arc spot cells

    NASA Astrophysics Data System (ADS)

    Kajita, Shin; Hwangbo, Dogyun; Ohno, Noriyasu; Tsventoukh, Mikhail M.; Barengolts, Sergey A.

    2014-12-01

    In recent experiments, clear transitions in velocity and trail width of an arc spot initiated on nanostructured tungsten were observed on the boundary of the thick and thin nanostructured layer regions. The velocity of arc spot was significantly decreased on the thick nanostructured region. It was suggested that the grouping decreased the velocity of arc spot. In this study, we try to explain the phenomena using a simple random walk model that has properties of directionality and self-avoidance. And grouping feature was added by installing an attractive force between spot cells with dealing with multi-spots. It was revealed that an entanglement of arc spot cells decreased the spot velocity, and spot cells tend to stamp at the same location many times.

  7. The ALMA Regional Centers (ARC)

    NASA Astrophysics Data System (ADS)

    Andreani, P.; Hibbard, J.; Okumura, S. K.; Braatz, J.

    2011-04-01

    ALMA is an international facility, a partnership between Europe, East Asia, and North America, in cooperation with the Republic of Chile. As such, ALMA will serve a worldwide community of astronomers. To interface with the geographically distributed user community, the partners have established three ALMA Regional Centers, or ARCs. The ARCs provide the primary gateway to ALMA for the user community. The ARCs are staffed by scientists with expertise in radio astronomy and interferometry, and their purpose is to work with the community of astronomers to maximize the scientific productivity of the telescope.

  8. Percussive arc welding apparatus

    DOEpatents

    Hollar, Jr., Donald L.

    2002-01-01

    A percussive arc welding apparatus includes a generally cylindrical actuator body having front and rear end portions and defining an internal recess. The front end of the body includes an opening. A solenoid assembly is provided in the rear end portion in the internal recess of the body, and an actuator shaft assembly is provided in the front end portion in the internal recess of the actuator body. The actuator shaft assembly includes a generally cylindrical actuator block having first and second end portions, and an actuator shaft having a front end extending through the opening in the actuator body, and the rear end connected to the first end portion of the actuator block. The second end portion of the actuator block is in operational engagement with the solenoid shaft by a non-rigid connection to reduce the adverse rebound effects of the actuator shaft. A generally transversely extending pin is rigidly secured to the rear end of the shaft. One end of the pin is received in a slot in the nose housing sleeve to prevent rotation of the actuator shaft during operation of the apparatus.

  9. Arc of opportunity.

    PubMed

    Delaney, Adam Vai

    2011-07-01

    Born in Port Moresby, Papua New Guinea, the author had a 20 year career in diplomacy, political affairs, and development policy analysis at the Pacific Islands Forum, the United Nations in New York; the Prime Minister's Department in Papua New Guinea (PNG) and in the Foreign Ministry of PNG. He has also been involved in theatre for over a decade in PNG, and participated in a three-month program at the Eugene O'Neill Theatre Center in Connecticut, USA. He is currently the Business Development Manager at the Torres Strait Regional Authority (Commonwealth) on Thursday Island. Since 1975 the Australian government's overseas development policy has supported various sectoral programs in its neighbouring countries, in particular Papua New Guinea and the Solomon Islands. The "creative" field has not been prominent in this strategy. While natural resources and the sports sectors have gained much greater attention, in terms of being viable international commercial enterprises, the arts, have remained stagnant. In this paper the need for joint programs genuinely supporting "wellbeing" and promoting social enterprise throughout the "arc of opportunity" is described to harness Melanesian creativity to compete successfully in world-markets, starting with penetration of the largest economy at its door-step: Australia. PMID:21878026

  10. ARC syndrome in preterm baby.

    PubMed

    Elmeery, A; Lanka, K; Cummings, J

    2013-10-01

    A preterm female infant born of 32 weeks gestational age was presenting with musculoskeletal abnormalities, and cholestasis that later on resolved. Later on, she developed renal tubular acidosis (RTA), poor weight gain, unexplained intermittent fever and recurrent spontaneous bleeding episodes. ARC is an acronym that stands for arthrogryposis, renal dysfunction and cholestasis. ARC syndrome is a rare disorder that is difficult to diagnose and is associated with poor outcomes. We present a case of ARC syndrome in an infant with a history of failure to thrive, early cholestasis and RTA. There are many unique features about this case that should add to our understanding of this genetic condition. To our knowledge this is the first identified case of ARC syndrome in a preterm infant. Although the specific mutation found in our patient has not been reported previously, the type and location of this mutation is consistent with our genetic understanding of this disorder. PMID:24071963

  11. Arc detector uses fiber optics

    NASA Technical Reports Server (NTRS)

    Finnegan, E. J.; Leech, R. A.

    1979-01-01

    Arc detector for protecting high-power microwave klystron oscillators uses fiber optics connected to remote solid-state light-sensing circuits. Detector is more reliable, smaller, and sensitive than other systems that locate detector in waveguide.

  12. Arc-heater performance research

    NASA Technical Reports Server (NTRS)

    Shepard, Charles E.; Durgapal, Prabha

    1994-01-01

    The tasks performed can be divided into the following categories: an analysis of the electric arc phenomena, especially near the electrodes; a parametric study of arcjet performance by means of a computer code (ARCFLO) and verification with experimental data where possible; the development of a data acquisition system to collect the above experimental data using Ames arc-jets; and a study of the critical components (electrodes and constrictor disks) and suggestions of how to improve their performance.

  13. Heat transfer in GTA welding arcs

    NASA Astrophysics Data System (ADS)

    Huft, Nathan J.

    Heat transfer characteristics of Gas Tungsten Arc Welding (GTAW) arcs with arc currents of 50 to 125 A and arc lengths of 3 to 11 mm were measured experimentally through wet calorimetry. The data collected were used to calculate how much heat reported to the cathode and anode and how much was lost from the arc column. A Visual Basic for Applications (VBA) macro was written to further analyze the data and account for Joule heating within the electrodes and radiation and convection losses from the arc, providing a detailed account of how heat was generated and dissipated within the system. These values were then used to calculate arc efficiencies, arc column voltages, and anode and cathode fall voltages. Trends were noted for variances in the arc column voltage, power dissipated from the arc column, and the total power dissipated by the system with changing arc length. Trends for variances in the anode and cathode fall voltages, total power dissipated, Joule heating within the torches and electrodes with changing arc current were also noted. In addition, the power distribution between the anode and cathode for each combination of arc length and arc current was examined. Keywords: Gas Tungsten Arc Welding, GTAW, anode fall, cathode fall, heat transfer, wet calorimetry

  14. [Spectra and thermal analysis of the arc in activating flux plasma arc welding].

    PubMed

    Chai, Guo-Ming; Zhu, Yi-Feng

    2010-04-01

    In activating flux plasma arc welding the welding arc was analyzed by spectra analysis technique, and the welding arc temperature field was measured by the infrared sensing and computer image technique. The distribution models of welding arc heat flow density of activating flux PAW welding were developed. The composition of welding arc affected by activated flux was studied, and the welding arc temperature field was studied. The results show that the spectral lines of argon atom and ionized argon atom of primary ionization are the main spectra lines of the conventional plasma welding arc. The spectra lines of weld metal are inappreciable in the spectra lines of the conventional plasma welding arc. The gas particle is the main in the conventional plasma welding arc. The conventional plasma welding arc is gas welding arc. The spectra lines of argon atom and ionized argon atom of primary ionization are intensified in the activating flux plasma welding arc, and the spectra lines of Ti, Cr and Fe elements are found in the activating flux plasma welding arc. The welding arc temperature distribution in activating flux plasma arc welding is compact, the outline of the welding arc temperature field is narrow, the range of the welding arc temperature distribution is concentrated, the welding arc radial temperature gradient is large, and the welding arc radial temperature gradient shows normal Gauss distribution. PMID:20545181

  15. Dosimetric and delivery characterizations of full-arc and half-arc volumetric-modulated arc therapy for maxillary cancer.

    PubMed

    Miura, Hideharu; Fujiwara, Masayuki; Tanooka, Masao; Doi, Hiroshi; Inoue, Hiroyuki; Takada, Yasuhiro; Kamikonya, Norihiko; Hirota, Shozo

    2012-09-01

    We compared the efficiency and accuracy of full-arc and half-arc volumetric-modulated arc therapy (VMAT) delivery for maxillary cancer. Plans for gantry rotation angles of 360° and 180° (full-arc and half-arc VMAT) were created for six maxillary cancer cases with the Monaco treatment planning system, and delivered using an Elekta Synergy linear accelerator. Full-arc and half-arc VMAT were compared with regard to homogeneity index (HI), conformity index (CI), mean dose to normal brain, total monitor units (MU), delivery times, root mean square (r.m.s.) gantry accelerations (°/s(2)), and r.m.s. gantry angle errors (°). The half-arc VMAT plans achieved comparable HI and CI to the full-arc plans. Mean doses to the normal brain and brainstem with the half-arc VMAT plans were on average 16% and 17% lower than those with the full-arc VMAT plans. For other organs at risk (OARs), no significant DVH differences were observed between plans. Half-arc VMAT resulted in 11% less total MU and 20% shorter delivery time than the full-arc VMAT, while r.m.s. gantry acceleration and r.m.s. gantry angle error during half-arc VMAT delivery were 30% and 23% less than those during full-arc VMAT delivery, respectively. Furthermore, the half-arc VMAT plans were comparable with the full-arc plans regarding dose homogeneity and conformity in maxillary cancer, and provided a statistical decrease in mean dose to OAR, total MU, delivery time and gantry angle error. Half-arc VMAT plans may be a suitable treatment option in radiotherapy for maxillary cancer. PMID:22843367

  16. High pressure neon arc lamp

    DOEpatents

    Sze, Robert C.; Bigio, Irving J.

    2003-07-15

    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  17. Arc-cathode interaction study

    NASA Technical Reports Server (NTRS)

    Zhou, X.; Heberlein, J.

    1992-01-01

    Insufficient electrode life and uncertainties in that life are major problems hampering the development in many plasma application areas which make use of plasma torches, arc heaters, and arc jet thrusters. In spite of a considerable amount of work published dealing with arc-cathode phenomena, our present understanding is still incomplete because different physical phenomena dominate for different combinations of experimental parameters. The objective of our present research project is to gain a better understanding of the behavior of arc-cathode surface interaction over a wide range of parameters, and furthermore to develop guidelines for better thermal design of the electrode and the selection of materials. This report will present the research results and progress obtained on the arc-cathode interaction studies at the University of Minnesota. It includes results which have been obtained under programs other than the NASA funded program. Some of the results have been submitted in an informal interim progress report, and all of the results have been presented in a seminar during a visit to the NASA Lewis Research Center on October 16, 1992.

  18. Flow Dynamics in Arc Welding

    SciTech Connect

    Lowke, John J.; Tanaka, Manabu

    2008-02-21

    The state of the art for numerical computations has now advanced so that the capability is within sight of calculating weld shapes for any arc current, welding gas, welding material or configuration. Inherent in these calculations is 'flow dynamics' applied to plasma flow in the arc and liquid metal flow in the weld pool. Examples of predictions which are consistent with experiment, are discussed for (1) conventional tungsten inert gas welding, (2) the effect of a fraction of a percent of sulfur in steel, which can increase weld depth by more than a factor of two through changes in the surface tension, (3) the effect of a flux, which can produce increased weld depth due to arc constriction, (4) use of aluminium instead of steel, when the much larger thermal conductivity of aluminium greatly reduces the weld depth and (5) addition of a few percent of hydrogen to argon, which markedly increases weld depth.

  19. Welding arc length control system

    NASA Technical Reports Server (NTRS)

    Iceland, William F. (Inventor)

    1993-01-01

    The present invention is a welding arc length control system. The system includes, in its broadest aspects, a power source for providing welding current, a power amplification system, a motorized welding torch assembly connected to the power amplification system, a computer, and current pick up means. The computer is connected to the power amplification system for storing and processing arc weld current parameters and non-linear voltage-ampere characteristics. The current pick up means is connected to the power source and to the welding torch assembly for providing weld current data to the computer. Thus, the desired arc length is maintained as the welding current is varied during operation, maintaining consistent weld penetration.

  20. Subduction initiation at relic arcs

    NASA Astrophysics Data System (ADS)

    Leng, Wei; Gurnis, Michael

    2015-09-01

    Although plate tectonics is well established, how a new subduction zone initiates remains controversial. Based on plate reconstruction and recent ocean drilling within the Izu-Bonin-Mariana, we advance a new geodynamic model of subduction initiation (SI). We argue that the close juxtaposition of the nascent plate boundary with relic oceanic arcs is a key factor localizing initiation of this new subduction zone. The combination of thermal and compositional density contrasts between the overriding relic arc, and the adjacent old Pacific oceanic plate promoted spontaneous SI. We suggest that thermal rejuvenation of the overriding plate just before 50 Ma caused a reduction in overriding plate strength and an increase in the age contrast (hence buoyancy) between the two plates, leading to SI. The computational models map out a framework in which rejuvenated relic arcs are a favorable tectonic environment for promoting subduction initiation, while transform faults and passive margins are not.

  1. Auroral arcs and ion outflow

    NASA Astrophysics Data System (ADS)

    Maggiolo, Romain

    2016-04-01

    This presentation provides an overwiew of the chapter "Auroral Arcs and Ion Outflow" from the AGU book "Auroral Dynamics and Space Weather" (eds Y. Zhang and L. J. Paxton). This topic covers a wide range of domains, from auroral acceleration processes, auroral arc morphology and dynamics to global magnetosphere-ionosphere coupling and atmospheric erosion. This presentation mainly focuses on the observational properties of auroral ion outflow. Recent observations about their large-scale spatial distribution and link with auroral forms will be presented. Auroral ion outflow statistical dependence on solar and geomagnetic activity and its modulation by auroral dynamics at the timescale of substorms will also be discussed.

  2. Gas Tungsten Arc Welding and Plasma Arc Cutting. Teacher Edition.

    ERIC Educational Resources Information Center

    Fortney, Clarence; And Others

    This welding curriculum guide treats two topics in detail: the care of tungsten electrodes and the entire concept of contamination control and the hafnium electrode and its importance in dual-air cutting systems that use compressed shop air for plasma arc cutting activities. The guide contains three units of instruction that cover the following…

  3. Unzipping of the volcano arc, Japan

    NASA Astrophysics Data System (ADS)

    Stern, R. J.; Smoot, N. C.; Rubin, M.

    1984-02-01

    A working hypothesis for the recent evolution of the southern Volcano Arc, Japan, is presented which calls upon a northward-progressing sundering of the arc in response to a northward-propagating back-arc basin extensional regime. This model appears to explain several localized and recent changes in the tectonic and magrnatic evolution of the Volcano Arc. Most important among these changes is the unusual composition of Iwo Jima volcanic rocks. This contrasts with normal arc tholeiites typical of the rest of the Izu-Volcano-Mariana and other primitive arcs in having alkaline tendencies, high concentrations of light REE and other incompatible elements, and relatively high silica contents. In spite of such fractionated characteristics, these lavas appear to be very early manifestations of a new volcanic and tectonic cycle in the southern Volcano Arc. These alkaline characteristics and indications of strong regional uplift are consistent with the recent development of an early stage of inter-arc basin rifting in the southern Volcano Arc. New bathymetric data are presented in support of this model which indicate: (1) structural elements of the Mariana Trough extend north to the southern Volcano Arc. (2) both the Mariana Trough and frontal arc shoal rapidly northwards as the Volcano Arc is approached. (3) rugged bathymetry associated with the rifted Mariana Trough is replaced just south of Iwo Jima by the development of a huge dome (50-75 km diameter) centered around Iwo Jima. Such uplifted domes are the immediate precursors of rifts in other environments, and it appears that a similar situation may now exist in the southern Volcano Arc. The present distribution of unrifted Volcano Arc to the north and rifted Mariana Arc to the south is interpreted not as a stable tectonic configuration but as representing a tectonic "snapshot" of an arc in the process of being rifted to form a back-arc basin.

  4. Unzipping of the volcano arc, Japan

    USGS Publications Warehouse

    Stern, R.J.; Smoot, N.C.; Rubin, M.

    1984-01-01

    A working hypothesis for the recent evolution of the southern Volcano Arc, Japan, is presented which calls upon a northward-progressing sundering of the arc in response to a northward-propagating back-arc basin extensional regime. This model appears to explain several localized and recent changes in the tectonic and magrnatic evolution of the Volcano Arc. Most important among these changes is the unusual composition of Iwo Jima volcanic rocks. This contrasts with normal arc tholeiites typical of the rest of the Izu-Volcano-Mariana and other primitive arcs in having alkaline tendencies, high concentrations of light REE and other incompatible elements, and relatively high silica contents. In spite of such fractionated characteristics, these lavas appear to be very early manifestations of a new volcanic and tectonic cycle in the southern Volcano Arc. These alkaline characteristics and indications of strong regional uplift are consistent with the recent development of an early stage of inter-arc basin rifting in the southern Volcano Arc. New bathymetric data are presented in support of this model which indicate: 1. (1) structural elements of the Mariana Trough extend north to the southern Volcano Arc. 2. (2) both the Mariana Trough and frontal arc shoal rapidly northwards as the Volcano Arc is approached. 3. (3) rugged bathymetry associated with the rifted Mariana Trough is replaced just south of Iwo Jima by the development of a huge dome (50-75 km diameter) centered around Iwo Jima. Such uplifted domes are the immediate precursors of rifts in other environments, and it appears that a similar situation may now exist in the southern Volcano Arc. The present distribution of unrifted Volcano Arc to the north and rifted Mariana Arc to the south is interpreted not as a stable tectonic configuration but as representing a tectonic "snapshot" of an arc in the process of being rifted to form a back-arc basin. ?? 1984.

  5. Total Marrow Irradiation With RapidArc Volumetric Arc Therapy

    SciTech Connect

    Aydogan, Bulent; Yeginer, Mete; Kavak, Gulbin O.; Fan, John; Radosevich, James A.; Gwe-Ya, Kim

    2011-10-01

    Purpose: To develop a volumetric arc therapy (VMAT)-total marrow irradiation (TMI) technique for patients with hematologic malignancies. Methods and Materials: VMAT planning was performed for 6 patients using RapidArc technology. The planning target volume consisted of all the bones in the body from the head to the mid-femur, excluding the extremities, except for the humerus, plus a 3.0-mm margin. The organs at risk included the lungs, heart, liver, kidneys, bowels, brain, eyes, and oral cavity. The VMAT-TMI technique consisted of three plans: the head and neck, the chest, and the pelvis, each with three 330{sup o} arcs. The plans were prescribed to ensure, at a minimum, 95% planning target volume dose coverage with the prescription dose (percentage of volume receiving dose of {>=}12 Gy was 95%). The treatments were delivered and verified using MapCheck and ion chamber measurements. Results: The VMAT-TMI technique reported in the present study provided comparable dose distributions with respect to the fixed gantry linear accelerator intensity-modulated TMI. RapidArc planning was less subjective and easier, and, most importantly, the delivery was more efficient. RapidArc reduced the treatment delivery time to approximately 18 min from 45 min with the fixed gantry linear accelerator intensity-modulated TMI. When the prescription dose coverage was reduced to 85% from 95% and the mandible and maxillary structures were not included in the planning target volume as reported in a tomotherapy study, a considerable organ at risk dose reduction of 4.2-51% was observed. The average median dose for the lungs and lenses was reduced to 5.6 Gy from 7.2 Gy and 2.4 Gy from 4.5 Gy, respectively. Conclusion: The RapidArc VMAT technique improved the treatment planning, dose conformality, and, most importantly, treatment delivery efficiency. The results from our study suggest that the RapidArc VMAT technology can be expected to facilitate the clinical transition of TMI.

  6. Arc restrike in the rail accelerator

    NASA Technical Reports Server (NTRS)

    Ray, Pradosh K.

    1989-01-01

    One of the causes of the degradation in rail accelerator performance is the formation of a secondary arc. Experimental evidence of arc restrike and the subsequent growth of this secondary arc is presented. A simple analytical treatment of arc restrike is developed in terms of breakdown of residual vapor atoms. It is found that after the passage of the primary arc, the bore volume contains a large number of residual neutral vapor atoms. If the density of these atoms is in excess of the critical density, then for a certain length of time the condition exists in the bore for the formation of a secondary arc. Evaporation of atoms from the bore surfaces cannot provide a sufficient number of atoms for an arc restrike. A likely source of the high residual atom density is the leakage of a portion of the ablated material that is added to the trailing edge of the primary arc.

  7. Arc track resistant polymers for space applications

    NASA Technical Reports Server (NTRS)

    Haghighat, Ross

    1995-01-01

    The properties and test methods of aorimide polymers, kapton, and fep teflon are given in table format. Graphic depiction of an atomic oxygen resistance comparison, arc track resistance set-up and arc incident vs. propagation are given.

  8. Vacuum Gas Tungsten Arc Welding

    NASA Technical Reports Server (NTRS)

    Weeks, J. L.; Todd, D. T.; Wooten, J. R.

    1997-01-01

    A two-year program investigated vacuum gas tungsten arc welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. After a vacuum chamber and GTAW power supply were modified, several difficult-to-weld materials were studied and key parameters developed. Finally, Incoloy 903 weld overlays were produced without microfissures.

  9. Rotating Drive for Electrical-Arc Machining

    NASA Technical Reports Server (NTRS)

    Fransen, C. D.

    1986-01-01

    Rotating drive improves quality of holes made by electrical-arc machining. Mechanism (Uni-tek, rotary head, or equivalent) attached to electrical-arc system. Drive rotates electrode as though it were mechanical drill, while an arc disintegrates metal in workpiece, thereby creating hole. Rotating electrode method often used in electric-discharge machining. NASA innovation is application of technique to electrical-arc machining.

