Science.gov

Sample records for plasmid encoded antibiotic

  1. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria

    PubMed Central

    Bennett, P M

    2008-01-01

    Bacteria have existed on Earth for three billion years or so and have become adept at protecting themselves against toxic chemicals. Antibiotics have been in clinical use for a little more than 6 decades. That antibiotic resistance is now a major clinical problem all over the world attests to the success and speed of bacterial adaptation. Mechanisms of antibiotic resistance in bacteria are varied and include target protection, target substitution, antibiotic detoxification and block of intracellular antibiotic accumulation. Acquisition of genes needed to elaborate the various mechanisms is greatly aided by a variety of promiscuous gene transfer systems, such as bacterial conjugative plasmids, transposable elements and integron systems, that move genes from one DNA system to another and from one bacterial cell to another, not necessarily one related to the gene donor. Bacterial plasmids serve as the scaffold on which are assembled arrays of antibiotic resistance genes, by transposition (transposable elements and ISCR mediated transposition) and site-specific recombination mechanisms (integron gene cassettes). The evidence suggests that antibiotic resistance genes in human bacterial pathogens originate from a multitude of bacterial sources, indicating that the genomes of all bacteria can be considered as a single global gene pool into which most, if not all, bacteria can dip for genes necessary for survival. In terms of antibiotic resistance, plasmids serve a central role, as the vehicles for resistance gene capture and their subsequent dissemination. These various aspects of bacterial resistance to antibiotics will be explored in this presentation. PMID:18193080

  2. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria.

    PubMed

    Bennett, P M

    2008-03-01

    Bacteria have existed on Earth for three billion years or so and have become adept at protecting themselves against toxic chemicals. Antibiotics have been in clinical use for a little more than 6 decades. That antibiotic resistance is now a major clinical problem all over the world attests to the success and speed of bacterial adaptation. Mechanisms of antibiotic resistance in bacteria are varied and include target protection, target substitution, antibiotic detoxification and block of intracellular antibiotic accumulation. Acquisition of genes needed to elaborate the various mechanisms is greatly aided by a variety of promiscuous gene transfer systems, such as bacterial conjugative plasmids, transposable elements and integron systems, that move genes from one DNA system to another and from one bacterial cell to another, not necessarily one related to the gene donor. Bacterial plasmids serve as the scaffold on which are assembled arrays of antibiotic resistance genes, by transposition (transposable elements and ISCR mediated transposition) and site-specific recombination mechanisms (integron gene cassettes).The evidence suggests that antibiotic resistance genes in human bacterial pathogens originate from a multitude of bacterial sources, indicating that the genomes of all bacteria can be considered as a single global gene pool into which most, if not all, bacteria can dip for genes necessary for survival. In terms of antibiotic resistance, plasmids serve a central role, as the vehicles for resistance gene capture and their subsequent dissemination. These various aspects of bacterial resistance to antibiotics will be explored in this presentation. PMID:18193080

  3. Plasmids encoding therapeutic agents

    DOEpatents

    Keener, William K.

    2007-08-07

    Plasmids encoding anti-HIV and anti-anthrax therapeutic agents are disclosed. Plasmid pWKK-500 encodes a fusion protein containing DP178 as a targeting moiety, the ricin A chain, an HIV protease cleavable linker, and a truncated ricin B chain. N-terminal extensions of the fusion protein include the maltose binding protein and a Factor Xa protease site. C-terminal extensions include a hydrophobic linker, an L domain motif peptide, a KDEL ER retention signal, another Factor Xa protease site, an out-of-frame buforin II coding sequence, the lacZ.alpha. peptide, and a polyhistidine tag. More than twenty derivatives of plasmid pWKK-500 are described. Plasmids pWKK-700 and pWKK-800 are similar to pWKK-500 wherein the DP178-encoding sequence is substituted by RANTES- and SDF-1-encoding sequences, respectively. Plasmid pWKK-900 is similar to pWKK-500 wherein the HIV protease cleavable linker is substituted by a lethal factor (LF) peptide-cleavable linker.

  4. Nonconjugative Plasmids Encoding Sulfanilamide Resistance

    PubMed Central

    Mitsuhashi, Susumu; Inoue, Kunio; Inoue, Matsuhisa

    1977-01-01

    Nonconjugative plasmids encoding sulfanilamide (Sa) resistance were demonstrated at a high frequency in Shigella and Escherichia coli strains resistant to sulfanilamide. These Sa plasmids were all compatible with the standard plasmids used in compatibility testing. The sizes of seven Sa plasmids were measured by electron microscopy and ranged from 1.79 to 2.08 μm, corresponding to 3.5 to 3.9 megadaltons. Images PMID:334067

  5. Transfer in Marine Sediments of the Naturally Occurring Plasmid pRAS1 Encoding Multiple Antibiotic Resistance

    PubMed Central

    Sandaa, Ruth-Anne; Enger, Øivind

    1994-01-01

    The results of microcosm experiments performed with the fish-pathogenic bacterium Aeromonas salmonicida acting as a donor showed that promiscuous plasmid pRAS1, which encodes tetracycline resistance, is transferred at a high frequency in marine sediments even in the absence of a selective factor. The presence of oxytetracycline resulted in an increase in the transfer frequency compared with that of a microcosm to which no selective factor was added. Transfer frequencies of 3.4 × 10-1 transconjugant per recipient and 3.6 transconjugants per donor cell were obtained in a microcosm to which oxytetracycline had been added. Hybridization with a DNA probe specific for plasmid pRAS1 revealed that 45.8% of the oxytetracycline-resistant isolates obtained from a microcosm with no selective pressure carried the plasmid, while 86.8% of the isolates obtained from a microcosm to which oxytetracycline had been added carried the plasmid. Phenotypic characterization of the transconjugants revealed that the plasmid had been transferred to a variety of different biotypes in both microcosms. The diversity among the transconjugants isolated from the microcosm to which oxytetracycline had been added was substantially lower than the diversity among the transconjugants isolated from the microcosm to which no selective agent had been added. PMID:16349453

  6. Antibiotic Trapping by Plasmid-Encoded CMY-2 β-Lactamase Combined with Reduced Outer Membrane Permeability as a Mechanism of Carbapenem Resistance in Escherichia coli

    PubMed Central

    van der Bij, Akke K.; van Boxtel, Ria; Pitout, Johann D. D.; van Ulsen, Peter; Melles, Damian C.; Tommassen, Jan

    2013-01-01

    A liver transplant patient was admitted with cholangitis, for which meropenem therapy was started. Initial cultures showed a carbapenem-susceptible (CS) Escherichia coli strain, but during admission, a carbapenem-resistant (CR) E. coli strain was isolated. Analysis of the outer membrane protein profiles showed that both CS and CR E. coli lacked the porins OmpF and OmpC. Furthermore, PCR and sequence analysis revealed that both CS and CR E. coli possessed blaCTX-M-15 and blaOXA-1. The CR E. coli strain additionally harbored blaCMY-2 and demonstrated a >15-fold increase in β-lactamase activity against nitrocefin, but no hydrolysis of meropenem was detected. However, nitrocefin hydrolysis appeared strongly inhibited by meropenem. Furthermore, the CMY-2 enzyme demonstrated lower electrophoretic mobility after its incubation either in vitro or in vivo with meropenem, indicative of its covalent modification with meropenem. The presence of the acyl-enzyme complex was confirmed by mass spectrometry. By transformation of the CMY-2-encoding plasmid into various E. coli strains, it was established that both porin deficiency and high-level expression of the enzyme were needed to confer meropenem resistance. In conclusion, carbapenem resistance emerged by a combination of elevated β-lactamase production and lack of porin expression. Due to the reduced outer membrane permeability, only small amounts of meropenem can enter the periplasm, where they are trapped but not degraded by the large amount of the β-lactamase. This study, therefore, provides evidence that the mechanism of “trapping” by CMY-2 β-lactamase plays a role in carbapenem resistance. PMID:23733461

  7. Analysis of plasmids in nosocomial strains of multiple-antibiotic-resistant Staphylococcus aureus.

    PubMed Central

    Lyon, B R; May, J W; Skurray, R A

    1983-01-01

    Nosocomial infections caused by Staphylococcus aureus strains resistant to methicillin and multiple antibiotics have reached epidemic proportions in Melbourne, Australia, over the past 5 years. Plasmid analysis of representative clinical isolates demonstrated the presence of three classes of plasmid DNA in most strains. Resistance to gentamicin, kanamycin, and tobramycin was usually mediated by an 18-megadalton plasmid but could also be encoded by a related 22-megadalton plasmid. Two distinguishable plasmids of 3 megadaltons each endowed resistance to chloramphenicol, and the third class consisted of small plasmids, each approximately 1 megadalton in size, with no attributable function. An extensive array of resistance determinants, including some which have usually been associated with a plasmid locus, were found to exist on the chromosome. Evidence that resistance to gentamicin, kanamycin, and tobramycin is chromosomally encoded in some clinical isolates suggests that this determinant may have undergone genetic translocation onto the staphylococcal chromosome. Images PMID:6311086

  8. Exploring antibiotic resistance genes and metal resistance genes in plasmid metagenomes from wastewater treatment plants.

    PubMed

    Li, An-Dong; Li, Li-Guan; Zhang, Tong

    2015-01-01

    Plasmids operate as independent genetic elements in microorganism communities. Through horizontal gene transfer (HGT), they can provide their host microorganisms with important functions such as antibiotic resistance and heavy metal resistance. In this study, six metagenomic libraries were constructed with plasmid DNA extracted from influent, activated sludge (AS) and digested sludge (DS) of two wastewater treatment plants (WWTPs). Compared with the metagenomes of the total DNA extracted from the same sectors of the wastewater treatment plant, the plasmid metagenomes had significantly higher annotation rates, indicating that the functional genes on plasmids are commonly shared by those studied microorganisms. Meanwhile, the plasmid metagenomes also encoded many more genes related to defense mechanisms, including ARGs. Searching against an antibiotic resistance genes (ARGs) database and a metal resistance genes (MRGs) database revealed a broad-spectrum of antibiotic (323 out of a total 618 subtypes) and MRGs (23 out of a total 23 types) on these plasmid metagenomes. The influent plasmid metagenomes contained many more resistance genes (both ARGs and MRGs) than the AS and the DS metagenomes. Sixteen novel plasmids with a complete circular structure that carried these resistance genes were assembled from the plasmid metagenomes. The results of this study demonstrated that the plasmids in WWTPs could be important reservoirs for resistance genes, and may play a significant role in the horizontal transfer of these genes. PMID:26441947

  9. Exploring antibiotic resistance genes and metal resistance genes in plasmid metagenomes from wastewater treatment plants

    PubMed Central

    Li, An-Dong; Li, Li-Guan; Zhang, Tong

    2015-01-01

    Plasmids operate as independent genetic elements in microorganism communities. Through horizontal gene transfer (HGT), they can provide their host microorganisms with important functions such as antibiotic resistance and heavy metal resistance. In this study, six metagenomic libraries were constructed with plasmid DNA extracted from influent, activated sludge (AS) and digested sludge (DS) of two wastewater treatment plants (WWTPs). Compared with the metagenomes of the total DNA extracted from the same sectors of the wastewater treatment plant, the plasmid metagenomes had significantly higher annotation rates, indicating that the functional genes on plasmids are commonly shared by those studied microorganisms. Meanwhile, the plasmid metagenomes also encoded many more genes related to defense mechanisms, including ARGs. Searching against an antibiotic resistance genes (ARGs) database and a metal resistance genes (MRGs) database revealed a broad-spectrum of antibiotic (323 out of a total 618 subtypes) and MRGs (23 out of a total 23 types) on these plasmid metagenomes. The influent plasmid metagenomes contained many more resistance genes (both ARGs and MRGs) than the AS and the DS metagenomes. Sixteen novel plasmids with a complete circular structure that carried these resistance genes were assembled from the plasmid metagenomes. The results of this study demonstrated that the plasmids in WWTPs could be important reservoirs for resistance genes, and may play a significant role in the horizontal transfer of these genes. PMID:26441947

  10. Evolutionary Paths That Expand Plasmid Host-Range: Implications for Spread of Antibiotic Resistance.

    PubMed

    Loftie-Eaton, Wesley; Yano, Hirokazu; Burleigh, Stephen; Simmons, Ryan S; Hughes, Julie M; Rogers, Linda M; Hunter, Samuel S; Settles, Matthew L; Forney, Larry J; Ponciano, José M; Top, Eva M

    2016-04-01

    The World Health Organization has declared the emergence of antibiotic resistance to be a global threat to human health. Broad-host-range plasmids have a key role in causing this health crisis because they transfer multiple resistance genes to a wide range of bacteria. To limit the spread of antibiotic resistance, we need to gain insight into the mechanisms by which the host range of plasmids evolves. Although initially unstable plasmids have been shown to improve their persistence through evolution of the plasmid, the host, or both, the means by which this occurs are poorly understood. Here, we sought to identify the underlying genetic basis of expanded plasmid host-range and increased persistence of an antibiotic resistance plasmid using a combined experimental-modeling approach that included whole-genome resequencing, molecular genetics and a plasmid population dynamics model. In nine of the ten previously evolved clones, changes in host and plasmid each slightly improved plasmid persistence, but their combination resulted in a much larger improvement, which indicated positive epistasis. The only genetic change in the plasmid was the acquisition of a transposable element from a plasmid native to the Pseudomonas host used in these studies. The analysis of genetic deletions showed that the critical genes on this transposon encode a putative toxin-antitoxin (TA) and a cointegrate resolution system. As evolved plasmids were able to persist longer in multiple naïve hosts, acquisition of this transposon also expanded the plasmid's host range, which has important implications for the spread of antibiotic resistance. PMID:26668183

  11. Use of plasmid profiles in epidemiologic surveillance of disease outbreaks and in tracing the transmission of antibiotic resistance.

    PubMed Central

    Mayer, L W

    1988-01-01

    Plasmids are circular deoxyribonucleic acid molecules that exist in bacteria, usually independent of the chromosome. The study of plasmids is important to medical microbiology because plasmids can encode genes for antibiotic resistance or virulence factors. Plasmids can also serve as markers of various bacterial strains when a typing system referred to as plasmid profiling, or plasmid fingerprinting is used. In these methods partially purified plasma deoxyribonucleic acid species are separated according to molecular size by agarose gel electrophoresis. In a second procedure, plasmid deoxyribonucleic acid which has been cleaved by restriction endonucleases can be separated by agarose gel electrophoresis and the resulting pattern of fragments can be used to verify the identity of bacterial isolates. Because many species of bacteria contain plasmids, plasmid profile typing has been used to investigate outbreaks of many bacterial diseases and to trace inter- and intra-species spread of antibiotic resistance. Images PMID:2852997

  12. Analysis of Genetic Toggle Switch Systems Encoded on Plasmids

    NASA Astrophysics Data System (ADS)

    Loinger, Adiel; Biham, Ofer

    2009-08-01

    Genetic switch systems with mutual repression of two transcription factors, encoded on plasmids, are studied using stochastic methods. The plasmid copy number is found to strongly affect the behavior of these systems. More specifically, the average time between spontaneous switching events quickly increases with the number of plasmids. It was shown before that for a single copy encoded on the chromosome, the exclusive switch is more stable than the general switch. Here we show that when the switch is encoded on a sufficiently large number of plasmids, the situation is reversed and the general switch is more stable than the exclusive switch. These predictions can be tested experimentally using methods of synthetic biology.

  13. Genomic and Functional Characterization of qnr-Encoding Plasmids from Municipal Wastewater Biosolid Klebsiella pneumoniae Isolates

    PubMed Central

    Kaplan, Ella; Sela, Noa; Doron-Faigenboim, Adi; Navon-Venezia, Shiri; Jurkevitch, Edouard; Cytryn, Eddie

    2015-01-01

    Municipal wastewater treatment facilities are considered to be “hotspots” for antibiotic resistance, since they conjoin high densities of environmental and fecal bacteria with selective pressure in the form of sub-therapeutic concentrations of antibiotics. Discharged effluents and biosolids from these facilities can disseminate antibiotic resistant genes to terrestrial and aquatic environments, potentially contributing to the increasing global trend in antibiotic resistance. This phenomenon is especially pertinent when resistance genes are associated with mobile genetic elements such as conjugative plasmids, which can be transferred between bacterial phyla. Fluoroquinolones are among the most abundant antibiotic compounds detected in wastewater treatment facilities, especially in biosolids, where due to their hydrophobic properties they accumulate to concentrations that may exceed 40 mg/L. Although fluoroquinolone resistance is traditionally associated with mutations in the gyrA/topoisomerase IV genes, there is increasing evidence of plasmid-mediated quinolone resistance, which is primarily encoded on qnr genes. In this study, we sequenced seven qnr-harboring plasmids from a diverse collection of Klebsiella strains, isolated from dewatered biosolids from a large wastewater treatment facility in Israel. One of the plasmids, termed pKPSH-11XL was a large (185.4 kbp), multi-drug resistance, IncF-type plasmid that harbored qnrB and 10 additional antibiotic resistance genes that conferred resistance to five different antibiotic families. It was highly similar to the pKPN3-like plasmid family that has been detected in multidrug resistant clinical Klebsiella isolates. In contrast, the six additional plasmids were much smaller (7–9 Kbp) and harbored a qnrS -type gene. These plasmids were highly similar to each other and closely resembled pGNB2, a plasmid isolated from a German wastewater treatment facility. Comparative genome analyses of pKPSH-11XL and other pKPN3

  14. Genomic and Functional Characterization of qnr-Encoding Plasmids from Municipal Wastewater Biosolid Klebsiella pneumoniae Isolates.

    PubMed

    Kaplan, Ella; Sela, Noa; Doron-Faigenboim, Adi; Navon-Venezia, Shiri; Jurkevitch, Edouard; Cytryn, Eddie

    2015-01-01

    Municipal wastewater treatment facilities are considered to be "hotspots" for antibiotic resistance, since they conjoin high densities of environmental and fecal bacteria with selective pressure in the form of sub-therapeutic concentrations of antibiotics. Discharged effluents and biosolids from these facilities can disseminate antibiotic resistant genes to terrestrial and aquatic environments, potentially contributing to the increasing global trend in antibiotic resistance. This phenomenon is especially pertinent when resistance genes are associated with mobile genetic elements such as conjugative plasmids, which can be transferred between bacterial phyla. Fluoroquinolones are among the most abundant antibiotic compounds detected in wastewater treatment facilities, especially in biosolids, where due to their hydrophobic properties they accumulate to concentrations that may exceed 40 mg/L. Although fluoroquinolone resistance is traditionally associated with mutations in the gyrA/topoisomerase IV genes, there is increasing evidence of plasmid-mediated quinolone resistance, which is primarily encoded on qnr genes. In this study, we sequenced seven qnr-harboring plasmids from a diverse collection of Klebsiella strains, isolated from dewatered biosolids from a large wastewater treatment facility in Israel. One of the plasmids, termed pKPSH-11XL was a large (185.4 kbp), multi-drug resistance, IncF-type plasmid that harbored qnrB and 10 additional antibiotic resistance genes that conferred resistance to five different antibiotic families. It was highly similar to the pKPN3-like plasmid family that has been detected in multidrug resistant clinical Klebsiella isolates. In contrast, the six additional plasmids were much smaller (7-9 Kbp) and harbored a qnrS -type gene. These plasmids were highly similar to each other and closely resembled pGNB2, a plasmid isolated from a German wastewater treatment facility. Comparative genome analyses of pKPSH-11XL and other pKPN3-like

  15. Draft genome sequences of two Aeromonas salmonicida subsp. salmonicida isolates harboring plasmids conferring antibiotic resistance.

    PubMed

    Vincent, Antony T; Tanaka, Katherine H; Trudel, Melanie V; Frenette, Michel; Derome, Nicolas; Charette, Steve J

    2015-02-01

    The bacterium Aeromonas salmonicida is the etiological agent of furunculosis, a widespread fish disease causing important economic losses to the fish farming industry. Antibiotic treatments in fish farms may be challenging given the existence of multidrug-resistant isolates of this bacterium. Here, we report the draft genome sequences of the 2004-05MF26 and 2009-144K3 isolates, which harbor plasmids conferring antibiotic resistance. Both isolates also carry the large plasmid pAsa5, which is known to encode a type three secretion system (TTSS) and the pAsal1 plasmid which has the aopP gene producing a TTSS effector. These two isolates are good representatives of the plasmid diversity in A. salmonicida subsp. salmonicida. PMID:25724776

  16. Improved antibiotic-free DNA vaccine vectors utilizing a novel RNA based plasmid selection system

    PubMed Central

    Luke, Jeremy; Carnes, Aaron E; Hodgson, Clague P; Williams, James A

    2009-01-01

    To ensure safety, regulatory agencies recommend elimination of antibiotic resistance markers from therapeutic and vaccine plasmid DNA vectors. Here, we describe the development and application of a novel antibiotic-free selection system. Vectors incorporate and express a 150 bp RNA-OUT antisense RNA. RNA-OUT represses expression of a chromosomally integrated constitutively expressed counter-selectable marker (sacB), allowing plasmid selection on sucrose. Sucrose selectable DNA vaccine vectors combine antibiotic-free selection with highly productive fermentation manufacturing (>1 gm/L plasmid DNA yields), while improving in vivo expression of encoded proteins and increasing immune responses to target antigens. These vectors are safer, more potent, alternatives for DNA therapy or vaccination. PMID:19559109

  17. Plasmid Mediated Antibiotic Resistance in Isolated Bacteria From Burned Patients

    PubMed Central

    Beige, Fahimeh; Baseri Salehi, Majid; Bahador, Nima; Mobasherzadeh, Sina

    2014-01-01

    Background: Nowadays, the treatment of burned patients is difficult because of the high frequency of infection with antibiotic resistance bacteria. Objectives: This study was conducted to evaluate the level of antibiotic resistance in Gram-negative bacteria and its relation with the existence of plasmid. Materials and Methods: The samples were collected from two hundred twenty hospitalized burned patients in Isfahan burn hospital during a three-month period (March 2012 to June 2012). The samples were isolated and the Gram-negative bacteria were identified using phenotypic method and API 20E System. Antibiotic susceptibility and plasmid profile were determined by standard Agar disc diffusion and plasmid spin column extraction methods. Results: Totally 117 Gram-negative bacteria were isolated, the most common were Pseudomonas aerugionsa (37.6%), P. fluorescens (25.6%), Acinetobacter baumanii (20/5%) and Klebsiella pneumoniae (7.6%), respectively. The isolates showed high frequency of antibiotic resistance against ceftazidime and co-amoxiclave (100%) and low frequency of antibiotic resistance against amikacin with (70%).The results indicated that 60% of the isolates harboured plasmid. On the other hand, the patients infected with A. baumanii and P. aeruginosa were cured (with 60% frequency) whereas, those infected with P. fluorescens were not cured. Hence, probably antibiotic resistance markers of A. baumanii and P. aeruginosa are plasmid mediated; however, P. fluorescens is chromosomally mediated. Conclusions: Based on our findings, P. aerugionsa is a major causative agent of wound infections and amikacin could be considered as a more effective antibiotic for treatment of the burned patients. PMID:25789121

  18. Ornamental fish as a source of plasmid-mediated quinolone resistance genes and antibiotic resistance plasmids.

    PubMed

    Dobiasova, Hana; Kutilova, Iva; Piackova, Veronika; Vesely, Tomas; Cizek, Alois; Dolejska, Monika

    2014-07-16

    Growing ornamental fish industry is associated with public health concerns including extensive antibiotic use accompanied by increasing antibiotic resistance. The aim of this study was to analyze Aeromonas isolates from imported tropical ornamental fish and coldwater koi carps bred in the Czech Republic to assess the potential risk of ornamental fish as a source of plasmid-mediated quinolone resistance genes (PMQR) and antibiotic resistance plasmids. A collection of Aeromonas spp. with reduced susceptibility to ciprofloxacin (MIC ≥ 0.05 mg/L) was selected for the detection of PMQR genes. Isolates harbouring PMQR genes were further analyzed for the additional antibiotic resistance, integron content, clonality, biofilm production and transferability of PMQR genes by conjugation and transformation. Comparative analysis of plasmids carrying PMQR genes was performed. Fifteen (19%, n=80) isolates from koi carps and 18 (24%, n=76) isolates from imported ornamental fish were positive for qnrS2, aac(6')-Ib-cr or qnrB17 genes. PMQR-positive isolates from imported ornamental fish showed higher MIC levels to quinolones, multiresistance and diverse content of antibiotic resistance genes and integrons compared to the isolates from the carps. Related IncU plasmids harbouring qnrS2 and aac(6')-Ib-cr genes were found in Aeromonas spp. from imported ornamental fish and koi carps from various geographical areas. Ornamental fish may represent a potential source of multiresistant bacteria and mobile genetic elements for the environment and for humans. PMID:24629900

  19. Toxin–antitoxin systems are ubiquitous and plasmid-encoded in vancomycin-resistant enterococci

    PubMed Central

    Moritz, Elizabeth M.; Hergenrother, Paul J.

    2007-01-01

    Vancomycin-resistant enterococci (VRE) are common hospital pathogens that are resistant to most major classes of antibiotics. The incidence of VRE is increasing rapidly, to the point where over one-quarter of enterococcal infections in intensive care units are now resistant to vancomycin. The exact mechanism by which VRE maintains its plasmid-encoded resistance genes is ill-defined, and novel targets for the treatment of VRE are lacking. In an effort to identify novel protein targets for the treatment of VRE infections, we probed the plasmids obtained from 75 VRE isolates for the presence of toxin–antitoxin (TA) gene systems. Remarkably, genes for one particular TA pair, the mazEF system (originally identified on the Escherichia coli chromosome), were present on plasmids from 75/75 (100%) of the isolates. Furthermore, mazEF was on the same plasmid as vanA in the vast majority of cases (>90%). Plasmid stability tests and RT-PCR raise the possibility that this plasmid-encoded mazEF is indeed functional in enterococci. Given this ubiquity of mazEF in VRE and the deleterious activity of the MazF toxin, disruption of mazEF with pharmacological agents is an attractive strategy for tailored antimicrobial therapy. PMID:17190821

  20. Self-transmissible plasmids in staphylococci that encode resistance to aminoglycosides.

    PubMed Central

    Archer, G L; Johnston, J L

    1983-01-01

    High-level resistance to gentamicin, tobramycin, and kanamycin was transferred between staphylococci of the same and different species by filter mating. Resistance and transfer proficiency were mediated by plasmids ranging from 38 to 54 kilobases in size. All of the plasmids encoded intermediate resistance to amikacin and netilmicin and resistance to ethidium bromide; some encoded beta-lactamase production. None of these plasmids carried resistance to other antibiotics or heavy metals. Transfer of antibiotic resistance occurred by a mechanism similar to that of conjugation, because it was DNase resistant, required cell-to-cell contact, and did not appear to involve phage. The participation of phage in transfer appeared to be unlikely because mijtomicin C-induced lysates of donor isolates did not mediate transfer, filter mating transfer proceeded at high frequency between nonlysogenic donor and recipient cells, and transfer of the aminoglycoside resistance plasmid mobilized the transfer of as many as five additional plasmids. All 17 gentamicin-resistant Staphylococcus aureus and all 6 Staphylococcus epidermidis isolates obtained from an outbreak of staphylococcal infections in a newborn nursery contained conjugative plasmids, as did all 6 gentamicin-resistant S. aureus isolates from bacteremic adults. However, only 3 of 10 gentamicin-resistant S. epidermidis isolates from colonized cardiac surgery patients and 1 of 2 S. epidermidis isolates from patients with prosthetic valve endocarditis transferred gentamicin resistance by filter mating. The recent increase in nosocomial infections caused by gentamicin-resistant staphylococci may be partially explained by the evolution of self-transmissible plasmids in these isolates. Images PMID:6625557

  1. Diversification of broad host range plasmids correlates with the presence of antibiotic resistance genes.

    PubMed

    Li, Xiaobin; Wang, Yafei; Brown, Celeste J; Yao, Fei; Jiang, Yong; Top, Eva M; Li, Hui

    2016-01-01

    The IncP-1ε subgroup is a recently identified phylogenetic clade within IncP-1 plasmids, which plays an important role in the spread of antibiotic resistance and degradation of xenobiotic pollutants. Here, four IncP-1ε plasmids were exogenously captured from a petroleum-contaminated habitat in China and compared phylogenetically and genomically with previously reported IncP-1ε and other IncP-1 plasmids. The IncP-1ε plasmids can be clearly subdivided into two subclades, designated as ε-I and ε-II, based on phylogenetic analysis of backbone proteins TraI and TrfA. This was further supported by comparison of concatenated backbone genes. Moreover, the two subclades differed in the transposon types, phenotypes and insertion locations of the accessory elements. The accessory genes on ε-I plasmids were inserted between parA and traC, and harbored ISPa17 and Tn402-like transposon modules, typically carrying antibiotic resistance genes. In contrast, the accessory elements on ε-II plasmids were typically located between trfA and oriV, and contained IS1071, which was commonly inserted within the Tn501-like transposon, typically harboring a cluster of genes encoding mercury resistance and/or catabolic pathways. Our study is one of the first to compare IncP-1 plasmid genomes from China, expands the available collection of IncP-1ε plasmids and enhances our understanding of their diversity, biogeography and evolutionary history. PMID:26635412

  2. Whole genome sequencing of diverse Shiga toxin-producing and non-producing Escherichia coli strains reveals a variety of virulence and novel antibiotic resistance plasmids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genomes of a diverse set of Shiga toxin-producing E. coli strains and the presence of 38 plasmids among all the isolates were determined. Among the novel plasmids found, there were eight that encoded resistance genes to antibiotics, including aminoglycosides, carbapenems, penicillins, cephalosp...

  3. Characterization of a multiple antibiotic resistance plasmid from Haemophilus ducreyi.

    PubMed Central

    Willson, P J; Albritton, W L; Slaney, L; Setlow, J K

    1989-01-01

    Plasmid pLS88 from a clinical isolate of Haemophilus ducreyi encoded resistance determinants for sulfonamides and streptomycin related to those of RSF1010 and for kanamycin related to Tn903 but lacked the inverted repeats of the transposon. Its host range included Haemophilus influenzae, Actinobacillus pleuropneumoniae, and Escherichia coli; and it was compatible with pDM2 and RSF1010. Images PMID:2684012

  4. Selective Conditions for a Multidrug Resistance Plasmid Depend on the Sociality of Antibiotic Resistance

    PubMed Central

    Wood, A. Jamie; Brockhurst, Michael A.

    2016-01-01

    Multidrug resistance (MDR) plasmids frequently carry antibiotic resistance genes conferring qualitatively different mechanisms of resistance. We show here that the antibiotic concentrations selecting for the RK2 plasmid in Escherichia coli depend upon the sociality of the drug resistance: the selection for selfish drug resistance (efflux pump) occurred at very low drug concentrations, just 1.3% of the MIC of the plasmid-free antibiotic-sensitive strain, whereas selection for cooperative drug resistance (modifying enzyme) occurred at drug concentrations exceeding the MIC of the plasmid-free strain. PMID:26787694

  5. Persistent, Toxin-Antitoxin System-Independent, Tetracycline Resistance-Encoding Plasmid from a Dairy Enterococcus faecium Isolate▿

    PubMed Central

    Li, Xinhui; Alvarez, Valente; Harper, Willis James; Wang, Hua H.

    2011-01-01

    A tetracycline-resistant (Tetr) dairy Enterococcus faecium isolate designated M7M2 was found to carry both tet(M) and tet(L) genes on a 19.6-kb plasmid. After consecutive transfer in the absence of tetracycline, the resistance-encoding plasmid persisted in 99% of the progenies. DNA sequence analysis revealed that the 19.6-kb plasmid contained 28 open reading frames (ORFs), including a tet(M)-tet(L)-mob gene cluster, as well as a 10.6-kb backbone highly homologous (99.9%) to the reported plasmid pRE25, but without an identified toxin-antitoxin (TA) plasmid stabilization system. The derived backbone plasmid without the Tetr determinants exhibited a 100% retention rate in the presence of acridine orange, suggesting the presence of a TA-independent plasmid stabilization mechanism, with its impact on the persistence of a broad spectrum of resistance-encoding traits still to be elucidated. The tet(M)-tet(L) gene cluster from M7M2 was functional and transmissible and led to acquired resistance in Enterococcus faecalis OG1RF by electroporation and in Streptococcus mutans UA159 by natural transformation. Southern hybridization showed that both the tet(M) and tet(L) genes were integrated into the chromosome of S. mutans UA159, while the whole plasmid was transferred to and retained in E. faecalis OG1RF. Quantitative real-time reverse transcription-PCR (RT-PCR) indicated tetracycline-induced transcription of both the tet(M) and tet(L) genes of pM7M2. The results indicated that multiple mechanisms might have contributed to the persistence of antibiotic resistance-encoding genes and that the plasmids pM7M2, pIP816, and pRE25 are likely correlated evolutionarily. PMID:21784909

  6. Control of infection with multiple antibiotic resistant bacteria in a hospital renal unit: the value of plasmid characterization.

    PubMed Central

    Reed, C. S.; Barrett, S. P.; Threlfall, E. J.; Cheasty, T.

    1995-01-01

    An outbreak of infections due to multiple antibiotic-resistant bacteria took place over a period of approximately 18 months in a renal unit. Strains of Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, Citrobacter spp. and Pseudomonas spp. were involved, and a variety of antibiotic resistances was encountered. Closely related plasmids encoding resistance to aztreonam, ceftazidime and piperacillin, possibly derived from an archetypal plasmid of 105 kb were found in the majority of isolates examined. After limiting the use of aztreonam the incidence of new patient isolates of multiple-resistant organisms was greatly reduced. This study demonstrated how molecular studies can contribute to the control of an outbreak situation in a hospital unit by providing an impetus to reduce the use of specific antibiotics. Images Fig. 2 PMID:7641839

  7. Piggery manure used for soil fertilization is a reservoir for transferable antibiotic resistance plasmids.

    PubMed

    Binh, Chu Thi Thanh; Heuer, Holger; Kaupenjohann, Martin; Smalla, Kornelia

    2008-10-01

    In this study, the prevalence and types of transferable antibiotic resistance plasmids in piggery manure were investigated. Samples from manure storage tanks of 15 farms in Germany were analysed, representing diverse sizes of herds, meat or piglet production. Antibiotic resistance plasmids from manure bacteria were captured in gfp-tagged rifampicin-resistant Escherichia coli and characterized. The occurrence of plasmid types was also detected in total community DNA by PCR and hybridization. A total of 228 transconjugants were captured from 15 manures using selective media supplemented with amoxicillin, sulfadiazine or tetracycline. The restriction patterns of 81 plasmids representing different antibiotic resistance patterns or different samples clustered into seven groups. Replicon probing revealed that 28 of the plasmids belonged to IncN, one to IncW, 13 to IncP-1 and 19 to the recently discovered pHHV216-like plasmids. The amoxicillin resistance gene bla-TEM was detected on 44 plasmids, and sulphonamide resistance genes sul1, sul2 and/or sul3 on 68 plasmids. Hybridization of replicon-specific sequences amplified from community DNA revealed that IncP-1 and pHHV216-like plasmids were detected in all manures, while IncN and IncW ones were less frequent. This study showed that 'field-scale' piggery manure is a reservoir of broad-host range plasmids conferring multiple antibiotic resistance genes. PMID:18557938

  8. Structures of replication initiation proteins from staphylococcal antibiotic resistance plasmids reveal protein asymmetry and flexibility are necessary for replication.

    PubMed

    Carr, Stephen B; Phillips, Simon E V; Thomas, Christopher D

    2016-03-18

    Antibiotic resistance in pathogenic bacteria is a continual threat to human health, often residing in extrachromosomal plasmid DNA. Plasmids of the pT181 family are widespread and confer various antibiotic resistances to Staphylococcus aureus. They replicate via a rolling circle mechanism that requires a multi-functional, plasmid-encoded replication protein to initiate replication, recruit a helicase to the site of initiation and terminate replication after DNA synthesis is complete. We present the first atomic resolution structures of three such replication proteins that reveal distinct, functionally relevant conformations. The proteins possess a unique active site and have been shown to contain a catalytically essential metal ion that is bound in a manner distinct from that of any other rolling circle replication proteins. These structures are the first examples of the Rep_trans Pfam family providing insights into the replication of numerous antibiotic resistance plasmids from Gram-positive bacteria, Gram-negative phage and the mobilisation of DNA by conjugative transposons. PMID:26792891

  9. Structures of replication initiation proteins from staphylococcal antibiotic resistance plasmids reveal protein asymmetry and flexibility are necessary for replication

    PubMed Central

    Carr, Stephen B.; Phillips, Simon E.V.; Thomas, Christopher D.

    2016-01-01

    Antibiotic resistance in pathogenic bacteria is a continual threat to human health, often residing in extrachromosomal plasmid DNA. Plasmids of the pT181 family are widespread and confer various antibiotic resistances to Staphylococcus aureus. They replicate via a rolling circle mechanism that requires a multi-functional, plasmid-encoded replication protein to initiate replication, recruit a helicase to the site of initiation and terminate replication after DNA synthesis is complete. We present the first atomic resolution structures of three such replication proteins that reveal distinct, functionally relevant conformations. The proteins possess a unique active site and have been shown to contain a catalytically essential metal ion that is bound in a manner distinct from that of any other rolling circle replication proteins. These structures are the first examples of the Rep_trans Pfam family providing insights into the replication of numerous antibiotic resistance plasmids from Gram-positive bacteria, Gram-negative phage and the mobilisation of DNA by conjugative transposons. PMID:26792891

  10. Characterization of a plasmid-encoded urease gene cluster found in members of the family Enterobacteriaceae.

    PubMed

    D'Orazio, S E; Collins, C M

    1993-03-01

    Plasmid-encoded urease gene clusters found in uropathogenic isolates of Escherichia coli, Providencia stuartii, and Salmonella cubana demonstrated DNA homology, similar positions of restriction endonuclease cleavage sites, and manners of urease expression and therefore represent the same locus. DNA sequence analysis indicated that the plasmid-encoded urease genes are closely related to the Proteus mirabilis urease genes. PMID:8449894

  11. Derepression of conjugal transfer of the antibiotic resistance plasmid R100 by antisense RNA.

    PubMed Central

    Dempsey, W B

    1989-01-01

    Conjugal transfer of the normally repressed antibiotic resistance plasmid R100 was derepressed by fragments of R100 that carried the traJ promoter and the traJ leader but lacked the finP promoter. PMID:2468651

  12. Selection of a Multidrug Resistance Plasmid by Sublethal Levels of Antibiotics and Heavy Metals

    PubMed Central

    Gullberg, Erik; Albrecht, Lisa M.; Karlsson, Christoffer; Sandegren, Linus

    2014-01-01

    ABSTRACT How sublethal levels of antibiotics and heavy metals select for clinically important multidrug resistance plasmids is largely unknown. Carriage of plasmids generally confers substantial fitness costs, implying that for the plasmid-carrying bacteria to be maintained in the population, the plasmid cost needs to be balanced by a selective pressure conferred by, for example, antibiotics or heavy metals. We studied the effects of low levels of antibiotics and heavy metals on the selective maintenance of a 220-kbp extended-spectrum β-lactamase (ESBL) plasmid identified in a hospital outbreak of Klebsiella pneumoniae and Escherichia coli. The concentrations of antibiotics and heavy metals required to maintain plasmid-carrying bacteria, the minimal selective concentrations (MSCs), were in all cases below (almost up to 140-fold) the MIC of the plasmid-free susceptible bacteria. This finding indicates that the very low antibiotic and heavy metal levels found in polluted environments and in treated humans and animals might be sufficiently high to maintain multiresistance plasmids. When resistance genes were moved from the plasmid to the chromosome, the MSC decreased, showing that MSC for a specific resistance conditionally depends on genetic context. This finding suggests that a cost-free resistance could be maintained in a population by an infinitesimally low concentration of antibiotic. By studying the effect of combinations of several compounds, it was observed that for certain combinations of drugs each new compound added lowered the minimal selective concentration of the others. This combination effect could be a significant factor in the selection of multidrug resistance plasmids/bacterial clones in complex multidrug environments. PMID:25293762

  13. Plasmid profiles and antibiotic susceptibility patterns of Staphylococcus aureus isolates from Nigeria.

    PubMed

    Olukoya, D K; Asielue, J O; Olasupo, N A; Ikea, J K

    1995-06-01

    In an investigation into the problems of infections due to Staphylococcus aureus in Nigeria, 100 strains were isolated from various hospitals in Lagos. The strains were screened for the presence of plasmids and for susceptibility to antimicrobial agents. Plasmids were extracted by modification of the method of Takahashi and Nagono[1]. The plasmids were diverse in nature. The strains were found to be highly resistant to commonly prescribed antibiotics. PMID:8669391

  14. Chromosome- and Plasmid-Encoded β-Lactamases in Capnocytophaga spp.

    PubMed Central

    Handal, Trude; Giraud-Morin, Chantal; Caugant, Dominique A.; Madinier, Isabelle; Olsen, Ingar; Fosse, Thierry

    2005-01-01

    Chromosome- and plasmid-encoded CfxA2 and CfxA3 β-lactamases were detected in Capnocytophaga spp. from oral sources in France, Norway, and the United States. Unidentified chromosome-encoded β-lactamases were present in Capnocytophaga sputigena. Nucleotide sequence analysis of the CfxA3-encoding plasmid from C. ochracea revealed an unreported insertion sequence (ISCoc1) upstream of the cfxA gene. PMID:16127077

  15. Cotransfer of antibiotic resistance genes and a hylEfm-containing virulence plasmid in Enterococcus faecium.

    PubMed

    Arias, Cesar A; Panesso, Diana; Singh, Kavindra V; Rice, Louis B; Murray, Barbara E

    2009-10-01

    The hyl(Efm) gene (encoding a putative hyaluronidase) has been found almost exclusively in Enterococcus faecium clinical isolates, and recently, it was shown to be on a plasmid which increased the ability of E. faecium strains to colonize the gastrointestinal tract. In this work, the results of mating experiments between hyl(Efm)-containing strains of E. faecium belonging to clonal cluster 17 and isolated in the United States and Colombia indicated that the hyl(Efm) gene of these strains is also carried on large plasmids (>145 kb) which we showed transfer readily from clinical strains to E. faecium hosts. Cotransfer of resistance to vancomycin and high-level resistance (HLR) to aminoglycosides (gentamicin and streptomycin) and erythromycin was also observed. The vanA gene cluster and gentamicin resistance determinants were genetically linked to hyl(Efm), whereas erm(B) and ant(6)-I, conferring macrolide-lincosamide-streptogramin B resistance and HLR to streptomycin, respectively, were not. A hyl(Efm)-positive transconjugant resulting from a mating between a well-characterized endocarditis strain [TX0016 (DO)] and a derivative of a fecal strain of E. faecium from a healthy human volunteer (TX1330RF) exhibited increased virulence in a mouse peritonitis model. These results indicate that E. faecium strains use a strategy which involves the recruitment into the same genetic unit of antibiotic resistance genes and determinants that increase the ability to produce disease. Our findings indicate that the acquisition of the hyl(Efm) plasmids may explain, at least in part, the recent successful emergence of some E. faecium strains as nosocomial pathogens. PMID:19667280

  16. Characterization and comparative analysis of antibiotic resistance plasmids isolated from a wastewater treatment plant

    PubMed Central

    Rahube, Teddie O.; Viana, Laia S.; Koraimann, Günther; Yost, Christopher K.

    2014-01-01

    A wastewater treatment plant (WWTP) is an environment high in nutrient concentration with diverse bacterial populations and can provide an ideal environment for the proliferation of mobile elements such as plasmids. WWTPs have also been identified as reservoirs for antibiotic resistance genes that are associated with human pathogens. The objectives of this study were to isolate and characterize self-transmissible or mobilizable resistance plasmids associated with effluent from WWTP. An enrichment culture approach designed to capture plasmids conferring resistance to high concentrations of erythromycin was used to capture plasmids from an urban WWTP servicing a population of ca. 210,000. DNA sequencing of the plasmids revealed diversity of plasmids represented by incompatibility groups IncU, col-E, IncFII and IncP-1β. Genes coding resistance to clinically relevant antibiotics (macrolide, tetracycline, beta-lactam, trimethoprim, chloramphenicol, sulphonamide), quaternary ammonium compounds and heavy metals were co-located on these plasmids, often within transposable and integrative mobile elements. Several of the plasmids were self-transmissible or mobilizable and could be maintained in the absence of antibiotic selection. The IncFII plasmid pEFC36a showed the highest degree of sequence identity to plasmid R1 which has been isolated in England more than 50 years ago from a patient suffering from a Salmonella infection. Functional conservation of key regulatory features of this F-like conjugation module were demonstrated by the finding that the conjugation frequency of pEFC36a could be stimulated by the positive regulator of plasmid R1 DNA transfer genes, TraJ. PMID:25389419

  17. Mix and match of KPC-2 encoding plasmids in Enterobacteriaceae-comparative genomics.

    PubMed

    Chmelnitsky, Inna; Shklyar, Maya; Leavitt, Azita; Sadovsky, Evgeniya; Navon-Venezia, Shiri; Ben Dalak, Maayan; Edgar, Rotem; Carmeli, Yehuda

    2014-06-01

    We performed comparative sequence analysis of 3 blaKPC-2 encoding plasmids to examine evolution of these plasmids and their dissemination. We found that all of them have an IncN replicon with a newly determined IncN plasmid sequence type (ST), ST15. The 2 Klebsiella pneumoniae (KPN) plasmids also harbor an IncF2A1-B1- replicon. The blaKPC-2 is located in the Tn4401c transposon with a newly discovered mutation in the P2 promoter. Screening of the 27 additional blaKPC-2 carrying plasmids from Enterobacter cloacae, Escherichia coli (EC), and K. pneumoniae showed that: all KPN and EC plasmids are IncN plasmids belonging to ST15; 4/7 KPN and 1/6 EC plasmids contain an additional IncF2A1-B1- replicon; all Enterobacter plasmids belong to neither IncN nor IncF2A1-B1- replicon plasmids; 6/7 KPN and 2/5 EC plasmids carry the mutated P2 promoter. Study of the blaKPC-2 environment, transposon, pMLST, and Inc group suggests transposon and plasmid inter- and intra-species dissemination and evolution. PMID:24743043

  18. Plasmid metagenomics reveals multiple antibiotic resistance gene classes among the gut microbiomes of hospitalised patients.

    PubMed

    Jitwasinkul, Tossawan; Suriyaphol, Prapat; Tangphatsornruang, Sithichoke; Hansen, Martin Asser; Hansen, Lars Hestbjerg; Sørensen, Søren Johannes; Permpikul, Chairat; Rongrungruang, Yong; Tribuddharat, Chanwit

    2016-09-01

    Antibiotic resistance genes are rapidly spread between pathogens and the normal flora, with plasmids playing an important role in their circulation. This study aimed to investigate antibiotic resistance plasmids in the gut microbiome of hospitalised patients. Stool samples were collected from seven inpatients at Siriraj Hospital (Bangkok, Thailand) and were compared with a sample from a healthy volunteer. Plasmids from the gut microbiomes extracted from the stool samples were subjected to high-throughput DNA sequencing (GS Junior). Newbler-assembled DNA reads were categorised into known and unknown sequences (using >80% alignment length as the cut-off), and ResFinder was used to classify the antibiotic resistance gene pools. Plasmid replicon modules were used for plasmid typing. Forty-six genes conferring resistance to several classes of antibiotics were identified in the stool samples. Several antibiotic resistance genes were shared by the patients; interestingly, most were reported previously in food animals and healthy humans. Four antibiotic resistance genes were found in the healthy subject. One gene (aph3-III) was identified in the patients and the healthy subject and was related to that in cattle. Uncommon genes of hospital origin such as blaTEM-124-like and fosA, which confer resistance to extended-spectrum β-lactams and fosfomycin, respectively, were identified. The resistance genes did not match the patients' drug treatments. In conclusion, several plasmid types were identified in the gut microbiome; however, it was difficult to link these to the antibiotic resistance genes identified. That the antibiotic resistance genes came from hospital and community environments is worrying. PMID:27530840

  19. Molecular Analysis of Antibiotic Resistance Determinants and Plasmids in Malaysian Isolates of Multidrug Resistant Klebsiella pneumoniae

    PubMed Central

    Al-Marzooq, Farah; Mohd Yusof, Mohd Yasim; Tay, Sun Tee

    2015-01-01

    Infections caused by multidrug resistant Klebsiella pneumoniae have been increasingly reported in many parts of the world. A total of 93 Malaysian multidrug resistant K. pneumoniae isolated from patients attending to University of Malaya Medical Center, Kuala Lumpur, Malaysia from 2010-2012 were investigated for antibiotic resistance determinants including extended-spectrum beta-lactamases (ESBLs), aminoglycoside and trimethoprim/sulfamethoxazole resistance genes and plasmid replicons. CTX-M-15 (91.3%) was the predominant ESBL gene detected in this study. aacC2 gene (67.7%) was the most common gene detected in aminoglycoside-resistant isolates. Trimethoprim/sulfamethoxazole resistance (90.3%) was attributed to the presence of sul1 (53.8%) and dfrA (59.1%) genes in the isolates. Multiple plasmid replicons (1-4) were detected in 95.7% of the isolates. FIIK was the dominant replicon detected together with 13 other types of plasmid replicons. Conjugative plasmids (1-3 plasmids of ~3-100 kb) were obtained from 27 of 43 K. pneumoniae isolates. An ESBL gene (either CTX-M-15, CTX-M-3 or SHV-12) was detected from each transconjugant. Co-detection with at least one of other antibiotic resistance determinants [sul1, dfrA, aacC2, aac(6ˊ)-Ib, aac(6ˊ)-Ib-cr and qnrB] was noted in most conjugative plasmids. The transconjugants were resistant to multiple antibiotics including β-lactams, gentamicin and cotrimoxazole, but not ciprofloxacin. This is the first study describing the characterization of plasmids circulating in Malaysian multidrug resistant K. pneumoniae isolates. The results of this study suggest the diffusion of highly diverse plasmids with multiple antibiotic resistance determinants among the Malaysian isolates. Effective infection control measures and antibiotic stewardship programs should be adopted to limit the spread of the multidrug resistant bacteria in healthcare settings. PMID:26203651

  20. Diversity of plasmids encoding histidine decarboxylase gene in Tetragenococcus spp. isolated from Japanese fish sauce.

    PubMed

    Satomi, Masataka; Furushita, Manabu; Oikawa, Hiroshi; Yano, Yutaka

    2011-07-15

    Nineteen isolates of histamine producing halophilic bacteria were isolated from four fish sauce mashes, each mash accumulating over 1000 ppm of histamine. The complete sequences of the plasmids encoding the pyruvoyl dependent histidine decarboxylase gene (hdcA), which is harbored in histamine producing bacteria, were determined. In conjunction, the sequence regions adjacent to hdcA were analyzed to provide information regarding its genetic origin. As reference strains, Tetragenococcus halophilus H and T. muriaticus JCM10006(T) were also studied. Phenotypic and 16S rRNA gene sequence analyses identified all isolates as T. halophilus, a predominant histamine producing bacteria present during fish sauce fermentation. Genetic analyses (PCR, Southern blot, and complete plasmid sequencing) of the histamine producing isolates confirmed that all the isolates harbored approximately 21-37 kbp plasmids encoding a single copy of the hdc cluster consisting of four genes related to histamine production. Analysis of hdc clusters, including spacer regions, indicated >99% sequence similarity among the isolates. All of the plasmids sequenced encoded traA, however genes related to plasmid conjugation, namely mob genes and oriT, were not identified. Two putative mobile genetic elements, ISLP1-like and IS200-like, respectively, were identified in the up- and downstream region of the hdc cluster of all plasmids. Most of the sequences, except hdc cluster and two adjacent IS elements, were diverse among plasmids, suggesting that each histamine producers harbored a different histamine-related plasmid. These results suggested that the hdc cluster was not spread by clonal dissemination depending on the specific plasmid and that the hdc cluster in tetragenococcal plasmid was likely encoded on transformable elements. PMID:21616548

  1. The Coxiella burnetii Cryptic Plasmid Is Enriched in Genes Encoding Type IV Secretion System Substrates▿ †

    PubMed Central

    Voth, Daniel E.; Beare, Paul A.; Howe, Dale; Sharma, Uma M.; Samoilis, Georgios; Cockrell, Diane C.; Omsland, Anders; Heinzen, Robert A.

    2011-01-01

    The intracellular bacterial pathogen Coxiella burnetii directs biogenesis of a phagolysosome-like parasitophorous vacuole (PV), in which it replicates. The organism encodes a Dot/Icm type IV secretion system (T4SS) predicted to deliver to the host cytosol effector proteins that mediate PV formation and other cellular events. All C. burnetii isolates carry a large, autonomously replicating plasmid or have chromosomally integrated plasmid-like sequences (IPS), suggesting that plasmid and IPS genes are critical for infection. Bioinformatic analyses revealed two candidate Dot/Icm substrates with eukaryotic-like motifs uniquely encoded by the QpH1 plasmid from the Nine Mile reference isolate. CpeC, containing an F-box domain, and CpeD, possessing kinesin-related and coiled-coil regions, were secreted by the closely related Legionella pneumophila Dot/Icm T4SS. An additional QpH1-specific gene, cpeE, situated in a predicted operon with cpeD, also encoded a secreted effector. Further screening revealed that three hypothetical proteins (CpeA, CpeB, and CpeF) encoded by all C. burnetii plasmids and IPS are Dot/Icm substrates. By use of new genetic tools, secretion of plasmid effectors by C. burnetii during host cell infection was confirmed using β-lactamase and adenylate cyclase translocation assays, and a C-terminal secretion signal was identified. When ectopically expressed in HeLa cells, plasmid effectors trafficked to different subcellular sites, including autophagosomes (CpeB), ubiquitin-rich compartments (CpeC), and the endoplasmic reticulum (CpeD). Collectively, these results suggest that C. burnetii plasmid-encoded T4SS substrates play important roles in subversion of host cell functions, providing a plausible explanation for the absolute maintenance of plasmid genes by this pathogen. PMID:21216993

  2. The 2 micrometer plasmid stability system: analyses of the interactions among plasmid- and host-encoded components.

    PubMed

    Velmurugan, S; Ahn, Y T; Yang, X M; Wu, X L; Jayaram, M

    1998-12-01

    The stable inheritance of the 2 micrometer plasmid in a growing population of Saccharomyces cerevisiae is dependent on two plasmid-encoded proteins (Rep1p and Rep2p), together with the cis-acting locus REP3 (STB). In this study we demonstrate that short carboxy-terminal deletions of Rep1p and Rep2p severely diminish their normal capacity to localize to the yeast nucleus. The nuclear targeting, as well as their functional role in plasmid partitioning, can be restored by the addition of a nuclear localization sequence to the amino or the carboxy terminus of the shortened Rep proteins. Analyses of deletion derivatives of the Rep proteins by using the in vivo dihybrid genetic test in yeast, as well as by glutathione S-transferase fusion trapping assays in vitro demonstrate that the amino-terminal portion of Rep1p (ca. 150 amino acids long) is responsible for its interactions with Rep2p. In a monohybrid in vivo assay, we have identified Rep1p, Rep2p, and a host-encoded protein, Shf1p, as being capable of interacting with the STB locus. The Shf1 protein expressed in Escherichia coli can bind with high specificity to the STB sequence in vitro. In a yeast strain deleted for the SHF1 locus, a 2 micrometer circle-derived plasmid shows relatively poor stability. PMID:9819432

  3. The 2μm Plasmid Stability System: Analyses of the Interactions among Plasmid- and Host-Encoded Components

    PubMed Central

    Velmurugan, Soundarapandian; Ahn, Yong-Tae; Yang, Xian-Mei; Wu, Xu-Li; Jayaram, Makkuni

    1998-01-01

    The stable inheritance of the 2μm plasmid in a growing population of Saccharomyces cerevisiae is dependent on two plasmid-encoded proteins (Rep1p and Rep2p), together with the cis-acting locus REP3 (STB). In this study we demonstrate that short carboxy-terminal deletions of Rep1p and Rep2p severely diminish their normal capacity to localize to the yeast nucleus. The nuclear targeting, as well as their functional role in plasmid partitioning, can be restored by the addition of a nuclear localization sequence to the amino or the carboxy terminus of the shortened Rep proteins. Analyses of deletion derivatives of the Rep proteins by using the in vivo dihybrid genetic test in yeast, as well as by glutathione S-transferase fusion trapping assays in vitro demonstrate that the amino-terminal portion of Rep1p (ca. 150 amino acids long) is responsible for its interactions with Rep2p. In a monohybrid in vivo assay, we have identified Rep1p, Rep2p, and a host-encoded protein, Shf1p, as being capable of interacting with the STB locus. The Shf1 protein expressed in Escherichia coli can bind with high specificity to the STB sequence in vitro. In a yeast strain deleted for the SHF1 locus, a 2μm circle-derived plasmid shows relatively poor stability. PMID:9819432

  4. Plasmid incidence, antibiotic and metal resistance among enterobacteriaceae isolated from Algerian streams.

    PubMed

    Habi, S; Daba, H

    2009-11-15

    Enterobacteriaceae isolates from surface water were examined to assess impact of feacal and/or metal pollution on heavy metal, antibiotics resistance and plasmid incidence. A bi-modal CMI distribution was noted for cadmium and mercury. On the other hand, modal distribution was observed for Pb. Critical metal concentration were >8, >32, > or =4096 microg mL(-1) for mercury, cadmium and lead, respectively. High resistance to Pb and low resistance to Cd were remarked in stream water polluted with heavy metal. Resistance to antibiotics was most frequent to erythromycin (45.45-68.8%), tetracyclin family (14-61.11%), streptomycin (16-24%) and furan (8.16-24.1%). Bacterial resistance to some antibiotics (kanamycin, tetracyclin, doxycyclin, furan and chloramphenicol) was significantly different (p < 0.05) between streams water. Analysis of antibiotic resistance by principal component analysis showed a clear difference between fresh water and urban waste water for two principal components (1, 2) and the difference between principal component scores of antibiotic could not be related to the faecal pollution level. No difference was found between stream water subjected or not to contamination from metallic or poultry waste. The frequency of strains carrying plasmids was higher in urban waste water than metal and/or low faecal polluted stream water. No correlation was observed between plasmid and metal resistance. PMID:20180322

  5. The Multidrug Resistance IncA/C Transferable Plasmid Encodes a Novel Domain-swapped Dimeric Protein-disulfide Isomerase*

    PubMed Central

    Premkumar, Lakshmanane; Kurth, Fabian; Neyer, Simon; Schembri, Mark A.; Martin, Jennifer L.

    2014-01-01

    The multidrug resistance-encoding IncA/C conjugative plasmids disseminate antibiotic resistance genes among clinically relevant enteric bacteria. A plasmid-encoded disulfide isomerase is associated with conjugation. Sequence analysis of several IncA/C plasmids and IncA/C-related integrative and conjugative elements (ICE) from commensal and pathogenic bacteria identified a conserved DsbC/DsbG homolog (DsbP). The crystal structure of DsbP reveals an N-terminal domain, a linker region, and a C-terminal catalytic domain. A DsbP homodimer is formed through domain swapping of two DsbP N-terminal domains. The catalytic domain incorporates a thioredoxin-fold with characteristic CXXC and cis-Pro motifs. Overall, the structure and redox properties of DsbP diverge from the Escherichia coli DsbC and DsbG disulfide isomerases. Specifically, the V-shaped dimer of DsbP is inverted compared with EcDsbC and EcDsbG. In addition, the redox potential of DsbP (−161 mV) is more reducing than EcDsbC (−130 mV) and EcDsbG (−126 mV). Other catalytic properties of DsbP more closely resemble those of EcDsbG than EcDsbC. These catalytic differences are in part a consequence of the unusual active site motif of DsbP (CAVC); substitution to the EcDsbC-like (CGYC) motif converts the catalytic properties to those of EcDsbC. Structural comparison of the 12 independent subunit structures of DsbP that we determined revealed that conformational changes in the linker region contribute to mobility of the catalytic domain, providing mechanistic insight into DsbP function. In summary, our data reveal that the conserved plasmid-encoded DsbP protein is a bona fide disulfide isomerase and suggest that a dedicated oxidative folding enzyme is important for conjugative plasmid transfer. PMID:24311786

  6. Antibiotic resistance due to an unusual ColE1-type replicon plasmid in Aeromonas salmonicida.

    PubMed

    Vincent, Antony T; Emond-Rheault, Jean-Guillaume; Barbeau, Xavier; Attéré, Sabrina A; Frenette, Michel; Lagüe, Patrick; Charette, Steve J

    2016-06-01

    Aeromonas salmonicida subsp. salmonicida is a fish pathogen known to have a rich plasmidome. In the present study, we discovered an isolate of this bacterium bearing an additional unidentified small plasmid. After having sequenced the DNA of that isolate by next-generation sequencing, it appeared that the new small plasmid is a ColE1-type replicon plasmid, named here pAsa7. This plasmid bears a functional chloramphenicol-acetyltransferase-encoding gene (cat-pAsa7) previously unknown in A. salmonicida and responsible for resistance to chloramphenicol. A comparison of pAsa7 with pAsa2, the only known ColE1-type replicon plasmid usually found in A. salmonicida subsp. salmonicida, revealed that even if both plasmids share a high structural similarity, it is still unclear if pAsa7 is a derivative of pAsa2 since they showed several mutations at the nucleotide level. Transcriptomic analysis revealed that the cat-pAsa4 gene, another chloramphenicol-acetyltransferase-encoding gene, found on the large plasmid pAsa4, was significantly more transcribed than cat-pAsa7. This was correlated with a higher chloramphenicol resistance for isolates bearing pAsa4 compared with the one having pAsa7. Finally, a phylogenetic analysis showed that both CAT-pAsa4 and CAT-pAsa7 proteins were in different clusters. The clustering was supported by the identity of residues involved in the catalytic site. In addition, to give a better understanding of the large drug-resistance panel of A. salmonicida, this study reinforces the hypothesis that A. salmonicida subsp. salmonicida is a considerable reservoir for mobile genetic elements such as plasmids. PMID:27028891

  7. Conjugal Transfer of Plasmid-Borne Multiple Antibiotic Resistance in Streptococcus faecalis var. zymogenes

    PubMed Central

    Jacob, Alan E.; Hobbs, Susan J.

    1974-01-01

    A strain of Streptococcus faecalis var. zymogenes, designated JH1, had high-level resistance to the antibiotics streptomycin, kanamycin, neomycin, erythromycin, and tetracycline. These resistances were lost en bloc from approximately 0.1% of cells grown in nutrient broth at 45 C. The frequency of resistance loss was not increased by growth in the presence of the “curing” agents acriflavine or acridine orange, but after prolonged storage in nutrient agar 17% of cells became antibiotic sensitive. Covalently closed circular deoxyribonucleic acid (DNA) molecules were isolated from the parental strain and from antibiotic-sensitive segregants by using cesium chloride-ethidium bromide gradients. DNA molecular species were identified by using neutral sucrose gradients. Strain JH1 contained two covalently closed circular DNA species of molecular weights 50 × 106 and 38 × 106. An antibiotic-sensitive segregant, strain JH1-9, had lost the larger molecular species. A second sensitive segregant, strain JH1-5, had also lost the larger molecular species but a new molecular species of approximate molecular weight 6 × 106 was present. The antibiotic resistances that were curable from the parental strain were transferred to antibiotic-sensitive strains of S. faecalis and to strain JH1-9, during mixed incubation in nutrient broth at 37 C. Data to be described are interpreted to suggest that the transfer is by a conjugal mechanism. Analysis of the plasmid species in recipient clones showed that all had received the plasmid of molecular weight 50 × 106. Strain JH1-5 was not a good recipient. Analysis of one successful recipient clone of JH1-5 revealed that it had gained the 50 × 106 molecular weight plasmid but lost the 6 × 106 molecular weight species. These data are interpreted to mean that the multiple antibiotic resistance is borne by a transferable plasmid of 50 × 106 molecular weight, and that in clone JH1-5 this plasmid suffered a large deletion leaving only a 6

  8. Identification and sequence analysis of pWcMBF8-1, a bacteriocin-encoding plasmid from the lactic acid bacterium Weissella confusa.

    PubMed

    Malik, Amarila; Sumayyah, Sumayyah; Yeh, Chia-Wen; Heng, Nicholas C K

    2016-04-01

    Members of the Gram-positive lactic acid bacteria (LAB) are well-known for their beneficial properties as starter cultures and probiotics. Many LAB species produce ribosomally synthesized proteinaceous antibiotics (bacteriocins). Weissella confusa MBF8-1 is a strain isolated from a fermented soybean product that not only produces useful exopolysaccharides but also exhibits bacteriocin activity, which we call weissellicin MBF. Here, we show that bacteriocin production by W. confusa MBF8-1 is specified by a large plasmid, pWcMBF8-1. Plasmid pWcMBF8-1 (GenBank accession number KR350502), which was identified from the W. confusa MBF8-1 draft genome sequence, is 17 643 bp in length with a G + C content of 34.8% and contains 25 open reading frames (ORFs). Six ORFs constitute the weissellicin MBF locus, encoding three putative double-glycine-motif peptides (Bac1, Bac2, Bac3), an ABC transporter complex (BacTE) and a putative immunity protein (BacI). Two ORFs encode plasmid partitioning and mobilization proteins, suggesting that pWcMBF8-1 is transferable to other hosts. To the best of our knowledge, plasmid pWcMBF8-1 not only represents the first large Weissella plasmid to be sequenced but also the first to be associated with bacteriocin production in W. confusa. PMID:26976853

  9. Effect of plasmid copy number and lac operator sequence on antibiotic-free plasmid selection by operator-repressor titration in Escherichia coli.

    PubMed

    Cranenburgh, Rocky M; Lewis, Kathryn S; Hanak, Julian A J

    2004-01-01

    The Escherichia coli strain DH1lacdapD enables plasmid selection and maintenance that is free from antibiotics and selectable marker genes. This is achieved by using only the lac operator sequence as a selectable element. This strain is currently used to generate high copy number plasmids with no antibiotic resistance genes for use as DNA vaccines and for expression of recombinant proteins. Until now these have been limited to pUC-based plasmids containing a high copy number pMB1-derived origin of replication, and the principle lacO(1) and auxiliary lacO(3) operators. In this study we have shown that this system can also be used to select and maintain pBR322-based plasmids with the lower copy number pMB1 origin of replication, and that lacO(1) alone or a palindromic version of lacO(1) can provide a sufficient level of repressor titration for plasmid selection. This is advantageous for recombinant protein production, where low copy number plasmids are often used and plasmid maintenance is important. The degree of repressor titration due to these plasmids was measured using the natural lactose operon in E. coli DH1 as a model. PMID:15383717

  10. Combination of essential oils and antibiotics reduce antibiotic resistance in plasmid-conferred multidrug resistant bacteria.

    PubMed

    Yap, Polly Soo Xi; Lim, Swee Hua Erin; Hu, Cai Ping; Yiap, Beow Chin

    2013-06-15

    In this study we investigated the relationship between several selected commercially available essential oils and beta-lactam antibiotics on their antibacterial effect against multidrug resistant bacteria. The antibacterial activity of essential oils and antibiotics was assessed using broth microdilution. The combined effects between essential oils of cinnamon bark, lavender, marjoram, tea tree, peppermint and ampicillin, piperacillin, cefazolin, cefuroxime, carbenicillin, ceftazidime, meropenem, were evaluated by means of the checkerboard method against beta-lactamase-producing Escherichia coli. In the latter assays, fractional inhibitory concentration (FIC) values were calculated to characterize interaction between the combinations. Substantial susceptibility of the bacteria toward natural antibiotics and a considerable reduction in the minimum inhibitory concentrations (MIC) of the antibiotics were noted in some paired combinations of antibiotics and essential oils. Out of 35 antibiotic-essential oil pairs tested, four of them showed synergistic effect (FIC≤0.5) and 31 pairs showed no interaction (FIC>0.5-4.0). The preliminary results obtained highlighted the occurrence of a pronounced synergistic relationship between piperacillin/cinnamon bark oil, piperacillin/lavender oil, piperacillin/peppermint oil as well as meropenem/peppermint oil against two of the three bacteria under study with a FIC index in the range 0.26-0.5. The finding highlighted the potential of peppermint, cinnamon bark and lavender essential oils being as antibiotic resistance modifying agent. Reduced usage of antibiotics could be employed as a treatment strategy to decrease the adverse effects and possibly to reverse the beta-lactam antibiotic resistance. PMID:23537749

  11. Plasmid Vectors for Xylella fastidiosa Utilizing a Toxin-Antitoxin System for Stability in the Absence of Antibiotic Selection.

    PubMed

    Burbank, Lindsey P; Stenger, Drake C

    2016-08-01

    The phytopathogen Xylella fastidiosa causes disease in a variety of important crop and landscape plants. Functional genetic studies have led to a broader understanding of virulence mechanisms used by this pathogen in the grapevine host. Plasmid shuttle vectors are important tools in studies of bacterial genetics but there are only a limited number of plasmid vectors available that replicate in X. fastidiosa, and even fewer that are retained without antibiotic selection. Two plasmids are described here that show stable replication in X. fastidiosa and are effective for gene complementation both in vitro and in planta. Plasmid maintenance is facilitated by incorporation of the PemI/PemK plasmid addiction system, consisting of PemK, an endoribonuclease toxin, and its cognate antitoxin, PemI. Vector pXf20pemIK utilizes a native X. fastidiosa replication origin as well as a high-copy-number pUC origin for propagation in Escherichia coli cloning strains. Broad-host-range vector pBBR5pemIK is a medium- to low-copy-number plasmid based on the pBBR1 backbone. Both plasmids are maintained for extended periods of time in the absence of antibiotic selection, as well as up to 14 weeks in grapevine, without affecting bacterial fitness. These plasmids present an alternative to traditional complementation and expression vectors which rely on antibiotic selection for plasmid retention. PMID:27088393

  12. The IncF plasmid pRSB225 isolated from a municipal wastewater treatment plant's on-site preflooder combining antibiotic resistance and putative virulence functions is highly related to virulence plasmids identified in pathogenic E. coli isolates.

    PubMed

    Wibberg, Daniel; Szczepanowski, Rafael; Eikmeyer, Felix; Pühler, Alfred; Schlüter, Andreas

    2013-03-01

    The IncF antibiotic resistance and virulence plasmid pRSB225, isolated from an unknown bacterium released with the purified wastewater from a municipal sewage treatment plant into the environment has been analysed at the genomic level by pyrosequencing. The 164,550bp plasmid comprises 210 coding sequences (cds). It is composed of three replicons (RepFIA, RepFIB, and RepFII) and encodes further plasmid-specific functions for stable maintenance and inheritance and conjugative plasmid transfer. The plasmid is self-transmissible and shows a narrow host range limited to the family Enterobacteriaceae. The accessory modules of the plasmid mainly comprise genes conferring resistance to ampicillin (bla(TEM-1b)), chloramphenicol (catA1), erythromycin (mphA), kanamycin and neomycin (aphA1), streptomycin (strAB), sulphonamides (sul2), tetracycline (tetA(B)) and trimethoprim (dfrA14), as well as mercuric ions (mer genes). In addition, putative virulence-associated genes coding for iron uptake (iutA/iucABCD, sitABCD, and a putative high-affinity Fe²⁺ uptake system) and for a toxin/antitoxin system (vagCD) were identified on the plasmid. All antibiotic and heavy metal resistance genes are located either on class 1 (Tn10-remnant, Tn4352B) and class 2 transposons (Tn2-remnant, Tn21, Tn402-remnant) or a class 1 integron, whereas almost all putative virulence genes are associated with IS elements (IS1, IS26), indicating that transposition and/or recombination events were responsible for acquisition of the accessory pRSB225 modules. Particular modules of plasmid pRSB225 are related to corresponding segments of different virulence plasmids harboured by pathogenic Escherichia coli strains. Moreover, pRSB225 modules were also detected in entero-aggregative-haemorrhagic E. coli (EAHEC) draft genome sequences suggesting that IncF plasmids related to pRSB225 mediated gene transfer into pathogenic E. coli derivatives. PMID:23212116

  13. A Shigella flexneri virulence plasmid encoded factor controls production of outer membrane vesicles.

    PubMed

    Sidik, Saima; Kottwitz, Haila; Benjamin, Jeremy; Ryu, Julie; Jarrar, Ameer; Garduno, Rafael; Rohde, John R

    2014-12-01

    Shigella spp. use a repertoire of virulence plasmid-encoded factors to cause shigellosis. These include components of a Type III Secretion Apparatus (T3SA) that is required for invasion of epithelial cells and many genes of unknown function. We constructed an array of 99 deletion mutants comprising all genes encoded by the virulence plasmid (excluding those known to be required for plasmid maintenance) of Shigella flexneri. We screened these mutants for their ability to bind the dye Congo red: an indicator of T3SA function. This screen focused our attention on an operon encoding genes that modify the cell envelope including virK, a gene of partially characterized function. We discovered that virK is required for controlled release of proteins to the culture supernatant. Mutations in virK result in a temperature-dependent overproduction of outer membrane vesicles (OMVs). The periplasmic chaperone/protease DegP, a known regulator of OMV production in Escherichia coli (encoded by a chromosomal gene), was found to similarly control OMV production in S. flexneri. Both virK and degP show genetic interactions with mxiD, a structural component of the T3SA. Our results are consistent with a model in which VirK and DegP relieve the periplasmic stress that accompanies assembly of the T3SA. PMID:25378474

  14. A Shigella flexneri Virulence Plasmid Encoded Factor Controls Production of Outer Membrane Vesicles

    PubMed Central

    Sidik, Saima; Kottwitz, Haila; Benjamin, Jeremy; Ryu, Julie; Jarrar, Ameer; Garduno, Rafael; Rohde, John R.

    2014-01-01

    Shigella spp. use a repertoire of virulence plasmid-encoded factors to cause shigellosis. These include components of a Type III Secretion Apparatus (T3SA) that is required for invasion of epithelial cells and many genes of unknown function. We constructed an array of 99 deletion mutants comprising all genes encoded by the virulence plasmid (excluding those known to be required for plasmid maintenance) of Shigella flexneri. We screened these mutants for their ability to bind the dye Congo red: an indicator of T3SA function. This screen focused our attention on an operon encoding genes that modify the cell envelope including virK, a gene of partially characterized function. We discovered that virK is required for controlled release of proteins to the culture supernatant. Mutations in virK result in a temperature-dependent overproduction of outer membrane vesicles (OMVs). The periplasmic chaperone/protease DegP, a known regulator of OMV production in Escherichia coli (encoded by a chromosomal gene), was found to similarly control OMV production in S. flexneri. Both virK and degP show genetic interactions with mxiD, a structural component of the T3SA. Our results are consistent with a model in which VirK and DegP relieve the periplasmic stress that accompanies assembly of the T3SA. PMID:25378474

  15. Antibiotic Resistance, Core-Genome and Protein Expression in IncHI1 Plasmids in Salmonella Typhimurium.

    PubMed

    Kubasova, Tereza; Cejkova, Darina; Matiasovicova, Jitka; Sekelova, Zuzana; Polansky, Ondrej; Medvecky, Matej; Rychlik, Ivan; Juricova, Helena

    2016-01-01

    Conjugative plasmids from the IncHI1 incompatibility group play an important role in transferring antibiotic resistance in Salmonella Typhimurium. However, knowledge of their genome structure or gene expression is limited. In this study, we determined the complete nucleotide sequences of four IncHI1 plasmids transferring resistance to antibiotics by two different next generation sequencing protocols and protein expression by mass spectrometry. Sequence data including additional 11 IncHI1 plasmids from GenBank were used for the definition of the IncHI1 plasmid core-genome and pan-genome. The core-genome consisted of approximately 123 kbp and 122 genes while the total pan-genome represented approximately 600 kbp. When the core-genome sequences were used for multiple alignments, the 15 tested IncHI1 plasmids were separated into two main lineages. GC content in core-genome genes was around 46% and 50% in accessory genome genes. A multidrug resistance region present in all 4 sequenced plasmids extended over 20 kbp and, except for tet(B), the genes responsible for antibiotic resistance were those with the highest GC content. IncHI1 plasmids therefore represent replicons that evolved in low GC content bacteria. From their original host, they spread to Salmonella and during this spread these plasmids acquired multiple accessory genes including those coding for antibiotic resistance. Antibiotic-resistance genes belonged to genes with the highest level of expression and were constitutively expressed even in the absence of antibiotics. This is the likely mechanism that facilitates host cell survival when antibiotics suddenly emerge in the environment. PMID:27189997

  16. Production of plasmid-encoding NDM-1 in clinical Raoultella ornithinolytica and Leclercia adecarboxylata from China

    PubMed Central

    Sun, Fengjun; Yin, Zhe; Feng, Jiao; Qiu, Yefeng; Zhang, Defu; Luo, Wenbo; Yang, Huiying; Yang, Wenhui; Wang, Jie; Chen, Weijun; Xia, Peiyuan; Zhou, Dongsheng

    2015-01-01

    Raoultella ornithinolytica YNKP001 and Leclercia adecarboxylata P10164, which harbor conjugative plasmids pYNKP001-NDM and pP10164-NDM, respectively, were isolated from two different Chinese patients, and their complete nucleotide sequences were determined. Production of NDM-1 enzyme by these plasmids accounts for the carbapenem resistance of these two strains. This is the first report of blaNDM in L. adecarboxylata and third report of this gene in R. ornithinolytica. pYNKP001-NDM is very similar to the IncN2 NDM-1-encoding plasmids pTR3, pNDM-ECS01, and p271A, whereas pP10164-NDM is similar to the IncFIIY blaNDM-1-carrying plasmid pKOX_NDM1. The blaNDM-1 genes of pYNKP001-NDM and pP10164-NDM are embedded in Tn125-like elements, which represent two distinct truncated versions of the NDM-1-encoding Tn125 prototype observed in pNDM-BJ01. Flanking of these two Tn125-like elements by miniature inverted repeat element (MITE) or its remnant indicates that MITE facilitates transposition and mobilization of blaNDM-1 gene contexts. PMID:26052314

  17. Characterization of a Multiresistant Mosaic Plasmid from a Fish Farm Sediment Exiguobacterium sp. Isolate Reveals Aggregation of Functional Clinic-Associated Antibiotic Resistance Genes

    PubMed Central

    Yang, Jing; Wang, Chao; Wu, Jinyu; Liu, Li; Zhang, Gang

    2014-01-01

    The genus Exiguobacterium can adapt readily to, and survive in, diverse environments. Our study demonstrated that Exiguobacterium sp. strain S3-2, isolated from marine sediment, is resistant to five antibiotics. The plasmid pMC1 in this strain carries seven putative resistance genes. We functionally characterized these resistance genes in Escherichia coli, and genes encoding dihydrofolate reductase and macrolide phosphotransferase were considered novel resistance genes based on their low similarities to known resistance genes. The plasmid G+C content distribution was highly heterogeneous. Only the G+C content of one block, which shared significant similarity with a plasmid from Exiguobacterium arabatum, fit well with the mean G+C content of the host. The remainder of the plasmid was composed of mobile elements with a markedly lower G+C ratio than the host. Interestingly, five mobile elements located on pMC1 showed significant similarities to sequences found in pathogens. Our data provided an example of the link between resistance genes in strains from the environment and the clinic and revealed the aggregation of antibiotic resistance genes in bacteria isolated from fish farms. PMID:24362420

  18. Characterization of KfrA proteins encoded by a plasmid of Paenibacillus popilliae ATCC 14706T

    PubMed Central

    Iiyama, Kazuhiro; Mon, Hiroaki; Mori, Kazuki; Mitsudome, Takumi; Lee, Jae Man; Kusakabe, Takahiro; Tashiro, Kousuke; Asano, Shin-ichiro; Yasunaga-Aoki, Chisa

    2015-01-01

    A scaffold obtained from whole-genome shotgun sequencing of Paenibacillus popilliae ATCC 14706T shares partial homology with plasmids found in other strains of P. popilliae. PCR and sequencing for gap enclosure indicated that the scaffold originated from a 15,929-bp circular DNA. The restriction patterns of a plasmid isolated from P. popilliae ATCC 14706T were identical to those expected from the sequence; thus, this circular DNA was identified as a plasmid of ATCC 14706T and designated pPOP15.9. The plasmid encodes 17 putative open reading frames. Orfs 1, 5, 7, 8, and 9 are homologous to Orfs 11, 12, 15, 16, and 17, respectively. Orf1 and Orf11 are annotated as replication initiation proteins. Orf8 and Orf16 are homologs of KfrA, a plasmid-stabilizing protein in Gram-negative bacteria. Recombinant Orf8 and Orf16 proteins were assessed for the properties of KfrA. Indeed, they formed multimers and bound to inverted repeat sequences in upstream regions of both orf8 and orf16. A phylogenetic tree based on amino acid sequences of Orf8, Orf16 and Kfr proteins did not correlate with species lineage. PMID:25853059

  19. Recombinant plasmids for encoding restriction enzymes DpnI and DpnII of streptococcus pneumontae

    DOEpatents

    Lacks, Sanford A.

