Science.gov

Sample records for plasmodium nek-2 nima-related

  1. Mitotic regulation by NIMA-related kinases

    PubMed Central

    O'Regan, Laura; Blot, Joelle; Fry, Andrew M

    2007-01-01

    The NIMA-related kinases represent a family of serine/threonine kinases implicated in cell cycle control. The founding member of this family, the NIMA kinase of Aspergillus nidulans, as well as the fission yeast homologue Fin1, contribute to multiple aspects of mitotic progression including the timing of mitotic entry, chromatin condensation, spindle organization and cytokinesis. Mammals contain a large family of eleven NIMA-related kinases, named Nek1 to Nek11. Of these, there is now substantial evidence that Nek2, Nek6, Nek7 and Nek9 also regulate mitotic events. At least three of these kinases, as well as NIMA and Fin1, have been localized to the microtubule organizing centre of their respective species, namely the centrosome or spindle pole body. Here, they have important functions in microtubule organization and mitotic spindle assembly. Other Nek kinases have been proposed to play microtubule-dependent roles in non-dividing cells, most notably in regulating the axonemal microtubules of cilia and flagella. In this review, we discuss the evidence that NIMA-related kinases make a significant contribution to the orchestration of mitotic progression and thereby protect cells from chromosome instability. Furthermore, we highlight their potential as novel chemotherapeutic targets. PMID:17727698

  2. NIMA-related kinase TbNRKC is involved in basal body separation in Trypanosoma brucei.

    PubMed

    Pradel, Lydie C; Bonhivers, Mélanie; Landrein, Nicolas; Robinson, Derrick R

    2006-05-01

    The NIMA-related kinase 2 (NEK 2) has important cell cycle functions related to centriole integrity and splitting. Trypanosoma brucei does not possess centrioles, however, cytokinesis is coupled to basal body separation events. Here we report the first functional characterisation of a T. brucei basal body-cytoskeletal NIMA-related kinase (NRK) protein, TbNRKC. The TbNRKC kinase domain has high amino acid identity with the human NEK1 kinase domain (50%) but also shares 42% identity with human NEK2. TbNRKC is expressed in bloodstream and procyclic cells and functions as a bona fide kinase in vitro. Remarkably, RNAi knockdown of TbNRKC and overexpression of kinase-dead TbNRKC in procyclic forms induces the accumulation of cells with four basal bodies, whereas overexpression of active protein produces supernumary basal bodies and blocks cytokinesis. TbNRKC is located on mature and immature basal bodies and is the first T. brucei NRK to be found associated with the basal body cytokinesis pathway. PMID:16608878

  3. Dishevelled is a NEK2 kinase substrate controlling dynamics of centrosomal linker proteins.

    PubMed

    Cervenka, Igor; Valnohova, Jana; Bernatik, Ondrej; Harnos, Jakub; Radsetoulal, Matej; Sedova, Katerina; Hanakova, Katerina; Potesil, David; Sedlackova, Miroslava; Salasova, Alena; Steinhart, Zachary; Angers, Stephane; Schulte, Gunnar; Hampl, Ales; Zdrahal, Zbynek; Bryja, Vitezslav

    2016-08-16

    Dishevelled (DVL) is a key scaffolding protein and a branching point in Wnt signaling pathways. Here, we present conclusive evidence that DVL regulates the centrosomal cycle. We demonstrate that DVL dishevelled and axin (DIX) domain, but not DIX domain-mediated multimerization, is essential for DVL's centrosomal localization. DVL accumulates during the cell cycle and associates with NIMA-related kinase 2 (NEK2), which is able to phosphorylate DVL at a multitude of residues, as detected by a set of novel phospho-specific antibodies. This creates interfaces for efficient binding to CDK5 regulatory subunit-associated protein 2 (CDK5RAP2) and centrosomal Nek2-associated protein 1 (C-NAP1), two proteins of the centrosomal linker. Displacement of DVL from the centrosome and its release into the cytoplasm on NEK2 phosphorylation is coupled to the removal of linker proteins, an event necessary for centrosomal separation and proper formation of the mitotic spindle. Lack of DVL prevents NEK2-controlled dissolution of loose centrosomal linker and subsequent centrosomal separation. Increased DVL levels, in contrast, sequester centrosomal NEK2 and mimic monopolar spindle defects induced by a dominant negative version of this kinase. Our study thus uncovers molecular crosstalk between centrosome and Wnt signaling. PMID:27486244

  4. NEK2 mediates ALDH1A1-dependent drug resistance in multiple myeloma

    PubMed Central

    Xia, Jiliang; Gu, Zhimin; Wendlandt, Erik; Zhan, Xin; Janz, Siegfried; Tricot, Guido; Zhan, Fenghuang

    2014-01-01

    We reported previously that increased expression of aldehyde dehydrogenase 1 (ALDH1) in multiple myeloma (MM) is a marker of tumor-initiating cells (TICs) that is further associated with chromosomal instability (CIN). Here we demonstrate that member A1 of the ALDH1 family of proteins, ALDH1A1, is most abundantly expressed in myeloma. Enforced expression of ALDH1A1 in myeloma cells led to increased clonogenicity, tumor formation in mice, and resistance to myeloma drugs in vitro and in vivo. The mechanism underlying these phenotypes included the ALDH1A1-dependent activation of drug-efflux pump, ABCB1, and survival proteins, AKT and BCL2. Over expression of ALDH1A1 in myeloma cells led to increased mRNA and protein levels of NIMA-related kinase 2 (NEK2), whereas shRNA-mediated knock down of NEK2 decreased drug efflux pump activity and drug resistance. The activation of NEK2 in myeloma cells relied on the ALDH1A1-dependent generation of the retinoid X receptor α (RXRα) ligand, 9-cis retinoic acid (9CRA) – not the retinoic acid receptor α (RARα) ligand, all-trans retinoic acid (ATRA). These findings implicate the ALDH1A1-RXRα-NEK2 pathway in drug resistance and disease relapse in myeloma and suggest that specific inhibitors of ALDH1A1 are worthy of consideration for clinical development of new approaches to overcome drug resistance in myeloma. PMID:25230277

  5. Role of Nek2 on centrosome duplication and aneuploidy in breast cancer cells.

    PubMed

    Cappello, P; Blaser, H; Gorrini, C; Lin, D C C; Elia, A J; Wakeham, A; Haider, S; Boutros, P C; Mason, J M; Miller, N A; Youngson, B; Done, S J; Mak, T W

    2014-05-01

    Breast cancer is the most common solid tumor and the second most common cause of death in women. Despite a large body of literature and progress in breast cancer research, many molecular aspects of this complex disease are still poorly understood, hindering the design of specific and effective therapeutic strategies. To identify the molecules important in breast cancer progression and metastasis, we tested the in vivo effects of inhibiting the functions of various kinases and genes involved in the regulation/modulation of the cytoskeleton by downregulating them in mouse PyMT mammary tumor cells and human breast cancer cell lines. These kinases and cytoskeletal regulators were selected based on their prognostic values for breast cancer patient survival. PyMT tumor cells, in which a selected gene was stably knocked down were injected into the tail veins of mice, and the formation of tumors in the lungs was monitored. One of the several genes found to be important for tumor growth in the lungs was NIMA-related kinases 2 (Nek2), a cell cycle-related protein kinase. Furthermore, Nek2 was also important for tumor growth in the mammary fat pad. In various human breast cancer cell lines, Nek2 knockdown induced aneuploidy and cell cycle arrest that led to cell death. Significantly, the breast cancer cell line most sensitive to Nek2 depletion was of the triple negative breast cancer subtype. Our data indicate that Nek2 has a pivotal role in breast cancer growth at primary and secondary sites, and thus may be an attractive and novel therapeutic target for this disease. PMID:23708664

  6. Role of NEK2A in Human Cancer and Its Therapeutic Potentials

    PubMed Central

    Xia, Jiliang; Franqui Machin, Reinaldo

    2015-01-01

    Chromosome instability (CIN) has been identified as a common feature of most human cancers. A number of centrosomal kinases are thought to cause CIN in cancer cells. Part of those centrosomal kinases exhibit elevated expression in a wide variety of tumours and cancer cell lines. Additionally, critical roles in many aspects of cancer cell growth, proliferation, metastasis, and drug resistance have been assigned to some of these centrosomal kinases, such as polo-like kinase 1 (PLk1) and Aurora-A kinase. Recent studies from our group and others revealed that a centrosomal kinase, Never in Mitosis (NIMA) Related Kinase 2A (NEK2A), is frequently upregulated in multiple types of human cancers. Uncontrolled activity of NEK2A activates several oncogenic pathways and ABC transporters, thereby leading to CIN, cancer cell proliferation, metastasis, and enhanced drug resistance. In this paper, we highlight recent findings on the aberrant expression and functional significance of NEK2A in human cancers and emphasize their significance for therapeutic potentials. PMID:25705694

  7. Purification, cloning, and characterization of Nek8, a novel NIMA-related kinase, and its candidate substrate Bicd2.

    PubMed

    Holland, Pamela M; Milne, Alison; Garka, Kirsten; Johnson, Richard S; Willis, Cynthia; Sims, John E; Rauch, Charles T; Bird, Timothy A; Virca, G Duke

    2002-05-01

    We describe the isolation, cloning, and characterization of human Nek8, a new mammalian NIMA-related kinase, and its candidate substrate Bicd2. Nek8 was isolated as a beta-casein kinase activity in rabbit lung and has an N-terminal catalytic domain homologous to the Nek family of protein kinases. Nek8 also contains a central domain with homology to RCC1, a guanine nucleotide exchange factor for the GTPase Ran, and a C-terminal coiled-coil domain. Like Nek2, Nek8 prefers beta-casein over other exogenous substrates, has shared biochemical requirements for kinase activity, and is capable of autophosphorylation and oligomerization. Nek8 activity is not cell cycle regulated, but like Nek3, levels are consistently higher in G(0)-arrested cells. During the purification of Nek8 a second protein co-chromatographed with Nek8 activity. This protein, Bicd2, is a human homolog of the Drosophila protein Bicaudal D, a coiled-coil protein. Bicd2 is phosphorylated by Nek8 in vitro, and the endogenous proteins associate in vivo. Bicd2 localizes to cytoskeletal structures, and its subcellular localization is dependent on microtubule morphology. Treatment of cells with nocodazole leads to dramatic reorganization of Bicd2, and correlates with Nek8 phosphorylation. This may be indicative of a role for Nek8 and Bicd2 associated with cell cycle independent microtubule dynamics. PMID:11864968

  8. Nek2A phosphorylates and stabilizes SuFu: A new strategy of Gli2/Hedgehog signaling regulatory mechanism.

    PubMed

    Wang, Yao; Li, Yong; Hu, Guanghui; Huang, Xuan; Rao, Hai; Xiong, Xiangyang; Luo, Zhijun; Lu, Quqin; Luo, Shiwen

    2016-09-01

    Suppressor of Fused (SuFu) plays a conservative role in the regulation of the Gli transcription factors within the Hedgehog (Hh) signaling pathway. Despite the central importance of SuFu in the Hh pathway, little is known about its regulation. Here, we performed a GAL4-based yeast two-hybrid screen using human SuFu as bait, and identified NIMA-related expressed kinase 2A (Nek2A) as a new SuFu-interacting protein, which was also confirmed by glutathione-S-transferase pull-down and co-immunoprecipitation assays. Intriguingly, Nek2A is found to stabilize SuFu at least partly depending on its kinase activity, thereby triggering phosphorylation of the SuFu protein. Moreover, the phosphorylated SuFu inhibits the nuclear localization and transcriptional activity of Gli2/Hh signaling. These findings reveal a new mechanism of mammalian SuFu regulation, and offers novel insights into Hh signaling regulation in development and human disease. PMID:27297360

  9. NEK2 regulates stem-like properties and predicts poor prognosis in hepatocellular carcinoma.

    PubMed

    Lin, Shuang; Zhou, Senjun; Jiang, Shaojie; Liu, Xiaolong; Wang, Yifan; Zheng, Xueyong; Zhou, Haimeng; Li, Xuhui; Cai, Xiujun

    2016-08-01

    NEK2 has been estimated to play an important role in cancer progression. However, its relevance in hepatocellular carcinoma (HCC) has not yet been explored. Immunohistochemistry revealed NEK2 expression was upregulated in HCC. NEK2-positive hepatocellular carcinoma patients were associated with poor prognosis after surgery compared with NEK2-negative patients based on Kaplan-Meier curves. Deletion of NEK2 reduced self-renewal properties and chemotherapeutic resistance, and decreased the stemness associated genes in cell lines. NEK2 was associated with unfavorable outcomes in HCC patients, and was revealed to regulate self-renewal property by means of Wnt/β-catenin signaling, and chemotherapeutic resistance by preferential regulation of the expression of ABCG2 and ALDH1A1 in HCC cells. PMID:27349376

  10. Alternative splice variants of the human centrosome kinase Nek2 exhibit distinct patterns of expression in mitosis.

    PubMed Central

    Hames, Rebecca S; Fry, Andrew M

    2002-01-01

    Nek2 is a cell-cycle-regulated protein kinase that localizes to the centrosome and is likely to be involved in regulating centrosome structure at the G(2)/M transition. Here, we localize the functional human Nek2 gene to chromosome 1 and show that alternative polyadenylation signals provide a mechanism for generating two distinct isoforms. Sequencing of products generated by reverse transcriptase PCR, immunoblotting of cell extracts and transfection of antisense oligonucleotides together demonstrate that human Nek2 is expressed as two splice variants. These isoforms, designated Nek2A and Nek2B, are detected in primary blood lymphocytes as well as adult transformed cells. Nek2A and Nek2B, which can form homo- and hetero-dimers, both localize to the centrosome, although only Nek2A can induce centrosome splitting upon overexpression. Importantly, Nek2A and Nek2B exhibit distinct patterns of cell-cycle-dependent expression. Both are present in low amounts in the G(1) phase and exhibit increased abundance in the S and G(2) phases. However, Nek2A disappears in prometaphase-arrested cells, whereas Nek2B remains elevated. These results demonstrate that two alternative splice variants of the human centrosomal kinase Nek2 exist that differ in their expression patterns during mitosis. This has important implications for our understanding of both Nek2 protein kinase regulation and the control of centrosome structure during mitosis. PMID:11742531

  11. Nek2 Is a Novel Regulator of B Cell Development and Immunological Response

    PubMed Central

    Zhou, Wen; Huang, Junwei; Yang, Ye; Wendlandt, Erik; Xu, Hongwei; Zhan, Fenghuang

    2014-01-01

    The serine/threonine kinase Nek2 is commonly found upregulated in a wide variety of neoplasms including diffuse large B cell lymphoma and multiple myeloma. High expression of Nek2 is implicated in the induction of chromosomal instability, promotion of cell proliferation, and drug resistance in tumor cells as well as a marker for poor clinical outcomes. Despite its well recorded involvement in chromosomal instability and neoplastic growth, little is known about the involvement of Nek2 in B cell development. Here we report the development of a transgenic mouse line with conditional expression of Nek2 in the B cell lineage and the effects it has on the development of B cells. Interestingly, we found that the overexpression of Nek2 does not induce spontaneous tumor formation within the transgenic mice up to 24 months after induction. Instead, overexpression of Nek2 in the B cell lineage affects the development of B cells by increasing the proportion of immature B cells in the bone marrow and decreasing B-1 B cells in peritoneal cavity. Furthermore, Nek2 transgenic mice develop spontaneous germinal centers and exhibit an enhanced T cell dependent immune response. Altogether, our data demonstrates a novel role for Nek2 in regulating B cell development and the immune response. PMID:25485281

  12. A NIMA-related kinase, CNK4, regulates ciliary stability and length

    PubMed Central

    Meng, Dan; Pan, Junmin

    2016-01-01

    NIMA-related kinases (Nrks or Neks) have emerged as key regulators of ciliogenesis. In human, mutations in Nek1 and Nek8 cause cilia-related disorders. The ciliary functions of Nrks are mostly revealed by genetic studies; however, the underlying mechanisms are not well understood. Here we show that a Chlamydomonas Nrk, CNK4, regulates ciliary stability and length. CNK4 is localized to the basal body region and the flagella. The cnk4-null mutant exhibited long flagella, with formation of flagellar bulges. The flagella gradually became curled at the bulge formation site, leading to flagellar loss. Electron microscopy shows that the curled flagella involved curling and degeneration of axonemal microtubules. cnk4 mutation resulted in flagellar increases of IFT trains, as well as its accumulation at the flagellar bulges. IFT speeds were not affected, however, IFT trains frequently stalled, leading to reduced IFT frequencies. These data are consistent with a model in which CNK4 regulates microtubule dynamics and IFT to control flagellar stability and length. PMID:26764095

  13. A NIMA-related kinase, CNK4, regulates ciliary stability and length.

    PubMed

    Meng, Dan; Pan, Junmin

    2016-03-01

    NIMA-related kinases (Nrks or Neks) have emerged as key regulators of ciliogenesis. In human, mutations in Nek1 and Nek8 cause cilia-related disorders. The ciliary functions of Nrks are mostly revealed by genetic studies; however, the underlying mechanisms are not well understood. Here we show that a Chlamydomonas Nrk, CNK4, regulates ciliary stability and length. CNK4 is localized to the basal body region and the flagella. The cnk4-null mutant exhibited long flagella, with formation of flagellar bulges. The flagella gradually became curled at the bulge formation site, leading to flagellar loss. Electron microscopy shows that the curled flagella involved curling and degeneration of axonemal microtubules. cnk4 mutation resulted in flagellar increases of IFT trains, as well as its accumulation at the flagellar bulges. IFT speeds were not affected, however, IFT trains frequently stalled, leading to reduced IFT frequencies. These data are consistent with a model in which CNK4 regulates microtubule dynamics and IFT to control flagellar stability and length. PMID:26764095

  14. Nek2 activation of Kif24 ensures cilium disassembly during the cell cycle.

    PubMed

    Kim, Sehyun; Lee, Kwanwoo; Choi, Jung-Hwan; Ringstad, Niels; Dynlacht, Brian David

    2015-01-01

    Many proteins are known to promote ciliogenesis, but mechanisms that promote primary cilia disassembly before mitosis are largely unknown. Here we identify a mechanism that favours cilium disassembly and maintains the disassembled state. We show that co-localization of the S/G2 phase kinase, Nek2 and Kif24 triggers Kif24 phosphorylation, inhibiting cilia formation. We show that Kif24, a microtubule depolymerizing kinesin, is phosphorylated by Nek2, which stimulates its activity and prevents the outgrowth of cilia in proliferating cells, independent of Aurora A and HDAC6. Our data also suggest that cilium assembly and disassembly are in dynamic equilibrium, but Nek2 and Kif24 can shift the balance toward disassembly. Further, Nek2 and Kif24 are overexpressed in breast cancer cells, and ablation of these proteins restores ciliation in these cells, thereby reducing proliferation. Thus, Kif24 is a physiological substrate of Nek2, which regulates cilia disassembly through a concerted mechanism involving Kif24-mediated microtubule depolymerization. PMID:26290419

  15. Nek2 activation of Kif24 ensures cilium disassembly during the cell cycle

    PubMed Central

    Kim, Sehyun; Lee, Kwanwoo; Choi, Jung-Hwan; Ringstad, Niels; Dynlacht, Brian David

    2015-01-01

    Many proteins are known to promote ciliogenesis, but mechanisms that promote primary cilia disassembly before mitosis are largely unknown. Here we identify a mechanism that favours cilium disassembly and maintains the disassembled state. We show that co-localization of the S/G2 phase kinase, Nek2 and Kif24 triggers Kif24 phosphorylation, inhibiting cilia formation. We show that Kif24, a microtubule depolymerizing kinesin, is phosphorylated by Nek2, which stimulates its activity and prevents the outgrowth of cilia in proliferating cells, independent of Aurora A and HDAC6. Our data also suggest that cilium assembly and disassembly are in dynamic equilibrium, but Nek2 and Kif24 can shift the balance toward disassembly. Further, Nek2 and Kif24 are overexpressed in breast cancer cells, and ablation of these proteins restores ciliation in these cells, thereby reducing proliferation. Thus, Kif24 is a physiological substrate of Nek2, which regulates cilia disassembly through a concerted mechanism involving Kif24-mediated microtubule depolymerization. PMID:26290419

  16. Design of potent and selective hybrid inhibitors of the mitotic kinase Nek2: SAR, structural biology and cellular activity

    PubMed Central

    Innocenti, Paolo; Cheung, Kwai-Ming J.; Solanki, Savade; Mas-Droux, Corine; Rowan, Fiona; Yeoh, Sharon; Boxall, Kathy; Westlake, Maura; Pickard, Lisa; Hardy, Tara; Baxter, Joanne E.; Aherne, G. Wynne; Bayliss, Richard; Fry, Andrew M.; Hoelder, Swen

    2013-01-01

    We report herein a series of Nek2 inhibitors based on an aminopyridine scaffold. These compounds have been designed by combining key elements of two previously discovered chemical series. Structure based design led to aminopyridine (R )-21, a potent and selective inhibitor able to modulate Nek2 activity in cells. PMID:22404346

  17. Synthesis and Biological Evaluation of a Series of Novel Inhibitor of Nek2/Hec1 Analogues

    PubMed Central

    Qiu, Xiao-Long; Li, Guideng; Wu, Guikai; Zhu, Jiewen; Zhou, Longen; Chen, Phang-Lang; Chamberlin, A. Richard; Lee, Wen-Hwa

    2009-01-01

    Hec1 (High Expression in Cancer 1) is an oncogene overly expressed in many human cancers. Small molecule INH (Inhibitor of Nek2/Hec1) targeting the Hec1 and its regulator, Nek2, in the mitotic pathway was identified to inactivate Hec1/Nek2 function mediated by protein degradation that subsequently leads to chromosome mis-segregation and cell death. To further improve the efficacy of INH, a series of INH analogues was designed, synthesized and evaluated. Among these 33 newly-synthesized analogues, three of them, 6, 13 and 21, have 6-8 fold more potent cell killing activity than the previous lead compound INH1. Compounds 6 and 21 were chosen for analyzing the underlying action mechanism. They target directly the Hec1/Nek2 pathway and cause chromosome mis-alignment as well as cell death, a mechanism similar to that of INH1. This initial exploration of structural/functional relationship of INH may advance the progress for developing clinically applicable INH analogue. PMID:19243176

  18. Characterization of Cep85 – a new antagonist of Nek2A that is involved in the regulation of centrosome disjunction

    PubMed Central

    Chen, Canhe; Tian, Fang; Lu, Lin; Wang, Yun; Xiao, Zhe; Yu, Chengtao; Yu, Xianwen

    2015-01-01

    ABSTRACT Nek2 has been implicated in centrosome disjunction at the onset of mitosis to promote bipolar spindle formation, and hyperactivation of Nek2 leads to the premature centrosome separation. Its activity, therefore, needs to be strictly regulated. In this study, we report that Cep85, an uncharacterized centrosomal protein, acts as a binding partner of Nek2A. It colocalizes with isoform A of Nek2 (Nek2A) at centrosomes and forms a granule meshwork enveloping the proximal ends of centrioles. Opposite to the effects of Nek2A, overexpression of Cep85 in conjunction with inhibition of the motor protein Eg5 (also known as KIF11) leads to the failure of centrosome disjunction. By contrast, depletion of Cep85 results in the precocious centrosome separation. We also define the Nek2A binding and centrosome localization domains within Cep85. Although the Nek2A-binding domain alone is sufficient to inhibit Nek2A kinase activity in vitro, both domains are indispensable for full suppression of centrosome disjunction in cells. Thus, we propose that Cep85 is a bona fide Nek2A-binding partner that surrounds the proximal ends of centrioles where it cooperates with PP1γ (also known as PPP1CC) to antagonize Nek2A activity in order to maintain the centrosome integrity in interphase in mammalian cells. PMID:26220856

  19. NIMA-related kinases defective in murine models of polycystic kidney diseases localize to primary cilia and centrosomes.

    PubMed

    Mahjoub, Moe R; Trapp, Melissa L; Quarmby, Lynne M

    2005-12-01

    A key feature of the polycystic kidney diseases is aberrant cell proliferation, a consequence of dysfunctional ciliary signaling. The NIMA-related kinases (Nek) Nek1 and Nek8 carry the causal mutations of two of the eight established mouse models of polycystic kidneys. Nek proteins have roles in cell cycle and may contribute to coordinate regulation of cilia and cell-cycle progression. Herein is reported that in a mouse kidney epithelial cell line, mNek1 localizes to centrosomes in interphase and remains associated with the mitotic spindle pole during mitosis. In contrast, mNek8 localizes to the proximal region of the primary cilium and is not observed in dividing cells. Knockdown of mNek8 by siRNA does not affect ciliary assembly. Taken together with the phenotypes of the mutant mice, these data suggest that mNek1 and mNek8 provide links between cilia, centrosomes, and cell-cycle regulation. PMID:16267153

  20. Cdk4 and Nek2 Signal Binucleation and Centrosome Amplification in a Her2+ Breast Cancer Model

    PubMed Central

    Harrison Pitner, Mary Kathryn; Saavedra, Harold I.

    2013-01-01

    Centrosome amplification (CA) is a contributor to carcinogenesis, generating aneuploidy, and chromosome instability. Previous work shows that breast adenocarcinomas have a higher frequency of centrosome defects compared to normal breast tissues. Abnormal centrosome phenotypes are found in pre-malignant lesions, suggesting an early role in breast carcinogenesis. However, the role of CA in breast cancers remains elusive. Identification of pathways and regulatory molecules involved in the generation of CA is essential to understanding its role in breast tumorigenesis. We established a breast cancer model of CA using Her2-positive cells. Our goal was to identify centrosome cycle molecules that are deregulated by aberrant Her2 signaling and the mechanisms driving CA. Our results show some Her2+ breast cancer cell lines harbor both CA and binucleation. Abolishing the expression of Cdk4 abrogated both CA and binucleation in these cells. We also found the source of binucleation in these cells to be defective cytokinesis that is normalized by downregulation of Cdk4. Protein levels of Nek2 diminish upon Cdk4 knockdown and vice versa, suggesting a molecular connection between Cdk4 and Nek2. Knockdown of Nek2 reduces CA and binucleation in this model while its overexpression further enhances centrosome amplification. We conclude that CA is modulated through Cdk4 and Nek2 signaling and that binucleation is a likely source of CA in Her2+ breast cancer cells. PMID:23776583

  1. A NIMA-Related Kinase Suppresses the Flagellar Instability Associated with the Loss of Multiple Axonemal Structures

    PubMed Central

    Lin, Huawen; Zhang, Zhengyan; Guo, Suyang; Chen, Fan; Kessler, Jonathan M.; Wang, Yan Mei; Dutcher, Susan K.

    2015-01-01

    CCDC39 and CCDC40 were first identified as causative mutations in primary ciliary dyskinesia patients; cilia from patients show disorganized microtubules, and they are missing both N-DRC and inner dynein arms proteins. In Chlamydomonas, we used immunoblots and microtubule sliding assays to show that mutants in CCDC40 (PF7) and CCDC39 (PF8) fail to assemble N-DRC, several inner dynein arms, tektin, and CCDC39. Enrichment screens for suppression of pf7; pf8 cells led to the isolation of five independent extragenic suppressors defined by four different mutations in a NIMA-related kinase, CNK11. These alleles partially rescue the flagellar length defect, but not the motility defect. The suppressor does not restore the missing N-DRC and inner dynein arm proteins. In addition, the cnk11 mutations partially suppress the short flagella phenotype of N-DRC and axonemal dynein mutants, but do not suppress the motility defects. The tpg1 mutation in TTLL9, a tubulin polyglutamylase, partially suppresses the length phenotype in the same axonemal dynein mutants. In contrast to cnk11, tpg1 does not suppress the short flagella phenotype of pf7. The polyglutamylated tubulin in the proximal region that remains in the tpg1 mutant is reduced further in the pf7; tpg1 double mutant by immunofluorescence. CCDC40, which is needed for docking multiple other axonemal complexes, is needed for tubulin polyglutamylation in the proximal end of the flagella. The CCDC39 and CCDC40 proteins are likely to be involved in recruiting another tubulin glutamylase(s) to the flagella. Another difference between cnk11-1 and tpg1 mutants is that cnk11-1 cells show a faster turnover rate of tubulin at the flagellar tip than in wild-type flagella and tpg1 flagella show a slower rate. The double mutant shows a turnover rate similar to tpg1, which suggests the faster turnover rate in cnk11-1 flagella requires polyglutamylation. Thus, we hypothesize that many short flagella mutants in Chlamydomonas have increased

  2. Detection of IGF2BP3, HOXB7, and NEK2 mRNA Expression in Brush Cytology Specimens as a New Diagnostic Tool in Patients with Biliary Strictures

    PubMed Central

    Nischalke, Hans Dieter; Schmitz, Volker; Luda, Carolin; Aldenhoff, Katharina; Berger, Cordula; Feldmann, Georg; Sauerbruch, Tilman; Spengler, Ulrich; Nattermann, Jacob

    2012-01-01

    Introduction It is a challenging task to distinguish between benign and malignant lesions in patients with biliary strictures. Here we analyze whether determination of target gene mRNA levels in intraductal brush cytology specimens may be used to improve the diagnosis of bile duct carcinoma. Materials and Methods Brush cytology specimens from 119 patients with biliary strictures (malignant: n = 72; benign: n = 47) were analyzed in a retrospective cohort study. mRNA of IGF-II mRNA-binding protein 3 (IGF2BP3), homeobox B7 (HOXB7), Forkhead box M1 (FOXM1), kinesin family member 2C (KIF2C) and serine/threonine kinase NEK2 was determined by semi-quantitative RT-PCR using the ΔCt method. Results IGF2BP3 (p<0.0001), HOXB7 (p<0.0001), and NEK2 (p<0.0001) mRNA expression levels were significantly increased in patients with cholangiocarcinoma or pancreatic cancer. Median ΔCt values differed by 3.5 cycles (IGF2BP3), 2.8 cycles (HOXB7) and 1.3 cycles (NEK2) corresponding to 11-fold, 7-fold and 2.5-fold increased mRNA levels in malignant versus benign samples. Sensitivity to detect biliary cancer was 76.4% for IGF2BP3 (80.9% specificity); 72.2% for HOXB7 (78.7% specificity) and 65.3% for NEK2 (72.3% specificity), whereas routine cytology reached only 43.1% sensitivity (85.4% specificity). Diagnostic precision was further improved, when all three molecular markers were assessed in combination (77.8% sensitivity, 87.2% specificity) and achieved 87.5% sensitivity and 87.2% specificity when molecular markers were combined with routine cytology. Conclusions Our data suggest that measuring IGF2BP3, HOXB7 and NEK2 mRNA levels by RT-PCR in addition to cytology has the potential to improve detection of malignant biliary disorders from brush cytology specimens. PMID:22879911

  3. Plasmodium vivax: who cares?

    PubMed Central

    Galinski, Mary R; Barnwell, John W

    2008-01-01

    More attention is being focused on malaria today than any time since the world's last efforts to achieve eradication over 40 years ago. The global community is now discussing strategies aimed at dramatically reducing malarial disease burden and the eventual eradication of all types of malaria, everywhere. As a consequence, Plasmodium vivax, which has long been neglected and mistakenly considered inconsequential, is now entering into the strategic debates taking place on malaria epidemiology and control, drug resistance, pathogenesis and vaccines. Thus, contrary to the past, the malaria research community is becoming more aware and concerned about the widespread spectrum of illness and death caused by up to a couple of hundred million cases of vivax malaria each year. This review brings these issues to light and provides an overview of P. vivax vaccine development, then and now. Progress had been slow, given inherent research challenges and minimal support in the past, but prospects are looking better for making headway in the next few years. P. vivax, known to invade the youngest red blood cells, the reticulocytes, presents a strong challenge towards developing a reliable long-term culture system to facilitate needed research. The P. vivax genome was published recently, and vivax researchers now need to coordinate efforts to discover new vaccine candidates, establish new vaccine approaches, capitalize on non-human primate models for testing, and investigate the unique biological features of P. vivax, including the elusive P. vivax hypnozoites. Comparative studies on both P. falciparum and P. vivax in many areas of research will be essential to eradicate malaria. And to this end, the education and training of future generations of dedicated "malariologists" to advance our knowledge, understanding and the development of new interventions against each of the malaria species infecting humans also will be essential. PMID:19091043

  4. Immunoregulatory alterations in Plasmodium falciparum and Plasmodium vivax infections.

    PubMed

    Merino, F; Layrisse, Z; Godoy, G; Volcán, G

    1986-09-01

    Studies on the immune function of patients with acute Plasmodium vivax or P. falciparum infections were performed. All subjects were residing in recent malaria endemic areas of Venezuela. Lymphopenia, reduction of peripheral blood T-lymphocytes positive for monoclonal antibody OKT4 (T helper) a decrease of in vitro mitogenic proliferative response and natural killer cell activity were observed. Serum lymphocytotoxic antibodies reactive at 37 degrees C were detected in both groups of patients as well as serum autoantibodies. The possible role of lymphocytotoxic autoantibodies in the etiology of the T-lymphocyte depletion and acquired immunological perturbations in human malaria is discussed. PMID:2947313

  5. Control of Plasmodium knowlesi malaria

    NASA Astrophysics Data System (ADS)

    Abdullahi, Mohammed Baba; Hasan, Yahya Abu; Abdullah, Farah Aini

    2015-10-01

    The most significant and efficient measures against Plasmodium knowlesi outbreaks are efficient anti malaria drug, biological control in form of predatory mosquitoes and culling control strategies. In this paper optimal control theory is applied to a system of ordinary differential equation. It describes the disease transmission and Pontryagin's Maximum Principle is applied for analysis of the control. To this end, three control strategies representing biological control, culling and treatment were incorporated into the disease transmission model. The simulation results show that the implementation of the combination strategy during the epidemic is the most cost-effective strategy for disease transmission.

  6. The Plasmodium Export Element Revisited

    PubMed Central

    Hiss, Jan Alexander; Przyborski, Jude Marek; Schwarte, Florian; Lingelbach, Klaus; Schneider, Gisbert

    2008-01-01

    We performed a bioinformatical analysis of protein export elements (PEXEL) in the putative proteome of the malaria parasite Plasmodium falciparum. A protein family-specific conservation of physicochemical residue profiles was found for PEXEL-flanking sequence regions. We demonstrate that the family members can be clustered based on the flanking regions only and display characteristic hydrophobicity patterns. This raises the possibility that the flanking regions may contain additional information for a family-specific role of PEXEL. We further show that signal peptide cleavage results in a positional alignment of PEXEL from both proteins with, and without, a signal peptide. PMID:18253504

  7. The Plasmodium export element revisited.

    PubMed

    Hiss, Jan Alexander; Przyborski, Jude Marek; Schwarte, Florian; Lingelbach, Klaus; Schneider, Gisbert

    2008-01-01

    We performed a bioinformatical analysis of protein export elements (PEXEL) in the putative proteome of the malaria parasite Plasmodium falciparum. A protein family-specific conservation of physicochemical residue profiles was found for PEXEL-flanking sequence regions. We demonstrate that the family members can be clustered based on the flanking regions only and display characteristic hydrophobicity patterns. This raises the possibility that the flanking regions may contain additional information for a family-specific role of PEXEL. We further show that signal peptide cleavage results in a positional alignment of PEXEL from both proteins with, and without, a signal peptide. PMID:18253504

  8. The periodicity of Plasmodium vivax and Plasmodium falciparum in Venezuela.

    PubMed

    Grillet, María-Eugenia; El Souki, Mayida; Laguna, Francisco; León, José Rafael

    2014-01-01

    We investigated the periodicity of Plasmodium vivax and P. falciparum incidence in time-series of malaria data (1990-2010) from three endemic regions in Venezuela. In particular, we determined whether disease epidemics were related to local climate variability and regional climate anomalies such as the El Niño Southern Oscillation (ENSO). Malaria periodicity was found to exhibit unique features in each studied region. Significant multi-annual cycles of 2- to about 6-year periods were identified. The inter-annual variability of malaria cases was coherent with that of SSTs (ENSO), mainly at temporal scales within the 3-6 year periods. Additionally, malaria cases were intensified approximately 1 year after an El Niño event, a pattern that highlights the role of climate inter-annual variability in the epidemic patterns. Rainfall mediated the effect of ENSO on malaria locally. Particularly, rains from the last phase of the season had a critical role in the temporal dynamics of Plasmodium. The malaria-climate relationship was complex and transient, varying in strength with the region and species. By identifying temporal cycles of malaria we have made a first step in predicting high-risk years in Venezuela. Our findings emphasize the importance of analyzing high-resolution spatial-temporal data to better understand malaria transmission dynamics. PMID:24149288

  9. Isoprenoid Biosynthesis in Plasmodium falciparum

    PubMed Central

    Guggisberg, Ann M.; Amthor, Rachel E.

    2014-01-01

    Malaria kills nearly 1 million people each year, and the protozoan parasite Plasmodium falciparum has become increasingly resistant to current therapies. Isoprenoid synthesis via the methylerythritol phosphate (MEP) pathway represents an attractive target for the development of new antimalarials. The phosphonic acid antibiotic fosmidomycin is a specific inhibitor of isoprenoid synthesis and has been a helpful tool to outline the essential functions of isoprenoid biosynthesis in P. falciparum. Isoprenoids are a large, diverse class of hydrocarbons that function in a variety of essential cellular processes in eukaryotes. In P. falciparum, isoprenoids are used for tRNA isopentenylation and protein prenylation, as well as the synthesis of vitamin E, carotenoids, ubiquinone, and dolichols. Recently, isoprenoid synthesis in P. falciparum has been shown to be regulated by a sugar phosphatase. We outline what is known about isoprenoid function and the regulation of isoprenoid synthesis in P. falciparum, in order to identify valuable directions for future research. PMID:25217461

  10. Plasmodium vivax Transmission in Africa

    PubMed Central

    Howes, Rosalind E.; Reiner Jr., Robert C.; Battle, Katherine E.; Longbottom, Joshua; Mappin, Bonnie; Ordanovich, Dariya; Tatem, Andrew J.; Drakeley, Chris; Gething, Peter W.; Zimmerman, Peter A.; Smith, David L.; Hay, Simon I.

