Science.gov

Sample records for plasmid encoded antibiotic

  1. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria

    PubMed Central

    Bennett, P M

    2008-01-01

    Bacteria have existed on Earth for three billion years or so and have become adept at protecting themselves against toxic chemicals. Antibiotics have been in clinical use for a little more than 6 decades. That antibiotic resistance is now a major clinical problem all over the world attests to the success and speed of bacterial adaptation. Mechanisms of antibiotic resistance in bacteria are varied and include target protection, target substitution, antibiotic detoxification and block of intracellular antibiotic accumulation. Acquisition of genes needed to elaborate the various mechanisms is greatly aided by a variety of promiscuous gene transfer systems, such as bacterial conjugative plasmids, transposable elements and integron systems, that move genes from one DNA system to another and from one bacterial cell to another, not necessarily one related to the gene donor. Bacterial plasmids serve as the scaffold on which are assembled arrays of antibiotic resistance genes, by transposition (transposable elements and ISCR mediated transposition) and site-specific recombination mechanisms (integron gene cassettes). The evidence suggests that antibiotic resistance genes in human bacterial pathogens originate from a multitude of bacterial sources, indicating that the genomes of all bacteria can be considered as a single global gene pool into which most, if not all, bacteria can dip for genes necessary for survival. In terms of antibiotic resistance, plasmids serve a central role, as the vehicles for resistance gene capture and their subsequent dissemination. These various aspects of bacterial resistance to antibiotics will be explored in this presentation. PMID:18193080

  2. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria.

    PubMed

    Bennett, P M

    2008-03-01

    Bacteria have existed on Earth for three billion years or so and have become adept at protecting themselves against toxic chemicals. Antibiotics have been in clinical use for a little more than 6 decades. That antibiotic resistance is now a major clinical problem all over the world attests to the success and speed of bacterial adaptation. Mechanisms of antibiotic resistance in bacteria are varied and include target protection, target substitution, antibiotic detoxification and block of intracellular antibiotic accumulation. Acquisition of genes needed to elaborate the various mechanisms is greatly aided by a variety of promiscuous gene transfer systems, such as bacterial conjugative plasmids, transposable elements and integron systems, that move genes from one DNA system to another and from one bacterial cell to another, not necessarily one related to the gene donor. Bacterial plasmids serve as the scaffold on which are assembled arrays of antibiotic resistance genes, by transposition (transposable elements and ISCR mediated transposition) and site-specific recombination mechanisms (integron gene cassettes).The evidence suggests that antibiotic resistance genes in human bacterial pathogens originate from a multitude of bacterial sources, indicating that the genomes of all bacteria can be considered as a single global gene pool into which most, if not all, bacteria can dip for genes necessary for survival. In terms of antibiotic resistance, plasmids serve a central role, as the vehicles for resistance gene capture and their subsequent dissemination. These various aspects of bacterial resistance to antibiotics will be explored in this presentation. PMID:18193080

  3. Plasmids encoding therapeutic agents

    DOEpatents

    Keener, William K.

    2007-08-07

    Plasmids encoding anti-HIV and anti-anthrax therapeutic agents are disclosed. Plasmid pWKK-500 encodes a fusion protein containing DP178 as a targeting moiety, the ricin A chain, an HIV protease cleavable linker, and a truncated ricin B chain. N-terminal extensions of the fusion protein include the maltose binding protein and a Factor Xa protease site. C-terminal extensions include a hydrophobic linker, an L domain motif peptide, a KDEL ER retention signal, another Factor Xa protease site, an out-of-frame buforin II coding sequence, the lacZ.alpha. peptide, and a polyhistidine tag. More than twenty derivatives of plasmid pWKK-500 are described. Plasmids pWKK-700 and pWKK-800 are similar to pWKK-500 wherein the DP178-encoding sequence is substituted by RANTES- and SDF-1-encoding sequences, respectively. Plasmid pWKK-900 is similar to pWKK-500 wherein the HIV protease cleavable linker is substituted by a lethal factor (LF) peptide-cleavable linker.

  4. Nonconjugative Plasmids Encoding Sulfanilamide Resistance

    PubMed Central

    Mitsuhashi, Susumu; Inoue, Kunio; Inoue, Matsuhisa

    1977-01-01

    Nonconjugative plasmids encoding sulfanilamide (Sa) resistance were demonstrated at a high frequency in Shigella and Escherichia coli strains resistant to sulfanilamide. These Sa plasmids were all compatible with the standard plasmids used in compatibility testing. The sizes of seven Sa plasmids were measured by electron microscopy and ranged from 1.79 to 2.08 μm, corresponding to 3.5 to 3.9 megadaltons. Images PMID:334067

  5. Transfer in Marine Sediments of the Naturally Occurring Plasmid pRAS1 Encoding Multiple Antibiotic Resistance

    PubMed Central

    Sandaa, Ruth-Anne; Enger, Øivind

    1994-01-01

    The results of microcosm experiments performed with the fish-pathogenic bacterium Aeromonas salmonicida acting as a donor showed that promiscuous plasmid pRAS1, which encodes tetracycline resistance, is transferred at a high frequency in marine sediments even in the absence of a selective factor. The presence of oxytetracycline resulted in an increase in the transfer frequency compared with that of a microcosm to which no selective factor was added. Transfer frequencies of 3.4 × 10-1 transconjugant per recipient and 3.6 transconjugants per donor cell were obtained in a microcosm to which oxytetracycline had been added. Hybridization with a DNA probe specific for plasmid pRAS1 revealed that 45.8% of the oxytetracycline-resistant isolates obtained from a microcosm with no selective pressure carried the plasmid, while 86.8% of the isolates obtained from a microcosm to which oxytetracycline had been added carried the plasmid. Phenotypic characterization of the transconjugants revealed that the plasmid had been transferred to a variety of different biotypes in both microcosms. The diversity among the transconjugants isolated from the microcosm to which oxytetracycline had been added was substantially lower than the diversity among the transconjugants isolated from the microcosm to which no selective agent had been added. PMID:16349453

  6. Antibiotic Trapping by Plasmid-Encoded CMY-2 β-Lactamase Combined with Reduced Outer Membrane Permeability as a Mechanism of Carbapenem Resistance in Escherichia coli

    PubMed Central

    van der Bij, Akke K.; van Boxtel, Ria; Pitout, Johann D. D.; van Ulsen, Peter; Melles, Damian C.; Tommassen, Jan

    2013-01-01

    A liver transplant patient was admitted with cholangitis, for which meropenem therapy was started. Initial cultures showed a carbapenem-susceptible (CS) Escherichia coli strain, but during admission, a carbapenem-resistant (CR) E. coli strain was isolated. Analysis of the outer membrane protein profiles showed that both CS and CR E. coli lacked the porins OmpF and OmpC. Furthermore, PCR and sequence analysis revealed that both CS and CR E. coli possessed blaCTX-M-15 and blaOXA-1. The CR E. coli strain additionally harbored blaCMY-2 and demonstrated a >15-fold increase in β-lactamase activity against nitrocefin, but no hydrolysis of meropenem was detected. However, nitrocefin hydrolysis appeared strongly inhibited by meropenem. Furthermore, the CMY-2 enzyme demonstrated lower electrophoretic mobility after its incubation either in vitro or in vivo with meropenem, indicative of its covalent modification with meropenem. The presence of the acyl-enzyme complex was confirmed by mass spectrometry. By transformation of the CMY-2-encoding plasmid into various E. coli strains, it was established that both porin deficiency and high-level expression of the enzyme were needed to confer meropenem resistance. In conclusion, carbapenem resistance emerged by a combination of elevated β-lactamase production and lack of porin expression. Due to the reduced outer membrane permeability, only small amounts of meropenem can enter the periplasm, where they are trapped but not degraded by the large amount of the β-lactamase. This study, therefore, provides evidence that the mechanism of “trapping” by CMY-2 β-lactamase plays a role in carbapenem resistance. PMID:23733461

  7. Analysis of plasmids in nosocomial strains of multiple-antibiotic-resistant Staphylococcus aureus.

    PubMed Central

    Lyon, B R; May, J W; Skurray, R A

    1983-01-01

    Nosocomial infections caused by Staphylococcus aureus strains resistant to methicillin and multiple antibiotics have reached epidemic proportions in Melbourne, Australia, over the past 5 years. Plasmid analysis of representative clinical isolates demonstrated the presence of three classes of plasmid DNA in most strains. Resistance to gentamicin, kanamycin, and tobramycin was usually mediated by an 18-megadalton plasmid but could also be encoded by a related 22-megadalton plasmid. Two distinguishable plasmids of 3 megadaltons each endowed resistance to chloramphenicol, and the third class consisted of small plasmids, each approximately 1 megadalton in size, with no attributable function. An extensive array of resistance determinants, including some which have usually been associated with a plasmid locus, were found to exist on the chromosome. Evidence that resistance to gentamicin, kanamycin, and tobramycin is chromosomally encoded in some clinical isolates suggests that this determinant may have undergone genetic translocation onto the staphylococcal chromosome. Images PMID:6311086

  8. Exploring antibiotic resistance genes and metal resistance genes in plasmid metagenomes from wastewater treatment plants.

    PubMed

    Li, An-Dong; Li, Li-Guan; Zhang, Tong

    2015-01-01

    Plasmids operate as independent genetic elements in microorganism communities. Through horizontal gene transfer (HGT), they can provide their host microorganisms with important functions such as antibiotic resistance and heavy metal resistance. In this study, six metagenomic libraries were constructed with plasmid DNA extracted from influent, activated sludge (AS) and digested sludge (DS) of two wastewater treatment plants (WWTPs). Compared with the metagenomes of the total DNA extracted from the same sectors of the wastewater treatment plant, the plasmid metagenomes had significantly higher annotation rates, indicating that the functional genes on plasmids are commonly shared by those studied microorganisms. Meanwhile, the plasmid metagenomes also encoded many more genes related to defense mechanisms, including ARGs. Searching against an antibiotic resistance genes (ARGs) database and a metal resistance genes (MRGs) database revealed a broad-spectrum of antibiotic (323 out of a total 618 subtypes) and MRGs (23 out of a total 23 types) on these plasmid metagenomes. The influent plasmid metagenomes contained many more resistance genes (both ARGs and MRGs) than the AS and the DS metagenomes. Sixteen novel plasmids with a complete circular structure that carried these resistance genes were assembled from the plasmid metagenomes. The results of this study demonstrated that the plasmids in WWTPs could be important reservoirs for resistance genes, and may play a significant role in the horizontal transfer of these genes. PMID:26441947

  9. Exploring antibiotic resistance genes and metal resistance genes in plasmid metagenomes from wastewater treatment plants

    PubMed Central

    Li, An-Dong; Li, Li-Guan; Zhang, Tong

    2015-01-01

    Plasmids operate as independent genetic elements in microorganism communities. Through horizontal gene transfer (HGT), they can provide their host microorganisms with important functions such as antibiotic resistance and heavy metal resistance. In this study, six metagenomic libraries were constructed with plasmid DNA extracted from influent, activated sludge (AS) and digested sludge (DS) of two wastewater treatment plants (WWTPs). Compared with the metagenomes of the total DNA extracted from the same sectors of the wastewater treatment plant, the plasmid metagenomes had significantly higher annotation rates, indicating that the functional genes on plasmids are commonly shared by those studied microorganisms. Meanwhile, the plasmid metagenomes also encoded many more genes related to defense mechanisms, including ARGs. Searching against an antibiotic resistance genes (ARGs) database and a metal resistance genes (MRGs) database revealed a broad-spectrum of antibiotic (323 out of a total 618 subtypes) and MRGs (23 out of a total 23 types) on these plasmid metagenomes. The influent plasmid metagenomes contained many more resistance genes (both ARGs and MRGs) than the AS and the DS metagenomes. Sixteen novel plasmids with a complete circular structure that carried these resistance genes were assembled from the plasmid metagenomes. The results of this study demonstrated that the plasmids in WWTPs could be important reservoirs for resistance genes, and may play a significant role in the horizontal transfer of these genes. PMID:26441947

  10. Evolutionary Paths That Expand Plasmid Host-Range: Implications for Spread of Antibiotic Resistance.

    PubMed

    Loftie-Eaton, Wesley; Yano, Hirokazu; Burleigh, Stephen; Simmons, Ryan S; Hughes, Julie M; Rogers, Linda M; Hunter, Samuel S; Settles, Matthew L; Forney, Larry J; Ponciano, José M; Top, Eva M

    2016-04-01

    The World Health Organization has declared the emergence of antibiotic resistance to be a global threat to human health. Broad-host-range plasmids have a key role in causing this health crisis because they transfer multiple resistance genes to a wide range of bacteria. To limit the spread of antibiotic resistance, we need to gain insight into the mechanisms by which the host range of plasmids evolves. Although initially unstable plasmids have been shown to improve their persistence through evolution of the plasmid, the host, or both, the means by which this occurs are poorly understood. Here, we sought to identify the underlying genetic basis of expanded plasmid host-range and increased persistence of an antibiotic resistance plasmid using a combined experimental-modeling approach that included whole-genome resequencing, molecular genetics and a plasmid population dynamics model. In nine of the ten previously evolved clones, changes in host and plasmid each slightly improved plasmid persistence, but their combination resulted in a much larger improvement, which indicated positive epistasis. The only genetic change in the plasmid was the acquisition of a transposable element from a plasmid native to the Pseudomonas host used in these studies. The analysis of genetic deletions showed that the critical genes on this transposon encode a putative toxin-antitoxin (TA) and a cointegrate resolution system. As evolved plasmids were able to persist longer in multiple naïve hosts, acquisition of this transposon also expanded the plasmid's host range, which has important implications for the spread of antibiotic resistance. PMID:26668183

  11. Use of plasmid profiles in epidemiologic surveillance of disease outbreaks and in tracing the transmission of antibiotic resistance.

    PubMed Central

    Mayer, L W

    1988-01-01

    Plasmids are circular deoxyribonucleic acid molecules that exist in bacteria, usually independent of the chromosome. The study of plasmids is important to medical microbiology because plasmids can encode genes for antibiotic resistance or virulence factors. Plasmids can also serve as markers of various bacterial strains when a typing system referred to as plasmid profiling, or plasmid fingerprinting is used. In these methods partially purified plasma deoxyribonucleic acid species are separated according to molecular size by agarose gel electrophoresis. In a second procedure, plasmid deoxyribonucleic acid which has been cleaved by restriction endonucleases can be separated by agarose gel electrophoresis and the resulting pattern of fragments can be used to verify the identity of bacterial isolates. Because many species of bacteria contain plasmids, plasmid profile typing has been used to investigate outbreaks of many bacterial diseases and to trace inter- and intra-species spread of antibiotic resistance. Images PMID:2852997

  12. Analysis of Genetic Toggle Switch Systems Encoded on Plasmids

    NASA Astrophysics Data System (ADS)

    Loinger, Adiel; Biham, Ofer

    2009-08-01

    Genetic switch systems with mutual repression of two transcription factors, encoded on plasmids, are studied using stochastic methods. The plasmid copy number is found to strongly affect the behavior of these systems. More specifically, the average time between spontaneous switching events quickly increases with the number of plasmids. It was shown before that for a single copy encoded on the chromosome, the exclusive switch is more stable than the general switch. Here we show that when the switch is encoded on a sufficiently large number of plasmids, the situation is reversed and the general switch is more stable than the exclusive switch. These predictions can be tested experimentally using methods of synthetic biology.

  13. Genomic and Functional Characterization of qnr-Encoding Plasmids from Municipal Wastewater Biosolid Klebsiella pneumoniae Isolates

    PubMed Central

    Kaplan, Ella; Sela, Noa; Doron-Faigenboim, Adi; Navon-Venezia, Shiri; Jurkevitch, Edouard; Cytryn, Eddie

    2015-01-01

    Municipal wastewater treatment facilities are considered to be “hotspots” for antibiotic resistance, since they conjoin high densities of environmental and fecal bacteria with selective pressure in the form of sub-therapeutic concentrations of antibiotics. Discharged effluents and biosolids from these facilities can disseminate antibiotic resistant genes to terrestrial and aquatic environments, potentially contributing to the increasing global trend in antibiotic resistance. This phenomenon is especially pertinent when resistance genes are associated with mobile genetic elements such as conjugative plasmids, which can be transferred between bacterial phyla. Fluoroquinolones are among the most abundant antibiotic compounds detected in wastewater treatment facilities, especially in biosolids, where due to their hydrophobic properties they accumulate to concentrations that may exceed 40 mg/L. Although fluoroquinolone resistance is traditionally associated with mutations in the gyrA/topoisomerase IV genes, there is increasing evidence of plasmid-mediated quinolone resistance, which is primarily encoded on qnr genes. In this study, we sequenced seven qnr-harboring plasmids from a diverse collection of Klebsiella strains, isolated from dewatered biosolids from a large wastewater treatment facility in Israel. One of the plasmids, termed pKPSH-11XL was a large (185.4 kbp), multi-drug resistance, IncF-type plasmid that harbored qnrB and 10 additional antibiotic resistance genes that conferred resistance to five different antibiotic families. It was highly similar to the pKPN3-like plasmid family that has been detected in multidrug resistant clinical Klebsiella isolates. In contrast, the six additional plasmids were much smaller (7–9 Kbp) and harbored a qnrS -type gene. These plasmids were highly similar to each other and closely resembled pGNB2, a plasmid isolated from a German wastewater treatment facility. Comparative genome analyses of pKPSH-11XL and other pKPN3

  14. Genomic and Functional Characterization of qnr-Encoding Plasmids from Municipal Wastewater Biosolid Klebsiella pneumoniae Isolates.

    PubMed

    Kaplan, Ella; Sela, Noa; Doron-Faigenboim, Adi; Navon-Venezia, Shiri; Jurkevitch, Edouard; Cytryn, Eddie

    2015-01-01

    Municipal wastewater treatment facilities are considered to be "hotspots" for antibiotic resistance, since they conjoin high densities of environmental and fecal bacteria with selective pressure in the form of sub-therapeutic concentrations of antibiotics. Discharged effluents and biosolids from these facilities can disseminate antibiotic resistant genes to terrestrial and aquatic environments, potentially contributing to the increasing global trend in antibiotic resistance. This phenomenon is especially pertinent when resistance genes are associated with mobile genetic elements such as conjugative plasmids, which can be transferred between bacterial phyla. Fluoroquinolones are among the most abundant antibiotic compounds detected in wastewater treatment facilities, especially in biosolids, where due to their hydrophobic properties they accumulate to concentrations that may exceed 40 mg/L. Although fluoroquinolone resistance is traditionally associated with mutations in the gyrA/topoisomerase IV genes, there is increasing evidence of plasmid-mediated quinolone resistance, which is primarily encoded on qnr genes. In this study, we sequenced seven qnr-harboring plasmids from a diverse collection of Klebsiella strains, isolated from dewatered biosolids from a large wastewater treatment facility in Israel. One of the plasmids, termed pKPSH-11XL was a large (185.4 kbp), multi-drug resistance, IncF-type plasmid that harbored qnrB and 10 additional antibiotic resistance genes that conferred resistance to five different antibiotic families. It was highly similar to the pKPN3-like plasmid family that has been detected in multidrug resistant clinical Klebsiella isolates. In contrast, the six additional plasmids were much smaller (7-9 Kbp) and harbored a qnrS -type gene. These plasmids were highly similar to each other and closely resembled pGNB2, a plasmid isolated from a German wastewater treatment facility. Comparative genome analyses of pKPSH-11XL and other pKPN3-like

  15. Draft genome sequences of two Aeromonas salmonicida subsp. salmonicida isolates harboring plasmids conferring antibiotic resistance.

    PubMed

    Vincent, Antony T; Tanaka, Katherine H; Trudel, Melanie V; Frenette, Michel; Derome, Nicolas; Charette, Steve J

    2015-02-01

    The bacterium Aeromonas salmonicida is the etiological agent of furunculosis, a widespread fish disease causing important economic losses to the fish farming industry. Antibiotic treatments in fish farms may be challenging given the existence of multidrug-resistant isolates of this bacterium. Here, we report the draft genome sequences of the 2004-05MF26 and 2009-144K3 isolates, which harbor plasmids conferring antibiotic resistance. Both isolates also carry the large plasmid pAsa5, which is known to encode a type three secretion system (TTSS) and the pAsal1 plasmid which has the aopP gene producing a TTSS effector. These two isolates are good representatives of the plasmid diversity in A. salmonicida subsp. salmonicida. PMID:25724776

  16. Improved antibiotic-free DNA vaccine vectors utilizing a novel RNA based plasmid selection system

    PubMed Central

    Luke, Jeremy; Carnes, Aaron E; Hodgson, Clague P; Williams, James A

    2009-01-01

    To ensure safety, regulatory agencies recommend elimination of antibiotic resistance markers from therapeutic and vaccine plasmid DNA vectors. Here, we describe the development and application of a novel antibiotic-free selection system. Vectors incorporate and express a 150 bp RNA-OUT antisense RNA. RNA-OUT represses expression of a chromosomally integrated constitutively expressed counter-selectable marker (sacB), allowing plasmid selection on sucrose. Sucrose selectable DNA vaccine vectors combine antibiotic-free selection with highly productive fermentation manufacturing (>1 gm/L plasmid DNA yields), while improving in vivo expression of encoded proteins and increasing immune responses to target antigens. These vectors are safer, more potent, alternatives for DNA therapy or vaccination. PMID:19559109

  17. Plasmid Mediated Antibiotic Resistance in Isolated Bacteria From Burned Patients

    PubMed Central

    Beige, Fahimeh; Baseri Salehi, Majid; Bahador, Nima; Mobasherzadeh, Sina

    2014-01-01

    Background: Nowadays, the treatment of burned patients is difficult because of the high frequency of infection with antibiotic resistance bacteria. Objectives: This study was conducted to evaluate the level of antibiotic resistance in Gram-negative bacteria and its relation with the existence of plasmid. Materials and Methods: The samples were collected from two hundred twenty hospitalized burned patients in Isfahan burn hospital during a three-month period (March 2012 to June 2012). The samples were isolated and the Gram-negative bacteria were identified using phenotypic method and API 20E System. Antibiotic susceptibility and plasmid profile were determined by standard Agar disc diffusion and plasmid spin column extraction methods. Results: Totally 117 Gram-negative bacteria were isolated, the most common were Pseudomonas aerugionsa (37.6%), P. fluorescens (25.6%), Acinetobacter baumanii (20/5%) and Klebsiella pneumoniae (7.6%), respectively. The isolates showed high frequency of antibiotic resistance against ceftazidime and co-amoxiclave (100%) and low frequency of antibiotic resistance against amikacin with (70%).The results indicated that 60% of the isolates harboured plasmid. On the other hand, the patients infected with A. baumanii and P. aeruginosa were cured (with 60% frequency) whereas, those infected with P. fluorescens were not cured. Hence, probably antibiotic resistance markers of A. baumanii and P. aeruginosa are plasmid mediated; however, P. fluorescens is chromosomally mediated. Conclusions: Based on our findings, P. aerugionsa is a major causative agent of wound infections and amikacin could be considered as a more effective antibiotic for treatment of the burned patients. PMID:25789121

  18. Ornamental fish as a source of plasmid-mediated quinolone resistance genes and antibiotic resistance plasmids.

    PubMed

    Dobiasova, Hana; Kutilova, Iva; Piackova, Veronika; Vesely, Tomas; Cizek, Alois; Dolejska, Monika

    2014-07-16

    Growing ornamental fish industry is associated with public health concerns including extensive antibiotic use accompanied by increasing antibiotic resistance. The aim of this study was to analyze Aeromonas isolates from imported tropical ornamental fish and coldwater koi carps bred in the Czech Republic to assess the potential risk of ornamental fish as a source of plasmid-mediated quinolone resistance genes (PMQR) and antibiotic resistance plasmids. A collection of Aeromonas spp. with reduced susceptibility to ciprofloxacin (MIC ≥ 0.05 mg/L) was selected for the detection of PMQR genes. Isolates harbouring PMQR genes were further analyzed for the additional antibiotic resistance, integron content, clonality, biofilm production and transferability of PMQR genes by conjugation and transformation. Comparative analysis of plasmids carrying PMQR genes was performed. Fifteen (19%, n=80) isolates from koi carps and 18 (24%, n=76) isolates from imported ornamental fish were positive for qnrS2, aac(6')-Ib-cr or qnrB17 genes. PMQR-positive isolates from imported ornamental fish showed higher MIC levels to quinolones, multiresistance and diverse content of antibiotic resistance genes and integrons compared to the isolates from the carps. Related IncU plasmids harbouring qnrS2 and aac(6')-Ib-cr genes were found in Aeromonas spp. from imported ornamental fish and koi carps from various geographical areas. Ornamental fish may represent a potential source of multiresistant bacteria and mobile genetic elements for the environment and for humans. PMID:24629900

  19. Toxin–antitoxin systems are ubiquitous and plasmid-encoded in vancomycin-resistant enterococci

    PubMed Central

    Moritz, Elizabeth M.; Hergenrother, Paul J.

    2007-01-01

    Vancomycin-resistant enterococci (VRE) are common hospital pathogens that are resistant to most major classes of antibiotics. The incidence of VRE is increasing rapidly, to the point where over one-quarter of enterococcal infections in intensive care units are now resistant to vancomycin. The exact mechanism by which VRE maintains its plasmid-encoded resistance genes is ill-defined, and novel targets for the treatment of VRE are lacking. In an effort to identify novel protein targets for the treatment of VRE infections, we probed the plasmids obtained from 75 VRE isolates for the presence of toxin–antitoxin (TA) gene systems. Remarkably, genes for one particular TA pair, the mazEF system (originally identified on the Escherichia coli chromosome), were present on plasmids from 75/75 (100%) of the isolates. Furthermore, mazEF was on the same plasmid as vanA in the vast majority of cases (>90%). Plasmid stability tests and RT-PCR raise the possibility that this plasmid-encoded mazEF is indeed functional in enterococci. Given this ubiquity of mazEF in VRE and the deleterious activity of the MazF toxin, disruption of mazEF with pharmacological agents is an attractive strategy for tailored antimicrobial therapy. PMID:17190821

  20. Self-transmissible plasmids in staphylococci that encode resistance to aminoglycosides.

    PubMed Central

    Archer, G L; Johnston, J L

    1983-01-01

    High-level resistance to gentamicin, tobramycin, and kanamycin was transferred between staphylococci of the same and different species by filter mating. Resistance and transfer proficiency were mediated by plasmids ranging from 38 to 54 kilobases in size. All of the plasmids encoded intermediate resistance to amikacin and netilmicin and resistance to ethidium bromide; some encoded beta-lactamase production. None of these plasmids carried resistance to other antibiotics or heavy metals. Transfer of antibiotic resistance occurred by a mechanism similar to that of conjugation, because it was DNase resistant, required cell-to-cell contact, and did not appear to involve phage. The participation of phage in transfer appeared to be unlikely because mijtomicin C-induced lysates of donor isolates did not mediate transfer, filter mating transfer proceeded at high frequency between nonlysogenic donor and recipient cells, and transfer of the aminoglycoside resistance plasmid mobilized the transfer of as many as five additional plasmids. All 17 gentamicin-resistant Staphylococcus aureus and all 6 Staphylococcus epidermidis isolates obtained from an outbreak of staphylococcal infections in a newborn nursery contained conjugative plasmids, as did all 6 gentamicin-resistant S. aureus isolates from bacteremic adults. However, only 3 of 10 gentamicin-resistant S. epidermidis isolates from colonized cardiac surgery patients and 1 of 2 S. epidermidis isolates from patients with prosthetic valve endocarditis transferred gentamicin resistance by filter mating. The recent increase in nosocomial infections caused by gentamicin-resistant staphylococci may be partially explained by the evolution of self-transmissible plasmids in these isolates. Images PMID:6625557

  1. Diversification of broad host range plasmids correlates with the presence of antibiotic resistance genes.

    PubMed

    Li, Xiaobin; Wang, Yafei; Brown, Celeste J; Yao, Fei; Jiang, Yong; Top, Eva M; Li, Hui

    2016-01-01

    The IncP-1ε subgroup is a recently identified phylogenetic clade within IncP-1 plasmids, which plays an important role in the spread of antibiotic resistance and degradation of xenobiotic pollutants. Here, four IncP-1ε plasmids were exogenously captured from a petroleum-contaminated habitat in China and compared phylogenetically and genomically with previously reported IncP-1ε and other IncP-1 plasmids. The IncP-1ε plasmids can be clearly subdivided into two subclades, designated as ε-I and ε-II, based on phylogenetic analysis of backbone proteins TraI and TrfA. This was further supported by comparison of concatenated backbone genes. Moreover, the two subclades differed in the transposon types, phenotypes and insertion locations of the accessory elements. The accessory genes on ε-I plasmids were inserted between parA and traC, and harbored ISPa17 and Tn402-like transposon modules, typically carrying antibiotic resistance genes. In contrast, the accessory elements on ε-II plasmids were typically located between trfA and oriV, and contained IS1071, which was commonly inserted within the Tn501-like transposon, typically harboring a cluster of genes encoding mercury resistance and/or catabolic pathways. Our study is one of the first to compare IncP-1 plasmid genomes from China, expands the available collection of IncP-1ε plasmids and enhances our understanding of their diversity, biogeography and evolutionary history. PMID:26635412

  2. Whole genome sequencing of diverse Shiga toxin-producing and non-producing Escherichia coli strains reveals a variety of virulence and novel antibiotic resistance plasmids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genomes of a diverse set of Shiga toxin-producing E. coli strains and the presence of 38 plasmids among all the isolates were determined. Among the novel plasmids found, there were eight that encoded resistance genes to antibiotics, including aminoglycosides, carbapenems, penicillins, cephalosp...

  3. Characterization of a multiple antibiotic resistance plasmid from Haemophilus ducreyi.

    PubMed Central

    Willson, P J; Albritton, W L; Slaney, L; Setlow, J K

    1989-01-01

    Plasmid pLS88 from a clinical isolate of Haemophilus ducreyi encoded resistance determinants for sulfonamides and streptomycin related to those of RSF1010 and for kanamycin related to Tn903 but lacked the inverted repeats of the transposon. Its host range included Haemophilus influenzae, Actinobacillus pleuropneumoniae, and Escherichia coli; and it was compatible with pDM2 and RSF1010. Images PMID:2684012

  4. Selective Conditions for a Multidrug Resistance Plasmid Depend on the Sociality of Antibiotic Resistance

    PubMed Central

    Wood, A. Jamie; Brockhurst, Michael A.

    2016-01-01

    Multidrug resistance (MDR) plasmids frequently carry antibiotic resistance genes conferring qualitatively different mechanisms of resistance. We show here that the antibiotic concentrations selecting for the RK2 plasmid in Escherichia coli depend upon the sociality of the drug resistance: the selection for selfish drug resistance (efflux pump) occurred at very low drug concentrations, just 1.3% of the MIC of the plasmid-free antibiotic-sensitive strain, whereas selection for cooperative drug resistance (modifying enzyme) occurred at drug concentrations exceeding the MIC of the plasmid-free strain. PMID:26787694

  5. Persistent, Toxin-Antitoxin System-Independent, Tetracycline Resistance-Encoding Plasmid from a Dairy Enterococcus faecium Isolate▿

    PubMed Central

    Li, Xinhui; Alvarez, Valente; Harper, Willis James; Wang, Hua H.

    2011-01-01

    A tetracycline-resistant (Tetr) dairy Enterococcus faecium isolate designated M7M2 was found to carry both tet(M) and tet(L) genes on a 19.6-kb plasmid. After consecutive transfer in the absence of tetracycline, the resistance-encoding plasmid persisted in 99% of the progenies. DNA sequence analysis revealed that the 19.6-kb plasmid contained 28 open reading frames (ORFs), including a tet(M)-tet(L)-mob gene cluster, as well as a 10.6-kb backbone highly homologous (99.9%) to the reported plasmid pRE25, but without an identified toxin-antitoxin (TA) plasmid stabilization system. The derived backbone plasmid without the Tetr determinants exhibited a 100% retention rate in the presence of acridine orange, suggesting the presence of a TA-independent plasmid stabilization mechanism, with its impact on the persistence of a broad spectrum of resistance-encoding traits still to be elucidated. The tet(M)-tet(L) gene cluster from M7M2 was functional and transmissible and led to acquired resistance in Enterococcus faecalis OG1RF by electroporation and in Streptococcus mutans UA159 by natural transformation. Southern hybridization showed that both the tet(M) and tet(L) genes were integrated into the chromosome of S. mutans UA159, while the whole plasmid was transferred to and retained in E. faecalis OG1RF. Quantitative real-time reverse transcription-PCR (RT-PCR) indicated tetracycline-induced transcription of both the tet(M) and tet(L) genes of pM7M2. The results indicated that multiple mechanisms might have contributed to the persistence of antibiotic resistance-encoding genes and that the plasmids pM7M2, pIP816, and pRE25 are likely correlated evolutionarily. PMID:21784909

  6. Control of infection with multiple antibiotic resistant bacteria in a hospital renal unit: the value of plasmid characterization.

    PubMed Central

    Reed, C. S.; Barrett, S. P.; Threlfall, E. J.; Cheasty, T.

    1995-01-01

    An outbreak of infections due to multiple antibiotic-resistant bacteria took place over a period of approximately 18 months in a renal unit. Strains of Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, Citrobacter spp. and Pseudomonas spp. were involved, and a variety of antibiotic resistances was encountered. Closely related plasmids encoding resistance to aztreonam, ceftazidime and piperacillin, possibly derived from an archetypal plasmid of 105 kb were found in the majority of isolates examined. After limiting the use of aztreonam the incidence of new patient isolates of multiple-resistant organisms was greatly reduced. This study demonstrated how molecular studies can contribute to the control of an outbreak situation in a hospital unit by providing an impetus to reduce the use of specific antibiotics. Images Fig. 2 PMID:7641839

  7. Piggery manure used for soil fertilization is a reservoir for transferable antibiotic resistance plasmids.

    PubMed

    Binh, Chu Thi Thanh; Heuer, Holger; Kaupenjohann, Martin; Smalla, Kornelia

    2008-10-01

    In this study, the prevalence and types of transferable antibiotic resistance plasmids in piggery manure were investigated. Samples from manure storage tanks of 15 farms in Germany were analysed, representing diverse sizes of herds, meat or piglet production. Antibiotic resistance plasmids from manure bacteria were captured in gfp-tagged rifampicin-resistant Escherichia coli and characterized. The occurrence of plasmid types was also detected in total community DNA by PCR and hybridization. A total of 228 transconjugants were captured from 15 manures using selective media supplemented with amoxicillin, sulfadiazine or tetracycline. The restriction patterns of 81 plasmids representing different antibiotic resistance patterns or different samples clustered into seven groups. Replicon probing revealed that 28 of the plasmids belonged to IncN, one to IncW, 13 to IncP-1 and 19 to the recently discovered pHHV216-like plasmids. The amoxicillin resistance gene bla-TEM was detected on 44 plasmids, and sulphonamide resistance genes sul1, sul2 and/or sul3 on 68 plasmids. Hybridization of replicon-specific sequences amplified from community DNA revealed that IncP-1 and pHHV216-like plasmids were detected in all manures, while IncN and IncW ones were less frequent. This study showed that 'field-scale' piggery manure is a reservoir of broad-host range plasmids conferring multiple antibiotic resistance genes. PMID:18557938

  8. Structures of replication initiation proteins from staphylococcal antibiotic resistance plasmids reveal protein asymmetry and flexibility are necessary for replication

    PubMed Central

    Carr, Stephen B.; Phillips, Simon E.V.; Thomas, Christopher D.

    2016-01-01

    Antibiotic resistance in pathogenic bacteria is a continual threat to human health, often residing in extrachromosomal plasmid DNA. Plasmids of the pT181 family are widespread and confer various antibiotic resistances to Staphylococcus aureus. They replicate via a rolling circle mechanism that requires a multi-functional, plasmid-encoded replication protein to initiate replication, recruit a helicase to the site of initiation and terminate replication after DNA synthesis is complete. We present the first atomic resolution structures of three such replication proteins that reveal distinct, functionally relevant conformations. The proteins possess a unique active site and have been shown to contain a catalytically essential metal ion that is bound in a manner distinct from that of any other rolling circle replication proteins. These structures are the first examples of the Rep_trans Pfam family providing insights into the replication of numerous antibiotic resistance plasmids from Gram-positive bacteria, Gram-negative phage and the mobilisation of DNA by conjugative transposons. PMID:26792891

  9. Structures of replication initiation proteins from staphylococcal antibiotic resistance plasmids reveal protein asymmetry and flexibility are necessary for replication.

    PubMed

    Carr, Stephen B; Phillips, Simon E V; Thomas, Christopher D

    2016-03-18

    Antibiotic resistance in pathogenic bacteria is a continual threat to human health, often residing in extrachromosomal plasmid DNA. Plasmids of the pT181 family are widespread and confer various antibiotic resistances to Staphylococcus aureus. They replicate via a rolling circle mechanism that requires a multi-functional, plasmid-encoded replication protein to initiate replication, recruit a helicase to the site of initiation and terminate replication after DNA synthesis is complete. We present the first atomic resolution structures of three such replication proteins that reveal distinct, functionally relevant conformations. The proteins possess a unique active site and have been shown to contain a catalytically essential metal ion that is bound in a manner distinct from that of any other rolling circle replication proteins. These structures are the first examples of the Rep_trans Pfam family providing insights into the replication of numerous antibiotic resistance plasmids from Gram-positive bacteria, Gram-negative phage and the mobilisation of DNA by conjugative transposons. PMID:26792891

  10. Characterization of a plasmid-encoded urease gene cluster found in members of the family Enterobacteriaceae.

    PubMed

    D'Orazio, S E; Collins, C M

    1993-03-01

    Plasmid-encoded urease gene clusters found in uropathogenic isolates of Escherichia coli, Providencia stuartii, and Salmonella cubana demonstrated DNA homology, similar positions of restriction endonuclease cleavage sites, and manners of urease expression and therefore represent the same locus. DNA sequence analysis indicated that the plasmid-encoded urease genes are closely related to the Proteus mirabilis urease genes. PMID:8449894

  11. Derepression of conjugal transfer of the antibiotic resistance plasmid R100 by antisense RNA.

    PubMed Central

    Dempsey, W B

    1989-01-01

    Conjugal transfer of the normally repressed antibiotic resistance plasmid R100 was derepressed by fragments of R100 that carried the traJ promoter and the traJ leader but lacked the finP promoter. PMID:2468651

  12. Selection of a Multidrug Resistance Plasmid by Sublethal Levels of Antibiotics and Heavy Metals

    PubMed Central

    Gullberg, Erik; Albrecht, Lisa M.; Karlsson, Christoffer; Sandegren, Linus

    2014-01-01

    ABSTRACT How sublethal levels of antibiotics and heavy metals select for clinically important multidrug resistance plasmids is largely unknown. Carriage of plasmids generally confers substantial fitness costs, implying that for the plasmid-carrying bacteria to be maintained in the population, the plasmid cost needs to be balanced by a selective pressure conferred by, for example, antibiotics or heavy metals. We studied the effects of low levels of antibiotics and heavy metals on the selective maintenance of a 220-kbp extended-spectrum β-lactamase (ESBL) plasmid identified in a hospital outbreak of Klebsiella pneumoniae and Escherichia coli. The concentrations of antibiotics and heavy metals required to maintain plasmid-carrying bacteria, the minimal selective concentrations (MSCs), were in all cases below (almost up to 140-fold) the MIC of the plasmid-free susceptible bacteria. This finding indicates that the very low antibiotic and heavy metal levels found in polluted environments and in treated humans and animals might be sufficiently high to maintain multiresistance plasmids. When resistance genes were moved from the plasmid to the chromosome, the MSC decreased, showing that MSC for a specific resistance conditionally depends on genetic context. This finding suggests that a cost-free resistance could be maintained in a population by an infinitesimally low concentration of antibiotic. By studying the effect of combinations of several compounds, it was observed that for certain combinations of drugs each new compound added lowered the minimal selective concentration of the others. This combination effect could be a significant factor in the selection of multidrug resistance plasmids/bacterial clones in complex multidrug environments. PMID:25293762

  13. Plasmid profiles and antibiotic susceptibility patterns of Staphylococcus aureus isolates from Nigeria.

    PubMed

    Olukoya, D K; Asielue, J O; Olasupo, N A; Ikea, J K

    1995-06-01

    In an investigation into the problems of infections due to Staphylococcus aureus in Nigeria, 100 strains were isolated from various hospitals in Lagos. The strains were screened for the presence of plasmids and for susceptibility to antimicrobial agents. Plasmids were extracted by modification of the method of Takahashi and Nagono[1]. The plasmids were diverse in nature. The strains were found to be highly resistant to commonly prescribed antibiotics. PMID:8669391

  14. Chromosome- and Plasmid-Encoded β-Lactamases in Capnocytophaga spp.

    PubMed Central

    Handal, Trude; Giraud-Morin, Chantal; Caugant, Dominique A.; Madinier, Isabelle; Olsen, Ingar; Fosse, Thierry

    2005-01-01

    Chromosome- and plasmid-encoded CfxA2 and CfxA3 β-lactamases were detected in Capnocytophaga spp. from oral sources in France, Norway, and the United States. Unidentified chromosome-encoded β-lactamases were present in Capnocytophaga sputigena. Nucleotide sequence analysis of the CfxA3-encoding plasmid from C. ochracea revealed an unreported insertion sequence (ISCoc1) upstream of the cfxA gene. PMID:16127077

  15. Cotransfer of antibiotic resistance genes and a hylEfm-containing virulence plasmid in Enterococcus faecium.

    PubMed

    Arias, Cesar A; Panesso, Diana; Singh, Kavindra V; Rice, Louis B; Murray, Barbara E

    2009-10-01

    The hyl(Efm) gene (encoding a putative hyaluronidase) has been found almost exclusively in Enterococcus faecium clinical isolates, and recently, it was shown to be on a plasmid which increased the ability of E. faecium strains to colonize the gastrointestinal tract. In this work, the results of mating experiments between hyl(Efm)-containing strains of E. faecium belonging to clonal cluster 17 and isolated in the United States and Colombia indicated that the hyl(Efm) gene of these strains is also carried on large plasmids (>145 kb) which we showed transfer readily from clinical strains to E. faecium hosts. Cotransfer of resistance to vancomycin and high-level resistance (HLR) to aminoglycosides (gentamicin and streptomycin) and erythromycin was also observed. The vanA gene cluster and gentamicin resistance determinants were genetically linked to hyl(Efm), whereas erm(B) and ant(6)-I, conferring macrolide-lincosamide-streptogramin B resistance and HLR to streptomycin, respectively, were not. A hyl(Efm)-positive transconjugant resulting from a mating between a well-characterized endocarditis strain [TX0016 (DO)] and a derivative of a fecal strain of E. faecium from a healthy human volunteer (TX1330RF) exhibited increased virulence in a mouse peritonitis model. These results indicate that E. faecium strains use a strategy which involves the recruitment into the same genetic unit of antibiotic resistance genes and determinants that increase the ability to produce disease. Our findings indicate that the acquisition of the hyl(Efm) plasmids may explain, at least in part, the recent successful emergence of some E. faecium strains as nosocomial pathogens. PMID:19667280

  16. Characterization and comparative analysis of antibiotic resistance plasmids isolated from a wastewater treatment plant

    PubMed Central

    Rahube, Teddie O.; Viana, Laia S.; Koraimann, Günther; Yost, Christopher K.

    2014-01-01

    A wastewater treatment plant (WWTP) is an environment high in nutrient concentration with diverse bacterial populations and can provide an ideal environment for the proliferation of mobile elements such as plasmids. WWTPs have also been identified as reservoirs for antibiotic resistance genes that are associated with human pathogens. The objectives of this study were to isolate and characterize self-transmissible or mobilizable resistance plasmids associated with effluent from WWTP. An enrichment culture approach designed to capture plasmids conferring resistance to high concentrations of erythromycin was used to capture plasmids from an urban WWTP servicing a population of ca. 210,000. DNA sequencing of the plasmids revealed diversity of plasmids represented by incompatibility groups IncU, col-E, IncFII and IncP-1β. Genes coding resistance to clinically relevant antibiotics (macrolide, tetracycline, beta-lactam, trimethoprim, chloramphenicol, sulphonamide), quaternary ammonium compounds and heavy metals were co-located on these plasmids, often within transposable and integrative mobile elements. Several of the plasmids were self-transmissible or mobilizable and could be maintained in the absence of antibiotic selection. The IncFII plasmid pEFC36a showed the highest degree of sequence identity to plasmid R1 which has been isolated in England more than 50 years ago from a patient suffering from a Salmonella infection. Functional conservation of key regulatory features of this F-like conjugation module were demonstrated by the finding that the conjugation frequency of pEFC36a could be stimulated by the positive regulator of plasmid R1 DNA transfer genes, TraJ. PMID:25389419

  17. Mix and match of KPC-2 encoding plasmids in Enterobacteriaceae-comparative genomics.

    PubMed

    Chmelnitsky, Inna; Shklyar, Maya; Leavitt, Azita; Sadovsky, Evgeniya; Navon-Venezia, Shiri; Ben Dalak, Maayan; Edgar, Rotem; Carmeli, Yehuda

    2014-06-01

    We performed comparative sequence analysis of 3 blaKPC-2 encoding plasmids to examine evolution of these plasmids and their dissemination. We found that all of them have an IncN replicon with a newly determined IncN plasmid sequence type (ST), ST15. The 2 Klebsiella pneumoniae (KPN) plasmids also harbor an IncF2A1-B1- replicon. The blaKPC-2 is located in the Tn4401c transposon with a newly discovered mutation in the P2 promoter. Screening of the 27 additional blaKPC-2 carrying plasmids from Enterobacter cloacae, Escherichia coli (EC), and K. pneumoniae showed that: all KPN and EC plasmids are IncN plasmids belonging to ST15; 4/7 KPN and 1/6 EC plasmids contain an additional IncF2A1-B1- replicon; all Enterobacter plasmids belong to neither IncN nor IncF2A1-B1- replicon plasmids; 6/7 KPN and 2/5 EC plasmids carry the mutated P2 promoter. Study of the blaKPC-2 environment, transposon, pMLST, and Inc group suggests transposon and plasmid inter- and intra-species dissemination and evolution. PMID:24743043

  18. Plasmid metagenomics reveals multiple antibiotic resistance gene classes among the gut microbiomes of hospitalised patients.