    1990-01-01

    Chromosomal DNA cassettes containing genes encoding either the DpnI or DpnII restriction endonucleases from Streptococcus pneumoniae are cloned into a streptococcal vector, pLS101. Large amounts of the restriction enzymes are produced by cells containing the multicopy plasmids, pLS202 and pLS207, and their derivatives pLS201, pLS211, pLS217, pLS251 and pLS252.

  20. Recombinant plasmids for encoding restriction enzymes DpnI and DpnII of Streptococcus pneumontae

    DOEpatents

    Lacks, S.A.

    1990-10-02

    Chromosomal DNA cassettes containing genes encoding either the DpnI or DpnII restriction endonucleases from Streptococcus pneumoniae are cloned into a streptococcal vector, pLS101. Large amounts of the restriction enzymes are produced by cells containing the multicopy plasmids, pLS202 and pLS207, and their derivatives pLS201, pLS211, pLS217, pLS251 and pLS252. 9 figs.

  1. Molecular cloning, purification, and properties of a plasmid-encoded chloramphenicol acetyltransferase from Staphylococcus haemolyticus.

    PubMed Central

    Schwarz, S; Cardoso, M

    1991-01-01

    A small chloramphenicol resistance (Cmr) plasmid of approximately 3.75 kb, designated pSCS5, was isolated from Staphylococcus haemolyticus. This plasmid encoded an inducible chloramphenicol acetyltransferase (CAT; EC 2.3.1.28). The cat gene of pSCS5 was cloned into the Escherichia coli plasmid vector pBluescript SKII+. It differed in its nucleotide sequence and deduced amino acid sequence from the cat genes described previously in staphylococci and other gram-positive bacteria. The CAT enzyme was purified from cell-free lysates by ammonium sulfate precipitation, ion-exchange chromatography, and fast protein liquid chromatography. The native enzyme had an Mr of 70,000 and was composed of three identical subunits, each with an Mr of approximately 23,000. Its isoelectric point was at pH 6.15. CAT from pSCS5 exhibited Km values of 2.81 and 51.8 microM for chloramphenicol and acetyl coenzyme A, respectively. The optimum pH for activity was 7.8. CAT encoded by pSCS5 proved to be relatively heat stable, but sensitive to mercury ions. The observed differences in the nucleotide sequence and the biochemical characteristics of the enzyme allowed the identification of the pSCS5-encoded CAT from S. haemolyticus as a CAT variant different from those described previously in gram-positive bacteria. Images PMID:1929282

  2. Role of the 85-Kilobase Plasmid and Plasmid-Encoded Virulence-Associated Protein A in Intracellular Survival and Virulence of Rhodococcus equi

    PubMed Central

    Giguère, Steeve; Hondalus, Mary K.; Yager, Julie A.; Darrah, Patricia; Mosser, David M.; Prescott, John F.

    1999-01-01

    Rhodococcus equi is a facultative intracellular pathogen of macrophages and a cause of pneumonia in young horses (foals) and immunocompromised people. Isolates of R. equi from pneumonic foals typically contain large, 85- or 90-kb plasmids encoding a highly immunogenic virulence-associated protein (VapA). The objective of this study was to determine the role of the 85-kb plasmid and VapA in the intracellular survival and virulence of R. equi. Clinical isolates containing the plasmid and expressing VapA efficiently replicated within mouse macrophages in vitro, while plasmid-cured derivatives of these organisms did not multiply intracellularly. An isolate harboring the large plasmid also replicated in the tissues of experimentally infected mice, whereas its plasmid-cured derivative was rapidly cleared. All foals experimentally infected with a plasmid-containing clinical isolate developed severe bronchopneumonia, whereas the foals infected with its plasmid-cured derivative remained asymptomatic and free of visible lung lesions. By day 14 postinfection, lung bacterial burdens had increased considerably in foals challenged with the plasmid-containing clinical isolate. In contrast, bacteria could no longer be cultured from the lungs of foals challenged with the isogenic plasmid-cured derivative. A recombinant, plasmid-cured derivative expressing wild-type levels of VapA failed to replicate in macrophages and remained avirulent for both mice and foals. These results show that the 85-kb plasmid of R. equi is essential for intracellular replication within macrophages and for development of disease in the native host, the foal. However, expression of VapA alone is not sufficient to restore the virulence phenotype. PMID:10377138

  3. Evidence for plasmid-encoded virulence factors in the phytopathogenic bacterium Clavibacter michiganensis subsp. michiganensis NCPPB382.

    PubMed Central

    Meletzus, D; Bermphol, A; Dreier, J; Eichenlaub, R

    1993-01-01

    The tomato pathogen Clavibacter michiganensis subsp. michiganensis NCPPB382, which causes bacterial wilt, harbors two plasmids pCM1 (27.5 kb) and pCM2 (72 kb). After curing of the plasmids, bacterial derivatives were still proficient in the ability to colonize the host plant and in the production of exopolysaccharides but exhibited a reduced virulence. When one of the two plasmids is lost, there is a significant delay in the development of wilting symptoms after infection and a plasmid-free derivative is not able to induce disease symptoms. By cloning of restriction fragments of both plasmids in the plasmid-free strain CMM100, two DNA fragments which restored the virulent phenotype were identified. Further analysis suggested that a fragment of plasmid pCM1 encodes an endocellulase which is involved in the expression of the pathogenic phenotype. Images PMID:8458855

  4. Transferable antibiotic resistance plasmids from biogas plant digestates often belong to the IncP-1ε subgroup

    PubMed Central

    Wolters, Birgit; Kyselková, Martina; Krögerrecklenfort, Ellen; Kreuzig, Robert; Smalla, Kornelia

    2015-01-01

    Manure is known to contain residues of antibiotics administered to farm animals as well as bacteria carrying antibiotic resistance genes (ARGs). These genes are often located on mobile genetic elements. In biogas plants (BGPs), organic substrates such as manure and plant material are mixed and fermented in order to provide energy, and resulting digestates are used for soil fertilization. The fate of plasmid carrying bacteria from manure during the fermentation process is unknown. The present study focused on transferable antibiotic resistance plasmids from digestates of seven BGPs, using manure as a co-substrate, and their phenotypic and genotypic characterization. Plasmids conferring resistance to either tetracycline or sulfadiazine were captured by means of exogenous plasmid isolation from digestates into Pseudomonas putida KT2442 and Escherichia coli CV601 recipients, at transfer frequencies ranging from 10-5 to 10-7. Transconjugants (n = 101) were screened by PCR-Southern blot hybridization and real-time PCR for the presence of IncP-1, IncP-1ε, IncW, IncN, IncP-7, IncP-9, LowGC, and IncQ plasmids. While 61 plasmids remained unassigned, 40 plasmids belonged to the IncP-1ε subgroup. All these IncP-1ε plasmids were shown to harbor the genes tet(A), sul1, qacEΔ1, intI1, and integron gene cassette amplicons of different size. Further analysis of 16 representative IncP-1ε plasmids showed that they conferred six different multiple antibiotic resistance patterns and their diversity seemed to be driven by the gene cassette arrays. IncP-1ε plasmids displaying similar restriction and antibiotic resistance patterns were captured from different BGPs, suggesting that they may be typical of this environment. Our study showed that BGP digestates are a potential source of transferable antibiotic resistance plasmids, and in particular the broad host range IncP-1ε plasmids might contribute to the spread of ARGs when digestates are used as fertilizer. PMID:25653641

  5. Sequences of Two Related Multiple Antibiotic Resistance Virulence Plasmids Sharing a Unique IS26-Related Molecular Signature Isolated from Different Escherichia coli Pathotypes from Different Hosts

    PubMed Central

    Venturini, Carola; Hassan, Karl A.; Roy Chowdhury, Piklu; Paulsen, Ian T.; Walker, Mark J.; Djordjevic, Steven P.

    2013-01-01

    Enterohemorrhagic Escherichia coli (EHEC) and atypical enteropathogenic E. coli (aEPEC) are important zoonotic pathogens that increasingly are becoming resistant to multiple antibiotics. Here we describe two plasmids, pO26-CRL125 (125 kb) from a human O26:H- EHEC, and pO111-CRL115 (115kb) from a bovine O111 aEPEC, that impart resistance to ampicillin, kanamycin, neomycin, streptomycin, sulfathiazole, trimethoprim and tetracycline and both contain atypical class 1 integrons with an identical IS26-mediated deletion in their 3´-conserved segment. Complete sequence analysis showed that pO26-CRL125 and pO111-CRL115 are essentially identical except for a 9.7 kb fragment, present in the backbone of pO26-CRL125 but absent in pO111-CRL115, and several indels. The 9.7 kb fragment encodes IncI-associated genes involved in plasmid stability during conjugation, a putative transposase gene and three imperfect repeats. Contiguous sequence identical to regions within these pO26-CRL125 imperfect repeats was identified in pO111-CRL115 precisely where the 9.7 kb fragment is missing, suggesting it may be mobile. Sequences shared between the plasmids include a complete IncZ replicon, a unique toxin/antitoxin system, IncI stability and maintenance genes, a novel putative serine protease autotransporter, and an IncI1 transfer system including a unique shufflon. Both plasmids carry a derivate Tn21 transposon with an atypical class 1 integron comprising a dfrA5 gene cassette encoding resistance to trimethoprim, and 24 bp of the 3´-conserved segment followed by Tn6026, which encodes resistance to ampicillin, kanymycin, neomycin, streptomycin and sulfathiazole. The Tn21-derivative transposon is linked to a truncated Tn1721, encoding resistance to tetracycline, via a region containing the IncP-1α oriV. Absence of the 5 bp direct repeats flanking Tn3-family transposons, indicates that homologous recombination events played a key role in the formation of this complex antibiotic resistance

  6. Marker-free plasmids for gene therapeutic applications--lack of antibiotic resistance gene substantially improves the manufacturing process.

    PubMed

    Mairhofer, Jürgen; Cserjan-Puschmann, Monika; Striedner, Gerald; Nöbauer, Katharina; Razzazi-Fazeli, Ebrahim; Grabherr, Reingard

    2010-04-01

    Plasmid DNA is being considered as a promising alternative to traditional protein vaccines or viral delivery methods for gene therapeutic applications. DNA-based products are highly flexible, stable, are easily stored and can be manufactured on a large scale. Although, much safer than viral approaches, issues have been raised with regard to safety due to possible integration of plasmid DNA into cellular DNA or spread of antibiotic resistance genes to intestinal bacteria by horizontal gene transfer. Accordingly, there is interest in methods for the production of plasmid DNA that lacks the antibiotic resistance gene to further improve their safety profile. Here, we report for the first time the gram-scale manufacturing of a minimized plasmid that is devoid of any additional sequence elements on the plasmid backbone, and merely consists of the target expression cassette and the bacterial origin of replication. Three different host/vector combinations were cultivated in a fed-batch fermentation process, comparing the progenitor strain JM108 to modified strains JM108murselect, hosting a plasmid either containing the aminoglycoside phosphotransferase which provides kanamycin resistance, or a marker-free variant of the same plasmid. The metabolic load exerted by expression of the aminoglycoside phosphotransferase was monitored by measuring ppGpp- and cAMP-levels. Moreover, we revealed that JM108 is deficient of the Lon protease and thereby refined the genotype of JM108. The main consequences of Lon-deficiency with regard to plasmid DNA production are discussed herein. Additionally, we found that the expression of the aminoglycoside phosphotransferase, conferring resistance to kanamycin, was very high in plasmid DNA producing processes that actually inclusion bodies were formed. Thereby, a severe metabolic load on the host cell was imposed, detrimental for overall plasmid yield. Hence, deleting the antibiotic resistance gene from the vector backbone is not only beneficial

  7. Exposing Plasmids as the Achilles’ Heel of Drug-Resistant Bacteria

    PubMed Central

    Williams, Julia J.; Hergenrother, Paul J.

    2008-01-01

    Many multi-drug resistant bacterial pathogens harbor large plasmids that encode proteins conferring resistance to antibiotics. While the acquisition of these plasmids often enables bacteria to survive in the presence of antibiotics, it is possible that plasmids also represent a vulnerability that can be exploited in tailored antibacterial therapy. This review highlights three recently described strategies designed to specifically combat bacteria harboring such plasmids: Inhibition of plasmid conjugation, inhibition of plasmid replication, and exploitation of plasmid-encoded toxin-antitoxin systems. PMID:18625335

  8. Plasmid-Encoded Phthalate Catabolic Pathway in Arthrobacter keyseri 12B†

    PubMed Central

    Eaton, Richard W.

    2001-01-01

    Several 2-substituted benzoates (including 2-trifluoromethyl-, 2-chloro-, 2-bromo-, 2-iodo-, 2-nitro-, 2-methoxy-, and 2-acetyl-benzoates) were converted by phthalate-grown Arthrobacter keyseri (formerly Micrococcus sp.) 12B to the corresponding 2-substituted 3,4-dihydroxybenzoates (protocatechuates). Because these products lack a carboxyl group at the 2 position, they were not substrates for the next enzyme of the phthalate catabolic pathway, 3,4-dihydroxyphthalate 2-decarboxylase, and accumulated. When these incubations were carried out in iron-containing minimal medium, the products formed colored chelates. This chromogenic response was subsequently used to identify recombinant Escherichia coli strains carrying genes encoding the responsible enzymes, phthalate 3,4-dioxygenase and 3,4-dihydroxy-3,4-dihydrophthalate dehydrogenase, from the 130-kbp plasmid pRE1 of strain 12B. Beginning with the initially cloned 8.14-kbp PstI fragment of pRE824 as a probe to identify recombinant plasmids carrying overlapping fragments, a DNA segment of 33.5 kbp was cloned from pRE1 on several plasmids and mapped using restriction endonucleases. From these plasmids, the sequence of 26,274 contiguous bp was determined. Sequenced DNA included several genetic units: tnpR, pcm operon, ptr genes, pehA, norA fragment, and pht operon, encoding a transposon resolvase, catabolism of protocatechuate (3,4-dihydroxybenzoate), a putative ATP-binding cassette transporter, a possible phthalate ester hydrolase, a fragment of a norfloxacin resistance-like transporter, and the conversion of phthalate to protocatechuate, respectively. Activities of the eight enzymes involved in the catabolism of phthalate through protocatechuate to pyruvate and oxaloacetate were demonstrated in cells or cell extracts of recombinant E. coli strains. PMID:11371533

  9. Chromosomal and Plasmid-Encoded Factors of Shigella flexneri Induce Secretogenic Activity Ex Vivo

    PubMed Central

    Shea-Donohue, Terez; Barry, Eileen M.; Kaper, James B.; Fasano, Alessio; Nataro, James P.

    2012-01-01

    Shigella flexneri is a Gram-negative, facultative intracellular pathogen that causes millions of cases of watery or bloody diarrhea annually, resulting in significant global mortality. Watery diarrhea is thought to arise in the jejunum, and subsequent bloody diarrhea occurs as a result of invasion of the colonic epithelium. Previous literature has demonstrated that Shigella encodes enterotoxins, both chromosomally and on the 220 kilobase virulence plasmid. The Shigella Enterotoxins 1 and 2 (ShET1 and ShET2) have been shown to increase water accumulation in the rabbit ileal loop model. In addition, these toxins increase the short circuit current in rabbit tissue mounted in Ussing chambers, which is a model for the ion exchange that occurs during watery diarrhea. In this study, we sought to validate the use of mouse jejunum in Ussing chamber as an alternative, more versatile model to study bacterial pathogenesis. In the process, we also identified enterotoxins in addition to ShET1 and ShET2 encoded by S. flexneri. Through analysis of proteins secreted from wildtype bacteria and various deletion mutants, we have identified four factors responsible for enterotoxin activity: ShET1 and Pic, which are encoded on the chromosome; ShET2 (encoded by sen or ospD3), which requires the type-III secretion system for secretion; and SepA, an additional factor encoded on the virulence plasmid. The use of mouse jejunum serves as a reliable and reproducible model to identify the enterotoxins elaborated by enteric bacteria. Moreover, the identification of all Shigella proteins responsible for enterotoxin activity is vital to our understanding of Shigella pathogenicity and to our success in developing safe and effective vaccine candidates. PMID:23166804

  10. Chromosomal and plasmid-encoded factors of Shigella flexneri induce secretogenic activity ex vivo.

    PubMed

    Faherty, Christina S; Faherty, Christina; Harper, Jill M; Shea-Donohue, Terez; Barry, Eileen M; Kaper, James B; Fasano, Alessio; Nataro, James P

    2012-01-01

    Shigella flexneri is a Gram-negative, facultative intracellular pathogen that causes millions of cases of watery or bloody diarrhea annually, resulting in significant global mortality. Watery diarrhea is thought to arise in the jejunum, and subsequent bloody diarrhea occurs as a result of invasion of the colonic epithelium. Previous literature has demonstrated that Shigella encodes enterotoxins, both chromosomally and on the 220 kilobase virulence plasmid. The ShigellaEnterotoxins 1 and 2 (ShET1 and ShET2) have been shown to increase water accumulation in the rabbit ileal loop model. In addition, these toxins increase the short circuit current in rabbit tissue mounted in Ussing chambers, which is a model for the ion exchange that occurs during watery diarrhea. In this study, we sought to validate the use of mouse jejunum in Ussing chamber as an alternative, more versatile model to study bacterial pathogenesis. In the process, we also identified enterotoxins in addition to ShET1 and ShET2 encoded by S. flexneri. Through analysis of proteins secreted from wildtype bacteria and various deletion mutants, we have identified four factors responsible for enterotoxin activity: ShET1 and Pic, which are encoded on the chromosome; ShET2 (encoded by sen or ospD3), which requires the type-III secretion system for secretion; and SepA, an additional factor encoded on the virulence plasmid. The use of mouse jejunum serves as a reliable and reproducible model to identify the enterotoxins elaborated by enteric bacteria. Moreover, the identification of all Shigella proteins responsible for enterotoxin activity is vital to our understanding of Shigella pathogenicity and to our success in developing safe and effective vaccine candidates. PMID:23166804

  11. Bacillus anthracis pXO1 plasmid encodes a putative membrane-bound bacteriocin

    PubMed Central

    Perlińska, Agata

    2014-01-01

    Evolutionary advantages over cousin cells in bacterial pathogens may decide about the success of a specific cell in its environment. Bacteria use a plethora of methods to defend against other cells and many devices to attack their opponents when competing for resources. Bacteriocins are antibacterial proteins that are used to eliminate competition. We report the discovery of a putative membrane-bound bacteriocin encoded by the Bacillus anthracis pathogenic pXO1 plasmid. We analyze the genomic structure of the bacteriocin operon. The proposed mechanisms of action predestine this operon as a potent competitive advantage over cohabitants of the same niche. PMID:25426338

  12. Toxin plasmids of Clostridium perfringens.

    PubMed

    Li, Jihong; Adams, Vicki; Bannam, Trudi L; Miyamoto, Kazuaki; Garcia, Jorge P; Uzal, Francisco A; Rood, Julian I; McClane, Bruce A

    2013-06-01

    In both humans and animals, Clostridium perfringens is an important cause of histotoxic infections and diseases originating in the intestines, such as enteritis and enterotoxemia. The virulence of this Gram-positive, anaerobic bacterium is heavily dependent upon its prolific toxin-producing ability. Many of the ∼16 toxins produced by C. perfringens are encoded by large plasmids that range in size from ∼45 kb to ∼140 kb. These plasmid-encoded toxins are often closely associated with mobile elements. A C. perfringens strain can carry up to three different toxin plasmids, with a single plasmid carrying up to three distinct toxin genes. Molecular Koch's postulate analyses have established the importance of several plasmid-encoded toxins when C. perfringens disease strains cause enteritis or enterotoxemias. Many toxin plasmids are closely related, suggesting a common evolutionary origin. In particular, most toxin plasmids and some antibiotic resistance plasmids of C. perfringens share an ∼35-kb region containing a Tn916-related conjugation locus named tcp (transfer of clostridial plasmids). This tcp locus can mediate highly efficient conjugative transfer of these toxin or resistance plasmids. For example, conjugative transfer of a toxin plasmid from an infecting strain to C. perfringens normal intestinal flora strains may help to amplify and prolong an infection. Therefore, the presence of toxin genes on conjugative plasmids, particularly in association with insertion sequences that may mobilize these toxin genes, likely provides C. perfringens with considerable virulence plasticity and adaptability when it causes diseases originating in the gastrointestinal tract. PMID:23699255

  13. Concordance of heavy metal and antibiotic resistance on plasmids of Chesapeake Bay bacteria. Technical report

    SciTech Connect

    McNicol, L.A.

    1980-10-01

    Antibiotic-resistant and heavy metal-resistant phenotypic frequency was measured in Chesapeake Bay bacterial strains obtained from Bay sites differing significantly in water quality. The phenotypes were estimated from dose-response curves using direct plating, replica plating, and minimal inhibitory concentration (MIC). Resistant and sensitive organisms could be distinguished by concentrations of twenty micrograms per milliliter for various antibiotics (ampicillin, chloramphenicol, nalidixic acid, penicillin, streptomycin, and tetracycline), and of 0.05 millimolar for the heavy metals tested (cadmium, mercury, nickel, and lead). Individual resistance phenotypes of 1816 isolates were determined with the replica technique, with 85% resistant to at least one antibiotic and a surprising 2% resistant to all six drugs tested. Occurrence of resistant organisms did not correlate with water quality, sampling location, season, sample type, or physical parameters of the site. Ninety-two percent of organisms examined were resistant to at least one metal studied, with 43% resistant to all metals, but resistance did not correlate with any station or sample parameters. Metal and drug resistant phenotypes did correlate positively with one another, but these two traits were not appreciably linked on plasmid DNA.

  14. Antibiotic sensitivity and molecular analyses demonstrate a lack of IncA/C plasmid in modified live Edwardsiella ictaluri vaccine strain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plasmid mediated antibiotic resistance was first discovered in Edwardsiella ictaluri in the early 1990’s and in 2007, an E. ictaluri strain harboring an IncA/C plasmid was isolated from a moribund channel catfish infected with the bacterium. Due to the recent identification of IncA/C plasmids in aqu...

  15. Virulence Plasmid of Rhodococcus equi Contains Inducible Gene Family Encoding Secreted Proteins

    PubMed Central

    Byrne, Barbara A.; Prescott, John F.; Palmer, Guy H.; Takai, Shinji; Nicholson, Vivian M.; Alperin, Debra C.; Hines, Stephen A.

    2001-01-01

    Rhodococcus equi causes severe pyogranulomatous pneumonia in foals. This facultative intracellular pathogen produces similar lesions in immunocompromised humans, particularly in AIDS patients. Virulent strains of R. equi bear a large plasmid that is required for intracellular survival within macrophages and for virulence in foals and mice. Only two plasmid-encoded proteins have been described previously; a 15- to 17-kDa surface protein designated virulence-associated protein A (VapA) and an antigenically related 20-kDa protein (herein designated VapB). These two proteins are not expressed by the same R. equi isolate. We describe here the substantial similarity between VapA and VapB. Moreover, we identify three additional genes carried on the virulence plasmid, vapC, -D, and -E, that are tandemly arranged downstream of vapA. These new genes are members of a gene family and encode proteins that are approximately 50% homologous to VapA, VapB, and each other. vapC, -D, and -E are found only in R. equi strains that express VapA and are highly conserved in VapA-positive isolates from both horses and humans. VapC, -D, and -E are secreted proteins coordinately regulated by temperature with VapA; the proteins are expressed when R. equi is cultured at 37°C but not at 30°C, a finding that is compatible with a role in virulence. As secreted proteins, VapC, -D, and -E may represent targets for the prevention of rhodococcal pneumonia. An immunologic study using VapA-specific antibodies and recombinant Vap proteins revealed no evidence of cross-reactivity despite extensive sequence similarity over the carboxy terminus of all four proteins. PMID:11159951

  16. Plasminogen activator/coagulase gene of Yersinia pestis is responsible for degradation of plasmid-encoded outer membrane proteins.

    PubMed Central

    Sodeinde, O A; Sample, A K; Brubaker, R R; Goguen, J D

    1988-01-01

    The related family of virulence plasmids found in the three major pathogens of the genus Yersinia all have the ability to encode a set of outer membrane proteins. In Y. enterocolitica and Y. pseudotuberculosis, these proteins are major constituents of the outer membrane when their synthesis is fully induced. In contrast, they have been difficult to detect in Y. pestis. It has recently been established that Y. pestis does synthesize these proteins, but that they are rapidly degraded due to some activity determined by the 9.5-kilobase plasmid commonly found in Y. pestis strains. We show that mutations in the pla gene of this plasmid, which encodes both the plasminogen activator and coagulase activities, blocked this degradation. A cloned 1.4-kilobase DNA fragment carrying pla was also sufficient to cause degradation in the absence of the 9.5-kilobase plasmid. Images PMID:2843471

  17. IncF Plasmids Are Commonly Carried by Antibiotic Resistant Escherichia coli Isolated from Drinking Water Sources in Northern Tanzania.

    PubMed

    Lyimo, Beatus; Buza, Joram; Subbiah, Murugan; Temba, Sylivester; Kipasika, Honest; Smith, Woutrina; Call, Douglas R

    2016-01-01

    The aim of this study was to identify the replicon types of plasmids, conjugation efficiencies, and the complement of antibiotic resistance genes for a panel of multidrug resistant E. coli isolates from surface waters in northern Tanzania. Standard membrane filtration was used to isolate and uidA PCR was used to confirm the identity of strains as E. coli. Antibiotic susceptibility was determined by breakpoint assay and plasmid conjugation was determined by filter-mating experiments. PCR and sequencing were used to identify resistance genes and PCR-based replicon typing was used to determine plasmid types. Filter mating experiments indicated conjugation efficiencies ranged from 10(-1) to 10(-7). Over 80% of the donor cells successfully passed their resistance traits and eleven different replicon types were detected (IncI1, FIC, P, FIIA, A/C, FIB, FIA, H12, K/B B/O, and N). IncF plasmids were most commonly detected (49% of isolates), followed by types IncI1 and IncA/C. Detection of these public health-relevant conjugative plasmids and antibiotic resistant traits in Tanzanian water suggests the possible pollution of these water sources from human, livestock, and wild animal wastes and also shows the potential of these water sources in the maintenance and transmission of these resistance traits between environments, animals, and people. PMID:27110245

  18. IncF Plasmids Are Commonly Carried by Antibiotic Resistant Escherichia coli Isolated from Drinking Water Sources in Northern Tanzania

    PubMed Central

    Lyimo, Beatus; Buza, Joram; Subbiah, Murugan; Temba, Sylivester; Kipasika, Honest; Smith, Woutrina; Call, Douglas R.

    2016-01-01

    The aim of this study was to identify the replicon types of plasmids, conjugation efficiencies, and the complement of antibiotic resistance genes for a panel of multidrug resistant E. coli isolates from surface waters in northern Tanzania. Standard membrane filtration was used to isolate and uidA PCR was used to confirm the identity of strains as E. coli. Antibiotic susceptibility was determined by breakpoint assay and plasmid conjugation was determined by filter-mating experiments. PCR and sequencing were used to identify resistance genes and PCR-based replicon typing was used to determine plasmid types. Filter mating experiments indicated conjugation efficiencies ranged from 10−1 to 10−7. Over 80% of the donor cells successfully passed their resistance traits and eleven different replicon types were detected (IncI1, FIC, P, FIIA, A/C, FIB, FIA, H12, K/B B/O, and N). IncF plasmids were most commonly detected (49% of isolates), followed by types IncI1 and IncA/C. Detection of these public health-relevant conjugative plasmids and antibiotic resistant traits in Tanzanian water suggests the possible pollution of these water sources from human, livestock, and wild animal wastes and also shows the potential of these water sources in the maintenance and transmission of these resistance traits between environments, animals, and people. PMID:27110245

  19. LONG-TERM STARVATION-INDUCED LOSS OF APPARENT ANTIBIOTIC RESISTANCE IN CELLS CONTAINING THE PLASMID PSA

    EPA Science Inventory

    Escherichia coli, Pseudomonas fluorescens, and a Pseudomonas sp. strain 133B containing the pSa plasmid were starved in well water for up to 523 days. There were two patterns of apparent antibiotic resistance loss observed. In Pseudomonas sp. strain 133B, there was no apparent lo...

  20. Effects of nano-TiO2 on antibiotic resistance transfer mediated by RP4 plasmid.

    PubMed

    Qiu, Zhigang; Shen, Zhiqiang; Qian, Di; Jin, Min; Yang, Dong; Wang, Jingfeng; Zhang, Bin; Yang, Zhongwei; Chen, Zhaoli; Wang, Xinwei; Ding, Chengshi; Wang, Daning; Li, Jun-Wen

    2015-01-01

    The potential risks of nano-materials and the spread of antibiotic resistance genes (ARGs) have become two major global public concerns. Studies have confirmed that nano-alumina can promote the spread of ARGs mediated by plasmids. Nano-titanium dioxide (TiO(2)), an excellent photocatalytic nano-material, has been widely used and is often present in aqueous environments. At various nano-material concentrations, bacterial density, matting time, and matting temperature, nano-TiO(2) can significantly promote the conjugation of RP4 plasmid in Escherichia coli. We developed a mathematical model to quantitatively describe the conjugation process and used this model to evaluate the effects of nano-TiO(2) on the spread of ARGs. We obtained analytical solutions for total and resistant bacteria, which were enumerated by the abundance of genetic loci unique to the plasmid and the chromosome using qPCR. Our results showed that the mathematic model was able to fit the experimental data well and can be used to quantitatively evaluate the effects of nano-TiO(2). According to our model, the presence of nano-TiO(2) decreased the bacterial growth rate from 0.0360 to 0.0323 min(-1) and increased the conjugative transfer rate from 6.69 × 10(-12) to 3.93 × 10(-10 )mL cell(-1) min(-1). These results indicate that nano-TiO(2) inhibited bacterial growth and promoted conjugation simultaneously. The data for morphology and mRNA expression also demonstrated this phenomenon. Our results confirm that environmental nano-TiO(2) may cause the spread of ARGs and thus poses an environmental risk. In addition, we provide a potential method for monitoring changes in ARGs that result from conjugation and evaluating the effects of antimicrobial substances on ARG expression. PMID:25676619

  1. Antibiotic resistance and plasmid profiling of Vibrio spp. in tropical waters of Peninsular Malaysia.

    PubMed

    You, K G; Bong, C W; Lee, C W

    2016-03-01

    Vibrio species isolated from four different sampling stations in the west coast of Peninsular Malaysia were screened for their antimicrobial resistance and plasmid profiles. A total of 138 isolates belonging to 15 different species were identified. Vibrio campbellii, V. parahaemolyticus, V. harveyi, and V. tubiashii were found to predominance species at all stations. High incidence of erythromycin, ampicillin, and mecillinam resistance was observed among the Vibrio isolates. In contrast, resistance against aztreonam, cefepime, streptomycin, sulfamethoxazole, and sulfonamides was low. All the Vibrio isolates in this study were found to be susceptible to imipenem, norfloxacin, ofloxacin, chloramphenicol, trimethoprim/sulfamethoxazole, and oxytetracycline. Ninety-five percent of the Vibrio isolates were resistant to one or more different classes of antibiotic, and 20 different resistance antibiograms were identified. Thirty-two distinct plasmid profiles with molecular weight ranging from 2.2 to 24.8 kb were detected among the resistance isolates. This study showed that multidrug-resistant Vibrio spp. were common in the aquatic environments of west coast of Peninsular Malaysia. PMID:26884358

  2. FabV/Triclosan Is an Antibiotic-Free and Cost-Effective Selection System for Efficient Maintenance of High and Medium -Copy Number Plasmids in Escherichia coli

    PubMed Central

    Ali, Syed A.; Chew, Yik Wei

    2015-01-01

    Antibiotic resistance genes and antibiotics are frequently used to maintain plasmid vectors in bacterial hosts such as Escherichia coli. Due to the risk of spread of antibiotic resistance, the regulatory authorities discourage the use of antibiotic resistance genes/antibiotics for the maintenance of plasmid vectors in certain biotechnology applications. Overexpression of E. coli endogenous fabI gene and subsequent selection on Triclosan has been proposed as a practical alternative to traditional antibiotic selection systems. Unfortunately, overexpression of fabI cannot be used to select medium –copy number plasmids, typically used for the expression of heterologous proteins in E. coli. Here we report that Vibrio cholera FabV, a functional homologue of E. coli FabI, can be used as a suitable marker for the selection and maintenance of both high and medium -copy number plasmid vectors in E. coli. PMID:26057251

  3. The indigenous Pseudomonas plasmid pQBR103 encodes plant-inducible genes, including three putative helicases.

    PubMed

    Zhang, Xue-Xian; Lilley, Andrew K; Bailey, Mark J; Rainey, Paul B

    2004-12-27

    Plasmid pQBR103 ( approximately 400 kb) is representative of many self-transmissible, mercury resistant plasmids observed in the Pseudomonas community colonising the phytosphere of sugar beet. A promoter trapping strategy (IVET) was employed to identify pQBR103 genes showing elevated levels of expression on plant surfaces. Thirty-seven different plant-inducible gene fusions were isolated that were silent in laboratory media, but active in the plant environment. Three of the fusions were to DNA sequences whose protein products show significant homology to DNA-unwinding helicases. The three helicase-like genes, designated helA, helB and helC, are restricted to a defined group of related Pseudomonas plasmids. They are induced in both the root and shoot environments of sugar beet seedlings. Sequence analysis of the three plasmid-encoded helicase-like genes shows that they are phylogenetically distinct and likely to have independent evolutionary histories. The helA gene is predicted to encode a protein of 1121 amino acids, containing conserved domains found in the ultraviolet (UV) resistance helicase, UvrD. A helA knockout mutant was constructed and no phenotypic changes were found with plasmid-conferred UV resistance or plasmid conjugation. The other 34 fusions are unique with no homologues in the public gene databases, including the Pseudomonas genomes. These data demonstrate the presence of plant responsive genes in plasmid DNA comprising a component of the genomes of plant-associated bacteria. PMID:16329852

  4. Emergence of Staphylococcus aureus carrying multiple drug resistance genes on a plasmid encoding exfoliative toxin B.

    PubMed

    Hisatsune, Junzo; Hirakawa, Hideki; Yamaguchi, Takayuki; Fudaba, Yasuyuki; Oshima, Kenshiro; Hattori, Masahira; Kato, Fuminori; Kayama, Shizuo; Sugai, Motoyuki

    2013-12-01

    We report the complete nucleotide sequence and analysis of pETBTY825, a Staphylococcus aureus TY825 plasmid encoding exfoliative toxin B (ETB). S. aureus TY825 is a clinical isolate obtained from an impetigo patient in 2002. The size of pETBTY825, 60.6 kbp, was unexpectedly larger than that of the archetype pETBTY4 (∼30 kbp). Genomic comparison of the plasmids shows that pETBTY825 has the archetype pETBTY4 as the backbone and has a single large extra DNA region of 22.4 kbp. The extra DNA region contains genes for resistance to aminoglycoside [aac(6')/aph(2″)], macrolide (msrA), and penicillin (blaZ). A plasmid deletion experiment indicated that these three resistance elements were functionally active. We retrospectively examined the resistance profile of the clinical ETB-producing S. aureus strains isolated in 1977 to 2007 using a MIC determination with gentamicin (GM), arbekacin (ABK), and erythromycin (EM) and by PCR analyses for aac(6')/aph(2″) and msrA using purified plasmid preparations. The ETB-producing S. aureus strains began to display high resistance to GM, which was parallel with the detection of aac(6')/aph(2″) and mecA, after 1990. Conversely, there was no significant change in the ABK MIC during the testing period, although it had a tendency to slightly increase. After 2001, isolates resistant to EM significantly increased; however, msrA was hardly detected in ETB-producing S. aureus strains, and only five isolates were positive for both aac(6')/aph(2″) and msrA. In this study, we report the emergence of a fusion plasmid carrying the toxin gene etb and drug resistance genes. Prevalence of the pETBTY825 carrier may further increase the clinical threat, since ETB-producing S. aureus is closely related to more severe impetigo or staphylococcal scalded-skin syndrome (SSSS), which requires a general antimicrobial treatment. PMID:24080652

  5. Plasmid-encoding vasostatin inhibited the growth and metastasis of human hepatocellular carcinoma cells.

    PubMed

    Peng, Xing-Chen; Wang, Ming; Chen, Xu-Xia; Liu, Jing; Xiao, Gui-Hua; Liao, Hong-Li

    2014-10-01

    The growth and metastasis of solid tumors depends on angiogenesis. Anti-angiogenesis therapy may represent a promising therapeutic option. Vasostatin, the N-terminal domain of calreticulin, is a very potent endogenous inhibitor of angiogenesis and tumor growth. In this study, we attempted to investigate whether plasmid-encoding vasostatin complexed with cationic liposome could suppress the growth and metastasis of hepatocellular carcinoma in vivo and discover its possible mechanism of action. Apoptosis induction of pSecTag2B-vasostatin plasmid on murine endothelial cells (MS1) was examined by flow cytometric analysis in vitro. Nude mice bearing HCCLM3 tumor received pSecTag2B-vasostatin, pSecTag2B-Null, and 0.9 % NaCl solution, respectively. Tumor net weight was measured and survival time was observed. Microvessel density within tumor tissues was determined by CD31 immunohistochemistry. H&E staining of lungs and TUNEL assay of primary tumor tissues were also conducted. The results displayed that pSecTag2B-vasostatin could inhibit the growth and metastasis of hepatocellular carcinoma xenografts and prolong survival time compared with the controls in vivo. Moreover, histologic analysis revealed that pSecTag2B-vasostatin treatment increased apoptosis and inhibited angiogenesis. The present data may be of importance to the further exploration of this new anti-angiogenesis approach in the treatment of hepatocellular cancer. PMID:24997628

  6. Identification of pTiC58 plasmid-encoded proteins for virulence in Agrobacterium tumefaciens.

    PubMed Central

    Hagiya, M; Close, T J; Tait, R C; Kado, C I

    1985-01-01

    Analyses were made of the host-dependent-variation (hdv) locus of the virulence (vir) region of the pTiC58 plasmid of Agrobacterium tumefaciens. The hdv locus is comprised of at least four genes that encode polypeptides of 13, 15, 29, and 28 kDa. Insertion of transposon Tn5 in the first gene abolishes the expression of all four genes in vitro and in vivo. Nucleotide sequence analysis of the hdv locus revealed four open reading frames tandemly arranged with spacer sequences having no promoter-like sequences and lacking the ability to bind A. tumefaciens RNA polymerase. These studies suggest that the hdv locus is comprised of at least four genes arranged in an operon in the vir region. The protein products of these genes are likely to function in some aspect of the host-range determination of A. tumefaciens. Images PMID:2986128

  7. Complete nucleotide sequences of two NDM-1-encoding plasmids from the same sequence type 11 Klebsiella pneumoniae strain.

    PubMed

    Studentova, V; Dobiasova, H; Hedlova, D; Dolejska, M; Papagiannitsis, C C; Hrabak, J

    2015-02-01

    The sequence type 11 Klebsiella pneumoniae strain Kpn-3002cz was confirmed to harbor two NDM-1-encoding plasmids, pB-3002cz and pS-3002cz. pB-3002cz (97,649 bp) displayed extensive sequence similarity with the blaNDM-1-carrying plasmid pKPX-1. pS-3002cz (73,581 bp) was found to consist of an IncR-related sequence (13,535 bp) and a mosaic region (60,046 bp). A 40,233-bp sequence of pS-3002cz was identical to the mosaic region of pB-3002cz, indicating the en bloc acquisition of the NDM-1-encoding region from one plasmid by the other. PMID:25421477

  8. Complete Nucleotide Sequences of Two NDM-1-Encoding Plasmids from the Same Sequence Type 11 Klebsiella pneumoniae Strain

    PubMed Central

    Studentova, V.; Dobiasova, H.; Hedlova, D.; Dolejska, M.; Hrabak, J.

    2014-01-01

    The sequence type 11 Klebsiella pneumoniae strain Kpn-3002cz was confirmed to harbor two NDM-1-encoding plasmids, pB-3002cz and pS-3002cz. pB-3002cz (97,649 bp) displayed extensive sequence similarity with the blaNDM-1-carrying plasmid pKPX-1. pS-3002cz (73,581 bp) was found to consist of an IncR-related sequence (13,535 bp) and a mosaic region (60,046 bp). A 40,233-bp sequence of pS-3002cz was identical to the mosaic region of pB-3002cz, indicating the en bloc acquisition of the NDM-1-encoding region from one plasmid by the other. PMID:25421477

  9. Degradation of trichloroethene by a linear-plasmid-encoded alkene monooxygenase in Rhodococcus corallinus (Nocardia corallina) B-276.

    PubMed

    Saeki, H; Akira, M; Furuhashi, K; Averhoff, B; Gottschalk, G

    1999-07-01

    Rhodococcus corallinus (formerly Nocardia corallina) B-276, isolated with propene as sole carbon and energy source, is able to oxidize trichloroethene (TCE). Glucose- or propene-grown R. corallinus B-276 cells exhibited no difference in TCE degradation efficiency. TCE degradation was found to be growth-phase-dependent and maximum rates were monitored with stationary-phase cells. K(m) and Vmax values for TCE degradation of R. corallinus B-276 grown in nutrient broth medium in the presence of glucose were 187 microM and 2.4 nmol min-1 (mg protein)-1, respectively. Escherichia coli recombinants harbouring and expressing the alkene monooxygenase genes of R. corallinus B-276 exhibited the ability to degrade TCE. This result provides clear evidence that the alkene monooxygenase of R. corallinus B-276 catalyses TCE oxidation. R. corallinus B-276 was shown to contain four linear plasmids, pNC10 (70 kb), pNC20 (85 kb), pNC30 (185 kb) and pNC40 (235 kb). The observation that pNC30-deficient strains had lost the ability to grow on propene suggested that the genes of the propene degradation pathway are encoded by the linear plasmid pNC30. Southern blot analysis with cloned alkene monooxygenase genes from R. corallinus B-276 revealed a positive hybridization signal with the linear plasmid pNC30. This result clearly shows that the alkene monooxygenase is encoded by the linear plasmid pNC30. Eleven short-chain-alkene-oxidizing strains were screened for the presence of linear plasmids. Among these, four propene-oxidizing Rhodococcus strains and one ethene-oxidizing Mycobacterium strain were found to contain linear megaplasmids. Southern blot analysis with the alkene monooxygenase revealed positive signals with linear plasmids of two propene-oxidizing Rhodococcus ruber strains. These results indicate that homologous alkene monooxygenases are encoded by linear plasmids in R. ruber strains. PMID:10439411

  10. Plasmid-encoded genes influence exosporium assembly and morphology in Bacillus megaterium QM B1551 spores

    PubMed Central

    Manetsberger, Julia; Hall, Elizabeth A. H.; Christie, Graham

    2015-01-01

    Spores of Bacillus megaterium QM B1551 are encased in a morphologically distinctive exosporium. We demonstrate here that genes encoded on the indigenous pBM500 and pBM600 plasmids are required for exosporium assembly and or stability in spores of this strain. Bioinformatic analyses identified genes encoding orthologues of the B. cereus-family exosporium nap and basal layer proteins within the B. megaterium genome. Transcriptional analyses, supported by electron and fluorescent microscopy, indicate that the pole-localized nap, identified here for the first time in B. megaterium QM B1551 spores, is comprised of the BclA1 protein. The role of the BxpB protein, which forms the basal layer of the exosporium in B. cereus spores, is less clear since spores of a null mutant strain display an apparently normal morphology. Retention of the localized nap in bxpB null spores suggests that B. megaterium employs an alternative mechanism to that used by B. cereus spores in anchoring the nap to the spore surface. PMID:26316548

  11. Plasmid vectors for Xylella fastidiosa utilizing a toxin-antitoxin system for plasmid stability in the absence of antibiotic selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phytopathogen Xylella fastidiosa causes disease in a variety of important crop and landscape plants. Functional genetic studies have led to a broader understanding of virulence mechanisms used by this pathogen in the grapevine host. Plasmid shuttle vectors are important tools in studies of bacte...

  12. Borrelia burgdorferi supercoiled plasmids encode multicopy tandem open reading frames and a lipoprotein gene family.

    PubMed Central

    Porcella, S F; Popova, T G; Akins, D R; Li, M; Radolf, J D; Norgard, M V

    1996-01-01

    DNA sequencing and Southern blot analyses of a Borrelia burgdorferi DNA fragment encoding a signal sequence led to the discovery of a genetic locus, designated 2.9, which appears to be present in at least seven copies in virulent B. burgdorferi 297. DNA sequence analysis of these regions revealed that each 2.9 locus contained an operon of four genes (ABCD) and open reading frames designated rep+ (positive strand) and rep- (negative strand) which encoded multiple repeat motifs. Downstream of the rep+ gene(s) in six of the completely cloned and sequenced 2.9 loci also were lipoprotein (LP) genes possessing highly similar signal sequences but encoding variable mature polypeptides. The lipoproteins could he separated into two classes on the basis of hydrophilicity profiles, sequence similarities, and reactivity with specific antibodies. The 2.9 loci were localized to two (20- and 30-kb) supercoiled plasmids in B. burgdorferi 297. Northern (RNA) blot analysis established that the 2.9 ABCD operon was only minimally expressed, whereas the rep- gene(s) and at least three of the seven LP genes were expressed by B. burgdorferi in vitro. A single putative promoter element was identified by RNA primer extension analysis upstream of the ABCD operon, whereas a number of potential promoter regions existed upstream of the LP genes. The combined data indicate that the ABCD operon, rep+ and rep- genes, and LP genes are separately transcribed during in vitro growth. The 2.9 loci possess a repetitiveness, diversity, and complexity not previously described for B. burgdorferi; differential expression of these genes may facilitate the spirochete's ability to survive in diverse host environments. PMID:8655511

  13. Antibiotic susceptibility pattern and analysis of plasmid profiles of Pseudomonas aeruginosa from human, animal and plant sources.

    PubMed

    Odumosu, Bamidele Tolulope; Ajetunmobi, Olabayo; Dada-Adegbola, Hannah; Odutayo, Idowu

    2016-01-01

    Multidrug resistant organisms (MDROs) constitute a major public health threat globally. Clinical isolates of Pseudomonas aeruginosa remains one of the most studied MDROs however there is paucity of information regarding the susceptibility of its animal and plants isolates to antipseudomonas drug in Nigeria. From a total of 252 samples consisting of plants, animals and clinical samples, 54, 24 and 22 P. aeruginosa were isolated from vegetables, animals and clinical sources respectively. All the isolates were identified by standard biochemical methods. Antimicrobial susceptibility testing (AST) of the 100 P. aeruginosa isolates against 7 antipseudomonal drugs was carried out by disk diffusion method, the phenotypic detection of ESBL was done by double disk synergy test (DDST) while plasmid extraction on 20 selected isolates based on their resistance to 2 or more classes of antibiotics was carried out by alkaline lysis method and analysed with Lambda DNA/Hind lll marker respectively. The AST results revealed highest resistance of 91 and 55 % to ceftazidime and carbenicillin respectively while highest susceptibilities of 99 % for piperacillin-tazobactam and imipenem were recorded in overall assay. Fifteen out of 100 isolates specifically (10) from vegetables, (3) clinical and (2) poultry isolates showed synergy towards the beta-lactamase inhibitor indicating production of ESBL by DDST method. Detection of plasmids was among vegetable (n = 4), poultry (n = 4), cow (n = 3) and clinical isolates (n = 1). Plasmid profile for the selected isolates revealed 6 of the strains had one plasmids each while 5 strains possessed 2-4 plasmids and 1 strain had 5 plasmids. The sizes of the plasmid range from <1 to ≥23kbp. Detection of ESBL and Plasmids among the investigated isolates is suggestive of multiple interplay of resistance mechanism among the isolates. Plants and animal isolates of P. aeruginosa harbouring multiple mechanisms of resistance is of concern due to the

  14. Plasmid content and localization of the genes encoding the denitrification enzymes in two strains of Rhodobacter sphaeroides.

    PubMed

    Schwintner, C; Sabaty, M; Berna, B; Cahors, S; Richaud, P

    1998-08-15

    Plasmid content and localization of the genes encoding the reductases of the denitrification pathway were determined in the photosynthetic bacterium Rhodobacter sphaeroides forma sp. denitrificans by transverse alternating-field electrophoresis (TAFE) and hybridization with digoxigenin-labeled homologous probes. Two large plasmids of 102 and 115 kb were found. The genes encoding the various reductases are not clustered on a single genetic unit. The nap locus (localized with a napA probe), the nirK gene and the norCB genes encoding the nitrate, nitrite and nitric oxide reductases, respectively, were found on different AseI and SnaBI digested chromosomal DNA fragments, whereas the nos locus (localized with a nosZ probe), encoding the nitrous oxide reductase, was identified on the 115-kb plasmid. Furthermore, the genes encoding two proteins of unknown function, one periplasmic and the other cytoplasmic, but whose synthesis is highly induced by nitrate, were found on a different chromosomal fragment. For comparison, the same experiments were carried out on the well-characterized strain Rhodobacter sphaeroides 2.4.1. PMID:9742704

  15. pEVL: A Linear Plasmid for Generating mRNA IVT Templates With Extended Encoded Poly(A) Sequences.

    PubMed

    Grier, Alexandra E; Burleigh, Stephen; Sahni, Jaya; Clough, Courtnee A; Cardot, Victoire; Choe, Dongwook C; Krutein, Michelle C; Rawlings, David J; Jensen, Michael C; Scharenberg, Andrew M; Jacoby, Kyle

    2016-01-01

    Increasing demand for large-scale synthesis of in vitro transcribed (IVT) mRNA is being driven by the increasing use of mRNA for transient gene expression in cell engineering and therapeutic applications. An important determinant of IVT mRNA potency is the 3' polyadenosine (poly(A)) tail, the length of which correlates with translational efficiency. However, present methods for generation of IVT mRNA rely on templates derived from circular plasmids or PCR products, in which homopolymeric tracts are unstable, thus limiting encoded poly(A) tail lengths to ~120 base pairs (bp). Here, we have developed a novel method for generation of extended poly(A) tracts using a previously described linear plasmid system, pJazz. We find that linear plasmids can successfully propagate poly(A) tracts up to ~500 bp in length for IVT mRNA production. We then modified pJazz by removing extraneous restriction sites, adding a T7 promoter sequence upstream from an extended multiple cloning site, and adding a unique type-IIS restriction site downstream from the encoded poly(A) tract to facilitate generation of IVT mRNA with precisely defined encoded poly(A) tracts and 3' termini. The resulting plasmid, designated pEVL, can be used to generate IVT mRNA with consistent defined lengths and terminal residue(s). PMID:27093168

  16. Comparative study on the antibiotic susceptibility and plasmid profiles of Vibrio alginolyticus strains isolated from four Tunisian marine biotopes.

    PubMed

    Lajnef, Rim; Snoussi, Mejdi; Romalde, Jesús López; Nozha, Cohen; Hassen, Abdennaceur

    2012-12-01

    The antibiotic resistance patterns and the plasmids profiles of the predominant etiological agent responsible for vibriosis in Tunisia, V. alginolyticus were studied to contribute to control their spread in some Mediterranean aquaculture farms and seawater. The sixty-nine V. alginolyticus strains isolated from different marine Tunisian biotopes (bathing waters, aquaculture and conchylicole farms and a river connected to the seawater during the cold seasons) were multi-drug resistant with high resistance rate to ampicillin, kanamycin, doxycyclin, erythromycin, imipinem, and nalidixic acid. The multiple resistance index ranged from 0.3 to 0.7 for the isolates of Khenis, from 0.5 to 0.8 for those of Menzel Jmil, from 0.5 to 0.75 (Hergla) and from 0.3 to 0.7 for the isolates of Oued Soltane. The high value of antibiotic resistance index was recorded for the V. alginolyticus population isolated from the fish farm in Hergla (ARI = 0.672) followed by the population isolated from the conchylicole station of Menzel Jmil (ARI = 0.645). The results obtained by the MIC tests confirmed the resistance of the V. alginolyticus to ampicillin, erythromycin, kanamycin, cefotaxime, streptomycin and trimethoprim. Plasmids were found in 79.48 % of the strains analyzed and 30 different plasmid profiles were observed. The strains had a high difference in the size of plasmids varying between 0.5 and 45 kb. Our study reveals that the antibiotic-resistant bacteria are widespread in the aquaculture and conchylicole farm relatively to others strains isolated from seawater. PMID:22918722

  17. Chlorophenol hydroxylases encoded by plasmid pJP4 differentially contribute to chlorophenoxyacetic acid degradation.

    PubMed

    Ledger, T; Pieper, D H; González, B

    2006-04-01

    Phenoxyalkanoic compounds are used worldwide as herbicides. Cupriavidus necator JMP134(pJP4) catabolizes 2,4-dichlorophenoxyacetate (2,4-D) and 4-chloro-2-methylphenoxyacetate (MCPA), using tfd functions carried on plasmid pJP4. TfdA cleaves the ether bonds of these herbicides to produce 2,4-dichlorophenol (2,4-DCP) and 4-chloro-2-methylphenol (MCP), respectively. These intermediates can be degraded by two chlorophenol hydroxylases encoded by the tfdB(I) and tfdB(II) genes to produce the respective chlorocatechols. We studied the specific contribution of each of the TfdB enzymes to the 2,4-D/MCPA degradation pathway. To accomplish this, the tfdB(I) and tfdB(II) genes were independently inactivated, and growth on each chlorophenoxyacetate and total chlorophenol hydroxylase activity were measured for the mutant strains. The phenotype of these mutants shows that both TfdB enzymes are used for growth on 2,4-D or MCPA but that TfdB(I) contributes to a significantly higher extent than TfdB(II). Both enzymes showed similar specificity profiles, with 2,4-DCP, MCP, and 4-chlorophenol being the best substrates. An accumulation of chlorophenol was found to inhibit chlorophenoxyacetate degradation, and inactivation of the tfdB genes enhanced the toxic effect of 2,4-DCP on C. necator cells. Furthermore, increased chlorophenol production by overexpression of TfdA also had a negative effect on 2,4-D degradation by C. necator JMP134 and by a different host, Burkholderia xenovorans LB400, harboring plasmid pJP4. The results of this work indicate that codification and expression of the two tfdB genes in pJP4 are important to avoid toxic accumulations of chlorophenols during phenoxyacetic acid degradation and that a balance between chlorophenol-producing and chlorophenol-consuming reactions is necessary for growth on these compounds. PMID:16597983

  18. A Host-Specific Factor is Necessary for Efficient Folding of the Autotransporter Plasmid-Encoded Toxin

    PubMed Central

    Nemec, Kathleen N.; Scaglione, Patricia; Navarro-García, Fernando; Huerta, Jazmín; Tatulian, Suren A.; Teter, Ken

    2010-01-01

    Autotransporters are the most common virulence factors secreted from Gram-negative pathogens. Until recently, autotransporter folding and outer membrane translocation were thought to be self-mediated events that did not require accessory factors. Here, we report that two variants of the autotransporter plasmid-encoded toxin are secreted by a lab strain of Escherichia coli. Biophysical analysis and cell-based toxicity assays demonstrated that only one of the two variants was in a folded, active conformation. The misfolded variant was not produced by a pathogenic strain of enteroaggregative E. coli and did not result from protein overproduction in the lab strain of E. coli. Our data suggest a host-specific factor is required for efficient folding of plasmid-encoded toxin. PMID:19944129

  19. Tetracycline-resistance encoding plasmids from Paenibacillus larvae, the causal agent of American foulbrood disease, isolated from commercial honeys.

    PubMed

    Alippi, Adriana M; León, Ignacio E; López, Ana C

    2014-03-01

    Paenibacillus larvae, the causal agent of American foulbrood disease in honeybees, acquires tetracycline-resistance via native plasmids carrying known tetracycline-resistance determinants. From three P. larvae tetracycline-resistant strains isolated from honeys, 5-kb-circular plasmids with almost identical sequences, designated pPL373 in strain PL373, pPL374 in strain PL374, and pPL395 in strain PL395, were isolated. These plasmids were highly similar (99%) to small tetracycline-encoding plasmids (pMA67, pBHS24, pBSDMV46A, pDMV2, pSU1, pAST4, and pLS55) that replicate by the rolling circle mechanism. Nucleotide sequences comparisons showed that pPL373, pPL374, and pPL395 mainly differed from the previously reported P. larvae plasmid pMA67 in the oriT region and mob genes. These differences suggest alternative mobilization and/or conjugation capacities. Plasmids pPL373, pPL374, and pPL395 were individually transferred by electroporation and stably maintained in tetracycline-susceptible P. larvae NRRL B-14154, in which they autonomously replicated. The presence of nearly identical plasmids in five different genera of gram-positive bacteria, i.e., Bhargavaea, Bacillus, Lactobacillus, Paenibacillus, and Sporosarcina, inhabiting diverse ecological niches provides further evidence of the genetic transfer of tetracycline resistance among environmental bacteria from soils, food, and marine habitats and from pathogenic bacteria such as P. larvae. PMID:25296446

  20. Mediation of serum resistance in Salmonella typhimurium by an 11-kilodalton polypeptide encoded by the cryptic plasmid.

    PubMed

    Hackett, J; Wyk, P; Reeves, P; Mathan, V

    1987-03-01

    A cosmid bank of the DNA (including cryptic plasmid DNA) of a virulent strain of Salmonella typhimurium was prepared in Escherichia coli K12, and clones that contained cryptic plasmid DNA were detected by probing. Two such clones expressed a new outer membrane protein of 11 kilodaltons (kDa) and were serum resistant (E. coli K12 is serum sensitive). The gene encoding the 11-kDa protein was subcloned in a 2.1-kilobase fragment and shown to mediate serum resistance in both E. coli K12 and a cryptic plasmid-free (serum-sensitive) strain of S. typhimurium. The cryptic plasmid-free S. typhimurium strain did not express normal lipopolysaccharide, but introduction of the 11-kDa protein gene into the strain rendered the strain serum resistant without restoration of normal lipopolysaccharide synthesis. The 11-kDa protein gene was not sufficient to restore either macrophage resistance or virulence to a cryptic plasmid-free strain of S. typhimurium. PMID:3543157

  1. Antibiotic resistance free plasmid DNA expressing LACK protein leads towards a protective Th1 response against Leishmania infantum infection.

    PubMed

    Ramos, I; Alonso, A; Peris, A; Marcen, J M; Abengozar, M A; Alcolea, P J; Castillo, J A; Larraga, V

    2009-11-12

    Canine visceral leishmaniasis is a serious public health concern in the Mediterranean basin since dogs are the main Leishmania infantum reservoir. However, there is not a vaccination method in veterinary use in this area, and therefore the development of a vaccine against this parasite is essential for the possible control of the disease. Previous reports have shown the efficacy of heterologous prime-boost vaccination with the pCIneo plasmid and the poxvirus VV (both Western Reserve and MVA strains) expressing L. infantum LACK antigen against canine leishmaniasis. As pCIneo-LACK plasmid contains antibiotic resistance genes, its use as a profilactic method is not recommended. Hence, the antibiotic resistance gene free pORT-LACK plasmid is a more suitable tool for its use as a vaccine. Here we report the protective and immunostimulatory effect of the prime-boost pORT-LACK/MVA-LACK vaccination tested in a canine experimental model. Vaccination induced a reduction in clinical signs and in parasite burden in the liver, an induction of the Leishmania-specific T cell activation, as well as an increase of the expression of Th1 type cytokines in PBMC and target organs. PMID:19747996

  2. Stability of the Encoding Plasmids and Surface Expression of CS6 Differs in Enterotoxigenic Escherichia coli (ETEC) Encoding Different Heat-Stable (ST) Enterotoxins (STh and STp).

    PubMed

    Tobias, Joshua; Von Mentzer, Astrid; Loayza Frykberg, Patricia; Aslett, Martin; Page, Andrew J; Sjöling, Åsa; Svennerholm, Ann-Mari

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC), one of the most common reasons of diarrhea among infants and children in developing countries, causes disease by expression of either or both of the enterotoxins heat-labile (LT) and heat-stable (ST; divided into human-type [STh] and porcine-type [STp] variants), and colonization factors (CFs) among which CS6 is one of the most prevalent ETEC CFs. In this study we show that ETEC isolates expressing CS6+STh have higher copy numbers of the cssABCD operon encoding CS6 than those expressing CS6+STp. Long term cultivation of up to ten over-night passages of ETEC isolates harboring CS6+STh (n = 10) or CS6+STp (n = 15) showed instability of phenotypic expression of CS6 in a majority of the CS6+STp isolates, whereas most of the CS6+STh isolates retained CS6 expression. The observed instability was a correlated with loss of genes cssA and cssD as examined by PCR. Mobilization of the CS6 plasmid from an unstable CS6+STp isolate into a laboratory E. coli strain resulted in loss of the plasmid after a single over-night passage whereas the plasmid from an CS6+STh strain was retained in the laboratory strain during 10 passages. A sequence comparison between the CS6 plasmids from a stable and an unstable ETEC isolate revealed that genes necessary for plasmid stabilization, for example pemI, pemK, stbA, stbB and parM, were not present in the unstable ETEC isolate. Our results indicate that stable retention of CS6 may in part be affected by the stability of the plasmid on which both CS6 and STp or STh are located. PMID:27054573

  3. Stability of the Encoding Plasmids and Surface Expression of CS6 Differs in Enterotoxigenic Escherichia coli (ETEC) Encoding Different Heat-Stable (ST) Enterotoxins (STh and STp)

    PubMed Central

    Tobias, Joshua; Von Mentzer, Astrid; Loayza Frykberg, Patricia; Aslett, Martin; Page, Andrew J.; Sjöling, Åsa; Svennerholm, Ann-Mari

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC), one of the most common reasons of diarrhea among infants and children in developing countries, causes disease by expression of either or both of the enterotoxins heat-labile (LT) and heat-stable (ST; divided into human-type [STh] and porcine-type [STp] variants), and colonization factors (CFs) among which CS6 is one of the most prevalent ETEC CFs. In this study we show that ETEC isolates expressing CS6+STh have higher copy numbers of the cssABCD operon encoding CS6 than those expressing CS6+STp. Long term cultivation of up to ten over-night passages of ETEC isolates harboring CS6+STh (n = 10) or CS6+STp (n = 15) showed instability of phenotypic expression of CS6 in a majority of the CS6+STp isolates, whereas most of the CS6+STh isolates retained CS6 expression. The observed instability was a correlated with loss of genes cssA and cssD as examined by PCR. Mobilization of the CS6 plasmid from an unstable CS6+STp isolate into a laboratory E. coli strain resulted in loss of the plasmid after a single over-night passage whereas the plasmid from an CS6+STh strain was retained in the laboratory strain during 10 passages. A sequence comparison between the CS6 plasmids from a stable and an unstable ETEC isolate revealed that genes necessary for plasmid stabilization, for example pemI, pemK, stbA, stbB and parM, were not present in the unstable ETEC isolate. Our results indicate that stable retention of CS6 may in part be affected by the stability of the plasmid on which both CS6 and STp or STh are located. PMID:27054573

  4. Cloning and genetic and sequence analyses of the bacteriocin 21 determinant encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pPD1.

    PubMed Central

    Tomita, H; Fujimoto, S; Tanimoto, K; Ike, Y

    1997-01-01

    The pheromone-responsive conjugative plasmid pPD1 (59 kb) of Enterococcus faecalis encodes the bacteriocin 21 (bac21) determinant. Cloning, transposon insertion mutagenesis and sequence analysis of the bac21 determinant showed that an 8.5-kb fragment lying between kb 27.1 and 35.6 of the pPD1 map is required for complete expression of the bacteriocin. The 8.5-kb fragment contained nine open reading frames (ORFs), bacA to bac1, which were oriented in the same (upstream-to-downstream) direction. Transposon insertions into the bacA to bacE ORFs, which are located in the proximal half of bac21, resulted in defective bacteriocin expression. Insertions into the bacF to bac1 ORFs, which are located in the distal half of bac21, resulted in reduced bacteriocin expression. Deletion mutant analysis of the cloned 8.5-kb fragment revealed that the deletion of segments between kb 31.6 and 35.6 of the pPD1 map, which contained the distal region of the determinant encoding bacF to bac1, resulted in reduced bacteriocin expression. The smallest fragment (4.5 kb) retaining some degree of bacteriocin expression contained the bacA to bacE sequences located in the proximal half of the determinant. The cloned fragment encoding the 4.5-kb proximal region and a Tn916 insertion mutant into pPD1 bacB trans-complemented intracellularly to give complete expression of the bacteriocin. bacA encoded a 105-residue sequence with a molecular mass of 11.1 kDa. The deduced BacA protein showed 100% homology to the broad-spectrum antibiotic peptide AS-48, which is encoded on the E. faecalis conjugative plasmid pMB2 (58 kb). bacH encoded a 195-residue sequence with a molecular mass of 21.9 kDa. The deduced amino acid sequence showed significant homology to the C-terminal region of HlyB (31.1% identical residues), a protein located in the Escherichia coli alpha-hemolysin operon that is a representative bacterial ATP-binding cassette export protein. PMID:9401046

  5. Genetic and biochemical analysis of an endonuclease encoded by the IncN plasmid pKM101.

    PubMed Central

    Pohlman, R F; Liu, F; Wang, L; Moré, M I; Winans, S C

    1993-01-01

    The IncN plasmid pKM101 nuc gene encodes a periplasmically localized endonuclease. DNA sequence analysis indicates that this gene encodes a hydrophilic protein of about 19.5 kDa containing a hydrophobic signal sequence. nuc is homologous to a partially sequenced open reading frame adjacent to the sog gene of the plasmid CollB-P9, a plasmid known to encode an endonuclease similar to that of pKM101. A partially sequenced tra gene directly upstream of nuc is homologous to the virB11 gene of Agrobacterium tumefaciens. We have partially purified the pKM101 nuclease by osmotic shock and cation exchange chromatography, and used this enzyme preparation to sequence the protein's amino terminus. The first 13 amino acids of the mature protein match amino acids 23 to 35 of the predicted sequence, indicating that the protein is proteolytically processed to a molecular mass of approximately 17 kDa, probably during export to the periplasmic space. The enzyme was able to attack many sites along an end labelled duplex DNA substrate, but showed clearly preferred cleavage sites, and may cleave preferentially at purine-rich regions. Images PMID:8177732

  6. Replicon typing of plasmids encoding resistance to newer beta-lactams.

    PubMed

    Carattoli, Alessandra; Miriagou, Vivi; Bertini, Alessia; Loli, Alexandra; Colinon, Celine; Villa, Laura; Whichard, Jean M; Rossolini, Gian Maria

    2006-07-01

    Polymerase chain reaction-based replicon typing represents a novel method to describe the dissemination and follow the evolution of resistance plasmids. We used this approach to study 26 epidemiologically unrelated Enterobacteriaceae and demonstrate the dominance of incompatibility (Inc) A/C or Inc N-related plasmids carrying some emerging resistance determinants to extended-spectrum cephalosporins and carbapenems. PMID:16836838

  7. Replicon Typing of Plasmids Encoding Resistance to Newer β-Lactams

    PubMed Central

    Miriagou, Vivi; Bertini, Alessia; Loli, Alexandra; Colinon, Celine; Villa, Laura; Whichard, Jean M.; Rossolini, Gian Maria

    2006-01-01

    Polymerase chain reaction–based replicon typing represents a novel method to describe the dissemination and follow the evolution of resistance plasmids. We used this approach to study 26 epidemiologically unrelated Enterobacteriaceae and demonstrate the dominance of incompatibility (Inc) A/C or Inc N-related plasmids carrying some emerging resistance determinants to extended-spectrum cephalosporins and carbapenems. PMID:16836838

  8. Structural Characteristics of the Plasmid-Encoded Toxin from Enteroaggregative Escherichia coli†

    PubMed Central

    Scaglione, Patricia; Nemec, Kathleen N.; Burlingame, Kaitlin E.; Grabon, Agnieszka; Huerta, Jazmin; Navarro-García, Fernando; Tatulian, Suren A.; Teter, Ken

    2008-01-01

    Intoxication by the plasmid-encoded toxin (Pet) of enteroaggregative Escherichia coli requires toxin translocation from the endoplasmic reticulum (ER) to the cytosol. This event involves the quality control system of ER-associated degradation (ERAD), but the molecular details of the process are poorly characterized. For many structurally distinct AB-type toxins, ERAD-mediated translocation is triggered by the spontaneous unfolding of a thermally unstable A chain. Here we show that Pet, a non-AB toxin, engages ERAD by a different mechanism that does not involve thermal unfolding. Circular dichroism and fluorescence spectroscopy measurements demonstrated that Pet maintains most of its secondary and tertiary structural features at 37°C, with significant thermal unfolding only occurring at temperatures ≥50°C. Fluorescence quenching experiments detected the partial solvent exposure of Pet aromatic amino acid residues at 37°C, and a cell-based assay suggested these changes could activate an ERAD-related event known as the unfolded protein response. We also found that HEp-2 cells were resistant to Pet intoxication when incubated with glycerol, a protein stabilizer. Altogether, our data are consistent with a model in which ERAD activity is triggered by a subtle structural destabilization of Pet and the exposure of Pet hydrophobic residues at physiological temperature. This was further supported by computer modeling analysis, which identified a surface-exposed hydrophobic loop among other accessible nonpolar residues in Pet. From our data it appears that Pet can promote its ERAD-mediated translocation into the cytosol by a distinct mechanism involving partial exposure of hydrophobic residues rather than the substantial unfolding observed for certain AB toxins. PMID:18702515

  9. Plasmid-encoded toxin of enteroaggregative Escherichia coli is internalized by epithelial cells.

    PubMed

    Navarro-García, F; Canizalez-Roman, A; Luna, J; Sears, C; Nataro, J P

    2001-02-01

    We have previously described a 104-kDa protein termed Pet (for plasmid-encoded toxin) secreted by some strains of enteroaggregative Escherichia coli (EAEC). Through an unknown mechanism, this toxin (i) raises transepithelial short-circuit current (Isc) and decreases the electrical resistance of rat jejunum mounted in the Ussing chamber, (ii) causes cytoskeletal alterations in HEp-2 cells and HT29/C1 cells, and (iii) is required for histopathologic effects of EAEC on human intestinal mucosa. Pet is a member of the autotransporter class of secreted proteins and together with Tsh, EspP, EspC, ShMu, and SepA proteins comprises the SPATE subfamily. Here, we show that Pet is internalized by HEp-2 cells and that internalization appears to be required for the induction of cytopathic effects. Evidence supporting Pet internalization includes the facts that (i) the effects of Pet on epithelial cells were inhibited by brefeldin A, which interferes with various steps of intracellular vesicular transport; (ii) immunoblots using anti-Pet antibodies detected Pet in the cytoplasmic fraction of intoxicated HEp-2 cells; (iii) Pet was detected inside HEp-2 cells by confocal microscopy; and (iv) a mutant in the passenger domain cleavage site, which prevents Pet release from the bacterial outer membrane, did not produce cytopathic effects on epithelial cells, whereas the release of mutant Pet from the outer membrane with trypsin yielded active toxin. We have also shown that the Pet serine protease motif is required to produce cytopathic effects but not for Pet secretion. Our results suggest an intracellular mode of action for the Pet protease and are consistent with we our recent report suggesting an intracellular mode of action for Pet. PMID:11160002

  10. Complete Sequence of pOZ176, a 500-Kilobase IncP-2 Plasmid Encoding IMP-9-Mediated Carbapenem Resistance, from Outbreak Isolate Pseudomonas aeruginosa 96

    PubMed Central

    Xiong, Jianhui; Alexander, David C.; Ma, Jennifer H.; Déraspe, Maxime; Low, Donald E.; Jamieson, Frances B.

    2013-01-01

    Pseudomonas aeruginosa 96 (PA96) was isolated during a multicenter surveillance study in Guangzhou, China, in 2000. Whole-genome sequencing of this outbreak strain facilitated analysis of its IncP-2 carbapenem-resistant plasmid, pOZ176. The plasmid had a length of 500,839 bp and an average percent G+C content of 57%. Of the 618 predicted open reading frames, 65% encode hypothetical proteins. The pOZ176 backbone is not closely related to any plasmids thus far sequenced, but some similarity to pQBR103 of Pseudomonas fluorescens SBW25 was observed. Two multiresistant class 1 integrons and several insertion sequences were identified. The blaIMP-9-carrying integron contained aacA4→blaIMP-9→aacA4, flanked upstream by Tn21 tnpMRA and downstream by a complete tni operon of Tn402 and a mer module, named Tn6016. The second integron carried aacA4→catB8a→blaOXA-10 and was flanked by Tn1403-like tnpRA and a sul1-type 3′ conserved sequence (3′-CS), named Tn6217. Other features include three resistance genes similar to those of Tn5, a tellurite resistance operon, and two pil operons. The replication and maintenance systems exhibit similarity to a genomic island of Ralstonia solanacearum GM1000. Codon usage analysis suggests the recent acquisition of blaIMP-9. The origins of the integrons on pOZ176 indicated separate horizontal gene transfer events driven by antibiotic selection. The novel mosaic structure of pOZ176 suggests that it is derived from environmental bacteria. PMID:23716048

  11. Enzymatic and nucleotide sequence studies of a kanamycin-inactivating enzyme encoded by a plasmid from thermophilic bacilli in comparison with that encoded by plasmid pUB110.

    PubMed Central

    Matsumura, M; Katakura, Y; Imanaka, T; Aiba, S

    1984-01-01

    The product of a kanamycin resistance gene encoded by plasmid pTB913 isolated from a thermophilic bacillus was identified as a kanamycin nucleotidyltransferase which is similar to that encoded by plasmid pUB110 from a mesophile, Staphylococcus aureus. The enzyme encoded by pTB913 was more thermostable than that encoded by pUB110. In view of a close resemblance of restriction endonuclease cleavage maps around the BglII site in the structural genes of both enzymes, ca. 1,200 base pairs were sequenced, followed by amino-terminal amino acid sequencing of the enzyme. The two nucleotide sequences were found to be identical to each other except for only one base in the midst of the structural gene. Each structural gene, initiating from a GUG codon as methionine, was composed of 759 base pairs and 253 amino acid residues (molecular weight, ca. 29,000). The sole difference was transversion from a cytosine (pUB110) to an adenine (pTB913) at a position + 389, counting the first base of the initiation codon as + 1. That is, a threonine at position 130 for the pUB110-coded kanamycin nucleotidyltransferase was replaced by a lysine for the pTB913-coded enzyme. The difference in thermostability between the two enzymes caused by a single amino acid replacement is discussed in light of electrostatic effects. Images PMID:6090428

  12. Toxin Plasmids of Clostridium perfringens

    PubMed Central

    Li, Jihong; Adams, Vicki; Bannam, Trudi L.; Miyamoto, Kazuaki; Garcia, Jorge P.; Uzal, Francisco A.; Rood, Julian I.

    2013-01-01

    SUMMARY In both humans and animals, Clostridium perfringens is an important cause of histotoxic infections and diseases originating in the intestines, such as enteritis and enterotoxemia. The virulence of this Gram-positive, anaerobic bacterium is heavily dependent upon its prolific toxin-producing ability. Many of the ∼16 toxins produced by C. perfringens are encoded by large plasmids that range in size from ∼45 kb to ∼140 kb. These plasmid-encoded toxins are often closely associated with mobile elements. A C. perfringens strain can carry up to three different toxin plasmids, with a single plasmid carrying up to three distinct toxin genes. Molecular Koch's postulate analyses have established the importance of several plasmid-encoded toxins when C. perfringens disease strains cause enteritis or enterotoxemias. Many toxin plasmids are closely related, suggesting a common evolutionary origin. In particular, most toxin plasmids and some antibiotic resistance plasmids of C. perfringens share an ∼35-kb region containing a Tn916-related conjugation locus named tcp (transfer of clostridial plasmids). This tcp locus can mediate highly efficient conjugative transfer of these toxin or resistance plasmids. For example, conjugative transfer of a toxin plasmid from an infecting strain to C. perfringens normal intestinal flora strains may help to amplify and prolong an infection. Therefore, the presence of toxin genes on conjugative plasmids, particularly in association with insertion sequences that may mobilize these toxin genes, likely provides C. perfringens with considerable virulence plasticity and adaptability when it causes diseases originating in the gastrointestinal tract. PMID:23699255

  13. Neutralization of venom-induced hemorrhage by equine antibodies raised by immunization with a plasmid encoding a novel P-II metalloproteinase from the lancehead pitviper Bothrops asper.

    PubMed

    Arce-Estrada, Viviana; Azofeifa-Cordero, Gabriela; Estrada, Ricardo; Alape-Girón, Alberto; Flores-Díaz, Marietta

    2009-01-14

    In this work, the cDNA encoding a novel P-II type metalloproteinase from Bothrops asper venom glands was cloned, sequenced and used for DNA immunization of animals with accelerated DNA-coated tungsten microparticles and the helius Gene Gun system. Specific antibodies against B. asper venom antigens were induced in mice co-immunized with the plasmid encoding the P-II metalloproteinase together with an expression plasmid encoding the murine IL-2. Similarly, specific antibodies against B. asper venom antigens were also induced in a horse co-immunized with the plasmid encoding the P-II metalloproteinase, together with a plasmid encoding the equine IL-6. The equine antibodies induced by immunization with the P-II metalloproteinase encoding plasmid cross react with several proteins of B. asper, Crotalus durissus durissus, and Lachesis stenophrys venoms in western blot, demonstrating antigenic similarity between the cloned metalloproteinase and other metalloproteinases present in these venoms. Furthermore, the equine antibodies induced by immunization with the P-II metalloproteinase encoding plasmid completely neutralized the hemorrhagic activity of the whole B. asper venom and partially the hemorrhagic activity of C. durissus durissus venom. The neutralizing ability of the produced antibodies raises, for the first time, the possibility of developing therapeutic antivenoms in horses by DNA immunization using tungsten microparticles. PMID:19013207

  14. Engineering large functional plasmids for biosafety.

    PubMed

    Cangelosi, Chris; Shank, Caroline; Santiago, Clayton; Wilson, James W

    2013-11-01

    Large bacterial plasmid constructs (generally 25-100 kb, but can be greater), such as those engineered with DNA encoding specific functions such as protein secretion or specialized metabolism, can carry antibiotic resistance genes and/or conjugation systems that typically must be removed before use in medical or environmental settings due to biosafety concerns. However, a convenient in vivo recombineering approach for intact large plasmids to sequentially remove multiple different genes using non-antibiotic selection methods is not described in the literature to our knowledge. We developed strategies and reagents for convenient removal of antibiotic resistance markers and conjugation genes while retaining non-antibiotic-based plasmid selection to increase practical utility of large engineered plasmids. This approach utilizes targeted lambda Red recombination of PCR products encoding the trpE and asd genes and as well as FLP/FRT-mediated marker removal. This is particularly important given that use of restriction enzymes with plasmids of this size is extremely problematic and often not feasible. This report provides the first example of the trpE gene/tryptophan prototrophy being used for recombineering selection. We applied this strategy to the plasmids R995+SPI-1 and R995+SPI-2 which encode cloned type III secretion systems to allow protein secretion and substrate delivery to eukaryotic cells. The resulting constructs are functional, stably maintained under conditions where the original constructs are unstable, completely defective for conjugative transfer, and transferred via electroporation. PMID:24055203

  15. Skin Electroporation of a Plasmid Encoding hCAP-18/LL-37 Host Defense Peptide Promotes Wound Healing

    PubMed Central

    Steinstraesser, Lars; Lam, Martin C; Jacobsen, Frank; Porporato, Paolo E; Chereddy, Kiran Kumar; Becerikli, Mustafa; Stricker, Ingo; Hancock, Robert EW; Lehnhardt, Marcus; Sonveaux, Pierre; Préat, Véronique; Vandermeulen, Gaëlle

    2014-01-01

    Host defense peptides, in particular LL-37, are emerging as potential therapeutics for promoting wound healing and inhibiting bacterial growth. However, effective delivery of the LL-37 peptide remains limiting. We hypothesized that skin-targeted electroporation of a plasmid encoding hCAP-18/LL-37 would promote the healing of wounds. The plasmid was efficiently delivered to full-thickness skin wounds by electroporation and it induced expression of LL-37 in the epithelium. It significantly accelerated reepithelialization of nondiabetic and diabetic wounds and caused a significant VEGFa and interleukin (IL)-6 induction. IL-6 was involved in LL-37–mediated keratinocyte migration in vitro and IL-6 neutralizing antibodies delivered to mice were able to suppress the wound healing activity of the hCAP-18/LL-37 plasmid. In a hindlimb ischemia model, electroporation of the hCAP-18/LL-37 plasmid increased blood perfusion, reduced muscular atrophy, and upregulated the angiogenic chemokines VEGFa and SDF-1a, and their receptors VEGF-R and CXCR-4. These findings demonstrate that a localized gene therapy with LL-37 is a promising approach for the treatment of wounds. PMID:24394186

  16. Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors

    PubMed Central

    2010-01-01

    Background The use of lentiviruses to reprogram human somatic cells into induced pluripotent stem (iPS) cells could limit their therapeutic usefulness due to the integration of viral DNA sequences into the genome of the recipient cell. Recent work has demonstrated that human iPS cells can be generated using episomal plasmids, excisable transposons, adeno or sendai viruses, mRNA, or recombinant proteins. While these approaches offer an advance, the protocols have some drawbacks. Commonly the procedures require either subcloning to identify human iPS cells that are free of exogenous DNA, a knowledge of virology and safe handling procedures, or a detailed understanding of protein biochemistry. Results Here we report a simple approach that facilitates the reprogramming of human somatic cells using standard techniques to transfect expression plasmids that encode OCT4, NANOG, SOX2, and LIN28 without the need for episomal stability or selection. The resulting human iPS cells are free of DNA integration, express pluripotent markers, and form teratomas in immunodeficient animals. These iPS cells were also able to undergo directed differentiation into hepatocyte-like and cardiac myocyte-like cells in culture. Conclusions Simple transient transfection of plasmid DNA encoding reprogramming factors is sufficient to generate human iPS cells from primary fibroblasts that are free of exogenous DNA integrations. This approach is highly accessible and could expand the use of iPS cells in the study of human disease and development. PMID:20682060

  17. A plasmid-encoded nicotinamidase (PncA) is essential for infectivity of Borrelia burgdorferi in a mammalian host.

    PubMed

    Purser, Joye E; Lawrenz, Matthew B; Caimano, Melissa J; Howell, Jerrilyn K; Radolf, Justin D; Norris, Steven J

    2003-05-01

    Borrelia burgdorferi, a spirochaete that causes Lyme borreliosis, contains 21 linear and circular plasmids thought to be important for survival in mammals or ticks. Our results demonstrate that the gene BBE22 encoding a nicotinamidase is capable of replacing the requirement for the 25 kb linear plasmid lp25 during mammalian infection. Transformation of B. burgdorferi lacking lp25 with a shuttle vector containing the lp25 gene BBE22 (pBBE22) restored infectivity in mice to a level comparable to that of wild-type Borrelia. This complementation also restored the growth and host adaptation of lp25-B. burgdorferi in dialysis membrane chambers (DMCs) implanted in rats. A single Cys to Ala conversion at the putative active site of BBE22 abrogated the ability of pBBE22 to re-establish infectivity or growth in DMCs. Additional Salmonella typhimurium complementation studies and enzymatic analysis demonstrated that the BBE22 gene product has nicotinamidase activity and is most probably required for the biosynthesis of NAD. These results indicate that some plasmid-encoded products fulfil physiological functions required in the enzootic cycle of pathogenic Borrelia. PMID:12694619

  18. Functional role of the Ti plasmid-encoded catabolic mannopine cyclase in mannityl opine catabolism by Agrobacterium spp.