    2015-01-01

    Malaria in sub-Saharan Africa has historically been almost exclusively attributed to Plasmodium falciparum (Pf). Current diagnostic and surveillance systems in much of sub-Saharan Africa are not designed to identify or report non-Pf human malaria infections accurately, resulting in a dearth of routine epidemiological data about their significance. The high prevalence of Duffy negativity provided a rationale for excluding the possibility of Plasmodium vivax (Pv) transmission. However, review of varied evidence sources including traveller infections, community prevalence surveys, local clinical case reports, entomological and serological studies contradicts this viewpoint. Here, these data reports are weighted in a unified framework to reflect the strength of evidence of indigenous Pv transmission in terms of diagnostic specificity, size of individual reports and corroboration between evidence sources. Direct evidence was reported from 21 of the 47 malaria-endemic countries studied, while 42 countries were attributed with infections of visiting travellers. Overall, moderate to conclusive evidence of transmission was available from 18 countries, distributed across all parts of the continent. Approximately 86.6 million Duffy positive hosts were at risk of infection in Africa in 2015. Analysis of the mechanisms sustaining Pv transmission across this continent of low frequency of susceptible hosts found that reports of Pv prevalence were consistent with transmission being potentially limited to Duffy positive populations. Finally, reports of apparent Duffy-independent transmission are discussed. While Pv is evidently not a major malaria parasite across most of sub-Saharan Africa, the evidence presented here highlights its widespread low-level endemicity. An increased awareness of Pv as a potential malaria parasite, coupled with policy shifts towards species-specific diagnostics and reporting, will allow a robust assessment of the public health significance of Pv, as well

  11. Plasmodium vivax Transmission in Africa.

    PubMed

    Howes, Rosalind E; Reiner, Robert C; Battle, Katherine E; Longbottom, Joshua; Mappin, Bonnie; Ordanovich, Dariya; Tatem, Andrew J; Drakeley, Chris; Gething, Peter W; Zimmerman, Peter A; Smith, David L; Hay, Simon I

    2015-11-01

    Malaria in sub-Saharan Africa has historically been almost exclusively attributed to Plasmodium falciparum (Pf). Current diagnostic and surveillance systems in much of sub-Saharan Africa are not designed to identify or report non-Pf human malaria infections accurately, resulting in a dearth of routine epidemiological data about their significance. The high prevalence of Duffy negativity provided a rationale for excluding the possibility of Plasmodium vivax (Pv) transmission. However, review of varied evidence sources including traveller infections, community prevalence surveys, local clinical case reports, entomological and serological studies contradicts this viewpoint. Here, these data reports are weighted in a unified framework to reflect the strength of evidence of indigenous Pv transmission in terms of diagnostic specificity, size of individual reports and corroboration between evidence sources. Direct evidence was reported from 21 of the 47 malaria-endemic countries studied, while 42 countries were attributed with infections of visiting travellers. Overall, moderate to conclusive evidence of transmission was available from 18 countries, distributed across all parts of the continent. Approximately 86.6 million Duffy positive hosts were at risk of infection in Africa in 2015. Analysis of the mechanisms sustaining Pv transmission across this continent of low frequency of susceptible hosts found that reports of Pv prevalence were consistent with transmission being potentially limited to Duffy positive populations. Finally, reports of apparent Duffy-independent transmission are discussed. While Pv is evidently not a major malaria parasite across most of sub-Saharan Africa, the evidence presented here highlights its widespread low-level endemicity. An increased awareness of Pv as a potential malaria parasite, coupled with policy shifts towards species-specific diagnostics and reporting, will allow a robust assessment of the public health significance of Pv, as well

  12. The NIMA-related kinase NEK1 cycles through the nucleus

    SciTech Connect

    Hilton, Laura K.; White, Mark C.; Quarmby, Lynne M.

    2009-11-06

    Mutations in NEK1 in mice are causal for cystic kidneys, and model the ciliopathy polycystic kidney disease caused by abnormal ciliary structure or signaling. NEK1 has previously been shown to localize near centrosomes and to play a role in centrosomal stability and ciliogenesis. Recent data suggest that the etiology of kidney cysts involves aberrant signaling from the primary cilium to the nucleus. Here we demonstrate that NEK1 contains functional nuclear localization signals, is exported from the nucleus via a nuclear export signal-dependent pathway and that the protein cycles through the nucleus. Our data suggest that NEK1 is a candidate to transduce messages from the ciliary-basal body region to the regulation of nuclear gene expression.

  13. A Case Report of Plasmodium Vivax, Plasmodium Falciparum and Dengue Co-Infection in a 6 Months Pregnancy

    PubMed Central

    Pande, A; Guharoy, D

    2013-01-01

    India being a tropical country, parasitic infections especially with Plasmodium species are very common in this region. The present case report is that of Plasmodium vivax, Plasmodium falciparum and dengue co-infection in a 6 months pregnant lady who was timely diagnosed and appropriately treated followed by a complete recovery along with feto-maternal well-being. PMID:24349838

  14. Plasmodium falciparum: attenuation by irradiation

    SciTech Connect

    Waki, S.; Yonome, I.; Suzuki, M.

    1983-12-01

    The effect of irradiation on the in vitro growth of Plasmodium falciparum was investigated. The cultured malarial parasites at selected stages of development were exposed to gamma rays and the sensitivity of each stage was determined. The stages most sensitive to irradiation were the ring forms and the early trophozoites; late trophozoites were relatively insensitive. The greatest resistance was shown when parasites were irradiated at a time of transition from the late trophozoite and schizont stages to young ring forms. The characteristics of radiosensitive variation in the parasite cycle resembled that of mammalian cells. Growth curves of parasites exposed to doses of irradiation upto 150 gray had the same slope as nonirradiated controls but parasites which were exposed to 200 gray exhibited a growth curve which was less steep than that for parasites in other groups. Less than 10 organisms survived from the 10(6) parasites exposed to this high dose of irradiation; the possibility exists of obtaining radiation-attenuated P. falciparum.

  15. Characterization of the Plasmodium Interspersed Repeats (PIR) proteins of Plasmodium chabaudi indicates functional diversity.

    PubMed

    Yam, Xue Yan; Brugat, Thibaut; Siau, Anthony; Lawton, Jennifer; Wong, Daniel S; Farah, Abdirahman; Twang, Jing Shun; Gao, Xiaohong; Langhorne, Jean; Preiser, Peter R

    2016-01-01

    Plasmodium multigene families play a central role in the pathogenesis of malaria. The Plasmodium interspersed repeat (pir) genes comprise the largest multigene family in many Plasmodium spp. However their function(s) remains unknown. Using the rodent model of malaria, Plasmodium chabaudi, we show that individual CIR proteins have differential localizations within infected red cell (iRBC), suggesting different functional roles in a blood-stage infection. Some CIRs appear to be located on the surface of iRBC and merozoites and are therefore well placed to interact with host molecules. In line with this hypothesis, we show for the first time that a subset of recombinant CIRs bind mouse RBCs suggesting a role for CIR in rosette formation and/or invasion. Together, our results unravel differences in subcellular localization and ability to bind mouse erythrocytes between the members of the cir family, which strongly suggest different functional roles in a blood-stage infection. PMID:26996203

  16. Characterization of the Plasmodium Interspersed Repeats (PIR) proteins of Plasmodium chabaudi indicates functional diversity

    PubMed Central

    Yam, Xue Yan; Brugat, Thibaut; Siau, Anthony; Lawton, Jennifer; Wong, Daniel S.; Farah, Abdirahman; Twang, Jing Shun; Gao, Xiaohong; Langhorne, Jean; Preiser, Peter R.

    2016-01-01

    Plasmodium multigene families play a central role in the pathogenesis of malaria. The Plasmodium interspersed repeat (pir) genes comprise the largest multigene family in many Plasmodium spp. However their function(s) remains unknown. Using the rodent model of malaria, Plasmodium chabaudi, we show that individual CIR proteins have differential localizations within infected red cell (iRBC), suggesting different functional roles in a blood-stage infection. Some CIRs appear to be located on the surface of iRBC and merozoites and are therefore well placed to interact with host molecules. In line with this hypothesis, we show for the first time that a subset of recombinant CIRs bind mouse RBCs suggesting a role for CIR in rosette formation and/or invasion. Together, our results unravel differences in subcellular localization and ability to bind mouse erythrocytes between the members of the cir family, which strongly suggest different functional roles in a blood-stage infection. PMID:26996203

  17. Detectability of Plasmodium falciparum clones

    PubMed Central

    2010-01-01

    Background In areas of high transmission people often harbour multiple clones of Plasmodium falciparum, but even PCR-based diagnostic methods can only detect a fraction (the detectability, q) of all clones present in a host. Accurate measurements of detectability are desirable since it affects estimates of multiplicity of infection, prevalence, and frequency of breakthrough infections in clinical drug trials. Detectability can be estimated by typing repeated samples from the same host but it has been unclear what should be the time interval between the samples and how the data should be analysed. Methods A longitudinal molecular study was conducted in the Kassena-Nankana district in northern Ghana. From each of the 80 participants, four finger prick samples were collected over a period of 8 days, and tested for presence of different Merozoite Surface Protein (msp) 2 genotypes. Implications for estimating q were derived from these data by comparing the fit of statistical models of serial dependence and over-dispersion. Results The distribution of the frequencies of detection for msp2 genotypes was close to binomial if the time span between consecutive blood samples was at least 7 days. For shorter intervals the probabilities of detection were positively correlated, i.e. the shorter the interval between two blood collections, the more likely the diagnostic results matched for a particular genotype. Estimates of q were rather insensitive to the statistical model fitted. Conclusions A simple algorithm based on analysing blood samples collected 7 days apart is justified for generating robust estimates of detectability. The finding of positive correlation of detection probabilities for short time intervals argues against imperfect detection being directly linked to the 48-hour periodicity of P. falciparum. The results suggest that the detectability of a given parasite clone changes over time, at an unknown rate, but fast enough to regard blood samples taken one week

  18. Limitations of microscopy to differentiate Plasmodium species in a region co-endemic for Plasmodium falciparum, Plasmodium vivax and Plasmodium knowlesi

    PubMed Central

    2013-01-01

    Background In areas co-endemic for multiple Plasmodium species, correct diagnosis is crucial for appropriate treatment and surveillance. Species misidentification by microscopy has been reported in areas co-endemic for vivax and falciparum malaria, and may be more frequent in regions where Plasmodium knowlesi also commonly occurs. Methods This prospective study in Sabah, Malaysia, evaluated the accuracy of routine district and referral hospital-based microscopy, and microscopy performed by an experienced research microscopist, for the diagnosis of PCR-confirmed Plasmodium falciparum, P. knowlesi, and Plasmodium vivax malaria. Results A total of 304 patients with PCR-confirmed Plasmodium infection were enrolled, including 130 with P. knowlesi, 122 with P. falciparum, 43 with P. vivax, one with Plasmodium malariae and eight with mixed species infections. Among patients with P. knowlesi mono-infection, routine and cross-check microscopy both identified 94 (72%) patients as “P. malariae/P. knowlesi”; 17 (13%) and 28 (22%) respectively were identified as P. falciparum, and 13 (10%) and two (1.5%) as P. vivax. Among patients with PCR-confirmed P. falciparum, routine and cross-check microscopy identified 110/122 (90%) and 112/118 (95%) patients respectively as P. falciparum, and 8/122 (6.6%) and 5/118 (4.2%) as “P. malariae/P. knowlesi”. Among those with P. vivax, 23/43 (53%) and 34/40 (85%) were correctly diagnosed by routine and cross-check microscopy respectively, while 13/43 (30%) and 3/40 (7.5%) patients were diagnosed as “P. malariae/P. knowlesi”. Four of 13 patients with PCR-confirmed P. vivax and misdiagnosed by routine microscopy as “P. malariae/P. knowlesi” were subsequently re-admitted with P. vivax malaria. Conclusions Microscopy does not reliably distinguish between P. falciparum, P. vivax and P. knowlesi in a region where all three species frequently occur. Misdiagnosis of P. knowlesi as both P. vivax and P. falciparum, and vice versa, is

  19. Engineered Anopheles Immunity to Plasmodium Infection

    PubMed Central

    Cirimotich, Chris; Souza-Neto, Jayme A.; McLean, Kyle J.; Dimopoulos, George

    2011-01-01

    A causative agent of human malaria, Plasmodium falciparum, is transmitted by Anopheles mosquitoes. The malaria parasite is under intensive attack from the mosquito's innate immune system during its sporogonic development. We have used genetic engineering to create immune-enhanced Anopheles stephensi mosquitoes through blood meal-inducible expression of a transgene encoding the IMD pathway-controlled NF-kB Rel2 transcription factor in the midgut and fat-body tissue. Transgenic mosquitoes showed greater resistance to Plasmodium and microbial infection as a result of timely concerted tissue-specific immune attacks involving multiple effectors. The relatively weak impact of this genetic modification on mosquito fitness under laboratory conditions encourages further investigation of this approach for malaria control. PMID:22216006

  20. Plasmodium falciparum RuvB proteins

    PubMed Central

    Ahmad, Moaz; Tuteja, Renu

    2012-01-01

    The urgent requirement of next generation antimalarials has been of recent interest due to the emergence of drug-resistant parasite. The genome-wide analysis of Plasmodium falciparum helicases revealed three RuvB proteins. Due to the presence of helicase motif I and II in PfRuvBs, there is a high probability that they contain ATPase and possibly helicase activity. The Plasmodium database has homologs of several key proteins that interact with RuvBs and are most likely involved in the cell cycle progression, chromatin remodeling, and other cellular activities. Phylogenetically PfRuvBs are closely related to Saccharomyces cerevisiae RuvB, which is essential for cell cycle progression and survival of yeast. Thus PfRuvBs can serve as potential drug target if they show an essential role in the survival of parasite. PMID:23060959

  1. UvrD helicase of Plasmodium falciparum.

    PubMed

    Shankar, Jay; Tuteja, Renu

    2008-03-15

    Malaria caused by the mosquito-transmitted parasite Plasmodium is the cause of enormous number of deaths every year in the tropical and subtropical areas of the world. Among four species of Plasmodium, Plasmodium falciparum causes most fatal form of malaria. With time, the parasite has developed insecticide and drug resistance. Newer strategies and advent of novel drug targets are required so as to combat the deadly form of malaria. Helicases is one such class of enzymes which has previously been suggested as potential antiviral and anticancer targets. These enzymes play an essential role in nearly all the nucleic acid metabolic processes, catalyzing the transient opening of the duplex nucleic acids in an NTP-dependent manner. DNA helicases from the PcrA/UvrD/Rep subfamily are important for the survival of the various organisms. Members from this subfamily can be targeted and inhibited by a variety of synthetic compounds. UvrD from this subfamily is the only member present in the P. falciparum genome, which shows no homology with UvrD from human and thus can be considered as a strong potential drug target. In this manuscript we provide an overview of UvrD family of helicases and bioinformatics analysis of UvrD from P. falciparum. PMID:18242886

  2. Plasmodium knowlesi infection: a diagnostic challenge

    PubMed Central

    Fan, Lijia; Lee, Shir Ying; Koay, Evelyn; Harkensee, Christian

    2013-01-01

    Plasmodium knowlesi malaria is an uncommon, but highly prevalent parasitic infection in parts of Malaysia. This is the case of a 14-year-old Singaporean boy presenting to our emergency department with an 11-day history of fever following a school trip to Malaysia. Hepatosplenomegaly was the only clinical finding; laboratory tests showed thrombocytopaenia, lymphopaenia, mild anaemia and liver transaminitis. Specific malaria antigen tests were negative, but the peripheral blood film showed plasmodia with atypical features, with a parasite load of 0.5%. PCR confirmed the diagnosis of P knowlesi. The patient was successfully treated with chloroquine. The clinical course of P knowlesi malaria is indistinguishable from that of Plasmodium falciparum. This case highlights the importance of taking detailed travel history, careful examination of malaria blood films and judicious use of molecular techniques. Antigen tests alone may have missed a malaria diagnosis altogether, while blood film examination may wrongly identify the species as Plasmodium malariae or P falciparum. Third-generation PCR assays can be used to reliably identify P knowlesi. PMID:23608876

  3. Plasmodium knowlesi: the emerging zoonotic malaria parasite.

    PubMed

    Antinori, Spinello; Galimberti, Laura; Milazzo, Laura; Corbellino, Mario

    2013-02-01

    Plasmodium knowlesi was initially identified in the 30s as a natural Plasmodium of Macaca fascicularis monkey also capable of experimentally infecting humans. It gained a relative notoriety in the mid-30s as an alternative to Plasmodium vivax in the treatment of the general paralysis of the insane (neurosyphilis). In 1965 the first natural human infection was described in a US military surveyor coming back from the Pahang jungle of the Malaysian peninsula. P. knowlesi was again brought to the attention of the medical community when in 2004, Balbir Singh and his co-workers reported that about 58% of malaria cases observed in the Kapit district of the Malaysian Borneo were actually caused by P. knowlesi. In the following years several reports showed that P. knowlesi is much more widespread than initially thought with cases reported across Southeast Asia. This infection should also be considered in the differential diagnosis of any febrile travellers coming back from a recent travel to forested areas of Southeast Asia. P. knowlesi can cause severe malaria with a rate of 6-9% and with a case fatality rate of 3%. Respiratory distress, acute renal failure, shock and hyperbilirubinemia are the most frequently observed complications of severe P. knowlesi malaria. Chloroquine is considered the treatment of choice of uncomplicated malaria caused by P. knowlesi. PMID:23088834

  4. Construction of living cellular automata using the Physarum plasmodium

    NASA Astrophysics Data System (ADS)

    Shirakawa, Tomohiro; Sato, Hiroshi; Ishiguro, Shinji

    2015-04-01

    The plasmodium of Physarum polycephalum is a unicellular and multinuclear giant amoeba that has an amorphous cell body. To clearly observe how the plasmodium makes decisions in its motile and exploratory behaviours, we developed a new experimental system to pseudo-discretize the motility of the organism. In our experimental space that has agar surfaces arranged in a two-dimensional lattice, the continuous and omnidirectional movement of the plasmodium was limited to the stepwise one, and the direction of the locomotion was also limited to four neighbours. In such an experimental system, a cellular automata-like system was constructed using the living cell. We further analysed the exploratory behaviours of the plasmodium by duplicating the experimental results in the simulation models of cellular automata. As a result, it was revealed that the behaviours of the plasmodium are not reproduced by only local state transition rules; and for the reproduction, a kind of historical rule setting is needed.

  5. Simple Molecular Methods for Early Detection of Chloroquine Drug Resistance in Plasmodium vivax and Plasmodium falciparum

    PubMed Central

    Singh, Raksha; Urhehar, Anant Dattatraya

    2016-01-01

    Introduction Malaria is a human disease of which causes high morbidity and mortality. In Plasmodium falciparum malaria, the resistance to antimalarial drugs, especially chloroquine (CQ) is one of the paramount factors contributing to the global increase in morbidity and mortality, due to malaria. Hence, there is a need for detection of chloroquine drug resistance genes i.e., pfcrt-o (Plasmodium falciparum chloroquine resistance transporter-o) and pfmdr-1 (Plasmodium falciparum multidrug resistance-1) of P. falciparum and pvcrt-o (Plasmodium vivax chloroquine resistance transporter-o) and pvmdr-1 (Plasmodium vivax multidrug resistance-1) of P. vivax by using molecular methods to prevent mortality in malarial cases. Aim To standardize chloroquine drug sensitivity testing by molecular method so as to provide reports of chloroquine within 6-8 hours to physicians for better treatment. Materials and Methods This study was conducted over a period of one year from January to December 2014. A Total of 300 blood samples were collected from malaria suspected patient attending MGM Hospital, Kamothe, Navi Mumbai, India. Out of 300 blood samples, 44 were malaria positive as assessed by Thick and Thin blood smear stained, by Leishman’s method and examination with light microscope. Chloroquine drug sensitivity testing was performed using WHO III plate method (micro test). Nested PCR was done for detection of pfcrt-o and pfmdr-1 for P. falciparum and pvcrt-o, pvmdr-1 genes for P. vivax. Results Total 44 samples were included in this study, out of which 22 samples confirmed for Plasmodium falciparum and 22 samples confirmed for Plasmodium vivax. Out of 22 P. falciparum 15 (68.18%) samples were chloroquine resistant. P. vivax showed chloroquine resistance to 5 samples (22.73%) by method similar to WHO III plate method (micro test) and nested PCR. Conclusion Drug resistance testing by molecular methods is useful for early detection of antimalarial drug resistance. pfmdr-1 along with

  6. Impact of enhanced malaria control on the competition between Plasmodium falciparum and Plasmodium vivax in India.

    PubMed

    Prosper, Olivia; Martcheva, Maia

    2013-03-01

    The primary focus of malaria research and control has been on Plasmodium falciparum, the most severe of the four Plasmodium species causing human disease. However, the presence of both P. falciparum and Plasmodium vivax occurs in several countries, including India. We developed a mathematical model describing the dynamics of P. vivax and P. falciparum in the human and mosquito populations and fit this model to Indian clinical case data to understand how enhanced control measures affect the competition between the two Plasmodium species. Around 1997, funding for malaria control in India increased dramatically. Our model predicts that if India had not improved its control strategy, the two species of Plasmodium would continue to coexist. To determine which control measures contributed the most to the decline in the number of cases after 1997, we compared the fit of seven models to the 1997-2010 clinical case data. From this, we determined that increased use of bednets contributed the most to case reduction. During the enhanced control period, the best model predicts that P. vivax is out-competing P. falciparum. However, the reproduction numbers are extremely close to the invasion boundaries. Consequently, we cannot be confident that this outcome is the true future of malaria in India. We address this uncertainty by performing a parametric bootstrapping procedure for each of the seven models. This procedure, applied to the enhanced control period, revealed that the best model predicts that P. vivax outcompeting P. falciparum is the most likely outcome, whereas the remaining candidate models predict the opposite. Moreover, the predictions of the top model are counter to what one expects based on the case data alone. Although the proportion of cases due to falciparum has been increasing, the best fitting model reveals that this observation is insufficient to draw conclusions about the longterm competitive outcome of the two species. PMID:23261665

  7. No Evidence for Ape Plasmodium Infections in Humans in Gabon

    PubMed Central

    Ollomo, Benjamin; Arnathau, Céline; Roche, Benjamin; Elguero, Eric; Moukodoum, Nancy Diamella; Okougha, Alain-Prince; Mve Ondo, Bertrand; Boundenga, Larson; Houzé, Sandrine; Galan, Maxime; Nkoghé, Dieudonné; Leroy, Eric M.; Durand, Patrick; Paupy, Christophe; Renaud, François; Prugnolle, Franck

    2015-01-01

    African great apes are naturally infected by a multitude of Plasmodium species most of them recently discovered, among which several are closely related to human malaria agents. However, it is still unknown whether these animals can serve as source of infections for humans living in their vicinity. To evaluate this possibility, we analysed the nature of Plasmodium infections from a bank of 4281 human blood samples collected in 210 villages of Gabon, Central Africa. Among them, 2255 were detected positive to Plasmodium using molecular methods (Plasmodium Cytochrome b amplification). A high throughput sequencing technology (454 GS-FLX Titanium technology, Roche) was then used to identify the Plasmodium species present within each positive sample. Overall, we identified with confidence only three species infecting humans in Gabon: P. falciparum, P. malariae and P. ovale. None of the species known to infect non-human primates in Central Africa was found. Our study shows that ape Plasmodium parasites of the subgenus Laverania do not constitute a frequent source of infection for humans. It also suggests that some strong host genetic barriers must exist to prevent the cross species transmission of ape Plasmodium in a context of ever increasing contacts between humans and wildlife. PMID:26039338

  8. Prevalence and distribution of human Plasmodium infection in Pakistan

    PubMed Central

    2013-01-01

    Background Both Plasmodium vivax and Plasmodium falciparum are prevalent in Pakistan, yet up-to-date data on the epidemiology of malaria in Pakistan are not available. This study was undertaken to determine the current prevalence and distribution of Plasmodium species across the country. Methods A malariometric population survey was conducted in 2011 using blood samples collected from 801 febrile patients of all ages in four provinces and the capital city of Islamabad. Microscopically confirmed Plasmodium-positive blood samples were reconfirmed by polymerase chain reaction (PCR). Confirmed parasite-positive samples were subjected to species-specific PCR capable of detecting four species of human malaria. Results Of the 707 PCR-positive samples, 128 (18%) were P. falciparum, 536 (76%) were P. vivax, and 43 (6%) were mixed P. falciparum and P. vivax. Ninety-four microscopy-positive samples were PCR-negative, and Plasmodium malariae and Plasmodium ovale were not detected. Prevalence of P. vivax ranged from 2.4% in Punjab Province to 10.8% in Sindh Province and prevalence of P. falciparum ranged from 0.1% in Islamabad to 3.8% in Balochistan. Conclusions Plasmodium infections in Pakistan are largely attributed to P. vivax but P. falciparum and mixed species infections are also prevalent. In addition, regional variation in the prevalence and species composition of malaria is high. PMID:23984968

  9. Current status of Plasmodium vivax vaccine.

    PubMed

    Arévalo-Herrera, Myriam; Chitnis, Chetan; Herrera, Sócrates

    2010-01-01

    From a total of 2.6 billion people at permanent risk of suffering malaria infection worldwide, 80-300 million experience Plasmodium vivax infections every year, with clinical manifestations ranging from asymptomatic to mild and chronic infection that in some cases lead to severe disease and death. The increasing P. vivax drug resistance and reports of severe and lethal cases, the relapsing parasite behavior and the existence of Plasmodium spp. co-infections must prompt more investment and greater efforts for the development of P. vivax vaccine. Currently there are only two P. vivax vaccine candidates being tested in clinical trials and few others are being assessed in preclinical studies which contrast with the numerous P. falciparum vaccines candidates under evaluation. The recent availability of the P. vivax genome and ongoing proteomic analysis are likely to accelerate P. vivax vaccine development. Recent development of human sporozoite-challenge models would contribute to move clinical development forward and to identify mechanisms of immunity. PMID:20009526

  10. Artemisinins target the SERCA of Plasmodium falciparum.

    PubMed

    Eckstein-Ludwig, U; Webb, R J; Van Goethem, I D A; East, J M; Lee, A G; Kimura, M; O'Neill, P M; Bray, P G; Ward, S A; Krishna, S

    2003-08-21

    Artemisinins are extracted from sweet wormwood (Artemisia annua) and are the most potent antimalarials available, rapidly killing all asexual stages of Plasmodium falciparum. Artemisinins are sesquiterpene lactones widely used to treat multidrug-resistant malaria, a disease that annually claims 1 million lives. Despite extensive clinical and laboratory experience their molecular target is not yet identified. Activated artemisinins form adducts with a variety of biological macromolecules, including haem, translationally controlled tumour protein (TCTP) and other higher-molecular-weight proteins. Here we show that artemisinins, but not quinine or chloroquine, inhibit the SERCA orthologue (PfATP6) of Plasmodium falciparum in Xenopus oocytes with similar potency to thapsigargin (another sesquiterpene lactone and highly specific SERCA inhibitor). As predicted, thapsigargin also antagonizes the parasiticidal activity of artemisinin. Desoxyartemisinin lacks an endoperoxide bridge and is ineffective both as an inhibitor of PfATP6 and as an antimalarial. Chelation of iron by desferrioxamine abrogates the antiparasitic activity of artemisinins and correspondingly attenuates inhibition of PfATP6. Imaging of parasites with BODIPY-thapsigargin labels the cytosolic compartment and is competed by artemisinin. Fluorescent artemisinin labels parasites similarly and irreversibly in an Fe2+-dependent manner. These data provide compelling evidence that artemisinins act by inhibiting PfATP6 outside the food vacuole after activation by iron. PMID:12931192

  11. Protein phosphorylation during Plasmodium berghei gametogenesis.

    PubMed

    Alonso-Morales, Alberto; González-López, Lorena; Cázares-Raga, Febe Elena; Cortés-Martínez, Leticia; Torres-Monzón, Jorge Aurelio; Gallegos-Pérez, José Luis; Rodríguez, Mario Henry; James, Anthony A; Hernández-Hernández, Fidel de la Cruz

    2015-09-01

    Plasmodium gametogenesis within the mosquito midgut is a complex differentiation process involving signaling mediated by phosphorylation, which modulate metabolic routes and protein synthesis required to complete this development. However, the mechanisms leading to gametogenesis activation are poorly understood. We analyzed protein phosphorylation during Plasmodium berghei gametogenesis in vitro in serum-free medium using bidimensional electrophoresis (2-DE) combined with immunoblotting (IB) and antibodies specific to phosphorylated serine, threonine and tyrosine. Approximately 75 protein exhibited phosphorylation changes, of which 23 were identified by mass spectrometry. These included components of the cytoskeleton, heat shock proteins, and proteins involved in DNA synthesis and signaling pathways among others. Novel phosphorylation events support a role for these proteins during gametogenesis. The phosphorylation sites of six of the identified proteins, HSP70, WD40 repeat protein msi1, enolase, actin-1 and two isoforms of large subunit of ribonucleoside reductase were investigated using TiO2 phosphopeptides enrichment and tandem mass spectrometry. In addition, transient exposure to hydroxyurea, an inhibitor of ribonucleoside reductase, impaired male gametocytes exflagellation in a dose-dependent manner, and provides a resource for functional studies. PMID:26008612

  12. Functional analysis of erythrocyte determinants of Plasmodium infection

    PubMed Central

    Bei, Amy K.; Duraisingh, Manoj T.

    2012-01-01

    The Plasmodium falciparum parasite is an obligate intracellular pathogen whose invasion and remodeling of the human erythrocyte results in the clinical manifestations of malarial disease. The functional analysis of erythrocyte determinants of invasion and growth is a relatively unexplored frontier in malaria research, encompassing studies of natural variation of the erythrocyte, as well as genomic, biochemical and chemical biological and transgenic approaches. These studies have allowed the functional analysis of the erythrocyte in vitro, resulting in the discovery of critical erythrocyte determinants of Plasmodium infection. Here, we will focus on the varied approaches used for the study of the erythrocyte in Plasmodium infection, with a particular emphasis on erythrocyte invasion. PMID:22726752

  13. Plasmodium falciparum full life cycle and Plasmodium ovale liver stages in humanized mice.

    PubMed

    Soulard, Valérie; Bosson-Vanga, Henriette; Lorthiois, Audrey; Roucher, Clémentine; Franetich, Jean-François; Zanghi, Gigliola; Bordessoulles, Mallaury; Tefit, Maurel; Thellier, Marc; Morosan, Serban; Le Naour, Gilles; Capron, Frédérique; Suemizu, Hiroshi; Snounou, Georges; Moreno-Sabater, Alicia; Mazier, Dominique

    2015-01-01

    Experimental studies of Plasmodium parasites that infect humans are restricted by their host specificity. Humanized mice offer a means to overcome this and further provide the opportunity to observe the parasites in vivo. Here we improve on previous protocols to achieve efficient double engraftment of TK-NOG mice by human primary hepatocytes and red blood cells. Thus, we obtain the complete hepatic development of P. falciparum, the transition to the erythrocytic stages, their subsequent multiplication, and the appearance of mature gametocytes over an extended period of observation. Furthermore, using sporozoites derived from two P. ovale-infected patients, we show that human hepatocytes engrafted in TK-NOG mice sustain maturation of the liver stages, and the presence of late-developing schizonts indicate the eventual activation of quiescent parasites. Thus, TK-NOG mice are highly suited for in vivo observations on the Plasmodium species of humans. PMID:26205537

  14. Plasmodium falciparum full life cycle and Plasmodium ovale liver stages in humanized mice

    PubMed Central

    Soulard, Valérie; Bosson-Vanga, Henriette; Lorthiois, Audrey; Roucher, Clémentine; Franetich, Jean- François; Zanghi, Gigliola; Bordessoulles, Mallaury; Tefit, Maurel; Thellier, Marc; Morosan, Serban; Le Naour, Gilles; Capron, Frédérique; Suemizu, Hiroshi; Snounou, Georges; Moreno-Sabater, Alicia; Mazier, Dominique

    2015-01-01

    Experimental studies of Plasmodium parasites that infect humans are restricted by their host specificity. Humanized mice offer a means to overcome this and further provide the opportunity to observe the parasites in vivo. Here we improve on previous protocols to achieve efficient double engraftment of TK-NOG mice by human primary hepatocytes and red blood cells. Thus, we obtain the complete hepatic development of P. falciparum, the transition to the erythrocytic stages, their subsequent multiplication, and the appearance of mature gametocytes over an extended period of observation. Furthermore, using sporozoites derived from two P. ovale-infected patients, we show that human hepatocytes engrafted in TK-NOG mice sustain maturation of the liver stages, and the presence of late-developing schizonts indicate the eventual activation of quiescent parasites. Thus, TK-NOG mice are highly suited for in vivo observations on the Plasmodium species of humans. PMID:26205537

  15. Population genetics of Plasmodium falciparum and Plasmodium vivax and asymptomatic malaria in Temotu Province, Solomon Islands

    PubMed Central

    2013-01-01

    Background Temotu Province, Solomon Islands is progressing toward malaria elimination. A baseline survey conducted in 2008 showed that most Plasmodium infections in the province were of low parasite density and asymptomatic infections. To better understand mechanisms underlying these malaria transmission characteristics genetic diversity and relationships among Plasmodium falciparum and Plasmodium vivax populations in the province were examined. Methods Forty-five P. falciparum and 67 P. vivax samples collected in the 2008 baseline survey were successfully genotyped using eight P. falciparum and seven P. vivax microsatellite markers. Genetic diversity, relationships and distribution of both P. falciparum and P. vivax populations were analysed. Results Plasmodium falciparum population exhibited low diversity with 19 haplotypes identified and had closely related clusters indicating clonal expansion. Interestingly, a dominant haplotype was significantly associated with fever and high parasite density. In contrast, the P. vivax population was highly diverse with 58 haplotypes identified that were not closely related. Parasite populations between different islands in the province showed low genetic differentiation. Conclusion The low diversity and clonal population of P. falciparum population may partially account for clinical immunity developed against illness. However, it is possible that importation of a new P. falciparum strain was the major cause of illness. High diversity in P. vivax population and low relatedness between strains suggested clinical immunity to P. vivax may be maintained by different mechanisms. The genetic diversity, population structure and distribution of strains indicate that transmission of P. falciparum was low, but that of P. vivax was still high in 2008. These data will be useful for assessing changes in malaria transmission resulting from interventions. PMID:24261646

  16. Colombian Anopheles triannulatus (Diptera: Culicidae) Naturally Infected with Plasmodium spp.

    PubMed Central

    Rosero, Doris A.; Naranjo-Diaz, Nelson; Alvarez, Natalí; Cienfuegos, Astrid V.; Luckhart, Shirley

    2013-01-01

    The role of Anopheles triannulatus as a local vector has not yet been defined for malaria-endemic regions of Colombia. Therefore, the aim of this work was to detect An. triannulatus naturally infected with Plasmodium spp., as an approximation to determining its importance as malaria vector in the country. A total of 510 An. triannulatus were collected in six malaria-endemic localities of NW and SE Colombia from January 2009 to March 2011. In the NW, two specimens were naturally infected; one with Plasmodium vivax VK247, collected biting on humans and the other with Plasmodium falciparum, collected resting on cattle. In the SE, two specimens were positive for P. falciparum. Although these results show An. triannulatus naturally infected with Plasmodium, further studies are recommended to demonstrate the epidemiological importance of this species in malaria-endemic regions of Colombia. PMID:27335865

  17. Plasmodium species: master renovators of their host cells.

    PubMed

    de Koning-Ward, Tania F; Dixon, Matthew W A; Tilley, Leann; Gilson, Paul R

    2016-08-01

    Plasmodium parasites, the causative agents of malaria, have developed elaborate strategies that they use to survive and thrive within different intracellular environments. During the blood stage of infection, the parasite is a master renovator of its erythrocyte host cell, and the changes in cell morphology and function that are induced by the parasite promote survival and contribute to the pathogenesis of severe malaria. In this Review, we discuss how Plasmodium parasites use the protein trafficking motif Plasmodium export element (PEXEL), protease-mediated polypeptide processing, a novel translocon termed the Plasmodium translocon of exported proteins (PTEX) and exomembranous structures to export hundreds of proteins to discrete subcellular locations in the host erythrocytes, which enables the parasite to gain access to vital nutrients and to evade the immune defence mechanisms of the host. PMID:27374802

  18. Placental Histopathological Changes Associated with Plasmodium vivax Infection during Pregnancy

    PubMed Central

    Dombrowski, Jamille G.; Ippólito, Vanessa; Aitken, Elizabeth H.; Valle, Suiane N.; Álvarez, José M.; Epiphânio, Sabrina; Marinho, Claudio R. F.