  10. Making Conductive Polymers By Arc Tracking

    NASA Technical Reports Server (NTRS)

    Daech, Alfred F.

    1992-01-01

    Experimental technique for fabrication of electrically conductive polymeric filaments based on arc tracking, in which electrical arc creates conductive carbon track in material that initially was insulator. Electrically conductive polymeric structures made by arc tracking aligned along wire on which formed. Alignment particularly suited to high conductivity and desirable in materials intended for testing as candidate superconductors.

  11. Arc-starting aid for GTA welding

    NASA Technical Reports Server (NTRS)

    Whiffen, E. L.

    1977-01-01

    Three-in-one handtool combining arc-gap gage, electrode tip sander, and electrode projection gate, effectively improves initiation on gas tungsten arc (GTA), automatic skate-welding machines. Device effects ease in polishing electrode tips and setting exactly initial arc gap before each weld pass.

  12. Laboratory experiments on arc deflection and instability

    SciTech Connect

    Zweben, S.; Karasik, M.

    2000-03-21

    This article describes experiments on arc deflection instability carried out during the past few years at the Princeton University Plasma Physics Laboratory (PPPL). The approach has been that of plasma physicists interested in arcs, but they believe these results may be useful to engineers who are responsible for controlling arc behavior in large electric steel furnaces.

  13. Parametric Study on Arc Behavior of Magnetically Diffused Arc

    NASA Astrophysics Data System (ADS)

    Chen, Tang; Li, Hui; Bai, Bing; Liao, Mengran; Xia, Weidong

    2016-01-01

    A model coupling the plasma with a cathode body is applied in the simulation of the diffuse state of a magnetically rotating arc. Four parametric studies are performed: on the external axial magnetic field (AMF), on the cathode shape, on the total current and on the inlet gas velocity. The numerical results show that: the cathode attachment focuses in the center of the cathode tip with zero AMF and gradually shifts off the axis with the increase of AMF; a larger cathode conical angle corresponds to a cathode arc attachment farther away off axis; the maximum values of plasma temperature increase with the total current; the plasma column in front of the cathode tip expands more severely in the axial direction, with a higher inlet speed; the cathode arc attachment shrinks towards the tip as the inlet speed increases. The various results are supposed to be explained by the joint effect of coupled cathode surface heating and plasma rotating flow. supported by National Natural Science Foundation of China (Nos. 11475174, 11035005 and 50876101)

  14. A mechanism that triggers double arcing during plasma arc cutting

    NASA Astrophysics Data System (ADS)

    Nemchinsky, Valerian

    2009-10-01

    Double arcing (DA) is a phenomenon when a transferred arc, flowing inside an electrically insulated nozzle, breaks into two separate arcs: one that connects the cathode and the nozzle and another that connects the nozzle and a work-piece. It is a commonly accepted opinion that the reason for DA is high voltage drop in the plasma inside the nozzle. However, the specific mechanism that triggers the DA development is not clear. In this paper, we propose such a mechanism. Dielectric films deposited inside the nozzle's orifice play the key role in this mechanism. These films are charged by ion current from plasma. A strong electric field is created inside the film and at the boundary of the film and clean metal of the nozzle. This gives rise to a thermo-field electron emission from the clean metal that borders the film. Emitted electrons are accelerated at the voltage drop between the nozzle and plasma. These electrons produce extra ions, which in turn move back to the film and additionally charge it. This sequence of events leads to explosive instability if the voltage drop inside the nozzle is high enough. Experiments to check the proposed mechanism are suggested.

  15. Filters for cathodic arc plasmas

    DOEpatents

    Anders, Andre; MacGill, Robert A.; Bilek, Marcela M. M.; Brown, Ian G.

    2002-01-01

    Cathodic arc plasmas are contaminated with macroparticles. A variety of magnetic plasma filters has been used with various success in removing the macroparticles from the plasma. An open-architecture, bent solenoid filter, with additional field coils at the filter entrance and exit, improves macroparticle filtering. In particular, a double-bent filter that is twisted out of plane forms a very compact and efficient filter. The coil turns further have a flat cross-section to promote macroparticle reflection out of the filter volume. An output conditioning system formed of an expander coil, a straightener coil, and a homogenizer, may be used with the magnetic filter for expanding the filtered plasma beam to cover a larger area of the target. A cathodic arc plasma deposition system using this filter can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  16. The refractory painful arc syndrome.

    PubMed

    Watson, M

    1978-11-01

    Twenty-three patients with a severe refractory painful arc syndrome have been treated by excision of the outer end of the clavicle and division of the coracoacromial ligament through a deltoid-splitting approach. After a follow-up of more than six months all patients have been relieved of night pain. Six still have slight pain on movement, but the rest are symptom-free. PMID:711806

  17. Physical characteristics of welding arc ignition process

    NASA Astrophysics Data System (ADS)

    Shi, Linan; Song, Yonglun; Xiao, Tianjiao; Ran, Guowei

    2012-07-01

    The existing research of welding arc mainly focuses on the stable combustion state and the research on the mechanism of welding arc ignition process is quite lack. The tungsten inert gas(TIG) touch arc ignition process is observed via a high speed camera and the high time resolution spectral diagnosis system. The changing phenomenon of main ionized element provided the electrons in the arc ignition is found. The metallic element is the main contributor to provide the electrons at the beginning of the discharging, and then the excitated shielding gas element replaces the function of the metallic element. The electron density during the period of the arc ignition is calculated by the Stark-broadened lines of Hα. Through the discussion with the repeatability in relaxation phenomenon, the statistical regularity in the arc ignition process is analyzed. The similar rules as above are observed through the comparison with the laser-assisted arc ignition experiments and the metal inert gas(MIG) arc ignition experiments. This research is helpful to further understanding on the generation mechanism of welding arc ignition and also has a certain academic and practical significance on enriching the welding physical theoretical foundation and improving the precise monitoring on automatic arc welding process.

  18. Parsing Aleutian Arc Magma Compositions

    NASA Astrophysics Data System (ADS)

    Nye, C. J.

    2011-12-01

    The first-order subdivision of Aleutian arc magma compositions is based on SiO2, and the second-order subdivision is usually based on the change of FeOt/MgO as a function of SiO2, resulting in the additional twofold subdivision into (TH) and calcalkaline (CA) magmas. However, additional robust compositional variations exist. The two most important of these are (1) variation of the calcium number [Ca#; Ca/(Na+Ca)] as a function of SiO2, and (2) the Rate of Incompatible Trace-element Enrichment (RITE) at individual volcanic centers. Additionally, the data show that the low FeOt/MgO of CA andesite and dacite is more controlled by MgO excess than FeOt depletion. The Ca# of andesites and dacites is strongly bimodal. The low-Ca# group is "calc-alkalic", while the high-Ca# group is "calcic", using Peacock (1931) criteria. A continuum of Ca#s exists, but lavas intermediate between high-Ca# and low-Ca# are much less abundant. Ca#s merge below about 55% SiO2, and have a simple normal distribution. RITE, with rare but important exceptions, is generally constant at the temporal and spatial scale of a single volcano. Among high-RITE magmas LILE, LREE, HFSE, and Th increase ~3.5-fold, and HREE increase ~2.5-fold from basalt or basaltic-andesite through andesite to dacite. There is no strong indication that RITE is silica-dependant. High-RITE magmas develop a strong negative Eu anomaly, and are qualitatively compatible with an origin primarily involving fractionation of plagioclase-dominated mineral assemblages. Low-RITE magmas, in contrast, have nearly invariant REE and HFSE, and LILE and Th increase merely 1.5-fold over the same silica range. Low-RITE magmas are not compatible with fractionation of a plagioclase-dominant mineral assemblage. Alternative qualitatively plausible explanations (needing rigorous evaluation) include fractionation of an ultramafic mineral assemblage (Alaskan-type mafic-ultramafic bodies may be a model; see USGS Prof Paper 1564); that low-RITE basaltic

  19. Plasma arc torch with coaxial wire feed

    DOEpatents

    Hooper, Frederick M

    2002-01-01

    A plasma arc welding apparatus having a coaxial wire feed. The apparatus includes a plasma arc welding torch, a wire guide disposed coaxially inside of the plasma arc welding torch, and a hollow non-consumable electrode. The coaxial wire guide feeds non-electrified filler wire through the tip of the hollow non-consumable electrode during plasma arc welding. Non-electrified filler wires as small as 0.010 inches can be used. This invention allows precision control of the positioning and feeding of the filler wire during plasma arc welding. Since the non-electrified filler wire is fed coaxially through the center of the plasma arc torch's electrode and nozzle, the wire is automatically aimed at the optimum point in the weld zone. Therefore, there is no need for additional equipment to position and feed the filler wire from the side before or during welding.

  20. ARC length control for plasma welding

    NASA Technical Reports Server (NTRS)

    Iceland, William F. (Inventor)

    1988-01-01

    A control system to be used with a plasma arc welding apparatus is disclosed. The plasma arc welding apparatus includes a plasma arc power supply, a contactor, and an electrode assembly for moving the electrode relative to a work piece. The electrode assembly is raised or lowered by a drive motor. The present apparatus includes a plasma arc adapter connected across the power supply to measure the voltage across the plasma arc. The plasma arc adapter forms a dc output signal input to a differential amplifier. A second input is defined by an adjustable resistor connected to a dc voltage supply to permit operator control. The differential amplifier forms an output difference signal provided to an adder circuit. The adder circuit then connects with a power amplifier which forms the driving signal for the motor. In addition, the motor connects to a tachometor which forms a feedback signal delivered to the adder to provide damping, therby avoiding servo loop overshoot.

  1. One Arc PMSM for telescope tracking system

    NASA Astrophysics Data System (ADS)

    Ren, Changzhi; Zhang, Zhenchao; Wang, Daxing; Hu, Wei; Zhu, Zhenlian

    2008-07-01

    This paper explores one Arc PMSM for Direct Drive Telescope tracking system. By the Arc PMSM, we can very easily manufacture one direct drive system for large telescope. Direct drive system has many advantages over more traditionally used friction and rack/pinion drive. The advantages include high stiffness, no friction, easy alignment and low maintenance. The paper discusses the design process of the Arc PMSM, especially the methods to reduce the torque ripple.

  2. Magnetic-cusp, cathodic-arc source

    DOEpatents

    Falabella, Steven

    1995-01-01

    A magnetic-cusp for a cathodic-arc source wherein the arc is confined to the desired cathode surface, provides a current path for electrons from the cathode to the anode, and utilizes electric and magnetic fields to guide ions from the cathode to a point of use, such as substrates to be coated. The magnetic-cusp insures arc stability by an easy magnetic path from anode to cathode, while the straight-through arrangement leads to high ion transmission.

  3. Nomenclature of SLC Arc beamline components

    SciTech Connect

    Silva, J.; Weng, W.T.

    1986-04-10

    This note defines I and C formal names for beamline components in the Arc as specified in the TRANSPORT decks ARCN FINAL and ARCS FINAL of June 5, 1985. The formal name consists of three fields: the primary name, the zone and the unit number. The general principles and guidelines are explained in Reference 1. The rationale and the final resolutions of the naming conventions for the Arc are explained.

  4. Miniaturized cathodic arc plasma source

    DOEpatents

    Anders, Andre; MacGill, Robert A.

    2003-04-15

    A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  5. Metals purification by improved vacuum arc remelting

    DOEpatents

    Zanner, Frank J.; Williamson, Rodney L.; Smith, Mark F.

    1994-12-13

    The invention relates to improved apparatuses and methods for remelting metal alloys in furnaces, particularly consumable electrode vacuum arc furnaces. Excited reactive gas is injected into a stationary furnace arc zone, thus accelerating the reduction reactions which purify the metal being melted. Additionally, a cooled condensation surface is disposed within the furnace to reduce the partial pressure of water in the furnace, which also fosters the reduction reactions which result in a purer produced ingot. Methods and means are provided for maintaining the stationary arc zone, thereby reducing the opportunity for contaminants evaporated from the arc zone to be reintroduced into the produced ingot.

  6. Electrode Evaporation Effects on Air Arc Behavior

    NASA Astrophysics Data System (ADS)

    Li, Xingwen; Chen, Degui; Li, Rui; Wu, Yi; Niu, Chunping

    2008-06-01

    A numerical study of the effects of copper and silver vapours on the air arc behavior is performed. The commercial software FLUENT is adapted and modified to develop a two-dimensional magneto-hydrodynamic (MHD) models of arc with the thermodynamic properties and transport coefficients, net emission coefficient for the radiation model of 99% ai-1% Cu, 99% air-1% Ag, and pure air, respectively. The simulation result demonstrates that vaporization of the electrode material may cool the arc center region and reduce the arc velocity. The effects of Ag vapour are stronger compared to those of Cu vapour.

  7. Automatic Control Of Length Of Welding Arc

    NASA Technical Reports Server (NTRS)

    Iceland, William F.

    1991-01-01

    Nonlinear relationships among current, voltage, and length stored in electronic memory. Conceptual microprocessor-based control subsystem maintains constant length of welding arc in gas/tungsten arc-welding system, even when welding current varied. Uses feedback of current and voltage from welding arc. Directs motor to set position of torch according to previously measured relationships among current, voltage, and length of arc. Signal paths marked "calibration" or "welding" used during those processes only. Other signal paths used during both processes. Control subsystem added to existing manual or automatic welding system equipped with automatic voltage control.

  8. The Abundance of Large Arcs From CLASH

    NASA Astrophysics Data System (ADS)

    Xu, Bingxiao; Postman, Marc; Meneghetti, Massimo; Coe, Dan A.; Clash Team

    2015-01-01

    We have developed an automated arc-finding algorithm to perform a rigorous comparison of the observed and simulated abundance of large lensed background galaxies (a.k.a arcs). We use images from the CLASH program to derive our observed arc abundance. Simulated CLASH images are created by performing ray tracing through mock clusters generated by the N-body simulation calibrated tool -- MOKA, and N-body/hydrodynamic simulations -- MUSIC, over the same mass and redshift range as the CLASH X-ray selected sample. We derive a lensing efficiency of 15 ± 3 arcs per cluster for the X-ray selected CLASH sample and 4 ± 2 arcs per cluster for the simulated sample. The marginally significant difference (3.0 σ) between the results for the observations and the simulations can be explained by the systematically smaller area with magnification larger than 3 (by a factor of ˜4) in both MOKA and MUSIC mass models relative to those derived from the CLASH data. Accounting for this difference brings the observed and simulated arc statistics into full agreement. We find that the source redshift distribution does not have big impact on the arc abundance but the arc abundance is very sensitive to the concentration of the dark matter halos. Our results suggest that the solution to the "arc statistics problem" lies primarily in matching the cluster dark matter distribution.

  9. Unstable behavior of anodic arc discharge for synthesis of nanomaterials

    NASA Astrophysics Data System (ADS)

    Gershman, Sophia; Raitses, Yevgeny

    2016-09-01

    A short carbon arc operating with a high ablation rate of the graphite anode exhibits a combined motion of the arc and the arc attachment to the anode. A characteristic time scale of this motion is in a 10‑3 s range. The arc exhibits a negative differential resistance before the arc motion occurs. Thermal processes in the arc plasma region interacting with the ablating anode are considered as possible causes of this unstable arc behavior. It is also hypothesized that the arc motion could potentially cause mixing of the various nanoparticles synthesized in the arc in the high ablation regime.

  10. Interactions between laser and arc plasma during laser-arc hybrid welding of magnesium alloy

    NASA Astrophysics Data System (ADS)

    Liu, Liming; Chen, Minghua

    2011-09-01

    This paper presents the results of the investigation on the interactions between laser and arc plasma during laser-arc hybrid welding on magnesium alloy AZ31B using the spectral diagnose technique. By comparably analyzing the variation in plasma information (the shape, the electron temperature and density) of single tungsten inert gas (TIG) welding with the laser-arc hybrid welding, it is found that the laser affects the arc plasma through the keyhole forming on the workpiece. Depending on the welding parameters there are three kinds of interactions taking place between laser and arc plasma.

  11. Copper coating specification for the RHIC arcs

    SciTech Connect

    Blaskiewicz, M.

    2010-12-01

    Copper coating specifications for the RHIC arcs are given. Various upgrade scenarios are considered and calculations of resistive wall losses in the arcs are used to constrain the necessary quality and surface thickness of a copper coating. We find that 10 {mu}m of high purity copper will suffice.

  12. Purification of tantalum by plasma arc melting

    DOEpatents

    Dunn, Paul S.; Korzekwa, Deniece R.

    1999-01-01

    Purification of tantalum by plasma arc melting. The level of oxygen and carbon impurities in tantalum was reduced by plasma arc melting the tantalum using a flowing plasma gas generated from a gas mixture of helium and hydrogen. The flowing plasma gases of the present invention were found to be superior to other known flowing plasma gases used for this purpose.

  13. Preventing Arc Welding From Damaging Electronics

    NASA Technical Reports Server (NTRS)

    Sargent, Noel; Mareen, D.

    1988-01-01

    Shielding technique developed to protect sensitive electronic equipment from damage due to electromagnetic disturbances produced by arc welding. Established acceptable alternative in instances in which electronic equipment cannot be removed prior to arc welding. Guidelines established for open, unshielded welds. Procedure applicable to robotics or computer-aided manufacturing.

  14. Risk assessment of metal vapor arcing

    NASA Technical Reports Server (NTRS)

    Hill, Monika C. (Inventor); Leidecker, Henning W. (Inventor)

    2009-01-01

    A method for assessing metal vapor arcing risk for a component is provided. The method comprises acquiring a current variable value associated with an operation of the component; comparing the current variable value with a threshold value for the variable; evaluating compared variable data to determine the metal vapor arcing risk in the component; and generating a risk assessment status for the component.

  15. Spinarc gas tungsten arc torch holder

    NASA Technical Reports Server (NTRS)

    Brace, D. F.; Crockett, J. L.

    1970-01-01

    Semiautomatic welding torch enables operator to control arc length, torch angle, and spring tension when welding small diameter aluminum tubing. Tungsten is preset for the weld to make arc initiation easier and to eliminate searching for the joint through a dark welding lens.

  16. Purification of tantalum by plasma arc melting

    SciTech Connect

    Dunn, P.S.; Korzekwa, D.R.

    1999-10-26

    Purification of tantalum by plasma arc melting is disclosed. The level of oxygen and carbon impurities in tantalum was reduced by plasma arc melting the tantalum using a flowing plasma gas generated from a gas mixture of helium and hydrogen. The flowing plasma gases of the present invention were found to be superior to other known flowing plasma gases used for this purpose.

  17. Steady rotation of the Cascade arc

    USGS Publications Warehouse

    Wells, Ray E.; McCaffrey, Robert

    2013-01-01

    Displacement of the Miocene Cascade volcanic arc (northwestern North America) from the active arc is in the same sense and at nearly the same rate as the present clockwise block motions calculated from GPS velocities in a North American reference frame. Migration of the ancestral arc over the past 16 m.y. can be explained by clockwise rotation of upper-plate blocks at 1.0°/m.y. over a linear melting source moving westward 1–4.5 km/m.y. due to slab rollback. Block motion and slab rollback are in opposite directions in the northern arc, but both are westerly in the southern extensional arc, where rollback may be enhanced by proximity to the edge of the Juan de Fuca slab. Similarities between post–16 Ma arc migration, paleomagnetic rotation, and modern GPS block motions indicate that the secular block motions from decadal GPS can be used to calculate long-term strain rates and earthquake hazards. Northwest-directed Basin and Range extension of 140 km is predicted behind the southern arc since 16 Ma, and 70 km of shortening is predicted in the northern arc. The GPS rotation poles overlie a high-velocity slab of the Siletzia terrane dangling into the mantle beneath Idaho (United States), which may provide an anchor for the rotations.

  18. Crustal thickening drives arc front migration

    NASA Astrophysics Data System (ADS)

    Karlstrom, Leif; Lee, Cin-Ty; Manga, Michael

    2014-05-01

    The location of volcanic arcs, relative to the trench evolves over time. Arc front migration has been observed in relic (Sierra Nevada, Andes) as well as active (Cascades) arcs, sometimes with cycles of retreat and return of the front towards the trench over millions of years. Other arcs, particularly where back-arc extension dominates, migrate more slowly, if at all. Coupled with arc migration there are systematic changes in the geochemistry of magmas such as the ratio of trace elements La/Yb and 87Sr/86Sr isotopes (e.g., Haschke et al., 2002). The position of active volcanic arcs relative to the trench is controlled by the location where melt is generated in the mantle wedge, in turn controlled by the geometry of subduction, and the processes that focus rising melt. Arc front migration is commonly attributed to variation in dip angle of the downgoing slab, delamination of overthickened crust, or to subduction erosion. Here we present an alternative hypothesis. Assuming mantle wedge melting is a largely temperature-dependant process, the maximum isotherm in the wedge sets arc front location. Isotherm location depends on slab angle, subduction velocity and wedge thermal diffusivity (England and Katz, 2010). It also depends on crustal thickness, which evolves as melt is transferred from the wedge to the crust. Arc front migration can thus occur purely through magmatic thickening of crust and lithosphere. Thickening rate is determined by the mantle melt flux into the crust, modulated by tectonics and surface erosion. It is not steady in time, as crustal thickening progressively truncates the mantle melt column and eventually shuts it off. Thus slab angle need not change, and in the absence of other contribution processes front location and crustal thickness have long-time steady state values. We develop a quantitative model for arc front migration that is consistent with published arc front data, and explains why arc fronts do not move when there is extension, such

  19. Numerical Study on Arc Plasma Behavior During Arc Commutation Process in Direct Current Circuit Breaker

    NASA Astrophysics Data System (ADS)

    Yang, Fei; Ma, Ruiguang; Wu, Yi; Sun, Hao; Niu, Chunping; Rong, Mingzhe

    2012-02-01

    This paper focuses on the numerical investigation of arc plasma behavior during arc commutation process in a medium-voltage direct current circuit breaker (DCCB) contact system. A three-dimensional magneto-hydrodynamic (MHD) model of air arc plasma in the contact system of a DCCB is developed, based on commercial software FLUENT. Coupled electromagnetic and gas dynamic interactions are considered as usual, and a thin layer of nonlinear electrical resistance elements is used to represent the voltage drop of plasma sheath and the formation of new arc root. The distributions of pressure, temperature, gas flow and current density of arc plasma in arc region are calculated. The simulation results indicate that the pressure distribution related to the contact system has a strong effect on the arc commutation process, arising from the change of electrical conductivity in the arc root region. In DCCB contact system, the pressure of arc root region will be concentrated and higher if the space above the moving contact is enclosed, which is not good for arc root commutation. However, when the region is opened, the pressure distribution would be lower and more evenly, which is favorable for the arc root commutation.