    PubMed

    Jitwasinkul, Tossawan; Suriyaphol, Prapat; Tangphatsornruang, Sithichoke; Hansen, Martin Asser; Hansen, Lars Hestbjerg; Sørensen, Søren Johannes; Permpikul, Chairat; Rongrungruang, Yong; Tribuddharat, Chanwit

    2016-09-01

    Antibiotic resistance genes are rapidly spread between pathogens and the normal flora, with plasmids playing an important role in their circulation. This study aimed to investigate antibiotic resistance plasmids in the gut microbiome of hospitalised patients. Stool samples were collected from seven inpatients at Siriraj Hospital (Bangkok, Thailand) and were compared with a sample from a healthy volunteer. Plasmids from the gut microbiomes extracted from the stool samples were subjected to high-throughput DNA sequencing (GS Junior). Newbler-assembled DNA reads were categorised into known and unknown sequences (using >80% alignment length as the cut-off), and ResFinder was used to classify the antibiotic resistance gene pools. Plasmid replicon modules were used for plasmid typing. Forty-six genes conferring resistance to several classes of antibiotics were identified in the stool samples. Several antibiotic resistance genes were shared by the patients; interestingly, most were reported previously in food animals and healthy humans. Four antibiotic resistance genes were found in the healthy subject. One gene (aph3-III) was identified in the patients and the healthy subject and was related to that in cattle. Uncommon genes of hospital origin such as blaTEM-124-like and fosA, which confer resistance to extended-spectrum β-lactams and fosfomycin, respectively, were identified. The resistance genes did not match the patients' drug treatments. In conclusion, several plasmid types were identified in the gut microbiome; however, it was difficult to link these to the antibiotic resistance genes identified. That the antibiotic resistance genes came from hospital and community environments is worrying. PMID:27530840

  19. Molecular Analysis of Antibiotic Resistance Determinants and Plasmids in Malaysian Isolates of Multidrug Resistant Klebsiella pneumoniae

    PubMed Central

    Al-Marzooq, Farah; Mohd Yusof, Mohd Yasim; Tay, Sun Tee

    2015-01-01

    Infections caused by multidrug resistant Klebsiella pneumoniae have been increasingly reported in many parts of the world. A total of 93 Malaysian multidrug resistant K. pneumoniae isolated from patients attending to University of Malaya Medical Center, Kuala Lumpur, Malaysia from 2010-2012 were investigated for antibiotic resistance determinants including extended-spectrum beta-lactamases (ESBLs), aminoglycoside and trimethoprim/sulfamethoxazole resistance genes and plasmid replicons. CTX-M-15 (91.3%) was the predominant ESBL gene detected in this study. aacC2 gene (67.7%) was the most common gene detected in aminoglycoside-resistant isolates. Trimethoprim/sulfamethoxazole resistance (90.3%) was attributed to the presence of sul1 (53.8%) and dfrA (59.1%) genes in the isolates. Multiple plasmid replicons (1-4) were detected in 95.7% of the isolates. FIIK was the dominant replicon detected together with 13 other types of plasmid replicons. Conjugative plasmids (1-3 plasmids of ~3-100 kb) were obtained from 27 of 43 K. pneumoniae isolates. An ESBL gene (either CTX-M-15, CTX-M-3 or SHV-12) was detected from each transconjugant. Co-detection with at least one of other antibiotic resistance determinants [sul1, dfrA, aacC2, aac(6ˊ)-Ib, aac(6ˊ)-Ib-cr and qnrB] was noted in most conjugative plasmids. The transconjugants were resistant to multiple antibiotics including β-lactams, gentamicin and cotrimoxazole, but not ciprofloxacin. This is the first study describing the characterization of plasmids circulating in Malaysian multidrug resistant K. pneumoniae isolates. The results of this study suggest the diffusion of highly diverse plasmids with multiple antibiotic resistance determinants among the Malaysian isolates. Effective infection control measures and antibiotic stewardship programs should be adopted to limit the spread of the multidrug resistant bacteria in healthcare settings. PMID:26203651

  20. Diversity of plasmids encoding histidine decarboxylase gene in Tetragenococcus spp. isolated from Japanese fish sauce.

    PubMed

    Satomi, Masataka; Furushita, Manabu; Oikawa, Hiroshi; Yano, Yutaka

    2011-07-15

    Nineteen isolates of histamine producing halophilic bacteria were isolated from four fish sauce mashes, each mash accumulating over 1000 ppm of histamine. The complete sequences of the plasmids encoding the pyruvoyl dependent histidine decarboxylase gene (hdcA), which is harbored in histamine producing bacteria, were determined. In conjunction, the sequence regions adjacent to hdcA were analyzed to provide information regarding its genetic origin. As reference strains, Tetragenococcus halophilus H and T. muriaticus JCM10006(T) were also studied. Phenotypic and 16S rRNA gene sequence analyses identified all isolates as T. halophilus, a predominant histamine producing bacteria present during fish sauce fermentation. Genetic analyses (PCR, Southern blot, and complete plasmid sequencing) of the histamine producing isolates confirmed that all the isolates harbored approximately 21-37 kbp plasmids encoding a single copy of the hdc cluster consisting of four genes related to histamine production. Analysis of hdc clusters, including spacer regions, indicated >99% sequence similarity among the isolates. All of the plasmids sequenced encoded traA, however genes related to plasmid conjugation, namely mob genes and oriT, were not identified. Two putative mobile genetic elements, ISLP1-like and IS200-like, respectively, were identified in the up- and downstream region of the hdc cluster of all plasmids. Most of the sequences, except hdc cluster and two adjacent IS elements, were diverse among plasmids, suggesting that each histamine producers harbored a different histamine-related plasmid. These results suggested that the hdc cluster was not spread by clonal dissemination depending on the specific plasmid and that the hdc cluster in tetragenococcal plasmid was likely encoded on transformable elements. PMID:21616548

  1. The Coxiella burnetii Cryptic Plasmid Is Enriched in Genes Encoding Type IV Secretion System Substrates▿ †

    PubMed Central

    Voth, Daniel E.; Beare, Paul A.; Howe, Dale; Sharma, Uma M.; Samoilis, Georgios; Cockrell, Diane C.; Omsland, Anders; Heinzen, Robert A.

    2011-01-01

    The intracellular bacterial pathogen Coxiella burnetii directs biogenesis of a phagolysosome-like parasitophorous vacuole (PV), in which it replicates. The organism encodes a Dot/Icm type IV secretion system (T4SS) predicted to deliver to the host cytosol effector proteins that mediate PV formation and other cellular events. All C. burnetii isolates carry a large, autonomously replicating plasmid or have chromosomally integrated plasmid-like sequences (IPS), suggesting that plasmid and IPS genes are critical for infection. Bioinformatic analyses revealed two candidate Dot/Icm substrates with eukaryotic-like motifs uniquely encoded by the QpH1 plasmid from the Nine Mile reference isolate. CpeC, containing an F-box domain, and CpeD, possessing kinesin-related and coiled-coil regions, were secreted by the closely related Legionella pneumophila Dot/Icm T4SS. An additional QpH1-specific gene, cpeE, situated in a predicted operon with cpeD, also encoded a secreted effector. Further screening revealed that three hypothetical proteins (CpeA, CpeB, and CpeF) encoded by all C. burnetii plasmids and IPS are Dot/Icm substrates. By use of new genetic tools, secretion of plasmid effectors by C. burnetii during host cell infection was confirmed using β-lactamase and adenylate cyclase translocation assays, and a C-terminal secretion signal was identified. When ectopically expressed in HeLa cells, plasmid effectors trafficked to different subcellular sites, including autophagosomes (CpeB), ubiquitin-rich compartments (CpeC), and the endoplasmic reticulum (CpeD). Collectively, these results suggest that C. burnetii plasmid-encoded T4SS substrates play important roles in subversion of host cell functions, providing a plausible explanation for the absolute maintenance of plasmid genes by this pathogen. PMID:21216993

  2. The 2 micrometer plasmid stability system: analyses of the interactions among plasmid- and host-encoded components.

    PubMed

    Velmurugan, S; Ahn, Y T; Yang, X M; Wu, X L; Jayaram, M

    1998-12-01

    The stable inheritance of the 2 micrometer plasmid in a growing population of Saccharomyces cerevisiae is dependent on two plasmid-encoded proteins (Rep1p and Rep2p), together with the cis-acting locus REP3 (STB). In this study we demonstrate that short carboxy-terminal deletions of Rep1p and Rep2p severely diminish their normal capacity to localize to the yeast nucleus. The nuclear targeting, as well as their functional role in plasmid partitioning, can be restored by the addition of a nuclear localization sequence to the amino or the carboxy terminus of the shortened Rep proteins. Analyses of deletion derivatives of the Rep proteins by using the in vivo dihybrid genetic test in yeast, as well as by glutathione S-transferase fusion trapping assays in vitro demonstrate that the amino-terminal portion of Rep1p (ca. 150 amino acids long) is responsible for its interactions with Rep2p. In a monohybrid in vivo assay, we have identified Rep1p, Rep2p, and a host-encoded protein, Shf1p, as being capable of interacting with the STB locus. The Shf1 protein expressed in Escherichia coli can bind with high specificity to the STB sequence in vitro. In a yeast strain deleted for the SHF1 locus, a 2 micrometer circle-derived plasmid shows relatively poor stability. PMID:9819432

  3. The 2μm Plasmid Stability System: Analyses of the Interactions among Plasmid- and Host-Encoded Components

    PubMed Central

    Velmurugan, Soundarapandian; Ahn, Yong-Tae; Yang, Xian-Mei; Wu, Xu-Li; Jayaram, Makkuni

    1998-01-01

    The stable inheritance of the 2μm plasmid in a growing population of Saccharomyces cerevisiae is dependent on two plasmid-encoded proteins (Rep1p and Rep2p), together with the cis-acting locus REP3 (STB). In this study we demonstrate that short carboxy-terminal deletions of Rep1p and Rep2p severely diminish their normal capacity to localize to the yeast nucleus. The nuclear targeting, as well as their functional role in plasmid partitioning, can be restored by the addition of a nuclear localization sequence to the amino or the carboxy terminus of the shortened Rep proteins. Analyses of deletion derivatives of the Rep proteins by using the in vivo dihybrid genetic test in yeast, as well as by glutathione S-transferase fusion trapping assays in vitro demonstrate that the amino-terminal portion of Rep1p (ca. 150 amino acids long) is responsible for its interactions with Rep2p. In a monohybrid in vivo assay, we have identified Rep1p, Rep2p, and a host-encoded protein, Shf1p, as being capable of interacting with the STB locus. The Shf1 protein expressed in Escherichia coli can bind with high specificity to the STB sequence in vitro. In a yeast strain deleted for the SHF1 locus, a 2μm circle-derived plasmid shows relatively poor stability. PMID:9819432

  4. Plasmid incidence, antibiotic and metal resistance among enterobacteriaceae isolated from Algerian streams.

    PubMed

    Habi, S; Daba, H

    2009-11-15

    Enterobacteriaceae isolates from surface water were examined to assess impact of feacal and/or metal pollution on heavy metal, antibiotics resistance and plasmid incidence. A bi-modal CMI distribution was noted for cadmium and mercury. On the other hand, modal distribution was observed for Pb. Critical metal concentration were >8, >32, > or =4096 microg mL(-1) for mercury, cadmium and lead, respectively. High resistance to Pb and low resistance to Cd were remarked in stream water polluted with heavy metal. Resistance to antibiotics was most frequent to erythromycin (45.45-68.8%), tetracyclin family (14-61.11%), streptomycin (16-24%) and furan (8.16-24.1%). Bacterial resistance to some antibiotics (kanamycin, tetracyclin, doxycyclin, furan and chloramphenicol) was significantly different (p < 0.05) between streams water. Analysis of antibiotic resistance by principal component analysis showed a clear difference between fresh water and urban waste water for two principal components (1, 2) and the difference between principal component scores of antibiotic could not be related to the faecal pollution level. No difference was found between stream water subjected or not to contamination from metallic or poultry waste. The frequency of strains carrying plasmids was higher in urban waste water than metal and/or low faecal polluted stream water. No correlation was observed between plasmid and metal resistance. PMID:20180322

  5. The Multidrug Resistance IncA/C Transferable Plasmid Encodes a Novel Domain-swapped Dimeric Protein-disulfide Isomerase*

    PubMed Central

    Premkumar, Lakshmanane; Kurth, Fabian; Neyer, Simon; Schembri, Mark A.; Martin, Jennifer L.

    2014-01-01

    The multidrug resistance-encoding IncA/C conjugative plasmids disseminate antibiotic resistance genes among clinically relevant enteric bacteria. A plasmid-encoded disulfide isomerase is associated with conjugation. Sequence analysis of several IncA/C plasmids and IncA/C-related integrative and conjugative elements (ICE) from commensal and pathogenic bacteria identified a conserved DsbC/DsbG homolog (DsbP). The crystal structure of DsbP reveals an N-terminal domain, a linker region, and a C-terminal catalytic domain. A DsbP homodimer is formed through domain swapping of two DsbP N-terminal domains. The catalytic domain incorporates a thioredoxin-fold with characteristic CXXC and cis-Pro motifs. Overall, the structure and redox properties of DsbP diverge from the Escherichia coli DsbC and DsbG disulfide isomerases. Specifically, the V-shaped dimer of DsbP is inverted compared with EcDsbC and EcDsbG. In addition, the redox potential of DsbP (−161 mV) is more reducing than EcDsbC (−130 mV) and EcDsbG (−126 mV). Other catalytic properties of DsbP more closely resemble those of EcDsbG than EcDsbC. These catalytic differences are in part a consequence of the unusual active site motif of DsbP (CAVC); substitution to the EcDsbC-like (CGYC) motif converts the catalytic properties to those of EcDsbC. Structural comparison of the 12 independent subunit structures of DsbP that we determined revealed that conformational changes in the linker region contribute to mobility of the catalytic domain, providing mechanistic insight into DsbP function. In summary, our data reveal that the conserved plasmid-encoded DsbP protein is a bona fide disulfide isomerase and suggest that a dedicated oxidative folding enzyme is important for conjugative plasmid transfer. PMID:24311786

  6. Antibiotic resistance due to an unusual ColE1-type replicon plasmid in Aeromonas salmonicida.

    PubMed

    Vincent, Antony T; Emond-Rheault, Jean-Guillaume; Barbeau, Xavier; Attéré, Sabrina A; Frenette, Michel; Lagüe, Patrick; Charette, Steve J

    2016-06-01

    Aeromonas salmonicida subsp. salmonicida is a fish pathogen known to have a rich plasmidome. In the present study, we discovered an isolate of this bacterium bearing an additional unidentified small plasmid. After having sequenced the DNA of that isolate by next-generation sequencing, it appeared that the new small plasmid is a ColE1-type replicon plasmid, named here pAsa7. This plasmid bears a functional chloramphenicol-acetyltransferase-encoding gene (cat-pAsa7) previously unknown in A. salmonicida and responsible for resistance to chloramphenicol. A comparison of pAsa7 with pAsa2, the only known ColE1-type replicon plasmid usually found in A. salmonicida subsp. salmonicida, revealed that even if both plasmids share a high structural similarity, it is still unclear if pAsa7 is a derivative of pAsa2 since they showed several mutations at the nucleotide level. Transcriptomic analysis revealed that the cat-pAsa4 gene, another chloramphenicol-acetyltransferase-encoding gene, found on the large plasmid pAsa4, was significantly more transcribed than cat-pAsa7. This was correlated with a higher chloramphenicol resistance for isolates bearing pAsa4 compared with the one having pAsa7. Finally, a phylogenetic analysis showed that both CAT-pAsa4 and CAT-pAsa7 proteins were in different clusters. The clustering was supported by the identity of residues involved in the catalytic site. In addition, to give a better understanding of the large drug-resistance panel of A. salmonicida, this study reinforces the hypothesis that A. salmonicida subsp. salmonicida is a considerable reservoir for mobile genetic elements such as plasmids. PMID:27028891

  7. Conjugal Transfer of Plasmid-Borne Multiple Antibiotic Resistance in Streptococcus faecalis var. zymogenes

    PubMed Central

    Jacob, Alan E.; Hobbs, Susan J.

    1974-01-01

    A strain of Streptococcus faecalis var. zymogenes, designated JH1, had high-level resistance to the antibiotics streptomycin, kanamycin, neomycin, erythromycin, and tetracycline. These resistances were lost en bloc from approximately 0.1% of cells grown in nutrient broth at 45 C. The frequency of resistance loss was not increased by growth in the presence of the “curing” agents acriflavine or acridine orange, but after prolonged storage in nutrient agar 17% of cells became antibiotic sensitive. Covalently closed circular deoxyribonucleic acid (DNA) molecules were isolated from the parental strain and from antibiotic-sensitive segregants by using cesium chloride-ethidium bromide gradients. DNA molecular species were identified by using neutral sucrose gradients. Strain JH1 contained two covalently closed circular DNA species of molecular weights 50 × 106 and 38 × 106. An antibiotic-sensitive segregant, strain JH1-9, had lost the larger molecular species. A second sensitive segregant, strain JH1-5, had also lost the larger molecular species but a new molecular species of approximate molecular weight 6 × 106 was present. The antibiotic resistances that were curable from the parental strain were transferred to antibiotic-sensitive strains of S. faecalis and to strain JH1-9, during mixed incubation in nutrient broth at 37 C. Data to be described are interpreted to suggest that the transfer is by a conjugal mechanism. Analysis of the plasmid species in recipient clones showed that all had received the plasmid of molecular weight 50 × 106. Strain JH1-5 was not a good recipient. Analysis of one successful recipient clone of JH1-5 revealed that it had gained the 50 × 106 molecular weight plasmid but lost the 6 × 106 molecular weight species. These data are interpreted to mean that the multiple antibiotic resistance is borne by a transferable plasmid of 50 × 106 molecular weight, and that in clone JH1-5 this plasmid suffered a large deletion leaving only a 6

  8. Identification and sequence analysis of pWcMBF8-1, a bacteriocin-encoding plasmid from the lactic acid bacterium Weissella confusa.

    PubMed

    Malik, Amarila; Sumayyah, Sumayyah; Yeh, Chia-Wen; Heng, Nicholas C K

    2016-04-01

    Members of the Gram-positive lactic acid bacteria (LAB) are well-known for their beneficial properties as starter cultures and probiotics. Many LAB species produce ribosomally synthesized proteinaceous antibiotics (bacteriocins). Weissella confusa MBF8-1 is a strain isolated from a fermented soybean product that not only produces useful exopolysaccharides but also exhibits bacteriocin activity, which we call weissellicin MBF. Here, we show that bacteriocin production by W. confusa MBF8-1 is specified by a large plasmid, pWcMBF8-1. Plasmid pWcMBF8-1 (GenBank accession number KR350502), which was identified from the W. confusa MBF8-1 draft genome sequence, is 17 643 bp in length with a G + C content of 34.8% and contains 25 open reading frames (ORFs). Six ORFs constitute the weissellicin MBF locus, encoding three putative double-glycine-motif peptides (Bac1, Bac2, Bac3), an ABC transporter complex (BacTE) and a putative immunity protein (BacI). Two ORFs encode plasmid partitioning and mobilization proteins, suggesting that pWcMBF8-1 is transferable to other hosts. To the best of our knowledge, plasmid pWcMBF8-1 not only represents the first large Weissella plasmid to be sequenced but also the first to be associated with bacteriocin production in W. confusa. PMID:26976853

  9. Effect of plasmid copy number and lac operator sequence on antibiotic-free plasmid selection by operator-repressor titration in Escherichia coli.

    PubMed

    Cranenburgh, Rocky M; Lewis, Kathryn S; Hanak, Julian A J

    2004-01-01

    The Escherichia coli strain DH1lacdapD enables plasmid selection and maintenance that is free from antibiotics and selectable marker genes. This is achieved by using only the lac operator sequence as a selectable element. This strain is currently used to generate high copy number plasmids with no antibiotic resistance genes for use as DNA vaccines and for expression of recombinant proteins. Until now these have been limited to pUC-based plasmids containing a high copy number pMB1-derived origin of replication, and the principle lacO(1) and auxiliary lacO(3) operators. In this study we have shown that this system can also be used to select and maintain pBR322-based plasmids with the lower copy number pMB1 origin of replication, and that lacO(1) alone or a palindromic version of lacO(1) can provide a sufficient level of repressor titration for plasmid selection. This is advantageous for recombinant protein production, where low copy number plasmids are often used and plasmid maintenance is important. The degree of repressor titration due to these plasmids was measured using the natural lactose operon in E. coli DH1 as a model. PMID:15383717

  10. Combination of essential oils and antibiotics reduce antibiotic resistance in plasmid-conferred multidrug resistant bacteria.

    PubMed

    Yap, Polly Soo Xi; Lim, Swee Hua Erin; Hu, Cai Ping; Yiap, Beow Chin

    2013-06-15

    In this study we investigated the relationship between several selected commercially available essential oils and beta-lactam antibiotics on their antibacterial effect against multidrug resistant bacteria. The antibacterial activity of essential oils and antibiotics was assessed using broth microdilution. The combined effects between essential oils of cinnamon bark, lavender, marjoram, tea tree, peppermint and ampicillin, piperacillin, cefazolin, cefuroxime, carbenicillin, ceftazidime, meropenem, were evaluated by means of the checkerboard method against beta-lactamase-producing Escherichia coli. In the latter assays, fractional inhibitory concentration (FIC) values were calculated to characterize interaction between the combinations. Substantial susceptibility of the bacteria toward natural antibiotics and a considerable reduction in the minimum inhibitory concentrations (MIC) of the antibiotics were noted in some paired combinations of antibiotics and essential oils. Out of 35 antibiotic-essential oil pairs tested, four of them showed synergistic effect (FIC≤0.5) and 31 pairs showed no interaction (FIC>0.5-4.0). The preliminary results obtained highlighted the occurrence of a pronounced synergistic relationship between piperacillin/cinnamon bark oil, piperacillin/lavender oil, piperacillin/peppermint oil as well as meropenem/peppermint oil against two of the three bacteria under study with a FIC index in the range 0.26-0.5. The finding highlighted the potential of peppermint, cinnamon bark and lavender essential oils being as antibiotic resistance modifying agent. Reduced usage of antibiotics could be employed as a treatment strategy to decrease the adverse effects and possibly to reverse the beta-lactam antibiotic resistance. PMID:23537749

  11. Plasmid Vectors for Xylella fastidiosa Utilizing a Toxin-Antitoxin System for Stability in the Absence of Antibiotic Selection.

    PubMed

    Burbank, Lindsey P; Stenger, Drake C

    2016-08-01

    The phytopathogen Xylella fastidiosa causes disease in a variety of important crop and landscape plants. Functional genetic studies have led to a broader understanding of virulence mechanisms used by this pathogen in the grapevine host. Plasmid shuttle vectors are important tools in studies of bacterial genetics but there are only a limited number of plasmid vectors available that replicate in X. fastidiosa, and even fewer that are retained without antibiotic selection. Two plasmids are described here that show stable replication in X. fastidiosa and are effective for gene complementation both in vitro and in planta. Plasmid maintenance is facilitated by incorporation of the PemI/PemK plasmid addiction system, consisting of PemK, an endoribonuclease toxin, and its cognate antitoxin, PemI. Vector pXf20pemIK utilizes a native X. fastidiosa replication origin as well as a high-copy-number pUC origin for propagation in Escherichia coli cloning strains. Broad-host-range vector pBBR5pemIK is a medium- to low-copy-number plasmid based on the pBBR1 backbone. Both plasmids are maintained for extended periods of time in the absence of antibiotic selection, as well as up to 14 weeks in grapevine, without affecting bacterial fitness. These plasmids present an alternative to traditional complementation and expression vectors which rely on antibiotic selection for plasmid retention. PMID:27088393

  12. The IncF plasmid pRSB225 isolated from a municipal wastewater treatment plant's on-site preflooder combining antibiotic resistance and putative virulence functions is highly related to virulence plasmids identified in pathogenic E. coli isolates.

    PubMed

    Wibberg, Daniel; Szczepanowski, Rafael; Eikmeyer, Felix; Pühler, Alfred; Schlüter, Andreas

    2013-03-01

    The IncF antibiotic resistance and virulence plasmid pRSB225, isolated from an unknown bacterium released with the purified wastewater from a municipal sewage treatment plant into the environment has been analysed at the genomic level by pyrosequencing. The 164,550bp plasmid comprises 210 coding sequences (cds). It is composed of three replicons (RepFIA, RepFIB, and RepFII) and encodes further plasmid-specific functions for stable maintenance and inheritance and conjugative plasmid transfer. The plasmid is self-transmissible and shows a narrow host range limited to the family Enterobacteriaceae. The accessory modules of the plasmid mainly comprise genes conferring resistance to ampicillin (bla(TEM-1b)), chloramphenicol (catA1), erythromycin (mphA), kanamycin and neomycin (aphA1), streptomycin (strAB), sulphonamides (sul2), tetracycline (tetA(B)) and trimethoprim (dfrA14), as well as mercuric ions (mer genes). In addition, putative virulence-associated genes coding for iron uptake (iutA/iucABCD, sitABCD, and a putative high-affinity Fe²⁺ uptake system) and for a toxin/antitoxin system (vagCD) were identified on the plasmid. All antibiotic and heavy metal resistance genes are located either on class 1 (Tn10-remnant, Tn4352B) and class 2 transposons (Tn2-remnant, Tn21, Tn402-remnant) or a class 1 integron, whereas almost all putative virulence genes are associated with IS elements (IS1, IS26), indicating that transposition and/or recombination events were responsible for acquisition of the accessory pRSB225 modules. Particular modules of plasmid pRSB225 are related to corresponding segments of different virulence plasmids harboured by pathogenic Escherichia coli strains. Moreover, pRSB225 modules were also detected in entero-aggregative-haemorrhagic E. coli (EAHEC) draft genome sequences suggesting that IncF plasmids related to pRSB225 mediated gene transfer into pathogenic E. coli derivatives. PMID:23212116

  13. A Shigella flexneri virulence plasmid encoded factor controls production of outer membrane vesicles.

    PubMed

    Sidik, Saima; Kottwitz, Haila; Benjamin, Jeremy; Ryu, Julie; Jarrar, Ameer; Garduno, Rafael; Rohde, John R

    2014-12-01

    Shigella spp. use a repertoire of virulence plasmid-encoded factors to cause shigellosis. These include components of a Type III Secretion Apparatus (T3SA) that is required for invasion of epithelial cells and many genes of unknown function. We constructed an array of 99 deletion mutants comprising all genes encoded by the virulence plasmid (excluding those known to be required for plasmid maintenance) of Shigella flexneri. We screened these mutants for their ability to bind the dye Congo red: an indicator of T3SA function. This screen focused our attention on an operon encoding genes that modify the cell envelope including virK, a gene of partially characterized function. We discovered that virK is required for controlled release of proteins to the culture supernatant. Mutations in virK result in a temperature-dependent overproduction of outer membrane vesicles (OMVs). The periplasmic chaperone/protease DegP, a known regulator of OMV production in Escherichia coli (encoded by a chromosomal gene), was found to similarly control OMV production in S. flexneri. Both virK and degP show genetic interactions with mxiD, a structural component of the T3SA. Our results are consistent with a model in which VirK and DegP relieve the periplasmic stress that accompanies assembly of the T3SA. PMID:25378474

  14. A Shigella flexneri Virulence Plasmid Encoded Factor Controls Production of Outer Membrane Vesicles

    PubMed Central

    Sidik, Saima; Kottwitz, Haila; Benjamin, Jeremy; Ryu, Julie; Jarrar, Ameer; Garduno, Rafael; Rohde, John R.

    2014-01-01

    Shigella spp. use a repertoire of virulence plasmid-encoded factors to cause shigellosis. These include components of a Type III Secretion Apparatus (T3SA) that is required for invasion of epithelial cells and many genes of unknown function. We constructed an array of 99 deletion mutants comprising all genes encoded by the virulence plasmid (excluding those known to be required for plasmid maintenance) of Shigella flexneri. We screened these mutants for their ability to bind the dye Congo red: an indicator of T3SA function. This screen focused our attention on an operon encoding genes that modify the cell envelope including virK, a gene of partially characterized function. We discovered that virK is required for controlled release of proteins to the culture supernatant. Mutations in virK result in a temperature-dependent overproduction of outer membrane vesicles (OMVs). The periplasmic chaperone/protease DegP, a known regulator of OMV production in Escherichia coli (encoded by a chromosomal gene), was found to similarly control OMV production in S. flexneri. Both virK and degP show genetic interactions with mxiD, a structural component of the T3SA. Our results are consistent with a model in which VirK and DegP relieve the periplasmic stress that accompanies assembly of the T3SA. PMID:25378474

  15. Antibiotic Resistance, Core-Genome and Protein Expression in IncHI1 Plasmids in Salmonella Typhimurium.

    PubMed

    Kubasova, Tereza; Cejkova, Darina; Matiasovicova, Jitka; Sekelova, Zuzana; Polansky, Ondrej; Medvecky, Matej; Rychlik, Ivan; Juricova, Helena

    2016-01-01

    Conjugative plasmids from the IncHI1 incompatibility group play an important role in transferring antibiotic resistance in Salmonella Typhimurium. However, knowledge of their genome structure or gene expression is limited. In this study, we determined the complete nucleotide sequences of four IncHI1 plasmids transferring resistance to antibiotics by two different next generation sequencing protocols and protein expression by mass spectrometry. Sequence data including additional 11 IncHI1 plasmids from GenBank were used for the definition of the IncHI1 plasmid core-genome and pan-genome. The core-genome consisted of approximately 123 kbp and 122 genes while the total pan-genome represented approximately 600 kbp. When the core-genome sequences were used for multiple alignments, the 15 tested IncHI1 plasmids were separated into two main lineages. GC content in core-genome genes was around 46% and 50% in accessory genome genes. A multidrug resistance region present in all 4 sequenced plasmids extended over 20 kbp and, except for tet(B), the genes responsible for antibiotic resistance were those with the highest GC content. IncHI1 plasmids therefore represent replicons that evolved in low GC content bacteria. From their original host, they spread to Salmonella and during this spread these plasmids acquired multiple accessory genes including those coding for antibiotic resistance. Antibiotic-resistance genes belonged to genes with the highest level of expression and were constitutively expressed even in the absence of antibiotics. This is the likely mechanism that facilitates host cell survival when antibiotics suddenly emerge in the environment. PMID:27189997

  16. Production of plasmid-encoding NDM-1 in clinical Raoultella ornithinolytica and Leclercia adecarboxylata from China

    PubMed Central

    Sun, Fengjun; Yin, Zhe; Feng, Jiao; Qiu, Yefeng; Zhang, Defu; Luo, Wenbo; Yang, Huiying; Yang, Wenhui; Wang, Jie; Chen, Weijun; Xia, Peiyuan; Zhou, Dongsheng

    2015-01-01

    Raoultella ornithinolytica YNKP001 and Leclercia adecarboxylata P10164, which harbor conjugative plasmids pYNKP001-NDM and pP10164-NDM, respectively, were isolated from two different Chinese patients, and their complete nucleotide sequences were determined. Production of NDM-1 enzyme by these plasmids accounts for the carbapenem resistance of these two strains. This is the first report of blaNDM in L. adecarboxylata and third report of this gene in R. ornithinolytica. pYNKP001-NDM is very similar to the IncN2 NDM-1-encoding plasmids pTR3, pNDM-ECS01, and p271A, whereas pP10164-NDM is similar to the IncFIIY blaNDM-1-carrying plasmid pKOX_NDM1. The blaNDM-1 genes of pYNKP001-NDM and pP10164-NDM are embedded in Tn125-like elements, which represent two distinct truncated versions of the NDM-1-encoding Tn125 prototype observed in pNDM-BJ01. Flanking of these two Tn125-like elements by miniature inverted repeat element (MITE) or its remnant indicates that MITE facilitates transposition and mobilization of blaNDM-1 gene contexts. PMID:26052314

  17. Characterization of a Multiresistant Mosaic Plasmid from a Fish Farm Sediment Exiguobacterium sp. Isolate Reveals Aggregation of Functional Clinic-Associated Antibiotic Resistance Genes

    PubMed Central

    Yang, Jing; Wang, Chao; Wu, Jinyu; Liu, Li; Zhang, Gang

    2014-01-01

    The genus Exiguobacterium can adapt readily to, and survive in, diverse environments. Our study demonstrated that Exiguobacterium sp. strain S3-2, isolated from marine sediment, is resistant to five antibiotics. The plasmid pMC1 in this strain carries seven putative resistance genes. We functionally characterized these resistance genes in Escherichia coli, and genes encoding dihydrofolate reductase and macrolide phosphotransferase were considered novel resistance genes based on their low similarities to known resistance genes. The plasmid G+C content distribution was highly heterogeneous. Only the G+C content of one block, which shared significant similarity with a plasmid from Exiguobacterium arabatum, fit well with the mean G+C content of the host. The remainder of the plasmid was composed of mobile elements with a markedly lower G+C ratio than the host. Interestingly, five mobile elements located on pMC1 showed significant similarities to sequences found in pathogens. Our data provided an example of the link between resistance genes in strains from the environment and the clinic and revealed the aggregation of antibiotic resistance genes in bacteria isolated from fish farms. PMID:24362420

  18. Characterization of KfrA proteins encoded by a plasmid of Paenibacillus popilliae ATCC 14706T

    PubMed Central

    Iiyama, Kazuhiro; Mon, Hiroaki; Mori, Kazuki; Mitsudome, Takumi; Lee, Jae Man; Kusakabe, Takahiro; Tashiro, Kousuke; Asano, Shin-ichiro; Yasunaga-Aoki, Chisa

    2015-01-01

    A scaffold obtained from whole-genome shotgun sequencing of Paenibacillus popilliae ATCC 14706T shares partial homology with plasmids found in other strains of P. popilliae. PCR and sequencing for gap enclosure indicated that the scaffold originated from a 15,929-bp circular DNA. The restriction patterns of a plasmid isolated from P. popilliae ATCC 14706T were identical to those expected from the sequence; thus, this circular DNA was identified as a plasmid of ATCC 14706T and designated pPOP15.9. The plasmid encodes 17 putative open reading frames. Orfs 1, 5, 7, 8, and 9 are homologous to Orfs 11, 12, 15, 16, and 17, respectively. Orf1 and Orf11 are annotated as replication initiation proteins. Orf8 and Orf16 are homologs of KfrA, a plasmid-stabilizing protein in Gram-negative bacteria. Recombinant Orf8 and Orf16 proteins were assessed for the properties of KfrA. Indeed, they formed multimers and bound to inverted repeat sequences in upstream regions of both orf8 and orf16. A phylogenetic tree based on amino acid sequences of Orf8, Orf16 and Kfr proteins did not correlate with species lineage. PMID:25853059

  19. Recombinant plasmids for encoding restriction enzymes DpnI and DpnII of streptococcus pneumontae

    DOEpatents

    Lacks, Sanford A.

    1990-01-01

    Chromosomal DNA cassettes containing genes encoding either the DpnI or DpnII restriction endonucleases from Streptococcus pneumoniae are cloned into a streptococcal vector, pLS101. Large amounts of the restriction enzymes are produced by cells containing the multicopy plasmids, pLS202 and pLS207, and their derivatives pLS201, pLS211, pLS217, pLS251 and pLS252.

  20. Recombinant plasmids for encoding restriction enzymes DpnI and DpnII of Streptococcus pneumontae

    DOEpatents

    Lacks, S.A.

    1990-10-02

    Chromosomal DNA cassettes containing genes encoding either the DpnI or DpnII restriction endonucleases from Streptococcus pneumoniae are cloned into a streptococcal vector, pLS101. Large amounts of the restriction enzymes are produced by cells containing the multicopy plasmids, pLS202 and pLS207, and their derivatives pLS201, pLS211, pLS217, pLS251 and pLS252. 9 figs.

  1. Molecular cloning, purification, and properties of a plasmid-encoded chloramphenicol acetyltransferase from Staphylococcus haemolyticus.

    PubMed Central

    Schwarz, S; Cardoso, M

    1991-01-01

    A small chloramphenicol resistance (Cmr) plasmid of approximately 3.75 kb, designated pSCS5, was isolated from Staphylococcus haemolyticus. This plasmid encoded an inducible chloramphenicol acetyltransferase (CAT; EC 2.3.1.28). The cat gene of pSCS5 was cloned into the Escherichia coli plasmid vector pBluescript SKII+. It differed in its nucleotide sequence and deduced amino acid sequence from the cat genes described previously in staphylococci and other gram-positive bacteria. The CAT enzyme was purified from cell-free lysates by ammonium sulfate precipitation, ion-exchange chromatography, and fast protein liquid chromatography. The native enzyme had an Mr of 70,000 and was composed of three identical subunits, each with an Mr of approximately 23,000. Its isoelectric point was at pH 6.15. CAT from pSCS5 exhibited Km values of 2.81 and 51.8 microM for chloramphenicol and acetyl coenzyme A, respectively. The optimum pH for activity was 7.8. CAT encoded by pSCS5 proved to be relatively heat stable, but sensitive to mercury ions. The observed differences in the nucleotide sequence and the biochemical characteristics of the enzyme allowed the identification of the pSCS5-encoded CAT from S. haemolyticus as a CAT variant different from those described previously in gram-positive bacteria. Images PMID:1929282

  2. Role of the 85-Kilobase Plasmid and Plasmid-Encoded Virulence-Associated Protein A in Intracellular Survival and Virulence of Rhodococcus equi

    PubMed Central

    Giguère, Steeve; Hondalus, Mary K.; Yager, Julie A.; Darrah, Patricia; Mosser, David M.; Prescott, John F.

    1999-01-01

    Rhodococcus equi is a facultative intracellular pathogen of macrophages and a cause of pneumonia in young horses (foals) and immunocompromised people. Isolates of R. equi from pneumonic foals typically contain large, 85- or 90-kb plasmids encoding a highly immunogenic virulence-associated protein (VapA). The objective of this study was to determine the role of the 85-kb plasmid and VapA in the intracellular survival and virulence of R. equi. Clinical isolates containing the plasmid and expressing VapA efficiently replicated within mouse macrophages in vitro, while plasmid-cured derivatives of these organisms did not multiply intracellularly. An isolate harboring the large plasmid also replicated in the tissues of experimentally infected mice, whereas its plasmid-cured derivative was rapidly cleared. All foals experimentally infected with a plasmid-containing clinical isolate developed severe bronchopneumonia, whereas the foals infected with its plasmid-cured derivative remained asymptomatic and free of visible lung lesions. By day 14 postinfection, lung bacterial burdens had increased considerably in foals challenged with the plasmid-containing clinical isolate. In contrast, bacteria could no longer be cultured from the lungs of foals challenged with the isogenic plasmid-cured derivative. A recombinant, plasmid-cured derivative expressing wild-type levels of VapA failed to replicate in macrophages and remained avirulent for both mice and foals. These results show that the 85-kb plasmid of R. equi is essential for intracellular replication within macrophages and for development of disease in the native host, the foal. However, expression of VapA alone is not sufficient to restore the virulence phenotype. PMID:10377138

  3. Evidence for plasmid-encoded virulence factors in the phytopathogenic bacterium Clavibacter michiganensis subsp. michiganensis NCPPB382.

    PubMed Central

    Meletzus, D; Bermphol, A; Dreier, J; Eichenlaub, R

    1993-01-01

    The tomato pathogen Clavibacter michiganensis subsp. michiganensis NCPPB382, which causes bacterial wilt, harbors two plasmids pCM1 (27.5 kb) and pCM2 (72 kb). After curing of the plasmids, bacterial derivatives were still proficient in the ability to colonize the host plant and in the production of exopolysaccharides but exhibited a reduced virulence. When one of the two plasmids is lost, there is a significant delay in the development of wilting symptoms after infection and a plasmid-free derivative is not able to induce disease symptoms. By cloning of restriction fragments of both plasmids in the plasmid-free strain CMM100, two DNA fragments which restored the virulent phenotype were identified. Further analysis suggested that a fragment of plasmid pCM1 encodes an endocellulase which is involved in the expression of the pathogenic phenotype. Images PMID:8458855

  4. Transferable antibiotic resistance plasmids from biogas plant digestates often belong to the IncP-1ε subgroup

    PubMed Central

    Wolters, Birgit; Kyselková, Martina; Krögerrecklenfort, Ellen; Kreuzig, Robert; Smalla, Kornelia

    2015-01-01

    Manure is known to contain residues of antibiotics administered to farm animals as well as bacteria carrying antibiotic resistance genes (ARGs). These genes are often located on mobile genetic elements. In biogas plants (BGPs), organic substrates such as manure and plant material are mixed and fermented in order to provide energy, and resulting digestates are used for soil fertilization. The fate of plasmid carrying bacteria from manure during the fermentation process is unknown. The present study focused on transferable antibiotic resistance plasmids from digestates of seven BGPs, using manure as a co-substrate, and their phenotypic and genotypic characterization. Plasmids conferring resistance to either tetracycline or sulfadiazine were captured by means of exogenous plasmid isolation from digestates into Pseudomonas putida KT2442 and Escherichia coli CV601 recipients, at transfer frequencies ranging from 10-5 to 10-7. Transconjugants (n = 101) were screened by PCR-Southern blot hybridization and real-time PCR for the presence of IncP-1, IncP-1ε, IncW, IncN, IncP-7, IncP-9, LowGC, and IncQ plasmids. While 61 plasmids remained unassigned, 40 plasmids belonged to the IncP-1ε subgroup. All these IncP-1ε plasmids were shown to harbor the genes tet(A), sul1, qacEΔ1, intI1, and integron gene cassette amplicons of different size. Further analysis of 16 representative IncP-1ε plasmids showed that they conferred six different multiple antibiotic resistance patterns and their diversity seemed to be driven by the gene cassette arrays. IncP-1ε plasmids displaying similar restriction and antibiotic resistance patterns were captured from different BGPs, suggesting that they may be typical of this environment. Our study showed that BGP digestates are a potential source of transferable antibiotic resistance plasmids, and in particular the broad host range IncP-1ε plasmids might contribute to the spread of ARGs when digestates are used as fertilizer. PMID:25653641

  5. Sequences of Two Related Multiple Antibiotic Resistance Virulence Plasmids Sharing a Unique IS26-Related Molecular Signature Isolated from Different Escherichia coli Pathotypes from Different Hosts

    PubMed Central

    Venturini, Carola; Hassan, Karl A.; Roy Chowdhury, Piklu; Paulsen, Ian T.; Walker, Mark J.; Djordjevic, Steven P.

    2013-01-01

    Enterohemorrhagic Escherichia coli (EHEC) and atypical enteropathogenic E. coli (aEPEC) are important zoonotic pathogens that increasingly are becoming resistant to multiple antibiotics. Here we describe two plasmids, pO26-CRL125 (125 kb) from a human O26:H- EHEC, and pO111-CRL115 (115kb) from a bovine O111 aEPEC, that impart resistance to ampicillin, kanamycin, neomycin, streptomycin, sulfathiazole, trimethoprim and tetracycline and both contain atypical class 1 integrons with an identical IS26-mediated deletion in their 3´-conserved segment. Complete sequence analysis showed that pO26-CRL125 and pO111-CRL115 are essentially identical except for a 9.7 kb fragment, present in the backbone of pO26-CRL125 but absent in pO111-CRL115, and several indels. The 9.7 kb fragment encodes IncI-associated genes involved in plasmid stability during conjugation, a putative transposase gene and three imperfect repeats. Contiguous sequence identical to regions within these pO26-CRL125 imperfect repeats was identified in pO111-CRL115 precisely where the 9.7 kb fragment is missing, suggesting it may be mobile. Sequences shared between the plasmids include a complete IncZ replicon, a unique toxin/antitoxin system, IncI stability and maintenance genes, a novel putative serine protease autotransporter, and an IncI1 transfer system including a unique shufflon. Both plasmids carry a derivate Tn21 transposon with an atypical class 1 integron comprising a dfrA5 gene cassette encoding resistance to trimethoprim, and 24 bp of the 3´-conserved segment followed by Tn6026, which encodes resistance to ampicillin, kanymycin, neomycin, streptomycin and sulfathiazole. The Tn21-derivative transposon is linked to a truncated Tn1721, encoding resistance to tetracycline, via a region containing the IncP-1α oriV. Absence of the 5 bp direct repeats flanking Tn3-family transposons, indicates that homologous recombination events played a key role in the formation of this complex antibiotic resistance

  6. Marker-free plasmids for gene therapeutic applications--lack of antibiotic resistance gene substantially improves the manufacturing process.