    2013-01-01

    Histological evidence of Plasmodium in the placenta is indicative of placental malaria, a condition associated with severe outcomes for mother and child. Histological lesions found in placentas from Plasmodium-exposed women include syncytial knotting, syncytial rupture, thickening of the placental barrier, necrosis of villous tissue and intervillositis. These histological changes have been associated with P. falciparum infections, but little is known about the contribution of P. vivax to such changes. We conducted a cross-sectional study with pregnant women at delivery and assigned them to three groups according to their Plasmodium exposure during pregnancy: no Plasmodium exposure (n = 41), P. vivax exposure (n = 59) or P. falciparum exposure (n = 19). We evaluated their placentas for signs of Plasmodium and placental lesions using ten histological parameters: syncytial knotting, syncytial rupture, placental barrier thickness, villi necrosis, intervillous space area, intervillous leucocytes, intervillous mononucleates, intervillous polymorphonucleates, parasitized erythrocytes and hemozoin. Placentas from P. vivax-exposed women showed little evidence of Plasmodium or hemozoin but still exhibited more lesions than placentas from women not exposed to Plasmodium, especially when infections occurred twice or more during pregnancy. In the Brazilian state of Acre, where diagnosis and primary treatment are readily available and placental lesions occur in the absence of detected placental parasites, relying on the presence of Plasmodium in the placenta to evaluate Plasmodium-induced placental pathology is not feasible. Multivariate logistic analysis revealed that syncytial knotting (odds ratio [OR], 4.21, P = 0.045), placental barrier thickness (OR, 25.59, P = 0.021) and mononuclear cells (OR, 4.02, P = 0.046) were increased in placentas from P. vivax-exposed women when compared to women not exposed to Plasmodium during pregnancy. A vivax-score was

  19. Hemophagocytic Lymphohistiocytosis Complicating Dengue and Plasmodium vivax Coinfection

    PubMed Central

    Khurram, Muhammad; Faheem, Muhammad; Umar, Muhammad; Yasin, Asif; Qayyum, Wajeeha; Ashraf, Amna; Zahid Khan, Javeria; Hasnain Yasir, Ali; Ansari, Yusra; Asad, Muhammad; Khan, Iram; Abbas, Shuja; Rasheed, Irum; Rasool, Natasha; Bushra Khar, Hamama Tul

    2015-01-01

    Hemophagocytic lymphohistiocytosis (HLH) is a rare disorder. Dysfunction of cytotoxic T and natural killer (NK) cells causes uncontrolled activity of lymphocytes and histiocytes which leads to HLH. Infections, malignancies, and autoimmune disorders are associated with development of HLH. Dengue and Plasmodium vivax are rare causes of HLH. We report the first ever case of a young man who developed fatal HLH that complicated Dengue Hemorrhagic Fever (DHF) and Plasmodium vivax infection. PMID:26504465

  20. Rheopathologic Consequence of Plasmodium vivax Rosette Formation.

    PubMed

    Zhang, Rou; Lee, Wenn-Chyau; Lau, Yee-Ling; Albrecht, Letusa; Lopes, Stefanie C P; Costa, Fabio T M; Suwanarusk, Rossarin; Nosten, Francois; Cooke, Brian M; Rénia, Laurent; Russell, Bruce

    2016-08-01

    Malaria parasites dramatically alter the rheological properties of infected red blood cells. In the case of Plasmodium vivax, the parasite rapidly decreases the shear elastic modulus of the invaded RBC, enabling it to avoid splenic clearance. This study highlights correlation between rosette formation and altered membrane deformability of P. vivax-infected erythrocytes, where the rosette-forming infected erythrocytes are significantly more rigid than their non-rosetting counterparts. The adhesion of normocytes to the PvIRBC is strong (mean binding force of 440pN) resulting in stable rosette formation even under high physiological shear flow stress. Rosetting may contribute to the sequestration of PvIRBC schizonts in the host microvasculature or spleen. PMID:27509168

  1. Plasmodium falciparum: multifaceted resistance to artemisinins.

    PubMed

    Paloque, Lucie; Ramadani, Arba P; Mercereau-Puijalon, Odile; Augereau, Jean-Michel; Benoit-Vical, Françoise

    2016-01-01

    Plasmodium falciparum resistance to artemisinins, the most potent and fastest acting anti-malarials, threatens malaria elimination strategies. Artemisinin resistance is due to mutation of the PfK13 propeller domain and involves an unconventional mechanism based on a quiescence state leading to parasite recrudescence as soon as drug pressure is removed. The enhanced P. falciparum quiescence capacity of artemisinin-resistant parasites results from an increased ability to manage oxidative damage and an altered cell cycle gene regulation within a complex network involving the unfolded protein response, the PI3K/PI3P/AKT pathway, the PfPK4/eIF2α cascade and yet unidentified transcription factor(s), with minimal energetic requirements and fatty acid metabolism maintained in the mitochondrion and apicoplast. The detailed study of these mechanisms offers a way forward for identifying future intervention targets to fend off established artemisinin resistance. PMID:26955948

  2. Artemisinin Action and Resistance in Plasmodium falciparum.

    PubMed

    Tilley, Leann; Straimer, Judith; Gnädig, Nina F; Ralph, Stuart A; Fidock, David A

    2016-09-01

    The worldwide use of artemisinin-based combination therapies (ACTs) has contributed in recent years to a substantial reduction in deaths resulting from Plasmodium falciparum malaria. Resistance to artemisinins, however, has emerged in Southeast Asia. Clinically, resistance is defined as a slower rate of parasite clearance in patients treated with an artemisinin derivative or an ACT. These slow clearance rates associate with enhanced survival rates of ring-stage parasites briefly exposed in vitro to dihydroartemisinin. We describe recent progress made in defining the molecular basis of artemisinin resistance, which has identified a primary role for the P. falciparum K13 protein. Using K13 mutations as molecular markers, epidemiological studies are now tracking the emergence and spread of artemisinin resistance. Mechanistic studies suggest potential ways to overcome resistance. PMID:27289273

  3. In Vitro Generation of Plasmodium falciparum Ookinetes

    PubMed Central

    Bounkeua, Viengngeun; Li, Fengwu; Vinetz, Joseph M.

    2010-01-01

    Plasmodium transmission from the human host to the mosquito depends on the ability of gametocytes to differentiate into ookinetes, the invasive form of the parasite that invades and establishes infection in the mosquito midgut. The biology of P. falciparum ookinetes is poorly understood, because sufficient quantities of this stage of this parasite species have not been obtained for detailed study. This report details methods to optimize production of P. falciparum sexual stage parasites, including ookinetes. Flow cytometric sorting was used to separate diploid/tetraploid zygotes and ookinetes from haploid gametetocytes and unfertilized gametes based on DNA content. Consistent production of 106–107 P. falciparum ookinetes per 10 mL culture was observed, with ookinete transformation present in 10–40% of all parasite forms. Transmission electron micrographs of cultured parasites confirmed ookinete development. PMID:21118920

  4. Plasmodium falciparum drug resistance in Angola.

    PubMed

    Fançony, Cláudia; Brito, Miguel; Gil, Jose Pedro

    2016-01-01

    Facing chloroquine drug resistance, Angola promptly adopted artemisinin-based combination therapy as the first-line to treat malaria. Currently, the country aims to consolidate malaria control, while preparing for the elimination of the disease, along with others African countries in the region. However, the remarkable capacity of Plasmodium to develop drug resistance represents an alarming threat for those achievements. Herein, the available, but relatively scarce and dispersed, information on malaria drug resistance in Angola, is reviewed and discussed. The review aims to inform but also to encourage future research studies that monitor and update the information on anti-malarial drug efficacy and prevalence of molecular markers of drug resistance, key fields in the context and objectives of elimination. PMID:26858018

  5. Rheopathologic Consequence of Plasmodium vivax Rosette Formation

    PubMed Central

    Lau, Yee-Ling; Albrecht, Letusa; Lopes, Stefanie C. P.; Costa, Fabio T. M.; Suwanarusk, Rossarin; Nosten, Francois; Cooke, Brian M.; Rénia, Laurent; Russell, Bruce

    2016-01-01

    Malaria parasites dramatically alter the rheological properties of infected red blood cells. In the case of Plasmodium vivax, the parasite rapidly decreases the shear elastic modulus of the invaded RBC, enabling it to avoid splenic clearance. This study highlights correlation between rosette formation and altered membrane deformability of P. vivax-infected erythrocytes, where the rosette-forming infected erythrocytes are significantly more rigid than their non-rosetting counterparts. The adhesion of normocytes to the PvIRBC is strong (mean binding force of 440pN) resulting in stable rosette formation even under high physiological shear flow stress. Rosetting may contribute to the sequestration of PvIRBC schizonts in the host microvasculature or spleen. PMID:27509168

  6. Development of vaccines for Plasmodium vivax malaria.

    PubMed

    Mueller, Ivo; Shakri, Ahmad Rushdi; Chitnis, Chetan E

    2015-12-22

    Plasmodium vivax continues to cause significant morbidity outside Africa with more than 50% of malaria cases in many parts of South and South-east Asia, Pacific islands, Central and South America being attributed to P. vivax infections. The unique biology of P. vivax, including its ability to form latent hypnozoites that emerge months to years later to cause blood stage infections, early appearance of gametocytes before clinical symptoms are apparent and a shorter development cycle in the vector makes elimination of P. vivax using standard control tools difficult. The availability of an effective vaccine that provides protection and prevents transmission would be a valuable tool in efforts to eliminate P. vivax. Here, we review the latest developments related to P. vivax malaria vaccines and discuss the challenges as well as directions toward the goal of developing highly efficacious vaccines against P. vivax malaria. PMID:26428453

  7. The paradoxical population genetics of Plasmodium falciparum.

    PubMed

    Hartl, Daniel L; Volkman, Sarah K; Nielsen, Kaare M; Barry, Alyssa E; Day, Karen P; Wirth, Dyann F; Winzeler, Elizabeth A

    2002-06-01

    Among the leading causes of death in African children is cerebral malaria caused by the parasitic protozoan Plasmodium falciparum. Endemic forms of this disease are thought to have originated in central Africa 5000-10000 years ago, coincident with the innovation of slash-and-burn agriculture and the diversification of the Anopheles gambiae complex of mosquito vectors. Population genetic studies of P. falciparum have yielded conflicting results. Some evidence suggests that today's population includes multiple ancient lineages pre-dating human speciation. Other evidence suggests that today's population derives from only one, or a small number, of these ancient lineages. Resolution of this issue is important for the evaluation of the long-term efficacy of drug and immunological control strategies. PMID:12036741

  8. C. elegans NIMA-related kinases NEKL-2 and NEKL-3 are required for the completion of molting

    PubMed Central

    Yochem, John; Lažetic, Vladimir; Bell, Leslie; Chen, Lihsia; Fay, David

    2014-01-01

    C. elegans molting is a process during which the apical extracellular matrix of the epidermis, the cuticle, is remodeled through a process of degradation and re-synthesis. Using a genetic approach, we identified nekl-3 as essential for the completion of molting. NEKL-3 is highly similar to the mammalian NEK kinase family members NEK6 and NEK7. Animals homozygous for a hypomorphic mutation in nekl-3, sv3, had a novel molting defect in which the central body region, but not the head or tail, was unable to shed the old cuticle. In contrast, a null mutation in nekl-3, gk506, led to complete enclosure within the old cuticle. nekl-2, which is most similar to mammalian NEK8, was also essential for molting. Mosaic analyses demonstrated that NEKL-2 and NEKL-3 were specifically required within the large epidermal syncytium, hyp7, to facilitate molting. Consistent with this, NEKL-2 and NEKL-3 were expressed at the apical surface of hyp7 where they localized to small spheres or tubular structures. Inhibition of nekl-2, but not nekl-3, led to the mislocalization of LRP-1/megalin, a cell surface receptor for low-density lipoprotein (LDL)-binding proteins. In addition, nekl-2 inhibition led to the mislocalization of several other endosome-associated proteins. Notably, LRP-1 acts within hyp7 to facilitate completion of molting, suggesting at least one mechanism by which NEKL-2 may influence molting. Notably, our studies failed to reveal a requirement for NEKL-2 or NEKL-3 in cell division, a function reported for several mammalian NEKs including NEK6 and NEK7. Our findings provide the first genetic and in vivo evidence for a role of NEK family members in endocytosis, which may be evolutionarily conserved. PMID:25523392

  9. C. elegans NIMA-related kinases NEKL-2 and NEKL-3 are required for the completion of molting.

    PubMed

    Yochem, John; Lažetić, Vladimir; Bell, Leslie; Chen, Lihsia; Fay, David

    2015-02-15

    Caenorhabditis elegans molting is a process during which the apical extracellular matrix of the epidermis, the cuticle, is remodeled through a process of degradation and re-synthesis. Using a genetic approach, we identified nekl-3 as essential for the completion of molting. NEKL-3 is highly similar to the mammalian NEK kinase family members NEK6 and NEK7. Animals homozygous for a hypomorphic mutation in nekl-3, sv3, had a novel molting defect in which the central body region, but not the head or tail, was unable to shed the old cuticle. In contrast, a null mutation in nekl-3, gk506, led to complete enclosure within the old cuticle. nekl-2, which is most similar to mammalian NEK8, was also essential for molting. Mosaic analyses demonstrated that NEKL-2 and NEKL-3 were specifically required within the large epidermal syncytium, hyp7, to facilitate molting. Consistent with this, NEKL-2 and NEKL-3 were expressed at the apical surface of hyp7 where they localized to small spheres or tubular structures. Inhibition of nekl-2, but not nekl-3, led to the mislocalization of LRP-1/megalin, a cell surface receptor for low-density lipoprotein (LDL)-binding proteins. In addition, nekl-2 inhibition led to the mislocalization of several other endosome-associated proteins. Notably, LRP-1 acts within hyp7 to facilitate completion of molting, suggesting at least one mechanism by which NEKL-2 may influence molting. Notably, our studies failed to reveal a requirement for NEKL-2 or NEKL-3 in cell division, a function reported for several mammalian NEKs including NEK6 and NEK7. Our findings provide the first genetic and in vivo evidence for a role of NEK family members in endocytosis, which may be evolutionarily conserved. PMID:25523392

  10. Maternal-foetal transfer of Plasmodium falciparum and Plasmodium vivax antibodies in a low transmission setting.

    PubMed

    Charnaud, Sarah C; McGready, Rose; Herten-Crabb, Asha; Powell, Rosanna; Guy, Andrew; Langer, Christine; Richards, Jack S; Gilson, Paul R; Chotivanich, Kesinee; Tsuboi, Takafumi; Narum, David L; Pimanpanarak, Mupawjay; Simpson, Julie A; Beeson, James G; Nosten, François; Fowkes, Freya J I

    2016-01-01

    During pregnancy immunolglobulin G (IgG) antibodies are transferred from mother to neonate across the placenta. Studies in high transmission areas have shown transfer of P. falciparum-specific IgG, but the extent and factors influencing maternal-foetal transfer in low transmission areas co-endemic for both P. falciparum and P. vivax are unknown. Pregnant women were screened weekly for Plasmodium infection. Mother-neonate paired serum samples at delivery were tested for IgG to antigens from P. falciparum, P. vivax and other infectious diseases. Antibodies to malarial and non-malarial antigens were highly correlated between maternal and neonatal samples (median [range] spearman ρ = 0.78 [0.57-0.93]), although Plasmodium spp. antibodies tended to be lower in neonates than mothers. Estimated gestational age at last P. falciparum infection, but not P. vivax infection, was positively associated with antibody levels in the neonate (P. falciparum merozoite, spearman ρ median [range] 0.42 [0.33-0.66], PfVAR2CSA 0.69; P. vivax ρ = 0.19 [0.09-0.3]). Maternal-foetal transfer of anti-malarial IgG to Plasmodium spp. antigens occurs in low transmission settings. P. vivax IgG acquisition is not associated with recent exposure unlike P. falciparum IgG, suggesting a difference in acquisition of antibodies. IgG transfer is greatest in the final weeks of pregnancy which has implications for the timing of future malaria vaccination strategies in pregnant women. PMID:26861682

  11. High prevalence and genetic diversity of Plasmodium malariae and no evidence of Plasmodium knowlesi in Bangladesh.

    PubMed

    Fuehrer, Hans-Peter; Swoboda, Paul; Harl, Josef; Starzengruber, Peter; Habler, Verena Elisabeth; Bloeschl, Ingrid; Haque, Rashidul; Matt, Julia; Khan, Wasif Ali; Noedl, Harald

    2014-04-01

    Although the prevalence of malaria remains high in parts of Bangladesh, there continues to be a substantial shortage of information regarding the less common malaria parasites such as Plasmodium malariae or Plasmodium knowlesi. Recent studies indicate that P. malariae may be extremely rare, and so far, there are no data on the presence (or absence) of P. knowlesi in southeastern Bangladesh. Genus- and species-specific nested polymerase chain reaction (PCR) analysis of the small subunit ribosomal RNA gene was performed to assess the presence and prevalence of P. malariae and P. knowlesi in 2,246 samples originating from asymptomatic and febrile participants of a cross-sectional and a febrile illnesses study in the Chittagong Hill Tracts in southeastern Bangladesh. P. malariae was detected in 60 samples (2.7%) corresponding to 8% of the 746 samples giving positive PCR results for Plasmodium sp., mainly because of the high prevalence (9.5%) among asymptomatic study participants testing positive for malaria. Symptomatic cases were more common (4.3% of all symptomatic malaria cases) during the dry season. Parasitemias were low (1,120-2,560/μl in symptomatic and 120-520/μl in asymptomatic carriers). Symptomatic patients presented mild to moderate symptoms like fever, chills, headache, dizziness, fatigue and myalgia.Although both the intermediate as well as the definite host are known to be endemic in southeastern Bangladesh, no evidence for the presence of P. knowlesi was found. We conclude that the role of P. malariae is highly underestimated in rural Bangladesh with major implications for malaria control and elimination strategies. PMID:24578257

  12. Maternal-foetal transfer of Plasmodium falciparum and Plasmodium vivax antibodies in a low transmission setting

    PubMed Central

    Charnaud, Sarah C.; McGready, Rose; Herten-Crabb, Asha; Powell, Rosanna; Guy, Andrew; Langer, Christine; Richards, Jack S.; Gilson, Paul R.; Chotivanich, Kesinee; Tsuboi, Takafumi; Narum, David L.; Pimanpanarak, Mupawjay; Simpson, Julie A.; Beeson, James G.; Nosten, François; Fowkes, Freya J. I.

    2016-01-01

    During pregnancy immunolglobulin G (IgG) antibodies are transferred from mother to neonate across the placenta. Studies in high transmission areas have shown transfer of P. falciparum-specific IgG, but the extent and factors influencing maternal-foetal transfer in low transmission areas co-endemic for both P. falciparum and P. vivax are unknown. Pregnant women were screened weekly for Plasmodium infection. Mother-neonate paired serum samples at delivery were tested for IgG to antigens from P. falciparum, P. vivax and other infectious diseases. Antibodies to malarial and non-malarial antigens were highly correlated between maternal and neonatal samples (median [range] spearman ρ = 0.78 [0.57–0.93]), although Plasmodium spp. antibodies tended to be lower in neonates than mothers. Estimated gestational age at last P. falciparum infection, but not P. vivax infection, was positively associated with antibody levels in the neonate (P. falciparum merozoite, spearman ρ median [range] 0.42 [0.33–0.66], PfVAR2CSA 0.69; P. vivax ρ = 0.19 [0.09–0.3]). Maternal-foetal transfer of anti-malarial IgG to Plasmodium spp. antigens occurs in low transmission settings. P. vivax IgG acquisition is not associated with recent exposure unlike P. falciparum IgG, suggesting a difference in acquisition of antibodies. IgG transfer is greatest in the final weeks of pregnancy which has implications for the timing of future malaria vaccination strategies in pregnant women. PMID:26861682

  13. Plasmodium vivax trophozoite-stage proteomes

    PubMed Central

    Anderson, D.C.; Lapp, Stacey A.; Akinyi, Sheila; Meyer, Esmeralda V.S.; Barnwell, John W.; Korir-Morrison, Cindy; Galinski, Mary R.

    2015-01-01

    Plasmodium vivax is the causative infectious agent of 80–300 million annual cases of malaria. Many aspects of this parasite’s biology remain unknown. To further elucidate the interaction of P. vivax with its Saimiri boliviensis host, we obtained detailed proteomes of infected red blood cells, representing the trophozoite-enriched stage of development. Data from two of three biological replicate proteomes, emphasized here, were analyzed using five search engines, which enhanced identifications and resulted in the most comprehensive P. vivax proteomes to date, with 1375 P. vivax and 3209 S. boliviensis identified proteins. Ribosome subunit proteins were noted for both P. vivax and S. boliviensis, consistent with P. vivax’s known reticulocyte host–cell specificity. A majority of the host and pathogen proteins identified belong to specific functional categories, and several parasite gene families, while 33% of the P. vivax proteins have no reported function. Hemoglobin was significantly oxidized in both proteomes, and additional protein oxidation and nitration was detected in one of the two proteomes. Detailed analyses of these post-translational modifications are presented. The proteins identified here significantly expand the known P. vivax proteome and complexity of available host protein functionality underlying the host–parasite interactive biology, and reveal unsuspected oxidative modifications that may impact protein function. Biological significance Plasmodium vivax malaria is a serious neglected disease, causing an estimated 80 to 300 million cases annually in 95 countries. Infection can result in significant morbidity and possible death. P. vivax, unlike the much better-studied Plasmodium falciparum species, cannot be grown in long-term culture, has a dormant form in the liver called the hypnozoite stage, has a reticulocyte host–cell preference in the blood, and creates caveolae vesicle complexes at the surface of the infected reticulocyte

  14. Avian Malaria ( Plasmodium spp.) in Captive Magellanic Penguins ( Spheniscus magellanicus ) from Northern Argentina, 2010.

    PubMed

    Vanstreels, Ralph Eric Thijl; Capellino, Félix; Silveira, Patricia; Braga, Érika M; Rodríguez-Heredia, Sergio Andres; Loureiro, Julio; Catão-Dias, José Luiz

    2016-07-01

    We report two cases of lethal avian malaria in Magellanic Penguins (Spheniscus magellanicus) captive at San Clemente del Tuyú, Argentina, approximately 560 km north of Argentinean breeding colonies of Magellanic Penguins. Blood smears revealed both penguins were concurrently infected by Plasmodium (Haemamoeba) tejerai, Plasmodium (Huffia) sp., and Plasmodium (Novyella) sp. PMID:27285418

  15. Chimpanzee Malaria Parasites Related to Plasmodium ovale in Africa

    PubMed Central

    Duval, Linda; Nerrienet, Eric; Rousset, Dominique; Sadeuh Mba, Serge Alain; Houze, Sandrine; Fourment, Mathieu; Le Bras, Jacques; Robert, Vincent; Ariey, Frederic

    2009-01-01

    Since the 1970's, the diversity of Plasmodium parasites in African great apes has been neglected. Surprisingly, P. reichenowi, a chimpanzee parasite, is the only such parasite to have been molecularly characterized. This parasite is closely phylogenetically related to P. falciparum, the principal cause of the greatest malaria burden in humans. Studies of malaria parasites from anthropoid primates may provide relevant phylogenetic information, improving our understanding of the origin and evolutionary history of human malaria species. In this study, we screened 130 DNA samples from chimpanzees (Pan troglodytes) and gorillas (Gorilla gorilla) from Cameroon for Plasmodium infection, using cytochrome b molecular tools. Two chimpanzees from the subspecies Pan t. troglodytes presented single infections with Plasmodium strains molecularly related to the human malaria parasite P. ovale. These chimpanzee parasites and 13 human strains of P. ovale originated from a various sites in Africa and Asia were characterized using cytochrome b and cytochrome c oxidase 1 mitochondrial partial genes and nuclear ldh partial gene. Consistent with previous findings, two genetically distinct types of P. ovale, classical and variant, were observed in the human population from a variety of geographical locations. One chimpanzee Plasmodium strain was genetically identical, on all three markers tested, to variant P. ovale type. The other chimpanzee Plasmodium strain was different from P. ovale strains isolated from humans. This study provides the first evidence of possibility of natural cross-species exchange of P. ovale between humans and chimpanzees of the subspecies Pan t. troglodytes. PMID:19436742

  16. Wolbachia increases susceptibility to Plasmodium infection in a natural system

    PubMed Central

    Zélé, F.; Nicot, A.; Berthomieu, A.; Weill, M.; Duron, O.; Rivero, A.

    2014-01-01

    Current views about the impact of Wolbachia on Plasmodium infections are almost entirely based on data regarding artificially transfected mosquitoes. This work has shown that Wolbachia reduces the intensity of Plasmodium infections in mosquitoes, raising the exciting possibility of using Wolbachia to control or limit the spread of malaria. Whether natural Wolbachia infections have the same parasite-inhibiting properties is not yet clear. Wolbachia–mosquito combinations with a long evolutionary history are, however, key for understanding what may happen with Wolbachia-transfected mosquitoes after several generations of coevolution. We investigate this issue using an entirely natural mosquito–Wolbachia–Plasmodium combination. In contrast to most previous studies, which have been centred on the quantification of the midgut stages of Plasmodium, we obtain a measurement of parasitaemia that relates directly to transmission by following infections to the salivary gland stages. We show that Wolbachia increases the susceptibility of Culex pipiens mosquitoes to Plasmodium relictum, significantly increasing the prevalence of salivary gland stage infections. This effect is independent of the density of Wolbachia in the mosquito. These results suggest that naturally Wolbachia-infected mosquitoes may, in fact, be better vectors of malaria than Wolbachia-free ones. PMID:24500167

  17. Physicochemical Aspects of the Plasmodium chabaudi-Infected Erythrocyte

    PubMed Central

    Hayakawa, Eri H.; Kobayashi, Seiki; Matsuoka, Hiroyuki

    2015-01-01

    Membrane electrochemical potential is a feature of the molecular profile of the cell membrane and the two-dimensional arrangement of its charge-bearing molecules. Plasmodium species, the causative agents of malaria, are intracellular parasites that remodel host erythrocytes by expressing their own proteins on erythrocyte membranes. Although various aspects of the modifications made to the host erythrocyte membrane have been extensively studied in some human Plasmodium species (such as Plasmodium falciparum), details of the structural and molecular biological modifications made to host erythrocytes by nonhuman Plasmodium parasites have not been studied. We employed zeta potential analysis of erythrocytes parasitized by P. chabaudi, a nonhuman Plasmodium parasite. From these measurements, we found that the surface potential shift was more negative for P. chabaudi-infected erythrocytes than for P. falciparum-infected erythrocytes. However, electron microscopic analysis of the surface of P. chabaudi-infected erythrocytes did not reveal any modifications as compared with nonparasitized erythrocytes. These results suggest that differences in the membrane modifications found herein represent unique attributes related to the pathogenesis profiles of the two different malaria parasite species in different host animals and that these features have been acquired through parasite adaptations acquired over long evolutionary time periods. PMID:26557685

  18. Genetic distance in housekeeping genes between Plasmodium falciparum and Plasmodium reichenowi and within P. falciparum.

    PubMed

    Tanabe, Kazuyuki; Sakihama, Naoko; Hattori, Tetsuya; Ranford-Cartwright, Lisa; Goldman, Ira; Escalante, Ananias A; Lal, Altaf A

    2004-11-01

    The time to the most recent common ancestor of the extant populations of Plasmodium falciparum is controversial. The controversy primarily stems from the limited availability of sequences from Plasmodium reichenowi, a chimpanzee malaria parasite closely related to P. falciparum. Since the rate of nucleotide substitution differs in different loci and DNA regions, the estimation of genetic distance between P. falciparum and P. reichenowi should be performed using orthologous sequences that are evolving neutrally. Here, we obtained full-length sequences of two housekeeping genes, sarcoplasmic and endoplasmic reticulum Ca2+ -ATPase (serca) and lactate dehydrogenase (ldh), from 11 isolates of P. falciparum and 1 isolate of P. reichenowi and estimate the interspecific genetic distance (divergence) between the two species and intraspecific genetic distance (polymorphism) within P. falciparum. Interspecific distance and intraspecific distance at synonymous sites of interspecies-conserved regions of serca and ldh were 0.0672 +/- 0.0088 and 0.0011 +/- 0.0007, respectively, using the Nei and Gojobori method. Based on the ratio of interspecific distance to intraspecific distance, the time to the most recent common ancestor of P. falciparum was estimated to be (8.30 +/- 5.40) x 10(4) and (11.62 +/- 7.56) x 10(4) years ago, assuming the divergence time of the two parasite species to be 5 and 7 million years ago, respectively. PMID:15693624

  19. Plasmodium falciparum Secretome in Erythrocyte and Beyond.

    PubMed

    Soni, Rani; Sharma, Drista; Bhatt, Tarun K

    2016-01-01

    Plasmodium falciparum is the causative agent of deadly malaria disease. It is an intracellular eukaryote and completes its multi-stage life cycle spanning the two hosts viz, mosquito and human. In order to habituate within host environment, parasite conform several strategies to evade host immune responses such as surface antigen polymorphism or modulation of host immune system and it is mediated by secretion of proteins from parasite to the host erythrocyte and beyond, collectively known as, malaria secretome. In this review, we will discuss about the deployment of parasitic secretory protein in mechanism implicated for immune evasion, protein trafficking, providing virulence, changing permeability and cyto-adherence of infected erythrocyte. We will be covering the possibilities of developing malaria secretome as a drug/vaccine target. This gathered information will be worthwhile in depicting a well-organized picture for host-pathogen interplay during the malaria infection and may also provide some clues for the development of novel anti-malarial therapies. PMID:26925057

  20. Plasmodium falciparum Secretome in Erythrocyte and Beyond

    PubMed Central

    Soni, Rani; Sharma, Drista; Bhatt, Tarun K.

    2016-01-01

    Plasmodium falciparum is the causative agent of deadly malaria disease. It is an intracellular eukaryote and completes its multi-stage life cycle spanning the two hosts viz, mosquito and human. In order to habituate within host environment, parasite conform several strategies to evade host immune responses such as surface antigen polymorphism or modulation of host immune system and it is mediated by secretion of proteins from parasite to the host erythrocyte and beyond, collectively known as, malaria secretome. In this review, we will discuss about the deployment of parasitic secretory protein in mechanism implicated for immune evasion, protein trafficking, providing virulence, changing permeability and cyto-adherence of infected erythrocyte. We will be covering the possibilities of developing malaria secretome as a drug/vaccine target. This gathered information will be worthwhile in depicting a well-organized picture for host-pathogen interplay during the malaria infection and may also provide some clues for the development of novel anti-malarial therapies. PMID:26925057

  1. Temperature alters Plasmodium blocking by Wolbachia

    NASA Astrophysics Data System (ADS)

    Murdock, Courtney C.; Blanford, Simon; Hughes, Grant L.; Rasgon, Jason L.; Thomas, Matthew B.

    2014-02-01

    Very recently, the Asian malaria vector (Anopheles stephensi) was stably transinfected with the wAlbB strain of Wolbachia, inducing refractoriness to the human malaria parasite Plasmodium falciparum. However, conditions in the field can differ substantially from those in the laboratory. We use the rodent malaria P. yoelii, and somatically transinfected An. stephensi as a model system to investigate whether the transmission blocking potential of wAlbB is likely to be robust across different thermal environments. wAlbB reduced malaria parasite prevalence and oocyst intensity at 28°C. At 24°C there was no effect on prevalence but a marked increase in oocyst intensity. At 20°C, wAlbB had no effect on prevalence or intensity. Additionally, we identified a novel effect of wAlbB that resulted in reduced sporozoite development across temperatures, counterbalancing the oocyst enhancement at 24°C. Our results demonstrate complex effects of temperature on the Wolbachia-malaria interaction, and suggest the impacts of transinfection might vary across diverse environments.

  2. Epigenetic regulation of the Plasmodium falciparum genome.

    PubMed

    Duffy, Michael F; Selvarajah, Shamista A; Josling, Gabrielle A; Petter, Michaela

    2014-05-01

    Recent research has highlighted some unique aspects of chromatin biology in the malaria parasite Plasmodium falciparum. During its erythrocytic lifecycle P. falciparum maintains its genome primarily as unstructured euchromatin. Indeed there is no clear role for chromatin-mediated silencing of the majority of the developmentally expressed genes in P. falciparum. However discontinuous stretches of heterochromatin are critical for variegated expression of contingency genes that mediate key pathogenic processes in malaria. These range from invasion of erythrocytes and antigenic variation to solute transport and growth adaptation in response to environmental changes. Despite lack of structure within euchromatin the nucleus maintains functional compartments that regulate expression of many genes at the nuclear periphery, particularly genes with clonally variant expression. The typical components of the chromatin regulatory machinery are present in P. falciparum; however, some of these appear to have evolved novel species-specific functions, e.g. the dynamic regulation of histone variants at virulence gene promoters. The parasite also appears to have repeatedly acquired chromatin regulatory proteins through lateral transfer from endosymbionts and from the host. P. falciparum chromatin regulators have been successfully targeted with multiple drugs in laboratory studies; hopefully their functional divergence from human counterparts will allow the development of parasite-specific inhibitors. PMID:24326119

  3. Induction of gene amplification in Plasmodium falciparum

    SciTech Connect

    Rogers, P.L.

    1985-01-01

    Human erythrocytic in vitro cultures of Honduras I strain of the malaria parasite Plasmodium falciparum have been stressed stepwise with increasing concentrations of methotrexate (MTX), a folate antagonist. This selection has produced a strain that is 450 times more resistant to the drug than the original culture. Uptake of sublethal doses of radiolabeled MTX by infected red blood cells was 6-36 times greater in the resistant cultures than in the nonresistant controls. DNA isolated from all of the parasites was probed by hybridization with /sup 35/S-labeled DNA derived from a clone of the yeast thymidylate synthetase (TS) gene. This showed 50 to 100 times more increased hybridization of the TS probe to the DNA from the resistant parasites is direct evidence of gene amplification because DHFR and TS are actually one and the same bifunctional enzyme in P. falciparum. Hence, the evidence presented indicates that induced resistance of the malaria parasite to MTX in this case is due to overproduction of DHFR resulting from amplification of the DHFR-TS gene.

  4. Mitochondrial Reactive Oxygen Species Modulate Mosquito Susceptibility to Plasmodium Infection

    PubMed Central

    Oliveira, Giselle A.; Andersen, John F.; Oliveira, Marcus F.; Oliveira, Pedro L.; Barillas-Mury, Carolina

    2012-01-01

    Background Mitochondria perform multiple roles in cell biology, acting as the site of aerobic energy-transducing pathways and as an important source of reactive oxygen species (ROS) that modulate redox metabolism. Methodology/Principal Findings We demonstrate that a novel member of the mitochondrial transporter protein family, Anopheles gambiae mitochondrial carrier 1 (AgMC1), is required to maintain mitochondrial membrane potential in mosquito midgut cells and modulates epithelial responses to Plasmodium infection. AgMC1 silencing reduces mitochondrial membrane potential, resulting in increased proton-leak and uncoupling of oxidative phosphorylation. These metabolic changes reduce midgut ROS generation and increase A. gambiae susceptibility to Plasmodium infection. Conclusion We provide direct experimental evidence indicating that ROS derived from mitochondria can modulate mosquito epithelial responses to Plasmodium infection. PMID:22815925

  5. Plasmodium-mosquito interactions: a tale of dangerous liaisons.

    PubMed

    Barillas-Mury, Carolina; Kumar, Sanjeev

    2005-11-01

    To complete their life cycle, Plasmodium parasites must survive the environment in the insect host, cross multiple barriers including epithelial layers, and avoid destruction by the mosquito immune system. Completion of the Anopheles gambiae and Plasmodium falciparum genomes has opened the opportunity to apply high throughput methods to the analysis of gene function. The burst of information generated by these approaches and the use of molecular markers to investigate the cell biology of these interactions is broadening our understanding of this complex system. This review discusses our current understanding of the critical interactions that take place during the journey of Plasmodium through the mosquito host, with special emphasis on the responses of midgut epithelial cells to parasite invasion. PMID:16207241

  6. Optimal strategy for controlling the spread of Plasmodium Knowlesi malaria: Treatment and culling

    NASA Astrophysics Data System (ADS)

    Abdullahi, Mohammed Baba; Hasan, Yahya Abu; Abdullah, Farah Aini

    2015-05-01

    Plasmodium Knowlesi malaria is a parasitic mosquito-borne disease caused by a eukaryotic protist of genus Plasmodium Knowlesi transmitted by mosquito, Anopheles leucosphyrus to human and macaques. We developed and analyzed a deterministic Mathematical model for the transmission of Plasmodium Knowlesi malaria in human and macaques. The optimal control theory is applied to investigate optimal strategies for controlling the spread of Plasmodium Knowlesi malaria using treatment and culling as control strategies. The conditions for optimal control of the Plasmodium Knowlesi malaria are derived using Pontryagin's Maximum Principle. Finally, numerical simulations suggested that the combination of the control strategies is the best way to control the disease in any community.

  7. [From malaria parasite point of view--Plasmodium falciparum evolution].

    PubMed

    Zerka, Agata; Kaczmarek, Radosław; Jaśkiewicz, Ewa

    2015-01-01

    Malaria is caused by infection with protozoan parasites belonging to the genus Plasmodium, which have arguably exerted the greatest selection pressure on humans in the history of our species. Besides humans, different Plasmodium parasites infect a wide range of animal hosts, from marine invertebrates to primates. On the other hand, individual Plasmodium species show high host specificity. The extraordinary evolution of Plasmodium probably began when a free-living red algae turned parasitic, and culminated with its ability to thrive inside a human red blood cell. Studies on the African apes generated new data on the evolution of malaria parasites in general and the deadliest human-specific species, Plasmodium falciparum, in particular. Initially, it was hypothesized that P. falciparum descended from the chimpanzee malaria parasite P. reichenowi, after the human and the chimp lineage diverged about 6 million years ago. However, a recently identified new species infecting gorillas, unexpectedly showed similarity to P. falciparum and was therefore named P. praefalciparum. That finding spurred an alternative hypothesis, which proposes that P. falciparum descended from its gorilla rather than chimp counterpart. In addition, the gorilla-to-human host shift may have occurred more recently (about 10 thousand years ago) than the theoretical P. falciparum-P. reichenowi split. One of the key aims of the studies on Plasmodium evolution is to elucidate the mechanisms that allow the incessant host shifting and retaining the host specificity, especially in the case of human-specific species. Thorough understanding of these phenomena will be necessary to design effective malaria treatment and prevention strategies. PMID:27259224

  8. Backward bifurcation and optimal control of Plasmodium Knowlesi malaria

    NASA Astrophysics Data System (ADS)

    Abdullahi, Mohammed Baba; Hasan, Yahya Abu; Abdullah, Farah Aini

    2014-07-01

    A deterministic model for the transmission dynamics of Plasmodium Knowlesi malaria with direct transmission is developed. The model is analyzed using dynamical system techniques and it shows that the backward bifurcation occurs for some range of parameters. The model is extended to assess the impact of time dependent preventive (biological and chemical control) against the mosquitoes and vaccination for susceptible humans, while treatment for infected humans. The existence of optimal control is established analytically by the use of optimal control theory. Numerical simulations of the problem, suggest that applying the four control measure can effectively reduce if not eliminate the spread of Plasmodium Knowlesi in a community.