  20. Laser assisted arc welding for aluminum alloys

    SciTech Connect

    Fuerschbach, P.W.

    2000-01-01

    Experiments have been performed using a coaxial end-effector to combine a focused laser beam and a plasma arc. The device employs a hollow tungsten electrode, a focusing lens, and conventional plasma arc torch nozzles to co-locate the focused beam and arc on the workpiece. Plasma arc nozzles were selected to protect the electrode from laser generated metal vapor. The project goal is to develop an improved fusion welding process that exhibits both absorption robustness and deep penetration for small scale (<1.5 mm thickness) applications. On aluminum alloys 6061 and 6111, the hybrid process has been shown to eliminate hot cracking in the fusion zone. Fusion zone dimensions for both stainless steel and aluminum were found to be wider than characteristic laser welds, and deeper than characteristic plasma arc welds.

  1. Arc burst pattern analysis fault detection system

    NASA Technical Reports Server (NTRS)

    Russell, B. Don (Inventor); Aucoin, B. Michael (Inventor); Benner, Carl L. (Inventor)

    1997-01-01

    A method and apparatus are provided for detecting an arcing fault on a power line carrying a load current. Parameters indicative of power flow and possible fault events on the line, such as voltage and load current, are monitored and analyzed for an arc burst pattern exhibited by arcing faults in a power system. These arcing faults are detected by identifying bursts of each half-cycle of the fundamental current. Bursts occurring at or near a voltage peak indicate arcing on that phase. Once a faulted phase line is identified, a comparison of the current and voltage reveals whether the fault is located in a downstream direction of power flow toward customers, or upstream toward a generation station. If the fault is located downstream, the line is de-energized, and if located upstream, the line may remain energized to prevent unnecessary power outages.

  2. Low voltage arc formation in railguns

    DOEpatents

    Hawke, R.S.

    1985-08-05

    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile.

  3. Low voltage arc formation in railguns

    DOEpatents

    Hawke, Ronald S.

    1987-01-01

    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile.

  4. Low voltage arc formation in railguns

    DOEpatents

    Hawke, R.S.

    1987-11-17

    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile. 2 figs.

  5. Thermoacoustic energy effects in electrical arcs.

    PubMed

    Capelli-Schellpfeffer, M; Miller, G H; Humilier, M

    1999-10-30

    Electrical arcs commonly occur in electrical injury incidents. Historically, safe work distances from an energized surface along with personal barrier protection have been employee safety strategies used to minimize electrical arc hazard exposures. Here, the two-dimensional computational simulation of an electrical arc explosion is reported using color graphics to depict the temperature and acoustic force propagation across the geometry of a hypothetical workroom during a time from 0 to 50 ms after the arc initiation. The theoretical results are compared to the experimental findings of staged tests involving a mannequin worker monitored for electrical current flow, temperature, and pressure, and reported data regarding neurologic injury thresholds. This report demonstrates a credible link between electrical explosions and the risk for pressure (acoustic) wave trauma. Our ultimate goal is to protect workers through the design and implementation of preventive strategies that properly account for all electrical arc-induced hazards, including electrical, thermal, and acoustic effects. PMID:10842616

  6. Sensor Control of Robot Arc Welding

    NASA Technical Reports Server (NTRS)

    Sias, F. R., Jr.

    1983-01-01

    The potential for using computer vision as sensory feedback for robot gas-tungsten arc welding is investigated. The basic parameters that must be controlled while directing the movement of an arc welding torch are defined. The actions of a human welder are examined to aid in determining the sensory information that would permit a robot to make reproducible high strength welds. Special constraints imposed by both robot hardware and software are considered. Several sensory modalities that would potentially improve weld quality are examined. Special emphasis is directed to the use of computer vision for controlling gas-tungsten arc welding. Vendors of available automated seam tracking arc welding systems and of computer vision systems are surveyed. An assessment is made of the state of the art and the problems that must be solved in order to apply computer vision to robot controlled arc welding on the Space Shuttle Main Engine.

  7. Three-dimensional modeling of the plasma arc in arc welding

    SciTech Connect

    Xu, G.; Tsai, H. L.; Hu, J.

    2008-11-15

    Most previous three-dimensional modeling on gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) focuses on the weld pool dynamics and assumes the two-dimensional axisymmetric Gaussian distributions for plasma arc pressure and heat flux. In this article, a three-dimensional plasma arc model is developed, and the distributions of velocity, pressure, temperature, current density, and magnetic field of the plasma arc are calculated by solving the conservation equations of mass, momentum, and energy, as well as part of the Maxwell's equations. This three-dimensional model can be used to study the nonaxisymmetric plasma arc caused by external perturbations such as an external magnetic field. It also provides more accurate boundary conditions when modeling the weld pool dynamics. The present work lays a foundation for true three-dimensional comprehensive modeling of GTAW and GMAW including the plasma arc, weld pool, and/or electrode.

  8. Three-dimensional modeling of the plasma arc in arc welding

    NASA Astrophysics Data System (ADS)

    Xu, G.; Hu, J.; Tsai, H. L.

    2008-11-01

    Most previous three-dimensional modeling on gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) focuses on the weld pool dynamics and assumes the two-dimensional axisymmetric Gaussian distributions for plasma arc pressure and heat flux. In this article, a three-dimensional plasma arc model is developed, and the distributions of velocity, pressure, temperature, current density, and magnetic field of the plasma arc are calculated by solving the conservation equations of mass, momentum, and energy, as well as part of the Maxwell's equations. This three-dimensional model can be used to study the nonaxisymmetric plasma arc caused by external perturbations such as an external magnetic field. It also provides more accurate boundary conditions when modeling the weld pool dynamics. The present work lays a foundation for true three-dimensional comprehensive modeling of GTAW and GMAW including the plasma arc, weld pool, and/or electrode.

  9. The Ophiolite - Oceanic Fore-Arc Connection

    NASA Astrophysics Data System (ADS)

    Reagan, M. K.; Pearce, J. A.; Stern, R. J.; Ishizuka, O.; Petronotis, K. E.

    2014-12-01

    Miyashiro (1973, EPSL) put forward the hypothesis that many ophiolites are generated in subduction zone settings. More recently, ophiolitic sequences including MORB-like basalts underlying boninites or other subduction-related rock types have been linked to near-trench spreading during subduction infancy (e.g., Stern and Bloomer, 1992, GSA Bull.; Shervais, 2001, G-cubed; Stern et al., 2012, Lithos.). These contentions were given strong support by the results of Shinkai 6500 diving in the Izu-Bonin-Mariana (IBM) fore-arc (e.g., Reagan et al., 2010, G-cubed; Ishizuka et al., 2011, EPSL; Reagan et al., 2013, EPSL). Based on widely spaced dives and grab sampling at disbursed dive stops, these studies concluded that the most abundant and most submerged volcanic rocks in the IBM fore-arc are MORB-like basalts (fore-arc basalts or FAB), and that these basalts appear to be part of a crustal sequence of gabbro, dolerite, FAB, boninite, and normal arc lavas overlying depleted peridotite. This ophiolitic sequence was further postulated to make up most or all of the IBM fore-arc from Guam to Japan, with similar magmatic ages (52 Ma FAB to 45 Ma arc) north to south, reflecting a western-Pacific wide subduction initiation event. At the time of this writing, IODP Expedition 352 is about to set sail, with a principal goal of drilling the entire volcanic sequence in the Bonin fore-arc. This drilling will define the compositional gradients through the volcanic sequence associated with subduction initiation and arc infancy, and test the hypothesized oceanic fore-arc - ophiolite genetic relationship. A primary goal of this expedition is to illustrate how mantle compositions and melting processes evolved during decompression melting of asthenosphere during subduction initiation to later flux melting of depleted mantle. These insights will provide important empirical constraints for geodynamic models of subduction initiation and early arc development.

  10. Plasma arc welding weld imaging

    NASA Technical Reports Server (NTRS)

    Rybicki, Daniel J. (Inventor); Mcgee, William F. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has a transparent shield cup disposed about the constricting nozzle, the cup including a small outwardly extending polished lip. A guide tube extends externally of the torch and has a free end adjacent to the lip. First and second optical fiber bundle assemblies are supported within the guide tube. Light from a strobe light is transmitted along one of the assemblies to the free end and through the lip onto the weld site. A lens is positioned in the guide tube adjacent to the second assembly and focuses images of the weld site onto the end of the fiber bundle of the second assembly and these images are transmitted along the second assembly to a video camera so that the weld site may be viewed continuously for monitoring the welding process.

  11. Zircon Recycling in Arc Intrusions

    NASA Astrophysics Data System (ADS)

    Miller, J.; Barth, A.; Matzel, J.; Wooden, J.; Burgess, S.

    2008-12-01

    Recycling of zircon has been well established in arc intrusions and arc volcanoes, but a better understanding of where and how zircons are recycled can help illuminate how arc magma systems are constructed. To that end, we are conducting age, trace element (including Ti-in-zircon temperatures; TzrnTi) and isotopic studies of zircons from the Late Cretaceous (95-85 Ma) Tuolumne Intrusive Suite (TIS) in the Sierra Nevada Batholith (CA). Within the TIS zircons inherited from ancient basement sources and/or distinctly older host rocks are uncommon, but recycled zircon antecrysts from earlier periods of TIS-related magmatism are common and conspicuous in the inner and two most voluminous units of the TIS, the Half Dome and Cathedral Peak Granodiorites. All TIS units have low bulk Zr ([Zr]<150 ppm) and thus low calculated zircon saturation temperatures (Tzrnsat). Within the Half Dome and Cathedral Peak, TzrnTi values are predominantly at or below average Tzrnsat, and there is no apparent correlation between age and TzrnTi. At temperatures appropriate for granodiorite/tonalite melt generation (at or above biotite dehydration; >825°C), [Zr] in the TIS is a factor of 2 to 3 lower than saturation values. Low [Zr] in TIS rocks might be attributed to a very limited supply of zircon in the source, by disequilibrium melting and rapid melt extraction [1], by melting reactions involving formation of other phases that can incorporate appreciable Zr [2], or by removal of zircon at an earlier stage of magma evolution. Based on a preliminary compilation of literature data, low [Zr] is common to Late Cretaceous N.A. Cordilleran granodioritic/tonalitic intrusions (typically <200 ppm and frequently 100-150 ppm for individual large intrusions or intrusive suites). We infer from this that [Zr] in anatectic melts is probably not limited by zircon supply and is primarily controlled by melting parameters. Comparison of the data from TIS with one of these intrusions, the smaller but otherwise

  12. Annular arc accelerator shock tube

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P. (Inventor)

    1976-01-01

    An annular arc accelerator shock tube employs a cold gas driver to flow a stream of gas from an expansion section through a high voltage electrode section to a test section, thus driving a shock wave in front of it. A glow discharge detects the shock wave and actuates a trigger generator which in turn fires spark-gap switches to discharge a bank of capacitors across a centered cathode and an annular anode in tandem electrode sections. The initial shock wave passes through the anode section from the cathode section thereby depositing energy into the flow gas without the necessity of any diaphragm opening in the gas flow from the expansion section through the electrode sections.

  13. Theoretical analysis of ARC constriction

    SciTech Connect

    Stoenescu, M.L.; Brooks, A.W.; Smith, T.M.

    1980-12-01

    The physics of the thermionic converter is governed by strong electrode-plasma interactions (emissions surface scattering, charge exchange) and weak interactions (diffusion, radiation) at the maximum interelectrode plasma radius. The physical processes are thus mostly convective in thin sheaths in front of the electrodes and mostly diffusive and radiative in the plasma bulk. The physical boundaries are open boundaries to particle transfer (electrons emitted or absorbed by the electrodes, all particles diffusing through some maximum plasma radius) and to convective, conductive and radiative heat transfer. In a first approximation the thermionic converter may be described by a one-dimensional classical transport theory. The two-dimensional effects may be significant as a result of the sheath sensitivity to radial plasma variations and of the strong sheath-plasma coupling. The current-voltage characteristic of the converter is thus the result of an integrated current density over the collector area for which the boundary conditions at each r determine the regime (ignited/unignited) of the local current density. A current redistribution strongly weighted at small radii (arc constriction) limits the converter performance and opens questions on constriction reduction possibilities. The questions addressed are the followng: (1) what are the main contributors to the loss of current at high voltage in the thermionic converter; and (2) is arc constriction observable theoretically and what are the conditions of its occurrence. The resulting theoretical problem is formulated and results are given. The converter electrical current is estimated directly from the electron and ion particle fluxes based on the spatial distribution of the electron/ion density n, temperatures T/sub e/, T/sub i/, electrical voltage V and on the knowledge of the transport coefficients. (WHK)

  14. Analysis of arc emission spectra of stainless steel electric arc furnace slag affected by fluctuating arc voltage.

    PubMed

    Aula, Matti; Mäkinen, Ari; Fabritius, Timo

    2014-01-01

    Control of chromium oxidation in the electric arc furnace (EAF) is a significant problem in stainless steel production due to variations of the chemical compositions in the EAF charge. One potential method to control chromium oxidation is to analyze the emission spectrum of the electric arc in order to find indicators of rising chromium content in slag. The purpose of this study was to determine if slag composition can be gained by utilizing electric arc emission spectra in the laboratory environment, despite electric arc voltage fluctuations and varying slag composition. The purpose of inducing voltage fluctuation was to simulate changes in the industrial EAF process. The slag samples were obtained from Outokumpu Stainless Oy Tornio Works, and three different arc currents were used. The correlation analysis showed that the emission spectra offer numerous peak ratios with high correlations to the X-ray fluorescence-measured slag CrO(x)/FeO(x) and MnO/SiO2 ratios. These ratios are useful in determining if the reduction agents have been depleted in the EAF. The results suggest that analysis of laboratory-scale electric arc emission spectra is suitable for indicating the high CrO(x) or MnO content of the slag despite the arc fluctuations. Reliable analysis of other slag components was not successful. PMID:24405950

  15. Propagation of back-arc extension into the arc lithosphere in the southern New Hebrides volcanic arc

    NASA Astrophysics Data System (ADS)

    Patriat, M.; Collot, J.; Danyushevsky, L.; Fabre, M.; Meffre, S.; Falloon, T.; Rouillard, P.; Pelletier, B.; Roach, M.; Fournier, M.

    2015-09-01

    New geophysical data acquired during three expeditions of the R/V Southern Surveyor in the southern part of the North Fiji Basin allow us to characterize the deformation of the upper plate at the southern termination of the New Hebrides subduction zone, where it bends eastward along the Hunter Ridge. Unlike the northern end of the Tonga subduction zone, on the other side of the North Fiji Basin, the 90° bend does not correspond to the transition from a subduction zone to a transform fault, but it is due to the progressive retreat of the New Hebrides trench. The subduction trench retreat is accommodated in the upper plate by the migration toward the southwest of the New Hebrides arc and toward the south of the Hunter Ridge, so that the direction of convergence remains everywhere orthogonal to the trench. In the back-arc domain, the active deformation is characterized by propagation of the back-arc spreading ridge into the Hunter volcanic arc. The N-S spreading axis propagates southward and penetrates in the arc, where it connects to a sinistral strike-slip zone via an oblique rift. The collision of the Loyalty Ridge with the New Hebrides arc, less than two million years ago, likely initiated this deformation pattern and the fragmentation of the upper plate. In this particular geodynamic setting, with an oceanic lithosphere subducting beneath a highly sheared volcanic arc, a wide range of primitive subduction-related magmas has been produced including adakites, island arc tholeiites, back-arc basin basalts, and medium-K subduction-related lavas.

  16. Initial development of the Banda Volcanic Arc

    SciTech Connect

    Hartono, H.M.S. )

    1990-06-01

    The initial development of the Banda Volcanic Arc can be determined by obtaining absolute ages of granites or volcanics, stratigraphy of the Eocene Metan Volcanics of Timor as the oldest formation containing Banda Volcanic Arc extrusives, and tectonic analysis. Banda Arc volcanism is the result of subduction of oceanic crust under the volcanic arc. The time of initial subduction is related to initial seafloor spreading between Australia and Antarctica, which is identical to geomagnetic polarity time 34 (82 mybp). Therefore, 82 mybp can be used as one of the criteria to determine the birth of the Banda Volcanic Arc. With present available time data for determining the birth of the Banda Volcanic Arc, the minimum age coincides with the age of the Metan Volcanics (Eocene, 39-56 mybp) and the maximum age coincides with initial seafloor spreading between Australia and Antarctica (82 mybp). This time span is too long. With the assumption that it needs some time to develop from transcurrent faulting to subduction and volcanism, it is proposed that the initial development of Banda Arc volcanism was during early Tertiary.

  17. Ultrasound in arc welding: a review.

    PubMed

    da Cunha, Tiago Vieira; Bohórquez, Carlos Enrique Niño

    2015-02-01

    During the last decade, the introduction of ultrasound techniques in arc welding with the intention of improving the operational performance and technical characteristics of the welding processes have been studied intensively. In this work is presented a broad review of the literature surrounding the utilization of this technique. Firstly, we discuss the use of traditional mechanical transducers to generate ultrasound in arc welding. Furthermore, we describe the various methods and their application in arc-welding processes. After, is presented a recent method of introducing ultrasonic energy in arc welding, which forms a potential alternative to the use of traditional mechanical type transducers. This method was originally developed in the late 1990s and is called arc with ultrasonic excitation of current. Here, the arc acts not only as a thermal source but also as an emission mechanism for ultrasound, acting directly on the weld pool. We presented and discussed various innovative concepts based on this method, which allows the introduction of ultrasonic energy in the arc welding without the need of any auxiliary device of welding. In addition, we also presented the variations of this method reported in the literature. Finally, we have described the respective effects attributed to the use of this method in the welding of different materials using various welding processes. PMID:25455190

  18. Towards a theory for Neptune's arc rings

    SciTech Connect

    Goldreich, P.; Tremaine, S.; Borderies, N.

    1986-08-01

    It is proposed that the incomplete rings of Neptune consist of a number of short arcs centered on the corotation resonances of a single satellite. The satellite must have a radius of the order of 100 km or more and move on an inclined orbit. Corotation resonances are located at potential maxima. Thus, mechanical energy dissipated by interparticle collisions must be continually replenished to prevent the arcs from spreading. It is shown that each corotation resonance is associated with a nearby Lindblad resonance, which excites the ring particles' orbital eccentricity, thus supplying the energy required to maintain the arc. The ultimate energy reservoir is the satellite's orbital energy. Therefore, interaction with the arcs damps the satellite's orbital inclination. The self-gravity of the arcs limits their contraction and enforces a relation between arc length and mass. The estimated arc masses are so small, of the order of 10 to the 16th g, that the satellite's orbital inclination suffers negligible decay over the age of the solar system. The inferred surface mass densities are comparable to those found in the major rings of Saturn and Uranus. 15 references.

  19. Crustal recycling and the aleutian arc

    SciTech Connect

    Kay, R.W.; Kay, S.M. )

    1988-06-01

    Two types of crustal recycling transfer continental crust back into its mantle source. The first of these, upper crustal recycling, involves elements that have been fractionated by the hydrosphere-sediment system, and are subducted as a part of the oceanic crust. The subduction process (S-process) then fractionates these elements, and those not removed at shallow tectonic levels and as excess components of arc magmas are returned to the mantle. Newly determined trace element composition of Pacific oceanic sedimants are variable and mixing is necessary during the S-process, if sediment is to provide excess element in the ratios observed in Aleutian arc magmas. Only a small fraction of the total sediment subducted at the Aleutian trench is required to furnish the excess elements in Aleutian arc magmas. Ba and {sub 10}Be data indicate that this small fraction includes a contribution from the youngest subducted sediment. The second type of recycling, lower crustal recycling, involves crystal cumulates of both arc and oceanic crustal origin, and residues from crustal melting within arc crust. Unlike the silicic sediments, recycled lower crust is mafic to ultramafic in composition. Trace element analyses of xenoliths representing Aleutian arc lower crust are presented. Recycling by delamination of lower crust and attached mantle lithosphere may occur following basalt eclogite phase transformations that are facilitated by terrane suturing events that weld oceanic island arcs to the continents. The relative importance of upper and lower crustal recycling exerts a primary control on continental crustal composition.