    PubMed

    Mairhofer, Jürgen; Cserjan-Puschmann, Monika; Striedner, Gerald; Nöbauer, Katharina; Razzazi-Fazeli, Ebrahim; Grabherr, Reingard

    2010-04-01

    Plasmid DNA is being considered as a promising alternative to traditional protein vaccines or viral delivery methods for gene therapeutic applications. DNA-based products are highly flexible, stable, are easily stored and can be manufactured on a large scale. Although, much safer than viral approaches, issues have been raised with regard to safety due to possible integration of plasmid DNA into cellular DNA or spread of antibiotic resistance genes to intestinal bacteria by horizontal gene transfer. Accordingly, there is interest in methods for the production of plasmid DNA that lacks the antibiotic resistance gene to further improve their safety profile. Here, we report for the first time the gram-scale manufacturing of a minimized plasmid that is devoid of any additional sequence elements on the plasmid backbone, and merely consists of the target expression cassette and the bacterial origin of replication. Three different host/vector combinations were cultivated in a fed-batch fermentation process, comparing the progenitor strain JM108 to modified strains JM108murselect, hosting a plasmid either containing the aminoglycoside phosphotransferase which provides kanamycin resistance, or a marker-free variant of the same plasmid. The metabolic load exerted by expression of the aminoglycoside phosphotransferase was monitored by measuring ppGpp- and cAMP-levels. Moreover, we revealed that JM108 is deficient of the Lon protease and thereby refined the genotype of JM108. The main consequences of Lon-deficiency with regard to plasmid DNA production are discussed herein. Additionally, we found that the expression of the aminoglycoside phosphotransferase, conferring resistance to kanamycin, was very high in plasmid DNA producing processes that actually inclusion bodies were formed. Thereby, a severe metabolic load on the host cell was imposed, detrimental for overall plasmid yield. Hence, deleting the antibiotic resistance gene from the vector backbone is not only beneficial

  7. Exposing Plasmids as the Achilles’ Heel of Drug-Resistant Bacteria

    PubMed Central

    Williams, Julia J.; Hergenrother, Paul J.

    2008-01-01

    Many multi-drug resistant bacterial pathogens harbor large plasmids that encode proteins conferring resistance to antibiotics. While the acquisition of these plasmids often enables bacteria to survive in the presence of antibiotics, it is possible that plasmids also represent a vulnerability that can be exploited in tailored antibacterial therapy. This review highlights three recently described strategies designed to specifically combat bacteria harboring such plasmids: Inhibition of plasmid conjugation, inhibition of plasmid replication, and exploitation of plasmid-encoded toxin-antitoxin systems. PMID:18625335

  8. Plasmid-Encoded Phthalate Catabolic Pathway in Arthrobacter keyseri 12B†

    PubMed Central

    Eaton, Richard W.

    2001-01-01

    Several 2-substituted benzoates (including 2-trifluoromethyl-, 2-chloro-, 2-bromo-, 2-iodo-, 2-nitro-, 2-methoxy-, and 2-acetyl-benzoates) were converted by phthalate-grown Arthrobacter keyseri (formerly Micrococcus sp.) 12B to the corresponding 2-substituted 3,4-dihydroxybenzoates (protocatechuates). Because these products lack a carboxyl group at the 2 position, they were not substrates for the next enzyme of the phthalate catabolic pathway, 3,4-dihydroxyphthalate 2-decarboxylase, and accumulated. When these incubations were carried out in iron-containing minimal medium, the products formed colored chelates. This chromogenic response was subsequently used to identify recombinant Escherichia coli strains carrying genes encoding the responsible enzymes, phthalate 3,4-dioxygenase and 3,4-dihydroxy-3,4-dihydrophthalate dehydrogenase, from the 130-kbp plasmid pRE1 of strain 12B. Beginning with the initially cloned 8.14-kbp PstI fragment of pRE824 as a probe to identify recombinant plasmids carrying overlapping fragments, a DNA segment of 33.5 kbp was cloned from pRE1 on several plasmids and mapped using restriction endonucleases. From these plasmids, the sequence of 26,274 contiguous bp was determined. Sequenced DNA included several genetic units: tnpR, pcm operon, ptr genes, pehA, norA fragment, and pht operon, encoding a transposon resolvase, catabolism of protocatechuate (3,4-dihydroxybenzoate), a putative ATP-binding cassette transporter, a possible phthalate ester hydrolase, a fragment of a norfloxacin resistance-like transporter, and the conversion of phthalate to protocatechuate, respectively. Activities of the eight enzymes involved in the catabolism of phthalate through protocatechuate to pyruvate and oxaloacetate were demonstrated in cells or cell extracts of recombinant E. coli strains. PMID:11371533

  9. Chromosomal and Plasmid-Encoded Factors of Shigella flexneri Induce Secretogenic Activity Ex Vivo

    PubMed Central

    Shea-Donohue, Terez; Barry, Eileen M.; Kaper, James B.; Fasano, Alessio; Nataro, James P.

    2012-01-01

    Shigella flexneri is a Gram-negative, facultative intracellular pathogen that causes millions of cases of watery or bloody diarrhea annually, resulting in significant global mortality. Watery diarrhea is thought to arise in the jejunum, and subsequent bloody diarrhea occurs as a result of invasion of the colonic epithelium. Previous literature has demonstrated that Shigella encodes enterotoxins, both chromosomally and on the 220 kilobase virulence plasmid. The Shigella Enterotoxins 1 and 2 (ShET1 and ShET2) have been shown to increase water accumulation in the rabbit ileal loop model. In addition, these toxins increase the short circuit current in rabbit tissue mounted in Ussing chambers, which is a model for the ion exchange that occurs during watery diarrhea. In this study, we sought to validate the use of mouse jejunum in Ussing chamber as an alternative, more versatile model to study bacterial pathogenesis. In the process, we also identified enterotoxins in addition to ShET1 and ShET2 encoded by S. flexneri. Through analysis of proteins secreted from wildtype bacteria and various deletion mutants, we have identified four factors responsible for enterotoxin activity: ShET1 and Pic, which are encoded on the chromosome; ShET2 (encoded by sen or ospD3), which requires the type-III secretion system for secretion; and SepA, an additional factor encoded on the virulence plasmid. The use of mouse jejunum serves as a reliable and reproducible model to identify the enterotoxins elaborated by enteric bacteria. Moreover, the identification of all Shigella proteins responsible for enterotoxin activity is vital to our understanding of Shigella pathogenicity and to our success in developing safe and effective vaccine candidates. PMID:23166804

  10. Chromosomal and plasmid-encoded factors of Shigella flexneri induce secretogenic activity ex vivo.

    PubMed

    Faherty, Christina S; Faherty, Christina; Harper, Jill M; Shea-Donohue, Terez; Barry, Eileen M; Kaper, James B; Fasano, Alessio; Nataro, James P

    2012-01-01

    Shigella flexneri is a Gram-negative, facultative intracellular pathogen that causes millions of cases of watery or bloody diarrhea annually, resulting in significant global mortality. Watery diarrhea is thought to arise in the jejunum, and subsequent bloody diarrhea occurs as a result of invasion of the colonic epithelium. Previous literature has demonstrated that Shigella encodes enterotoxins, both chromosomally and on the 220 kilobase virulence plasmid. The ShigellaEnterotoxins 1 and 2 (ShET1 and ShET2) have been shown to increase water accumulation in the rabbit ileal loop model. In addition, these toxins increase the short circuit current in rabbit tissue mounted in Ussing chambers, which is a model for the ion exchange that occurs during watery diarrhea. In this study, we sought to validate the use of mouse jejunum in Ussing chamber as an alternative, more versatile model to study bacterial pathogenesis. In the process, we also identified enterotoxins in addition to ShET1 and ShET2 encoded by S. flexneri. Through analysis of proteins secreted from wildtype bacteria and various deletion mutants, we have identified four factors responsible for enterotoxin activity: ShET1 and Pic, which are encoded on the chromosome; ShET2 (encoded by sen or ospD3), which requires the type-III secretion system for secretion; and SepA, an additional factor encoded on the virulence plasmid. The use of mouse jejunum serves as a reliable and reproducible model to identify the enterotoxins elaborated by enteric bacteria. Moreover, the identification of all Shigella proteins responsible for enterotoxin activity is vital to our understanding of Shigella pathogenicity and to our success in developing safe and effective vaccine candidates. PMID:23166804

  11. Bacillus anthracis pXO1 plasmid encodes a putative membrane-bound bacteriocin

    PubMed Central

    Perlińska, Agata

    2014-01-01

    Evolutionary advantages over cousin cells in bacterial pathogens may decide about the success of a specific cell in its environment. Bacteria use a plethora of methods to defend against other cells and many devices to attack their opponents when competing for resources. Bacteriocins are antibacterial proteins that are used to eliminate competition. We report the discovery of a putative membrane-bound bacteriocin encoded by the Bacillus anthracis pathogenic pXO1 plasmid. We analyze the genomic structure of the bacteriocin operon. The proposed mechanisms of action predestine this operon as a potent competitive advantage over cohabitants of the same niche. PMID:25426338

  12. Toxin plasmids of Clostridium perfringens.

    PubMed

    Li, Jihong; Adams, Vicki; Bannam, Trudi L; Miyamoto, Kazuaki; Garcia, Jorge P; Uzal, Francisco A; Rood, Julian I; McClane, Bruce A

    2013-06-01

    In both humans and animals, Clostridium perfringens is an important cause of histotoxic infections and diseases originating in the intestines, such as enteritis and enterotoxemia. The virulence of this Gram-positive, anaerobic bacterium is heavily dependent upon its prolific toxin-producing ability. Many of the ∼16 toxins produced by C. perfringens are encoded by large plasmids that range in size from ∼45 kb to ∼140 kb. These plasmid-encoded toxins are often closely associated with mobile elements. A C. perfringens strain can carry up to three different toxin plasmids, with a single plasmid carrying up to three distinct toxin genes. Molecular Koch's postulate analyses have established the importance of several plasmid-encoded toxins when C. perfringens disease strains cause enteritis or enterotoxemias. Many toxin plasmids are closely related, suggesting a common evolutionary origin. In particular, most toxin plasmids and some antibiotic resistance plasmids of C. perfringens share an ∼35-kb region containing a Tn916-related conjugation locus named tcp (transfer of clostridial plasmids). This tcp locus can mediate highly efficient conjugative transfer of these toxin or resistance plasmids. For example, conjugative transfer of a toxin plasmid from an infecting strain to C. perfringens normal intestinal flora strains may help to amplify and prolong an infection. Therefore, the presence of toxin genes on conjugative plasmids, particularly in association with insertion sequences that may mobilize these toxin genes, likely provides C. perfringens with considerable virulence plasticity and adaptability when it causes diseases originating in the gastrointestinal tract. PMID:23699255

  13. Concordance of heavy metal and antibiotic resistance on plasmids of Chesapeake Bay bacteria. Technical report

    SciTech Connect

    McNicol, L.A.

    1980-10-01

    Antibiotic-resistant and heavy metal-resistant phenotypic frequency was measured in Chesapeake Bay bacterial strains obtained from Bay sites differing significantly in water quality. The phenotypes were estimated from dose-response curves using direct plating, replica plating, and minimal inhibitory concentration (MIC). Resistant and sensitive organisms could be distinguished by concentrations of twenty micrograms per milliliter for various antibiotics (ampicillin, chloramphenicol, nalidixic acid, penicillin, streptomycin, and tetracycline), and of 0.05 millimolar for the heavy metals tested (cadmium, mercury, nickel, and lead). Individual resistance phenotypes of 1816 isolates were determined with the replica technique, with 85% resistant to at least one antibiotic and a surprising 2% resistant to all six drugs tested. Occurrence of resistant organisms did not correlate with water quality, sampling location, season, sample type, or physical parameters of the site. Ninety-two percent of organisms examined were resistant to at least one metal studied, with 43% resistant to all metals, but resistance did not correlate with any station or sample parameters. Metal and drug resistant phenotypes did correlate positively with one another, but these two traits were not appreciably linked on plasmid DNA.

  14. Antibiotic sensitivity and molecular analyses demonstrate a lack of IncA/C plasmid in modified live Edwardsiella ictaluri vaccine strain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plasmid mediated antibiotic resistance was first discovered in Edwardsiella ictaluri in the early 1990’s and in 2007, an E. ictaluri strain harboring an IncA/C plasmid was isolated from a moribund channel catfish infected with the bacterium. Due to the recent identification of IncA/C plasmids in aqu...

  15. Virulence Plasmid of Rhodococcus equi Contains Inducible Gene Family Encoding Secreted Proteins

    PubMed Central

    Byrne, Barbara A.; Prescott, John F.; Palmer, Guy H.; Takai, Shinji; Nicholson, Vivian M.; Alperin, Debra C.; Hines, Stephen A.

    2001-01-01

    Rhodococcus equi causes severe pyogranulomatous pneumonia in foals. This facultative intracellular pathogen produces similar lesions in immunocompromised humans, particularly in AIDS patients. Virulent strains of R. equi bear a large plasmid that is required for intracellular survival within macrophages and for virulence in foals and mice. Only two plasmid-encoded proteins have been described previously; a 15- to 17-kDa surface protein designated virulence-associated protein A (VapA) and an antigenically related 20-kDa protein (herein designated VapB). These two proteins are not expressed by the same R. equi isolate. We describe here the substantial similarity between VapA and VapB. Moreover, we identify three additional genes carried on the virulence plasmid, vapC, -D, and -E, that are tandemly arranged downstream of vapA. These new genes are members of a gene family and encode proteins that are approximately 50% homologous to VapA, VapB, and each other. vapC, -D, and -E are found only in R. equi strains that express VapA and are highly conserved in VapA-positive isolates from both horses and humans. VapC, -D, and -E are secreted proteins coordinately regulated by temperature with VapA; the proteins are expressed when R. equi is cultured at 37°C but not at 30°C, a finding that is compatible with a role in virulence. As secreted proteins, VapC, -D, and -E may represent targets for the prevention of rhodococcal pneumonia. An immunologic study using VapA-specific antibodies and recombinant Vap proteins revealed no evidence of cross-reactivity despite extensive sequence similarity over the carboxy terminus of all four proteins. PMID:11159951

  16. Plasminogen activator/coagulase gene of Yersinia pestis is responsible for degradation of plasmid-encoded outer membrane proteins.

    PubMed Central

    Sodeinde, O A; Sample, A K; Brubaker, R R; Goguen, J D

    1988-01-01

    The related family of virulence plasmids found in the three major pathogens of the genus Yersinia all have the ability to encode a set of outer membrane proteins. In Y. enterocolitica and Y. pseudotuberculosis, these proteins are major constituents of the outer membrane when their synthesis is fully induced. In contrast, they have been difficult to detect in Y. pestis. It has recently been established that Y. pestis does synthesize these proteins, but that they are rapidly degraded due to some activity determined by the 9.5-kilobase plasmid commonly found in Y. pestis strains. We show that mutations in the pla gene of this plasmid, which encodes both the plasminogen activator and coagulase activities, blocked this degradation. A cloned 1.4-kilobase DNA fragment carrying pla was also sufficient to cause degradation in the absence of the 9.5-kilobase plasmid. Images PMID:2843471

  17. IncF Plasmids Are Commonly Carried by Antibiotic Resistant Escherichia coli Isolated from Drinking Water Sources in Northern Tanzania.

    PubMed

    Lyimo, Beatus; Buza, Joram; Subbiah, Murugan; Temba, Sylivester; Kipasika, Honest; Smith, Woutrina; Call, Douglas R

    2016-01-01

    The aim of this study was to identify the replicon types of plasmids, conjugation efficiencies, and the complement of antibiotic resistance genes for a panel of multidrug resistant E. coli isolates from surface waters in northern Tanzania. Standard membrane filtration was used to isolate and uidA PCR was used to confirm the identity of strains as E. coli. Antibiotic susceptibility was determined by breakpoint assay and plasmid conjugation was determined by filter-mating experiments. PCR and sequencing were used to identify resistance genes and PCR-based replicon typing was used to determine plasmid types. Filter mating experiments indicated conjugation efficiencies ranged from 10(-1) to 10(-7). Over 80% of the donor cells successfully passed their resistance traits and eleven different replicon types were detected (IncI1, FIC, P, FIIA, A/C, FIB, FIA, H12, K/B B/O, and N). IncF plasmids were most commonly detected (49% of isolates), followed by types IncI1 and IncA/C. Detection of these public health-relevant conjugative plasmids and antibiotic resistant traits in Tanzanian water suggests the possible pollution of these water sources from human, livestock, and wild animal wastes and also shows the potential of these water sources in the maintenance and transmission of these resistance traits between environments, animals, and people. PMID:27110245

  18. IncF Plasmids Are Commonly Carried by Antibiotic Resistant Escherichia coli Isolated from Drinking Water Sources in Northern Tanzania

    PubMed Central

    Lyimo, Beatus; Buza, Joram; Subbiah, Murugan; Temba, Sylivester; Kipasika, Honest; Smith, Woutrina; Call, Douglas R.

    2016-01-01

    The aim of this study was to identify the replicon types of plasmids, conjugation efficiencies, and the complement of antibiotic resistance genes for a panel of multidrug resistant E. coli isolates from surface waters in northern Tanzania. Standard membrane filtration was used to isolate and uidA PCR was used to confirm the identity of strains as E. coli. Antibiotic susceptibility was determined by breakpoint assay and plasmid conjugation was determined by filter-mating experiments. PCR and sequencing were used to identify resistance genes and PCR-based replicon typing was used to determine plasmid types. Filter mating experiments indicated conjugation efficiencies ranged from 10−1 to 10−7. Over 80% of the donor cells successfully passed their resistance traits and eleven different replicon types were detected (IncI1, FIC, P, FIIA, A/C, FIB, FIA, H12, K/B B/O, and N). IncF plasmids were most commonly detected (49% of isolates), followed by types IncI1 and IncA/C. Detection of these public health-relevant conjugative plasmids and antibiotic resistant traits in Tanzanian water suggests the possible pollution of these water sources from human, livestock, and wild animal wastes and also shows the potential of these water sources in the maintenance and transmission of these resistance traits between environments, animals, and people. PMID:27110245

  19. LONG-TERM STARVATION-INDUCED LOSS OF APPARENT ANTIBIOTIC RESISTANCE IN CELLS CONTAINING THE PLASMID PSA

    EPA Science Inventory

    Escherichia coli, Pseudomonas fluorescens, and a Pseudomonas sp. strain 133B containing the pSa plasmid were starved in well water for up to 523 days. There were two patterns of apparent antibiotic resistance loss observed. In Pseudomonas sp. strain 133B, there was no apparent lo...

  20. Effects of nano-TiO2 on antibiotic resistance transfer mediated by RP4 plasmid.

    PubMed

    Qiu, Zhigang; Shen, Zhiqiang; Qian, Di; Jin, Min; Yang, Dong; Wang, Jingfeng; Zhang, Bin; Yang, Zhongwei; Chen, Zhaoli; Wang, Xinwei; Ding, Chengshi; Wang, Daning; Li, Jun-Wen

    2015-01-01

    The potential risks of nano-materials and the spread of antibiotic resistance genes (ARGs) have become two major global public concerns. Studies have confirmed that nano-alumina can promote the spread of ARGs mediated by plasmids. Nano-titanium dioxide (TiO(2)), an excellent photocatalytic nano-material, has been widely used and is often present in aqueous environments. At various nano-material concentrations, bacterial density, matting time, and matting temperature, nano-TiO(2) can significantly promote the conjugation of RP4 plasmid in Escherichia coli. We developed a mathematical model to quantitatively describe the conjugation process and used this model to evaluate the effects of nano-TiO(2) on the spread of ARGs. We obtained analytical solutions for total and resistant bacteria, which were enumerated by the abundance of genetic loci unique to the plasmid and the chromosome using qPCR. Our results showed that the mathematic model was able to fit the experimental data well and can be used to quantitatively evaluate the effects of nano-TiO(2). According to our model, the presence of nano-TiO(2) decreased the bacterial growth rate from 0.0360 to 0.0323 min(-1) and increased the conjugative transfer rate from 6.69 × 10(-12) to 3.93 × 10(-10 )mL cell(-1) min(-1). These results indicate that nano-TiO(2) inhibited bacterial growth and promoted conjugation simultaneously. The data for morphology and mRNA expression also demonstrated this phenomenon. Our results confirm that environmental nano-TiO(2) may cause the spread of ARGs and thus poses an environmental risk. In addition, we provide a potential method for monitoring changes in ARGs that result from conjugation and evaluating the effects of antimicrobial substances on ARG expression. PMID:25676619

  1. Antibiotic resistance and plasmid profiling of Vibrio spp. in tropical waters of Peninsular Malaysia.

    PubMed

    You, K G; Bong, C W; Lee, C W

    2016-03-01

    Vibrio species isolated from four different sampling stations in the west coast of Peninsular Malaysia were screened for their antimicrobial resistance and plasmid profiles. A total of 138 isolates belonging to 15 different species were identified. Vibrio campbellii, V. parahaemolyticus, V. harveyi, and V. tubiashii were found to predominance species at all stations. High incidence of erythromycin, ampicillin, and mecillinam resistance was observed among the Vibrio isolates. In contrast, resistance against aztreonam, cefepime, streptomycin, sulfamethoxazole, and sulfonamides was low. All the Vibrio isolates in this study were found to be susceptible to imipenem, norfloxacin, ofloxacin, chloramphenicol, trimethoprim/sulfamethoxazole, and oxytetracycline. Ninety-five percent of the Vibrio isolates were resistant to one or more different classes of antibiotic, and 20 different resistance antibiograms were identified. Thirty-two distinct plasmid profiles with molecular weight ranging from 2.2 to 24.8 kb were detected among the resistance isolates. This study showed that multidrug-resistant Vibrio spp. were common in the aquatic environments of west coast of Peninsular Malaysia. PMID:26884358

  2. FabV/Triclosan Is an Antibiotic-Free and Cost-Effective Selection System for Efficient Maintenance of High and Medium -Copy Number Plasmids in Escherichia coli

    PubMed Central

    Ali, Syed A.; Chew, Yik Wei

    2015-01-01

    Antibiotic resistance genes and antibiotics are frequently used to maintain plasmid vectors in bacterial hosts such as Escherichia coli. Due to the risk of spread of antibiotic resistance, the regulatory authorities discourage the use of antibiotic resistance genes/antibiotics for the maintenance of plasmid vectors in certain biotechnology applications. Overexpression of E. coli endogenous fabI gene and subsequent selection on Triclosan has been proposed as a practical alternative to traditional antibiotic selection systems. Unfortunately, overexpression of fabI cannot be used to select medium –copy number plasmids, typically used for the expression of heterologous proteins in E. coli. Here we report that Vibrio cholera FabV, a functional homologue of E. coli FabI, can be used as a suitable marker for the selection and maintenance of both high and medium -copy number plasmid vectors in E. coli. PMID:26057251

  3. The indigenous Pseudomonas plasmid pQBR103 encodes plant-inducible genes, including three putative helicases.

    PubMed

    Zhang, Xue-Xian; Lilley, Andrew K; Bailey, Mark J; Rainey, Paul B

    2004-12-27

    Plasmid pQBR103 ( approximately 400 kb) is representative of many self-transmissible, mercury resistant plasmids observed in the Pseudomonas community colonising the phytosphere of sugar beet. A promoter trapping strategy (IVET) was employed to identify pQBR103 genes showing elevated levels of expression on plant surfaces. Thirty-seven different plant-inducible gene fusions were isolated that were silent in laboratory media, but active in the plant environment. Three of the fusions were to DNA sequences whose protein products show significant homology to DNA-unwinding helicases. The three helicase-like genes, designated helA, helB and helC, are restricted to a defined group of related Pseudomonas plasmids. They are induced in both the root and shoot environments of sugar beet seedlings. Sequence analysis of the three plasmid-encoded helicase-like genes shows that they are phylogenetically distinct and likely to have independent evolutionary histories. The helA gene is predicted to encode a protein of 1121 amino acids, containing conserved domains found in the ultraviolet (UV) resistance helicase, UvrD. A helA knockout mutant was constructed and no phenotypic changes were found with plasmid-conferred UV resistance or plasmid conjugation. The other 34 fusions are unique with no homologues in the public gene databases, including the Pseudomonas genomes. These data demonstrate the presence of plant responsive genes in plasmid DNA comprising a component of the genomes of plant-associated bacteria. PMID:16329852

  4. Emergence of Staphylococcus aureus carrying multiple drug resistance genes on a plasmid encoding exfoliative toxin B.

    PubMed

    Hisatsune, Junzo; Hirakawa, Hideki; Yamaguchi, Takayuki; Fudaba, Yasuyuki; Oshima, Kenshiro; Hattori, Masahira; Kato, Fuminori; Kayama, Shizuo; Sugai, Motoyuki

    2013-12-01

    We report the complete nucleotide sequence and analysis of pETBTY825, a Staphylococcus aureus TY825 plasmid encoding exfoliative toxin B (ETB). S. aureus TY825 is a clinical isolate obtained from an impetigo patient in 2002. The size of pETBTY825, 60.6 kbp, was unexpectedly larger than that of the archetype pETBTY4 (∼30 kbp). Genomic comparison of the plasmids shows that pETBTY825 has the archetype pETBTY4 as the backbone and has a single large extra DNA region of 22.4 kbp. The extra DNA region contains genes for resistance to aminoglycoside [aac(6')/aph(2″)], macrolide (msrA), and penicillin (blaZ). A plasmid deletion experiment indicated that these three resistance elements were functionally active. We retrospectively examined the resistance profile of the clinical ETB-producing S. aureus strains isolated in 1977 to 2007 using a MIC determination with gentamicin (GM), arbekacin (ABK), and erythromycin (EM) and by PCR analyses for aac(6')/aph(2″) and msrA using purified plasmid preparations. The ETB-producing S. aureus strains began to display high resistance to GM, which was parallel with the detection of aac(6')/aph(2″) and mecA, after 1990. Conversely, there was no significant change in the ABK MIC during the testing period, although it had a tendency to slightly increase. After 2001, isolates resistant to EM significantly increased; however, msrA was hardly detected in ETB-producing S. aureus strains, and only five isolates were positive for both aac(6')/aph(2″) and msrA. In this study, we report the emergence of a fusion plasmid carrying the toxin gene etb and drug resistance genes. Prevalence of the pETBTY825 carrier may further increase the clinical threat, since ETB-producing S. aureus is closely related to more severe impetigo or staphylococcal scalded-skin syndrome (SSSS), which requires a general antimicrobial treatment. PMID:24080652

  5. Plasmid-encoding vasostatin inhibited the growth and metastasis of human hepatocellular carcinoma cells.

    PubMed

    Peng, Xing-Chen; Wang, Ming; Chen, Xu-Xia; Liu, Jing; Xiao, Gui-Hua; Liao, Hong-Li

    2014-10-01

    The growth and metastasis of solid tumors depends on angiogenesis. Anti-angiogenesis therapy may represent a promising therapeutic option. Vasostatin, the N-terminal domain of calreticulin, is a very potent endogenous inhibitor of angiogenesis and tumor growth. In this study, we attempted to investigate whether plasmid-encoding vasostatin complexed with cationic liposome could suppress the growth and metastasis of hepatocellular carcinoma in vivo and discover its possible mechanism of action. Apoptosis induction of pSecTag2B-vasostatin plasmid on murine endothelial cells (MS1) was examined by flow cytometric analysis in vitro. Nude mice bearing HCCLM3 tumor received pSecTag2B-vasostatin, pSecTag2B-Null, and 0.9 % NaCl solution, respectively. Tumor net weight was measured and survival time was observed. Microvessel density within tumor tissues was determined by CD31 immunohistochemistry. H&E staining of lungs and TUNEL assay of primary tumor tissues were also conducted. The results displayed that pSecTag2B-vasostatin could inhibit the growth and metastasis of hepatocellular carcinoma xenografts and prolong survival time compared with the controls in vivo. Moreover, histologic analysis revealed that pSecTag2B-vasostatin treatment increased apoptosis and inhibited angiogenesis. The present data may be of importance to the further exploration of this new anti-angiogenesis approach in the treatment of hepatocellular cancer. PMID:24997628

  6. Identification of pTiC58 plasmid-encoded proteins for virulence in Agrobacterium tumefaciens.

    PubMed Central

    Hagiya, M; Close, T J; Tait, R C; Kado, C I

    1985-01-01

    Analyses were made of the host-dependent-variation (hdv) locus of the virulence (vir) region of the pTiC58 plasmid of Agrobacterium tumefaciens. The hdv locus is comprised of at least four genes that encode polypeptides of 13, 15, 29, and 28 kDa. Insertion of transposon Tn5 in the first gene abolishes the expression of all four genes in vitro and in vivo. Nucleotide sequence analysis of the hdv locus revealed four open reading frames tandemly arranged with spacer sequences having no promoter-like sequences and lacking the ability to bind A. tumefaciens RNA polymerase. These studies suggest that the hdv locus is comprised of at least four genes arranged in an operon in the vir region. The protein products of these genes are likely to function in some aspect of the host-range determination of A. tumefaciens. Images PMID:2986128

  7. Complete nucleotide sequences of two NDM-1-encoding plasmids from the same sequence type 11 Klebsiella pneumoniae strain.

    PubMed

    Studentova, V; Dobiasova, H; Hedlova, D; Dolejska, M; Papagiannitsis, C C; Hrabak, J

    2015-02-01

    The sequence type 11 Klebsiella pneumoniae strain Kpn-3002cz was confirmed to harbor two NDM-1-encoding plasmids, pB-3002cz and pS-3002cz. pB-3002cz (97,649 bp) displayed extensive sequence similarity with the blaNDM-1-carrying plasmid pKPX-1. pS-3002cz (73,581 bp) was found to consist of an IncR-related sequence (13,535 bp) and a mosaic region (60,046 bp). A 40,233-bp sequence of pS-3002cz was identical to the mosaic region of pB-3002cz, indicating the en bloc acquisition of the NDM-1-encoding region from one plasmid by the other. PMID:25421477

  8. Complete Nucleotide Sequences of Two NDM-1-Encoding Plasmids from the Same Sequence Type 11 Klebsiella pneumoniae Strain

    PubMed Central

    Studentova, V.; Dobiasova, H.; Hedlova, D.; Dolejska, M.; Hrabak, J.

    2014-01-01

    The sequence type 11 Klebsiella pneumoniae strain Kpn-3002cz was confirmed to harbor two NDM-1-encoding plasmids, pB-3002cz and pS-3002cz. pB-3002cz (97,649 bp) displayed extensive sequence similarity with the blaNDM-1-carrying plasmid pKPX-1. pS-3002cz (73,581 bp) was found to consist of an IncR-related sequence (13,535 bp) and a mosaic region (60,046 bp). A 40,233-bp sequence of pS-3002cz was identical to the mosaic region of pB-3002cz, indicating the en bloc acquisition of the NDM-1-encoding region from one plasmid by the other. PMID:25421477

  9. Degradation of trichloroethene by a linear-plasmid-encoded alkene monooxygenase in Rhodococcus corallinus (Nocardia corallina) B-276.

    PubMed

    Saeki, H; Akira, M; Furuhashi, K; Averhoff, B; Gottschalk, G

    1999-07-01

    Rhodococcus corallinus (formerly Nocardia corallina) B-276, isolated with propene as sole carbon and energy source, is able to oxidize trichloroethene (TCE). Glucose- or propene-grown R. corallinus B-276 cells exhibited no difference in TCE degradation efficiency. TCE degradation was found to be growth-phase-dependent and maximum rates were monitored with stationary-phase cells. K(m) and Vmax values for TCE degradation of R. corallinus B-276 grown in nutrient broth medium in the presence of glucose were 187 microM and 2.4 nmol min-1 (mg protein)-1, respectively. Escherichia coli recombinants harbouring and expressing the alkene monooxygenase genes of R. corallinus B-276 exhibited the ability to degrade TCE. This result provides clear evidence that the alkene monooxygenase of R. corallinus B-276 catalyses TCE oxidation. R. corallinus B-276 was shown to contain four linear plasmids, pNC10 (70 kb), pNC20 (85 kb), pNC30 (185 kb) and pNC40 (235 kb). The observation that pNC30-deficient strains had lost the ability to grow on propene suggested that the genes of the propene degradation pathway are encoded by the linear plasmid pNC30. Southern blot analysis with cloned alkene monooxygenase genes from R. corallinus B-276 revealed a positive hybridization signal with the linear plasmid pNC30. This result clearly shows that the alkene monooxygenase is encoded by the linear plasmid pNC30. Eleven short-chain-alkene-oxidizing strains were screened for the presence of linear plasmids. Among these, four propene-oxidizing Rhodococcus strains and one ethene-oxidizing Mycobacterium strain were found to contain linear megaplasmids. Southern blot analysis with the alkene monooxygenase revealed positive signals with linear plasmids of two propene-oxidizing Rhodococcus ruber strains. These results indicate that homologous alkene monooxygenases are encoded by linear plasmids in R. ruber strains. PMID:10439411

  10. Plasmid-encoded genes influence exosporium assembly and morphology in Bacillus megaterium QM B1551 spores

    PubMed Central

    Manetsberger, Julia; Hall, Elizabeth A. H.; Christie, Graham

    2015-01-01

    Spores of Bacillus megaterium QM B1551 are encased in a morphologically distinctive exosporium. We demonstrate here that genes encoded on the indigenous pBM500 and pBM600 plasmids are required for exosporium assembly and or stability in spores of this strain. Bioinformatic analyses identified genes encoding orthologues of the B. cereus-family exosporium nap and basal layer proteins within the B. megaterium genome. Transcriptional analyses, supported by electron and fluorescent microscopy, indicate that the pole-localized nap, identified here for the first time in B. megaterium QM B1551 spores, is comprised of the BclA1 protein. The role of the BxpB protein, which forms the basal layer of the exosporium in B. cereus spores, is less clear since spores of a null mutant strain display an apparently normal morphology. Retention of the localized nap in bxpB null spores suggests that B. megaterium employs an alternative mechanism to that used by B. cereus spores in anchoring the nap to the spore surface. PMID:26316548

  11. Plasmid vectors for Xylella fastidiosa utilizing a toxin-antitoxin system for plasmid stability in the absence of antibiotic selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phytopathogen Xylella fastidiosa causes disease in a variety of important crop and landscape plants. Functional genetic studies have led to a broader understanding of virulence mechanisms used by this pathogen in the grapevine host. Plasmid shuttle vectors are important tools in studies of bacte...

  12. Borrelia burgdorferi supercoiled plasmids encode multicopy tandem open reading frames and a lipoprotein gene family.

    PubMed Central

    Porcella, S F; Popova, T G; Akins, D R; Li, M; Radolf, J D; Norgard, M V

    1996-01-01

    DNA sequencing and Southern blot analyses of a Borrelia burgdorferi DNA fragment encoding a signal sequence led to the discovery of a genetic locus, designated 2.9, which appears to be present in at least seven copies in virulent B. burgdorferi 297. DNA sequence analysis of these regions revealed that each 2.9 locus contained an operon of four genes (ABCD) and open reading frames designated rep+ (positive strand) and rep- (negative strand) which encoded multiple repeat motifs. Downstream of the rep+ gene(s) in six of the completely cloned and sequenced 2.9 loci also were lipoprotein (LP) genes possessing highly similar signal sequences but encoding variable mature polypeptides. The lipoproteins could he separated into two classes on the basis of hydrophilicity profiles, sequence similarities, and reactivity with specific antibodies. The 2.9 loci were localized to two (20- and 30-kb) supercoiled plasmids in B. burgdorferi 297. Northern (RNA) blot analysis established that the 2.9 ABCD operon was only minimally expressed, whereas the rep- gene(s) and at least three of the seven LP genes were expressed by B. burgdorferi in vitro. A single putative promoter element was identified by RNA primer extension analysis upstream of the ABCD operon, whereas a number of potential promoter regions existed upstream of the LP genes. The combined data indicate that the ABCD operon, rep+ and rep- genes, and LP genes are separately transcribed during in vitro growth. The 2.9 loci possess a repetitiveness, diversity, and complexity not previously described for B. burgdorferi; differential expression of these genes may facilitate the spirochete's ability to survive in diverse host environments. PMID:8655511

  13. Antibiotic susceptibility pattern and analysis of plasmid profiles of Pseudomonas aeruginosa from human, animal and plant sources.

    PubMed

    Odumosu, Bamidele Tolulope; Ajetunmobi, Olabayo; Dada-Adegbola, Hannah; Odutayo, Idowu

    2016-01-01

    Multidrug resistant organisms (MDROs) constitute a major public health threat globally. Clinical isolates of Pseudomonas aeruginosa remains one of the most studied MDROs however there is paucity of information regarding the susceptibility of its animal and plants isolates to antipseudomonas drug in Nigeria. From a total of 252 samples consisting of plants, animals and clinical samples, 54, 24 and 22 P. aeruginosa were isolated from vegetables, animals and clinical sources respectively. All the isolates were identified by standard biochemical methods. Antimicrobial susceptibility testing (AST) of the 100 P. aeruginosa isolates against 7 antipseudomonal drugs was carried out by disk diffusion method, the phenotypic detection of ESBL was done by double disk synergy test (DDST) while plasmid extraction on 20 selected isolates based on their resistance to 2 or more classes of antibiotics was carried out by alkaline lysis method and analysed with Lambda DNA/Hind lll marker respectively. The AST results revealed highest resistance of 91 and 55 % to ceftazidime and carbenicillin respectively while highest susceptibilities of 99 % for piperacillin-tazobactam and imipenem were recorded in overall assay. Fifteen out of 100 isolates specifically (10) from vegetables, (3) clinical and (2) poultry isolates showed synergy towards the beta-lactamase inhibitor indicating production of ESBL by DDST method. Detection of plasmids was among vegetable (n = 4), poultry (n = 4), cow (n = 3) and clinical isolates (n = 1). Plasmid profile for the selected isolates revealed 6 of the strains had one plasmids each while 5 strains possessed 2-4 plasmids and 1 strain had 5 plasmids. The sizes of the plasmid range from <1 to ≥23kbp. Detection of ESBL and Plasmids among the investigated isolates is suggestive of multiple interplay of resistance mechanism among the isolates. Plants and animal isolates of P. aeruginosa harbouring multiple mechanisms of resistance is of concern due to the

  14. Plasmid content and localization of the genes encoding the denitrification enzymes in two strains of Rhodobacter sphaeroides.

    PubMed

    Schwintner, C; Sabaty, M; Berna, B; Cahors, S; Richaud, P

    1998-08-15

    Plasmid content and localization of the genes encoding the reductases of the denitrification pathway were determined in the photosynthetic bacterium Rhodobacter sphaeroides forma sp. denitrificans by transverse alternating-field electrophoresis (TAFE) and hybridization with digoxigenin-labeled homologous probes. Two large plasmids of 102 and 115 kb were found. The genes encoding the various reductases are not clustered on a single genetic unit. The nap locus (localized with a napA probe), the nirK gene and the norCB genes encoding the nitrate, nitrite and nitric oxide reductases, respectively, were found on different AseI and SnaBI digested chromosomal DNA fragments, whereas the nos locus (localized with a nosZ probe), encoding the nitrous oxide reductase, was identified on the 115-kb plasmid. Furthermore, the genes encoding two proteins of unknown function, one periplasmic and the other cytoplasmic, but whose synthesis is highly induced by nitrate, were found on a different chromosomal fragment. For comparison, the same experiments were carried out on the well-characterized strain Rhodobacter sphaeroides 2.4.1. PMID:9742704

  15. pEVL: A Linear Plasmid for Generating mRNA IVT Templates With Extended Encoded Poly(A) Sequences.

    PubMed

    Grier, Alexandra E; Burleigh, Stephen; Sahni, Jaya; Clough, Courtnee A; Cardot, Victoire; Choe, Dongwook C; Krutein, Michelle C; Rawlings, David J; Jensen, Michael C; Scharenberg, Andrew M; Jacoby, Kyle

    2016-01-01

    Increasing demand for large-scale synthesis of in vitro transcribed (IVT) mRNA is being driven by the increasing use of mRNA for transient gene expression in cell engineering and therapeutic applications. An important determinant of IVT mRNA potency is the 3' polyadenosine (poly(A)) tail, the length of which correlates with translational efficiency. However, present methods for generation of IVT mRNA rely on templates derived from circular plasmids or PCR products, in which homopolymeric tracts are unstable, thus limiting encoded poly(A) tail lengths to ~120 base pairs (bp). Here, we have developed a novel method for generation of extended poly(A) tracts using a previously described linear plasmid system, pJazz. We find that linear plasmids can successfully propagate poly(A) tracts up to ~500 bp in length for IVT mRNA production. We then modified pJazz by removing extraneous restriction sites, adding a T7 promoter sequence upstream from an extended multiple cloning site, and adding a unique type-IIS restriction site downstream from the encoded poly(A) tract to facilitate generation of IVT mRNA with precisely defined encoded poly(A) tracts and 3' termini. The resulting plasmid, designated pEVL, can be used to generate IVT mRNA with consistent defined lengths and terminal residue(s). PMID:27093168

  16. Comparative study on the antibiotic susceptibility and plasmid profiles of Vibrio alginolyticus strains isolated from four Tunisian marine biotopes.

    PubMed

    Lajnef, Rim; Snoussi, Mejdi; Romalde, Jesús López; Nozha, Cohen; Hassen, Abdennaceur

    2012-12-01

    The antibiotic resistance patterns and the plasmids profiles of the predominant etiological agent responsible for vibriosis in Tunisia, V. alginolyticus were studied to contribute to control their spread in some Mediterranean aquaculture farms and seawater. The sixty-nine V. alginolyticus strains isolated from different marine Tunisian biotopes (bathing waters, aquaculture and conchylicole farms and a river connected to the seawater during the cold seasons) were multi-drug resistant with high resistance rate to ampicillin, kanamycin, doxycyclin, erythromycin, imipinem, and nalidixic acid. The multiple resistance index ranged from 0.3 to 0.7 for the isolates of Khenis, from 0.5 to 0.8 for those of Menzel Jmil, from 0.5 to 0.75 (Hergla) and from 0.3 to 0.7 for the isolates of Oued Soltane. The high value of antibiotic resistance index was recorded for the V. alginolyticus population isolated from the fish farm in Hergla (ARI = 0.672) followed by the population isolated from the conchylicole station of Menzel Jmil (ARI = 0.645). The results obtained by the MIC tests confirmed the resistance of the V. alginolyticus to ampicillin, erythromycin, kanamycin, cefotaxime, streptomycin and trimethoprim. Plasmids were found in 79.48 % of the strains analyzed and 30 different plasmid profiles were observed. The strains had a high difference in the size of plasmids varying between 0.5 and 45 kb. Our study reveals that the antibiotic-resistant bacteria are widespread in the aquaculture and conchylicole farm relatively to others strains isolated from seawater. PMID:22918722

  17. Chlorophenol hydroxylases encoded by plasmid pJP4 differentially contribute to chlorophenoxyacetic acid degradation.

    PubMed

    Ledger, T; Pieper, D H; González, B

    2006-04-01

    Phenoxyalkanoic compounds are used worldwide as herbicides. Cupriavidus necator JMP134(pJP4) catabolizes 2,4-dichlorophenoxyacetate (2,4-D) and 4-chloro-2-methylphenoxyacetate (MCPA), using tfd functions carried on plasmid pJP4. TfdA cleaves the ether bonds of these herbicides to produce 2,4-dichlorophenol (2,4-DCP) and 4-chloro-2-methylphenol (MCP), respectively. These intermediates can be degraded by two chlorophenol hydroxylases encoded by the tfdB(I) and tfdB(II) genes to produce the respective chlorocatechols. We studied the specific contribution of each of the TfdB enzymes to the 2,4-D/MCPA degradation pathway. To accomplish this, the tfdB(I) and tfdB(II) genes were independently inactivated, and growth on each chlorophenoxyacetate and total chlorophenol hydroxylase activity were measured for the mutant strains. The phenotype of these mutants shows that both TfdB enzymes are used for growth on 2,4-D or MCPA but that TfdB(I) contributes to a significantly higher extent than TfdB(II). Both enzymes showed similar specificity profiles, with 2,4-DCP, MCP, and 4-chlorophenol being the best substrates. An accumulation of chlorophenol was found to inhibit chlorophenoxyacetate degradation, and inactivation of the tfdB genes enhanced the toxic effect of 2,4-DCP on C. necator cells. Furthermore, increased chlorophenol production by overexpression of TfdA also had a negative effect on 2,4-D degradation by C. necator JMP134 and by a different host, Burkholderia xenovorans LB400, harboring plasmid pJP4. The results of this work indicate that codification and expression of the two tfdB genes in pJP4 are important to avoid toxic accumulations of chlorophenols during phenoxyacetic acid degradation and that a balance between chlorophenol-producing and chlorophenol-consuming reactions is necessary for growth on these compounds. PMID:16597983

  18. A Host-Specific Factor is Necessary for Efficient Folding of the Autotransporter Plasmid-Encoded Toxin

    PubMed Central

    Nemec, Kathleen N.; Scaglione, Patricia; Navarro-García, Fernando; Huerta, Jazmín; Tatulian, Suren A.; Teter, Ken

    2010-01-01

    Autotransporters are the most common virulence factors secreted from Gram-negative pathogens. Until recently, autotransporter folding and outer membrane translocation were thought to be self-mediated events that did not require accessory factors. Here, we report that two variants of the autotransporter plasmid-encoded toxin are secreted by a lab strain of Escherichia coli. Biophysical analysis and cell-based toxicity assays demonstrated that only one of the two variants was in a folded, active conformation. The misfolded variant was not produced by a pathogenic strain of enteroaggregative E. coli and did not result from protein overproduction in the lab strain of E. coli. Our data suggest a host-specific factor is required for efficient folding of plasmid-encoded toxin. PMID:19944129

  19. Tetracycline-resistance encoding plasmids from Paenibacillus larvae, the causal agent of American foulbrood disease, isolated from commercial honeys.