  9. Structure and expression of the Plasmodium falciparum SERA gene.

    PubMed

    Li, W B; Bzik, D J; Horii, T; Inselburg, J

    1989-02-01

    Plasmodium falciparum, strain FCR3, genomic DNA that encodes the SERA gene of P. falciparum was isolated and sequenced. The SERA gene coding region was interrupted by 3 introns, the largest number observed, so far, in any Plasmodium gene. Two SERA gene alleles, allele I and allele II, were identified in the FCR3 strain, while only allele I was found in the Honduras-1 strain. Allele I mRNA was abundant in vivo during the late trophozoite and schizont stages. Allele II mRNA was either not expressed, or it was labile. PMID:2651911

  10. The structure and role of RNA polymerases in Plasmodium.

    PubMed

    Bzik, D J

    1991-08-01

    During the past few years the characterization of several Plasmodium falciparum RNA polymerase subunits has revealed potentially significant differences between the corresponding subunits of the host and parasite enzymes(1-3). The largest subunits of P. falciparum RNA polymerase II and III contain enlarged variable domains that separate conserved domains in these subunits. The partially characterized beta and beta '-like subunits of an organellar P. falciparum RNA polymerase also appear to be distinct from the host RNA polymerases. In this review David Bzik discusses the structure and role of RNA polymerases in Plasmodium. PMID:15463499

  11. Plasmodium knowlesi as a Threat to Global Public Health

    PubMed Central

    Wesolowski, Roland; Wozniak, Alina; Mila-Kierzenkowska, Celestyna; Szewczyk-Golec, Karolina

    2015-01-01

    Malaria is a tropical disease caused by protozoans of the Plasmodium genus. Delayed diagnosis and misdiagnosis are strongly associated with higher mortality. In recent years, a greater importance is attributed to Plasmodium knowlesi, a species found mainly in Southeast Asia. Routine parasitological diagnostics are associated with certain limitations and difficulties in unambiguous determination of the parasite species based only on microscopic image. Recently, molecular techniques have been increasingly used for predictive diagnosis. The aim of the study is to draw attention to the risk of travelling to knowlesi malaria endemic areas and to raise awareness among personnel involved in the therapeutic process. PMID:26537037

  12. Replication and maintenance of the Plasmodium falciparum apicoplast genome.

    PubMed

    Milton, Morgan E; Nelson, Scott W

    2016-08-01

    Members of the phylum Apicomplexa are responsible for many devastating diseases including malaria (Plasmodium spp.), toxoplasmosis (Toxoplasma gondii), babesiosis (Babesia bovis), and cyclosporiasis (Cyclospora cayetanensis). Most Apicomplexans contain a unique and essential organelle called the apicoplast. Derived from an ancient chloroplast, the apicoplast replicates and maintains a 35 kilobase (kb) circular genome. Due to its essential nature within the parasite, drugs targeted to proteins involved in DNA replication and repair of the apicoplast should be potent and specific. This review summarizes the current knowledge surrounding the replication and repair of the Plasmodium falciparum apicoplast genome and identifies several putative proteins involved in replication and repair pathways. PMID:27338018

  13. CLIP proteases and Plasmodium melanization in Anopheles gambiae.

    PubMed

    Barillas-Mury, Carolina

    2007-07-01

    Melanization is a potent immune response mediated by phenoloxidase (PO). Multiple Clip-domain serine proteases (CLIP) regulate PO activation as part of a complex cascade of proteases that are cleaved sequentially. The role of several CLIP as key activators or suppressors of the melanization responses of Anopheles gambiae to Plasmodium berghei (murine malaria) has been established recently using a genome-wide reverse genetics approach. Important differences in regulation of PO activation between An. gambiae strains were also identified. This review summarizes these findings and discusses our current understanding of the An. gambiae melanization responses to Plasmodium. PMID:17512801

  14. Artemisinin-resistant Plasmodium falciparum malaria

    PubMed Central

    Fairhurst, Rick M.; Dondorp, Arjen M.

    2016-01-01

    For more than five decades, Southeast Asia (SEA) has been fertile ground for the emergence of drug-resistant Plasmodium falciparum malaria. After generating parasites resistant to chloroquine, sulfadoxine, pyrimethamine, quinine, and mefloquine, this region has now spawned parasites resistant to artemisinins – the world's most potent antimalarial drugs. In areas where artemisinin resistance is prevalent, artemisinin combination therapies (ACTs) – the first-line treatments for malaria – are failing fast. This worrisome development threatens to make malaria practically untreatable in SEA, and threatens to compromise global endeavors to eliminate this disease. A recent series of clinical, in-vitro, genomics, and transcriptomics studies in SEA have defined in-vivo and in-vitro phenotypes of artemisinin resistance; identified its causal genetic determinant; explored its molecular mechanism; and assessed its clinical impact. Specifically, these studies have established that artemisinin resistance manifests as slow parasite clearance in patients and increased survival of early ring-stage parasites in vitro; is caused by single nucleotide polymorphisms in the parasite's ‘K13’ gene; is associated with an upregulated “unfolded protein response” pathway that may antagonize the pro-oxidant activity of artemisinins; and selects for partner drug resistance that rapidly leads to ACT failures. In SEA, clinical studies are urgently needed to monitor ACT efficacy where K13 mutations are prevalent; test whether new combinations of currently-available drugs cure ACT failures; and advance new antimalarial compounds through preclinical pipelines and into clinical trials. Intensifying these efforts should help to forestall the spread of artemisinin and partner drug resistance from SEA to Sub-Saharan Africa, where the world's malaria transmission, morbidity, and mortality rates are highest. PMID:27337450

  15. Strategies for Detection of Plasmodium species Gametocytes

    PubMed Central

    Javati, Sarah; Robinson, Leanne; Betuela, Inoni; Siba, Peter; Beck, Hans-Peter; Mueller, Ivo; Felger, Ingrid

    2013-01-01

    Carriage and density of gametocytes, the transmission stages of malaria parasites, are determined for predicting the infectiousness of humans to mosquitoes. This measure is used for evaluating interventions that aim at reducing malaria transmission. Gametocytes need to be detected by amplification of stage-specific transcripts, which requires RNA-preserving blood sampling. For simultaneous, highly sensitive quantification of both, blood stages and gametocytes, we have compared and optimized different strategies for field and laboratory procedures in a cross sectional survey in 315 5-9 yr old children from Papua New Guinea. qRT-PCR was performed for gametocyte markers pfs25 and pvs25, Plasmodium species prevalence was determined by targeting both, 18S rRNA genes and transcripts. RNA-based parasite detection resulted in a P. falciparum positivity of 24.1%; of these 40.8% carried gametocytes. P. vivax positivity was 38.4%, with 38.0% of these carrying gametocytes. Sensitivity of DNA-based parasite detection was substantially lower with 14.1% for P. falciparum and 19.6% for P. vivax. Using the lower DNA-based prevalence of asexual stages as a denominator increased the percentage of gametocyte-positive infections to 59.1% for P. falciparum and 52.4% for P. vivax. For studies requiring highly sensitive and simultaneous quantification of sexual and asexual parasite stages, 18S rRNA transcript-based detection saves efforts and costs. RNA-based positivity is considerably higher than other methods. On the other hand, DNA-based parasite quantification is robust and permits comparison with other globally generated molecular prevalence data. Molecular monitoring of low density asexual and sexual parasitaemia will support the evaluation of effects of up-scaled antimalarial intervention programs and can also inform about small scale spatial variability in transmission intensity. PMID:24312682

  16. The Dynamics of Natural Plasmodium falciparum Infections

    PubMed Central

    Felger, Ingrid; Maire, Martin; Bretscher, Michael T.; Falk, Nicole; Tiaden, André; Sama, Wilson; Beck, Hans-Peter; Owusu-Agyei, Seth; Smith, Thomas A.

    2012-01-01

    Background Natural immunity to Plasmodium falciparum has been widely studied, but its effects on parasite dynamics are poorly understood. Acquisition and clearance rates of untreated infections are key elements of the dynamics of malaria, but estimating these parameters is challenging because of frequent super-infection and imperfect detectability of parasites. Consequently, information on effects of host immune status or age on infection dynamics is fragmentary. Methods An age-stratified cohort of 347 individuals from Northern Ghana was sampled six times at 2 month intervals. High-throughput capillary electrophoresis was used to genotype the msp-2 locus of all P. falciparum infections detected by PCR. Force of infection (FOI) and duration were estimated for each age group using an immigration-death model that allows for imperfect detection of circulating parasites. Results Allowing for imperfect detection substantially increased estimates of FOI and duration. Effects of naturally acquired immunity on the FOI and duration would be reflected in age dependence in these indices, but in our cohort data FOI tended to increase with age in children. Persistence of individual parasite clones was characteristic of all age-groups. Duration peaked in 5–9 year old children (average duration 319 days, 95% confidence interval 318;320). Conclusions The main age-dependence is on parasite densities, with only small age-variations in the FOI and persistence of infections. This supports the hypothesis that acquired immunity controls transmission mainly by limiting blood-stage parasite densities rather than changing rates of acquisition or clearance of infections. PMID:23029082

  17. Plasmodium vivax Populations Are More Genetically Diverse and Less Structured than Sympatric Plasmodium falciparum Populations

    PubMed Central

    Jennison, Charlie; Arnott, Alicia; Tessier, Natacha; Tavul, Livingstone; Koepfli, Cristian; Felger, Ingrid; Siba, Peter M.; Reeder, John C.; Bahlo, Melanie; Mueller, Ivo; Barry, Alyssa E.

    2015-01-01

    Introduction The human malaria parasite, Plasmodium vivax, is proving more difficult to control and eliminate than Plasmodium falciparum in areas of co-transmission. Comparisons of the genetic structure of sympatric parasite populations may provide insight into the mechanisms underlying the resilience of P. vivax and can help guide malaria control programs. Methodology/Principle findings P. vivax isolates representing the parasite populations of four areas on the north coast of Papua New Guinea (PNG) were genotyped using microsatellite markers and compared with previously published microsatellite data from sympatric P. falciparum isolates. The genetic diversity of P. vivax (He = 0.83–0.85) was higher than that of P. falciparum (He = 0.64–0.77) in all four populations. Moderate levels of genetic differentiation were found between P. falciparum populations, even over relatively short distances (less than 50 km), with 21–28% private alleles and clear geospatial genetic clustering. Conversely, very low population differentiation was found between P. vivax catchments, with less than 5% private alleles and no genetic clustering observed. In addition, the effective population size of P. vivax (30353; 13043–69142) was larger than that of P. falciparum (18871; 8109–42986). Conclusions/Significance Despite comparably high prevalence, P. vivax had higher diversity and a panmictic population structure compared to sympatric P. falciparum populations, which were fragmented into subpopulations. The results suggest that in comparison to P. falciparum, P. vivax has had a long-term large effective population size, consistent with more intense and stable transmission, and limited impact of past control and elimination efforts. This underlines suggestions that more intensive and sustained interventions will be needed to control and eventually eliminate P. vivax. This research clearly demonstrates how population genetic analyses can reveal deeper insight into transmission

  18. Malaria morbidity in Papua Indonesia, an area with multidrug resistant Plasmodium vivax and Plasmodium falciparum

    PubMed Central

    Karyana, Muhammad; Burdarm, Lenny; Yeung, Shunmay; Kenangalem, Enny; Wariker, Noah; Maristela, Rilia; Umana, Ketut Gde; Vemuri, Ram; Okoseray, Maurits J; Penttinen, Pasi M; Ebsworth, Peter; Sugiarto, Paulus; Anstey, Nicholas M; Tjitra, Emiliana; Price, Richard N

    2008-01-01

    Background Multidrug resistance has emerged to both Plasmodium vivax and Plasmodium falciparum and yet the comparative epidemiology of these infections is poorly defined. Methods All laboratory-confirmed episodes of malaria in Timika, Papua, Indonesia, presenting to community primary care clinics and an inpatient facility were reviewed over a two-year period. In addition information was gathered from a house-to-house survey to quantify the prevalence of malaria and treatment-seeking behaviour of people with fever. Results Between January 2004 and December 2005, 99,158 laboratory-confirmed episodes of malaria were reported, of which 58% (57,938) were attributable to P. falciparum and 37% (36,471) to P. vivax. Malaria was most likely to be attributable to pure P. vivax in children under one year of age (55% 2,684/4,889). In the household survey, the prevalence of asexual parasitaemia was 7.5% (290/3,890) for P. falciparum and 6.4% (248/3,890) for P. vivax. The prevalence of P. falciparum infection peaked in young adults aged 15–25 years (9.8% 69/707), compared to P. vivax infection which peaked in children aged 1 to 4 years (9.5% 61/642). Overall 35% (1,813/5,255) of people questioned reported a febrile episode in the preceding month. Of the 60% of people who were estimated to have had malaria, only 39% would have been detected by the surveillance network. The overall incidence of malaria was therefore estimated as 876 per 1,000 per year (Range: 711–906). Conclusion In this region of multidrug-resistant P. vivax and P. falciparum, both species are associated with substantial morbidity, but with significant differences in the age-related risk of infection. PMID:18673572

  19. Genetic structure of Plasmodium vivax and Plasmodium falciparum in the Bannu district of Pakistan

    PubMed Central

    2010-01-01

    Background Plasmodium vivax and Plasmodium falciparum are the major causative agents of malaria. While knowledge of the genetic structure of malaria parasites is useful for understanding the evolution of parasite virulence, designing anti-malarial vaccines and assessing the impact of malaria control measures, there is a paucity of information on genetic diversity of these two malaria parasites in Pakistan. This study sought to shed some light on the genetic structure of P. vivax and P. falciparum in this understudied region. Methods The genetic diversities of P. vivax and P. falciparum populations from the densely populated, malaria-endemic Bannu district of Pakistan were evaluated by analysis of their merozoite surface protein (msp) genes by PCR-RFLP. Specifically, the Pvmsp-3α and Pvmsp-3β genes of P. vivax and the Pfmsp-1 and Pfmsp-2 genes of P. falciparum were analysed. Results In P. vivax, genotyping of Pvmsp-3α and Pvmsp-3β genes showed a high level of diversity at these loci. Four distinct allele groups: A (1.9 kb), B (1.5 kb), C (1.2 kb), and D (0.3 kb) were detected for Pvmsp-3α, type A being the most prevalent (82%). Conversely, amplification of the P. vivax msp-3β locus produced two allele groups: A (1.7-2.2 kb, 62%) and B (1.4-1.5 kb, 33%), with 5% mixed-strain infections. Restriction analysis of Pvmsp-3α and Pvmsp-3β yielded 12 and 8 distinct alleles, respectively, with a combined mixed genotype prevalence of 20%. In P. falciparum, all three known genotypes of Pfmsp-1 and two of Pfmsp-2 were observed, with MAD20 occurring in 67% and 3D7/IC in 65% of the isolates, respectively. Overall, 24% P. falciparum samples exhibited mixed-strain infections. Conclusion These results indicate that both P. vivax and P. falciparum populations in Pakistan are highly diverse. PMID:20416089

  20. Plasmodium falciparum and Plasmodium vivax specific lactate dehydrogenase: genetic polymorphism study from Indian isolates.

    PubMed

    Keluskar, Priyadarshan; Singh, Vineeta; Gupta, Purva; Ingle, Sanjay

    2014-08-01

    Control and eradication of malaria is hindered by the acquisition of drug resistance by Plasmodium species. This has necessitated a persistent search for novel drugs and more efficient targets. Plasmodium species specific lactate dehydrogenase is one of the potential therapeutic and diagnostic targets, because of its indispensable role in endoerythrocytic stage of the parasite. A target molecule that is highly conserved in the parasite population can be more effectively used in diagnostics and therapeutics, hence, in the present study polymorphism in PfLDH (Plasmodiumfalciparum specific LDH) and PvLDH (Plasmodiumvivax specific LDH) genes was analyzed using PCR-single strand confirmation polymorphism (PCR-SSCP) and sequencing. Forty-six P. falciparum and thirty-five P. vivax samples were screened from different states of India. Our findings have revealed presence of a single PfLDH genotype and six PvLDH genotypes among the studied samples. Interestingly, along with synonymous substitutions, nonsynonymous substitutions were reported to be present for the first time in the PvLDH genotypes. Further, through amino acid sequence alignment and homology modeling studies we observed that the catalytic residues were conserved in all PvLDH genotypes and the nonsynonymous substitutions have not altered the enzyme structure significantly. Evolutionary genetics studies have confirmed that PfLDH and PvLDH loci are under strong purifying selection. Phylogenetic analysis of the pLDH gene sequences revealed that P. falciparum compared to P. vivax, has recent origin. The study therefore supports PfLDH and PvLDH as suitable therapeutic and diagnostic targets as well as phylogenetic markers to understand the genealogy of malaria species. PMID:24953504

  1. Plasmodium cellular effector mechanisms and the hepatic microenvironment

    PubMed Central

    Frevert, Ute; Krzych, Urszula

    2015-01-01

    Plasmodium falciparum malaria remains one of the most serious health problems globally. Immunization with attenuated parasites elicits multiple cellular effector mechanisms capable of eliminating Plasmodium liver stages. However, malaria liver stage (LS) immunity is complex and the mechanisms effector T cells use to locate the few infected hepatocytes in the large liver in order to kill the intracellular LS parasites remain a mystery to date. Here, we review our current knowledge on the behavior of CD8 effector T cells in the hepatic microvasculature, in malaria and other hepatic infections. Taking into account the unique immunological and lymphogenic properties of the liver, we discuss whether classical granule-mediated cytotoxicity might eliminate infected hepatocytes via direct cell contact or whether cytokines might operate without cell–cell contact and kill Plasmodium LSs at a distance. A thorough understanding of the cellular effector mechanisms that lead to parasite death hence sterile protection is a prerequisite for the development of a successful malaria vaccine to protect the 40% of the world’s population currently at risk of Plasmodium infection. PMID:26074888

  2. The Small Ribosomal Subunit RNA Isoforms in Plasmodium Cynomolgi

    PubMed Central

    Corredor, V.; Enea, V.

    1994-01-01

    We report the isolation, characterization and analysis of the small subunit rRNA genes in Plasmodium cynomolgi (Ceylon). As in other Plasmodium species, these genes are present in low copy number, are unlinked and form two types that are distinct in sequence and are expressed stage specifically. The asexually expressed (type A) genes are present in four copies in the Ceylon(-) and in five copies in the Berok(-) strain. Surprisingly, the sexually expressed (type B) gene is present in a single copy. The vast majority of the differences between gene types is confined to the variable regions. The pattern of divergence is different from that observed in Plasmodium berghei or in Plasmodium falciparum. Analysis of the small subunit rRNA sequences of P. cynomolgi, P. berghei and P. falciparum, indicates that the two gene types do not evolve independently but rather interact (through gene conversion or some form of recombination) to such an extent as to erase whatever stage-specific sequence signatures they may have had in the last common ancestor. PMID:8005440

  3. 21 CFR 866.3402 - Plasmodium species antigen detection assays.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Plasmodium species antigen detection assays. 866.3402 Section 866.3402 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  4. 21 CFR 866.3402 - Plasmodium species antigen detection assays.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Plasmodium species antigen detection assays. 866.3402 Section 866.3402 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  5. 21 CFR 866.3402 - Plasmodium species antigen detection assays.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Plasmodium species antigen detection assays. 866.3402 Section 866.3402 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  6. 21 CFR 866.3402 - Plasmodium species antigen detection assays.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Plasmodium species antigen detection assays. 866.3402 Section 866.3402 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  7. 21 CFR 866.3402 - Plasmodium species antigen detection assays.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Plasmodium species antigen detection assays. 866.3402 Section 866.3402 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  8. Plasmodium-specific molecular assays produce uninterpretable results and non-Plasmodium spp. sequences in field-collected Anopheles vectors.

    PubMed

    Harrison, Genelle F; Foley, Desmond H; Rueda, Leopoldo M; Melanson, Vanessa R; Wilkerson, Richard C; Long, Lewis S; Richardson, Jason H; Klein, Terry A; Kim, Heung-Chul; Lee, Won-Ja

    2013-12-01

    The Malaria Research and Reference Reagent Resource-recommended PLF/UNR/VIR polymerase chain reaction (PCR) was used to detect Plasmodium vivax in Anopheles spp. mosquitoes collected in South Korea. Samples that were amplified were sequenced and compared with known Plasmodium spp. by using the PlasmoDB.org Basic Local Alignment Search Tool/n and the National Center for Biotechnology Information Basic Local Alignment Search Tool/n tools. Results show that the primers PLF/UNR/VIR used in this PCR can produce uninterpretable results and non-specific sequences in field-collected mosquitoes. Three additional PCRs (PLU/VIV, specific for 18S small subunit ribosomal DNA; Pvr47, specific for a nuclear repeat; and GDCW/PLAS, specific for the mitochondrial marker, cytB) were then used to find a more accurate and interpretable assay. Samples that were amplified were again sequenced. The PLU/VIV and Pvr47 assays showed cross-reactivity with non-Plasmodium spp. and an arthropod fungus (Zoophthora lanceolata). The GDCW/PLAS assay amplified only Plasmodium spp. but also amplified the non-human specific parasite P. berghei from an Anopheles belenrae mosquito. Detection of P. berghei in South Korea is a new finding. PMID:24189365

  9. Structure, Function and Inhibition of the Phosphoethanolamine Methyltransferases of the Human Malaria Parasites Plasmodium vivax and Plasmodium knowlesi

    PubMed Central

    Garg, Aprajita; Lukk, Tiit; Kumar, Vidya; Choi, Jae-Yeon; Augagneur, Yoann; Voelker, Dennis R.; Nair, Satish; Mamoun, Choukri Ben

    2015-01-01

    Phosphoethanolamine methyltransferases (PMTs) catalyze the three-step methylation of phosphoethanolamine to form phosphocholine, a critical step in the synthesis of phosphatidylcholine in a select number of eukaryotes including human malaria parasites, nematodes and plants. Genetic studies in the malaria parasite Plasmodium falciparum have shown that the methyltransferase PfPMT plays a critical function in parasite development and differentiation. The presence of PMT orthologs in other malaria parasites that infect humans and their absence in mammals make them ideal targets for the development of selective antimalarials with broad specificity against different Plasmodium species. Here we describe the X-ray structures and biochemical properties of PMT orthologs from Plasmodium vivax and Plasmodium knowlesi and show that both enzymes are inhibited by amodiaquine and NSC158011, two drugs with potent antimalarial activity. Metabolic studies in a yeast mutant that relies on PkPMT or PvPMT for survival demonstrated that these compounds inhibit phosphatidylcholine biosynthesis from ethanolamine. Our structural and functional data provide insights into the mechanism of catalysis and inhibition of PMT enzymes and set the stage for a better design of more specific and selective antimalarial drugs. PMID:25761669

  10. Structure, Function and Inhibition of the Phosphoethanolamine Methyltransferases of the Human Malaria Parasites Plasmodium vivax and Plasmodium knowlesi

    SciTech Connect

    Garg, Aprajita; Lukk, Tiit; Kumar, Vidya; Choi, Jae-Yeon; Augagneur, Yoann; Voelker, Dennis R.; Nair, Satish; Mamoun, Choukri Ben

    2015-03-12

    Phosphoethanolamine methyltransferases (PMTs) catalyze the three-step methylation of phosphoethanolamine to form phosphocholine, a critical step in the synthesis of phosphatidylcholine in a select number of eukaryotes including human malaria parasites, nematodes and plants. Genetic studies in the malaria parasite Plasmodium falciparum have shown that the methyltransferase PfPMT plays a critical function in parasite development and differentiation. The presence of PMT orthologs in other malaria parasites that infect humans and their absence in mammals make them ideal targets for the development of selective antimalarials with broad specificity against different Plasmodium species. Here we describe the X-ray structures and biochemical properties of PMT orthologs from Plasmodium vivax and Plasmodium knowlesi and show that both enzymes are inhibited by amodiaquine and NSC158011, two drugs with potent antimalarial activity. Metabolic studies in a yeast mutant that relies on PkPMT or PvPMT for survival demonstrated that these compounds inhibit phosphatidylcholine biosynthesis from ethanolamine. Our structural and functional data provide insights into the mechanism of catalysis and inhibition of PMT enzymes and set the stage for a better design of more specific and selective antimalarial drugs.

  11. Structure, Function and Inhibition of the Phosphoethanolamine Methyltransferases of the Human Malaria Parasites Plasmodium vivax and Plasmodium knowlesi

    DOE PAGESBeta

    Garg, Aprajita; Lukk, Tiit; Kumar, Vidya; Choi, Jae-Yeon; Augagneur, Yoann; Voelker, Dennis R.; Nair, Satish; Mamoun, Choukri Ben

    2015-03-12

    Phosphoethanolamine methyltransferases (PMTs) catalyze the three-step methylation of phosphoethanolamine to form phosphocholine, a critical step in the synthesis of phosphatidylcholine in a select number of eukaryotes including human malaria parasites, nematodes and plants. Genetic studies in the malaria parasite Plasmodium falciparum have shown that the methyltransferase PfPMT plays a critical function in parasite development and differentiation. The presence of PMT orthologs in other malaria parasites that infect humans and their absence in mammals make them ideal targets for the development of selective antimalarials with broad specificity against different Plasmodium species. Here we describe the X-ray structures and biochemical properties ofmore » PMT orthologs from Plasmodium vivax and Plasmodium knowlesi and show that both enzymes are inhibited by amodiaquine and NSC158011, two drugs with potent antimalarial activity. Metabolic studies in a yeast mutant that relies on PkPMT or PvPMT for survival demonstrated that these compounds inhibit phosphatidylcholine biosynthesis from ethanolamine. Our structural and functional data provide insights into the mechanism of catalysis and inhibition of PMT enzymes and set the stage for a better design of more specific and selective antimalarial drugs.« less

  12. Impact of climate variability on Plasmodium vivax and Plasmodium falciparum malaria in Yunnan Province, China

    PubMed Central

    2013-01-01

    Background Malaria remains a public health problem in the remote and poor area of Yunnan Province, China. Yunnan faces an increasing risk of imported malaria infections from Mekong river neighboring countries. This study aimed to identify the high risk area of malaria transmission in Yunnan Province, and to estimate the effects of climatic variability on the transmission of Plasmodium vivax and Plasmodium falciparum in the identified area. Methods We identified spatial clusters of malaria cases using spatial cluster analysis at a county level in Yunnan Province, 2005–2010, and estimated the weekly effects of climatic factors on P. vivax and P. falciparum based on a dataset of daily malaria cases and climatic variables. A distributed lag nonlinear model was used to estimate the impact of temperature, relative humidity and rainfall up to 10–week lags on both types of malaria parasite after adjusting for seasonal and long-term effects. Results The primary cluster area was identified along the China–Myanmar border in western Yunnan. A 1°C increase in minimum temperature was associated with a lag 4 to 9 weeks relative risk (RR), with the highest effect at lag 7 weeks for P. vivax (RR = 1.03; 95% CI, 1.01, 1.05) and 6 weeks for P. falciparum (RR = 1.07; 95% CI, 1.04, 1.11); a 10-mm increment in rainfall was associated with RRs of lags 2-4 weeks and 9-10 weeks, with the highest effect at 3 weeks for both P. vivax (RR = 1.03; 95% CI, 1.01, 1.04) and P. falciparum (RR = 1.04; 95% CI, 1.01, 1.06); and the RRs with a 10% rise in relative humidity were significant from lag 3 to 8 weeks with the highest RR of 1.24 (95% CI, 1.10, 1.41) for P. vivax at 5-week lag. Conclusions Our findings suggest that the China–Myanmar border is a high risk area for malaria transmission. Climatic factors appeared to be among major determinants of malaria transmission in this area. The estimated lag effects for the association between temperature and malaria are consistent with the life

  13. Plasmodium knowlesi: from Malaysia, a novel health care threat.

    PubMed

    Sabbatani, Sergio; Fiorino, Sirio; Manfredi, Roberto

    2012-03-01

    Epidemic foci of Plasmodium knowlesi malaria have been identified during the past ten years in Malaysia, in particular in the States of Sarawak and Sabah (Malaysia Borneo), and in the Pahang region (peninsular Malaysia). Based on a review of the available recent international literature, the authors underline the importance of molecular biology examinations, polymerase chain reactions (PCR), performed with primers specific for P. knowlesi, since the current microscopic examination (haemoscope) may fail to distinguish P. knowlesi from Plasmodium malariae, due to the very similar appearance of the two parasites. P. knowlesi has been described as the causal agent of life-threatening and lethal forms of malaria: its clinical picture is more severe when compared with that of P. malariae, since the disease is characterized by greater parasitaemia, as opposed to that documented in the course of P. malariae disease. The most effective carrier is Anopheles leucosphyrus: this mosquito is attracted by both humans and monkeys. Among primates, the natural hosts of P. knowlesi are Macaca fascicularis and Macaca nemestina, while Saimiri scirea and Macaca mulatta, which cannot become infected in nature, may be useful in experimental models. When underlining the potentially severe evolution, we note the key role played by prompt disease recognition, which is expected to be more straightforward in patients monitored in endemic countries at high risk, but should be carefully implemented for subjects being admitted to hospital in Western countries suffering from the typical signs and symptoms of malaria, after travelling in South-East Asia where they were engaged in excursions in the tropical forest (trekking, and similar outdoor activities). In these cases, the diagnosis should be prompt, and suitable treatment should follow. According to data in the literature, in non-severe cases chloroquine proves very effective against P. knowlesi, achieving the disappearance of signs and

  14. MOLECULAR SURVEILLANCE OF Plasmodium vivax AND Plasmodium falciparum DHFR MUTATIONS IN ISOLATES FROM SOUTHERN IRAN

    PubMed Central

    SHARIFI-SARASIABI, Khojasteh; HAGHIGHI, Ali; KAZEMI, Bahram; TAGHIPOUR, Niloofar; MOJARAD, Ehsan Nazemalhosseini; GACHKAR, Latif

    2016-01-01

    In Iran, both Plasmodium vivax and P. falciparum malaria have been detected, but P. vivax is the predominant species. Point mutations in dihydrofolate reductase (dhfr) gene in both Plasmodia are the major mechanisms of pyrimethamine resistance. From April 2007 to June 2009, a total of 134 blood samples in two endemic areas of southern Iran were collected from patients infected with P. vivax and P. falciparum. The isolates were analyzed for P. vivax dihydrofolate reductase (pvdhfr) and P. falciparum dihydrofolate reductase (pfdhfr) point mutations using various PCR-based methods. The majority of the isolates (72.9%) had wild type amino acids at five codons of pvdhfr. Amongst mutant isolates, the most common pvdhfr alleles were double mutant in 58 and 117 amino acids (58R-117N). Triple mutation in 57, 58, and 117 amino acids (57L/58R/117N) was identified for the first time in the pvdhfr gene of Iranian P. vivax isolates. All the P. falciparumsamples analyzed (n = 16) possessed a double mutant pfdhfrallele (59R/108N) and retained a wild-type mutation at position 51. This may be attributed to the fact that the falciparum malaria patients were treated using sulfadoxine-pyrimethamine (SP) in Iran. The presence of mutant haplotypes in P. vivax is worrying, but has not yet reached an alarming threshold regarding drugs such as SP. The results of this study reinforce the importance of performing a molecular surveillance by means of a continuous chemoresistance assessment. PMID:27007559

  15. Anti-Plasmodium falciparum activity of quinoline-sulfonamide hybrids.

    PubMed

    Pinheiro, Luiz C S; Boechat, Núbia; Ferreira, Maria de Lourdes G; Júnior, Carlos C S; Jesus, Antônio M L; Leite, Milene M M; Souza, Nicolli B; Krettli, Antoniana U

    2015-09-01

    Fifteen quinoline-sulfonamide hybrids, with a 7-chloroquinoline moiety connected by a linker group to arylsulfonamide moieties with different substituents in the 4-position were synthesized and assayed against Plasmodium falciparum. The compounds displayed high schizonticidal blood activity in vitro, with IC50 values ranging from 0.05 to 1.63 μM, in the anti-HPR2 assay against clone W2-chloroquine-resistant; ten of them showed an IC50 (ranging from 0.05 to 0.40 μM) lower than that of chloroquine and sulfadoxine. Among them, two compounds inhibited Plasmodium berghei parasitemia by 47% and 49% on day 5 after mice inoculation. The most active, in vivo, hybrid 13 is considered to be a new prototype for the development of an antimalarial drug against chloroquine-resistant parasites. PMID:26190461

  16. Predictions of avian Plasmodium expansion under climate change

    PubMed Central

    Loiseau, Claire; Harrigan, Ryan J.; Bichet, Coraline; Julliard, Romain; Garnier, Stéphane; Lendvai, Ádám Z.; Chastel, Olivier; Sorci, Gabriele

    2013-01-01

    Vector-borne diseases are particularly responsive to changing environmental conditions. Diurnal temperature variation has been identified as a particularly important factor for the development of malaria parasites within vectors. Here, we conducted a survey across France, screening populations of the house sparrow (Passer domesticus) for malaria (Plasmodium relictum). We investigated whether variation in remotely-sensed environmental variables accounted for the spatial variation observed in prevalence and parasitemia. While prevalence was highly correlated to diurnal temperature range and other measures of temperature variation, environmental conditions could not predict spatial variation in parasitemia. Based on our empirical data, we mapped malaria distribution under climate change scenarios and predicted that Plasmodium occurrence will spread to regions in northern France, and that prevalence levels are likely to increase in locations where transmission already occurs. Our findings, based on remote sensing tools coupled with empirical data suggest that climatic change will significantly alter transmission of malaria parasites. PMID:23350033

  17. How specific is Plasmodium falciparum adherence to chondroitin 4-sulfate?

    PubMed Central

    Goel, Suchi; Gowda, D. Channe

    2011-01-01

    Plasmodium falciparum infection during pregnancy results in the sequestration of infected red blood cells (IRBCs) in the placenta, contributing to pregnancy associated malaria (PAM). IRBC adherence is mediated by the binding of a variant Plasmodium falciparum erythrocyte binding protein 1 named VAR2CSA to the low sulfated chondroitin 4-sulfate (C4S) proteoglycan (CSPG) present predominantly in the intervillous space of the placenta. IRBC binding is highly specific to the level and distribution of 4-sulfate groups in C4S. Given the strict specificity of IRBC-C4S interactions, it is better to use either placental CSPG or CSPGs bearing structurally similar C4S chains in defining VAR2CSA structural architecture that interact with C4S, evaluating VAR2CSA constructs for vaccine development or studying structure-based inhibitors as therapeutics for PAM. PMID:21507719

  18. Host AMPK Is a Modulator of Plasmodium Liver Infection.

    PubMed

    Ruivo, Margarida T Grilo; Vera, Iset Medina; Sales-Dias, Joana; Meireles, Patrícia; Gural, Nil; Bhatia, Sangeeta N; Mota, Maria M; Mancio-Silva, Liliana

    2016-09-01

    Manipulation of the master regulator of energy homeostasis AMP-activated protein kinase (AMPK) activity is a strategy used by many intracellular pathogens for successful replication. Infection by most pathogens leads to an activation of host AMPK activity due to the energetic demands placed on the infected cell. Here, we demonstrate that the opposite is observed in cells infected with rodent malaria parasites. Indeed, AMPK activity upon the infection of hepatic cells is suppressed and dispensable for successful infection. By contrast, an overactive AMPK is deleterious to intracellular growth and replication of different Plasmodium spp., including the human malaria parasite, P. falciparum. The negative impact of host AMPK activity on infection was further confirmed in mice under conditions that activate its function. Overall, this work establishes the role of host AMPK signaling as a suppressive pathway of Plasmodium hepatic infection and as a potential target for host-based antimalarial interventions. PMID:27568570

  19. Uncovering the transmission dynamics of Plasmodium vivax using population genetics

    PubMed Central

    Barry, Alyssa E.; Waltmann, Andreea; Koepfli, Cristian; Barnadas, Celine; Mueller, Ivo

    2015-01-01

    Population genetic analysis of malaria parasites has the power to reveal key insights into malaria epidemiology and transmission dynamics with the potential to deliver tools to support control and elimination efforts. Analyses of parasite genetic diversity have suggested that Plasmodium vivax populations are more genetically diverse and less structured than those of Plasmodium falciparum indicating that P. vivax may be a more ancient parasite of humans and/or less susceptible to population bottlenecks, as well as more efficient at disseminating its genes. These population genetic insights into P. vivax transmission dynamics provide an explanation for its relative resilience to control efforts. Here, we describe current knowledge on P. vivax population genetic structure, its relevance to understanding transmission patterns and relapse and how this information can inform malaria control and elimination programmes. PMID:25891915

  20. [Plasmodium vivax, a parasite coming out of the shadows].

    PubMed

    Allgower, Andrea; Taylor, W Robert; Chappuis, François; Eperon, Gilles

    2016-05-01

    Since 2007, the incidence and mortality of malaria caused by Plasmodium falciparum have declined. However, this trend has not been seen with Plasmodium vivax which has biological features. Severe vivax malaria is increasingly reported in endemic countries even though P. vivax has been thought of as a benign disease. Diagnosis is challenging: the usual rapid diagnostic tests are less sensitive in detecting P. vivax and there is no test for the detection of the dormant forms (hypnozoites). The treatment of the acute phase is an artemisinin based combination, e.g. artemetherlumefantrine. Primaquine, which is the only currently available treatment against hypnozoites for the prevention of relapses, may trigger acute haemolytic anaemia in individuals with G6PD deficiency. PMID:27323480

  1. Targeting Plasmodium liver stages: better late than never.

    PubMed

    Borrmann, Steffen; Matuschewski, Kai

    2011-09-01

    The worldwide burden of malaria can be substantially reduced using existing public health interventions. However, elimination of Plasmodium will require fundamentally different approaches. Novel experimental attenuation strategies for active immunization using knockout strains have recently stimulated renewed interest in whole-parasite vaccine approaches. Preventive drug administration during transmission of wild-type sporozoites is a complementary strategy for eliciting protective immune responses. These whole-cell immunization strategies are based on one fundamental principle: inducing protection by blocking parasite conversion from the clinically silent liver phase to the pathogenic intra-erythrocytic replication cycle. Here, we review the basis, evidence and targets for whole-cell-based vaccination strategies against the liver stage bottleneck in Plasmodium infections and discuss preclinical and clinical research opportunities. PMID:21737347

  2. Plasmodium falciparum genetic crosses in a humanized mouse model

    PubMed Central

    Vaughan, Ashley M.; Pinapati, Richard S.; Cheeseman, Ian H.; Camargo, Nelly; Fishbaugher, Matthew; Checkley, Lisa A.; Nair, Shalini; Hutyra, Carolyn A.; Nosten, François H.; Anderson, Timothy J. C.; Ferdig, Michael T.; Kappe, Stefan H. I.