  20. Contribution For Arc Temperature Affected By Current Increment Ratio At Peak Current In Pulsed Arc

    NASA Astrophysics Data System (ADS)

    Kano, Ryota; Mitubori, Hironori; Iwao, Toru

    2015-11-01

    Tungsten Inert Gas (TIG) Welding is one of the high quality welding. However, parameters of the pulsed arc welding are many and complicated. if the welding parameters are not appropriate, the welding pool shape becomes wide and shallow.the convection of driving force contributes to the welding pool shape. However, in the case of changing current waveform as the pulse high frequency TIG welding, the arc temperature does not follow the change of the current. Other result of the calculation, in particular, the arc temperature at the reaching time of peak current is based on these considerations. Thus, the accurate measurement of the temperature at the time is required. Therefore, the objective of this research is the elucidation of contribution for arc temperature affected by current increment ratio at peak current in pulsed arc. It should obtain a detail knowledge of the welding model in pulsed arc. The temperature in the case of increment of the peak current from the base current is measured by using spectroscopy. As a result, when the arc current increases from 100 A to 150 A at 120 ms, the transient response of the temperature didn't occur during increasing current. Thus, during the current rise, it has been verified by measuring. Therefore, the contribution for arc temperature affected by current increment ratio at peak current in pulsed arc was elucidated in order to obtain more knowledge of welding model of pulsed arc.

  1. Reconstruction of Late Cretaceous Magmatic Arcs in the Northern Andes: Single Versus Multiple Arc Systems

    NASA Astrophysics Data System (ADS)

    Cardona, A.; Jaramillo, J. S.; Leon, S.; Hincapie, S.; Mejia, D.; Patino, A. M.; Vanegas, J.; Zapata, S.; Valencia, V.; Jimenez, G.; Monsalve, G.

    2014-12-01

    Although magmatic rocks are major tracers of the geological evolution of convergent margins, pre-collisional events such as subduction erosion, collisional thrusting or late collisional strike slip segmentation may difficult the recognizing of multiple arc systems and therefore the existence of paleogeographic scenarios with multiple subduction systems. New field, U-Pb geochronology and whole rock geochemistry constraints from the northwestern segment of the Central Cordillera in the states of Antioquia and Caldas (Colombia) are used to understand the nature of the Late Cretaceous arc magmatism and evaluate the existence of single or multiple Pacific and Caribbean arc systems in the growth of the Northwestern Andes. The new results integrated with additional field and published information is used to suggest the existence of at least three different magmatic arcs. (1) An Eastern Continental arc built within a well defined Permian to Triassic continental crust that record a protracted 90-70 Ma magmatic evolution, (2) a 90-80 arc formed within attenuated continental crust and associated oceanic crust, (3) 90-88 Ma arc formed over a Late Cretaceous plateau crust. The eastern arcs were formed as part of double eastern vergent subduction system, where the most outboard arc represent a fringing arc formed over detached fragments of continental crust, whereas the easternmost continental arc growth by the closure an subduction of and older and broad Triassic to Early Jurassic back-arc ocean. Its closure also end up in ophiolite emplacement. The third allochtonous oceanic arc was formed over the Caribbean plateau crust and was accreted to the continental margin in the Late Cretaceous. Ongoing paleomagnetic, deformational, gravimetric and basin analysis will be integrate to test this model and understand the complex Late Cretaceous tectonic evolution of the Northern Andes.

  2. Modeling Multi-Arc Spraying Systems

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.

    2016-06-01

    The use of plasma as energy source in thermal spraying enables among others the processing of feed stock materials with very high melting temperatures as coating materials. New generation multi-arc plasma spraying systems are widely spread and promise several advantages in comparison to the conventional single-arc systems. Numerical modeling of multi-arc plasma spraying offers the possibility to increase the understanding about this process. This study focuses on the numerical modeling of three-cathode spraying systems, introducing the recent activities in this field and discussing the numerical aspects which influence the prediction power of the models.

  3. Electrical Arc Ignition Testing for Constellation Program

    NASA Technical Reports Server (NTRS)

    Sparks, Kyle; Gallus, Timothy; Smith, Sarah

    2009-01-01

    NASA Johnson Space Center (JSC) Materials and Processes Branch requested that NASA JSC White Sands Test Facility (WSTF) perform testing for the Constellation Program to evaluate the hazard of electrical arc ignition of materials that could be in close proximity to batteries. Specifically, WSTF was requested to perform wire-break electrical arc tests to determine the current threshold for ignition of generic cotton woven fabric samples with a fixed voltage of 3.7 V, a common voltage for hand-held electrical devices. The wire-break test was developed during a previous test program to evaluate the hazard of electrical arc ignition inside the Extravehicular Mobility Unit [1].

  4. Melting Efficiency During Plasma Arc Welding

    NASA Technical Reports Server (NTRS)

    McClure, J.C.; Evans, D. M.; Tang, W.; Nunes, A. C.

    1999-01-01

    A series of partial penetration Variable Polarity Plasma Arc welds were made at equal power but various combinations of current and voltage on 2219 aluminum. Arc Efficiency was measured calorimetrically and ranged between 48% and 66%. Melting efficiency depends on the weld pool shape. Increased current increases the melting efficiency as it increases the depth to width ratio of the weld pool. Higher currents are thought to raise arc pressure and depress the liquid at the bottom of the weld pool causing a more nearly two dimensional heat flow condition.

  5. Formation of the G-ring arc

    NASA Astrophysics Data System (ADS)

    Araujo, N. C. S.; Vieira Neto, E.; Foryta, D. W.

    2016-05-01

    Since 2004, the images obtained by Cassini spacecraft's on-board cameras have revealed the existence of several small satellites in the Saturn system. Some of these small satellites are embedded in arcs of particles. While these satellites and their arcs are known to be in corotation resonances with Mimas, their origin remains unknown. This work investigates one possible process for capturing bodies into a corotation resonance, which involves raising the eccentricity of a perturbing body. Therefore, through numerical simulations and analytical studies, we show a scenario that the excitation of Mimas' eccentricity could capture particles in a corotation resonance and given a possible explanation for the origin for the arcs.

  6. Modeling Multi-Arc Spraying Systems

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.

    2016-04-01

    The use of plasma as energy source in thermal spraying enables among others the processing of feed stock materials with very high melting temperatures as coating materials. New generation multi-arc plasma spraying systems are widely spread and promise several advantages in comparison to the conventional single-arc systems. Numerical modeling of multi-arc plasma spraying offers the possibility to increase the understanding about this process. This study focuses on the numerical modeling of three-cathode spraying systems, introducing the recent activities in this field and discussing the numerical aspects which influence the prediction power of the models.

  7. Formation of the G-ring arc

    NASA Astrophysics Data System (ADS)

    Araujo, N. C. S.; Vieira Neto, E.; Foryta, D. W.

    2016-09-01

    Since 2004, the images obtained by the Cassini spacecraft's on-board cameras have revealed the existence of several small satellites in the Saturn system. Some of these small satellites are embedded in arcs of particles. While these satellites and their arcs are known to be in corotation resonances with Mimas, their origin remains unknown. This work investigates one possible process for capturing bodies into a corotation resonance, which involves increasing the eccentricity of a perturbing body. Therefore, through numerical simulations and analytical studies, we show a scenario in which the excitation of Mimas's eccentricity could capture particles in a corotation resonance. This is a possible explanation for the origin of the arcs.

  8. Metal vapor arc switch electromagnetic accelerator technology

    NASA Technical Reports Server (NTRS)

    Mongeau, P. P.

    1984-01-01

    A multielectrode device housed in an insulator vacuum vessel, the metal vapor vacuum switch has high power capability and can hold off voltages up to the 100 kilovolt level. Such switches can be electronically triggered and can interrupt or commutate at a zero current crossing. The physics of arc initiation, arc conduction, and interruption are examined, including material considerations; inefficiencies; arc modes; magnetic field effects; passive and forced extinction; and voltage recovery. Heating, electrode lifetime, device configuration, and external circuit configuration are discussed. The metal vapor vacuum switch is compared with SCRs, GTOs, spark gaps, ignitrons, and mechanical breakers.

  9. The Global Array of Primitve Arc Melts

    NASA Astrophysics Data System (ADS)

    Schmidt, M. W.; Jagoutz, O. E.

    2015-12-01

    A longstanding question concerns the nature of the melts forming in the subarc mantle and giving rise to arc magmatism. The global array of primitive arc melts (1180 volcanic rocks in 25 arcs extracted from the georoc database, calculated to be in equilibrium with mantle olivine) yields five principal melt types: calc-alkaline basalts and high-Mg andesites, tholeiitic basalts and high-Mg andesites, and shoshonitic or alkaline arc melts; many arcs have more than one type. Primitive calc-alkaline basalts occur in 11 arcs but most strikingly, 8 continental arcs (incl. Aleutians, Cascades, Japan, Mexico, Kamtschatka) have a continuous range of calc-alkaline basalts to high-Mg andesites with mostly 48-58 wt% SiO2. In each arc, these are spatially congruent, trace element patterns overlap, and major elements form a continuum. Their Ca-Mg-Si systematics suggests saturation in olivine+opx+cpx. We hence interpret the large majority of high-Mg andesites as derived from primitive calc-alkaline basalts through fractionation and reaction in the shallower mantle. Removal of anhydrous mantle phases at lower pressures increases SiO2 and H2O-contents while Mg# and Ni remain buffered to mantle values. Primitive tholeiitic basalts (Cascades, Kermadec, Marianas, Izu-Bonin, Japan, Palau, Sunda) have a much lesser subduction signal (e.g. in LILE) than the calc-alkaline suite. These tholeiites have been interpreted to form through decompression melting, but also characterize young intraoceanic arcs. In the two continental arcs with both tholeiitic and calc-alkaline primitive basalts (clearly distinct in trace patterns), there is no clear spatial segregation (Casacades, Japan). Three intraoceanic arcs (Marianas, Izu-Bonin, Tonga) have primitive tholeiitic, highly depleted high-Mg andesites (boninites) with HFSE and HREE slightly above primitive mantle values. These deviate in majors from the array formed by the basalts and calc-alkaline andesites suggesting that only these formed from a

  10. Linear volcanic segments in the Sunda Arc, Indonesia: Implications for arc lithosphere control upon volcano distribution

    NASA Astrophysics Data System (ADS)

    Macpherson, C. G.; Pacey, A.; McCaffrey, K. J.

    2012-12-01

    The overall curvature of many subduction zones is immediately apparent and the term island arc betrays the common assumption that subduction zone magmatism occurs in curved zones. This assumption can be expressed by approximating island arcs as segments of small circles on the surface of a sphere. Such treatments predict that the location of arc volcanoes is related to their vertical separation from the slab (in fact, the depth to seismicity in the slab) and require that the primary control on the locus of magmatism lies either within the subducted slab or the mantle wedge that separates the subducted and overriding lithospheric plates. The concept of curved arcs ignores longstanding observations that magmatism in many subduction systems occurs as segments of linearly arranged volcanic centres. Further evidence for this distribution comes from the close relationship between magmatism and large scale, arc-parallel fabrics in some arcs. Similarly, exposures of deep arc crust or mantle often reveal elongation of magmatic intrusions sub-parallel to the inferred trend of the arc. The Sunda Arc forms the Indonesian islands from Sumatra to Alor and provides an important test for models of volcano distribution for several reasons. First, Sunda has hosted abundant historic volcanic activity. Second, with the notable exception of Krakatau, every volcano in the arc is subaerial from base to cone and, therefore, can be readily identified where there is a suitable extent of local mapping that can be used to ground-truth satellite imagery. Third, there are significant changes in the stress regime along the length of the arc, allowing the influence of the upper plate to be evaluated by comparison of different arc segments. Finally, much of the Sunda Arc has proved difficult to accommodate in models that try to relate volcano distribution to the depth to the subducted slab. We apply an objective line-fitting protocol; the Hough Transform, to explore the distribution of volcanoes

  11. The ring arcs of Neptune

    NASA Technical Reports Server (NTRS)

    Peale, S. J.

    1991-01-01

    After the corotation resonance with an exterior satellite proved inapplicable to the Neptune ring arc confinement, a search for other mechanisms settled on the possible influence of Neptune's magnetic field. The areas of greater optical depth around the ring are much dustier than the low optical depth regions. These particles reside in a plasma; therefore, they must carry some charge. The components of Neptune's magnetic field on the equator at the radius of the ring arcs as a function of Neptunian longitude are shown. The components are those of an offset tilted dipole model. Although the dipole model is probably not a good approximation so close to the planet, the magnitude of the field that is given is probably close to the actual value. The possible importance of the magnetic field on the smallest particles in the ring is indicated by the ratio of the magnetic field on the smallest particles in the ring is indicated by the ratio of the magnetic force to the central gravitation attraction with the field strength of B = 0.01 gauss at the ring distance. A preferred position in the orbit for magnetically perturbed particles seems to require a commensurability between the rotation of the planet and the motion of the particle in the orbit. The period of rotation is assumed to be that of the radio bursts at 16.11 hours. However, without a model for the radio emission, one cannot be absolutely sure. Jupiter's decametric radiation depends on Io's orbital position as well as the rotation, so a synodic periodicity might be appropriate. But the latter radiation is highly directed, whereas Neptune's was seen all along the spacecraft trajectory on the 16.11 hour schedule, i.e., with no shifts in phase relative to a fixed longitude on the planet. The ring orbital period is 10.536 hours which is not commensurate with the rotation period. If the 16.11 hours is interpreted as a synodic period between the rotation and a satellite motion, the closest rotation periods to 16 hours

  12. Numerical investigations of arc behaviour in gas metal arc welding using ANSYS CFX

    NASA Astrophysics Data System (ADS)

    Schnick, M.; Fuessel, U.; Hertel, M.; Spille-Kohoff, A.; Murphy, A. B.

    2011-06-01

    Current numerical models of gas metal arc welding (GMAW) are trying to combine magnetohydrodynamics (MHD) models of the arc and volume of fluid (VoF) models of metal transfer. They neglect vaporization and assume an argon atmosphere for the arc region, as it is common practice for models of gas tungsten arc welding. These models predict temperatures above 20 000 K and a temperature distribution similar to tungsten inert gas (TIG) arcs. However, current spectroscopic temperature measurements in GMAW arcs demonstrate much lower arc temperatures. In contrast to TIG arcs they found a central local minimum of the radial temperature distribution. The paper presents a GMAW arc model that considers metal vapour and which is in a very good agreement with experimentally observed temperatures. Furthermore, the model is able to predict the local central minimum in the radial temperature and the radial electric current density distributions for the first time. The axially symmetric model of the welding torch, the work piece, the wire and the arc (fluid domain) implements MHD as well as turbulent mixing and thermal demixing of metal vapour in argon. The mass fraction of iron vapour obtained from the simulation shows an accumulation in the arc core and another accumulation on the fringes of the arc at 2000 to 5000 K. The demixing effects lead to very low concentrations of iron between these two regions. Sensitive analyses demonstrate the influence of the transport and radiation properties of metal vapour, and the evaporation rate relative to the wire feed. Finally the model predictions are compared with the measuring results of Zielińska et al.

  13. Vacuum arc plasma mass separator

    NASA Astrophysics Data System (ADS)

    Paperny, V. L.; Krasov, V. I.; Lebedev, N. V.; Astrakchantsev, N. V.; Chernikch, A. A.

    2015-02-01

    The propagation of a metal plasma flow in a transport system with a curvilinear magnetic field was studied experimentally. The flow was generated by a pulsed vacuum arc discharge with a composite (W+Fe) cathode. The ion energy measurements at the transport system output showed that all ion components were accelerated up to equal energies per charge unit, about 150 eV and 320 eV in the outer and inner areas of the curved plasma flow, respectively. The spatial separation of the atoms of the cathode material was measured at the system output by x-ray fluorescence spectrometry. The ions of the lighter element (Fe) were concentrated in the inner part of the cathodic plasma flow deflected by the magnetic field while the distribution of the heavy element (W) was substantially shifted toward the outer area of the flow. The maximum mass separation efficiency reached 45, the effective value being 7.7. Such a system is promising for use in plasma technology for reprocessing spent nuclear fuel, namely for the separation of the heavy radioactive fission product from nuclear waste.

  14. Lifespans of Cascade Arc volcanoes

    NASA Astrophysics Data System (ADS)

    Calvert, A. T.

    2015-12-01

    Compiled argon ages reveal inception, eruptive episodes, ages, and durations of Cascade stratovolcanoes and their ancestral predecessors. Geologic mapping and geochronology show that most Cascade volcanoes grew episodically on multiple scales with periods of elevated behavior lasting hundreds of years to ca. 100 kyr. Notable examples include the paleomag-constrained, few-hundred-year-long building of the entire 15-20 km3 Shastina edifice at Mt. Shasta, the 100 kyr-long episode that produced half of Mt. Rainier's output, and the 30 kyr-long episode responsible for all of South and Middle Sister. Despite significant differences in timing and rates of construction, total durations of active and ancestral volcanoes at discrete central-vent locations are similar. Glacier Peak, Mt. Rainier, Mt. Adams, Mt. Hood, and Mt. Mazama all have inception ages of 400-600 ka. Mt. St. Helens, Mt. Jefferson, Newberry Volcano, Mt. Shasta and Lassen Domefield have more recent inception ages of 200-300 ka. Only the Sisters cluster and Mt. Baker have established eruptive histories spanning less than 50 kyr. Ancestral volcanoes centered 5-20 km from active stratocones appear to have similar total durations (200-600 kyr), but are less well exposed and dated. The underlying mechanisms governing volcano lifecycles are cryptic, presumably involving tectonic and plumbing changes and perhaps circulation cycles in the mantle wedge, but are remarkably consistent along the arc.

  15. ATLAS DDM integration in ARC

    NASA Astrophysics Data System (ADS)

    Behrmann, G.; Cameron, D.; Ellert, M.; Kleist, J.; Taga, A.

    2008-07-01

    The Nordic Data Grid Facility (NDGF) consists of Grid resources running ARC middleware in Denmark, Finland, Norway and Sweden. These resources serve many virtual organisations and contribute a large fraction of total worldwide resources for the ATLAS experiment, whose data is distributed and managed by the DQ2 software. Managing ATLAS data within NDGF and between NDGF and other Grids used by ATLAS (the Enabling Grids for E-sciencE Grid and the Open Science Grid) presents a unique challenge for several reasons. Firstly, the entry point for data, the Tier 1 centre, is physically distributed among heterogeneous resources in several countries and yet must present a single access point for all data stored within the centre. The middleware framework used in NDGF differs significantly from other Grids, specifically in the way that all data movement and registration is performed by services outside the worker node environment. Also, the service used for cataloging the location of data files is different from other Grids but must still be useable by DQ2 and ATLAS users to locate data within NDGF. This paper presents in detail how we solve these issues to allow seamless access worldwide to data within NDGF.

  16. Magneto-plasma-dynamic arc thruster

    NASA Technical Reports Server (NTRS)

    Burkhart, J. A. (Inventor)

    1973-01-01

    The performance of a magnetoplasmadynamic arc thruster, in the 600 to 2,100 seconds specific impulse range, was improved by locating its cathode in the exhaust beam downstream of the anode and main propellant injection point.

  17. Stretched arc discharge in produced water.

    PubMed

    Cho, Y I; Wright, K C; Kim, H S; Cho, D J; Rabinovich, A; Fridman, A

    2015-01-01

    The objective of the present study was to investigate the feasibility of stretching an arc discharge in produced water to increase the volume of produced water treated by plasma. Produced water is the wastewater generated by hydraulic fracturing of shale during the production phase in shale-oil or shale-gas exploration. The electric conductivity of produced water is in the range of 50-200 mS/cm, which provides both a challenge and opportunity for the application of plasmas. Stretching of an arc discharge in produced water was accomplished using a ground electrode and two high-voltage electrodes: one positioned close to the ground electrode and the other positioned farther away from the ground. The benefit of stretching the arc is that the contact between the arc and water is significantly increased, resulting in more efficient plasma treatment in both performance and energy cost. PMID:25638080

  18. Laboratory arc furnace features interchangeable hearths

    NASA Technical Reports Server (NTRS)

    Armstrong, J. L.; Kruger, O. L.

    1967-01-01

    Laboratory arc furnace using rapidly interchangeable hearths gains considerable versatility in casting so that buttons or special shaped castings can be produced. It features a sight glass for observation.

  19. Stretched arc discharge in produced water

    NASA Astrophysics Data System (ADS)

    Cho, Y. I.; Wright, K. C.; Kim, H. S.; Cho, D. J.; Rabinovich, A.; Fridman, A.

    2015-01-01

    The objective of the present study was to investigate the feasibility of stretching an arc discharge in produced water to increase the volume of produced water treated by plasma. Produced water is the wastewater generated by hydraulic fracturing of shale during the production phase in shale-oil or shale-gas exploration. The electric conductivity of produced water is in the range of 50-200 mS/cm, which provides both a challenge and opportunity for the application of plasmas. Stretching of an arc discharge in produced water was accomplished using a ground electrode and two high-voltage electrodes: one positioned close to the ground electrode and the other positioned farther away from the ground. The benefit of stretching the arc is that the contact between the arc and water is significantly increased, resulting in more efficient plasma treatment in both performance and energy cost.

  20. ARC syndrome: an expanding range of phenotypes

    PubMed Central

    Eastham, K; McKiernan, P; Milford, D; Ramani, P; Wyllie, J; van't, H; Lynch, S; Morris, A

    2001-01-01

    AIM—To describe the clinical phenotype in infants with ARC syndrome, the association of arthrogryposis, renal tubular acidosis, and cholestasis.
METHODS—The medical records for six patients with ARC syndrome were reviewed, presenting over 10 years to three paediatric referral centres.
RESULTS—All patients had the typical pattern of arthrogryposis. Renal Fanconi syndrome was present in all but one patient, who presented with nephrogenic diabetes insipidus. Although all patients had severe cholestasis, serum γ glutamyltransferase values were normal. Many of our patients showed dysmorphic features or ichthyosis. All had recurrent febrile illnesses, diarrhoea, and failed to thrive. Blood films revealed abnormally large platelets.
CONCLUSIONS—ARC syndrome exhibits notable clinical variability and may not be as rare as previously thought. The association of Fanconi syndrome, ichthyosis, dysmorphism, jaundice, and diarrhoea has previously been reported as a separate syndrome: our observations indicate that it is part of the ARC spectrum.