    PubMed

    Alippi, Adriana M; León, Ignacio E; López, Ana C

    2014-03-01

    Paenibacillus larvae, the causal agent of American foulbrood disease in honeybees, acquires tetracycline-resistance via native plasmids carrying known tetracycline-resistance determinants. From three P. larvae tetracycline-resistant strains isolated from honeys, 5-kb-circular plasmids with almost identical sequences, designated pPL373 in strain PL373, pPL374 in strain PL374, and pPL395 in strain PL395, were isolated. These plasmids were highly similar (99%) to small tetracycline-encoding plasmids (pMA67, pBHS24, pBSDMV46A, pDMV2, pSU1, pAST4, and pLS55) that replicate by the rolling circle mechanism. Nucleotide sequences comparisons showed that pPL373, pPL374, and pPL395 mainly differed from the previously reported P. larvae plasmid pMA67 in the oriT region and mob genes. These differences suggest alternative mobilization and/or conjugation capacities. Plasmids pPL373, pPL374, and pPL395 were individually transferred by electroporation and stably maintained in tetracycline-susceptible P. larvae NRRL B-14154, in which they autonomously replicated. The presence of nearly identical plasmids in five different genera of gram-positive bacteria, i.e., Bhargavaea, Bacillus, Lactobacillus, Paenibacillus, and Sporosarcina, inhabiting diverse ecological niches provides further evidence of the genetic transfer of tetracycline resistance among environmental bacteria from soils, food, and marine habitats and from pathogenic bacteria such as P. larvae. PMID:25296446

  20. Mediation of serum resistance in Salmonella typhimurium by an 11-kilodalton polypeptide encoded by the cryptic plasmid.

    PubMed

    Hackett, J; Wyk, P; Reeves, P; Mathan, V

    1987-03-01

    A cosmid bank of the DNA (including cryptic plasmid DNA) of a virulent strain of Salmonella typhimurium was prepared in Escherichia coli K12, and clones that contained cryptic plasmid DNA were detected by probing. Two such clones expressed a new outer membrane protein of 11 kilodaltons (kDa) and were serum resistant (E. coli K12 is serum sensitive). The gene encoding the 11-kDa protein was subcloned in a 2.1-kilobase fragment and shown to mediate serum resistance in both E. coli K12 and a cryptic plasmid-free (serum-sensitive) strain of S. typhimurium. The cryptic plasmid-free S. typhimurium strain did not express normal lipopolysaccharide, but introduction of the 11-kDa protein gene into the strain rendered the strain serum resistant without restoration of normal lipopolysaccharide synthesis. The 11-kDa protein gene was not sufficient to restore either macrophage resistance or virulence to a cryptic plasmid-free strain of S. typhimurium. PMID:3543157

  1. Antibiotic resistance free plasmid DNA expressing LACK protein leads towards a protective Th1 response against Leishmania infantum infection.

    PubMed

    Ramos, I; Alonso, A; Peris, A; Marcen, J M; Abengozar, M A; Alcolea, P J; Castillo, J A; Larraga, V

    2009-11-12

    Canine visceral leishmaniasis is a serious public health concern in the Mediterranean basin since dogs are the main Leishmania infantum reservoir. However, there is not a vaccination method in veterinary use in this area, and therefore the development of a vaccine against this parasite is essential for the possible control of the disease. Previous reports have shown the efficacy of heterologous prime-boost vaccination with the pCIneo plasmid and the poxvirus VV (both Western Reserve and MVA strains) expressing L. infantum LACK antigen against canine leishmaniasis. As pCIneo-LACK plasmid contains antibiotic resistance genes, its use as a profilactic method is not recommended. Hence, the antibiotic resistance gene free pORT-LACK plasmid is a more suitable tool for its use as a vaccine. Here we report the protective and immunostimulatory effect of the prime-boost pORT-LACK/MVA-LACK vaccination tested in a canine experimental model. Vaccination induced a reduction in clinical signs and in parasite burden in the liver, an induction of the Leishmania-specific T cell activation, as well as an increase of the expression of Th1 type cytokines in PBMC and target organs. PMID:19747996

  2. Stability of the Encoding Plasmids and Surface Expression of CS6 Differs in Enterotoxigenic Escherichia coli (ETEC) Encoding Different Heat-Stable (ST) Enterotoxins (STh and STp).

    PubMed

    Tobias, Joshua; Von Mentzer, Astrid; Loayza Frykberg, Patricia; Aslett, Martin; Page, Andrew J; Sjöling, Åsa; Svennerholm, Ann-Mari

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC), one of the most common reasons of diarrhea among infants and children in developing countries, causes disease by expression of either or both of the enterotoxins heat-labile (LT) and heat-stable (ST; divided into human-type [STh] and porcine-type [STp] variants), and colonization factors (CFs) among which CS6 is one of the most prevalent ETEC CFs. In this study we show that ETEC isolates expressing CS6+STh have higher copy numbers of the cssABCD operon encoding CS6 than those expressing CS6+STp. Long term cultivation of up to ten over-night passages of ETEC isolates harboring CS6+STh (n = 10) or CS6+STp (n = 15) showed instability of phenotypic expression of CS6 in a majority of the CS6+STp isolates, whereas most of the CS6+STh isolates retained CS6 expression. The observed instability was a correlated with loss of genes cssA and cssD as examined by PCR. Mobilization of the CS6 plasmid from an unstable CS6+STp isolate into a laboratory E. coli strain resulted in loss of the plasmid after a single over-night passage whereas the plasmid from an CS6+STh strain was retained in the laboratory strain during 10 passages. A sequence comparison between the CS6 plasmids from a stable and an unstable ETEC isolate revealed that genes necessary for plasmid stabilization, for example pemI, pemK, stbA, stbB and parM, were not present in the unstable ETEC isolate. Our results indicate that stable retention of CS6 may in part be affected by the stability of the plasmid on which both CS6 and STp or STh are located. PMID:27054573

  3. Stability of the Encoding Plasmids and Surface Expression of CS6 Differs in Enterotoxigenic Escherichia coli (ETEC) Encoding Different Heat-Stable (ST) Enterotoxins (STh and STp)

    PubMed Central

    Tobias, Joshua; Von Mentzer, Astrid; Loayza Frykberg, Patricia; Aslett, Martin; Page, Andrew J.; Sjöling, Åsa; Svennerholm, Ann-Mari

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC), one of the most common reasons of diarrhea among infants and children in developing countries, causes disease by expression of either or both of the enterotoxins heat-labile (LT) and heat-stable (ST; divided into human-type [STh] and porcine-type [STp] variants), and colonization factors (CFs) among which CS6 is one of the most prevalent ETEC CFs. In this study we show that ETEC isolates expressing CS6+STh have higher copy numbers of the cssABCD operon encoding CS6 than those expressing CS6+STp. Long term cultivation of up to ten over-night passages of ETEC isolates harboring CS6+STh (n = 10) or CS6+STp (n = 15) showed instability of phenotypic expression of CS6 in a majority of the CS6+STp isolates, whereas most of the CS6+STh isolates retained CS6 expression. The observed instability was a correlated with loss of genes cssA and cssD as examined by PCR. Mobilization of the CS6 plasmid from an unstable CS6+STp isolate into a laboratory E. coli strain resulted in loss of the plasmid after a single over-night passage whereas the plasmid from an CS6+STh strain was retained in the laboratory strain during 10 passages. A sequence comparison between the CS6 plasmids from a stable and an unstable ETEC isolate revealed that genes necessary for plasmid stabilization, for example pemI, pemK, stbA, stbB and parM, were not present in the unstable ETEC isolate. Our results indicate that stable retention of CS6 may in part be affected by the stability of the plasmid on which both CS6 and STp or STh are located. PMID:27054573

  4. Cloning and genetic and sequence analyses of the bacteriocin 21 determinant encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pPD1.

    PubMed Central

    Tomita, H; Fujimoto, S; Tanimoto, K; Ike, Y

    1997-01-01

    The pheromone-responsive conjugative plasmid pPD1 (59 kb) of Enterococcus faecalis encodes the bacteriocin 21 (bac21) determinant. Cloning, transposon insertion mutagenesis and sequence analysis of the bac21 determinant showed that an 8.5-kb fragment lying between kb 27.1 and 35.6 of the pPD1 map is required for complete expression of the bacteriocin. The 8.5-kb fragment contained nine open reading frames (ORFs), bacA to bac1, which were oriented in the same (upstream-to-downstream) direction. Transposon insertions into the bacA to bacE ORFs, which are located in the proximal half of bac21, resulted in defective bacteriocin expression. Insertions into the bacF to bac1 ORFs, which are located in the distal half of bac21, resulted in reduced bacteriocin expression. Deletion mutant analysis of the cloned 8.5-kb fragment revealed that the deletion of segments between kb 31.6 and 35.6 of the pPD1 map, which contained the distal region of the determinant encoding bacF to bac1, resulted in reduced bacteriocin expression. The smallest fragment (4.5 kb) retaining some degree of bacteriocin expression contained the bacA to bacE sequences located in the proximal half of the determinant. The cloned fragment encoding the 4.5-kb proximal region and a Tn916 insertion mutant into pPD1 bacB trans-complemented intracellularly to give complete expression of the bacteriocin. bacA encoded a 105-residue sequence with a molecular mass of 11.1 kDa. The deduced BacA protein showed 100% homology to the broad-spectrum antibiotic peptide AS-48, which is encoded on the E. faecalis conjugative plasmid pMB2 (58 kb). bacH encoded a 195-residue sequence with a molecular mass of 21.9 kDa. The deduced amino acid sequence showed significant homology to the C-terminal region of HlyB (31.1% identical residues), a protein located in the Escherichia coli alpha-hemolysin operon that is a representative bacterial ATP-binding cassette export protein. PMID:9401046

  5. Genetic and biochemical analysis of an endonuclease encoded by the IncN plasmid pKM101.

    PubMed Central

    Pohlman, R F; Liu, F; Wang, L; Moré, M I; Winans, S C

    1993-01-01

    The IncN plasmid pKM101 nuc gene encodes a periplasmically localized endonuclease. DNA sequence analysis indicates that this gene encodes a hydrophilic protein of about 19.5 kDa containing a hydrophobic signal sequence. nuc is homologous to a partially sequenced open reading frame adjacent to the sog gene of the plasmid CollB-P9, a plasmid known to encode an endonuclease similar to that of pKM101. A partially sequenced tra gene directly upstream of nuc is homologous to the virB11 gene of Agrobacterium tumefaciens. We have partially purified the pKM101 nuclease by osmotic shock and cation exchange chromatography, and used this enzyme preparation to sequence the protein's amino terminus. The first 13 amino acids of the mature protein match amino acids 23 to 35 of the predicted sequence, indicating that the protein is proteolytically processed to a molecular mass of approximately 17 kDa, probably during export to the periplasmic space. The enzyme was able to attack many sites along an end labelled duplex DNA substrate, but showed clearly preferred cleavage sites, and may cleave preferentially at purine-rich regions. Images PMID:8177732

  6. Replicon typing of plasmids encoding resistance to newer beta-lactams.

    PubMed

    Carattoli, Alessandra; Miriagou, Vivi; Bertini, Alessia; Loli, Alexandra; Colinon, Celine; Villa, Laura; Whichard, Jean M; Rossolini, Gian Maria

    2006-07-01

    Polymerase chain reaction-based replicon typing represents a novel method to describe the dissemination and follow the evolution of resistance plasmids. We used this approach to study 26 epidemiologically unrelated Enterobacteriaceae and demonstrate the dominance of incompatibility (Inc) A/C or Inc N-related plasmids carrying some emerging resistance determinants to extended-spectrum cephalosporins and carbapenems. PMID:16836838

  7. Replicon Typing of Plasmids Encoding Resistance to Newer β-Lactams

    PubMed Central

    Miriagou, Vivi; Bertini, Alessia; Loli, Alexandra; Colinon, Celine; Villa, Laura; Whichard, Jean M.; Rossolini, Gian Maria

    2006-01-01

    Polymerase chain reaction–based replicon typing represents a novel method to describe the dissemination and follow the evolution of resistance plasmids. We used this approach to study 26 epidemiologically unrelated Enterobacteriaceae and demonstrate the dominance of incompatibility (Inc) A/C or Inc N-related plasmids carrying some emerging resistance determinants to extended-spectrum cephalosporins and carbapenems. PMID:16836838

  8. Plasmid-encoded toxin of enteroaggregative Escherichia coli is internalized by epithelial cells.

    PubMed

    Navarro-García, F; Canizalez-Roman, A; Luna, J; Sears, C; Nataro, J P

    2001-02-01

    We have previously described a 104-kDa protein termed Pet (for plasmid-encoded toxin) secreted by some strains of enteroaggregative Escherichia coli (EAEC). Through an unknown mechanism, this toxin (i) raises transepithelial short-circuit current (Isc) and decreases the electrical resistance of rat jejunum mounted in the Ussing chamber, (ii) causes cytoskeletal alterations in HEp-2 cells and HT29/C1 cells, and (iii) is required for histopathologic effects of EAEC on human intestinal mucosa. Pet is a member of the autotransporter class of secreted proteins and together with Tsh, EspP, EspC, ShMu, and SepA proteins comprises the SPATE subfamily. Here, we show that Pet is internalized by HEp-2 cells and that internalization appears to be required for the induction of cytopathic effects. Evidence supporting Pet internalization includes the facts that (i) the effects of Pet on epithelial cells were inhibited by brefeldin A, which interferes with various steps of intracellular vesicular transport; (ii) immunoblots using anti-Pet antibodies detected Pet in the cytoplasmic fraction of intoxicated HEp-2 cells; (iii) Pet was detected inside HEp-2 cells by confocal microscopy; and (iv) a mutant in the passenger domain cleavage site, which prevents Pet release from the bacterial outer membrane, did not produce cytopathic effects on epithelial cells, whereas the release of mutant Pet from the outer membrane with trypsin yielded active toxin. We have also shown that the Pet serine protease motif is required to produce cytopathic effects but not for Pet secretion. Our results suggest an intracellular mode of action for the Pet protease and are consistent with we our recent report suggesting an intracellular mode of action for Pet. PMID:11160002

  9. Structural Characteristics of the Plasmid-Encoded Toxin from Enteroaggregative Escherichia coli†

    PubMed Central

    Scaglione, Patricia; Nemec, Kathleen N.; Burlingame, Kaitlin E.; Grabon, Agnieszka; Huerta, Jazmin; Navarro-García, Fernando; Tatulian, Suren A.; Teter, Ken

    2008-01-01

    Intoxication by the plasmid-encoded toxin (Pet) of enteroaggregative Escherichia coli requires toxin translocation from the endoplasmic reticulum (ER) to the cytosol. This event involves the quality control system of ER-associated degradation (ERAD), but the molecular details of the process are poorly characterized. For many structurally distinct AB-type toxins, ERAD-mediated translocation is triggered by the spontaneous unfolding of a thermally unstable A chain. Here we show that Pet, a non-AB toxin, engages ERAD by a different mechanism that does not involve thermal unfolding. Circular dichroism and fluorescence spectroscopy measurements demonstrated that Pet maintains most of its secondary and tertiary structural features at 37°C, with significant thermal unfolding only occurring at temperatures ≥50°C. Fluorescence quenching experiments detected the partial solvent exposure of Pet aromatic amino acid residues at 37°C, and a cell-based assay suggested these changes could activate an ERAD-related event known as the unfolded protein response. We also found that HEp-2 cells were resistant to Pet intoxication when incubated with glycerol, a protein stabilizer. Altogether, our data are consistent with a model in which ERAD activity is triggered by a subtle structural destabilization of Pet and the exposure of Pet hydrophobic residues at physiological temperature. This was further supported by computer modeling analysis, which identified a surface-exposed hydrophobic loop among other accessible nonpolar residues in Pet. From our data it appears that Pet can promote its ERAD-mediated translocation into the cytosol by a distinct mechanism involving partial exposure of hydrophobic residues rather than the substantial unfolding observed for certain AB toxins. PMID:18702515

  10. Complete Sequence of pOZ176, a 500-Kilobase IncP-2 Plasmid Encoding IMP-9-Mediated Carbapenem Resistance, from Outbreak Isolate Pseudomonas aeruginosa 96

    PubMed Central

    Xiong, Jianhui; Alexander, David C.; Ma, Jennifer H.; Déraspe, Maxime; Low, Donald E.; Jamieson, Frances B.

    2013-01-01

    Pseudomonas aeruginosa 96 (PA96) was isolated during a multicenter surveillance study in Guangzhou, China, in 2000. Whole-genome sequencing of this outbreak strain facilitated analysis of its IncP-2 carbapenem-resistant plasmid, pOZ176. The plasmid had a length of 500,839 bp and an average percent G+C content of 57%. Of the 618 predicted open reading frames, 65% encode hypothetical proteins. The pOZ176 backbone is not closely related to any plasmids thus far sequenced, but some similarity to pQBR103 of Pseudomonas fluorescens SBW25 was observed. Two multiresistant class 1 integrons and several insertion sequences were identified. The blaIMP-9-carrying integron contained aacA4→blaIMP-9→aacA4, flanked upstream by Tn21 tnpMRA and downstream by a complete tni operon of Tn402 and a mer module, named Tn6016. The second integron carried aacA4→catB8a→blaOXA-10 and was flanked by Tn1403-like tnpRA and a sul1-type 3′ conserved sequence (3′-CS), named Tn6217. Other features include three resistance genes similar to those of Tn5, a tellurite resistance operon, and two pil operons. The replication and maintenance systems exhibit similarity to a genomic island of Ralstonia solanacearum GM1000. Codon usage analysis suggests the recent acquisition of blaIMP-9. The origins of the integrons on pOZ176 indicated separate horizontal gene transfer events driven by antibiotic selection. The novel mosaic structure of pOZ176 suggests that it is derived from environmental bacteria. PMID:23716048

  11. Enzymatic and nucleotide sequence studies of a kanamycin-inactivating enzyme encoded by a plasmid from thermophilic bacilli in comparison with that encoded by plasmid pUB110.

    PubMed Central

    Matsumura, M; Katakura, Y; Imanaka, T; Aiba, S

    1984-01-01

    The product of a kanamycin resistance gene encoded by plasmid pTB913 isolated from a thermophilic bacillus was identified as a kanamycin nucleotidyltransferase which is similar to that encoded by plasmid pUB110 from a mesophile, Staphylococcus aureus. The enzyme encoded by pTB913 was more thermostable than that encoded by pUB110. In view of a close resemblance of restriction endonuclease cleavage maps around the BglII site in the structural genes of both enzymes, ca. 1,200 base pairs were sequenced, followed by amino-terminal amino acid sequencing of the enzyme. The two nucleotide sequences were found to be identical to each other except for only one base in the midst of the structural gene. Each structural gene, initiating from a GUG codon as methionine, was composed of 759 base pairs and 253 amino acid residues (molecular weight, ca. 29,000). The sole difference was transversion from a cytosine (pUB110) to an adenine (pTB913) at a position + 389, counting the first base of the initiation codon as + 1. That is, a threonine at position 130 for the pUB110-coded kanamycin nucleotidyltransferase was replaced by a lysine for the pTB913-coded enzyme. The difference in thermostability between the two enzymes caused by a single amino acid replacement is discussed in light of electrostatic effects. Images PMID:6090428

  12. Toxin Plasmids of Clostridium perfringens

    PubMed Central

    Li, Jihong; Adams, Vicki; Bannam, Trudi L.; Miyamoto, Kazuaki; Garcia, Jorge P.; Uzal, Francisco A.; Rood, Julian I.

    2013-01-01

    SUMMARY In both humans and animals, Clostridium perfringens is an important cause of histotoxic infections and diseases originating in the intestines, such as enteritis and enterotoxemia. The virulence of this Gram-positive, anaerobic bacterium is heavily dependent upon its prolific toxin-producing ability. Many of the ∼16 toxins produced by C. perfringens are encoded by large plasmids that range in size from ∼45 kb to ∼140 kb. These plasmid-encoded toxins are often closely associated with mobile elements. A C. perfringens strain can carry up to three different toxin plasmids, with a single plasmid carrying up to three distinct toxin genes. Molecular Koch's postulate analyses have established the importance of several plasmid-encoded toxins when C. perfringens disease strains cause enteritis or enterotoxemias. Many toxin plasmids are closely related, suggesting a common evolutionary origin. In particular, most toxin plasmids and some antibiotic resistance plasmids of C. perfringens share an ∼35-kb region containing a Tn916-related conjugation locus named tcp (transfer of clostridial plasmids). This tcp locus can mediate highly efficient conjugative transfer of these toxin or resistance plasmids. For example, conjugative transfer of a toxin plasmid from an infecting strain to C. perfringens normal intestinal flora strains may help to amplify and prolong an infection. Therefore, the presence of toxin genes on conjugative plasmids, particularly in association with insertion sequences that may mobilize these toxin genes, likely provides C. perfringens with considerable virulence plasticity and adaptability when it causes diseases originating in the gastrointestinal tract. PMID:23699255

  13. Neutralization of venom-induced hemorrhage by equine antibodies raised by immunization with a plasmid encoding a novel P-II metalloproteinase from the lancehead pitviper Bothrops asper.

    PubMed

    Arce-Estrada, Viviana; Azofeifa-Cordero, Gabriela; Estrada, Ricardo; Alape-Girón, Alberto; Flores-Díaz, Marietta

    2009-01-14

    In this work, the cDNA encoding a novel P-II type metalloproteinase from Bothrops asper venom glands was cloned, sequenced and used for DNA immunization of animals with accelerated DNA-coated tungsten microparticles and the helius Gene Gun system. Specific antibodies against B. asper venom antigens were induced in mice co-immunized with the plasmid encoding the P-II metalloproteinase together with an expression plasmid encoding the murine IL-2. Similarly, specific antibodies against B. asper venom antigens were also induced in a horse co-immunized with the plasmid encoding the P-II metalloproteinase, together with a plasmid encoding the equine IL-6. The equine antibodies induced by immunization with the P-II metalloproteinase encoding plasmid cross react with several proteins of B. asper, Crotalus durissus durissus, and Lachesis stenophrys venoms in western blot, demonstrating antigenic similarity between the cloned metalloproteinase and other metalloproteinases present in these venoms. Furthermore, the equine antibodies induced by immunization with the P-II metalloproteinase encoding plasmid completely neutralized the hemorrhagic activity of the whole B. asper venom and partially the hemorrhagic activity of C. durissus durissus venom. The neutralizing ability of the produced antibodies raises, for the first time, the possibility of developing therapeutic antivenoms in horses by DNA immunization using tungsten microparticles. PMID:19013207

  14. Engineering large functional plasmids for biosafety.

    PubMed

    Cangelosi, Chris; Shank, Caroline; Santiago, Clayton; Wilson, James W

    2013-11-01

    Large bacterial plasmid constructs (generally 25-100 kb, but can be greater), such as those engineered with DNA encoding specific functions such as protein secretion or specialized metabolism, can carry antibiotic resistance genes and/or conjugation systems that typically must be removed before use in medical or environmental settings due to biosafety concerns. However, a convenient in vivo recombineering approach for intact large plasmids to sequentially remove multiple different genes using non-antibiotic selection methods is not described in the literature to our knowledge. We developed strategies and reagents for convenient removal of antibiotic resistance markers and conjugation genes while retaining non-antibiotic-based plasmid selection to increase practical utility of large engineered plasmids. This approach utilizes targeted lambda Red recombination of PCR products encoding the trpE and asd genes and as well as FLP/FRT-mediated marker removal. This is particularly important given that use of restriction enzymes with plasmids of this size is extremely problematic and often not feasible. This report provides the first example of the trpE gene/tryptophan prototrophy being used for recombineering selection. We applied this strategy to the plasmids R995+SPI-1 and R995+SPI-2 which encode cloned type III secretion systems to allow protein secretion and substrate delivery to eukaryotic cells. The resulting constructs are functional, stably maintained under conditions where the original constructs are unstable, completely defective for conjugative transfer, and transferred via electroporation. PMID:24055203

  15. Skin Electroporation of a Plasmid Encoding hCAP-18/LL-37 Host Defense Peptide Promotes Wound Healing

    PubMed Central

    Steinstraesser, Lars; Lam, Martin C; Jacobsen, Frank; Porporato, Paolo E; Chereddy, Kiran Kumar; Becerikli, Mustafa; Stricker, Ingo; Hancock, Robert EW; Lehnhardt, Marcus; Sonveaux, Pierre; Préat, Véronique; Vandermeulen, Gaëlle

    2014-01-01

    Host defense peptides, in particular LL-37, are emerging as potential therapeutics for promoting wound healing and inhibiting bacterial growth. However, effective delivery of the LL-37 peptide remains limiting. We hypothesized that skin-targeted electroporation of a plasmid encoding hCAP-18/LL-37 would promote the healing of wounds. The plasmid was efficiently delivered to full-thickness skin wounds by electroporation and it induced expression of LL-37 in the epithelium. It significantly accelerated reepithelialization of nondiabetic and diabetic wounds and caused a significant VEGFa and interleukin (IL)-6 induction. IL-6 was involved in LL-37–mediated keratinocyte migration in vitro and IL-6 neutralizing antibodies delivered to mice were able to suppress the wound healing activity of the hCAP-18/LL-37 plasmid. In a hindlimb ischemia model, electroporation of the hCAP-18/LL-37 plasmid increased blood perfusion, reduced muscular atrophy, and upregulated the angiogenic chemokines VEGFa and SDF-1a, and their receptors VEGF-R and CXCR-4. These findings demonstrate that a localized gene therapy with LL-37 is a promising approach for the treatment of wounds. PMID:24394186

  16. Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors

    PubMed Central

    2010-01-01

    Background The use of lentiviruses to reprogram human somatic cells into induced pluripotent stem (iPS) cells could limit their therapeutic usefulness due to the integration of viral DNA sequences into the genome of the recipient cell. Recent work has demonstrated that human iPS cells can be generated using episomal plasmids, excisable transposons, adeno or sendai viruses, mRNA, or recombinant proteins. While these approaches offer an advance, the protocols have some drawbacks. Commonly the procedures require either subcloning to identify human iPS cells that are free of exogenous DNA, a knowledge of virology and safe handling procedures, or a detailed understanding of protein biochemistry. Results Here we report a simple approach that facilitates the reprogramming of human somatic cells using standard techniques to transfect expression plasmids that encode OCT4, NANOG, SOX2, and LIN28 without the need for episomal stability or selection. The resulting human iPS cells are free of DNA integration, express pluripotent markers, and form teratomas in immunodeficient animals. These iPS cells were also able to undergo directed differentiation into hepatocyte-like and cardiac myocyte-like cells in culture. Conclusions Simple transient transfection of plasmid DNA encoding reprogramming factors is sufficient to generate human iPS cells from primary fibroblasts that are free of exogenous DNA integrations. This approach is highly accessible and could expand the use of iPS cells in the study of human disease and development. PMID:20682060

  17. A plasmid-encoded nicotinamidase (PncA) is essential for infectivity of Borrelia burgdorferi in a mammalian host.

    PubMed

    Purser, Joye E; Lawrenz, Matthew B; Caimano, Melissa J; Howell, Jerrilyn K; Radolf, Justin D; Norris, Steven J

    2003-05-01

    Borrelia burgdorferi, a spirochaete that causes Lyme borreliosis, contains 21 linear and circular plasmids thought to be important for survival in mammals or ticks. Our results demonstrate that the gene BBE22 encoding a nicotinamidase is capable of replacing the requirement for the 25 kb linear plasmid lp25 during mammalian infection. Transformation of B. burgdorferi lacking lp25 with a shuttle vector containing the lp25 gene BBE22 (pBBE22) restored infectivity in mice to a level comparable to that of wild-type Borrelia. This complementation also restored the growth and host adaptation of lp25-B. burgdorferi in dialysis membrane chambers (DMCs) implanted in rats. A single Cys to Ala conversion at the putative active site of BBE22 abrogated the ability of pBBE22 to re-establish infectivity or growth in DMCs. Additional Salmonella typhimurium complementation studies and enzymatic analysis demonstrated that the BBE22 gene product has nicotinamidase activity and is most probably required for the biosynthesis of NAD. These results indicate that some plasmid-encoded products fulfil physiological functions required in the enzootic cycle of pathogenic Borrelia. PMID:12694619

  18. Functional role of the Ti plasmid-encoded catabolic mannopine cyclase in mannityl opine catabolism by Agrobacterium spp.

    PubMed Central

    Hong, S B; Farrand, S K

    1994-01-01

    Catabolic mannopine (MOP) cyclase encoded by Ti or Ri plasmids lactonizes MOP to agropine (AGR). The gene of the octopine-type Ti plasmid pTi15955 encoding the catabolic MOP cyclase enzyme previously was localized to a 1.6-kb segment within a cosmid clone, pYDH208. A subclone containing only this region complemented the AGR catabolism-negative phenotype conferred by a derivative of the octopine-type plasmid pTiB6S3 containing a Tn7 insertion in the region encoding the MOP cyclase enzyme. Uptake assays of strains harboring pRiA4 or pArA4a, along with complementation analyses, indicate that MOP cyclase is not sufficient for catabolism of AGR but that the strains must also express an AGR transport system. To determine the requirement for MOP cyclase in opine catabolism unequivocally, a site-specific, nonpolar deletion mutation abolishing only MOP cyclase activity was introduced into pYDH208, a cosmid clone that confers utilization of MOP, AGR, and mannopinic acid (MOA). Strains harboring this MOP cyclase-negative mutant clone, pYDPH208, did not utilize AGR but continued to utilize MOP. Growth on AGR was restored in this strain upon introduction of clones encoding the pTi15955-derived catabolic or anabolic MOP cyclase genes. The induction pattern of MOA catabolism shown by strain NT1 harboring the MOP cyclase-deficient pYDPH208 suggests that AGR is converted into MOP by MOP cyclase and that MOP, but not AGR, induces catabolism of MOA. Genetic and biochemical analyses of MOP and AGR metabolism suggest that only the conversion of AGR to MOP is directly involved in catabolism of AGR, even though the reaction catalyzed by MOP cyclase predominantly lies in the lactonization of MOP to AGR. Images PMID:8206835

  19. Molecular and epidemiological analysis of penicillinase producing strains of Neisseria gonorrhoeae isolated in Canada 1976-84: evolution of new auxotypes and beta lactamase encoding plasmids.

    PubMed Central

    Dillon, J R; Pauzé, M; Yeung, K H

    1986-01-01

    Though the number of penicillinase producing Neisseria gonorrhoeae (PPNG) strains isolated in Canada comprises under 1% of all gonococcal isolates, it continues to increase appreciably each year. Most strains are imported from areas of endemic infection with PPNG strains. Two local outbreaks in 1984, however, were notable for the number of patients infected and for the distinctive phenotypes of the strains. One outbreak was caused by a wild type strain, of serovar BACJK with a new 3.05 megadalton penicillinase encoding plasmid, whereas the other was caused by strains with the Asia+ plasmid type, serovar AE and with a proline and ornithine requiring auxotype. Five plasmid patterns (Africa+, Africa-, Asia+, Asia-, and Toronto+) were observed among the PPNG strains. The association between plasmid content and specific auxotype (such as Asia plasmid with proline requiring auxotype or Africa plasmid with wild type auxotype) and inhibition by phenylalanine continues to be unexplained. PMID:3089904

  20. Complete sequences of KPC-2-encoding plasmid p628-KPC and CTX-M-55-encoding p628-CTXM coexisted in Klebsiella pneumoniae

    PubMed Central

    Wang, Li; Fang, Haihong; Feng, Jiao; Yin, Zhe; Xie, Xiaofang; Zhu, Xueming; Wang, Jie; Chen, Weijun; Yang, Ruisheng; Du, Hong; Zhou, Dongsheng

    2015-01-01

    A carbapenem-resistant Klebsiella pneumoniae strain 628 was isolated from a human case of intracranial infection in a Chinese teaching hospital. Strain 628 produces KPC-2 and CTX-M-55 encoded by two different conjugative plasmids, i.e., the IncFIIK plasmid p628-KPC and the IncI1 plasmid p628-CTXM respectively. blaKPC−2 is captured by a Tn1722-based unit transposon with a linear structure. ΔTn3-ISKpn27-blaKPC−2-ΔISKpn6-ΔTn1722 and this transposon together with a mercury resistance (mer) gene locus constitutes a 34 kb acquired drug-resistance region. blaKPC−2 has two transcription starts (nucleotides G and C located at 39 and 250 bp upstream of its coding region respectively) which correspond to two promoters, i.e., the intrinsic P1 and the upstream ISKpn27/Tn3-provided P2 with the core −35/−10 elements TAATCC/TTACAT and TTGACA/AATAAT respectively. blaCTX−M−55 is mobilized in an ISEcp1-blaCTX−M−55-Δorf477 transposition unit and appears to be the sole drug-resistant determinant in p628-CTXM. blaCTX−M−55 possesses a single transcription start (nucleotides G located at 116 bp upstream of its coding region) corresponding to the ISEcp1-provided P1 promoter with the core −35/−10 element TTGAAA/TACAAT. All the above detected promoters display a characteristic of constitutive expression. Coexistence of blaKPC and blaCTX−M in K. pneumoniae has been reported many times but this is the first report to gain deep insights into genetic platforms, promoters, and expression of the two coexisting bla genes with determination of entire nucleotide sequences of the two corresponding plasmids. PMID:26347725

  1. The Photobacterium damselae subsp. damselae Hemolysins Damselysin and HlyA Are Encoded within a New Virulence Plasmid

    PubMed Central

    Rivas, Amable J.; Balado, Miguel; Lemos, Manuel L.; Osorio, Carlos R.

    2011-01-01

    Photobacterium damselae subsp. damselae (formerly Vibrio damsela) is a marine bacterium that causes infections and fatal disease in a wide range of marine animals and in humans. Highly hemolytic strains produce damselysin (Dly), a cytolysin encoded by the dly gene that is lethal for mice and has hemolytic activity. We found that Dly is encoded in the highly hemolytic strain RM-71 within a 153,429-bp conjugative plasmid that we dubbed pPHDD1. In addition to Dly, pPHDD1 also encodes a homologue of the pore-forming toxin HlyA. We found a direct correlation between presence of pPHDD1 and a strong hemolytic phenotype in a collection of P. damselae subsp. damselae isolates. Hemolysis was strongly reduced in a double dly hlyA mutant, demonstrating the role of the two pPHDD1-encoded genes in hemolysis. Interestingly, although single hlyA and dly mutants showed different levels of hemolysis reduction depending on the erythrocyte source, hemolysis was not abolished in any of the single mutants, suggesting that the hemolytic phenotype is the result of the additive effect of Dly and HlyA. We found that pPHDD1-encoded dly and hlyA genes are necessary for full virulence for mice and fish. Our results suggest that pPHDD1 can be considered as a driving force for the emergence of a highly hemolytic lineage of P. damselae subsp. damselae. PMID:21875966

  2. Xylella fastidiosa plasmid-encoded PemK toxin is an endoribonuclease.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stable inheritance of pXF-RIV11 in Xylella fastidiosa is conferred by the pemI/pemK plasmid addiction system. PemK serves as a toxin inhibiting bacterial growth; PemI is the corresponding antitoxin that blocks activity of PemK toxin by direct binding. PemK toxin and PemI antitoxin were over-expre...

  3. Transcriptome Reprogramming by Plasmid-Encoded Transcriptional Regulators Is Required for Host Niche Adaption of a Macrophage Pathogen

    PubMed Central

    Coulson, Garry B.; Miranda-CasoLuengo, Aleksandra A.; Miranda-CasoLuengo, Raúl; Wang, Xiaoguang; Oliver, Jenna; Willingham-Lane, Jennifer M.

    2015-01-01

    Rhodococcus equi is a facultative intracellular pathogen of macrophages, relying on the presence of a conjugative virulence plasmid harboring a 21-kb pathogenicity island (PAI) for growth in host macrophages. The PAI encodes a family of 6 virulence-associated proteins (Vaps) in addition to 20 other proteins. The contribution of these to virulence has remained unclear. We show that the presence of only 3 virulence plasmid genes (of 73 in total) is required and sufficient for intracellular growth. These include a single vap family member, vapA, and two PAI-located transcriptional regulators, virR and virS. Both transcriptional regulators are essential for wild-type-level expression of vapA, yet vapA expression alone is not sufficient to allow intracellular growth. A whole-genome microarray analysis revealed that VirR and VirS substantially integrate themselves into the chromosomal regulatory network, significantly altering the transcription of 18% of all chromosomal genes. This pathoadaptation involved significant enrichment of select gene ontologies, in particular, enrichment of genes involved in transport processes, energy production, and cellular metabolism, suggesting a major change in cell physiology allowing the bacterium to grow in the hostile environment of the host cell. The results suggest that following the acquisition of the virulence plasmid by an avirulent ancestor of R. equi, coevolution between the plasmid and the chromosome took place, allowing VirR and VirS to regulate the transcription of chromosomal genes in a process that ultimately promoted intracellular growth. Our findings suggest a mechanism for cooption of existing chromosomal traits during the evolution of a pathogenic bacterium from an avirulent saprophyte. PMID:26015480

  4. Transcriptome reprogramming by plasmid-encoded transcriptional regulators is required for host niche adaption of a macrophage pathogen.

    PubMed

    Coulson, Garry B; Miranda-CasoLuengo, Aleksandra A; Miranda-CasoLuengo, Raúl; Wang, Xiaoguang; Oliver, Jenna; Willingham-Lane, Jennifer M; Meijer, Wim G; Hondalus, Mary K

    2015-08-01

    Rhodococcus equi is a facultative intracellular pathogen of macrophages, relying on the presence of a conjugative virulence plasmid harboring a 21-kb pathogenicity island (PAI) for growth in host macrophages. The PAI encodes a family of 6 virulence-associated proteins (Vaps) in addition to 20 other proteins. The contribution of these to virulence has remained unclear. We show that the presence of only 3 virulence plasmid genes (of 73 in total) is required and sufficient for intracellular growth. These include a single vap family member, vapA, and two PAI-located transcriptional regulators, virR and virS. Both transcriptional regulators are essential for wild-type-level expression of vapA, yet vapA expression alone is not sufficient to allow intracellular growth. A whole-genome microarray analysis revealed that VirR and VirS substantially integrate themselves into the chromosomal regulatory network, significantly altering the transcription of 18% of all chromosomal genes. This pathoadaptation involved significant enrichment of select gene ontologies, in particular, enrichment of genes involved in transport processes, energy production, and cellular metabolism, suggesting a major change in cell physiology allowing the bacterium to grow in the hostile environment of the host cell. The results suggest that following the acquisition of the virulence plasmid by an avirulent ancestor of R. equi, coevolution between the plasmid and the chromosome took place, allowing VirR and VirS to regulate the transcription of chromosomal genes in a process that ultimately promoted intracellular growth. Our findings suggest a mechanism for cooption of existing chromosomal traits during the evolution of a pathogenic bacterium from an avirulent saprophyte. PMID:26015480

  5. Occurrence of multiple antibiotic resistance and R-plasmids in gram-negative bacteria isolated from faecally contaminated fresh-water streams in Hong Kong.

    PubMed Central

    French, G. L.; Ling, J.; Chow, K. L.; Mark, K. K.

    1987-01-01

    The bacterial populations of six freshwater streams in populated areas of the Hong Kong New Territories were studied. There is considerable faecal contamination of these streams, with coliform counts as high as 10(5) c.f.u./ml and the contaminating organisms show a high prevalence of antibiotic resistance and multiple resistance. With direct plating of water samples onto antibiotic-containing media, an average of 49% of the gram-negative bacteria were ampicillin-resistant, 3% chloramphenicol-resistant and 1% gentamicin-resistant. At individual sites resistance to these drugs was as high as 98%, 8% and 3% respectively. More than 70% of strains were resistant to two or more antibiotics, 29% to five or more and 2% to eight or more. A total of 98 patterns of antibiotic resistance were detected with no one pattern predominating. Twenty-eight gram-negative bacterial species were identified as stream contaminants. Escherichia coli was the commonest bacterial species isolated and other frequent isolates were Enterobacter sp., Klebsiella sp. and Citrobacter sp., but no enteric pathogens were detected. The greatest prevalence of resistance and multiple resistance was associated with the heaviest contamination by E. coli. Analysis of selected stream isolates revealed multiple plasmid bands arranged in many different patterns, but multiple antibiotic resistances were shown to be commonly mediated by single transferable plasmids. Faecally-contaminated freshwater streams in Hong Kong may be reservoirs of antibiotic resistance plasmids for clinically-important bacteria. Images Fig. 2 PMID:3595747

  6. Cloning and sequencing of a plasmid-borne gene (opd) encoding a phosphotriesterase.

    PubMed Central

    McDaniel, C S; Harper, L L; Wild, J R

    1988-01-01

    Plasmid pCMS1 was isolated from Pseudomonas diminuta MG, a strain which constitutively hydrolyzes a broad spectrum of organophosphorus compounds. The native plasmid was restricted with PstI, and individual DNA fragments were subcloned into pBR322. A recombinant plasmid transformed into Escherichia coli possessed weak hydrolytic activity, and Southern blotting with the native plasmid DNA verified that the DNA sequence originated from pCMS1. When the cloned 1.3-kilobase fragment was placed behind the lacZ' promoter of M13mp10 and retransformed into E. coli, clear-plaque isolates with correctly sized inserts exhibited isopropyl-beta-D-thiogalactopyranoside-inducible whole-cell activity. Sequence determination of the M13 constructions identified an open reading frame of 975 bases preceded by a putative ribosome-binding site appropriately positioned upstream of the first ATG codon in the open reading frame. An intragenic fusion of the opd gene with the lacZ gene produced a hybrid polypeptide which was purified by beta-galactosidase immunoaffinity chromatography and used to confirm the open reading frame of opd. The gene product, an organophosphorus phosphotriesterase, would have a molecular weight of 35,418 if the presumed start site is correct. Eighty to ninety percent of the enzymatic activity was associated with the pseudomonad membrane fractions. When dissociated by treatment with 0.1% Triton and 1 M NaCl, the enzymatic activity was associated with a molecular weight of approximately 65,000, suggesting that the active enzyme was dimeric. Images PMID:2834339

  7. Transposition of a duplicate antibiotic resistance gene and generation of deletions in plasmid R6K.

    PubMed Central

    Holmans, P L; Clowes, R C

    1979-01-01

    Transformation experiments showed that spontaneous deletions which result in loss of streptomycin resistance and an increase in conjugal transfer efficiency are present at a frequency of about 10(-4) in plasmid molecules of R6K. Similar deletions were thus readily selected by conjugal transfer of R6K, and their appearance was dependent upon recA+ activity in either donor or recipient host. The deoxyribonucleic acid segment deleted in four mutants examined was concluded to extend from the same terminus of the transposon, TnA, in the same direction, but to different extents, and to retain the TnA region intact. Insertions of a duplicate TnA element were found in R6K plasmids isolated from strains selected for increased ampicillin resistance, which were unstable in recA+ strains. In four plasmids examined after transfer to a recA host, an inverted repeat of the preexisting TnA element was shown to have been inserted at a similar location and was in two instances associated with deletions which extended from the same direction as those described above. The deletions are ascribed to the result of recA+-dependent recombination between direct repeats of TnA. Images PMID:370107

  8. Ferric dicitrate transport system (Fec) of Shigella flexneri 2a YSH6000 is encoded on a novel pathogenicity island carrying multiple antibiotic resistance genes.

    PubMed

    Luck, S N; Turner, S A; Rajakumar, K; Sakellaris, H; Adler, B

    2001-10-01

    Iron uptake systems which are critical for bacterial survival and which may play important roles in bacterial virulence are often carried on mobile elements, such as plasmids and pathogenicity islands (PAIs). In the present study, we identified and characterized a ferric dicitrate uptake system (Fec) in Shigella flexneri serotype 2a that is encoded by a novel PAI termed the Shigella resistance locus (SRL) PAI. The fec genes are transcribed in S. flexneri, and complementation of a fec deletion in Escherichia coli demonstrated that they are functional. However, insertional inactivation of fecI, leading to a loss in fec gene expression, did not impair the growth of the parent strain of S. flexneri in iron-limited culture media, suggesting that S. flexneri carries additional iron uptake systems capable of compensating for the loss of Fec-mediated iron uptake. DNA sequence analysis showed that the fec genes are linked to a cluster of multiple antibiotic resistance determinants, designated the SRL, on the chromosome of S. flexneri 2a. Both the SRL and fec loci are carried on the 66,257-bp SRL PAI, which has integrated into the serX tRNA gene and which carries at least 22 prophage-related open reading frames, including one for a P4-like integrase. This is the first example of a PAI that carries genes encoding antibiotic resistance and the first report of a ferric dicitrate uptake system in Shigella. PMID:11553538

  9. The rpoZ Gene, Encoding the RNA Polymerase Omega Subunit, Is Required for Antibiotic Production and Morphological Differentiation in Streptomyces kasugaensis

    PubMed Central

    Kojima, Ikuo; Kasuga, Kano; Kobayashi, Masayuki; Fukasawa, Akira; Mizuno, Satoshi; Arisawa, Akira; Akagawa, Hisayoshi

    2002-01-01

    The occurrence of pleiotropic mutants that are defective in both antibiotic production and aerial mycelium formation is peculiar to streptomycetes. Pleiotropic mutant KSB was isolated from wild-type Streptomyces kasugaensis A1R6, which produces kasugamycin, an antifungal aminoglycoside antibiotic. A 9.3-kb DNA fragment was cloned from the chromosomal DNA of strain A1R6 by complementary restoration of kasugamycin production and aerial hypha formation to mutant KSB. Complementation experiments with deletion plasmids and subsequent DNA analysis indicated that orf5, encoding 90 amino acids, was responsible for the restoration. A protein homology search revealed that orf5 was a homolog of rpoZ, the gene that is known to encode RNA polymerase subunit omega (ω), thus leading to the conclusion that orf5 was rpoZ in S. kasugaensis. The pleiotropy of mutant KSB was attributed to a 2-bp frameshift deletion in the rpoZ region of mutant KSB, which probably resulted in a truncated, incomplete ω of 47 amino acids. Furthermore, rpoZ-disrupted mutant R6D4 obtained from strain A1R6 by insertion of Tn5 aphII into the middle of the rpoZ-coding region produced neither kasugamycin nor aerial mycelia, similar to mutant KSB. When rpoZ of S. kasugaensis and Streptomyces coelicolor, whose deduced products differed in the sixth amino acid residue, were introduced into mutant R6D4 via a plasmid, both transformants produced kasugamycin and aerial hyphae without significant differences. This study established that rpoZ is required for kasugamycin production and aerial mycelium formation in S. kasugaensis and responsible for pleiotropy. PMID:12426327

  10. CRISPR-Cas and Restriction-Modification Act Additively against Conjugative Antibiotic Resistance Plasmid Transfer in Enterococcus faecalis

    PubMed Central

    Price, Valerie J.; Huo, Wenwen; Sharifi, Ardalan

    2016-01-01

    ABSTRACT Enterococcus faecalis is an opportunistic pathogen and a leading cause of nosocomial infections. Conjugative pheromone-responsive plasmids are narrow-host-range mobile genetic elements (MGEs) that are rapid disseminators of antibiotic resistance in the faecalis species. Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas and restriction-modification confer acquired and innate immunity, respectively, against MGE acquisition in bacteria. Most multidrug-resistant E. faecalis isolates lack CRISPR-Cas and possess an orphan locus lacking cas genes, CRISPR2, that is of unknown function. Little is known about restriction-modification defense in E. faecalis. Here, we explore the hypothesis that multidrug-resistant E. faecalis strains are immunocompromised. We assessed MGE acquisition by E. faecalis T11, a strain closely related to the multidrug-resistant hospital isolate V583 but which lacks the ~620 kb of horizontally acquired genome content that characterizes V583. T11 possesses the E. faecalis CRISPR3-cas locus and a predicted restriction-modification system, neither of which occurs in V583. We demonstrate that CRISPR-Cas and restriction-modification together confer a 4-log reduction in acquisition of the pheromone-responsive plasmid pAM714 in biofilm matings. Additionally, we show that the orphan CRISPR2 locus is functional for genome defense against another pheromone-responsive plasmid, pCF10, only in the presence of cas9 derived from the E. faecalis CRISPR1-cas locus, which most multidrug-resistant E. faecalis isolates lack. Overall, our work demonstrated that the loss of only two loci led to a dramatic reduction in genome defense against a clinically relevant MGE, highlighting the critical importance of the E. faecalis accessory genome in modulating horizontal gene transfer. Our results rationalize the development of antimicrobial strategies that capitalize upon the immunocompromised status of multidrug-resistant E

  11. CRISPR-Cas and Restriction-Modification Act Additively against Conjugative Antibiotic Resistance Plasmid Transfer in Enterococcus faecalis.