    2015-01-01

    Genetic crosses of phenotypically distinct strains of the human malaria parasite Plasmodium falciparum are a powerful tool for identifying genes controlling drug resistance and other key phenotypes. Previous studies relied on the isolation of recombinant parasites from splenectomized chimpanzees, a research avenue that is no longer available. Here, we demonstrate that human-liver chimeric mice support recovery of recombinant progeny for the identification of genetic determinants of parasite traits and adaptations. PMID:26030447

  3. Subinoculation as a technique in the diagnosis of avian plasmodium

    USGS Publications Warehouse

    Herman, C.M.; Knisley, J.O.; Snyder, E.L.

    1966-01-01

    In two successive years, 1964 and 1965, blood subinoculated from wild Canada geese, negative for Plasmodium by examination of peripheral blood smears, into 5-day-old domestic geese produced 60 % infection in the recipients. Prepatent and patent periods, as well as intensity of parasitemia showed much variation. Intramuscular inoculation produced the same prevalence as the intravenous route, but longer prepatent periods and less intensity of parasitemia.

  4. Structure of Plasmodium falciparum ADP-ribosylation factor 1

    SciTech Connect

    Cook, William J.; Smith, Craig D.; Senkovich, Olga; Holder, Anthony A.; Chattopadhyay, Debasish

    2011-09-26

    Vesicular trafficking may play a crucial role in the pathogenesis and survival of the malaria parasite. ADP-ribosylation factors (ARFs) are among the major components of vesicular trafficking pathways in eukaryotes. The crystal structure of ARF1 GTPase from Plasmodium falciparum has been determined in the GDP-bound conformation at 2.5 {angstrom} resolution and is compared with the structures of mammalian ARF1s.

  5. Targeting Plasmodium PI(4)K to eliminate malaria.

    PubMed

    McNamara, Case W; Lee, Marcus C S; Lim, Chek Shik; Lim, Siau Hoi; Roland, Jason; Nagle, Advait; Simon, Oliver; Yeung, Bryan K S; Chatterjee, Arnab K; McCormack, Susan L; Manary, Micah J; Zeeman, Anne-Marie; Dechering, Koen J; Kumar, T R Santha; Henrich, Philipp P; Gagaring, Kerstin; Ibanez, Maureen; Kato, Nobutaka; Kuhen, Kelli L; Fischli, Christoph; Rottmann, Matthias; Plouffe, David M; Bursulaya, Badry; Meister, Stephan; Rameh, Lucia; Trappe, Joerg; Haasen, Dorothea; Timmerman, Martijn; Sauerwein, Robert W; Suwanarusk, Rossarin; Russell, Bruce; Renia, Laurent; Nosten, Francois; Tully, David C; Kocken, Clemens H M; Glynne, Richard J; Bodenreider, Christophe; Fidock, David A; Diagana, Thierry T; Winzeler, Elizabeth A

    2013-12-12

    Achieving the goal of malaria elimination will depend on targeting Plasmodium pathways essential across all life stages. Here we identify a lipid kinase, phosphatidylinositol-4-OH kinase (PI(4)K), as the target of imidazopyrazines, a new antimalarial compound class that inhibits the intracellular development of multiple Plasmodium species at each stage of infection in the vertebrate host. Imidazopyrazines demonstrate potent preventive, therapeutic, and transmission-blocking activity in rodent malaria models, are active against blood-stage field isolates of the major human pathogens P. falciparum and P. vivax, and inhibit liver-stage hypnozoites in the simian parasite P. cynomolgi. We show that imidazopyrazines exert their effect through inhibitory interaction with the ATP-binding pocket of PI(4)K, altering the intracellular distribution of phosphatidylinositol-4-phosphate. Collectively, our data define PI(4)K as a key Plasmodium vulnerability, opening up new avenues of target-based discovery to identify drugs with an ideal activity profile for the prevention, treatment and elimination of malaria. PMID:24284631

  6. [A case of Plasmodium vivax malaria with findings of DIC].

    PubMed

    Takaki, K; Aoki, T; Akeda, H; Kajiwara, T; Honda, S; Maeda, Y; Okada, K; Sawae, Y

    1991-04-01

    We reported a rare case of Plasmodium vivax malaria who showed findings of disseminated intravascular coagulation (DIC). A 50-year-old Japanese male was sent to our hospital with the diagnosis of Plasmodium vivax malaria on the 26th of April, 1990. He had stayed in the Solomon Islands from Oct. 1987 to Dec. 1989, and had febrile episodes during his stay in the island. On April 18, 1990, he complained of a high fever with chills, and showed the same episodes on the 20th, 22th and was diagnosed as malaria. He was treated successfully with the sulfadoxine 500 mg and pyrimethamine 25mg (Fansidar), following the normal temperature on the 4th day and disappearance of malarial parasites in the peripheral blood smear on the 6th day. Interestingly, he had thrombocytopenia and a high titer serum level of fibrin degradation product (FDP) supporting the questionable diagnosis of DIC. Even on the 12th day after improved thrombocytopenia by treatment with Gabexate (FOY), the serum level of FDP, D-dimer and thrombin-nati-thrombin (TAT)III complex still remained at high titer levels. One month later he was readmitted for a relapse of Plasmodium vivax malaria, when he showed thrombocytopenia but the serum level of FDP, D-dimer, TAT III complex and PM.alpha 2 PI complex were normal levels. We concluded that the thrombocytopenia and the high titer of FDP at his first admission was a manifestation of DIC. PMID:2071964

  7. Targeting Plasmodium PI(4)K to eliminate malaria

    NASA Astrophysics Data System (ADS)

    McNamara, Case W.; Lee, Marcus C. S.; Lim, Chek Shik; Lim, Siau Hoi; Roland, Jason; Nagle, Advait; Simon, Oliver; Yeung, Bryan K. S.; Chatterjee, Arnab K.; McCormack, Susan L.; Manary, Micah J.; Zeeman, Anne-Marie; Dechering, Koen J.; Kumar, T. R. Santha; Henrich, Philipp P.; Gagaring, Kerstin; Ibanez, Maureen; Kato, Nobutaka; Kuhen, Kelli L.; Fischli, Christoph; Rottmann, Matthias; Plouffe, David M.; Bursulaya, Badry; Meister, Stephan; Rameh, Lucia; Trappe, Joerg; Haasen, Dorothea; Timmerman, Martijn; Sauerwein, Robert W.; Suwanarusk, Rossarin; Russell, Bruce; Renia, Laurent; Nosten, Francois; Tully, David C.; Kocken, Clemens H. M.; Glynne, Richard J.; Bodenreider, Christophe; Fidock, David A.; Diagana, Thierry T.; Winzeler, Elizabeth A.

    2013-12-01

    Achieving the goal of malaria elimination will depend on targeting Plasmodium pathways essential across all life stages. Here we identify a lipid kinase, phosphatidylinositol-4-OH kinase (PI(4)K), as the target of imidazopyrazines, a new antimalarial compound class that inhibits the intracellular development of multiple Plasmodium species at each stage of infection in the vertebrate host. Imidazopyrazines demonstrate potent preventive, therapeutic, and transmission-blocking activity in rodent malaria models, are active against blood-stage field isolates of the major human pathogens P. falciparum and P. vivax, and inhibit liver-stage hypnozoites in the simian parasite P. cynomolgi. We show that imidazopyrazines exert their effect through inhibitory interaction with the ATP-binding pocket of PI(4)K, altering the intracellular distribution of phosphatidylinositol-4-phosphate. Collectively, our data define PI(4)K as a key Plasmodium vulnerability, opening up new avenues of target-based discovery to identify drugs with an ideal activity profile for the prevention, treatment and elimination of malaria.

  8. Lipoic Acid Metabolism of Plasmodium - A Suitable Drug Target

    PubMed Central

    Storm, Janet; Müller, Sylke

    2012-01-01

    α-Lipoic acid (6,8-thioctic acid; LA) is a vital co-factor of α-ketoacid dehydrogenase complexes and the glycine cleavage system. In recent years it was shown that biosynthesis and salvage of LA in Plasmodium are necessary for the parasites to complete their complex life cycle. LA salvage requires two lipoic acid protein ligases (LplA1 and LplA2). LplA1 is confined to the mitochondrion while LplA2 is located in both the mitochondrion and the apicoplast. LplA1 exclusively uses salvaged LA and lipoylates α-ketoglutarate dehydrogenase, branched chain α-ketoacid dehydrogenase and the H-protein of the glycine cleavage system. LplA2 cannot compensate for the loss of LplA1 function during blood stage development suggesting a specific function for LplA2 that has yet to be elucidated. LA salvage is essential for the intra-erythrocytic and liver stage development of Plasmodium and thus offers great potential for future drug or vaccine development. LA biosynthesis, comprising octanoyl-acyl carrier protein (ACP) : protein N-octanoyltransferase (LipB) and lipoate synthase (LipA), is exclusively found in the apicoplast of Plasmodium where it generates LA de novo from octanoyl-ACP, provided by the type II fatty acid biosynthesis (FAS II) pathway also present in the organelle. LA is the co-factor of the acetyltransferase subunit of the apicoplast located pyruvate dehydrogenase (PDH), which generates acetyl-CoA, feeding into FAS II. LA biosynthesis is not vital for intra-erythrocytic development of Plasmodium, but the deletion of several genes encoding components of FAS II or PDH was detrimental for liver stage development of the parasites indirectly suggesting that the same applies to LA biosynthesis. These data provide strong evidence that LA salvage and biosynthesis are vital for different stages of Plasmodium development and offer potential for drug and vaccine design against malaria. PMID:22607141

  9. Lipoic acid metabolism of Plasmodium--a suitable drug target.

    PubMed

    Storm, Janet; Müller, Sylke

    2012-01-01

    α-Lipoic acid (6,8-thioctic acid; LA) is a vital co-factor of α-ketoacid dehydrogenase complexes and the glycine cleavage system. In recent years it was shown that biosynthesis and salvage of LA in Plasmodium are necessary for the parasites to complete their complex life cycle. LA salvage requires two lipoic acid protein ligases (LplA1 and LplA2). LplA1 is confined to the mitochondrion while LplA2 is located in both the mitochondrion and the apicoplast. LplA1 exclusively uses salvaged LA and lipoylates α-ketoglutarate dehydrogenase, branched chain α-ketoacid dehydrogenase and the H-protein of the glycine cleavage system. LplA2 cannot compensate for the loss of LplA1 function during blood stage development suggesting a specific function for LplA2 that has yet to be elucidated. LA salvage is essential for the intra-erythrocytic and liver stage development of Plasmodium and thus offers great potential for future drug or vaccine development. LA biosynthesis, comprising octanoyl-acyl carrier protein (ACP) : protein N-octanoyltransferase (LipB) and lipoate synthase (LipA), is exclusively found in the apicoplast of Plasmodium where it generates LA de novo from octanoyl-ACP, provided by the type II fatty acid biosynthesis (FAS II) pathway also present in the organelle. LA is the co-factor of the acetyltransferase subunit of the apicoplast located pyruvate dehydrogenase (PDH), which generates acetyl-CoA, feeding into FAS II. LA biosynthesis is not vital for intra-erythrocytic development of Plasmodium, but the deletion of several genes encoding components of FAS II or PDH was detrimental for liver stage development of the parasites indirectly suggesting that the same applies to LA biosynthesis. These data provide strong evidence that LA salvage and biosynthesis are vital for different stages of Plasmodium development and offer potential for drug and vaccine design against malaria. PMID:22607141

  10. Antibodies to a single, conserved epitope in Anopheles APN1 inhibit universal transmission of Plasmodium falciparum and Plasmodium vivax malaria.

    PubMed

    Armistead, Jennifer S; Morlais, Isabelle; Mathias, Derrick K; Jardim, Juliette G; Joy, Jaimy; Fridman, Arthur; Finnefrock, Adam C; Bagchi, Ansu; Plebanski, Magdalena; Scorpio, Diana G; Churcher, Thomas S; Borg, Natalie A; Sattabongkot, Jetsumon; Dinglasan, Rhoel R

    2014-02-01

    Malaria transmission-blocking vaccines (TBVs) represent a promising approach for the elimination and eradication of this disease. AnAPN1 is a lead TBV candidate that targets a surface antigen on the midgut of the obligate vector of the Plasmodium parasite, the Anopheles mosquito. In this study, we demonstrated that antibodies targeting AnAPN1 block transmission of Plasmodium falciparum and Plasmodium vivax across distantly related anopheline species in countries to which malaria is endemic. Using a biochemical and immunological approach, we determined that the mechanism of action for this phenomenon stems from antibody recognition of a single protective epitope on AnAPN1, which we found to be immunogenic in murine and nonhuman primate models and highly conserved among anophelines. These data indicate that AnAPN1 meets the established target product profile for TBVs and suggest a potential key role for an AnAPN1-based panmalaria TBV in the effort to eradicate malaria. PMID:24478095

  11. Human Plasmodium knowlesi Infection Detected by Rapid Diagnostic Tests for Malaria

    PubMed Central

    van Hellemond, Jaap J.; Rutten, Marijke; Koelewijn, Rob; Zeeman, Anne-Marie; Verweij, Jaco J.; Wismans, Pieter J.; Kocken, Clemens H.

    2009-01-01

    We describe a PCR-confirmed case of Plasmodium knowlesi infection with a high parasitemia level and clinical signs of severe malaria in a migrant worker from Malaysian Borneo in the Netherlands. Investigations showed that commercially available rapid antigen tests for detection of human Plasmodium infections can detect P. knowlesi infections in humans. PMID:19788819

  12. An unsettling picture emerges from population genomic studies of Plasmodium vivax.

    PubMed

    Kissinger, Jessica C

    2016-07-27

    Two new studies confirm that Plasmodium vivax populations are more diverse than Plasmodium falciparum and identify signs of recent selection at many loci, including those for drug resistance. P. vivax shows a trend of regional adaptations that poses challenges to global efforts to control and eliminate this major cause of relapsing malaria. PMID:27463397

  13. New type of SSUrDNA sequence was detected from both Plasmodium ovale curtisi and Plasmodium ovale wallikeri samples

    PubMed Central

    2014-01-01

    Background Plasmodium ovale is relatively unfamiliar to Chinese staff engaged in malaria diagnosis. In 2013, dried blood spots of four unidentified but suspected ovale malaria samples were sent to the National Malaria Reference Laboratory (NMRL) for reconfirmation. Methods Partial and complete, small, subunit ribosomal DNA (SSU rDNA) sequences of four samples were obtained with PCR-cloning-sequencing method. Obtained sequences were analyzed by aligning with each other and with nine SSU rDNA sequences of six known Plasmodium parasites. A phylogenetic tree was constructed based on complete SSU rDNA sequences and 12 same gene sequences derived from six known Plasmodium parasites and three Babesia parasites. Primary structure of conservative and variable regions of variant sequences was determined also by comparing them with those of six known Plasmodium parasites. To confirm their existence in genome, they were redetected with primers matching their variable regions. PCR systems aimed to roughly detect any eukaryotes and prokaryotes respectively were also applied to search for other pathogens in one of four patients. Results Totally, 19 partial and 23 complete SSU rDNA sequences obtained from four samples. Except eight variant sequences, similarities among sequences from same DNA sample were in general high (more than 98%). The phylogenetic analysis revealed that three cases were infected by P. ovale wallikeri and one by P. ovale curtisi. Four of the variant sequences which obtained from four samples relatively showed high similarities with each other (98.5%-100%). Identical variant sequences actually could be re-obtained from each DNA sample. Their primary structure of conservative and variable regions showed quite fit with that of six known Plasmodium parasites. The test for prokaryote pathogens showed negative and the tests for eukaryotes only found DNA sequences of Human and P. ovale parasites. Conclusion Both P. ovale wallikeri and P. ovale curtisi infections are

  14. Loop-Mediated Isothermal Amplification Assay for Identification of Five Human Plasmodium Species in Malaysia

    PubMed Central

    Lau, Yee-Ling; Lai, Meng-Yee; Fong, Mun-Yik; Jelip, Jenarun; Mahmud, Rohela

    2016-01-01

    The lack of rapid, affordable, and accurate diagnostic tests represents the primary hurdle affecting malaria surveillance in resource- and expertise-limited areas. Loop-mediated isothermal amplification (LAMP) is a sensitive, rapid, and cheap diagnostic method. Five species-specific LAMP assays were developed based on 18S rRNA gene. Sensitivity and specificity of LAMP results were calculated as compared with microscopic examination and nested polymerase chain reaction. LAMP reactions were highly sensitive with the detection limit of one copy for Plasmodium vivax, Plasmodium falciparum, and Plasmodium malariae and 10 copies for Plasmodium knowlesi and Plasmodium ovale. LAMP positively detected all human malaria species in all positive samples (N = 134; sensitivity = 100%) within 35 minutes. All negative samples were not amplified by LAMP (N = 67; specificity = 100%). LAMP successfully detected two samples with very low parasitemia. LAMP may offer a rapid, simple, and reliable test for the diagnosis of malaria in areas where malaria is prevalent. PMID:26598573

  15. Loop-Mediated Isothermal Amplification Assay for Identification of Five Human Plasmodium Species in Malaysia.

    PubMed

    Lau, Yee-Ling; Lai, Meng-Yee; Fong, Mun-Yik; Jelip, Jenarun; Mahmud, Rohela

    2016-02-01

    The lack of rapid, affordable, and accurate diagnostic tests represents the primary hurdle affecting malaria surveillance in resource- and expertise-limited areas. Loop-mediated isothermal amplification (LAMP) is a sensitive, rapid, and cheap diagnostic method. Five species-specific LAMP assays were developed based on 18S rRNA gene. Sensitivity and specificity of LAMP results were calculated as compared with microscopic examination and nested polymerase chain reaction. LAMP reactions were highly sensitive with the detection limit of one copy for Plasmodium vivax, Plasmodium falciparum, and Plasmodium malariae and 10 copies for Plasmodium knowlesi and Plasmodium ovale. LAMP positively detected all human malaria species in all positive samples (N = 134; sensitivity = 100%) within 35 minutes. All negative samples were not amplified by LAMP (N = 67; specificity = 100%). LAMP successfully detected two samples with very low parasitemia. LAMP may offer a rapid, simple, and reliable test for the diagnosis of malaria in areas where malaria is prevalent. PMID:26598573

  16. Multiplicity of Infection and Disease Severity in Plasmodium vivax

    PubMed Central

    Pacheco, M. Andreína; Lopez-Perez, Mary; Vallejo, Andrés F.; Herrera, Sócrates; Arévalo-Herrera, Myriam; Escalante, Ananias A.

    2016-01-01

    Background Multiplicity of infection (MOI) refers to the average number of distinct parasite genotypes concurrently infecting a patient. Although several studies have reported on MOI and the frequency of multiclonal infections in Plasmodium falciparum, there is limited data on Plasmodium vivax. Here, MOI and the frequency of multiclonal infections were studied in areas from South America where P. vivax and P. falciparum can be compared. Methodology/Principal Findings As part of a passive surveillance study, 1,328 positive malaria patients were recruited between 2011 and 2013 in low transmission areas from Colombia. Of those, there were only 38 P. vivax and 24 P. falciparum clinically complicated cases scattered throughout the time of the study. Samples from uncomplicated cases were matched in time and location with the complicated cases in order to compare the circulating genotypes for these two categories. A total of 92 P. vivax and 57 P. falciparum uncomplicated cases were randomly subsampled. All samples were genotyped by using neutral microsatellites. Plasmodium vivax showed more multiclonal infections (47.7%) than P. falciparum (14.8%). Population genetics and haplotype network analyses did not detect differences in the circulating genotypes between complicated and uncomplicated cases in each parasite. However, a Fisher exact test yielded a significant association between having multiclonal P. vivax infections and complicated malaria. No association was found for P. falciparum infections. Conclusion The association between multiclonal infections and disease severity in P. vivax is consistent with previous observations made in rodent malaria. The contrasting pattern between P. vivax and P. falciparum could be explained, at least in part, by the fact that P. vivax infections have lineages that were more distantly related among them than in the case of the P. falciparum multiclonal infections. Future research should address the possible role that acquired

  17. An Autochthonous Case of Severe Plasmodium knowlesi Malaria in Thailand

    PubMed Central

    Nakaviroj, Surat; Kobasa, Teerayot; Teeranaipong, Phairote; Putaporntip, Chaturong; Jongwutiwes, Somchai

    2015-01-01

    A 58-year-old Thai man was infected with Plasmodium knowlesi in Chantaburi Province, eastern Thailand. In addition to pyrexia, the patient developed hypotension, renal failure, jaundice, and severe thrombocytopenia. The parasitemia at the time of admission was 16.67% or ∼503,400 parasites/μL. With artesunate treatment and supportive care, the patient recovered uneventfully. The occurrence of complicated knowlesi malaria in a low-endemic area underscores the risk of high morbidity from this simian malaria. PMID:25535314

  18. RIFINs are adhesins implicated in severe Plasmodium falciparum malaria.

    PubMed

    Goel, Suchi; Palmkvist, Mia; Moll, Kirsten; Joannin, Nicolas; Lara, Patricia; Akhouri, Reetesh R; Moradi, Nasim; Öjemalm, Karin; Westman, Mattias; Angeletti, Davide; Kjellin, Hanna; Lehtiö, Janne; Blixt, Ola; Ideström, Lars; Gahmberg, Carl G; Storry, Jill R; Hult, Annika K; Olsson, Martin L; von Heijne, Gunnar; Nilsson, IngMarie; Wahlgren, Mats

    2015-04-01

    Rosetting is a virulent Plasmodium falciparum phenomenon associated with severe malaria. Here we demonstrate that P. falciparum-encoded repetitive interspersed families of polypeptides (RIFINs) are expressed on the surface of infected red blood cells (iRBCs), where they bind to RBCs--preferentially of blood group A--to form large rosettes and mediate microvascular binding of iRBCs. We suggest that RIFINs have a fundamental role in the development of severe malaria and thereby contribute to the varying global distribution of ABO blood groups in the human population. PMID:25751816

  19. Major Histocompatibility Complex and Malaria: Focus on Plasmodium vivax Infection

    PubMed Central

    Lima-Junior, Josué da Costa; Pratt-Riccio, Lilian Rose

    2016-01-01

    The importance of host and parasite genetic factors in malaria resistance or susceptibility has been investigated since the middle of the last century. Nowadays, of all diseases that affect man, malaria still plays one of the highest levels of selective pressure on human genome. Susceptibility to malaria depends on exposure profile, epidemiological characteristics, and several components of the innate and adaptive immune system that influences the quality of the immune response generated during the Plasmodium lifecycle in the vertebrate host. But it is well known that the parasite’s enormous capacity of genetic variation in conjunction with the host genetics polymorphism is also associated with a wide spectrum of susceptibility degrees to complicated or severe forms of the disease. In this scenario, variations in genes of the major histocompatibility complex (MHC) associated with host resistance or susceptibility to malaria have been identified and used as markers in host–pathogen interaction studies, mainly those evaluating the impact on the immune response, acquisition of resistance, or increased susceptibility to infection or vulnerability to disease. However, due to the intense selective pressure, number of cases, and mortality rates, the majority of the reported associations reported concerned Plasmodium falciparum malaria. Studies on the MHC polymorphism and its association with Plasmodium vivax, which is the most widespread Plasmodium and the most prevalent species outside the African continent, are less frequent but equally important. Despite punctual contributions, there are accumulated evidences of human genetic control in P. vivax infection and disease. Herein, we review the current knowledge in the field of MHC and derived molecules (HLA Class I, Class II, TNF-α, LTA, BAT1, and CTL4) regarding P. vivax malaria. We discuss particularly the results of P. vivax studies on HLA class I and II polymorphisms in relation to host susceptibility, naturally

  20. Plasmodium knowlesi Sporozoite Antigen: Expression by Infectious Recombinant Vaccinia Virus

    NASA Astrophysics Data System (ADS)

    Smith, Geoffrey L.; Godson, G. Nigel; Nussenzweig, Victor; Nussenzweig, Ruth S.; Barnwell, John; Moss, Bernard

    1984-04-01

    The gene coding for the circumsporozoite antigen of the malaria parasite Plasmodium knowlesi was inserted into the vaccinia virus genome under the control of a defined vaccinia virus promoter. Cells infected with the recombinant virus synthesized polypeptides of 53,000 to 56,000 daltons that reacted with monoclonal antibody against the repeating epitope of the malaria protein. Furthermore, rabbits vaccinated with the recombinant virus produced antibodies that bound specifically to sporozoites. These data provide evidence for expression of a cloned malaria gene in mammalian cells and illustrate the potential of vaccinia virus recombinants as live malaria vaccines.

  1. Three species of Plasmodium from Canada geese, Branta canadensis

    USGS Publications Warehouse

    Herman, C.M.; Barrow, J.H.

    1967-01-01

    Studies on Canada geese at the Seney National Wildlife Refuge in northern Michigan during the past few years have uncovered at least three species of Plasmodium: P circumflexum, P. relictum, and P. vaughani. Although rarely observed in direct blood smears from the wild hosts, isodiagnosis, using primarily domestic geese as recipients, revealed a prevalence of 60 percent in random samplings of the population. P. circumflexum is the most prevalent and mixed infections have been noted. In experimental infections, induced by blood inoculation, the malaria produced by P. circumflexum produces about a 70 percent mortality in Canada geese and about a 10 percent mortality in domestic geese.

  2. [Artemisinin resistance in Plasmodium falciparum: global status and basic research].

    PubMed

    Zhao, Shao-min; Wang, Man-yuan

    2014-10-01

    Artemisinin-resistant Plasmodium falciparum has been identified by WHO in the Greater Mekong subregion. While there is no report on artemisinin resistance in Africa and South America by now, related surveillance measures have been taken place. The genes related artemisinin-resistance has been identified and the molecular markers will be used for large-scale surveillance efforts to contain artemisinin resistance. The emergence and spread of artemisinin resistance worldwide is a present danger and needs more attention. This article reviews the progress of artemisininresistance malaria parasites and artemisinin-based combination therapies. PMID:25726605

  3. Discrete-Event Simulation Models of Plasmodium falciparum Malaria

    PubMed Central

    McKenzie, F. Ellis; Wong, Roger C.; Bossert, William H.

    2008-01-01

    We develop discrete-event simulation models using a single “timeline” variable to represent the Plasmodium falciparum lifecycle in individual hosts and vectors within interacting host and vector populations. Where they are comparable our conclusions regarding the relative importance of vector mortality and the durations of host immunity and parasite development are congruent with those of classic differential-equation models of malaria, epidemiology. However, our results also imply that in regions with intense perennial transmission, the influence of mosquito mortality on malaria prevalence in humans may be rivaled by that of the duration of host infectivity. PMID:18668185

  4. Oligohydramnios in a pregnant Pakistani woman with Plasmodium vivax malaria

    PubMed Central

    2014-01-01

    In the Western world, the diagnosis and management of Plasmodium vivax malaria in pregnant women can be challenging, and the pathogenesis of adverse outcomes for both the mother and the foetus is still poorly known. The authors describe the case of a 29-year-old Pakistani woman at the 29th week of her second pregnancy, who was admitted to the Hospital following the abrupt onset of fever. At the time of admission, she had been living in Italy without travelling to any malaria-endemic areas for eight months. She was diagnosed with vivax malaria after a thin blood smear revealed the presence of plasmodial trophozoites and gametocytes and treated accordingly. Due to the onset of oligohydramnios, she underwent caesarian section at the 31st week of pregnancy with no further complications. Histological examination of the placenta showed no evidence of plasmodial infection, but was inconclusive. It is unclear whether oligohydramnios is a complication of pregnancy-related Plasmodium vivax malaria. Given the long latency of hypnozoites, every febrile pregnant patient with a previous stay in an endemic area should be screened for malaria with a thick and a thin blood smear. PMID:24758193

  5. Genetic diversity of Plasmodium vivax isolates from Azerbaijan

    PubMed Central

    Leclerc, Marie Claude; Menegon, Michela; Cligny, Alexandra; Noyer, Jean Louis; Mammadov, Suleyman; Aliyev, Namig; Gasimov, Elkhan; Majori, Giancarlo; Severini, Carlo

    2004-01-01

    Background Plasmodium vivax, although causing a less serious disease than Plasmodium falciparum, is the most widespread of the four human malarial species. Further to the recent recrudescence of P. vivax cases in the Newly Independent States (NIS) of central Asia, a survey on the genetic diversity and dissemination in Azerbaijan was undertaken. Azerbaijan is at the crossroads of Asia and, as such, could see a rise in the number of cases, although an effective malaria control programme has been established in the country. Methods Thirty-six P. vivax isolates from Central Azerbaijan were characterized by analysing the genetic polymorphism of the circumsporozoite protein (CSP) and the merozoite surface protein 1 (MSP-1) genes, using PCR amplifications and amplicons sequencing. Results Analysis of CSP sequences showed that all the processed isolates belong to the VK 210 type, with variations in the alternation of alanine residue (A) or aspartic acid residue (D) in the repeat motif GDRA(A/D)GQPA along the sequence. As far as MSP-1 genotyping is concerned, it was found that the majority of isolates analysed belong to Belem and Sal I types. Five recombinant isolates were also identified. Combined analysis with the two genetic markers allowed the identification of 19 plasmodial sub-types. Conclusion The results obtained in the present study indicate that there are several P. vivax clones circulating in Azerbaijan and, consequently, a careful malaria surveillance could be of paramount importance to identify, at early stage, the occurrence of possible P. vivax malaria outbreaks. PMID:15535878

  6. A Comprehensive Analysis of Plasmodium Circumsporozoite Protein Binding to Hepatocytes

    PubMed Central

    Zhao, Jinghua; Bhanot, Purnima; Hu, Junjie; Wang, Qian

    2016-01-01

    Circumsporozoite protein (CSP) is the dominant protein on the surface of Plasmodium sporozoites and plays a critical role in the invasion by sporozoites of hepatocytes. Contacts between CSP and heparin sulfate proteoglycans (HSPGs) lead to the attachment of sporozoites to hepatocytes and trigger signaling events in the parasite that promote invasion of hepatocytes. The precise sequence elements in CSP that bind HSPGs have not been identified. We performed a systematic in vitro analysis to dissect the association between Plasmodium falciparum CSP (PfCSP) and hepatocytes. We demonstrate that interactions between PfCSP and heparin or a cultured hepatoma cell line, HepG2, are mediated primarily by a lysine-rich site in the amino terminus of PfCSP. Importantly, the carboxyl terminus of PfCSP facilitates heparin-binding by the amino-terminus but does not interact directly with heparin. These findings provide insights into how CSP recognizes hepatocytes and useful information for further functional studies of CSP. PMID:27560376

  7. Pfcrt Gene in Plasmodium falciparum Field Isolates from Muzaffargarh, Pakistan

    PubMed Central

    Sahar, Sumrin; Tanveer, Akhtar; Ali, Akbar; Bilal, Hazrat; Muhammad Saleem, Rana

    2015-01-01

    Background: The aim of the study was to identify the prevalence of different species of Plasmodium and haplotypes of pfcrt in Plasmodium falciparum from the selected area. Methods: Overall, 10,372 blood films of suspected malarial patients were examined microscopically from rural health center Sinawan, district Muzaffargarh, Pakistan from November 2008 to November 2010. P. falciparum positive samples (both whole blood and FTA blood spotted cards) were used for DNA extraction. Nested PCR was used to amplify the pfcrt (codon 72–76) gene fragment. Sequencing was carried out to find the haplotypes in the amplified fragment of pfcrt gene. Result: Over all slide positivity rate (SPR), P. vivax and P. falciparum positivity rate was 21.40 %, 19.37 % and 2.03% respectively. FTA blood spotted cards were equally efficient in the blood storage for PCR and sequencing. Analysis of sequencing results of pfcrt showed only one type of haplotype SagtVMNT (AGTGTAATGAATACA) from codon 72–76 in all samples. Conclusion: The results show high prevalence of CQ resistance and AQ resistant genes. AQ is not recommended to be used as a partner drug in ACT in this locality, so as to ward off future catastrophes. PMID:26623432

  8. Targeting molecular interactions essential for Plasmodium sexual reproduction

    PubMed Central

    Vega-Rodriguez, Joel; Perez-Barreto, Davinia; Ruiz-Reyes, Antonio; Jacobs-Lorena, Marcelo

    2015-01-01

    Summary Malaria remains one of the most devastating infectious diseases, killing up to a million people every year. Whereas much progress has been made in understanding the life cycle of the parasite in the human host and in the mosquito vector, significant gaps of knowledge remain. Fertilization of malaria parasites, a process that takes place in the lumen of the mosquito midgut, is poorly understood and the molecular interactions (receptor–ligand) required for Plasmodium fertilization remain elusive. By use of a phage display library, we identified FG1 (Female Gamete peptide 1), a peptide that binds specifically to the surface of female Plasmodium berghei gametes. Importantly, FG1 but not a scrambled version of the peptide, strongly reduces P. berghei oocyst formation by interfering with fertilization. In addition, FG1 also inhibits P. falciparum oocyst formation suggesting that the peptide binds to a molecule on the surface of the female gamete whose structure is conserved. Identification of the molecular interactions disrupted by the FG1 peptide may lead to the development of novel malaria transmission-blocking strategies. PMID:25944054

  9. Plasmodium knowlesi in a traveller returning to New Zealand.

    PubMed

    Hoosen, Anwar; Shaw, Marc T M

    2011-05-01

    The recent discovery that Plasmodium knowlesi causes malaria in human populations, established it as the fifth species of plasmodium that may do so. A case of P. knowlesi malaria is described in a helicopter pilot from New Zealand, who became ill after returning from recurring visits to Malaysian Borneo in June 2010. His P. knowlesi infection was not detected using microscopic examination and a rapid diagnostic test for malaria, but was confirmed by both PCR (polymerase chain reaction) and sequence analysis showing homology with the ribosomal RNA gene for P. knowlesi. He responded rapidly to treatment with artemether & lumefantrine combination. The evolution of a rapid diagnostic kit to diagnose P. knowlesi is needed, for early identification and appropriate anti-malarial therapy of suspect cases are both critical in the prevention of the potentially life-threatening disease through P. knowlesi. Clinicians need to consider knowlesi infection in the differential diagnosis in recent-onset febrile travellers to areas of forestation in Southeast Asia. PMID:21481643

  10. Swedish traveller with Plasmodium knowlesi malaria after visiting Malaysian Borneo.

    PubMed

    Bronner, Ulf; Divis, Paul C S; Färnert, Anna; Singh, Balbir

    2009-01-01

    Plasmodium knowlesi is typically found in nature in macaques and has recently been recognized as the fifth species of Plasmodium causing malaria in human populations in south-east Asia. A case of knowlesi malaria is described in a Swedish man, who became ill after returning from a short visit to Malaysian Borneo in October 2006. His P. knowlesi infection was not detected using a rapid diagnostic test for malaria, but was confirmed by PCR and molecular characterization. He responded rapidly to treatment with mefloquine. Evaluation of rapid diagnostic kits with further samples from knowlesi malaria patients are necessary, since early identification and appropriate anti-malarial treatment of suspected cases are essential due to the rapid growth and potentially life-threatening nature of P. knowlesi. Physicians should be aware that knowlesi infection is an important differential diagnosis in febrile travellers, with a recent travel history to forested areas in south-east Asia, including short-term travellers who tested negative with rapid diagnostic tests. PMID:19146706

  11. Plasmodium liver load following parenteral sporozoite administration in rodents.

    PubMed

    Ploemen, Ivo H; Chakravarty, Sumana; van Gemert, Geert-Jan J; Annoura, Takeshi; Khan, Shahid M; Janse, Chris J; Hermsen, Cornelus C; Hoffman, Stephen L; Sauerwein, Robert W

    2013-07-25

    One of the bottlenecks in the development of a whole sporozoite malaria vaccine is the route and method of sporozoite administration. Immunization and challenge of human volunteers by mosquito bites is effective, but cannot be used as a vaccine. Intravenous immunization with sporozoites is effective in rodents and non-human primates, and being studied in humans, but is not yet used for licensed vaccines for infectious diseases. Intradermal and subcutaneous immunization regimens show a strong decrease in protective efficacy, which in rodents, is associated with a decreased degree of parasite liver infection during immunization. The objective of this study was to explore alternative routes of sporozoite administration to increase efficiency of liver infection. Using in vivo imaging, we found that IM injection of sporozoites resulted in a greater parasite liver load compared to ID and SC injection. The use of small inoculation volumes and multiple injections further increased the subsequent liver load. These observations were corroborated in a Plasmodium yoelii model using cryopreserved sporozoites administered ID. Our findings provide a rationale for the design of clinical trials to optimize needle and syringe administration of Plasmodium falciparum sporozoites. PMID:23063834

  12. Late relapse of imported Plasmodium ovale malaria: a case report.

    PubMed

    Siala, Emna; Gastli, Mondher; Essid, Rym; Jemal, Sana; Ben Abdallah, Rym; Ben Abda, Imène; Aoun, Karim; Bouratbine, Aida

    2015-06-01

    We report the first case of an imported Plasmodium ovale relapse in a Tunisian man who developed malaria three years after leaving sub- Saharan Africa. A 29-year-old Tunisian man consulted in September 2011 because of a fever, myalgia, and headache that had begun eight days earlier and persisted despite treatment with oral antibiotics. On questioning, the patient stated that he had resided three years ago for six months in Ivory Coast, where he acquired malaria. He was treated with artemether-lumefantrine. The patient said he had no recent travel to any other malaria-endemic area and had not received a blood transfusion. A first microscopy of peripheral blood smears was negative for malaria parasites. The diagnosis was established 17 days after onset of symptoms. A repeat microscopic examination of blood smears confirmed the presence of Plasmodium ovale with a parasitemia lower than 0.1%. The patient was treated with artemether lumefantrine, followed by primaquine. This case emphasizes the possibility of relapse of some plasmodial species. It highlights the importance of repeating microscopic examination of blood when the diagnosis of malaria is suspected. PMID:26644094

  13. Proteome mapping of Plasmodium: identification of the P. yoelii remodellome

    PubMed Central

    Siau, Anthony; Huang, Ximei; Weng, Mei; Sze, Siu Kwan; Preiser, Peter R.