 PMID:11668108

  1. 49 CFR 195.226 - Welding: Arc burns.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn...

  2. 49 CFR 195.226 - Welding: Arc burns.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn...

  3. 49 CFR 195.226 - Welding: Arc burns.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn...

  4. 49 CFR 195.226 - Welding: Arc burns.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn...

  5. 49 CFR 195.226 - Welding: Arc burns.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn...

  6. Arc voltage measurements of the hyperbaric MIG process

    SciTech Connect

    Huismann, G.; Hoffmeister, H.

    1996-12-01

    As a vital part of the MIG process, the arc controls the stability of the process, the melting of the filler wire and the base material. In order to control and describe the arc behavior, it is necessary to know the voltage- current- arc length relations, or the arc characteristics. Knowledge of arc characteristics is necessary for control of the MIG process and further automation of welding systems, in particular, at hyperbaric welding. In literature, information on arc characteristics for hyperbaric open arc pulsed process is not available so far. Therefore, in the present work, arc characteristics were measured for a pressure range of 1 to 16 bar. In measuring arc voltages and arc lengths of MIG arcs, specific problems are encountered as compared to TIG arcs where the distance between the electrode and work piece can be taken as the arc length and the ohmic voltage drop in the tungsten electrode is low. The movement of the electrode in the MIG process and the deformation of the molten wire end together with weld pool fluctuations are providing a complex system. For determining the arc characteristics certain simplifications are thus required which have been applied in this work. This paper presents a new concept on measuring arc lengths and voltages in the open MIG arc.

  7. Basins in ARC-continental collisions

    USGS Publications Warehouse

    Draut, Amy E.; Clift, Peter D.

    2012-01-01

    Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from

  8. Sensitivity of collapsed arc QA method for delivery errors in Volumetric Modulated Arc Therapy (VMAT)

    NASA Astrophysics Data System (ADS)

    Young, Tony; Xing, Aitang; Vial, Philp; Thwaites, David; Holloway, Lois; Arumugam, Sankar

    2015-01-01

    In this paper the sensitivity of an Electronic Portal Imaging Device (EPID) to detecting introduced Volumetric Arc Therapy (VMAT) treatment errors was studied using the Collapsed Arc method. Two clinical Head and Neck (H&N) and Prostate treatment plans had gantry dependent dose and MLC errors introduced to the plans. These plans were then delivered to an Elekta Synergy Linear Accelerator EPID and compared to the original treatment planning system Collapsed Arc dose matrix. With the Collapsed Arc technique the EPID was able to detect MLC errors down to 2mm and dose errors of down to 3% depending on the treatment plan complexity and gamma tolerance used.

  9. Arc distribution during the vacuum arc remelting of Ti-6Al-4V

    SciTech Connect

    Woodside, Charles Rigel; King, Paul E.; Nordlund, Chris

    2013-01-01

    Currently, the temporal distribution of electric arcs across the ingot during vacuum arc remelting (VAR) is not a known or monitored process parameter. Previous studies indicate that the distribution of arcs can be neither diffuse nor axisymmetric about the center of the furnace. Correct accounting for the heat flux, electric current flux, and mass flux into the ingot is critical to achieving realistic solidification models of the VAR process. The National Energy Technology Laboratory has developed an arc position measurement system capable of locating arcs and determining the arc distribution within an industrial VAR furnace. The system is based on noninvasive magnetic field measurements and a VAR specific form of the Biot–Savart law. The system was installed on a coaxial industrial VAR furnace at ATI Albany Operations in Albany, OR. This article reports on the different arc distributions observed during production of Ti-6Al-4V. It is shown that several characteristic arc distribution modes can develop. This behavior is not apparent in the existing signals used to control the furnace, indicating the measurement system is providing new information. It is also shown that the different arc distribution modes observed may impact local solidification times, particularly at the side wall.

  10. Arc Distribution During the Vacuum Arc Remelting of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Woodside, C. Rigel; King, Paul E.; Nordlund, Chris

    2013-02-01

    Currently, the temporal distribution of electric arcs across the ingot during vacuum arc remelting (VAR) is not a known or monitored process parameter. Previous studies indicate that the distribution of arcs can be neither diffuse nor axisymmetric about the center of the furnace. Correct accounting for the heat flux, electric current flux, and mass flux into the ingot is critical to achieving realistic solidification models of the VAR process. The National Energy Technology Laboratory has developed an arc position measurement system capable of locating arcs and determining the arc distribution within an industrial VAR furnace. The system is based on noninvasive magnetic field measurements and a VAR specific form of the Biot-Savart law. The system was installed on a coaxial industrial VAR furnace at ATI Albany Operations in Albany, OR. This article reports on the different arc distributions observed during production of Ti-6Al-4V. It is shown that several characteristic arc distribution modes can develop. This behavior is not apparent in the existing signals used to control the furnace, indicating the measurement system is providing new information. It is also shown that the different arc distribution modes observed may impact local solidification times, particularly at the side wall.

  11. Metal Vapor Arcing Risk Assessment Tool

    NASA Technical Reports Server (NTRS)

    Hill, Monika C.; Leidecker, Henning W.

    2010-01-01

    The Tin Whisker Metal Vapor Arcing Risk Assessment Tool has been designed to evaluate the risk of metal vapor arcing and to help facilitate a decision toward a researched risk disposition. Users can evaluate a system without having to open up the hardware. This process allows for investigating components at risk rather than spending time and money analyzing every component. The tool points to a risk level and provides direction for appropriate action and documentation.

  12. Hybrid Laser-Arc Welding Tanks Steels

    NASA Astrophysics Data System (ADS)

    Turichin, G.; Tsibulskiy, I.; Kuznetsov, M.; Akhmetov, A.; Klimova-Korsmik, O.

    2016-04-01

    The results investigate hybrid laser-arc welding of high strength steels using design responsible metallic construction and the highest strength body of vehicles. Welds from modern high strength steels grade Hardox 400, Hardox 450, Armox 600T and AB were created. High power fiber laser LS-15 with output 15 kW and arc rectifier VDU - 1500 DC were used in the experiment. Results of the metallographic research and mechanical tests are presented.

  13. 1981N1 - A Neptune arc?

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.

    1986-01-01

    An object in the vicinity of Neptune detected in 1981 by simultaneous stellar occultation measurements at observatories near Tucson, Arizona, was interpreted as a new Neptune satellite. A reinterpretation suggests that it may have instead been a Neptune arc similar to one observed in 1984. The 1981 object, however, did not occult the star during simultaneous observations at Flagstaff, Arizona. This result constrains possible arc geometries.

  14. Ion source with improved primary arc collimation

    DOEpatents

    Dagenhart, William K.

    1985-01-01

    An improved negative ion source is provided in which a self-biasing, molybdenum collimator is used to define the primary electron stream arc discharge from a filament operated at a negative potential. The collimator is located between the anode and the filament. It is electrically connected to the anode by means of an appropriate size resistor such that the collimator is biased at essentially the filament voltage during operation. Initially, the full arc voltage appears across the filament to collimator until the arc discharge strikes. Then the collimator biases itself to essentially filament potential due to current flow through the resistor thus defining the primary electron stream without intercepting any appreciable arc power. The collimator aperture is slightly smaller than the anode aperture to shield the anode from the arc power, thereby preventing the exposure of the anode to the full arc power which, in the past, has caused overheating and erosion of the anode collimator during extended time pulsed-beam operation of the source. With the self-biasing collimator of this invention, the ion source may be operated from short pulse periods to steady-state without destroying the anode.

  15. Structure of an energetic narrow discrete arc

    NASA Technical Reports Server (NTRS)

    Mcfadden, J. P.; Carlson, C. W.; Boehm, M. H.

    1990-01-01

    Particle distributions, waves, dc electric fields, and magnetic fields were measured by two sounding rockets at altitudes of 950 and 430 km through an energetic (greater than 5 keV) narrow (about 10 km) stable discrete arc. Although the payloads' magnetic footprints were separated by only 50 km, differences in the arc's structure were observed including the spatial width, peak energy, and characteristic spectra. The energetic electron precipitation included both slowly varying isotropic fluxes that formed an inverted-V energy-time signature and rapidly varying field-aligned fluxes at or below the isotropic spectral peak. The isotropic precipitation had a flux discontinuity inside the arc indicating the arc was present on a boundary between two different magnetospheric plasmas. Dispersive and nondispersive bursts of field-aligned electrons were measured throughout the arc, appearing over broad energy ranges or as monoenergetic beams. Dispersive bursts gave variable source distances less than 8000 km. Plateauing of some of the most intense bursts suggests that waves stabilized these electrons. During the lower altitude arc crossing, the field-aligned component formed a separate inverted-V energy-time signature whose peak energy was half the isotropic peak energy.

  16. Dynamics of a discrete auroral arc

    NASA Technical Reports Server (NTRS)

    Bruening, K.; Goertz, C. K.

    1986-01-01

    Porcupine Flight 4 data were used to determine the field-aligned currents associated with a southward moving discrete auroral arc in the postmidnight sector. Three different methods were used for determining the field-aligned current which should give identical results if the arcs are quasi-stationary and no parallel electric field exists between the payload and the dynamo region of the ionosphere. As long as the rocket is above the arc, the three methods agree. The integral of precipitating electron flux, the local magnetic field perturbations, and the divergence of the horizontal Pedersen current all indicate an upward current of 5 + or - 3 microamperes/sq m. Immediately north of the arc a strong downward current of about 10-20 microamperes/sq m is detected. The magnitude, however, is not well known because the rocket's velocity relative to the arc cannot be clearly established. Further north of the southward moving arc, the two methods that can be applied (magnetic field perturbations and divergence of the horizontal Pedersen current) yield contradictory results not only about the magnitude of the current but also about the direction of the current. It is suggested that this discrepancy is due to time-dependent electric field.

  17. Klystron Gun Arcing and Modulator Protection

    SciTech Connect

    Gold, S

    2004-05-04

    The demand for 500 kV and 265 amperes peak to power an X-Band klystron brings up protection issues for klystron faults and the energy dumped into the arc from the modulator. This situation is made worse when more than one klystron will be driven from a single modulator, such as the existing schemes for running two and eight klystrons. High power pulsed klystrons have traditionally be powered by line type modulators which match the driving impedance with the load impedance and therefore current limit at twice the operating current. Multiple klystrons have the added problems of a lower modulator source impedance and added stray capacitance, which converts into appreciable energy at high voltages like 500kV. SLAC has measured the energy dumped into klystron arcs in a single and dual klystron configuration at the 400 to 450 kV level and found interesting characteristics in the arc formation. The author will present measured data from klystron arcs powered from line-type modulators in several configurations. The questions arise as to how the newly designed solid-state modulators, running multiple tubes, will react to a klystron arc and how much energy will be dumped into the arc.

  18. Dynamics of a discrete auroral arc

    NASA Astrophysics Data System (ADS)

    Bruening, K.; Goertz, C. K.

    1986-06-01

    Porcupine Flight 4 data were used to determine the field-aligned currents associated with a southward moving discrete auroral arc in the postmidnight sector. Three different methods were used for determining the field-aligned current which should give identical results if the arcs are quasi-stationary and no parallel electric field exists between the payload and the dynamo region of the ionosphere. As long as the rocket is above the arc, the three methods agree. The integral of precipitating electron flux, the local magnetic field perturbations, and the divergence of the horizontal Pedersen current all indicate an upward current of 5 + or - 3 microamperes/sq m. Immediately north of the arc a strong downward current of about 10-20 microamperes/sq m is detected. The magnitude, however, is not well known because the rocket's velocity relative to the arc cannot be clearly established. Further north of the southward moving arc, the two methods that can be applied (magnetic field perturbations and divergence of the horizontal Pedersen current) yield contradictory results not only about the magnitude of the current but also about the direction of the current. It is suggested that this discrepancy is due to time-dependent electric field.

  19. Apparatus for gas-metal arc deposition

    DOEpatents

    Buhrmaster, Carol L.; Clark, Denis E.; Smartt, Herschel B.

    1991-01-01

    Apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment with the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspenion of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite.

  20. Method for gas-metal arc deposition

    DOEpatents

    Buhrmaster, Carol L.; Clark, Denis E.; Smartt, Herschel B.

    1990-01-01

    Method and apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment wiht the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspension of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite.

  1. Method for gas-metal arc deposition

    DOEpatents

    Buhrmaster, C.L.; Clark, D.E.; Smartt, H.B.

    1990-11-13

    Method and apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites are disclosed. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment with the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspension of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite. 1 fig.

  2. Recent ARC developments: Through modularity to interoperability

    NASA Astrophysics Data System (ADS)

    Smirnova, O.; Cameron, D.; Dóbé, P.; Ellert, M.; Frågåt, T.; Grønager, M.; Johansson, D.; Jönemo, J.; Kleist, J.; Kočan, M.; Konstantinov, A.; Kónya, B.; Márton, I.; Möller, S.; Mohn, B.; Nagy, Zs; Nilsen, J. K.; Ould Saada, F.; Qiang, W.; Read, A.; Rosendahl, P.; Roczei, G.; Savko, M.; Skou Andersen, M.; Stefán, P.; Szalai, F.; Taga, A.; Toor, S. Z.; Wäänänen, A.

    2010-04-01

    The Advanced Resource Connector (ARC) middleware introduced by NorduGrid is one of the basic Grid solutions used by scientists worldwide. While being well-proven in daily use by a wide variety of scientific applications at large-scale infrastructures like the Nordic DataGrid Facility (NDGF) and smaller scale projects, production ARC of today is still largely based on conventional Grid technologies and custom interfaces introduced a decade ago. In order to guarantee sustainability, true cross-system portability and standards-compliance based interoperability, the ARC community undertakes a massive effort of implementing modular Web Service (WS) approach into the middleware. With support from the EU KnowARC project, new components were introduced and the existing key ARC services got extended with WS technology based standard-compliant interfaces following a service-oriented architecture. Such components include the hosting environment framework, the resource-coupled execution service, the re-engineered client library, the self-healing storage solution and the peer-to-peer information system, to name a few. Gradual introduction of these new services and client tools into the production middleware releases is carried out together with NDGF and thus ensures a smooth transition to the next generation Grid middleware. Standard interfaces and modularity of the new component design are essential for ARC contributions to the planned Universal Middleware Distribution of the European Grid Initiative.

  3. Making and breaking an Island arc: a new perspective from the Oligocene Kyushu-Palau arc

    NASA Astrophysics Data System (ADS)

    Ishizuka, O.; Taylor, R. N.; Yuasa, M.; Ohara, Y.

    2010-12-01

    The Kyushu-Palau Ridge (KPR) is a 2000km long remnant island arc that is separated from the active Izu-Bonin-Mariana (IBM) arc system by a series of spreading and rift basins. In this study we present 40Ar/39Ar ages and geochemical data for new samples taken from the entire length of the Kyushu-Palau arc. As such, this data provides the first comprehensive evaluation of temporal and spatial changes that are present in an Eocene-Oligocene island arc. Kyushu-Palau arc geochemistry is evaluated alongside new data from the conjugate arc which is stranded within the IBM fore-arc. Boninitic magmatism gave way to transitional arc suites including high-Mg andesites at c. 45 Ma (Ishizuka et al., 2006). After the transitional 45-41 Ma period, a mature arc system developed through the Eocene-Oligocene time: This volcanism is now preserved as the KPR. Dating results from 33 sites indicate that the KPR was active between 25 and 43 Ma, but the majority of the exposed volcanism occurred in the final phase of this arc, between 25 and 27 Ma. Unlike the IBM, the KPR has only limited systematic along-arc trends and does not include any of the strongly HIMU lavas found to the south of Izu-Bonin. Two components found along the KPR are found to have geochemistry that suggests an origin in the supra-subduction mantle rather than from the descending ocean crust. Firstly, in the south of the arc, EM-2-like lavas are present where the West Philippine Basin was in the final stages of spreading. Secondly, EM-1-like lavas are present in a restricted section of the arc, suggesting a localised heterogeneity. Subduction flux beneath the KPR generally imparted a Pb isotope vector towards low Δ8/4 (<15) and moderate 206Pb/204Pb (>19). This is a similar trend to the Eocene/Oligocene lavas found on the eastern side of the basins which split the arc at 25Ma. Another geochemical heterogeneity is found at the KPR-Daito Ridge intersection where arc magmatism occurred on pre-existing Daito Ridge crust: a

  4. Direct probing of anode arc root dynamics and voltage instability in a dc non-transferred arc plasma jet

    NASA Astrophysics Data System (ADS)

    Ghorui, S.; Tiwari, N.; Meher, K. C.; Jan, A.; Bhat, A.; Sahasrabudhe, S. N.

    2015-12-01

    The transient dynamics of the anode arc root in a dc non-transferred arc plasma torch is captured through fast photography and directly correlated with the associated voltage instability for the first time. The coexistence of multiple arc roots, the transition to a single arc root, root formation and extinction are investigated for the steady, takeover and re-strike modes of the arc. Contrary to the usual concept, the emerging plasma jet of a dc non-transferred arc plasma torch is found to carry current. An unusually long self-propelled arc plasma jet, a consequence of the phenomenon, is demonstrated.

  5. THE REDSHIFT DISTRIBUTION OF GIANT ARCS IN THE SLOAN GIANT ARCS SURVEY

    SciTech Connect

    Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.; Oguri, Masamune; Hennawi, Joseph F.; Sharon, Keren; Dahle, Haakon

    2011-01-20

    We measure the redshift distribution of a sample of 28 giant arcs discovered as a part of the Sloan Giant Arcs Survey. Gemini/GMOS-North spectroscopy provides precise redshifts for 24 arcs, and 'redshift desert' constrains for the remaining 4 arcs. This is a direct measurement of the redshift distribution of a uniformly selected sample of bright giant arcs, which is an observable that can be used to inform efforts to predict giant arc statistics. Our primary giant arc sample has a median redshift z = 1.821 and nearly two-thirds of the arcs, 64%, are sources at z {approx}> 1.4, indicating that the population of background sources that are strongly lensed into bright giant arcs resides primarily at high redshift. We also analyze the distribution of redshifts for 19 secondary strongly lensed background sources that are not visually apparent in Sloan Digital Sky Survey imaging, but were identified in deeper follow-up imaging of the lensing cluster fields. Our redshift sample for the secondary sources is not spectroscopically complete, but combining it with our primary giant arc sample suggests that a large fraction of all background galaxies that are strongly lensed by foreground clusters reside at z {approx}> 1.4. Kolmogorov-Smirnov tests indicate that our well-selected, spectroscopically complete primary giant arc redshift sample can be reproduced with a model distribution that is constructed from a combination of results from studies of strong-lensing clusters in numerical simulations and observational constraints on the galaxy luminosity function.

  6. Arc distribution and motion during the vacuum arc remelting process as detected with a magnetostatic approach

    NASA Astrophysics Data System (ADS)

    Woodside, Rigel

    Currently, the temporal arc distribution across the ingot during the vacuum arc remelting (VAR) process is not a known or monitored parameter. It is has previously been shown that arcs can spatially constrict during VAR, and this constriction can lead to undesired defects in the material. Additionally, correct accounting for the heat flux, electric current flux, and mass flux into the ingot are critical to achieving realistic solidification models of the VAR process. An arc position measurement system capable of locating slow moving arcs and determining the arc distribution within an industrial VAR furnace was developed. The system is based on non-invasive magnetic field measurements and VAR specific forms of the magnetostatic Biot-Savart Law. Electromagnetic finite element modeling assists the analysis. The measurement system was installed on an industrial VAR furnace at the ATI facility in Albany, OR. Data were taken during the commercial production of titanium alloy. Although more arcs were present than could be resolved with the number of sensors applied, overall arc distribution shifts were detected. Arc distribution and motion during the final production of Ti-6Al-4V were examined. It is shown that several characteristic arc distribution modes can develop. This behavior was not apparent in the existing signals used to control the furnace, indicating the measurement system provides new information. Finally, a solidification model was used to assess the potential impact of the different arc distribution modes. It is shown the magnetohydrodynamic stirring patterns in the molten pool are affected, which results in localized variations in solidification times in particular at the side wall.

  7. Crustal thickening drives arc front migration

    NASA Astrophysics Data System (ADS)

    Karlstrom, L.; Lee, C.; Manga, M.