    PubMed Central

    Hong, S B; Farrand, S K

    1994-01-01

    Catabolic mannopine (MOP) cyclase encoded by Ti or Ri plasmids lactonizes MOP to agropine (AGR). The gene of the octopine-type Ti plasmid pTi15955 encoding the catabolic MOP cyclase enzyme previously was localized to a 1.6-kb segment within a cosmid clone, pYDH208. A subclone containing only this region complemented the AGR catabolism-negative phenotype conferred by a derivative of the octopine-type plasmid pTiB6S3 containing a Tn7 insertion in the region encoding the MOP cyclase enzyme. Uptake assays of strains harboring pRiA4 or pArA4a, along with complementation analyses, indicate that MOP cyclase is not sufficient for catabolism of AGR but that the strains must also express an AGR transport system. To determine the requirement for MOP cyclase in opine catabolism unequivocally, a site-specific, nonpolar deletion mutation abolishing only MOP cyclase activity was introduced into pYDH208, a cosmid clone that confers utilization of MOP, AGR, and mannopinic acid (MOA). Strains harboring this MOP cyclase-negative mutant clone, pYDPH208, did not utilize AGR but continued to utilize MOP. Growth on AGR was restored in this strain upon introduction of clones encoding the pTi15955-derived catabolic or anabolic MOP cyclase genes. The induction pattern of MOA catabolism shown by strain NT1 harboring the MOP cyclase-deficient pYDPH208 suggests that AGR is converted into MOP by MOP cyclase and that MOP, but not AGR, induces catabolism of MOA. Genetic and biochemical analyses of MOP and AGR metabolism suggest that only the conversion of AGR to MOP is directly involved in catabolism of AGR, even though the reaction catalyzed by MOP cyclase predominantly lies in the lactonization of MOP to AGR. Images PMID:8206835

  19. Molecular and epidemiological analysis of penicillinase producing strains of Neisseria gonorrhoeae isolated in Canada 1976-84: evolution of new auxotypes and beta lactamase encoding plasmids.

    PubMed Central

    Dillon, J R; Pauzé, M; Yeung, K H

    1986-01-01

    Though the number of penicillinase producing Neisseria gonorrhoeae (PPNG) strains isolated in Canada comprises under 1% of all gonococcal isolates, it continues to increase appreciably each year. Most strains are imported from areas of endemic infection with PPNG strains. Two local outbreaks in 1984, however, were notable for the number of patients infected and for the distinctive phenotypes of the strains. One outbreak was caused by a wild type strain, of serovar BACJK with a new 3.05 megadalton penicillinase encoding plasmid, whereas the other was caused by strains with the Asia+ plasmid type, serovar AE and with a proline and ornithine requiring auxotype. Five plasmid patterns (Africa+, Africa-, Asia+, Asia-, and Toronto+) were observed among the PPNG strains. The association between plasmid content and specific auxotype (such as Asia plasmid with proline requiring auxotype or Africa plasmid with wild type auxotype) and inhibition by phenylalanine continues to be unexplained. PMID:3089904

  20. Complete sequences of KPC-2-encoding plasmid p628-KPC and CTX-M-55-encoding p628-CTXM coexisted in Klebsiella pneumoniae

    PubMed Central

    Wang, Li; Fang, Haihong; Feng, Jiao; Yin, Zhe; Xie, Xiaofang; Zhu, Xueming; Wang, Jie; Chen, Weijun; Yang, Ruisheng; Du, Hong; Zhou, Dongsheng

    2015-01-01

    A carbapenem-resistant Klebsiella pneumoniae strain 628 was isolated from a human case of intracranial infection in a Chinese teaching hospital. Strain 628 produces KPC-2 and CTX-M-55 encoded by two different conjugative plasmids, i.e., the IncFIIK plasmid p628-KPC and the IncI1 plasmid p628-CTXM respectively. blaKPC−2 is captured by a Tn1722-based unit transposon with a linear structure. ΔTn3-ISKpn27-blaKPC−2-ΔISKpn6-ΔTn1722 and this transposon together with a mercury resistance (mer) gene locus constitutes a 34 kb acquired drug-resistance region. blaKPC−2 has two transcription starts (nucleotides G and C located at 39 and 250 bp upstream of its coding region respectively) which correspond to two promoters, i.e., the intrinsic P1 and the upstream ISKpn27/Tn3-provided P2 with the core −35/−10 elements TAATCC/TTACAT and TTGACA/AATAAT respectively. blaCTX−M−55 is mobilized in an ISEcp1-blaCTX−M−55-Δorf477 transposition unit and appears to be the sole drug-resistant determinant in p628-CTXM. blaCTX−M−55 possesses a single transcription start (nucleotides G located at 116 bp upstream of its coding region) corresponding to the ISEcp1-provided P1 promoter with the core −35/−10 element TTGAAA/TACAAT. All the above detected promoters display a characteristic of constitutive expression. Coexistence of blaKPC and blaCTX−M in K. pneumoniae has been reported many times but this is the first report to gain deep insights into genetic platforms, promoters, and expression of the two coexisting bla genes with determination of entire nucleotide sequences of the two corresponding plasmids. PMID:26347725

  1. The Photobacterium damselae subsp. damselae Hemolysins Damselysin and HlyA Are Encoded within a New Virulence Plasmid

    PubMed Central

    Rivas, Amable J.; Balado, Miguel; Lemos, Manuel L.; Osorio, Carlos R.

    2011-01-01

    Photobacterium damselae subsp. damselae (formerly Vibrio damsela) is a marine bacterium that causes infections and fatal disease in a wide range of marine animals and in humans. Highly hemolytic strains produce damselysin (Dly), a cytolysin encoded by the dly gene that is lethal for mice and has hemolytic activity. We found that Dly is encoded in the highly hemolytic strain RM-71 within a 153,429-bp conjugative plasmid that we dubbed pPHDD1. In addition to Dly, pPHDD1 also encodes a homologue of the pore-forming toxin HlyA. We found a direct correlation between presence of pPHDD1 and a strong hemolytic phenotype in a collection of P. damselae subsp. damselae isolates. Hemolysis was strongly reduced in a double dly hlyA mutant, demonstrating the role of the two pPHDD1-encoded genes in hemolysis. Interestingly, although single hlyA and dly mutants showed different levels of hemolysis reduction depending on the erythrocyte source, hemolysis was not abolished in any of the single mutants, suggesting that the hemolytic phenotype is the result of the additive effect of Dly and HlyA. We found that pPHDD1-encoded dly and hlyA genes are necessary for full virulence for mice and fish. Our results suggest that pPHDD1 can be considered as a driving force for the emergence of a highly hemolytic lineage of P. damselae subsp. damselae. PMID:21875966

  2. Xylella fastidiosa plasmid-encoded PemK toxin is an endoribonuclease.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stable inheritance of pXF-RIV11 in Xylella fastidiosa is conferred by the pemI/pemK plasmid addiction system. PemK serves as a toxin inhibiting bacterial growth; PemI is the corresponding antitoxin that blocks activity of PemK toxin by direct binding. PemK toxin and PemI antitoxin were over-expre...

  3. Transcriptome Reprogramming by Plasmid-Encoded Transcriptional Regulators Is Required for Host Niche Adaption of a Macrophage Pathogen

    PubMed Central

    Coulson, Garry B.; Miranda-CasoLuengo, Aleksandra A.; Miranda-CasoLuengo, Raúl; Wang, Xiaoguang; Oliver, Jenna; Willingham-Lane, Jennifer M.

    2015-01-01

    Rhodococcus equi is a facultative intracellular pathogen of macrophages, relying on the presence of a conjugative virulence plasmid harboring a 21-kb pathogenicity island (PAI) for growth in host macrophages. The PAI encodes a family of 6 virulence-associated proteins (Vaps) in addition to 20 other proteins. The contribution of these to virulence has remained unclear. We show that the presence of only 3 virulence plasmid genes (of 73 in total) is required and sufficient for intracellular growth. These include a single vap family member, vapA, and two PAI-located transcriptional regulators, virR and virS. Both transcriptional regulators are essential for wild-type-level expression of vapA, yet vapA expression alone is not sufficient to allow intracellular growth. A whole-genome microarray analysis revealed that VirR and VirS substantially integrate themselves into the chromosomal regulatory network, significantly altering the transcription of 18% of all chromosomal genes. This pathoadaptation involved significant enrichment of select gene ontologies, in particular, enrichment of genes involved in transport processes, energy production, and cellular metabolism, suggesting a major change in cell physiology allowing the bacterium to grow in the hostile environment of the host cell. The results suggest that following the acquisition of the virulence plasmid by an avirulent ancestor of R. equi, coevolution between the plasmid and the chromosome took place, allowing VirR and VirS to regulate the transcription of chromosomal genes in a process that ultimately promoted intracellular growth. Our findings suggest a mechanism for cooption of existing chromosomal traits during the evolution of a pathogenic bacterium from an avirulent saprophyte. PMID:26015480

  4. Transcriptome reprogramming by plasmid-encoded transcriptional regulators is required for host niche adaption of a macrophage pathogen.

    PubMed

    Coulson, Garry B; Miranda-CasoLuengo, Aleksandra A; Miranda-CasoLuengo, Raúl; Wang, Xiaoguang; Oliver, Jenna; Willingham-Lane, Jennifer M; Meijer, Wim G; Hondalus, Mary K

    2015-08-01

    Rhodococcus equi is a facultative intracellular pathogen of macrophages, relying on the presence of a conjugative virulence plasmid harboring a 21-kb pathogenicity island (PAI) for growth in host macrophages. The PAI encodes a family of 6 virulence-associated proteins (Vaps) in addition to 20 other proteins. The contribution of these to virulence has remained unclear. We show that the presence of only 3 virulence plasmid genes (of 73 in total) is required and sufficient for intracellular growth. These include a single vap family member, vapA, and two PAI-located transcriptional regulators, virR and virS. Both transcriptional regulators are essential for wild-type-level expression of vapA, yet vapA expression alone is not sufficient to allow intracellular growth. A whole-genome microarray analysis revealed that VirR and VirS substantially integrate themselves into the chromosomal regulatory network, significantly altering the transcription of 18% of all chromosomal genes. This pathoadaptation involved significant enrichment of select gene ontologies, in particular, enrichment of genes involved in transport processes, energy production, and cellular metabolism, suggesting a major change in cell physiology allowing the bacterium to grow in the hostile environment of the host cell. The results suggest that following the acquisition of the virulence plasmid by an avirulent ancestor of R. equi, coevolution between the plasmid and the chromosome took place, allowing VirR and VirS to regulate the transcription of chromosomal genes in a process that ultimately promoted intracellular growth. Our findings suggest a mechanism for cooption of existing chromosomal traits during the evolution of a pathogenic bacterium from an avirulent saprophyte. PMID:26015480

  5. Occurrence of multiple antibiotic resistance and R-plasmids in gram-negative bacteria isolated from faecally contaminated fresh-water streams in Hong Kong.

    PubMed Central

    French, G. L.; Ling, J.; Chow, K. L.; Mark, K. K.

    1987-01-01

    The bacterial populations of six freshwater streams in populated areas of the Hong Kong New Territories were studied. There is considerable faecal contamination of these streams, with coliform counts as high as 10(5) c.f.u./ml and the contaminating organisms show a high prevalence of antibiotic resistance and multiple resistance. With direct plating of water samples onto antibiotic-containing media, an average of 49% of the gram-negative bacteria were ampicillin-resistant, 3% chloramphenicol-resistant and 1% gentamicin-resistant. At individual sites resistance to these drugs was as high as 98%, 8% and 3% respectively. More than 70% of strains were resistant to two or more antibiotics, 29% to five or more and 2% to eight or more. A total of 98 patterns of antibiotic resistance were detected with no one pattern predominating. Twenty-eight gram-negative bacterial species were identified as stream contaminants. Escherichia coli was the commonest bacterial species isolated and other frequent isolates were Enterobacter sp., Klebsiella sp. and Citrobacter sp., but no enteric pathogens were detected. The greatest prevalence of resistance and multiple resistance was associated with the heaviest contamination by E. coli. Analysis of selected stream isolates revealed multiple plasmid bands arranged in many different patterns, but multiple antibiotic resistances were shown to be commonly mediated by single transferable plasmids. Faecally-contaminated freshwater streams in Hong Kong may be reservoirs of antibiotic resistance plasmids for clinically-important bacteria. Images Fig. 2 PMID:3595747

  6. Cloning and sequencing of a plasmid-borne gene (opd) encoding a phosphotriesterase.

    PubMed Central

    McDaniel, C S; Harper, L L; Wild, J R

    1988-01-01

    Plasmid pCMS1 was isolated from Pseudomonas diminuta MG, a strain which constitutively hydrolyzes a broad spectrum of organophosphorus compounds. The native plasmid was restricted with PstI, and individual DNA fragments were subcloned into pBR322. A recombinant plasmid transformed into Escherichia coli possessed weak hydrolytic activity, and Southern blotting with the native plasmid DNA verified that the DNA sequence originated from pCMS1. When the cloned 1.3-kilobase fragment was placed behind the lacZ' promoter of M13mp10 and retransformed into E. coli, clear-plaque isolates with correctly sized inserts exhibited isopropyl-beta-D-thiogalactopyranoside-inducible whole-cell activity. Sequence determination of the M13 constructions identified an open reading frame of 975 bases preceded by a putative ribosome-binding site appropriately positioned upstream of the first ATG codon in the open reading frame. An intragenic fusion of the opd gene with the lacZ gene produced a hybrid polypeptide which was purified by beta-galactosidase immunoaffinity chromatography and used to confirm the open reading frame of opd. The gene product, an organophosphorus phosphotriesterase, would have a molecular weight of 35,418 if the presumed start site is correct. Eighty to ninety percent of the enzymatic activity was associated with the pseudomonad membrane fractions. When dissociated by treatment with 0.1% Triton and 1 M NaCl, the enzymatic activity was associated with a molecular weight of approximately 65,000, suggesting that the active enzyme was dimeric. Images PMID:2834339

  7. Transposition of a duplicate antibiotic resistance gene and generation of deletions in plasmid R6K.

    PubMed Central

    Holmans, P L; Clowes, R C

    1979-01-01

    Transformation experiments showed that spontaneous deletions which result in loss of streptomycin resistance and an increase in conjugal transfer efficiency are present at a frequency of about 10(-4) in plasmid molecules of R6K. Similar deletions were thus readily selected by conjugal transfer of R6K, and their appearance was dependent upon recA+ activity in either donor or recipient host. The deoxyribonucleic acid segment deleted in four mutants examined was concluded to extend from the same terminus of the transposon, TnA, in the same direction, but to different extents, and to retain the TnA region intact. Insertions of a duplicate TnA element were found in R6K plasmids isolated from strains selected for increased ampicillin resistance, which were unstable in recA+ strains. In four plasmids examined after transfer to a recA host, an inverted repeat of the preexisting TnA element was shown to have been inserted at a similar location and was in two instances associated with deletions which extended from the same direction as those described above. The deletions are ascribed to the result of recA+-dependent recombination between direct repeats of TnA. Images PMID:370107

  8. Ferric dicitrate transport system (Fec) of Shigella flexneri 2a YSH6000 is encoded on a novel pathogenicity island carrying multiple antibiotic resistance genes.

    PubMed

    Luck, S N; Turner, S A; Rajakumar, K; Sakellaris, H; Adler, B

    2001-10-01

    Iron uptake systems which are critical for bacterial survival and which may play important roles in bacterial virulence are often carried on mobile elements, such as plasmids and pathogenicity islands (PAIs). In the present study, we identified and characterized a ferric dicitrate uptake system (Fec) in Shigella flexneri serotype 2a that is encoded by a novel PAI termed the Shigella resistance locus (SRL) PAI. The fec genes are transcribed in S. flexneri, and complementation of a fec deletion in Escherichia coli demonstrated that they are functional. However, insertional inactivation of fecI, leading to a loss in fec gene expression, did not impair the growth of the parent strain of S. flexneri in iron-limited culture media, suggesting that S. flexneri carries additional iron uptake systems capable of compensating for the loss of Fec-mediated iron uptake. DNA sequence analysis showed that the fec genes are linked to a cluster of multiple antibiotic resistance determinants, designated the SRL, on the chromosome of S. flexneri 2a. Both the SRL and fec loci are carried on the 66,257-bp SRL PAI, which has integrated into the serX tRNA gene and which carries at least 22 prophage-related open reading frames, including one for a P4-like integrase. This is the first example of a PAI that carries genes encoding antibiotic resistance and the first report of a ferric dicitrate uptake system in Shigella. PMID:11553538

  9. The rpoZ Gene, Encoding the RNA Polymerase Omega Subunit, Is Required for Antibiotic Production and Morphological Differentiation in Streptomyces kasugaensis

    PubMed Central

    Kojima, Ikuo; Kasuga, Kano; Kobayashi, Masayuki; Fukasawa, Akira; Mizuno, Satoshi; Arisawa, Akira; Akagawa, Hisayoshi

    2002-01-01

    The occurrence of pleiotropic mutants that are defective in both antibiotic production and aerial mycelium formation is peculiar to streptomycetes. Pleiotropic mutant KSB was isolated from wild-type Streptomyces kasugaensis A1R6, which produces kasugamycin, an antifungal aminoglycoside antibiotic. A 9.3-kb DNA fragment was cloned from the chromosomal DNA of strain A1R6 by complementary restoration of kasugamycin production and aerial hypha formation to mutant KSB. Complementation experiments with deletion plasmids and subsequent DNA analysis indicated that orf5, encoding 90 amino acids, was responsible for the restoration. A protein homology search revealed that orf5 was a homolog of rpoZ, the gene that is known to encode RNA polymerase subunit omega (ω), thus leading to the conclusion that orf5 was rpoZ in S. kasugaensis. The pleiotropy of mutant KSB was attributed to a 2-bp frameshift deletion in the rpoZ region of mutant KSB, which probably resulted in a truncated, incomplete ω of 47 amino acids. Furthermore, rpoZ-disrupted mutant R6D4 obtained from strain A1R6 by insertion of Tn5 aphII into the middle of the rpoZ-coding region produced neither kasugamycin nor aerial mycelia, similar to mutant KSB. When rpoZ of S. kasugaensis and Streptomyces coelicolor, whose deduced products differed in the sixth amino acid residue, were introduced into mutant R6D4 via a plasmid, both transformants produced kasugamycin and aerial hyphae without significant differences. This study established that rpoZ is required for kasugamycin production and aerial mycelium formation in S. kasugaensis and responsible for pleiotropy. PMID:12426327

  10. CRISPR-Cas and Restriction-Modification Act Additively against Conjugative Antibiotic Resistance Plasmid Transfer in Enterococcus faecalis

    PubMed Central

    Price, Valerie J.; Huo, Wenwen; Sharifi, Ardalan

    2016-01-01

    ABSTRACT Enterococcus faecalis is an opportunistic pathogen and a leading cause of nosocomial infections. Conjugative pheromone-responsive plasmids are narrow-host-range mobile genetic elements (MGEs) that are rapid disseminators of antibiotic resistance in the faecalis species. Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas and restriction-modification confer acquired and innate immunity, respectively, against MGE acquisition in bacteria. Most multidrug-resistant E. faecalis isolates lack CRISPR-Cas and possess an orphan locus lacking cas genes, CRISPR2, that is of unknown function. Little is known about restriction-modification defense in E. faecalis. Here, we explore the hypothesis that multidrug-resistant E. faecalis strains are immunocompromised. We assessed MGE acquisition by E. faecalis T11, a strain closely related to the multidrug-resistant hospital isolate V583 but which lacks the ~620 kb of horizontally acquired genome content that characterizes V583. T11 possesses the E. faecalis CRISPR3-cas locus and a predicted restriction-modification system, neither of which occurs in V583. We demonstrate that CRISPR-Cas and restriction-modification together confer a 4-log reduction in acquisition of the pheromone-responsive plasmid pAM714 in biofilm matings. Additionally, we show that the orphan CRISPR2 locus is functional for genome defense against another pheromone-responsive plasmid, pCF10, only in the presence of cas9 derived from the E. faecalis CRISPR1-cas locus, which most multidrug-resistant E. faecalis isolates lack. Overall, our work demonstrated that the loss of only two loci led to a dramatic reduction in genome defense against a clinically relevant MGE, highlighting the critical importance of the E. faecalis accessory genome in modulating horizontal gene transfer. Our results rationalize the development of antimicrobial strategies that capitalize upon the immunocompromised status of multidrug-resistant E

  11. CRISPR-Cas and Restriction-Modification Act Additively against Conjugative Antibiotic Resistance Plasmid Transfer in Enterococcus faecalis.

    PubMed

    Price, Valerie J; Huo, Wenwen; Sharifi, Ardalan; Palmer, Kelli L

    2016-01-01

    Enterococcus faecalis is an opportunistic pathogen and a leading cause of nosocomial infections. Conjugative pheromone-responsive plasmids are narrow-host-range mobile genetic elements (MGEs) that are rapid disseminators of antibiotic resistance in the faecalis species. Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas and restriction-modification confer acquired and innate immunity, respectively, against MGE acquisition in bacteria. Most multidrug-resistant E. faecalis isolates lack CRISPR-Cas and possess an orphan locus lacking cas genes, CRISPR2, that is of unknown function. Little is known about restriction-modification defense in E. faecalis. Here, we explore the hypothesis that multidrug-resistant E. faecalis strains are immunocompromised. We assessed MGE acquisition by E. faecalis T11, a strain closely related to the multidrug-resistant hospital isolate V583 but which lacks the ~620 kb of horizontally acquired genome content that characterizes V583. T11 possesses the E. faecalis CRISPR3-cas locus and a predicted restriction-modification system, neither of which occurs in V583. We demonstrate that CRISPR-Cas and restriction-modification together confer a 4-log reduction in acquisition of the pheromone-responsive plasmid pAM714 in biofilm matings. Additionally, we show that the orphan CRISPR2 locus is functional for genome defense against another pheromone-responsive plasmid, pCF10, only in the presence of cas9 derived from the E. faecalis CRISPR1-cas locus, which most multidrug-resistant E. faecalis isolates lack. Overall, our work demonstrated that the loss of only two loci led to a dramatic reduction in genome defense against a clinically relevant MGE, highlighting the critical importance of the E. faecalis accessory genome in modulating horizontal gene transfer. Our results rationalize the development of antimicrobial strategies that capitalize upon the immunocompromised status of multidrug-resistant E. faecalis. IMPORTANCE

  12. Complete nucleotide sequence of pH11, an IncHI2 plasmid conferring multi-antibiotic resistance and multi-heavy metal resistance genes in a clinical Klebsiella pneumoniae isolate.

    PubMed

    Zhai, Yao; He, Zilong; Kang, Yu; Yu, Haiying; Wang, Jianfeng; Du, Pengcheng; Zhang, Zhao; Hu, Songnian; Gao, Zhancheng

    2016-07-01

    The complete 284,628bp sequence of pH11, an IncHI2 plasmid, was determined through single-molecule, real-time (SMRT) sequencing. Harbored by a clinical Klebsiella pneumoniae strain H11, and isolated in Beijing, this plasmid contains multiple antibiotic resistance genes, including catA2, aac(6')-Ib, strB, strA, dfrA19, blaTEM-1, blaSHV-12, sul1, qacE delta 1, ereA, arr2, and aac3. The aac(6')-Ib is carried by a class I integron. Plasmid pH11 also carries several genes associated with resistance to heavy metals, such as tellurium, mercury, cobalt, zinc, nickel, copper, lead and cadmium. This plasmid exhibits numerous characteristics, including HipBA and RelBE toxin-antitoxin systems, two major transfer (Tra) regions closely related to those of Salmonella enterica serovar plasmid pRH-R27, a type II restriction modification system (EcoRII R-M system), several methyltransferases and methylases and genes encoding Hha and StpA. These characteristics suggest that pH11 may adapt to various hosts and environments. Multiple insertion sequence elements, transposases, recombinases, resolvases and integrases are scattered throughout pH11. The presence of these genes may indicate that horizontal gene transfer occurs frequently in pH11 and thus may facilitate the dissemination of antimicrobial resistance determinants. Our data suggest that pH11 is a chimera gradually assembled through the integration of different horizontally acquired DNA segments via transposition or homologous recombination. PMID:27101788

  13. Chlamydial Plasmid-Encoded Virulence Factor Pgp3 Neutralizes the Antichlamydial Activity of Human Cathelicidin LL-37

    PubMed Central

    Hou, Shuping; Dong, Xiaohua; Yang, Zhangsheng; Li, Zhongyu; Liu, Quanzhong

    2015-01-01

    Chlamydia trachomatis infection in the lower genital tract can ascend to and cause pathologies in the upper genital tract, potentially leading to severe complications, such as tubal infertility. However, chlamydial organisms depleted of plasmid or deficient in the plasmid-encoded Pgp3 are attenuated in ascending infection and no longer are able to induce the upper genital tract pathologies, indicating a significant role of Pgp3 in chlamydial pathogenesis. We now report that C. trachomatis Pgp3 can neutralize the antichlamydial activity of human cathelicidin LL-37, a host antimicrobial peptide secreted by both genital tract epithelial cells and infiltrating neutrophils. Pgp3 bound to and formed stable complexes with LL-37. We further showed that the middle region of Pgp3 (Pgp3m) was responsible for both the binding to and neutralization of LL-37, suggesting that Pgp3m can be targeted for attenuating chlamydial pathogenicity or developed for blocking LL-37-involved non-genital-tract pathologies, such as rosacea and psoriasis. Thus, the current study has provided significant information for both understanding the mechanisms of chlamydial pathogenesis and developing novel therapeutic agents. PMID:26416907

  14. Characterization of Plasmid-Borne and Chromosome-Encoded Traits of Agrobacterium Biovar 1, 2, and 3 Strains from France

    PubMed Central

    Ridé, Michel; Ridé, Suzanne; Petit, Annik; Bollet, Claude; Dessaux, Yves; Gardan, Louis

    2000-01-01

    We collected 111 Agrobacterium isolates from galls of various origins (most of them from France) and analyzed both their plasmid-borne and chromosome-encoded traits. Phenotypic analysis of these strains allowed their classification in three phena which exactly matched the delineation of biovars 1, 2, and 3. A fourth phenon was identified which comprises three atypical strains. The phenotypic analysis has also allowed us to identify 12 additional characteristics which could be used to identify the three biovars of Agrobacterium. Our results also suggest that biovar 1 and 2 represent distinct species. Analysis of plasmid-borne traits confirmed that tartrate utilization is a common feature of biovar 3 strains (now named Agrobacterium vitis) and of Agrobacterium grapevine strains in general. Among pathogenic strains of Agrobacterium, several exhibited unusual opine synthesis and degradation patterns, and one strain of biovar 3 induced tumors containing vitopine and a novel opine-like molecule derived from putrescine. We have named this compound ridéopine. PMID:10788345

  15. Enhanced Delivery of Plasmid Encoding Interleukin-12 Gene by Diethylene Triamine Penta-Acetic Acid (DTPA)-Conjugated PEI Nanoparticles.

    PubMed

    Dehshahri, Ali; Sadeghpour, Hossein; Keykhaee, Maryam; Khalvati, Bahman; Sheikhsaran, Fatemeh

    2016-05-01

    Recombinant therapeutic proteins have been considered as an efficient category of medications used for the treatment of various diseases. Despite their effectiveness, there are some reports on the systemic adverse effects of recombinant therapeutic proteins limiting their wide clinical applications. Among different cytokines used for cancer immunotherapy, interleukin-12 (IL-12) has shown great ability as a powerful antitumor and antiangiogenic agent. However, significant toxic reactions following the systemic administration of IL-12 have led researchers to seek for alternative approaches such as the delivery and local expression of the IL-12 gene inside the tumor tissues. In order to transfer the plasmid encoding IL-12 gene, the most extensively investigated polycationic polymer, polyethylenimine (PEI), was modified by diethylene triamine penta-acetic acid (DTPA) to modulate the hydrophobic-hydrophilic balance of the polymer as well as its toxicity. DTPA-conjugated PEI derivatives were able to form complexes in the size range around 100-180 nm with great condensation ability and protection of the plasmid against enzymatic degradation. The highest gene transfer ability was achieved by the DTPA-conjugated PEI at the conjugation degree of 0.1 % where the level of IL-12 production increased up to twofold compared with that of the unmodified PEI. Results of the present study demonstrated that modulation of the surface positive charge of PEI along with the improvement of the polymer hydrophobic balance could be considered as a successful strategy to develop safe and powerful nanocarriers. PMID:26801817

  16. Molecular cloning and characterization of nlpH, encoding a novel, surface-exposed, polymorphic, plasmid-encoded 33-kilodalton lipoprotein of Borrelia afzelii.

    PubMed Central

    Theisen, M

    1996-01-01

    Borrelia burgdorferi sensu lato organisms, comprising B. burgdorferi sensu stricto, Borrelia afzelii, and Borrelia garinii, are tick-borne pathogens causing Lyme borreliosis in humans. To identify putative virulence determinants, a B. afzelii DNA library was screened for Congo red dye binding, a property associated with virulence in pathogenic bacteria. One clone was found to carry a 663-nucleotide-long open reading frame encoding a Congo red dye-binding protein with a calculated molecular mass of 25,660 Da. The amino acid sequence deduced from its nucleotide sequence was found to include a consensus bacterial lipidation site present at residues 15 to 18 (Leu-Ser-Gly-Cys). The lipoprotein nature was demonstrated by incorporation of radioactive palmitate; hence, this protein has been termed NlpH, for new lipoprotein H. NlpH is located on the surface of B. afzelii, and the nlpH gene is found on a circular plasmid. The nlpH gene is also found in B. burgdorferi sensu stricto and B. garinii. Immediately upstream of nlpH is located a smaller reading frame encoding a polypeptide containing the casein kinase II phosphorylation recognition sequence, (Ser/Thr)-X-Y-(Glu/Asp), repeated 10 times. PMID:8932298

  17. Analysis of a 30 kbp plasmid encoding histidine decarboxylase gene in Tetragenococcus halophilus isolated from fish sauce.

    PubMed

    Satomi, Masataka; Furushita, Manabu; Oikawa, Hiroshi; Yoshikawa-Takahashi, Miwako; Yano, Yutaka

    2008-08-15

    In order to analyze the genes related to the histamine production, a strain of histamine producing halophilic bacteria, referred to as strain H, was isolated using enrichment culture and dilution-to-extinction methods with histidine broth inoculated from the fish sauce mashes. The two Japanese fish sauce mashes used, accumulate over 1000 mg/l of histamine. Phenotypic and 16 S rRNA gene sequence analyses identified strain H as Tetragenococcus halophilus, the predominant histamine producing bacteria present during fish sauce fermentation. Genetic analyses (PCR and Southern blot) of the histamine producing strain confirmed that the strain harbored a 30 kbp plasmid (pHDC) encoding a single copy of the pyruvoyl dependent histidine decarboxylase gene (hdc). A comparison of hdcA that is a structural gene of histidine decarboxylase among strain H, Lactobacillus hilgardii 0006, L. sakei LTH2076, Oenococcus oeni 9204, T. halophilus and T. muriaticus JCM10006 (T) indicated >99% sequence similarity. The hdc gene cluster consisted of 4 ORFs, hdcP, hdcA, hdcB, and hdcRS, and were almost identical to that of L. hilgardii 0006 with 99% sequence similarity including the structural hdc spacer region. However, the approximately 500 bp regions upstream and downstream of the hdc gene were different between that of strain H and L. hilgardii 0006. The complete sequence of pHDC revealed 29,924 nucleotides including 28 ORFs, two pairs of IR (inverted repeat), similar sequence of plasmid conjugative elements, and a theta-type replicon. These results suggested that hdc could be encoded on transformable elements among lactic acid bacteria. PMID:18573560

  18. Entire sequence of the colonization factor coli surface antigen 6-encoding plasmid pCss165 from an enterotoxigenic Escherichia coli clinical isolate.

    PubMed

    Wajima, Takeaki; Sabui, Subrata; Kano, Shigeyuki; Ramamurthy, Thandavarayan; Chatterjee, Nabendu Sekhar; Hamabata, Takashi

    2013-11-01

    Coli surface antigen 6 (CS6) is one of the most prevalent colonization factors among enterotoxigenic Escherichia coli (ETEC) isolated in developing countries. Although it is known that CS6 is encoded by a plasmid, there are no reports on the sequence analysis of the CS6-encoding plasmid or genes exhibiting similar behavior to CS6. Here, we report the isolation of the CS6-encoding plasmid, pCss165Kan, from 4266 ΔcssB::kanamycin (Km) and its complete nucleotide sequence. This plasmid consisted of 165,311bp and 222 predicted coding sequences. Remarkably, there were many insertion sequence (IS) elements, which comprised 24.4% of the entire sequence. Virulence-associated genes such as heat-stable enterotoxin, homologues of ATP-binding cassette transporter in enteroaggregative E. coli (EAEC), and ETEC autotransporter A were also present, although the ETEC autotransporter A gene was disrupted by the integration of IS629. We found that 2 transcriptional regulators belonging to the AraC family were not involved in CS6 expression. Interestingly, pCss165 had conjugative transfer genes, as well as 3 toxin-antitoxin systems that potentially exclude other plasmid-free host bacteria. These genes might be involved in the prevalence of CS6 among ETEC isolates. PMID:23933356

  19. Sequencing and Diversity Analyses Reveal Extensive Similarities between Some Epsilon-Toxin-Encoding Plasmids and the pCPF5603 Clostridium perfringens Enterotoxin Plasmid▿ †

    PubMed Central

    Miyamoto, Kazuaki; Li, Jihong; Sayeed, Sameera; Akimoto, Shigeru; McClane, Bruce A.

    2008-01-01

    Clostridium perfringens type B and D isolates produce epsilon-toxin, the third most potent clostridial toxin. The epsilon-toxin gene (etx) is plasmid borne in type D isolates, but etx genetics have been poorly studied in type B isolates. This study reports the first sequencing of any etx plasmid, i.e., pCP8533etx, from type B strain NCTC8533. This etx plasmid is 64.7 kb, carries tcp conjugative transfer genes, and encodes additional potential virulence factors including beta2-toxin, sortase, and collagen adhesin but not beta-toxin. Interestingly, nearly 80% of pCP8533etx open reading frames (ORFs) are also present on pCPF5603, an enterotoxin-encoding plasmid from type A isolate F5603. Pulsed-field gel electrophoresis and overlapping PCR indicated that a pCP8533etx-like etx plasmid is also present in most, if not all, other type B isolates and some beta2-toxin-positive, cpe-negative type D isolates, while other type D isolates carry different etx plasmids. Sequences upstream of the etx gene vary between type B isolates and some type D isolates that do not carry a pCP8533etx-like etx plasmid. However, nearly all type B and D isolates have an etx locus with an upstream IS1151, and those etx loci typically reside near a dcm ORF. These results suggest that pCPF5603 and pCP8533etx evolved from insertion of mobile genetic elements carrying enterotoxin or etx genes, respectively, onto a common progenitor plasmid. PMID:18776010

  20. Regulation of plasmid-encoded isoprene metabolism in Rhodococcus, a representative of an important link in the global isoprene cycle.

    PubMed

    Crombie, Andrew T; Khawand, Myriam El; Rhodius, Virgil A; Fengler, Kevin A; Miller, Michael C; Whited, Gregg M; McGenity, Terry J; Murrell, J Colin

    2015-09-01

    Emissions of biogenic volatile organic compounds (VOCs) form an important part of the global carbon cycle, comprising a significant proportion of net ecosystem productivity. They impact atmospheric chemistry and contribute directly and indirectly to greenhouse gases. Isoprene, emitted largely from plants, comprises one third of total VOCs, yet in contrast to methane, which is released in similar quantities, we know little of its biodegradation. Here, we report the genome of an isoprene degrading isolate, Rhodococcus sp. AD45, and, using mutagenesis shows that a plasmid-encoded soluble di-iron centre isoprene monooxygenase (IsoMO) is essential for isoprene metabolism. Using RNA sequencing (RNAseq) to analyse cells exposed to isoprene or epoxyisoprene in a substrate-switch time-course experiment, we show that transcripts from 22 contiguous genes, including those encoding IsoMO, were highly upregulated, becoming among the most abundant in the cell and comprising over 25% of the entire transcriptome. Analysis of gene transcription in the wild type and an IsoMO-disrupted mutant strain showed that epoxyisoprene, or a subsequent product of isoprene metabolism, rather than isoprene itself, was the inducing molecule. We provide a foundation of molecular data for future research on the environmental biological consumption of this important, climate-active compound. PMID:25727256

  1. Protein sequences insight into heavy metal tolerance in Cronobacter sakazakii BAA-894 encoded by plasmid pESA3.

    PubMed

    Chaturvedi, Navaneet; Kajsik, Michal; Forsythe, Stephen; Pandey, Paras Nath

    2015-12-01

    The recently annotated genome of the bacterium Cronobacter sakazakii BAA-894 suggests that the organism has the ability to bind heavy metals. This study demonstrates heavy metal tolerance in C. sakazakii, in which proteins with the heavy metal interaction were recognized by computational and experimental study. As the result, approximately one-fourth of proteins encoded on the plasmid pESA3 are proposed to have potential interaction with heavy metals. Interaction between heavy metals and predicted proteins was further corroborated using protein crystal structures from protein data bank database and comparison of metal-binding ligands. In addition, a phylogenetic study was undertaken for the toxic heavy metals, arsenic, cadmium, lead and mercury, which generated relatedness clustering for lead, cadmium and arsenic. Laboratory studies confirmed the organism's tolerance to tellurite, copper and silver. These experimental and computational study data extend our understanding of the genes encoding for proteins of this important neonatal pathogen and provide further insights into the genotypes associated with features that can contribute to its persistence in the environment. The information will be of value for future environmental protection from heavy toxic metals. PMID:26384977

  2. Regulation of plasmid-encoded isoprene metabolism in Rhodococcus, a representative of an important link in the global isoprene cycle

    PubMed Central

    Crombie, Andrew T; Khawand, Myriam El; Rhodius, Virgil A; Fengler, Kevin A; Miller, Michael C; Whited, Gregg M; McGenity, Terry J; Murrell, J Colin

    2015-01-01

    Emissions of biogenic volatile organic compounds (VOCs) form an important part of the global carbon cycle, comprising a significant proportion of net ecosystem productivity. They impact atmospheric chemistry and contribute directly and indirectly to greenhouse gases. Isoprene, emitted largely from plants, comprises one third of total VOCs, yet in contrast to methane, which is released in similar quantities, we know little of its biodegradation. Here, we report the genome of an isoprene degrading isolate, Rhodococcus sp. AD45, and, using mutagenesis shows that a plasmid-encoded soluble di-iron centre isoprene monooxygenase (IsoMO) is essential for isoprene metabolism. Using RNA sequencing (RNAseq) to analyse cells exposed to isoprene or epoxyisoprene in a substrate-switch time-course experiment, we show that transcripts from 22 contiguous genes, including those encoding IsoMO, were highly upregulated, becoming among the most abundant in the cell and comprising over 25% of the entire transcriptome. Analysis of gene transcription in the wild type and an IsoMO-disrupted mutant strain showed that epoxyisoprene, or a subsequent product of isoprene metabolism, rather than isoprene itself, was the inducing molecule. We provide a foundation of molecular data for future research on the environmental biological consumption of this important, climate-active compound. PMID:25727256

  3. RECRUITMENT OF A CHROMOSOMALLY-ENCODED MALEYLACETATE REDYCTASE FOR THE DEGRADATION OF 2,4-DICHLOROPHENOXY-ACETIC ACID (TFD) BY PLASMID PJP4

    EPA Science Inventory

    When Pseudomonas aeruginosa PAO1c or P. putida PP0220 or PP0300 carry plasmid pJP4, which encodes enzymes for the degradation of 2,4-dichlorophenoxyacetic acid (TFD) or 2-chloromaleylacetate, cells do not grow on TFD and UV-absorbing material with spectral characteristics of chlo...

  4. Plasmid- and chromosome-encoded siderophore anguibactin systems found in marine vibrios: biosynthesis, transport and evolution

    PubMed Central

    Liu, Moqing; Actis, Luis A.; Crosa, Jorge H.

    2013-01-01

    Vibrio anguillarum is a marine pathogen that causes vibriosis, a hemorrhagic septicemia in aquatic invertebrate as well as vertebrate animals. The siderophore anguibactin system is one of the most important virulence factors of this bacterium. Most of the anguibactin biosynthesis and transport genes are located in the 65-kb pJM1 virulence plasmid although some of them are found in the chromosome of this fish pathogen. Over 30 years of research unveiled the role numerous chromosomal and pJM1 genes play in the synthesis of anguibactin and the transport of cognate ferric complexes into the bacterial cell. Furthermore, these studies showed that pJM1-carrying strains might be originated from pJM1-less strains producing the chromosome-mediated siderophore vanchrobactin. Additionally, we recently identified a chromosome-mediated anguibactin system in V. harveyi suggesting the possible evolutional origin of the V. anguillarum anguibactin system. In this review, we present our current understanding of the mechanisms and evolution hypothesis of the anguibactin system that might have occurred in these pathogenic vibrios. PMID:23660776

  5. Plasmid- and chromosome-encoded siderophore anguibactin systems found in marine vibrios: biosynthesis, transport and evolution.

    PubMed

    Naka, Hiroaki; Liu, Moqing; Actis, Luis A; Crosa, Jorge H

    2013-08-01

    Vibrio anguillarum is a marine pathogen that causes vibriosis, a hemorrhagic septicemia in aquatic invertebrate as well as vertebrate animals. The siderophore anguibactin system is one of the most important virulence factors of this bacterium. Most of the anguibactin biosynthesis and transport genes are located in the 65-kb pJM1 virulence plasmid although some of them are found in the chromosome of this fish pathogen. Over 30 years of research unveiled the role numerous chromosomal and pJM1 genes play in the synthesis of anguibactin and the transport of cognate ferric complexes into the bacterial cell. Furthermore, these studies showed that pJM1-carrying strains might be originated from pJM1-less strains producing the chromosome-mediated siderophore vanchrobactin. Additionally, we recently identified a chromosome-mediated anguibactin system in V. harveyi suggesting the possible evolutional origin of the V. anguillarum anguibactin system. In this review, we present our current understanding of the mechanisms and evolution hypothesis of the anguibactin system that might have occurred in these pathogenic vibrios. PMID:23660776

  6. Shigella sonnei plasmids: evidence that a large plasmid is necessary for virulence.

    PubMed Central

    Sansonetti, P J; Kopecko, D J; Formal, S B

    1981-01-01

    Virulent form I Shigella sonnei strains contain a 120-megadalton plasmid that is absent in their form II derivatives, which are always avirulent and devoid of O side chains. In the present study, 165 biochemical and antibiotic traits were assessed, but no experimentally useful phenotype could be associated with this large form I plasmid. Therefore, the form I plasmids of several S. sonnei strains were tagged with the antibiotic resistance transposons Tn3, Tn5, or Tn10. Transposon-tagged form I plasmids were not self-transmissible, but could be mobilized by the plasmid R386. Form II S. sonnei transconjugants for the form I plasmid acquired both virulence and the ability to synthesize form I antigen, establishing that these properties are plasmid mediated. Further studies indicate that this 120-megadalton form I plasmid is physically unstable in any of several host bacteria and suggest that it is a member of the FI incompatibility group. Also, two commonly observed, small plasmids of S. sonnei, of 3.2 and 3.9 megadaltons, were shown to encode either colicin E1 production or resistance to streptomycin and sulfonamide, respectively. Images PMID:6271687

  7. Immunogenicity of a plasmid DNA vaccine encoding 42kDa fragment of Plasmodium vivax merozoite surface protein-1.

    PubMed

    Sheikh, Inayat Hussain; Kaushal, Deep C; Chandra, Deepak; Kaushal, Nuzhat A

    2016-10-01

    Plasmodium vivax is the second major human malaria parasite that inflicts debilitating morbidity and consequent economic impact in South-East Asian countries. The relapsing nature of P. vivax along with the emergence of drug-resistant P. vivax strains has emphasized the urgent need for a vaccine. However, the development of an effective vivax vaccine is seriously hampered due to the diversity and variation in parasite antigens and non-availability of suitable animal models. DNA based vaccines represent an alternative approach in inducing immunity to multiple targets from different stages of malaria parasite. DNA prime-boosting strategies induce both antibody mediated and cell-mediated immune responses that are the major mechanisms of protection against malaria parasites. We have earlier studied the immunogenicity and protective efficacy of the soluble and refolded forms of recombinant 42kDa fragment of Plasmodium vivax merozoite surface protein-1 (PvMSP-142) using P. cynomolgi rhesus monkey model. In the present study, we have constructed a recombinant DNA vaccine encoding 42kDa fragment of P. vivax MSP-1 and studied the immunogenicity of PvMSP-142 DNA vaccine construct in mice. The 42kDa gene fragment of PvMSP-1 was PCR amplified using gene specific primers and subcloned into pcDNA 3.1 (+) eukaryotic expression vector. In vitro expression of PvMSP-142 plasmid construct was checked by transfection in COS-1 cell line. Indirect immunofluorescence of transfected COS-1 cells probed with monoclonal antibodies against PvMSP-142 exhibited positive fluorescence. Immunization of BALB/c mice with PvMSP-142-pcDNA vaccine construct revealed the immunogenicity of recombinant vaccine plasmid that can be enhanced by prime boosting with recombinant protein corresponding to the DNA vaccine as evidenced by significant elevation of antibody and the cytokines responses. PMID:27311385

  8. Development of a Biosafety Enhanced and Immunogenic Salmonella Enteritidis Ghost Using an Antibiotic Resistance Gene Free Plasmid Carrying a Bacteriophage Lysis System

    PubMed Central

    Jawale, Chetan V.; Lee, John Hwa

    2013-01-01

    In the development of genetically inactivated bacterial vaccines, plasmid retention often requires the antibiotic resistance gene markers, the presence of which can cause the potential biosafety hazards such as the horizontal spread of resistance genes. The new lysis plasmid was constructed by utilizing the approach of balanced-lethal systems based on auxotrophic gene Aspartate semialdehyde dehydrogenase (asd). The PhiX174 lysis gene E and λPR37-cI857 temperature-sensitive regulatory system was cloned in the asd gene positive plasmid and this novel approach allowed the production of antibiotic resistance marker free Salmonella Enteritidis (S. Enteritidis) ghost. The immunogenic potential of the biosafety enhanced antibiotic resistance gene free S. Enteritidis ghost was evaluated in chickens by employing the prime-boost vaccination strategy using a combination of oral and intramuscular routes. A total of 75 two-week-old chickens were equally divided into five groups: group A (non-immunized control), group B (intramuscularly primed and boosted), group C (primed intramuscularly and boosted orally), group D (primed and boosted orally), and group E (primed orally and boosted intramuscularly). Chickens from all immunized groups demonstrated significant increases in plasma IgG, intestinal secretory IgA levels, and antigen-specific lymphocyte proliferative response. After a virulent S. Enteritidis challenge, all immunized groups showed fewer gross lesions and decreased bacterial recovery from organs in comparison with the non-immunized control group. Among the immunized chickens, groups B and D chickens showed optimized protection, indicating that the prime-booster immunization with the ghost via intramuscular or oral route is efficient. Taken together, our results demonstrate that an antibiotic resistance gene free lysis plasmid was successfully constructed and utilized for production of safety enhanced S. Enteritidis ghost, which can be used as a safe and effective

  9. Development of a biosafety enhanced and immunogenic Salmonella enteritidis ghost using an antibiotic resistance gene free plasmid carrying a bacteriophage lysis system.

    PubMed

    Jawale, Chetan V; Lee, John Hwa

    2013-01-01

    In the development of genetically inactivated bacterial vaccines, plasmid retention often requires the antibiotic resistance gene markers, the presence of which can cause the potential biosafety hazards such as the horizontal spread of resistance genes. The new lysis plasmid was constructed by utilizing the approach of balanced-lethal systems based on auxotrophic gene Aspartate semialdehyde dehydrogenase (asd). The PhiX174 lysis gene E and λPR37-cI857 temperature-sensitive regulatory system was cloned in the asd gene positive plasmid and this novel approach allowed the production of antibiotic resistance marker free Salmonella Enteritidis (S. Enteritidis) ghost. The immunogenic potential of the biosafety enhanced antibiotic resistance gene free S. Enteritidis ghost was evaluated in chickens by employing the prime-boost vaccination strategy using a combination of oral and intramuscular routes. A total of 75 two-week-old chickens were equally divided into five groups: group A (non-immunized control), group B (intramuscularly primed and boosted), group C (primed intramuscularly and boosted orally), group D (primed and boosted orally), and group E (primed orally and boosted intramuscularly). Chickens from all immunized groups demonstrated significant increases in plasma IgG, intestinal secretory IgA levels, and antigen-specific lymphocyte proliferative response. After a virulent S. Enteritidis challenge, all immunized groups showed fewer gross lesions and decreased bacterial recovery from organs in comparison with the non-immunized control group. Among the immunized chickens, groups B and D chickens showed optimized protection, indicating that the prime-booster immunization with the ghost via intramuscular or oral route is efficient. Taken together, our results demonstrate that an antibiotic resistance gene free lysis plasmid was successfully constructed and utilized for production of safety enhanced S. Enteritidis ghost, which can be used as a safe and effective

  10. Novel Antibiotic-Free Plasmid Selection System Based on Complementation of Host Auxotrophy in the NAD De Novo Synthesis Pathway▿ †

    PubMed Central

    Dong, Wei-Ren; Xiang, Li-Xin; Shao, Jian-Zhong

    2010-01-01

    The use of antibiotic resistance genes in plasmids causes potential biosafety and clinical hazards, such as the possibility of horizontal spread of resistance genes or the rapid emergence of multidrug-resistant pathogens. This paper introduces a novel auxotrophy complementation system that allowed plasmids and host cells to be effectively selected and maintained without the use of antibiotics. An Escherichia coli strain carrying a defect in NAD de novo biosynthesis was constructed by knocking out the chromosomal quinolinic acid phosphoribosyltransferase (QAPRTase) gene. The resistance gene in the plasmids was replaced by the QAPRTase gene of E. coli or the mouse. As a result, only expression of the QAPRTase gene from plasmids can complement and rescue E. coli host cells in minimal medium. This is the first time that a vertebrate gene has been used to construct a nonantibiotic selection system, and it can be widely applied in DNA vaccine and gene therapy. As the QAPRTase gene is ubiquitous in species ranging from bacteria to mammals, the potential environmental biosafety problems caused by horizontal gene transfer can be eliminated. PMID:20118370

  11. Identification of UreR binding sites in the Enterobacteriaceae plasmid-encoded and Proteus mirabilis urease gene operons.

    PubMed

    Thomas, V J; Collins, C M

    1999-03-01

    The closely related Proteus mirabilis and Enterobacterlaceae plasmid-encoded urease genes are positively regulated by the AraC-like transcriptional activator UreR. In the presence of the effector molecule urea, UreR promotes transcription of ureD, the initial gene in the urease operon, and increases transcription of the divergently transcribed ureR. Here, we identify UreR-specific binding sites in the ureRp-ureDp intergenic regions. Recombinant UreR (rUreR) was expressed and purified, and gel shift and DNase I protection assays were performed with this protein. These analyses indicated that there are two distinct rUreR binding sites in both the plasmid-encoded and P. mirabilis ureRp-ureDp intergenic regions. A consensus binding site of TA/GT/CA/TT/GC/TTA/TT/AATTG was predicted from the DNase I protection assays. Although rUreR bound to the specific DNA binding site in both the presence and the absence of urea, the dissociation rate constant k-1 of the rUreR-DNA complex interaction was measurably different when urea was present. In the absence of urea, the dissociation of the protein-DNA complexes, for both ureRp and ureDp, was complete at the earliest time point, and it was not possible to determine a rate. In the presence of urea, dissociation was measurable with a k-1 for the rUreR-ureRp interaction of 1.2 +/- 0.2 x 10(-2) s-1 and a k-1 for the rUreR-ureDp interaction of 2.6 +/- 0.1 x 10(-3) s-1. This corresponds to a half-life of the ureRp-rUreR interaction of 58 s, and a half-life of the ureDp-rUreR interaction of 4 min 26 s. A model describing a potential role for urea in the activation of these promoters is proposed. PMID:10200962

  12. Association of virulence plasmid and antibiotic resistance determinants with chromosomal multilocus genotypes in Mexican Salmonella enterica serovar Typhimurium strains

    PubMed Central

    2009-01-01

    Background Bacterial genomes are mosaic structures composed of genes present in every strain of the same species (core genome), and genes present in some but not all strains of a species (accessory genome). The aim of this study was to compare the genetic diversity of core and accessory genes of a Salmonella enterica subspecies enterica serovar Typhimurium (Typhimurium) population isolated from food-animal and human sources in four regions of Mexico. Multilocus sequence typing (MLST) and macrorestriction fingerprints by pulsed-field gel electrophoresis (PFGE) were used to address the core genetic variation, and genes involved in pathogenesis and antibiotic resistance were selected to evaluate the accessory genome. Results We found a low genetic diversity for both housekeeping and accessory genes. Sequence type 19 (ST19) was supported as the founder genotype of STs 213, 302 and 429. We found a temporal pattern in which the derived ST213 is replacing the founder ST19 in the four geographic regions analyzed and a geographic trend in the number of resistance determinants. The distribution of the accessory genes was not random among chromosomal genotypes. We detected strong associations among the different accessory genes and the multilocus chromosomal genotypes (STs). First, the Salmonella virulence plasmid (pSTV) was found mostly in ST19 isolates. Second, the plasmid-borne betalactamase cmy-2 was found only in ST213 isolates. Third, the most abundant integron, IP-1 (dfrA12, orfF and aadA2), was found only in ST213 isolates. Fourth, the Salmonella genomic island (SGI1) was found mainly in a subgroup of ST19 isolates carrying pSTV. The mapping of accessory genes and multilocus genotypes on the dendrogram derived from macrorestiction fingerprints allowed the establishment of genetic subgroups within the population. Conclusion Despite the low levels of genetic diversity of core and accessory genes, the non-random distribution of the accessory genes across chromosomal

  13. Analysis of the vaccine potential of plasmid DNA encoding nine mycolactone polyketide synthase domains in Mycobacterium ulcerans infected mice.

    PubMed

    Roupie, Virginie; Pidot, Sacha J; Einarsdottir, Tobba; Van Den Poel, Christophe; Jurion, Fabienne; Stinear, Timothy P; Huygen, Kris

    2014-01-01

    There is no effective vaccine against Buruli ulcer. In experimental footpad infection of C57BL/6 mice with M. ulcerans, a prime-boost vaccination protocol using plasmid DNA encoding mycolyltransferase Ag85A of M. ulcerans and a homologous protein boost has shown significant, albeit transient protection, comparable to the one induced by M. bovis BCG. The mycolactone toxin is an obvious candidate for a vaccine, but by virtue of its chemical structure, this toxin is not immunogenic in itself. However, antibodies against some of the polyketide synthase domains involved in mycolactone synthesis, were found in Buruli ulcer patients and healthy controls from the same endemic region, suggesting that these domains are indeed immunogenic. Here we have analyzed the vaccine potential of nine polyketide synthase domains using a DNA prime/protein boost strategy. C57BL/6 mice were vaccinated against the following domains: acyl carrier protein 1, 2, and 3, acyltransferase (acetate) 1 and 2, acyltransferase (propionate), enoylreductase, ketoreductase A, and ketosynthase load module. As positive controls, mice were vaccinated with DNA encoding Ag85A or with M. bovis BCG. Strongest antigen specific antibodies could be detected in response to acyltransferase (propionate) and enoylreductase. Antigen-specific Th1 type cytokine responses (IL-2 or IFN-γ) were induced by vaccination against all antigens, and were strongest against acyltransferase (propionate). Finally, vaccination against acyltransferase (propionate) and enoylreductase conferred some protection against challenge with virulent M. ulcerans 1615. However, protection was weaker than the one conferred by vaccination with Ag85A or M. bovis BCG. Combinations of these polyketide synthase domains with the vaccine targeting Ag85A, of which the latter is involved in the integrity of the cell wall of the pathogen, and/or with live attenuated M. bovis BCG or mycolactone negative M. ulcerans may eventually lead to the development of an

  14. Bacteriolytic activity caused by the presence of a novel lactococcal plasmid encoding lactococcins A, B, and M.

    PubMed Central

    Morgan, S; Ross, R P; Hill, C

    1995-01-01

    Lactococcus lactis subsp. lactis biovar diacetylactis DPC938 was identified as a bacteriocin-producing strain which exhibited a bacteriolytic effect on other lactococci. Lysis of such target strains was associated with decreases in optical density and release of the intracellular enzyme lactate dehydrogenase. DPC938 exhibits cross-immunity to L. lactis subsp. cremoris 9B4 (M.J. van Belkum, B.J. Hayema, A. Geis, J. Kok, and G. Venema, Appl. Environ. Microbiol. 55:1187-1191, 1989), a strain which produces the bacteriocins lactococcins A, B, and M. Genetic analyses revealed that a 15.5-kb region of DNA encoding these bacteriocins is highly conserved in 9B4, DPC938, and DPC3286, an overproducing derivative of DPC938. This region is located on a 72- and a 78-kb nonmobilizable plasmid in DPC938 and DPC3286, respectively. The bacteriolytic effect exhibited by DPC938 and DPC3286 on sensitive cultures is most probably due to the concerted action of all three bacteriocins. Since these cultures exhibit a lytic effect on lactococci, they have a potential application in the dairy industry as accelerators of starter lysis and hence accelerators of cheese ripening. PMID:7487031

  15. Mechanism of resistance to complement-mediated killing of bacteria encoded by the Salmonella typhimurium virulence plasmid gene rck.

    PubMed Central

    Heffernan, E J; Reed, S; Hackett, J; Fierer, J; Roudier, C; Guiney, D

    1992-01-01

    We find that pADEO16, a recombinant cosmid carrying the rck gene of the Salmonella typhimurium virulence plasmid, when cloned into either rough or smooth Escherichia coli and Salmonella strains, confers high level resistance to the bactericidal activity of pooled normal human serum. The rck gene encodes a 17-kD outer membrane protein that is homologous to a family of virulence-associated outer membrane proteins, including pagC and Ail. Complement depletion, C3 and C5 binding, and membrane-bound C3 cleavage products are similar in strains with and without rck. Although a large difference in C9 binding was not seen, trypsin cleaved 55.7% of bound 125I-C9 counts from rough S. typhimurium with pADEO16, whereas only 26.4% were released from S. typhimurium with K2011, containing a mutation in rck. The majority of C9 extracted from rck strain membranes sediments at a lower molecular weight than in strains without rck, suggesting less C9 polymerization. Furthermore, SDS-PAGE analysis of gradient peak fractions indicated that the slower sedimenting C9-containing complexes in rck strains did not contain polymerized C9 typical of the tubular membrane attack complex. These results indicate that complement resistance mediated by Rck is associated with a failure to form fully polymerized tubular membrane attack complexes. Images PMID:1522243

  16. In vivo electroporation of plasmids encoding GM-CSF or interleukin-2 into existing B16 melanomas combined with electrochemotherapy induces long-term antitumour immunity.

    PubMed

    Heller, L; Pottinger, C; Jaroszeski, M J; Gilbert, R; Heller, R

    2000-12-01

    When cancer cells, including melanoma cells, are genetically altered to secrete cytokines, irradiated and injected into subjects, long-term antitumour immunity is induced. Optimally, existing melanomas induced to produce cytokines in vivo could stimulate this same immune response. Although in vivo electroporation enhances plasmid expression, electroporation of plasmids encoding granulocyte-monocyte colony stimulating factor (GM-CSF) and interleukin-2 (IL2) into B16 mouse melanomas did not significantly alter tumour growth at the concentration tested. Electrochemotherapy, which causes short-term, complete regressions of treated tumour but no resistance to challenge, was combined with plasmid delivery. The combination treatment resulted in the induction of long-term immunity to recurrence and resistance to challenge in up to 25% of mice. PMID:11198480

  17. Co-spread of metal and antibiotic resistance within ST3-IncHI2 plasmids from E. coli isolates of food-producing animals

    PubMed Central

    Fang, Liangxing; Li, Xingping; Li, Liang; Li, Shumin; Liao, Xiaoping; Sun, Jian; Liu, Yahong

    2016-01-01

    Concerns have been raised in recent years regarding co-selection for antibiotic resistance among bacteria exposed to heavy metals, particularly copper and zinc, used as growth promoters for some livestock species. In this study, 25 IncHI2 plasmids harboring oqxAB (20/25)/blaCTX-M (18/25) were found with sizes ranging from ∼260 to ∼350 kb and 22 belonged to the ST3-IncHI2 group. In addition to blaCTX-M and oqxAB, pcoA-E (5/25) and silE-P (5/25), as well as aac(6′)-Ib-cr (18/25), floR (16/25), rmtB (6/25), qnrS1(3/25) and fosA3 (2/25), were also identified on these IncHI2 plasmids. The plasmids carried pco and sil contributed to increasing in the MICs of CuSO4 and AgNO3. The genetic context surrounding the two operons was well conserved except some variations within the pco operon. The ~32 kb region containing the two operons identified in the IncHI2 plasmids was also found in chromosomes of different Enterobacteriaceae species. Further, phylogenetic analysis of this structure showed that Tn7-like transposon might play an important role in cross-genus transfer of the sil and pco operons among Enterobacteriaceae. In conclusion, co-existence of the pco and sil operons, and oqxAB/blaCTX-M as well as other antibiotic resistance genes on IncHI2 plasmids may promote the development of multidrug-resistant bacteria. PMID:27143648

  18. Co-spread of metal and antibiotic resistance within ST3-IncHI2 plasmids from E. coli isolates of food-producing animals.

    PubMed

    Fang, Liangxing; Li, Xingping; Li, Liang; Li, Shumin; Liao, Xiaoping; Sun, Jian; Liu, Yahong

    2016-01-01

    Concerns have been raised in recent years regarding co-selection for antibiotic resistance among bacteria exposed to heavy metals, particularly copper and zinc, used as growth promoters for some livestock species. In this study, 25 IncHI2 plasmids harboring oqxAB (20/25)/blaCTX-M (18/25) were found with sizes ranging from ∼260 to ∼350 kb and 22 belonged to the ST3-IncHI2 group. In addition to blaCTX-M and oqxAB, pcoA-E (5/25) and silE-P (5/25), as well as aac(6')-Ib-cr (18/25), floR (16/25), rmtB (6/25), qnrS1(3/25) and fosA3 (2/25), were also identified on these IncHI2 plasmids. The plasmids carried pco and sil contributed to increasing in the MICs of CuSO4 and AgNO3. The genetic context surrounding the two operons was well conserved except some variations within the pco operon. The ~32 kb region containing the two operons identified in the IncHI2 plasmids was also found in chromosomes of different Enterobacteriaceae species. Further, phylogenetic analysis of this structure showed that Tn7-like transposon might play an important role in cross-genus transfer of the sil and pco operons among Enterobacteriaceae. In conclusion, co-existence of the pco and sil operons, and oqxAB/blaCTX-M as well as other antibiotic resistance genes on IncHI2 plasmids may promote the development of multidrug-resistant bacteria. PMID:27143648

  19. Overproduction of lactimidomycin by cross-overexpression of genes encoding Streptomyces antibiotic regulatory proteins.

    PubMed

    Zhang, Bo; Yang, Dong; Yan, Yijun; Pan, Guohui; Xiang, Wensheng; Shen, Ben

    2016-03-01

    The glutarimide-containing polyketides represent a fascinating class of natural products that exhibit a multitude of biological activities. We have recently cloned and sequenced the biosynthetic gene clusters for three members of the glutarimide-containing polyketides-iso-migrastatin (iso-MGS) from Streptomyces platensis NRRL 18993, lactimidomycin (LTM) from Streptomyces amphibiosporus ATCC 53964, and cycloheximide (CHX) from Streptomyces sp. YIM56141. Comparative analysis of the three clusters identified mgsA and chxA, from the mgs and chx gene clusters, respectively, that were predicted to encode the PimR-like Streptomyces antibiotic regulatory proteins (SARPs) but failed to reveal any regulatory gene from the ltm gene cluster. Overexpression of mgsA or chxA in S. platensis NRRL 18993, Streptomyces sp. YIM56141 or SB11024, and a recombinant strain of Streptomyces coelicolor M145 carrying the intact mgs gene cluster has no significant effect on iso-MGS or CHX production, suggesting that MgsA or ChxA regulation may not be rate-limiting for iso-MGS and CHX production in these producers. In contrast, overexpression of mgsA or chxA in S. amphibiosporus ATCC 53964 resulted in a significant increase in LTM production, with LTM titer reaching 106 mg/L, which is five-fold higher than that of the wild-type strain. These results support MgsA and ChxA as members of the SARP family of positive regulators for the iso-MGS and CHX biosynthetic machinery and demonstrate the feasibility to improve glutarimide-containing polyketide production in Streptomyces strains by exploiting common regulators. PMID:26552797

  20. Generation of a safety enhanced Salmonella Gallinarum ghost using antibiotic resistance free plasmid and its potential as an effective inactivated vaccine candidate against fowl typhoid.

    PubMed

    Jawale, Chetan V; Chaudhari, Atul A; Lee, John Hwa

    2014-02-19

    A safety enhanced Salmonella Gallinarum (SG) ghost was constructed using an antibiotic resistance gene free plasmid and evaluated its potential as fowl typhoid (FT) vaccine candidate. The antibiotic resistance free pYA3342 plasmid possesses aspartate semialdehyde dehydrogenase gene which is complimentary to the deletion of the chromosomal asd gene in the bacterial host. This plasmid was incorporated with a ghost cassette containing the bacteriophage PhiX174 lysis gene E, designated as pJHL101. The plasmid pJHL101 was transformed into a two virulence genes-deleted SG. The SG ghosts with tunnel formation and loss of cytoplasmic contents were observed by scanning electron microscopy and transmission electron microscopy. The cell viability of the culture solution was decreased to 0% at 24h after the induction of gene E expression by an increase in temperature from 37°C to 42°C. The safety and protective efficacy of the SG ghost vaccine was further examined in chickens which were divided into three groups: group A (non-immunized control), group B (orally immunized), and group C (intramuscularly immunized). The birds were immunized at 7d of age. No clinical symptoms associated with FT such as anorexia, depression and greenish diarrhea were observed in the immunized chickens. Upon challenge with a virulent SG strain at 3 week post-immunization, the chickens immunized with the SG ghost via various routes were efficiently protected, as shown by significantly lower mortality and post-mortem lesions in comparison with control group. In addition, all the immunized chickens showed significantly higher antibody responses accompanied by a potent antigen-specific lymphocyte proliferative response along with significantly increased numbers of CD4⁺ and CD8⁺ T lymphocytes. Overall, our results provide a promising approach of generating SG ghosts using the antibiotic resistance free plasmid in order to prepare a non-living bacterial vaccine candidate which could be

  1. Antibiotics

    MedlinePlus

    ... or not using them properly, can add to antibiotic resistance. This happens when bacteria change and become able ... survive and re-infect you. Do not save antibiotics for later or use someone else's prescription. Centers for Disease Control and Prevention

  2. Food and human gut as reservoirs of transferable antibiotic resistance encoding genes

    PubMed Central

    Rolain, Jean-Marc

    2013-01-01

    The increase and spread of antibiotic resistance (AR) over the past decade in human pathogens has become a worldwide health concern. Recent genomic and metagenomic studies in humans, animals, in food and in the environment have led to the discovery of a huge reservoir of AR genes called the resistome that could be mobilized and transferred from these sources to human pathogens. AR is a natural phenomenon developed by bacteria to protect antibiotic-producing bacteria from their own products and also to increase their survival in highly competitive microbial environments. Although antibiotics are used extensively in humans and animals, there is also considerable usage of antibiotics in agriculture, especially in animal feeds and aquaculture. The aim of this review is to give an overview of the sources of AR and the use of antibiotics in these reservoirs as selectors for emergence of AR bacteria in humans via the food chain. PMID:23805136

  3. Limited Dissemination of Extended-Spectrum β-Lactamase– and Plasmid-Encoded AmpC–Producing Escherichia coli from Food and Farm Animals, Sweden

    PubMed Central

    Ny, Sofia; Egervärn, Maria; Bergström, Jakob; Rosengren, Åsa; Englund, Stina; Löfmark, Sonja; Byfors, Sara

    2016-01-01

    Extended-spectrum β-lactamase (ESBL)– and plasmid-encoded ampC (pAmpC)–producing Enterobacteriaceae might spread from farm animals to humans through food. However, most studies have been limited in number of isolates tested and areas studied. We examined genetic relatedness of 716 isolates from 4,854 samples collected from humans, farm animals, and foods in Sweden to determine whether foods and farm animals might act as reservoirs and dissemination routes for ESBL/pAmpC-producing Escherichia coli. Results showed that clonal spread to humans appears unlikely. However, we found limited dissemination of genes encoding ESBL/pAmpC and plasmids carrying these genes from foods and farm animals to healthy humans and patients. Poultry and chicken meat might be a reservoir and dissemination route to humans. Although we found no evidence of clonal spread of ESBL/pAmpC-producing E. coli from farm animals or foods to humans, ESBL/pAmpC-producing E. coli with identical genes and plasmids were present in farm animals, foods, and humans. PMID:26982890

  4. X-ray crystal structure of the passenger domain of plasmid encoded toxin(Pet), an autotransporter enterotoxin from enteroaggregative Escherichia coli (EAEC)

    SciTech Connect

    Domingo Meza-Aguilar, J.; Fromme, Petra; Torres-Larios, Alfredo; Mendoza-Hernández, Guillermo; Hernandez-Chiñas, Ulises; Arreguin-Espinosa de los Monteros, Roberto A.; and others

    2014-03-07

    Highlights: • X-ray crystal structure of the passenger domain of Plasmid encoded toxin at 2.3 Å. • Structural differences between Pet passenger domain and EspP protein are described. • High flexibility of the C-terminal beta helix is structurally assigned. - Abstract: Autotransporters (ATs) represent a superfamily of proteins produced by a variety of pathogenic bacteria, which include the pathogenic groups of Escherichia coli (E. coli) associated with gastrointestinal and urinary tract infections. We present the first X-ray structure of the passenger domain from the Plasmid-encoded toxin (Pet) a 100 kDa protein at 2.3 Å resolution which is a cause of acute diarrhea in both developing and industrialized countries. Pet is a cytoskeleton-altering toxin that induces loss of actin stress fibers. While Pet (pdb code: 4OM9) shows only a sequence identity of 50% compared to the closest related protein sequence, extracellular serine protease plasmid (EspP) the structural features of both proteins are conserved. A closer structural look reveals that Pet contains a β-pleaded sheet at the sequence region of residues 181–190, the corresponding structural domain in EspP consists of a coiled loop. Secondary, the Pet passenger domain features a more pronounced beta sheet between residues 135 and 143 compared to the structure of EspP.

  5. Single molecule sequencing to track plasmid diversity of hospital-associated carbapenemase-producing Enterobacteriaceae

    PubMed Central

    Conlan, Sean; Thomas, Pamela J.; Deming, Clayton; Park, Morgan; Lau, Anna F.; Dekker, John P.; Snitkin, Evan S.; Clark, Tyson A.; Luong, Khai; Song, Yi; Tsai, Yu-Chih; Boitano, Matthew; Gupta, Jyoti; Brooks, Shelise Y.; Schmidt, Brian; Young, Alice C.; Thomas, James W.; Bouffard, Gerard G.; Blakesley, Robert W.; Mullikin, James C.; Korlach, Jonas; Henderson, David K.; Frank, Karen M.; Palmore, Tara N.; Segre, Julia A.

    2014-01-01

    Public health officials have raised concerns that plasmid transfer between Enterobacteriaceae species may spread resistance to carbapenems, an antibiotic class of last resort, thereby rendering common healthcare-associated infections nearly impossible to treat. We performed comprehensive surveillance and genomic sequencing to identify carbapenem-resistant Enterobacteriaceae in the NIH Clinical Center patient population and hospital environment in order to to articulate the diversity of carbapenemase-encoding plasmids and survey the mobility of and assess the mobility of these plasmids between bacterial species. We isolated a repertoire of carbapenemase-encoding Enterobacteriaceae, including multiple strains of Klebsiella pneumoniae, Klebsiella oxytoca, Escherichia coli, Enterobacter cloacae, Citrobacter freundii, and Pantoea species. Long-read genome sequencing with full end-to-end assembly revealed that these organisms carry the carbapenem-resistance genes on a wide array of plasmids. Klebsiella pneumoniae and Enterobacter cloacae isolated simultaneously from a single patient harbored two different carbapenemase-encoding plasmids, overriding the epidemiological scenario of plasmid transfer between organisms within this patient. We did, however, find evidence supporting horizontal transfer of carbapenemase-encoding plasmids between Klebsiella pneumoniae, Enterobacter cloacae and Citrobacter freundii in the hospital environment. Our comprehensive sequence data, with full plasmid identification, challenges assumptions about horizontal gene transfer events within patients and identified wider possible connections between patients and the hospital environment. In addition, we identified a new carbapenemase-encoding plasmid of potentially high clinical impact carried by Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae and Pantoea species, from unrelated patients and the hospital environment. PMID:25232178

  6. The gene therapy of collagen-induced arthritis in rats by intramuscular administration of the plasmid encoding TNF-binding domain of variola virus CrmB protein.

    PubMed

    Shchelkunov, S N; Taranov, O S; Tregubchak, T V; Maksyutov, R A; Silkov, A N; Nesterov, A E; Sennikov, S V

    2016-07-01

    Wistar rats with collagen-induced arthritis were intramuscularly injected with the recombinant plasmid pcDNA/sTNF-BD encoding the sequence of the TNF-binding protein domain of variola virus CrmB protein (VARV sTNF-BD) or the pcDNA3.1 vector. Quantitative analysis showed that the histopathological changes in the hind-limb joints of rats were most severe in the animals injected with pcDNA3.1 and much less severe in the group of rats injected with pcDNA/sTNF-BD, which indicates that gene therapy of rheumatoid arthritis is promising in the case of local administration of plasmids governing the synthesis of VARV immunomodulatory proteins. PMID:27599513

  7. Immunization with plasmid DNA encoding hepatitis C virus envelope E2 antigenic domains induces antibodies whose immune reactivity is linked to the injection mode.

    PubMed Central

    Nakano, I; Maertens, G; Major, M E; Vitvitski, L; Dubuisson, J; Fournillier, A; De Martynoff, G; Trepo, C; Inchauspe, G

    1997-01-01

    Plasmids expressing different domains of the hepatis C virus (HCV) envelope E2 glycoprotein from a genotype 1a isolate were constructed to compare the immunogenic potential of E2 in nucleic acid-based immunizations. One plasmid, pCIE2t, expressed a C-terminally truncated form of E2, while others, pS2.SE2A to pS2.SE2E, encoded the adjacent 60-amino-acid (aa) sequences of E2 (inserts A to E) expressed as a fusion with the hepatitis B virus surface antigen. BALB/c mice were given injections of the plasmids intramuscularly (i.m.) or intraepidermally (i.e.) via a gene gun (biolistic introduction), and induced humoral immune responses were evaluated. The i.e. injections resulted in higher seroconversion rates and antibody titers, up to 100-fold, than did the i.m. injections (P = 0.01 to 0.04). Three restricted immunogenic domains, E2A (aa 384 to 443), E2C (aa 504 to 555), and E2E (aa 609 to 674), that yielded antibody titers ranging from 1:59 to > 1:43,700 could be identified. Subtype 1a- and 1b-derived E2 antigens and synthetic peptides were used in Western blot and enzyme-linked immunosorbent assay analyses, which revealed that the cross-reactivity of the plasmid-induced antibodies was linked both to the type of antigen expressed and to the injection mode. Induced anti-E2 antibodies could immunoprecipitate noncovalent E1E2 complexes believed to exist on the surface of HCV virions. This study allowed us to identify restricted immunogenic domains within E2 and demonstrated that different routes of injection of HCV E2 plasmids can result in quantitatively and qualitatively different humoral immune responses. PMID:9261444

  8. A Pilot Study Evaluating Combinatorial and Simultaneous Delivery of Polyethylenimine-Plasmid DNA Complexes Encoding for VEGF and PDGF for Bone Regeneration in Calvarial Bone Defects

    PubMed Central

    D'Mello, Sheetal; Elangovan, Satheesh; Hong, Liu; Ross, Ryan D.; Sumner, D. Rick; Salem, Aliasger K.