    2016-01-01

    Plasmodium associated virulence in the host is linked to extensive remodelling of the host erythrocyte by parasite proteins that form the “remodellome”. However, without a common motif or structure available to identify these proteins, little is known about the proteins that are destined to reside in the parasite periphery, the host-cell cytoplasm and/or the erythrocyte membrane. Here, the subcellular fractionation of erythrocytic P. yoelii at trophozoite and schizont stage along with label-free quantitative LC-MS/MS analysis of the whole proteome, revealed a proteome of 1335 proteins. Differential analysis of the relative abundance of these proteins across the subcellular compartments allowed us to map their locations, independently of their predicted features. These results, along with literature data and in vivo validation of 61 proteins enabled the identification of a remodellome of 184 proteins. This approach identified a significant number of conserved remodelling proteins across plasmodium that likely represent key conserved functions in the parasite and provides new insights into parasite evolution and biology. PMID:27503796

  14. Human cytotoxic T lymphocytes against the Plasmodium falciparum circumsporozoite protein.

    PubMed Central

    Malik, A; Egan, J E; Houghten, R A; Sadoff, J C; Hoffman, S L

    1991-01-01

    Cytotoxic T lymphocytes (CTL) against the circumsporozoite (CS) protein of malaria sporozoites protect against malaria in rodents. Although there is interest in developing human vaccines that induce CTL against the Plasmodium falciparum CS protein, humans have never been shown to produce CTL against any Plasmodium species protein or other parasite protein. We report that when peripheral blood mononuclear cells (PBMC) from three of four volunteers immunized with irradiated P. falciparum sporozoites were stimulated in vitro with a recombinant vaccinia virus expressing the P. falciparum CS protein or a peptide including only amino acids 368-390 of the P. falciparum CS protein [CS-(368-390)], the PBMC lysed autologous Epstein-Barr virus-transformed B cells transfected with the P. falciparum CS protein gene or incubated with CS-(368-390) tricosapeptide. Activity was antigen specific, genetically restricted, and dependent on CD8+ T cells. In one volunteer, seven peptides reflecting amino acids 311-400 were tested, and, as in B10.BR mice, CTL activity was only associated with the CS-(368-390) peptide. Development of an assay for studying human CTL against the CS and other malaria proteins and a method for constructing target cells by direct gene transfection provide a foundation for studying the role of CTL in protection against malaria. PMID:1707538

  15. Proteome mapping of Plasmodium: identification of the P. yoelii remodellome.

    PubMed

    Siau, Anthony; Huang, Ximei; Weng, Mei; Sze, Siu Kwan; Preiser, Peter R

    2016-01-01

    Plasmodium associated virulence in the host is linked to extensive remodelling of the host erythrocyte by parasite proteins that form the "remodellome". However, without a common motif or structure available to identify these proteins, little is known about the proteins that are destined to reside in the parasite periphery, the host-cell cytoplasm and/or the erythrocyte membrane. Here, the subcellular fractionation of erythrocytic P. yoelii at trophozoite and schizont stage along with label-free quantitative LC-MS/MS analysis of the whole proteome, revealed a proteome of 1335 proteins. Differential analysis of the relative abundance of these proteins across the subcellular compartments allowed us to map their locations, independently of their predicted features. These results, along with literature data and in vivo validation of 61 proteins enabled the identification of a remodellome of 184 proteins. This approach identified a significant number of conserved remodelling proteins across plasmodium that likely represent key conserved functions in the parasite and provides new insights into parasite evolution and biology. PMID:27503796

  16. Malaria vaccines: identifying Plasmodium falciparum liver-stage targets

    PubMed Central

    Longley, Rhea J.; Hill, Adrian V. S.; Spencer, Alexandra J.

    2015-01-01

    The development of a highly efficacious and durable vaccine for malaria remains a top priority for global health researchers. Despite the huge rise in recognition of malaria as a global health problem and the concurrent rise in funding over the past 10–15 years, malaria continues to remain a widespread burden. The evidence of increasing resistance to anti-malarial drugs and insecticides is a growing concern. Hence, an efficacious and durable preventative vaccine for malaria is urgently needed. Vaccines are one of the most cost-effective tools and have successfully been used in the prevention and control of many diseases, however, the development of a vaccine for the Plasmodium parasite has proved difficult. Given the early success of whole sporozoite mosquito-bite delivered vaccination strategies, we know that a vaccine for malaria is an achievable goal, with sub-unit vaccines holding great promise as they are simple and cheap to both manufacture and deploy. However a major difficulty in development of sub-unit vaccines lies within choosing the appropriate antigenic target from the 5000 or so genes expressed by the parasite. Given the liver-stage of malaria represents a bottle-neck in the parasite’s life cycle, there is widespread agreement that a multi-component sub-unit malaria vaccine should preferably contain a liver-stage target. In this article we review progress in identifying and screening Plasmodium falciparum liver-stage targets for use in a malaria vaccine. PMID:26441899

  17. Purification and characterization of Plasmodium yoelii adenosine deaminase.

    PubMed

    Yadav, Sarika; Saxena, Jitendra Kumar; Dwivedi, U N

    2011-12-01

    Plasmodium lacks the de novo pathway for purine biosynthesis and relies exclusively on the salvage pathway. Adenosine deaminase (ADA), first enzyme of the pathway, was purified and characterized from Plasmodium yoelii, a rodent malarial species, using ion exchange and gel exclusion chromatography. The purified enzyme is a 41 kDa monomer. The enzyme showed K(m) values of 41 μM and 34 μM for adenosine and 2'-deoxyadenosine, respectively. Erythro-9-(2-hydroxy-3-nonyl) adenine competitively inhibited P. yoelii ADA with K(i) value of 0.5 μM. The enzyme was inhibited by DEPC and protein denaturing agents, urea and GdmCl. Purine analogues significantly inhibited ADA activity. Inhibition by p-chloromercuribenzoate (pCMB) and N-ethylmaleimide (NEM) indicated the presence of functional -SH groups. Tryptophan fluorescence maxima of ADA shifted from 339 nm to 357 nm in presence of GdmCl. Refolding studies showed that higher GdmCl concentration irreversibly denatured the purified ADA. Fluorescence quenchers (KI and acrylamide) quenched the ADA fluorescence intensity to the varied degree. The observed differences in kinetic properties of P. yoelii ADA as compared to the erythrocyte enzyme may facilitate in designing specific inhibitors against ADA. PMID:21945268

  18. Platform for Plasmodium vivax vaccine discovery and development.

    PubMed

    Valencia, Sócrates Herrera; Rodríguez, Diana Carolina; Acero, Diana Lucía; Ocampo, Vanessa; Arévalo-Herrera, Myriam

    2011-08-01

    Plasmodium vivax is the most prevalent malaria parasite on the American continent. It generates a global burden of 80-100 million cases annually and represents a tremendous public health problem, particularly in the American and Asian continents. A malaria vaccine would be considered the most cost-effective measure against this vector-borne disease and it would contribute to a reduction in malaria cases and to eventual eradication. Although significant progress has been achieved in the search for Plasmodium falciparum antigens that could be used in a vaccine, limited progress has been made in the search for P. vivax components that might be eligible for vaccine development. This is primarily due to the lack of in vitro cultures to serve as an antigen source and to inadequate funding. While the most advanced P. falciparum vaccine candidate is currently being tested in Phase III trials in Africa, the most advanced P. vivax candidates have only advanced to Phase I trials. Herein, we describe the overall strategy and progress in P. vivax vaccine research, from antigen discovery to preclinical and clinical development and we discuss the regional potential of Latin America to develop a comprehensive platform for vaccine development. PMID:21881773

  19. Platform for Plasmodium vivax vaccine discovery and development

    PubMed Central

    Valencia/, Sócrates Herrera; Rodríguez, Diana Carolina; Acero, Diana Lucía; Ocampo, Vanessa; Arévalo-Herrera, Myriam

    2016-01-01

    Plasmodium vivax is the most prevalent malaria parasite on the American continent. It generates a global burden of 80–100 million cases annually and represents a tremendous public health problem, particularly in the American and Asian continents. A malaria vaccine would be considered the most cost-effective measure against this vector-borne disease and it would contribute to a reduction in malaria cases and to eventual eradication. Although significant progress has been achieved in the search for Plasmodium falciparum antigens that could be used in a vaccine, limited progress has been made in the search for P. vivax components that might be eligible for vaccine development. This is primarily due to the lack of in vitro cultures to serve as an antigen source and to inadequate funding. While the most advanced P. falciparum vaccine candidate is currently being tested in Phase III trials in Africa, the most advanced P. vivax candidates have only advanced to Phase I trials. Herein, we describe the overall strategy and progress in P. vivax vaccine research, from antigen discovery to preclinical and clinical development and we discuss the regional potential of Latin America to develop a comprehensive platform for vaccine development. PMID:21881773

  20. DNA Cloning of Plasmodium falciparum Circumsporozoite Gene: Amino Acid Sequence of Repetitive Epitope

    NASA Astrophysics Data System (ADS)

    Enea, Vincenzo; Ellis, Joan; Zavala, Fidel; Arnot, David E.; Asavanich, Achara; Masuda, Aoi; Quakyi, Isabella; Nussenzweig, Ruth S.

    1984-08-01

    A clone of complementary DNA encoding the circumsporozoite (CS) protein of the human malaria parasite Plasmodium falciparum has been isolated by screening an Escherichia coli complementary DNA library with a monoclonal antibody to the CS protein. The DNA sequence of the complementary DNA insert encodes a four-amino acid sequence: proline-asparagine-alanine-asparagine, tandemly repeated 23 times. The CS β -lactamase fusion protein specifically binds monoclonal antibodies to the CS protein and inhibits the binding of these antibodies to native Plasmodium falciparum CS protein. These findings provide a basis for the development of a vaccine against Plasmodium falciparum malaria.

  1. Antibody responses to Plasmodium falciparum and Plasmodium vivax blood-stage and sporozoite antigens in the postpartum period

    PubMed Central

    McLean, Alistair R. D.; Boel, Machteld E.; McGready, Rose; Ataide, Ricardo; Drew, Damien; Tsuboi, Takafumi; Beeson, James G.; Nosten, François; Simpson, Julie A.; Fowkes, Freya J. I.

    2016-01-01

    During pregnancy a variety of immunological changes occur to accommodate the fetus. It is unknown whether these changes continue to affect humoral immunity postpartum or how quickly they resolve. IgG levels were measured to P. falciparum and P. vivax antigens in 201 postpartum and 201 controls over 12 weeks. Linear mixed-effects models assessed antibody maintenance over time and the effect of microscopically confirmed Plasmodium spp. infection on antibody levels, and whether this was different in postpartum women compared with control women. Postpartum women had reduced Plasmodium spp. antibody levels compared to controls at baseline. Over 12 weeks, mean antibody levels in postpartum women increased to levels observed in control women. Microscopically confirmed P. falciparum and P. vivax infections during follow-up were associated with an increase in species-specific antibodies with similar magnitudes of boosting observed in postpartum and control women. Antibodies specific for pregnancy-associated, VAR2CSA-expressing parasites did not rapidly decline postpartum and did not boost in response to infection in either postpartum or control women. After pregnancy, levels of malaria-specific antibodies were reduced, but recovered to levels seen in control women. There was no evidence of an impaired ability to mount a boosting response in postpartum women. PMID:27558000

  2. Antibody responses to Plasmodium falciparum and Plasmodium vivax blood-stage and sporozoite antigens in the postpartum period.

    PubMed

    McLean, Alistair R D; Boel, Machteld E; McGready, Rose; Ataide, Ricardo; Drew, Damien; Tsuboi, Takafumi; Beeson, James G; Nosten, François; Simpson, Julie A; Fowkes, Freya J I

    2016-01-01

    During pregnancy a variety of immunological changes occur to accommodate the fetus. It is unknown whether these changes continue to affect humoral immunity postpartum or how quickly they resolve. IgG levels were measured to P. falciparum and P. vivax antigens in 201 postpartum and 201 controls over 12 weeks. Linear mixed-effects models assessed antibody maintenance over time and the effect of microscopically confirmed Plasmodium spp. infection on antibody levels, and whether this was different in postpartum women compared with control women. Postpartum women had reduced Plasmodium spp. antibody levels compared to controls at baseline. Over 12 weeks, mean antibody levels in postpartum women increased to levels observed in control women. Microscopically confirmed P. falciparum and P. vivax infections during follow-up were associated with an increase in species-specific antibodies with similar magnitudes of boosting observed in postpartum and control women. Antibodies specific for pregnancy-associated, VAR2CSA-expressing parasites did not rapidly decline postpartum and did not boost in response to infection in either postpartum or control women. After pregnancy, levels of malaria-specific antibodies were reduced, but recovered to levels seen in control women. There was no evidence of an impaired ability to mount a boosting response in postpartum women. PMID:27558000

  3. Functional Antibodies against VAR2CSA in Nonpregnant Populations from Colombia Exposed to Plasmodium falciparum and Plasmodium vivax

    PubMed Central

    Doritchamou, Justin; Arango, Eliana M.; Cabrera, Ana; Arroyo, Maria Isabel; Kain, Kevin C.; Ndam, Nicaise Tuikue; Maestre, Amanda

    2014-01-01

    In pregnancy, parity-dependent immunity is observed in response to placental infection with Plasmodium falciparum. Antibodies recognize the surface antigen, VAR2CSA, expressed on infected red blood cells and inhibit cytoadherence to the placental tissue. In most settings of malaria endemicity, antibodies against VAR2CSA are predominantly observed in multigravid women and infrequently in men, children, and nulligravid women. However, in Colombia, we detected antibodies against multiple constructs of VAR2CSA among men and children with acute P. falciparum and Plasmodium vivax infection. The majority of men and children (>60%) had high levels of IgGs against three recombinant domains of VAR2CSA: DBL5ε, DBL3X, and ID1-ID2. Surprisingly, these antibodies were observed only in pregnant women, men, and children exposed either to P. falciparum or to P. vivax. Moreover, the anti-VAR2CSA antibodies are of high avidity and efficiently inhibit adherence of infected red blood cells to chondroitin sulfate A in vitro, suggesting that they are specific and functional. These unexpected results suggest that there may be genotypic or phenotypic differences in the parasites of this region or in the host response to either P. falciparum or P. vivax infection outside pregnancy. These findings may hold significant clinical relevance to the pathophysiology and outcome of malaria infections in this region. PMID:24686068

  4. Prevalence of mutation and phenotypic expression associated with sulfadoxine-pyrimethamine resistance in Plasmodium falciparum and Plasmodium vivax.

    PubMed

    Zakai, Haytham A; Khan, Wajihullah; Asma, Umme

    2013-09-01

    Therapeutic efficacy of sulfadoxine-pyrimethamine (SP), which is commonly used to treat falciparum malaria, was assessed in isolates of Plasmodium falciparum (Welch, 1897) and Plasmodium vivax (Grassi et Feletti, 1890) ofAligarh, Uttar Pradesh, North India and Taif, Saudi Arabia during 2011-2012. Both the species showed mutations in dihydrofolate reductase (DHFR) enzyme as they have common biochemical drug targets. Mutation rate for pfdhfr was higher compared to pvdhfr because the drug was mainly given to treat falciparum malaria. Since both the species coexist, P. vivax was also exposed to SP due to faulty species diagnosis or medication without specific diagnosis. Low level of mutations against SP in P. falciparum of Saudi isolates indicates that the SP combination is still effective for the treatment of falciparum malaria. Since SP is used as first-line of treatment because of high level of resistance against chloroquine (CQ), it may result in spread of higher level of mutations resulting in drug resistance and treatment failure in near future. Therefore, to avoid further higher mutations in the parasite, use of better treatment regimens such as artesunate combination therapy must be introduced against SP combination. PMID:24261139

  5. Molecular detection of Plasmodium in free-ranging birds and captive flamingos (Phoenicopterus chilensis) in Chicago.

    PubMed

    Thurber, Mary Irene; Gamble, Kathryn C; Krebs, Bethany; Goldberg, Tony L

    2014-12-01

    Frozen blood samples from 13 species of free-ranging birds (n = 65) and captive Chilean flamingos (Phoenicopterus chilensis) (n = 46) housed outdoors in the Chicago area were screened for Plasmodium. With the use of a modified polymerase chain reaction, 20/65 (30.8%) of free-ranging birds and 26/46 (56.5%) of flamingos were classified as positive for this parasite genus. DNA sequencing of the parasite cytochrome b gene in positive samples demonstrated that eight species of free-ranging birds were infected with five different Plasmodium spp. cytochrome b lineages, and all positive Chilean flamingos were infected with Plasmodium spp. cytochrome b lineages most closely related to organisms in the Novyella subgenus. These results show that Chilean flamingos may harbor subclinical malaria infections more frequently than previously estimated, and that they may have increased susceptibility to some Plasmodium species. PMID:25632659

  6. Genomes of cryptic chimpanzee Plasmodium species reveal key evolutionary events leading to human malaria

    PubMed Central

    Sundararaman, Sesh A.; Plenderleith, Lindsey J.; Liu, Weimin; Loy, Dorothy E.; Learn, Gerald H.; Li, Yingying; Shaw, Katharina S.; Ayouba, Ahidjo; Peeters, Martine; Speede, Sheri; Shaw, George M.; Bushman, Frederic D.; Brisson, Dustin; Rayner, Julian C.; Sharp, Paul M.; Hahn, Beatrice H.

    2016-01-01

    African apes harbour at least six Plasmodium species of the subgenus Laverania, one of which gave rise to human Plasmodium falciparum. Here we use a selective amplification strategy to sequence the genome of chimpanzee parasites classified as Plasmodium reichenowi and Plasmodium gaboni based on the subgenomic fragments. Genome-wide analyses show that these parasites indeed represent distinct species, with no evidence of cross-species mating. Both P. reichenowi and P. gaboni are 10-fold more diverse than P. falciparum, indicating a very recent origin of the human parasite. We also find a remarkable Laverania-specific expansion of a multigene family involved in erythrocyte remodelling, and show that a short region on chromosome 4, which encodes two essential invasion genes, was horizontally transferred into a recent P. falciparum ancestor. Our results validate the selective amplification strategy for characterizing cryptic pathogen species, and reveal evolutionary events that likely predisposed the precursor of P. falciparum to colonize humans. PMID:27002652

  7. The metabolic roles of the endosymbiotic organelles of Toxoplasma and Plasmodium spp.

    PubMed Central

    Sheiner, Lilach; Vaidya, Akhil B.; McFadden, Geoffrey I.

    2013-01-01

    The apicoplast and the mitochondrion of Apicomplexa cooperate in providing essential metabolites. Their co-evolution during the ancestral acquisition of a plastid and subsequent loss of photosynthesis resulted in divergent metabolic pathways compared with mammals and plants. This is most evident in their chimerical haem synthesis pathway. Toxoplasma and Plasmodium mitochondria operate canonical TCA cycles and electron transport chains, although the roles differ between Toxoplasma tachyzoites and Plasmodium erythrocytic stages. Glutamine catabolism provides TCA intermediates in both parasites. Isoprenoid precursor synthesis is the only essential role of the apicoplast in Plasmodium erythrocytic stages. An apicoplast-located fatty acid synthesis is dispensable in these stages, which instead predominantly salvage fatty acids, while in Plasmodium liver stages and in Toxoplasma tachyzoites fatty acid synthesis is an essential role of the plastid. PMID:23927894

  8. Genomes of cryptic chimpanzee Plasmodium species reveal key evolutionary events leading to human malaria.

    PubMed

    Sundararaman, Sesh A; Plenderleith, Lindsey J; Liu, Weimin; Loy, Dorothy E; Learn, Gerald H; Li, Yingying; Shaw, Katharina S; Ayouba, Ahidjo; Peeters, Martine; Speede, Sheri; Shaw, George M; Bushman, Frederic D; Brisson, Dustin; Rayner, Julian C; Sharp, Paul M; Hahn, Beatrice H

    2016-01-01

    African apes harbour at least six Plasmodium species of the subgenus Laverania, one of which gave rise to human Plasmodium falciparum. Here we use a selective amplification strategy to sequence the genome of chimpanzee parasites classified as Plasmodium reichenowi and Plasmodium gaboni based on the subgenomic fragments. Genome-wide analyses show that these parasites indeed represent distinct species, with no evidence of cross-species mating. Both P. reichenowi and P. gaboni are 10-fold more diverse than P. falciparum, indicating a very recent origin of the human parasite. We also find a remarkable Laverania-specific expansion of a multigene family involved in erythrocyte remodelling, and show that a short region on chromosome 4, which encodes two essential invasion genes, was horizontally transferred into a recent P. falciparum ancestor. Our results validate the selective amplification strategy for characterizing cryptic pathogen species, and reveal evolutionary events that likely predisposed the precursor of P. falciparum to colonize humans. PMID:27002652

  9. Use of a Drosophila Model to Identify Genes Regulating Plasmodium Growth in the Mosquito

    PubMed Central

    Brandt, Stephanie M.; Jaramillo-Gutierrez, Giovanna; Kumar, Sanjeev; Barillas-Mury, Carolina; Schneider, David S.

    2008-01-01

    We performed a forward genetic screen, using Drosophila as a surrogate mosquito, to identify host factors required for the growth of the avian malaria parasite, Plasmodium gallinaceum. We identified 18 presumed loss-of-function mutants that reduced the growth of the parasite in flies. Presumptive mutation sites were identified in 14 of the mutants on the basis of the insertion site of a transposable element. None of the identified genes have been previously implicated in innate immune responses or interactions with Plasmodium. The functions of five Anopheles gambiae homologs were tested by using RNAi to knock down gene function followed by measuring the growth of the rodent parasite, Plasmodium berghei. Loss of function of four of these genes in the mosquito affected Plasmodium growth, suggesting that Drosophila can be used effectively as a surrogate mosquito to identify relevant host factors in the mosquito. PMID:18791251

  10. Use of a Drosophila model to identify genes regulating Plasmodium growth in the mosquito.

    PubMed

    Brandt, Stephanie M; Jaramillo-Gutierrez, Giovanna; Kumar, Sanjeev; Barillas-Mury, Carolina; Schneider, David S

    2008-11-01

    We performed a forward genetic screen, using Drosophila as a surrogate mosquito, to identify host factors required for the growth of the avian malaria parasite, Plasmodium gallinaceum. We identified 18 presumed loss-of-function mutants that reduced the growth of the parasite in flies. Presumptive mutation sites were identified in 14 of the mutants on the basis of the insertion site of a transposable element. None of the identified genes have been previously implicated in innate immune responses or interactions with Plasmodium. The functions of five Anopheles gambiae homologs were tested by using RNAi to knock down gene function followed by measuring the growth of the rodent parasite, Plasmodium berghei. Loss of function of four of these genes in the mosquito affected Plasmodium growth, suggesting that Drosophila can be used effectively as a surrogate mosquito to identify relevant host factors in the mosquito. PMID:18791251

  11. Evolutionary origin of Plasmodium and other Apicomplexa based on rRNA genes.

    PubMed Central

    Escalante, A A; Ayala, F J

    1995-01-01

    We have explored the evolutionary history of the Apicomplexa and two related protistan phyla, Dinozoa and Ciliophora, by comparing the nucleotide sequences of small subunit ribosomal RNA genes. We conclude that the Plasmodium lineage, to which the malarial parasites belong, diverged from other apicomplexan lineages (piroplasmids and coccidians) several hundred million years ago, perhaps even before the Cambrian. The Plasmodium radiation, which gave rise to several species parasitic to humans, occurred approximately 129 million years ago; Plasmodium parasitism of humans has independently arisen several times. The origin of apicomplexans (Plasmodium), dinoflagellates, and ciliates may be > 1 billion years old, perhaps older than the three multicellular kingdoms of animals, plants, and fungi. Digenetic parasitism independently evolved several times in the Apicomplexa. PMID:7597031

  12. Comparative assessment of genomic DNA extraction processes for Plasmodium: Identifying the appropriate method.

    PubMed

    Mann, Riti; Sharma, Supriya; Mishra, Neelima; Valecha, Neena; Anvikar, Anupkumar R

    2015-12-01

    Plasmodium DNA, in addition to being used for molecular diagnosis of malaria, find utility in monitoring patient responses to antimalarial drugs, drug resistance studies, genotyping and sequencing purposes. Over the years, numerous protocols have been proposed for extracting Plasmodium DNA from a variety of sources. Given that DNA isolation is fundamental to successful molecular studies, here we review the most commonly used methods for Plasmodium genomic DNA isolation, emphasizing their pros and cons. A comparison of these existing methods has been made, to evaluate their appropriateness for use in different applications and identify the method suitable for a particular laboratory based study. Selection of a suitable and accessible DNA extraction method for Plasmodium requires consideration of many factors, the most important being sensitivity, cost-effectiveness and, purity and stability of isolated DNA. Need of the hour is to accentuate on the development of a method that upholds well on all these parameters. PMID:26714505

  13. Age of the last common ancestor of extant Plasmodium parasite lineages.

    PubMed

    Hayakawa, Toshiyuki; Tachibana, Shin-Ichiro; Hikosaka, Kenji; Arisue, Nobuko; Matsui, Atsushi; Horii, Toshihiro; Tanabe, Kazuyuki

    2012-07-01

    Parasites of the genus Plasmodium infect all classes of amniotes (mammals, birds and reptiles) and display host specificity in their infections. It is therefore generally believed that Plasmodium parasites co-evolved intimately with their hosts. Here, we report that based on an evolutionary analysis using 22 genes in the nuclear genome, extant lineages of Plasmodium parasites originated roughly in the Oligocene epoch after the emergence of their hosts. This timing on the age of the common ancestor of extant Plasmodium parasites suggest the importance of host switches and lends support to the evolutionary scenario of a "malaria big bang" that was proposed based on the evolutionary analysis using the mitochondrial genome. PMID:22555021

  14. Plasmodium vivax Malaria Endemicity in Indonesia in 2010

    PubMed Central

    Elyazar, Iqbal R. F.; Gething, Peter W.; Patil, Anand P.; Rogayah, Hanifah; Sariwati, Elvieda; Palupi, Niken W.; Tarmizi, Siti N.; Kusriastuti, Rita; Baird, J. Kevin; Hay, Simon I.

    2012-01-01

    Background Plasmodium vivax imposes substantial morbidity and mortality burdens in endemic zones. Detailed understanding of the contemporary spatial distribution of this parasite is needed to combat it. We used model based geostatistics (MBG) techniques to generate a contemporary map of risk of Plasmodium vivax malaria in Indonesia in 2010. Methods Plasmodium vivax Annual Parasite Incidence data (2006–2008) and temperature masks were used to map P. vivax transmission limits. A total of 4,658 community surveys of P. vivax parasite rate (PvPR) were identified (1985–2010) for mapping quantitative estimates of contemporary endemicity within those limits. After error-checking a total of 4,457 points were included into a national database of age-standardized 1–99 year old PvPR data. A Bayesian MBG procedure created a predicted PvPR1–99 endemicity surface with uncertainty estimates. Population at risk estimates were derived with reference to a 2010 human population surface. Results We estimated 129.6 million people in Indonesia lived at risk of P. vivax transmission in 2010. Among these, 79.3% inhabited unstable transmission areas and 20.7% resided in stable transmission areas. In western Indonesia, the predicted P. vivax prevalence was uniformly low. Over 70% of the population at risk in this region lived on Java and Bali islands, where little malaria transmission occurs. High predicted prevalence areas were observed in the Lesser Sundas, Maluku and Papua. In general, prediction uncertainty was relatively low in the west and high in the east. Conclusion Most Indonesians living with endemic P. vivax experience relatively low risk of infection. However, blood surveys for this parasite are likely relatively insensitive and certainly do not detect the dormant liver stage reservoir of infection. The prospects for P. vivax elimination would be improved with deeper understanding of glucose-6-phosphate dehydrogenase deficiency (G6PDd) distribution, anti-relapse therapy

  15. Unraveling the 'DEAD-box' helicases of Plasmodium falciparum.

    PubMed

    Tuteja, Renu; Pradhan, Arun

    2006-07-01

    The causative agent for the most fatal form of malaria, Plasmodium falciparum, has developed insecticide and drug resistance with time. Therefore combating this disease is becoming increasingly difficult and this calls for finding alternate ways to control malaria. One of the feasible ways could be to find out inhibitors/drugs specific for the indispensable enzymes of malaria parasite such as helicases. These helicases, which contain intrinsic nucleic acid-dependent ATPase activity, are capable of enzymatically unwinding energetically stable duplex nucleic acids into single-stranded templates and are required for all the nucleic acid transactions. Most of the helicases contain a set of nine extremely conserved amino acid sequences, which are called 'helicase motifs'. Due to the presence of the DEAD (Asp-Glu-Ala-Asp) in one of the conserved motifs, this family is also known as the 'DEAD-box' family. In this review, using bioinformatic approach, we describe the 'DEAD-box' helicases of malaria parasite P. falciparum. An in depth analysis shows that the parasite contains 22 full-length genes, some of which are homologues of well-characterized helicases of this family from other organisms. Recently we have cloned and characterized the first member of this family, which is a homologue of p68 and is expressed during the schizont stage of the development of the parasite [Pradhan, A., Chauhan, V.S., Tuteja, R., 2005a. A novel 'DEAD-box' DNA helicase from Plasmodium falciparum is homologous to p68. Mol. Biochem. Parasitol. 140, 55-60.; Pradhan A., Chauhan V.S., Tuteja R., 2005b. Plasmodium falciparum DNA helicase 60 is a schizont stage specific, bipolar and dual helicase stimulated by PKC phosphorylation. Mol. Biochem. Parasitol. 144, 133-141.]. It will be really interesting to clone and characterize other members of the 'DEAD-box' family and understand their role in the replication and transmission of the parasite. These detailed studies may help to identify a parasite

  16. Caspar Controls Resistance to Plasmodium falciparum in Diverse Anopheline Species

    PubMed Central

    Garver, Lindsey S.; Dong, Yuemei; Dimopoulos, George

    2009-01-01

    Immune responses mounted by the malaria vector Anopheles gambiae are largely regulated by the Toll and Imd (immune deficiency) pathways via the NF-kappaB transcription factors Rel1 and Rel2, which are controlled by the negative regulators Cactus and Caspar, respectively. Rel1- and Rel2-dependent transcription in A. gambiae has been shown to be particularly critical to the mosquito's ability to manage infection with the rodent malaria parasite Plasmodium berghei. Using RNA interference to deplete the negative regulators of these pathways, we found that Rel2 controls resistance of A. gambiae to the human malaria parasite Plasmodium falciparum, whereas Rel 1 activation reduced infection levels. The universal relevance of this defense system across Anopheles species was established by showing that caspar silencing also prevents the development of P. falciparum in the major malaria vectors of Asia and South America, A. stephensi and A. albimanus, respectively. Parallel studies suggest that while Imd pathway activation is most effective against P. falciparum, the Toll pathway is most efficient against P. berghei, highlighting a significant discrepancy between the human pathogen and its rodent model. High throughput gene expression analyses identified a plethora of genes regulated by the activation of the two Rel factors and revealed that the Toll pathway played a more diverse role in mosquito biology than the Imd pathway, which was more immunity-specific. Further analyses of key anti-Plasmodium factors suggest they may be responsible for the Imd pathway–mediated resistance phenotype. Additionally, we found that the fitness cost caused by Rel2 activation through caspar gene silencing was undetectable in sugar-fed, blood-fed, and P. falciparum-infected female A. gambiae, while activation of the Toll pathway's Rel1 had a major impact. This study describes for the first time a single gene that influences an immune mechanism that is able to abort development of P

  17. Increased detection of Plasmodium knowlesi in Sandakan division, Sabah as revealed by PlasmoNex™

    PubMed Central

    2013-01-01

    Background Plasmodium knowlesi is a simian malaria parasite that is widespread in humans in Malaysian Borneo. However, little is known about the incidence and distribution of this parasite in the Sandakan division, Malaysian Borneo. Therefore, the aim of the present epidemiological study was to investigate the incidence and distribution of P. knowlesi as well as other Plasmodium species in this division based on a most recent developed hexaplex PCR system (PlasmoNex™). Methods A total of 189 whole blood samples were collected from Telupid Health Clinic, Sabah, Malaysia, from 2008 to 2011. All patients who participated in the study were microscopically malaria positive before recruitment. Complete demographic details and haematological profiles were obtained from 85 patients (13 females and 72 males). Identification of Plasmodium species was conducted using PlasmoNex™ targeting the 18S ssu rRNA gene. Results A total of 178 samples were positive for Plasmodium species by using PlasmoNex™. Plasmodium falciparum was identified in 68 samples (38.2%) followed by 64 cases (36.0%) of Plasmodium vivax, 42 (23.6%) cases of P. knowlesi, two (1.1%) cases of Plasmodium malariae and two (1.1%) mixed-species infections (i e, P. vivax/P. falciparum). Thirty-five PlasmoNex™ positive P. knowlesi samples were misdiagnosed as P. malariae by microscopy. Plasmodium knowlesi was detected in all four districts of Sandakan division with the highest incidence in the Kinabatangan district. Thrombocytopaenia and anaemia showed to be the most frequent malaria-associated haematological complications in this study. Conclusions The discovery of P. knowlesi in Sandakan division showed that prospective studies on the epidemiological risk factors and transmission dynamics of P. knowlesi in these areas are crucial in order to develop strategies for effective malaria control. The availability of advanced diagnostic tool PlasmoNex™ enhanced the accuracy and accelerated the speed in the

  18. Anopheles gambiae immune responses to human and rodent Plasmodium parasite species.

    PubMed

    Dong, Yuemei; Aguilar, Ruth; Xi, Zhiyong; Warr, Emma; Mongin, Emmanuel; Dimopoulos, George

    2006-06-01

    Transmission of malaria is dependent on the successful completion of the Plasmodium lifecycle in the Anopheles vector. Major obstacles are encountered in the midgut tissue, where most parasites are killed by the mosquito's immune system. In the present study, DNA microarray analyses have been used to compare Anopheles gambiae responses to invasion of the midgut epithelium by the ookinete stage of the human pathogen Plasmodium falciparum and the rodent experimental model pathogen P. berghei. Invasion by P. berghei had a more profound impact on the mosquito transcriptome, including a variety of functional gene classes, while P. falciparum elicited a broader immune response at the gene transcript level. Ingestion of human malaria-infected blood lacking invasive ookinetes also induced a variety of immune genes, including several anti-Plasmodium factors. Twelve selected genes were assessed for effect on infection with both parasite species and bacteria using RNAi gene silencing assays, and seven of these genes were found to influence mosquito resistance to both parasite species. An MD2-like receptor, AgMDL1, and an immunolectin, FBN39, showed specificity in regulating only resistance to P. falciparum, while the antimicrobial peptide gambicin and a novel putative short secreted peptide, IRSP5, were more specific for defense against the rodent parasite P. berghei. While all the genes that affected Plasmodium development also influenced mosquito resistance to bacterial infection, four of the antimicrobial genes had no effect on Plasmodium development. Our study shows that the impact of P. falciparum and P. berghei infection on A. gambiae biology at the gene transcript level is quite diverse, and the defense against the two Plasmodium species is mediated by antimicrobial factors with both universal and Plasmodium-species specific activities. Furthermore, our data indicate that the mosquito is capable of sensing infected blood constituents in the absence of invading

  19. Anopheles gambiae Immune Responses to Human and Rodent Plasmodium Parasite Species

    PubMed Central

    Dong, Yuemei; Aguilar, Ruth; Xi, Zhiyong; Warr, Emma; Mongin, Emmanuel; Dimopoulos, George

    2006-01-01

    Transmission of malaria is dependent on the successful completion of the Plasmodium lifecycle in the Anopheles vector. Major obstacles are encountered in the midgut tissue, where most parasites are killed by the mosquito's immune system. In the present study, DNA microarray analyses have been used to compare Anopheles gambiae responses to invasion of the midgut epithelium by the ookinete stage of the human pathogen Plasmodium falciparum and the rodent experimental model pathogen P. berghei. Invasion by P. berghei had a more profound impact on the mosquito transcriptome, including a variety of functional gene classes, while P. falciparum elicited a broader immune response at the gene transcript level. Ingestion of human malaria-infected blood lacking invasive ookinetes also induced a variety of immune genes, including several anti-Plasmodium factors. Twelve selected genes were assessed for effect on infection with both parasite species and bacteria using RNAi gene silencing assays, and seven of these genes were found to influence mosquito resistance to both parasite species. An MD2-like receptor, AgMDL1, and an immunolectin, FBN39, showed specificity in regulating only resistance to P. falciparum, while the antimicrobial peptide gambicin and a novel putative short secreted peptide, IRSP5, were more specific for defense against the rodent parasite P. berghei. While all the genes that affected Plasmodium development also influenced mosquito resistance to bacterial infection, four of the antimicrobial genes had no effect on Plasmodium development. Our study shows that the impact of P. falciparum and P. berghei infection on A. gambiae biology at the gene transcript level is quite diverse, and the defense against the two Plasmodium species is mediated by antimicrobial factors with both universal and Plasmodium-species specific activities. Furthermore, our data indicate that the mosquito is capable of sensing infected blood constituents in the absence of invading

  20. A sensitive, specific and reproducible real-time polymerase chain reaction method for detection of Plasmodium vivax and Plasmodium falciparum infection in field-collected anophelines.

    PubMed

    Bickersmith, Sara A; Lainhart, William; Moreno, Marta; Chu, Virginia M; Vinetz, Joseph M; Conn, Jan E

    2015-06-01

    We describe a simple method for detection of Plasmodium vivax and Plasmodium falciparum infection in anophelines using a triplex TaqMan real-time polymerase chain reaction (PCR) assay (18S rRNA). We tested the assay on Anopheles darlingi and Anopheles stephensi colony mosquitoes fed with Plasmodium-infected blood meals and in duplicate on field collected An. darlingi. We compared the real-time PCR results of colony-infected and field collected An. darlingi, separately, to a conventional PCR method. We determined that a cytochrome b-PCR method was only 3.33% as sensitive and 93.38% as specific as our real-time PCR assay with field-collected samples. We demonstrate that this assay is sensitive, specific and reproducible. PMID:26061150

  1. Multigenomic Delineation of Plasmodium Species of the Laverania Subgenus Infecting Wild-Living Chimpanzees and Gorillas.