    2012-12-01

    The position of active volcanism relative to the trench in arcs depends on melt focusing processes within the mantle wedge and the geometric parameters of subduction. Arc front migration has been observed in relic (Sierra Nevada, Andes) as well as active (Cascades) arcs, sometimes with cycles of retreat and return of the front towards the trench over millions of years. Other arcs, particularly where backarc extension dominates, exhibit a more stationary front in time relative to the trench. In addition, crustal indices of magmatism as measured by the ratio of trace elements La/Yb or isotopes 87}Sr/{86Sr covary with arc front migration (e.g., Haschke et al., 2002). Arc front migration is commonly attributed to variation in dip angle of the downgoing slab, delamination of overthickened crust, or to subduction erosion. Here we present an alternative hypothesis. Assuming mantle wedge melting is a largely temperature-dependant process, the maximum isotherm in the wedge sets arc front location. Isotherm location depends on slab angle, subduction velocity and wedge thermal diffusivity (England and Katz, 2010). It also depends on crustal thickness, which evolves as melt is transferred from the wedge to the crust. Arc front migration can thus occur purely through magmatic thickening of crust. Thickening proceeds through intrusive as well as extrusive volcanism, modulated by tectonics and surface erosion. Migration rate is set by the mantle melt flux into the crust, which decreases as thickening occurs. Thus slab angle need not change, and in the absence of other contribution processes front location and crustal thickness have long-time steady state values. We develop an analytic model of this process that produces migration rates consistent with published data and explains arc fronts that do not move (dominated by extension, such as in the case of intra-oceanic arcs). We present new geochemical and age data from the Peninsular Ranges Batholith that are also consistent with

  8. Towards Understanding the Sunda and Banda Arcs

    NASA Astrophysics Data System (ADS)

    Hall, R.

    2014-12-01

    The present change from oceanic subduction beneath the Sunda Arc to arc-continent collision east of Sumba is merely the latest stage in a complex collision history that began more than 20 million years ago. Understanding present-day tectonics requires restoring the pre-collisional margins and unravelling the history of the entire Sunda-Banda Arc, not just a segment centred on Sumba. Seismic tomography displays a single folded slab beneath the Banda Arc around which mantle has flowed. Above this is a wide actively deforming zone of complex geology. Australian crust was first added to the Sunda margin in the Cretaceous. Early Miocene closure of the oceanic gap north of Australia led to further additions of continental crust during collision of the Sula Spur. Few microcontinental fragments were sliced from New Guinea as commonly interpreted. Most are parts of the Sula Spur fragmented by extension and strike-slip faulting during development of subduction zones and rollback into the Banda embayment. Many metamorphic 'basement' rocks are significantly younger than expected. They were metamorphosed during multiple episodes of extension which also exhumed the sub-lithospheric mantle, melted the deep continental crust, created new ocean basins, and dispersed continental crust throughout the inner and outer arc, and forearc, so that in places Australian crust is colliding with Australian crust. Thus, many of the arc volcanoes are built on continental not oceanic crust, and sediment eroded from recently emergent islands is compositionally different to subducted sediment that contributed to arc magmas. The published literature is inadequate. New fieldwork and data are required, particularly in remote areas, with integration of information from a variety of sources (e.g. industry seismic and multibeam bathymetry, remotely acquired imagery) and sub-disciplines (e.g. geochronology, geochemistry, seismology, modelling). No single methodology can provide a complete solution.

  9. Episodicity in back-arc tectonic regimes

    NASA Astrophysics Data System (ADS)

    Clark, Stuart R.; Stegman, Dave; Müller, R. Dietmar

    2008-12-01

    The evolution of back-arc basins is tied to the development of the dynamics of the subduction system they are a part of. We present a study of back-arc basins and model their development by implementing 3D time-dependant computer models of subduction including an overriding plate. We define three types of episodicity: pseudo-, quasi- and hyper-episodicity, and find evidence of these in nature. Observations of back-arc basin ages, histories of spreading, quiescence and compression in the overriding plate give us an understanding of the time-development of these subduction zones and back-arc basins. Across the globe today, a number of trenches are advancing—the Izu-Bonin Trench, the Mariana Trench, the Japan Trench, the Java-Sunda Trench and the central portion of the Peru-Chile Trench (the Andes subduction zone). The Izu-Bonin, Mariana and Japan all have established back-arc basins, while the others have documented episodes of spreading, quiescence, compression or a combination of these. The combination of advancing and retreating trench motion places these subduction zones in the category of hyper-episodicity. Quasi-episodicity, in which the back-arc shifts between phases of rifting, spreading and quiescence, is the dominant form of episodic back-arc development in the present. We find this type of episodicity in models for which the system is dynamically consistent—that we have allowed the subducting plate's velocity to be determined by the sinking slabs' buoyancy. Quasi- and hyper-episodicity are only found in subduction zones with relatively high subducting plate velocities, between 6 and 9 cm/year. Finally, those subduction zones for which the subducting plate is moving slowly, such as in the Mediterranean or the Scotia Sea, experience only pseudo-episodicity, where the spreading moves linearly towards the trench but often does so in discrete ridge-jump events.

  10. Gas Metal Arc Welding and Flux-Cored Arc Welding. Teacher Edition. Second Edition.

    ERIC Educational Resources Information Center

    Fortney, Clarence; Gregory, Mike

    These instructional materials are designed to improve instruction in Gas Metal Arc Welding (GMAW) and Flux-Cored Arc Welding (FCAW). The following introductory information is included: use of this publication; competency profile; instructional/task analysis; related academic and workplace skills list; tools, materials, and equipment list; and…

  11. Effect of acoustic field parameters on arc acoustic binding during ultrasonic wave-assisted arc welding.

    PubMed

    Xie, Weifeng; Fan, Chenglei; Yang, Chunli; Lin, Sanbao

    2016-03-01

    As a newly developed arc welding method, power ultrasound has been successfully introduced into arc and weld pool during ultrasonic wave-assisted arc welding process. The advanced process for molten metals can be realized by utilizing additional ultrasonic field. Under the action of the acoustic wave, the plasma arc as weld heat source is regulated and its characteristics make an obvious change. Compared with the conventional arc, the ultrasonic wave-assisted arc plasma is bound significantly and becomes brighter. To reveal the dependence of the acoustic binding force on acoustic field parameters, a two-dimensional acoustic field model for ultrasonic wave-assisted arc welding device is established. The influences of the radiator height, the central pore radius, the radiator radius, and curvature radius or depth of concave radiator surface are discussed using the boundary element method. Then the authors analyze the resonant mode by this relationship curve between acoustic radiation power and radiator height. Furthermore, the best acoustic binding ability is obtained by optimizing the geometric parameters of acoustic radiator. In addition, three concave radiator surfaces including spherical cap surface, paraboloid of revolution, and rotating single curved surface are investigated systematically. Finally, both the calculation and experiment suggest that, to obtain the best acoustic binding ability, the ultrasonic wave-assisted arc welding setup should be operated under the first resonant mode using a radiator with a spherical cap surface, a small central pore, a large section radius and an appropriate curvature radius. PMID:26558995

  12. Research of Arc Chamber Optimization Techniques Based on Flow Field and Arc Joint Simulation

    NASA Astrophysics Data System (ADS)

    Zhong, Jianying; Guo, Yujing; Zhang, Hao

    2016-03-01

    The preliminary design of an arc chamber in the 550 kV SF6 circuit breaker was proposed in accordance with the technical requirements and design experience. The structural optimization was carried out according to the no-load flow field simulation results and verified by no-load pressure measurement. Based on load simulation results such as temperature field variation at the arc area and the tendency of post arc current under different recovery voltage, the second optimal design was completed and its correctness was certificated by a breaking test. Results demonstrate that the interrupting capacity of an arc chamber can be evaluated by the comparison of the gas medium recovery speed and post arc current growth rate.

  13. Effects of shielding gas compositions on arc plasma and metal transfer in gas metal arc welding

    SciTech Connect

    Rao, Z. H.; Liao, S. M.; Tsai, H. L.

    2010-02-15

    This article presents the effects of shielding gas compositions on the transient transport phenomena, including the distributions of temperature, flow velocity, current density, and electromagnetic force in the arc and the metal, and arc pressure in gas metal arc welding of mild steel at a constant current input. The shielding gas considered includes pure argon, 75% Ar, 50% Ar, and 25% Ar with the balance of helium. It is found that the shielding gas composition has significant influences on the arc characteristics; droplet formation, detachment, transfer, and impingement onto the workpiece; and weld pool dynamics and weld bead profile. As helium increases in the shielding gas, the droplet size increases but the droplet detachment frequency decreases. For helium-rich gases, the current converges at the workpiece with a 'ring' shape which produces non-Gaussian-like distributions of arc pressure and temperature along the workpiece surface. Detailed explanations to the physics of the very complex but interesting transport phenomena are given.

  14. Earthquake location in island arcs

    USGS Publications Warehouse

    Engdahl, E.R.; Dewey, J.W.; Fujita, K.

    1982-01-01

    A comprehensive data set of selected teleseismic P-wave arrivals and local-network P- and S-wave arrivals from large earthquakes occurring at all depths within a small section of the central Aleutians is used to examine the general problem of earthquake location in island arcs. Reference hypocenters for this special data set are determined for shallow earthquakes from local-network data and for deep earthquakes from combined local and teleseismic data by joint inversion for structure and location. The high-velocity lithospheric slab beneath the central Aleutians may displace hypocenters that are located using spherically symmetric Earth models; the amount of displacement depends on the position of the earthquakes with respect to the slab and on whether local or teleseismic data are used to locate the earthquakes. Hypocenters for trench and intermediate-depth events appear to be minimally biased by the effects of slab structure on rays to teleseismic stations. However, locations of intermediate-depth events based on only local data are systematically displaced southwards, the magnitude of the displacement being proportional to depth. Shallow-focus events along the main thrust zone, although well located using only local-network data, are severely shifted northwards and deeper, with displacements as large as 50 km, by slab effects on teleseismic travel times. Hypocenters determined by a method that utilizes seismic ray tracing through a three-dimensional velocity model of the subduction zone, derived by thermal modeling, are compared to results obtained by the method of joint hypocenter determination (JHD) that formally assumes a laterally homogeneous velocity model over the source region and treats all raypath anomalies as constant station corrections to the travel-time curve. The ray-tracing method has the theoretical advantage that it accounts for variations in travel-time anomalies within a group of events distributed over a sizable region of a dipping, high

  15. Wet melting along the Tonga Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Cooper, L. B.; Plank, T.; Arculus, R. J.; Hauri, E. H.; Hall, P.

    2010-12-01

    Melting in the mantle at convergent margins is driven by water from the subducting slab. Previous work has found a strong role for water-fluxed melting from correlations between the concentration of water in the mantle source, (H2O)o, and the extent of melting beneath backarcs, Fba. Here we explore how wet melting beneath the Lau Backarc Basin relates to that beneath the Tonga Arc, Farc, by providing the first systematic study of water contents in Tonga arc magmas. We have measured volatiles and major and trace elements in melt inclusions, glasses, and whole rocks obtained from recently sampled submarine and subaerial Tonga arc volcanoes. The compositions are varied and range mostly between andesite and basalt/boninite, and least-degassed water contents range from 2 to 5 wt%. We estimate (H2O)o and Farc independently by combining pressure (P) and temperature (T) estimates from an olivine-orthopyroxene-melt thermobarometer with a wet melting productivity model. When P, T, and (H2O)o are known, Farc is uniquely constrained. Results for the volcanoes in the Tonga Arc are bimodal with respect to T: volcanoes located near active backarc spreading centers reflect cooler melting (~1275°C) than those located far from active spreading centers (~1365°C). The cooler primary T’s may result from removal of the heat of fusion during prior melting beneath the Lau backarc, Fba. In the northern portion of the arc, the warmest primary T’s may be due to proximity to the Samoan mantle plume. Farc varies non-systematically along-strike, indicating that Fba is the primary driver of along-arc variability in primary melt compositions. Farc can also be used to calculate the TiO2 concentration of the arc mantle source, (TiO2)o (a proxy for source depletion), which varies monotonically along the Tonga Arc. Arc volcanoes adjacent to the Southern Lau Rifts and Valu Fa Ridge melt mantle with a fertile N-MORB TiO2, while those adjacent to the northern extent of the Eastern Lau Spreading

  16. The geochemistry and petrogenesis of the Paleoproterozoic Green Mountain arc: A composite(?), bimodal, oceanic, fringing arc

    USGS Publications Warehouse

    Jones, D.S.; Barnes, C.G.; Premo, W.R.; Snoke, A.W.

    2011-01-01

    The inferred subduction affinity of the ~1780-Ma Green Mountain arc, a dominantly bimodal igneous terrane (together with immature marine and volcaniclastic sedimentary rocks) accreted to the southern margin of the Wyoming province, is integral to arc-accretion models of the Paleoproterozoic growth of southern Laurentia. Conversely, the dominantly bimodal nature of many putative arc-related igneous suites throughout southern Laurentia, including the Green Mountain arc, has also been used to support models of growth by extension of pre-existing crust. We report new geochemical and isotopic data from ~1780-Ma gabbroic and granodioritic to tonalitic rocks of the Big Creek Gneiss, interpreted as consanguineous with previously studied metavolcanic rocks of the Green Mountain Formation.The ~1780-Ma Big Creek Gneiss mafic rocks show clear geochemical signatures of a subduction origin and provide no supporting evidence for extensional tectonism. The ~1780-Ma Big Creek Gneiss felsic rocks are attributed to partial melting of mafic and/or mixed lower-crustal material. The bimodal nature of the suite results from the combination of arc basalts and felsic crustal melts. The lack of andesite is consistent with the observed tholeiitic differentiation trend of the mafic magmas. The lower e{open}Nd(1780Ma) values for the felsic rocks vs. the mafic rocks suggest that the unexposed lower crust of the arc may be older than the arc and that Trans-Hudson- or Penokean-aged rocks possibly form the substratum of the arc. Our results reinforce previous interpretations that arc-related magmatism played a key role in the Paleoproterozoic crustal growth of southern Laurentia, but also support the possibility of unexposed older crust as basement to the arcs. ?? 2011 Elsevier B.V.

  17. BROADBAND PHOTOMETRY OF 105 GIANT ARCS: REDSHIFT CONSTRAINTS AND IMPLICATIONS FOR GIANT ARC STATISTICS

    SciTech Connect

    Bayliss, Matthew B.

    2012-01-10

    We measure the photometric properties of 105 giant arcs that were identified in systematic searches for galaxy-cluster-scale strong lenses in the Second Red-Sequence Cluster Survey and the Sloan Digital Sky Survey. The cluster lenses span 0.2 < z{sub l} < 1.2 in redshift, with a median z-bar{sub l}=0.58. Using broadband color criteria we sort the entire arc sample into redshift bins based on u-g and g-r colors, and also r-z colors for the {approx}90% of arcs that have z-band data. This analysis yields broad redshift constraints with 71{sup +5}{sub -4%} of the arcs at z {>=} 1.0, 64{sup +6}{sub -4%} at z {>=} 1.4, 56{sup +5}{sub -4%} at z {>=} 1.9, and 21{sup +4}{sub -2%} at z {>=} 2.7. The remaining 29{sup +03}{sub -5%} have z < 1. The inferred median redshift is z-bar{sub s}= 2.0{+-}0.1, in good agreement with a previous determination from a smaller sample of brighter arcs (g {approx}< 22.5). This agreement confirms that z{sub s} = 2.0 {+-} 0.1 is the typical redshift for giant arcs with g {approx}< 24 that are produced by cluster-scale strong lenses and that there is no evidence for strong evolution in the redshift distribution of arcs over a wide range of g-band magnitudes (20 {<=} g {<=}24). Establishing that half of all giant arcs are at z {approx}> 2 contributes significantly toward relieving the tension between the number of arcs observed and the number expected in a {Lambda}CDM cosmology, but there is considerable evidence to suggest that a discrepancy persists. Additionally, this work confirms that forthcoming large samples of giant arcs will supply the observational community with many magnified galaxies at z {approx}> 2.

  18. Gas Arcs in Comet Hyakutake: Revisited

    NASA Astrophysics Data System (ADS)

    Combi, M. R.; Harris, W. M.; Kabin, K.

    2000-10-01

    The recent break-up of the nucleus of Comet LINEAR S4 demonstrates that fragmentation is an important cometary process and that it is not a rare phenomenon. Comet Hyakutake (1996 B2) underwent an outburst of gas production on March 21, 1996. Subsequent to the outburst, fragments, or condensations as they have been called, were observed moving tailward from the position of the nucleus. Arc-shaped structures were seen in images of gas species (OH, CN and C2) providing clear evidence of production of gas from cometary nucleus debris also tailward of the nucleus. We have already (Harris et al. 1997, Science 277, 676) described observations taken with the WIYN telescope consisting of a 6-hour time sequence of images on March 26, 1996 of CN and dust continuum and a single OH image showing that the arc, and by inference it's source, was generally moving tailward with the visible condensations. The entire OH arc was reproduced using a kinetic Direct Simulation Monte Carlo (DSMC) calculation for water and all its photodissociation products. DSMC is suited to this physical environment that is in transition from fluid conditions in the inner coma to free-expansion in the outer coma. Our model asuming a string of fragments within the apex of the arc (i.e., the intersection of the arc and the tailward sun-comet line) reproduced the arc. Here we present a more extensive parameter study of the arc using DSMC and a solution of the standard perfect-fluid Euler equations. We find that a secondary source just behind the apex of the arc can reproduce the OH arc, but the location of the source must be much closer to the apex than indicated by solutions of the Navier-Stokes equations (NSE) (Rodionov et al. 1998, Icarus 136, 232). We find that we must use unrealistically large collision cross sections to reproduce the NSE results, and that the NSE results are not substantially different from a simpler Euler equation approach. This work has been supported by NASA Planetary Atmospheres

  19. Physics of arcing, and implications to sputter deposition

    SciTech Connect

    Anders, Andre

    2005-03-15

    Arc and glow discharges are defined based on their cathode processes. Arcs are characterized by collective electron emission, which can be stationary with hot cathodes (thermionic arcs), or non-stationary with cold cathodes (cathodic arcs). A brief review on cathodic arc properties serves as the starting point to better understand arcing phenomena in sputtering. Although arcing occurs in both metal and reactive sputtering, it is more of an issue in the reactive case. Arcing occurs if sufficiently high field strength leads to thermal runaway of an electron emission site. The role of insulating layers and surface potential adjustment through current leakage is highlighted. In the situation of magnetron sputtering with ''racetrack'', the need for a model with two spatial dimensions is shown. In many cases, arcing is initiated by breakdown of dielectric layers and inclusions. It is most efficiently prevented if formation and excessive charge-up of dielectric layers and inclusions can be avoided.

  20. Vertical Arc for ILC Low Emittance Transport

    SciTech Connect

    Tenenbaum, P.; Woodley, M.; /SLAC

    2005-06-07

    The design and parameters of a vertical arc for the ILC Low Emittance Transport (LET) are reviewed. A 1 TeV CM ILC which relies upon 30 MV/m accelerating cavities with a packing fraction of 65% will require almost 48 km of main linac, which suggests that the total site length including BDS and bunch compressors will be on the order of 53 km. If built in a laser-straight tunnel with the low-energy ends near the surface, and assuming a perfectly spherical ''cue ball'' planetary surface with radius 6370 km, the collider halls will necessarily be 55 meters below grade, as shown in the top plot of Figure 1. Such depths would demand extensive use of deep tunneling, which would potentially drive up the cost and difficulty of ILC construction. An alternate solution is to use discrete vertical arcs at a few locations to allow a ''piecewise straight'' construction in which the depth of the tunnel below grade does not vary by more than a few meters. This approach is shown schematically in the bottom plot of Figure 1. In this Note we consider the issues for a design with one such vertical arc at the 250 GeV/c point (ie, midway down the linac for 1 TeV CM), and a second arc at the entrance to the BDS (ie, the entire BDS lies in one plane, with vertical arcs at each end).

  1. Ion source with improved primary arc collimation

    DOEpatents

    Dagenhart, W.K.

    1983-12-16

    An improved negative ion source is provided in which a self-biasing, molybdenum collimator is used to define the primary electron stream arc discharge from a filament operated at a negative potential. The collimator is located between the anode and the filament. It is electrically connected to the anode by means of an appropriate size resistor such that the collimator is biased at essentially the filament voltage during operation. Initially, the full arc voltage appears across the filament to collimator until the arc discharge strikes. Then the collimator biases itself to essentially filament potential due to current flow through the resistor thus defining the primary electron stream without intercepting any appreciable arc power. The collimator aperture is slightly smaller than the anode aperture to shield the anode from the arc power which, in the past, has caused overheating and erosion of the anode collimator during extended time pulsed-beam operation of the source. With the self-biasing collimator of this invention, the ion source may be operated from short pulse periods to steady-state without destroying the anode.

  2. Emissions of chromium (VI) from arc welding.

    PubMed

    Heung, William; Yun, Myoung-Jin; Chang, Daniel P Y; Green, Peter G; Halm, Chris

    2007-02-01

    The presence of Cr in the +6 oxidation state (Cr[VI]) is still observed in ambient air samples in California despite steps taken to reduce emissions from plating operations. One known source of emission of Cr(VI) is welding, especially with high Cr-content materials, such as stainless steels. An experimental effort was undertaken to expand and update Cr(VI) emission factors by conducting tests on four types of arc-welding operations: gas-metal arc welding (GMAW), shielded metal arc welding (SMAW), fluxcore arc welding, and pulsed GMAW. Standard American Welding Society hood results were compared with a total enclosure method that permitted isokinetic sampling for particle size-cut measurement, as well as total collection of the aerosol. The fraction of Cr(VI) emitted per unit mass of Cr electrode consumed was determined. Consistent with AP-42 data, initial results indicate that a significant fraction of the total Cr in the aerosol is in the +6 oxidation state. The fraction of Cr(VI) and total aerosol mass produced by the different arc welding methods varies with the type of welding process used. Self-shielded electrodes that do not use a shield gas, for example, SMAW, produce greater amounts of Cr(VI) per unit mass of electrode consumed. The formation of Cr(VI) from standard electrode wires used for welding mild steel was below the method detection limit after eliminating an artifact in the analytical method used. PMID:17355086

  3. Welding torch with arc light reflector

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S. (Inventor)

    1986-01-01

    A welding torch arc light reflector is disclosed for welding torches having optical viewing systems. A schematic of a welding torch having an internal coaxial viewing system consisting of a lens which focuses the field of view of the weld scene of the workpiece onto the end of the fiberoptic bundle is provided. The transmitted image of the fiberoptic bundle is provided to a camera lens which focuses it onto a TV sensor array for transmission. To improve the parity of the image of the monitoring system, an arc light reflector is shown fitted to the end of the torch housing or gas cup. The arc light reflector has an internal conical section portion which is polished to serve as a mirror which reflects the bright arc light back onto the darker areas of the weld area and thereby provides a more detailed image for the monitoring system. The novelty of the invention lies in the use of an arc light reflector on welding torches having optical viewing systems.