    2016-01-01

    Gene therapy is a promising strategy to deliver growth factors of interest locally in a sustained fashion and has the potential to overcome barriers to using recombinant protein therapy such as sustainability and cost. Recent studies demonstrate the safety and efficacy of non-viral delivery of plasmid DNA (pDNA) encoding a single growth factor to enhance bone healing. This pilot study is aimed at testing a non-viral gene delivery system that can deliver two different plasmids encoding two different growth factors. Polyethylenimine (PEI), a cationic polymer, was utilized as a gene delivery vector and collagen scaffold was used as a carrier to deliver the PEI-pDNA complexes encoding platelet derived growth factor B (PDGF-B) and/or vascular endothelial growth factor (VEGF). Calvarial defects in rats were implanted with scaffolds containing PEI-pPDGF-B complexes, PEI-pVEGF complexes or containing both PEI-pPDGF-B and PEI-pVEGF complexes in a 1:1 ratio of plasmids. The results indicated that bone regeneration as measured using micro-CT and histological assessments was inferior in groups treated with PEI-(pPDGF-B + pVEGF) complexes, compared to defects treated with PEI-pPDGF-B complexes. This pilot study that explores the feasibility and efficacy of combinatorial non-viral gene delivery system for bone regeneration appears to provide a rationale for investigation of sequential delivery of growth factors at specific time points during the healing phases and this will be explored further in future studies. PMID:25934975

  9. Removal of antibiotic resistance gene-carrying plasmids from Lactobacillus reuteri ATCC 55730 and characterization of the resulting daughter strain, L. reuteri DSM 17938.

    PubMed

    Rosander, Anna; Connolly, Eamonn; Roos, Stefan

    2008-10-01

    The spread of antibiotic resistance in pathogens is primarily a consequence of the indiscriminate use of antibiotics, but there is concern that food-borne lactic acid bacteria may act as reservoirs of antibiotic resistance genes when distributed in large doses to the gastrointestinal tract. Lactobacillus reuteri ATCC 55730 is a commercially available probiotic strain which has been found to harbor potentially transferable resistance genes. The aims of this study were to define the location and nature of beta-lactam, tetracycline, and lincosamide resistance determinants and, if they were found to be acquired, attempt to remove them from the strain by methods that do not genetically modify the organism before subsequently testing whether the probiotic characteristics were retained. No known beta-lactam resistance genes was found, but penicillin-binding proteins from ATCC 55730, two additional resistant strains, and three sensitive strains of L. reuteri were sequenced and comparatively analyzed. The beta-lactam resistance in ATCC 55730 is probably caused by a number of alterations in the corresponding genes and can be regarded as not transferable. The strain was found to harbor two plasmids carrying tet(W) tetracycline and lnu(A) lincosamide resistance genes, respectively. A new daughter strain, L. reuteri DSM 17938, was derived from ATCC 55730 by removal of the two plasmids, and it was shown to have lost the resistances associated with them. Direct comparison of the parent and daughter strains for a series of in vitro properties and in a human clinical trial confirmed the retained probiotic properties of the daughter strain. PMID:18689509

  10. Antiseptic and antibiotic resistance plasmid in Staphylococcus aureus that possesses ability to confer chlorhexidine and acrinol resistance.

    PubMed Central

    Yamamoto, T; Tamura, Y; Yokota, T

    1988-01-01

    Plasmid pSAJ1 from a methicillin- and gentamicin-resistant strain of Staphylococcus aureus had am molecular size of 50 kilobases and conferred resistance not only to kanamycin, gentamicin, tobramycin, amikacin, benzalkonium chloride, acriflavin, and ethidium bromide but also to chlorhexidine. In addition, the cloned antiseptic resistance gene(s) manifested acrinol resistance in Escherichia coli. Images PMID:3415214

  11. Attributes of carbapenemase encoding conjugative plasmid pNDM-SAL from an extensively drug-resistant Salmonella enterica Serovar Senftenberg

    PubMed Central

    Sarkar, Anirban; Pazhani, Gururaja P.; Chowdhury, Goutam; Ghosh, Amit; Ramamurthy, Thandavarayan

    2015-01-01

    A carbapenem resistant Salmonella enterica serovar Senftenberg isolate BCH 2406 was isolated from a diarrheal child attending an outpatient unit of B.C. Roy Hospital in Kolkata, India. This isolate was positive for the blaNDM-1 in the PCR assay, which was confirmed by amplicon sequencing. Except for tetracycline, this isolate was resistant to all the tested antimicrobials. The blaNDM-1 was found to be located on a 146.13-kb mega plasmid pNDM-SAL, which could be conjugally transferred into Escherichia coli and other enteric pathogens such as Vibrio cholerae O1 Ogawa and Shigella flexneri 2a. However, the expression of β-lactam resistance is not the same in different bacteria. The whole genome sequence of pNDM-SAL was determined and compared with other pNDM plasmids available in public domain. This plasmid is an IncA/C incompatibility type composed of 155 predicted coding sequences and shares homology with plasmids of E. coli pNDM-1_Dok01, Klebsiella pNDM-KN, and Citrobacter pNDM-CIT. In pNDM-SAL, gene cluster containing blaNDM-1 was located between IS26 and IS4321 elements. Between the IS26 element and the blaNDM-1, a truncated ISAba125 insertion sequence was identified. Downstream of the blaNDM-1, other genes, such as bleMBL, trpF, tat, and an ISCR1 element with class 1 integron containing aac(6′)-Ib were detected. Another β-lactacamase gene, blaCMY -4 was found to be inserted in IS1 element within the type IV conjugative transfer loci of the plasmid. This gene cluster had blc and sugE downstream of the blaCMY -4. From our findings, it appears that the strain S. Senftenberg could have acquired the NDM plasmid from the other members of Enterobacteriaceae. Transfer of NDM plasmids poses a danger in the management of infectious diseases. PMID:26441902

  12. Construction of a new shuttle vector and its use for cloning and expression of two plasmid-encoded bacteriocins from Lactobacillus paracasei subsp. paracasei BGSJ2-8.

    PubMed

    Kojic, Milan; Lozo, Jelena; Jovcic, Branko; Strahinic, Ivana; Fira, Djordje; Topisirovic, Ljubisa

    2010-06-15

    A new shuttle-cloning vector, pA13, was constructed and successfully introduced into Escherichia coli, Lactobacillus and Lactococcus strains. It showed high segregational and structural stability in all three hosts. The natural plasmid pSJ2-8 from L. paracasei subsp. paracasei BGSJ2-8 was cloned into pA13 using BamHI to obtain the construct, pB5. Sequencing and in silico analysis of pB5 revealed fifteen open reading frames (ORF). Plasmid pSJ2-8 harbours genes encoding the production of two bacteriocins, BacSJ and acidocin 8912. Combined N-terminal amino acid sequencing of BacSJ in combination with DNA sequencing of the bacSJ2-8 gene enabled determination of the primary structure of bacteriocin BacSJ. The bacSJ2-8 gene encodes 68-amino-acid peptide with a double-glycine leader peptide consisting of 18 amino acids, followed by the orf2 (bacSJ2-8i) which encodes the immunity protein of BacSJ. The production and functional expression of BacSJ in homologous and heterologous hosts suggest that bacSJ2-8 and bacSJ2-8i together with the genes encoding the ABC transporter and accessory protein are the minimal requirements for production of BacSJ. Biochemical and genetic analyses showed that BacSJ belongs to class II bacteriocins. PMID:20439125

  13. A specific protease encoded by the conjugative DNA transfer systems of IncP and Ti plasmids is essential for pilus synthesis.

    PubMed Central

    Haase, J; Lanka, E

    1997-01-01

    TraF, an essential component of the conjugative transfer apparatus of the broad-host-range plasmid RP4 (IncP), which is located at the periplasmic side of the cytoplasmic membrane, encodes a specific protease. The traF gene products of IncP and Ti plasmids show extensive similarities to prokaryotic and eukaryotic signal peptidases. Mutational analysis of RP4 TraF revealed that the mechanism of the proteolytic cleavage reaction resembles that of signal and LexA-like peptidases. Among the RP4 transfer functions, the product of the Tra2 gene, trbC, was identified as a target for the TraF protease activity. TrbC is homologous to VirB2 of Ti plasmids and thought to encode the RP4 prepilin. The maturation of TrbC involves three processing reactions: (i) the removal of the N-terminal signal peptide by Escherichia coli signal peptidase I (Lep), (ii) a proteolytic cleavage at the C terminus by an as yet unidentified host cell enzyme, and (iii) C-terminal processing by TraF. The third reaction of the maturation process is critical for conjugative transfer, pilus synthesis, and the propagation of the donor-specific bacteriophage PRD1. Thus, cleavage of TrbC by TraF appears to be one of the initial steps in a cascade of processes involved in export of the RP4 pilus subunit and pilus assembly mediated by the RP4 mating pair formation function. PMID:9294428

  14. A 55-kilodalton antigen encoded by a gene on a Borrelia burgdorferi 49-kilobase plasmid is recognized by antibodies in sera from patients with Lyme disease.

    PubMed Central

    Feng, S; Das, S; Lam, T; Flavell, R A; Fikrig, E

    1995-01-01

    We have identified a 55-kDa antigen encoded by a gene on a 49-kb plasmid of Borrelia burgdorferi. The screening of a B. burgdorferi DNA expression library (N40 strain) with rabbit anti-B. burgdorferi serum and then with serum from a patient with Lyme disease arthritis revealed a clone that synthesized an antigen that was reactive with both sera. DNA sequence analysis identified an operon with two genes, s1 and s2 (1,254 and 780 nucleotides), that expressed antigens with the predicted molecular masses of 55 and 29 kDa, respectively. Pulsed-field gel electrophoresis showed that the s1-s2 operon was located on the 49-kb plasmid. Recombinant S1 was synthesized as a glutathione S-transferase fusion protein in Escherichia coli. Antibodies to recombinant S1 bound to a 55-kDa protein in lysates of B. burgdorferi, indicating that cultured spirochetes synthesized S1. Thirty-one of 100 Lyme disease patients had immunoglobulin G (IgG) and/or IgM antibodies to S1. IgG antibodies to S1 were detected by enzyme-linked immunosorbent assay and immunoblots in the sera of 21 (21%) of 100 patients with Lyme disease; 11 (27.5%) of the S1-positive samples were from patients (40) with early-stage Lyme disease, and 10 (16.7%) were from patients (60) with late-stage Lyme disease. Fifteen (38.5%) of 40 serum samples from patients with early-stage Lyme disease had IgM antibodies to S1. These data suggest that the S1 antigen encoded by a gene on the 49-kb plasmid is recognized serologically by a subset of patients with early- or late-stage Lyme disease. PMID:7642278

  15. Antibiotic resistance and OXA-type carbapenemases-encoding genes in airborne Acinetobacter baumannii isolated from burn wards.

    PubMed

    Gao, Jing; Zhao, Xiaonan; Bao, Ying; Ma, Ruihua; Zhou, Yufa; Li, Xinxian; Chai, Tongjie; Cai, Yumei

    2014-03-01

    The study was conducted to investigate drug resistance, OXA-type carbapenemases-encoding genes and genetic diversity in airborne Acinetobacter baumannii (A. baumannii) in burn wards. Airborne A. baumannii were collected in burn wards and their corridors using Andersen 6-stage air sampler from January to June 2011. The isolates susceptibility to 13 commonly used antibiotics was examined according to the CLSI guidelines; OXA-type carbapenemases-encoding genes and molecular diversity of isolates were analyzed, respectively. A total of 16 non-repetitive A. baumannii were isolated, with 10 strains having a resistance rate of greater than 50% against the 13 antibiotics. The resistance rate against ceftriaxone, cyclophosvnamide, ciprofloxacin, and imipenem was 93.75% (15/16), but no isolate observed to be resistant to cefoperazone/sulbactam. Resistance gene analyses showed that all 16 isolates carried OXA-51, and 15 isolates carried OXA-23 except No.15; but OXA-24 and OXA-58 resistance genes not detected. The isolates were classified into 13 genotypes (A-M) according to repetitive extragenic palindromic sequence PCR (REP-PCR) results and only six isolates had a homology ≥90%. In conclusion, airborne A. baumannii in the burn wards had multidrug resistance and complex molecular diversity, and OXA-23 and OXA-51 were dominant mechanisms for resisting carbapenems. PMID:23886986

  16. The IncP plasmid-encoded cell envelope-associated DNA transfer complex increases cell permeability.

    PubMed Central

    Daugelavicius, R; Bamford, J K; Grahn, A M; Lanka, E; Bamford, D H

    1997-01-01

    IncP-type plasmids are broad-host-range conjugative plasmids. DNA translocation requires DNA transfer-replication functions and additional factors required for mating pair formation (Mpf). The Mpf system is located in the cell membranes and is responsible for DNA transport from the donor to the recipient. The Mpf complex acts as a receptor for IncP-specific phages such as PRD1. In this investigation, we quantify the Mpf complexes on the cell surface by a phage receptor saturation technique. Electrochemical measurements are used to show that the Mpf complex increases cell envelope permeability to lipophilic compounds and ATP. In addition it reduces the ability of the cells to accumulate K+. However, the Mpf complex does not dissipate the membrane voltage. The Mpf complex is rapidly disassembled when intracellular ATP concentration is decreased, as measured by a PRD1 adsorption assay. PMID:9260964

  17. Plasmid-Mediated Quinolone Resistance Genes and Antibiotic Residues in Wastewater and Soil Adjacent to Swine Feedlots: Potential Transfer to Agricultural Lands

    PubMed Central

    Li, Juan; Wang, Thanh; Shao, Bing; Shen, Jianzhong; Wang, Shaochen

    2012-01-01

    Background: Inappropriate use of antibiotics in swine feed could cause accelerated emergence of antibiotic resistance genes, and agricultural application of swine waste could spread antibiotic resistance genes to the surrounding environment. Objectives: We investigated the distribution of plasmid-mediated quinolone resistance (PMQR) genes from swine feedlots and their surrounding environment. Methods: We used a culture-independent method to identify PMQR genes and estimate their levels in wastewater from seven swine feedlot operations and corresponding wastewater-irrigated farm fields. Concentrations of (fluoro)quinolones in wastewater and soil samples were determined by ultra-performance liquid chromatography–electrospray tandem mass spectrometry. Results: The predominant PMQR genes in both the wastewater and soil samples were qnrD, qepA, and oqxB, whereas qnrS and oqxA were present only in wastewater samples. Absolute concentrations of all PMQR genes combined ranged from 1.66 × 107 to 4.06 × 108 copies/mL in wastewater and 4.06 × 106 to 9.52 × 107 copies/g in soil. Concentrations of (fluoro)quinolones ranged from 4.57 to 321 ng/mL in wastewater and below detection limit to 23.4 ng/g in soil. Significant correlations were found between the relative abundance of PMQR genes and (fluoro)quinolone concentrations (r = 0.71, p = 0.005) and the relative abundance of PMQR genes in paired wastewater and agricultural soil samples (r = 0.91, p = 0.005). Conclusions: Swine feedlot wastewater may be a source of PMQR genes that could facilitate the spread of antibiotic resistance. To our knowledge, this is the first study to examine the occurrence of PMQR genes in animal husbandry environments using a culture-independent method. PMID:22569244

  18. Genomic Comparison of Escherichia coli O104:H4 Isolates from 2009 and 2011 Reveals Plasmid, and Prophage Heterogeneity, Including Shiga Toxin Encoding Phage stx2

    PubMed Central

    Ahmed, Sanaa A.; Awosika, Joy; Baldwin, Carson; Bishop-Lilly, Kimberly A.; Biswas, Biswajit; Broomall, Stacey; Chain, Patrick S. G.; Chertkov, Olga; Chokoshvili, Otar; Coyne, Susan; Davenport, Karen; Detter, J. Chris; Dorman, William; Erkkila, Tracy H.; Folster, Jason P.; Frey, Kenneth G.; George, Matroner; Gleasner, Cheryl; Henry, Matthew; Hill, Karen K.; Hubbard, Kyle; Insalaco, Joseph; Johnson, Shannon; Kitzmiller, Aaron; Krepps, Michael; Lo, Chien-Chi; Luu, Truong; McNew, Lauren A.; Minogue, Timothy; Munk, Christine A.; Osborne, Brian; Patel, Mohit; Reitenga, Krista G.; Rosenzweig, C. Nicole; Shea, April; Shen, Xiaohong; Strockbine, Nancy; Tarr, Cheryl; Teshima, Hazuki; van Gieson, Eric; Verratti, Kathleen; Wolcott, Mark; Xie, Gary

    2012-01-01

    In May of 2011, an enteroaggregative Escherichia coli O104:H4 strain that had acquired a Shiga toxin 2-converting phage caused a large outbreak of bloody diarrhea in Europe which was notable for its high prevalence of hemolytic uremic syndrome cases. Several studies have described the genomic inventory and phylogenies of strains associated with the outbreak and a collection of historical E. coli O104:H4 isolates using draft genome assemblies. We present the complete, closed genome sequences of an isolate from the 2011 outbreak (2011C–3493) and two isolates from cases of bloody diarrhea that occurred in the Republic of Georgia in 2009 (2009EL–2050 and 2009EL–2071). Comparative genome analysis indicates that, while the Georgian strains are the nearest neighbors to the 2011 outbreak isolates sequenced to date, structural and nucleotide-level differences are evident in the Stx2 phage genomes, the mer/tet antibiotic resistance island, and in the prophage and plasmid profiles of the strains, including a previously undescribed plasmid with homology to the pMT virulence plasmid of Yersinia pestis. In addition, multiphenotype analysis showed that 2009EL–2071 possessed higher resistance to polymyxin and membrane-disrupting agents. Finally, we show evidence by electron microscopy of the presence of a common phage morphotype among the European and Georgian strains and a second phage morphotype among the Georgian strains. The presence of at least two stx2 phage genotypes in host genetic backgrounds that may derive from a recent common ancestor of the 2011 outbreak isolates indicates that the emergence of stx2 phage-containing E. coli O104:H4 strains probably occurred more than once, or that the current outbreak isolates may be the result of a recent transfer of a new stx2 phage element into a pre-existing stx2-positive genetic background. PMID:23133618

  19. Flexibility of KorA, a plasmid-encoded, global transcription regulator, in the presence and the absence of its operator.

    PubMed

    Rajasekar, Karthik V; Lovering, Andrew L; Dancea, Felician; Scott, David J; Harris, Sarah A; Bingle, Lewis E H; Roessle, Manfred; Thomas, Christopher M; Hyde, Eva I; White, Scott A

    2016-06-01

    The IncP (Incompatibility group P) plasmids are important carriers in the spread of antibiotic resistance across Gram-negative bacteria. Gene expression in the IncP-1 plasmids is stringently controlled by a network of four global repressors, KorA, KorB, TrbA and KorC interacting cooperatively. Intriguingly, KorA and KorB can act as co-repressors at varying distances between their operators, even when they are moved to be on opposite sides of the DNA. KorA is a homodimer with the 101-amino acid subunits, folding into an N-terminal DNA-binding domain and a C-terminal dimerization domain. In this study, we have determined the structures of the free KorA repressor and two complexes each bound to a 20-bp palindromic DNA duplex containing its consensus operator sequence. Using a combination of X-ray crystallography, nuclear magnetic resonance spectroscopy, SAXS and molecular dynamics calculations, we show that the linker between the two domains is very flexible and the protein remains highly mobile in the presence of DNA. This flexibility allows the DNA-binding domains of the dimer to straddle the operator DNA on binding and is likely to be important in cooperative binding to KorB. Unexpectedly, the C-terminal domain of KorA is structurally similar to the dimerization domain of the tumour suppressor p53. PMID:27016739

  20. Flexibility of KorA, a plasmid-encoded, global transcription regulator, in the presence and the absence of its operator

    PubMed Central

    Rajasekar, Karthik V.; Lovering, Andrew L.; Dancea, Felician; Scott, David J.; Harris, Sarah A.; Bingle, Lewis E.H.; Roessle, Manfred; Thomas, Christopher M.; Hyde, Eva I.; White, Scott A.

    2016-01-01

    The IncP (Incompatibility group P) plasmids are important carriers in the spread of antibiotic resistance across Gram-negative bacteria. Gene expression in the IncP-1 plasmids is stringently controlled by a network of four global repressors, KorA, KorB, TrbA and KorC interacting cooperatively. Intriguingly, KorA and KorB can act as co-repressors at varying distances between their operators, even when they are moved to be on opposite sides of the DNA. KorA is a homodimer with the 101-amino acid subunits, folding into an N-terminal DNA-binding domain and a C-terminal dimerization domain. In this study, we have determined the structures of the free KorA repressor and two complexes each bound to a 20-bp palindromic DNA duplex containing its consensus operator sequence. Using a combination of X-ray crystallography, nuclear magnetic resonance spectroscopy, SAXS and molecular dynamics calculations, we show that the linker between the two domains is very flexible and the protein remains highly mobile in the presence of DNA. This flexibility allows the DNA-binding domains of the dimer to straddle the operator DNA on binding and is likely to be important in cooperative binding to KorB. Unexpectedly, the C-terminal domain of KorA is structurally similar to the dimerization domain of the tumour suppressor p53. PMID:27016739

  1. Synergistic and Additive Effects of Chromosomal and Plasmid-Encoded Hemolysins Contribute to Hemolysis and Virulence in Photobacterium damselae subsp. damselae

    PubMed Central

    Rivas, Amable J.; Balado, Miguel; Lemos, Manuel L.

    2013-01-01

    Photobacterium damselae subsp. damselae causes infections and fatal disease in marine animals and in humans. Highly hemolytic strains produce damselysin (Dly) and plasmid-encoded HlyA (HlyApl). These hemolysins are encoded by plasmid pPHDD1 and contribute to hemolysis and virulence for fish and mice. In this study, we report that all the hemolytic strains produce a hitherto uncharacterized chromosome-encoded HlyA (HlyAch). Hemolysis was completely abolished in a single hlyAch mutant of a plasmidless strain and in a dly hlyApl hlyAch triple mutant. We found that Dly, HlyApl, and HlyAch are needed for full hemolytic values in strains harboring pPHDD1, and these values are the result of the additive effects between HlyApl and HlyAch, on the one hand, and of the synergistic effect of Dly with HlyApl and HlyAch, on the other hand. Interestingly, Dly-producing strains produced synergistic effects with strains lacking Dly production but secreting HlyA, constituting a case of the CAMP (Christie, Atkins, and Munch-Petersen) reaction. Environmental factors such as iron starvation and salt concentration were found to regulate the expression of the three hemolysins. We found that the contributions, in terms of the individual and combined effects, of the three hemolysins to hemolysis and virulence varied depending on the animal species tested. While Dly and HlyApl were found to be main contributors in the virulence for mice, we observed that the contribution of hemolysins to virulence for fish was mainly based on the synergistic effects between Dly and either of the two HlyA hemolysins rather than on their individual effects. PMID:23798530

  2. Cloning, nucleotide sequence, and expression of the plasmid-encoded genes for the two-component 2-halobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS.

    PubMed

    Haak, B; Fetzner, S; Lingens, F

    1995-02-01

    The two-component nonheme iron dioxygenase system 2-halobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS catalyzes the double hydroxylation of 2-halobenzoates with concomitant release of halogenide and carbon dioxide, yielding catechol. The gene cluster encoding this enzyme, cbdABC, was localized on a 70-kbp conjugative plasmid designated pBAH1. The nucleotide sequences of cbdABC and flanking regions were determined. In the deduced amino acid sequence of the large subunit of the terminal oxygenase component (CbdA), a conserved motif proposed to bind the Rieske-type [2Fe-2S] cluster was identified. In the NADH:acceptor reductase component (CbdC), a putative binding site for a chloroplast-type [2Fe-2S] center and possible flavin adenine dinucleotide- and NAD-binding domains were identified. The cbdABC sequences show significant homology to benABC, which encode benzoate 1,2-dioxygenase from Acinetobacter calcoaceticus (52% identity at the deduced amino acid level), and to xylXYZ, which encode toluate 1,2-dioxygenase from Pseudomonas putida mt-2 (51% amino acid identity). Recombinant pkT231 harboring cbdABC and flanking regions complemented a plasmid-free mutant of wild-type P. cepacia 2CBS for growth on 2-chlorobenzoate, and it also allowed recombinant P. putida KT2440 to metabolize 2-chlorobenzoate. Functional NADH:acceptor reductase and oxygenase components of 2-halobenzoate 1,2-dioxygenase were enriched from recombinant Pseudomonas clones. PMID:7530709

  3. Cloning, nucleotide sequence, and expression of the plasmid-encoded genes for the two-component 2-halobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS.

    PubMed Central

    Haak, B; Fetzner, S; Lingens, F

    1995-01-01

    The two-component nonheme iron dioxygenase system 2-halobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS catalyzes the double hydroxylation of 2-halobenzoates with concomitant release of halogenide and carbon dioxide, yielding catechol. The gene cluster encoding this enzyme, cbdABC, was localized on a 70-kbp conjugative plasmid designated pBAH1. The nucleotide sequences of cbdABC and flanking regions were determined. In the deduced amino acid sequence of the large subunit of the terminal oxygenase component (CbdA), a conserved motif proposed to bind the Rieske-type [2Fe-2S] cluster was identified. In the NADH:acceptor reductase component (CbdC), a putative binding site for a chloroplast-type [2Fe-2S] center and possible flavin adenine dinucleotide- and NAD-binding domains were identified. The cbdABC sequences show significant homology to benABC, which encode benzoate 1,2-dioxygenase from Acinetobacter calcoaceticus (52% identity at the deduced amino acid level), and to xylXYZ, which encode toluate 1,2-dioxygenase from Pseudomonas putida mt-2 (51% amino acid identity). Recombinant pkT231 harboring cbdABC and flanking regions complemented a plasmid-free mutant of wild-type P. cepacia 2CBS for growth on 2-chlorobenzoate, and it also allowed recombinant P. putida KT2440 to metabolize 2-chlorobenzoate. Functional NADH:acceptor reductase and oxygenase components of 2-halobenzoate 1,2-dioxygenase were enriched from recombinant Pseudomonas clones. PMID:7530709

  4. Characterization of the tyrosine recombinase MrpA encoded by the Streptomyces coelicolor A3(2) plasmid SCP2*.

    PubMed

    Warth, Lydia; Haug, Iris; Altenbuchner, Josef

    2011-03-01

    MrpA is the multimer resolution protein of the Streptomyces coelicolor A3(2) plasmid SCP2*. Previously, MrpA was found to significantly increase the stability of SCP2*-derived plasmids in Streptomyces lividans. The present report gives a functional characterization of MrpA. A sequence alignment revealed that MrpA shares highly conserved residues with members of the tyrosine recombinase family. After overexpression and Strep-tag purification, a DNase I footprint analysis and a gel mobility shift assay allowed for the identification of the 36-bp MrpA binding site mrpS. The mrpS site shows the configuration typical for tyrosine recombinases and contains two MrpA binding sites. The activity of MrpA was explored in vivo in E. coli cells and in vitro using purified MrpA. Depending on the position and orientation of the mrpS sites, three activities were detected: integration, resolution, and inversion. No accessory sites or proteins were required. Substitution of the conserved tyrosine (Y354F) by site-directed mutagenesis resulted in a complete loss of recombination activity but it still allowed the binding of MrpA to mrpS. The results define MrpA as a new site-specific tyrosine recombinase that acts with mrpS. In addition, we suggest that Y354 provides the nucleophile for DNA cleavage during recombination. PMID:21165603

  5. Photobacterium damselae subsp. damselae Major Virulence Factors Dly, Plasmid-Encoded HlyA, and Chromosome-Encoded HlyA Are Secreted via the Type II Secretion System

    PubMed Central

    Rivas, Amable J.; Vences, Ana; Husmann, Matthias; Lemos, Manuel L.

    2015-01-01

    Photobacterium damselae subsp. damselae is a marine bacterium that causes septicemia in marine animals and in humans. Previously, we had determined a major role of pPHDD1 plasmid-encoded Dly (damselysin) and HlyA (HlyApl) and the chromosome-encoded HlyA (HlyAch) hemolysins in virulence. However, the mechanisms by which these toxins are secreted remain unknown. In this study, we found that a mini-Tn10 transposon mutant in a plasmidless strain showing an impaired hemolytic phenotype contained an insertion in epsL, a component of a type II secretion system (T2SS). Reconstruction of the mutant by allelic exchange confirmed the specific involvement of epsL in HlyAch secretion. In addition, mutation of epsL in a pPHDD1-harboring strain caused an almost complete abolition of hemolytic activity against sheep erythrocytes, indicating that epsL plays a major role in secretion of the plasmid-encoded HlyApl and Dly. This was further demonstrated by analysis of different combinations of hemolysin gene mutants and by strain-strain complementation assays. We also found that mutation of the putative prepilin peptidase gene pilD severely affected hemolysis, which dropped at levels inferior to those of epsL mutants. Promoter expression analyses suggested that impairment of hemolysin secretion in epsL and pilD mutants might constitute a signal that affects hemolysin and T2SS gene expression at the transcriptional level. In addition, single epsL and pilD mutations caused a drastic decrease in virulence for mice, demonstrating a major role of T2SS and pilD in P. damselae subsp. damselae virulence. PMID:25583529

  6. Antibiotics.

    PubMed

    Hariprasad, Seenu M; Mieler, William F

    2016-01-01

    The Endophthalmitis Vitrectomy Study (EVS) provided ophthalmologists with evidence-based management strategies to deal with endophthalmitis for the first time. However, since the completion of the EVS, numerous unresolved issues remain. The use of oral antibiotics has important implications for the ophthalmologist, particularly in the prophylaxis and/or management of postoperative, posttraumatic, or bleb-associated bacterial endophthalmitis. One can reasonably conclude that significant intraocular penetration of an antibiotic after oral administration may be a property unique to the newer-generation fluoroquinolones. Prophylactic use of mupirocin nasal ointment resulted in significant reduction of conjunctival flora with or without preoperative topical 5% povidone-iodine preparation. Ocular fungal infections have traditionally been very difficult to treat due to limited therapeutic options both systemically and intravitreally. Because of its broad spectrum of coverage, low MIC90 levels for the organisms of concern, good tolerability, and excellent bioavailability, voriconazole through various routes of administration may be useful to the ophthalmologist in the primary treatment of or as an adjunct to the current management of ocular fungal infections. PMID:26501865

  7. The 2microm-plasmid-encoded Rep1 and Rep2 proteins interact with each other and colocalize to the Saccharomyces cerevisiae nucleus.

    PubMed Central

    Ahn, Y T; Wu, X L; Biswal, S; Velmurugan, S; Volkert, F C; Jayaram, M

    1997-01-01

    The efficient partitioning of the 2microm plasmid of Saccharomyces cerevisiae at cell division requires two plasmid-encoded proteins (Rep1p and Rep2p) and a cis-acting locus, REP3 (STB). By using protein hybrids containing fusions of the Rep proteins to green fluorescent protein (GFP), we show here that fluorescence from GFP-Rep1p or GFP-Rep2p is almost exclusively localized in the nucleus in a cir+ strain. Nuclear localization of GFP-Rep1p and GFP-Rep2p, though discernible, is less efficient in a cir(0) host. GFP-Rep2p or GFP-Rep1p is able to promote the stability of a 2microm circle-derived plasmid harboring REP1 or REP2, respectively, in a cir(0) background. Under these conditions, fluorescence from GFP-Rep2p or GFP-Rep1p is concentrated within the nucleus, as is the case in cir+ cells. This characteristic nuclear accumulation is not dependent on the expression of the FLP or RAF1 gene of the 2microm circle. Nuclear colocalization of Rep1p and Rep2p is consistent with the hypothesis that the two proteins directly or indirectly interact to form a functional bipartite or high-order protein complex. Immunoprecipitation experiments as well as baiting assays using GST-Rep hybrid proteins suggest a direct interaction between Rep1p and Rep2p which, in principle, may be modulated by other yeast proteins. Furthermore, these assays provide evidence for Rep1p-Rep1p and Rep2p-Rep2p associations as well. The sum of these interactions may be important in controlling the effective cellular concentration of the Rep1p-Rep2p complex. PMID:9393716

  8. Effects of Three Different Nucleoid-Associated Proteins Encoded on IncP-7 Plasmid pCAR1 on Host Pseudomonas putida KT2440

    PubMed Central

    Suzuki-Minakuchi, Chiho; Hirotani, Ryusuke; Shintani, Masaki; Takeda, Toshiharu; Takahashi, Yurika; Matsui, Kazuhiro; Vasileva, Delyana; Yun, Choong-Soo; Okada, Kazunori; Yamane, Hisakazu

    2015-01-01

    Nucleoid-associated proteins (NAPs), which fold bacterial DNA and influence gene transcription, are considered to be global transcriptional regulators of genes on both plasmids and the host chromosome. Incompatibility P-7 group plasmid pCAR1 carries genes encoding three NAPs: H-NS family protein Pmr, NdpA-like protein Pnd, and HU-like protein Phu. In this study, the effects of single or double disruption of pmr, pnd, and phu were assessed in host Pseudomonas putida KT2440. When pmr and pnd or pmr and phu were simultaneously disrupted, both the segregational stability and the structural stability of pCAR1 were markedly decreased, suggesting that Pmr, Pnd, and Phu act as plasmid-stabilizing factors in addition to their established roles in replication and partition systems. The transfer frequency of pCAR1 was significantly decreased in these double mutants. The segregational and structural instability of pCAR1 in the double mutants was recovered by complementation of pmr, whereas no recovery of transfer deficiency was observed. Comprehensive phenotype comparisons showed that the host metabolism of carbon compounds, which was reduced by pCAR1 carriage, was restored by disruption of the NAP gene(s). Transcriptome analyses of mutants indicated that transcription of genes for energy production, conversion, inorganic ion transport, and metabolism were commonly affected; however, how their products altered the phenotypes of mutants was not clear. The findings of this study indicated that Pmr, Pnd, and Phu act synergistically to affect pCAR1 replication, maintenance, and transfer, as well as to alter the host metabolic phenotype. PMID:25681185

  9. Increased B and T Cell Responses in M. bovis Bacille Calmette-Guérin Vaccinated Pigs Co-Immunized with Plasmid DNA Encoding a Prototype Tuberculosis Antigen

    PubMed Central

    Bruffaerts, Nicolas; Pedersen, Lasse E.; Vandermeulen, Gaëlle; Préat, Véronique; Stockhofe-Zurwieden, Norbert; Huygen, Kris; Romano, Marta

    2015-01-01

    The only tuberculosis vaccine currently available, bacille Calmette-Guérin (BCG) is a poor inducer of CD8+ T cells, which are particularly important for the control of latent tuberculosis and protection against reactivation. As the induction of strong CD8+ T cell responses is a hallmark of DNA vaccines, a combination of BCG with plasmid DNA encoding a prototype TB antigen (Ag85A) was tested. As an alternative animal model, pigs were primed with BCG mixed with empty vector or codon-optimized pAg85A by the intradermal route and boosted with plasmid delivered by intramuscular electroporation. Control pigs received unformulated BCG. The BCG-pAg85A combination stimulated robust and sustained Ag85A specific antibody, lymphoproliferative, IL-6, IL-10 and IFN-γ responses. IgG1/IgG2 antibody isotype ratio reflected the Th1 helper type biased response. T lymphocyte responses against purified protein derivative of tuberculin (PPD) were induced in all (BCG) vaccinated animals, but responses were much stronger in BCG-pAg85A vaccinated pigs. Finally, Ag85A-specific IFN-γ producing CD8+ T cells were detected by intracellular cytokine staining and a synthetic peptide, spanning Ag85A131-150 and encompassing two regions with strong predicted SLA-1*0401/SLA-1*0801 binding affinity, was promiscuously recognized by 6/6 animals vaccinated with the BCG-pAg85A combination. Our study provides a proof of concept in a large mammalian species, for a new Th1 and CD8+ targeting tuberculosis vaccine, based on BCG-plasmid DNA co-administration. PMID:26172261

  10. A Recombinant DNA Plasmid Encoding the sIL-4R-NAP Fusion Protein Suppress Airway Inflammation in an OVA-Induced Mouse Model of Asthma.

    PubMed

    Liu, Xin; Fu, Guo; Ji, Zhenyu; Huang, Xiabing; Ding, Cong; Jiang, Hui; Wang, Xiaolong; Du, Mingxuan; Wang, Ting; Kang, Qiaozhen

    2016-08-01

    Asthma is a chronic inflammatory airway disease. It was prevalently perceived that Th2 cells played the crucial role in asthma pathogenesis, which has been identified as the important target for anti-asthma therapy. The soluble IL-4 receptor (sIL-4R), which is the decoy receptor for Th2 cytokine IL-4, has been reported to be effective in treating asthma in phase I/II clinical trail. To develop more efficacious anti-asthma agent, we attempt to test whether the Helicobacter pylori neutrophil-activating protein (HP-NAP), a novel TLR2 agonist, would enhance the efficacy of sIL-4R in anti-asthma therapy. In our work, we constructed a pcDNA3.1-sIL-4R-NAP plasmid, named PSN, encoding fusion protein of murine sIL-4R and HP-NAP. PSN significantly inhibited airway inflammation, decreased the serum OVA-specific IgE levels and remodeled the Th1/Th2 balance. Notably, PSN is more effective on anti-asthma therapy comparing with plasmid only expressing sIL-4R. PMID:27209195

  11. DNA vaccination of mice with a plasmid encoding Puumala hantavirus nucleocapsid protein mimics the B-cell response induced by virus infection.

    PubMed

    Koletzki, D; Schirmbeck, R; Lundkvist, A; Meisel, H; Krüger, D H; Ulrich, R

    2001-11-17

    Inoculation of naked DNA has been applied for the development of prophylactic and therapeutic vaccines against different viral infections. To study the humoral immune response induced by DNA vaccination we cloned the entire nucleocapsid protein-encoding sequence of the Puumala hantavirus strain Vranica/Hällnäs into the CMV promoter-driven expression unit of the plasmid pcDNA3, generating pcDNA3-VR1. A single dose injection of 50 microg of plasmid DNA into each M. tibialis anterior of BALB/c mice induced a high-titered antibody response against the nucleocapsid protein as documented 6 and 11 weeks after immunisation. PEPSCAN analysis of a serum pool of the pcDNA3-VR1-vaccinated animals revealed antibodies reacting with epitopes covering the whole nucleocapsid protein. The epitope-specificity of the immune response induced by DNA vaccination seems to reflect the antibody response in experimentally virus-infected bank voles (the natural host of the Puumala virus) and humans. The data suggest that DNA vaccination could be used for the identification of highly immunogenic epitopes in viral proteins. PMID:11035190

  12. DNA in Antibiotic Preparations: Absence of Intact Resistance Genes

    PubMed Central

    Woegerbauer, Markus; Lagler, Heimo; Graninger, Wolfgang; Burgmann, Heinz

    2005-01-01

    Fragments of erm(E2), otrA, and aph(6) shorter than 400 bp and producer strain-specific rRNA genes were amplified from various antibiotics. The amount of genetic material and the sizes of amplicons recovered from murine feces after oral administration of a β-lactamase-encoding plasmid indicated substantial DNA degradation in the mammalian gastrointestinal tract. These observations imply that antibiotics are no major source for horizontal resistance gene transfer in clinical settings. PMID:15917552

  13. A plasmid-encoded two-component regulatory system involved in copper-inducible transcription in Lactococcus lactis.

    PubMed

    Khunajakr, N; Liu, C Q; Charoenchai, P; Dunn, N W

    1999-03-18

    Two regulatory genes (lcoR and lcoS) were identified from a plasmid-borne lactococcal copper resistance determinant and characterized by transcriptional fusion to the promoterless chloramphenicol acetyltransferase gene (cat). RT-PCR analysis indicates that lcoR and lcoS are organized within an operon, controlling the transcription of cat in a copper-inducible manner. The amino acid sequences deduced from lcoR and lcoS show homology to the response and sensor proteins of known two-component regulatory systems. Deletion within either lcoS or both genes inactivated the copper-dependent activity, suggesting the presence of no trans-acting lcoR and lcoS homologs in the lactococcal host chromosome. The transcription start site involved in copper induction was mapped by primer extension. PMID:10095123

  14. Antibiotic-Resistant Klebsiella pneumoniae and Escherichia coli High-Risk Clones and an IncFIIk Mosaic Plasmid Hosting Tn1 (blaTEM-4) in Isolates from 1990 to 2004

    PubMed Central

    Rodríguez, Irene; Novais, Ângela; Lira, Felipe; Valverde, Aránzazu; Curião, Tânia; Martínez, José Luis; Baquero, Fernando; Cantón, Rafael

    2015-01-01

    We describe the genetic background of blaTEM-4 and the complete sequence of pRYC11::blaTEM-4, a mosaic plasmid that is highly similar to pKpQIL-like variants, predominant among TEM-4 producers in a Spanish hospital (1990 to 2004), which belong to Klebsiella pneumoniae and Escherichia coli high-risk clones responsible for the current spread of different antibiotic resistance genes. Predominant populations of plasmids and host adapted clonal lineages seem to have greatly contributed to the spread of resistance to extended-spectrum cephalosporins. PMID:25691645

  15. Studies on the isopropylbenzene 2,3-dioxygenase and the 3-isopropylcatechol 2,3-dioxygenase genes encoded by the linear plasmid of Rhodococcus erythropolis BD2.

    PubMed

    Kesseler, M; Dabbs, E R; Averhoff, B; Gottschalk, G

    1996-11-01

    The enzymes responsible for the degradation of isopropylbenzene (IPB) and co-oxidation of trichloroethene (TCE) by Rhodococcus erythropolis BD2 are encoded by the linear plasmid pBD2. Fragments containing IPB catabolic genes were cloned from pBD2 and the nucleotide sequence was determined. By means of database searches and expression of the cloned genes in recombinant strains, we identified five clustered genes, ipbA1A2A3A4C, which encode the three components of the IPB 2,3-dioxygenase system, reductaseIPB (ipbA4), ferredoxinIPB (ipbA3) and the two subunits of the terminal dioxygenase (ipbA1A2), as well as the 3-isopropylcatechol (IPC) 2,3-dioxygenase (ipbC). The protein sequences deduced from the ipbA1A2A3A4C gene cluster exhibited significant homology with the corresponding proteins of analogous degradative pathways in Gram-negative and Gram-positive bacteria, but the gene order differed from most of them. IPB 2,3-dioxygenase and 3-IPC 2,3-dioxygenase could both be expressed in Escherichia coli, but the IPB 2,3-dioxygenase activities were too low to be detected by polarographic and TCE degradative means. However, inhibitor studies with the R. erythropolis BD2 wild-type are in accordance with the involvement of the IPB 2,3-dioxygenase in TCE oxidation. PMID:8969521

  16. A plasmid of Rhizobium meliloti 41 encodes catabolism of two compounds from root exudate of Calystegium sepium.

    PubMed Central

    Tepfer, D; Goldmann, A; Pamboukdjian, N; Maille, M; Lepingle, A; Chevalier, D; Dénarié, J; Rosenberg, C

    1988-01-01

    Our objectives were to identify substances produced by plant roots that might act as nutritional mediators of specific plant-bacterium relationships and to delineate the bacterial genes responsible for catabolizing these substances. We discovered new compounds, which we call calystegins, that have the characteristics of nutritional mediators. They were detected in only 3 of 105 species of higher plants examined: Calystegia sepium, Convolvulus arvensis (both of the Convolvulaceae family), and Atropa belladonna. Calystegins are abundant in organs in contact with the rhizosphere and are not found, or are observed only in small quantities, in aerial plant parts. Just as the synthesis of calystegins is infrequent in the plant kingdom, their catabolism is rare among rhizosphere bacteria that associate with plants and influence their growth. Of 42 such bacteria tested, only one (Rhizobium meliloti 41) was able to catabolize calystegins and use them as a sole source of carbon and nitrogen. The calystegin catabolism gene(s) (cac) in this strain is located on a self-transmissible plasmid (pRme41a), which is not essential to nitrogen-fixing symbiosis with legumes. We suggest that under natural conditions calystegins provide an exclusive carbon and nitrogen source to rhizosphere bacteria which are able to catabolize these compounds. Calystegins (and the corresponding microbial catabolic genes) might be used to analyze and possibly modify rhizosphere ecology. Images PMID:2981046

  17. Plasmid detection, characterization and ecology

    PubMed Central

    Smalla, Kornelia; Jechalke, Sven; Top, Eva M.

    2015-01-01

    Plasmids are important vehicles for rapid adaptation of bacterial populations to changing environmental conditions. To reduce the cost of plasmid carriage, it is thought that only a fraction of a local population carries plasmids or is permissive to plasmid uptake. Plasmids provide various accessory traits which might be beneficial under particular conditions. The genetic variation generated by plasmid carriage within populations ensures the robustness towards environmental change. Plasmid-mediated gene transfer plays an important role not only in the mobilization and dissemination of antibiotic resistance genes but also in the spread of degradative pathways and pathogenicity determinants of pathogens. Here we summarize the state-of-the-art methods to study the occurrence, abundance and diversity of plasmids in environmental bacteria. Increasingly, cultivation independent total community DNA methods are being used to characterize and quantify the diversity and abundance of plasmids in relation to various biotic and abiotic factors. An improved understanding of the ecology of plasmids and their hosts is crucial in the development of intervention strategies for antibiotic resistance gene spread. We discuss the potentials and limitations of methods used to determine the host range of plasmids as the ecology of plasmids is tightly linked to their hosts. The recent advances in sequencing technologies provide an enormous potential for plasmid classification, diversity and evolution studies but numerous challenges still exist. PMID:26104560

  18. Cloning and genetic organization of the bacteriocin 31 determinant encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pYI17.

    PubMed Central

    Tomita, H; Fujimoto, S; Tanimoto, K; Ike, Y

    1996-01-01

    The conjugative plasmid pYI17 (57.5 kb) isolated from Enterococcus faecalis YI717 confers a pheromone response on the host and encodes the bacteriocin 31 gene. Bacteriocin 31 is active against E. hirae 9790, E. faecium, and Listeria monocytogenes. pYI17 was mapped physically by restriction enzyme analysis and the relational clone method. Deletion mutant and sequence analyses of the EcoRI fragment B cloned from pYl17 revealed that a 1.0-kb fragment contained the bacteriocin gene (bacA) and an immunity gene (bacB). This fragment induced bacteriocin activity in E. faecalis OG1X and E. hirae 9790. The bacA gene is located on the pYI17 physical map between 3.37 and 3.57 kb, and bacB is located between 3.59 kb and 3.87 kb, bacA encodes 67 amino acids, and bacB encodes 94 amino acids. The deduced amino acid sequence of the bacA protein contained a series of hydrophobic residues typical of a signal sequence at its amino terminus. The predicted mature bacA protein (43 amino acids) showed sequence homology with the membrane-active class II bacteriocins of lactic acid bacteria. Analysis of Tn5 insertion mutants and the resulting transcripts indicated that these genes are transcribed as an operon composed of bacA, bacB, and an open reading frame located downstream of bacB designated ORF3. PMID:8655558

  19. Identification and classification of bacterial Type III toxin–antitoxin systems encoded in chromosomal and plasmid genomes

    PubMed Central

    Blower, Tim R.; Short, Francesca L.; Rao, Feng; Mizuguchi, Kenji; Pei, Xue Y.; Fineran, Peter C.; Luisi, Ben F.; Salmond, George P. C.

    2012-01-01

    Toxin–antitoxin systems are widespread in bacteria and archaea. They perform diverse functional roles, including the generation of persistence, maintenance of genetic loci and resistance to bacteriophages through abortive infection. Toxin–antitoxin systems have been divided into three types, depending on the nature of the interacting macromolecules. The recently discovered Type III toxin–antitoxin systems encode protein toxins that are inhibited by pseudoknots of antitoxic RNA, encoded by short tandem repeats upstream of the toxin gene. Recent studies have identified the range of Type I and Type II systems within current sequence databases. Here, structure-based homology searches were combined with iterative protein sequence comparisons to obtain a current picture of the prevalence of Type III systems. Three independent Type III families were identified, according to toxin sequence similarity. The three families were found to be far more abundant and widespread than previously known, with examples throughout the Firmicutes, Fusobacteria and Proteobacteria. Functional assays confirmed that representatives from all three families act as toxin–antitoxin loci within Escherichia coli and at least two of the families confer resistance to bacteriophages. This study shows that active Type III toxin–antitoxin systems are far more diverse than previously known, and suggests that more remain to be identified. PMID:22434880

  20. Plasmid profiles of antibiotic-resistant Shigella dysenteriae types 2, 3, 4, 6 and 7 isolated in Ethiopia during 1976-85.

    PubMed Central

    Gebre-Yohannes, A.; Drasar, B. S.

    1990-01-01

    Plasmid profile analysis by agarose gel electrophoresis was carried out on 37 drug-resistant strains of Shigella dysenteriae types 2, 3, 4, 6 and 7. These strains were collected between 1976 and 1985 in Addis Ababa, Ethiopia. The plasmid profile of S. dysenteriae type 2 strains with R-type CSSuT did not show middle-sized plasmids likely to code for CSSuT resistance. All strains contained a large plasmid of about 120 megadaltons (MDa), and a cryptic plasmid of about 2.2 MDa. The plasmid profiles of S. dysenteriae type 3 with R-types ACSSuT, SSuT and SSu showed a 4.2 MDa SSu-determinant, which was demonstrated in Escherichia coli K12 recipients resulting from triparental crosses. The ACT determinant in S. dysenteriae type 3 with R-type ACSSuT is probably chromosomally mediated. Cryptic plasmids of about 3.0 and 2.2 MDa were found in all S. dysenteriae type 3 isolates. The 4.2 MDa plasmid featured prominently in the plasmid profiles of S. dysenteriae types 4, 6 and 7 with R-types SSuT and SSu. However, this plasmid was not mobilizable by triparental crosses. There was a relative paucity of transferable plasmids in non-Shiga bacillus isolates. However, incompatibility group N plasmids, coding for tetracycline resistance, were detected. PMID:2200703

  1. Cloning and genetic analysis of the UV resistance determinant (uvr) encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pAD1.

    PubMed Central

    Ozawa, Y; Tanimoto, K; Fujimoto, S; Tomita, H; Ike, Y

    1997-01-01

    The conjugative pheromone-responsive plasmid pAD1 (59.6 kb) of Enterococcus faecalis encodes a UV resistance determinant (uvr) in addition to the hemolysin-bacteriocin determinant. pAD1 enhances the UV resistance of wild-type E. faecalis FA2-2 and E. faecalis UV202, which is a UV-sensitive derivative of E. faecalis JH2-2. A 2.972-kb fragment cloned from between 27.7 and 30.6 kb of the pAD1 map conferred UV resistance function on UV202. Sequence analysis showed that the cloned fragment contained three open reading frames designated uvrA, uvrB, and uvrC. The uvrA gene is located on the pAD1 map between 28.1 and 29.4 kb. uvrB is located between 30.1 and 30.3 kb, and uvrC is located between 30.4 and 30.6 kb on the pAD1 map. The uvrA, uvrB, and uvrC genes encode sequences of 442, 60, and 74 amino acids, respectively. The deduced amino acid sequence of the uvrA-encoded protein showed 20% homology of the identical residues with the E. coli UmuC protein. Tn917 insertion mutagenesis and deletion mutant analysis of the cloned fragment showed that uvrA conferred UV resistance. A palindromic sequence, 5'-GAACNGTTC-3', which is identical to the consensus sequence found within the putative promoter region of the Bacillus subtilis DNA damage-inducible genes, was located within the promoter region of uvrA. Two uvrA transcripts of different lengths (i.e., 1.54 and 2.14 kb) which terminate at different points downstream of uvrA were detected in UV202 carrying the deletion mutant containing uvrA. The longer transcript, 2.14 kb, was not detected in UV202 carrying the deletion mutant containing both uvrA and uvrB, which suggests that uvrB encodes a terminator for the uvrA transcript. The uvrA transcript was not detected in any significant quantity in UV202 carrying the cloned fragment containing uvrA, uvrB, and uvrC; on the other hand, the 1.54-kb uvrA transcript was detected in the strain exposed to mitomycin C, which suggests that the UvrC protein functions as a regulator of uvr

  2. Purification of F plasmid-encoded native TraC from Escherichia coli by affinity chromatography on calmodulin Sepharose.

    PubMed

    Hellstern, Simon; Mutzel, Rupert

    2016-06-01

    We have enriched several native bacterial proteins from Escherichia coli by chromatography on the immobilized eukaryotic Ca(2+)-binding protein, calmodulin. These bacterial proteins bound in a Ca(2+)-dependent manner to calmodulin, and were released by the addition of the Ca(2+)-chelator, EGTA, similar to many eukaryotic calmodulin-binding proteins. One of the bacterial proteins, F factor-encoded TraC, was purified to apparent homogeneity by an additional chromatographic step, anion exchange chromatography on MonoQ. Experiments with four chemically distinct calmodulin antagonists (R24571, Compound 48/80, melittin, and W7) showed that all of these substances inhibited the binding of purified TraC to calmodulin at effective concentrations comparable to those required for inhibiting in vitro binding of eukaryotic calmodulin-binding proteins. Three further bacterial proteins were identified as calmodulin-binding proteins: SecA, GlpD, and GlpC. We suggest that also these native bacterial proteins might be isolated by the unusual purification procedure including affinity chromatography on calmodulin Sepharose. Whether the identified proteins bind to, and are regulated by, putative bacterial calmodulin-like proteins in Escherichia coli remains to be established. PMID:26892535

  3. DNA based vaccination with a cocktail of plasmids encoding immunodominant Leishmania (Leishmania) major antigens confers full protection in BALB/c mice.

    PubMed

    Ahmed, Sami Ben Hadj; Touihri, Leila; Chtourou, Yessine; Dellagi, Koussay; Bahloul, Chokri

    2009-01-01

    Despite the lack of effective vaccines against parasitic diseases, the prospects of developing a vaccine against leishmaniasis are still high. With this objective, we have tested four DNA based candidate vaccines encoding to immunodominant leishmania antigens (LACKp24, TSA, LmSTI1 and CPa). These candidates have been previously reported as capable of eliciting at least partial protections in the BALB/c mice model of experimental cutaneous leishmaniasis. When tested under similar experimental conditions, all of them were able to induce similar partial protective effects, but none could induce a full protection. In order to improve the level of protection we have explored the approach of DNA based vaccination with different cocktails of plasmids encoding to the different immunodominant Leishmania antigens. A substantial increase of protection was achieved when the cocktail is composed of all of the four antigens; however, no full protection was achieved when mice were challenged with a high dose of parasite in their hind footpad. The full protection was only achieved after a challenge with a low parasitic dose in the dermis of the ear. It was difficult to determine clear protection correlates, other than the mixture of immunogens induced specific Th1 immune responses against each component. Therefore, such an association of antigens increased the number of targeted epitopes by the immune system with the prospects that the responses are at least additive if not synergistic. Even though, any extrapolation of this approach when applied to other animal or human models is rather hazardous, it undoubtedly increases the hopes of developing an effective leishmania vaccine. PMID:18951941

  4. Genome Sequencing of Xanthomonas vasicola Pathovar vasculorum Reveals Variation in Plasmids and Genes Encoding Lipopolysaccharide Synthesis, Type-IV Pilus and Type-III Secretion Effectors

    PubMed Central

    Wasukira, Arthur; Coulter, Max; Al-Sowayeh, Noorah; Thwaites, Richard; Paszkiewicz, Konrad; Kubiriba, Jerome; Smith, Julian; Grant, Murray; Studholme, David J.

    2014-01-01

    Xanthomonas vasicola pathovar vasculorum (Xvv) is the bacterial agent causing gumming disease in sugarcane. Here, we compare complete genome sequences for five isolates of Xvv originating from sugarcane and one from maize. This identified two distinct types of lipopolysaccharide synthesis gene clusters among Xvv isolates: one is similar to that of Xanthomonas axonopodis pathovar citri (Xac) and is probably the ancestral type, while the other is similar to those of the sugarcane-inhabiting species, Xanthomonas sacchari. Four of six Xvv isolates harboured sequences similar to the Xac plasmid, pXAC47, and showed a distinct Type-IV pilus (T4P) sequence type, whereas the T4P locus of the other two isolates resembled that of the closely related banana pathogen, Xanthomonas campestris pathovar musacearum (Xcm). The Xvv isolate from maize has lost a gene encoding a homologue of the virulence effector, xopAF, which was present in all five of the sugarcane isolates, while xopL contained a premature stop codon in four out of six isolates. These findings shed new light on evolutionary events since the divergence of Xvv and Xcm, as well as further elucidating the relationships between the two closely related pathogens. PMID:25437615

  5. Genome Sequencing of Xanthomonas vasicola Pathovar vasculorum Reveals Variation in Plasmids and Genes Encoding Lipopolysaccharide Synthesis, Type-IV Pilus and Type-III Secretion Effectors.

    PubMed

    Wasukira, Arthur; Coulter, Max; Al-Sowayeh, Noorah; Thwaites, Richard; Paszkiewicz, Konrad; Kubiriba, Jerome; Smith, Julian; Grant, Murray; Studholme, David J

    2014-01-01

    Xanthomonas vasicola pathovar vasculorum (Xvv) is the bacterial agent causing gumming disease in sugarcane. Here, we compare complete genome sequences for five isolates of Xvv originating from sugarcane and one from maize. This identified two distinct types of lipopolysaccharide synthesis gene clusters among Xvv isolates: one is similar to that of Xanthomonas axonopodis pathovar citri (Xac) and is probably the ancestral type, while the other is similar to those of the sugarcane-inhabiting species, Xanthomonas sacchari. Four of six Xvv isolates harboured sequences similar to the Xac plasmid, pXAC47, and showed a distinct Type-IV pilus (T4P) sequence type, whereas the T4P locus of the other two isolates resembled that of the closely related banana pathogen, Xanthomonas campestris pathovar musacearum (Xcm). The Xvv isolate from maize has lost a gene encoding a homologue of the virulence effector, xopAF, which was present in all five of the sugarcane isolates, while xopL contained a premature stop codon in four out of six isolates. These findings shed new light on evolutionary events since the divergence of Xvv and Xcm, as well as further elucidating the relationships between the two closely related pathogens. PMID:25437615

  6. Genes encoding conserved hypothetical proteins localized in the conjugative transfer region of plasmid pRet42a from Rhizobium etli CFN42 participate in modulating transfer and affect conjugation from different donors

    PubMed Central

    López-Fuentes, Eunice; Torres-Tejerizo, Gonzalo; Cervantes, Laura; Brom, Susana

    2015-01-01

    Among sequenced genomes, it is common to find a high proportion of genes encoding proteins that cannot be assigned a known function. In bacterial genomes, genes related to a similar function are often located in contiguous regions. The presence of genes encoding conserved hypothetical proteins (chp) in such a region may suggest that they are related to that particular function. Plasmid pRet42a from Rhizobium etli CFN42 is a conjugative plasmid containing a segment of approximately 30 Kb encoding genes involved in conjugative transfer. In addition to genes responsible for Dtr (DNA transfer and replication), Mpf (Mating pair formation) and regulation, it has two chp-encoding genes (RHE_PA00163 and RHE_PA00164) and a transcriptional regulator (RHE_PA00165). RHE_PA00163 encodes an uncharacterized protein conserved in bacteria that presents a COG4634 conserved domain, and RHE_PA00164 encodes an uncharacterized conserved protein with a DUF433 domain of unknown function. RHE_PA00165 presents a HTH_XRE domain, characteristic of DNA-binding proteins belonging to the xenobiotic response element family of transcriptional regulators. Interestingly, genes similar to these are also present in transfer regions of plasmids from other bacteria. To determine if these genes participate in conjugative transfer, we mutagenized them and analyzed their conjugative phenotype. A mutant in RHE_PA00163 showed a slight (10 times) but reproducible increase in transfer frequency from Rhizobium donors, while mutants in RHE_PA00164 and RHE_PA00165 lost their ability to transfer the plasmid from some Agrobacterium donors. Our results indicate that the chp-encoding genes located among conjugation genes are indeed related to this function. However, the participation of RHE_PA00164 and RHE_PA00165 is only revealed under very specific circumstances, and is not perceived when the plasmid is transferred from the original host. RHE_PA00163 seems to be a fine-tuning modulator for conjugative transfer

  7. The complete plasmid sequences of Salmonella enterica serovar Typhimurium U288.

    PubMed

    Hooton, Steven P T; Timms, Andrew R; Cummings, Nicola J; Moreton, Joanna; Wilson, Ray; Connerton, Ian F

    2014-08-28

    Salmonella enterica Serovar Typhimurium U288 is an emerging pathogen of pigs. The strain contains three plasmids of diverse origin that encode traits that are of concern for food security and safety, these include antibiotic resistant determinants, an array of functions that can modify cell physiology and permit genetic mobility. At 148,711 bp, pSTU288-1 appears to be a hybrid plasmid containing a conglomerate of genes found in pSLT of S. Typhimurium LT2, coupled with a mosaic of horizontally-acquired elements. Class I integron containing gene cassettes conferring resistance against clinically important antibiotics and compounds are present in pSTU288-1. A curious feature of the plasmid involves the deletion of two genes encoded in the Salmonella plasmid virulence operon (spvR and spvA) following the insertion of a tnpA IS26-like element coupled to a blaTEM gene. The spv operon is considered to be a major plasmid-encoded Salmonella virulence factor that is essential for the intracellular lifecycle. The loss of the positive regulator SpvR may impact on the pathogenesis of S. Typhimurium U288. A second 11,067 bp plasmid designated pSTU288-2 contains further antibiotic resistance determinants, as well as replication and mobilization genes. Finally, a small 4675 bp plasmid pSTU288-3 was identified containing mobilization genes and a pleD-like G-G-D/E-E-F conserved domain protein that modulate intracellular levels of cyclic di-GMP, and are associated with motile to sessile transitions in growth. PMID:25175817

  8. Complete Nucleotide Sequence of pGA45, a 140,698-bp IncFIIY Plasmid Encoding bla IMI-3-Mediated Carbapenem Resistance, from River Sediment.

    PubMed

    Dang, Bingjun; Mao, Daqing; Luo, Yi

    2016-01-01

    Plasmid pGA45 was isolated from the sediments of Haihe River using Escherichia coli CV601 (gfp-tagged) as recipients and indigenous bacteria from sediment as donors. This plasmid confers reduced susceptibility to imipenem which belongs to carbapenem group. Plasmid pGA45 was fully sequenced on an Illumina HiSeq 2000 sequencing system. The complete sequence of plasmid pGA45 was 140,698 bp in length with an average G + C content of 52.03%. Sequence analysis shows that pGA45 belongs to IncFIIY group and harbors a backbone region which shares high homology and gene synteny to several other IncF plasmids including pNDM1_EC14653, pYDC644, pNDM-Ec1GN574, pRJF866, pKOX_NDM1, and pP10164-NDM. In addition to the backbone region, plasmid pGA45 harbors two notable features including one bla IMI-3-containing region and one type VI secretion system region. The bla IMI-3-containing region is responsible for bacteria carbapenem resistance and the type VI secretion system region is probably involved in bacteria virulence, respectively. Plasmid pGA45 represents the first complete nucleotide sequence of the bla IMI-harboring plasmid from environment sample and the sequencing of this plasmid provided insight into the architecture used for the dissemination of bla IMI carbapenemase genes. PMID:26941718

  9. Complete Nucleotide Sequence of pGA45, a 140,698-bp IncFIIY Plasmid Encoding blaIMI-3-Mediated Carbapenem Resistance, from River Sediment

    PubMed Central

    Dang, Bingjun; Mao, Daqing; Luo, Yi

    2016-01-01

    Plasmid pGA45 was isolated from the sediments of Haihe River using Escherichia coli CV601 (gfp-tagged) as recipients and indigenous bacteria from sediment as donors. This plasmid confers reduced susceptibility to imipenem which belongs to carbapenem group. Plasmid pGA45 was fully sequenced on an Illumina HiSeq 2000 sequencing system. The complete sequence of plasmid pGA45 was 140,698 bp in length with an average G + C content of 52.03%. Sequence analysis shows that pGA45 belongs to IncFIIY group and harbors a backbone region which shares high homology and gene synteny to several other IncF plasmids including pNDM1_EC14653, pYDC644, pNDM-Ec1GN574, pRJF866, pKOX_NDM1, and pP10164-NDM. In addition to the backbone region, plasmid pGA45 harbors two notable features including one blaIMI-3-containing region and one type VI secretion system region. The blaIMI-3-containing region is responsible for bacteria carbapenem resistance and the type VI secretion system region is probably involved in bacteria virulence, respectively. Plasmid pGA45 represents the first complete nucleotide sequence of the blaIMI-harboring plasmid from environment sample and the sequencing of this plasmid provided insight into the architecture used for the dissemination of blaIMI carbapenemase genes. PMID:26941718

  10. Molecular analysis of the bacteriocin-encoding plasmid pDGL1 from Enterococcus durans and genetic characterization of the durancin locus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enterococci constitute a significant component of lactic acid bacteria normally present in the intestinal microflora and include strains that produce bacteriocins. The genetic determinants for durancin GL in Enterococcus durans 41D were identified on the 8,347 bp plasmid pDGL1 by plasmid curing exp...

  11. In Vivo Expression of and Cell-Mediated Immune Responses to the Plasmid-Encoded Virulence-Associated Proteins of Rhodococcus equi in Foals▿

    PubMed Central

    Jacks, Stephanie; Giguère, Steeve; Prescott, John F.

    2007-01-01

    Rhodococcus equi is a facultative intracellular pathogen that causes pneumonia in foals but does not induce disease in adult horses. Virulence of R. equi depends on the presence of a large plasmid, which encodes a family of seven virulence-associated proteins (VapA and VapC to VapH). Eradication of R. equi from the lungs depends on gamma interferon (IFN-γ) production by T lymphocytes. The objectives of the present study were to determine the relative in vivo expression of the vap genes of R. equi in the lungs of infected foals, to determine the recall response of bronchial lymph node (BLN) lymphocytes from foals and adult horses to each of the Vap proteins, and to compare the cytokine profiles of proliferating lymphocytes between foals and adult horses. vapA, vapD, and vapG were preferentially expressed in the lungs of infected foals, and expression of these genes in the lungs was significantly (P < 0.05) higher than that achieved during in vitro growth. VapA and VapC induced the strongest lymphoproliferative responses for foals and adult horses. There was no significant difference in recall lymphoproliferative responses or IFN-γ mRNA expression by bronchial lymph node lymphocytes between foals and adults. In contrast, interleukin 4 (IL-4) expression was significantly higher for adults than for foals for each of the Vap proteins. The ratio of IFN-γ to IL-4 was significantly higher for foals than for adult horses for most Vap proteins. Therefore, foals are immunocompetent and are capable of mounting lymphoproliferative responses of the same magnitude and cytokine phenotype as those of adult horses. PMID:17301216

  12. Effects of DDA, CpG-ODN, and plasmid-encoded chicken IFN-gamma on protective immunity by a DNA vaccine against IBDV in chickens.

    PubMed

    Roh, Ha Jung; Sung, Haan Woo; Kwon, Hyuk Moo

    2006-12-01

    This study examined the adjuvant effects of dimethyl dioctadecyl ammonium bromide (DDA), CpG oligodeoxynucleotides (CpG-ODN), and chicken interferon-gamma (ChIFN-gamma) on a DNA vaccine (pcDNA-VP243) against the infectious bursal disease virus (IBDV). A plasmid encoding chicken IFN-ã was constructed. Twice at 2-week intervals, two-week-old chickens were injected intramuscularly and intraperitoneally with either a DNA vaccine alone or a DNA vaccine together with the respective adjuvants. On week 2 after the second immunization, the chickens were orally challenged with the highly virulent IBDV. The groups that received the DNA vaccines plus either DDA or CpG-ODN showed significantly lower survival rates than the group that received the DNA vaccine alone. However, the survival rates for the DNA vaccine alone and for the DNA vaccine plus ChIFN-gamma were similar. The chickens had no detectable antibodies to the IBDV before the challenge but all the surviving chickens in all groups except for the normal control group showed the induction of antibodies to the IBDV at day 10 after the challenge. As judged by the lymphocyte proliferation assays using the a WST-8 solution performed on the peripheral blood and splenic lymphocytes, the stimulation indices (SI) of the peripheral blood lymphocytes in all groups except for the normal control group were similar immediately before the challenge. At 10 days post-challenge, the SI for DNA vaccine plus either CpG-ODN or ChIFN-gamma was similar to that of the DNA vaccine control group. For splenic lymphocytes, the SI in the DNA vaccine plus CpG-ODN and DNA vaccine plus ChIFN-gamma groups were higher than for the DNA vaccine control. These results suggest that DDA actually compromises the protection against the IBDV by DNA vaccine, and CpG-ODN and IFN-gamma had no significant effect. PMID:17106228

  13. Genetic analyses of sulfonamide resistance and its dissemination in gram-negative bacteria illustrate new aspects of R plasmid evolution.

    PubMed Central

    Rådström, P; Swedberg, G; Sköld, O

    1991-01-01

    In contrast to what has been observed for many other antibiotic resistance mechanisms, there are only two known genes encoding plasmid-borne sulfonamide resistance. Both genes, sulI and sulII, encode a drug-resistant dihydropteroate synthase enzyme. In members of the family Enterobacteriaceae isolated from several worldwide sources, plasmid-mediated resistance to sulfonamides could be identified by colony hybridization as being encoded by sulI, sulII, or both. The sulI gene was in all cases found to be located in the newly defined, mobile genetic element, recently named an integron, which has been shown to contain a site-specific recombination system for the integration of various antibiotic resistance genes. The sulII gene was almost exclusively found as part of a variable resistance region on small, nonconjugative plasmids. Colony hybridization to an intragenic probe, restriction enzyme digestion, and nucleotide sequence analysis of small plasmids indicated that the sulII gene and contiguous sequences represent an independently occurring region disseminated in the bacterial population. The sulII resistance region was bordered by direct repeats, which in some plasmids were totally or partially deleted. The prevalence of sulI and sulII could thus be accounted for by their stable integration in transposons and in plasmids that are widely disseminated among gram-negative bacteria. Images PMID:1952855

  14. Diversity and Global Distribution of IncL/M Plasmids Enabling Horizontal Dissemination of β-Lactam Resistance Genes among the Enterobacteriaceae

    PubMed Central

    Adamczuk, Marcin; Zaleski, Piotr; Dziewit, Lukasz; Wolinowska, Renata; Nieckarz, Marta; Wawrzyniak, Pawel; Kieryl, Piotr; Plucienniczak, Andrzej; Bartosik, Dariusz

    2015-01-01

    Antibiotic resistance determinants are frequently associated with plasmids and other mobile genetic elements, which simplifies their horizontal transmission. Several groups of plasmids (including replicons of the IncL/M incompatibility group) were found to play an important role in the dissemination of resistance genes encoding β-lactamases. The IncL/M plasmids are large, broad host range, and self-transmissible replicons. We have identified and characterized two novel members of this group: pARM26 (isolated from bacteria inhabiting activated sludge from a wastewater treatment plant) and pIGT15 (originating from a clinical strain of Escherichia coli). This instigated a detailed comparative analysis of all available sequences of IncL/M plasmids encoding β-lactamases. The core genome of these plasmids is comprised of 20 genes with conserved synteny. Phylogenetic analyses of these core genes allowed clustering of the plasmids into four separate groups, which reflect their antibiotic resistance profiles. Examination of the biogeography of the IncL/M plasmids revealed that they are most frequently found in bacteria of the family Enterobacteriaceae originating from the Mediterranean region and Western Europe and that they are able to persist in various ecological niches even in the absence of direct antibiotic selection pressure. PMID:26236726

  15. Diversity and Global Distribution of IncL/M Plasmids Enabling Horizontal Dissemination of β-Lactam Resistance Genes among the Enterobacteriaceae.

    PubMed

    Adamczuk, Marcin; Zaleski, Piotr; Dziewit, Lukasz; Wolinowska, Renata; Nieckarz, Marta; Wawrzyniak, Pawel; Kieryl, Piotr; Plucienniczak, Andrzej; Bartosik, Dariusz

    2015-01-01

    Antibiotic resistance determinants are frequently associated with plasmids and other mobile genetic elements, which simplifies their horizontal transmission. Several groups of plasmids (including replicons of the IncL/M incompatibility group) were found to play an important role in the dissemination of resistance genes encoding β-lactamases. The IncL/M plasmids are large, broad host range, and self-transmissible replicons. We have identified and characterized two novel members of this group: pARM26 (isolated from bacteria inhabiting activated sludge from a wastewater treatment plant) and pIGT15 (originating from a clinical strain of Escherichia coli). This instigated a detailed comparative analysis of all available sequences of IncL/M plasmids encoding β-lactamases. The core genome of these plasmids is comprised of 20 genes with conserved synteny. Phylogenetic analyses of these core genes allowed clustering of the plasmids into four separate groups, which reflect their antibiotic resistance profiles. Examination of the biogeography of the IncL/M plasmids revealed that they are most frequently found in bacteria of the family Enterobacteriaceae originating from the Mediterranean region and Western Europe and that they are able to persist in various ecological niches even in the absence of direct antibiotic selection pressure. PMID:26236726

  16. A Site-Specific Integrative Plasmid Found in Pseudomonas aeruginosa Clinical Isolate HS87 along with A Plasmid Carrying an Aminoglycoside-Resistant Gene.

    PubMed

    Bi, Dexi; Xie, Yingzhou; Tai, Cui; Jiang, Xiaofei; Zhang, Jie; Harrison, Ewan M; Jia, Shiru; Deng, Zixin; Rajakumar, Kumar; Ou, Hong-Yu

    2016-01-01

    Plasmids play critical roles in bacterial fitness and evolution of Pseudomonas aeruginosa. Here two plasmids found in a drug-resistant P. aeruginosa clinical isolate HS87 were completely sequenced. The pHS87b plasmid (11.2 kb) carries phage-related genes and function-unknown genes. Notably, pHS87b encodes an integrase and has an adjacent tRNAThr-associated attachment site. A corresponding integrated form of pHS87b at the tRNAThr locus was identified on the chromosome of P. aeruginosa, showing that pHS87b is able to site-specifically integrate into the 3'-end of the tRNAThr gene. The pHS87a plasmid (26.8 kb) displays a plastic structure containing a putative replication module, stability factors and a variable region. The RepA of pHS87a shows significant similarity to the replication proteins of pPT23A-family plasmids. pHS87a carries a transposon Tn6049, a truncated insertion sequence ΔIS1071 and a Tn402-like class 1 integron which contains an aacA4 cassette that may confer aminoglycoside resistance. Thus, pHS87b is a site-specific integrative plasmid whereas pHS87a is a plastic antibiotic resistance plasmid. The two native plasmids may promote the fitness and evolution of P. aeruginosa. PMID:26841043

  17. A Site-Specific Integrative Plasmid Found in Pseudomonas aeruginosa Clinical Isolate HS87 along with A Plasmid Carrying an Aminoglycoside-Resistant Gene

    PubMed Central

    Tai, Cui; Jiang, Xiaofei; Zhang, Jie; Harrison, Ewan M.; Jia, Shiru; Deng, Zixin; Rajakumar, Kumar; Ou, Hong-Yu

    2016-01-01

    Plasmids play critical roles in bacterial fitness and evolution of Pseudomonas aeruginosa. Here two plasmids found in a drug-resistant P. aeruginosa clinical isolate HS87 were completely sequenced. The pHS87b plasmid (11.2 kb) carries phage-related genes and function-unknown genes. Notably, pHS87b encodes an integrase and has an adjacent tRNAThr-associated attachment site. A corresponding integrated form of pHS87b at the tRNAThr locus was identified on the chromosome of P. aeruginosa, showing that pHS87b is able to site-specifically integrate into the 3’-end of the tRNAThr gene. The pHS87a plasmid (26.8 kb) displays a plastic structure containing a putative replication module, stability factors and a variable region. The RepA of pHS87a shows significant similarity to the replication proteins of pPT23A-family plasmids. pHS87a carries a transposon Tn6049, a truncated insertion sequence ΔIS1071 and a Tn402-like class 1 integron which contains an aacA4 cassette that may confer aminoglycoside resistance. Thus, pHS87b is a site-specific integrative plasmid whereas pHS87a is a plastic antibiotic resistance plasmid. The two native plasmids may promote the fitness and evolution of P. aeruginosa. PMID:26841043

  18. Characterization of a Novel Partition System Encoded by the δ and ω Genes from the Streptococcal Plasmid pSM19035

    PubMed Central

    Dmowski, Michał; Sitkiewicz, Izabela; Cegłowski, Piotr

    2006-01-01

    High segregational stability of the streptococcal plasmid pSM19035 is achieved by the concerted action of systems involved in plasmid copy number control, multimer resolution, and postsegregational killing. In this study, we demonstrate the role of two genes, δ and ω, in plasmid stabilization by a partition mechanism. We show that these two genes can stabilize the native pSM19035 replicon as well as other θ- and σ-type plasmids in Bacillus subtilis. In contrast to other known partition systems, in this case the two genes are transcribed separately; however, they are coregulated by the product of the parB-like gene ω. Analysis of mutants of the parA-like gene δ showed that the Walker A ATPase motif is necessary for plasmid stabilization. The ParB-like product of the ω gene binds to three regions containing repeated WATCACW heptamers, localized in the copS (regulation of plasmid copy number), δ, and ω promoter regions. We demonstrate that all three of these regions can cause partition-mediated incompatibility. Moreover, our data suggest that each of these could play the role of a centromere-like sequence. We conclude that δ and ω constitute a novel type of plasmid stabilization system. PMID:16740943

  19. A PKS/NRPS/FAS Hybrid Gene Cluster from Serratia plymuthica RVH1 Encoding the Biosynthesis of Three Broad Spectrum, Zeamine-Related Antibiotics

    PubMed Central

    Masschelein, Joleen; Mattheus, Wesley; Gao, Ling-Jie; Moons, Pieter; Van Houdt, Rob; Uytterhoeven, Birgit; Lamberigts, Chris; Lescrinier, Eveline; Rozenski, Jef; Herdewijn, Piet; Aertsen, Abram; Michiels, Chris; Lavigne, Rob

    2013-01-01

    Serratia plymuthica strain RVH1, initially isolated from an industrial food processing environment, displays potent antimicrobial activity towards a broad spectrum of Gram-positive and Gram-negative bacterial pathogens. Isolation and subsequent structure determination of bioactive molecules led to the identification of two polyamino antibiotics with the same molecular structure as zeamine and zeamine II as well as a third, closely related analogue, designated zeamine I. The gene cluster encoding the biosynthesis of the zeamine antibiotics was cloned and sequenced and shown to encode FAS, PKS as well as NRPS related enzymes in addition to putative tailoring and export enzymes. Interestingly, several genes show strong homology to the pfa cluster of genes involved in the biosynthesis of long chain polyunsaturated fatty acids in marine bacteria. We postulate that a mixed FAS/PKS and a hybrid NRPS/PKS assembly line each synthesize parts of the backbone that are linked together post-assembly in the case of zeamine and zeamine I. This interaction reflects a unique interplay between secondary lipid and secondary metabolite biosynthesis. Most likely, the zeamine antibiotics are produced as prodrugs that undergo activation in which a nonribosomal peptide sequence is cleaved off. PMID:23349809

  20. Modified live Edwardsiella ictaluri vaccine, AQUAVAC-ESC, lacks multidrug resistance plasmids.

    PubMed

    Lafrentz, Benjamin R; Welch, Timothy J; Shoemaker, Craig A; Drennan, John D; Klesius, Phillip H

    2011-12-01

    Plasmid-mediated antibiotic resistance was first discovered in Edwardsiella ictaluri in the early 1990s, and in 2007 an E. ictaluri isolate harboring an IncA/C plasmid was recovered from a moribund channel catfish Ictalurus punctatus infected with the bacterium. Due to the identification of multidrug resistance plasmids in aquaculture and their potential clinical importance, we sought to determine whether the modified live E. ictaluri vaccine strain in AQUAVAC-ESC harbors such plasmids, so that the use of this vaccine will not directly contribute to the pool of bacteria carrying plasmid-borne resistance. Antimicrobial sensitivity testing of the E. ictaluri parent isolate and vaccine strain demonstrated that both were sensitive to 15 of the 16 antimicrobials tested. Total DNA from each isolate was analyzed by polymerase chain reaction (PCR) using a set of 13 primer pairs specific for conserved regions of the IncA/C plasmid backbone, and no specific products were obtained. PCR-based replicon typing of the parent isolate and vaccine strain demonstrated the absence of the 18 commonly occurring plasmid incompatibility groups. These results demonstrate that the vaccine strain does not carry resistance to commonly used antimicrobials and provide strong support for the absence of IncA/C and other commonly occurring plasmid incompatibility groups. Therefore, its use should not directly contribute to the pool of bacteria carrying plasmid-borne resistance. This work highlights the importance of thoroughly investigating potential vaccine strains for the presence of plasmids or other transmissible elements that may encode resistance to antibiotics. PMID:22372247

  1. Minocycline resistance in an oral Streptococcus infantis isolate is encoded by tet(S) on a novel small, low copy number plasmid

    PubMed Central

    Ciric, Lena; Brouwer, Michael S M; Mullany, Peter; Roberts, Adam P

    2014-01-01

    We have determined the genetic basis of minocycline resistance in a strain of Streptococcus infantis isolated from a healthy human oral cavity. We demonstrate that tet(S), identical to tet(S) found on the enterococcal conjugative transposon Tn6000, is responsible for the observed resistance. The gene is located on a small, low copy number plasmid and is flanked by IS1216 elements. The tet(S) gene is capable of excising from the plasmid together with one of the IS1216 elements. The plasmid contains a putative toxin/antitoxin system related to relBE. Deletion of the toxin, relE, did not result in plasmid instability but did increase the fitness of the mutant compared to the wild-type strain. PMID:24605990

  2. A bacteriocin gene cluster able to enhance plasmid maintenance in Lactococcus lactis

    PubMed Central

    2014-01-01

    Background Lactococcus lactis is widely used as a dairy starter and has been extensively studied. Based on the acquired knowledge on its physiology and metabolism, new applications have been envisaged and there is an increasing interest of using L. lactis as a cell factory. Plasmids constitute the main toolbox for L. lactis genetic engineering and most rely on antibiotic resistant markers for plasmid selection and maintenance. In this work, we have assessed the ability of the bacteriocin Lactococcin 972 (Lcn972) gene cluster to behave as a food-grade post-segregational killing system to stabilize recombinant plasmids in L. lactis in the absence of antibiotics. Lcn972 is a non-lantibiotic bacteriocin encoded by the 11-kbp plasmid pBL1 with a potent antimicrobial activity against Lactococcus. Results Attempts to clone the full lcn972 operon with its own promoter (P972), the structural gene lcn972 and the immunity genes orf2-orf3 in the unstable plasmid pIL252 failed and only plasmids with a mutated promoter were recovered. Alternatively, cloning under other constitutive promoters was approached and achieved, but bacteriocin production levels were lower than those provided by pBL1. Segregational stability studies revealed that the recombinant plasmids that yielded high bacteriocin titers were maintained for at least 200 generations without antibiotic selection. In the case of expression vectors such as pTRL1, the Lcn972 gene cluster also contributed to plasmid maintenance without compromising the production of the fluorescent mCherry protein. Furthermore, unstable Lcn972 recombinant plasmids became integrated into the chromosome through the activity of insertion sequences, supporting the notion that Lcn972 does apply a strong selective pressure against susceptible cells. Despite of it, the Lcn972 gene cluster was not enough to avoid the use of antibiotics to select plasmid-bearing cells right after transformation. Conclusions Inserting the Lcn972 cluster into

  3. PemK toxin encoded by the Xylella fastidiosa IncP-1 plasmid pXF-RIV11 is a ribonuclease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stable inheritance of the IncP-1 plasmid pXF-RIV11 in Xylella fastidiosa is conferred by the pemI/pemK plasmid addiction system. PemK serves as a toxin inhibiting bacterial growth; PemI is the corresponding antitoxin that blocks activity of PemK toxin by direct binding. Here, PemK toxin and PemI ant...