    PubMed

    Liu, Weimin; Sundararaman, Sesh A; Loy, Dorothy E; Learn, Gerald H; Li, Yingying; Plenderleith, Lindsey J; Ndjango, Jean-Bosco N; Speede, Sheri; Atencia, Rebeca; Cox, Debby; Shaw, George M; Ayouba, Ahidjo; Peeters, Martine; Rayner, Julian C; Hahn, Beatrice H; Sharp, Paul M

    2016-01-01

    Plasmodium falciparum, the major cause of malaria morbidity and mortality worldwide, is only distantly related to other human malaria parasites and has thus been placed in a separate subgenus, termed Laverania Parasites morphologically similar to P. falciparum have been identified in African apes, but only one other Laverania species, Plasmodium reichenowi from chimpanzees, has been formally described. Although recent studies have pointed to the existence of additional Laverania species, their precise number and host associations remain uncertain, primarily because of limited sampling and a paucity of parasite sequences other than from mitochondrial DNA. To address this, we used limiting dilution polymerase chain reaction to amplify additional parasite sequences from a large number of chimpanzee and gorilla blood and fecal samples collected at two sanctuaries and 30 field sites across equatorial Africa. Phylogenetic analyses of more than 2,000 new sequences derived from the mitochondrial, nuclear, and apicoplast genomes revealed six divergent and well-supported clades within the Laverania parasite group. Although two of these clades exhibited deep subdivisions in phylogenies estimated from organelle gene sequences, these sublineages were geographically defined and not present in trees from four unlinked nuclear loci. This greatly expanded sequence data set thus confirms six, and not seven or more, ape Laverania species, of which P. reichenowi, Plasmodium gaboni, and Plasmodium billcollinsi only infect chimpanzees, whereas Plasmodium praefalciparum, Plasmodium adleri, and Pladmodium blacklocki only infect gorillas. The new sequence data also confirm the P. praefalciparum origin of human P. falciparum. PMID:27289102

  2. Infection with Wolbachia protects mosquitoes against Plasmodium-induced mortality in a natural system.

    PubMed

    Zélé, F; Nicot, A; Duron, O; Rivero, A

    2012-07-01

    In recent years, there has been a shift in the one host-one parasite paradigm with the realization that, in the field, most hosts are coinfected with multiple parasites. Coinfections are particularly relevant when the host is a vector of diseases, because multiple infections can have drastic consequences for parasite transmission at both the ecological and evolutionary timescales. Wolbachia pipientis is the most common parasitic microorganism in insects, and as such, it is of special interest for understanding the role of coinfections in the outcome of parasite infections. Here, we investigate whether Wolbachia can modulate the effect of Plasmodium on what is, arguably, the most important component of the vectorial capacity of mosquitoes: their longevity. For this purpose, and in contrast to recent studies that have focused on mosquito-Plasmodium and/or mosquito-Wolbachia combinations not found in nature, we work on a Wolbachia-mosquito-Plasmodium triad with a common evolutionary history. Our results show that Wolbachia protects mosquitoes from Plasmodium-induced mortality. The results are consistent across two different strains of Wolbachia and repeatable across two different experimental blocks. To our knowledge, this is the first time that such an effect has been shown for Plasmodium-infected mosquitoes and, in particular, in a natural Wolbachia-host combination. We discuss different mechanistic and evolutionary explanations for these results as well as their consequences for Plasmodium transmission. PMID:22533729

  3. Multigenomic Delineation of Plasmodium Species of the Laverania Subgenus Infecting Wild-Living Chimpanzees and Gorillas

    PubMed Central

    Liu, Weimin; Sundararaman, Sesh A.; Loy, Dorothy E.; Learn, Gerald H.; Li, Yingying; Plenderleith, Lindsey J.; Ndjango, Jean-Bosco N.; Speede, Sheri; Atencia, Rebeca; Cox, Debby; Shaw, George M.; Ayouba, Ahidjo; Peeters, Martine; Rayner, Julian C.; Hahn, Beatrice H.; Sharp, Paul M.

    2016-01-01

    Plasmodium falciparum, the major cause of malaria morbidity and mortality worldwide, is only distantly related to other human malaria parasites and has thus been placed in a separate subgenus, termed Laverania. Parasites morphologically similar to P. falciparum have been identified in African apes, but only one other Laverania species, Plasmodium reichenowi from chimpanzees, has been formally described. Although recent studies have pointed to the existence of additional Laverania species, their precise number and host associations remain uncertain, primarily because of limited sampling and a paucity of parasite sequences other than from mitochondrial DNA. To address this, we used limiting dilution polymerase chain reaction to amplify additional parasite sequences from a large number of chimpanzee and gorilla blood and fecal samples collected at two sanctuaries and 30 field sites across equatorial Africa. Phylogenetic analyses of more than 2,000 new sequences derived from the mitochondrial, nuclear, and apicoplast genomes revealed six divergent and well-supported clades within the Laverania parasite group. Although two of these clades exhibited deep subdivisions in phylogenies estimated from organelle gene sequences, these sublineages were geographically defined and not present in trees from four unlinked nuclear loci. This greatly expanded sequence data set thus confirms six, and not seven or more, ape Laverania species, of which P. reichenowi, Plasmodium gaboni, and Plasmodium billcollinsi only infect chimpanzees, whereas Plasmodium praefalciparum, Plasmodium adleri, and Pladmodium blacklocki only infect gorillas. The new sequence data also confirm the P. praefalciparum origin of human P. falciparum. PMID:27289102

  4. Adamantyl derivative as a potent inhibitor of Plasmodium FK506 binding protein 35.

    PubMed

    Harikishore, Amaravadhi; Leow, Min Li; Niang, Makhtar; Rajan, Sreekanth; Pasunooti, Kalyan Kumar; Preiser, Peter Rainer; Liu, Xuewei; Yoon, Ho Sup

    2013-11-14

    FKBP35, FK506 binding protein family member, in Plasmodium species displays a canonical peptidyl-prolyl isomerase (PPIase) activity and is intricately involved in the protein folding process. Inhibition of PfFKBP35 by FK506 or its analogues were shown to interfere with the in vitro growth of Plasmodium falciparum. In this study, we have synthesized adamantyl derivatives, Supradamal (SRA/4a) and its analogues SRA1/4b and SRA2/4c, which demonstrate submicromolar inhibition of Plasmodium falciparum FK506 binding domain 35 (FKBD35) PPIase activity. SRA and its analogues not only inhibit the in vitro growth of Plasmodium falciparum 3D7 strain but also show stage specific activity by inhibiting the trophozoite stage of the parasite. SRA/4a also inhibits the Plasmodium vivax FKBD35 PPIase activity and our crystal structure of PvFKBD35 in complex with the SRA provides structural insights in achieving selective inhibition against Plasmodium FKBPs. PMID:24900611

  5. Multiple independent introductions of Plasmodium falciparum in South America

    PubMed Central

    Yalcindag, Erhan; Elguero, Eric; Arnathau, Céline; Durand, Patrick; Akiana, Jean; Anderson, Timothy J.; Aubouy, Agnes; Balloux, François; Besnard, Patrick; Bogreau, Hervé; Carnevale, Pierre; D'Alessandro, Umberto; Fontenille, Didier; Gamboa, Dionicia; Jombart, Thibaut; Le Mire, Jacques; Leroy, Eric; Maestre, Amanda; Mayxay, Mayfong; Ménard, Didier; Musset, Lise; Newton, Paul N.; Nkoghé, Dieudonné; Noya, Oscar; Ollomo, Benjamin; Rogier, Christophe; Veron, Vincent; Wide, Albina; Zakeri, Sedigheh; Carme, Bernard; Legrand, Eric; Chevillon, Christine; Ayala, Francisco J.; Renaud, François; Prugnolle, Franck

    2012-01-01

    The origin of Plasmodium falciparum in South America is controversial. Some studies suggest a recent introduction during the European colonizations and the transatlantic slave trade. Other evidence—archeological and genetic—suggests a much older origin. We collected and analyzed P. falciparum isolates from different regions of the world, encompassing the distribution range of the parasite, including populations from sub-Saharan Africa, the Middle East, Southeast Asia, and South America. Analyses of microsatellite and SNP polymorphisms show that the populations of P. falciparum in South America are subdivided in two main genetic clusters (northern and southern). Phylogenetic analyses, as well as Approximate Bayesian Computation methods suggest independent introductions of the two clusters from African sources. Our estimates of divergence time between the South American populations and their likely sources favor a likely introduction from Africa during the transatlantic slave trade. PMID:22203975

  6. Chloroquine-Resistant Haplotype Plasmodium falciparum Parasites, Haiti

    PubMed Central

    Londono, Berlin L.; Eisele, Thomas P.; Keating, Joseph; Bennett, Adam; Chattopadhyay, Chandon; Heyliger, Gaetan; Mack, Brian; Rawson, Ian; Vely, Jean-Francois; Désinor, Olbeg

    2009-01-01

    Plasmodium falciparum parasites have been endemic to Haiti for >40 years without evidence of chloroquine (CQ) resistance. In 2006 and 2007, we obtained blood smears for rapid diagnostic tests (RDTs) and filter paper blots of blood from 821 persons by passive and active case detection. P. falciparum infections diagnosed for 79 persons by blood smear or RDT were confirmed by PCR for the small subunit rRNA gene of P. falciparum. Amplification of the P. falciparum CQ resistance transporter (pfcrt) gene yielded 10 samples with amplicons resistant to cleavage by ApoI. A total of 5 of 9 samples had threonine at position 76 of pfcrt, which is consistent with CQ resistance (haplotypes at positions 72–76 were CVIET [n = 4] and CVMNT [n = 1]); 4 had only the wild-type haplotype associated with CQ susceptibility (CVMNK). These results indicate that CQ-resistant haplotype P. falciparum malaria parasites are present in Haiti. PMID:19402959

  7. Plasmodium berghei ANKA causes intestinal malaria associated with dysbiosis.

    PubMed

    Taniguchi, Tomoyo; Miyauchi, Eiji; Nakamura, Shota; Hirai, Makoto; Suzue, Kazutomo; Imai, Takashi; Nomura, Takahiro; Handa, Tadashi; Okada, Hiroko; Shimokawa, Chikako; Onishi, Risa; Olia, Alex; Hirata, Jun; Tomita, Haruyoshi; Ohno, Hiroshi; Horii, Toshihiro; Hisaeda, Hajime

    2015-01-01

    Gastrointestinal symptoms, such as abdominal pain and diarrhea, are frequently observed in patients with Plasmodium falciparum malaria. However, the correlation between malaria intestinal pathology and intestinal microbiota has not been investigated. In the present study, infection of C57BL/6 mice with P. berghei ANKA (PbA) caused intestinal pathological changes, such as detachment of epithelia in the small intestines and increased intestinal permeability, which correlated with development with experimental cerebral malaria (ECM). Notably, an apparent dysbiosis occurred, characterized by a reduction of Firmicutes and an increase in Proteobacteria. Furthermore, some genera of microbiota correlated with parasite growth and/or ECM development. By contrast, BALB/c mice are resistant to ECM and exhibit milder intestinal pathology and dysbiosis. These results indicate that the severity of cerebral and intestinal pathology coincides with the degree of alteration in microbiota. This is the first report demonstrating that malaria affects intestinal microbiota and causes dysbiosis. PMID:26503461

  8. Plasmodium falciparum In Vitro Resistance to Monodesethylamodiaquine, Dakar, Senegal, 2014

    PubMed Central

    Fall, Bécaye; Madamet, Marylin; Camara, Cheikhou; Amalvict, Rémy; Fall, Mansour; Nakoulima, Aminata; Diatta, Bakary; Diémé, Yaya; Wade, Boubacar

    2016-01-01

    We successfully cultured 36 Plasmodium falciparum isolates from blood samples of 44 malaria patients admitted to the Hôpital Principal de Dakar (Dakar, Senegal) during August–December 2014. The prevalence of isolates with in vitro reduced susceptibility was 30.6% for monodesethylamodiaquine, 52.8% for chloroquine, 44.1% for mefloquine, 16.7% for doxycycline, 11.8% for piperaquine, 8.3% for artesunate, 5.9% for pyronaridine, 2.8% for quinine and dihydroartemisinin, and 0.0% for lumefantrine. The prevalence of isolates with reduced in vitro susceptibility to the artemisinin-based combination therapy partner monodesethylamodiaquine increased from 5.6% in 2013 to 30.6% in 2014. Because of the increased prevalence of P. falciparum parasites with impaired in vitro susceptibility to monodesethylamodiaquine, the implementation of in vitro and in vivo surveillance of all artemisinin-based combination therapy partners is warranted. PMID:27088703

  9. Plasmodium falciparum STEVOR proteins impact erythrocyte mechanical properties.

    PubMed

    Sanyal, Sohini; Egée, Stéphane; Bouyer, Guillaume; Perrot, Sylvie; Safeukui, Innocent; Bischoff, Emmanuel; Buffet, Pierre; Deitsch, Kirk W; Mercereau-Puijalon, Odile; David, Peter H; Templeton, Thomas J; Lavazec, Catherine

    2012-01-12

    Infection of erythrocytes with the human malaria parasite, Plasmodium falciparum, results in dramatic changes to the host cell structure and morphology. The predicted functional localization of the STEVOR proteins at the erythrocyte surface suggests that they may be involved in parasite-induced modifications of the erythrocyte membrane during parasite development. To address the biologic function of STEVOR proteins, we subjected a panel of stevor transgenic parasites and wild-type clonal lines exhibiting different expression levels for stevor genes to functional assays exploring parasite-induced modifications of the erythrocyte membrane. Using this approach, we show that stevor expression impacts deformability of the erythrocyte membrane. This process may facilitate parasite sequestration in deep tissue vasculature. PMID:22106347

  10. Thalassemic erythrocytes inhibit in vitro growth of Plasmodium falciparum.

    PubMed Central

    Brockelman, C R; Wongsattayanont, B; Tan-ariya, P; Fucharoen, S

    1987-01-01

    Blood specimens from 100 thalassemic patients were screened in vitro for inhibitory effects on growth and multiplication of Plasmodium falciparum. The culture medium mixture designated REM consisted of 9 volumes of minimum essential medium (GIBCO Laboratories, Grand Island, N.Y.) and 1 volume of RPMI 1640 (GIBCO) supplemented with 10% heat-inactivated human serum. Parasite multiplication in erythrocytes containing normal hemoglobin cultured in RPMI or REM was similar. Significant reduction in parasite multiplication rates was observed in erythrocytes containing abnormal hemoglobin when these were cultured in REM. The degree of reduction in five types of thalassemic erythrocytes was in the following descending order: hemoglobin H disease with Hb Constant Spring, classical hemoglobin H disease, beta(0)-thalassemia-hemoglobin E in which blood harbored a high percentage of hemoglobin F-containing cells, beta (0)-thalassemia-hemoglobin E in which blood harbored few hemoglobin F-containing cells, and beta-thalassemia heterozygous variant. PMID:3539999

  11. Plasmodium falciparum Rab1A Localizes to Rhoptries in Schizonts

    PubMed Central

    Morse, David; Webster, Wesley; Kalanon, Ming; Langsley, Gordon; McFadden, Geoffrey I.

    2016-01-01

    Over-expression of a GFP-PfRab1A fusion protein in Plasmodium falciparum schizonts produces a punctate pattern of fluorescence typical of rhoptries, secretory organelles involved in host cell invasion. The GFP-positive bodies were purified by a combination of differential and density gradient centrifugation and their protein content determined by MS/MS sequencing. Consistent with the GFP rhoptry-like pattern of transgenic parasites, four of the 19 proteins identified have been previously described to be rhoptry-associated and another four are ER or ER-associated proteins. Confirmation that GFP-PfRab1A decorates rhoptries was obtained by its co-localization with Rap1 and Ron4 in late phase schizonts. We conclude that PfRab1A potentially regulates vesicular traffic from the endoplasmic reticulum to the rhoptries in Apicomplexa parasites. PMID:27348424

  12. Symmetrical peripheral gangrene due to Plasmodium falciparum malaria

    PubMed Central

    Abdali, Nasar; Malik, Azharuddin Mohammed; Kamal, Athar; Ahmad, Mehtab

    2014-01-01

    A 45-year-old man presented with a 4-day history of high-grade fever with rigours and a 2-day history of painful bluish black discolouration of extremities (acrocyanosis). He was haemodynamically stable and all peripheral pulses palpable, but the extremities were cold with gangrene involving bilateral fingers and toes. Mild splenomegaly was present on abdominal examination but rest of the physical examinations were normal. On investigating he was found to have anaemia, thrombocytopaenia with gametocytes of Plasmodium falciparum on peripheral blood smear. His blood was uncoagulable during performance of prothrombin time with a raised D-dimer. Oxygen saturation was normal and the arterial Doppler test showed reduced blood flow to the extremities. A diagnosis of complicated P. falciparum malaria with disseminated intravascular coagulation (DIC) leading to symmetrical peripheral gangrene was performed. Artemisinin combination therapy was started and heparin was given for DIC. A final line of demarcation of gangrene started forming by 12th day. PMID:24862424

  13. Functional genomics of Plasmodium falciparum using metabolic modelling and analysis

    PubMed Central

    Oppenheim, Rebecca D.; Soldati-Favre, Dominique; Hatzimanikatis, Vassily

    2013-01-01

    Plasmodium falciparum is an obligate intracellular parasite and the leading cause of severe malaria responsible for tremendous morbidity and mortality particularly in sub-Saharan Africa. Successful completion of the P. falciparum genome sequencing project in 2002 provided a comprehensive foundation for functional genomic studies on this pathogen in the following decade. Over this period, a large spectrum of experimental approaches has been deployed to improve and expand the scope of functionally annotated genes. Meanwhile, rapidly evolving methods of systems biology have also begun to contribute to a more global understanding of various aspects of the biology and pathogenesis of malaria. Herein we provide an overview on metabolic modelling, which has the capability to integrate information from functional genomics studies in P. falciparum and guide future malaria research efforts towards the identification of novel candidate drug targets. PMID:23793264

  14. Erythrocyte invasion receptors for Plasmodium falciparum: new and old.

    PubMed

    Satchwell, T J

    2016-04-01

    Understanding the complex process by which the invasive form of the Plasmodium falciparum parasite, the merozoite, attaches to and invades erythrocytes as part of its blood stage life cycle represents a key area of research in the battle to combat malaria. Central to this are efforts to determine the identity of receptors on the host cell surface, their corresponding merozoite-binding proteins and the functional relevance of these binding events as part of the invasion process. This review will provide an updated summary of studies identifying receptor interactions essential for or implicated in P. falciparum merozoite invasion of human erythrocytes, highlighting the recent identification of new receptors using groundbreaking high throughput approaches and with particular focus on the properties and putative involvement of the erythrocyte proteins targeted by these invasion pathways. PMID:26862042

  15. Nitric oxide inhibits falcipain, the Plasmodium falciparum trophozoite cysteine protease.

    PubMed

    Venturini, G; Colasanti, M; Salvati, L; Gradoni, L; Ascenzi, P

    2000-01-01

    Nitric oxide (NO) is a pluripotent regulatory molecule possessing, among others, an antiparasitic activity. In the present study, the inhibitory effect of NO on the catalytic activity of falcipain, the papain-like cysteine protease involved in Plasmodium falciparum trophozoite hemoglobin degradation, is reported. In particular, NO donors S-nitrosoglutathione (GSNO), (+/-)-(E)-p6ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenami de (NOR-3), 3-morpholinosydnonimine (SIN-1), and sodium nitroprusside (SNP) inhibit dose-dependently the falcipain activity present in the P. falciparum trophozoite extract, this effect likely attributable to S-nitrosylation of the Cys25 catalytic residue. The results represent a new insight into the modulation mechanism of falcipain activity, thereby being relevant in developing new strategies for inhibition of the P. falciparum life cycle. PMID:10623597

  16. Plasmodium falciparum In Vitro Resistance to Monodesethylamodiaquine, Dakar, Senegal, 2014.

    PubMed

    Fall, Bécaye; Madamet, Marylin; Camara, Cheikhou; Amalvict, Rémy; Fall, Mansour; Nakoulima, Aminata; Diatta, Bakary; Diémé, Yaya; Wade, Boubacar; Pradines, Bruno

    2016-05-01

    We successfully cultured 36 Plasmodium falciparum isolates from blood samples of 44 malaria patients admitted to the Hôpital Principal de Dakar (Dakar, Senegal) during August-December 2014. The prevalence of isolates with in vitro reduced susceptibility was 30.6% for monodesethylamodiaquine, 52.8% for chloroquine, 44.1% for mefloquine, 16.7% for doxycycline, 11.8% for piperaquine, 8.3% for artesunate, 5.9% for pyronaridine, 2.8% for quinine and dihydroartemisinin, and 0.0% for lumefantrine. The prevalence of isolates with reduced in vitro susceptibility to the artemisinin-based combination therapy partner monodesethylamodiaquine increased from 5.6% in 2013 to 30.6% in 2014. Because of the increased prevalence of P. falciparum parasites with impaired in vitro susceptibility to monodesethylamodiaquine, the implementation of in vitro and in vivo surveillance of all artemisinin-based combination therapy partners is warranted. PMID:27088703

  17. Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia

    PubMed Central

    Miotto, Olivo; Almagro-Garcia, Jacob; Manske, Magnus; MacInnis, Bronwyn; Campino, Susana; Rockett, Kirk A; Amaratunga, Chanaki; Lim, Pharath; Suon, Seila; Sreng, Sokunthea; Anderson, Jennifer M; Duong, Socheat; Nguon, Chea; Chuor, Char Meng; Saunders, David; Se, Youry; Lon, Chantap; Fukuda, Mark M; Amenga-Etego, Lucas; Hodgson, Abraham VO; Asoala, Victor; Imwong, Mallika; Takala-Harrison, Shannon; Nosten, Francois; Su, Xin-zhuan; Ringwald, Pascal; Ariey, Frédéric; Dolecek, Christiane; Hien, Tran Tinh; Boni, Maciej F; Thai, Cao Quang; Amambua-Ngwa, Alfred; Conway, David J; Djimdé, Abdoulaye A; Doumbo, Ogobara K; Zongo, Issaka; Ouedraogo, Jean-Bosco; Alcock, Daniel; Drury, Eleanor; Auburn, Sarah; Koch, Oliver; Sanders, Mandy; Hubbart, Christina; Maslen, Gareth; Ruano-Rubio, Valentin; Jyothi, Dushyanth; Miles, Alistair; O’Brien, John; Gamble, Chris; Oyola, Samuel O; Rayner, Julian C; Newbold, Chris I; Berriman, Matthew; Spencer, Chris CA; McVean, Gilean; Day, Nicholas P; White, Nicholas J; Bethell, Delia; Dondorp, Arjen M; Plowe, Christopher V; Fairhurst, Rick M; Kwiatkowski, Dominic P

    2013-01-01

    We describe an analysis of genome variation in 825 Plasmodium falciparum samples from Asia and Africa that reveals an unusual pattern of parasite population structure at the epicentre of artemisinin resistance in western Cambodia. Within this relatively small geographical area we have discovered several distinct but apparently sympatric parasite subpopulations with extremely high levels of genetic differentiation. Of particular interest are three subpopulations, all associated with clinical resistance to artemisinin, which have skewed allele frequency spectra and remarkably high levels of haplotype homozygosity, indicative of founder effects and recent population expansion. We provide a catalogue of SNPs that show high levels of differentiation in the artemisinin-resistant subpopulations, including codon variants in various transporter proteins and DNA mismatch repair proteins. These data provide a population genetic framework for investigating the biological origins of artemisinin resistance and for defining molecular markers to assist its elimination. PMID:23624527

  18. Plasmodium berghei ANKA causes intestinal malaria associated with dysbiosis

    PubMed Central

    Taniguchi, Tomoyo; Miyauchi, Eiji; Nakamura, Shota; Hirai, Makoto; Suzue, Kazutomo; Imai, Takashi; Nomura, Takahiro; Handa, Tadashi; Okada, Hiroko; Shimokawa, Chikako; Onishi, Risa; Olia, Alex; Hirata, Jun; Tomita, Haruyoshi; Ohno, Hiroshi; Horii, Toshihiro; Hisaeda, Hajime

    2015-01-01

    Gastrointestinal symptoms, such as abdominal pain and diarrhea, are frequently observed in patients with Plasmodium falciparum malaria. However, the correlation between malaria intestinal pathology and intestinal microbiota has not been investigated. In the present study, infection of C57BL/6 mice with P. berghei ANKA (PbA) caused intestinal pathological changes, such as detachment of epithelia in the small intestines and increased intestinal permeability, which correlated with development with experimental cerebral malaria (ECM). Notably, an apparent dysbiosis occurred, characterized by a reduction of Firmicutes and an increase in Proteobacteria. Furthermore, some genera of microbiota correlated with parasite growth and/or ECM development. By contrast, BALB/c mice are resistant to ECM and exhibit milder intestinal pathology and dysbiosis. These results indicate that the severity of cerebral and intestinal pathology coincides with the degree of alteration in microbiota. This is the first report demonstrating that malaria affects intestinal microbiota and causes dysbiosis. PMID:26503461

  19. Multiple independent introductions of Plasmodium falciparum in South America.

    PubMed

    Yalcindag, Erhan; Elguero, Eric; Arnathau, Céline; Durand, Patrick; Akiana, Jean; Anderson, Timothy J; Aubouy, Agnes; Balloux, François; Besnard, Patrick; Bogreau, Hervé; Carnevale, Pierre; D'Alessandro, Umberto; Fontenille, Didier; Gamboa, Dionicia; Jombart, Thibaut; Le Mire, Jacques; Leroy, Eric; Maestre, Amanda; Mayxay, Mayfong; Ménard, Didier; Musset, Lise; Newton, Paul N; Nkoghé, Dieudonné; Noya, Oscar; Ollomo, Benjamin; Rogier, Christophe; Veron, Vincent; Wide, Albina; Zakeri, Sedigheh; Carme, Bernard; Legrand, Eric; Chevillon, Christine; Ayala, Francisco J; Renaud, François; Prugnolle, Franck

    2012-01-10

    The origin of Plasmodium falciparum in South America is controversial. Some studies suggest a recent introduction during the European colonizations and the transatlantic slave trade. Other evidence--archeological and genetic--suggests a much older origin. We collected and analyzed P. falciparum isolates from different regions of the world, encompassing the distribution range of the parasite, including populations from sub-Saharan Africa, the Middle East, Southeast Asia, and South America. Analyses of microsatellite and SNP polymorphisms show that the populations of P. falciparum in South America are subdivided in two main genetic clusters (northern and southern). Phylogenetic analyses, as well as Approximate Bayesian Computation methods suggest independent introductions of the two clusters from African sources. Our estimates of divergence time between the South American populations and their likely sources favor a likely introduction from Africa during the transatlantic slave trade. PMID:22203975

  20. Monkey-derived monoclonal antibodies against Plasmodium falciparum.

    PubMed Central

    Stanley, H A; Reese, R T

    1985-01-01

    A system has been developed that allows efficient production of monkey monoclonal antibodies from owl monkeys. Splenocytes or peripheral blood lymphocytes from monkeys immune to the human malarial parasite, Plasmodium falciparum, were fused with P3X63 Ag8.653 mouse myelomas. The resulting hybridomas were screened by an indirect fluorescent antibody test for the production of monkey monoclonal antibodies (mAb) reactive with P. falciparum. Most of the mAb reacted with the P. falciparum merozoites and immunoprecipitated a parasite-derived glycoprotein having a relative molecular weight of 185,000. These mAb gave a minimum of five different immunoprecipitation patterns, thus demonstrating that a large number of polypeptides obtained when parasitized erythrocytes are solubilized share epitopes with this large glycoprotein. In addition, mAb were obtained that reacted with antigens associated with the infected erythrocyte membrane. One of these mAb bound a Mr 95,000 antigen. Images PMID:3898084

  1. Studies on serum requirements for the cultivation of Plasmodium falciparum

    PubMed Central

    Divo, A. A.; Jensen, J. B.

    1982-01-01

    Previous experiments using RPMI 1640 medium have indicated that the dialysis of human serum removes components of low relative molecular mass (6000-8000 RMM) that are essential for continuous cultivation of Plasmodium falciparum. To determine which low-RMM components are important for parasite development, we compared growth in normal serum to that in dialysed serum using a number of other commercially available media, which we considered to be richer than RPMI 1640. Through these comparisons, we determined that hypoxanthine was the major dialysable nutrient required for parasite development. High quality bovine serum requires 3 - 12 × 10-5 mol/litre of hypoxanthine as a supplement to support continuous cultures of P. falciparum. Thus far we have been unable to attain parasite growth in medium containing supplemented bovine serum that is as good as growth in medium containing human serum. PMID:6754122

  2. Localization of heme biosynthesis pathway enzymes in Plasmodium falciparum.

    PubMed

    Rao, Aditya; Yeleswarapu, Sri Jyothsna; Srinivasan, Rajgopal; Bulusu, Gopalakrishnan

    2008-12-01

    Protein trafficking in the malarial parasite Plasmodium falciparum is dictated by a complex life-cycle that involves a variety of intra-cellular and host cell destinations, such as the mitochondrion, apicoplast, rhoptries and micronemes. Of these, the apicoplast and mitochondrion are believed to account for more than 10% of this traffic. Studies have shown that mechanisms for mitochondrion and apicoplast targeting are distinct, despite their close physical proximity. The heme biosynthesis pathway spans both these organelles, making trafficking studies crucial for the spatial demarcation of the constituent interactions. This minireview highlights the challenges in identifying the possible sub-cellular destinations of the heme pathway enzymes using gleanings from literature survey as well as focussed bioinformatic analysis. PMID:19239121

  3. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum.

    PubMed

    Wang, Jigang; Zhang, Chong-Jing; Chia, Wan Ni; Loh, Cheryl C Y; Li, Zhengjun; Lee, Yew Mun; He, Yingke; Yuan, Li-Xia; Lim, Teck Kwang; Liu, Min; Liew, Chin Xia; Lee, Yan Quan; Zhang, Jianbin; Lu, Nianci; Lim, Chwee Teck; Hua, Zi-Chun; Liu, Bin; Shen, Han-Ming; Tan, Kevin S W; Lin, Qingsong

    2015-01-01

    The mechanism of action of artemisinin and its derivatives, the most potent of the anti-malarial drugs, is not completely understood. Here we present an unbiased chemical proteomics analysis to directly explore this mechanism in Plasmodium falciparum. We use an alkyne-tagged artemisinin analogue coupled with biotin to identify 124 artemisinin covalent binding protein targets, many of which are involved in the essential biological processes of the parasite. Such a broad targeting spectrum disrupts the biochemical landscape of the parasite and causes its death. Furthermore, using alkyne-tagged artemisinin coupled with a fluorescent dye to monitor protein binding, we show that haem, rather than free ferrous iron, is predominantly responsible for artemisinin activation. The haem derives primarily from the parasite's haem biosynthesis pathway at the early ring stage and from haemoglobin digestion at the latter stages. Our results support a unifying model to explain the action and specificity of artemisinin in parasite killing. PMID:26694030

  4. Squalestatin Is an Inhibitor of Carotenoid Biosynthesis in Plasmodium falciparum

    PubMed Central

    Gabriel, Heloisa B.; Silva, Marcia F.; Kimura, Emília A.; Wunderlich, Gerhard

    2015-01-01

    The increasing resistance of malaria parasites to almost all available drugs calls for the characterization of novel targets and the identification of new compounds. Carotenoids are polyisoprenoids from plants, algae, and some bacteria, and they are biosynthesized by Plasmodium falciparum but not by mammalian cells. Biochemical and reverse genetics approaches were applied to demonstrate that phytoene synthase (PSY) is a key enzyme for carotenoid biosynthesis in P. falciparum and is essential for intraerythrocytic growth. The known PSY inhibitor squalestatin reduces biosynthesis of phytoene and kills parasites during the intraerythrocytic cycle. PSY-overexpressing parasites showed increased biosynthesis of phytoene and its derived product phytofluene and presented a squalestatin-resistant phenotype, suggesting that this enzyme is the primary target of action of this drug in the parasite. PMID:25779575

  5. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum

    PubMed Central

    Wang, Jigang; Zhang, Chong-Jing; Chia, Wan Ni; Loh, Cheryl C. Y.; Li, Zhengjun; Lee, Yew Mun; He, Yingke; Yuan, Li-Xia; Lim, Teck Kwang; Liu, Min; Liew, Chin Xia; Lee, Yan Quan; Zhang, Jianbin; Lu, Nianci; Lim, Chwee Teck; Hua, Zi-Chun; Liu, Bin; Shen, Han-Ming; Tan, Kevin S. W.; Lin, Qingsong

    2015-01-01

    The mechanism of action of artemisinin and its derivatives, the most potent of the anti-malarial drugs, is not completely understood. Here we present an unbiased chemical proteomics analysis to directly explore this mechanism in Plasmodium falciparum. We use an alkyne-tagged artemisinin analogue coupled with biotin to identify 124 artemisinin covalent binding protein targets, many of which are involved in the essential biological processes of the parasite. Such a broad targeting spectrum disrupts the biochemical landscape of the parasite and causes its death. Furthermore, using alkyne-tagged artemisinin coupled with a fluorescent dye to monitor protein binding, we show that haem, rather than free ferrous iron, is predominantly responsible for artemisinin activation. The haem derives primarily from the parasite's haem biosynthesis pathway at the early ring stage and from haemoglobin digestion at the latter stages. Our results support a unifying model to explain the action and specificity of artemisinin in parasite killing. PMID:26694030

  6. Endoplasmic motility spectral characteristics in plasmodium of Physarum polycephalum

    NASA Astrophysics Data System (ADS)

    Avsievich, T. I.; Ghaleb, K. E. S.; Frolov, S. V.; Proskurin, S. G.

    2015-03-01

    Spectral Fourier analysis of experimentally acquired velocity time dependencies, V(t), of shuttle endoplasmic motility in an isolated strand of plasmodium of slime mold Physarum Polycephalum has been realized. V(t) registration was performed in normal conditions and after the treatment by respiration inhibitors, which lead to a complete cessation of endoplasmic motion in the strand. Spectral analysis of the velocity time dependences of the endoplasm allows obtaining two distinct harmonic components in the spectra. Their ratio appeared to be constant in all cases, ν2/ν1=1.97±0.17. After the inhibitors are washed out respiratory system becomes normal, gradually restoring the activity of both harmonic oscillatory sources with time. Simulated velocity time dependences correspond to experimental data with good accuracy.

  7. Plasmodium falciparum: growth response to potassium channel blocking compounds.

    PubMed

    Waller, Karena L; Kim, Kami; McDonald, Thomas V

    2008-11-01

    Potassium channels are essential for cell survival and regulate the cell membrane potential and electrochemical gradient. During its lifecycle, Plasmodium falciparum parasites must rapidly adapt to dramatically variant ionic conditions within the mosquito mid-gut, the hepatocyte and red blood cell (RBC) cytosols, and the human circulatory system. To probe the participation of K(+) channels in parasite viability, growth response assays were performed in which asexual stage P. falciparum parasites were cultured in the presence of various Ca(2+)-activated K(+) channel blocking compounds. These data describe the novel anti-malarial effects of bicuculline methiodide and tubocurarine chloride and the novel lack of effect of apamine and verruculogen. Taken together, the data herein imply the presence of K(+) channels, or other parasite-specific targets, in P. falciparum-infected RBCs that are sensitive to blockade with Ca(2+)-activated K(+) channel blocking compounds. PMID:18703053

  8. Studies on the Plasmodium vivax relapse pattern in Delhi, India.

    PubMed

    Adak, T; Sharma, V P; Orlov, V S

    1998-07-01

    A five-year epidemiologic study of patients attending a malaria clinic in Delhi was conducted to find the relapse rate of infections with Plasmodium vivax, its seasonal correlation between the primary infection and subsequent relapses, the duration of the incubation period, and the patterns of relapse. By our definition, the relapse rate ranged from 23% to 44% depending on the duration of follow-up. The relapse pattern observed in the study clearly suggests the existence of both tropical and temperate zone types of P. vivax in the population characterized by distinct incubation periods and the possible existence of P. vivax subpopulations characterized by primary long incubation periods. The implication of different incubating forms of P. vivax on the epidemiology and control of malaria is also discussed. PMID:9684649

  9. Historical review: does stress provoke Plasmodium falciparum recrudescence?

    PubMed

    Shanks, G Dennis

    2015-06-01

    Plasmodium falciparum, unlike P. vivax, must maintain infection in the blood/bone marrow over many months/years in order to bridge periods between transmission periods. Asymptomatic parasitemia at very low concentrations is now known to be quite common due to molecular detection methods. Old tropical medicine texts commonly list many stressful events stated to provoke recrudescent falciparum parasitemia such as fatigue, heat/chill, trauma/surgery, famine/war, transit between areas and other febrile illness. The older literature is reviewed to discover the factual basis of such varied reports since they have not been recently confirmed. It seems likely that human stress sometimes induces falciparum recrudescence of an otherwise asymptomatic infection. Reproducing such observations today has been radically altered as malaria chemotherapy has evolved from suppressive quinine to curative artemisinin combinations. Host stress-provoked recrudescence may be part of P. falciparum's survival strategy. PMID:25918217

  10. Modeling Combinations of Pre-erythrocytic Plasmodium falciparum Malaria Vaccines.

    PubMed

    Walker, Andrew S; Lourenço, José; Hill, Adrian V S; Gupta, Sunetra

    2015-12-01

    Despite substantial progress in the control of Plasmodium falciparum infection due to the widespread deployment of insecticide-treated bed nets and artemisinin combination therapies, malaria remains a prolific killer, with over half a million deaths estimated to have occurred in 2013 alone. Recent evidence of the development of resistance to treatments in both parasites and their mosquito vectors has underscored the need for a vaccine. Here, we use a mathematical model of the within-host dynamics of P. falciparum infection, fit to data from controlled human malaria infection clinical trials, to predict the efficacy of co-administering the two most promising subunit vaccines, RTS,S/AS01 and ChAd63-MVA ME-TRAP. We conclude that currently available technologies could be combined to induce very high levels of sterile efficacy, even in immune-naive individuals. PMID:26503278

  11. [Research Progress on Artemisinin Resistance in Plasmodium falciparum].