  4. Electric Arc and Electrochemical Surface Texturing Technologies

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Snyder, Scott A.

    1997-01-01

    Surface texturing of conductive materials can readily be accomplished by means of a moving electric arc which produces a plasma from the environmental gases as well as from the vaporized substrate and arc electrode materials. As the arc is forced to move across the substrate surface, a condensate from the plasma re-deposits an extremely rough surface which is intimately mixed and attached to the substrate material. The arc textured surfaces produce greatly enhanced thermal emittance and hold potential for use as high temperature radiator surfaces in space, as well as in systems which use radiative heat dissipation such as computer assisted tomography (CAT) scan systems. Electrochemical texturing of titanium alloys can be accomplished by using sodium chloride solutions along with ultrasonic agitation to produce a random distribution of craters on the surface. The crater size and density can be controlled to produce surface craters appropriately sized for direct bone in-growth of orthopaedic implants. Electric arc texturing and electrochemical texturing techniques, surface properties and potential applications will be presented.

  5. 'LTE-diffusion approximation' for arc calculations

    NASA Astrophysics Data System (ADS)

    Lowke, J. J.; Tanaka, M.

    2006-08-01

    This paper proposes the use of the 'LTE-diffusion approximation' for predicting the properties of electric arcs. Under this approximation, local thermodynamic equilibrium (LTE) is assumed, with a particular mesh size near the electrodes chosen to be equal to the 'diffusion length', based on De/W, where De is the electron diffusion coefficient and W is the electron drift velocity. This approximation overcomes the problem that the equilibrium electrical conductivity in the arc near the electrodes is almost zero, which makes accurate calculations using LTE impossible in the limit of small mesh size, as then voltages would tend towards infinity. Use of the LTE-diffusion approximation for a 200 A arc with a thermionic cathode gives predictions of total arc voltage, electrode temperatures, arc temperatures and radial profiles of heat flux density and current density at the anode that are in approximate agreement with more accurate calculations which include an account of the diffusion of electric charges to the electrodes, and also with experimental results. Calculations, which include diffusion of charges, agree with experimental results of current and heat flux density as a function of radius if the Milne boundary condition is used at the anode surface rather than imposing zero charge density at the anode.

  6. EDITORIAL Metal vapour in atmospheric-pressure arcs Metal vapour in atmospheric-pressure arcs

    NASA Astrophysics Data System (ADS)

    Murphy, Anthony B.

    2010-11-01

    Metal vapour has a significant, and in some cases dominant, influence in many applications of atmospheric-pressure plasmas, including arc welding, circuit interruption and mineral processing. While the influence of metal vapour has long been recognized, it is only recently that diagnostic and computational tools have been sufficiently well-developed to allow this influence to be more thoroughly examined and understood. Some unexpected findings have resulted: for example, that the presence of metal vapour in gas-metal arc welding leads to local minima in the temperature and current density in the centre of the arc. It has become clear that the presence of metal vapour, as well as having intrinsic scientific interest, plays an important role in determining the values of critical parameters in industrial applications, such as the weld penetration in arc welding and the extinction time in circuit breakers. In gas-tungsten arc welding, metal vapour concentrations are formed by evaporation of the weld pool, and are relatively low, typically at most a few per cent. Moreover, the convective flow of the plasma near the weld pool tends to direct the metal vapour plume radially outwards. In gas-metal arc welding, in contrast, metal vapour concentrations can reach over 50%. In this case, the metal vapour is produced mainly by evaporation of the wire electrode, and the strong downwards convective flow below the electrode concentrates the metal vapour in the central region of the arc. The very different metal concentrations and distributions in the two welding processes mean that the metal vapour has markedly different influences on the arc. In gas-tungsten arc welding, the current density distribution is broadened near the weld pool by the influence of the metal vapour on the electrical conductivity of the plasma, and the arc voltage is decreased. In contrast, in gas-metal arc welding, the arc centre is cooled by increased radiative emission and the arc voltage is increased. In

  7. The IMF dependence of the local time of transpolar arcs

    NASA Astrophysics Data System (ADS)

    Fear, R.; Milan, S. E.

    2011-12-01

    Transpolar arcs or polar cap arcs are auroral features which are observed within the polar cap. They occur predominantly during intervals of northward IMF (Berkey et al., 1976). There is mixed evidence for IMF BY control of the local time at which the arcs initially form; Gussenhoven (1982) found that polar cap arcs formed preferentially post-midnight when BY < 0 (evaluated over 1 or 2 hours preceding the start of the arc) and pre-midnight when BY > 0, whereas Valladares et al (1991) found no clear dependency. The only previous statistical study of globally-imaged transpolar arcs (Kullen et al., 2002) found differing results for moving and non-moving arcs, concluding that three different models were required to identify (i) moving arcs, (ii) stationary arcs near the dawn/dusk portion of the main oval, and (iii) stationary arcs in the midnight sector. In this presentation, we show the results of a statistical study of 131 transpolar arcs observed by the FUV cameras on the IMAGE satellite between June 2000 and September 2005. We find that arcs tend to form following the same dependency on BY as identified by Gussenhoven (1982), whether moving or not. We find that the correlation between the magnetic local time at which the arc forms and the IMF BY component is relatively weak if the IMF is only averaged over the hour preceding the arc formation, but becomes stronger if the IMF is evaluated between 1 and 4 hours before the arc first forms. This is consistent with the timescale that is expected for newly-opened magnetospheric flux to reach the magnetotail plasma sheet (Dungey, 1961; Milan et al., 2007), and is therefore consistent with the suggestion that transpolar arcs map to the plasma sheet. We suggest that the similar dependence of stationary and moving arcs on the IMF BY component might imply that it is possible to explain both types of arc in terms of a single mechanism.

  8. Along-arc and inter-arc variations in volcanic gas CO2/S signature

    NASA Astrophysics Data System (ADS)

    Aiuppa, Alessandro; Robidoux, Philippe; Fischer, Tobias

    2015-04-01

    Improving the current estimates of the global volcanic arc CO2 output requires a more accurate knowledge of the volcanic gas CO2/S ratio signature of each individual arc segment. This, when multiplied by sulphur (S) productivity of each arc segment (derived by either studies on melt inclusions or UV-based gas measurements), could in principle yield the individual arc CO2 output and, by summation, the global arc CO2 output. Unfortunately, the process is complicated, among others, by the limited volcanic gas dataset we have available, particularly for poorly explored, but potentially highly productive arc segments (Indonesia, Papua New Guinea, etc). We here review the currently available dataset of CO2/S ratios in the volcanic gas literature, and combine this with novel gas observations (partially obtained using the currently expanding DCO-DECADE Multi-GAS network) to provide experimental evidence for the existence of substantial variations in volcanic gas chemistry along individual arc segments, and from one arc segment to another. In Central America [1], for instance, we identify distinct volcanic gas CO2/S (molar) ratio signatures for magmatic volatiles in Nicaragua (~3), Costa Rica (~0.5-1.0) and El Salvador (~1.0), which we ascribe to variable extents of sedimentary carbon addition to a MORB-type (Costa Rica-like) mantle wedge. Globally, volcanic gas CO2/S ratios are typically found to be low (~1.0) in arc segments (e.g., Japan, Kuril-Kamchatka, Chile) where small amount of limestones enter the slab; whilst larger slab/crustal carbon contributions typically correspond to higher CO2/S ratio signatures for gases of other arcs, such as Indonesia (~4.0) or Italy (6 to 9). We find that CO2/S ratios of arc gases positively correlate with Ba/La and U/Th ratios in the corresponding magmas, these trace-element ratios being thought as petrological proxies for the addition slab-fluids to the magma generation zone. This relation implies a dominant slab-derivation of carbon

  9. Study on Expansion Process of EDM Arc Plasma

    NASA Astrophysics Data System (ADS)

    Natsu, Wataru; Shimoyamada, Mayumi; Kunieda, Masanori

    In order to understand the phenomena of electrical discharge machining (EDM), the characteristics of transition arc plasma in EDM were investigated. The arc plasma was directly observed with a high speed video camera. In addition, to learn more about arc plasma expansion, plasma temperature was measured by spectroscopy. The arc plasma temperature was obtained by measuring the radiant fluxes of two different wavelengths from the arc plasma and applying the line pair method. Furthermore, a new expansion model for EDM arc plasma was proposed based on the observations, and validated by comparing experimental and computed results of the discharge crater.

  10. The discharge mechanism of the high-temperature arc

    NASA Technical Reports Server (NTRS)

    Busz-Peuckert, G.; Finkelnburg, W.

    1984-01-01

    The mechanism of the high temperature Ar arc is interpreted considering those essential points in which it deviates from the known arcs based on earlier measurements and experiments. The following points are discussed individually: the charge carrier balance, the energy balance, the volt amp characteristics, and the difference between high temperature arcs in Ar and N. Besides the volt amp characteristic of a 10 mm long arc in Ar between 10 and 200 amp, the anode fall, cathode fall, and arc gradient were obtained with the aid of probes. The difference between Ar and N arcs are attributed to variations of the heat conditions and electrical conditions at different temperatures of the gas.

  11. Photoelectric detection electric arc in energetic arrangements

    NASA Astrophysics Data System (ADS)

    Leks, Jan

    2001-08-01

    The evolution of photoelectric converter, fiber optics and integrated circuits, in particular optic detectors, increases area of applying of the industrial measuring and control systems that used IR detectors. One of the more important is optic detection of electric arc in industrial energetic arrangements. That kind of detection is sure, easy to apply in existing industrial apparatus a d it is cheaper than another way of detection. Additionally optic detection of electric arc is safety for attendance persons and may work on computer system. The article presents an example of circuit with semiconductor IR photoelectric detector to detection of electric arc and points at the most important questions which should be taken into consideration in designing instruments like described one.

  12. APPARATUS AND METHOD FOR ARC WELDING

    DOEpatents

    Noland, R.A.; Stone, C.C.

    1960-05-10

    An apparatus and method are given for forming a welding arc which is rotated by a magnetic field very rapidly about an annular electrode so that a weld is produced simultaneously over all points of an annular or closed path. This invention inhibits outgassing from the jacket of a fuel slug which is being welded by adjusting the pressure throughout the welding cycle to establish a balance between the gas pressure within the jacket and that of the atmosphere surrounding the jacket. Furthermore, an improved control of the magnetic field producing rotation of the welding arc is disclosed whereby this rotation is prevented from splashing about the metal being welded as the welding arc makes it molten.

  13. Dynamic Discharge Arc Driver. [computerized simulation

    NASA Technical Reports Server (NTRS)

    Dannenberg, R. E.; Slapnicar, P. I.

    1975-01-01

    A computer program using nonlinear RLC circuit analysis was developed to accurately model the electrical discharge performance of the Ames 1-MJ energy storage and arc-driver system. Solutions of circuit parameters are compared with experimental circuit data and related to shock speed measurements. Computer analysis led to the concept of a Dynamic Discharge Arc Driver (DDAD) capable of increasing the range of operation of shock-driven facilities. Utilization of mass addition of the driver gas offers a unique means of improving driver performance. Mass addition acts to increase the arc resistance, which results in better electrical circuit damping with more efficient Joule heating, producing stronger shock waves. Preliminary tests resulted in an increase in shock Mach number from 34 to 39 in air at an initial pressure of 2.5 torr.

  14. Plasma arc heated secondary combustion chamber

    SciTech Connect

    Haun, R.; Paulson, B.; Schlienger, M.; Goerz, D.; Kerns, J.; Vernazza, J.

    1995-02-01

    This paper describes a secondary combustion chamber (SCC) for hazardous waste treatment systems that uses a plasma arc torch as the heat source. Developed under a cooperative research and development agreement (CRADA) between Retech, Inc. and Lawrence Livermore National Laboratory (LLNL), the unit is intended primarily to handle the off-gas from a Plasma Arc Centrifugal Treatment (PACT) system. ft is designed to heat the effluent gas which may contain volatile organic compounds, and maintain the gas temperature above 1000 C for two seconds or more. The benefits of using a plasma arc gas heater are described in comparison to a conventional fossil fuel heated SCC. Thermal design considerations are discussed. Analysis and experimental results are presented to show the effectiveness in destroying hazardous compounds and reducing the total volume of gaseous emissions.

  15. Magnesium isotope geochemistry in arc volcanism

    PubMed Central

    Teng, Fang-Zhen; Hu, Yan

    2016-01-01

    Incorporation of subducted slab in arc volcanism plays an important role in producing the geochemical and isotopic variations in arc lavas. The mechanism and process by which the slab materials are incorporated, however, are still uncertain. Here, we report, to our knowledge, the first set of Mg isotopic data for a suite of arc lava samples from Martinique Island in the Lesser Antilles arc, which displays one of the most extreme geochemical and isotopic ranges, although the origin of this variability is still highly debated. We find the δ26Mg of the Martinique Island lavas varies from −0.25 to −0.10, in contrast to the narrow range that characterizes the mantle (−0.25 ± 0.04, 2 SD). These high δ26Mg values suggest the incorporation of isotopically heavy Mg from the subducted slab. The large contrast in MgO content between peridotite, basalt, and sediment makes direct mixing between sediment and peridotite, or assimilation by arc crust sediment, unlikely to be the main mechanism to modify Mg isotopes. Instead, the heavy Mg isotopic signature of the Martinique arc lavas requires that the overall composition of the mantle wedge is buffered and modified by the preferential addition of heavy Mg isotopes from fluids released from the altered subducted slab during fluid−mantle interaction. This, in turn, suggests transfer of a large amount of fluid-mobile elements from the subducting slab to the mantle wedge and makes Mg isotopes an excellent tracer of deep fluid migration. PMID:27303032

  16. Nonlinear identification of the total baroreflex arc.

    PubMed

    Moslehpour, Mohsen; Kawada, Toru; Sunagawa, Kenji; Sugimachi, Masaru; Mukkamala, Ramakrishna

    2015-12-15

    The total baroreflex arc [the open-loop system relating carotid sinus pressure (CSP) to arterial pressure (AP)] is known to exhibit nonlinear behaviors. However, few studies have quantitatively characterized its nonlinear dynamics. The aim of this study was to develop a nonlinear model of the sympathetically mediated total arc without assuming any model form. Normal rats were studied under anesthesia. The vagal and aortic depressor nerves were sectioned, the carotid sinus regions were isolated and attached to a servo-controlled piston pump, and the AP and sympathetic nerve activity (SNA) were measured. CSP was perturbed using a Gaussian white noise signal. A second-order Volterra model was developed by applying nonparametric identification to the measurements. The second-order kernel was mainly diagonal, but the diagonal differed in shape from the first-order kernel. Hence, a reduced second-order model was similarly developed comprising a linear dynamic system in parallel with a squaring system in cascade with a slower linear dynamic system. This "Uryson" model predicted AP changes 12% better (P < 0.01) than a linear model in response to new Gaussian white noise CSP. The model also predicted nonlinear behaviors, including thresholding and mean responses to CSP changes about the mean. Models of the neural arc (the system relating CSP to SNA) and peripheral arc (the system relating SNA to AP) were likewise developed and tested. However, these models of subsystems of the total arc showed approximately linear behaviors. In conclusion, the validated nonlinear model of the total arc revealed that the system takes on an Uryson structure. PMID:26354845

  17. Magnesium isotope geochemistry in arc volcanism.

    PubMed

    Teng, Fang-Zhen; Hu, Yan; Chauvel, Catherine

    2016-06-28

    Incorporation of subducted slab in arc volcanism plays an important role in producing the geochemical and isotopic variations in arc lavas. The mechanism and process by which the slab materials are incorporated, however, are still uncertain. Here, we report, to our knowledge, the first set of Mg isotopic data for a suite of arc lava samples from Martinique Island in the Lesser Antilles arc, which displays one of the most extreme geochemical and isotopic ranges, although the origin of this variability is still highly debated. We find the δ(26)Mg of the Martinique Island lavas varies from -0.25 to -0.10, in contrast to the narrow range that characterizes the mantle (-0.25 ± 0.04, 2 SD). These high δ(26)Mg values suggest the incorporation of isotopically heavy Mg from the subducted slab. The large contrast in MgO content between peridotite, basalt, and sediment makes direct mixing between sediment and peridotite, or assimilation by arc crust sediment, unlikely to be the main mechanism to modify Mg isotopes. Instead, the heavy Mg isotopic signature of the Martinique arc lavas requires that the overall composition of the mantle wedge is buffered and modified by the preferential addition of heavy Mg isotopes from fluids released from the altered subducted slab during fluid-mantle interaction. This, in turn, suggests transfer of a large amount of fluid-mobile elements from the subducting slab to the mantle wedge and makes Mg isotopes an excellent tracer of deep fluid migration. PMID:27303032

  18. Magnesium isotope geochemistry in arc volcanism

    NASA Astrophysics Data System (ADS)

    Teng, Fang-Zhen; Hu, Yan; Chauvel, Catherine

    2016-06-01

    Incorporation of subducted slab in arc volcanism plays an important role in producing the geochemical and isotopic variations in arc lavas. The mechanism and process by which the slab materials are incorporated, however, are still uncertain. Here, we report, to our knowledge, the first set of Mg isotopic data for a suite of arc lava samples from Martinique Island in the Lesser Antilles arc, which displays one of the most extreme geochemical and isotopic ranges, although the origin of this variability is still highly debated. We find the δ26Mg of the Martinique Island lavas varies from ‑0.25 to ‑0.10, in contrast to the narrow range that characterizes the mantle (‑0.25 ± 0.04, 2 SD). These high δ26Mg values suggest the incorporation of isotopically heavy Mg from the subducted slab. The large contrast in MgO content between peridotite, basalt, and sediment makes direct mixing between sediment and peridotite, or assimilation by arc crust sediment, unlikely to be the main mechanism to modify Mg isotopes. Instead, the heavy Mg isotopic signature of the Martinique arc lavas requires that the overall composition of the mantle wedge is buffered and modified by the preferential addition of heavy Mg isotopes from fluids released from the altered subducted slab during fluid‑mantle interaction. This, in turn, suggests transfer of a large amount of fluid-mobile elements from the subducting slab to the mantle wedge and makes Mg isotopes an excellent tracer of deep fluid migration.

  19. Ion source based on the cathodic arc

    DOEpatents

    Sanders, D.M.; Falabella, S.

    1994-02-01

    A cylindrically symmetric arc source to produce a ring of ions which leave the surface of the arc target radially and are reflected by electrostatic fields present in the source to a point of use, such as a part to be coated, is described. An array of electrically isolated rings positioned in the source serves the dual purpose of minimizing bouncing of macroparticles and providing electrical insulation to maximize the electric field gradients within the source. The source also includes a series of baffles which function as a filtering or trapping mechanism for any macroparticles. 3 figures.

  20. Barriers to flashover discharge arcs on Teflon

    NASA Technical Reports Server (NTRS)

    Gossland, M.; Balmain, K. G.

    1982-01-01

    The effect of various barriers (empty gap, copper, Mylar, and nickel mesh) on the probability of simultaneous arc discharging of two physically separated pieces of electron-beam-charged Teflon was studied. For the empty gap barrier, it was found that simultaneous discharges rarely occur when the separation between the samples is greater than approximately 0.4 times the length of their common edge when this length is of the order of 1 cm. Evidence suggests that electromagnetic fields play a larger role than electrons in influencing the occurrence of simultaneous arc discharges.

  1. Arc-driven rail accelerator research

    NASA Technical Reports Server (NTRS)

    Ray, Pradosh K.

    1987-01-01

    Arc-driven rail accelerator research is analyzed by considering wall ablation and viscous drag in the plasma. Plasma characteristics are evaluated through a simple fluid-mechanical analysis considering only wall ablation. By equating the energy dissipated in the plasma with the radiation heat loss, the average properties of the plasma are determined as a function of time and rate of ablation. Locations of two simultaneously accelerating arcs were determined by optical and magnetic probes and fron streak camera photographs. All three measurements provide consistent results.

  2. Corrosion and arc erosion in MHD channels

    SciTech Connect

    Rosa, R.J. . Dept. of Mechanical Engineering); Pollina, R.J. . Dept. of Mechanical Engineering Avco-Everett Research Lab., Everett, MA )

    1991-10-01

    The objective of this task is to study the corrosion and arc erosion of MHD materials in a cooperative effort with, and to support, the MHD topping cycle program. Materials tested in the Avco Research Laboratory/Textron facility, or materials which have significant MHD importance, will be analyzed to document their physical deterioration. Conclusions shall be drawn about their wear mechanisms and lifetime in the MHD environment with respect to the following issues; sulfur corrosion, electrochemical corrosion, and arc erosion. The impact of any materials or slag conditions on the level of power output and on the level of leakage current in the MHD channel will also be noted, where appropriate.

  3. Ion source based on the cathodic arc

    DOEpatents

    Sanders, David M.; Falabella, Steven

    1994-01-01

    A cylindrically symmetric arc source to produce a ring of ions which leave the surface of the arc target radially and are reflected by electrostatic fields present in the source to a point of use, such as a part to be coated. An array of electrically isolated rings positioned in the source serves the dual purpose of minimizing bouncing of macroparticles and providing electrical insulation to maximize the electric field gradients within the source. The source also includes a series of baffles which function as a filtering or trapping mechanism for any macroparticles.