  4. Gene Electrotransfer of Plasmid with Tissue Specific Promoter Encoding shRNA against Endoglin Exerts Antitumor Efficacy against Murine TS/A Tumors by Vascular Targeted Effects

    PubMed Central

    Stimac, Monika; Dolinsek, Tanja; Lampreht, Ursa; Cemazar, Maja; Sersa, Gregor

    2015-01-01

    Vascular targeted therapies, targeting specific endothelial cell markers, are promising approaches for the treatment of cancer. One of the targets is endoglin, transforming growth factor-β (TGF-β) co-receptor, which mediates proliferation, differentiation and migration of endothelial cells forming neovasculature. However, its specific, safe and long-lasting targeting remains the challenge. Therefore, in our study we evaluated the transfection efficacy, vascular targeted effects and therapeutic potential of the plasmid silencing endoglin with the tissue specific promoter, specific for endothelial cells marker endothelin-1 (ET) (TS plasmid), in comparison to the plasmid with constitutive promoter (CON plasmid), in vitro and in vivo. Tissue specificity of TS plasmid was demonstrated in vitro on several cell lines, and its antiangiogenic efficacy was demonstrated by reducing tube formation of 2H11 endothelial cells. In vivo, on a murine mammary TS/A tumor model, we demonstrated good antitumor effect of gene electrotransfer (GET) of either of both plasmids in treatment of smaller tumors still in avascular phase of growth, as well as on bigger tumors, already well vascularized. In support to the observations on predominantly vascular targeted effects of endoglin, histological analysis has demonstrated an increase in necrosis and a decrease in the number of blood vessels in therapeutic groups. A significant antitumor effect was observed in tumors in avascular and vascular phase of growth, possibly due to both, the antiangiogenic and the vascular disrupting effect. Furthermore, the study indicates on the potential use of TS plasmid in cancer gene therapy since the same efficacy as of CON plasmid was determined. PMID:25909447

  5. Cloning of a Recombinant Plasmid Encoding Thiol-Specific Antioxidant Antigen (TSA) Gene of Leishmania majorand Expression in the Chinese Hamster Ovary Cell Line

    PubMed Central

    Fatemeh, Ghaffarifar; Fatemeh, Tabatabaie; Zohreh, Sharifi; Abdolhosein, Dalimiasl; Mohammad Zahir, Hassan; Mehdi, Mahdavi

    2012-01-01

    Background: TSA (thiol-specific antioxidant antigen) is the immune-dominant antigen of Leishmania major and is considered to be the most promising candidate molecule for a recombinant or DNA vaccine against leishmaniasis. The aim of the present work was to express a plasmid containing the TSA gene in eukaryotic cells. Methods: Genomic DNA was extracted, and the TSA gene was amplified by polymerase chain reaction (PCR). The PCR product was cloned into the pTZ57R/T vector, followed by subcloning into the eukaryotic expression vector pcDNA3 (EcoRI and HindIII sites). The recombinant plasmid was characterised by restriction digest and PCR. Eukaryotic Chinese hamster ovary cells were transfected with the plasmid containing the TSA gene. Expression of the L. major TSA gene was confirmed by sodium dodecyl sulphate–polyacrylamide gel electrophoresis and Western blotting. Results: The plasmid containing the TSA gene was successfully expressed, as demonstrated by a band of 22.1 kDa on Western blots. Conclusion: The plasmid containing the TSA gene can be expressed in a eukaryotic cell line. Thus, the recombinant plasmid may potentially be used as a DNA vaccine in animal models. PMID:22977370

  6. Evolved plasmid-host interactions reduce plasmid interference cost.

    PubMed

    Yano, Hirokazu; Wegrzyn, Katarznya; Loftie-Eaton, Wesley; Johnson, Jenny; Deckert, Gail E; Rogers, Linda M; Konieczny, Igor; Top, Eva M

    2016-09-01

    Antibiotic selection drives adaptation of antibiotic resistance plasmids to new bacterial hosts, but the molecular mechanisms are still poorly understood. We previously showed that a broad-host-range plasmid was poorly maintained in Shewanella oneidensis, but rapidly adapted through mutations in the replication initiation gene trfA1. Here we examined if these mutations reduced the fitness cost of TrfA1, and whether this was due to changes in interaction with the host's DNA helicase DnaB. The strains expressing evolved TrfA1 variants showed a higher growth rate than those expressing ancestral TrfA1. The evolved TrfA1 variants showed a lower affinity to the helicase than ancestral TrfA1 and were no longer able to activate the helicase at the oriV without host DnaA. Moreover, persistence of the ancestral plasmid was increased upon overexpression of DnaB. Finally, the evolved TrfA1 variants generated higher plasmid copy numbers than ancestral TrfA1. The findings suggest that ancestral plasmid instability can at least partly be explained by titration of DnaB by TrfA1. Thus under antibiotic selection resistance plasmids can adapt to a novel bacterial host through partial loss of function mutations that simultaneously increase plasmid copy number and decrease unfavorably high affinity to one of the hosts' essential proteins. PMID:27121483

  7. NDM-1 encoded by a pNDM-BJ01-like plasmid p3SP-NDM in clinical Enterobacter aerogenes

    PubMed Central

    Chen, Zhenhong; Li, Hongxia; Feng, Jiao; Li, Yuxue; Chen, Xin; Guo, Xuemin; Chen, Weijun; Wang, Li; Lin, Lei; Yang, Huiying; Yang, Wenhui; Wang, Jie; Zhou, Dongsheng; Liu, Changting; Yin, Zhe

    2015-01-01

    A carbapenem-nonsusceptible Enterobacter aerogenes strain named 3-SP was isolated from a human case of pneumonia in a Chinese teaching hospital. NDM-1 carbapenemase is produced by a pNDM-BJ01-like conjugative plasmid designated p3SP-NDM to account for carbapenem resistance of 3-SP. p3SP-NDM was fully sequenced and compared with all publically available pNDM-BJ01-like plasmids. The genetic differences between p3SP-NDM and pNDM-BJ01 include only 18 single nucleotide polymorphisms, a 1 bp deletion and a 706 bp deletion. p3SP-NDM and pNDM-BJ01 harbor an identical Tn125 element organized as ISAba125, blaNDM−1, bleMBL, ΔtrpF, dsbC, cutA, ΔgroES, groEL, ISCR27, and ISAba125. The blaNDM−1 surrounding regions in these pNDM-BJ01-like plasmids have a conserved linear organization ISAba14-aphA6-Tn125-unknown IS, with considerable genetic differences identified within or immediately downstream of Tn125. All reported pNDM-BJ01-like plasmids are exclusively found in Acinetobacter, whereas this is the first report of identification of a pNDM-BJ01-like plasmid in Enterobacteriaceae. PMID:25926823

  8. Whole genome sequencing of diverse Shiga toxin-producing and non-producing Escherichia coli strains reveals a variety of virulence and novel antibiotic resistance plasmids.

    PubMed

    Losada, Liliana; DebRoy, Chitrita; Radune, Diana; Kim, Maria; Sanka, Ravi; Brinkac, Lauren; Kariyawasam, Subhashinie; Shelton, Daniel; Fratamico, Pina M; Kapur, Vivek; Feng, Peter C H

    2016-01-01

    The genomes of a diverse set of Escherichia coli, including many Shiga toxin-producing strains of various serotypes were determined. A total of 39 plasmids were identified among these strains, and many carried virulence or putative virulence genes of Shiga toxin-producing E. coli strains, virulence genes for other pathogenic E. coli groups, and some had combinations of these genes. Among the novel plasmids identified were eight that carried resistance genes to aminoglycosides, carbapenems, penicillins, cephalosporins, chloramphenicol, dihydrofolate reductase inhibitors, sulfonamides, tetracyclines and resistance to heavy metals. Two of the plasmids carried six of these resistance genes and two novel IncHI2 plasmids were also identified. The results of this study showed that plasmids carrying diverse resistance and virulence genes of various pathogenic E. coli groups can be found in E. coli strains and serotypes regardless of the isolate's source and therefore, is consistent with the premise that these mobile elements carrying these traits may be broadly disseminated among E. coli. PMID:26746359

  9. IncM Plasmid R1215 Is the Source of Chromosomally Located Regions Containing Multiple Antibiotic Resistance Genes in the Globally Disseminated Acinetobacter baumannii GC1 and GC2 Clones

    PubMed Central

    Blackwell, Grace A.

    2016-01-01

    ABSTRACT Clear similarities between antibiotic resistance islands in the chromosomes of extensively antibiotic-resistant isolates from the two dominant, globally distributed Acinetobacter baumannii clones, GC1 and GC2, suggest a common origin. A close relative of the likely progenitor of both of these regions was found in R1215, a conjugative IncM plasmid from a Serratia marcescens strain isolated prior to 1980. The 37.8-kb resistance region in R1215 lies within the mucB gene and includes aacC1, aadA1, aphA1b, blaTEM, catA1, sul1, and tetA(A), genes that confer resistance to gentamicin, streptomycin and spectinomycin, kanamycin and neomycin, ampicillin, chloramphenicol, sulfamethoxazole, and tetracycline, respectively. The backbone of this region is derived from Tn1721 and is interrupted by a hybrid Tn2670 (Tn21)-Tn1696-type transposon, Tn6020, and an incomplete Tn1. After minor rearrangements, this R1215 resistance island can generate AbGRI2-0*, the predicted earliest form of the IS26-bounded AbGRI2-type resistance island of GC2 isolates, and to the multiple antibiotic resistance region (MARR) of AbaR0, the precursor of this region in AbaR-type resistance islands in the GC1 group. A 29.9-kb circle excised by IS26 has been inserted into the A. baumannii chromosome to generate AbGRI2-0*. To create the MARR of AbaR0, a different circular form, again generated by IS26 from an R1215 resistance region variant, has been opened at a different point by recombination with a copy of the sul1 gene already present in the AbaR precursor. Recent IncM plasmids related to R1215 have a variant resistance island containing a blaSHV gene in the same location. IMPORTANCE Two lineages of extensively antibiotic-resistant A. baumannii currently plaguing modern medicine each acquired resistance to all of the original antibiotics (ampicillin, tetracycline, kanamycin, and sulfonamides) by the end of the 1970s and then became resistant to antibiotics from newer families after they were

  10. IncM Plasmid R1215 Is the Source of Chromosomally Located Regions Containing Multiple Antibiotic Resistance Genes in the Globally Disseminated Acinetobacter baumannii GC1 and GC2 Clones.

    PubMed

    Blackwell, Grace A; Hamidian, Mohammad; Hall, Ruth M

    2016-01-01

    Clear similarities between antibiotic resistance islands in the chromosomes of extensively antibiotic-resistant isolates from the two dominant, globally distributed Acinetobacter baumannii clones, GC1 and GC2, suggest a common origin. A close relative of the likely progenitor of both of these regions was found in R1215, a conjugative IncM plasmid from a Serratia marcescens strain isolated prior to 1980. The 37.8-kb resistance region in R1215 lies within the mucB gene and includes aacC1, aadA1, aphA1b, bla TEM, catA1, sul1, and tetA(A), genes that confer resistance to gentamicin, streptomycin and spectinomycin, kanamycin and neomycin, ampicillin, chloramphenicol, sulfamethoxazole, and tetracycline, respectively. The backbone of this region is derived from Tn1721 and is interrupted by a hybrid Tn2670 (Tn21)-Tn1696-type transposon, Tn6020, and an incomplete Tn1. After minor rearrangements, this R1215 resistance island can generate AbGRI2-0*, the predicted earliest form of the IS26-bounded AbGRI2-type resistance island of GC2 isolates, and to the multiple antibiotic resistance region (MARR) of AbaR0, the precursor of this region in AbaR-type resistance islands in the GC1 group. A 29.9-kb circle excised by IS26 has been inserted into the A. baumannii chromosome to generate AbGRI2-0*. To create the MARR of AbaR0, a different circular form, again generated by IS26 from an R1215 resistance region variant, has been opened at a different point by recombination with a copy of the sul1 gene already present in the AbaR precursor. Recent IncM plasmids related to R1215 have a variant resistance island containing a bla SHV gene in the same location. IMPORTANCE Two lineages of extensively antibiotic-resistant A. baumannii currently plaguing modern medicine each acquired resistance to all of the original antibiotics (ampicillin, tetracycline, kanamycin, and sulfonamides) by the end of the 1970s and then became resistant to antibiotics from newer families after they were introduced

  11. Plasmid acquisition in microgravity

    NASA Technical Reports Server (NTRS)

    Juergensmeyer, Margaret A.; Juergensmeyer, Elizabeth A.; Guikema, James A.

    1995-01-01

    In microgravity, bacteria often show an increased resistance to antibiotics. Bacteria can develop resistance to an antibiotic after transformation, the acquisition of DNA, usually in the form of a plasmid containing a gene for resistance to one or more antibiotics. In order to study the capacity of bacteria to become resistant to antibiotics in microgravity, we have modified the standard protocol for transformation of Escherichia coli for use in the NASA-flight-certified hardware package, The Fluid Processing Apparatus (FPA). Here we report on the ability of E. coli to remain competent for long periods of time at temperatures that are readily available on the Space Shuttle, and present some preliminary flight results.

  12. Expression of Lactobacillus casei ATCC 393 beta-galactosidase encoded by plasmid pLZ15 in Lactococcus lactis CNRZ 1123.

    PubMed

    Hemme, D; Gaier, W; Winters, D A; Foucaud, C; Vogel, R F

    1994-11-01

    Lactococcus lactis subsp. lactis CNRZ 1123, a Lac- derivative of CNRZ 1122 was transformed by electroporation with the Lactobacillus casei ATCC 393 plasmid pLZ15, which bears a beta-galactosidase gene. The transformants expressed a constitutive beta-galactosidase activity at a higher level than in Lact. casei, and in the cell-free extract two additional protein bands were detected by SDS-PAGE which could correspond to lactose metabolism enzymes. Both plasmid and beta-gal activity were stable in Lactococcus after 100 generations in glucose-containing medium. PMID:7765447

  13. Conjugative transfer of plasmid-located antibiotic resistance genes within the gastrointestinal tract of lesser mealworm larvae, Alphitobius diaperinus (Coleoptera: Tenebrionidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The frequency of conjugative transfer of antimicrobial resistance plasmids between bacteria within the gastrointestinal tract of lesser mealworm larvae, a prevalent pest in poultry production facilities was determined. Lesser mealworm larvae were exposed to a negative bacterial control (PBS), a don...

  14. Persistence of antibiotic resistance and plasmid-associated genes in soil following application of sewage sludge and abundance on vegetables at harvest.

    PubMed

    Rahube, Teddie O; Marti, Romain; Scott, Andrew; Tien, Yuan-Ching; Murray, Roger; Sabourin, Lyne; Duenk, Peter; Lapen, David R; Topp, Edward

    2016-07-01

    Sewage sludge recovered from wastewater treatment plants contains antibiotic residues and is rich in antibiotic resistance genes, selected for and enriched in the digestive tracts of human using antibiotics. The use of sewage sludge as a crop fertilizer constitutes a potential route of human exposure to antibiotic resistance genes through consumption of contaminated crops. Several gene targets associated with antibiotic resistance (catA1, catB3, ereA, ereB, erm(B), str(A), str(B), qnrD, sul1, and mphA), mobile genetic elements (int1, mobA, IncW repA, IncP1 groups -α, -β, -δ, -γ, -ε), and bacterial 16S rRNA (rrnS) were quantified by qPCR from soil and vegetable samples obtained from unamended and sludge-amended plots at an experimental field in London, Ontario. The qPCR data reveals an increase in abundance of gene targets in the soil and vegetables samples, indicating that there is potential for additional crop exposure to antibiotic resistance genes carried within sewage sludge following field application. It is therefore advisable to allow an appropriate delay period before harvesting of vegetables for human consumption. PMID:27277701

  15. High-level plasmid-mediated gentamicin resistance and pheromone response of plasmids present in clinical isolates of Enterococcus faecalis.

    PubMed Central

    Shiojima, M; Tomita, H; Tanimoto, K; Fujimoto, S; Ike, Y

    1997-01-01

    Eleven pheromone-responding plasmids encoding erythromycin or gentamicin resistance were isolated from multiresistant clinical Enterococcus faecalis isolates. The plasmids were classified into six types with respect to their pheromone responses. The three erythromycin resistance plasmids responded to different pheromones. Of the eight gentamicin resistance plasmids, four plasmids responded to same pheromone. Southern hybridization studies showed that the genes involved in regulation of the pheromone response were conserved in the drug resistance plasmids. PMID:9056018

  16. Plasmid-Encoded RepA Proteins Specifically Autorepress Individual repABC Operons in the Multipartite Rhizobium leguminosarum bv. trifolii Genome

    PubMed Central

    Żebracki, Kamil; Koper, Piotr; Marczak, Małgorzata; Skorupska, Anna; Mazur, Andrzej

    2015-01-01

    Rhizobia commonly have very complex genomes with a chromosome and several large plasmids that possess genes belonging to the repABC family. RepA and RepB are members of the ParA and ParB families of partitioning proteins, respectively, whereas RepC is crucial for plasmid replication. In the repABC replicons, partitioning and replication functions are transcriptionally linked resulting in complex regulation of rep gene expression. The genome of R. leguminosarum bv. trifolii TA1 (RtTA1) consists of a chromosome and four plasmids (pRleTA1a-d), equipped with functional repABC genes. In this work, the regulation of transcription of the individual repABC cassettes of the four RtTA1 plasmids was studied. The involvement of the RepA and RepB as well as parS-like centromere sites in this process was depicted, demonstrating some dissimilarity in expression of respective rep regions. RtTA1 repABC genes of individual plasmids formed operons, which were negatively regulated by RepA and RepB. Individual RepA were able to bind to DNA without added nucleotides, but in the presence of ADP, bound specifically to their own operator sequences containing imperfect palindromes, and caused operon autorepression, whereas the addition of ATP stimulated non-specific binding of RepA to DNA. The RepA proteins were able to dimerize/oligomerize: in general dimers formed independently of ATP or ADP, although ATP diminished the concentration of oligomers that were produced. By the comprehensive approach focusing on a set of plasmids instead of individual replicons, the work highlighted subtle differences between the organization and regulation of particular rep operons as well as the structures and specificity of RepA proteins, which contribute to the fine-tuned coexistence of several replicons with similar repABC cassettes in the complex bacterial genome. PMID:26147968

  17. Plasmid-Encoded RepA Proteins Specifically Autorepress Individual repABC Operons in the Multipartite Rhizobium leguminosarum bv. trifolii Genome.

    PubMed

    Żebracki, Kamil; Koper, Piotr; Marczak, Małgorzata; Skorupska, Anna; Mazur, Andrzej

    2015-01-01

    Rhizobia commonly have very complex genomes with a chromosome and several large plasmids that possess genes belonging to the repABC family. RepA and RepB are members of the ParA and ParB families of partitioning proteins, respectively, whereas RepC is crucial for plasmid replication. In the repABC replicons, partitioning and replication functions are transcriptionally linked resulting in complex regulation of rep gene expression. The genome of R. leguminosarum bv. trifolii TA1 (RtTA1) consists of a chromosome and four plasmids (pRleTA1a-d), equipped with functional repABC genes. In this work, the regulation of transcription of the individual repABC cassettes of the four RtTA1 plasmids was studied. The involvement of the RepA and RepB as well as parS-like centromere sites in this process was depicted, demonstrating some dissimilarity in expression of respective rep regions. RtTA1 repABC genes of individual plasmids formed operons, which were negatively regulated by RepA and RepB. Individual RepA were able to bind to DNA without added nucleotides, but in the presence of ADP, bound specifically to their own operator sequences containing imperfect palindromes, and caused operon autorepression, whereas the addition of ATP stimulated non-specific binding of RepA to DNA. The RepA proteins were able to dimerize/oligomerize: in general dimers formed independently of ATP or ADP, although ATP diminished the concentration of oligomers that were produced. By the comprehensive approach focusing on a set of plasmids instead of individual replicons, the work highlighted subtle differences between the organization and regulation of particular rep operons as well as the structures and specificity of RepA proteins, which contribute to the fine-tuned coexistence of several replicons with similar repABC cassettes in the complex bacterial genome. PMID:26147968

  18. Characterization of Mobile Staphylococcus equorum Plasmids Isolated from Fermented Seafood That Confer Lincomycin Resistance.

    PubMed

    Lee, Jong-Hoon; Jeong, Do-Won

    2015-01-01

    The complete nucleotide sequences of lincomycin-resistance gene (lnuA)-containing plasmids in Staphylococcus equorum strains isolated from the high-salt-fermented seafood jeotgal were determined. These plasmids, designated pSELNU1-3, are 2638-bp long, have two polymorphic sites, and encode typical elements found in plasmids that replicate via a rolling-circle mechanism including the replication protein gene (rep), a double-stranded origin of replication, a single-stranded origin of replication, and counter-transcribed RNA sequence, as well as lnuA. Plasmid sequences exhibit over 83% identity to other Staphylococcus plasmids that harbor rep and lnuA genes. Further, three pairs of identified direct repeats may be involved in inter-plasmid recombination. One plasmid, pSELNU1, was successfully transferred to other Staphylococcus species, Enterococcus faecalis, and Tetragenococcus halophilus in vitro. Antibiotic susceptibility of the transconjugants was host-dependent, and transconjugants maintained a lincomycin resistance phenotype in the absence of selective pressure over 60 generations. PMID:26448648

  19. Characterization of Mobile Staphylococcus equorum Plasmids Isolated from Fermented Seafood That Confer Lincomycin Resistance

    PubMed Central

    Lee, Jong-Hoon; Jeong, Do-Won

    2015-01-01

    The complete nucleotide sequences of lincomycin-resistance gene (lnuA)-containing plasmids in Staphylococcus equorum strains isolated from the high-salt-fermented seafood jeotgal were determined. These plasmids, designated pSELNU1–3, are 2638-bp long, have two polymorphic sites, and encode typical elements found in plasmids that replicate via a rolling-circle mechanism including the replication protein gene (rep), a double-stranded origin of replication, a single-stranded origin of replication, and counter-transcribed RNA sequence, as well as lnuA. Plasmid sequences exhibit over 83% identity to other Staphylococcus plasmids that harbor rep and lnuA genes. Further, three pairs of identified direct repeats may be involved in inter-plasmid recombination. One plasmid, pSELNU1, was successfully transferred to other Staphylococcus species, Enterococcus faecalis, and Tetragenococcus halophilus in vitro. Antibiotic susceptibility of the transconjugants was host-dependent, and transconjugants maintained a lincomycin resistance phenotype in the absence of selective pressure over 60 generations. PMID:26448648

  20. Attempts to find phenotypic markers of the virulence plasmid of Rhodococcus equi.

    PubMed Central

    De La Peña-Moctezuma, A; Prescott, J F; Goodfellow, M

    1996-01-01

    Four isolates of Rhodococcus equi, from pneumonic foals, and containing the 85 kb virulence plasmid, a porcine isolate containing an 80 kb plasmid, and their plasmid cured derivatives, were examined for 239 phenotypic properties in an attempt to find characters other than the virulence-associated protein (VapA) which might be encoded by the virulence plasmid in organisms grown at 37 degrees C. Tests chosen included those which have previously given variable results for R. equi isolates, since such variability might be attributed to plasmid curing, and characteristics which have been described as properties of plasmids of Rhodococcus species other than R. equi. Tests included cadmium resistance, Congo red binding, resistance to 26 antibiotics, conventional clinical microbiological tests, utilization of 95 different carbon sources, enzymatic activities in API ZYM, fluorogenic assays for exo- and endopeptidase, glycosidase activities, and testosterone degradation. Apart from production of VapA by foal isolates, no phenotypic property was identified in the plasmid-positive isolates. Phenotypic characteristics of R. equi that have not been described before, and might be useful in identification were: metabolism of N-acetyl-beta D-glucopyranoside, alpha- and beta-hydroxybutyric, alpha-ketobutyric and N-acetyl-glutamic acids, of methylpyruvate, heptanoate, nonanoate and stearate esters; exopeptidase activity against alanine-alanine-tyrosine, alanine-phenylalanine-lysine, glycine-arginine, lysine-alanine, and valine-glycine-alanine; endopeptidase activity against arginine and methionine; and hydrolysis of bis-phosphate ester. PMID:8825990

  1. Comparative Genomics of an IncA/C Multidrug Resistance Plasmid from Escherichia coli and Klebsiella Isolates from Intensive Care Unit Patients and the Utility of Whole-Genome Sequencing in Health Care Settings

    PubMed Central

    Hazen, Tracy H.; Zhao, LiCheng; Boutin, Mallory A.; Stancil, Angela; Robinson, Gwen; Harris, Anthony D.; Rasko, David A.

    2014-01-01

    The IncA/C plasmids have been implicated for their role in the dissemination of β-lactamases, including gene variants that confer resistance to expanded-spectrum cephalosporins, which are often the treatment of last resort against multidrug-resistant, hospital-associated pathogens. A blaFOX-5 gene was detected in 14 Escherichia coli and 16 Klebsiella isolates that were cultured from perianal swabs of patients admitted to an intensive care unit (ICU) of the University of Maryland Medical Center (UMMC) in Baltimore, MD, over a span of 3 years. Four of the FOX-encoding isolates were obtained from subsequent samples of patients that were initially negative for an AmpC β-lactamase upon admission to the ICU, suggesting that the AmpC β-lactamase-encoding plasmid was acquired while the patient was in the ICU. The genomes of five E. coli isolates and six Klebsiella isolates containing blaFOX-5 were selected for sequencing based on their plasmid profiles. An ∼167-kb IncA/C plasmid encoding the FOX-5 β-lactamase, a CARB-2 β-lactamase, additional antimicrobial resistance genes, and heavy metal resistance genes was identified. Another FOX-5-encoding IncA/C plasmid that was nearly identical except for a variable region associated with the resistance genes was also identified. To our knowledge, these plasmids represent the first FOX-5-encoding plasmids sequenced. We used comparative genomics to describe the genetic diversity of a plasmid encoding a FOX-5 β-lactamase relative to the whole-genome diversity of 11 E. coli and Klebsiella isolates that carry this plasmid. Our findings demonstrate the utility of whole-genome sequencing for tracking of plasmid and antibiotic resistance gene distribution in health care settings. PMID:24914121

  2. Genetic structure of the Enterococcus faecalis plasmid pAD1-encoded cytolytic toxin system and its relationship to lantibiotic determinants.

    PubMed Central

    Gilmore, M S; Segarra, R A; Booth, M C; Bogie, C P; Hall, L R; Clewell, D B

    1994-01-01

    Pheromone-responsive conjugative plasmids are unique to the species Enterococcus faecalis. Many pheromone-responsive plasmids, including those frequently isolated from sites of infection, express a novel cytolysin that possesses both hemolytic and bacteriocin activities. Further, this cytolysin has been shown to be a toxin in several disease models. In the present study, nucleotide sequence determination, mutagenesis, and complementation analysis were used to determine the organization of the E. faecalis plasmid pAD1 cytolysin determinant. Four open reading frames are required for expression of the cytolysin precursor (cylLL, cylLS, cylM, and cylB). The inferred products of two of these open reading frames, CyILL and CyILS, constitute the cytolysin precursor and bear structural resemblance to posttranslationally modified bacteriocins termed lantibiotics. Similarities between the organization of the E. faecalis cytolysin determinant and expression units for lantibiotics exist, indicating that the E. faecalis cytolysin represents a new branch of this class and is the first known to possess toxin activity. Images PMID:7961506

  3. Genetic structure of the Enterococcus faecalis plasmid pAD1-encoded cytolytic toxin system and its relationship to lantibiotic determinants.

    PubMed

    Gilmore, M S; Segarra, R A; Booth, M C; Bogie, C P; Hall, L R; Clewell, D B

    1994-12-01

    Pheromone-responsive conjugative plasmids are unique to the species Enterococcus faecalis. Many pheromone-responsive plasmids, including those frequently isolated from sites of infection, express a novel cytolysin that possesses both hemolytic and bacteriocin activities. Further, this cytolysin has been shown to be a toxin in several disease models. In the present study, nucleotide sequence determination, mutagenesis, and complementation analysis were used to determine the organization of the E. faecalis plasmid pAD1 cytolysin determinant. Four open reading frames are required for expression of the cytolysin precursor (cylLL, cylLS, cylM, and cylB). The inferred products of two of these open reading frames, CyILL and CyILS, constitute the cytolysin precursor and bear structural resemblance to posttranslationally modified bacteriocins termed lantibiotics. Similarities between the organization of the E. faecalis cytolysin determinant and expression units for lantibiotics exist, indicating that the E. faecalis cytolysin represents a new branch of this class and is the first known to possess toxin activity. PMID:7961506

  4. The Complete Sequence and Comparative Analysis of a Multidrug-Resistance and Virulence Multireplicon IncFII Plasmid pEC302/04 from an Extraintestinal Pathogenic Escherichia coli EC302/04 Indicate Extensive Diversity of IncFII Plasmids

    PubMed Central

    Ho, Wing Sze; Yap, Kien-Pong; Yeo, Chew Chieng; Rajasekaram, Ganeswrie; Thong, Kwai Lin

    2016-01-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) that causes extraintestinal infections often harbor plasmids encoding fitness traits such as resistance and virulence determinants that are of clinical importance. We determined the complete nucleotide sequence of plasmid pEC302/04 from a multidrug-resistant E. coli EC302/04 which was isolated from the tracheal aspirate of a patient in Malaysia. In addition, we also performed comparative sequence analyses of 18 related IncFIIA plasmids to determine the phylogenetic relationship and diversity of these plasmids. The 140,232 bp pEC302/04 is a multireplicon plasmid that bears three replication systems (FII, FIA, and FIB) with subtype of F2:A1:B1. The plasmid is self-transmissible with a complete transfer region. pEC302/04 also carries antibiotic resistance genes such as blaTEM−1 and a class I integron containing sul1, cml and aadA resistance genes, conferring multidrug resistance (MDR) to its host, E. coli EC302/04. Besides, two iron acquisition systems (SitABCD and IutA-IucABCD) which are the conserved virulence determinants of ExPEC-colicin V or B and M (ColV/ColBM)-producing plasmids were identified in pEC302/04. Multiple toxin-antitoxin (TA)-based addiction systems (i.e., PemI/PemK, VagC/VagD, CcdA/CcdB, and Hok/Sok) and a plasmid partitioning system, ParAB, and PsiAB, which are important for plasmid maintenance were also found. Comparative plasmid analysis revealed only one conserved gene, the repA1 as the core genome, showing that there is an extensive diversity among the IncFIIA plasmids. The phylogenetic relationship of 18 IncF plasmids based on the core regions revealed that ColV/ColBM-plasmids and non-ColV/ColBM plasmids were separated into two distinct groups. These plasmids, which carry highly diverse genetic contents, are also mosaic in nature. The atypical combination of genetic materials, i.e., the MDR- and ColV/ColBM-plasmid-virulence encoding regions in a single ExPEC plasmid is rare but of clinical

  5. The bldB Gene Encodes a Small Protein Required for Morphogenesis, Antibiotic Production, and Catabolite Control in Streptomyces coelicolor

    PubMed Central

    Pope, Margaret K.; Green, Brian; Westpheling, Janet

    1998-01-01

    Mutants blocked at the earliest stage of morphological development in Streptomyces species are called bld mutants. These mutants are pleiotropically defective in the initiation of development, the ability to produce antibiotics, the ability to regulate carbon utilization, and the ability to send and/or respond to extracellular signals. Here we report the identification and partial characterization of a 99-amino-acid open reading frame (ORF99) that is capable of restoring morphogenesis, antibiotic production, and catabolite control to all of the bldB mutants. Of the existing bld mutants, bldB is of special interest because the phenotype of this mutant is the most pleiotropic. DNA sequence analysis of ORF99 from each of the existing bldB mutants identified base changes either within the coding region of the predicted protein or in the regulatory region of the gene. Primer extension analysis identified an apparent transcription start site. A promoter fusion to the xylE reporter gene showed that expression of bldB is apparently temporally regulated and that the bldB gene product is involved in the regulation of its own expression. PMID:9515926

  6. pA506, a conjugative plasmid of the plant epiphyte Pseudomonas fluorescens A506.

    PubMed

    Stockwell, Virginia O; Davis, Edward W; Carey, Alyssa; Shaffer, Brenda T; Mavrodi, Dmitri V; Hassan, Karl A; Hockett, Kevin; Thomashow, Linda S; Paulsen, Ian T; Loper, Joyce E

    2013-09-01

    Conjugative plasmids are known to facilitate the acquisition and dispersal of genes contributing to the fitness of Pseudomonas spp. Here, we report the characterization of pA506, the 57-kb conjugative plasmid of Pseudomonas fluorescens A506, a plant epiphyte used in the United States for the biological control of fire blight disease of pear and apple. Twenty-nine of the 67 open reading frames (ORFs) of pA506 have putative functions in conjugation, including a type IV secretion system related to that of MOBP6 family plasmids and a gene cluster for type IV pili. We demonstrate that pA506 is self-transmissible via conjugation between A506 and strains of Pseudomonas spp. or the Enterobacteriaceae. The origin of vegetative replication (oriV) of pA506 is typical of those in pPT23A family plasmids, which are present in many pathovars of Pseudomonas syringae, but pA506 lacks repA, a defining locus for pPT23A plasmids, and has a novel partitioning region. We selected a plasmid-cured derivative of A506 and compared it to the wild type to identify plasmid-encoded phenotypes. pA506 conferred UV resistance, presumably due to the plasmid-borne rulAB genes, but did not influence epiphytic fitness of A506 on pear or apple blossoms in the field. pA506 does not appear to confer resistance to antibiotics or other toxic elements. Based on the conjugative nature of pA506 and the large number of its genes that are shared with plasmids from diverse groups of environmental bacteria, the plasmid is likely to serve as a vehicle for genetic exchange between A506 and its coinhabitants on plant surfaces. PMID:23811504

  7. The mechanism and control of DNA transfer by the conjugative relaxase of resistance plasmid pCU1

    SciTech Connect

    Nash, Rebekah Potts; Habibi, Sohrab; Cheng, Yuan; Lujan, Scott A.; Redinbo, Matthew

    2010-11-15

    Bacteria expand their genetic diversity, spread antibiotic resistance genes, and obtain virulence factors through the highly coordinated process of conjugative plasmid transfer (CPT). A plasmid-encoded relaxase enzyme initiates and terminates CPT by nicking and religating the transferred plasmid in a sequence-specific manner. We solved the 2.3 {angstrom} crystal structure of the relaxase responsible for the spread of the resistance plasmid pCU1 and determined its DNA binding and nicking capabilities. The overall fold of the pCU1 relaxase is similar to that of the F plasmid and plasmid R388 relaxases. However, in the pCU1 structure, the conserved tyrosine residues (Y18,19,26,27) that are required for DNA nicking and religation were displaced up to 14 {angstrom} out of the relaxase active site, revealing a high degree of mobility in this region of the enzyme. In spite of this flexibility, the tyrosines still cleaved the nic site of the plasmid's origin of transfer, and did so in a sequence-specific, metal-dependent manner. Unexpectedly, the pCU1 relaxase lacked the sequence-specific DNA binding previously reported for the homologous F and R388 relaxase enzymes, despite its high sequence and structural similarity with both proteins. In summary, our work outlines novel structural and functional aspects of the relaxase-mediated conjugative transfer of plasmid pCU1.

  8. Replication of Staphylococcal Multiresistance Plasmids

    PubMed Central

    Firth, Neville; Apisiridej, Sumalee; Berg, Tracey; O'Rourke, Brendon A.; Curnock, Steve; Dyke, Keith G. H.; Skurray, Ronald A.

    2000-01-01

    Based on structural and functional properties, three groups of large staphylococcal multiresistance plasmids have been recognized, viz., the pSK1 family, pSK41-like conjugative plasmids, and β-lactamase–heavy-metal resistance plasmids. Here we describe an analysis of the replication functions of a representative of each of these plasmid groups. The replication initiation genes from the Staphylococcus aureus plasmids pSK1, pSK41, and pI9789::Tn552 were found to be related to each other and to the Staphylococcus xylosus plasmid pSX267 and are also related to rep genes of several plasmids from other gram-positive genera. Nucleotide sequence similarity between pSK1 and pI9789::Tn552 extended beyond their rep genes, encompassing upstream divergently transcribed genes, orf245 and orf256, respectively. Our analyses revealed that genes encoding proteins related to the deduced orf245 product are variously represented, in several types of organization, on plasmids possessing six seemingly evolutionarily distinct types of replication initiation genes and including both theta-mode and rolling-circle replicons. Construction of minireplicons and subsequent functional analysis demonstrated that orf245 is required for the segregational stability of the pSK1 replicon. In contrast, no gene equivalent to orf245 is evident on the conjugative plasmid pSK41, and a minireplicon encoding only the pSK41 rep gene was found to exhibit a segregational stability approaching that of the parent plasmid. Significantly, the results described establish that many of the large multiresistance plasmids that have been identified in clinical staphylococci, which were formerly presumed to be unrelated, actually utilize an evolutionarily related theta-mode replication system. PMID:10735859

  9. A Bivalent Typhoid Live Vector Vaccine Expressing both Chromosome- and Plasmid-Encoded Yersinia pestis Antigens Fully Protects against Murine Lethal Pulmonary Plague Infection

    PubMed Central

    Wang, Jin Yuan; Carrasco, Jose A.; Lloyd, Scott A.; Mellado-Sanchez, Gabriela; Diaz-McNair, Jovita; Franco, Olga; Buskirk, Amanda D.; Nataro, James P.; Pasetti, Marcela F.

    2014-01-01

    Live attenuated bacteria hold great promise as multivalent mucosal vaccines against a variety of pathogens. A major challenge of this approach has been the successful delivery of sufficient amounts of vaccine antigens to adequately prime the immune system without overattenuating the live vaccine. Here we used a live attenuated Salmonella enterica serovar Typhi strain to create a bivalent mucosal plague vaccine that produces both the protective F1 capsular antigen of Yersinia pestis and the LcrV protein required for secretion of virulence effector proteins. To reduce the metabolic burden associated with the coexpression of F1 and LcrV within the live vector, we balanced expression of both antigens by combining plasmid-based expression of F1 with chromosomal expression of LcrV from three independent loci. The immunogenicity and protective efficacy of this novel vaccine were assessed in mice by using a heterologous prime-boost immunization strategy and compared to those of a conventional strain in which F1 and LcrV were expressed from a single low-copy-number plasmid. The serum antibody responses to lipopolysaccharide (LPS) induced by the optimized bivalent vaccine were indistinguishable from those elicited by the parent strain, suggesting an adequate immunogenic capacity maintained through preservation of bacterial fitness; in contrast, LPS titers were 10-fold lower in mice immunized with the conventional vaccine strain. Importantly, mice receiving the optimized bivalent vaccine were fully protected against lethal pulmonary challenge. These results demonstrate the feasibility of distributing foreign antigen expression across both chromosomal and plasmid locations within a single vaccine organism for induction of protective immunity. PMID:25332120

  10. Detection of mcr-1 encoding plasmid-mediated colistin-resistant Escherichia coli isolates from human bloodstream infection and imported chicken meat, Denmark 2015.

    PubMed

    Hasman, Henrik; Hammerum, Anette M; Hansen, Frank; Hendriksen, Rene S; Olesen, Bente; Agersø, Yvonne; Zankari, Ea; Leekitcharoenphon, Pimlapas; Stegger, Marc; Kaas, Rolf S; Cavaco, Lina M; Hansen, Dennis S; Aarestrup, Frank M; Skov, Robert L

    2015-01-01

    The plasmid-mediated colistin resistance gene, mcr-1, was detected in an Escherichia coli isolate from a Danish patient with bloodstream infection and in five E. coli isolates from imported chicken meat. One isolate from chicken meat belonged to the epidemic spreading sequence type ST131. In addition to IncI2, an incX4 replicon was found to be linked to mcr-1. This report follows a recent detection of mcr-1 in E. coli from animals, food and humans in China. PMID:26676364

  11. Plasmids from the gut microbiome of cabbage root fly larvae encode SaxA that catalyses the conversion of the plant toxin 2-phenylethyl isothiocyanate.

    PubMed

    Welte, Cornelia U; de Graaf, Rob M; van den Bosch, Tijs J M; Op den Camp, Huub J M; van Dam, Nicole M; Jetten, Mike S M

    2016-05-01

    Cabbage root fly larvae (Delia radicum) cause severe crop losses (≥ 50%) of rapeseed/ canola and cabbages used in the food and biofuel industries. These losses occur despite the fact that cabbages produce insecticidal toxins such as isothiocyanates. Here we describe the cabbage root fly larval gut microbiome as a source of isothiocyanate degrading enzymes. We sequenced the microbial gut community of the larvae and analysed phylogenetic markers and functional genes. We combined this with the isolation of several microbial strains representing the phylogenetic distribution of the metagenome. Eleven of those isolates were highly resistant towards 2-phenylethyl isothiocyanate, a subset also metabolized 2-phenylethyl isothiocyanate. Several plasmids appeared to be shared between those isolates that metabolized the toxin. One of the plasmids harboured a saxA gene that upon transformation gave resistance and enabled the degradation of 2-phenylethyl isothiocyanate in Escherichia coli. Taken together, the results showed that the cabbage root fly larval gut microbiome is capable of isothiocyanate degradation, a characteristic that has not been observed before, and may help us understand and design new pest control strategies. PMID:26234684

  12. Autonomous plasmid-like replication of a conjugative transposon

    PubMed Central

    Lee, Catherine A.; Babic, Ana; Grossman, Alan D.

    2010-01-01

    Summary Integrative and conjugative elements (ICEs), a.k.a. conjugative transposons, are mobile genetic elements involved in many biological processes, including pathogenesis, symbiosis, and the spread of antibiotic resistance. Unlike conjugative plasmids that are extra-chromosomal and replicate autonomously, ICEs are integrated in the chromosome and replicate passively during chromosomal replication. It is generally thought that ICEs do not replicate autonomously. We found that when induced, Bacillus subtilis ICEBs1 undergoes autonomous plasmid-like replication. Replication was unidirectional, initiated from the ICEBs1 origin of transfer, oriT, and required the ICEBs1-encoded relaxase NicK. Replication also required several host proteins needed for chromosomal replication, but did not require the replicative helicase DnaC or the helicase loader protein DnaB. Rather, replication of ICEBs1 required the helicase PcrA that is required for rolling circle replication of many plasmids. Transfer of ICEBs1 from the donor required PcrA, but did not require replication, indicating that PcrA, and not DNA replication, facilitates unwinding of ICEBs1 DNA for horizontal transfer. Although not needed for horizontal transfer, replication of ICEBs1 was needed for stability of the element. We propose that autonomous plasmid-like replication is a common property of ICEs and contributes to the stability and maintenance of these mobile genetic elements in bacterial populations. PMID:19943900

  13. Novel mechanisms of controlling the activities of the transcription factors Spo0A and ComA by the plasmid-encoded quorum sensing regulators Rap60-Phr60 in Bacillus subtilis

    PubMed Central

    Boguslawski, Kristina M.; Hill, Patrick A.; Griffith, Kevin L.

    2015-01-01

    Summary Bacillus subtilis and its closest relatives have multiple rap-phr quorum sensing gene pairs that coordinate a variety of physiological processes with population density. Extra-chromosomal rap-phr genes are also present on mobile genetic elements, yet relatively little is known about their function. In this work, we demonstrate that Rap60-Phr60 from plasmid pTA1060 coordinates a variety of biological processes with population density including sporulation, cannibalism, biofilm formation and genetic competence. Similar to other Rap proteins that control sporulation, Rap60 modulates phosphorylation of the transcription factor Spo0A by acting as a phosphatase of Spo0F~P, an intermediate of the sporulation phosphorelay system. Additionally, Rap60 plays a noncanonical role in regulating the autophosphorylation of the sporulation-specific kinase KinA, a novel activity for Rap proteins. In contrast, Rap proteins that modulate genetic competence interfere with DNA binding by the transcription factor ComA. Rap60 regulates the activity of ComA in a unique manner by forming a Rap60–ComA–DNA ternary complex that inhibits transcription of target genes. Taken together, this work provides new insight into two novel mechanisms of regulating Spo0A and ComA by Rap60 and expands our general understanding of how plasmid-encoded quorum sensing pairs regulate important biological processes. PMID:25598361

  14. Novel mechanisms of controlling the activities of the transcription factors Spo0A and ComA by the plasmid-encoded quorum sensing regulators Rap60-Phr60 in Bacillus subtilis.

    PubMed

    Boguslawski, Kristina M; Hill, Patrick A; Griffith, Kevin L

    2015-04-01

    Bacillus subtilis and its closest relatives have multiple rap-phr quorum sensing gene pairs that coordinate a variety of physiological processes with population density. Extra-chromosomal rap-phr genes are also present on mobile genetic elements, yet relatively little is known about their function. In this work, we demonstrate that Rap60-Phr60 from plasmid pTA1060 coordinates a variety of biological processes with population density including sporulation, cannibalism, biofilm formation and genetic competence. Similar to other Rap proteins that control sporulation, Rap60 modulates phosphorylation of the transcription factor Spo0A by acting as a phosphatase of Spo0F∼P, an intermediate of the sporulation phosphorelay system. Additionally, Rap60 plays a noncanonical role in regulating the autophosphorylation of the sporulation-specific kinase KinA, a novel activity for Rap proteins. In contrast, Rap proteins that modulate genetic competence interfere with DNA binding by the transcription factor ComA. Rap60 regulates the activity of ComA in a unique manner by forming a Rap60-ComA-DNA ternary complex that inhibits transcription of target genes. Taken together, this work provides new insight into two novel mechanisms of regulating Spo0A and ComA by Rap60 and expands our general understanding of how plasmid-encoded quorum sensing pairs regulate important biological processes. PMID:25598361

  15. Presence of pathogenicity island related and plasmid encoded virulence genes in cytolethal distending toxin producing Escherichia coli isolates from diarrheal cases

    PubMed Central

    Oloomi, Mana; Javadi, Maryam; Bouzari, Saeid

    2015-01-01

    Context: Mobile genetic elements such as plasmids, bacteriophages, insertion elements, and genomic islands play a critical role in virulence of bacterial pathogens. These elements transfer horizontally and could play an important role in the evolution and virulence of many pathogens. A broad spectrum of gram-negative bacterial species has been shown to produce a cytolethal distending toxin (CDT). On the other hand, Shiga toxin producing Escherichia coli are the one carry virulence genes such as stx 1 and stx 2 (Shiga toxin) and these genes can be acquired by horizontal gene transfer. Aim: The aim of this study was to investigate the presence of other virulence associated genes among CDT producing E. coli strains. Materials and Methods: Thirty CDT positive strains isolated from patients with diarrhea were characterized. Thereafter, the association with virulent genetic elements in known pathogenicity islands (PAIs) was assessed by polymerase chain reaction. Results: In this study, it was shown that the most CDT producing E. coli isolates express Shiga toxin. Moreover, the presence of prophages framing cdt genes (like P2 phage) was also identified in each cdt-type genomic group. Flanked regions of cdt-I, cdt-IV, and cdt-V-type was similar to plasmid sequences while cdt-II and cdt-III-type regions similarity with hypothetical protein (orf3) was observed. Conclusion: The occurrence of each cdt-type groups with specific virulence genes and PAI genetic elements is indicative of horizontal gene transfer by these mobile genetic elements, which could lead to diversity among the isolates. PMID:26539367

  16. The anguibactin biosynthesis and transport genes are encoded in the chromosome of Vibrio harveyi: a possible evolutionary origin for the pJM1 plasmid-encoded system of Vibrio anguillarum?

    PubMed

    Naka, Hiroaki; Actis, Luis A; Crosa, Jorge H

    2013-02-01

    Many Vibrio anguillarum serotype O1 strains carry 65-kb pJM1-type plasmids harboring genes involved in siderophore anguibactin biosynthesis and transport. The anguibactin system is an essential factor for V. anguillarum to survive under iron-limiting conditions, and as a consequence, it is a very important virulence factor of this bacterium. Our comparative analysis of genomic data identified a cluster harboring homologs of anguibactin biosynthesis and transport genes in the chromosome of Vibrio harveyi. We have purified the putative anguibactin siderophore and demonstrated that it is indeed anguibactin by mass spectrometry and specific bioassays. Furthermore, we characterized two genes, angR and fatA, in this chromosome cluster that, respectively, participate in anguibactin biosynthesis and transport as determined by mutagenesis analysis. Furthermore, we found that the V. harveyi FatA protein is located in the outer membrane fractions as previously demonstrated in V. anguillarum. Based on our data, we propose that the anguibactin biosynthesis and transport cluster in the V. anguillarum pJM1 plasmid have likely evolved from the chromosome cluster of V. harveyi or vice versa. PMID:23335587

  17. Virulence Plasmids of Spore-Forming Bacteria.

    PubMed

    Adams, Vicki; Li, Jihong; Wisniewski, Jessica A; Uzal, Francisco A; Moore, Robert J; McClane, Bruce A; Rood, Julian I

    2014-12-01

    Plasmid-encoded virulence factors are important in the pathogenesis of diseases caused by spore-forming bacteria. Unlike many other bacteria, the most common virulence factors encoded by plasmids in Clostridium and Bacillus species are protein toxins. Clostridium perfringens causes several histotoxic and enterotoxin diseases in both humans and animals and produces a broad range of toxins, including many pore-forming toxins such as C. perfringens enterotoxin, epsilon-toxin, beta-toxin, and NetB. Genetic studies have led to the determination of the role of these toxins in disease pathogenesis. The genes for these toxins are generally carried on large conjugative plasmids that have common core replication, maintenance, and conjugation regions. There is considerable functional information available about the unique tcp conjugation locus carried by these plasmids, but less is known about plasmid maintenance. The latter is intriguing because many C. perfringens isolates stably maintain up to four different, but closely related, toxin plasmids. Toxin genes may also be plasmid-encoded in the neurotoxic clostridia. The tetanus toxin gene is located on a plasmid in Clostridium tetani, but the botulinum toxin genes may be chromosomal, plasmid-determined, or located on bacteriophages in Clostridium botulinum. In Bacillus anthracis it is well established that virulence is plasmid determined, with anthrax toxin genes located on pXO1 and capsule genes on a separate plasmid, pXO2. Orthologs of these plasmids are also found in other members of the Bacillus cereus group such as B. cereus and Bacillus thuringiensis. In B. thuringiensis these plasmids may carry genes encoding one or more insecticidal toxins. PMID:26104459

  18. Bacterial cheating limits antibiotic resistance

    NASA Astrophysics Data System (ADS)

    Xiao Chao, Hui; Yurtsev, Eugene; Datta, Manoshi; Artemova, Tanya; Gore, Jeff

    2012-02-01

    The widespread use of antibiotics has led to the evolution of resistance in bacteria. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removing the antibiotic. The cooperative nature of this growth suggests that a cheater strain---which does not contribute to breaking down the antibiotic---may be able to take advantage of cells cooperatively inactivating the antibiotic. Here we find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We observe stable coexistence between the two strains and find that a simple model successfully explains the behavior as a function of antibiotic concentration and cell density. We anticipate that our results will provide insight into the evolutionary origin of phenotypic diversity and cooperative behaviors.

  19. Antibiotic-Resistant Escherichia coli Bacteria, Including Strains with Genes Encoding the Extended-Spectrum Beta-Lactamase and QnrS, in Waterbirds on the Baltic Sea Coast of Poland▿

    PubMed Central

    Literak, Ivan; Dolejska, Monika; Janoszowska, Dagmar; Hrusakova, Jolana; Meissner, Wlodzimierz; Rzyska, Hanna; Bzoma, Szymon; Cizek, Alois

    2010-01-01

    Individual cloacal swabs of mallards (Anas platyrhynchos) and of herring gulls (Larus argentatus), as well as samples of waterbird feces obtained in 2008 and 2009, were cultivated for Escherichia coli. Isolates of E. coli were tested for susceptibilities to 12 antimicrobial agents by the disk diffusion method. Moreover, the samples were subcultivated on MacConkey agar (MCA) containing cefotaxime (2 mg liter−1) to detect E. coli with extended-spectrum beta-lactamase (ESBL) and subsequently on MCA supplemented with ciprofloxacin (0.05 mg liter−1) and MCA with nalidixic acid (20 mg liter−1) to isolate fluoroquinolone-resistant E. coli. PCR was used to detect specific antibiotic resistance genes. We found 9 E. coli isolates producing ESBL with bla genes: blaCTX-M-1 (6 isolates), blaCTX-M-9 plus blaTEM-1b (1 isolate), blaCTX-M-15 plus blaOXA-1 (1 isolate), and blaSHV-12 (1 isolate). In the isolate with blaCTX-M-15, the gene aac(6)-Ib-cr was also detected. The bla genes were harbored by transferable plasmids of the IncN and IncI1 groups. Nine quinolone-resistant E. coli isolates with qnrS genes were found and characterized. The gene qnrS was associated with a Tn3-like transposon on the IncX1 plasmid together with blaTEM-1 in two isolates. The gene qnrS was also harbored by conjugative plasmids of the IncN and IncX2 groups. Even if populations of wild birds are not directly influenced by antibiotic practice, we have demonstrated that antibiotic-resistant E. coli strains, including strains with various ESBL and qnrS genes, are found in the feces of wild birds on the coast of the Baltic Sea in Poland. PMID:20952638

  20. Antibiotic-resistant Escherichia coli bacteria, including strains with genes encoding the extended-spectrum beta-lactamase and QnrS, in waterbirds on the Baltic Sea Coast of Poland.

    PubMed

    Literak, Ivan; Dolejska, Monika; Janoszowska, Dagmar; Hrusakova, Jolana; Meissner, Wlodzimierz; Rzyska, Hanna; Bzoma, Szymon; Cizek, Alois

    2010-12-01

    Individual cloacal swabs of mallards (Anas platyrhynchos) and of herring gulls (Larus argentatus), as well as samples of waterbird feces obtained in 2008 and 2009, were cultivated for Escherichia coli. Isolates of E. coli were tested for susceptibilities to 12 antimicrobial agents by the disk diffusion method. Moreover, the samples were subcultivated on MacConkey agar (MCA) containing cefotaxime (2 mg liter(-1)) to detect E. coli with extended-spectrum beta-lactamase (ESBL) and subsequently on MCA supplemented with ciprofloxacin (0.05 mg liter(-1)) and MCA with nalidixic acid (20 mg liter(-1)) to isolate fluoroquinolone-resistant E. coli. PCR was used to detect specific antibiotic resistance genes. We found 9 E. coli isolates producing ESBL with bla genes: bla(CTX-M-1) (6 isolates), bla(CTX-M-9) plus bla(TEM-1b) (1 isolate), bla(CTX-M-15) plus bla(OXA-1) (1 isolate), and bla(SHV-12) (1 isolate). In the isolate with bla(CTX-M-15), the gene aac(6)-Ib-cr was also detected. The bla genes were harbored by transferable plasmids of the IncN and IncI1 groups. Nine quinolone-resistant E. coli isolates with qnrS genes were found and characterized. The gene qnrS was associated with a Tn3-like transposon on the IncX1 plasmid together with bla(TEM-1) in two isolates. The gene qnrS was also harbored by conjugative plasmids of the IncN and IncX2 groups. Even if populations of wild birds are not directly influenced by antibiotic practice, we have demonstrated that antibiotic-resistant E. coli strains, including strains with various ESBL and qnrS genes, are found in the feces of wild birds on the coast of the Baltic Sea in Poland. PMID:20952638

  1. cmdABCDEF, a cluster of genes encoding membrane proteins for differentiation and antibiotic production in Streptomyces coelicolor A3(2)

    PubMed Central

    2009-01-01

    Background Streptomyces coelicolor is the most studied Streptomyces species and an excellent model for studying differentiation and antibiotic production. To date, many genes have been identified to be required for its differentiation (e.g. bld genes for aerial growth and whi genes for sporulation) and antibiotics production (including actII-orf4, redD, cdaR as pathway-specific regulatory genes and afsR, absA1/A2 as pleiotropic regulatory genes). Results A gene cluster containing six genes (SCO4126-4131) was proved to be co-transcribed in S. coelicolor. Deletions of cmdABCDEF (SCO4126-4131) displayed defective sporulation including formation of aberrant branches, and abnormalities in chromosome segregation and spore septation. Disruption mutants of apparently orthologous genes of S. lividans and S. avermitilis also showed defective sporulation, implying that the role of these genes is similar among Streptomyces. Transcription of cmdB, and therefore presumably of the whole operon, was regulated developmentally. Five of the encoded proteins (CmdA, C, D, E, F) were predicted membrane proteins. The other, CmdB, a predicted ATP/GTP-binding protein with an ABC-transporter-ATPase domain shown here to be essential for its function, was also located on the cell membrane. These results indicate that CmdABCDEF proteins mainly affect Streptomyces differentiation at an early stage of aerial hyphae formation, and suggest that these proteins may form a complex on cell membrane for proper segregation of chromosomes. In addition, deletions of cmdABCDEF also revealed over-production of blue-pigmented actinorhodin (Act) via activation of transcription of the pathway-specific regulatory gene actII-orf4 of actinorhodin biosynthesis. Conclusion In this study, six co-transcribed genes cmdABCDEF were identified by their effects on differentiation and antibiotic production in Streptomyces coelicolor A3(2). These six membrane-located proteins are possibly assembled into a complex to

  2. Complete nucleotide sequence of plasmid pNA6 reveals the high plasticity of IncU family plasmids.

    PubMed

    Dang, Bingjun; Xu, Yan; Mao, Daqing; Luo, Yi

    2016-10-10

    Antibiotic resistance is a serious problem in health care and is of widespread public concern. Conjugative plasmids are the most important vectors in the dissemination of antibiotic resistance genes. In this study, we determined the complete sequence of plasmid pNA6, a plasmid which was isolated from the sediments of Haihe River. This plasmid confers reduced susceptibility to ampicillin, erythromycin and sulfamethoxazole. The complete sequence of plasmid pNA6 was 52,210bp in length with an average G+C content of 52.70%. Plasmid pNA6 belongs to the IncU group by sequence queries against the GenBank database. This plasmid has a typical IncU backbone and shows the highest similarities with plasmid RA3 and plasmid pFBAOT6. Plasmid pNA6 carries a class 1 integron consisting of aacA4, ereA and dfrA1 genes. Moreover, plasmid pNA6 also harbors a blaTEM-1-containing complex structure which inserted into the replication region and maintenance region. This insertion site has never been found on other IncU plasmids. The sequencing of plasmid pNA6 will add new sequence information to IncU family plasmids and enhance our understanding of the plasticity of IncU family plasmids. PMID:27374151

  3. Co-administration of plasmid-encoded granulocyte-macrophage colony-stimulating factor increases human immunodeficiency virus-1 DNA vaccine-induced polyfunctional CD4+ T-cell responses

    PubMed Central

    Santana, Vinicius Canato; Almeida, Rafael Ribeiro; Ribeiro, Susan Pereira; Ferreira, Luís Carlos de Souza; Kalil, Jorge; Rosa, Daniela Santoro; Cunha-Neto, Edecio

    2015-01-01

    T-cell based vaccines against human immunodeficiency virus (HIV) generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity. PMID:26602876

  4. Co-administration of plasmid-encoded granulocyte-macrophage colony-stimulating factor increases human immunodeficiency virus-1 DNA vaccine-induced polyfunctional CD4+ T-cell responses.

    PubMed

    Santana, Vinicius Canato; Almeida, Rafael Ribeiro; Ribeiro, Susan Pereira; Ferreira, Luís Carlos de Souza; Kalil, Jorge; Rosa, Daniela Santoro; Cunha-Neto, Edecio

    2015-12-01

    T-cell based vaccines against human immunodeficiency virus (HIV) generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity. PMID:26602876

  5. Potential DNA slippage structures acquired during evolutionary divergence of Acinetobacter calcoaceticus chromosomal benABC and Pseudomonas putida TOL pWW0 plasmid xylXYZ, genes encoding benzoate dioxygenases.

    PubMed Central

    Harayama, S; Rekik, M; Bairoch, A; Neidle, E L; Ornston, L N

    1991-01-01

    The xylXYZ DNA region is carried on the TOL pWW0 plasmid in Pseudomonas putida and encodes a benzoate dioxygenase with broad substrate specificity. The DNA sequence of the region is presented and compared with benABC, the chromosomal region encoding the benzoate dioxygenase of Acinetobacter calcoaceticus. Corresponding genes from the two biological sources share common ancestry: comparison of aligned XylX-BenA, XylY-BenB, and XylZ-BenC amino acid sequences revealed respective identities of 58.3, 61.3, and 53%. The aligned genes have diverged to assume G+C contents that differ by 14.0 to 14.9%. Usage of the unusual arginine codons AGA and AGG appears to have been selected in the P. putida xylX gene as it diverged from the ancestor it shared with A. calcoaceticus benA. Homologous A. calcoaceticus and P. putida genes exhibit different patterns of DNA sequence repetition, and analysis of one such pattern suggests that mutations creating different DNA slippage structures made a significant contribution to the evolutionary divergence of xylX. PMID:1938949

  6. Safety of a non-viral plasmid-encoding dual isoforms of hepatocyte growth factor in critical limb ischemia patients: a phase I study.

    PubMed

    Henry, T D; Hirsch, A T; Goldman, J; Wang, Y L; Lips, D L; McMillan, W D; Duval, S; Biggs, T A; Keo, H H

    2011-08-01

    We aimed to evaluate in a phase I dose-escalation study, the safety of intramuscular injections of a novel non-viral plasmid DNA expressing two isoforms of human hepatocyte growth factor (HGF) (VM202) in patients with critical limb ischemia (CLI). In total, 12 patients with CLI and unsuitable for revascularization were consecutively assigned to increasing doses (2 to 16 mg) of VM202 administered into the ischemic calf muscle at days 1 and 15. Patients were evaluated for safety and tolerability, changes in ankle- and toe brachial index (ABI and TBI), and pain severity score using a visual analog scale (VAS) throughout a 12-month follow-up period. Median age was 72 years and 53% of the patients were male. VM202 was safe and well tolerated with no death during the 12-month follow-up. Median ABI and TBI significantly increased from 0.35 to 0.52 (P=0.005) and from 0.15 to 0.24 (P=0.01) at 12 months follow-up. Median VAS decreased from 57.5 to 16.0 mm at 6 months follow-up (P=0.03). In this first human clinical trial, VM202, which expresses two isoforms of human HGF, appear to be safe and well tolerated with encouraging clinical results and thus supports the performance of a phase II randomized controlled trial. PMID:21430785

  7. The first report of detecting the blaSIM-2 gene and determining the complete sequence of the SIM-encoding plasmid.

    PubMed

    Sun, F; Zhou, D; Wang, Q; Feng, J; Feng, W; Luo, W; Zhang, D; Liu, Y; Qiu, X; Yin, Z; Chen, W; Xia, P

    2016-04-01

    An imipenem-resistant Pseudomonas aeruginosa strain HN39 that harbours a blaSIM-2-carrying plasmid pHN39-SIM, was isolated from a patient with craniocerebral infections in China. The SIM-2 protein differs from SIM-1 by a single amino acid substitution Gly198Asp. pHN39-SIM is a novel 282-kb megaplasmid and it possesses the replication and partition systems of an unknown incompatibility group. pHN39-SIM carries a total of ten separate accessory modules especially including a novel 38.8-kb multidrug resistance region. In addition to the known transposable elements ISPst3, a Tn5563a remnant, IS1071, Tn5046, ΔTn4662a and ΔTn512, harboured in these accessory modules are six novel ones ISPa59 to ISPa62, In1208 and Tn6284. The multidrug resistance region is composed of Tn6284 generated from the insertion of an In4-family integron In1208 into Tn5046, and a Tn4662a-derived element with the insertion of ΔTn512 connected with two other genes. In1208 carries not only blaSIM-2 but several additional genes accounting for resistance to erythromycin, chloramphenicol, rifampicin, streptomycin, quaternary ammonium compounds, sulphonamides and mercury. PMID:26706613

  8. Eliciting specific humoral immunity from a plasmid DNA encoding infectious bursal disease virus polyprotein gene fused with avian influenza virus hemagglutinin gene.

    PubMed

    Mosley, Yung-Yi C; Hsieh, Ming Kun; Wu, Ching Ching; Lin, Tsang Long

    2015-01-01

    DNA vaccine coding for infectious bursal disease virus (IBDV) polyprotein gene and that for avian influenza virus (AIV) hemagglutinin (HA) gene have been shown to induce immunity and provide protection against the respective disease. The present study was carried out to determine whether an IBDV polyprotein gene-based DNA fused with AIV HA gene could trigger immune response to both IBDV and AIV. After transfection, VP2 and HA were detected in the cytoplasm and at cell membrane, respectively, by immunofluorescent antibody double staining method, suggesting the fusion strategy did not affect the location of protein expression. VP4 cleavage between VP2 and HA was confirmed by Western blot, indicating the fusion strategy did not affect VP4 function in transfected cells. After vaccination in chickens, the DNA construct VP24-HA/pcDNA induced ELISA and virus neutralizing antibodies against VP2 and hemagglutination inhibition antibody against the HA subtype. The results indicated that a single plasmid construct carrying IBDV VP243 gene-based DNA fused with AIV HA gene can elicit specific antibody responses to both IBDV and AIV by DNA vaccination. PMID:25445883

  9. Novel Class of Mutations of pilS Mutants, Encoding Plasmid R64 Type IV Prepilin: Interface of PilS-PilV Interactions▿

    PubMed Central

    Shimoda, Eriko; Muto, Tatsuya; Horiuchi, Takayuki; Furuya, Nobuhisa; Komano, Teruya

    2008-01-01

    The type IV pili of plasmid R64 belonging to the type IVB group are required only for liquid mating. They consist of the major and minor components PilS pilin and PilV adhesin, respectively. PilS pilin is first synthesized as a 22-kDa prepilin from the pilS gene and is then processed to a 19-kDa mature pilin by PilU prepilin peptidase. In a previous genetic analysis, we identified four classes of the pilS mutants (T. Horiuchi and T. Komano, J. Bacteriol. 180:4613-4620, 1998). The products of the class I pilS mutants were not processed by prepilin peptidase; the products of the class II mutants were not secreted; in the class III mutants type IV pili with reduced activities in liquid mating were produced; and in the class IV mutants type IV pili with normal activities were produced. Here, we describe a novel class, class V, of pilS mutants. Mutations in the pilS gene at Gly-56 or Tyr-57 produced type IV pili lacking PilV adhesin, which were inactive in liquid mating. Residues 56 and 57 of PilS pilin are suggested to function as an interface of PilS-PilV interactions. PMID:18065540

  10. Complete Sequence of the Enterocin Q-Encoding Plasmid pCIZ2 from the Multiple Bacteriocin Producer Enterococcus faecium L50 and Genetic Characterization of Enterocin Q Production and Immunity

    PubMed Central

    Criado, Raquel; Diep, Dzung B.; Aakra, Ågot; Gutiérrez, Jorge; Nes, Ingolf F.; Hernández, Pablo E.; Cintas, Luis M.

    2006-01-01

    The locations of the genetic determinants for enterocin L50 (EntL50A and EntL50B), enterocin Q (EntQ), and enterocin P (EntP) in the multiple bacteriocin producer Enterococcus faecium strain L50 were determined. These bacteriocin genes occur at different locations; entL50AB (encoding EntL50A and EntL50B) are on the 50-kb plasmid pCIZ1, entqA (encoding EntQ) is on the 7.4-kb plasmid pCIZ2, and entP (encoding EntP) is on the chromosome. The complete nucleotide sequence of pCIZ2 was determined to be 7,383 bp long and contains 10 putative open reading frames (ORFs) organized in three distinct regions. The first region contains three ORFs: entqA preceded by two divergently oriented genes, entqB and entqC. EntqB shows high levels of similarity to bacterial ATP-binding cassette (ABC) transporters, while EntqC displays no significant similarity to any known protein. The second region encompasses four ORFs (orf4 to orf7), and ORF4 and ORF5 display high levels of similarity to mobilization proteins from E. faecium and Enterococcus faecalis. In addition, features resembling a transfer origin region (oriT) were found in the promoter area of orf4. The third region contains three ORFs (orf8 to orf10), and ORF8 and ORF9 exhibit similarity to the replication initiator protein RepE from E. faecalis and to RepB proteins, respectively. To clarify the minimum requirement for EntQ synthesis, we subcloned and heterologously expressed a 2,371-bp fragment from pCIZ2 that encompasses only the entqA, entqB, and entqC genes in Lactobacillus sakei, and we demonstrated that this fragment is sufficient for EntQ production. Moreover, we also obtained experimental results indicating that EntqB is involved in ABC transporter-mediated EntQ secretion, while EntqC confers immunity to this bacteriocin. PMID:17021217

  11. Clostridium perfringens type A–E toxin plasmids

    PubMed Central

    Freedman, John C.; Theoret, James R.; Wisniewski, Jessica A.; Uzal, Francisco A.; Rood, Julian I.; McClane, Bruce A.

    2014-01-01

    Clostridium perfringens relies upon plasmid-encoded toxin genes to cause intestinal infections. These toxin genes are associated with insertion sequences that may facilitate their mobilization and transfer, giving rise to new toxin plasmids with common backbones. Most toxin plasmids carry a transfer of clostridial plasmids locus mediating conjugation, which likely explains the presence of similar toxin plasmids in otherwise unrelated C. perfringens strains. The association of many toxin genes with insertion sequences and conjugative plasmids provides virulence flexibility when causing intestinal infections. However, incompatibility issues apparently limit the number of toxin plasmids maintained by a single cell. PMID:25283728

  12. Influence of Different Functional Elements of Plasmid pGT232 on Maintenance of Recombinant Plasmids in Lactobacillus reuteri Populations In Vitro and In Vivo

    PubMed Central

    Heng, Nicholas C. K.; Bateup, Judith M.; Loach, Diane M.; Wu, Xiyang; Jenkinson, Howard F.; Morrison, Mark; Tannock, Gerald W.

    1999-01-01

    Plasmid pGT232 (5.1 kb), an indigenous plasmid of Lactobacillus reuteri 100-23, was determined, on the basis of nucleotide and deduced protein sequence data, to belong to the pC194-pUB110 family of plasmids that replicate via the rolling-circle mechanism. The minimal replicon of pGT232 was located on a 1.7-kb sequence consisting of a double-strand origin of replication and a gene encoding the replication initiation protein, repA. An erythromycin-selectable recombinant plasmid containing this minimal replicon was stably maintained (>97% erythromycin-resistant cells) without antibiotic selection in an L. reuteri population under laboratory growth conditions but was poorly maintained (<33% resistant cells) in the L. reuteri population inhabiting the murine gastrointestinal tract. Stable maintenance (>90% resistant cells) of pGT232-derived plasmids in the lactobacillus population in vivo required an additional 1.0-kb sequence which contained a putative single-strand replication origin (SSO). The SSO of pGT232 is believed to be novel and functions in an orientation-specific manner. PMID:10583992

  13. [Correlation between multiple antibiotic resistance and heavy-metal tolerance among some E.coli strains isolated from polluted waters].

    PubMed

    Lazăr, Veronica; Cernat, Ramona; Balotescu, Carmen; Cotar, Ani; Coipan, Elena; Cojocaru, Cristina

    2002-01-01

    Self-transmissible plasmids conferring multiple antibiotic resistance are wide-spread in coliforms populations. In soil and water, multiple antibiotic resistance is clearly associated with resistance/tolerance to heavy-metals (Hg2+, Cu2+, Pb2+, Zn2+, Ca2+). For different genera the genes for heavy-metals resistance are often plasmid encoded. Since these genes are clustered on the same plasmids, heavy-metals and drugs are environmental factors which exert a selective pressure for the populations of these plasmid-harboring bacteria. The aim of this preliminary study was to find possible correlation between resistance genotype determined by genetic analysis and antibiotic and heavy-metal resistance patterns of 12 E. coli strains isolated from chronically polluted waters. Antimicrobial susceptibility testing was performed for ampicillin, tetracycline, gentamycin, kanamycin, chloramphenicol, ceftazidime and cefotaxime by standard disk diffusion Kirby-Bauer method following NCCLS recommendations. These antibiotics were chosen because of their wide-spread use and importance in the treatment of Gram-negative bacterial infections. MICs values of antibiotics and heavy-metals were determined by dilution method in Mueller-Hinton broth using an inoculum of about 1-2 x 10(8) CFU/ml. The concentration range for antimicrobials and heavy-metals salts (CuSO4, CdCl2, Co(NO3)2, Cr(NO3)3, HgCl2, NiCl2 and ZnSO4) was 0.06-64 [symbol: see text] g/ml, 0.5-256 [symbol: see text] g/ml respectively. Plasmid DNA was isolated from E. coli strains by an alkaline lysis. Genetic characterization was performed by agarose gel electrophoresis and spectrophotometric analysis. All strains are multiple antibiotic resistant, 16% of them being resistant to 3, 4 and 6 antibiotics, 32% to 5 and 8% to all 7 antibiotics, respectively. Multiple tolerance to high levels of Cd2+, Cu2+, Cr3+ and Ni2+ was common among multiple antibioresistant strains. Screening for plasmids relieved the presence of several

  14. Enhancement of the immunogenicity of an infectious laryngotracheitis virus DNA vaccine by a bicistronic plasmid encoding glycoprotein B and interleukin-18.

    PubMed

    Chen, Hong-Ying; Zhao, Li; Wei, Zhan-Yong; Cui, Bao-An; Wang, Zhen-Ya; Li, Xin-Sheng; Xia, Ping-An; Liu, Jin-Peng

    2010-08-01

    A DNA vaccine against infectious laryngotracheitis virus (ILTV) can induce specific humoral and cell-mediated immunity. However, compared to conventional vaccines, DNA vaccines usually induce poor antibody responses. To determine if co-expression of a cytokine can result in a more potent ILTV DNA vaccine, immunogenicity and protective efficacy of a monocistronic vector encoding the glycoprotein B (gB) of ILTV was compared to that of a bicistronic vector separately encoding the gB and chicken interleukin-18. Humoral and cellular responses induced by the DNA vaccines administered to the quadriceps muscle of chickens were evaluated. There were significant differences in antibody levels elicited by either monocistronic or bicistronic DNA vaccines as determined by ELISA. The percentages of CD3(+), CD3(+)CD8(+) and CD3(+)CD4(+) subgroups of peripheral blood T-lymphocytes in chickens immunized with the bicistronic DNA vaccine were higher than those in chickens immunized with monocistronic DNA vaccine. When chickens were challenged with a virulent CG strain of ILTV, the protective efficacy was enhanced significantly after immunization with the bicistronic DNA vaccine. These results demonstrated that co-expression of an adjuvant cytokine from a bicistronic DNA vaccine may be an effective approach to increasing ILTV DNA vaccine immunogenicity. PMID:20553764

  15. The extended regulatory networks of SXT/R391 integrative and conjugative elements and IncA/C conjugative plasmids

    PubMed Central

    Poulin-Laprade, Dominic; Carraro, Nicolas; Burrus, Vincent

    2015-01-01

    Nowadays, healthcare systems are challenged by a major worldwide drug resistance crisis caused by the massive and rapid dissemination of antibiotic resistance genes and associated emergence of multidrug resistant pathogenic bacteria, in both clinical and environmental settings. Conjugation is the main driving force of gene transfer among microorganisms. This mechanism of horizontal gene transfer mediates the translocation of large DNA fragments between two bacterial cells in direct contact. Integrative and conjugative elements (ICEs) of the SXT/R391 family (SRIs) and IncA/C conjugative plasmids (ACPs) are responsible for the dissemination of a broad spectrum of antibiotic resistance genes among diverse species of Enterobacteriaceae and Vibrionaceae. The biology, diversity, prevalence and distribution of these two families of conjugative elements have been the subject of extensive studies for the past 15 years. Recently, the transcriptional regulators that govern their dissemination through the expression of ICE- or plasmid-encoded transfer genes have been described. Unrelated repressors control the activation of conjugation by preventing the expression of two related master activator complexes in both types of elements, i.e., SetCD in SXT/R391 ICEs and AcaCD in IncA/C plasmids. Finally, in addition to activating ICE- or plasmid-borne genes, these master activators have been shown to specifically activate phylogenetically unrelated mobilizable genomic islands (MGIs) that also disseminate antibiotic resistance genes and other adaptive traits among a plethora of pathogens such as Vibrio cholerae and Salmonella enterica. PMID:26347724

  16. Novel ABC Transporter Gene, vga(C), Located on a Multiresistance Plasmid from a Porcine Methicillin-Resistant Staphylococcus aureus ST398 Strain ▿

    PubMed Central

    Kadlec, Kristina; Schwarz, Stefan

    2009-01-01

    A novel ABC transporter gene, vga(C), was identified on the 14,365-bp multiresistance plasmid pKKS825 in a porcine methicillin (meticillin)-resistant Staphylococcus aureus isolate of sequence type 398. The vga(C) gene encodes a 523-amino-acid protein which confers resistance not only to streptogramin A antibiotics but also to lincosamides and pleuromutilins. Plasmid pKKS825 also carries the resistance genes aadD, tet(L), and dfrK, which may enable the coselection of vga(C) under selective pressure by kanamycin/neomycin, tetracyclines, and trimethoprim. PMID:19470508

  17. Pheromone-Regulated Expression of Sex Pheromone Plasmid pAD1-Encoded Aggregation Substance Depends on at Least Six Upstream Genes and a cis-Acting, Orientation-Dependent Factor

    PubMed Central

    Muscholl-Silberhorn, Albrecht B.