    PubMed

    Price, Valerie J; Huo, Wenwen; Sharifi, Ardalan; Palmer, Kelli L

    2016-01-01

    Enterococcus faecalis is an opportunistic pathogen and a leading cause of nosocomial infections. Conjugative pheromone-responsive plasmids are narrow-host-range mobile genetic elements (MGEs) that are rapid disseminators of antibiotic resistance in the faecalis species. Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas and restriction-modification confer acquired and innate immunity, respectively, against MGE acquisition in bacteria. Most multidrug-resistant E. faecalis isolates lack CRISPR-Cas and possess an orphan locus lacking cas genes, CRISPR2, that is of unknown function. Little is known about restriction-modification defense in E. faecalis. Here, we explore the hypothesis that multidrug-resistant E. faecalis strains are immunocompromised. We assessed MGE acquisition by E. faecalis T11, a strain closely related to the multidrug-resistant hospital isolate V583 but which lacks the ~620 kb of horizontally acquired genome content that characterizes V583. T11 possesses the E. faecalis CRISPR3-cas locus and a predicted restriction-modification system, neither of which occurs in V583. We demonstrate that CRISPR-Cas and restriction-modification together confer a 4-log reduction in acquisition of the pheromone-responsive plasmid pAM714 in biofilm matings. Additionally, we show that the orphan CRISPR2 locus is functional for genome defense against another pheromone-responsive plasmid, pCF10, only in the presence of cas9 derived from the E. faecalis CRISPR1-cas locus, which most multidrug-resistant E. faecalis isolates lack. Overall, our work demonstrated that the loss of only two loci led to a dramatic reduction in genome defense against a clinically relevant MGE, highlighting the critical importance of the E. faecalis accessory genome in modulating horizontal gene transfer. Our results rationalize the development of antimicrobial strategies that capitalize upon the immunocompromised status of multidrug-resistant E. faecalis. IMPORTANCE

  12. Complete nucleotide sequence of pH11, an IncHI2 plasmid conferring multi-antibiotic resistance and multi-heavy metal resistance genes in a clinical Klebsiella pneumoniae isolate.

    PubMed

    Zhai, Yao; He, Zilong; Kang, Yu; Yu, Haiying; Wang, Jianfeng; Du, Pengcheng; Zhang, Zhao; Hu, Songnian; Gao, Zhancheng

    2016-07-01

    The complete 284,628bp sequence of pH11, an IncHI2 plasmid, was determined through single-molecule, real-time (SMRT) sequencing. Harbored by a clinical Klebsiella pneumoniae strain H11, and isolated in Beijing, this plasmid contains multiple antibiotic resistance genes, including catA2, aac(6')-Ib, strB, strA, dfrA19, blaTEM-1, blaSHV-12, sul1, qacE delta 1, ereA, arr2, and aac3. The aac(6')-Ib is carried by a class I integron. Plasmid pH11 also carries several genes associated with resistance to heavy metals, such as tellurium, mercury, cobalt, zinc, nickel, copper, lead and cadmium. This plasmid exhibits numerous characteristics, including HipBA and RelBE toxin-antitoxin systems, two major transfer (Tra) regions closely related to those of Salmonella enterica serovar plasmid pRH-R27, a type II restriction modification system (EcoRII R-M system), several methyltransferases and methylases and genes encoding Hha and StpA. These characteristics suggest that pH11 may adapt to various hosts and environments. Multiple insertion sequence elements, transposases, recombinases, resolvases and integrases are scattered throughout pH11. The presence of these genes may indicate that horizontal gene transfer occurs frequently in pH11 and thus may facilitate the dissemination of antimicrobial resistance determinants. Our data suggest that pH11 is a chimera gradually assembled through the integration of different horizontally acquired DNA segments via transposition or homologous recombination. PMID:27101788

  13. Enhanced Delivery of Plasmid Encoding Interleukin-12 Gene by Diethylene Triamine Penta-Acetic Acid (DTPA)-Conjugated PEI Nanoparticles.

    PubMed

    Dehshahri, Ali; Sadeghpour, Hossein; Keykhaee, Maryam; Khalvati, Bahman; Sheikhsaran, Fatemeh

    2016-05-01

    Recombinant therapeutic proteins have been considered as an efficient category of medications used for the treatment of various diseases. Despite their effectiveness, there are some reports on the systemic adverse effects of recombinant therapeutic proteins limiting their wide clinical applications. Among different cytokines used for cancer immunotherapy, interleukin-12 (IL-12) has shown great ability as a powerful antitumor and antiangiogenic agent. However, significant toxic reactions following the systemic administration of IL-12 have led researchers to seek for alternative approaches such as the delivery and local expression of the IL-12 gene inside the tumor tissues. In order to transfer the plasmid encoding IL-12 gene, the most extensively investigated polycationic polymer, polyethylenimine (PEI), was modified by diethylene triamine penta-acetic acid (DTPA) to modulate the hydrophobic-hydrophilic balance of the polymer as well as its toxicity. DTPA-conjugated PEI derivatives were able to form complexes in the size range around 100-180 nm with great condensation ability and protection of the plasmid against enzymatic degradation. The highest gene transfer ability was achieved by the DTPA-conjugated PEI at the conjugation degree of 0.1 % where the level of IL-12 production increased up to twofold compared with that of the unmodified PEI. Results of the present study demonstrated that modulation of the surface positive charge of PEI along with the improvement of the polymer hydrophobic balance could be considered as a successful strategy to develop safe and powerful nanocarriers. PMID:26801817

  14. Characterization of Plasmid-Borne and Chromosome-Encoded Traits of Agrobacterium Biovar 1, 2, and 3 Strains from France

    PubMed Central

    Ridé, Michel; Ridé, Suzanne; Petit, Annik; Bollet, Claude; Dessaux, Yves; Gardan, Louis

    2000-01-01

    We collected 111 Agrobacterium isolates from galls of various origins (most of them from France) and analyzed both their plasmid-borne and chromosome-encoded traits. Phenotypic analysis of these strains allowed their classification in three phena which exactly matched the delineation of biovars 1, 2, and 3. A fourth phenon was identified which comprises three atypical strains. The phenotypic analysis has also allowed us to identify 12 additional characteristics which could be used to identify the three biovars of Agrobacterium. Our results also suggest that biovar 1 and 2 represent distinct species. Analysis of plasmid-borne traits confirmed that tartrate utilization is a common feature of biovar 3 strains (now named Agrobacterium vitis) and of Agrobacterium grapevine strains in general. Among pathogenic strains of Agrobacterium, several exhibited unusual opine synthesis and degradation patterns, and one strain of biovar 3 induced tumors containing vitopine and a novel opine-like molecule derived from putrescine. We have named this compound ridéopine. PMID:10788345

  15. Chlamydial Plasmid-Encoded Virulence Factor Pgp3 Neutralizes the Antichlamydial Activity of Human Cathelicidin LL-37

    PubMed Central

    Hou, Shuping; Dong, Xiaohua; Yang, Zhangsheng; Li, Zhongyu; Liu, Quanzhong

    2015-01-01

    Chlamydia trachomatis infection in the lower genital tract can ascend to and cause pathologies in the upper genital tract, potentially leading to severe complications, such as tubal infertility. However, chlamydial organisms depleted of plasmid or deficient in the plasmid-encoded Pgp3 are attenuated in ascending infection and no longer are able to induce the upper genital tract pathologies, indicating a significant role of Pgp3 in chlamydial pathogenesis. We now report that C. trachomatis Pgp3 can neutralize the antichlamydial activity of human cathelicidin LL-37, a host antimicrobial peptide secreted by both genital tract epithelial cells and infiltrating neutrophils. Pgp3 bound to and formed stable complexes with LL-37. We further showed that the middle region of Pgp3 (Pgp3m) was responsible for both the binding to and neutralization of LL-37, suggesting that Pgp3m can be targeted for attenuating chlamydial pathogenicity or developed for blocking LL-37-involved non-genital-tract pathologies, such as rosacea and psoriasis. Thus, the current study has provided significant information for both understanding the mechanisms of chlamydial pathogenesis and developing novel therapeutic agents. PMID:26416907

  16. Molecular cloning and characterization of nlpH, encoding a novel, surface-exposed, polymorphic, plasmid-encoded 33-kilodalton lipoprotein of Borrelia afzelii.

    PubMed Central

    Theisen, M

    1996-01-01

    Borrelia burgdorferi sensu lato organisms, comprising B. burgdorferi sensu stricto, Borrelia afzelii, and Borrelia garinii, are tick-borne pathogens causing Lyme borreliosis in humans. To identify putative virulence determinants, a B. afzelii DNA library was screened for Congo red dye binding, a property associated with virulence in pathogenic bacteria. One clone was found to carry a 663-nucleotide-long open reading frame encoding a Congo red dye-binding protein with a calculated molecular mass of 25,660 Da. The amino acid sequence deduced from its nucleotide sequence was found to include a consensus bacterial lipidation site present at residues 15 to 18 (Leu-Ser-Gly-Cys). The lipoprotein nature was demonstrated by incorporation of radioactive palmitate; hence, this protein has been termed NlpH, for new lipoprotein H. NlpH is located on the surface of B. afzelii, and the nlpH gene is found on a circular plasmid. The nlpH gene is also found in B. burgdorferi sensu stricto and B. garinii. Immediately upstream of nlpH is located a smaller reading frame encoding a polypeptide containing the casein kinase II phosphorylation recognition sequence, (Ser/Thr)-X-Y-(Glu/Asp), repeated 10 times. PMID:8932298

  17. Analysis of a 30 kbp plasmid encoding histidine decarboxylase gene in Tetragenococcus halophilus isolated from fish sauce.

    PubMed

    Satomi, Masataka; Furushita, Manabu; Oikawa, Hiroshi; Yoshikawa-Takahashi, Miwako; Yano, Yutaka

    2008-08-15

    In order to analyze the genes related to the histamine production, a strain of histamine producing halophilic bacteria, referred to as strain H, was isolated using enrichment culture and dilution-to-extinction methods with histidine broth inoculated from the fish sauce mashes. The two Japanese fish sauce mashes used, accumulate over 1000 mg/l of histamine. Phenotypic and 16 S rRNA gene sequence analyses identified strain H as Tetragenococcus halophilus, the predominant histamine producing bacteria present during fish sauce fermentation. Genetic analyses (PCR and Southern blot) of the histamine producing strain confirmed that the strain harbored a 30 kbp plasmid (pHDC) encoding a single copy of the pyruvoyl dependent histidine decarboxylase gene (hdc). A comparison of hdcA that is a structural gene of histidine decarboxylase among strain H, Lactobacillus hilgardii 0006, L. sakei LTH2076, Oenococcus oeni 9204, T. halophilus and T. muriaticus JCM10006 (T) indicated >99% sequence similarity. The hdc gene cluster consisted of 4 ORFs, hdcP, hdcA, hdcB, and hdcRS, and were almost identical to that of L. hilgardii 0006 with 99% sequence similarity including the structural hdc spacer region. However, the approximately 500 bp regions upstream and downstream of the hdc gene were different between that of strain H and L. hilgardii 0006. The complete sequence of pHDC revealed 29,924 nucleotides including 28 ORFs, two pairs of IR (inverted repeat), similar sequence of plasmid conjugative elements, and a theta-type replicon. These results suggested that hdc could be encoded on transformable elements among lactic acid bacteria. PMID:18573560

  18. Entire sequence of the colonization factor coli surface antigen 6-encoding plasmid pCss165 from an enterotoxigenic Escherichia coli clinical isolate.

    PubMed

    Wajima, Takeaki; Sabui, Subrata; Kano, Shigeyuki; Ramamurthy, Thandavarayan; Chatterjee, Nabendu Sekhar; Hamabata, Takashi

    2013-11-01

    Coli surface antigen 6 (CS6) is one of the most prevalent colonization factors among enterotoxigenic Escherichia coli (ETEC) isolated in developing countries. Although it is known that CS6 is encoded by a plasmid, there are no reports on the sequence analysis of the CS6-encoding plasmid or genes exhibiting similar behavior to CS6. Here, we report the isolation of the CS6-encoding plasmid, pCss165Kan, from 4266 ΔcssB::kanamycin (Km) and its complete nucleotide sequence. This plasmid consisted of 165,311bp and 222 predicted coding sequences. Remarkably, there were many insertion sequence (IS) elements, which comprised 24.4% of the entire sequence. Virulence-associated genes such as heat-stable enterotoxin, homologues of ATP-binding cassette transporter in enteroaggregative E. coli (EAEC), and ETEC autotransporter A were also present, although the ETEC autotransporter A gene was disrupted by the integration of IS629. We found that 2 transcriptional regulators belonging to the AraC family were not involved in CS6 expression. Interestingly, pCss165 had conjugative transfer genes, as well as 3 toxin-antitoxin systems that potentially exclude other plasmid-free host bacteria. These genes might be involved in the prevalence of CS6 among ETEC isolates. PMID:23933356

  19. Sequencing and Diversity Analyses Reveal Extensive Similarities between Some Epsilon-Toxin-Encoding Plasmids and the pCPF5603 Clostridium perfringens Enterotoxin Plasmid▿ †

    PubMed Central

    Miyamoto, Kazuaki; Li, Jihong; Sayeed, Sameera; Akimoto, Shigeru; McClane, Bruce A.

    2008-01-01

    Clostridium perfringens type B and D isolates produce epsilon-toxin, the third most potent clostridial toxin. The epsilon-toxin gene (etx) is plasmid borne in type D isolates, but etx genetics have been poorly studied in type B isolates. This study reports the first sequencing of any etx plasmid, i.e., pCP8533etx, from type B strain NCTC8533. This etx plasmid is 64.7 kb, carries tcp conjugative transfer genes, and encodes additional potential virulence factors including beta2-toxin, sortase, and collagen adhesin but not beta-toxin. Interestingly, nearly 80% of pCP8533etx open reading frames (ORFs) are also present on pCPF5603, an enterotoxin-encoding plasmid from type A isolate F5603. Pulsed-field gel electrophoresis and overlapping PCR indicated that a pCP8533etx-like etx plasmid is also present in most, if not all, other type B isolates and some beta2-toxin-positive, cpe-negative type D isolates, while other type D isolates carry different etx plasmids. Sequences upstream of the etx gene vary between type B isolates and some type D isolates that do not carry a pCP8533etx-like etx plasmid. However, nearly all type B and D isolates have an etx locus with an upstream IS1151, and those etx loci typically reside near a dcm ORF. These results suggest that pCPF5603 and pCP8533etx evolved from insertion of mobile genetic elements carrying enterotoxin or etx genes, respectively, onto a common progenitor plasmid. PMID:18776010

  20. Regulation of plasmid-encoded isoprene metabolism in Rhodococcus, a representative of an important link in the global isoprene cycle.

    PubMed

    Crombie, Andrew T; Khawand, Myriam El; Rhodius, Virgil A; Fengler, Kevin A; Miller, Michael C; Whited, Gregg M; McGenity, Terry J; Murrell, J Colin

    2015-09-01

    Emissions of biogenic volatile organic compounds (VOCs) form an important part of the global carbon cycle, comprising a significant proportion of net ecosystem productivity. They impact atmospheric chemistry and contribute directly and indirectly to greenhouse gases. Isoprene, emitted largely from plants, comprises one third of total VOCs, yet in contrast to methane, which is released in similar quantities, we know little of its biodegradation. Here, we report the genome of an isoprene degrading isolate, Rhodococcus sp. AD45, and, using mutagenesis shows that a plasmid-encoded soluble di-iron centre isoprene monooxygenase (IsoMO) is essential for isoprene metabolism. Using RNA sequencing (RNAseq) to analyse cells exposed to isoprene or epoxyisoprene in a substrate-switch time-course experiment, we show that transcripts from 22 contiguous genes, including those encoding IsoMO, were highly upregulated, becoming among the most abundant in the cell and comprising over 25% of the entire transcriptome. Analysis of gene transcription in the wild type and an IsoMO-disrupted mutant strain showed that epoxyisoprene, or a subsequent product of isoprene metabolism, rather than isoprene itself, was the inducing molecule. We provide a foundation of molecular data for future research on the environmental biological consumption of this important, climate-active compound. PMID:25727256

  1. Protein sequences insight into heavy metal tolerance in Cronobacter sakazakii BAA-894 encoded by plasmid pESA3.

    PubMed

    Chaturvedi, Navaneet; Kajsik, Michal; Forsythe, Stephen; Pandey, Paras Nath

    2015-12-01

    The recently annotated genome of the bacterium Cronobacter sakazakii BAA-894 suggests that the organism has the ability to bind heavy metals. This study demonstrates heavy metal tolerance in C. sakazakii, in which proteins with the heavy metal interaction were recognized by computational and experimental study. As the result, approximately one-fourth of proteins encoded on the plasmid pESA3 are proposed to have potential interaction with heavy metals. Interaction between heavy metals and predicted proteins was further corroborated using protein crystal structures from protein data bank database and comparison of metal-binding ligands. In addition, a phylogenetic study was undertaken for the toxic heavy metals, arsenic, cadmium, lead and mercury, which generated relatedness clustering for lead, cadmium and arsenic. Laboratory studies confirmed the organism's tolerance to tellurite, copper and silver. These experimental and computational study data extend our understanding of the genes encoding for proteins of this important neonatal pathogen and provide further insights into the genotypes associated with features that can contribute to its persistence in the environment. The information will be of value for future environmental protection from heavy toxic metals. PMID:26384977

  2. Regulation of plasmid-encoded isoprene metabolism in Rhodococcus, a representative of an important link in the global isoprene cycle

    PubMed Central

    Crombie, Andrew T; Khawand, Myriam El; Rhodius, Virgil A; Fengler, Kevin A; Miller, Michael C; Whited, Gregg M; McGenity, Terry J; Murrell, J Colin

    2015-01-01

    Emissions of biogenic volatile organic compounds (VOCs) form an important part of the global carbon cycle, comprising a significant proportion of net ecosystem productivity. They impact atmospheric chemistry and contribute directly and indirectly to greenhouse gases. Isoprene, emitted largely from plants, comprises one third of total VOCs, yet in contrast to methane, which is released in similar quantities, we know little of its biodegradation. Here, we report the genome of an isoprene degrading isolate, Rhodococcus sp. AD45, and, using mutagenesis shows that a plasmid-encoded soluble di-iron centre isoprene monooxygenase (IsoMO) is essential for isoprene metabolism. Using RNA sequencing (RNAseq) to analyse cells exposed to isoprene or epoxyisoprene in a substrate-switch time-course experiment, we show that transcripts from 22 contiguous genes, including those encoding IsoMO, were highly upregulated, becoming among the most abundant in the cell and comprising over 25% of the entire transcriptome. Analysis of gene transcription in the wild type and an IsoMO-disrupted mutant strain showed that epoxyisoprene, or a subsequent product of isoprene metabolism, rather than isoprene itself, was the inducing molecule. We provide a foundation of molecular data for future research on the environmental biological consumption of this important, climate-active compound. PMID:25727256

  3. RECRUITMENT OF A CHROMOSOMALLY-ENCODED MALEYLACETATE REDYCTASE FOR THE DEGRADATION OF 2,4-DICHLOROPHENOXY-ACETIC ACID (TFD) BY PLASMID PJP4

    EPA Science Inventory

    When Pseudomonas aeruginosa PAO1c or P. putida PP0220 or PP0300 carry plasmid pJP4, which encodes enzymes for the degradation of 2,4-dichlorophenoxyacetic acid (TFD) or 2-chloromaleylacetate, cells do not grow on TFD and UV-absorbing material with spectral characteristics of chlo...

  4. Plasmid- and chromosome-encoded siderophore anguibactin systems found in marine vibrios: biosynthesis, transport and evolution

    PubMed Central

    Liu, Moqing; Actis, Luis A.; Crosa, Jorge H.

    2013-01-01

    Vibrio anguillarum is a marine pathogen that causes vibriosis, a hemorrhagic septicemia in aquatic invertebrate as well as vertebrate animals. The siderophore anguibactin system is one of the most important virulence factors of this bacterium. Most of the anguibactin biosynthesis and transport genes are located in the 65-kb pJM1 virulence plasmid although some of them are found in the chromosome of this fish pathogen. Over 30 years of research unveiled the role numerous chromosomal and pJM1 genes play in the synthesis of anguibactin and the transport of cognate ferric complexes into the bacterial cell. Furthermore, these studies showed that pJM1-carrying strains might be originated from pJM1-less strains producing the chromosome-mediated siderophore vanchrobactin. Additionally, we recently identified a chromosome-mediated anguibactin system in V. harveyi suggesting the possible evolutional origin of the V. anguillarum anguibactin system. In this review, we present our current understanding of the mechanisms and evolution hypothesis of the anguibactin system that might have occurred in these pathogenic vibrios. PMID:23660776

  5. Plasmid- and chromosome-encoded siderophore anguibactin systems found in marine vibrios: biosynthesis, transport and evolution.

    PubMed

    Naka, Hiroaki; Liu, Moqing; Actis, Luis A; Crosa, Jorge H

    2013-08-01

    Vibrio anguillarum is a marine pathogen that causes vibriosis, a hemorrhagic septicemia in aquatic invertebrate as well as vertebrate animals. The siderophore anguibactin system is one of the most important virulence factors of this bacterium. Most of the anguibactin biosynthesis and transport genes are located in the 65-kb pJM1 virulence plasmid although some of them are found in the chromosome of this fish pathogen. Over 30 years of research unveiled the role numerous chromosomal and pJM1 genes play in the synthesis of anguibactin and the transport of cognate ferric complexes into the bacterial cell. Furthermore, these studies showed that pJM1-carrying strains might be originated from pJM1-less strains producing the chromosome-mediated siderophore vanchrobactin. Additionally, we recently identified a chromosome-mediated anguibactin system in V. harveyi suggesting the possible evolutional origin of the V. anguillarum anguibactin system. In this review, we present our current understanding of the mechanisms and evolution hypothesis of the anguibactin system that might have occurred in these pathogenic vibrios. PMID:23660776

  6. Shigella sonnei plasmids: evidence that a large plasmid is necessary for virulence.

    PubMed Central

    Sansonetti, P J; Kopecko, D J; Formal, S B

    1981-01-01

    Virulent form I Shigella sonnei strains contain a 120-megadalton plasmid that is absent in their form II derivatives, which are always avirulent and devoid of O side chains. In the present study, 165 biochemical and antibiotic traits were assessed, but no experimentally useful phenotype could be associated with this large form I plasmid. Therefore, the form I plasmids of several S. sonnei strains were tagged with the antibiotic resistance transposons Tn3, Tn5, or Tn10. Transposon-tagged form I plasmids were not self-transmissible, but could be mobilized by the plasmid R386. Form II S. sonnei transconjugants for the form I plasmid acquired both virulence and the ability to synthesize form I antigen, establishing that these properties are plasmid mediated. Further studies indicate that this 120-megadalton form I plasmid is physically unstable in any of several host bacteria and suggest that it is a member of the FI incompatibility group. Also, two commonly observed, small plasmids of S. sonnei, of 3.2 and 3.9 megadaltons, were shown to encode either colicin E1 production or resistance to streptomycin and sulfonamide, respectively. Images PMID:6271687

  7. Immunogenicity of a plasmid DNA vaccine encoding 42kDa fragment of Plasmodium vivax merozoite surface protein-1.

    PubMed

    Sheikh, Inayat Hussain; Kaushal, Deep C; Chandra, Deepak; Kaushal, Nuzhat A

    2016-10-01

    Plasmodium vivax is the second major human malaria parasite that inflicts debilitating morbidity and consequent economic impact in South-East Asian countries. The relapsing nature of P. vivax along with the emergence of drug-resistant P. vivax strains has emphasized the urgent need for a vaccine. However, the development of an effective vivax vaccine is seriously hampered due to the diversity and variation in parasite antigens and non-availability of suitable animal models. DNA based vaccines represent an alternative approach in inducing immunity to multiple targets from different stages of malaria parasite. DNA prime-boosting strategies induce both antibody mediated and cell-mediated immune responses that are the major mechanisms of protection against malaria parasites. We have earlier studied the immunogenicity and protective efficacy of the soluble and refolded forms of recombinant 42kDa fragment of Plasmodium vivax merozoite surface protein-1 (PvMSP-142) using P. cynomolgi rhesus monkey model. In the present study, we have constructed a recombinant DNA vaccine encoding 42kDa fragment of P. vivax MSP-1 and studied the immunogenicity of PvMSP-142 DNA vaccine construct in mice. The 42kDa gene fragment of PvMSP-1 was PCR amplified using gene specific primers and subcloned into pcDNA 3.1 (+) eukaryotic expression vector. In vitro expression of PvMSP-142 plasmid construct was checked by transfection in COS-1 cell line. Indirect immunofluorescence of transfected COS-1 cells probed with monoclonal antibodies against PvMSP-142 exhibited positive fluorescence. Immunization of BALB/c mice with PvMSP-142-pcDNA vaccine construct revealed the immunogenicity of recombinant vaccine plasmid that can be enhanced by prime boosting with recombinant protein corresponding to the DNA vaccine as evidenced by significant elevation of antibody and the cytokines responses. PMID:27311385

  8. Development of a Biosafety Enhanced and Immunogenic Salmonella Enteritidis Ghost Using an Antibiotic Resistance Gene Free Plasmid Carrying a Bacteriophage Lysis System

    PubMed Central

    Jawale, Chetan V.; Lee, John Hwa

    2013-01-01

    In the development of genetically inactivated bacterial vaccines, plasmid retention often requires the antibiotic resistance gene markers, the presence of which can cause the potential biosafety hazards such as the horizontal spread of resistance genes. The new lysis plasmid was constructed by utilizing the approach of balanced-lethal systems based on auxotrophic gene Aspartate semialdehyde dehydrogenase (asd). The PhiX174 lysis gene E and λPR37-cI857 temperature-sensitive regulatory system was cloned in the asd gene positive plasmid and this novel approach allowed the production of antibiotic resistance marker free Salmonella Enteritidis (S. Enteritidis) ghost. The immunogenic potential of the biosafety enhanced antibiotic resistance gene free S. Enteritidis ghost was evaluated in chickens by employing the prime-boost vaccination strategy using a combination of oral and intramuscular routes. A total of 75 two-week-old chickens were equally divided into five groups: group A (non-immunized control), group B (intramuscularly primed and boosted), group C (primed intramuscularly and boosted orally), group D (primed and boosted orally), and group E (primed orally and boosted intramuscularly). Chickens from all immunized groups demonstrated significant increases in plasma IgG, intestinal secretory IgA levels, and antigen-specific lymphocyte proliferative response. After a virulent S. Enteritidis challenge, all immunized groups showed fewer gross lesions and decreased bacterial recovery from organs in comparison with the non-immunized control group. Among the immunized chickens, groups B and D chickens showed optimized protection, indicating that the prime-booster immunization with the ghost via intramuscular or oral route is efficient. Taken together, our results demonstrate that an antibiotic resistance gene free lysis plasmid was successfully constructed and utilized for production of safety enhanced S. Enteritidis ghost, which can be used as a safe and effective

  9. Development of a biosafety enhanced and immunogenic Salmonella enteritidis ghost using an antibiotic resistance gene free plasmid carrying a bacteriophage lysis system.

    PubMed

    Jawale, Chetan V; Lee, John Hwa

    2013-01-01

    In the development of genetically inactivated bacterial vaccines, plasmid retention often requires the antibiotic resistance gene markers, the presence of which can cause the potential biosafety hazards such as the horizontal spread of resistance genes. The new lysis plasmid was constructed by utilizing the approach of balanced-lethal systems based on auxotrophic gene Aspartate semialdehyde dehydrogenase (asd). The PhiX174 lysis gene E and λPR37-cI857 temperature-sensitive regulatory system was cloned in the asd gene positive plasmid and this novel approach allowed the production of antibiotic resistance marker free Salmonella Enteritidis (S. Enteritidis) ghost. The immunogenic potential of the biosafety enhanced antibiotic resistance gene free S. Enteritidis ghost was evaluated in chickens by employing the prime-boost vaccination strategy using a combination of oral and intramuscular routes. A total of 75 two-week-old chickens were equally divided into five groups: group A (non-immunized control), group B (intramuscularly primed and boosted), group C (primed intramuscularly and boosted orally), group D (primed and boosted orally), and group E (primed orally and boosted intramuscularly). Chickens from all immunized groups demonstrated significant increases in plasma IgG, intestinal secretory IgA levels, and antigen-specific lymphocyte proliferative response. After a virulent S. Enteritidis challenge, all immunized groups showed fewer gross lesions and decreased bacterial recovery from organs in comparison with the non-immunized control group. Among the immunized chickens, groups B and D chickens showed optimized protection, indicating that the prime-booster immunization with the ghost via intramuscular or oral route is efficient. Taken together, our results demonstrate that an antibiotic resistance gene free lysis plasmid was successfully constructed and utilized for production of safety enhanced S. Enteritidis ghost, which can be used as a safe and effective

  10. Novel Antibiotic-Free Plasmid Selection System Based on Complementation of Host Auxotrophy in the NAD De Novo Synthesis Pathway▿ †

    PubMed Central

    Dong, Wei-Ren; Xiang, Li-Xin; Shao, Jian-Zhong

    2010-01-01

    The use of antibiotic resistance genes in plasmids causes potential biosafety and clinical hazards, such as the possibility of horizontal spread of resistance genes or the rapid emergence of multidrug-resistant pathogens. This paper introduces a novel auxotrophy complementation system that allowed plasmids and host cells to be effectively selected and maintained without the use of antibiotics. An Escherichia coli strain carrying a defect in NAD de novo biosynthesis was constructed by knocking out the chromosomal quinolinic acid phosphoribosyltransferase (QAPRTase) gene. The resistance gene in the plasmids was replaced by the QAPRTase gene of E. coli or the mouse. As a result, only expression of the QAPRTase gene from plasmids can complement and rescue E. coli host cells in minimal medium. This is the first time that a vertebrate gene has been used to construct a nonantibiotic selection system, and it can be widely applied in DNA vaccine and gene therapy. As the QAPRTase gene is ubiquitous in species ranging from bacteria to mammals, the potential environmental biosafety problems caused by horizontal gene transfer can be eliminated. PMID:20118370

  11. Identification of UreR binding sites in the Enterobacteriaceae plasmid-encoded and Proteus mirabilis urease gene operons.

    PubMed

    Thomas, V J; Collins, C M

    1999-03-01

    The closely related Proteus mirabilis and Enterobacterlaceae plasmid-encoded urease genes are positively regulated by the AraC-like transcriptional activator UreR. In the presence of the effector molecule urea, UreR promotes transcription of ureD, the initial gene in the urease operon, and increases transcription of the divergently transcribed ureR. Here, we identify UreR-specific binding sites in the ureRp-ureDp intergenic regions. Recombinant UreR (rUreR) was expressed and purified, and gel shift and DNase I protection assays were performed with this protein. These analyses indicated that there are two distinct rUreR binding sites in both the plasmid-encoded and P. mirabilis ureRp-ureDp intergenic regions. A consensus binding site of TA/GT/CA/TT/GC/TTA/TT/AATTG was predicted from the DNase I protection assays. Although rUreR bound to the specific DNA binding site in both the presence and the absence of urea, the dissociation rate constant k-1 of the rUreR-DNA complex interaction was measurably different when urea was present. In the absence of urea, the dissociation of the protein-DNA complexes, for both ureRp and ureDp, was complete at the earliest time point, and it was not possible to determine a rate. In the presence of urea, dissociation was measurable with a k-1 for the rUreR-ureRp interaction of 1.2 +/- 0.2 x 10(-2) s-1 and a k-1 for the rUreR-ureDp interaction of 2.6 +/- 0.1 x 10(-3) s-1. This corresponds to a half-life of the ureRp-rUreR interaction of 58 s, and a half-life of the ureDp-rUreR interaction of 4 min 26 s. A model describing a potential role for urea in the activation of these promoters is proposed. PMID:10200962

  12. Association of virulence plasmid and antibiotic resistance determinants with chromosomal multilocus genotypes in Mexican Salmonella enterica serovar Typhimurium strains

    PubMed Central

    2009-01-01

    Background Bacterial genomes are mosaic structures composed of genes present in every strain of the same species (core genome), and genes present in some but not all strains of a species (accessory genome). The aim of this study was to compare the genetic diversity of core and accessory genes of a Salmonella enterica subspecies enterica serovar Typhimurium (Typhimurium) population isolated from food-animal and human sources in four regions of Mexico. Multilocus sequence typing (MLST) and macrorestriction fingerprints by pulsed-field gel electrophoresis (PFGE) were used to address the core genetic variation, and genes involved in pathogenesis and antibiotic resistance were selected to evaluate the accessory genome. Results We found a low genetic diversity for both housekeeping and accessory genes. Sequence type 19 (ST19) was supported as the founder genotype of STs 213, 302 and 429. We found a temporal pattern in which the derived ST213 is replacing the founder ST19 in the four geographic regions analyzed and a geographic trend in the number of resistance determinants. The distribution of the accessory genes was not random among chromosomal genotypes. We detected strong associations among the different accessory genes and the multilocus chromosomal genotypes (STs). First, the Salmonella virulence plasmid (pSTV) was found mostly in ST19 isolates. Second, the plasmid-borne betalactamase cmy-2 was found only in ST213 isolates. Third, the most abundant integron, IP-1 (dfrA12, orfF and aadA2), was found only in ST213 isolates. Fourth, the Salmonella genomic island (SGI1) was found mainly in a subgroup of ST19 isolates carrying pSTV. The mapping of accessory genes and multilocus genotypes on the dendrogram derived from macrorestiction fingerprints allowed the establishment of genetic subgroups within the population. Conclusion Despite the low levels of genetic diversity of core and accessory genes, the non-random distribution of the accessory genes across chromosomal

  13. Analysis of the vaccine potential of plasmid DNA encoding nine mycolactone polyketide synthase domains in Mycobacterium ulcerans infected mice.

    PubMed

    Roupie, Virginie; Pidot, Sacha J; Einarsdottir, Tobba; Van Den Poel, Christophe; Jurion, Fabienne; Stinear, Timothy P; Huygen, Kris

    2014-01-01

    There is no effective vaccine against Buruli ulcer. In experimental footpad infection of C57BL/6 mice with M. ulcerans, a prime-boost vaccination protocol using plasmid DNA encoding mycolyltransferase Ag85A of M. ulcerans and a homologous protein boost has shown significant, albeit transient protection, comparable to the one induced by M. bovis BCG. The mycolactone toxin is an obvious candidate for a vaccine, but by virtue of its chemical structure, this toxin is not immunogenic in itself. However, antibodies against some of the polyketide synthase domains involved in mycolactone synthesis, were found in Buruli ulcer patients and healthy controls from the same endemic region, suggesting that these domains are indeed immunogenic. Here we have analyzed the vaccine potential of nine polyketide synthase domains using a DNA prime/protein boost strategy. C57BL/6 mice were vaccinated against the following domains: acyl carrier protein 1, 2, and 3, acyltransferase (acetate) 1 and 2, acyltransferase (propionate), enoylreductase, ketoreductase A, and ketosynthase load module. As positive controls, mice were vaccinated with DNA encoding Ag85A or with M. bovis BCG. Strongest antigen specific antibodies could be detected in response to acyltransferase (propionate) and enoylreductase. Antigen-specific Th1 type cytokine responses (IL-2 or IFN-γ) were induced by vaccination against all antigens, and were strongest against acyltransferase (propionate). Finally, vaccination against acyltransferase (propionate) and enoylreductase conferred some protection against challenge with virulent M. ulcerans 1615. However, protection was weaker than the one conferred by vaccination with Ag85A or M. bovis BCG. Combinations of these polyketide synthase domains with the vaccine targeting Ag85A, of which the latter is involved in the integrity of the cell wall of the pathogen, and/or with live attenuated M. bovis BCG or mycolactone negative M. ulcerans may eventually lead to the development of an

  14. Bacteriolytic activity caused by the presence of a novel lactococcal plasmid encoding lactococcins A, B, and M.

    PubMed Central

    Morgan, S; Ross, R P; Hill, C

    1995-01-01

    Lactococcus lactis subsp. lactis biovar diacetylactis DPC938 was identified as a bacteriocin-producing strain which exhibited a bacteriolytic effect on other lactococci. Lysis of such target strains was associated with decreases in optical density and release of the intracellular enzyme lactate dehydrogenase. DPC938 exhibits cross-immunity to L. lactis subsp. cremoris 9B4 (M.J. van Belkum, B.J. Hayema, A. Geis, J. Kok, and G. Venema, Appl. Environ. Microbiol. 55:1187-1191, 1989), a strain which produces the bacteriocins lactococcins A, B, and M. Genetic analyses revealed that a 15.5-kb region of DNA encoding these bacteriocins is highly conserved in 9B4, DPC938, and DPC3286, an overproducing derivative of DPC938. This region is located on a 72- and a 78-kb nonmobilizable plasmid in DPC938 and DPC3286, respectively. The bacteriolytic effect exhibited by DPC938 and DPC3286 on sensitive cultures is most probably due to the concerted action of all three bacteriocins. Since these cultures exhibit a lytic effect on lactococci, they have a potential application in the dairy industry as accelerators of starter lysis and hence accelerators of cheese ripening. PMID:7487031

  15. Mechanism of resistance to complement-mediated killing of bacteria encoded by the Salmonella typhimurium virulence plasmid gene rck.

    PubMed Central

    Heffernan, E J; Reed, S; Hackett, J; Fierer, J; Roudier, C; Guiney, D

    1992-01-01

    We find that pADEO16, a recombinant cosmid carrying the rck gene of the Salmonella typhimurium virulence plasmid, when cloned into either rough or smooth Escherichia coli and Salmonella strains, confers high level resistance to the bactericidal activity of pooled normal human serum. The rck gene encodes a 17-kD outer membrane protein that is homologous to a family of virulence-associated outer membrane proteins, including pagC and Ail. Complement depletion, C3 and C5 binding, and membrane-bound C3 cleavage products are similar in strains with and without rck. Although a large difference in C9 binding was not seen, trypsin cleaved 55.7% of bound 125I-C9 counts from rough S. typhimurium with pADEO16, whereas only 26.4% were released from S. typhimurium with K2011, containing a mutation in rck. The majority of C9 extracted from rck strain membranes sediments at a lower molecular weight than in strains without rck, suggesting less C9 polymerization. Furthermore, SDS-PAGE analysis of gradient peak fractions indicated that the slower sedimenting C9-containing complexes in rck strains did not contain polymerized C9 typical of the tubular membrane attack complex. These results indicate that complement resistance mediated by Rck is associated with a failure to form fully polymerized tubular membrane attack complexes. Images PMID:1522243

  16. In vivo electroporation of plasmids encoding GM-CSF or interleukin-2 into existing B16 melanomas combined with electrochemotherapy induces long-term antitumour immunity.

    PubMed

    Heller, L; Pottinger, C; Jaroszeski, M J; Gilbert, R; Heller, R

    2000-12-01

    When cancer cells, including melanoma cells, are genetically altered to secrete cytokines, irradiated and injected into subjects, long-term antitumour immunity is induced. Optimally, existing melanomas induced to produce cytokines in vivo could stimulate this same immune response. Although in vivo electroporation enhances plasmid expression, electroporation of plasmids encoding granulocyte-monocyte colony stimulating factor (GM-CSF) and interleukin-2 (IL2) into B16 mouse melanomas did not significantly alter tumour growth at the concentration tested. Electrochemotherapy, which causes short-term, complete regressions of treated tumour but no resistance to challenge, was combined with plasmid delivery. The combination treatment resulted in the induction of long-term immunity to recurrence and resistance to challenge in up to 25% of mice. PMID:11198480

  17. Co-spread of metal and antibiotic resistance within ST3-IncHI2 plasmids from E. coli isolates of food-producing animals

    PubMed Central

    Fang, Liangxing; Li, Xingping; Li, Liang; Li, Shumin; Liao, Xiaoping; Sun, Jian; Liu, Yahong

    2016-01-01

    Concerns have been raised in recent years regarding co-selection for antibiotic resistance among bacteria exposed to heavy metals, particularly copper and zinc, used as growth promoters for some livestock species. In this study, 25 IncHI2 plasmids harboring oqxAB (20/25)/blaCTX-M (18/25) were found with sizes ranging from ∼260 to ∼350 kb and 22 belonged to the ST3-IncHI2 group. In addition to blaCTX-M and oqxAB, pcoA-E (5/25) and silE-P (5/25), as well as aac(6′)-Ib-cr (18/25), floR (16/25), rmtB (6/25), qnrS1(3/25) and fosA3 (2/25), were also identified on these IncHI2 plasmids. The plasmids carried pco and sil contributed to increasing in the MICs of CuSO4 and AgNO3. The genetic context surrounding the two operons was well conserved except some variations within the pco operon. The ~32 kb region containing the two operons identified in the IncHI2 plasmids was also found in chromosomes of different Enterobacteriaceae species. Further, phylogenetic analysis of this structure showed that Tn7-like transposon might play an important role in cross-genus transfer of the sil and pco operons among Enterobacteriaceae. In conclusion, co-existence of the pco and sil operons, and oqxAB/blaCTX-M as well as other antibiotic resistance genes on IncHI2 plasmids may promote the development of multidrug-resistant bacteria. PMID:27143648

  18. Co-spread of metal and antibiotic resistance within ST3-IncHI2 plasmids from E. coli isolates of food-producing animals.

    PubMed

    Fang, Liangxing; Li, Xingping; Li, Liang; Li, Shumin; Liao, Xiaoping; Sun, Jian; Liu, Yahong

    2016-01-01

    Concerns have been raised in recent years regarding co-selection for antibiotic resistance among bacteria exposed to heavy metals, particularly copper and zinc, used as growth promoters for some livestock species. In this study, 25 IncHI2 plasmids harboring oqxAB (20/25)/blaCTX-M (18/25) were found with sizes ranging from ∼260 to ∼350 kb and 22 belonged to the ST3-IncHI2 group. In addition to blaCTX-M and oqxAB, pcoA-E (5/25) and silE-P (5/25), as well as aac(6')-Ib-cr (18/25), floR (16/25), rmtB (6/25), qnrS1(3/25) and fosA3 (2/25), were also identified on these IncHI2 plasmids. The plasmids carried pco and sil contributed to increasing in the MICs of CuSO4 and AgNO3. The genetic context surrounding the two operons was well conserved except some variations within the pco operon. The ~32 kb region containing the two operons identified in the IncHI2 plasmids was also found in chromosomes of different Enterobacteriaceae species. Further, phylogenetic analysis of this structure showed that Tn7-like transposon might play an important role in cross-genus transfer of the sil and pco operons among Enterobacteriaceae. In conclusion, co-existence of the pco and sil operons, and oqxAB/blaCTX-M as well as other antibiotic resistance genes on IncHI2 plasmids may promote the development of multidrug-resistant bacteria. PMID:27143648

  19. Overproduction of lactimidomycin by cross-overexpression of genes encoding Streptomyces antibiotic regulatory proteins.