  4. Electric-arc steam plasma generator

    NASA Astrophysics Data System (ADS)

    Anshakov, A. S.; Urbakh, E. K.; Radko, S. I.; Urbakh, A. E.; Faleev, V. A.

    2015-01-01

    Investigation results on the arc plasmatorch for water-steam heating are presented. The construction arrangement of steam plasma generator with copper electrodes of the stepped geometry was firstly implemented. The energy characteristics of plasmatorch and erosion of electrodes reflect the features of their behavior at arc glow in the plasma-forming environment of steam. The results of numerical study of the thermal state of the composite copper-steel electrodes had a significant influence on optimization of anode water-cooling aimed at improvement of its operation life.

  5. Grain refinement control in TIG arc welding

    NASA Technical Reports Server (NTRS)

    Iceland, W. F.; Whiffen, E. L. (Inventor)

    1975-01-01

    A method for controlling grain size and weld puddle agitation in a tungsten electrode inert gas welding system to produce fine, even grain size and distribution is disclosed. In the method the frequency of dc welding voltage pulses supplied to the welding electrode is varied over a preselected frequency range and the arc gas voltage is monitored. At some frequency in the preselected range the arc gas voltage will pass through a maximum. By maintaining the operating frequency of the system at this value, maximum weld puddle agitation and fine grain structure are produced.

  6. Arc jet tests of metallic TPS materials.

    NASA Technical Reports Server (NTRS)

    Centolanzi, F. J.; Zimmerman, N. B.; Probst, H. B.; Lowell, C. E.

    1971-01-01

    Seven thoria dispersed nickel base alloys and one cobalt base alloy, candidates for the Metallic Thermal Protection System for the Space Shuttle Vehicle, were tested simultaneously in an arc jet at a nominal test temperature of 1366 deg K (2000 deg F) and pressure of 0.01 atmospheres. The degradation of the materials after 50 one half-hour cycles in the arc jet simulating Space Shuttle entry conditions was determined utilizing techniques including X-ray diffraction, metallography, and electron beam microprobe.

  7. Geochemical differences between along-arc and across-arc volcanics in west-central Nicaragua

    NASA Astrophysics Data System (ADS)

    Geilert, Sonja; Freundt, Armin; Wörner, Gerhard; Kutterolf, Steffen

    2012-04-01

    The La Paz Centro - Malpaisillo Lineament (LPML) in west-central Nicaragua is a north-south striking, 20 km long chain of maars and cinder cones, which intersects the northwest-southeast striking main volcanic front. A tectonic control of LPML volcanism is likely but only evident for the Malpaisillo fissure at the northern end of the LPML. Previous work demonstrated geochemical variations implying changes in mantle-source composition (i.e., added slab components) along the Central American Volcanic Arc at spatial scales of some 10's of kilometers. Our study of the LPML shows that minor but systematic changes also occur across the arc within 20 km distance. Variations in trace element ratios such as Zr/Nb, Ba/Th, Ba/La, Th/Zr, U/La and La/Yb along the LPML, i.e. across the volcanic front indicate little change in the degree of partial melting but an increase particularly in the hemipelagic sediment component in the mantle source from the fore arc towards the arc front, followed by a decrease behind the arc. Interestingly, the slab component is most prominent just in front of the arc. About 60 km southeast of the LPML, the Nejapa-Miraflores volcanic and tectonic lineament, which marks a 20 km north-south offset in the arc, differs substantially from the LPML. There is a wide scatter in incompatible trace element ratios indicating a heterogeneous mantle source at small spatial scales (c. 1 km). This mantle heterogeneity may represent vertical rather than across-arc variations and is probably related to the arc offset, because in the absence of such offset at the LPML mantle source conditions vary much less but more systematically.

  8. Physical volcanology of the submarine Mariana and Volcano Arcs

    NASA Astrophysics Data System (ADS)

    Bloomer, Sherman H.; Stern, Robert J.; Smoot, N. Christian

    1989-05-01

    Narrow-beam maps, selected dredge samplings, and surveys of the Mariana and Volcano Arcs identify 42 submarine volcanos. Observed activity and sample characteristics indicate 22 of these to be active or dormant. Edifices in the Volcano Arc are larger than most of the Mariana Arc edifices, more irregularly shaped with numerous subsidiary cones, and regularly spaced at 50 70 km. Volcanos in the Mariana Arc tend to be simple cones. Sets of individual cones and volcanic ridges are elongate parallel to the trend of the arc or at 110° counterclockwise from that trend, suggesting a strong fault control on the distribution of arc magmas. Volcanos in the Mariana Arc are generally developed west of the frontal arc ridge, on rifted frontal arc crust or new back-arc basin crust. Volcanos in the central Mariana Arc are usually subaerial, large (> 500 km3), and spaced about 50 70 km apart. Those in the northern and southern Marianas are largely submarine, closer together, and generally less than 500 km3 in volume. There is a shoaling of the arc basement around Iwo Jima, accompanied by the appearance of incompatible-element enriched lavas with alkalic affinities. The larger volcanic edifices must reflect either a higher magma supply rate or a greater age for the larger volcanos. If the magma supply (estimated at 10 20 km3/km of arc per million years at 18° N) has been relatively constant along the Mariana Arc, we can infer a possible evolutionary sequence for arc volcanos from small, irregularly spaced edifices to large (over 1000 km3) edifices spaced at 50 70 km. The volcano distribution and basal depths are consistent with the hypothesis of back-arc propagation into the Volcano Arc.

  9. Mandibular Reconstruction Based on the Concept of Double Arc Reconstruction.

    PubMed

    Sarukawa, Shunji; Noguchi, Tadahide; Kamochi, Hideaki; Sunaga, Ataru; Uda, Hirokazu; Nishino, Hiroshi; Sugawara, Yasushi

    2015-09-01

    The natural mandible has 2 arcs, the marginal arc and the occlusal arc. The marginal arc is situated along the lower margin of the mandible and affects the contour of the lower third of the face. The occlusal arc is situated along the dental arc and affects the stability of prosthodontics. The gap between these 2 arcs widens in the molar area. Our developed concept of "double arc reconstruction" involves making these 2 arcs for the reconstructed mandible. For the double-barrel fibula reconstruction, 2 bone segments are used to make both arcs. For reconstructions using the iliac crest, the double arc is made by inclination of the top of the bone graft toward the lingual side. Ten patients underwent double arc reconstruction: 2 underwent reconstruction with the double-barrel fibula, and 8 underwent reconstruction with the iliac crest. Four patients had a removable denture prosthesis, 1 had an osseointegrated dental implant, and 5 did not require further prosthodontic treatment. The shape of the reconstructed mandible after double arc reconstruction resembles the native mandible, and masticatory function is good with the use of a dental implant or removable denture prosthesis, or even without prosthodontics. PMID:26335321

  10. Arcing Model of a Disconnector and its Effect on VFTO

    NASA Astrophysics Data System (ADS)

    Lin, Xin; Wang, Na; Xu, Jianyuan

    2013-07-01

    In the computational process of very fast transient over-voltage (VFTO), it is essential to find an accurate model for a gas insulated substation. The arcing model of the disconnector is particularly important. The general arcing model is not able to give a good description of the arc development process. In this paper, based on the physical process of arcing and existing arc models (the exponential time-varying resistance model and the segmental arcing models), a dynamic arcing model is proposed, which is divided into two stages before and after the zero crossing. The dynamic arcing model combines hyperbola time-varying resistance and the Mayr model to describe the dynamic process of arcing. The present paper creates an arc model blockset upon the Matlab/Simulink software platform. Moreover for a specific 1100 kV station, VFTO is simulated in detail based on different arcing models. It is demonstrated that the dynamic arcing model can describe the physical arc process precisely and is useful for improving the accuracy of VFTO simulations.

  11. The effect of plasma on solar cell array arc characteristics

    NASA Technical Reports Server (NTRS)

    Snyder, D. B.; Tyree, E.

    1984-01-01

    The influence from the ambient plasma on the arc characteristics of a negatively biased solar cell array was investigated. The arc characteristics examined were the peak current during an arc, the decay time as the arc terminates, and the charge lost during the arc. These arc characteristics were examined in a nitrogen plasma with charge densities ranging from 15,000 to 45,000 cu cm. Background gas pressures ranged from 8x1,000,000 to 6x100,000 torr. Over these ranges of parameters no significant effect on the arc characteristics were seen. Arc characteristics were also examined for three gas species: helium, nitrogen and argon. The helium arcs have higher peak currents and shorter decay times than nitrogen and argon arcs. There are slight differences in the arc characteristics between nitrogen and argon. These differences may be caused by the differences in mass of the respective species. Also, evidence is presented for an electron emission mechanism appearing as a precursor to solar array arcs. Occassionally the plasma generator could be turned off, and currents could still be detected in the vacuum system. When these currents are presented, arcs may occur.

  12. Influence of a transverse magnetic field on arc root movements in a dc plasma torch: Diamagnetic effect of arc column

    SciTech Connect

    Kim, Keun Su

    2009-03-23

    The effect of a transverse magnetic field on the anodic arc root movement inside a dc plasma torch has been investigated. The arc voltage fluctuation, which represents the degree of the arc instability, was reduced to 28.6% of the original value and the high frequency components in the voltage signal also decreased in their magnitudes. The inherent arc instability in a dc thermal plasma torch seems to be suppressed by a diamagnetic effect of the arc column. Furthermore, the measured voltage wave forms indicated that the arc root attachment mode would be controllable by a transverse magnetic field.

  13. Optical Arc-Length Sensor For TIG Welding

    NASA Technical Reports Server (NTRS)

    Smith, Matthew A.

    1990-01-01

    Proposed subsystem of tungsten/inert-gas (TIG) welding system measures length of welding arc optically. Viewed by video camera, in one of three alternative optical configurations. Length of arc measured instead of inferred from voltage.

  14. Automated Variable-Polarity Plasma-Arc Welding

    NASA Technical Reports Server (NTRS)

    Numes, A. C., Jr.; Bayless, E. O., Jr.; Jones, S. C., III; Munafo, P.; Munafo, A.; Biddle, A.; Wilson, W.

    1984-01-01

    Variable-polarity plasma-arc methods produces better welds at lower cost than gas-shielded tungsten-arc welding in assemblies. Weld porosity very low and costs of joint preparation, depeaking, inspection, and weld repair minimized.

  15. Arc-shock interaction inside a supersonic nozzle

    SciTech Connect

    Fang, M.T.C.; Kwan, S.; Hall, W.

    1996-02-01

    Arcs burning in supersonic nozzles have wide technical applications. They are commonly used in high-voltage circuit breakers, arc heaters, and arc plasma processing systems. The present investigation is aimed at an understanding of the arc behavior inside a modern high-voltage puffer circuit breaker where a high pressure necessary for the generation of a gas blast is produced by the compression of a piston inside the puffer chamber. Flow separation in the thermal layer between the high-temperature arc core and cold flow generates large vortices which deform the shape of the arc core. For the current range investigated, the center of the shock is not sensitive to the current, but is moved upstream relative to that without the arc. The computed features of the interaction are in agreement with the experimental observations of [2] and [3]. The arcing gas is SF{sub 6}.

  16. DEVICE AND METHOD FOR PRODUCING A HIGH INTENSITY ARC DISCHARGE

    DOEpatents

    Luce, J.S.

    1960-01-01

    A device is described for producing an energetic d-c carbon arc discharge between widely spaced electrodes with arc currents in excess of 100 amperes in a magnetic field of about 3000 gauss and witnin an evacuated enclo sure at a pressure of about 10/sup -5/ mm Hg. No defining electrodes are used in the device, thus essentially eliminating the problems of shorting which heretofore limited the amount of current that could be produced in an arc discharge. The energetic carbon arc discharge is sustained by the potential across the electrodes and by carbon ions and electrons released from the electrodes during arc operation. A large part of the potential drop of the arc occurs along the arc and many energetic electrons reach the anode because the arc pressure is relatively low, and few collisions occur. The carbon discharge is also an efficient ion pump.

  17. Portable machine welding head automatically controls arc

    NASA Technical Reports Server (NTRS)

    Oleksiak, C. E.; Robb, M. A.

    1967-01-01

    Portable weld tool makes weld repairs out-of-station and on the side opposite the original weld. It provides full automatic control of the arc voltage, current, wire feed, and electrode travel speed in all welding attitudes. The device is readily adaptable to commercially available straight polarity dc weld packs.

  18. Position Statements of the Arc. 1992 Edition.

    ERIC Educational Resources Information Center

    Arc, Arlington, TX.

    This monograph presents 15 position statements of The Arc, a national organization for persons with mental retardation. A preamble presents the organization's Mission Statement. Principles and assumptions stressing the uniqueness of all people and the importance of a sense of control over one's destiny are listed. The position statements are then…

  19. Arc spraying solderable tabs to glass

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.

    1981-01-01

    Tabs suitable for electrical or mechanical connections in solar cells and integrated circuits are made by spraying technique. Solder wets copper, copper bonds to aluminum, and aluminum adheres to glass. Arc spraying is automated and integrated with encapsulation, eliminating hand tabbing, improving reliability, and reducing cost.

  20. Clinical Applications of Volumetric Modulated Arc Therapy

    SciTech Connect

    Matuszak, Martha M.; Yan Di; Grills, Inga; Martinez, Alvaro

    2010-06-01

    Purpose: To present treatment planning case studies for several treatment sites for which volumetric modulated arc therapy (VMAT) could have a positive impact; and to share an initial clinical experience with VMAT for stereotactic body radiotherapy (SBRT). Methods and Materials: Four case studies are presented to show the potential benefit of VMAT compared with conformal and intensity-modulated radiotherapy (IMRT) techniques in pediatric cancer, bone marrow-sparing whole-abdominopelvic irradiation (WAPI), and SBRT of the lung and spine. Details of clinical implementation of VMAT for SBRT are presented. The VMAT plans are compared with conventional techniques in terms of dosimetric quality and delivery efficiency. Results: Volumetric modulated arc therapy reduced the treatment time of spine SBRT by 37% and improved isodose conformality. Conformal and VMAT techniques for lung SBRT had similar dosimetric quality, but VMAT had improved target coverage and took 59% less time to deliver, although monitor units were increased by 5%. In a complex pediatric pelvic example, VMAT reduced treatment time by 78% and monitor units by 25% compared with IMRT. A double-isocenter VMAT technique for WAPI can spare bone marrow while maintaining good delivery efficiency. Conclusions: Volumetric modulated arc therapy is a new technology that may benefit different patient populations, including pediatric cancer patients and those undergoing concurrent chemotherapy and WAPI. Volumetric modulated arc therapy has been used and shown to be beneficial for significantly improving delivery efficiency of lung and spine SBRT.

  1. Signal Analysis of Gas Tungsten Arc Welds

    NASA Technical Reports Server (NTRS)

    Eagar, T. W.

    1985-01-01

    Gas tungsten arc welding is a process in which the input parameters such as current, voltage and travel speed, can be easily controlled and/or monitored. However, weld quality is not solely a function of these parameters. An adaptive method of observing weld quality is desired to improve weld quality assurance. The use of dynamic electrical properties of the welding arc as a weld quality monitor was studied. The electrical properties of the arc are characterized by the current voltage transfer function. The hardware and software necessary to collect the data at a maximum rate of 45 kHz and to allow the off-line processing of this data are tested. The optimum input current waveform is determined. Bead-on-plate welds to observe such characteristics of the weld as the fundamental frequency of the puddle are studied. Future work is planned to observe changes of the arc response with changes in joint geometry, base metal chemistry, and shielding gas composition are discussed.

  2. Neural-Network Modeling Of Arc Welding

    NASA Technical Reports Server (NTRS)

    Anderson, Kristinn; Barnett, Robert J.; Springfield, James F.; Cook, George E.; Strauss, Alvin M.; Bjorgvinsson, Jon B.

    1994-01-01

    Artificial neural networks considered for use in monitoring and controlling gas/tungsten arc-welding processes. Relatively simple network, using 4 welding equipment parameters as inputs, estimates 2 critical weld-bead paramaters within 5 percent. Advantage is computational efficiency.

  3. Pairing, pseudogap and Fermi arcs in cuprates

    SciTech Connect

    Kaminski, Adam; Kondo, Takeshi; Takeuchi, Tsunehiro; Gu, Genda

    2014-04-29

    We use Angle Resolved Photoemission Spectroscopy (ARPES) to study the relationship between the pseudogap, pairing and Fermi arcs in cuprates. High quality data measured over a wide range of dopings reveals a consistent picture of Fermiology and pairing in these materials. The pseudogap is due to an ordered state that competes with superconductivity rather than preformed pairs. Pairing does occur below Tpair ~ 150K and significantly above Tc, but well below T* and the doping dependence of this temperature scale is distinct from that of the pseudogap. The d-wave gap is present below Tpair, and its interplay with strong scattering creates “artificial” Fermi arcs for Tc ≤ T ≤ Tpair. However, above Tpair, the pseudogap exists only at the antipodal region. This leads to presence of real, gapless Fermi arcs close to the node. The length of these arcs remains constant up to T*, where the full Fermi surface is recovered. As a result, we demonstrate that these findings resolve a number of seemingly contradictory scenarios.

  4. Pairing, pseudogap and Fermi arcs in cuprates

    DOE PAGESBeta

    Kaminski, Adam; Kondo, Takeshi; Takeuchi, Tsunehiro; Gu, Genda

    2014-04-29

    We use Angle Resolved Photoemission Spectroscopy (ARPES) to study the relationship between the pseudogap, pairing and Fermi arcs in cuprates. High quality data measured over a wide range of dopings reveals a consistent picture of Fermiology and pairing in these materials. The pseudogap is due to an ordered state that competes with superconductivity rather than preformed pairs. Pairing does occur below Tpair ~ 150K and significantly above Tc, but well below T* and the doping dependence of this temperature scale is distinct from that of the pseudogap. The d-wave gap is present below Tpair, and its interplay with strong scatteringmore » creates “artificial” Fermi arcs for Tc ≤ T ≤ Tpair. However, above Tpair, the pseudogap exists only at the antipodal region. This leads to presence of real, gapless Fermi arcs close to the node. The length of these arcs remains constant up to T*, where the full Fermi surface is recovered. As a result, we demonstrate that these findings resolve a number of seemingly contradictory scenarios.« less

  5. Gas tungsten arc welder with electrode grinder

    DOEpatents

    Christiansen, David W.; Brown, William F.

    1984-01-01

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  6. CW arc-lamp-pumped alexandrite lasers

    SciTech Connect

    Samelson, H.; Walling, J.C.; Wernikowski, T.; Harter, D.J.

    1988-06-01

    The performance characteristics of arc-lamp- (Xe and Hg) pumped, CW alexandrite lasers are described in detail. The modes of operation considered are free running, tuned, and repetitively Q-switched. The experimental arrangement and apparatus are also outlined. The experimental results are discussed in terms of a steady-state model, and the areas of agreement and difficulty are pointed out.

  7. Arc Welding Dictionary 1. Project HIRE.

    ERIC Educational Resources Information Center

    Gardner, David C.; And Others

    Designed as supplemental material to on-going instruction in the vocational program, this first of three picture dictionary booklets in the Arc Welding series is intended to assist the learning handicapped student to master the core vocabulary taught in the trade. Intended for individual or small group instruction with minimal supervision, this…

  8. Cheaper Custom Shielding Cups For Arc Welding

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E.

    1992-01-01

    New way of making special-purpose shielding cups for gas/tungsten arc welding from hobby ceramic greatly reduces cost. Pattern machined in plastic. Plaster-of-paris mold made, and liquid ceramic poured into mold. Cost 90 percent less than cup machined from lava rock.

  9. Monochromatic imaging of cathodic arc plasma

    SciTech Connect

    Kinrot, U.; Goldsmith, S.; Boxman, R.L.

    1996-02-01

    Vacuum arc deposition (VAD) is an increasingly studied and applied technology that offers potential advantages such as high deposition rates, low deposition temperatures, and good adhesion. In the cathodic vacuum arc, minute hot areas on the cathode surface (``cathode spots``) emit highly ionized metallic plasma jets. Deposition of the cathode material is formed by placing a substrate in the plasma stream. Ceramic thin films such as TiN, SnO{sub 2}, and TiO{sub 2} can be deposited using VAD in the presence of a reactive gas. Plasma parameters such as the density of the various ionic components, ionic kinetic energy, electron temperature, and ion-excited state population densities, all have an important role in the film growth mechanism in VAD and largely affect the film characteristics (structure, morphology, stoichiometry, adhesion, uniformity, thickness, etc.). In the case of ceramic films, the interaction between the expanding plasma and the ambient gas is very important, but poorly understood. Here, monochromatic imaging is presented as a powerful tool for plasma diagnostics, and specifically for the investigation of cathodic vacuum arc plasma. Two-dimensional (2-D) monochromatic images in the visible region of an aluminum cathodic arc burning in helium background gas are presented. Inversion of Abel`s integral enables a reconstruction of the spatial distribution of the plasma emission coefficient. The qualitative and sometimes quantitative nature of the interaction between the expanding plasma and the ambient gas can be visualized with this technique.

  10. Arc Welding Dictionary 3. Project HIRE.

    ERIC Educational Resources Information Center

    Gardner, David C.; And Others

    Designed as supplemental material to on-going instruction in the vocational program, this third of three picture dictionary booklets in the Arc Welding series is intended to assist the learning handicapped student to master the core vocabulary taught in the trade. Intended for individual or small group instruction with minimal supervision, this…