    2000-01-01

    Conjugative transfer of Enterococcus faecalis-specific sex pheromone plasmids relies on an adhesin, called aggregation substance, to confer a tight cell-to-cell contact between the mating partners. To analyze the dependence of pAD1-encoded aggregation substance, Asa1, on pheromone induction, a variety of upstream fragments were fused to an α-amylase reporter gene, amyL, by use of a novel promoter probe vector, pAMY-em1. For pheromone-regulated α-amylase activity, a total of at least six genes, traB, traC, traA, traE1, orfY, and orf1, are required: TraB efficiently represses asa1 (by a mechanism unrelated to its presumptive function in pheromone shutdown, since a complete shutdown is observed exclusively in the presence of traC); only traC can relieve traB-mediated repression in a pheromone-dependent manner. In addition to traB, traA is required but not sufficient for negative control. Mutational inactivation of traE1, orfY, or orf1, respectively, results in a total loss of α-amylase activity for constructs normally mediating constitutive expression. Inversion of a fragment covering traA, P0, and traE1 without disrupting any gene or control element switches off amyL or asa1 expression, indicating the involvement of a cis-acting, orientation-dependent factor (as had been shown for plasmid pCF10). Unexpectedly, pAD1 represses all pAMY-em1 derivatives in trans, while its own pheromone-dependent functions are unaffected. The discrepancy between the new data and those of former studies defining TraE1 as a trans-acting positive regulator is discussed. PMID:10850999

  18. A CsrA/RsmA translational regulator gene encoded in the replication region of a Sinorhizobium meliloti cryptic plasmid complements Pseudomonas fluorescens rsmA/E mutants.

    PubMed

    Agaras, Betina; Sobrero, Patricio; Valverde, Claudio

    2013-02-01

    Members of the CsrA/RsmA family are global regulatory proteins that bind to mRNAs, usually at the ribosome-binding site, to control mRNA translation and stability. Their activity is counteracted by small non-coding RNAs (sRNAs), which offer several binding sites to compete with mRNA binding. The csrA/rsmA genes are widespread in prokaryotic chromosomes, although certain phylogenetic groups such as Alphaproteobacteria lack this type of global regulator. Interestingly, a csrA/rsmA-like sequence was identified in the replication region of plasmid pMBA19a from the alphaproteobacterium Sinorhizobium meliloti. This rsmA-like allele (rsmA(Sm)) is 58 % identical to Xanthomonas axonopodis pv. citri chromosomal rsmA and bears an unusual C-terminal extension that may fold into an extra α-helix. Homology-based modelling of RsmA(Sm) suggests that all key mRNA-binding residues are conserved and correctly positioned in the RNA-binding pocket. In fact, a 1.6 kb fragment from pMBA19a encompassing the rsmA(Sm) locus restored rsmA/E-dependent phenotypes of rsmA/E gacS Pseudomonas fluorescens mutants. The functionality of RsmA(Sm) was confirmed by the gain of control over target aprA'-'lacZ and hcnA'-'lacZ translational fusions in the same mutant background. The RsmA(Sm) activity correlated with Western blot detection of the polypeptide. Phenotype and translational fusion data from rsmA/E P. fluorescens mutants expressing RsmX/Y/Z RNAs indicated that RsmA(Sm) is able to bind these antagonistic sRNAs. In agreement with the latter observation, it was also found that the sRNA RsmY was stabilized by RsmA(Sm). Deletion of the C-terminal extra α-helix of RsmA(Sm) affected its cellular concentration, but increased its relative RNA-binding activity. This is believed to be the first report of the presence and characterization of a functional csrA/rsmA homologue in a mobile genetic element. PMID:23175505

  19. USE OF A NOVEL PLASMID TO MONITOR THE FATE OF A GENETICALLY ENGINEERED PSEUDOMONAS PUTIDA STRAIN

    EPA Science Inventory

    Plasmid pSI30 was constructed to increase the sensitivity of detection of a genetically engineered microorganism (GEM) and its recombinant DNA in environmental samples. his broad host-range, mobilizable plasmid contained chlorocatechol (clc) degradative genes, antibiotic resistan...

  20. Bacterial Plasmids in Antarctic Natural Microbial Assemblages

    PubMed Central

    Kobori, Hiromi; Sullivan, Cornelius W.; Shizuya, Hiroaki

    1984-01-01

    Samples of psychrophilic and psychrotrophic bacteria were collected from sea ice, seawater, sediments, and benthic or ice-associated animals in McMurdo Sound, Antarctica. A total of 155 strains were isolated and tested for the presence of plasmids by DNA agarose gel electrophoresis. Thirty-one percent of the isolates carried at least one kind of plasmid. Bacterial isolates taken from sediments showed the highest plasmid incidence (42%), and isolates from seawater showed the lowest plasmid incidence (20%). Plasmids were significantly more frequent in the strains which had been first isolated from low-nutrient media (46%) than in the strains which had been isolated from high-nutrient media (25%). Multiple forms of plasmids were observed in two-thirds of the plasmid-carrying strains. A majority of the plasmids detected were estimated to have a mass of 10 megadaltons or less. Among 48 plasmid-carrying strains, 7 showed antibiotic resistance. It is concluded that bacterial plasmids are ubiquitous in natural microbial assemblages of the pristine marine ecosystem of Antarctica. Images PMID:16346621

  1. Plasmid-Mediated Dimethoate Degradation by Bacillus licheniformis Isolated From a Fresh Water Fish Labeo rohita

    PubMed Central

    2005-01-01

    The Bacillus licheniformis strain isolated from the intestine of Labeo rohita by an enrichment technique showed capability of utilizing dimethoate as the sole source of carbon. The bacterium rapidly utilized dimethoate beyond 0.6 mg/mL and showed prolific growth in a mineral salts medium containing 0.45 mg/mL dimethoate. The isolated B licheniformis exhibited high level of tolerance of dimethoate (3.5 mg/mL) in nutrient broth, while its cured mutant did not tolerate dimethoate beyond 0.45 mg/mL and it was unable to utilize dimethoate. The wild B licheniformis strain transferred dimethoate degradation property to E coli C600 (Nar, F−) strain. The transconjugant harbored a plasmid of the same molecular size (approximately 54 kb) as that of the donor plasmid; the cured strain was plasmid less. Thus a single plasmid of approximately 54 kb was involved in dimethoate degradation. Genes encoding resistance to antibiotic and heavy metal were also located on the plasmid. PMID:16192686

  2. IMP-1 encoded by a novel Tn402-like class 1 integron in clinical Achromobacter xylosoxidans, China

    PubMed Central

    Chen, Zhenhong; Fang, Haihong; Wang, Li; Sun, Fengjun; Wang, Yong; Yin, Zhe; Yang, Huiying; Yang, Wenhui; Wang, Jie; Xia, Peiyuan; Zhou, Dongsheng; Liu, Changting

    2014-01-01

    Achromobacter xylosoxidans strain A22732 is isolated from a pneumonia patient in China and produces carbapenemases OXA-114e and IMP-1, which are encoded by chromosome and plasmid, respectively, and confer resistance to multiple ß-lactam antibiotics including carbapenems. The blaIMP-1 gene together with aacA7 and orfE is captured by a novel Tn402-like class 1 integron in a conjugative IncP-1ß plasmid. In addition to the intrinsic integron promoter PcW, there is still a blaIMP-1 gene cassette-specific promoter. This is the first report of carbapenemase-encoding IncP-1ß plasmid in clinical bacterial isolate. PMID:25428613

  3. Preparation of Saccharomyces cerevisiae expression plasmids.

    PubMed

    Drew, David; Kim, Hyun

    2012-01-01

    Expression plasmids for Saccharomyces cerevisiae offer a wide choice of vector copy number, promoters of varying strength and selection markers. These expression plasmids are usually shuttle vectors that can be propagated both in yeast and bacteria, making them useful in gene cloning. For heterologous production of membrane proteins, we used the green fluorescent protein (GFP) fusion technology which was previously developed in the Escherichia coli system. We designed an expression plasmid carrying an inducible GAL1 promoter, a gene encoding a membrane protein of interest and the GFP-octa-histidine sequence. Here we describe construction of multi-copy yeast expression plasmids by homologous recombination in S. cerevisiae. PMID:22454112

  4. Electrotransfer of Plasmid DNA Encoding an Anti-Mouse Endoglin (CD105) shRNA to B16 Melanoma Tumors with Low and High Metastatic Potential Results in Pronounced Anti-Tumor Effects

    PubMed Central

    Dolinsek, Tanja; Sersa, Gregor; Prosen, Lara; Bosnjak, Masa; Stimac, Monika; Razborsek, Urska; Cemazar, Maja

    2015-01-01

    Endoglin overexpression is associated with highly proliferative tumor endothelium and also with some tumors, including melanoma. Its targeting has anti-tumor effectiveness, which can also be obtained by RNA interference. The aim of our study was to explore the anti-tumor effectiveness of endoglin silencing by electrotransfer of plasmid DNA encoding short hairpin RNA against endoglin in two murine B16 melanoma variants with different metastatic potential on cells, spheroids and subcutaneous tumors in mice. The results demonstrate that endoglin silencing with gene electrotransfer reduces the proliferation, survival and migration of melanoma cells and also has anti-tumor effectiveness, as the therapy resulted in a high percentage of tumor cures (23% and 58% on B16F1 and B16F10 tumors, respectively). The effectiveness of the therapy correlated with endoglin expression in melanoma cells; in vitro the effects were more pronounced in B16F1 cells, which express more endoglin than B16F10. However, the opposite was observed in vivo in tumors, where there was a higher expression of endoglin and better anti-tumor effectiveness in the B16F10 tumor. In conclusion, targeting endoglin for the treatment of melanoma seems to be a concept worthy of further exploration due to the increased therapeutic effect of the therapy based on simultaneous vascular targeting and its direct effect on tumor cells. PMID:26712792

  5. Electrotransfer of Plasmid DNA Encoding an Anti-Mouse Endoglin (CD105) shRNA to B16 Melanoma Tumors with Low and High Metastatic Potential Results in Pronounced Anti-Tumor Effects.

    PubMed

    Dolinsek, Tanja; Sersa, Gregor; Prosen, Lara; Bosnjak, Masa; Stimac, Monika; Razborsek, Urska; Cemazar, Maja

    2015-01-01

    Endoglin overexpression is associated with highly proliferative tumor endothelium and also with some tumors, including melanoma. Its targeting has anti-tumor effectiveness, which can also be obtained by RNA interference. The aim of our study was to explore the anti-tumor effectiveness of endoglin silencing by electrotransfer of plasmid DNA encoding short hairpin RNA against endoglin in two murine B16 melanoma variants with different metastatic potential on cells, spheroids and subcutaneous tumors in mice. The results demonstrate that endoglin silencing with gene electrotransfer reduces the proliferation, survival and migration of melanoma cells and also has anti-tumor effectiveness, as the therapy resulted in a high percentage of tumor cures (23% and 58% on B16F1 and B16F10 tumors, respectively). The effectiveness of the therapy correlated with endoglin expression in melanoma cells; in vitro the effects were more pronounced in B16F1 cells, which express more endoglin than B16F10. However, the opposite was observed in vivo in tumors, where there was a higher expression of endoglin and better anti-tumor effectiveness in the B16F10 tumor. In conclusion, targeting endoglin for the treatment of melanoma seems to be a concept worthy of further exploration due to the increased therapeutic effect of the therapy based on simultaneous vascular targeting and its direct effect on tumor cells. PMID:26712792

  6. High Prevalence of Plasmid-Mediated Quinolone Resistance and IncQ Plasmids Carrying qnrS2 Gene in Bacteria from Rivers near Hospitals and Aquaculture in China

    PubMed Central

    Wen, Yanping; Pu, Xiaoying; Zheng, Wei

    2016-01-01

    Effluents from hospital and aquaculture are considered important sources of quinolone resistance. However, little information is available on the impact of this effluent on nearby rivers. In this study, 188 ciprofloxacin-resistant bacterial isolates obtained from rivers near hospitals and aquaculture were screened for plasmid-mediated quinolone resistance (PMQR) genes. Species identification, antibiotic susceptibility testing, and PMQR gene transferability assessment were conducted for PMQR-positive bacteria. Representative qnrS2-encoding plasmids were subsequently sequenced using a primer-walking approach. In total, 44 isolates (23.4%) were positive for qnr genes (16 qnrB2, 3 qnrS1, and 25 qnrS2) and 32 isolates (17.0%) were positive for aac(6′)-Ib-cr. Other PMQR genes were not detected. The qnrB2 and aac(6′)-Ib-cr genes had a higher prevalence in aquaculture samples than in hospital samples, and were significantly associated with Enterobacteriaceae (p < 0.05). In contrast, the prevalence of qnrS2 was not site-related, but was significantly associated with Aeromonas spp. (p < 0.05). All PMQR isolates were resistant to three or more classes of antibiotics. Eleven qnrS2-harboring plasmids from Aeromonas spp., including a novel conjugative plasmid pHP18, were selected for sequencing. These plasmids were small in size (6,388–16,197 bp) and belonged to the IncQ or IncU plasmid family, with qnrS2 being part of a mobile insertion cassette. Taken together, our findings suggest that aquaculture is a possible source for aac(6′)-Ib-cr and qnrB2 dissemination, and demonstrate the ubiquity of qnrS2 in aquatic environments. Finally, Aeromonas spp. served as vectors for qnrS2 with the help of IncQ-type plasmids. PMID:27427763

  7. High Prevalence of Plasmid-Mediated Quinolone Resistance and IncQ Plasmids Carrying qnrS2 Gene in Bacteria from Rivers near Hospitals and Aquaculture in China.

    PubMed

    Wen, Yanping; Pu, Xiaoying; Zheng, Wei; Hu, Guang

    2016-01-01

    Effluents from hospital and aquaculture are considered important sources of quinolone resistance. However, little information is available on the impact of this effluent on nearby rivers. In this study, 188 ciprofloxacin-resistant bacterial isolates obtained from rivers near hospitals and aquaculture were screened for plasmid-mediated quinolone resistance (PMQR) genes. Species identification, antibiotic susceptibility testing, and PMQR gene transferability assessment were conducted for PMQR-positive bacteria. Representative qnrS2-encoding plasmids were subsequently sequenced using a primer-walking approach. In total, 44 isolates (23.4%) were positive for qnr genes (16 qnrB2, 3 qnrS1, and 25 qnrS2) and 32 isolates (17.0%) were positive for aac(6')-Ib-cr. Other PMQR genes were not detected. The qnrB2 and aac(6')-Ib-cr genes had a higher prevalence in aquaculture samples than in hospital samples, and were significantly associated with Enterobacteriaceae (p < 0.05). In contrast, the prevalence of qnrS2 was not site-related, but was significantly associated with Aeromonas spp. (p < 0.05). All PMQR isolates were resistant to three or more classes of antibiotics. Eleven qnrS2-harboring plasmids from Aeromonas spp., including a novel conjugative plasmid pHP18, were selected for sequencing. These plasmids were small in size (6,388-16,197 bp) and belonged to the IncQ or IncU plasmid family, with qnrS2 being part of a mobile insertion cassette. Taken together, our findings suggest that aquaculture is a possible source for aac(6')-Ib-cr and qnrB2 dissemination, and demonstrate the ubiquity of qnrS2 in aquatic environments. Finally, Aeromonas spp. served as vectors for qnrS2 with the help of IncQ-type plasmids. PMID:27427763

  8. Plasmid-protein relaxation complexes in Staphylococcus aureus.

    PubMed

    Novick, R

    1976-09-01

    Protein-deoxyribonucleic acid relaxation complexes have been demonstrated for six Staphylococcus aureus plasmids out of sixteen examined. Four of these encode stretomycin resistence, have molecular weights of about 2.7 x 10(6), and are isolated as supercoiled molecules that are virtally 100% relaxable by treatment with sodium dodecyl sulfate. It is probable that these four isolates represent a single widely disseminated plasmid species. The other two plasmids showing relaxation complexes have molecular weights of about 3 x 10(6) and encode chloramphenicol resistance. The complexes in these cases are unstable, and it has not been possible to induce more than 50% relaxation by any of the standard treatments. Ten other plasmids do not show detectable complexes. These include three penicillinase plasmids, four tetracycline-resistance plasmids, one plasmid carrying kanamycin-neomycin resistance, and finally, two chloramphenicol-resistance plasmids. PMID:956124

  9. Mining Environmental Plasmids for Synthetic Biology Parts and Devices.

    PubMed

    Martínez-García, Esteban; Benedetti, Ilaria; Hueso, Angeles; De Lorenzo, Víctor

    2015-02-01

    The scientific and technical ambition of contemporary synthetic biology is the engineering of biological objects with a degree of predictability comparable to those made through electric and industrial manufacturing. To this end, biological parts with given specifications are sequence-edited, standardized, and combined into devices, which are assembled into complete systems. This goal, however, faces the customary context dependency of biological ingredients and their amenability to mutation. Biological orthogonality (i.e., the ability to run a function in a fashion minimally influenced by the host) is thus a desirable trait in any deeply engineered construct. Promiscuous conjugative plasmids found in environmental bacteria have evolved precisely to autonomously deploy their encoded activities in a variety of hosts, and thus they become excellent sources of basic building blocks for genetic and metabolic circuits. In this article we review a number of such reusable functions that originated in environmental plasmids and keep their properties and functional parameters in a variety of hosts. The properties encoded in the corresponding sequences include inter alia origins of replication, DNA transfer machineries, toxin-antitoxin systems, antibiotic selection markers, site-specific recombinases, effector-dependent transcriptional regulators (with their cognate promoters), and metabolic genes and operons. Several of these sequences have been standardized as BioBricks and/or as components of the SEVA (Standard European Vector Architecture) collection. Such formatting facilitates their physical composability, which is aimed at designing and deploying complex genetic constructs with new-to-nature properties. PMID:26104565

  10. Use of the "blue halo" assay in the identification of genes encoding exported proteins with cleavable signal peptides: cloning of a Borrelia burgdorferi plasmid gene with a signal peptide.

    PubMed

    Giladi, M; Champion, C I; Haake, D A; Blanco, D R; Miller, J F; Miller, J N; Lovett, M A

    1993-07-01

    We have recently reported a phoA expression vector, termed pMG, which, like TnphoA, is useful in identifying genes encoding membrane-spanning sequences or signal peptides. This cloning system has been modified to facilitate the distinction of outer membrane and periplasmic alkaline phosphatase (AP) fusion proteins from inner membrane AP fusion proteins by transforming pMG recombinants into Escherichia coli KS330, the strain utilized in the "blue halo" assay first described by Strauch and Beckwith (Proc. Natl. Acad. Sci. USA 85:1576-1580, 1988). The lipoprotein mutation lpp-5508 of KS330 results in an outer membrane that is leaky to macromolecules, and its degP4 mutation greatly reduces periplasmic proteolytic degradation of AP fusion proteins. pMG AP fusions containing cleavable signal peptides, including the E. coli periplasmic protein beta-lactamase, the E. coli and Chlamydia trachomatis outer membrane proteins OmpA and MOMP, respectively, and Tp 9, a Treponema pallidum AP recombinant, diffused through the leaky outer membrane of KS330 and resulted in blue colonies with blue halos. In contrast, inner membrane AP fusions derived from E. coli proteins, including leader peptidase, SecY, and the tetracycline resistance gene product, as well as Tp 70, a T. pallidum AP recombinant which does not contain a signal peptide, resulted in blue colonies without blue halos. Lipoprotein-AP fusions, including the Borrelia burgdorferi OspA and T. pallidum Tp 75 and TmpA showed halo formation, although there was significantly less halo formation than that produced by either periplasmic or outer membrane AP fusions. In addition, we applied this approach to screen recombinants constructed from a 9.0-kb plasmid isolated from the B31 virulent strain of B. burgdorferi. One of the blue halo colonies identified produced an AP fusion protein which contained a signal peptide with a leader peptidase I cleavage recognition site. The pMG/KS330r- cloning and screening approach can identify

  11. Plasmids of psychrophilic and psychrotolerant bacteria and their role in adaptation to cold environments.

    PubMed

    Dziewit, Lukasz; Bartosik, Dariusz

    2014-01-01

    Extremely cold environments are a challenge for all organisms. They are mostly inhabited by psychrophilic and psychrotolerant bacteria, which employ various strategies to cope with the cold. Such harsh environments are often highly vulnerable to the influence of external factors and may undergo frequent dynamic changes. The rapid adjustment of bacteria to changing environmental conditions is crucial for their survival. Such "short-term" evolution is often enabled by plasmids-extrachromosomal replicons that represent major players in horizontal gene transfer. The genomic sequences of thousands of microorganisms, including those of many cold-active bacteria have been obtained over the last decade, but the collected data have yet to be thoroughly analyzed. This report describes the results of a meta-analysis of the NCBI sequence databases to identify and characterize plasmids of psychrophilic and psychrotolerant bacteria. We have performed in-depth analyses of 66 plasmids, almost half of which are cryptic replicons not exceeding 10 kb in size. Our analyses of the larger plasmids revealed the presence of numerous genes, which may increase the phenotypic flexibility of their host strains. These genes encode enzymes possibly involved in (i) protection against cold and ultraviolet radiation, (ii) scavenging of reactive oxygen species, (iii) metabolism of amino acids, carbohydrates, nucleotides and lipids, (iv) energy production and conversion, (v) utilization of toxic organic compounds (e.g., naphthalene), and (vi) resistance to heavy metals, metalloids and antibiotics. Some of the plasmids also contain type II restriction-modification systems, which are involved in both plasmid stabilization and protection against foreign DNA. Moreover, approx. 50% of the analyzed plasmids carry genetic modules responsible for conjugal transfer or mobilization for transfer, which may facilitate the spread of these replicons among various bacteria, including across species boundaries

  12. Nonselective Persistence of a Rickettsia conorii Extrachromosomal Plasmid during Mammalian Infection.

    PubMed

    Riley, Sean P; Fish, Abigail I; Garza, Daniel A; Banajee, Kaikhushroo H; Harris, Emma K; del Piero, Fabio; Martinez, Juan J

    2016-03-01

    Scientific analysis of the genus Rickettsia is undergoing a rapid period of change with the emergence of viable genetic tools. The development of these tools for the mutagenesis of pathogenic bacteria will permit forward genetic analysis of Rickettsia pathogenesis. Despite these advances, uncertainty still remains regarding the use of plasmids to study these bacteria in in vivo mammalian models of infection, namely, the potential for virulence changes associated with the presence of extrachromosomal DNA and nonselective persistence of plasmids in mammalian models of infection. Here, we describe the transformation of Rickettsia conorii Malish 7 with the plasmid pRam18dRGA[AmTrCh]. Transformed R. conorii stably maintains this plasmid in infected cell cultures, expresses the encoded fluorescent proteins, and exhibits growth kinetics in cell culture similar to those of nontransformed R. conorii. Using a well-established murine model of fatal Mediterranean spotted fever, we demonstrate that R. conorii(pRam18dRGA[AmTrCh]) elicits the same fatal outcomes in animals as its untransformed counterpart and, importantly, maintains the plasmid throughout infection in the absence of selective antibiotic pressure. Interestingly, plasmid-transformed R. conorii was readily observed both in endothelial cells and within circulating leukocytes. Together, our data demonstrate that the presence of an extrachromosomal DNA element in a pathogenic rickettsial species does not affect either in vitro proliferation or in vivo infectivity in models of disease and that plasmids such as pRam18dRGA[AmTrCh] are valuable tools for the further genetic manipulation of pathogenic rickettsiae. PMID:26755154

  13. Determination of Plasmid Segregational Stability in a Growing Bacterial Population.

    PubMed

    Kramer, M Gabriela

    2016-01-01

    Bacterial plasmids are extensively used as cloning vectors for a number of genes for academic and commercial purposes. Moreover, attenuated bacteria carrying recombinant plasmids expressing genes with anti-tumor activity have shown promising therapeutic results in animal models of cancer. Equitable plasmid distribution between daughter cells during cell division, i.e., plasmid segregational stability, depends on many factors, including the plasmid copy number, its replication mechanism, the levels of recombinant gene expression, the type of bacterial host, and the metabolic burden associated with all these factors. Plasmid vectors usually code for antibiotic-resistant functions, and, in order to enrich the culture with bacteria containing plasmids, antibiotic selective pressure is commonly used to eliminate plasmid-free segregants from the growing population. However, administration of antibiotics can be inconvenient for many industrial and therapeutic applications. Extensive ongoing research is being carried out to develop stably-inherited plasmid vectors. Here, I present an easy and precise method for determining the kinetics of plasmid loss or maintenance for every ten generations of bacterial growth in culture. PMID:26846807

  14. Characterization of a Novel Plasmid-Borne Thiopeptide Gene Cluster in Staphylococcus epidermidis Strain 115

    PubMed Central

    Bennallack, Philip R.; Burt, Scott R.; Heder, Michael J.

    2014-01-01

    Thiopeptides are small (12- to 17-amino-acid), heavily modified peptides of bacterial origin. This antibiotic family, with more than 100 known members, is characterized by the presence of sulfur-containing heterocyclic rings and dehydrated residues within a macrocyclic peptide structure. Thiopeptides, including micrococcin P1, have garnered significant attention in recent years for their potent antimicrobial activity against bacteria, fungi, and even protozoa. Micrococcin P1 is known to target the ribosome; however, like those of other thiopeptides, its biosynthesis and mechanisms of self-immunity are poorly characterized. We have discovered an isolate of Staphylococcus epidermidis harboring the genes for thiopeptide production and self-protection on a 24-kb plasmid. Here we report the characterization of this plasmid, identify the antimicrobial peptide that it encodes, and provide evidence of a target replacement-mediated mechanism of self-immunity. PMID:25313391

  15. Identification and sequence homology relationships of plasmids from various micrococci

    SciTech Connect

    Mathis, J.N.

    1983-01-01

    Plasmids have been found in strains of the following Micrococcus species M. nishinomiyaensis (9/22), M. luteus (8/47), and M. agilis (1/5). No plasmids were detected in strains of M. lylae (0/16) or M. sedentarius (0/20). Thirty-eight antibiotics and 23 inorganic salts were screened in an attempt to determine plasmid function. None of these antibiotics and inorganic salts were found to be associated with the presence or absence of plasmid DNA within these strains. Minimum inhibitory concentration experiments and curing experiments in which phenotypic change occurred without plasmid loss are the basis for this conclusion. Hydrocarbon biosynthesis parameters in certain Micrococcus strains previously analyzed were also shown not to be clearly associated to the presence or absence of plasmid DNA.

  16. Complex integrons containing qnrB4-ampC (bla(DHA-1)) in plasmids of multidrug-resistant Citrobacter freundii from wastewater.

    PubMed

    Yim, Grace; Kwong, Waldan; Davies, Julian; Miao, Vivian

    2013-02-01

    Microbial populations in wastewater treatment plants (WWTPs) are increasingly being recognized as environmental reservoirs of antibiotic resistance genes. PCR amplicons for plasmid-mediated quinolone resistance determinants qnrA, qnrB, and qnrS were recorded in samples from a WWTP in Vancouver, British Columbia. Six strains of ciprofloxacin-resistant Citrobacter freundii were isolated and found to carry mutations in gyrA and parC, as well as multiple plasmid-borne resistance genes, collectively including qnrB; aac(6')-Ib-cr; β-lactamase-encoding genes from molecular classes A (blaTEM-1), C (ampC), D (blaOXA-1, blaOXA-10); and genes for resistance to 5 other types of antibiotics. In 3 strains, large (>60 kb) plasmids carried qnrB4 and ampC as part of a complex integron in a 14 kb arrangement that has been reported worldwide but, until recently, only among pathogenic strains of Klebsiella. Analysis of single-nucleotide polymorphisms in the qnrB4-ampC regions infers 2 introductions into the WWTP environment. These results suggest recent passage of plasmid-borne fluoroquinolone and β-lactam resistance genes from pathogens to bacteria that may be indigenous inhabitants of WWTPs, thus contributing to an environmental pool of antibiotic resistance. PMID:23461518

  17. Molecular analysis of plasmid encoded multi-drug resistance (MDR) in Salmonella enterica animal isolates by PFGE, replicon typing, and DNA microarray screening followed by high-throughput DNA sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The development of Multi-Drug Resistant (MDR) Salmonella is of global concern. MDR Salmonella genes can be transmitted in a number of ways including transfer of plasmids. To understand how MDR plasmids develop and are transmitted, their genetics must be thoroughly described. To achieve t...

  18. Characterization of a Pasteurella multocida plasmid and its use to express recombinant proteins in P. multocida.

    PubMed

    Wright, C L; Strugnell, R A; Hodgson, A L

    1997-01-01

    The complete nucleotide sequence of a naturally occurring 5.36-kb streptomycin and sulphonamide resistance plasmid, designated pIG1, isolated from type D Pasteurella multocida was determined. A 1.6-kb noncoding region and a 1.4-kb region encoding three putative proteins were shown by sequence homologies and functional characterizations to be involved in the replication and mobilization of pIG1, respectively. The remaining sequence carried an unusual arrangement of streptomycin- and sulphonamide-resistant genes when compared to various other plasmids. It appears that the antibiotic resistance region of pIG1 may have evolved by recombination between three different short direct repeat DNA sequences. A 4.5-kb recombinant plasmid was constructed by replacing the antibiotic resistance genes of pIG1 with a kanamycin resistance gene and seven unique restriction sites. The resulting plasmid, designated pIG112, stably replicates in P. multocida, Pasteurella haemolytica, Actinobacillus pleuropneumoniae, and Escherichia coli and can be introduced into these organisms by either transformation or conjugation. This vector exists at approximately 70 copies per cell in P. multocida and approximately 20 copies per cell in E. coli. To demonstrate plasmid-borne gene expression in P. multocida, the P. multocida dermonecrotic toxin gene, toxA, and a genetically modified form of this gene were cloned into pIG112 and expressed in high amounts in a nontoxigenic P. multocida strain. Cell culture assays demonstrated that nontoxigenic P. multocida expressing toxA was cytopathic, whereas a strain expressing the modified toxA derivative was not. PMID:9073583

  19. An oligonucleotide microarray to characterize multidrug resistant plasmids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacteria plasmids are fragments of extra-chromosomal double stranded deoxyribonucleic acid (DNA) that can contain a variety of genes beneficial to the host organism like antibiotic drug resistance. Many of the Enterobacteriaceae carry multiple drug resistance (MDR) genes on large plasmids of replic...

  20. Characterization of toxin plasmids in Clostridium perfringens type C isolates.

    PubMed

    Gurjar, Abhijit; Li, Jihong; McClane, Bruce A

    2010-11-01

    Clostridium perfringens type C isolates cause enteritis necroticans in humans or necrotizing enteritis and enterotoxemia in domestic animals. Type C isolates always produce alpha toxin and beta toxin but often produce additional toxins, e.g., beta2 toxin or enterotoxin. Since plasmid carriage of toxin-encoding genes has not been systematically investigated for type C isolates, the current study used Southern blot hybridization of pulsed-field gels to test whether several toxin genes are plasmid borne among a collection of type C isolates. Those analyses revealed that the surveyed type C isolates carry their beta toxin-encoding gene (cpb) on plasmids ranging in size from ∼65 to ∼110 kb. When present in these type C isolates, the beta2 toxin gene localized to plasmids distinct from the cpb plasmid. However, some enterotoxin-positive type C isolates appeared to carry their enterotoxin-encoding cpe gene on a cpb plasmid. The tpeL gene encoding the large clostridial cytotoxin was localized to the cpb plasmids of some cpe-negative type C isolates. The cpb plasmids in most surveyed isolates were found to carry both IS1151 sequences and the tcp genes, which can mediate conjugative C. perfringens plasmid transfer. A dcm gene, which is often present near C. perfringens plasmid-borne toxin genes, was identified upstream of the cpb gene in many type C isolates. Overlapping PCR analyses suggested that the toxin-encoding plasmids of the surveyed type C isolates differ from the cpe plasmids of type A isolates. These findings provide new insight into plasmids of proven or potential importance for type C virulence. PMID:20823204

  1. Crystal structure of the plasmid maintenance system ɛ/ζ: Functional mechanism of toxin ζ and inactivation by ɛ2ζ2 complex formation

    PubMed Central

    Meinhart, Anton; Alonso, Juan C.; Sträter, Norbert; Saenger, Wolfram

    2003-01-01

    Programmed cell death in prokaryotes is frequently found as postsegregational killing. It relies on antitoxin/toxin systems that secure stable inheritance of low and medium copy number plasmids during cell division and kill cells that have lost the plasmid. The broad-host-range, low-copy-number plasmid pSM19035 from Streptococcus pyogenes carries the genes encoding the antitoxin/toxin system ɛ/ζ and antibiotic resistance proteins, among others. The crystal structure of the biologically nontoxic ɛ2ζ2 protein complex at a 1.95-Å resolution and site-directed mutagenesis showed that free ζ acts as phosphotransferase by using ATP/GTP. In ɛ2ζ2, the toxin ζ is inactivated because the N-terminal helix of the antitoxin ɛ blocks the ATP/GTP-binding site. To our knowledge, this is the first prokaryotic postsegregational killing system that has been entirely structurally characterized. PMID:12571357

  2. TcpM: a novel relaxase that mediates transfer of large conjugative plasmids from Clostridium perfringens.

    PubMed

    Wisniewski, Jessica A; Traore, Daouda A; Bannam, Trudi L; Lyras, Dena; Whisstock, James C; Rood, Julian I

    2016-03-01

    Conjugative transfer of toxin and antibiotic resistance plasmids in Clostridium perfringens is mediated by the tcp conjugation locus. Surprisingly, neither a relaxase gene nor an origin of transfer (oriT) has been identified on these plasmids, which are typified by the 47 kb tetracycline resistance plasmid pCW3. The tcpM gene (previously called intP) encodes a potential tyrosine recombinase that was postulated to be an atypical relaxase. Mutagenesis and complementation studies showed that TcpM was required for wild-type transfer of pCW3 and that a tyrosine residue, Y259, was essential for TcpM activity, which was consistent with the need for a relaxase-mediated hydrophilic attack at the oriT site. Other catalytic residues conserved in tyrosine recombinases were not required for TcpM activity, suggesting that TcpM was not a site-specific recombinase. Mobilization studies led to the identification of the oriT site, which was located in the 391 bp intergenic region upstream of tcpM. The oriT site was localized to a 150 bp region, and gel mobility shift studies showed that TcpM could bind to this region. Based on these studies we postulate that conjugative transfer of pCW3 involves the atypical relaxase TcpM binding to and processing the oriT site to initiate plasmid transfer. PMID:26560080

  3. Plasmid maintenance and protein overproduction in selective recycle bioreactors.

    PubMed

    Ogden, K L; Davis, R H

    1991-02-20

    A new plasmid construct has been used in conjunction with selective recycle to successfully maintain otherwise unstable plasmid-bearing E. coli cells in a continuous bioreactor and to produce significant amounts of the plasmid-encoded protein beta-lactamase. The plasmid is constructed so that pilin expression, which leads to bacterial flocculation, is under control of the tac operon. The plasmid-bearing cells are induced to flocculate in the separator, whereas cell growth and product synthesis occur in the main fermentation vessel without the inhibiting effects of pilin production. Selective recycle allows for the maintenance of the plasmid-bearing cells by separating flocculent, plasmid-bearing cells from nonflocculent, segregant cells in an inclined settler, and recycling only the plasmid-bearing cells to the reactor. As a result, product expression levels are maintained that are more than ten times the level achieved without selective recycle. All experimental data agree well with theoretical predictions. PMID:18597374

  4. Plasmids of psychrophilic and psychrotolerant bacteria and their role in adaptation to cold environments

    PubMed Central

    Dziewit, Lukasz; Bartosik, Dariusz

    2014-01-01

    Extremely cold environments are a challenge for all organisms. They are mostly inhabited by psychrophilic and psychrotolerant bacteria, which employ various strategies to cope with the cold. Such harsh environments are often highly vulnerable to the influence of external factors and may undergo frequent dynamic changes. The rapid adjustment of bacteria to changing environmental conditions is crucial for their survival. Such “short-term” evolution is often enabled by plasmids—extrachromosomal replicons that represent major players in horizontal gene transfer. The genomic sequences of thousands of microorganisms, including those of many cold-active bacteria have been obtained over the last decade, but the collected data have yet to be thoroughly analyzed. This report describes the results of a meta-analysis of the NCBI sequence databases to identify and characterize plasmids of psychrophilic and psychrotolerant bacteria. We have performed in-depth analyses of 66 plasmids, almost half of which are cryptic replicons not exceeding 10 kb in size. Our analyses of the larger plasmids revealed the presence of numerous genes, which may increase the phenotypic flexibility of their host strains. These genes encode enzymes possibly involved in (i) protection against cold and ultraviolet radiation, (ii) scavenging of reactive oxygen species, (iii) metabolism of amino acids, carbohydrates, nucleotides and lipids, (iv) energy production and conversion, (v) utilization of toxic organic compounds (e.g., naphthalene), and (vi) resistance to heavy metals, metalloids and antibiotics. Some of the plasmids also contain type II restriction-modification systems, which are involved in both plasmid stabilization and protection against foreign DNA. Moreover, approx. 50% of the analyzed plasmids carry genetic modules responsible for conjugal transfer or mobilization for transfer, which may facilitate the spread of these replicons among various bacteria, including across species

  5. Novel plasmid conferring kanamycin and tetracycline resistance in turkey-derived Campylobacter jejuni strain 11601MD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Campylobacter spp., resistance to the antibiotics kanamycin and tetracycline is frequently associated with plasmid-borne genes. However, relatively few plasmids of Campylobacter jejuni have been fully characterized to date. A novel plasmid (p11601MD; 44,095 bp.) harboring tet(O) was identified in...

  6. Properties of IncP-2 plasmids of Pseudomonas spp.

    PubMed Central

    Jacoby, G A; Sutton, L; Knobel, L; Mammen, P

    1983-01-01

    Thirty IncP-2 R plasmids from isolates of Pseudomonas spp. of diverse geographical origins were examined for the production of resistance properties. All the plasmids determined resistance to tellurite and all inhibited the propagation of certain DNA phages, although several patterns of phage inhibition were detected. Of the 30 plasmids, 29 determined resistance to streptomycin, 28 determined resistance to mercuric ion, and 24 determined resistance to sulfonamide. Resistance to other antibiotics, to compounds of arsenic, boron, or chromium, and to UV irradiation was less common. The degradative plasmid CAM also belonged to this group. When CAM was introduced into recipients carrying an IncP-2 R plasmid, recombinant plasmids were often formed in which antibiotic resistance and the ability to grow on camphor were transferred together to further recipients or were lost together in a strain in which IncP-2 plasmids were unstable. Such hybrid plasmid formation was rec dependent. CAM and other IncP-2 plasmids that determine UV light resistance demonstrated UV-enhanced, nonpolarized transfer of the Pseudomonas aeruginosa chromosome. By agarose gel electrophoresis, all IncP-2 R plasmids and CAM were ca. 300 X 10(6) in molecular weight. PMID:6638986

  7. Protein Aggregation Formed by Recombinant cp19k Homologue of Balanus albicostatus Combined with an 18 kDa N-Terminus Encoded by pET-32a(+) Plasmid Having Adhesion Strength Comparable to Several Commercial Glues.

    PubMed

    Liang, Chao; Li, Yunqiu; Liu, Zhiming; Wu, Wenjian; Hu, Biru

    2015-01-01

    The barnacle is well known for its tenacious and permanent attachment to a wide variety of underwater substrates, which is accomplished by synthesizing, secreting and curing a mixture of adhesive proteins termed "barnacle cement". In order to evaluate interfacial adhesion abilities of barnacle cement proteins, the cp19k homologous gene in Balanus albicostatus (Balcp19k) was cloned and expressed in Escherichia coli. Here, we report an intriguing discovery of a gel-like super adhesive aggregation produced by Trx-Balcp19k, a recombinant Balcp19k fusion protein. The Trx-Balcp19k consists of an 18 kDa fragment at the N-terminus, which is encoded by pET-32a(+) plasmid and mainly comprised of a thioredoxin (Trx) tag, and Balcp19k at the C-terminus. The sticky aggregation was designated as "Trx-Balcp19k gel", and the bulk adhesion strength, biochemical composition, as well as formation conditions were all carefully investigated. The Trx-Balcp19k gel exhibited strong adhesion strength of 2.10 ± 0.67 MPa, which was approximately fifty folds higher than that of the disaggregated Trx-Balcp19k (40 ± 8 kPa) and rivaled those of commercial polyvinyl acetate (PVA) craft glue (Mont Marte, Australia) and UHU glue (UHU GmbH & Co. KG, Germany). Lipids were absent from the Trx-Balcp19k gel and only a trace amount of carbohydrates was detected. We postulate that the electrostatic interactions play a key role in the formation of Trx-Balcp19k gel, by mediating self-aggregation of Trx-Balcp19k based on its asymmetric distribution pattern of charged amino acids. Taken together, we believe that our discovery not only presents a promising biological adhesive with potential applications in both biomedical and technical fields, but also provides valuable paradigms for molecular design of bio-inspired peptide- or protein-based materials. PMID:26317205

  8. Protein Aggregation Formed by Recombinant cp19k Homologue of Balanus albicostatus Combined with an 18 kDa N-Terminus Encoded by pET-32a(+) Plasmid Having Adhesion Strength Comparable to Several Commercial Glues

    PubMed Central

    Liang, Chao; Li, Yunqiu; Liu, Zhiming; Wu, Wenjian; Hu, Biru

    2015-01-01

    The barnacle is well known for its tenacious and permanent attachment to a wide variety of underwater substrates, which is accomplished by synthesizing, secreting and curing a mixture of adhesive proteins termed “barnacle cement”. In order to evaluate interfacial adhesion abilities of barnacle cement proteins, the cp19k homologous gene in Balanus albicostatus (Balcp19k) was cloned and expressed in Escherichia coli. Here, we report an intriguing discovery of a gel-like super adhesive aggregation produced by Trx-Balcp19k, a recombinant Balcp19k fusion protein. The Trx-Balcp19k consists of an 18 kDa fragment at the N-terminus, which is encoded by pET-32a(+) plasmid and mainly comprised of a thioredoxin (Trx) tag, and Balcp19k at the C-terminus. The sticky aggregation was designated as “Trx-Balcp19k gel”, and the bulk adhesion strength, biochemical composition, as well as formation conditions were all carefully investigated. The Trx-Balcp19k gel exhibited strong adhesion strength of 2.10 ± 0.67 MPa, which was approximately fifty folds higher than that of the disaggregated Trx-Balcp19k (40 ± 8 kPa) and rivaled those of commercial polyvinyl acetate (PVA) craft glue (Mont Marte, Australia) and UHU glue (UHU GmbH & Co. KG, Germany). Lipids were absent from the Trx-Balcp19k gel and only a trace amount of carbohydrates was detected. We postulate that the electrostatic interactions play a key role in the formation of Trx-Balcp19k gel, by mediating self-aggregation of Trx-Balcp19k based on its asymmetric distribution pattern of charged amino acids. Taken together, we believe that our discovery not only presents a promising biological adhesive with potential applications in both biomedical and technical fields, but also provides valuable paradigms for molecular design of bio-inspired peptide- or protein-based materials. PMID:26317205

  9. Antibiotic Resistance

    MedlinePlus

    ... lives. But there is a growing problem of antibiotic resistance. It happens when bacteria change and become able ... resistant to several common antibiotics. To help prevent antibiotic resistance Don't use antibiotics for viruses like colds ...

  10. Isolation and screening of plasmids from the epilithon which mobilize recombinant plasmid pD10.

    PubMed Central

    Hill, K E; Weightman, A J; Fry, J C

    1992-01-01

    This study examined the potential of bacteria from river epilithon to mobilize a recombinant catabolic plasmid, pD10, encoding 3-chlorobenzoate degradation and kanamycin resistance. Fifty-four mobilizing plasmids were exogenously isolated by triparental matings between strains of Pseudomonas putida and epilithic bacteria from the River Taff (South Wales, United Kingdom). Frequencies for mobilization ranged from 1.7 x 10(-8) to 4.5 x 10(-3) per recipient at 20 degrees C. The sizes of the mobilizing plasmids isolated ranged from 40 kb to over 200 kb, and 19 of 54 were found to encode mercury resistance. Plasmid-encoded resistance to tetracycline and streptomycin was also found but not resistance to UV light or various heavy metals. Eight plasmids of epilithic bacteria, analyzed by comparing restriction fragmentation patterns, showed significant differences between those isolated from different independent matings. Optimal temperatures for mobilization of pD10 were between 15 and 25 degrees C. Four mercury resistance plasmids were found to be broad host range, transferring mercury resistance and mobilizing pD10 readily to representative species of beta- and gamma-purple bacteria. In general, frequencies of pD10 mobilization by plasmids of epilithic bacteria were 2 to 3 orders of magnitude lower than conjugal transfer frequencies. Thus, there is a high potential for exchange of recombinant genes introduced into the epilithon by mobilization between a variety of bacterial species. Images PMID:1599248

  11. Plasmid addiction systems: perspectives and applications in biotechnology.

    PubMed

    Kroll, Jens; Klinter, Stefan; Schneider, Cornelia; Voss, Isabella; Steinbüchel, Alexander

    2010-11-01

    Biotechnical production processes often operate with plasmid-based expression systems in well-established prokaryotic and eukaryotic hosts such as Escherichia coli or Saccharomyces cerevisiae, respectively. Genetically engineered organisms produce important chemicals, biopolymers, biofuels and high-value proteins like insulin. In those bioprocesses plasmids in recombinant hosts have an essential impact on productivity. Plasmid-free cells lead to losses in the entire product recovery and decrease the profitability of the whole process. Use of antibiotics in industrial fermentations is not an applicable option to maintain plasmid stability. Especially in pharmaceutical or GMP-based fermentation processes, deployed antibiotics must be inactivated and removed. Several plasmid addiction systems (PAS) were described in the literature. However, not every system has reached a full applicable state. This review compares most known addiction systems and is focusing on biotechnical applications. PMID:21255361

  12. Carriage of Extended-Spectrum Beta-Lactamase-Plasmids Does Not Reduce Fitness but Enhances Virulence in Some Strains of Pandemic E. coli Lineages

    PubMed Central

    Schaufler, Katharina; Semmler, Torsten; Pickard, Derek J.; de Toro, María; de la Cruz, Fernando; Wieler, Lothar H.; Ewers, Christa; Guenther, Sebastian

    2016-01-01

    Pathogenic ESBL-producing E. coli lineages occur frequently worldwide, not only in a human health context but in animals and the environment, also in settings with low antimicrobial pressures. This study investigated the fitness costs of ESBL-plasmids and their influence on chromosomally encoded features associated with virulence, such as those involved in the planktonic and sessile behaviors of ST131 and ST648 E. coli. ESBL-plasmid-carrying wild-type E. coli strains, their corresponding ESBL-plasmid-“cured” variants (PCV), and complementary ESBL-carrying transformants were comparatively analyzed using growth curves, Omnilog® phenotype microarray (PM) assays, macrocolony and biofilm formation, swimming motility, and RNA sequence analysis. Growth curves and PM results pointed toward similar growth and metabolic behaviors among the strains. Phenotypic differences in some strains were detected, including enhanced curli fimbriae and/or cellulose production as well as a reduced swimming capacity of some ESBL-carrying strains, as compared to their respective PCVs. RNA sequencing mostly confirmed the phenotypic results, suggesting that the chromosomally encoded csgD pathway is a key factor involved. These results contradict the hypothesis that ESBL-plasmid-carriage leads to a fitness loss in ESBL-carrying strains. Instead, the results indicate an influence of some ESBL-plasmids on chromosomally encoded features associated with virulence in some E. coli strains. In conclusion, apart from antibiotic resistance selective advantages, ESBL-plasmid-carriage may also lead to enhanced virulence or adaption to specific habitats in some strains of pandemic ESBL-producing E. coli lineages. PMID:27014251

  13. Carriage of Extended-Spectrum Beta-Lactamase-Plasmids Does Not Reduce Fitness but Enhances Virulence in Some Strains of Pandemic E. coli Lineages.

    PubMed

    Schaufler, Katharina; Semmler, Torsten; Pickard, Derek J; de Toro, María; de la Cruz, Fernando; Wieler, Lothar H; Ewers, Christa; Guenther, Sebastian

    2016-01-01

    Pathogenic ESBL-producing E. coli lineages occur frequently worldwide, not only in a human health context but in animals and the environment, also in settings with low antimicrobial pressures. This study investigated the fitness costs of ESBL-plasmids and their influence on chromosomally encoded features associated with virulence, such as those involved in the planktonic and sessile behaviors of ST131 and ST648 E. coli. ESBL-plasmid-carrying wild-type E. coli strains, their corresponding ESBL-plasmid-"cured" variants (PCV), and complementary ESBL-carrying transformants were comparatively analyzed using growth curves, Omnilog® phenotype microarray (PM) assays, macrocolony and biofilm formation, swimming motility, and RNA sequence analysis. Growth curves and PM results pointed toward similar growth and metabolic behaviors among the strains. Phenotypic differences in some strains were detected, including enhanced curli fimbriae and/or cellulose production as well as a reduced swimming capacity of some ESBL-carrying strains, as compared to their respective PCVs. RNA sequencing mostly confirmed the phenotypic results, suggesting that the chromosomally encoded csgD pathway is a key factor involved. These results contradict the hypothesis that ESBL-plasmid-carriage leads to a fitness loss in ESBL-carrying strains. Instead, the results indicate an influence of some ESBL-plasmids on chromosomally encoded features associated with virulence in some E. coli strains. In conclusion, apart from antibiotic resistance selective advantages, ESBL-plasmid-carriage may also lead to enhanced virulence or adaption to specific habitats in some strains of pandemic ESBL-producing E. coli lineages. PMID:27014251

  14. Characterization of Multidrug-Resistant Escherichia coli by Plasmid Replicon Typing and Pulsed-Field Gel Electrophoresis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Characterization of plasmids has particular clinical significance because genes encoding important traits such as antimicrobial resistance are frequently present in plasmids. Plasmid replicon typing is a multiplex PCR based method that can be used to classify 18 of the 26 known plasmid t...

  15. Molecular Characterization of a Multidrug Resistance IncF Plasmid from the Globally Disseminated Escherichia coli ST131 Clone

    PubMed Central

    Phan, Minh Duy; Forde, Brian M.; Peters, Kate M.; Sarkar, Sohinee; Hancock, Steven; Stanton-Cook, Mitchell; Ben Zakour, Nouri L.; Upton, Mathew; Beatson, Scott A.; Schembri, Mark A.

    2015-01-01

    Escherichia coli sequence type 131 (E. coli ST131) is a recently emerged and globally disseminated multidrug resistant clone associated with urinary tract and bloodstream infections. Plasmids represent a major vehicle for the carriage of antibiotic resistance genes in E. coli ST131. In this study, we determined the complete sequence and performed a comprehensive annotation of pEC958, an IncF plasmid from the E. coli ST131 reference strain EC958. Plasmid pEC958 is 135.6 kb in size, harbours two replicons (RepFIA and RepFII) and contains 12 antibiotic resistance genes (including the blaCTX-M-15 gene). We also carried out hyper-saturated transposon mutagenesis and multiplexed transposon directed insertion-site sequencing (TraDIS) to investigate the biology of pEC958. TraDIS data showed that while only the RepFII replicon was required for pEC958 replication, the RepFIA replicon contains genes essential for its partitioning. Thus, our data provides direct evidence that the RepFIA and RepFII replicons in pEC958 cooperate to ensure their stable inheritance. The gene encoding the antitoxin component (ccdA) of the post-segregational killing system CcdAB was also protected from mutagenesis, demonstrating this system is active. Sequence comparison with a global collection of ST131 strains suggest that IncF represents the most common type of plasmid in this clone, and underscores the need to understand its evolution and contribution to the spread of antibiotic resistance genes in E. coli ST131. PMID:25875675

  16. ORGANIZATION AND EVOLUTION OF NAPHTHALENE CATABOLIC PATHWAYS: SEQUENCE OF THE DNA ENCODING 2-HYDROXYCHROMEME-2-CARBOXYLATE ISOMERASE AND TRANS-O-HYDROXYBENZYLIDENEPYRUVATE HYDRATASE-ALDOLASE FROM THE NAH7 PLASMID

    EPA Science Inventory

    The sequence of a 2,437-bp DNA segment from the naphthalene upper catabolic pathway operon of plasmid NAH7 was determined. This segment contains three large open reading frames designated nahQ, nahE, and nahD. The first of these is the 3 end of an open reading frame that has no k...

  17. Plasmid incidence in bacteria from deep subsurface sediments

    SciTech Connect

    Fredrickson, J.K.; Hicks, R.J.; Li, S.W.; Brockman, F.J. )

    1988-12-01

    Bacteria were isolated from deep terrestrial subsurface sediments underlying the coastal plain of South Carolina. A total of 163 isolates from deep sediments, surface soil, and return drill muds were examined for plasmid DNA content and resistance to the antibiotics penicillin, ampicillin, carbenicillin, streptomycin, kanamycin, and tetracycline. MICs of Cu{sup 2+}, Cr{sup 3+}, and Hg{sup 2+} for each isolate were also determined. The overall frequency of plasmid occurrence in the subsurface bacteria was 33%. Resistance was most frequent to penicillin (70% of all isolates), ampicillin (49%), and carbenicillin (32%) and was concluded to be related to the concentrations of the individual antibiotics in the disks used for assaying resistance and to the production of low levels of {beta}-lactamase. The frequencies of resistance to penicillin and ampicillin were significantly greater for isolates bearing plasmids than for plasmidless isolates; however, resistance was not transferable to penicillin-sensitive Escherichia coli. Hybridization of subsurface bacterial plasmids and chromosomal DNA with a whole-TOL-plasmid (pWWO) probe revealed some homology of subsurface bacterial plasmid and chromosomal DNAs, indicating a potential for those bacterial to harbor catabolic genes on plasmids or chromosomes. The incidences of antibiotic resistance and MICs of metals for subsurface bacteria were significantly different from those drill mud bacteria, ruling out the possibility that bacteria from sediments were derived from drill muds.

  18. Plasmid incidence in bacteria from deep subsurface sediments.

    PubMed

    Fredrickson, J K; Hicks, R J; Li, S W; Brockman, F J

    1988-12-01

    Bacteria were isolated from deep terrestrial subsurface sediments underlying the coastal plain of South Carolina. A total of 163 isolates from deep sediments, surface soil, and return drill muds were examined for plasmid DNA content and resistance to the antibiotics penicillin, ampicillin, carbenicillin, streptomycin, kanamycin, and tetracycline. MICs of Cu, Cr, and Hg for each isolate were also determined. The overall frequency of plasmid occurrence in the subsurface bacteria was 33%. Resistance was most frequent to penicillin (70% of all isolates), ampicillin (49%), and carbenicillin (32%) and was concluded to be related to the concentrations of the individual antibiotics in the disks used for assaying resistance and to the production of low levels of beta-lactamase. The frequencies of resistance to penicillin and ampicillin were significantly greater for isolates bearing plasmids than for plasmidless isolates; however, resistance was not transferable to penicillin-sensitive Escherichia coli. Hybridization of subsurface bacterial plasmids and chromosomal DNA with a whole-TOL-plasmid (pWWO) probe revealed some homology of subsurface bacterial plasmid and chromosomal DNAs, indicating a potential for those bacteria to harbor catabolic genes on plasmids or chromosomes. The incidences of antibiotic resistance and MICs of metals for subsurface bacteria were significantly different from those for drill mud bacteria, ruling out the possibility that bacteria from sediments were derived from drill muds. PMID:16347789

  19. Conjugation is necessary for a bacterial plasmid to survive under protozoan predation.

    PubMed

    Cairns, Johannes; Jalasvuori, Matti; Ojala, Ville; Brockhurst, Michael; Hiltunen, Teppo

    2016-02-01

    Horizontal gene transfer by conjugative plasmids plays a critical role in the evolution of antibiotic resistance. Interactions between bacteria and other organisms can affect the persistence and spread of conjugative plasmids. Here we show that protozoan predation increased the persistence and spread of the antibiotic resistance plasmid RP4 in populations of the opportunist bacterial pathogen Serratia marcescens. A conjugation-defective mutant plasmid was unable to survive under predation, suggesting that conjugative transfer is required for plasmid persistence under the realistic condition of predation. These results indicate that multi-trophic interactions can affect the maintenance of conjugative plasmids with implications for bacterial evolution and the spread of antibiotic resistance genes. PMID:26843557

  20. Mobility of the Native Bacillus subtilis Conjugative Plasmid pLS20 Is Regulated by Intercellular Signaling

    PubMed Central

    Singh, Praveen K.; Ramachandran, Gayetri; Ramos-Ruiz, Ricardo; Peiró-Pastor, Ramón; Abia, David; Wu, Ling J.; Meijer, Wilfried J. J.

    2013-01-01

    Horizontal gene transfer mediated by plasmid conjugation plays a significant role in the evolution of bacterial species, as well as in the dissemination of antibiotic resistance and pathogenicity determinants. Characterization of their regulation is important for gaining insights into these features. Relatively little is known about how conjugation of Gram-positive plasmids is regulated. We have characterized conjugation of the native Bacillus subtilis plasmid pLS20. Contrary to the enterococcal plasmids, conjugation of pLS20 is not activated by recipient-produced pheromones but by pLS20-encoded proteins that regulate expression of the conjugation genes. We show that conjugation is kept in the default “OFF” state and identified the master repressor responsible for this. Activation of the conjugation genes requires relief of repression, which is mediated by an anti-repressor that belongs to the Rap family of proteins. Using both RNA sequencing methodology and genetic approaches, we have determined the regulatory effects of the repressor and anti-repressor on expression of the pLS20 genes. We also show that the activity of the anti-repressor is in turn regulated by an intercellular signaling peptide. Ultimately, this peptide dictates the timing of conjugation. The implications of this regulatory mechanism and comparison with other mobile systems are discussed. PMID:24204305

  1. Mobility of the native Bacillus subtilis conjugative plasmid pLS20 is regulated by intercellular signaling.

    PubMed

    Singh, Praveen K; Ramachandran, Gayetri; Ramos-Ruiz, Ricardo; Peiró-Pastor, Ramón; Abia, David; Wu, Ling J; Meijer, Wilfried J J

    2013-10-01

    Horizontal gene transfer mediated by plasmid conjugation plays a significant role in the evolution of bacterial species, as well as in the dissemination of antibiotic resistance and pathogenicity determinants. Characterization of their regulation is important for gaining insights into these features. Relatively little is known about how conjugation of Gram-positive plasmids is regulated. We have characterized conjugation of the native Bacillus subtilis plasmid pLS20. Contrary to the enterococcal plasmids, conjugation of pLS20 is not activated by recipient-produced pheromones but by pLS20-encoded proteins that regulate expression of the conjugation genes. We show that conjugation is kept in the default "OFF" state and identified the master repressor responsible for this. Activation of the conjugation genes requires relief of repression, which is mediated by an anti-repressor that belongs to the Rap family of proteins. Using both RNA sequencing methodology and genetic approaches, we have determined the regulatory effects of the repressor and anti-repressor on expression of the pLS20 genes. We also show that the activity of the anti-repressor is in turn regulated by an intercellular signaling peptide. Ultimately, this peptide dictates the timing of conjugation. The implications of this regulatory mechanism and comparison with other mobile systems are discussed. PMID:24204305

  2. Antibiotic Resistance

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women Antibiotic Resistance Share Tweet Linkedin Pin it More sharing options ... these products really help. To Learn More about Antibiotic Resistance Get Smart About Antibiotics (Video) Fact Sheets and ...

  3. Characterization of multidrug-resistant Escherichia coli by antimicrobial resistance profiles, plasmid replicon typing, and pulsed-field gel electrophoresis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aim: Plasmid characterization has particular clinical importance because genes encoding significant traits including antimicrobial resistance are frequently carried on plasmids. The objective of this study was to examine the distribution of multidrug resistance (MDR) in Escherichia coli in relation ...

  4. Chromosome and Plasmids of the Tick-Borne Relapsing Fever Agent Borrelia hermsii

    PubMed Central

    2016-01-01

    The zoonotic pathogen Borrelia hermsii bears its multiple paralogous genes for variable antigens on several linear plasmids. Application of combined long-read and short-read next-generation sequencing provided complete sequences for antigen-encoding plasmids as well as other linear and circular plasmids and the linear chromosome of the genome. PMID:27284141

  5. Chromosome and Plasmids of the Tick-Borne Relapsing Fever Agent Borrelia hermsii.

    PubMed

    Barbour, Alan G

    2016-01-01

    The zoonotic pathogen Borrelia hermsii bears its multiple paralogous genes for variable antigens on several linear plasmids. Application of combined long-read and short-read next-generation sequencing provided complete sequences for antigen-encoding plasmids as well as other linear and circular plasmids and the linear chromosome of the genome. PMID:27284141

  6. Novel Conserved Genotypes Correspond to Antibiotic Resistance Phenotypes of E. coli Clinical Isolates

    PubMed Central

    Swick, Michelle C.; Easton-Marks, Jeremy R.; Barth, Patrick; Shah, Minita J.; Bormann Chung, Christina A.; Stanley, Sarah; McLaughlin, Stephen F.; Lee, Clarence C.; Sheth, Vrunda; Doan, Quynh; Hamill, Richard J.; Steffen, David; Becnel, Lauren B.; Sucgang, Richard; Zechiedrich, Lynn

    2013-01-01

    Current efforts to understand antibiotic resistance on the whole genome scale tend to focus on known genes even as high throughput sequencing strategies uncover novel mechanisms. To identify genomic variations associated with antibiotic resistance, we employed a modified genome-wide association study; we sequenced genomic DNA from pools of E. coli clinical isolates with similar antibiotic resistance phenotypes using SOLiD technology to uncover single nucleotide polymorphisms (SNPs) unanimously conserved in each pool. The multidrug-resistant pools were genotypically similar to SMS-3-5, a previously sequenced multidrug-resistant isolate from a polluted environment. The similarity was evenly spread across the entire genome and not limited to plasmid or pathogenicity island loci. Among the pools of clinical isolates, genomic variation was concentrated adjacent to previously reported inversion and duplication differences between the SMS-3-5 isolate and the drug-susceptible laboratory strain, DH10B. SNPs that result in non-synonymous changes in gyrA (encoding the well-known S83L allele associated with fluoroquinolone resistance), mutM, ligB, and recG were unanimously conserved in every fluoroquinolone-resistant pool. Alleles of the latter three genes are tightly linked among most sequenced E. coli genomes, and had not been implicated in antibiotic resistance previously. The changes in these genes map to amino acid positions in alpha helices that are involved in DNA binding. Plasmid-encoded complementation of null strains with either allelic variant of mutM or ligB resulted in variable responses to ultraviolet light or hydrogen peroxide treatment as markers of induced DNA damage, indicating their importance in DNA metabolism and revealing a potential mechanism for fluoroquinolone resistance. Our approach uncovered evidence that additional DNA binding enzymes may contribute to fluoroquinolone resistance and further implicate environmental bacteria as a reservoir for

  7. Characterization of pKP-M1144, a Novel ColE1-Like Plasmid Encoding IMP-8, GES-5, and BEL-1 β-Lactamases, from a Klebsiella pneumoniae Sequence Type 252 Isolate

    PubMed Central

    Dolejska, Monika; Izdebski, Radoslaw; Dobiasova, Hana; Studentova, Vendula; Esteves, Francisco J.; Derde, Lennie P. G.; Bonten, Marc J. M.; Hrabák, Jaroslav; Gniadkowski, Marek

    2015-01-01

    IMP-8 metallo-β-lactamase was identified in Klebsiella pneumoniae sequence type 252 (ST252), isolated in a Portuguese hospital in 2009. blaIMP-8 was the first gene cassette of a novel class 3 integron, In1144, also carrying the blaGES-5, blaBEL-1, and aacA4 cassettes. In1144 was located on a ColE1-like plasmid, pKP-M1144 (12,029 bp), with a replication region of limited nucleotide similarity to those of other RNA-priming plasmids, such as pJHCMW1. In1144 and pKP-M1144 represent an interesting case of evolution of resistance determinants in Gram-negative bacteria. PMID:26033721

  8. Characterization of pKP-M1144, a Novel ColE1-Like Plasmid Encoding IMP-8, GES-5, and BEL-1 β-Lactamases, from a Klebsiella pneumoniae Sequence Type 252 Isolate.

    PubMed

    Papagiannitsis, Costas C; Dolejska, Monika; Izdebski, Radoslaw; Dobiasova, Hana; Studentova, Vendula; Esteves, Francisco J; Derde, Lennie P G; Bonten, Marc J M; Hrabák, Jaroslav; Gniadkowski, Marek

    2015-08-01

    IMP-8 metallo-β-lactamase was identified in Klebsiella pneumoniae sequence type 252 (ST252), isolated in a Portuguese hospital in 2009. blaIMP-8 was the first gene cassette of a novel class 3 integron, In1144, also carrying the blaGES-5, blaBEL-1, and aacA4 cassettes. In1144 was located on a ColE1-like plasmid, pKP-M1144 (12,029 bp), with a replication region of limited nucleotide similarity to those of other RNA-priming plasmids, such as pJHCMW1. In1144 and pKP-M1144 represent an interesting case of evolution of resistance determinants in Gram-negative bacteria. PMID:26033721

  9. Characterization of ampicillin resistance plasmids from Haemophilus ducreyi.

    PubMed Central

    Totten, P A; Handsfield, H H; Peters, D; Holmes, K K; Falkow, S

    1982-01-01

    Seven strains of Haemophilus ducreyi from diverse geographic origins were analyzed for their plasmid content. All strains were multiply resistant, but only resistance to ampicillin was transferred to Escherichia coli by transformation. The H. ducreyi plasmids encoding for ampicillin resistance were 7.4, 5.7, and 3.6 megadaltons and encoded for part or all of TnA, and ampicillin transposon. The relatedness of these plasmids was examined by restriction endonuclease digestion and DNA-DNA homology with isolated DNA fragments from TnA. Images PMID:6282212

  10. Molecular and Functional Analyses of the Gene (eshA) Encoding the 52-Kilodalton Protein of Streptomyces coelicolor A3(2) Required for Antibiotic Production

    PubMed Central

    Kawamoto, Shinichi; Watanabe, Masakatsu; Saito, Natsumi; Hesketh, Andrew; Vachalova, Katerina; Matsubara, Keiko; Ochi, Kozo

    2001-01-01

    Analysis of proteins recovered in the S100 precipitate fraction of Streptomyces griseus after ultracentrifugation led to the identification of a 52-kDa protein which is produced during the late growth phase. The gene (eshA) which codes for this protein was cloned from S. griseus, and then its homologue was cloned from Streptomyces coelicolor A3(2). The protein was deduced to be 471 amino acids in length. The protein EshA is characterized by a central region that shows homology to the eukaryotic-type cyclic nucleotide-binding domains. Significant homology was also found to MMPI in Mycobacterium leprae, a major antigenic protein to humans. The eshA gene mapped near the chromosome end and was not essential for viability, as demonstrated by gene disruption experiments, but its disruption resulted in the abolishment of an antibiotic (actinorhodin but not undecylprodigiosin) production. Aerial mycelium was produced as abundantly as by the parent strain. Expression analysis of the EshA protein by Western blotting revealed that EshA is present only in late-growth-phase cells. The eshA gene was transcribed just preceding intracellular accumulation of the EshA protein, as determined by S1 nuclease protection, indicating that EshA expression is regulated at the transcription level. The expression of EshA was unaffected by introduction of the relA mutation, which blocks ppGpp synthesis. PMID:11567001

  11. Inhibitory effect of UvrD and DinG on the replication of ColE1-derived plasmids in Escherichia coli.

    PubMed

    Kang, Nalae; Choi, Eunsil; Kim, Sung-Gun; Hwang, Jihwan

    2015-09-01

    CspA has been identified as a major cold-shock protein in Escherichia coli. CspA binds to RNAs which are abnormally folded at low temperature and then acts as an RNA chaperone unfolding those RNAs. The dramatic expression of cspA at low temperature is contributed by posttranscriptional stability and robust translatability. Interestingly, when cspA mRNA encoding a premature nonsense codon was overexpressed at low temperature, cell growth was completely inhibited. This phenotype was termed LACE (the low temperature-dependent antibiotic effect of truncated cspA expression), and this lethality resulted from exclusive stalling of most ribosomes on mutant cspA mRNAs. In a previous study, we demonstrated that overexpression of the ATP-dependent DNA helicases, UvrD and DinG, suppressed the lethality and ribosome stalling caused by mutant cspA mRNA. In the present study, we attempted to elucidate how these two DNA helicases help recover normal growth under LACE condition. Interestingly, we found that UvrD and DinG appeared to have an ability to down-regulate the replication of pUC-based high copy plasmid. In plasmid copy number tests, the amount of pUC-based plasmid encoding mutant cspA was reduced by 3-10-fold when either UvrD or DinG was expressed. Through a β-galactosidase activity assay, we also confirmed that expression of the lacZα gene inserted into the pUC-based plasmid was significantly reduced due to down-regulation of plasmid replication. Our findings imply that UvrD and DinG, known as non-replicative helicases, play a novel role in the regulation of ColE1-like plasmid replication. PMID:26143370

  12. Plasmid Flux in Escherichia coli ST131 Sublineages, Analyzed by Plasmid Constellation Network (PLACNET), a New Method for Plasmid Reconstruction from Whole Genome Sequences

    PubMed Central

    Garcillán-Barcia, M. Pilar; Mora, Azucena; Blanco, Jorge; Coque, Teresa M.; de la Cruz, Fernando

    2014-01-01

    Bacterial whole genome sequence (WGS) methods are rapidly overtaking classical sequence analysis. Many bacterial sequencing projects focus on mobilome changes, since macroevolutionary events, such as the acquisition or loss of mobile genetic elements, mainly plasmids, play essential roles in adaptive evolution. Existing WGS analysis protocols do not assort contigs between plasmids and the main chromosome, thus hampering full analysis of plasmid sequences. We developed a method (called plasmid constellation networks or PLACNET) that identifies, visualizes and analyzes plasmids in WGS projects by creating a network of contig interactions, thus allowing comprehensive plasmid analysis within WGS datasets. The workflow of the method is based on three types of data: assembly information (including scaffold links and coverage), comparison to reference sequences and plasmid-diagnostic sequence features. The resulting network is pruned by expert analysis, to eliminate confounding data, and implemented in a Cytoscape-based graphic representation. To demonstrate PLACNET sensitivity and efficacy, the plasmidome of the Escherichia coli lineage ST131 was analyzed. ST131 is a globally spread clonal group of extraintestinal pathogenic E. coli (ExPEC), comprising different sublineages with ability to acquire and spread antibiotic resistance and virulence genes via plasmids. Results show that plasmids flux in the evolution of this lineage, which is wide open for plasmid exchange. MOBF12/IncF plasmids were pervasive, adding just by themselves more than 350 protein families to the ST131 pangenome. Nearly 50% of the most frequent γ–proteobacterial plasmid groups were found to be present in our limited sample of ten analyzed ST131 genomes, which represent the main ST131 sublineages. PMID:25522143

  13. Plasmid flux in Escherichia coli ST131 sublineages, analyzed by plasmid constellation network (PLACNET), a new method for plasmid reconstruction from whole genome sequences.

    PubMed

    Lanza, Val F; de Toro, María; Garcillán-Barcia, M Pilar; Mora, Azucena; Blanco, Jorge; Coque, Teresa M; de la Cruz, Fernando

    2014-12-01

    Bacterial whole genome sequence (WGS) methods are rapidly overtaking classical sequence analysis. Many bacterial sequencing projects focus on mobilome changes, since macroevolutionary events, such as the acquisition or loss of mobile genetic elements, mainly plasmids, play essential roles in adaptive evolution. Existing WGS analysis protocols do not assort contigs between plasmids and the main chromosome, thus hampering full analysis of plasmid sequences. We developed a method (called plasmid constellation networks or PLACNET) that identifies, visualizes and analyzes plasmids in WGS projects by creating a network of contig interactions, thus allowing comprehensive plasmid analysis within WGS datasets. The workflow of the method is based on three types of data: assembly information (including scaffold links and coverage), comparison to reference sequences and plasmid-diagnostic sequence features. The resulting network is pruned by expert analysis, to eliminate confounding data, and implemented in a Cytoscape-based graphic representation. To demonstrate PLACNET sensitivity and efficacy, the plasmidome of the Escherichia coli lineage ST131 was analyzed. ST131 is a globally spread clonal group of extraintestinal pathogenic E. coli (ExPEC), comprising different sublineages with ability to acquire and spread antibiotic resistance and virulence genes via plasmids. Results show that plasmids flux in the evolution of this lineage, which is wide open for plasmid exchange. MOBF12/IncF plasmids were pervasive, adding just by themselves more than 350 protein families to the ST131 pangenome. Nearly 50% of the most frequent γ-proteobacterial plasmid groups were found to be present in our limited sample of ten analyzed ST131 genomes, which represent the main ST131 sublineages. PMID:25522143

  14. Cloning and expression of a plasmid-linked pediocin determinant trait of Pediococcus acidilactici F.

    PubMed

    Osmanağaoğlu, O; Beyatli, Y; Gündüz, U

    2000-01-01

    Plasmid DNA from Pediococcus acidilactici F was prepared by lysozyme-mutanolysin method and purified by cesium chloride-ethidium bromide (CsCl-EtBr) density gradient ultracentrifugation. Agarose gel electrophoresis of plasmid DNA and plasmid-curing experiments suggested that bacteriocin activity was harboured on a small plasmid of approximately 9.1 kb (kilobasepair) in Pediococcus acidilactici F. Plasmid encoding bacteriocin production in P. acidilactici F was examined for restriction enzyme cleavage patterns and its map has been constructed. An Escherichia coli strain transformed with the recombinant plasmid, pQE322, produced and, most probably, secreted pediocin F. PMID:10746198

  15. Antibiotic Resistance

    MedlinePlus

    Antibiotics are medicines that fight bacterial infections. Used properly, they can save lives. But there is a growing problem of antibiotic resistance. It happens when bacteria change and become able to resist the effects of an antibiotic. Using antibiotics can lead to resistance. ...

  16. [Mechanisms of resistance in Enterobacteriaceae towards beta-lactamase antibiotics].

    PubMed

    Susić, Edita

    2004-01-01

    Except for Salmonella spp., all Enterobacteriaceae produce intrinsic chromosomal encoded beta-lactamases which, beside their physiologic role in cell-wall synthesis and natural beta-lactam protection, are responsible for intrinsic resistance of individual species among Enterobacteriaceae. E. coli and Shigella spp. produce a small amount of AmpC beta-lactamases and are susceptible to ampicillin and other beta-lactam antibiotic agents. Enterobacter spp, C. freundii, Serratia spp., M. morganii, P. stuarti and P. rettgeri produce small amounts of inducible AmpC beta-lactamases which are not inhibited by beta-lactamases inhibitor, causing intrinsic resistance to ampicillin, co-amoxiclav and first-generation cephalosporins. K. pneumoniae produces small amounts of SHV-1 beta-lactamases, and K. oxytoca chromosomal K1 beta-lactamase, causing resistance to ampicillin, carbencillin, ticarcillin and attenuated zone of inhibition to piperacillin, compared to piperacillin with tazobactam. They are susceptible to beta-lactamase inhibitors. Whereas P. mirabilis shows a minor chromosomal expression of beta-lactamases, P. vulgaris produces chromosomal beta-lactamases of class A (cefuroximases), causing resistance to ampicillin, ticarcillin, and first- and second-generation cephalosporins. Antibiotics have caused the appearance of acquired or secondary beta-lactamases, with the sole function of protecting bacteria from antibiotics. The production of broad-spectrum beta-lactamases (TEM-1, TEM-2, SHV-1, OXA-1) results in resistance to ampicillin, ticarcillin, first-generation cephalosporins and piperacillin. A high level of beta-lactamases leads to resistance to their inhibitors. The plasmid-mediated extended-spectrum beta-lactamases (ESBLs) are of increasing concern. Most are mutants of classic TEM- and SHV-beta-lactamases types. Unlike these parent enzymes, ESBLs hydrolyze oxymino-cephalosporins such as cefuroxime, cefotaxime, ceftriaxone, ceftizoxime, ceftazidime, cefpirome and

  17. Various pAQU plasmids possibly contribute to disseminate tetracycline resistance gene tet(M) among marine bacterial community

    PubMed Central

    Nonaka, Lisa; Maruyama, Fumito; Onishi, Yuki; Kobayashi, Takeshi; Ogura, Yoshitoshi; Hayashi, Tetsuya; Suzuki, Satoru; Masuda, Michiaki

    2014-01-01

    Emergence of antibiotic-resistant bacteria in the aquaculture environment is a significant problem for disease control of cultured fish as well as in human public health. Conjugative mobile genetic elements (MGEs) are involved in dissemination of antibiotic resistance genes (ARGs) among marine bacteria. In the present study, we first designed a PCR targeting traI gene encoding essential relaxase for conjugation. By this new PCR, we demonstrated that five of 83 strains isolated from a coastal aquaculture site had traI-positive MGEs. While one of the five strains that belonged to Shewanella sp. was shown to have an integrative conjugative element of the SXT/R391 family (ICEVchMex-like), the MGEs of the other four strains of Vibrio spp. were shown to have the backbone structure similar to that of previously described in pAQU1. The backbone structure shared by the pAQU1-like plasmids in the four strains corresponded to a ~100-kbp highly conserved region required for replication, partition and conjugative transfer, suggesting that these plasmids constituted “pAQU group.” The pAQU group plasmids were shown to be capable of conjugative transfer of tet(M) and other ARGs from the Vibrio strains to E. coli. The pAQU group plasmid in one of the examined strains was designated as pAQU2, and its complete nucleotide sequence was determined and compared with that of pAQU1. The results revealed that pAQU2 contained fewer ARGs than pAQU1 did, and most of the ARGs in both of these plasmids were located in the similar region where multiple transposases were found, suggesting that the ARGs were introduced by several events of DNA transposition into an ancestral plasmid followed by drug selection in the aquaculture site. The results of the present study indicate that the “pAQU group” plasmids may play an important role in dissemination of ARGs in the marine environment. PMID:24860553

  18. Detection of plasmid mediated colistin resistance (MCR-1) in Escherichia coli and Salmonella enterica isolated from poultry and swine in Spain.

    PubMed

    Quesada, Alberto; Ugarte-Ruiz, María; Iglesias, M Rocío; Porrero, M Concepción; Martínez, Remigio; Florez-Cuadrado, Diego; Campos, María J; García, María; Píriz, Segundo; Sáez, José Luis; Domínguez, Lucas

    2016-04-01

    Recent findings suggest that use of colistin as a last resort antibiotic is seriously threatened by the rise of a new plasmid mediated mechanism of resistance (MCR-1). This work identifies, for the first time in Southern Europe, the gene mcr-1 in nine strains from farm animals (poultry and swine) corresponding to five Escherichia coli and four Salmonella enterica, among which three belong to serovar Typhimurium and one to Rissen. The MCR-1 was found encoded by a plasmid highly mobilizable by conjugation to the E. coli J53 strain. Two E. coli strains carried two determinants, mcr-1 plus pmrA or pmrB mutations, known to confer colistin resistance. PMID:27033921

  19. Community-wide plasmid gene mobilization and selection

    PubMed Central

    Sentchilo, Vladimir; Mayer, Antonia P; Guy, Lionel; Miyazaki, Ryo; Green Tringe, Susannah; Barry, Kerrie; Malfatti, Stephanie; Goessmann, Alexander; Robinson-Rechavi, Marc; van der Meer, Jan R

    2013-01-01

    Plasmids have long been recognized as an important driver of DNA exchange and genetic innovation in prokaryotes. The success of plasmids has been attributed to their independent replication from the host's chromosome and their frequent self-transfer. It is thought that plasmids accumulate, rearrange and distribute nonessential genes, which may provide an advantage for host proliferation under selective conditions. In order to test this hypothesis independently of biases from culture selection, we study the plasmid metagenome from microbial communities in two activated sludge systems, one of which receives mostly household and the other chemical industry wastewater. We find that plasmids from activated sludge microbial communities carry among the largest proportion of unknown gene pools so far detected in metagenomic DNA, confirming their presumed role of DNA innovators. At a system level both plasmid metagenomes were dominated by functions associated with replication and transposition, and contained a wide variety of antibiotic and heavy metal resistances. Plasmid families were very different in the two metagenomes and grouped in deep-branching new families compared with known plasmid replicons. A number of abundant plasmid replicons could be completely assembled directly from the metagenome, providing insight in plasmid composition without culturing bias. Functionally, the two metagenomes strongly differed in several ways, including a greater abundance of genes for carbohydrate metabolism in the industrial and of general defense factors in the household activated sludge plasmid metagenome. This suggests that plasmids not only contribute to the adaptation of single individual prokaryotic species, but of the prokaryotic community as a whole under local selective conditions. PMID:23407308

  20. The global problem of antibiotic resistance.

    PubMed

    Gootz, Thomas D

    2010-01-01

    Amid the recent attention justly focused on the potential problem of microbial sources for weapons of bioterrorism, it is also apparent that human pathogens frequently isolated from infections in patients from community and hospital sources have been growing more resistant to commonly used antibiotics. Much of the growth of multiple-drug-resistant (MDR) bacterial pathogens can be contributed to the overuse of broad-spectrum antimicrobial products. However, an equally troubling and often overlooked component of the problem involves the elegant ways in which pathogenic bacteria continually evolve complex genetic systems for acquiring and regulating an endless array of antibiotic-resistance mechanisms. Efforts to develop new antimicrobials have over the past two decades been woefully behind the rapid evolution of resistance genes developing among both gram-positive and gram-negative pathogens. Several new agents that are best suited for use in the hospital environment have been developed to combat staphylococci resistant to beta-lactam antimicrobials following acquisition of the mecA gene. However, the dramatic spread in the US of the now common community strain of Staphylococcus aureus USA300 has shifted the therapeutic need for new antibiotics useful against MRSA to the community. As the pharmaceutical industry focused on discovering new agents for use against MRSA, hospitals in many parts of the world have seen the emergence of gram-negative pathogens such as Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae that are clinically resistant to almost all available antimicrobials. Such MDR isolates usually contain multiple-resistance determinants, including loss of outer membrane porins via gene inactivation by chromosomally encoded insertion sequences, up-regulation of inate efflux pumps, as well as acquisition of drug-inactivating enzymes whose genes are encoded on self-transmissible plasmids, integrons, and complex transposable elements

  1. pDGO100, a type 1 IncC plasmid from 1981 carrying ARI-A and a Tn1696-like transposon in a novel integrating element.