    PubMed

    Zhang, Bo; Yang, Dong; Yan, Yijun; Pan, Guohui; Xiang, Wensheng; Shen, Ben

    2016-03-01

    The glutarimide-containing polyketides represent a fascinating class of natural products that exhibit a multitude of biological activities. We have recently cloned and sequenced the biosynthetic gene clusters for three members of the glutarimide-containing polyketides-iso-migrastatin (iso-MGS) from Streptomyces platensis NRRL 18993, lactimidomycin (LTM) from Streptomyces amphibiosporus ATCC 53964, and cycloheximide (CHX) from Streptomyces sp. YIM56141. Comparative analysis of the three clusters identified mgsA and chxA, from the mgs and chx gene clusters, respectively, that were predicted to encode the PimR-like Streptomyces antibiotic regulatory proteins (SARPs) but failed to reveal any regulatory gene from the ltm gene cluster. Overexpression of mgsA or chxA in S. platensis NRRL 18993, Streptomyces sp. YIM56141 or SB11024, and a recombinant strain of Streptomyces coelicolor M145 carrying the intact mgs gene cluster has no significant effect on iso-MGS or CHX production, suggesting that MgsA or ChxA regulation may not be rate-limiting for iso-MGS and CHX production in these producers. In contrast, overexpression of mgsA or chxA in S. amphibiosporus ATCC 53964 resulted in a significant increase in LTM production, with LTM titer reaching 106 mg/L, which is five-fold higher than that of the wild-type strain. These results support MgsA and ChxA as members of the SARP family of positive regulators for the iso-MGS and CHX biosynthetic machinery and demonstrate the feasibility to improve glutarimide-containing polyketide production in Streptomyces strains by exploiting common regulators. PMID:26552797

  20. Generation of a safety enhanced Salmonella Gallinarum ghost using antibiotic resistance free plasmid and its potential as an effective inactivated vaccine candidate against fowl typhoid.

    PubMed

    Jawale, Chetan V; Chaudhari, Atul A; Lee, John Hwa

    2014-02-19

    A safety enhanced Salmonella Gallinarum (SG) ghost was constructed using an antibiotic resistance gene free plasmid and evaluated its potential as fowl typhoid (FT) vaccine candidate. The antibiotic resistance free pYA3342 plasmid possesses aspartate semialdehyde dehydrogenase gene which is complimentary to the deletion of the chromosomal asd gene in the bacterial host. This plasmid was incorporated with a ghost cassette containing the bacteriophage PhiX174 lysis gene E, designated as pJHL101. The plasmid pJHL101 was transformed into a two virulence genes-deleted SG. The SG ghosts with tunnel formation and loss of cytoplasmic contents were observed by scanning electron microscopy and transmission electron microscopy. The cell viability of the culture solution was decreased to 0% at 24h after the induction of gene E expression by an increase in temperature from 37°C to 42°C. The safety and protective efficacy of the SG ghost vaccine was further examined in chickens which were divided into three groups: group A (non-immunized control), group B (orally immunized), and group C (intramuscularly immunized). The birds were immunized at 7d of age. No clinical symptoms associated with FT such as anorexia, depression and greenish diarrhea were observed in the immunized chickens. Upon challenge with a virulent SG strain at 3 week post-immunization, the chickens immunized with the SG ghost via various routes were efficiently protected, as shown by significantly lower mortality and post-mortem lesions in comparison with control group. In addition, all the immunized chickens showed significantly higher antibody responses accompanied by a potent antigen-specific lymphocyte proliferative response along with significantly increased numbers of CD4⁺ and CD8⁺ T lymphocytes. Overall, our results provide a promising approach of generating SG ghosts using the antibiotic resistance free plasmid in order to prepare a non-living bacterial vaccine candidate which could be

  1. Antibiotics

    MedlinePlus

    ... or not using them properly, can add to antibiotic resistance. This happens when bacteria change and become able ... survive and re-infect you. Do not save antibiotics for later or use someone else's prescription. Centers for Disease Control and Prevention

  2. Food and human gut as reservoirs of transferable antibiotic resistance encoding genes

    PubMed Central

    Rolain, Jean-Marc

    2013-01-01

    The increase and spread of antibiotic resistance (AR) over the past decade in human pathogens has become a worldwide health concern. Recent genomic and metagenomic studies in humans, animals, in food and in the environment have led to the discovery of a huge reservoir of AR genes called the resistome that could be mobilized and transferred from these sources to human pathogens. AR is a natural phenomenon developed by bacteria to protect antibiotic-producing bacteria from their own products and also to increase their survival in highly competitive microbial environments. Although antibiotics are used extensively in humans and animals, there is also considerable usage of antibiotics in agriculture, especially in animal feeds and aquaculture. The aim of this review is to give an overview of the sources of AR and the use of antibiotics in these reservoirs as selectors for emergence of AR bacteria in humans via the food chain. PMID:23805136

  3. Limited Dissemination of Extended-Spectrum β-Lactamase– and Plasmid-Encoded AmpC–Producing Escherichia coli from Food and Farm Animals, Sweden

    PubMed Central

    Ny, Sofia; Egervärn, Maria; Bergström, Jakob; Rosengren, Åsa; Englund, Stina; Löfmark, Sonja; Byfors, Sara

    2016-01-01

    Extended-spectrum β-lactamase (ESBL)– and plasmid-encoded ampC (pAmpC)–producing Enterobacteriaceae might spread from farm animals to humans through food. However, most studies have been limited in number of isolates tested and areas studied. We examined genetic relatedness of 716 isolates from 4,854 samples collected from humans, farm animals, and foods in Sweden to determine whether foods and farm animals might act as reservoirs and dissemination routes for ESBL/pAmpC-producing Escherichia coli. Results showed that clonal spread to humans appears unlikely. However, we found limited dissemination of genes encoding ESBL/pAmpC and plasmids carrying these genes from foods and farm animals to healthy humans and patients. Poultry and chicken meat might be a reservoir and dissemination route to humans. Although we found no evidence of clonal spread of ESBL/pAmpC-producing E. coli from farm animals or foods to humans, ESBL/pAmpC-producing E. coli with identical genes and plasmids were present in farm animals, foods, and humans. PMID:26982890

  4. X-ray crystal structure of the passenger domain of plasmid encoded toxin(Pet), an autotransporter enterotoxin from enteroaggregative Escherichia coli (EAEC)

    SciTech Connect

    Domingo Meza-Aguilar, J.; Fromme, Petra; Torres-Larios, Alfredo; Mendoza-Hernández, Guillermo; Hernandez-Chiñas, Ulises; Arreguin-Espinosa de los Monteros, Roberto A.; and others

    2014-03-07

    Highlights: • X-ray crystal structure of the passenger domain of Plasmid encoded toxin at 2.3 Å. • Structural differences between Pet passenger domain and EspP protein are described. • High flexibility of the C-terminal beta helix is structurally assigned. - Abstract: Autotransporters (ATs) represent a superfamily of proteins produced by a variety of pathogenic bacteria, which include the pathogenic groups of Escherichia coli (E. coli) associated with gastrointestinal and urinary tract infections. We present the first X-ray structure of the passenger domain from the Plasmid-encoded toxin (Pet) a 100 kDa protein at 2.3 Å resolution which is a cause of acute diarrhea in both developing and industrialized countries. Pet is a cytoskeleton-altering toxin that induces loss of actin stress fibers. While Pet (pdb code: 4OM9) shows only a sequence identity of 50% compared to the closest related protein sequence, extracellular serine protease plasmid (EspP) the structural features of both proteins are conserved. A closer structural look reveals that Pet contains a β-pleaded sheet at the sequence region of residues 181–190, the corresponding structural domain in EspP consists of a coiled loop. Secondary, the Pet passenger domain features a more pronounced beta sheet between residues 135 and 143 compared to the structure of EspP.

  5. Single molecule sequencing to track plasmid diversity of hospital-associated carbapenemase-producing Enterobacteriaceae

    PubMed Central

    Conlan, Sean; Thomas, Pamela J.; Deming, Clayton; Park, Morgan; Lau, Anna F.; Dekker, John P.; Snitkin, Evan S.; Clark, Tyson A.; Luong, Khai; Song, Yi; Tsai, Yu-Chih; Boitano, Matthew; Gupta, Jyoti; Brooks, Shelise Y.; Schmidt, Brian; Young, Alice C.; Thomas, James W.; Bouffard, Gerard G.; Blakesley, Robert W.; Mullikin, James C.; Korlach, Jonas; Henderson, David K.; Frank, Karen M.; Palmore, Tara N.; Segre, Julia A.

    2014-01-01

    Public health officials have raised concerns that plasmid transfer between Enterobacteriaceae species may spread resistance to carbapenems, an antibiotic class of last resort, thereby rendering common healthcare-associated infections nearly impossible to treat. We performed comprehensive surveillance and genomic sequencing to identify carbapenem-resistant Enterobacteriaceae in the NIH Clinical Center patient population and hospital environment in order to to articulate the diversity of carbapenemase-encoding plasmids and survey the mobility of and assess the mobility of these plasmids between bacterial species. We isolated a repertoire of carbapenemase-encoding Enterobacteriaceae, including multiple strains of Klebsiella pneumoniae, Klebsiella oxytoca, Escherichia coli, Enterobacter cloacae, Citrobacter freundii, and Pantoea species. Long-read genome sequencing with full end-to-end assembly revealed that these organisms carry the carbapenem-resistance genes on a wide array of plasmids. Klebsiella pneumoniae and Enterobacter cloacae isolated simultaneously from a single patient harbored two different carbapenemase-encoding plasmids, overriding the epidemiological scenario of plasmid transfer between organisms within this patient. We did, however, find evidence supporting horizontal transfer of carbapenemase-encoding plasmids between Klebsiella pneumoniae, Enterobacter cloacae and Citrobacter freundii in the hospital environment. Our comprehensive sequence data, with full plasmid identification, challenges assumptions about horizontal gene transfer events within patients and identified wider possible connections between patients and the hospital environment. In addition, we identified a new carbapenemase-encoding plasmid of potentially high clinical impact carried by Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae and Pantoea species, from unrelated patients and the hospital environment. PMID:25232178

  6. The gene therapy of collagen-induced arthritis in rats by intramuscular administration of the plasmid encoding TNF-binding domain of variola virus CrmB protein.

    PubMed

    Shchelkunov, S N; Taranov, O S; Tregubchak, T V; Maksyutov, R A; Silkov, A N; Nesterov, A E; Sennikov, S V

    2016-07-01

    Wistar rats with collagen-induced arthritis were intramuscularly injected with the recombinant plasmid pcDNA/sTNF-BD encoding the sequence of the TNF-binding protein domain of variola virus CrmB protein (VARV sTNF-BD) or the pcDNA3.1 vector. Quantitative analysis showed that the histopathological changes in the hind-limb joints of rats were most severe in the animals injected with pcDNA3.1 and much less severe in the group of rats injected with pcDNA/sTNF-BD, which indicates that gene therapy of rheumatoid arthritis is promising in the case of local administration of plasmids governing the synthesis of VARV immunomodulatory proteins. PMID:27599513

  7. Immunization with plasmid DNA encoding hepatitis C virus envelope E2 antigenic domains induces antibodies whose immune reactivity is linked to the injection mode.

    PubMed Central

    Nakano, I; Maertens, G; Major, M E; Vitvitski, L; Dubuisson, J; Fournillier, A; De Martynoff, G; Trepo, C; Inchauspe, G

    1997-01-01

    Plasmids expressing different domains of the hepatis C virus (HCV) envelope E2 glycoprotein from a genotype 1a isolate were constructed to compare the immunogenic potential of E2 in nucleic acid-based immunizations. One plasmid, pCIE2t, expressed a C-terminally truncated form of E2, while others, pS2.SE2A to pS2.SE2E, encoded the adjacent 60-amino-acid (aa) sequences of E2 (inserts A to E) expressed as a fusion with the hepatitis B virus surface antigen. BALB/c mice were given injections of the plasmids intramuscularly (i.m.) or intraepidermally (i.e.) via a gene gun (biolistic introduction), and induced humoral immune responses were evaluated. The i.e. injections resulted in higher seroconversion rates and antibody titers, up to 100-fold, than did the i.m. injections (P = 0.01 to 0.04). Three restricted immunogenic domains, E2A (aa 384 to 443), E2C (aa 504 to 555), and E2E (aa 609 to 674), that yielded antibody titers ranging from 1:59 to > 1:43,700 could be identified. Subtype 1a- and 1b-derived E2 antigens and synthetic peptides were used in Western blot and enzyme-linked immunosorbent assay analyses, which revealed that the cross-reactivity of the plasmid-induced antibodies was linked both to the type of antigen expressed and to the injection mode. Induced anti-E2 antibodies could immunoprecipitate noncovalent E1E2 complexes believed to exist on the surface of HCV virions. This study allowed us to identify restricted immunogenic domains within E2 and demonstrated that different routes of injection of HCV E2 plasmids can result in quantitatively and qualitatively different humoral immune responses. PMID:9261444

  8. A Pilot Study Evaluating Combinatorial and Simultaneous Delivery of Polyethylenimine-Plasmid DNA Complexes Encoding for VEGF and PDGF for Bone Regeneration in Calvarial Bone Defects

    PubMed Central

    D'Mello, Sheetal; Elangovan, Satheesh; Hong, Liu; Ross, Ryan D.; Sumner, D. Rick; Salem, Aliasger K.

    2016-01-01

    Gene therapy is a promising strategy to deliver growth factors of interest locally in a sustained fashion and has the potential to overcome barriers to using recombinant protein therapy such as sustainability and cost. Recent studies demonstrate the safety and efficacy of non-viral delivery of plasmid DNA (pDNA) encoding a single growth factor to enhance bone healing. This pilot study is aimed at testing a non-viral gene delivery system that can deliver two different plasmids encoding two different growth factors. Polyethylenimine (PEI), a cationic polymer, was utilized as a gene delivery vector and collagen scaffold was used as a carrier to deliver the PEI-pDNA complexes encoding platelet derived growth factor B (PDGF-B) and/or vascular endothelial growth factor (VEGF). Calvarial defects in rats were implanted with scaffolds containing PEI-pPDGF-B complexes, PEI-pVEGF complexes or containing both PEI-pPDGF-B and PEI-pVEGF complexes in a 1:1 ratio of plasmids. The results indicated that bone regeneration as measured using micro-CT and histological assessments was inferior in groups treated with PEI-(pPDGF-B + pVEGF) complexes, compared to defects treated with PEI-pPDGF-B complexes. This pilot study that explores the feasibility and efficacy of combinatorial non-viral gene delivery system for bone regeneration appears to provide a rationale for investigation of sequential delivery of growth factors at specific time points during the healing phases and this will be explored further in future studies. PMID:25934975

  9. Removal of antibiotic resistance gene-carrying plasmids from Lactobacillus reuteri ATCC 55730 and characterization of the resulting daughter strain, L. reuteri DSM 17938.

    PubMed

    Rosander, Anna; Connolly, Eamonn; Roos, Stefan

    2008-10-01

    The spread of antibiotic resistance in pathogens is primarily a consequence of the indiscriminate use of antibiotics, but there is concern that food-borne lactic acid bacteria may act as reservoirs of antibiotic resistance genes when distributed in large doses to the gastrointestinal tract. Lactobacillus reuteri ATCC 55730 is a commercially available probiotic strain which has been found to harbor potentially transferable resistance genes. The aims of this study were to define the location and nature of beta-lactam, tetracycline, and lincosamide resistance determinants and, if they were found to be acquired, attempt to remove them from the strain by methods that do not genetically modify the organism before subsequently testing whether the probiotic characteristics were retained. No known beta-lactam resistance genes was found, but penicillin-binding proteins from ATCC 55730, two additional resistant strains, and three sensitive strains of L. reuteri were sequenced and comparatively analyzed. The beta-lactam resistance in ATCC 55730 is probably caused by a number of alterations in the corresponding genes and can be regarded as not transferable. The strain was found to harbor two plasmids carrying tet(W) tetracycline and lnu(A) lincosamide resistance genes, respectively. A new daughter strain, L. reuteri DSM 17938, was derived from ATCC 55730 by removal of the two plasmids, and it was shown to have lost the resistances associated with them. Direct comparison of the parent and daughter strains for a series of in vitro properties and in a human clinical trial confirmed the retained probiotic properties of the daughter strain. PMID:18689509

  10. Antiseptic and antibiotic resistance plasmid in Staphylococcus aureus that possesses ability to confer chlorhexidine and acrinol resistance.

    PubMed Central

    Yamamoto, T; Tamura, Y; Yokota, T

    1988-01-01

    Plasmid pSAJ1 from a methicillin- and gentamicin-resistant strain of Staphylococcus aureus had am molecular size of 50 kilobases and conferred resistance not only to kanamycin, gentamicin, tobramycin, amikacin, benzalkonium chloride, acriflavin, and ethidium bromide but also to chlorhexidine. In addition, the cloned antiseptic resistance gene(s) manifested acrinol resistance in Escherichia coli. Images PMID:3415214

  11. Attributes of carbapenemase encoding conjugative plasmid pNDM-SAL from an extensively drug-resistant Salmonella enterica Serovar Senftenberg

    PubMed Central

    Sarkar, Anirban; Pazhani, Gururaja P.; Chowdhury, Goutam; Ghosh, Amit; Ramamurthy, Thandavarayan

    2015-01-01

    A carbapenem resistant Salmonella enterica serovar Senftenberg isolate BCH 2406 was isolated from a diarrheal child attending an outpatient unit of B.C. Roy Hospital in Kolkata, India. This isolate was positive for the blaNDM-1 in the PCR assay, which was confirmed by amplicon sequencing. Except for tetracycline, this isolate was resistant to all the tested antimicrobials. The blaNDM-1 was found to be located on a 146.13-kb mega plasmid pNDM-SAL, which could be conjugally transferred into Escherichia coli and other enteric pathogens such as Vibrio cholerae O1 Ogawa and Shigella flexneri 2a. However, the expression of β-lactam resistance is not the same in different bacteria. The whole genome sequence of pNDM-SAL was determined and compared with other pNDM plasmids available in public domain. This plasmid is an IncA/C incompatibility type composed of 155 predicted coding sequences and shares homology with plasmids of E. coli pNDM-1_Dok01, Klebsiella pNDM-KN, and Citrobacter pNDM-CIT. In pNDM-SAL, gene cluster containing blaNDM-1 was located between IS26 and IS4321 elements. Between the IS26 element and the blaNDM-1, a truncated ISAba125 insertion sequence was identified. Downstream of the blaNDM-1, other genes, such as bleMBL, trpF, tat, and an ISCR1 element with class 1 integron containing aac(6′)-Ib were detected. Another β-lactacamase gene, blaCMY -4 was found to be inserted in IS1 element within the type IV conjugative transfer loci of the plasmid. This gene cluster had blc and sugE downstream of the blaCMY -4. From our findings, it appears that the strain S. Senftenberg could have acquired the NDM plasmid from the other members of Enterobacteriaceae. Transfer of NDM plasmids poses a danger in the management of infectious diseases. PMID:26441902

  12. Construction of a new shuttle vector and its use for cloning and expression of two plasmid-encoded bacteriocins from Lactobacillus paracasei subsp. paracasei BGSJ2-8.

    PubMed

    Kojic, Milan; Lozo, Jelena; Jovcic, Branko; Strahinic, Ivana; Fira, Djordje; Topisirovic, Ljubisa

    2010-06-15

    A new shuttle-cloning vector, pA13, was constructed and successfully introduced into Escherichia coli, Lactobacillus and Lactococcus strains. It showed high segregational and structural stability in all three hosts. The natural plasmid pSJ2-8 from L. paracasei subsp. paracasei BGSJ2-8 was cloned into pA13 using BamHI to obtain the construct, pB5. Sequencing and in silico analysis of pB5 revealed fifteen open reading frames (ORF). Plasmid pSJ2-8 harbours genes encoding the production of two bacteriocins, BacSJ and acidocin 8912. Combined N-terminal amino acid sequencing of BacSJ in combination with DNA sequencing of the bacSJ2-8 gene enabled determination of the primary structure of bacteriocin BacSJ. The bacSJ2-8 gene encodes 68-amino-acid peptide with a double-glycine leader peptide consisting of 18 amino acids, followed by the orf2 (bacSJ2-8i) which encodes the immunity protein of BacSJ. The production and functional expression of BacSJ in homologous and heterologous hosts suggest that bacSJ2-8 and bacSJ2-8i together with the genes encoding the ABC transporter and accessory protein are the minimal requirements for production of BacSJ. Biochemical and genetic analyses showed that BacSJ belongs to class II bacteriocins. PMID:20439125

  13. Antibiotic resistance and OXA-type carbapenemases-encoding genes in airborne Acinetobacter baumannii isolated from burn wards.

    PubMed

    Gao, Jing; Zhao, Xiaonan; Bao, Ying; Ma, Ruihua; Zhou, Yufa; Li, Xinxian; Chai, Tongjie; Cai, Yumei

    2014-03-01

    The study was conducted to investigate drug resistance, OXA-type carbapenemases-encoding genes and genetic diversity in airborne Acinetobacter baumannii (A. baumannii) in burn wards. Airborne A. baumannii were collected in burn wards and their corridors using Andersen 6-stage air sampler from January to June 2011. The isolates susceptibility to 13 commonly used antibiotics was examined according to the CLSI guidelines; OXA-type carbapenemases-encoding genes and molecular diversity of isolates were analyzed, respectively. A total of 16 non-repetitive A. baumannii were isolated, with 10 strains having a resistance rate of greater than 50% against the 13 antibiotics. The resistance rate against ceftriaxone, cyclophosvnamide, ciprofloxacin, and imipenem was 93.75% (15/16), but no isolate observed to be resistant to cefoperazone/sulbactam. Resistance gene analyses showed that all 16 isolates carried OXA-51, and 15 isolates carried OXA-23 except No.15; but OXA-24 and OXA-58 resistance genes not detected. The isolates were classified into 13 genotypes (A-M) according to repetitive extragenic palindromic sequence PCR (REP-PCR) results and only six isolates had a homology ≥90%. In conclusion, airborne A. baumannii in the burn wards had multidrug resistance and complex molecular diversity, and OXA-23 and OXA-51 were dominant mechanisms for resisting carbapenems. PMID:23886986

  14. A specific protease encoded by the conjugative DNA transfer systems of IncP and Ti plasmids is essential for pilus synthesis.

    PubMed Central

    Haase, J; Lanka, E

    1997-01-01

    TraF, an essential component of the conjugative transfer apparatus of the broad-host-range plasmid RP4 (IncP), which is located at the periplasmic side of the cytoplasmic membrane, encodes a specific protease. The traF gene products of IncP and Ti plasmids show extensive similarities to prokaryotic and eukaryotic signal peptidases. Mutational analysis of RP4 TraF revealed that the mechanism of the proteolytic cleavage reaction resembles that of signal and LexA-like peptidases. Among the RP4 transfer functions, the product of the Tra2 gene, trbC, was identified as a target for the TraF protease activity. TrbC is homologous to VirB2 of Ti plasmids and thought to encode the RP4 prepilin. The maturation of TrbC involves three processing reactions: (i) the removal of the N-terminal signal peptide by Escherichia coli signal peptidase I (Lep), (ii) a proteolytic cleavage at the C terminus by an as yet unidentified host cell enzyme, and (iii) C-terminal processing by TraF. The third reaction of the maturation process is critical for conjugative transfer, pilus synthesis, and the propagation of the donor-specific bacteriophage PRD1. Thus, cleavage of TrbC by TraF appears to be one of the initial steps in a cascade of processes involved in export of the RP4 pilus subunit and pilus assembly mediated by the RP4 mating pair formation function. PMID:9294428

  15. A 55-kilodalton antigen encoded by a gene on a Borrelia burgdorferi 49-kilobase plasmid is recognized by antibodies in sera from patients with Lyme disease.

    PubMed Central

    Feng, S; Das, S; Lam, T; Flavell, R A; Fikrig, E

    1995-01-01

    We have identified a 55-kDa antigen encoded by a gene on a 49-kb plasmid of Borrelia burgdorferi. The screening of a B. burgdorferi DNA expression library (N40 strain) with rabbit anti-B. burgdorferi serum and then with serum from a patient with Lyme disease arthritis revealed a clone that synthesized an antigen that was reactive with both sera. DNA sequence analysis identified an operon with two genes, s1 and s2 (1,254 and 780 nucleotides), that expressed antigens with the predicted molecular masses of 55 and 29 kDa, respectively. Pulsed-field gel electrophoresis showed that the s1-s2 operon was located on the 49-kb plasmid. Recombinant S1 was synthesized as a glutathione S-transferase fusion protein in Escherichia coli. Antibodies to recombinant S1 bound to a 55-kDa protein in lysates of B. burgdorferi, indicating that cultured spirochetes synthesized S1. Thirty-one of 100 Lyme disease patients had immunoglobulin G (IgG) and/or IgM antibodies to S1. IgG antibodies to S1 were detected by enzyme-linked immunosorbent assay and immunoblots in the sera of 21 (21%) of 100 patients with Lyme disease; 11 (27.5%) of the S1-positive samples were from patients (40) with early-stage Lyme disease, and 10 (16.7%) were from patients (60) with late-stage Lyme disease. Fifteen (38.5%) of 40 serum samples from patients with early-stage Lyme disease had IgM antibodies to S1. These data suggest that the S1 antigen encoded by a gene on the 49-kb plasmid is recognized serologically by a subset of patients with early- or late-stage Lyme disease. PMID:7642278

  16. The IncP plasmid-encoded cell envelope-associated DNA transfer complex increases cell permeability.

    PubMed Central

    Daugelavicius, R; Bamford, J K; Grahn, A M; Lanka, E; Bamford, D H

    1997-01-01

    IncP-type plasmids are broad-host-range conjugative plasmids. DNA translocation requires DNA transfer-replication functions and additional factors required for mating pair formation (Mpf). The Mpf system is located in the cell membranes and is responsible for DNA transport from the donor to the recipient. The Mpf complex acts as a receptor for IncP-specific phages such as PRD1. In this investigation, we quantify the Mpf complexes on the cell surface by a phage receptor saturation technique. Electrochemical measurements are used to show that the Mpf complex increases cell envelope permeability to lipophilic compounds and ATP. In addition it reduces the ability of the cells to accumulate K+. However, the Mpf complex does not dissipate the membrane voltage. The Mpf complex is rapidly disassembled when intracellular ATP concentration is decreased, as measured by a PRD1 adsorption assay. PMID:9260964

  17. Plasmid-Mediated Quinolone Resistance Genes and Antibiotic Residues in Wastewater and Soil Adjacent to Swine Feedlots: Potential Transfer to Agricultural Lands

    PubMed Central

    Li, Juan; Wang, Thanh; Shao, Bing; Shen, Jianzhong; Wang, Shaochen

    2012-01-01

    Background: Inappropriate use of antibiotics in swine feed could cause accelerated emergence of antibiotic resistance genes, and agricultural application of swine waste could spread antibiotic resistance genes to the surrounding environment. Objectives: We investigated the distribution of plasmid-mediated quinolone resistance (PMQR) genes from swine feedlots and their surrounding environment. Methods: We used a culture-independent method to identify PMQR genes and estimate their levels in wastewater from seven swine feedlot operations and corresponding wastewater-irrigated farm fields. Concentrations of (fluoro)quinolones in wastewater and soil samples were determined by ultra-performance liquid chromatography–electrospray tandem mass spectrometry. Results: The predominant PMQR genes in both the wastewater and soil samples were qnrD, qepA, and oqxB, whereas qnrS and oqxA were present only in wastewater samples. Absolute concentrations of all PMQR genes combined ranged from 1.66 × 107 to 4.06 × 108 copies/mL in wastewater and 4.06 × 106 to 9.52 × 107 copies/g in soil. Concentrations of (fluoro)quinolones ranged from 4.57 to 321 ng/mL in wastewater and below detection limit to 23.4 ng/g in soil. Significant correlations were found between the relative abundance of PMQR genes and (fluoro)quinolone concentrations (r = 0.71, p = 0.005) and the relative abundance of PMQR genes in paired wastewater and agricultural soil samples (r = 0.91, p = 0.005). Conclusions: Swine feedlot wastewater may be a source of PMQR genes that could facilitate the spread of antibiotic resistance. To our knowledge, this is the first study to examine the occurrence of PMQR genes in animal husbandry environments using a culture-independent method. PMID:22569244

  18. Genomic Comparison of Escherichia coli O104:H4 Isolates from 2009 and 2011 Reveals Plasmid, and Prophage Heterogeneity, Including Shiga Toxin Encoding Phage stx2

    PubMed Central

    Ahmed, Sanaa A.; Awosika, Joy; Baldwin, Carson; Bishop-Lilly, Kimberly A.; Biswas, Biswajit; Broomall, Stacey; Chain, Patrick S. G.; Chertkov, Olga; Chokoshvili, Otar; Coyne, Susan; Davenport, Karen; Detter, J. Chris; Dorman, William; Erkkila, Tracy H.; Folster, Jason P.; Frey, Kenneth G.; George, Matroner; Gleasner, Cheryl; Henry, Matthew; Hill, Karen K.; Hubbard, Kyle; Insalaco, Joseph; Johnson, Shannon; Kitzmiller, Aaron; Krepps, Michael; Lo, Chien-Chi; Luu, Truong; McNew, Lauren A.; Minogue, Timothy; Munk, Christine A.; Osborne, Brian; Patel, Mohit; Reitenga, Krista G.; Rosenzweig, C. Nicole; Shea, April; Shen, Xiaohong; Strockbine, Nancy; Tarr, Cheryl; Teshima, Hazuki; van Gieson, Eric; Verratti, Kathleen; Wolcott, Mark; Xie, Gary

    2012-01-01

    In May of 2011, an enteroaggregative Escherichia coli O104:H4 strain that had acquired a Shiga toxin 2-converting phage caused a large outbreak of bloody diarrhea in Europe which was notable for its high prevalence of hemolytic uremic syndrome cases. Several studies have described the genomic inventory and phylogenies of strains associated with the outbreak and a collection of historical E. coli O104:H4 isolates using draft genome assemblies. We present the complete, closed genome sequences of an isolate from the 2011 outbreak (2011C–3493) and two isolates from cases of bloody diarrhea that occurred in the Republic of Georgia in 2009 (2009EL–2050 and 2009EL–2071). Comparative genome analysis indicates that, while the Georgian strains are the nearest neighbors to the 2011 outbreak isolates sequenced to date, structural and nucleotide-level differences are evident in the Stx2 phage genomes, the mer/tet antibiotic resistance island, and in the prophage and plasmid profiles of the strains, including a previously undescribed plasmid with homology to the pMT virulence plasmid of Yersinia pestis. In addition, multiphenotype analysis showed that 2009EL–2071 possessed higher resistance to polymyxin and membrane-disrupting agents. Finally, we show evidence by electron microscopy of the presence of a common phage morphotype among the European and Georgian strains and a second phage morphotype among the Georgian strains. The presence of at least two stx2 phage genotypes in host genetic backgrounds that may derive from a recent common ancestor of the 2011 outbreak isolates indicates that the emergence of stx2 phage-containing E. coli O104:H4 strains probably occurred more than once, or that the current outbreak isolates may be the result of a recent transfer of a new stx2 phage element into a pre-existing stx2-positive genetic background. PMID:23133618

  19. Flexibility of KorA, a plasmid-encoded, global transcription regulator, in the presence and the absence of its operator

    PubMed Central

    Rajasekar, Karthik V.; Lovering, Andrew L.; Dancea, Felician; Scott, David J.; Harris, Sarah A.; Bingle, Lewis E.H.; Roessle, Manfred; Thomas, Christopher M.; Hyde, Eva I.; White, Scott A.

    2016-01-01

    The IncP (Incompatibility group P) plasmids are important carriers in the spread of antibiotic resistance across Gram-negative bacteria. Gene expression in the IncP-1 plasmids is stringently controlled by a network of four global repressors, KorA, KorB, TrbA and KorC interacting cooperatively. Intriguingly, KorA and KorB can act as co-repressors at varying distances between their operators, even when they are moved to be on opposite sides of the DNA. KorA is a homodimer with the 101-amino acid subunits, folding into an N-terminal DNA-binding domain and a C-terminal dimerization domain. In this study, we have determined the structures of the free KorA repressor and two complexes each bound to a 20-bp palindromic DNA duplex containing its consensus operator sequence. Using a combination of X-ray crystallography, nuclear magnetic resonance spectroscopy, SAXS and molecular dynamics calculations, we show that the linker between the two domains is very flexible and the protein remains highly mobile in the presence of DNA. This flexibility allows the DNA-binding domains of the dimer to straddle the operator DNA on binding and is likely to be important in cooperative binding to KorB. Unexpectedly, the C-terminal domain of KorA is structurally similar to the dimerization domain of the tumour suppressor p53. PMID:27016739

  20. Flexibility of KorA, a plasmid-encoded, global transcription regulator, in the presence and the absence of its operator.

    PubMed

    Rajasekar, Karthik V; Lovering, Andrew L; Dancea, Felician; Scott, David J; Harris, Sarah A; Bingle, Lewis E H; Roessle, Manfred; Thomas, Christopher M; Hyde, Eva I; White, Scott A

    2016-06-01

    The IncP (Incompatibility group P) plasmids are important carriers in the spread of antibiotic resistance across Gram-negative bacteria. Gene expression in the IncP-1 plasmids is stringently controlled by a network of four global repressors, KorA, KorB, TrbA and KorC interacting cooperatively. Intriguingly, KorA and KorB can act as co-repressors at varying distances between their operators, even when they are moved to be on opposite sides of the DNA. KorA is a homodimer with the 101-amino acid subunits, folding into an N-terminal DNA-binding domain and a C-terminal dimerization domain. In this study, we have determined the structures of the free KorA repressor and two complexes each bound to a 20-bp palindromic DNA duplex containing its consensus operator sequence. Using a combination of X-ray crystallography, nuclear magnetic resonance spectroscopy, SAXS and molecular dynamics calculations, we show that the linker between the two domains is very flexible and the protein remains highly mobile in the presence of DNA. This flexibility allows the DNA-binding domains of the dimer to straddle the operator DNA on binding and is likely to be important in cooperative binding to KorB. Unexpectedly, the C-terminal domain of KorA is structurally similar to the dimerization domain of the tumour suppressor p53. PMID:27016739

  1. Cloning, nucleotide sequence, and expression of the plasmid-encoded genes for the two-component 2-halobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS.

    PubMed

    Haak, B; Fetzner, S; Lingens, F

    1995-02-01

    The two-component nonheme iron dioxygenase system 2-halobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS catalyzes the double hydroxylation of 2-halobenzoates with concomitant release of halogenide and carbon dioxide, yielding catechol. The gene cluster encoding this enzyme, cbdABC, was localized on a 70-kbp conjugative plasmid designated pBAH1. The nucleotide sequences of cbdABC and flanking regions were determined. In the deduced amino acid sequence of the large subunit of the terminal oxygenase component (CbdA), a conserved motif proposed to bind the Rieske-type [2Fe-2S] cluster was identified. In the NADH:acceptor reductase component (CbdC), a putative binding site for a chloroplast-type [2Fe-2S] center and possible flavin adenine dinucleotide- and NAD-binding domains were identified. The cbdABC sequences show significant homology to benABC, which encode benzoate 1,2-dioxygenase from Acinetobacter calcoaceticus (52% identity at the deduced amino acid level), and to xylXYZ, which encode toluate 1,2-dioxygenase from Pseudomonas putida mt-2 (51% amino acid identity). Recombinant pkT231 harboring cbdABC and flanking regions complemented a plasmid-free mutant of wild-type P. cepacia 2CBS for growth on 2-chlorobenzoate, and it also allowed recombinant P. putida KT2440 to metabolize 2-chlorobenzoate. Functional NADH:acceptor reductase and oxygenase components of 2-halobenzoate 1,2-dioxygenase were enriched from recombinant Pseudomonas clones. PMID:7530709

  2. Cloning, nucleotide sequence, and expression of the plasmid-encoded genes for the two-component 2-halobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS.

    PubMed Central

    Haak, B; Fetzner, S; Lingens, F

    1995-01-01

    The two-component nonheme iron dioxygenase system 2-halobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS catalyzes the double hydroxylation of 2-halobenzoates with concomitant release of halogenide and carbon dioxide, yielding catechol. The gene cluster encoding this enzyme, cbdABC, was localized on a 70-kbp conjugative plasmid designated pBAH1. The nucleotide sequences of cbdABC and flanking regions were determined. In the deduced amino acid sequence of the large subunit of the terminal oxygenase component (CbdA), a conserved motif proposed to bind the Rieske-type [2Fe-2S] cluster was identified. In the NADH:acceptor reductase component (CbdC), a putative binding site for a chloroplast-type [2Fe-2S] center and possible flavin adenine dinucleotide- and NAD-binding domains were identified. The cbdABC sequences show significant homology to benABC, which encode benzoate 1,2-dioxygenase from Acinetobacter calcoaceticus (52% identity at the deduced amino acid level), and to xylXYZ, which encode toluate 1,2-dioxygenase from Pseudomonas putida mt-2 (51% amino acid identity). Recombinant pkT231 harboring cbdABC and flanking regions complemented a plasmid-free mutant of wild-type P. cepacia 2CBS for growth on 2-chlorobenzoate, and it also allowed recombinant P. putida KT2440 to metabolize 2-chlorobenzoate. Functional NADH:acceptor reductase and oxygenase components of 2-halobenzoate 1,2-dioxygenase were enriched from recombinant Pseudomonas clones. PMID:7530709

  3. Synergistic and Additive Effects of Chromosomal and Plasmid-Encoded Hemolysins Contribute to Hemolysis and Virulence in Photobacterium damselae subsp. damselae

    PubMed Central

    Rivas, Amable J.; Balado, Miguel; Lemos, Manuel L.

    2013-01-01

    Photobacterium damselae subsp. damselae causes infections and fatal disease in marine animals and in humans. Highly hemolytic strains produce damselysin (Dly) and plasmid-encoded HlyA (HlyApl). These hemolysins are encoded by plasmid pPHDD1 and contribute to hemolysis and virulence for fish and mice. In this study, we report that all the hemolytic strains produce a hitherto uncharacterized chromosome-encoded HlyA (HlyAch). Hemolysis was completely abolished in a single hlyAch mutant of a plasmidless strain and in a dly hlyApl hlyAch triple mutant. We found that Dly, HlyApl, and HlyAch are needed for full hemolytic values in strains harboring pPHDD1, and these values are the result of the additive effects between HlyApl and HlyAch, on the one hand, and of the synergistic effect of Dly with HlyApl and HlyAch, on the other hand. Interestingly, Dly-producing strains produced synergistic effects with strains lacking Dly production but secreting HlyA, constituting a case of the CAMP (Christie, Atkins, and Munch-Petersen) reaction. Environmental factors such as iron starvation and salt concentration were found to regulate the expression of the three hemolysins. We found that the contributions, in terms of the individual and combined effects, of the three hemolysins to hemolysis and virulence varied depending on the animal species tested. While Dly and HlyApl were found to be main contributors in the virulence for mice, we observed that the contribution of hemolysins to virulence for fish was mainly based on the synergistic effects between Dly and either of the two HlyA hemolysins rather than on their individual effects. PMID:23798530

  4. Characterization of the tyrosine recombinase MrpA encoded by the Streptomyces coelicolor A3(2) plasmid SCP2*.

    PubMed

    Warth, Lydia; Haug, Iris; Altenbuchner, Josef

    2011-03-01

    MrpA is the multimer resolution protein of the Streptomyces coelicolor A3(2) plasmid SCP2*. Previously, MrpA was found to significantly increase the stability of SCP2*-derived plasmids in Streptomyces lividans. The present report gives a functional characterization of MrpA. A sequence alignment revealed that MrpA shares highly conserved residues with members of the tyrosine recombinase family. After overexpression and Strep-tag purification, a DNase I footprint analysis and a gel mobility shift assay allowed for the identification of the 36-bp MrpA binding site mrpS. The mrpS site shows the configuration typical for tyrosine recombinases and contains two MrpA binding sites. The activity of MrpA was explored in vivo in E. coli cells and in vitro using purified MrpA. Depending on the position and orientation of the mrpS sites, three activities were detected: integration, resolution, and inversion. No accessory sites or proteins were required. Substitution of the conserved tyrosine (Y354F) by site-directed mutagenesis resulted in a complete loss of recombination activity but it still allowed the binding of MrpA to mrpS. The results define MrpA as a new site-specific tyrosine recombinase that acts with mrpS. In addition, we suggest that Y354 provides the nucleophile for DNA cleavage during recombination. PMID:21165603

  5. Photobacterium damselae subsp. damselae Major Virulence Factors Dly, Plasmid-Encoded HlyA, and Chromosome-Encoded HlyA Are Secreted via the Type II Secretion System

    PubMed Central

    Rivas, Amable J.; Vences, Ana; Husmann, Matthias; Lemos, Manuel L.

    2015-01-01

    Photobacterium damselae subsp. damselae is a marine bacterium that causes septicemia in marine animals and in humans. Previously, we had determined a major role of pPHDD1 plasmid-encoded Dly (damselysin) and HlyA (HlyApl) and the chromosome-encoded HlyA (HlyAch) hemolysins in virulence. However, the mechanisms by which these toxins are secreted remain unknown. In this study, we found that a mini-Tn10 transposon mutant in a plasmidless strain showing an impaired hemolytic phenotype contained an insertion in epsL, a component of a type II secretion system (T2SS). Reconstruction of the mutant by allelic exchange confirmed the specific involvement of epsL in HlyAch secretion. In addition, mutation of epsL in a pPHDD1-harboring strain caused an almost complete abolition of hemolytic activity against sheep erythrocytes, indicating that epsL plays a major role in secretion of the plasmid-encoded HlyApl and Dly. This was further demonstrated by analysis of different combinations of hemolysin gene mutants and by strain-strain complementation assays. We also found that mutation of the putative prepilin peptidase gene pilD severely affected hemolysis, which dropped at levels inferior to those of epsL mutants. Promoter expression analyses suggested that impairment of hemolysin secretion in epsL and pilD mutants might constitute a signal that affects hemolysin and T2SS gene expression at the transcriptional level. In addition, single epsL and pilD mutations caused a drastic decrease in virulence for mice, demonstrating a major role of T2SS and pilD in P. damselae subsp. damselae virulence. PMID:25583529

  6. Antibiotics.

    PubMed

    Hariprasad, Seenu M; Mieler, William F

    2016-01-01

    The Endophthalmitis Vitrectomy Study (EVS) provided ophthalmologists with evidence-based management strategies to deal with endophthalmitis for the first time. However, since the completion of the EVS, numerous unresolved issues remain. The use of oral antibiotics has important implications for the ophthalmologist, particularly in the prophylaxis and/or management of postoperative, posttraumatic, or bleb-associated bacterial endophthalmitis. One can reasonably conclude that significant intraocular penetration of an antibiotic after oral administration may be a property unique to the newer-generation fluoroquinolones. Prophylactic use of mupirocin nasal ointment resulted in significant reduction of conjunctival flora with or without preoperative topical 5% povidone-iodine preparation. Ocular fungal infections have traditionally been very difficult to treat due to limited therapeutic options both systemically and intravitreally. Because of its broad spectrum of coverage, low MIC90 levels for the organisms of concern, good tolerability, and excellent bioavailability, voriconazole through various routes of administration may be useful to the ophthalmologist in the primary treatment of or as an adjunct to the current management of ocular fungal infections. PMID:26501865

  7. The 2microm-plasmid-encoded Rep1 and Rep2 proteins interact with each other and colocalize to the Saccharomyces cerevisiae nucleus.