    PubMed

    Harmer, Christopher J; Partridge, Sally R; Hall, Ruth M

    2016-07-01

    Most A/C plasmids sequenced to date were recovered in the last two decades. To gain insight into the evolution of this group, the IncC plasmid pDGO100, found in a multiply antibiotic-resistant Escherichia coli strain isolated in 1981, was sequenced. pDGO100 belongs to the type 1 lineage and carries an ARI-A antibiotic resistance island but not an ARI-B island. The A/C2 backbone of pDGO100 has a deletion in the rhs1 gene previously found in pRMH760 and differs by only six single base pair substitutions from pRMH760, recovered at the same hospital 16years later. This confirms that the separation of type 1 and type 2 IncC plasmids is long standing. The ARI-A islands are also closely related, but pRMH760 contains Tn4352B in tniA of Tn402, while in pDGO100, Tn4352 has inserted into merA of pDUmer. pDGO100 also carries an additional 46kb insertion that includes a Tn1696-like transposon with the dfrB3 gene cassette. This insertion was identified as a novel integrating element, with an int gene at one end, and also includes the fec iron uptake operon that has been acquired from the E. coli chromosome. Related integrating elements carrying the same int gene were found in A/C2, IncHI1, and IncHI2 plasmids, and in the chromosomes of Enterobacter cloacae, Klebsiella oxytoca, and Cronobacter sakazakii isolates. In the Enterobacteriaceae chromosomes, these integrating elements appear to target a gene encoding a radical SAM superfamily protein. In the A/C2, IncHI1, and IncHI2 plasmids, genes encoding a phosphoadenosine phosphosulfate reductase were interrupted. The extremities of the integrating element are highly conserved, whilst the internal gene content varies. The detection of integrative elements in plasmids demonstrates an increased range of locations into which this type of mobile element can integrate and insertion in plasmids is likely to assist their spread. PMID:27318267

  2. Functional Characterization of a Ketoreductase-Encoding Gene med-ORF12 Involved in the Formation of a Stereospecific Pyran Ring during the Biosynthesis of an Antitumor Antibiotic Medermycin

    PubMed Central

    He, Qiang; Li, Le; Yang, Tingting; Li, Ruijuan; Li, Aiying

    2015-01-01

    Medermycin, a polyketide antibiotic, possesses strong bioactivity against a variety of tumors through a novel mechanism and is structurally featured with a pyran ring containing two chiral centers (3S and 15R). By far the biosynthetic origin of such enantiomerical conformations still remains obscure. In the present study, we reported the functional characterization of a proposed ketoreductase Med-ORF12 encoded by medermycin biosynthetic cluster and revealed its involvement in the stereochemical control at C3 center of medermycin. Firstly, bioinformatics analysis of Med-ORF12 suggested that it belongs to a group of stereospecific ketoreductases. Next, a Med-ORF12-deficient mutant was obtained and LC/MS measurements demonstrated that medermycin production was completely abolished in this mutant. Meanwhile, it was found that two shunt products were accumulated at the absence of Med-ORF12. Finally, the reintroduction of Med-ORF12 into this mutant could restore the production of medermycin. In a conclusion, these data supported that Med-ORF12 is essential for the biosynthesis of medermycin and performs its role as a stereospecifc ketoreductase in the tailoring steps of medermycin biosynthetic pathway. PMID:26162081

  3. An insight of traditional plasmid curing in Vibrio species.

    PubMed

    Letchumanan, Vengadesh; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    As the causative agent of foodborne related illness, Vibrio species causes a huge impact on the public health and management. Vibrio species is often associated with seafood as the latter plays a role as a vehicle to transmit bacterial infections. Hence, antibiotics are used not to promote growth but rather to prevent and treat bacterial infections. The extensive use of antibiotics in the aquaculture industry and environment has led to the emerging of antibiotic resistant strains. This phenomenon has triggered an alarming public health concern due to the increase number of pathogenic Vibrio strains that are resistant to clinically used antibiotics and is found in the environment. Antibiotic resistance and the genes location in the strains can be detected through plasmid curing assay. The results derived from plasmid curing assay is fast, cost effective, sufficient in providing insights, and influence the antibiotic management policies in the aquaculture industry. This presentation aims in discussing and providing insights on various curing agents in Vibrio species. To our best of knowledge, this is a first review written discussing on plasmid curing in Vibrio species. PMID:26347714

  4. An insight of traditional plasmid curing in Vibrio species

    PubMed Central

    Letchumanan, Vengadesh; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    As the causative agent of foodborne related illness, Vibrio species causes a huge impact on the public health and management. Vibrio species is often associated with seafood as the latter plays a role as a vehicle to transmit bacterial infections. Hence, antibiotics are used not to promote growth but rather to prevent and treat bacterial infections. The extensive use of antibiotics in the aquaculture industry and environment has led to the emerging of antibiotic resistant strains. This phenomenon has triggered an alarming public health concern due to the increase number of pathogenic Vibrio strains that are resistant to clinically used antibiotics and is found in the environment. Antibiotic resistance and the genes location in the strains can be detected through plasmid curing assay. The results derived from plasmid curing assay is fast, cost effective, sufficient in providing insights, and influence the antibiotic management policies in the aquaculture industry. This presentation aims in discussing and providing insights on various curing agents in Vibrio species. To our best of knowledge, this is a first review written discussing on plasmid curing in Vibrio species. PMID:26347714

  5. Antibiotic Agents

    MedlinePlus

    ... Work Contact Us ABOUT THE ISSUE What is Antibiotic Resistance? General Background Science of Resistance Glossary References POLICY ... for Adaptation Genetics and Drug Resistance Reservoirs of Antibiotic Resistance Project (ROAR) INTERNATIONAL CHAPTERS APUA Chapter Network Africa ...

  6. Antibiotic Safety

    MedlinePlus

    ... specific to women Antibiotics can lead to vaginal yeast infections. This happens because antibiotics kill the normal bacteria in the vagina and this causes yeast to grow rapidly. Symptoms of a yeast infection ...

  7. Modified live Edwardsiella ictaluri vaccine, AQUAVAC-ESC, lacks multidrug resistance plasmids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plasmid mediated antibiotic resistance was first discovered in Edwardsiella ictaluri in the early 1990’s, and in 2007 an E. ictaluri isolate harboring an IncA/C plasmid was recovered from a moribund channel catfish infected with the bacterium. Due to the identification of multidrug resistance plasm...

  8. Megaplasmids encode differing combinations of lantibiotics in Streptococcus salivarius.

    PubMed

    Wescombe, Philip A; Burton, Jeremy P; Cadieux, Peter A; Klesse, Nikolai A; Hyink, Otto; Heng, Nicholas C K; Chilcott, Chris N; Reid, Gregor; Tagg, John R

    2006-10-01

    Streptococcus salivarius strains commonly produce bacteriocins as putative anti-competitor or signalling molecules. Here we report that bacteriocin production by the oral probiotic strain S. salivarius K12 is encoded by a large (ca. 190 kb) plasmid. Oral cavity transmission of the plasmid from strain K12 to a plasmid-negative variant of this bacterium was demonstrated in two subjects. Tests of additional S. salivarius strains showed large (up to ca. 220 kb) plasmids present in bacteriocin-producing isolates. Various combinations (up to 3 per plasmid) of loci encoding the known streptococcal lantibiotics salivaricin A, salivaricin B, streptin and SA-FF22 were localised to these plasmids. Since all bacteriocin-producing strains of S. salivarius tested to date appear to harbour plasmids, it appears that they may function as mobile repositories for bacteriocin loci, especially those of the lantibiotic class. PMID:16871420

  9. Co-selection of antibiotic and metal(loid) resistance in gram-negative epiphytic bacteria from contaminated salt marshes.

    PubMed

    Henriques, Isabel; Tacão, Marta; Leite, Laura; Fidalgo, Cátia; Araújo, Susana; Oliveira, Cláudia; Alves, Artur

    2016-08-15

    The goal of this study was to investigate co-selection of antibiotic resistance in gram-negative epiphytic bacteria. Halimione portulacoides samples were collected from metal(loid)-contaminated and non-contaminated salt marshes. Bacterial isolates (n=137) affiliated with Vibrio, Pseudomonas, Shewanella, Comamonas, Aeromonas and with Enterobacteriaceae. Vibrio isolates were more frequent in control site while Pseudomonas was common in contaminated sites. Metal(loid) and antibiotic resistance phenotypes varied significantly according to site contamination, and multiresistance was more frequent in contaminated sites. However, differences among sites were not observed in terms of prevalence or diversity of acquired antibiotic resistance genes, integrons and plasmids. Gene merA, encoding mercury resistance, was only detected in isolates from contaminated sites, most of which were multiresistant to antibiotics. Results indicate that metal(loid) contamination selects for antibiotic resistance in plant surfaces. In salt marshes, antibiotic resistance may be subsequently transferred to other environmental compartments, such as estuarine water or animals, with potential human health risks. PMID:27210560

  10. Use of FabV-Triclosan Plasmid Selection System for Efficient Expression and Production of Recombinant Proteins in Escherichia coli

    PubMed Central

    Ali, Syed A.; Chew, Yik Wei; Omar, Tasyriq Che; Azman, Nizuwan

    2015-01-01

    Maintenance of recombinant plasmid vectors in host bacteria relies on the presence of selection antibiotics in the growth media to suppress plasmid -free segregants. However, presence of antibiotic resistance genes and antibiotics themselves is not acceptable in several applications of biotechnology. Previously, we have shown that FabV-Triclosan selection system can be used to select high and medium copy number plasmid vectors in E. coli. Here, we have extended our previous work and demonstrated that expression vectors containing FabV can be used efficiently to express heterologous recombinant proteins in similar or better amounts in E. coli host when compared with expression vectors containing β-lactamase. Use of small amount of non-antibiotic Triclosan as selection agent in growth medium, enhanced plasmid stability, applicability in various culture media, and compatibility with other selection systems for multiple plasmid maintenance are noteworthy features of FabV-Triclosan selection system. PMID:26642325

  11. Use of FabV-Triclosan Plasmid Selection System for Efficient Expression and Production of Recombinant Proteins in Escherichia coli.

    PubMed

    Ali, Syed A; Chew, Yik Wei; Omar, Tasyriq Che; Azman, Nizuwan

    2015-01-01

    Maintenance of recombinant plasmid vectors in host bacteria relies on the presence of selection antibiotics in the growth media to suppress plasmid -free segregants. However, presence of antibiotic resistance genes and antibiotics themselves is not acceptable in several applications of biotechnology. Previously, we have shown that FabV-Triclosan selection system can be used to select high and medium copy number plasmid vectors in E. coli. Here, we have extended our previous work and demonstrated that expression vectors containing FabV can be used efficiently to express heterologous recombinant proteins in similar or better amounts in E. coli host when compared with expression vectors containing β-lactamase. Use of small amount of non-antibiotic Triclosan as selection agent in growth medium, enhanced plasmid stability, applicability in various culture media, and compatibility with other selection systems for multiple plasmid maintenance are noteworthy features of FabV-Triclosan selection system. PMID:26642325

  12. Bacterial Cheating Limits the Evolution of Antibiotic Resistance

    NASA Astrophysics Data System (ADS)

    Yurtsev, Eugene; Xiao Chao, Hui; Datta, Manoshi; Artemova, Tatiana; Gore, Jeff

    2012-02-01

    The emergence of antibiotic resistance in bacteria is a significant health concern. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removal of the antibiotic. The presence of a cooperative mechanism of resistance suggests that a cheater strain - which does not contribute to breaking down the antibiotic - may be able to take advantage of resistant cells. We find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We use a simple model in conjunction with difference equations to explain the observed population dynamics as a function of cell density and antibiotic concentration. Our experimental difference equations resemble the logistic map, raising the possibility of oscillations or even chaotic dynamics.

  13. A toxin-antitoxin system encoded by the Xylella fastidiosa chromosome regulates growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacteria encode toxin-antitoxin (TA) systems consisting of a stable toxin and a cognate labile antitoxin. When encoded by a plasmid, TA systems confer stable plasmid inheritance. When encoded by the chromosome, TA systems may confer advantageous responses to environmental stress. The chromosome of...

  14. Plasmids in Frankia sp.

    PubMed

    Normand, P; Simonet, P; Butour, J L; Rosenberg, C; Moiroud, A; Lalonde, M

    1983-07-01

    A method to achieve cell lysis and isolate Frankia sp. plasmid DNA was developed. A screening of Frankia sp. strains belonging to different host compatibility groups (Alnus sp., Elaeagnus sp., Ceanothus sp.) showed that, of 39 strains tested, 4 (strains Cp11, ARgN22d, ArI3, and EUN1f) possessed plasmids ranging in size from 7.1 to 32.2 kilobase pairs as estimated from agarose gel electrophoresis and electron microscopy. A total of 11 plasmids were detected. PMID:6863219

  15. Distribution of Intrinsic Plasmid Replicase Genes and Their Association with Carbapenem-Hydrolyzing Class D β-Lactamase Genes in European Clinical Isolates of Acinetobacter baumannii▿

    PubMed Central

    Towner, Kevin J.; Evans, Benjamin; Villa, Laura; Levi, Katrina; Hamouda, Ahmed; Amyes, Sebastian G. B.; Carattoli, Alessandra

    2011-01-01

    Ninety-six genetically diverse multidrug-resistant clinical isolates of Acinetobacter baumannii from 25 hospitals in 17 European countries were screened by PCR for specific carbapenemase-hydrolyzing class D β-lactamase (CHDL) genes and by PCR-based replicon typing for the presence of 19 different plasmid replicase (rep) gene homology groups (GRs). Results were confirmed by DNA sequencing where necessary. All 96 isolates contained at least 1 (with a maximum of 4) of the 19 groups of rep genes. Groups detected were GR6 (repAci6; 93 isolates), GR2 (including repAci1 [67 isolates] and repAci2 [3 isolates]), GR16 (repApAB49; 12 isolates), GR12 (p2ABSDF0001; 10 isolates), GR3 (repAci3; 4 isolates), GR4 (repAci4; 3 isolates), GR10 (repAciX; 1 isolate), and GR14 (repp4AYE; 1 isolate). Variations in rep gene content were observed even among epidemiologically related isolates. Genes encoding OXA-58-like CHDLs (22 isolates) were associated with carriage of the repAci1, repAci3, repAci4, and repAciX genes, genes encoding OXA-40-like CHDLs (6 isolates) were associated with repAci2 and p2ABSDF0001, and genes encoding OXA-23-like CHDLs (8 isolates) were associated with repAci1. Most intrinsic Acinetobacter plasmids are non-self-transferable, but the almost ubiquitous repAci6 gene was strongly associated with a potential tra locus that could serve as a general system for plasmid mobilization and consequent horizontal transmission of plasmids and their associated antibiotic resistance genes among strains of A. baumannii. PMID:21300832

  16. Acquired Antibiotic Resistance Genes: An Overview

    PubMed Central

    van Hoek, Angela H. A. M.; Mevius, Dik; Guerra, Beatriz; Mullany, Peter; Roberts, Adam Paul; Aarts, Henk J. M.

    2011-01-01

    In this review an overview is given on antibiotic resistance (AR) mechanisms with special attentions to the AR genes described so far preceded by a short introduction on the discovery and mode of action of the different classes of antibiotics. As this review is only dealing with acquired resistance, attention is also paid to mobile genetic elements such as plasmids, transposons, and integrons, which are associated with AR genes, and involved in the dispersal of antimicrobial determinants between different bacteria. PMID:22046172

  17. Characterization of Small ColE1-Like Plasmids Conferring Kanamycin Resistance in Salmonella enterica subsp. enterica serovars Typhimurium and Newport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multi-antibiotic resistant (MR) Salmonella enterica serovars Typhimurium and Newport are an increasing concern in human and animal health. Many strains are known to carry antibiotic resistance determinants on multiple plasmids, yet detailed information is scarce. Three plasmids conferring kanamycin...

  18. Investigation of plasmid-induced growth defect in Pseudomonas putida.

    PubMed

    Mi, Jia; Sydow, Anne; Schempp, Florence; Becher, Daniela; Schewe, Hendrik; Schrader, Jens; Buchhaupt, Markus

    2016-08-10

    Genetic engineering in bacteria mainly relies on the use of plasmids. But despite their pervasive use for physiological studies as well as for the design and optimization of industrially used production strains, only limited information about plasmid induced growth defects is available for different replicons and organisms. Here, we present the identification and characterization of such a phenomenon for Pseudomonas putida transformants carrying the pBBR1-derived plasmid pMiS1. We identified the kanamycin resistance gene and the transcription factor encoding rhaR gene to be causal for the growth defect in P. putida. In contrast, this effect was not observed in Escherichia coli. The plasmid-induced growth defect was eliminated after introduction of a mutation in the plasmid-encoded rep gene, thus enabling construction of the non-toxic variant pMiS4. GFP reporters construct analyses and qPCR experiments revealed a distinctly lowered plasmid copy number for pMiS4, which is probably the reason for alleviation of the growth defect by this mutation. Our work expands the knowledge about plasmid-induced growth defects and provides a useful low-copy pBBR1 replicon variant. PMID:27287537

  19. Natural plasmids of filamentous fungi.

    PubMed Central

    Griffiths, A J

    1995-01-01

    Among eukaryotes, plasmids have been found in fungi and plants but not in animals. Most plasmids are mitochondrial. In filamentous fungi, plasmids are commonly encountered in isolates from natural populations. Individual populations may show a predominance of one type, but some plasmids have a global distribution, often crossing species boundaries. Surveys have shown that strains can contain more than one type of plasmid and that different types appear to be distributed independently. In crosses, plasmids are generally inherited maternally. Horizontal transmission is by cell contact. Circular plasmids are common only in Neurospora spp., but linear plasmids have been found in many fungi. Circular plasmids have one open reading frame (ORF) coding for a DNA polymerase or a reverse transcriptase. Linear plasmids generally have two ORFs, coding for presumptive DNA and RNA polymerases with amino acid motifs showing homology to viral polymerases. Plasmids often attain a high copy number, in excess of that of mitochondrial DNA. Linear plasmids have a protein attached to their 5' end, and this is presumed to act as a replication primer. Most plasmids are neutral passengers, but several linear plasmids integrate into mitochondrial DNA, causing death of the host culture. Inferred amino acid sequences of linear plasmid ORFs have been used to plot phylogenetic trees, which show a fair concordance with conventional trees. The circular Neurospora plasmids have replication systems that seem to be evolutionary intermediates between the RNA and the DNA worlds. PMID:8531891

  20. A series of template plasmids for Escherichia coli genome engineering.

    PubMed

    Deb, Shalini S; Reshamwala, Shamlan M S; Lali, Arvind M

    2016-06-01

    Metabolic engineering strategies often employ multi-copy episomal vectors to overexpress genes. However, chromosome-based overexpression is preferred as it avoids the use of selective pressure and reduces metabolic burden on the cell. We have constructed a series of template plasmids for λ Red-mediated Escherichia coli genome engineering. The template plasmids allow construction of genome integrating cassettes that can be used to integrate single copies of DNA sequences at predetermined sites or replace promoter regions. The constructed cassettes provide flexibility in terms of expression levels achieved and antibiotics used for selection, as well as allowing construction of marker-free strains. The modular design of the template plasmids allows replacement of genetic parts to construct new templates. Gene integration and promoter replacement using the template plasmids are illustrated. PMID:27071533

  1. The agricultural antibiotic carbadox induces phage-mediated gene transfer in Salmonella

    PubMed Central

    Bearson, Bradley L.; Allen, Heather K.; Brunelle, Brian W.; Lee, In Soo; Casjens, Sherwood R.; Stanton, Thaddeus B.

    2013-01-01

    Antibiotics are used for disease therapeutic or preventative effects in humans and animals, as well as for enhanced feed conversion efficiency in livestock. Antibiotics can also cause undesirable effects in microbial populations, including selection for antibiotic resistance, enhanced pathogen invasion, and stimulation of horizontal gene transfer. Carbadox is a veterinary antibiotic used in the US during the starter phase of swine production for improved feed efficiency and control of swine dysentery and bacterial swine enteritis. Carbadox has been shown in vitro to induce phage-encoded Shiga toxin in Shiga toxin-producing Escherichia coli (STEC) and a phage-like element transferring antibiotic resistance genes in Brachyspira hyodysenteriae, but the effect of carbadox on prophages in other bacteria is unknown. This study examined carbadox exposure on prophage induction and genetic transfer in Salmonella enterica serovar Typhimurium, a human foodborne pathogen that frequently colonizes swine without causing disease. S. Typhimurium LT2 exposed to carbadox induced prophage production, resulting in bacterial cell lysis and release of virions that were visible by electron microscopy. Carbadox induction of phage-mediated gene transfer was confirmed by monitoring the transduction of a sodCIII::neo cassette in the Fels-1 prophage from LT2 to a recipient Salmonella strain. Furthermore, carbadox frequently induced generalized transducing phages in multidrug-resistant phage type DT104 and DT120 isolates, resulting in the transfer of chromosomal and plasmid DNA that included antibiotic resistance genes. Our research indicates that exposure of Salmonella to carbadox induces prophages that can transfer virulence and antibiotic resistance genes to susceptible bacterial hosts. Carbadox-induced, phage-mediated gene transfer could serve as a contributing factor in bacterial evolution during animal production, with prophages being a reservoir for bacterial fitness genes in the

  2. The antibiotic resistance “mobilome”: searching for the link between environment and clinic

    PubMed Central

    Perry, Julie A.; Wright, Gerard D.

    2013-01-01

    Antibiotic resistance is an ancient problem, owing to the co-evolution of antibiotic-producing and target organisms in the soil and other environments over millennia. The environmental “resistome” is the collection of all genes that directly or indirectly contribute to antibiotic resistance. Many of these resistance determinants originate in antibiotic-producing organisms (where they serve to mediate self-immunity), while others become resistance determinants only when mobilized and over-expressed in non-native hosts (like plasmid-encoded β-lactamases). The modern environmental resistome is under selective pressure from human activities such as agriculture, which may influence the composition of the local resistome and lead to gene transfer events. Beyond the environment, we are challenged in the clinic by the rise in both frequency and diversity of antibiotic resistant pathogens. We assume that clinical resistance originated in the environment, but few examples of direct gene exchange between the environmental resistome and the clinical resistome have been documented. Strong evidence exists to suggest that clinical aminoglycoside and vancomycin resistance enzymes, the extended-spectrum β-lactamase CTX-M and the quinolone resistance gene qnr have direct links to the environmental resistome. In this review, we highlight recent advances in our understanding of horizontal gene transfer of antibiotic resistance genes from the environment to the clinic. Improvements in sequencing technologies coupled with functional metagenomic studies have revealed previously underappreciated diversity in the environmental resistome, and also established novel genetic links to the clinic. Understanding mechanisms of gene exchange becomes vital in controlling the future dissemination of antibiotic resistance. PMID:23755047

  3. Vector insert-targeted integrative antisense expression system for plasmid stabilization.

    PubMed

    Luke, Jeremy M; Carnes, Aaron E; Hodgson, Clague P; Williams, James A

    2011-01-01

    Some DNA vaccine and gene therapy vector-encoded transgenes are toxic to the E. coli plasmid production host resulting in poor production yields. For plasmid products undergoing clinical evaluation, sequence modification to eliminate toxicity is undesirable because an altered vector is a new chemical entity. We hypothesized that: (1) insert-encoded toxicity is mediated by unintended expression of a toxic insert-encoded protein from spurious bacterial promoters; and (2) that toxicity could be eliminated with antisense RNA-mediated translation inhibition. We developed the pINT PR PL vector, a chromosomally integrable RNA expression vector, and utilized it to express insert-complementary (anti-insert) RNA from a single defined site in the bacterial chromosome. Anti-insert RNA eliminated leaky fluorescent protein expression from a target plasmid. A toxic retroviral gag pol helper plasmid produced in a gag pol anti-insert strain had fourfold improved plasmid fermentation yields. Plasmid fermentation yields were also fourfold improved when a DNA vaccine plasmid containing a toxic Influenza serotype H1 hemagglutinin transgene was grown in an H1 sense strand anti-insert production strain, suggesting that in this case toxicity was mediated by an antisense alternative reading frame-encoded peptide. This anti-insert chromosomal RNA expression technology is a general approach to improve production yields with plasmid-based vectors that encode toxic transgenes, or toxic alternative frame peptides. PMID:20607625

  4. Linear plasmids in plant mitochondria: peaceful coexistences or malicious invasions?

    PubMed

    Handa, Hirokazu

    2008-01-01

    Plant mitochondria contain small extrachromosomal DNAs in addition to a large and complex main mitochondrial genome. These molecules can be regarded as extrachromosomal replicons or plasmids, of which there are two forms, circular and linear. Linear mitochondrial plasmids are present in many fungi and in some plants, but they seem to be absent from most animal cells. They usually have a common structural feature, called an invertron, that is characterized by the presence of terminal inverted repeats and proteins covalently attached to their 5 termini. Linear mitochondrial plasmids possess one to six ORFs that can encode unknown proteins but often code for the DNA and RNA polymerases. Although the functions of most linear plasmids in plant mitochondria are unknown, some plasmids may be associated with mitochondrial genome rearrangements and may have phenotypic effects due to their integration into mitochondrial genome. The Brassica 11.6-kb plasmid, one of the linear mitochondrial plasmids in plants, shows a non-maternal inheritance, in contrast to mitochondrial genomes. The origin of these plasmids is still a mystery, but indirect evidence indicates the possibility of horizontal transfer from fungal mitochondria. In this review, the main features of these unique DNAs present in plant mitochondria are described. PMID:18326073

  5. Plasmids of Staphylococcus cohnii isolated from the intensive-care unit.

    PubMed

    Szewczyk, E M; Rózalska, M; Cieślikowski, T; Nowak, T

    2004-01-01

    Numerous isolates of both subspecies of Staphylococcus cohnii were found in the environment of the intensive-care unit of a pediatric hospital. These isolates carried in their cells many plasmids, up to fourteen, of a wide range of sizes (< 2 to > 56 kb). Striking was the occurrence of large plasmids not very common in staphylococci. These were present in > 80% of S. cohnii isolates. Fifty-two different plasmid profiles were found in 79 investigated isolates belonging to S. cohnii ssp. cohnii and S. cohnii ssp. urealyticus. Isolates similar in plasmid profiles were grouped in antibiotic-resistance clusters established for 9 antibiotics (gentamicin, ciprofloxacin, clindamycin, erythromycin, tetracycline, chloramphenicol, mupirocin, trimethoprim-sulfamethoxazole, vancomycin) using the method of unweighted pair group mathematical averages (UPGMA). Many isolates were multiresistant to antibiotics and produced bacteriocins. PMID:15227782

  6. Antibiotic-free production of a herpes simplex virus 2 DNA vaccine in a high yield cGMP process

    PubMed Central

    Nelson, Jared; Rodriguez, Stephen; Finlayson, Neil; Williams, Jim; Carnes, Aaron

    2013-01-01

    Two DNA vaccine plasmids encoding Herpes simplex virus type 2 (HSV-2) glycoprotein D, NTC8485-O2-gD2 and NTC8485-O2-UgD2tr, were produced at large scale under current good manufacturing practice (cGMP) for use in a Phase I human clinical trial. These DNA vaccines incorporate the regulatory agency compliant, minimal, antibiotic-free (AF) NTC8485 mammalian expression vector. Plasmid yields of > 1 g/L were achieved using the HyperGRO™ fed-batch fermentation process, with successful scale up from 10 L process development scale to 320 L culture volume for cGMP production. The DNA vaccines were purified using a low residence time, high shear lysis process and AIRMIXTM technology, followed by chromatographic purification. This combination of optimized plasmid vector, high yield upstream production, and efficient downstream purification resulted in purified HSV-2 DNA vaccines with > 99% total supercoiled plasmid, ≤ 0.2% RNA, ≤ 0.1% host cell genomic DNA, and ≤ 0.1 endotoxin units per mg. PMID:23899469

  7. The Challenge of Efflux-Mediated Antibiotic Resistance in Gram-Negative Bacteria

    PubMed Central

    Plésiat, Patrick

    2015-01-01

    SUMMARY The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps. PMID:25788514

  8. Transformation of Shewanella baltica with ColE1-like and P1 plasmids and their maintenance during bacterial growth in cultures.

    PubMed

    Milewska, Klaudia; Węgrzyn, Grzegorz; Szalewska-Pałasz, Agnieszka

    2015-09-01

    The presence of natural plasmids has been reported for many Shewanella isolates. However, knowledge about plasmid replication origin and segregation mechanisms is not extensive for this genus. Shewanella baltica is an important species in the marine environment due to its denitrification ability in oxygen-deficient zones and the potential role in bioremediation processes. However, no information about possible use of plasmid vectors in this species has been reported to date. Here we report that plasmids with ColE1-type and plasmid P1 origin can transform S. baltica and replicate in this bacterium. Without the antibiotic selection pressure plasmid maintenance is less efficient than in Escherichia coli. Nevertheless, cultivation of S. baltica in the presence of appropriate antibiotics caused relatively stable maintenance of ColE1-like and P1-derived plasmids. This indicates that plasmid-based genetic manipulations and gene transfer in S. baltica are possible. PMID:26170108

  9. Evolution of genes on the Salmonella Virulence plasmid phylogeny revealed from sequencing of the virulence plasmids of S. enterica serotype Dublin and comparative analysis.

    PubMed

    Chu, Chishih; Feng, Ye; Chien, An-Chi; Hu, Songnian; Chu, Chi-Hong; Chiu, Cheng-Hsun

    2008-11-01

    Salmonella enterica serotype Dublin harbors an approximately 80-kb virulence plasmid (pSDV), which mediates systemic infection in cattle. There are two types of pSDV: one is pSDVu (pOU1113) in strain OU7025 and the other pSDVr (pOU1115) in OU7409 (SD Lane) and many clinical isolates. Sequence analysis showed that pSDVr was a recombinant plasmid (co-integrate) of pSDVu and a plasmid similar to a 35-kb indigenous plasmid (pOU1114) of S. Dublin. Most of the F-transfer region in pSDVu was replaced by a DNA segment from the pOU1114-like plasmid containing an extra replicon and a pilX operon encoding for a type IV secretion system to form pSDVr. We reconstructed the particular evolutionary history of the seven virulence plasmids of Salmonella by comparative sequence analysis. The whole evolutionary process might begin with two different F-like plasmids (IncFI and IncFII), which then incorporated the spv operon and fimbriae operon from the chromosome to form the primitive virulence plasmids. Subsequently, these plasmids descended by deletion from a relatively large plasmid to smaller ones, with some recombination events occurring over time. Our results suggest that the phylogeny of virulence plasmids as a result of frequent recombination provides the opportunity for rapid evolution of Salmonella in response to the environmental cues. PMID:18718522

  10. Analysis of plasmid-mediated quinolone and oxyimino-cephalosporin resistance mechanisms in Uruguayan Salmonella enterica isolates from 2011-2013.

    PubMed

    Cordeiro, Nicolás F; Nabón, Adriana; García-Fulgueiras, Virginia; Álvez, Marcelo; Sirok, Alfredo; Camou, Teresa; Vignoli, Rafael

    2016-09-01

    This study characterised the mechanisms of fluoroquinolone and oxyimino-cephalosporin resistance in human Salmonella enterica isolates in Uruguay. Salmonella enterica isolates were collected from 2011-2013 and were selected based on non-susceptibility to ciprofloxacin and/or oxyimino-cephalosporins. The disk diffusion assay was performed for various antibiotics, and the ciprofloxacin minimum inhibitory concentration (MIC) was determined following CLSI guidelines. Genetic relatedness was determined following PulseNet protocols. Extended-spectrum β-lactamases, ampC alleles and plasmid-mediated quinolone resistance were characterised by PCR and sequencing. Plasmid analyses were carried out by conjugation or transformation assays, and plasmid-encoded genes were identified by PCR. Mutations in the quinolone resistance-determining region of gyrases were sought by PCR and sequencing. Among 579 isolates, 105 (18.4%) ciprofloxacin-non-susceptible (CIP-NS) isolates, 9 (1.6%) oxyimino-cephalosporin-resistant isolates and 2 (0.3%) isolates resistant to both antibiotic families were detected. Thirteen isolates carried qnrB alleles (twelve qnrB19 and one qnrB2), four carried blaCTX-M-8, two blaCTX-M-14, two blaSHV-2 and three blaCMY-2-like genes. No correlation was found between mutations in gyrases and ciprofloxacin MICs. Several co-circulating clones of S. enterica ssp. enterica serovar Typhimurium were detected; conversely, S. enterica ssp. enterica serovar Enteritidis corresponded mainly to a single circulating clone. Nine (75%) of twelve of CIP-NS extraintestinal isolates shared the same pulsotype with intestinal isolates. During the study period, the frequency of CIP-NS isolates increased, albeit with ciprofloxacin MICs of 0.125-0.5mg/L. Detection of the same quinolone-resistant clones recovered both from intestinal and extraintestinal samples highlights the significance of epidemiological surveillance of antibiotic susceptibility for every human Salmonella isolate. PMID

  11. Plasmid profiling of bacterial isolates from confined environments

    NASA Astrophysics Data System (ADS)

    van Houdt, Rob; Provoost, Ann; Coninx, Ilse; Leys, Natalie; Mergeay, Max

    Plasmid profiling of bacterial isolates from confined environments R. Van Houdt, I. Coninx, A. Provoost, N. Leys, and M. Mergeay Expertise group for Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, B-2400 Mol, Belgium. Human exploration of extreme and isolated hostile environments such as space requires special confined small volume habitats to protect and house the crew. However, human confinement in such small volume habitats has restrictions on waste disposal and personal hygiene and inevitably generates a particular community of microorganisms within the habitat. These microorganisms are mainly originating from the crew (skin, mucous membranes, upper respiratory tract, mouth, and gastrointestinal tract) but also include the residing environmental microorganisms. Earth-based confined habitats such as the Antarctic Research Station Concordia are used as test beds for long-duration spaceflights to study the physiologic and psychological adaptation to isolated environments. The dynamics of the environmental microbial population in such a test bed could render additional insights in assessing the potential health risks in long-duration space missions. Not only total bacterial contamination levels are important, but it is essential to identify also the predominant microbial taxa and their mobile genetic elements (MGE). These MGEs could be exchanged between bacteria by horizontal gene transfer and may alter the pathogenic potential since they often carry antibiotic resistance or more in general adaptation-enhancing traits. In this study several bacterial strains isolated in the Concordia research station were examined for their plasmid content. An optimized protocol for extraction of large plasmids showed the present of at least one plasmid in 50% of the strains. For all strains the minimal inhibitory concentration of a range of antibiotics was determined indicating resistance to

  12. Characterization of Plasmid pOR1 from Ornithobacterium rhinotracheale and Construction of a Shuttle Plasmid

    PubMed Central

    Jansen, Ruud; Chansiripornchai, Niwat; Gaastra, Wim; van Putten, Jos P. M.

    2004-01-01

    The bacterium Ornithobacterium rhinotracheale has been recognized as an emerging pathogen in poultry since about 10 years ago. Knowledge of this bacterium and its mechanisms of virulence is still very limited. Here we report the development of a transformation system that enables genetic modification of O. rhinotracheale. The system is based on a cryptic plasmid, pOR1, that was derived from an O. rhinotracheale strain of serotype K. Sequencing indicated that the plasmid consisted of 14,787 nucleotides. Sequence analysis revealed one replication origin and several rep genes that control plasmid replication and copy number, respectively. In addition, pOR1 contains genes with similarity to a heavy-metal-transporting ATPase, a TonB-linked siderophore receptor, and a laccase. Reverse transcription-PCR demonstrated that these genes were transcribed. Other putative open reading frames exhibited similarities with a virulence-associated protein in Actinobacillus actinomycetemcomitans and a number of genes coding for proteins with unknown function. An Escherichia coli-O. rhinotracheale shuttle plasmid (pOREC1) was constructed by cloning the replication origin and rep genes from pOR1 and the cfxA gene from Bacteroides vulgatus, which codes for resistance to the antibiotic cefoxitin, into plasmid pGEM7 by using E. coli as a host. pOREC1 was electroporated into O. rhinotracheale and yielded cefoxitin-resistant transformants. The pOREC1 isolated from these transformants was reintroduced into E. coli, demonstrating that pOREC1 acts as an independent replicon in both E. coli and O. rhinotracheale, fulfilling the criteria for a shuttle plasmid that can be used for transformation, targeted mutagenesis, and the construction of defined attenuated vaccine strains. PMID:15466524

  13. IncF plasmid diversity in multi-drug resistant Escherichia coli strains from animals in China

    PubMed Central

    Yang, Qiu-E.; Sun, Jian; Li, Liang; Deng, Hui; Liu, Bao-Tao; Fang, Liang-Xing; Liao, Xiao-Ping; Liu, Ya-Hong

    2015-01-01

    The purpose of this study was to characterize a collection of 103 multidrug resistance IncF plasmids recovered from Escherichia coli of food producing and companion animals between 2003 and 2012. A total of 103 incF plasmids were characterized using an established PCR-based IncF replicon sequence typing (RST) system to identify FII, FIA, and FIB (FAB) groups. Plasmids were also analyzed using-restriction fragment length polymorphism (RFLP). Antibiotic Resistance determinants blaCTX-M, plasmid-mediated quinolone resistance (PMQR) genes and rmtB and plasmid addiction systems (PAS) were identified by PCR screening. A total of 20 different RSTs from 103 IncF plasmids were identified. The groups F2 and F33 with the RST formulae A-: B- were the most frequently encountered types (63.1%). The antibiotic resistance genes (ARGs) blaCTX-M, rmtB, and oqxB were carried by 82, 37, and 34 IncF plasmids, respectively. Most of these plasmids carried more than one resistance gene (59.2%, 61/103). The IncF plasmids also had a high frequency of addiction systems (mean 2.54) and two antisense RNA-regulated systems (hok–sok and srnBC) and a protein antitoxin-regulated system (pemKI) were the most prevalent. Not surprisingly, RFLP profiles among the IncF plasmids were diverse even though some shared identical IncF-RSTs. This is the first extensive study of IncF plasmid-positive E. coli isolates from animals in China. Our results demonstrate that IncF is the most prevalent plasmid family in E. coli plasmids and they commonly carry multiple resistance determinants that render them resistant to different antibiotic classes simultaneously. IncF plasmids also harbor addiction systems, promoting their stability and maintenance in the bacterial host, under changing environmental conditions. PMID:26441898

  14. Genetic relationship between soxRS and mar loci in promoting multiple antibiotic resistance in Escherichia coli.

    PubMed Central

    Miller, P F; Gambino, L F; Sulavik, M C; Gracheck, S J

    1994-01-01

    Multiple antibiotic resistance in Escherichia coli has typically been associated with mutations at the mar locus, located at 34 min on the E. coli chromosome. A new mutant, marC, isolated on the basis of a Mar phenotype but which maps to the soxRS (encoding the regulators of the superoxide stress response) locus located at 92 min, is described here. This mutant shares several features with a known constitutive allele of the soxRS gene, prompting the conclusion that it is a highly active allele of this gene. The marC mutation has thus been given the designation soxR201. This new mutant was used to examine the relationship between the mar and sox loci in promoting antibiotic resistance. The results of these studies indicate that full antibiotic resistance resulting from the soxR201 mutation is partially dependent on an intact mar locus and is associated with an increase in the steady-state level of mar-specific mRNA. In addition, paraquat treatment of wild-type cells is shown to increase the level of antibiotic resistance in a dose-dependent manner that requires an intact soxRS locus. Conversely, overexpression of MarA from a multicopy plasmid results in weak activation of a superoxide stress response target gene. These findings are consistent with a model in which the regulatory factors encoded by the marA and soxS genes control the expression of overlapping sets of target genes, with MarA preferentially acting on targets involved with antibiotic resistance and SoxS directed primarily towards components of the superoxide stress response. Furthermore, compounds frequently used to induce the superoxide stress response, including paraquat, menadione, and phenazine methosulfate, differ with respect to the amount of protection provided against them by the antibiotic resistance response. Images PMID:7986007

  15. Plasma-activated air mediates plasmid DNA delivery in vivo.

    PubMed

    Edelblute, Chelsea M; Heller, Loree C; Malik, Muhammad A; Bulysheva, Anna; Heller, Richard

    2016-01-01

    Plasma-activated air (PAA) provides a noncontact DNA transfer platform. In the current study, PAA was used for the delivery of plasmid DNA in a 3D human skin model, as well as in vivo. Delivery of plasmid DNA encoding luciferase to recellularized dermal constructs was enhanced, resulting in a fourfold increase in luciferase expression over 120 hours compared to injection only (P < 0.05). Delivery of plasmid DNA encoding green fluorescent protein (GFP) was confirmed in the epidermal layers of the construct. In vivo experiments were performed in BALB/c mice, with skin as the delivery target. PAA exposure significantly enhanced luciferase expression levels 460-fold in exposed sites compared to levels obtained from the injection of plasmid DNA alone (P < 0.001). Expression levels were enhanced when the plasma reactor was positioned more distant from the injection site. Delivery of plasmid DNA encoding GFP to mouse skin was confirmed by immunostaining, where a 3-minute exposure at a 10 mm distance displayed delivery distribution deep within the dermal layers compared to an exposure at 3 mm where GFP expression was localized within the epidermis. Our findings suggest PAA-mediated delivery warrants further exploration as an alternative approach for DNA transfer for skin targets. PMID:27110584

  16. Plasma-activated air mediates plasmid DNA delivery in vivo

    PubMed Central

    Edelblute, Chelsea M; Heller, Loree C; Malik, Muhammad A; Bulysheva, Anna; Heller, Richard

    2016-01-01

    Plasma-activated air (PAA) provides a noncontact DNA transfer platform. In the current study, PAA was used for the delivery of plasmid DNA in a 3D human skin model, as well as in vivo. Delivery of plasmid DNA encoding luciferase to recellularized dermal constructs was enhanced, resulting in a fourfold increase in luciferase expression over 120 hours compared to injection only (P < 0.05). Delivery of plasmid DNA encoding green fluorescent protein (GFP) was confirmed in the epidermal layers of the construct. In vivo experiments were performed in BALB/c mice, with skin as the delivery target. PAA exposure significantly enhanced luciferase expression levels 460-fold in exposed sites compared to levels obtained from the injection of plasmid DNA alone (P < 0.001). Expression levels were enhanced when the plasma reactor was positioned more distant from the injection site. Delivery of plasmid DNA encoding GFP to mouse skin was confirmed by immunostaining, where a 3-minute exposure at a 10 mm distance displayed delivery distribution deep within the dermal layers compared to an exposure at 3 mm where GFP expression was localized within the epidermis. Our findings suggest PAA-mediated delivery warrants further exploration as an alternative approach for DNA transfer for skin targets. PMID:27110584

  17. A conjugative 38kB plasmid is present in multiple subspecies of Xylella fastidiosa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A ~38kB plasmid was present in the Riv5 strain of Xylella fastidiosa subsp. multiplex isolated from ornamental plum in southern California. This plasmid, pXF-RIV5, encodes a complete type IV secretion system necessary for conjugation and DNA transfer. pXF-RIV5 is almost identical to pXFAS01 from X. ...

  18. In vivo transmission of an IncA/C plasmid in Escherichia coli depends on tetracycline concentration, and acquisition of the plasmid results in a variable cost of fitness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    IncA/C plasmids are broad-host-range plasmids enabling multidrug resistance that have emerged worldwide among bacterial pathogens of humans and animals. While antibiotic usage is suspected to be a driving force in the emergence of such strains, few studies have examined the impact of different types...

  19. [New low-copy plasmid in cyanobacterium Anabaena variabilis].

    PubMed

    Mardanov, A V; Beletskiĭ, A V; Gumerov, V M; Karbysheva, E A; Mikheeva, L E

    2013-08-01

    Complete genome sequencing was performed for Anabaena variabilis ATCC 29413 from the collection of the Chair of Genetics, Department of Biology, Moscow State University, Russia. In addition to known plasmids A, B, and C, a new circular low-copy plasmid was detected and named D. It was also sequenced completely and found to have 27051 bp. The plasmid contained the parA and parB genes of the partition system, two genes that encode replication proteins, a gene for site-specific recombinase, atype-I restriction-modification system, and several genes with unknown functions. Analysis by PCR revealed the presence of plasmid D in two epiphytic strains from Vietnam, i.e., Anabaena sp. 182 and Anabaena sp. 281, as well as in Anabaena sp. V5 and A. azollae (Newton's isolate). PMID:25474879

  20. [New low-copy plasmid in cyanobacterium Anabaena variabilis].

    PubMed

    2013-08-01

    Complete genome sequencing was performed for Anabaena variabilis ATCC 29413 from the collection of the Chair of Genetics, Department of Biology, Moscow State University, Russia. In addition to known plasmids A, B, and C, a new circular low-copy plasmid was detected and named D. It was also sequenced completely and found to have 27051 bp. The plasmid contained the parA and parB genes of the partition system, two genes that encode replication proteins, a gene for site-specific recombinase, atype-I restriction-modification system, and several genes with unknown functions. Analysis by PCR revealed the presence of plasmid D in two epiphytic strains from Vietnam, i.e., Anabaena sp. 182 and Anabaena sp. 281, as well as in Anabaena sp. V5 and A. azollae (Newton's isolate). PMID:25508658

  1. Zinc Finger Nuclease: A New Approach to Overcome Beta-Lactam Antibiotic Resistance

    PubMed Central

    Shahbazi Dastjerdeh, Mansoureh; Kouhpayeh, Shirin; Sabzehei, Faezeh; Khanahmad, Hossein; Salehi, Mansour; Mohammadi, Zahra; Shariati, Laleh; Hejazi, Zahra; Rabiei, Parisa; Manian, Mostafa

    2016-01-01

    Background: The evolution of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) has been accelerated recently by the indiscriminate application of antibiotics. Antibiotic resistance has challenged the success of medical interventions and therefore is considered a hazardous threat to human health. Objectives: The present study aimed to describe the use of zinc finger nuclease (ZFN) technology to target and disrupt a plasmid-encoded β-lactamase, which prevents horizontal gene transfer-mediated evolution of ARBs. Materials and Methods: An engineered ZFN was designed to target a specific sequence in the ampicillin resistance gene (ampR) of the pTZ57R plasmid. The Escherichia coli bacteria already contained the pZFN kanamycin-resistant (kanaR) plasmid as the case or the pP15A, kanaR empty vector as the control, were transformed with the pTZ57R; the ability of the designed ZFN to disrupt the β-lactamase gene was evaluated with the subsequent disturbed ability of the bacteria to grow on ampicillin (amp) and ampicillin-kanamycin (amp-kana)-containing media. The effect of mild hypothermia on the ZFN gene targeting efficiency was also evaluated. Results: The growth of bacteria in the case group on the amp and amp-kana-containing media was significantly lower compared with the control group at 37°C (P < 0.001). Despite being more efficient in hypothermic conditions at 30°C (P < 0.001), there were no significant associations between the incubation temperature and the ZFN gene targeting efficiency. Conclusions: Our findings revealed that the ZFN technology could be employed to overcome ampicillin resistance by the targeted disruption of the ampicillin resistance gene, which leads to inactivation of β-lactam synthesis. Therefore, ZFN technology could be engaged to decrease the antibiotic resistance issue with the construction of a ZFN archive against different ARGs. To tackle the resistance issue at the environmental level, recombinant phages

  2. [Antibiotic pharmacoeconomics].

    PubMed

    Jahnz-Rózyk, Karina

    2008-11-01

    Today more than ever, doctors in the ambulatory care and hospitals must effectively manage the use of antibiotics to control costs and preserve their usefulness. To achieve this goal, antibiotic management must evolve from simplistic antibiotic cost containment to more complex, appropriate use program that are founded on clinical outcomes-based pharmacoeconomic analyses. The successful application of pharmacoeconomic principles to antimicrobial therapy requires maximizing therapeutic effectiveness while minimizing costs, with the primary on pharmacokinetic considerations. This article reviews the various pharmacoeconomic factors that affect antibiotic costs in relation to patients and institutions. Cost-effectiveness studies of macrolides in pulmonary infections are presented in this study to illustrate the utility of these analyses. PMID:19177784

  3. Antibiotics Quiz

    MedlinePlus

    ... Viruses b) Bacteria c) Viruses and Bacteria 2. Bacteria are germs that cause colds and flu. a) ... The Flu c) Cold d) Strep Throat 4. Bacteria that cause infections can become resistant to antibiotics. ...

  4. Genetic transformation of a clinical (genital tract), plasmid-free isolate of Chlamydia trachomatis: engineering the plasmid as a cloning vector.

    PubMed

    Wang, Yibing; Kahane, Simona; Cutcliffe, Lesley T; Skilton, Rachel J; Lambden, Paul R; Persson, Kenneth; Bjartling, Carina; Clarke, Ian N

    2013-01-01

    Our study had three objectives: to extend the plasmid-based transformation protocol to a clinical isolate of C. trachomatis belonging to the trachoma biovar, to provide "proof of principle" that it is possible to "knock out" selected plasmid genes (retaining a replication competent plasmid) and to investigate the plasticity of the plasmid. A recently developed, plasmid-based transformation protocol for LGV isolates of C. trachomatis was modified and a plasmid-free, genital tract C. trachomatis isolate from Sweden (SWFP-) was genetically transformed. Transformation of this non-LGV C. trachomatis host required a centrifugation step, but the absence of the natural plasmid removed the need for plaque purification of transformants. Transformants expressed GFP, were penicillin resistant and iodine stain positive for accumulated glycogen. The transforming plasmid did not recombine with the host chromosome. A derivative of pGFP::SW2 carrying a deletion of the plasmid CDS5 gene was engineered. CDS5 encodes pgp3, a protein secreted from the inclusion into the cell cytoplasm. This plasmid (pCDS5KO) was used to transform C. trachomatis SWFP-, and established that pgp3 is dispensable for plasmid function. The work shows it is possible to selectively delete segments of the chlamydial plasmid, and this is the first step towards a detailed molecular dissection of the role of the plasmid. The 3.6 kb β-galactosidase cassette was inserted into the deletion site of CDS5 to produce plasmid placZ-CDS5KO. Transformants were penicillin resistant, expressed GFP and stained for glycogen. In addition, they expressed β-galactosidase showing that the lacZ cassette was functional in C. trachomatis. An assay was developed that allowed the visualisation of individual inclusions by X-gal staining. The ability to express active β-galactosidase within chlamydial inclusions is an important advance as it allows simple, rapid assays to measure directly chlamydial infectivity without the need for

  5. Plasmid Carriage and the Serum Sensitivity of Enterobacteria

    PubMed Central

    Taylor, Peter W.; Hughes, Colin

    1978-01-01

    The carriage of a range of plasmids by rough, serum-sensitive laboratory strains of Escherichia coli made no difference to their reactivity in human serum as determined by two methods. Plasmid-carrying enterobacteria isolated from polluted river water gave a variety of responses to serum. Smooth E. coli river isolate C8 was killed by serum but only after a delay of 1 h, and curing of antibiotic resistance and colicin determinants from this strain led to a small but significant increase in serum sensitivity. Plasmids from eight strains were transferred by conjugation to a cured derivative of C8 (C8−NalR), and in six cases a significant increase in the serum resistance of the progeny was observed. Plasmid-mediated enhancement of resistance was particularly marked with plasmids R1 and NR1, and a round of replication mutant of NR1 conferred greater resistance than did the normal R factor. However, R1 and NR1 were unable to modify the serum response of a cured strain (P21−NalR) derived from promptly serum-sensitive isolate P21. These findings suggest that lipopolysaccharide O-side chains, the cell surface components responsible for the delay in serum killing, are essential for the expression of plasmid factors that modify sensitivity to serum. Examination of K(A)− variants of two isolates indicated that the K(A) antigen has only a marginal effect on the serum response. PMID:365738

  6. Identification of Plasmid-Free Chlamydia muridarum Organisms Using a Pgp3 Detection-Based Immunofluorescence Assay.

    PubMed

    Chen, Chaoqun; Zhong, Guangming; Ren, Lin; Lu, Chunxue; Li, Zhonggyu; Wu, Yimou

    2015-10-01

    Chlamydia possesses a conserved 7.5 kb plasmid that is known to play an important role in chlamydial pathogenesis, since some chlamydial organisms lacking the plasmid are attenuated. The chlamydial transformation system developed recently required the use of plasmid-free organisms. Thus, the generation and identification of plasmid-free organisms represent a key step in understanding chlamydial pathogenic mechanisms. A tricolor immunofluorescence assay for simultaneously detecting the plasmid-encoded Pgp3 and whole organisms plus DNA staining was used to screen C. muridarum organisms selected with novobiocin. PCR was used to detect the plasmid genes. Next-generation sequencing was then used to sequence the genomes of plasmid-free C. muridarum candidates and the parental C. muridarum Nigg strain. We generated five independent clones of plasmid-free C. muridarum organisms by using a combination of novobiocin treatment and screening plaque-purified clones with anti-Pgp3 antibody. The clones were confirmed to lack plasmid genes by PCR analysis. No GlgA protein or glycogen accumulation was detected in cells infected with the plasmid-free clones. More importantly, whole-genome sequencing characterization of the plasmid-free C. muridarum organism and the parental C. muridarum Nigg strain revealed no additional mutations other than loss of the plasmid in the plasmid-free C. muridarum organism. Thus, the Pgp3-based immunofluorescence assay has allowed us to identify authentic plasmid-free organisms that are useful for further investigating chlamydial pathogenic mechanisms. PMID:26059520

  7. The mosaicism of plasmids revealed by atypical genes detection and analysis

    PubMed Central

    2011-01-01

    Background From an evolutionary viewpoint, prokaryotic genomes are extremely plastic and dynamic, since large amounts of genetic material are continuously added and/or lost through promiscuous gene exchange. In this picture, plasmids play a key role, since they can be transferred between different cells and, through genetic rearrangement(s), undergo gene(s) load, leading, in turn, to the appearance of important metabolic innovations that might be relevant for cell life. Despite their central position in bacterial evolution, a massive analysis of newly acquired functional blocks [likely the result of horizontal gene transfer (HGT) events] residing on plasmids is still missing. Results We have developed a computational, composition-based, pipeline to scan almost 2000 plasmids for genes that differ significantly from their hosting molecule. Plasmids atypical genes (PAGs) were about 6% of the total plasmids ORFs and, on average, each plasmid possessed 4.4 atypical genes. Nevertheless, conjugative plasmids were shown to possess an amount of atypical genes than that found in not mobilizable plasmids, providing strong support for the central role suggested for conjugative plasmids in the context of HGT. Part of the retrieved PAGs are organized into (mainly short) clusters and are involved in important biological processes (detoxification, antibiotic resistance, virulence), revealing the importance of HGT in the spreading of metabolic pathways within the whole microbial community. Lastly, our analysis revealed that PAGs mainly derive from other plasmid (rather than coming from phages and/or chromosomes), suggesting that plasmid-plasmid DNA exchange might be the primary source of metabolic innovations in this class of mobile genetic elements. Conclusions In this work we have performed the first large scale analysis of atypical genes that reside on plasmid molecules to date. Our findings on PAGs function, organization, distribution and spreading reveal the importance of

  8. Plasmid Copy Number Determination by Quantitative Polymerase Chain Reaction.

    PubMed

    Anindyajati; Artarini, A Anita; Riani, Catur; Retnoningrum, Debbie S

    2016-01-01

    Recombinant therapeutic proteins are biopharmaceutical products that develop rapidly for years. Recombinant protein production in certain hosts requires vector expression harboring the gene encoding the corresponding protein. Escherichia coli is the prokaryote organism mostly used in recombinant protein production, commonly using a plasmid as the expression vector. Recombinant protein production is affected by plasmid copy number harboring the encoded gene, hence the determination of plasmid copy number also plays an important role in establishing a recombinant protein production system. On the industrial scale, a low copy number of plasmids are more suitable due to their better stability. In the previous study we constructed pCAD, a plasmid derived from the low copy number pBR322 plasmid. This study was aimed to confirm pCAD's copy number by quantitative polymerase chain reaction (qPCR). Plasmid copy number was determined by comparing the quantification signal from the plasmid to those from the chromosome. Copy number was then calculated by using a known copy number plasmid as a standard. Two pairs of primers, called tdk and ori, were designed for targeting a single gene tdk in the chromosome and a conserved domain in the plasmid's ori, respectively. Primer quality was analyzed in silico using PrimerSelect DNASTAR and PraTo software prior to in vitro evaluation on primer specificity and efficiency as well as optimization of qPCR conditions. Plasmid copy number determination was conducted on E. coli lysates harboring each plasmid, with the number of cells ranging from 10(2)-10(5) cells/μL. Cells were lysed by incubation at 95ºC for 10 minutes, followed by immediate freezing at -4°C. pBR322 plasmid with the copy number of ~19 copies/cell was used as the standard, while pJExpress414-sod plasmid possessing the high copy number pUC ori was also determined to test the method being used. In silico analysis based on primer-primer and primer-template interactions showed

  9. The genetic basis of plasmid tropism between Chlamydia trachomatis and Chlamydia muridarum.

    PubMed

    Wang, Yibing; Cutcliffe, Lesley T; Skilton, Rachel J; Ramsey, Kyle H; Thomson, Nicholas R; Clarke, Ian N

    2014-10-01

    The development of genetic transformation technology for Chlamydia trachomatis using its endogenous plasmid has recently been described. Chlamydia muridarum cannot be transformed by the C. trachomatis plasmid, indicating a barrier between chlamydial species. To determine which regions of the plasmid conferred the species specificity, we used the novel approach of transforming wild-type C. muridarum carrying the endogenous plasmid pNigg and forced recombination with the C. trachomatis vector pGFP::SW2 which carries the complete C. trachomatis plasmid (pSW2). Penicillin and chloramphenicol-resistant transformants expressing the green fluorescent protein were selected. Recovery of plasmids from these transformants showed they were recombinants. The differences between the pSW2 and pNigg allowed identification of the recombination breakpoints and showed that pGFP::SW2 had exchanged a ~ 1 kbp region with pNigg covering CDS 2. The recombinant plasmid (pSW2NiggCDS2) is maintained under antibiotic selection when transformed into plasmid-cured C. muridarum. The ability to select for recombinants in C. muridarum shows that the barrier is not at transformation, but at the level of plasmid replication or maintenance. Our studies show that CDS 2, together with adjoining sequences, is the main determinant of plasmid tropism. PMID:24700815

  10. The genetic basis of plasmid tropism between Chlamydia trachomatis and Chlamydia muridarum

    PubMed Central

    Wang, Yibing; Cutcliffe, Lesley T; Skilton, Rachel J; Ramsey, Kyle H; Thomson, Nicholas R; Clarke, Ian N

    2014-01-01

    The development of genetic transformation technology for Chlamydia trachomatis using its endogenous plasmid has recently been described. Chlamydia muridarum cannot be transformed by the C. trachomatis plasmid, indicating a barrier between chlamydial species. To determine which regions of the plasmid conferred the species specificity, we used the novel approach of transforming wild-type C. muridarum carrying the endogenous plasmid pNigg and forced recombination with the C. trachomatis vector pGFP::SW2 which carries the complete C. trachomatis plasmid (pSW2). Penicillin and chloramphenicol-resistant transformants expressing the green fluorescent protein were selected. Recovery of plasmids from these transformants showed they were recombinants. The differences between the pSW2 and pNigg allowed identification of the recombination breakpoints and showed that pGFP::SW2 had exchanged a ∼ 1 kbp region with pNigg covering CDS 2. The recombinant plasmid (pSW2NiggCDS2) is maintained under antibiotic selection when transformed into plasmid-cured C. muridarum. The ability to select for recombinants in C. muridarum shows that the barrier is not at transformation, but at the level of plasmid replication or maintenance. Our studies show that CDS 2, together with adjoining sequences, is the main determinant of plasmid tropism. PMID:24700815

  11. Addressing the Natural Antibiotic Resistome in Studies of Soil Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The environment is recognized as a source and a reservoir of antibiotic resistance (AR). Many antibiotic compounds are derived from bacteria and fungi that are naturally present in the environment. These microbes carry genes encoding resistance to the antibiotic that they produce and their resistanc...

  12. SURVIVAL AND DEGRADATIVE CAPACITY OF PSEUDOMONAS PUTIDA INDUCED OR CONSTITUTIVELY EXPRESSING PLASMID-MEDIATED DEGRADATION OF 2,4-DICHLOROPHENOXYACETATE (TFD) IN SOIL

    EPA Science Inventory

    Survival of genetically altered Pseudonomas putida strains harboring an inducible plasmid, pRO101, or a constitutive plasmid, pRO103, was compared. hese plasmids encoded for the degradation of 2,4-dichlorophenoxyacetate (TFD) to 2-chloromaleylacetate, and the maintenance of eithe...

  13. Presence and Analysis of Plasmids in Human and Animal Associated Arcobacter Species

    PubMed Central

    Douidah, Laid; De Zutter, Lieven; Van Nieuwerburgh, Filip; Deforce, Dieter; Ingmer, Hanne; Vandenberg, Olivier; Van den Abeele, Anne-Marie; Houf, Kurt

    2014-01-01

    In this study, we report the screening of four Arcobacter species for the presence of small and large plasmids. Plasmids were present in 9.9% of the 273 examined strains. One Arcobacter cryaerophilus and four Arcobacter butzleri plasmids were selected for further sequencing. The size of three small plasmids isolated from A. butzleri and the one from A. cryaerophilus strains ranged between 4.8 and 5.1 kb, and the size of the large plasmid, isolated from A. butzleri, was 27.4 kbp. The G+C content of all plasmids ranged between 25.4% and 26.2%. A total of 95% of the large plasmid sequence represents coding information, which contrasts to the 20 to 30% for the small plasmids. Some of the open reading frames showed a high homology to putative conserved domains found in other related organisms, such as replication, mobilization and genes involved in type IV secretion system. The large plasmid carried 35 coding sequences, including seven genes in a contiguous region of 11.6 kbp that encodes an orthologous type IV secretion system found in the Wolinella succinogenes genome, Helicobacter pylori and Campylobacter jejuni plasmids, which makes this plasmid interesting for further exploration. PMID:24465575

  14. Potential shuttle vectors based on the methanogen plasmid pME2001

    SciTech Connect

    Meile, L.; Reeve, J.N.

    1985-01-01

    Methane is produced by anaerobic archaebacteria known as methanogens. Currently the only available plasmid from a methanogen is pME2001. The authors incorporated pME2001 into plasmids which should be capable of replication in a range of microbial host species. Plasmid pET2411, a recombinant plasmid formed by joining pBR322 to pME2001, directs the synthesis of pME2001 encoded polypeptides in Escherichia coli but cannot replicate in E. coli in the absence of E. coli DNA polymerase I. 23 references, 3 figures, 1 table.

  15. Molecular classification of IncP-9 naphthalene degradation plasmids

    SciTech Connect

    Izmalkova, T.Y.; Mavrodi, D.V.; Sokolov, S.L.; Kosheleva, I.A.; Smalla, K.; Thomas, C.M.; Boronin, A.M.

    2006-07-15

    A large collection of naphthalene-degrading fluorescent Pseudomonas strains isolated from sites contaminated with coal tar and crude oil was screened for the presence of IncP-9 plasmids. Seventeen strains were found to carry naphthalene catabolic plasmids ranging in size from 83 to 120kb and were selected for further study. Results of molecular genotyping revealed that 15 strains were closely related to P. putida, one to P. fluorescens, and one to P. aeruginosa. All catabolic plasmids found in these strains, with the exception of pBS216, pSN11, and p8909N-1, turned out to belong to IncP-9 {beta}-subgroup. Plasmids pBS216, pSN11, and p8909N-1 were identified as members of IncP-9 {delta}-subgroup. One plasmid, pBS2, contains fused replicons of IncP-9 {beta} and IncP-7 groups. RFLP analyses of the naphthalene catabolic plasmids revealed that organisation of the replicon correlates well with the overall plasmid structure. Comparative PCR studies with conserved oligonucleotide primers indicated that genes for key enzymes of naphthalene catabolism are highly conserved among all studied plasmids. Three bacterial strains, P. putida BS202, P. putida BS3701, and P. putida BS3790, were found to have two different salicylate hydroxylase genes one of which has no similarity to the 'classic' enzyme encoded by nahG gene. Discovery of a large group of plasmid with unique nahR suggested that the regulatory loop may also represent a variable part of the pathway for catabolism of naphthalene in fluorescent Pseudomonas spp.

  16. Encoding Dictionaries.

    ERIC Educational Resources Information Center

    Ide, Nancy

    1995-01-01

    Describes problems in devising a Text Encoding Initiative (TEI) encoding format for dictionaries. Asserts that the high degree of structuring and compression of information are among the most complex text types treated in the TEI. Concludes that the source of some TEI problems lies in the design of Standard Generalized Markup Language (SGML). (CFR)

  17. [Mobile ISCR elements: structure, functions, and role in the emergence, increasing and spreading of blocks of bacterial genes of multiple antibiotic resistance].

    PubMed

    Il'ina, T S

    2012-01-01

    The recently discovered method of horizontal distribution of bacterial genes with atypical ISCR sequences is reviewed using an example of drug resistance genes. The adjacent DNA segment mobilization is provided by the transposition of such elements, including rolling circle replication, formation of autonomous nonreplicable circular structures, and homological recombination. The gene distribution capacity with the ISCR elements is more significant than the capacity of transposons and integrons, thereby providing formation of groups of mobile genes, including antibiotic-resistance genes of pathogenic bacteria. The structure and functions of the ISCR elements were discussed together with their similarity and dissimilarity with the group of IS91-similar elements and their role in the emergence of blocks of bacterial genes encoding of multiple antibiotic resistance and their contribution to evolution of bacterial and plasmid genes. PMID:23248846

  18. Antibiotic resistance shaping multi-level population biology of bacteria

    PubMed Central

    Baquero, Fernando; Tedim, Ana P.; Coque, Teresa M.

    2013-01-01

    Antibiotics have natural functions, mostly involving cell-to-cell signaling networks. The anthropogenic production of antibiotics, and its release in the microbiosphere results in a disturbance of these networks, antibiotic resistance tending to preserve its integrity. The cost of such adaptation is the emergence and dissemination of antibiotic resistance genes, and of all genetic and cellular vehicles in which these genes are located. Selection of the combinations of the different evolutionary units (genes, integrons, transposons, plasmids, cells, communities and microbiomes, hosts) is highly asymmetrical. Each unit of selection is a self-interested entity, exploiting the higher hierarchical unit for its own benefit, but in doing so the higher hierarchical unit might acquire critical traits for its spread because of the exploitation of the lower hierarchical unit. This interactive trade-off shapes the population biology of antibiotic resistance, a composed-complex array of the independent “population biologies.” Antibiotics modify the abundance and the interactive field of each of these units. Antibiotics increase the number and evolvability of “clinical” antibiotic resistance genes, but probably also many other genes with different primary functions but with a resistance phenotype present in the environmental resistome. Antibiotics influence the abundance, modularity, and spread of integrons, transposons, and plasmids, mostly acting on structures present before the antibiotic era. Antibiotics enrich particular bacterial lineages and clones and contribute to local clonalization processes. Antibiotics amplify particular genetic exchange communities sharing antibiotic resistance genes and platforms within microbiomes. In particular human or animal hosts, the microbiomic composition might facilitate the interactions between evolutionary units involved in antibiotic resistance. The understanding of antibiotic resistance implies expanding our knowledge on multi

  19. Multiple antibiotic resistant Escherichia coli from a tropical rain forest stream

    SciTech Connect

    Carrasco, C.E.; Alvarez, H.J.; Ortiz, N.; Bisbal, M.; Arias, W.; Baerga, C.; Hazen, T.C.

    1988-12-31

    High densities of fecal coliforms were obtained from a pristine site and sewage contaminated site in a tropical rain forest watershed in Puerto Rico. Confirmation of fecal coliform isolates as Escherichia coli was significantly lower than for temperate waters. Antibiotic resistance and multiple antibiotic resistance were common for isolates at both sites; however, the site receiving sewage effluent had a greater proportion of multiple antibiotic resistant isolates. R. plasmids were recovered from 4 MAR isolates, 2 from each site. All recovered plasmids were approximately 1 kilobase. The recovered plasmid were also capable of transforming E. coli HB101 in vitro. The high concentrations of enterobacteriaceae, small R-plasmid size, R-plasmid transformability, and long term survival of fecal origin bacteria in tropical freshwater environments give increasing importance to adequate sewage treatment, and better indicator monitoring methods for tropical areas.

  20. Antibiotics From Microbes: Converging To Kill

    PubMed Central

    Fischbach, Michael A.

    2011-01-01

    Summary As genetically encoded small molecules, antibiotics are phenotypes that have resulted from mutation and natural selection. Advances in genetics, biochemistry, and bioinformatics have connected hundreds of antibiotics to the gene clusters that encode them, allowing these molecules to be analyzed using the tools of evolutionary biology. This review surveys examples of convergent evolution from microbially produced antibiotics, including the convergence of distinct gene clusters on similar phenotypes and the merger of distinct gene clusters into a single functional unit. Examining antibiotics through an evolutionary lens highlights the versatility of biosynthetic pathways, reveals lessons for combating antibiotic resistance, and provides an entry point for studying the natural roles of these natural products. PMID:19695947

  1. Conserved small RNAs govern replication and incompatibility of a diverse new plasmid family from marine bacteria

    PubMed Central

    Le Roux, Frédérique; Davis, Brigid M.; Waldor, Matthew K.

    2011-01-01

    Plasmids are autonomously replicating extrachromosomal DNA molecules that often impart key phenotypes to their bacterial hosts. Plasmids are abundant in marine bacteria, but there is scant knowledge of the mechanisms that control their replication in these hosts. Here, we identified and characterized the factors governing replication of a new family of plasmids from marine bacteria, typified by the virulence-linked plasmid pB1067 of Vibrio nigripulchritudo. Members of this family are prevalent among, yet restricted to, the Vibrionaceae. Unlike almost all plasmid families characterized to date, the ori regions of these plasmids do not encode a Rep protein to initiate DNA replication; instead, the ori regions encode two partially complementary RNAs. The smaller, termed RNA I, is ∼68-nt long and functions as a negative regulator and the key determinant of plasmid incompatibility. This Marine RNA-based (MRB) plasmid family is the first characterized family of replicons derived from marine bacteria. Only one other plasmid family (the ColE1 family) has previously been reported to rely on RNA-mediated replication initiation. However, since the sequences and structures of MRB RNA I transcripts are not related to those of ColE1 replicons, these two families of RNA-dependent replicons likely arose by convergent evolution. PMID:20923782

  2. Synthetic Fatty Acids Prevent Plasmid-Mediated Horizontal Gene Transfer

    PubMed Central

    Getino, María; Sanabria-Ríos, David J.; Fernández-López, Raúl; Campos-Gómez, Javier; Sánchez-López, José M.; Fernández, Antonio; Carballeira, Néstor M.

    2015-01-01

    ABSTRACT Bacterial conjugation constitutes a major horizontal gene transfer mechanism for the dissemination of antibiotic resistance genes among human pathogens. Antibiotic resistance spread could be halted or diminished by molecules that interfere with the conjugation process. In this work, synthetic 2-alkynoic fatty acids were identified as a novel class of conjugation inhibitors. Their chemical properties were investigated by using the prototype 2-hexadecynoic acid and its derivatives. Essential features of effective inhibitors were the carboxylic group, an optimal long aliphatic chain of 16 carbon atoms, and one unsaturation. Chemical modification of these groups led to inactive or less-active derivatives. Conjugation inhibitors were found to act on the donor cell, affecting a wide number of pathogenic bacterial hosts, including Escherichia, Salmonella, Pseudomonas, and Acinetobacter spp. Conjugation inhibitors were active in inhibiting transfer of IncF, IncW, and IncH plasmids, moderately active against IncI, IncL/M, and IncX plasmids, and inactive against IncP and IncN plasmids. Importantly, the use of 2-hexadecynoic acid avoided the spread of a derepressed IncF plasmid into a recipient population, demonstrating the feasibility of abolishing the dissemination of antimicrobial resistances by blocking bacterial conjugation. PMID:26330514

  3. Horizontal Gene Transfer and the Genomics of Enterococcal Antibiotic Resistance

    PubMed Central

    Palmer, Kelli L.; Kos, Veronica N.

    2010-01-01

    Summary Enterococci are Gram-positive bacteria that normally colonize gastrointestinal tracts of humans and animals. They are of growing concern because of their ability to cause antibiotic resistant hospital infections. Antibiotic resistance has been acquired, and has disseminated throughout enterococci, via horizontal transfer of mobile genetic elements. This transmission has been mediated mainly by conjugative plasmids of the pheromone-responsive and broad host range incompatibility group 18 type. Genome sequencing is revealing the extent of diversity of these and other mobile elements in enterococci, as well as the extent of recombination and rearrangement resulting in new phenotypes. Pheromone-responsive plasmids were recently shown to promote genome plasticity in antibiotic resistant Enterococcus faecalis, and their involvement has been implicated in E. faecium as well. Further, incompatibility group 18 plasmids have recently played an important role in mediating transfer of vancomycin resistance from enterococci to methicillin resistant strains of S. aureus. PMID:20837397

  4. Detection of Variants of the pRAS3, pAB5S9, and pSN254 Plasmids in Aeromonas salmonicida subsp. salmonicida: Multidrug Resistance, Interspecies Exchanges, and Plasmid Reshaping

    PubMed Central

    Vincent, Antony T.; Trudel, Mélanie V.; Paquet, Valérie E.; Boyle, Brian; Tanaka, Katherine H.; Dallaire-Dufresne, Stéphanie; Daher, Rana K.; Frenette, Michel; Derome, Nicolas

    2014-01-01

    The ubiquitous water-borne Gram-negative bacterium Aeromonas salmonicida subsp. salmonicida is the causative agent of furunculosis, a worldwide disease in fish farms. Plasmids carrying antibiotic resistance genes have already been described for this bacterium. The aim of the present study was to identify and characterize additional multidrug resistance plasmids in A. salmonicida subsp. salmonicida. We sequenced the plasmids present in two multiple antibiotic-resistant isolates using high-throughput technologies. We also investigated 19 other isolates with various multidrug resistance profiles by genotyping PCR and assessed their resistance to tetracycline. We identified variants of the pAB5S9 and pSN254 plasmids that carry several antibiotic resistance genes and that have been previously reported in bacteria other than A. salmonicida subsp. salmonicida, which suggests a high level of interspecies exchange. Genotyping analyses and the antibiotic resistance profiles of the 19 other isolates support the idea that multiple versions of pAB5S9 and pSN254 exist in A. salmonicida subsp. salmonicida. We also identified variants of the pRAS3 plasmid. The present study revealed that A. salmonicida subsp. salmonicida harbors a wide variety of plasmids, which suggests that this ubiquitous bacterium may contribute to the spread of antibiotic resistance genes in the environment. PMID:25267667

  5. Detection of variants of the pRAS3, pAB5S9, and pSN254 plasmids in Aeromonas salmonicida subsp. salmonicida: multidrug resistance, interspecies exchanges, and plasmid reshaping.

    PubMed

    Vincent, Antony T; Trudel, Mélanie V; Paquet, Valérie E; Boyle, Brian; Tanaka, Katherine H; Dallaire-Dufresne, Stéphanie; Daher, Rana K; Frenette, Michel; Derome, Nicolas; Charette, Steve J

    2014-12-01

    The ubiquitous water-borne Gram-negative bacterium Aeromonas salmonicida subsp. salmonicida is the causative agent of furunculosis, a worldwide disease in fish farms. Plasmids carrying antibiotic resistance genes have already been described for this bacterium. The aim of the present study was to identify and characterize additional multidrug resistance plasmids in A. salmonicida subsp. salmonicida. We sequenced the plasmids present in two multiple antibiotic-resistant isolates using high-throughput technologies. We also investigated 19 other isolates with various multidrug resistance profiles by genotyping PCR and assessed their resistance to tetracycline. We identified variants of the pAB5S9 and pSN254 plasmids that carry several antibiotic resistance genes and that have been previously reported in bacteria other than A. salmonicida subsp. salmonicida, which suggests a high level of interspecies exchange. Genotyping analyses and the antibiotic resistance profiles of the 19 other isolates support the idea that multiple versions of pAB5S9 and pSN254 exist in A. salmonicida subsp. salmonicida. We also identified variants of the pRAS3 plasmid. The present study revealed that A. salmonicida subsp. salmonicida harbors a wide variety of plasmids, which suggests that this ubiquitous bacterium may contribute to the spread of antibiotic resistance genes in the environment. PMID:25267667

  6. Tylosin resistance in Arcanobacterium pyogenes is encoded by an erm X determinant.

    PubMed

    Jost, B Helen; Field, Adam C; Trinh, Hien T; Songer, J Glenn; Billington, Stephen J

    2003-11-01

    Arcanobacterium pyogenes, a commensal on the mucous membranes of many economically important animal species, is also a pathogen, causing abscesses of the skin, joints, and visceral organs as well as mastitis and abortion. In food animals, A. pyogenes is exposed to antimicrobial agents used for growth promotion, prophylaxis, and therapy, notably tylosin, a macrolide antibiotic used extensively for the prevention of liver abscessation in feedlot cattle in the United States. Of 48 A. pyogenes isolates, 11 (22.9%) exhibited inducible or constitutive resistance to tylosin (MIC of > or = 128 microg/ml). These isolates also exhibited resistance to other macrolide and lincosamide antibiotics, suggesting a macrolide-lincosamide resistance phenotype. Of the 11 resistant isolates, genomic DNA from nine hybridized to an erm(X)-specific probe. Cloning and nucleotide sequencing of the A. pyogenes erm(X) gene indicated that it was >95% similar to erm(X) genes from Corynebacterium and Propionibacterium spp. Eight of the erm(X)-containing A. pyogenes isolates exhibited inducible tylosin resistance, which was consistent with the presence of a putative leader peptide upstream of the erm(X) open reading frame. For at least one A. pyogenes isolate, 98-4277-2, erm(X) was present on a plasmid, pAP2, and was associated with the insertion sequence IS6100. pAP2 also carried genes encoding the repressor-regulated tetracycline efflux system determinant Tet 33. The repA gene from pAP2 was nonfunctional in Escherichia coli and at least one A. pyogenes isolate, suggesting that there may be host-encoded factors required for replication of this plasmid. PMID:14576111

  7. Novel codon-optimized mini-intronic plasmid for efficient, inexpensive, and xeno-free induction of pluripotency

    PubMed Central

    Diecke, Sebastian; Lu, Jiamiao; Lee, Jaecheol; Termglinchan, Vittavat; Kooreman, Nigel G.; Burridge, Paul W.; Ebert, Antje D.; Churko, Jared M.; Sharma, Arun; Kay, Mark A.; Wu, Joseph C.