    PubMed Central

    Ahn, Y T; Wu, X L; Biswal, S; Velmurugan, S; Volkert, F C; Jayaram, M

    1997-01-01

    The efficient partitioning of the 2microm plasmid of Saccharomyces cerevisiae at cell division requires two plasmid-encoded proteins (Rep1p and Rep2p) and a cis-acting locus, REP3 (STB). By using protein hybrids containing fusions of the Rep proteins to green fluorescent protein (GFP), we show here that fluorescence from GFP-Rep1p or GFP-Rep2p is almost exclusively localized in the nucleus in a cir+ strain. Nuclear localization of GFP-Rep1p and GFP-Rep2p, though discernible, is less efficient in a cir(0) host. GFP-Rep2p or GFP-Rep1p is able to promote the stability of a 2microm circle-derived plasmid harboring REP1 or REP2, respectively, in a cir(0) background. Under these conditions, fluorescence from GFP-Rep2p or GFP-Rep1p is concentrated within the nucleus, as is the case in cir+ cells. This characteristic nuclear accumulation is not dependent on the expression of the FLP or RAF1 gene of the 2microm circle. Nuclear colocalization of Rep1p and Rep2p is consistent with the hypothesis that the two proteins directly or indirectly interact to form a functional bipartite or high-order protein complex. Immunoprecipitation experiments as well as baiting assays using GST-Rep hybrid proteins suggest a direct interaction between Rep1p and Rep2p which, in principle, may be modulated by other yeast proteins. Furthermore, these assays provide evidence for Rep1p-Rep1p and Rep2p-Rep2p associations as well. The sum of these interactions may be important in controlling the effective cellular concentration of the Rep1p-Rep2p complex. PMID:9393716

  8. Effects of Three Different Nucleoid-Associated Proteins Encoded on IncP-7 Plasmid pCAR1 on Host Pseudomonas putida KT2440

    PubMed Central

    Suzuki-Minakuchi, Chiho; Hirotani, Ryusuke; Shintani, Masaki; Takeda, Toshiharu; Takahashi, Yurika; Matsui, Kazuhiro; Vasileva, Delyana; Yun, Choong-Soo; Okada, Kazunori; Yamane, Hisakazu

    2015-01-01

    Nucleoid-associated proteins (NAPs), which fold bacterial DNA and influence gene transcription, are considered to be global transcriptional regulators of genes on both plasmids and the host chromosome. Incompatibility P-7 group plasmid pCAR1 carries genes encoding three NAPs: H-NS family protein Pmr, NdpA-like protein Pnd, and HU-like protein Phu. In this study, the effects of single or double disruption of pmr, pnd, and phu were assessed in host Pseudomonas putida KT2440. When pmr and pnd or pmr and phu were simultaneously disrupted, both the segregational stability and the structural stability of pCAR1 were markedly decreased, suggesting that Pmr, Pnd, and Phu act as plasmid-stabilizing factors in addition to their established roles in replication and partition systems. The transfer frequency of pCAR1 was significantly decreased in these double mutants. The segregational and structural instability of pCAR1 in the double mutants was recovered by complementation of pmr, whereas no recovery of transfer deficiency was observed. Comprehensive phenotype comparisons showed that the host metabolism of carbon compounds, which was reduced by pCAR1 carriage, was restored by disruption of the NAP gene(s). Transcriptome analyses of mutants indicated that transcription of genes for energy production, conversion, inorganic ion transport, and metabolism were commonly affected; however, how their products altered the phenotypes of mutants was not clear. The findings of this study indicated that Pmr, Pnd, and Phu act synergistically to affect pCAR1 replication, maintenance, and transfer, as well as to alter the host metabolic phenotype. PMID:25681185

  9. Increased B and T Cell Responses in M. bovis Bacille Calmette-Guérin Vaccinated Pigs Co-Immunized with Plasmid DNA Encoding a Prototype Tuberculosis Antigen

    PubMed Central

    Bruffaerts, Nicolas; Pedersen, Lasse E.; Vandermeulen, Gaëlle; Préat, Véronique; Stockhofe-Zurwieden, Norbert; Huygen, Kris; Romano, Marta

    2015-01-01

    The only tuberculosis vaccine currently available, bacille Calmette-Guérin (BCG) is a poor inducer of CD8+ T cells, which are particularly important for the control of latent tuberculosis and protection against reactivation. As the induction of strong CD8+ T cell responses is a hallmark of DNA vaccines, a combination of BCG with plasmid DNA encoding a prototype TB antigen (Ag85A) was tested. As an alternative animal model, pigs were primed with BCG mixed with empty vector or codon-optimized pAg85A by the intradermal route and boosted with plasmid delivered by intramuscular electroporation. Control pigs received unformulated BCG. The BCG-pAg85A combination stimulated robust and sustained Ag85A specific antibody, lymphoproliferative, IL-6, IL-10 and IFN-γ responses. IgG1/IgG2 antibody isotype ratio reflected the Th1 helper type biased response. T lymphocyte responses against purified protein derivative of tuberculin (PPD) were induced in all (BCG) vaccinated animals, but responses were much stronger in BCG-pAg85A vaccinated pigs. Finally, Ag85A-specific IFN-γ producing CD8+ T cells were detected by intracellular cytokine staining and a synthetic peptide, spanning Ag85A131-150 and encompassing two regions with strong predicted SLA-1*0401/SLA-1*0801 binding affinity, was promiscuously recognized by 6/6 animals vaccinated with the BCG-pAg85A combination. Our study provides a proof of concept in a large mammalian species, for a new Th1 and CD8+ targeting tuberculosis vaccine, based on BCG-plasmid DNA co-administration. PMID:26172261

  10. A Recombinant DNA Plasmid Encoding the sIL-4R-NAP Fusion Protein Suppress Airway Inflammation in an OVA-Induced Mouse Model of Asthma.

    PubMed

    Liu, Xin; Fu, Guo; Ji, Zhenyu; Huang, Xiabing; Ding, Cong; Jiang, Hui; Wang, Xiaolong; Du, Mingxuan; Wang, Ting; Kang, Qiaozhen

    2016-08-01

    Asthma is a chronic inflammatory airway disease. It was prevalently perceived that Th2 cells played the crucial role in asthma pathogenesis, which has been identified as the important target for anti-asthma therapy. The soluble IL-4 receptor (sIL-4R), which is the decoy receptor for Th2 cytokine IL-4, has been reported to be effective in treating asthma in phase I/II clinical trail. To develop more efficacious anti-asthma agent, we attempt to test whether the Helicobacter pylori neutrophil-activating protein (HP-NAP), a novel TLR2 agonist, would enhance the efficacy of sIL-4R in anti-asthma therapy. In our work, we constructed a pcDNA3.1-sIL-4R-NAP plasmid, named PSN, encoding fusion protein of murine sIL-4R and HP-NAP. PSN significantly inhibited airway inflammation, decreased the serum OVA-specific IgE levels and remodeled the Th1/Th2 balance. Notably, PSN is more effective on anti-asthma therapy comparing with plasmid only expressing sIL-4R. PMID:27209195

  11. DNA vaccination of mice with a plasmid encoding Puumala hantavirus nucleocapsid protein mimics the B-cell response induced by virus infection.

    PubMed

    Koletzki, D; Schirmbeck, R; Lundkvist, A; Meisel, H; Krüger, D H; Ulrich, R

    2001-11-17

    Inoculation of naked DNA has been applied for the development of prophylactic and therapeutic vaccines against different viral infections. To study the humoral immune response induced by DNA vaccination we cloned the entire nucleocapsid protein-encoding sequence of the Puumala hantavirus strain Vranica/Hällnäs into the CMV promoter-driven expression unit of the plasmid pcDNA3, generating pcDNA3-VR1. A single dose injection of 50 microg of plasmid DNA into each M. tibialis anterior of BALB/c mice induced a high-titered antibody response against the nucleocapsid protein as documented 6 and 11 weeks after immunisation. PEPSCAN analysis of a serum pool of the pcDNA3-VR1-vaccinated animals revealed antibodies reacting with epitopes covering the whole nucleocapsid protein. The epitope-specificity of the immune response induced by DNA vaccination seems to reflect the antibody response in experimentally virus-infected bank voles (the natural host of the Puumala virus) and humans. The data suggest that DNA vaccination could be used for the identification of highly immunogenic epitopes in viral proteins. PMID:11035190

  12. DNA in Antibiotic Preparations: Absence of Intact Resistance Genes

    PubMed Central

    Woegerbauer, Markus; Lagler, Heimo; Graninger, Wolfgang; Burgmann, Heinz

    2005-01-01

    Fragments of erm(E2), otrA, and aph(6) shorter than 400 bp and producer strain-specific rRNA genes were amplified from various antibiotics. The amount of genetic material and the sizes of amplicons recovered from murine feces after oral administration of a β-lactamase-encoding plasmid indicated substantial DNA degradation in the mammalian gastrointestinal tract. These observations imply that antibiotics are no major source for horizontal resistance gene transfer in clinical settings. PMID:15917552

  13. A plasmid-encoded two-component regulatory system involved in copper-inducible transcription in Lactococcus lactis.

    PubMed

    Khunajakr, N; Liu, C Q; Charoenchai, P; Dunn, N W

    1999-03-18

    Two regulatory genes (lcoR and lcoS) were identified from a plasmid-borne lactococcal copper resistance determinant and characterized by transcriptional fusion to the promoterless chloramphenicol acetyltransferase gene (cat). RT-PCR analysis indicates that lcoR and lcoS are organized within an operon, controlling the transcription of cat in a copper-inducible manner. The amino acid sequences deduced from lcoR and lcoS show homology to the response and sensor proteins of known two-component regulatory systems. Deletion within either lcoS or both genes inactivated the copper-dependent activity, suggesting the presence of no trans-acting lcoR and lcoS homologs in the lactococcal host chromosome. The transcription start site involved in copper induction was mapped by primer extension. PMID:10095123

  14. Antibiotic-Resistant Klebsiella pneumoniae and Escherichia coli High-Risk Clones and an IncFIIk Mosaic Plasmid Hosting Tn1 (blaTEM-4) in Isolates from 1990 to 2004

    PubMed Central

    Rodríguez, Irene; Novais, Ângela; Lira, Felipe; Valverde, Aránzazu; Curião, Tânia; Martínez, José Luis; Baquero, Fernando; Cantón, Rafael

    2015-01-01

    We describe the genetic background of blaTEM-4 and the complete sequence of pRYC11::blaTEM-4, a mosaic plasmid that is highly similar to pKpQIL-like variants, predominant among TEM-4 producers in a Spanish hospital (1990 to 2004), which belong to Klebsiella pneumoniae and Escherichia coli high-risk clones responsible for the current spread of different antibiotic resistance genes. Predominant populations of plasmids and host adapted clonal lineages seem to have greatly contributed to the spread of resistance to extended-spectrum cephalosporins. PMID:25691645

  15. Studies on the isopropylbenzene 2,3-dioxygenase and the 3-isopropylcatechol 2,3-dioxygenase genes encoded by the linear plasmid of Rhodococcus erythropolis BD2.

    PubMed

    Kesseler, M; Dabbs, E R; Averhoff, B; Gottschalk, G

    1996-11-01

    The enzymes responsible for the degradation of isopropylbenzene (IPB) and co-oxidation of trichloroethene (TCE) by Rhodococcus erythropolis BD2 are encoded by the linear plasmid pBD2. Fragments containing IPB catabolic genes were cloned from pBD2 and the nucleotide sequence was determined. By means of database searches and expression of the cloned genes in recombinant strains, we identified five clustered genes, ipbA1A2A3A4C, which encode the three components of the IPB 2,3-dioxygenase system, reductaseIPB (ipbA4), ferredoxinIPB (ipbA3) and the two subunits of the terminal dioxygenase (ipbA1A2), as well as the 3-isopropylcatechol (IPC) 2,3-dioxygenase (ipbC). The protein sequences deduced from the ipbA1A2A3A4C gene cluster exhibited significant homology with the corresponding proteins of analogous degradative pathways in Gram-negative and Gram-positive bacteria, but the gene order differed from most of them. IPB 2,3-dioxygenase and 3-IPC 2,3-dioxygenase could both be expressed in Escherichia coli, but the IPB 2,3-dioxygenase activities were too low to be detected by polarographic and TCE degradative means. However, inhibitor studies with the R. erythropolis BD2 wild-type are in accordance with the involvement of the IPB 2,3-dioxygenase in TCE oxidation. PMID:8969521

  16. A plasmid of Rhizobium meliloti 41 encodes catabolism of two compounds from root exudate of Calystegium sepium.

    PubMed Central

    Tepfer, D; Goldmann, A; Pamboukdjian, N; Maille, M; Lepingle, A; Chevalier, D; Dénarié, J; Rosenberg, C

    1988-01-01

    Our objectives were to identify substances produced by plant roots that might act as nutritional mediators of specific plant-bacterium relationships and to delineate the bacterial genes responsible for catabolizing these substances. We discovered new compounds, which we call calystegins, that have the characteristics of nutritional mediators. They were detected in only 3 of 105 species of higher plants examined: Calystegia sepium, Convolvulus arvensis (both of the Convolvulaceae family), and Atropa belladonna. Calystegins are abundant in organs in contact with the rhizosphere and are not found, or are observed only in small quantities, in aerial plant parts. Just as the synthesis of calystegins is infrequent in the plant kingdom, their catabolism is rare among rhizosphere bacteria that associate with plants and influence their growth. Of 42 such bacteria tested, only one (Rhizobium meliloti 41) was able to catabolize calystegins and use them as a sole source of carbon and nitrogen. The calystegin catabolism gene(s) (cac) in this strain is located on a self-transmissible plasmid (pRme41a), which is not essential to nitrogen-fixing symbiosis with legumes. We suggest that under natural conditions calystegins provide an exclusive carbon and nitrogen source to rhizosphere bacteria which are able to catabolize these compounds. Calystegins (and the corresponding microbial catabolic genes) might be used to analyze and possibly modify rhizosphere ecology. Images PMID:2981046

  17. Plasmid detection, characterization and ecology

    PubMed Central

    Smalla, Kornelia; Jechalke, Sven; Top, Eva M.

    2015-01-01

    Plasmids are important vehicles for rapid adaptation of bacterial populations to changing environmental conditions. To reduce the cost of plasmid carriage, it is thought that only a fraction of a local population carries plasmids or is permissive to plasmid uptake. Plasmids provide various accessory traits which might be beneficial under particular conditions. The genetic variation generated by plasmid carriage within populations ensures the robustness towards environmental change. Plasmid-mediated gene transfer plays an important role not only in the mobilization and dissemination of antibiotic resistance genes but also in the spread of degradative pathways and pathogenicity determinants of pathogens. Here we summarize the state-of-the-art methods to study the occurrence, abundance and diversity of plasmids in environmental bacteria. Increasingly, cultivation independent total community DNA methods are being used to characterize and quantify the diversity and abundance of plasmids in relation to various biotic and abiotic factors. An improved understanding of the ecology of plasmids and their hosts is crucial in the development of intervention strategies for antibiotic resistance gene spread. We discuss the potentials and limitations of methods used to determine the host range of plasmids as the ecology of plasmids is tightly linked to their hosts. The recent advances in sequencing technologies provide an enormous potential for plasmid classification, diversity and evolution studies but numerous challenges still exist. PMID:26104560

  18. Cloning and genetic organization of the bacteriocin 31 determinant encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pYI17.

    PubMed Central

    Tomita, H; Fujimoto, S; Tanimoto, K; Ike, Y

    1996-01-01

    The conjugative plasmid pYI17 (57.5 kb) isolated from Enterococcus faecalis YI717 confers a pheromone response on the host and encodes the bacteriocin 31 gene. Bacteriocin 31 is active against E. hirae 9790, E. faecium, and Listeria monocytogenes. pYI17 was mapped physically by restriction enzyme analysis and the relational clone method. Deletion mutant and sequence analyses of the EcoRI fragment B cloned from pYl17 revealed that a 1.0-kb fragment contained the bacteriocin gene (bacA) and an immunity gene (bacB). This fragment induced bacteriocin activity in E. faecalis OG1X and E. hirae 9790. The bacA gene is located on the pYI17 physical map between 3.37 and 3.57 kb, and bacB is located between 3.59 kb and 3.87 kb, bacA encodes 67 amino acids, and bacB encodes 94 amino acids. The deduced amino acid sequence of the bacA protein contained a series of hydrophobic residues typical of a signal sequence at its amino terminus. The predicted mature bacA protein (43 amino acids) showed sequence homology with the membrane-active class II bacteriocins of lactic acid bacteria. Analysis of Tn5 insertion mutants and the resulting transcripts indicated that these genes are transcribed as an operon composed of bacA, bacB, and an open reading frame located downstream of bacB designated ORF3. PMID:8655558

  19. Identification and classification of bacterial Type III toxin–antitoxin systems encoded in chromosomal and plasmid genomes

    PubMed Central

    Blower, Tim R.; Short, Francesca L.; Rao, Feng; Mizuguchi, Kenji; Pei, Xue Y.; Fineran, Peter C.; Luisi, Ben F.; Salmond, George P. C.

    2012-01-01

    Toxin–antitoxin systems are widespread in bacteria and archaea. They perform diverse functional roles, including the generation of persistence, maintenance of genetic loci and resistance to bacteriophages through abortive infection. Toxin–antitoxin systems have been divided into three types, depending on the nature of the interacting macromolecules. The recently discovered Type III toxin–antitoxin systems encode protein toxins that are inhibited by pseudoknots of antitoxic RNA, encoded by short tandem repeats upstream of the toxin gene. Recent studies have identified the range of Type I and Type II systems within current sequence databases. Here, structure-based homology searches were combined with iterative protein sequence comparisons to obtain a current picture of the prevalence of Type III systems. Three independent Type III families were identified, according to toxin sequence similarity. The three families were found to be far more abundant and widespread than previously known, with examples throughout the Firmicutes, Fusobacteria and Proteobacteria. Functional assays confirmed that representatives from all three families act as toxin–antitoxin loci within Escherichia coli and at least two of the families confer resistance to bacteriophages. This study shows that active Type III toxin–antitoxin systems are far more diverse than previously known, and suggests that more remain to be identified. PMID:22434880

  20. Plasmid profiles of antibiotic-resistant Shigella dysenteriae types 2, 3, 4, 6 and 7 isolated in Ethiopia during 1976-85.

    PubMed Central

    Gebre-Yohannes, A.; Drasar, B. S.

    1990-01-01

    Plasmid profile analysis by agarose gel electrophoresis was carried out on 37 drug-resistant strains of Shigella dysenteriae types 2, 3, 4, 6 and 7. These strains were collected between 1976 and 1985 in Addis Ababa, Ethiopia. The plasmid profile of S. dysenteriae type 2 strains with R-type CSSuT did not show middle-sized plasmids likely to code for CSSuT resistance. All strains contained a large plasmid of about 120 megadaltons (MDa), and a cryptic plasmid of about 2.2 MDa. The plasmid profiles of S. dysenteriae type 3 with R-types ACSSuT, SSuT and SSu showed a 4.2 MDa SSu-determinant, which was demonstrated in Escherichia coli K12 recipients resulting from triparental crosses. The ACT determinant in S. dysenteriae type 3 with R-type ACSSuT is probably chromosomally mediated. Cryptic plasmids of about 3.0 and 2.2 MDa were found in all S. dysenteriae type 3 isolates. The 4.2 MDa plasmid featured prominently in the plasmid profiles of S. dysenteriae types 4, 6 and 7 with R-types SSuT and SSu. However, this plasmid was not mobilizable by triparental crosses. There was a relative paucity of transferable plasmids in non-Shiga bacillus isolates. However, incompatibility group N plasmids, coding for tetracycline resistance, were detected. PMID:2200703

  1. Cloning and genetic analysis of the UV resistance determinant (uvr) encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pAD1.

    PubMed Central

    Ozawa, Y; Tanimoto, K; Fujimoto, S; Tomita, H; Ike, Y

    1997-01-01

    The conjugative pheromone-responsive plasmid pAD1 (59.6 kb) of Enterococcus faecalis encodes a UV resistance determinant (uvr) in addition to the hemolysin-bacteriocin determinant. pAD1 enhances the UV resistance of wild-type E. faecalis FA2-2 and E. faecalis UV202, which is a UV-sensitive derivative of E. faecalis JH2-2. A 2.972-kb fragment cloned from between 27.7 and 30.6 kb of the pAD1 map conferred UV resistance function on UV202. Sequence analysis showed that the cloned fragment contained three open reading frames designated uvrA, uvrB, and uvrC. The uvrA gene is located on the pAD1 map between 28.1 and 29.4 kb. uvrB is located between 30.1 and 30.3 kb, and uvrC is located between 30.4 and 30.6 kb on the pAD1 map. The uvrA, uvrB, and uvrC genes encode sequences of 442, 60, and 74 amino acids, respectively. The deduced amino acid sequence of the uvrA-encoded protein showed 20% homology of the identical residues with the E. coli UmuC protein. Tn917 insertion mutagenesis and deletion mutant analysis of the cloned fragment showed that uvrA conferred UV resistance. A palindromic sequence, 5'-GAACNGTTC-3', which is identical to the consensus sequence found within the putative promoter region of the Bacillus subtilis DNA damage-inducible genes, was located within the promoter region of uvrA. Two uvrA transcripts of different lengths (i.e., 1.54 and 2.14 kb) which terminate at different points downstream of uvrA were detected in UV202 carrying the deletion mutant containing uvrA. The longer transcript, 2.14 kb, was not detected in UV202 carrying the deletion mutant containing both uvrA and uvrB, which suggests that uvrB encodes a terminator for the uvrA transcript. The uvrA transcript was not detected in any significant quantity in UV202 carrying the cloned fragment containing uvrA, uvrB, and uvrC; on the other hand, the 1.54-kb uvrA transcript was detected in the strain exposed to mitomycin C, which suggests that the UvrC protein functions as a regulator of uvr

  2. Purification of F plasmid-encoded native TraC from Escherichia coli by affinity chromatography on calmodulin Sepharose.

    PubMed

    Hellstern, Simon; Mutzel, Rupert

    2016-06-01

    We have enriched several native bacterial proteins from Escherichia coli by chromatography on the immobilized eukaryotic Ca(2+)-binding protein, calmodulin. These bacterial proteins bound in a Ca(2+)-dependent manner to calmodulin, and were released by the addition of the Ca(2+)-chelator, EGTA, similar to many eukaryotic calmodulin-binding proteins. One of the bacterial proteins, F factor-encoded TraC, was purified to apparent homogeneity by an additional chromatographic step, anion exchange chromatography on MonoQ. Experiments with four chemically distinct calmodulin antagonists (R24571, Compound 48/80, melittin, and W7) showed that all of these substances inhibited the binding of purified TraC to calmodulin at effective concentrations comparable to those required for inhibiting in vitro binding of eukaryotic calmodulin-binding proteins. Three further bacterial proteins were identified as calmodulin-binding proteins: SecA, GlpD, and GlpC. We suggest that also these native bacterial proteins might be isolated by the unusual purification procedure including affinity chromatography on calmodulin Sepharose. Whether the identified proteins bind to, and are regulated by, putative bacterial calmodulin-like proteins in Escherichia coli remains to be established. PMID:26892535

  3. DNA based vaccination with a cocktail of plasmids encoding immunodominant Leishmania (Leishmania) major antigens confers full protection in BALB/c mice.

    PubMed

    Ahmed, Sami Ben Hadj; Touihri, Leila; Chtourou, Yessine; Dellagi, Koussay; Bahloul, Chokri

    2009-01-01

    Despite the lack of effective vaccines against parasitic diseases, the prospects of developing a vaccine against leishmaniasis are still high. With this objective, we have tested four DNA based candidate vaccines encoding to immunodominant leishmania antigens (LACKp24, TSA, LmSTI1 and CPa). These candidates have been previously reported as capable of eliciting at least partial protections in the BALB/c mice model of experimental cutaneous leishmaniasis. When tested under similar experimental conditions, all of them were able to induce similar partial protective effects, but none could induce a full protection. In order to improve the level of protection we have explored the approach of DNA based vaccination with different cocktails of plasmids encoding to the different immunodominant Leishmania antigens. A substantial increase of protection was achieved when the cocktail is composed of all of the four antigens; however, no full protection was achieved when mice were challenged with a high dose of parasite in their hind footpad. The full protection was only achieved after a challenge with a low parasitic dose in the dermis of the ear. It was difficult to determine clear protection correlates, other than the mixture of immunogens induced specific Th1 immune responses against each component. Therefore, such an association of antigens increased the number of targeted epitopes by the immune system with the prospects that the responses are at least additive if not synergistic. Even though, any extrapolation of this approach when applied to other animal or human models is rather hazardous, it undoubtedly increases the hopes of developing an effective leishmania vaccine. PMID:18951941

  4. Genome Sequencing of Xanthomonas vasicola Pathovar vasculorum Reveals Variation in Plasmids and Genes Encoding Lipopolysaccharide Synthesis, Type-IV Pilus and Type-III Secretion Effectors.

    PubMed

    Wasukira, Arthur; Coulter, Max; Al-Sowayeh, Noorah; Thwaites, Richard; Paszkiewicz, Konrad; Kubiriba, Jerome; Smith, Julian; Grant, Murray; Studholme, David J

    2014-01-01

    Xanthomonas vasicola pathovar vasculorum (Xvv) is the bacterial agent causing gumming disease in sugarcane. Here, we compare complete genome sequences for five isolates of Xvv originating from sugarcane and one from maize. This identified two distinct types of lipopolysaccharide synthesis gene clusters among Xvv isolates: one is similar to that of Xanthomonas axonopodis pathovar citri (Xac) and is probably the ancestral type, while the other is similar to those of the sugarcane-inhabiting species, Xanthomonas sacchari. Four of six Xvv isolates harboured sequences similar to the Xac plasmid, pXAC47, and showed a distinct Type-IV pilus (T4P) sequence type, whereas the T4P locus of the other two isolates resembled that of the closely related banana pathogen, Xanthomonas campestris pathovar musacearum (Xcm). The Xvv isolate from maize has lost a gene encoding a homologue of the virulence effector, xopAF, which was present in all five of the sugarcane isolates, while xopL contained a premature stop codon in four out of six isolates. These findings shed new light on evolutionary events since the divergence of Xvv and Xcm, as well as further elucidating the relationships between the two closely related pathogens. PMID:25437615

  5. Genome Sequencing of Xanthomonas vasicola Pathovar vasculorum Reveals Variation in Plasmids and Genes Encoding Lipopolysaccharide Synthesis, Type-IV Pilus and Type-III Secretion Effectors

    PubMed Central

    Wasukira, Arthur; Coulter, Max; Al-Sowayeh, Noorah; Thwaites, Richard; Paszkiewicz, Konrad; Kubiriba, Jerome; Smith, Julian; Grant, Murray; Studholme, David J.

    2014-01-01

    Xanthomonas vasicola pathovar vasculorum (Xvv) is the bacterial agent causing gumming disease in sugarcane. Here, we compare complete genome sequences for five isolates of Xvv originating from sugarcane and one from maize. This identified two distinct types of lipopolysaccharide synthesis gene clusters among Xvv isolates: one is similar to that of Xanthomonas axonopodis pathovar citri (Xac) and is probably the ancestral type, while the other is similar to those of the sugarcane-inhabiting species, Xanthomonas sacchari. Four of six Xvv isolates harboured sequences similar to the Xac plasmid, pXAC47, and showed a distinct Type-IV pilus (T4P) sequence type, whereas the T4P locus of the other two isolates resembled that of the closely related banana pathogen, Xanthomonas campestris pathovar musacearum (Xcm). The Xvv isolate from maize has lost a gene encoding a homologue of the virulence effector, xopAF, which was present in all five of the sugarcane isolates, while xopL contained a premature stop codon in four out of six isolates. These findings shed new light on evolutionary events since the divergence of Xvv and Xcm, as well as further elucidating the relationships between the two closely related pathogens. PMID:25437615

  6. Genes encoding conserved hypothetical proteins localized in the conjugative transfer region of plasmid pRet42a from Rhizobium etli CFN42 participate in modulating transfer and affect conjugation from different donors

    PubMed Central

    López-Fuentes, Eunice; Torres-Tejerizo, Gonzalo; Cervantes, Laura; Brom, Susana

    2015-01-01

    Among sequenced genomes, it is common to find a high proportion of genes encoding proteins that cannot be assigned a known function. In bacterial genomes, genes related to a similar function are often located in contiguous regions. The presence of genes encoding conserved hypothetical proteins (chp) in such a region may suggest that they are related to that particular function. Plasmid pRet42a from Rhizobium etli CFN42 is a conjugative plasmid containing a segment of approximately 30 Kb encoding genes involved in conjugative transfer. In addition to genes responsible for Dtr (DNA transfer and replication), Mpf (Mating pair formation) and regulation, it has two chp-encoding genes (RHE_PA00163 and RHE_PA00164) and a transcriptional regulator (RHE_PA00165). RHE_PA00163 encodes an uncharacterized protein conserved in bacteria that presents a COG4634 conserved domain, and RHE_PA00164 encodes an uncharacterized conserved protein with a DUF433 domain of unknown function. RHE_PA00165 presents a HTH_XRE domain, characteristic of DNA-binding proteins belonging to the xenobiotic response element family of transcriptional regulators. Interestingly, genes similar to these are also present in transfer regions of plasmids from other bacteria. To determine if these genes participate in conjugative transfer, we mutagenized them and analyzed their conjugative phenotype. A mutant in RHE_PA00163 showed a slight (10 times) but reproducible increase in transfer frequency from Rhizobium donors, while mutants in RHE_PA00164 and RHE_PA00165 lost their ability to transfer the plasmid from some Agrobacterium donors. Our results indicate that the chp-encoding genes located among conjugation genes are indeed related to this function. However, the participation of RHE_PA00164 and RHE_PA00165 is only revealed under very specific circumstances, and is not perceived when the plasmid is transferred from the original host. RHE_PA00163 seems to be a fine-tuning modulator for conjugative transfer

  7. The complete plasmid sequences of Salmonella enterica serovar Typhimurium U288.

    PubMed

    Hooton, Steven P T; Timms, Andrew R; Cummings, Nicola J; Moreton, Joanna; Wilson, Ray; Connerton, Ian F

    2014-08-28

    Salmonella enterica Serovar Typhimurium U288 is an emerging pathogen of pigs. The strain contains three plasmids of diverse origin that encode traits that are of concern for food security and safety, these include antibiotic resistant determinants, an array of functions that can modify cell physiology and permit genetic mobility. At 148,711 bp, pSTU288-1 appears to be a hybrid plasmid containing a conglomerate of genes found in pSLT of S. Typhimurium LT2, coupled with a mosaic of horizontally-acquired elements. Class I integron containing gene cassettes conferring resistance against clinically important antibiotics and compounds are present in pSTU288-1. A curious feature of the plasmid involves the deletion of two genes encoded in the Salmonella plasmid virulence operon (spvR and spvA) following the insertion of a tnpA IS26-like element coupled to a blaTEM gene. The spv operon is considered to be a major plasmid-encoded Salmonella virulence factor that is essential for the intracellular lifecycle. The loss of the positive regulator SpvR may impact on the pathogenesis of S. Typhimurium U288. A second 11,067 bp plasmid designated pSTU288-2 contains further antibiotic resistance determinants, as well as replication and mobilization genes. Finally, a small 4675 bp plasmid pSTU288-3 was identified containing mobilization genes and a pleD-like G-G-D/E-E-F conserved domain protein that modulate intracellular levels of cyclic di-GMP, and are associated with motile to sessile transitions in growth. PMID:25175817

  8. Complete Nucleotide Sequence of pGA45, a 140,698-bp IncFIIY Plasmid Encoding bla IMI-3-Mediated Carbapenem Resistance, from River Sediment.

    PubMed

    Dang, Bingjun; Mao, Daqing; Luo, Yi

    2016-01-01

    Plasmid pGA45 was isolated from the sediments of Haihe River using Escherichia coli CV601 (gfp-tagged) as recipients and indigenous bacteria from sediment as donors. This plasmid confers reduced susceptibility to imipenem which belongs to carbapenem group. Plasmid pGA45 was fully sequenced on an Illumina HiSeq 2000 sequencing system. The complete sequence of plasmid pGA45 was 140,698 bp in length with an average G + C content of 52.03%. Sequence analysis shows that pGA45 belongs to IncFIIY group and harbors a backbone region which shares high homology and gene synteny to several other IncF plasmids including pNDM1_EC14653, pYDC644, pNDM-Ec1GN574, pRJF866, pKOX_NDM1, and pP10164-NDM. In addition to the backbone region, plasmid pGA45 harbors two notable features including one bla IMI-3-containing region and one type VI secretion system region. The bla IMI-3-containing region is responsible for bacteria carbapenem resistance and the type VI secretion system region is probably involved in bacteria virulence, respectively. Plasmid pGA45 represents the first complete nucleotide sequence of the bla IMI-harboring plasmid from environment sample and the sequencing of this plasmid provided insight into the architecture used for the dissemination of bla IMI carbapenemase genes. PMID:26941718

  9. Complete Nucleotide Sequence of pGA45, a 140,698-bp IncFIIY Plasmid Encoding blaIMI-3-Mediated Carbapenem Resistance, from River Sediment

    PubMed Central

    Dang, Bingjun; Mao, Daqing; Luo, Yi

    2016-01-01

    Plasmid pGA45 was isolated from the sediments of Haihe River using Escherichia coli CV601 (gfp-tagged) as recipients and indigenous bacteria from sediment as donors. This plasmid confers reduced susceptibility to imipenem which belongs to carbapenem group. Plasmid pGA45 was fully sequenced on an Illumina HiSeq 2000 sequencing system. The complete sequence of plasmid pGA45 was 140,698 bp in length with an average G + C content of 52.03%. Sequence analysis shows that pGA45 belongs to IncFIIY group and harbors a backbone region which shares high homology and gene synteny to several other IncF plasmids including pNDM1_EC14653, pYDC644, pNDM-Ec1GN574, pRJF866, pKOX_NDM1, and pP10164-NDM. In addition to the backbone region, plasmid pGA45 harbors two notable features including one blaIMI-3-containing region and one type VI secretion system region. The blaIMI-3-containing region is responsible for bacteria carbapenem resistance and the type VI secretion system region is probably involved in bacteria virulence, respectively. Plasmid pGA45 represents the first complete nucleotide sequence of the blaIMI-harboring plasmid from environment sample and the sequencing of this plasmid provided insight into the architecture used for the dissemination of blaIMI carbapenemase genes. PMID:26941718

  10. Molecular analysis of the bacteriocin-encoding plasmid pDGL1 from Enterococcus durans and genetic characterization of the durancin locus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enterococci constitute a significant component of lactic acid bacteria normally present in the intestinal microflora and include strains that produce bacteriocins. The genetic determinants for durancin GL in Enterococcus durans 41D were identified on the 8,347 bp plasmid pDGL1 by plasmid curing exp...

  11. In Vivo Expression of and Cell-Mediated Immune Responses to the Plasmid-Encoded Virulence-Associated Proteins of Rhodococcus equi in Foals▿

    PubMed Central

    Jacks, Stephanie; Giguère, Steeve; Prescott, John F.

    2007-01-01

    Rhodococcus equi is a facultative intracellular pathogen that causes pneumonia in foals but does not induce disease in adult horses. Virulence of R. equi depends on the presence of a large plasmid, which encodes a family of seven virulence-associated proteins (VapA and VapC to VapH). Eradication of R. equi from the lungs depends on gamma interferon (IFN-γ) production by T lymphocytes. The objectives of the present study were to determine the relative in vivo expression of the vap genes of R. equi in the lungs of infected foals, to determine the recall response of bronchial lymph node (BLN) lymphocytes from foals and adult horses to each of the Vap proteins, and to compare the cytokine profiles of proliferating lymphocytes between foals and adult horses. vapA, vapD, and vapG were preferentially expressed in the lungs of infected foals, and expression of these genes in the lungs was significantly (P < 0.05) higher than that achieved during in vitro growth. VapA and VapC induced the strongest lymphoproliferative responses for foals and adult horses. There was no significant difference in recall lymphoproliferative responses or IFN-γ mRNA expression by bronchial lymph node lymphocytes between foals and adults. In contrast, interleukin 4 (IL-4) expression was significantly higher for adults than for foals for each of the Vap proteins. The ratio of IFN-γ to IL-4 was significantly higher for foals than for adult horses for most Vap proteins. Therefore, foals are immunocompetent and are capable of mounting lymphoproliferative responses of the same magnitude and cytokine phenotype as those of adult horses. PMID:17301216

  12. Effects of DDA, CpG-ODN, and plasmid-encoded chicken IFN-gamma on protective immunity by a DNA vaccine against IBDV in chickens.

    PubMed

    Roh, Ha Jung; Sung, Haan Woo; Kwon, Hyuk Moo

    2006-12-01

    This study examined the adjuvant effects of dimethyl dioctadecyl ammonium bromide (DDA), CpG oligodeoxynucleotides (CpG-ODN), and chicken interferon-gamma (ChIFN-gamma) on a DNA vaccine (pcDNA-VP243) against the infectious bursal disease virus (IBDV). A plasmid encoding chicken IFN-ã was constructed. Twice at 2-week intervals, two-week-old chickens were injected intramuscularly and intraperitoneally with either a DNA vaccine alone or a DNA vaccine together with the respective adjuvants. On week 2 after the second immunization, the chickens were orally challenged with the highly virulent IBDV. The groups that received the DNA vaccines plus either DDA or CpG-ODN showed significantly lower survival rates than the group that received the DNA vaccine alone. However, the survival rates for the DNA vaccine alone and for the DNA vaccine plus ChIFN-gamma were similar. The chickens had no detectable antibodies to the IBDV before the challenge but all the surviving chickens in all groups except for the normal control group showed the induction of antibodies to the IBDV at day 10 after the challenge. As judged by the lymphocyte proliferation assays using the a WST-8 solution performed on the peripheral blood and splenic lymphocytes, the stimulation indices (SI) of the peripheral blood lymphocytes in all groups except for the normal control group were similar immediately before the challenge. At 10 days post-challenge, the SI for DNA vaccine plus either CpG-ODN or ChIFN-gamma was similar to that of the DNA vaccine control group. For splenic lymphocytes, the SI in the DNA vaccine plus CpG-ODN and DNA vaccine plus ChIFN-gamma groups were higher than for the DNA vaccine control. These results suggest that DDA actually compromises the protection against the IBDV by DNA vaccine, and CpG-ODN and IFN-gamma had no significant effect. PMID:17106228

  13. Genetic analyses of sulfonamide resistance and its dissemination in gram-negative bacteria illustrate new aspects of R plasmid evolution.

    PubMed Central

    Rådström, P; Swedberg, G; Sköld, O

    1991-01-01

    In contrast to what has been observed for many other antibiotic resistance mechanisms, there are only two known genes encoding plasmid-borne sulfonamide resistance. Both genes, sulI and sulII, encode a drug-resistant dihydropteroate synthase enzyme. In members of the family Enterobacteriaceae isolated from several worldwide sources, plasmid-mediated resistance to sulfonamides could be identified by colony hybridization as being encoded by sulI, sulII, or both. The sulI gene was in all cases found to be located in the newly defined, mobile genetic element, recently named an integron, which has been shown to contain a site-specific recombination system for the integration of various antibiotic resistance genes. The sulII gene was almost exclusively found as part of a variable resistance region on small, nonconjugative plasmids. Colony hybridization to an intragenic probe, restriction enzyme digestion, and nucleotide sequence analysis of small plasmids indicated that the sulII gene and contiguous sequences represent an independently occurring region disseminated in the bacterial population. The sulII resistance region was bordered by direct repeats, which in some plasmids were totally or partially deleted. The prevalence of sulI and sulII could thus be accounted for by their stable integration in transposons and in plasmids that are widely disseminated among gram-negative bacteria. Images PMID:1952855

  14. Diversity and Global Distribution of IncL/M Plasmids Enabling Horizontal Dissemination of β-Lactam Resistance Genes among the Enterobacteriaceae

    PubMed Central

    Adamczuk, Marcin; Zaleski, Piotr; Dziewit, Lukasz; Wolinowska, Renata; Nieckarz, Marta; Wawrzyniak, Pawel; Kieryl, Piotr; Plucienniczak, Andrzej; Bartosik, Dariusz

    2015-01-01

    Antibiotic resistance determinants are frequently associated with plasmids and other mobile genetic elements, which simplifies their horizontal transmission. Several groups of plasmids (including replicons of the IncL/M incompatibility group) were found to play an important role in the dissemination of resistance genes encoding β-lactamases. The IncL/M plasmids are large, broad host range, and self-transmissible replicons. We have identified and characterized two novel members of this group: pARM26 (isolated from bacteria inhabiting activated sludge from a wastewater treatment plant) and pIGT15 (originating from a clinical strain of Escherichia coli). This instigated a detailed comparative analysis of all available sequences of IncL/M plasmids encoding β-lactamases. The core genome of these plasmids is comprised of 20 genes with conserved synteny. Phylogenetic analyses of these core genes allowed clustering of the plasmids into four separate groups, which reflect their antibiotic resistance profiles. Examination of the biogeography of the IncL/M plasmids revealed that they are most frequently found in bacteria of the family Enterobacteriaceae originating from the Mediterranean region and Western Europe and that they are able to persist in various ecological niches even in the absence of direct antibiotic selection pressure. PMID:26236726

  15. Diversity and Global Distribution of IncL/M Plasmids Enabling Horizontal Dissemination of β-Lactam Resistance Genes among the Enterobacteriaceae.

    PubMed

    Adamczuk, Marcin; Zaleski, Piotr; Dziewit, Lukasz; Wolinowska, Renata; Nieckarz, Marta; Wawrzyniak, Pawel; Kieryl, Piotr; Plucienniczak, Andrzej; Bartosik, Dariusz

    2015-01-01

    Antibiotic resistance determinants are frequently associated with plasmids and other mobile genetic elements, which simplifies their horizontal transmission. Several groups of plasmids (including replicons of the IncL/M incompatibility group) were found to play an important role in the dissemination of resistance genes encoding β-lactamases. The IncL/M plasmids are large, broad host range, and self-transmissible replicons. We have identified and characterized two novel members of this group: pARM26 (isolated from bacteria inhabiting activated sludge from a wastewater treatment plant) and pIGT15 (originating from a clinical strain of Escherichia coli). This instigated a detailed comparative analysis of all available sequences of IncL/M plasmids encoding β-lactamases. The core genome of these plasmids is comprised of 20 genes with conserved synteny. Phylogenetic analyses of these core genes allowed clustering of the plasmids into four separate groups, which reflect their antibiotic resistance profiles. Examination of the biogeography of the IncL/M plasmids revealed that they are most frequently found in bacteria of the family Enterobacteriaceae originating from the Mediterranean region and Western Europe and that they are able to persist in various ecological niches even in the absence of direct antibiotic selection pressure. PMID:26236726

  16. A Site-Specific Integrative Plasmid Found in Pseudomonas aeruginosa Clinical Isolate HS87 along with A Plasmid Carrying an Aminoglycoside-Resistant Gene

    PubMed Central

    Tai, Cui; Jiang, Xiaofei; Zhang, Jie; Harrison, Ewan M.; Jia, Shiru; Deng, Zixin; Rajakumar, Kumar; Ou, Hong-Yu

    2016-01-01

    Plasmids play critical roles in bacterial fitness and evolution of Pseudomonas aeruginosa. Here two plasmids found in a drug-resistant P. aeruginosa clinical isolate HS87 were completely sequenced. The pHS87b plasmid (11.2 kb) carries phage-related genes and function-unknown genes. Notably, pHS87b encodes an integrase and has an adjacent tRNAThr-associated attachment site. A corresponding integrated form of pHS87b at the tRNAThr locus was identified on the chromosome of P. aeruginosa, showing that pHS87b is able to site-specifically integrate into the 3’-end of the tRNAThr gene. The pHS87a plasmid (26.8 kb) displays a plastic structure containing a putative replication module, stability factors and a variable region. The RepA of pHS87a shows significant similarity to the replication proteins of pPT23A-family plasmids. pHS87a carries a transposon Tn6049, a truncated insertion sequence ΔIS1071 and a Tn402-like class 1 integron which contains an aacA4 cassette that may confer aminoglycoside resistance. Thus, pHS87b is a site-specific integrative plasmid whereas pHS87a is a plastic antibiotic resistance plasmid. The two native plasmids may promote the fitness and evolution of P. aeruginosa. PMID:26841043

  17. A Site-Specific Integrative Plasmid Found in Pseudomonas aeruginosa Clinical Isolate HS87 along with A Plasmid Carrying an Aminoglycoside-Resistant Gene.

    PubMed

    Bi, Dexi; Xie, Yingzhou; Tai, Cui; Jiang, Xiaofei; Zhang, Jie; Harrison, Ewan M; Jia, Shiru; Deng, Zixin; Rajakumar, Kumar; Ou, Hong-Yu

    2016-01-01

    Plasmids play critical roles in bacterial fitness and evolution of Pseudomonas aeruginosa. Here two plasmids found in a drug-resistant P. aeruginosa clinical isolate HS87 were completely sequenced. The pHS87b plasmid (11.2 kb) carries phage-related genes and function-unknown genes. Notably, pHS87b encodes an integrase and has an adjacent tRNAThr-associated attachment site. A corresponding integrated form of pHS87b at the tRNAThr locus was identified on the chromosome of P. aeruginosa, showing that pHS87b is able to site-specifically integrate into the 3'-end of the tRNAThr gene. The pHS87a plasmid (26.8 kb) displays a plastic structure containing a putative replication module, stability factors and a variable region. The RepA of pHS87a shows significant similarity to the replication proteins of pPT23A-family plasmids. pHS87a carries a transposon Tn6049, a truncated insertion sequence ΔIS1071 and a Tn402-like class 1 integron which contains an aacA4 cassette that may confer aminoglycoside resistance. Thus, pHS87b is a site-specific integrative plasmid whereas pHS87a is a plastic antibiotic resistance plasmid. The two native plasmids may promote the fitness and evolution of P. aeruginosa. PMID:26841043

  18. Characterization of a Novel Partition System Encoded by the δ and ω Genes from the Streptococcal Plasmid pSM19035

    PubMed Central

    Dmowski, Michał; Sitkiewicz, Izabela; Cegłowski, Piotr

    2006-01-01

    High segregational stability of the streptococcal plasmid pSM19035 is achieved by the concerted action of systems involved in plasmid copy number control, multimer resolution, and postsegregational killing. In this study, we demonstrate the role of two genes, δ and ω, in plasmid stabilization by a partition mechanism. We show that these two genes can stabilize the native pSM19035 replicon as well as other θ- and σ-type plasmids in Bacillus subtilis. In contrast to other known partition systems, in this case the two genes are transcribed separately; however, they are coregulated by the product of the parB-like gene ω. Analysis of mutants of the parA-like gene δ showed that the Walker A ATPase motif is necessary for plasmid stabilization. The ParB-like product of the ω gene binds to three regions containing repeated WATCACW heptamers, localized in the copS (regulation of plasmid copy number), δ, and ω promoter regions. We demonstrate that all three of these regions can cause partition-mediated incompatibility. Moreover, our data suggest that each of these could play the role of a centromere-like sequence. We conclude that δ and ω constitute a novel type of plasmid stabilization system. PMID:16740943

  19. A PKS/NRPS/FAS Hybrid Gene Cluster from Serratia plymuthica RVH1 Encoding the Biosynthesis of Three Broad Spectrum, Zeamine-Related Antibiotics

    PubMed Central

    Masschelein, Joleen; Mattheus, Wesley; Gao, Ling-Jie; Moons, Pieter; Van Houdt, Rob; Uytterhoeven, Birgit; Lamberigts, Chris; Lescrinier, Eveline; Rozenski, Jef; Herdewijn, Piet; Aertsen, Abram; Michiels, Chris; Lavigne, Rob

    2013-01-01

    Serratia plymuthica strain RVH1, initially isolated from an industrial food processing environment, displays potent antimicrobial activity towards a broad spectrum of Gram-positive and Gram-negative bacterial pathogens. Isolation and subsequent structure determination of bioactive molecules led to the identification of two polyamino antibiotics with the same molecular structure as zeamine and zeamine II as well as a third, closely related analogue, designated zeamine I. The gene cluster encoding the biosynthesis of the zeamine antibiotics was cloned and sequenced and shown to encode FAS, PKS as well as NRPS related enzymes in addition to putative tailoring and export enzymes. Interestingly, several genes show strong homology to the pfa cluster of genes involved in the biosynthesis of long chain polyunsaturated fatty acids in marine bacteria. We postulate that a mixed FAS/PKS and a hybrid NRPS/PKS assembly line each synthesize parts of the backbone that are linked together post-assembly in the case of zeamine and zeamine I. This interaction reflects a unique interplay between secondary lipid and secondary metabolite biosynthesis. Most likely, the zeamine antibiotics are produced as prodrugs that undergo activation in which a nonribosomal peptide sequence is cleaved off. PMID:23349809

  20. Modified live Edwardsiella ictaluri vaccine, AQUAVAC-ESC, lacks multidrug resistance plasmids.

    PubMed

    Lafrentz, Benjamin R; Welch, Timothy J; Shoemaker, Craig A; Drennan, John D; Klesius, Phillip H

    2011-12-01

    Plasmid-mediated antibiotic resistance was first discovered in Edwardsiella ictaluri in the early 1990s, and in 2007 an E. ictaluri isolate harboring an IncA/C plasmid was recovered from a moribund channel catfish Ictalurus punctatus infected with the bacterium. Due to the identification of multidrug resistance plasmids in aquaculture and their potential clinical importance, we sought to determine whether the modified live E. ictaluri vaccine strain in AQUAVAC-ESC harbors such plasmids, so that the use of this vaccine will not directly contribute to the pool of bacteria carrying plasmid-borne resistance. Antimicrobial sensitivity testing of the E. ictaluri parent isolate and vaccine strain demonstrated that both were sensitive to 15 of the 16 antimicrobials tested. Total DNA from each isolate was analyzed by polymerase chain reaction (PCR) using a set of 13 primer pairs specific for conserved regions of the IncA/C plasmid backbone, and no specific products were obtained. PCR-based replicon typing of the parent isolate and vaccine strain demonstrated the absence of the 18 commonly occurring plasmid incompatibility groups. These results demonstrate that the vaccine strain does not carry resistance to commonly used antimicrobials and provide strong support for the absence of IncA/C and other commonly occurring plasmid incompatibility groups. Therefore, its use should not directly contribute to the pool of bacteria carrying plasmid-borne resistance. This work highlights the importance of thoroughly investigating potential vaccine strains for the presence of plasmids or other transmissible elements that may encode resistance to antibiotics. PMID:22372247

  1. Minocycline resistance in an oral Streptococcus infantis isolate is encoded by tet(S) on a novel small, low copy number plasmid

    PubMed Central

    Ciric, Lena; Brouwer, Michael S M; Mullany, Peter; Roberts, Adam P

    2014-01-01

    We have determined the genetic basis of minocycline resistance in a strain of Streptococcus infantis isolated from a healthy human oral cavity. We demonstrate that tet(S), identical to tet(S) found on the enterococcal conjugative transposon Tn6000, is responsible for the observed resistance. The gene is located on a small, low copy number plasmid and is flanked by IS1216 elements. The tet(S) gene is capable of excising from the plasmid together with one of the IS1216 elements. The plasmid contains a putative toxin/antitoxin system related to relBE. Deletion of the toxin, relE, did not result in plasmid instability but did increase the fitness of the mutant compared to the wild-type strain. PMID:24605990

  2. A bacteriocin gene cluster able to enhance plasmid maintenance in Lactococcus lactis

    PubMed Central

    2014-01-01

    Background Lactococcus lactis is widely used as a dairy starter and has been extensively studied. Based on the acquired knowledge on its physiology and metabolism, new applications have been envisaged and there is an increasing interest of using L. lactis as a cell factory. Plasmids constitute the main toolbox for L. lactis genetic engineering and most rely on antibiotic resistant markers for plasmid selection and maintenance. In this work, we have assessed the ability of the bacteriocin Lactococcin 972 (Lcn972) gene cluster to behave as a food-grade post-segregational killing system to stabilize recombinant plasmids in L. lactis in the absence of antibiotics. Lcn972 is a non-lantibiotic bacteriocin encoded by the 11-kbp plasmid pBL1 with a potent antimicrobial activity against Lactococcus. Results Attempts to clone the full lcn972 operon with its own promoter (P972), the structural gene lcn972 and the immunity genes orf2-orf3 in the unstable plasmid pIL252 failed and only plasmids with a mutated promoter were recovered. Alternatively, cloning under other constitutive promoters was approached and achieved, but bacteriocin production levels were lower than those provided by pBL1. Segregational stability studies revealed that the recombinant plasmids that yielded high bacteriocin titers were maintained for at least 200 generations without antibiotic selection. In the case of expression vectors such as pTRL1, the Lcn972 gene cluster also contributed to plasmid maintenance without compromising the production of the fluorescent mCherry protein. Furthermore, unstable Lcn972 recombinant plasmids became integrated into the chromosome through the activity of insertion sequences, supporting the notion that Lcn972 does apply a strong selective pressure against susceptible cells. Despite of it, the Lcn972 gene cluster was not enough to avoid the use of antibiotics to select plasmid-bearing cells right after transformation. Conclusions Inserting the Lcn972 cluster into

  3. Gene Electrotransfer of Plasmid with Tissue Specific Promoter Encoding shRNA against Endoglin Exerts Antitumor Efficacy against Murine TS/A Tumors by Vascular Targeted Effects

    PubMed Central

    Stimac, Monika; Dolinsek, Tanja; Lampreht, Ursa; Cemazar, Maja; Sersa, Gregor

    2015-01-01

    Vascular targeted therapies, targeting specific endothelial cell markers, are promising approaches for the treatment of cancer. One of the targets is endoglin, transforming growth factor-β (TGF-β) co-receptor, which mediates proliferation, differentiation and migration of endothelial cells forming neovasculature. However, its specific, safe and long-lasting targeting remains the challenge. Therefore, in our study we evaluated the transfection efficacy, vascular targeted effects and therapeutic potential of the plasmid silencing endoglin with the tissue specific promoter, specific for endothelial cells marker endothelin-1 (ET) (TS plasmid), in comparison to the plasmid with constitutive promoter (CON plasmid), in vitro and in vivo. Tissue specificity of TS plasmid was demonstrated in vitro on several cell lines, and its antiangiogenic efficacy was demonstrated by reducing tube formation of 2H11 endothelial cells. In vivo, on a murine mammary TS/A tumor model, we demonstrated good antitumor effect of gene electrotransfer (GET) of either of both plasmids in treatment of smaller tumors still in avascular phase of growth, as well as on bigger tumors, already well vascularized. In support to the observations on predominantly vascular targeted effects of endoglin, histological analysis has demonstrated an increase in necrosis and a decrease in the number of blood vessels in therapeutic groups. A significant antitumor effect was observed in tumors in avascular and vascular phase of growth, possibly due to both, the antiangiogenic and the vascular disrupting effect. Furthermore, the study indicates on the potential use of TS plasmid in cancer gene therapy since the same efficacy as of CON plasmid was determined. PMID:25909447

  4. PemK toxin encoded by the Xylella fastidiosa IncP-1 plasmid pXF-RIV11 is a ribonuclease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stable inheritance of the IncP-1 plasmid pXF-RIV11 in Xylella fastidiosa is conferred by the pemI/pemK plasmid addiction system. PemK serves as a toxin inhibiting bacterial growth; PemI is the corresponding antitoxin that blocks activity of PemK toxin by direct binding. Here, PemK toxin and PemI ant...

  5. Cloning of a Recombinant Plasmid Encoding Thiol-Specific Antioxidant Antigen (TSA) Gene of Leishmania majorand Expression in the Chinese Hamster Ovary Cell Line

    PubMed Central

    Fatemeh, Ghaffarifar; Fatemeh, Tabatabaie; Zohreh, Sharifi; Abdolhosein, Dalimiasl; Mohammad Zahir, Hassan; Mehdi, Mahdavi

    2012-01-01

    Background: TSA (thiol-specific antioxidant antigen) is the immune-dominant antigen of Leishmania major and is considered to be the most promising candidate molecule for a recombinant or DNA vaccine against leishmaniasis. The aim of the present work was to express a plasmid containing the TSA gene in eukaryotic cells. Methods: Genomic DNA was extracted, and the TSA gene was amplified by polymerase chain reaction (PCR). The PCR product was cloned into the pTZ57R/T vector, followed by subcloning into the eukaryotic expression vector pcDNA3 (EcoRI and HindIII sites). The recombinant plasmid was characterised by restriction digest and PCR. Eukaryotic Chinese hamster ovary cells were transfected with the plasmid containing the TSA gene. Expression of the L. major TSA gene was confirmed by sodium dodecyl sulphate–polyacrylamide gel electrophoresis and Western blotting. Results: The plasmid containing the TSA gene was successfully expressed, as demonstrated by a band of 22.1 kDa on Western blots. Conclusion: The plasmid containing the TSA gene can be expressed in a eukaryotic cell line. Thus, the recombinant plasmid may potentially be used as a DNA vaccine in animal models. PMID:22977370

  6. Evolved plasmid-host interactions reduce plasmid interference cost.

    PubMed

    Yano, Hirokazu; Wegrzyn, Katarznya; Loftie-Eaton, Wesley; Johnson, Jenny; Deckert, Gail E; Rogers, Linda M; Konieczny, Igor; Top, Eva M

    2016-09-01

    Antibiotic selection drives adaptation of antibiotic resistance plasmids to new bacterial hosts, but the molecular mechanisms are still poorly understood. We previously showed that a broad-host-range plasmid was poorly maintained in Shewanella oneidensis, but rapidly adapted through mutations in the replication initiation gene trfA1. Here we examined if these mutations reduced the fitness cost of TrfA1, and whether this was due to changes in interaction with the host's DNA helicase DnaB. The strains expressing evolved TrfA1 variants showed a higher growth rate than those expressing ancestral TrfA1. The evolved TrfA1 variants showed a lower affinity to the helicase than ancestral TrfA1 and were no longer able to activate the helicase at the oriV without host DnaA. Moreover, persistence of the ancestral plasmid was increased upon overexpression of DnaB. Finally, the evolved TrfA1 variants generated higher plasmid copy numbers than ancestral TrfA1. The findings suggest that ancestral plasmid instability can at least partly be explained by titration of DnaB by TrfA1. Thus under antibiotic selection resistance plasmids can adapt to a novel bacterial host through partial loss of function mutations that simultaneously increase plasmid copy number and decrease unfavorably high affinity to one of the hosts' essential proteins. PMID:27121483

  7. NDM-1 encoded by a pNDM-BJ01-like plasmid p3SP-NDM in clinical Enterobacter aerogenes

    PubMed Central

    Chen, Zhenhong; Li, Hongxia; Feng, Jiao; Li, Yuxue; Chen, Xin; Guo, Xuemin; Chen, Weijun; Wang, Li; Lin, Lei; Yang, Huiying; Yang, Wenhui; Wang, Jie; Zhou, Dongsheng; Liu, Changting; Yin, Zhe

    2015-01-01

    A carbapenem-nonsusceptible Enterobacter aerogenes strain named 3-SP was isolated from a human case of pneumonia in a Chinese teaching hospital. NDM-1 carbapenemase is produced by a pNDM-BJ01-like conjugative plasmid designated p3SP-NDM to account for carbapenem resistance of 3-SP. p3SP-NDM was fully sequenced and compared with all publically available pNDM-BJ01-like plasmids. The genetic differences between p3SP-NDM and pNDM-BJ01 include only 18 single nucleotide polymorphisms, a 1 bp deletion and a 706 bp deletion. p3SP-NDM and pNDM-BJ01 harbor an identical Tn125 element organized as ISAba125, blaNDM−1, bleMBL, ΔtrpF, dsbC, cutA, ΔgroES, groEL, ISCR27, and ISAba125. The blaNDM−1 surrounding regions in these pNDM-BJ01-like plasmids have a conserved linear organization ISAba14-aphA6-Tn125-unknown IS, with considerable genetic differences identified within or immediately downstream of Tn125. All reported pNDM-BJ01-like plasmids are exclusively found in Acinetobacter, whereas this is the first report of identification of a pNDM-BJ01-like plasmid in Enterobacteriaceae. PMID:25926823

  8. Whole genome sequencing of diverse Shiga toxin-producing and non-producing Escherichia coli strains reveals a variety of virulence and novel antibiotic resistance plasmids.

    PubMed

    Losada, Liliana; DebRoy, Chitrita; Radune, Diana; Kim, Maria; Sanka, Ravi; Brinkac, Lauren; Kariyawasam, Subhashinie; Shelton, Daniel; Fratamico, Pina M; Kapur, Vivek; Feng, Peter C H

    2016-01-01

    The genomes of a diverse set of Escherichia coli, including many Shiga toxin-producing strains of various serotypes were determined. A total of 39 plasmids were identified among these strains, and many carried virulence or putative virulence genes of Shiga toxin-producing E. coli strains, virulence genes for other pathogenic E. coli groups, and some had combinations of these genes. Among the novel plasmids identified were eight that carried resistance genes to aminoglycosides, carbapenems, penicillins, cephalosporins, chloramphenicol, dihydrofolate reductase inhibitors, sulfonamides, tetracyclines and resistance to heavy metals. Two of the plasmids carried six of these resistance genes and two novel IncHI2 plasmids were also identified. The results of this study showed that plasmids carrying diverse resistance and virulence genes of various pathogenic E. coli groups can be found in E. coli strains and serotypes regardless of the isolate's source and therefore, is consistent with the premise that these mobile elements carrying these traits may be broadly disseminated among E. coli. PMID:26746359

  9. IncM Plasmid R1215 Is the Source of Chromosomally Located Regions Containing Multiple Antibiotic Resistance Genes in the Globally Disseminated Acinetobacter baumannii GC1 and GC2 Clones.

    PubMed

    Blackwell, Grace A; Hamidian, Mohammad; Hall, Ruth M

    2016-01-01

    Clear similarities between antibiotic resistance islands in the chromosomes of extensively antibiotic-resistant isolates from the two dominant, globally distributed Acinetobacter baumannii clones, GC1 and GC2, suggest a common origin. A close relative of the likely progenitor of both of these regions was found in R1215, a conjugative IncM plasmid from a Serratia marcescens strain isolated prior to 1980. The 37.8-kb resistance region in R1215 lies within the mucB gene and includes aacC1, aadA1, aphA1b, bla TEM, catA1, sul1, and tetA(A), genes that confer resistance to gentamicin, streptomycin and spectinomycin, kanamycin and neomycin, ampicillin, chloramphenicol, sulfamethoxazole, and tetracycline, respectively. The backbone of this region is derived from Tn1721 and is interrupted by a hybrid Tn2670 (Tn21)-Tn1696-type transposon, Tn6020, and an incomplete Tn1. After minor rearrangements, this R1215 resistance island can generate AbGRI2-0*, the predicted earliest form of the IS26-bounded AbGRI2-type resistance island of GC2 isolates, and to the multiple antibiotic resistance region (MARR) of AbaR0, the precursor of this region in AbaR-type resistance islands in the GC1 group. A 29.9-kb circle excised by IS26 has been inserted into the A. baumannii chromosome to generate AbGRI2-0*. To create the MARR of AbaR0, a different circular form, again generated by IS26 from an R1215 resistance region variant, has been opened at a different point by recombination with a copy of the sul1 gene already present in the AbaR precursor. Recent IncM plasmids related to R1215 have a variant resistance island containing a bla SHV gene in the same location. IMPORTANCE Two lineages of extensively antibiotic-resistant A. baumannii currently plaguing modern medicine each acquired resistance to all of the original antibiotics (ampicillin, tetracycline, kanamycin, and sulfonamides) by the end of the 1970s and then became resistant to antibiotics from newer families after they were introduced

  10. IncM Plasmid R1215 Is the Source of Chromosomally Located Regions Containing Multiple Antibiotic Resistance Genes in the Globally Disseminated Acinetobacter baumannii GC1 and GC2 Clones

    PubMed Central

    Blackwell, Grace A.

    2016-01-01

    ABSTRACT Clear similarities between antibiotic resistance islands in the chromosomes of extensively antibiotic-resistant isolates from the two dominant, globally distributed Acinetobacter baumannii clones, GC1 and GC2, suggest a common origin. A close relative of the likely progenitor of both of these regions was found in R1215, a conjugative IncM plasmid from a Serratia marcescens strain isolated prior to 1980. The 37.8-kb resistance region in R1215 lies within the mucB gene and includes aacC1, aadA1, aphA1b, blaTEM, catA1, sul1, and tetA(A), genes that confer resistance to gentamicin, streptomycin and spectinomycin, kanamycin and neomycin, ampicillin, chloramphenicol, sulfamethoxazole, and tetracycline, respectively. The backbone of this region is derived from Tn1721 and is interrupted by a hybrid Tn2670 (Tn21)-Tn1696-type transposon, Tn6020, and an incomplete Tn1. After minor rearrangements, this R1215 resistance island can generate AbGRI2-0*, the predicted earliest form of the IS26-bounded AbGRI2-type resistance island of GC2 isolates, and to the multiple antibiotic resistance region (MARR) of AbaR0, the precursor of this region in AbaR-type resistance islands in the GC1 group. A 29.9-kb circle excised by IS26 has been inserted into the A. baumannii chromosome to generate AbGRI2-0*. To create the MARR of AbaR0, a different circular form, again generated by IS26 from an R1215 resistance region variant, has been opened at a different point by recombination with a copy of the sul1 gene already present in the AbaR precursor. Recent IncM plasmids related to R1215 have a variant resistance island containing a blaSHV gene in the same location. IMPORTANCE Two lineages of extensively antibiotic-resistant A. baumannii currently plaguing modern medicine each acquired resistance to all of the original antibiotics (ampicillin, tetracycline, kanamycin, and sulfonamides) by the end of the 1970s and then became resistant to antibiotics from newer families after they were

  11. Plasmid acquisition in microgravity

    NASA Technical Reports Server (NTRS)

    Juergensmeyer, Margaret A.; Juergensmeyer, Elizabeth A.; Guikema, James A.

    1995-01-01

    In microgravity, bacteria often show an increased resistance to antibiotics. Bacteria can develop resistance to an antibiotic after transformation, the acquisition of DNA, usually in the form of a plasmid containing a gene for resistance to one or more antibiotics. In order to study the capacity of bacteria to become resistant to antibiotics in microgravity, we have modified the standard protocol for transformation of Escherichia coli for use in the NASA-flight-certified hardware package, The Fluid Processing Apparatus (FPA). Here we report on the ability of E. coli to remain competent for long periods of time at temperatures that are readily available on the Space Shuttle, and present some preliminary flight results.

  12. Expression of Lactobacillus casei ATCC 393 beta-galactosidase encoded by plasmid pLZ15 in Lactococcus lactis CNRZ 1123.

    PubMed

    Hemme, D; Gaier, W; Winters, D A; Foucaud, C; Vogel, R F

    1994-11-01

    Lactococcus lactis subsp. lactis CNRZ 1123, a Lac- derivative of CNRZ 1122 was transformed by electroporation with the Lactobacillus casei ATCC 393 plasmid pLZ15, which bears a beta-galactosidase gene. The transformants expressed a constitutive beta-galactosidase activity at a higher level than in Lact. casei, and in the cell-free extract two additional protein bands were detected by SDS-PAGE which could correspond to lactose metabolism enzymes. Both plasmid and beta-gal activity were stable in Lactococcus after 100 generations in glucose-containing medium. PMID:7765447

  13. Conjugative transfer of plasmid-located antibiotic resistance genes within the gastrointestinal tract of lesser mealworm larvae, Alphitobius diaperinus (Coleoptera: Tenebrionidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The frequency of conjugative transfer of antimicrobial resistance plasmids between bacteria within the gastrointestinal tract of lesser mealworm larvae, a prevalent pest in poultry production facilities was determined. Lesser mealworm larvae were exposed to a negative bacterial control (PBS), a don...

  14. Persistence of antibiotic resistance and plasmid-associated genes in soil following application of sewage sludge and abundance on vegetables at harvest.

    PubMed

    Rahube, Teddie O; Marti, Romain; Scott, Andrew; Tien, Yuan-Ching; Murray, Roger; Sabourin, Lyne; Duenk, Peter; Lapen, David R; Topp, Edward

    2016-07-01

    Sewage sludge recovered from wastewater treatment plants contains antibiotic residues and is rich in antibiotic resistance genes, selected for and enriched in the digestive tracts of human using antibiotics. The use of sewage sludge as a crop fertilizer constitutes a potential route of human exposure to antibiotic resistance genes through consumption of contaminated crops. Several gene targets associated with antibiotic resistance (catA1, catB3, ereA, ereB, erm(B), str(A), str(B), qnrD, sul1, and mphA), mobile genetic elements (int1, mobA, IncW repA, IncP1 groups -α, -β, -δ, -γ, -ε), and bacterial 16S rRNA (rrnS) were quantified by qPCR from soil and vegetable samples obtained from unamended and sludge-amended plots at an experimental field in London, Ontario. The qPCR data reveals an increase in abundance of gene targets in the soil and vegetables samples, indicating that there is potential for additional crop exposure to antibiotic resistance genes carried within sewage sludge following field application. It is therefore advisable to allow an appropriate delay period before harvesting of vegetables for human consumption. PMID:27277701

  15. High-level plasmid-mediated gentamicin resistance and pheromone response of plasmids present in clinical isolates of Enterococcus faecalis.

    PubMed Central

    Shiojima, M; Tomita, H; Tanimoto, K; Fujimoto, S; Ike, Y

    1997-01-01

    Eleven pheromone-responding plasmids encoding erythromycin or gentamicin resistance were isolated from multiresistant clinical Enterococcus faecalis isolates. The plasmids were classified into six types with respect to their pheromone responses. The three erythromycin resistance plasmids responded to different pheromones. Of the eight gentamicin resistance plasmids, four plasmids responded to same pheromone. Southern hybridization studies showed that the genes involved in regulation of the pheromone response were conserved in the drug resistance plasmids. PMID:9056018

  16. Plasmid-Encoded RepA Proteins Specifically Autorepress Individual repABC Operons in the Multipartite Rhizobium leguminosarum bv. trifolii Genome

    PubMed Central

    Żebracki, Kamil; Koper, Piotr; Marczak, Małgorzata; Skorupska, Anna; Mazur, Andrzej

    2015-01-01

    Rhizobia commonly have very complex genomes with a chromosome and several large plasmids that possess genes belonging to the repABC family. RepA and RepB are members of the ParA and ParB families of partitioning proteins, respectively, whereas RepC is crucial for plasmid replication. In the repABC replicons, partitioning and replication functions are transcriptionally linked resulting in complex regulation of rep gene expression. The genome of R. leguminosarum bv. trifolii TA1 (RtTA1) consists of a chromosome and four plasmids (pRleTA1a-d), equipped with functional repABC genes. In this work, the regulation of transcription of the individual repABC cassettes of the four RtTA1 plasmids was studied. The involvement of the RepA and RepB as well as parS-like centromere sites in this process was depicted, demonstrating some dissimilarity in expression of respective rep regions. RtTA1 repABC genes of individual plasmids formed operons, which were negatively regulated by RepA and RepB. Individual RepA were able to bind to DNA without added nucleotides, but in the presence of ADP, bound specifically to their own operator sequences containing imperfect palindromes, and caused operon autorepression, whereas the addition of ATP stimulated non-specific binding of RepA to DNA. The RepA proteins were able to dimerize/oligomerize: in general dimers formed independently of ATP or ADP, although ATP diminished the concentration of oligomers that were produced. By the comprehensive approach focusing on a set of plasmids instead of individual replicons, the work highlighted subtle differences between the organization and regulation of particular rep operons as well as the structures and specificity of RepA proteins, which contribute to the fine-tuned coexistence of several replicons with similar repABC cassettes in the complex bacterial genome. PMID:26147968

  17. Plasmid-Encoded RepA Proteins Specifically Autorepress Individual repABC Operons in the Multipartite Rhizobium leguminosarum bv. trifolii Genome.

    PubMed

    Żebracki, Kamil; Koper, Piotr; Marczak, Małgorzata; Skorupska, Anna; Mazur, Andrzej

    2015-01-01

    Rhizobia commonly have very complex genomes with a chromosome and several large plasmids that possess genes belonging to the repABC family. RepA and RepB are members of the ParA and ParB families of partitioning proteins, respectively, whereas RepC is crucial for plasmid replication. In the repABC replicons, partitioning and replication functions are transcriptionally linked resulting in complex regulation of rep gene expression. The genome of R. leguminosarum bv. trifolii TA1 (RtTA1) consists of a chromosome and four plasmids (pRleTA1a-d), equipped with functional repABC genes. In this work, the regulation of transcription of the individual repABC cassettes of the four RtTA1 plasmids was studied. The involvement of the RepA and RepB as well as parS-like centromere sites in this process was depicted, demonstrating some dissimilarity in expression of respective rep regions. RtTA1 repABC genes of individual plasmids formed operons, which were negatively regulated by RepA and RepB. Individual RepA were able to bind to DNA without added nucleotides, but in the presence of ADP, bound specifically to their own operator sequences containing imperfect palindromes, and caused operon autorepression, whereas the addition of ATP stimulated non-specific binding of RepA to DNA. The RepA proteins were able to dimerize/oligomerize: in general dimers formed independently of ATP or ADP, although ATP diminished the concentration of oligomers that were produced. By the comprehensive approach focusing on a set of plasmids instead of individual replicons, the work highlighted subtle differences between the organization and regulation of particular rep operons as well as the structures and specificity of RepA proteins, which contribute to the fine-tuned coexistence of several replicons with similar repABC cassettes in the complex bacterial genome. PMID:26147968

  18. Characterization of Mobile Staphylococcus equorum Plasmids Isolated from Fermented Seafood That Confer Lincomycin Resistance.

    PubMed

    Lee, Jong-Hoon; Jeong, Do-Won

    2015-01-01

    The complete nucleotide sequences of lincomycin-resistance gene (lnuA)-containing plasmids in Staphylococcus equorum strains isolated from the high-salt-fermented seafood jeotgal were determined. These plasmids, designated pSELNU1-3, are 2638-bp long, have two polymorphic sites, and encode typical elements found in plasmids that replicate via a rolling-circle mechanism including the replication protein gene (rep), a double-stranded origin of replication, a single-stranded origin of replication, and counter-transcribed RNA sequence, as well as lnuA. Plasmid sequences exhibit over 83% identity to other Staphylococcus plasmids that harbor rep and lnuA genes. Further, three pairs of identified direct repeats may be involved in inter-plasmid recombination. One plasmid, pSELNU1, was successfully transferred to other Staphylococcus species, Enterococcus faecalis, and Tetragenococcus halophilus in vitro. Antibiotic susceptibility of the transconjugants was host-dependent, and transconjugants maintained a lincomycin resistance phenotype in the absence of selective pressure over 60 generations. PMID:26448648

  19. Characterization of Mobile Staphylococcus equorum Plasmids Isolated from Fermented Seafood That Confer Lincomycin Resistance

    PubMed Central

    Lee, Jong-Hoon; Jeong, Do-Won

    2015-01-01

    The complete nucleotide sequences of lincomycin-resistance gene (lnuA)-containing plasmids in Staphylococcus equorum strains isolated from the high-salt-fermented seafood jeotgal were determined. These plasmids, designated pSELNU1–3, are 2638-bp long, have two polymorphic sites, and encode typical elements found in plasmids that replicate via a rolling-circle mechanism including the replication protein gene (rep), a double-stranded origin of replication, a single-stranded origin of replication, and counter-transcribed RNA sequence, as well as lnuA. Plasmid sequences exhibit over 83% identity to other Staphylococcus plasmids that harbor rep and lnuA genes. Further, three pairs of identified direct repeats may be involved in inter-plasmid recombination. One plasmid, pSELNU1, was successfully transferred to other Staphylococcus species, Enterococcus faecalis, and Tetragenococcus halophilus in vitro. Antibiotic susceptibility of the transconjugants was host-dependent, and transconjugants maintained a lincomycin resistance phenotype in the absence of selective pressure over 60 generations. PMID:26448648

  20. Attempts to find phenotypic markers of the virulence plasmid of Rhodococcus equi.

    PubMed Central

    De La Peña-Moctezuma, A; Prescott, J F; Goodfellow, M

    1996-01-01

    Four isolates of Rhodococcus equi, from pneumonic foals, and containing the 85 kb virulence plasmid, a porcine isolate containing an 80 kb plasmid, and their plasmid cured derivatives, were examined for 239 phenotypic properties in an attempt to find characters other than the virulence-associated protein (VapA) which might be encoded by the virulence plasmid in organisms grown at 37 degrees C. Tests chosen included those which have previously given variable results for R. equi isolates, since such variability might be attributed to plasmid curing, and characteristics which have been described as properties of plasmids of Rhodococcus species other than R. equi. Tests included cadmium resistance, Congo red binding, resistance to 26 antibiotics, conventional clinical microbiological tests, utilization of 95 different carbon sources, enzymatic activities in API ZYM, fluorogenic assays for exo- and endopeptidase, glycosidase activities, and testosterone degradation. Apart from production of VapA by foal isolates, no phenotypic property was identified in the plasmid-positive isolates. Phenotypic characteristics of R. equi that have not been described before, and might be useful in identification were: metabolism of N-acetyl-beta D-glucopyranoside, alpha- and beta-hydroxybutyric, alpha-ketobutyric and N-acetyl-glutamic acids, of methylpyruvate, heptanoate, nonanoate and stearate esters; exopeptidase activity against alanine-alanine-tyrosine, alanine-phenylalanine-lysine, glycine-arginine, lysine-alanine, and valine-glycine-alanine; endopeptidase activity against arginine and methionine; and hydrolysis of bis-phosphate ester. PMID:8825990

  1. Comparative Genomics of an IncA/C Multidrug Resistance Plasmid from Escherichia coli and Klebsiella Isolates from Intensive Care Unit Patients and the Utility of Whole-Genome Sequencing in Health Care Settings

    PubMed Central

    Hazen, Tracy H.; Zhao, LiCheng; Boutin, Mallory A.; Stancil, Angela; Robinson, Gwen; Harris, Anthony D.; Rasko, David A.

    2014-01-01

    The IncA/C plasmids have been implicated for their role in the dissemination of β-lactamases, including gene variants that confer resistance to expanded-spectrum cephalosporins, which are often the treatment of last resort against multidrug-resistant, hospital-associated pathogens. A blaFOX-5 gene was detected in 14 Escherichia coli and 16 Klebsiella isolates that were cultured from perianal swabs of patients admitted to an intensive care unit (ICU) of the University of Maryland Medical Center (UMMC) in Baltimore, MD, over a span of 3 years. Four of the FOX-encoding isolates were obtained from subsequent samples of patients that were initially negative for an AmpC β-lactamase upon admission to the ICU, suggesting that the AmpC β-lactamase-encoding plasmid was acquired while the patient was in the ICU. The genomes of five E. coli isolates and six Klebsiella isolates containing blaFOX-5 were selected for sequencing based on their plasmid profiles. An ∼167-kb IncA/C plasmid encoding the FOX-5 β-lactamase, a CARB-2 β-lactamase, additional antimicrobial resistance genes, and heavy metal resistance genes was identified. Another FOX-5-encoding IncA/C plasmid that was nearly identical except for a variable region associated with the resistance genes was also identified. To our knowledge, these plasmids represent the first FOX-5-encoding plasmids sequenced. We used comparative genomics to describe the genetic diversity of a plasmid encoding a FOX-5 β-lactamase relative to the whole-genome diversity of 11 E. coli and Klebsiella isolates that carry this plasmid. Our findings demonstrate the utility of whole-genome sequencing for tracking of plasmid and antibiotic resistance gene distribution in health care settings. PMID:24914121

  2. Genetic structure of the Enterococcus faecalis plasmid pAD1-encoded cytolytic toxin system and its relationship to lantibiotic determinants.

    PubMed Central

    Gilmore, M S; Segarra, R A; Booth, M C; Bogie, C P; Hall, L R; Clewell, D B

    1994-01-01

    Pheromone-responsive conjugative plasmids are unique to the species Enterococcus faecalis. Many pheromone-responsive plasmids, including those frequently isolated from sites of infection, express a novel cytolysin that possesses both hemolytic and bacteriocin activities. Further, this cytolysin has been shown to be a toxin in several disease models. In the present study, nucleotide sequence determination, mutagenesis, and complementation analysis were used to determine the organization of the E. faecalis plasmid pAD1 cytolysin determinant. Four open reading frames are required for expression of the cytolysin precursor (cylLL, cylLS, cylM, and cylB). The inferred products of two of these open reading frames, CyILL and CyILS, constitute the cytolysin precursor and bear structural resemblance to posttranslationally modified bacteriocins termed lantibiotics. Similarities between the organization of the E. faecalis cytolysin determinant and expression units for lantibiotics exist, indicating that the E. faecalis cytolysin represents a new branch of this class and is the first known to possess toxin activity. Images PMID:7961506

  3. Genetic structure of the Enterococcus faecalis plasmid pAD1-encoded cytolytic toxin system and its relationship to lantibiotic determinants.

    PubMed

    Gilmore, M S; Segarra, R A; Booth, M C; Bogie, C P; Hall, L R; Clewell, D B

    1994-12-01

    Pheromone-responsive conjugative plasmids are unique to the species Enterococcus faecalis. Many pheromone-responsive plasmids, including those frequently isolated from sites of infection, express a novel cytolysin that possesses both hemolytic and bacteriocin activities. Further, this cytolysin has been shown to be a toxin in several disease models. In the present study, nucleotide sequence determination, mutagenesis, and complementation analysis were used to determine the organization of the E. faecalis plasmid pAD1 cytolysin determinant. Four open reading frames are required for expression of the cytolysin precursor (cylLL, cylLS, cylM, and cylB). The inferred products of two of these open reading frames, CyILL and CyILS, constitute the cytolysin precursor and bear structural resemblance to posttranslationally modified bacteriocins termed lantibiotics. Similarities between the organization of the E. faecalis cytolysin determinant and expression units for lantibiotics exist, indicating that the E. faecalis cytolysin represents a new branch of this class and is the first known to possess toxin activity. PMID:7961506

  4. The Complete Sequence and Comparative Analysis of a Multidrug-Resistance and Virulence Multireplicon IncFII Plasmid pEC302/04 from an Extraintestinal Pathogenic Escherichia coli EC302/04 Indicate Extensive Diversity of IncFII Plasmids

    PubMed Central

    Ho, Wing Sze; Yap, Kien-Pong; Yeo, Chew Chieng; Rajasekaram, Ganeswrie; Thong, Kwai Lin

    2016-01-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) that causes extraintestinal infections often harbor plasmids encoding fitness traits such as resistance and virulence determinants that are of clinical importance. We determined the complete nucleotide sequence of plasmid pEC302/04 from a multidrug-resistant E. coli EC302/04 which was isolated from the tracheal aspirate of a patient in Malaysia. In addition, we also performed comparative sequence analyses of 18 related IncFIIA plasmids to determine the phylogenetic relationship and diversity of these plasmids. The 140,232 bp pEC302/04 is a multireplicon plasmid that bears three replication systems (FII, FIA, and FIB) with subtype of F2:A1:B1. The plasmid is self-transmissible with a complete transfer region. pEC302/04 also carries antibiotic resistance genes such as blaTEM−1 and a class I integron containing sul1, cml and aadA resistance genes, conferring multidrug resistance (MDR) to its host, E. coli EC302/04. Besides, two iron acquisition systems (SitABCD and IutA-IucABCD) which are the conserved virulence determinants of ExPEC-colicin V or B and M (ColV/ColBM)-producing plasmids were identified in pEC302/04. Multiple toxin-antitoxin (TA)-based addiction systems (i.e., PemI/PemK, VagC/VagD, CcdA/CcdB, and Hok/Sok) and a plasmid partitioning system, ParAB, and PsiAB, which are important for plasmid maintenance were also found. Comparative plasmid analysis revealed only one conserved gene, the repA1 as the core genome, showing that there is an extensive diversity among the IncFIIA plasmids. The phylogenetic relationship of 18 IncF plasmids based on the core regions revealed that ColV/ColBM-plasmids and non-ColV/ColBM plasmids were separated into two distinct groups. These plasmids, which carry highly diverse genetic contents, are also mosaic in nature. The atypical combination of genetic materials, i.e., the MDR- and ColV/ColBM-plasmid-virulence encoding regions in a single ExPEC plasmid is rare but of clinical

  5. The bldB Gene Encodes a Small Protein Required for Morphogenesis, Antibiotic Production, and Catabolite Control in Streptomyces coelicolor

    PubMed Central

    Pope, Margaret K.; Green, Brian; Westpheling, Janet

    1998-01-01

    Mutants blocked at the earliest stage of morphological development in Streptomyces species are called bld mutants. These mutants are pleiotropically defective in the initiation of development, the ability to produce antibiotics, the ability to regulate carbon utilization, and the ability to send and/or respond to extracellular signals. Here we report the identification and partial characterization of a 99-amino-acid open reading frame (ORF99) that is capable of restoring morphogenesis, antibiotic production, and catabolite control to all of the bldB mutants. Of the existing bld mutants, bldB is of special interest because the phenotype of this mutant is the most pleiotropic. DNA sequence analysis of ORF99 from each of the existing bldB mutants identified base changes either within the coding region of the predicted protein or in the regulatory region of the gene. Primer extension analysis identified an apparent transcription start site. A promoter fusion to the xylE reporter gene showed that expression of bldB is apparently temporally regulated and that the bldB gene product is involved in the regulation of its own expression. PMID:9515926

  6. pA506, a conjugative plasmid of the plant epiphyte Pseudomonas fluorescens A506.

    PubMed

    Stockwell, Virginia O; Davis, Edward W; Carey, Alyssa; Shaffer, Brenda T; Mavrodi, Dmitri V; Hassan, Karl A; Hockett, Kevin; Thomashow, Linda S; Paulsen, Ian T; Loper, Joyce E

    2013-09-01

    Conjugative plasmids are known to facilitate the acquisition and dispersal of genes contributing to the fitness of Pseudomonas spp. Here, we report the characterization of pA506, the 57-kb conjugative plasmid of Pseudomonas fluorescens A506, a plant epiphyte used in the United States for the biological control of fire blight disease of pear and apple. Twenty-nine of the 67 open reading frames (ORFs) of pA506 have putative functions in conjugation, including a type IV secretion system related to that of MOBP6 family plasmids and a gene cluster for type IV pili. We demonstrate that pA506 is self-transmissible via conjugation between A506 and strains of Pseudomonas spp. or the Enterobacteriaceae. The origin of vegetative replication (oriV) of pA506 is typical of those in pPT23A family plasmids, which are present in many pathovars of Pseudomonas syringae, but pA506 lacks repA, a defining locus for pPT23A plasmids, and has a novel partitioning region. We selected a plasmid-cured derivative of A506 and compared it to the wild type to identify plasmid-encoded phenotypes. pA506 conferred UV resistance, presumably due to the plasmid-borne rulAB genes, but did not influence epiphytic fitness of A506 on pear or apple blossoms in the field. pA506 does not appear to confer resistance to antibiotics or other toxic elements. Based on the conjugative nature of pA506 and the large number of its genes that are shared with plasmids from diverse groups of environmental bacteria, the plasmid is likely to serve as a vehicle for genetic exchange between A506 and its coinhabitants on plant surfaces. PMID:23811504

  7. The mechanism and control of DNA transfer by the conjugative relaxase of resistance plasmid pCU1

    SciTech Connect

    Nash, Rebekah Potts; Habibi, Sohrab; Cheng, Yuan; Lujan, Scott A.; Redinbo, Matthew

    2010-11-15

    Bacteria expand their genetic diversity, spread antibiotic resistance genes, and obtain virulence factors through the highly coordinated process of conjugative plasmid transfer (CPT). A plasmid-encoded relaxase enzyme initiates and terminates CPT by nicking and religating the transferred plasmid in a sequence-specific manner. We solved the 2.3 {angstrom} crystal structure of the relaxase responsible for the spread of the resistance plasmid pCU1 and determined its DNA binding and nicking capabilities. The overall fold of the pCU1 relaxase is similar to that of the F plasmid and plasmid R388 relaxases. However, in the pCU1 structure, the conserved tyrosine residues (Y18,19,26,27) that are required for DNA nicking and religation were displaced up to 14 {angstrom} out of the relaxase active site, revealing a high degree of mobility in this region of the enzyme. In spite of this flexibility, the tyrosines still cleaved the nic site of the plasmid's origin of transfer, and did so in a sequence-specific, metal-dependent manner. Unexpectedly, the pCU1 relaxase lacked the sequence-specific DNA binding previously reported for the homologous F and R388 relaxase enzymes, despite its high sequence and structural similarity with both proteins. In summary, our work outlines novel structural and functional aspects of the relaxase-mediated conjugative transfer of plasmid pCU1.

  8. Replication of Staphylococcal Multiresistance Plasmids

    PubMed Central

    Firth, Neville; Apisiridej, Sumalee; Berg, Tracey; O'Rourke, Brendon A.; Curnock, Steve; Dyke, Keith G. H.; Skurray, Ronald A.

    2000-01-01

    Based on structural and functional properties, three groups of large staphylococcal multiresistance plasmids have been recognized, viz., the pSK1 family, pSK41-like conjugative plasmids, and β-lactamase–heavy-metal resistance plasmids. Here we describe an analysis of the replication functions of a representative of each of these plasmid groups. The replication initiation genes from the Staphylococcus aureus plasmids pSK1, pSK41, and pI9789::Tn552 were found to be related to each other and to the Staphylococcus xylosus plasmid pSX267 and are also related to rep genes of several plasmids from other gram-positive genera. Nucleotide sequence similarity between pSK1 and pI9789::Tn552 extended beyond their rep genes, encompassing upstream divergently transcribed genes, orf245 and orf256, respectively. Our analyses revealed that genes encoding proteins related to the deduced orf245 product are variously represented, in several types of organization, on plasmids possessing six seemingly evolutionarily distinct types of replication initiation genes and including both theta-mode and rolling-circle replicons. Construction of minireplicons and subsequent functional analysis demonstrated that orf245 is required for the segregational stability of the pSK1 replicon. In contrast, no gene equivalent to orf245 is evident on the conjugative plasmid pSK41, and a minireplicon encoding only the pSK41 rep gene was found to exhibit a segregational stability approaching that of the parent plasmid. Significantly, the results described establish that many of the large multiresistance plasmids that have been identified in clinical staphylococci, which were formerly presumed to be unrelated, actually utilize an evolutionarily related theta-mode replication system. PMID:10735859

  9. A Bivalent Typhoid Live Vector Vaccine Expressing both Chromosome- and Plasmid-Encoded Yersinia pestis Antigens Fully Protects against Murine Lethal Pulmonary Plague Infection

    PubMed Central

    Wang, Jin Yuan; Carrasco, Jose A.; Lloyd, Scott A.; Mellado-Sanchez, Gabriela; Diaz-McNair, Jovita; Franco, Olga; Buskirk, Amanda D.; Nataro, James P.; Pasetti, Marcela F.

    2014-01-01

    Live attenuated bacteria hold great promise as multivalent mucosal vaccines against a variety of pathogens. A major challenge of this approach has been the successful delivery of sufficient amounts of vaccine antigens to adequately prime the immune system without overattenuating the live vaccine. Here we used a live attenuated Salmonella enterica serovar Typhi strain to create a bivalent mucosal plague vaccine that produces both the protective F1 capsular antigen of Yersinia pestis and the LcrV protein required for secretion of virulence effector proteins. To reduce the metabolic burden associated with the coexpression of F1 and LcrV within the live vector, we balanced expression of both antigens by combining plasmid-based expression of F1 with chromosomal expression of LcrV from three independent loci. The immunogenicity and protective efficacy of this novel vaccine were assessed in mice by using a heterologous prime-boost immunization strategy and compared to those of a conventional strain in which F1 and LcrV were expressed from a single low-copy-number plasmid. The serum antibody responses to lipopolysaccharide (LPS) induced by the optimized bivalent vaccine were indistinguishable from those elicited by the parent strain, suggesting an adequate immunogenic capacity maintained through preservation of bacterial fitness; in contrast, LPS titers were 10-fold lower in mice immunized with the conventional vaccine strain. Importantly, mice receiving the optimized bivalent vaccine were fully protected against lethal pulmonary challenge. These results demonstrate the feasibility of distributing foreign antigen expression across both chromosomal and plasmid locations within a single vaccine organism for induction of protective immunity. PMID:25332120

  10. Detection of mcr-1 encoding plasmid-mediated colistin-resistant Escherichia coli isolates from human bloodstream infection and imported chicken meat, Denmark 2015.

    PubMed

    Hasman, Henrik; Hammerum, Anette M; Hansen, Frank; Hendriksen, Rene S; Olesen, Bente; Agersø, Yvonne; Zankari, Ea; Leekitcharoenphon, Pimlapas; Stegger, Marc; Kaas, Rolf S; Cavaco, Lina M; Hansen, Dennis S; Aarestrup, Frank M; Skov, Robert L

    2015-01-01

    The plasmid-mediated colistin resistance gene, mcr-1, was detected in an Escherichia coli isolate from a Danish patient with bloodstream infection and in five E. coli isolates from imported chicken meat. One isolate from chicken meat belonged to the epidemic spreading sequence type ST131. In addition to IncI2, an incX4 replicon was found to be linked to mcr-1. This report follows a recent detection of mcr-1 in E. coli from animals, food and humans in China. PMID:26676364