    2015-01-01

    The development of human induced pluripotent stem cell (iPSC) technology has revolutionized the regenerative medicine field. This technology provides a powerful tool for disease modeling and drug screening approaches. To circumvent the risk of random integration into the host genome caused by retroviruses, non-integrating reprogramming methods have been developed. However, these techniques are relatively inefficient or expensive. The mini-intronic plasmid (MIP) is an alternative, robust transgene expression vector for reprogramming. Here we developed a single plasmid reprogramming system which carries codon-optimized (Co) sequences of the canonical reprogramming factors (Oct4, Klf4, Sox2, and c-Myc) and short hairpin RNA against p53 ("4-in-1 CoMiP"). We have derived human and mouse iPSC lines from fibroblasts by performing a single transfection. Either independently or together with an additional vector encoding for LIN28, NANOG, and GFP, we were also able to reprogram blood-derived peripheral blood mononuclear cells (PBMCs) into iPSCs. Taken together, the CoMiP system offers a new highly efficient, integration-free, easy to use, and inexpensive methodology for reprogramming. Furthermore, the CoMIP construct is color-labeled, free of any antibiotic selection cassettes, and independent of the requirement for expression of the Epstein-Barr Virus nuclear antigen (EBNA), making it particularly beneficial for future applications in regenerative medicine. PMID:25628230

  8. Complete sequence of three plasmids from Bacillus thuringiensis INTA-FR7-4 environmental isolate and comparison with related plasmids from the Bacillus cereus group.

    PubMed

    Amadio, Ariel F; Benintende, Graciela B; Zandomeni, Rubén O

    2009-11-01

    Bacillus thuringiensis is an insect pathogen used worldwide as a bioinsecticide. It belongs to the Bacillus cereus sensu lato group as well as Bacillus anthracis and B. cereus. Plasmids from this group of organisms have been implicated in pathogenicity as they carry the genes responsible for different types of diseases that affect mammals and insects. Some plasmids, like pAW63 and pBT9727, encode a functional conjugation machinery allowing them to be transferred to a recipient cell. They also share extensive homology with the non-functional conjugation apparatus of pXO2 from B. anthracis. In this study we report the complete sequence of three plasmids from an environmental B. thuringiensis isolate from Argentina, obtained by a shotgun sequencing method. We obtained the complete nucleotide sequence of plasmids pFR12 (12,095bp), pFR12.5 (12,459bp) and pFR55 (55,712bp) from B. thuringiensis INTA-FR7-4. pFR12 and pFR12.5 were classified as cryptic as they do not code for any obvious functions besides replication and mobilization. Both small plasmids were classified as RCR plasmids due to similarities with the replicases they encode. Plasmid pFR55 showed a structural organization similar to that observed for plasmids pAW63, pBT9727 and pXO2. pFR55 also shares a tra region with these plasmids, containing genes related to T4SS and conjugation. A comparison between pFR55 and conjugative plasmids led to the postulation that pFR55 is a conjugative plasmid. Genes related to replication functions in pFR55 are different to those described for plasmids with known complete sequences. pFR55 is the first completely sequenced plasmid with a replication machinery related to that of ori44. The analysis of the complete sequence of plasmids from an environmental isolate of B. thuringiensis permitted the identification of a near complete conjugation apparatus in pFR55, resembling those of plasmids pAW63, pBT9727 and pXO2. The availability of this sequence is a step forward in the study

  9. Functional analysis of the yeast plasmid partition locus STB

    PubMed Central

    Murray, James A. H.; Cesareni, Gianni

    1986-01-01

    Derivatives of the yeast 2μ plasmid with the cis-acting locus STB (also called REP3) are stably maintained if two plasmid-encoded proteins are present in trans. There are conflicting reports of both the extent of STB and its possible involvement in plasmid partition or copy number control. We have resolved the controversy by constructing 2µ derivatives with a conditional STB function, and showing that when STB is inactivated plasmids become concentrated in a small fraction of the population although the total number of plasmids remains unaltered. Moreover we show that STB consists of two functionally distinct domains which we call STB-proximal and STB-distal relative to the origin of replication. Although STB-proximal is sufficient for proper partitioning, this function is severely disrupted by active transcription from neighbouring sequences. STB-distal is important to protect STB-proximal and ORI from such transcription, and can be effeciently replaced by a 94-bp terminator fragment in an orientation-dependent manner. We find that STB-distal contains an additional element which depresses transcription from upstream promoters. We also describe the phenomenon of replicaton inhibition which we believe can exlain the anomalous instability of some yeast plasmids. ImagesFig. 4.Fig. 5.Fig. 6.Fig. 7. PMID:16453734

  10. Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system.

    PubMed

    Schneider, Jens; Eberhardt, Dorit; Wendisch, Volker F

    2012-07-01

    Corynebacterium glutamicum shows a great potential for the production of the polyamide monomer putrescine (1,4-diaminobutane). Previously, we constructed the putrescine-producing strain PUT1 by deletion of argF, the gene for ornithine transcarbamoylase (OTC), and argR, encoding the L-arginine repressor, combined with heterologous expression of the Escherichia coli gene for L-ornithine decarboxylase SpeC. As a consequence of argF deletion, this strain requires supplementation of L-arginine and shows growth-decoupled putrescine production. To avoid costly supplementation with L-arginine and the strong feedback inhibition of the key enzyme N-acetylglutamate kinase (ArgB) by L-arginine, a plasmid addiction system for low-level argF expression was developed. By fine-tuning argF expression through modifications of the promoter, the translational start codon and/or the ribosome binding site, high productivity and titer could be obtained. OTC activity varied almost thousandfold between 960 and 1 mU mg⁻¹ resulting in putrescine yields on glucose from less than 0.001 up to 0.26 g g⁻¹, the highest yield in bacteria reported to date. The most promising strain, designated PUT21, was characterized comprehensively. PUT21 strain grew with a rate of 0.19 h⁻¹ in mineral salt medium without the need for L-arginine supplementation and produced putrescine with a yield of 0.16 g g⁻¹ glucose at a volumetric productivity of 0.57 g L⁻¹ h⁻¹ and a specific productivity of 0.042 g g⁻¹ h⁻¹. The carbon balance suggested that no major unidentified by-product was produced. Compared to the first-generation strain PUT1, the putrescine yield observed with PUT21 was increased by 60%. In fed-batch cultivation with C. glutamicum PUT21, a putrescine titer of 19 g L⁻¹ at a volumetric productivity of 0.55 g L⁻¹ h⁻¹ and a yield of 0.16 g g⁻¹ glucose could be achieved. Moreover, while plasmid segregation of the initial strain required antibiotic selection

  11. Mechanism of action of tricyclic drugs on Escherichia coli and Yersinia enterocolitica plasmid maintenance and replication.

    PubMed

    Csiszar, K; Molnar, J

    1992-01-01

    Tricyclic medical compounds like many other non-antibiotics exhibit antimicrobial activities. Two chemically representative groups were tested in plasmid DNA transformation and replication to assign intracellular target sites responsible for the multiple effects in Escherichia coli and Yersinia enterocolitica cells. To analyse the mechanism of action at the molecular level, the effects of chlorpromazine, 7,8 dioxochlorpromazine, promethazine, methylene blue, imipramine, cannabidiolic acid and tetrahydrocannabidiolic acid were examined at several points in the course of transformation, in plasmid replication and on the topological state of plasmid DNA. Two possible target sites were identified, one of them involving membrane binding sites which participate in plasmid DNA replication. Drug binding at these sites interfered with the replicating plasmid DNA and membrane protein complex, preventing the proper processing of the replication that resulted in plasmid loss. The other in vivo and in vitro effect was observed on the topological state of plasmid DNA. Tricyclic drugs intefered with energy dependent gyrase activity and promoted the relaxation of plasmid DNA, causing disturbances in gene expression and in plasmid replication. The results give insight into the chemical structures connected with significant specific antimicrobial effects. PMID:1295474

  12. Insights into Dynamics of Mobile Genetic Elements in Hyperthermophilic Environments from Five New Thermococcus Plasmids

    PubMed Central

    Krupovic, Mart; Gonnet, Mathieu; Hania, Wajdi Ben; Forterre, Patrick; Erauso, Gaël

    2013-01-01

    Mobilome of hyperthermophilic archaea dwelling in deep-sea hydrothermal vents is poorly characterized. To gain insight into genetic diversity and dynamics of mobile genetic elements in these environments we have sequenced five new plasmids from different Thermococcus strains that have been isolated from geographically remote hydrothermal vents. The plasmids were ascribed to two subfamilies, pTN2-like and pEXT9a-like. Gene content and phylogenetic analyses illuminated a robust connection between pTN2-like plasmids and Pyrococcus abyssi virus 1 (PAV1), with roughly half of the viral genome being composed of genes that have homologues in plasmids. Unexpectedly, pEXT9a-like plasmids were found to be closely related to the previously sequenced plasmid pMETVU01 from Methanocaldococcus vulcanius M7. Our data suggests that the latter observation is most compatible with an unprecedented horizontal transfer of a pEXT9a-like plasmid from Thermococcales to Methanococcales. Gene content analysis revealed that thermococcal plasmids encode Hfq-like proteins and toxin-antitoxin (TA) systems of two different families, VapBC and RelBE. Notably, although abundant in archaeal genomes, to our knowledge, TA and hfq-like genes have not been previously found in archaeal plasmids or viruses. Finally, the plasmids described here might prove to be useful in developing new genetic tools for hyperthermophiles. PMID:23326305

  13. Comparative Genomics Provides Insight into the Diversity of the Attaching and Effacing Escherichia coli Virulence Plasmids

    PubMed Central

    Hazen, Tracy H.; Kaper, James B.; Nataro, James P.

    2015-01-01

    Attaching and effacing Escherichia coli (AEEC) strains are a genomically diverse group of diarrheagenic E. coli strains that are characterized by the presence of the locus of enterocyte effacement (LEE) genomic island, which encodes a type III secretion system that is essential to virulence. AEEC strains can be further classified as either enterohemorrhagic E. coli (EHEC), typical enteropathogenic E. coli (EPEC), or atypical EPEC, depending on the presence or absence of the Shiga toxin genes or bundle-forming pilus (BFP) genes. Recent AEEC genomic studies have focused on the diversity of the core genome, and less is known regarding the genetic diversity and relatedness of AEEC plasmids. Comparative genomic analyses in this study demonstrated genetic similarity among AEEC plasmid genes involved in plasmid replication conjugative transfer and maintenance, while the remainder of the plasmids had sequence variability. Investigation of the EPEC adherence factor (EAF) plasmids, which carry the BFP genes, demonstrated significant plasmid diversity even among isolates within the same phylogenomic lineage, suggesting that these EAF-like plasmids have undergone genetic modifications or have been lost and acquired multiple times. Global transcriptional analyses of the EPEC prototype isolate E2348/69 and two EAF plasmid mutants of this isolate demonstrated that the plasmid genes influence the expression of a number of chromosomal genes in addition to the LEE. This suggests that the genetic diversity of the EAF plasmids could contribute to differences in the global virulence regulons of EPEC isolates. PMID:26238712

  14. Rapid Tracing of Resistance Plasmids in a Nosocomial Outbreak Using Optical DNA Mapping.

    PubMed

    Müller, Vilhelm; Karami, Nahid; Nyberg, Lena K; Pichler, Christoffer; Torche Pedreschi, Paola C; Quaderi, Saair; Fritzsche, Joachim; Ambjörnsson, Tobias; Åhrén, Christina; Westerlund, Fredrik

    2016-05-13

    Resistance to life-saving antibiotics increases rapidly worldwide, and multiresistant bacteria have become a global threat to human health. Presently, the most serious threat is the increasing spread of Enterobacteriaceae carrying genes coding for extended spectrum β-lactamases (ESBL) and carbapenemases on highly mobile plasmids. We here demonstrate how optical DNA maps of single plasmids can be used as fingerprints to trace plasmids, for example, during resistance outbreaks. We use the assay to demonstrate a potential transmission route of an ESBL-carrying plasmid between bacterial strains/species and between patients, during a polyclonal outbreak at a neonatal ward at Sahlgrenska University Hospital (Gothenburg, Sweden). Our results demonstrate that optical DNA mapping is an easy and rapid method for detecting the spread of plasmids mediating resistance. With the increasing prevalence of multiresistant bacteria, diagnostic tools that can aid in solving ongoing routes of transmission, in particular in hospital settings, will be of paramount importance. PMID:27627201

  15. Susceptibility to antimicrobial agents and plasmid carrying in Aeromonas hydrophila isolated from two estuarine systems.

    PubMed

    Montoya, R; Dominguez, M; Gonzalez, C; Mondaca, M A; Zemelman, R

    1992-01-01

    Susceptibility to various antimicrobial agents and the presence of plasmids was investigated in eleven strains of Aeromonas hydrophila isolated from samples of sea water and these strains isolated from Aulacomya ater. Transference of resistance to Escherichia coli was attempted by conjugation and transformation experiments. The strains showed multiple resistance toward beta-lactam antibiotics and susceptibility to other antimicrobial agents. Five strains harboured plasmids with molecular weights below 5.7 MD. It was not possible to relate the resistance of the strains with the presence of their plasmids. PMID:1593967

  16. A novel plasmid pEA68 of Erwinia amylovora and the description of a new family of plasmids.

    PubMed

    Ismail, Emadeldeen; Blom, Jochen; Bultreys, Alain; Ivanović, Milan; Obradović, Aleksa; van Doorn, Joop; Bergsma-Vlami, Maria; Maes, Martine; Willems, Anne; Duffy, Brion; Stockwell, Virginia O; Smits, Theo H M; Puławska, Joanna

    2014-12-01

    Recent genome analysis of Erwinia amylovora, the causal agent of fire blight disease on Rosaceae, has shown that the chromosome is highly conserved among strains and that plasmids are the principal source of genomic diversity. A new circular plasmid, pEA68, was found in E. amylovora strain 692 (LMG 28361), isolated in Poland from Sorbus (mountain ash) with fire blight symptoms. Annotation of the 68,763-bp IncFIIa-type plasmid revealed that it contains 79 predicted CDS, among which two operons (tra, pil) are associated with mobility. The plasmid is maintained stably in E. amylovora and does not possess genes associated with antibiotic resistance or known virulence genes. Curing E. amylovora strain 692 of pEA68 did not influence its virulence in apple shoots nor amylovoran synthesis. Of 488 strains of E. amylovora from seventeen countries, pEA68 was only found in two additional strains from Belgium. Although the spread of pEA68 is currently limited to Europe, pEA68 comprises, together with pEA72 and pEA78 both found in North America, a new plasmid family that spans two continents. PMID:25178659

  17. Transferable plasmid-mediated resistance to linezolid due to cfr in a human clinical isolate of Enterococcus faecalis.

    PubMed

    Diaz, Lorena; Kiratisin, Pattarachai; Mendes, Rodrigo E; Panesso, Diana; Singh, Kavindra V; Arias, Cesar A

    2012-07-01

    Nonmutational resistance to linezolid is due to the presence of cfr, which encodes a methyltransferase responsible for methylation of A2503 in the 23S rRNA. The cfr gene was first described in animal isolates of staphylococci, and more recently, it has been identified in Staphylococcus aureus from human clinical infections, including in an outbreak of methicillin-resistant S. aureus. In enterococci, cfr has been described in an animal isolate of Enterococcus faecalis from China. Here, we report an isolate of linezolid-resistant E. faecalis (603-50427X) recovered from a patient in Thailand who received prolonged therapy with the antibiotic for the treatment of atypical mycobacterial disease. The isolate lacked mutations in the genes coding for 23S rRNA and L3 and L4 ribosomal proteins and belonged to the multilocus sequence type (MLST) 16 (ST16), which is commonly found in enterococcal isolates from animal sources. Resistance to linezolid was associated with the presence of cfr on an ~97-kb transferable plasmid. The cfr gene environment exhibited DNA sequences similar to those of other cfr-carrying plasmids previously identified in staphylococci (nucleotide identity, 99 to 100%). The cfr-carrying plasmid was transferable by conjugation to a laboratory strain of E. faecalis (OG1RF) but not to Enterococcus faecium or S. aureus. The cfr gene was flanked by IS256-like sequences both upstream and downstream. This is the first characterization of the potential horizontal transferability of the cfr gene from a human linezolid-resistant isolate of E. faecalis. PMID:22491691

  18. Conjugative Plasmids of Neisseria gonorrhoeae

    PubMed Central

    Pachulec, Emilia; van der Does, Chris

    2010-01-01

    Many clinical isolates of the human pathogen Neisseria gonorrhoeae contain conjugative plasmids. The host range of these plasmids is limited to Neisseria species, but presence of a tetracycline (tetM) determinant inserted in several of these plasmids is an important cause of the rapid spread of tetracycline resistance. Previously plasmids with different backbones (Dutch and American type backbones) and with and without different tetM determinants (Dutch and American type tetM determinants) have been identified. Within the isolates tested, all plasmids with American or Dutch type tetM determinants contained a Dutch type plasmid backbone. This demonstrated that tetM determinants should not be used to differentiate between conjugal plasmid backbones. The nucleotide sequences of conjugative plasmids with Dutch type plasmid backbones either not containing the tetM determinant (pEP5233) or containing Dutch (pEP5289) or American (pEP5050) type tetM determinants were determined. Analysis of the backbone sequences showed that they belong to a novel IncP1 subfamily divergent from the IncP1α, β, γ, δ and ε subfamilies. The tetM determinants were inserted in a genetic load region found in all these plasmids. Insertion was accompanied by the insertion of a gene with an unknown function, and rearrangement of a toxin/antitoxin gene cluster. The genetic load region contains two toxin/antitoxins of the Zeta/Epsilon toxin/antitoxin family previously only found in Gram positive organisms and the virulence associated protein D of the VapD/VapX toxin/antitoxin family. Remarkably, presence of VapX of pJD1, a small cryptic neisserial plasmid, in the acceptor strain strongly increased the conjugation efficiency, suggesting that it functions as an antitoxin for the conjugative plasmid. The presence of the toxin and antitoxin on different plasmids might explain why the host range of this IncP1 plasmid is limited to Neisseria species. The isolated plasmids conjugated efficiently between

  19. A stable luciferase reporter plasmid for in vivo imaging in murine models of Staphylococcus aureus infections.

    PubMed

    Bacconi, Marta; Haag, Andreas F; Torre, Antonina; Castagnetti, Andrea; Chiarot, Emiliano; Delany, Isabel; Bensi, Giuliano

    2016-04-01

    In vivo imaging of bioluminescent bacteria permits their visualization in infected mice, allowing spatial and temporal evaluation of infection progression. Most available bioluminescent strains were obtained by integration of the luciferase genes into the bacterial chromosome, a challenging and time-consuming approach. Recently, episomal plasmids were used, which were introduced in bacteria and expressed all genes required for bioluminescence emission. However, the plasmid was progressively lost in vitro and in vivo, if bacteria were not maintained under antibiotic selective pressure. Increased stability could be obtained inserting into the plasmid backbone sequences that assured plasmid partition between daughter bacterial cells, or caused death of bacteria that had lost the plasmid. So far, no detailed analysis was performed of either plasmid stability in vivo or contribution of different stabilizing sequence types. Here we report the construction of a plasmid, which includes the Photorhabdus luminescens lux cassette expressed under the control of a Staphylococcus aureus specific gene promoter, and toxin/antitoxin (T/A) and partition sequences (Par) conferring stability and transmissibility of the plasmid. Following infection of mice with S. aureus carrying this plasmid, we demonstrated that the promoter-lux fusion was functional in vivo, that the plasmid was retained by 70-100% of bacterial cells 7 days post-infection, and that both stabilizing sequence types were required to maximize plasmid retention. These data suggest that the plasmid can be a valuable tool to study gene expression and bacterial spread in small laboratory animals infected with S. aureus or possibly other Gram-positive human pathogens. PMID:26685857

  20. Cefotaxime Resistant Escherichia coli Collected from a Healthy Volunteer; Characterisation and the Effect of Plasmid Loss

    PubMed Central

    Kirchner, Miranda; AbuOun, Manal; Mafura, Muriel; Bagnall, Mary; Hunt, Theresa; Thomas, Christopher; Weile, Jan; Anjum, Muna F.

    2013-01-01

    In this study 6 CTX-M positive E. coli isolates collected during a clinical study examining the effect of antibiotic use in a human trial were analysed. The aim of the study was to analyse these isolates and assess the effect of full or partial loss of plasmid genes on bacterial fitness and pathogenicity. A DNA array was utilised to assess resistance and virulence gene carriage. Plasmids were characterised by PCR-based replicon typing and addiction system multiplex PCR. A phenotypic array and insect virulence model were utilised to assess the effect of plasmid-loss in E. coli of a large multi-resistance plasmid. All six E. coli carrying blaCTX-M-14 were detected from a single participant and were identical by pulse field gel electrophoresis and MLST. Plasmid profiling and arrays indicated absence of a large multi-drug resistance (MDR) F-replicon plasmid carrying blaTEM, aadA4, strA, strB, dfrA17/19, sul1, and tetB from one isolate. Although this isolate partially retained the plasmid it showed altered fitness characteristics e.g. inability to respire in presence of antiseptics, similar to a plasmid-cured strain. However, unlike the plasmid-cured or plasmid harbouring strains, the survival rate for Galleria mellonella infected by the former strain was approximately 5-times lower, indicating other possible changes accompanying partial plasmid loss. In conclusion, our results demonstrated that an apparently healthy individual can harbour blaCTX-M-14 E. coli strains. In one such strain, isolated from the same individual, partial absence of a large MDR plasmid resulted in altered fitness and virulence characteristics, which may have implications in the ability of this strain to infect and any subsequent treatment. PMID:24386342

  1. Plasmids for heterologous expression in Pasteurella haemolytica.

    PubMed

    Fedorova, N D; Highlander, S K

    1997-02-28

    New cloning and expression vectors that replicate both in Pasteurella haemolytica and in Escherichia coli were constructed based on a native sulfonamide (SuR) and streptomycin (SmR) resistant plasmid of P. haemolytica called pYFC1. Each shuttle vector includes an MCS and a selectable antibiotic resistance marker that is expressed in both organisms. Plasmid pNF2176 carries the P. haemolytica ROB-1 beta-lactamase gene (blaP, ApR) and pNF2214 carries the Tn903 aph3 kanamycin resistance (KmR) element. The expression vector, pNF2176, was created by placing the MCS downstream of the sulfonamide gene promoter (PsulII) on pYFC1; this was used to clone and express the promoterless Tn9 chloramphenicol resistance gene (cat, CmR) in P. haemolytica (pNF2200). A promoter-probe vector (pNF2283) was constructed from pNF2200 by deleting PsulII. PMID:9074498

  2. Curing the Megaplasmid pTT27 from Thermus thermophilus HB27 and Maintaining Exogenous Plasmids in the Plasmid-Free Strain

    PubMed Central

    Tomita, Masaru; Itaya, Mitsuhiro

    2015-01-01

    Stepwise deletions in the only plasmid in Thermus thermophilus HB27, megaplasmid pTT27, showed that two distantly located loci were important for maintenance of the plasmid. One is a minimum replicon including one gene, repT, coding a replication initiator, and the other encodes subunits of class I ribonucleotide reductase (RNR) for deoxynucleoside triphosphate (dNTP) synthesis. Since the initiator protein, RepT, bound to direct repeats downstream from its own gene, it was speculated that a more-downstream A+T-rich region, which was critical for replication ability, could be unwound for replication initiation. On the other hand, the class I RNR is not necessarily essential for cell growth, as evidenced by the generation of the plasmid-free strain by the loss of pTT27. However, the plasmid-free strain culture has fewer viable cells than the wild-type culture, probably due to a dNTP pool imbalance in the cell. This is because of the introduction of the class I RNR genes or the supplementation of 5′-deoxyadenosylcobalamin, which stimulated class II RNR encoded in the chromosome, resolved the decrease in the number of viable cells in the plasmid-free strain. Likewise, these treatments dramatically enhanced the efficiency of transformation by exogenous plasmids and the stability of the plasmids in the strain. Therefore, the class I RNR would enable the stable maintenance of plasmids, including pTT27, as a result of genome replication normalized by reversing the dNTP pool imbalance. The generation of this plasmid-free strain with great natural competence and its analysis in regard to exogenous plasmid maintenance will expand the availability of HB27 for thermophilic cell factories. PMID:26712540

  3. Deciphering ENCODE.

    PubMed

    Diehl, Adam G; Boyle, Alan P

    2016-04-01

    The ENCODE project represents a major leap from merely describing and comparing genomic sequences to surveying them for direct indicators of function. The astounding quantity of data produced by the ENCODE consortium can serve as a map to locate specific landmarks, guide hypothesis generation, and lead us to principles and mechanisms underlying genome biology. Despite its broad appeal, the size and complexity of the repository can be intimidating to prospective users. We present here some background about the ENCODE data, survey the resources available for accessing them, and describe a few simple principles to help prospective users choose the data type(s) that best suit their needs, where to get them, and how to use them to their best advantage. PMID:26962025

  4. Antibiotic resistance in soil and water environments.

    PubMed

    Esiobu, Nwadiuto; Armenta, Lisa; Ike, Joseph

    2002-06-01

    Seven locations were screened for antibiotic-resistant bacteria using a modified agar dilution technique. Isolates resistant to high levels of antibiotics were screened for r plasmids. Low-level resistance (25 micro g x ml(-1)) was widespread for ampicillin, penicillin, tetracycline, vancomycin and streptomycin but not for kanamycin. Resistant populations dropped sharply at high antibiotic levels, suggesting that intrinsic non-emergent mechanisms were responsible for the multiple drug resistance exhibited at low doses. Dairy farm manure contained significantly (P < 0.01) more (%) resistant bacteria than the other sites. Bacteria isolated from a dairy water canal, a lake by a hospital and a residential garden (fertilized by farm manure) displayed resistance frequencies of 77, 75 and 70%, respectively. Incidence of tetracycline resistance was most prevalent at 47-89% of total bacteria. Out of 200 representative isolates analyzed, Pseudomonas, Enterococcus-like bacteria, Enterobacter and Burkholderia species constituted the dominant reservoirs of resistance at high drug levels (50-170 micro g x ml(-1)). Plasmids were detected in only 29% (58) of these bacteria with tetracycline resistance accounting for 65% of the plasmid pool. Overall, resistance trends correlated to the abundance and type of bacterial species present in the habitat. Environmental reservoirs of resistance include opportunistic pathogens and constitute some public health concern. PMID:12396530

  5. Phenotypic plasticity in bacterial plasmids.

    PubMed Central

    Turner, Paul E

    2004-01-01

    Plasmid pB15 was previously shown to evolve increased horizontal (infectious) transfer at the expense of reduced vertical (intergenerational) transfer and vice versa, a key trade-off assumed in theories of parasite virulence. Whereas the models predict that susceptible host abundance should determine which mode of transfer is selectively favored, host density failed to mediate the trade-off in pB15. One possibility is that the plasmid's transfer deviates from the assumption that horizontal spread (conjugation) occurs in direct proportion to cell density. I tested this hypothesis using Escherichia coli/pB15 associations in laboratory serial culture. Contrary to most models of plasmid transfer kinetics, my data show that pB15 invades static (nonshaking) bacterial cultures only at intermediate densities. The results can be explained by phenotypic plasticity in traits governing plasmid transfer. As cells become more numerous, the plasmid's conjugative transfer unexpectedly declines, while the trade-off between transmission routes causes vertical transfer to increase. Thus, at intermediate densities the plasmid's horizontal transfer can offset selection against plasmid-bearing cells, but at high densities pB15 conjugates so poorly that it cannot invade. I discuss adaptive vs. nonadaptive causes for the phenotypic plasticity, as well as potential mechanisms that may lead to complex transfer dynamics of plasmids in liquid environments. PMID:15166133

  6. GeneGuard: A modular plasmid system designed for biosafety.

    PubMed

    Wright, Oliver; Delmans, Mihails; Stan, Guy-Bart; Ellis, Tom

    2015-03-20

    Synthetic biology applications in biosensing, bioremediation, and biomining envision the use of engineered microbes beyond a contained laboratory. Deployment of such microbes in the environment raises concerns of unchecked cellular proliferation or unwanted spread of synthetic genes. While antibiotic-resistant plasmids are the most utilized vectors for introducing synthetic genes into bacteria, they are also inherently insecure, acting naturally to propagate DNA from one cell to another. To introduce security into bacterial synthetic biology, we here took on the task of completely reformatting plasmids to be dependent on their intended host strain and inherently disadvantageous for others. Using conditional origins of replication, rich-media compatible auxotrophies, and toxin-antitoxin pairs we constructed a mutually dependent host-plasmid platform, called GeneGuard. In this, replication initiators for the R6K or ColE2-P9 origins are provided in trans by a specified host, whose essential thyA or dapA gene is translocated from a genomic to a plasmid location. This reciprocal arrangement is stable for at least 100 generations without antibiotic selection and is compatible for use in LB medium and soil. Toxin genes ζ or Kid are also employed in an auxiliary manner to make the vector disadvantageous for strains not expressing their antitoxins. These devices, in isolation and in concert, severely reduce unintentional plasmid propagation in E. coli and B. subtilis and do not disrupt the intended E. coli host's growth dynamics. Our GeneGuard system comprises several versions of modular cargo-ready vectors, along with their requisite genomic integration cassettes, and is demonstrated here as an efficient vector for heavy-metal biosensors. PMID:24847673

  7. Mobilization properties of small ColE1-like plasmids carrying kanamycin resistance gene isolated from Salmonella enterica serotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Previously we isolated and characterized various groups of small kanamycin resistance (KanR) ColE1-like plasmids from different serotypes of Salmonella enterica isolates. These plasmids all carried the aph(3)-I gene encoding the aminoglycoside phosphotransferase responsible for the kanam...

  8. Plasmids of Carotenoid-Producing Paracoccus spp. (Alphaproteobacteria) - Structure, Diversity and Evolution

    PubMed Central

    Maj, Anna; Dziewit, Lukasz; Czarnecki, Jakub; Wlodarczyk, Miroslawa; Baj, Jadwiga; Skrzypczyk, Grazyna; Giersz, Dorota; Bartosik, Dariusz

    2013-01-01

    Plasmids are components of many bacterial genomes. They enable the spread of a large pool of genetic information via lateral gene transfer. Many bacterial strains contain mega-sized replicons and these are particularly common in Alphaproteobacteria. Considerably less is known about smaller alphaproteobacterial plasmids. We analyzed the genomes of 14 such plasmids residing in 4 multireplicon carotenoid-producing strains of the genus Paracoccus (Alphaproteobacteria): P. aestuarii DSM 19484, P. haeundaensis LG P-21903, P. marcusii DSM 11574 and P. marcusii OS22. Comparative analyses revealed mosaic structures of the plasmids and recombinational shuffling of diverse genetic modules involved in (i) plasmid replication, (ii) stabilization (including toxin-antitoxin systems of the relBE/parDE, tad-ata, higBA, mazEF and toxBA families) and (iii) mobilization for conjugal transfer (encoding relaxases of the MobQ, MobP or MobV families). A common feature of the majority of the plasmids is the presence of AT-rich sequence islets (located downstream of exc1-like genes) containing genes, whose homologs are conserved in the chromosomes of many bacteria (encoding e.g. RelA/SpoT, SMC-like proteins and a retron-type reverse transcriptase). The results of this study have provided insight into the diversity and plasticity of plasmids of Paracoccus spp., and of the entire Alphaproteobacteria. Some of the identified plasmids contain replication systems not described previously in this class of bacteria. The composition of the plasmid genomes revealed frequent transfer of chromosomal genes into plasmids, which significantly enriches the pool of mobile DNA that can participate in lateral transfer. Many strains of Paracoccus spp. have great biotechnological potential, and the plasmid vectors constructed in this study will facilitate genetic studies of these bacteria. PMID:24260361

  9. A Degenerate Primer MOB Typing (DPMT) Method to Classify Gamma-Proteobacterial Plasmids in Clinical and Environmental Settings

    PubMed Central

    de la Cruz, Fernando

    2012-01-01

    Transmissible plasmids are responsible for the spread of genetic determinants, such as antibiotic resistance or virulence traits, causing a large ecological and epidemiological impact. Transmissible plasmids, either conjugative or mobilizable, have in common the presence of a relaxase gene. Relaxases were previously classified in six protein families according to their phylogeny. Degenerate primers hybridizing to coding sequences of conserved amino acid motifs were designed to amplify related relaxase genes from γ-Proteobacterial plasmids. Specificity and sensitivity of a selected set of 19 primer pairs were first tested using a collection of 33 reference relaxases, representing the diversity of γ-Proteobacterial plasmids. The validated set was then applied to the analysis of two plasmid collections obtained from clinical isolates. The relaxase screening method, which we call “Degenerate Primer MOB Typing” or DPMT, detected not only most known Inc/Rep groups, but also a plethora of plasmids not previously assigned to any Inc group or Rep-type. PMID:22792321

  10. Environmentally co‐occurring mercury resistance plasmids are genetically and phenotypically diverse and confer variable context‐dependent fitness effects

    PubMed Central

    Harrison, Ellie; Lilley, Andrew K.; Paterson, Steve; Spiers, Andrew J.; Brockhurst, Michael A.

    2015-01-01

    Summary Plasmids are important mobile elements that can facilitate genetic exchange and local adaptation within microbial communities. We compared the sequences of four co‐occurring pQBR family environmental mercury resistance plasmids and measured their effects on competitive fitness of a P seudomonas fluorescens  SBW25 host, which was isolated at the same field site. Fitness effects of carriage differed between plasmids and were strongly context dependent, varying with medium, plasmid status of competitor and levels of environmental mercury. The plasmids also varied widely in their rates of conjugation and segregational loss. We found that few of the plasmid‐borne accessory genes could be ascribed functions, although we identified a putative chemotaxis operon, a type IV pilus‐encoding cluster and a region encoding putative arylsulfatase enzymes, which were conserved across geographically distant isolates. One plasmid, pQBR55, conferred the ability to catabolize sucrose. Transposons, including the mercury resistance Tn5042, appeared to have been acquired by different pQBR plasmids by recombination, indicating an important role for horizontal gene transfer in the recent evolution of pQBR plasmids. Our findings demonstrate extensive genetic and phenotypic diversity among co‐occurring members of a plasmid community and suggest a role for environmental heterogeneity in the maintenance of plasmid diversity. PMID:25969927

  11. In Vivo Transmission of an IncA/C Plasmid in Escherichia coli Depends on Tetracycline Concentration, and Acquisition of the Plasmid Results in a Variable Cost of Fitness

    PubMed Central

    Singer, Randall S.; Isaacson, Richard E.; Danzeisen, Jessica L.; Lang, Kevin; Kobluk, Kristi; Rivet, Bernadette; Borewicz, Klaudyna; Frye, Jonathan G.; Englen, Mark; Anderson, Janet; Davies, Peter R.

    2015-01-01

    IncA/C plasmids are broad-host-range plasmids enabling multidrug resistance that have emerged worldwide among bacterial pathogens of humans and animals. Although antibiotic usage is suspected to be a driving force in the emergence of such strains, few studies have examined the impact of different types of antibiotic administration on the selection of plasmid-containing multidrug resistant isolates. In this study, chlortetracycline treatment at different concentrations in pig feed was examined for its impact on selection and dissemination of an IncA/C plasmid introduced orally via a commensal Escherichia coli host. Continuous low-dose administration of chlortetracycline at 50 g per ton had no observable impact on the proportions of IncA/C plasmid-containing E. coli from pig feces over the course of 35 days. In contrast, high-dose administration of chlortetracycline at 350 g per ton significantly increased IncA/C plasmid-containing E. coli in pig feces (P < 0.001) and increased movement of the IncA/C plasmid to other indigenous E. coli hosts. There was no evidence of conjugal transfer of the IncA/C plasmid to bacterial species other than E. coli. In vitro competition assays demonstrated that bacterial host background substantially impacted the cost of IncA/C plasmid carriage in E. coli and Salmonella. In vitro transfer and selection experiments demonstrated that tetracycline at 32 μg/ml was necessary to enhance IncA/C plasmid conjugative transfer, while subinhibitory concentrations of tetracycline in vitro strongly selected for IncA/C plasmid-containing E. coli. Together, these experiments improve our knowledge on the impact of differing concentrations of tetracycline on the selection of IncA/C-type plasmids. PMID:25769824

  12. Bacterial cheating limits the evolution of antibiotic resistance

    NASA Astrophysics Data System (ADS)

    Chao, Hui Xiao; Datta, Manoshi; Yurtsev, Eugene; Gore, Jeff

    2011-03-01

    The widespread use of antibiotics has led to the evolution of resistance in bacteria. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removing the antibiotic. The cooperative nature of this growth suggests that a cheater strain--which does not contribute to breaking down the antibiotic--may be able to take advantage of cells cooperatively inactivating the antibiotic. Here we experimentally find that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We observe stable coexistence between the two strains and find that a simple model successfully explains the behavior as a function of antibiotic concentration and cell density. We anticipate that our results will provide insight into the evolutionary origin of phenotypic diversity and cooperative behaviors found in nature.

  13. Conjugal transfer and characterization of bacteriocin plasmids in group N (lactic acid) streptococci.

    PubMed Central

    Neve, H; Geis, A; Teuber, M

    1984-01-01

    Thirteen bacteriocin-producing strains of group N (lactic acid) streptococci were screened for their potential to transfer this property by conjugation to Streptococcus lactis subsp. diacetylactis Bu2-60. Bacteriocin production in three strains was plasmid encoded as shown by conjugal transfer and by analysis of cured, bacteriocin-negative derivatives of the donor strains and the transconjugants. With Streptococcus cremoris strains 9B4 and 4G6 and S. lactis subsp. diacetylactis 6F7 as donors, bacteriocin-producing transconjugants were isolated with frequencies ranging from ca. 2 X 10(-2) to 2 X 10(-1) per recipient cell. Bacteriocin-producing transconjugants had acquired a 39.6-megadalton plasmid from the donor strains 9B4 and 4G6, and a 75-megadalton plasmid from the donor strain 6F7. As shown by restriction endonuclease analysis, the plasmids from strains 9B4 and 4G6 were almost identical. The plasmid from strain 6F7 yielded some additional fragments not present in the two other plasmids. In hybridization experiments any of the three plasmids strongly hybridized with each other and with some other bacteriocin but nontransmissible plasmids from other S. cremoris strains. Homology was also detected to a variety of cryptic plasmids in lactic acid streptococci. Images PMID:6321437

  14. Conjugative transfer of broad host range plasmids to an acidobacterial strain, Edaphobacter aggregans.

    PubMed

    Bouhajja, Emna; Efthymiopoulos, Theocharis; George, Isabelle F; Moreels, David; Van Houdt, Rob; Mergeay, Max; Agathos, Spiros N

    2016-03-10

    The Acidobacteria phylum is of high ecological interest. Its members are ubiquitous and particularly abundant in soils but many are recalcitrant to cultivation in the laboratory. Thus, the ability of Acidobacteria to capture and maintain plasmids remains largely unexplored. In this work we tested the transfer and the stability of (i) the PromA plasmid pMOL98 and (ii) the IncQ plasmid pKT230 to the acidobacterial strain Edaphobacter aggregans DSM 19364. To this end quantitative conjugation assays were performed and transconjugants were scored for plasmid-borne antibiotic selection markers. The tested plasmids were transferred and maintained in the new host. Plasmid pMOL98 was more stable than pKT230 in Ed. aggregans in the absence of positive selection. Thus, from an ecological point of view, we have extended the host range of PromA and IncQ plasmids for the first time to an acidobacterial strain. Furthermore, we have uncovered the potential of Acidobacteria to capture as-yet-unknown plasmids and to foster the development of new cloning and expression systems for the exploitation of biotechnologically valuable soil resources. PMID:26808872

  15. Plasmids and Rickettsial Evolution: Insight from Rickettsia felis

    PubMed Central

    Gillespie, Joseph J.; Beier, Magda S.; Rahman, M. Sayeedur; Ammerman, Nicole C.; Shallom, Joshua M.; Purkayastha, Anjan; Sobral, Bruno S.; Azad, Abdu F.

    2007-01-01

    Background The genome sequence of Rickettsia felis revealed a number of rickettsial genetic anomalies that likely contribute not only to a large genome size relative to other rickettsiae, but also to phenotypic oddities that have confounded the categorization of R. felis as either typhus group (TG) or spotted fever group (SFG) rickettsiae. Most intriguing was the first report from rickettsiae of a conjugative plasmid (pRF) that contains 68 putative open reading frames, several of which are predicted to encode proteins with high similarity to conjugative machinery in other plasmid-containing bacteria. Methodology/Principal Findings Using phylogeny estimation, we determined the mode of inheritance of pRF genes relative to conserved rickettsial chromosomal genes. Phylogenies of chromosomal genes were in agreement with other published rickettsial trees. However, phylogenies including pRF genes yielded different topologies and suggest a close relationship between pRF and ancestral group (AG) rickettsiae, including the recently completed genome of R. bellii str. RML369-C. This relatedness is further supported by the distribution of pRF genes across other rickettsiae, as 10 pRF genes (or inactive derivatives) also occur in AG (but not SFG) rickettsiae, with five of these genes characteristic of typical plasmids. Detailed characterization of pRF genes resulted in two novel findings: the identification of oriV and replication termination regions, and the likelihood that a second proposed plasmid, pRFδ, is an artifact of the original genome assembly. Conclusion/Significance Altogether, we propose a new rickettsial classification scheme with the addition of a fourth lineage, transitional group (TRG) rickettsiae, that is unique from TG and SFG rickettsiae and harbors genes from possible exchanges with AG rickettsiae via conjugation. We offer insight into the evolution of a plastic plasmid system in rickettsiae, including the role plasmids may have played in the acquirement of

  16. Functional amyloids as inhibitors of plasmid DNA replication.

    PubMed

    Molina-García, Laura; Gasset-Rosa, Fátima; Moreno-Del Álamo, María; Fernández-Tresguerres, M Elena; Moreno-Díaz de la Espina, Susana; Lurz, Rudi; Giraldo, Rafael

    2016-01-01

    DNA replication is tightly regulated to constrain the genetic material within strict spatiotemporal boundaries and copy numbers. Bacterial plasmids are autonomously replicating DNA molecules of much clinical, environmental and biotechnological interest. A mechanism used by plasmids to prevent over-replication is 'handcuffing', i.e. inactivating the replication origins in two DNA molecules by holding them together through a bridge built by a plasmid-encoded initiator protein (Rep). Besides being involved in handcuffing, the WH1 domain in the RepA protein assembles as amyloid fibres upon binding to DNA in vitro. The amyloid state in proteins is linked to specific human diseases, but determines selectable and epigenetically transmissible phenotypes in microorganisms. Here we have explored the connection between handcuffing and amyloidogenesis of full-length RepA. Using a monoclonal antibody specific for an amyloidogenic conformation of RepA-WH1, we have found that the handcuffed RepA assemblies, either reconstructed in vitro or in plasmids clustering at the bacterial nucleoid, are amyloidogenic. The replication-inhibitory RepA handcuff assembly is, to our knowledge, the first protein amyloid directly dealing with DNA. Built on an amyloid scaffold, bacterial plasmid handcuffs can bring a novel molecular solution to the universal problem of keeping control on DNA replication initiation. PMID:27147472

  17. Functional amyloids as inhibitors of plasmid DNA replication

    PubMed Central

    Molina-García, Laura; Gasset-Rosa, Fátima; Moreno-del Álamo, María; Fernández-Tresguerres, M. Elena; Moreno-Díaz de la Espina, Susana; Lurz, Rudi; Giraldo, Rafael

    2016-01-01

    DNA replication is tightly regulated to constrain the genetic material within strict spatiotemporal boundaries and copy numbers. Bacterial plasmids are autonomously replicating DNA molecules of much clinical, environmental and biotechnological interest. A mechanism used by plasmids to prevent over-replication is ‘handcuffing’, i.e. inactivating the replication origins in two DNA molecules by holding them together through a bridge built by a plasmid-encoded initiator protein (Rep). Besides being involved in handcuffing, the WH1 domain in the RepA protein assembles as amyloid fibres upon binding to DNA in vitro. The amyloid state in proteins is linked to specific human diseases, but determines selectable and epigenetically transmissible phenotypes in microorganisms. Here we have explored the connection between handcuffing and amyloidogenesis of full-length RepA. Using a monoclonal antibody specific for an amyloidogenic conformation of RepA-WH1, we have found that the handcuffed RepA assemblies, either reconstructed in vitro or in plasmids clustering at the bacterial nucleoid, are amyloidogenic. The replication-inhibitory RepA handcuff assembly is, to our knowledge, the first protein amyloid directly dealing with DNA. Built on an amyloid scaffold, bacterial plasmid handcuffs can bring a novel molecular solution to the universal problem of keeping control on DNA replication initiation. PMID:27147472

  18. Genomic analysis of Pseudomonas aeruginosa PA96, the host of carbapenem resistance plasmid pOZ176.

    PubMed

    Déraspe, Maxime; Alexander, David C; Xiong, Jianhui; Ma, Jennifer H; Low, Donald E; Jamieson, Frances B; Roy, Paul H

    2014-07-01

    Pseudomonas aeruginosa PA96 is a clinical isolate from Guangzhou, China, that is multiresistant to antibiotics. We previously described the 500-kb IncP-2 plasmid, pOZ176 that encodes many resistance genes including the IMP-9 carbapenemase. Whole-genome sequencing of PA96 enabled characterization of its genomic islands, virulence factors, and chromosomal resistance genes. We filled gaps using PCR and used optical mapping to confirm the correct contig order. We automatically annotated the core genome and manually annotated the genomic islands. The genome is 6 444 091 bp and encodes 5853 ORFs. From the whole-genome sequence, we constructed a physical map and constructed a phylogenetic tree for comparison with sequenced P. aeruginosa strains. Analysis of known core genome virulence factors and resistance genes revealed few differences with other strains, but the major virulence island is closer to that of DK2 than to PA14. PA96 most closely resembles the environmental strain M18, and notably shares a common serotype, pyoverdin type, flagellar operon, type IV pilin, and several genomic islands with M18. PMID:24673340

  19. Linear Plasmids and the Rate of Sequence Evolution in Plant Mitochondrial Genomes.

    PubMed

    Warren, Jessica M; Simmons, Mark P; Wu, Zhiqiang; Sloan, Daniel B

    2016-02-01

    The mitochondrial genomes of flowering plants experience frequent insertions of foreign sequences, including linear plasmids that also exist in standalone forms within mitochondria, but the history and phylogenetic distribution of plasmid insertions is not well known. Taking advantage of the increased availability of plant mitochondrial genome sequences, we performed phylogenetic analyses to reconstruct the evolutionary history of these plasmids and plasmid-derived insertions. Mitochondrial genomes from multiple land plant lineages (including liverworts, lycophytes, ferns, and gymnosperms) include fragmented remnants from ancient plasmid insertions. Such insertions are much more recent and widespread in angiosperms, in which approximately 75% of sequenced mitochondrial genomes contain identifiable plasmid insertions. Although conflicts between plasmid and angiosperm phylogenies provide clear evidence of repeated horizontal transfers, we were still able to detect significant phylogenetic concordance, indicating that mitochondrial plasmids have also experienced sustained periods of (effectively) vertical transmission in angiosperms. The observed levels of sequence divergence in plasmid-derived genes suggest that nucleotide substitution rates in these plasmids, which often encode their own viral-like DNA polymerases, are orders of magnitude higher than in mitochondrial chromosomes. Based on these results, we hypothesize that the periodic incorporation of mitochondrial genes into plasmids contributes to the remarkable heterogeneity in substitution rates among genes that has recently been discovered in some angiosperm mitochondrial genomes. In support of this hypothesis, we show that the recently acquired ψtrnP-trnW gene region in a maize linear plasmid is evolving significantly faster than homologous sequences that have been retained in the mitochondrial chromosome in closely related grasses. PMID:26759362

  20. Linear Plasmids and the Rate of Sequence Evolution in Plant Mitochondrial Genomes

    PubMed Central

    Warren, Jessica M.; Simmons, Mark P.; Wu, Zhiqiang; Sloan, Daniel B.

    2016-01-01

    The mitochondrial genomes of flowering plants experience frequent insertions of foreign sequences, including linear plasmids that also exist in standalone forms within mitochondria, but the history and phylogenetic distribution of plasmid insertions is not well known. Taking advantage of the increased availability of plant mitochondrial genome sequences, we performed phylogenetic analyses to reconstruct the evolutionary history of these plasmids and plasmid-derived insertions. Mitochondrial genomes from multiple land plant lineages (including liverworts, lycophytes, ferns, and gymnosperms) include fragmented remnants from ancient plasmid insertions. Such insertions are much more recent and widespread in angiosperms, in which approximately 75% of sequenced mitochondrial genomes contain identifiable plasmid insertions. Although conflicts between plasmid and angiosperm phylogenies provide clear evidence of repeated horizontal transfers, we were still able to detect significant phylogenetic concordance, indicating that mitochondrial plasmids have also experienced sustained periods of (effectively) vertical transmission in angiosperms. The observed levels of sequence divergence in plasmid-derived genes suggest that nucleotide substitution rates in these plasmids, which often encode their own viral-like DNA polymerases, are orders of magnitude higher than in mitochondrial chromosomes. Based on these results, we hypothesize that the periodic incorporation of mitochondrial genes into plasmids contributes to the remarkable heterogeneity in substitution rates among genes that has recently been discovered in some angiosperm mitochondrial genomes. In support of this hypothesis, we show that the recently acquired ψtrnP-trnW gene region in a maize linear plasmid is evolving significantly faster than homologous sequences that have been retained in the mitochondrial chromosome in closely related grasses. PMID:26759362

  1. Inc A/C Plasmids are Prevalent in Multidrug-Resistant Salmonella enterica Isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacteria plasmids are fragments of extra-chromosomal double stranded deoxyribonucleic acid (DNA) that can contain a variety of genes beneficial to the host organism like antibiotic resistance. The objective of this study was to characterize a collection of 437 Salmonella enterica isolates from diff...

  2. Tales of conjugation and sex pheromones: A plasmid and enterococcal odyssey.

    PubMed

    Clewell, Don B

    2011-05-01

    This review covers highlights of the author's experience becoming and working as a plasmid biologist. The account chronicles a progression from studies of ColE1 DNA in Escherichia coli to Gram-positive bacteria with an emphasis on conjugation in enterococci. It deals with gene amplification, conjugative transposons and sex pheromones in the context of bacterial antibiotic resistance. PMID:22016844

  3. Facts about Antibiotic Resistance

    MedlinePlus

    ... Trends and Cost Español: Datos breves Facts about Antibiotic Resistance Antibiotic resistance has been called one of the world’s most ... antibiotic use is a key strategy to control antibiotic resistance. Antibiotic resistance in children is of particular concern ...

  4. Rapid identification of intact bacterial resistance plasmids via optical mapping of single DNA molecules

    PubMed Central

    Nyberg, Lena K.; Quaderi, Saair; Emilsson, Gustav; Karami, Nahid; Lagerstedt, Erik; Müller, Vilhelm; Noble, Charleston; Hammarberg, Susanna; Nilsson, Adam N.; Sjöberg, Fei; Fritzsche, Joachim; Kristiansson, Erik; Sandegren, Linus; Ambjörnsson, Tobias; Westerlund, Fredrik

    2016-01-01

    The rapid spread of antibiotic resistance – currently one of the greatest threats to human health according to WHO – is to a large extent enabled by plasmid-mediated horizontal transfer of resistance genes. Rapid identification and characterization of plasmids is thus important both for individual clinical outcomes and for epidemiological monitoring of antibiotic resistance. Toward this aim, we have developed an optical DNA mapping procedure where individual intact plasmids are elongated within nanofluidic channels and visualized through fluorescence microscopy, yielding barcodes that reflect the underlying sequence. The assay rapidly identifies plasmids through statistical comparisons with barcodes based on publicly available sequence repositories and also enables detection of structural variations. Since the assay yields holistic sequence information for individual intact plasmids, it is an ideal complement to next generation sequencing efforts which involve reassembly of sequence reads from fragmented DNA molecules. The assay should be applicable in microbiology labs around the world in applications ranging from fundamental plasmid biology to clinical epidemiology and diagnostics. PMID:27460437

  5. Rapid identification of intact bacterial resistance plasmids via optical mapping of single DNA molecules.

    PubMed

    Nyberg, Lena K; Quaderi, Saair; Emilsson, Gustav; Karami, Nahid; Lagerstedt, Erik; Müller, Vilhelm; Noble, Charleston; Hammarberg, Susanna; Nilsson, Adam N; Sjöberg, Fei; Fritzsche, Joachim; Kristiansson, Erik; Sandegren, Linus; Ambjörnsson, Tobias; Westerlund, Fredrik

    2016-01-01

    The rapid spread of antibiotic resistance - currently one of the greatest threats to human health according to WHO - is to a large extent enabled by plasmid-mediated horizontal transfer of resistance genes. Rapid identification and characterization of plasmids is thus important both for individual clinical outcomes and for epidemiological monitoring of antibiotic resistance. Toward this aim, we have developed an optical DNA mapping procedure where individual intact plasmids are elongated within nanofluidic channels and visualized through fluorescence microscopy, yielding barcodes that reflect the underlying sequence. The assay rapidly identifies plasmids through statistical comparisons with barcodes based on publicly available sequence repositories and also enables detection of structural variations. Since the assay yields holistic sequence information for individual intact plasmids, it is an ideal complement to next generation sequencing efforts which involve reassembly of sequence reads from fragmented DNA molecules. The assay should be applicable in microbiology labs around the world in applications ranging from fundamental plasmid biology to clinical epidemiology and diagnostics. PMID:27460437

  6. R plasmids in environmental Vibrio cholerae non-O1 strains.

    PubMed Central

    Amaro, C; Aznar, R; Garay, E; Alcaide, E

    1988-01-01

    The occurrence of drug resistance and its plasmid-mediated transferability was investigated in 140 environmental strains of Vibrio cholerae non-O1 and 6 strains of Vibrio cholerae, both O1 and non-O1, of clinical origin. Of the 146 strains tested, 93% were resistant to at least one drug and 74% were resistant to two or more antibiotics. The O1 strains were susceptible to all antibiotics used. A total of 26 of 28 selected resistant wild strains carried R plasmids that were transferable by intraspecific and intergeneric matings. The most common transmissible R factor determined resistance to ampicillin, amoxicillin, and sulfanilamide (30%), followed by resistance to ampicillin and amoxicillin (13%) and resistance to ampicillin, amoxicillin, phosphomycin, and sulfanilamide (9%). Comparison of the three methods of plasmid analysis showed that the method of Birnboim and Doly (Nucleic Acids Res. 7:1513-1523, 1979) without EDTA and lysozyme was optimal for isolation of both large and small plasmids in environmental V. cholerae strains. Most strains harbored more than one plasmid, and the molecular sizes ranged from 1.1 to 74.8 megadaltons. The plasmids of high molecular size (around 74 megadaltons) were responsible for the resistance pattern transferred and were maintained with high stability in the hosts. Images PMID:3214157

  7. Processing of Nonconjugative Resistance Plasmids by Conjugation Nicking Enzyme of Staphylococci

    PubMed Central

    Pollet, Rebecca M.; Ingle, James D.; Hymes, Jeff P.; Eakes, Thomas C.; Eto, Karina Yui; Kwong, Stephen M.; Ramsay, Joshua P.; Firth, Neville

    2016-01-01

    ABSTRACT Antimicrobial resistance in Staphylococcus aureus presents an increasing threat to human health. This resistance is often encoded on mobile plasmids, such as pSK41; however, the mechanism of transfer of these plasmids is not well understood. In this study, we first examine key protein-DNA interactions formed by the relaxase enzyme, NES, which initiates and terminates the transfer of the multidrug resistance plasmid pSK41. Two loops on the NES protein, hairpin loops 1 and 2, form extensive contacts with the DNA hairpin formed at the oriT region of pSK41, and here we establish that these contacts are essential for proper DNA cleavage and religation by the full 665-residue NES protein in vitro. Second, pSK156 and pCA347 are nonconjugative Staphylococcus aureus plasmids that contain sequences similar to the oriT region of pSK41 but differ in the sequence predicted to form a DNA hairpin. We show that pSK41-encoded NES is able to bind, cleave, and religate the oriT sequences of these nonconjugative plasmids in vitro. Although pSK41 could mobilize a coresident plasmid harboring its cognate oriT, it was unable to mobilize plasmids containing the pSK156 and pCA347 variant oriT mimics, suggesting that an accessory protein like that previously shown to confer specificity in the pWBG749 system may also be involved in transmission of plasmids containing a pSK41-like oriT. These data indicate that the conjugative relaxase in trans mechanism recently described for the pWBG749 family of plasmids also applies to the pSK41 family of plasmids, further heightening the potential significance of this mechanism in the horizontal transfer of staphylococcal plasmids. IMPORTANCE Understanding the mechanism of antimicrobial resistance transfer in bacteria such as Staphylococcus aureus is an important step toward potentially slowing the spread of antimicrobial-resistant infections. This work establishes protein-DNA interactions essential for the transfer of the Staphylococcus aureus

  8. Characterization of Plasmids in a Human Clinical Strain of Lactococcus garvieae

    PubMed Central

    Blanco, M. Mar; López-Campos, Guillermo H.; Cutuli, M. Teresa; Fernández-Garayzábal, José F.

    2012-01-01

    The present work describes the molecular characterization of five circular plasmids found in the human clinical strain Lactococcus garvieae 21881. The plasmids were designated pGL1-pGL5, with molecular sizes of 4,536 bp, 4,572 bp, 12,948 bp, 14,006 bp and 68,798 bp, respectively. Based on detailed sequence analysis, some of these plasmids appear to be mosaics composed of DNA obtained by modular exchange between different species of lactic acid bacteria. Based on sequence data and the derived presence of certain genes and proteins, the plasmid pGL2 appears to replicate via a rolling-circle mechanism, while the other four plasmids appear to belong to the group of lactococcal theta-type replicons. The plasmids pGL1, pGL2 and pGL5 encode putative proteins related with bacteriocin synthesis and bacteriocin secretion and immunity. The plasmid pGL5 harbors genes (txn, orf5 and orf25) encoding proteins that could be considered putative virulence factors. The gene txn encodes a protein with an enzymatic domain corresponding to the family actin-ADP-ribosyltransferases toxins, which are known to play a key role in pathogenesis of a variety of bacterial pathogens. The genes orf5 and orf25 encode two putative surface proteins containing the cell wall-sorting motif LPXTG, with mucin-binding and collagen-binding protein domains, respectively. These proteins could be involved in the adherence of L. garvieae to mucus from the intestine, facilitating further interaction with intestinal epithelial cells and to collagenous tissues such as the collagen-rich heart valves. To our knowledge, this is the first report on the characterization of plasmids in a human clinical strain of this pathogen. PMID:22768237

  9. Occurrence and Antibiotic Resistance of Vibrio parahaemolyticus from Shellfish in Selangor, Malaysia

    PubMed Central

    Letchumanan, Vengadesh; Pusparajah, Priyia; Tan, Loh Teng-Hern; Yin, Wai-Fong; Lee, Learn-Han; Chan, Kok-Gan

    2015-01-01

    High consumer demand for shellfish has led to the need for large-scale, reliable shellfish supply through aquaculture or shellfish farming. However, bacterial infections which can spread rapidly among shellfish poses a major threat to this industry. Shellfish farmers therefore often resort to extensive use of antibiotics, both prophylactically and therapeutically, in order to protect their stocks. The extensive use of antibiotics in aquaculture has been postulated to represent a major contributing factor in the rising incidence of antimicrobial resistant pathogenic bacteria in shellfish. This study aimed to investigate the incidence of pathogenic Vibrio parahaemolyticus and determine the antibiotic resistance profile as well as to perform plasmid curing in order to determine the antibiotic resistance mediation. Based on colony morphology, all 450 samples tested were positive for Vibrio sp; however, tox-R assay showed that only 44.4% (200/450) of these were V. parahaemolyticus. Out of these 200 samples, 6.5% (13/200) were trh-positive while none were tdh-positive. Antibiotic resistance was determined for all V. parahaemolyticus identified against 14 commonly used antibiotics and the multiple antibiotic resistance index (MAR) was calculated. The isolates demonstrated high resistance to several antibiotics tested- including second and third-line antibiotics- with 88% resistant to ampicillin, 81% to amikacin,70.5% to kanamycin, 73% to cefotaxime, and 51.5% to ceftazidime. The MAR index ranged from 0.00 to 0.79 with the majority of samples having an index of 0.36 (resistant to five antibiotics). Among the 13 trh-positive strains, almost 70% (9/13) demonstrated resistance to 4 or more antibiotics. Plasmid profiling for all V. parahaemolyticus isolates revealed that 86.5% (173/200) contained plasmids - ranging from 1 to 7 plasmids with DNA band sizes ranging from 1.2 kb to greater than 10 kb. 6/13 of the pathogenic V. pathogenic strains contained plasmid. After plasmid

  10. [Transfer of plasmid beta-lactamases in enterobacteria].

    PubMed

    Umaran, A; Garaizar, J; Gallego, L; Colom, K; Cisterna, R

    1989-04-01

    The aim of the present study was to determine which types of beta-lactamases codified by plasmids are transferred by conjugation from several species of enterobacteria. To this end, 352 strains of ampicillin-resistant enterobacteria from clinical samples from the Hospital Civil of Bilbao were evaluated. Their beta-lactamase activity and their capacity to transfer this capacity by conjugation were evaluated. The several types of plasmidic beta-lactamases in the strains that conjugated and in their respective transconjugants were characterized by analytic isoelectric approach, and also the sensitivity of these stains to 20 beta-lactamic antibiotics and the size of their plasmids. Twenty different types were detected, with a clear predominance of TEM 1. Type TEM 2 was found in 19% of the strains which conjugated, and much less commonly the types SHV 1, HMS 1 and a beta-lactamase of an approximate pl of 4.9 were found. The transfer of these beta-lactamases is mediated by a great variety of plasmids and is associated with variable levels of resistance to penicillins and unstable cephalosporins. The presence of betalactamases with activity on the more stable cephalosporins has not been detected. PMID:2490696

  11. Factors affecting plasmid production in Escherichia coli from a resource allocation standpoint

    PubMed Central

    Cunningham, Drew S; Koepsel, Richard R; Ataai, Mohammad M; Domach, Michael M

    2009-01-01

    Background Plasmids are being reconsidered as viable vector alternatives to viruses for gene therapies and vaccines because they are safer, non-toxic, and simpler to produce. Accordingly, there has been renewed interest in the production of plasmid DNA itself as the therapeutic end-product of a bioprocess. Improvement to the best current yields and productivities of such emerging processes would help ensure economic feasibility on the industrial scale. Our goal, therefore, was to develop a stoichiometric model of Escherichia coli metabolism in order to (1) determine its maximum theoretical plasmid-producing capacity, and to (2) identify factors that significantly impact plasmid production. Results Such a model was developed for the production of a high copy plasmid under conditions of batch aerobic growth on glucose minimal medium. The objective of the model was to maximize plasmid production. By employing certain constraints and examining the resulting flux distributions, several factors were determined that significantly impact plasmid yield. Acetate production and constitutive expression of the plasmid's antibiotic resistance marker exert negative effects, while low pyruvate kinase (Pyk) flux and the generation of NADPH by transhydrogenase activity offer positive effects. The highest theoretical yield (592 mg/g) resulted under conditions of no marker or acetate production, nil Pyk flux, and the maximum allowable transhydrogenase activity. For comparison, when these four fluxes were constrained to wild-type values, yields on the order of tens of mg/g resulted, which are on par with the best experimental yields reported to date. Conclusion These results suggest that specific plasmid yields can theoretically reach 12 times their current experimental maximum (51 mg/g). Moreover, they imply that abolishing Pyk activity and/or transhydrogenase up-regulation would be useful strategies to implement when designing host strains for plasmid production; mutations that

  12. Tn292l, a transposon encoding fosfomycin resistance.

    PubMed Central

    García-Lobo, J M; Ortiz, J M

    1982-01-01

    The determinant of resistance to fosfomycin of the Serratia marcescens plasmid pOU900 was transposed into the plasmid ColE1 and into the plasmid RP4 in the absence of the RecA function of the host. In each case, the acquisition of fosfomycin resistance was correlated with the presence of a discrete piece of DNA, uniform in size and in restriction pattern, This new, 7.5-megadalton transposable element encoding resistance to fosfomycin has been called Tn2921. A preliminary map of the transposon is presented. Images PMID:6282810

  13. Analysis of plasmids cloned from a virulent avian Escherichia coli and transformed into Escherichia coli DH5 alpha.

    PubMed

    Wooley, R E; Gibbs, P S; Dickerson, H W; Brown, J; Nolan, L K

    1996-01-01

    Three of four plasmids from a virulent wild-type avian Escherichia coli were cloned or transformed into an avirulent laboratory recipient E. coli DH5 alpha and tested for the ability to confer a virulence phenotype. The three plasmids transformed into E. coli DH5 alpha were 5, 6, and 56 kb. A fourth plasmid of 64 kb was not successfully transformed. Parameters used to measure virulence included presence of type 1 pili and a smooth lipopolysaccharide (LPS) layer, motility, production of Colicin V, resistance to host complement, and embryo lethality. The 5-kb plasmid encoded for ampicillin resistance, whereas the 6-kb plasmid encoded for tetracycline resistance. The 56-kb plasmid encoded for streptomycin, sulfisoxazole, and tetracycline resistance. Twelve-day embryos inoculated with 467 colony-forming units of E. coli DH5 alpha containing the 56-kb plasmid had increased death rates (45%) in the embryo lethality assay and a decreased weight of surviving embryos with cranial hemorrhages as compared with embryos inoculated with similar amounts of E. coli DH5 alpha (0%) and phosphate-buffered saline (0%). Embryos inoculated with the wild-type virulent E. coli had 90% deaths. The 56-kb plasmid also had homology with a probe for Colicin V production (cvaC). No differences in LPS layer, complement resistance, motility, Colicin V activity, type 1 pili, cell-free supernatant proteins, or outer membrane proteins were observed in the transformants when compared with nontransformed E. coli DH5 alpha. PMID:8883780

  14. Large plasmids of avian Escherichia coli isolates.

    PubMed

    Doetkott, D M; Nolan, L K; Giddings, C W; Berryhill, D L

    1996-01-01

    The plasmid DNA of 30 Escherichia coli isolates from chickens was extracted and examined using techniques designed to isolate large plasmids. This plasmid DNA was examined for the presence of certain known virulence-related genes including cvaC, traT, and some aerobactin-related sequences. Seventeen of the 30 isolates contained from one to four plasmids greater than 50 kb in size. Eleven of these 17 strains possessed plasmids greater than 100 kb in size. Therefore, E. coli isolates of chickens frequently contain large plasmids, and many of these plasmids are likely to contain virulence-related sequences. PMID:8980827

  15. Plasmid-mediated quinolone resistance

    PubMed Central

    Jacoby, George A.; Strahilevitz, Jacob; Hooper, David C.

    2014-01-01

    Summary Three mechanisms for plasmid-mediated quinolone resistance (PMQR) have been discovered since 1998. Plasmid genes qnrA, qnrB, qnrC, qnrD, qnrS, and qnrVC code for proteins of the pentapeptide repeat family that protects DNA gyrase and topoisomerase IV from quinolone inhibition. The qnr genes appear to have been acquired from chromosomal genes in aquatic bacteria, are usually associated with mobilizing or transposable elements on plasmids, and are often incorporated into sul1-type integrons. The second plasmid-mediated mechanism involves acetylation of quinolones with an appropriate amino nitrogen target by a variant of the common aminoglycoside acetyltransferase AAC(6′)-Ib. The third mechanism is enhanced efflux produced by plasmid genes for pumps QepAB and OqxAB. PMQR has been found in clinical and environmental isolates around the world and appears to be spreading. The plasmid-mediated mechanisms provide only low-level resistance that by itself does not exceed the clinical breakpoint for susceptibility but nonetheless facilitates selection of higher-level resistance and makes infection by pathogens containing PMQR harder to treat. PMID:25584197

  16. Characterization of a large, stable, high-copy-number Streptomyces plasmid that requires stability and transfer functions for heterologous polyketide overproduction.

    PubMed

    Fong, Ryan; Vroom, Jonathan A; Hu, Zhihao; Hutchinson, C Richard; Huang, Jianqiang; Cohen, Stanley N; Cohen, Stanley; Kao, Camilla M; Kao, Camilla

    2007-02-01

    A major limitation to improving small-molecule pharmaceutical production in streptomycetes is the inability of high-copy-number plasmids to tolerate large biosynthetic gene cluster inserts. A recent finding has overcome this barrier. In 2003, Hu et al. discovered a stable, high-copy-number, 81-kb plasmid that significantly elevated production of the polyketide precursor to the antibiotic erythromycin in a heterologous Streptomyces host (J. Ind. Microbiol. Biotechnol. 30:516-522, 2003). Here, we have identified mechanisms by which this SCP2*-derived plasmid achieves increased levels of metabolite production and examined how the 45-bp deletion mutation in the plasmid replication origin increased plasmid copy number. A plasmid intramycelial transfer gene, spd, and a partition gene, parAB, enhance metabolite production by increasing the stable inheritance of large plasmids containing biosynthetic genes. Additionally, high product titers required both activator (actII-ORF4) and biosynthetic genes (eryA) at high copy numbers. DNA gel shift experiments revealed that the 45-bp deletion abolished replication protein (RepI) binding to a plasmid site which, in part, supports an iteron model for plasmid replication and copy number control. Using the new information, we constructed a large high-copy-number plasmid capable of overproducing the polyketide 6-deoxyerythronolide B. However, this plasmid was unstable over multiple culture generations, suggesting that other SCP2* genes may be required for long-term, stable plasmid inheritance. PMID:17142363

  17. Plasmid-Mediated Quinolone Resistance; Interactions between Human, Animal, and Environmental Ecologies

    PubMed Central

    Poirel, Laurent; Cattoir, Vincent; Nordmann, Patrice

    2012-01-01

    Resistance to quinolones and fluoroquinolones is being increasingly reported among human but also veterinary isolates during the last two to three decades, very likely as a consequence of the large clinical usage of those antibiotics. Even if the principle mechanisms of resistance to quinolones are chromosome-encoded, due to modifications of molecular targets (DNA gyrase and topoisomerase IV), decreased outer-membrane permeability (porin defect), and overexpression of naturally occurring efflux, the emergence of plasmid-mediated quinolone resistance (PMQR) has been reported since 1998. Although these PMQR determinants confer low-level resistance to quinolones and/or fluoroquinolones, they are a favorable background for selection of additional chromosome-encoded quinolone resistance mechanisms. Different transferable mechanisms have been identified, corresponding to the production of Qnr proteins, of the aminoglycoside acetyltransferase AAC(6′)-Ib-cr, or of the QepA-type or OqxAB-type efflux pumps. Qnr proteins protect target enzymes (DNA gyrase and type IV topoisomerase) from quinolone inhibition. The AAC(6′)-Ib-cr determinant acetylates several fluoroquinolones, such as norfloxacin and ciprofloxacin. Finally, the QepA and OqxAB efflux pumps extrude fluoroquinolones from the bacterial cell. A series of studies have identified the environment to be a reservoir of PMQR genes, with farm animals and aquatic habitats being significantly involved. In addition, the origin of the qnr genes has been identified, corresponding to the waterborne species Shewanella sp. Altogether, the recent observations suggest that the aquatic environment might constitute the original source of PMQR genes, that would secondly spread among animal or human isolates. PMID:22347217

  18. Complete Sequencing of pNDM-HK Encoding NDM-1 Carbapenemase from a Multidrug-Resistant Escherichia coli Strain Isolated in Hong Kong

    PubMed Central

    Ho, Pak Leung; Lo, Wai U.; Yeung, Man Kiu; Lin, Chi Ho; Chow, Kin Hung; Ang, Irene; Tong, Amy Hin Yan; Bao, Jessie Yun-Juan; Lok, Si; Lo, Janice Yee Chi

    2011-01-01

    Background The emergence of plasmid-mediated carbapenemases, such as NDM-1 in Enterobacteriaceae is a major public health issue. Since they mediate resistance to virtually all β-lactam antibiotics and there is often co-resistance to other antibiotic classes, the therapeutic options for infections caused by these organisms are very limited. Methodology We characterized the first NDM-1 producing E. coli isolate recovered in Hong Kong. The plasmid encoding the metallo-β-lactamase gene was sequenced. Principal Findings The plasmid, pNDM-HK readily transferred to E. coli J53 at high frequencies. It belongs to the broad host range IncL/M incompatibility group and is 88803 bp in size. Sequence alignment showed that pNDM-HK has a 55 kb backbone which shared 97% homology with pEL60 originating from the plant pathogen, Erwina amylovora in Lebanon and a 28.9 kb variable region. The plasmid backbone includes the mucAB genes mediating ultraviolet light resistance. The 28.9 kb region has a composite transposon-like structure which includes intact or truncated genes associated with resistance to β-lactams (blaTEM-1, blaNDM-1, ΔblaDHA-1), aminoglycosides (aacC2, armA), sulphonamides (sul1) and macrolides (mel, mph2). It also harbors the following mobile elements: IS26, ISCR1, tnpU, tnpAcp2, tnpD, ΔtnpATn1 and insL. Certain blocks within the 28.9 kb variable region had homology with the corresponding sequences in the widely disseminated plasmids, pCTX-M3, pMUR050 and pKP048 originating from bacteria in Poland in 1996, in Spain in 2002 and in China in 2006, respectively. Significance The genetic support of NDM-1 gene suggests that it has evolved through complex pathways. The association with broad host range plasmid and multiple mobile genetic elements explain its observed horizontal mobility in multiple bacterial taxa. PMID:21445317

  19. Molecular characterisation of extended-spectrum β-lactamase- and plasmid AmpC-producing Escherichia coli strains isolated from broilers in Béjaïa, Algeria.

    PubMed

    Belmahdi, Mohamed; Bakour, Sofiane; Al Bayssari, Charbel; Touati, Abdelaziz; Rolain, Jean-Marc

    2016-09-01

    This study aimed to characterise the molecular support of antibiotic resistance in expanded-spectrum cephalosporin (ESC)-resistant Escherichia coli isolates recovered from healthy broilers in Béjaïa, northeast Algeria. A total of 61 intestinal swabs from slaughtered broilers from four regions in Béjaïa locality, Algeria, were collected between February and April 2014, from which 20 ESC-resistant E. coli strains were isolated. Escherichia coli isolates were identified by classical biochemical and MALDI-TOF methods. Antibiotic susceptibility testing was performed using disk diffusion and Etest methods. Screening for β-lactamases, aminoglycoside-modifying enzyme (AME)-encoding genes and qnr determinants was performed by PCR and sequencing. Clonal relatedness was determined using molecular typing by multilocus sequence typing (MLST). Antibiotic susceptibility testing revealed that the isolates showed high rates of resistance (>90%) to amoxicillin, amoxicillin/clavulanic acid, piperacillin/tazobactam, aztreonam, ceftazidime, streptomycin, tobramycin, nalidixic acid and ciprofloxacin. Low rates of resistance were observed for kanamycin (35%), amikacin (30%), cefoxitin (20%) and cefotaxime (15%). Molecular characterisation revealed that all of the isolates expressed the blaTEM-1 gene. Fourteen of them harboured the blaSHV-12 gene, two harboured the blaCTX-M-1 gene and four isolates harboured blaCMY-2. Screening for AME-encoding genes demonstrated that all isolates contained the aadA gene. In addition, qnrA was detected as the quinolone resistance determinant in 13 isolates. MLST revealed four known sequence types (STs), including ST744, ST38, ST1011 and ST2179, as well as one new sequence type (ST5086). Here we report the first study describing the clonal diversity of extended-spectrum β-lactamase (ESBL)- and plasmid AmpC-producing E. coli isolated from healthy broilers in Algeria. PMID:27530851

  20. Transfer of Antibiotic Resistance Marker Genes between Lactic Acid Bacteria in Model Rumen and Plant Environments▿

    PubMed Central

    Toomey, Niamh; Monaghan, Áine; Fanning, Séamus; Bolton, Declan

    2009-01-01

    Three wild-type dairy isolates of lactic acid bacteria (LAB) and one Lactococcus lactis control strain were analyzed for their ability to transfer antibiotic resistance determinants (plasmid or transposon located) to two LAB recipients using both in vitro methods and in vivo models. In vitro transfer experiments were carried out with the donors and recipients using the filter mating method. In vivo mating examined transfer in two natural environments, a rumen model and an alfalfa sprout model. All transconjugants were confirmed by Etest, PCR, pulsed-field gel electrophoresis, and Southern blotting. The in vitro filter mating method demonstrated high transfer frequencies between all LAB pairs, ranging from 1.8 × 10−5 to 2.2 × 10−2 transconjugants per recipient. Transconjugants were detected in the rumen model for all mating pairs tested; however, the frequencies of transfer were low and inconsistent over 48 h (ranging from 1.0 × 10−9 to 8.0 × 10−6 transconjugants per recipient). The plant model provided an environment that appeared to promote comparatively higher transfer frequencies between all LAB pairs tested over the 9-day period (transfer frequencies ranged from 4.7 × 10−4 to 3.9 × 10−1 transconjugants per recipient). In our test models, dairy cultures of LAB can act as a source of mobile genetic elements encoding antibiotic resistance that can spread to other LAB. This observation could have food safety and public health implications. PMID:19270126

  1. Structural Basis of APH(3)-IIIa-Mediated Resistance to N1-Substituted Aminoglycoside Antibiotics

    SciTech Connect

    Fong, D.; Berghuis, A

    2009-01-01

    Butirosin is unique among the naturally occurring aminoglycosides, having a substituted amino group at position 1 (N1) of the 2-deoxystreptamine ring with an (S)-4-amino-2-hydroxybutyrate (AHB) group. While bacterial resistance to aminoglycosides can be ascribed chiefly to drug inactivation by plasmid-encoded aminoglycoside-modifying enzymes, the presence of an AHB group protects the aminoglycoside from binding to many resistance enzymes, and hence, the antibiotic retains its bactericidal properties. Consequently, several semisynthetic N1-substituted aminoglycosides, such as amikacin, isepamicin, and netilmicin, were developed. Unfortunately, butirosin, amikacin, and isepamicin are not resistant to inactivation by 3'-aminoglycoside O-phosphotransferase type IIIa [APH(3')-IIIa]. We report here the crystal structure of APH(3')-IIIa in complex with an ATP analog, AMPPNP [adenosine 5'-(?,{gamma}-imido)triphosphate], and butirosin A to 2.4-A resolution. The structure shows that butirosin A binds to the enzyme in a manner analogous to other 4,5-disubstituted aminoglycosides, and the flexible antibiotic-binding loop is key to the accommodation of structurally diverse substrates. Based on the crystal structure, we have also constructed a model of APH(3')-IIIa in complex with amikacin, a commonly used semisynthetic N1-substituted 4,6-disubstituted aminoglycoside. Together, these results suggest a strategy to further derivatize the AHB group in order to generate new aminoglycoside derivatives that can elude inactivation by resistance enzymes while maintaining their ability to bind to the ribosomal A site.

  2. Resistance to colistin: what is the fate for this antibiotic in pig production?

    PubMed

    Rhouma, Mohamed; Beaudry, Francis; Letellier, Ann

    2016-08-01

    Colistin, a cationic polypeptide antibiotic, has reappeared in human medicine as a last-line treatment option for multidrug-resistant Gram-negative bacteria (MDR-GNB). Colistin is widely used in veterinary medicine for the treatment of gastrointestinal infections caused by Enterobacteriaceae. GNB resistant to colistin owing to chromosomal mutations have already been reported both in human and veterinary medicine, however several recent studies have just identified a plasmid-mediated mcr-1 gene encoding for colistin resistance in Escherichia coli colistin resistance. The discovery of a non-chromosomal mechanism of colistin resistance in E. coli has led to strong reactions in the scientific community and to concern among physicians and veterinarians. Colistin use in food animals and particularly in pig production has been singled out as responsible for the emergence of colistin resistance. The present review will focus mainly on the possible link between colistin use in pigs and the spread of colistin resistance in Enterobacteriaceae. First we demonstrate a possible link between Enterobacteriaceae resistance emergence and oral colistin pharmacokinetics/pharmacodynamics and its administration modalities in pigs. We then discuss the potential impact of colistin use in pigs on public health with respect to resistance. We believe that colistin use in pig production should be re-evaluated and its dosing and usage optimised. Moreover, the search for competitive alternatives to using colistin with swine is of paramount importance to preserve the effectiveness of this antibiotic for the treatment of MDR-GNB infections in human medicine. PMID:27234675

  3. Metagenomic analysis reveals that bacteriophages are reservoirs of