    PubMed

    Zhang, Yi-long; Pan, Wei-qing

    2015-12-01

    Artemisinin (ART) is a novel and effective antimalarial drug discovered in China. As recommended by the World Health Organization, the ART-based combination therapies (ACTs) have become the first-line drugs for the treatment of falciparum malaria. ART and its derivatives have contributed greatly to the effective control of malaria globally, leading to yearly decrease of malaria morbidity and mortality. However, there have recently been several reports on the resistance of Plasmodium falciparum to ART in Southeast Asia. This is deemed a serious threat to the global malaria control programs. In this paper, we reviewed recent research progress on ART resistance to P. falciparum, including new tools for resistance measurement, resistance-associated molecular markers, and the origin and spread of the ART-resistant parasite strains. PMID:27089770

  12. African origin of the malaria parasite Plasmodium vivax

    PubMed Central

    Liu, Weimin; Li, Yingying; Shaw, Katharina S.; Learn, Gerald H.; Plenderleith, Lindsey J.; Malenke, Jordan A.; Sundararaman, Sesh A.; Ramirez, Miguel A.; Crystal, Patricia A.; Smith, Andrew G.; Bibollet-Ruche, Frederic; Ayouba, Ahidjo; Locatelli, Sabrina; Esteban, Amandine; Mouacha, Fatima; Guichet, Emilande; Butel, Christelle; Ahuka-Mundeke, Steve; Inogwabini, Bila-Isia; Ndjango, Jean-Bosco N.; Speede, Sheri; Sanz, Crickette M.; Morgan, David B.; Gonder, Mary K.; Kranzusch, Philip J.; Walsh, Peter D.; Georgiev, Alexander V.; Muller, Martin N.; Piel, Alex K.; Stewart, Fiona A.; Wilson, Michael L.; Pusey, Anne E.; Cui, Liwang; Wang, Zenglei; Färnert, Anna; Sutherland, Colin J.; Nolder, Debbie; Hart, John A.; Hart, Terese B.; Bertolani, Paco; Gillis, Amethyst; LeBreton, Matthew; Tafon, Babila; Kiyang, John; Djoko, Cyrille F.; Schneider, Bradley S.; Wolfe, Nathan D.; Mpoudi-Ngole, Eitel; Delaporte, Eric; Carter, Richard; Culleton, Richard L.; Shaw, George M.; Rayner, Julian C.; Peeters, Martine; Hahn, Beatrice H.; Sharp, Paul M.

    2014-01-01

    Plasmodium vivax is the leading cause of human malaria in Asia and Latin America but is absent from most of central Africa due to the near fixation of a mutation that inhibits the expression of its receptor, the Duffy antigen, on human erythrocytes. The emergence of this protective allele is not understood because P. vivax is believed to have originated in Asia. Here we show, using a non-invasive approach, that wild chimpanzees and gorillas throughout central Africa are endemically infected with parasites that are closely related to human P. vivax. Sequence analyses reveal that ape parasites lack host specificity and are much more diverse than human parasites, which form a monophyletic lineage within the ape parasite radiation. These findings indicate that human P. vivax is of African origin and likely selected for the Duffy-negative mutation. All extant human P. vivax parasites are derived from a single ancestor that escaped out of Africa. PMID:24557500

  13. Subcellular localization of adenylate kinases in Plasmodium falciparum.

    PubMed

    Ma, Jipeng; Rahlfs, Stefan; Jortzik, Esther; Schirmer, R Heiner; Przyborski, Jude M; Becker, Katja

    2012-09-21

    Adenylate kinases (AK) play a key role in nucleotide signaling processes and energy metabolism by catalyzing the reversible conversion of ATP and AMP to 2 ADP. In the malaria parasite Plasmodium falciparum this reaction is mediated by AK1, AK2, and a GTP:AMP phosphotransferase (GAK). Here, we describe two additional adenylate kinase-like proteins: PfAKLP1, which is homologous to human AK6, and PfAKLP2. Using GFP-fusion proteins and life cell imaging, we demonstrate a cytosolic localization for PfAK1, PfAKLP1, and PfAKLP2, whereas PfGAK is located in the mitochondrion. PfAK2 is located at the parasitophorous vacuole membrane, and this localization is driven by N-myristoylation. PMID:22819813

  14. Return of chloroquine-sensitive Plasmodium falciparum parasites and emergence of chloroquine-resistant Plasmodium vivax in Ethiopia

    PubMed Central

    2014-01-01

    Background Increased resistance by Plasmodium falciparum parasites led to the withdrawal of the antimalarial drugs chloroquine and sulphadoxine-pyrimethamine in Ethiopia. Since 2004 artemether-lumefantrine has served to treat uncomplicated P. falciparum malaria. However, increasing reports on delayed parasite clearance to artemisinin opens up a new challenge in anti-malarial therapy. With the complete withdrawal of CQ for the treatment of Plasmodium falciparum malaria, this study assessed the evolution of CQ resistance by investigating the prevalence of mutant alleles in the pfmdr1 and pfcrt genes in P. falciparum and pvmdr1 gene in Plasmodium vivax in Southern and Eastern Ethiopia. Methods Of the 1,416 febrile patients attending primary health facilities in Southern Ethiopia, 329 febrile patients positive for P. falciparum or P. vivax were recruited. Similarly of the 1,304 febrile patients from Eastern Ethiopia, 81 febrile patients positive for P. falciparum or P. vivax were included in the study. Of the 410 finger prick blood samples collected from malaria patients, we used direct sequencing to investigate the prevalence of mutations in pfcrt and pfmdr1. This included determining the gene copy number in pfmdr1 in 195 P. falciparum clinical isolates, and mutations in the pvmdr1 locus in 215 P. vivax clinical isolates. Results The pfcrt K76 CQ-sensitive allele was observed in 84.1% of the investigated P.falciparum clinical isolates. The pfcrt double mutations (K76T and C72S) were observed less than 3%. The pfcrt SVMNT haplotype was also found to be present in clinical isolates from Ethiopia. The pfcrt CVMNK-sensitive haplotypes were frequently observed (95.9%). The pfmdr1 mutation N86Y was observed only in 14.9% compared to 85.1% of the clinical isolates that carried sensitive alleles. Also, the sensitive pfmdr1 Y184 allele was more common, in 94.9% of clinical isolates. None of the investigated P. falciparum clinical isolates carried S1034C, N1042D and D1246Y

  15. Spatiotemporal Dynamics and Demographic Profiles of Imported Plasmodium falciparum and Plasmodium vivax Infections in Ontario, Canada (1990–2009)

    PubMed Central

    Nelder, Mark P.; Russell, Curtis; Williams, Dawn; Johnson, Karen; Li, Lennon; Baker, Stacey L.; Marshall, Sean; Bhanich-Supapol, Wendy; Pillai, Dylan R.; Ralevski, Filip

    2013-01-01

    We examined malaria cases reported to Ontario’s public health surveillance systems from 1990 through 2009 to determine how temporal scale (longitudinal, seasonal), spatial scale (provincial, health unit), and demography (gender, age) contribute to Plasmodium infection in Ontario travellers. Our retrospective study included 4,551 confirmed cases of imported malaria reported throughout Ontario, with additional analysis at the local health unit level (i.e., Ottawa, Peel, and Toronto). During the 20-year period, Plasmodium vivax accounted for 50.6% of all cases, P. falciparum (38.6%), Plasmodium sp. (6.0%), P. ovale (3.1%), and P. malariae (1.8%). During the first ten years of the study (1990–1999), P. vivax (64% of all cases) was the dominant agent, followed by P. falciparum (28%); however, during the second ten years (2000–2009) the situation reversed and P. falciparum (55%) dominated, followed by P. vivax (30%). The prevalence of P. falciparum and P. vivax cases varied spatially (e.g., P. falciparum more prevalent in Toronto, P. vivax more prevalent in Peel), temporally (e.g. P. falciparum incidence increased during the 20-year study), and demographically (e.g. preponderance of male cases). Infection rates per 100,000 international travellers were estimated: rates of infection were 2× higher in males compared to females; rates associated with travel to Africa were 37× higher compared to travel to Asia and 126× higher compared to travel to the Americas; rates of infection were 2.3–3.5× higher in June and July compared to October through March; and rates of infection were highest in those 65–69 years old. Where exposure country was reported, 71% of P. falciparum cases reported exposure in Ghana or Nigeria and 63% of P. vivax cases reported exposure in India. Our study provides insights toward improving pre-travel programs for Ontarians visiting malaria-endemic regions and underscores the changing epidemiology of imported malaria in the province. PMID

  16. Spatiotemporal dynamics and demographic profiles of imported Plasmodium falciparum and Plasmodium vivax infections in Ontario, Canada (1990-2009).

    PubMed

    Nelder, Mark P; Russell, Curtis; Williams, Dawn; Johnson, Karen; Li, Lennon; Baker, Stacey L; Marshall, Sean; Bhanich-Supapol, Wendy; Pillai, Dylan R; Ralevski, Filip

    2013-01-01

    We examined malaria cases reported to Ontario's public health surveillance systems from 1990 through 2009 to determine how temporal scale (longitudinal, seasonal), spatial scale (provincial, health unit), and demography (gender, age) contribute to Plasmodium infection in Ontario travellers. Our retrospective study included 4,551 confirmed cases of imported malaria reported throughout Ontario, with additional analysis at the local health unit level (i.e., Ottawa, Peel, and Toronto). During the 20-year period, Plasmodium vivax accounted for 50.6% of all cases, P. falciparum (38.6%), Plasmodium sp. (6.0%), P. ovale (3.1%), and P. malariae (1.8%). During the first ten years of the study (1990-1999), P. vivax (64% of all cases) was the dominant agent, followed by P. falciparum (28%); however, during the second ten years (2000-2009) the situation reversed and P. falciparum (55%) dominated, followed by P. vivax (30%). The prevalence of P. falciparum and P. vivax cases varied spatially (e.g., P. falciparum more prevalent in Toronto, P. vivax more prevalent in Peel), temporally (e.g. P. falciparum incidence increased during the 20-year study), and demographically (e.g. preponderance of male cases). Infection rates per 100,000 international travellers were estimated: rates of infection were 2× higher in males compared to females; rates associated with travel to Africa were 37× higher compared to travel to Asia and 126× higher compared to travel to the Americas; rates of infection were 2.3-3.5× higher in June and July compared to October through March; and rates of infection were highest in those 65-69 years old. Where exposure country was reported, 71% of P. falciparum cases reported exposure in Ghana or Nigeria and 63% of P. vivax cases reported exposure in India. Our study provides insights toward improving pre-travel programs for Ontarians visiting malaria-endemic regions and underscores the changing epidemiology of imported malaria in the province. PMID:24098780

  17. Antimalarial Benzoxaboroles Target Plasmodium falciparum Leucyl-tRNA Synthetase.

    PubMed

    Sonoiki, Ebere; Palencia, Andres; Guo, Denghui; Ahyong, Vida; Dong, Chen; Li, Xianfeng; Hernandez, Vincent S; Zhang, Yong-Kang; Choi, Wai; Gut, Jiri; Legac, Jennifer; Cooper, Roland; Alley, M R K; Freund, Yvonne R; DeRisi, Joseph; Cusack, Stephen; Rosenthal, Philip J

    2016-08-01

    There is a need for new antimalarials, ideally with novel mechanisms of action. Benzoxaboroles have been shown to be active against bacteria, fungi, and trypanosomes. Therefore, we investigated the antimalarial activity and mechanism of action of 3-aminomethyl benzoxaboroles against Plasmodium falciparum Two 3-aminomethyl compounds, AN6426 and AN8432, demonstrated good potency against cultured multidrug-resistant (W2 strain) P. falciparum (50% inhibitory concentration [IC50] of 310 nM and 490 nM, respectively) and efficacy against murine Plasmodium berghei infection when administered orally once daily for 4 days (90% effective dose [ED90], 7.4 and 16.2 mg/kg of body weight, respectively). To characterize mechanisms of action, we selected parasites with decreased drug sensitivity by culturing with stepwise increases in concentration of AN6426. Resistant clones were characterized by whole-genome sequencing. Three generations of resistant parasites had polymorphisms in the predicted editing domain of the gene encoding a P. falciparum leucyl-tRNA synthetase (LeuRS; PF3D7_0622800) and in another gene (PF3D7_1218100), which encodes a protein of unknown function. Solution of the structure of the P. falciparum LeuRS editing domain suggested key roles for mutated residues in LeuRS editing. Short incubations with AN6426 and AN8432, unlike artemisinin, caused dose-dependent inhibition of [(14)C]leucine incorporation by cultured wild-type, but not resistant, parasites. The growth of resistant, but not wild-type, parasites was impaired in the presence of the unnatural amino acid norvaline, consistent with a loss of LeuRS editing activity in resistant parasites. In summary, the benzoxaboroles AN6426 and AN8432 offer effective antimalarial activity and act, at least in part, against a novel target, the editing domain of P. falciparum LeuRS. PMID:27270277

  18. Antimalarial activity of Malaysian Plectranthus amboinicus against Plasmodium berghei

    PubMed Central

    Ramli, Norazsida; Ahamed, Pakeer Oothuman Syed; Elhady, Hassan Mohamed; Taher, Muhammad

    2014-01-01

    Context: Malaria is a mosquito-borne disease caused by parasitic protozoa from the genus of Plasmodium. The protozoans have developed resistance against many of current drugs. It is urgent to find an alternative source of new antimalarial agent. In the effort to discover new antimalarial agents, this research has been conducted on Plectranthus amboinicus. Aims: This study was conducted to evaluate the toxicity and antiplasmodial properties of P. amboinicus. Materials and Methods: Acute oral toxicity dose at 5000 mg/kg was conducted to evaluate the safety of this extract. Twenty mice were divided into control and experimental group. All the mice were observed for signs of toxicity, mortality, weight changes and histopathological changes. Antimalarial activity of different extract doses of 50, 200, 400 and 1000 mg/kg were tested in vivo against Plasmodium berghei infections in mice (five mice for each group) during early, established and residual infections. Results: The acute oral toxicity test revealed that no mortality or evidence of adverse effects was seen in the treated mice. The extract significantly reduced the parasitemia by the 50 (P = 0.000), 200 (P = 0.000) and 400 mg/kg doses (P = 0.000) in the in vivo prophylactic assay. The percentage chemo-suppression was calculated as 83.33% for 50 mg/kg dose, 75.62% for 200 mg/kg dose and 90.74% for 400 mg/kg dose. Body weight of all treated groups; T1, T2, T3 and T4 also showed enhancement after 7 days posttreatment. Statistically no reduction of parasitemia calculated for curative and suppressive test. Conclusion: Thus, this extract may give a promising agent to be used as a prophylactic agent of P. berghei infection. PMID:25276063

  19. Calmidazolium evokes high calcium fluctuations in Plasmodium falciparum.

    PubMed

    Budu, Alexandre; Gomes, Mayrim M; Melo, Pollyana M; El Chamy Maluf, Sarah; Bagnaresi, Piero; Azevedo, Mauro F; Carmona, Adriana K; Gazarini, Marcos L

    2016-03-01

    Calcium and calmodulin (CaM) are important players in eukaryote cell signaling. In the present study, by using a knockin approach, we demonstrated the expression and localization of CaM in all erythrocytic stages of Plasmodium falciparum. Under extracellular Ca(2+)-free conditions, calmidazolium (CZ), a potent CaM inhibitor, promoted a transient cytosolic calcium ([Ca(2+)]cyt) increase in isolated trophozoites, indicating that CZ mobilizes intracellular sources of calcium. In the same extracellular Ca(2+)-free conditions, the [Ca(2+)]cyt rise elicited by CZ treatment was ~3.5 fold higher when the endoplasmic reticulum (ER) calcium store was previously depleted ruling out the mobilization of calcium from the ER by CZ. The effects of the Ca(2+)/H(+) ionophore ionomycin (ION) and the Na(+)/H(+) ionophore monensin (MON) suggest that the [Ca(2+)]cyt-increasing effect of CZ is driven by the removal of Ca(2+) from at least one Ca(2+)-CaM-related (CaMR) protein as well as by the mobilization of Ca(2+) from intracellular acidic calcium stores. Moreover, we showed that the mitochondrion participates in the sequestration of the cytosolic Ca(2+) elicited by CZ. Finally, the modulation of membrane Ca(2+) channels by CZ and thapsigargin (THG) was demonstrated. The opened channels were blocked by the unspecific calcium channel blocker Co(2+) but not by 2-APB (capacitative calcium entry inhibitor) or nifedipine (L-type Ca(2+) channel inhibitor). Taken together, the results suggested that one CaMR protein is an important modulator of calcium signaling and homeostasis during the Plasmodium intraerythrocytic cell cycle, working as a relevant intracellular Ca(2+) reservoir in the parasite. PMID:26689736

  20. Determinants of relapse periodicity in Plasmodium vivax malaria

    PubMed Central

    2011-01-01

    Plasmodium vivax is a major cause of febrile illness in endemic areas of Asia, Central and South America, and the horn of Africa. Plasmodium vivax infections are characterized by relapses of malaria arising from persistent liver stages of the parasite (hypnozoites) which can be prevented only by 8-aminoquinoline anti-malarials. Tropical P. vivax relapses at three week intervals if rapidly eliminated anti-malarials are given for treatment, whereas in temperate regions and parts of the sub-tropics P. vivax infections are characterized either by a long incubation or a long-latency period between illness and relapse - in both cases approximating 8-10 months. The epidemiology of the different relapse phenotypes has not been defined adequately despite obvious relevance to malaria control and elimination. The number of sporozoites inoculated by the anopheline mosquito is an important determinant of both the timing and the number of relapses. The intervals between relapses display a remarkable periodicity which has not been explained. Evidence is presented that the proportion of patients who have successive relapses is relatively constant and that the factor which activates hypnozoites and leads to regular interval relapse in vivax malaria is the systemic febrile illness itself. It is proposed that in endemic areas a large proportion of the population harbours latent hypnozoites which can be activated by a systemic illness such as vivax or falciparum malaria. This explains the high rates of vivax following falciparum malaria, the high proportion of heterologous genotypes in relapses, the higher rates of relapse in people living in endemic areas compared with artificial infection studies, and, by facilitating recombination between different genotypes, contributes to P. vivax genetic diversity particularly in low transmission settings. Long-latency P. vivax phenotypes may be more widespread and more prevalent than currently thought. These observations have important

  1. Antigenicity and immunogenicity of Plasmodium vivax merozoite surface protein-3.

    PubMed

    Bitencourt, Amanda R; Vicentin, Elaine C; Jimenez, Maria C; Ricci, Ricardo; Leite, Juliana A; Costa, Fabio T; Ferreira, Luis C; Russell, Bruce; Nosten, François; Rénia, Laurent; Galinski, Mary R; Barnwell, John W; Rodrigues, Mauricio M; Soares, Irene S

    2013-01-01

    A recent clinical trial in African children demonstrated the potential utility of merozoite surface protein (MSP)-3 as a vaccine against Plasmodium falciparum malaria. The present study evaluated the use of Plasmodium vivax MSP-3 (PvMSP-3) as a target antigen in vaccine formulations against malaria caused by P. vivax. Recombinant proteins representing MSP-3α and MSP-3β of P. vivax were expressed as soluble histidine-tagged bacterial fusions. Antigenicity during natural infection was evaluated by detecting specific antibodies using sera from individuals living in endemic areas of Brazil. A large proportion of infected individuals presented IgG antibodies to PvMSP-3α (68.2%) and at least 1 recombinant protein representing PvMSP-3β (79.1%). In spite of the large responder frequency, reactivity to both antigens was significantly lower than was observed for the immunodominant epitope present on the 19-kDa C-terminal region of PvMSP-1. Immunogenicity of the recombinant proteins was studied in mice in the absence or presence of different adjuvant formulations. PvMSP-3β, but not PvMSP-3α, induced a TLR4-independent humoral immune response in the absence of any adjuvant formulation. The immunogenicity of the recombinant antigens were also tested in formulations containing different adjuvants (Alum, Salmonella enterica flagellin, CpG, Quil A,TiterMax® and incomplete Freunds adjuvant) and combinations of two adjuvants (Alum plus flagellin, and CpG plus flagellin). Recombinant PvMSP-3α and PvMSP-3β elicited higher antibody titers capable of recognizing P. vivax-infected erythrocytes harvested from malaria patients. Our results confirm that P. vivax MSP-3 antigens are immunogenic during natural infection, and the corresponding recombinant proteins may be useful in elucidating their vaccine potential. PMID:23457498

  2. Antigenicity and Immunogenicity of Plasmodium vivax Merozoite Surface Protein-3

    PubMed Central

    Bitencourt, Amanda R.; Vicentin, Elaine C.; Jimenez, Maria C.; Ricci, Ricardo; Leite, Juliana A.; Costa, Fabio T.; Ferreira, Luis C.; Russell, Bruce; Nosten, François; Rénia, Laurent; Galinski, Mary R.; Barnwell, John W.; Rodrigues, Mauricio M.; Soares, Irene S.

    2013-01-01

    A recent clinical trial in African children demonstrated the potential utility of merozoite surface protein (MSP)-3 as a vaccine against Plasmodium falciparum malaria. The present study evaluated the use of Plasmodium vivax MSP-3 (PvMSP-3) as a target antigen in vaccine formulations against malaria caused by P. vivax. Recombinant proteins representing MSP-3α and MSP-3β of P. vivax were expressed as soluble histidine-tagged bacterial fusions. Antigenicity during natural infection was evaluated by detecting specific antibodies using sera from individuals living in endemic areas of Brazil. A large proportion of infected individuals presented IgG antibodies to PvMSP-3α (68.2%) and at least 1 recombinant protein representing PvMSP-3β (79.1%). In spite of the large responder frequency, reactivity to both antigens was significantly lower than was observed for the immunodominant epitope present on the 19-kDa C-terminal region of PvMSP-1. Immunogenicity of the recombinant proteins was studied in mice in the absence or presence of different adjuvant formulations. PvMSP-3β, but not PvMSP-3α, induced a TLR4-independent humoral immune response in the absence of any adjuvant formulation. The immunogenicity of the recombinant antigens were also tested in formulations containing different adjuvants (Alum, Salmonella enterica flagellin, CpG, Quil A,TiterMax® and incomplete Freunds adjuvant) and combinations of two adjuvants (Alum plus flagellin, and CpG plus flagellin). Recombinant PvMSP-3α and PvMSP-3β elicited higher antibody titers capable of recognizing P. vivax-infected erythrocytes harvested from malaria patients. Our results confirm that P. vivax MSP-3 antigens are immunogenic during natural infection, and the corresponding recombinant proteins may be useful in elucidating their vaccine potential. PMID:23457498

  3. Alternative Protein Secretion in the Malaria Parasite Plasmodium falciparum.

    PubMed

    Thavayogarajah, Thuvaraka; Gangopadhyay, Preetish; Rahlfs, Stefan; Becker, Katja; Lingelbach, Klaus; Przyborski, Jude M; Holder, Anthony A

    2015-01-01

    Plasmodium falciparum invades human red blood cells, residing in a parasitophorous vacuole (PV), with a parasitophorous vacuole membrane (PVM) separating the PV from the host cell cytoplasm. Here we have investigated the role of N-myristoylation and two other N-terminal motifs, a cysteine potential S-palmitoylation site and a stretch of basic residues, as the driving force for protein targeting to the parasite plasma membrane (PPM) and subsequent translocation across this membrane. Plasmodium falciparum adenylate kinase 2 (Pf AK2) contains these three motifs, and was previously proposed to be targeted beyond the parasite to the PVM, despite the absence of a signal peptide for entry into the classical secretory pathway. Biochemical and microscopy analyses of PfAK2 variants tagged with green fluorescent protein (GFP) showed that these three motifs are involved in targeting the protein to the PPM and translocation across the PPM to the PV. It was shown that the N-terminal 37 amino acids of PfAK2 alone are sufficient to target and translocate GFP across the PPM. As a control we examined the N-myristoylated P. falciparum ADP-ribosylation factor 1 (PfARF1). PfARF1 was found to co-localise with a Golgi marker. To determine whether or not the putative palmitoylation and the cluster of lysine residues from the N-terminus of PfAK2 would modulate the subcellular localization of PfARF1, a chimeric fusion protein containing the N-terminus of PfARF1 and the two additional PfAK2 motifs was analysed. This chimeric protein was targeted to the PPM, but not translocated across the membrane into the PV, indicating that other features of the N-terminus of PfAK2 also play a role in the secretion process. PMID:25909331

  4. Alternative Protein Secretion in the Malaria Parasite Plasmodium falciparum

    PubMed Central

    Thavayogarajah, Thuvaraka; Gangopadhyay, Preetish; Rahlfs, Stefan; Becker, Katja; Lingelbach, Klaus; Przyborski, Jude M.; Holder, Anthony A.

    2015-01-01

    Plasmodium falciparum invades human red blood cells, residing in a parasitophorous vacuole (PV), with a parasitophorous vacuole membrane (PVM) separating the PV from the host cell cytoplasm. Here we have investigated the role of N-myristoylation and two other N-terminal motifs, a cysteine potential S-palmitoylation site and a stretch of basic residues, as the driving force for protein targeting to the parasite plasma membrane (PPM) and subsequent translocation across this membrane. Plasmodium falciparum adenylate kinase 2 (Pf AK2) contains these three motifs, and was previously proposed to be targeted beyond the parasite to the PVM, despite the absence of a signal peptide for entry into the classical secretory pathway. Biochemical and microscopy analyses of PfAK2 variants tagged with green fluorescent protein (GFP) showed that these three motifs are involved in targeting the protein to the PPM and translocation across the PPM to the PV. It was shown that the N-terminal 37 amino acids of PfAK2 alone are sufficient to target and translocate GFP across the PPM. As a control we examined the N-myristoylated P. falciparum ADP-ribosylation factor 1 (PfARF1). PfARF1 was found to co-localise with a Golgi marker. To determine whether or not the putative palmitoylation and the cluster of lysine residues from the N-terminus of PfAK2 would modulate the subcellular localization of PfARF1, a chimeric fusion protein containing the N-terminus of PfARF1 and the two additional PfAK2 motifs was analysed. This chimeric protein was targeted to the PPM, but not translocated across the membrane into the PV, indicating that other features of the N-terminus of PfAK2 also play a role in the secretion process. PMID:25909331

  5. First case of a naturally acquired human infection with Plasmodium cynomolgi

    PubMed Central

    2014-01-01

    Since 1960, a total of seven species of monkey malaria have been reported as transmissible to man by mosquito bite: Plasmodium cynomolgi, Plasmodium brasilianum, Plasmodium eylesi, Plasmodium knowlesi, Plasmodium inui, Plasmodium schwetzi and Plasmodium simium. With the exception of P. knowlesi, none of the other species has been found to infect humans in nature. In this report, it is described the first known case of a naturally acquired P. cynomolgi malaria in humans. The patient was a 39-year-old woman from a malaria-free area with no previous history of malaria or travel to endemic areas. Initially, malaria was diagnosed and identified as Plasmodium malariae/P. knowlesi by microscopy in the Terengganu State Health Department. Thick and thin blood films stained with 10% Giemsa were performed for microscopy examination. Molecular species identification was performed at the Institute for Medical Research (IMR, Malaysia) and in the Malaria & Emerging Parasitic Diseases Laboratory (MAPELAB, Spain) using different nested PCR methods. Microscopic re-examination in the IMR showed characteristics of Plasmodium vivax and was confirmed by a nested PCR assay developed by Snounou et al. Instead, a different PCR assay plus sequencing performed at the MAPELAB confirmed that the patient was infected with P. cynomolgi and not with P. vivax. This is the first report of human P. cynomolgi infection acquired in a natural way, but there might be more undiagnosed or misdiagnosed cases, since P. cynomolgi is morphologically indistinguishable from P. vivax, and one of the most used PCR methods for malaria infection detection may identify a P. cynomolgi infection as P. vivax. Simian Plasmodium species may routinely infect humans in Southeast Asia. New diagnostic methods are necessary to distinguish between the human and monkey malaria species. Further epidemiological studies, incriminating also the mosquito vector(s), must be performed to know the relevance of cynomolgi malaria and its

  6. New quinoline derivatives demonstrate a promising antimalarial activity against Plasmodium falciparum in vitro and Plasmodium berghei in vivo.

    PubMed

    Soares, Roberta Reis; da Silva, José Marcio Fernandes; Carlos, Bianca Cecheto; da Fonseca, Camila Campos; de Souza, Laila Salomé Araújo; Lopes, Fernanda Valério; de Paula Dias, Rafael Mafra; Moreira, Paulo Otávio Lourenço; Abramo, Clarice; Viana, Gustavo Henrique Ribeiro; de Pila Varotti, Fernando; da Silva, Adilson David; Scopel, Kézia Katiani Gorza

    2015-06-01

    Malaria continues to be an important public health problem in the world. Nowadays, the widespread parasite resistance to many drugs used in antimalarial therapy has made the effective treatment of cases and control of the disease a constant challenge. Therefore, the discovery of new molecules with good antimalarial activity and tolerance to human use can be really important in the further treatment of the disease. In this study we have investigated the antiplasmodial activity of 10 synthetic compounds derived from quinoline, five of them combined to sulfonamide and five to the hydrazine or hydrazide group. The compounds were evaluated according to their cytotoxicity against HepG2 and HeLa cell lines, their antimalarial activity against CQ-sensitive and CQ-resistant Plasmodium falciparum strains and, finally, their schizonticide blood action in mice infected with Plasmodium berghei NK65. The compounds exhibited no cytotoxic action in HepG2 and HeLa cell lines when tested up to a concentration of 100 μg/mL. In addition, the hydrazine or hydrazide derivative compounds were less cytotoxic against cell lines and more active against CQ-sensitive and CQ-resistant P. falciparum strains, showing high SI (>1000 when SI was calculated using the CC50 from the 3D7 strain as reference). When tested in vivo, the hydrazine derivative 1f compound showed activity against the development of blood parasites similar to that observed with CQ, the reference drug. Interestingly, the 1f compound demonstrated the best LipE value (4.84) among all those tested in vivo. Considering the in vitro and in vivo activities of the compounds studied here and the LipE values, we believe the 1f compound to be the most promising molecule for further studies in antimalarial chemotherapy. PMID:25920564

  7. Clustered local transmission and asymptomatic Plasmodium falciparum and Plasmodium vivax malaria infections in a recently emerged, hypoendemic Peruvian Amazon community

    PubMed Central

    Branch, OraLee; Casapia, W Martin; Gamboa, Dionicia V; Hernandez, Jean N; Alava, Freddy F; Roncal, Norma; Alvarez, Eugenia; Perez, Enrique J; Gotuzzo, Eduardo

    2005-01-01

    Background There is a low incidence of malaria in Iquitos, Peru, suburbs detected by passive case-detection. This low incidence might be attributable to infections clustered in some households/regions and/or undetected asymptomatic infections. Methods Passive case-detection (PCD) during the malaria season (February-July) and an active case-detection (ACD) community-wide survey (March) surveyed 1,907 persons. Each month, April-July, 100-metre at-risk zones were defined by location of Plasmodium falciparum infections in the previous month. Longitudinal ACD and PCD (ACP+PCD) occurred within at-risk zones, where 137 houses (573 persons) were randomly selected as sentinels, each with one month of weekly active sampling. Entomological captures were conducted in the sentinel houses. Results The PCD incidence was 0.03 P. falciparum and 0.22 Plasmodium vivax infections/person/malaria-season. However, the ACD+PCD prevalence was 0.13 and 0.39, respectively. One explanation for this 4.33 and 1.77-fold increase, respectively, was infection clustering within at-risk zones and contiguous households. Clustering makes PCD, generalized to the entire population, artificially low. Another attributable-factor was that only 41% and 24% of the P. falciparum and P. vivax infections were associated with fever and 80% of the asymptomatic infections had low-density or absent parasitaemias the following week. After accounting for asymptomatic infections, a 2.6-fold increase in ACD+PCD versus PCD was attributable to clustered transmission in at-risk zones. Conclusion Even in low transmission, there are frequent highly-clustered asymptomatic infections, making PCD an inadequate measure of incidence. These findings support a strategy of concentrating ACD and insecticide campaigns in houses adjacent to houses were malaria was detected one month prior. PMID:15975146

  8. A NIMA-related kinase, Fa2p, localizes to a novel site in the proximal cilia of Chlamydomonas and mouse kidney cells.

    PubMed

    Mahjoub, Moe R; Qasim Rasi, M; Quarmby, Lynne M

    2004-11-01

    Polycystic kidney disease and related syndromes involve dysregulation of cell proliferation in conjunction with ciliary defects. The relationship between cilia and cell cycle is enigmatic, but it may involve regulation by the NIMA-family of kinases (Neks). We previously showed that the Nek Fa2p is important for ciliary function and cell cycle in Chlamydomonas. We now show that Fa2p localizes to an important regulatory site at the proximal end of cilia in both Chlamydomonas and a mouse kidney cell line. Fa2p also is associated with the proximal end of centrioles. Its localization is dynamic during the cell cycle, following a similar pattern in both cell types. The cell cycle function of Fa2p is kinase independent, whereas its ciliary function is kinase dependent. Mice with mutations in Nek1 or Nek8 have cystic kidneys; therefore, our discovery that a member of this phylogenetic group of Nek proteins is localized to the same sites in Chlamydomonas and kidney epithelial cells suggests that Neks play conserved roles in the coordination of cilia and cell cycle progression. PMID:15371535

  9. Hexaplex PCR detection system for identification of five human Plasmodium species with an internal control.

    PubMed

    Chew, Ching Hoong; Lim, Yvonne Ai Lian; Lee, Ping Chin; Mahmud, Rohela; Chua, Kek Heng

    2012-12-01

    Malaria remains one of the major killers of humankind and persists to threaten the lives of more than one-third of the world's population. Given that human malaria can now be caused by five species of Plasmodium, i.e., Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale, and the recently included Plasmodium knowlesi, there is a critical need not only to augment global health efforts in malaria control but also, more importantly, to develop a rapid, accurate, species-sensitive/species-specific, and economically effective diagnostic method for malaria caused by these five species. Therefore, in the present study, a straightforward single-step hexaplex PCR system targeting five human Plasmodium 18S small-subunit rRNAs (ssu rRNAs) was designed, and the system successfully detected all five human malaria parasites. In addition, this system enables the differentiation of single infection as well as mixed infections up to the two-species level. This assay was validated with 50 randomly blinded test and 184 clinical samples suspected to indicate malaria. This hexaplex PCR system is not only an ideal alternative for routine malaria diagnosis in laboratories with conventional PCR machines but also adds value to diagnoses when there is a lack of an experienced microscopist or/and when the parasite morphology is confusing. Indeed, this system will definitely enhance the accuracy and accelerate the speed in the diagnosis of malaria, as well as improve the efficacy of malaria treatment and control, in addition to providing reliable data from epidemiological surveillance studies. PMID:23035191

  10. Fanconi anemia complementation group A (FANCA) localizes to centrosomes and functions in the maintenance of centrosome integrity.

    PubMed

    Kim, Sunshin; Hwang, Soo Kyung; Lee, Mihee; Kwak, Heejin; Son, Kook; Yang, Jiha; Kim, Sung Hak; Lee, Chang-Hun

    2013-09-01

    Fanconi anemia (FA) proteins are known to play roles in the cellular response to DNA interstrand cross-linking lesions; however, several reports have suggested that FA proteins play additional roles. To elucidate novel functions of FA proteins, we used yeast two-hybrid screening to identify binding partners of the Fanconi anemia complementation group A (FANCA) protein. The candidate proteins included never-in-mitosis-gene A (NIMA)-related kinase 2 (Nek2), which functions in the maintenance of centrosome integrity. The interaction of FANCA and Nek2 was confirmed in human embryonic kidney (HEK) 293T cells. Furthermore, FANCA interacted with γ-tubulin and localized to centrosomes, most notably during the mitotic phase, confirming that FANCA is a centrosomal protein. Knockdown of FANCA increased the frequency of centrosomal abnormalities and enhanced the sensitivity of U2OS osteosarcoma cells to nocodazole, a microtubule-interfering agent. In vitro kinase assays indicated that Nek2 can phosphorylate FANCA at threonine-351 (T351), and analysis with a phospho-specific antibody confirmed that this phosphorylation occurred in response to nocodazole treatment. Furthermore, U2OS cells overexpressing the phosphorylation-defective T351A FANCA mutant showed numerical centrosomal abnormalities, aberrant mitotic arrest, and enhanced nocodazole sensitivity, implying that the Nek2-mediated T351 phosphorylation of FANCA is important for the maintenance of centrosomal integrity. Taken together, this study revealed that FANCA localizes to centrosomes and is required for the maintenance of centrosome integrity, possibly through its phosphorylation at T351 by Nek2. PMID:23806870

  11. Biochemical and functional characterization of Plasmodium falciparum GTP cyclohydrolase I

    PubMed Central

    2014-01-01

    Background Antifolates are currently in clinical use for malaria preventive therapy and treatment. The drugs kill the parasites by targeting the enzymes in the de novo folate pathway. The use of antifolates has now been limited by the spread of drug-resistant mutations. GTP cyclohydrolase I (GCH1) is the first and the rate-limiting enzyme in the folate pathway. The amplification of the gch1 gene found in certain Plasmodium falciparum isolates can cause antifolate resistance and influence the course of antifolate resistance evolution. These findings showed the importance of P. falciparum GCH1 in drug resistance intervention. However, little is known about P. falciparum GCH1 in terms of kinetic parameters and functional assays, precluding the opportunity to obtain the key information on its catalytic reaction and to eventually develop this enzyme as a drug target. Methods Plasmodium falciparum GCH1 was cloned and expressed in bacteria. Enzymatic activity was determined by the measurement of fluorescent converted neopterin with assay validation by using mutant and GTP analogue. The genetic complementation study was performed in ∆folE bacteria to functionally identify the residues and domains of P. falciparum GCH1 required for its enzymatic activity. Plasmodial GCH1 sequences were aligned and structurally modeled to reveal conserved catalytic residues. Results Kinetic parameters and optimal conditions for enzymatic reactions were determined by the fluorescence-based assay. The inhibitor test against P. falciparum GCH1 is now possible as indicated by the inhibitory effect by 8-oxo-GTP. Genetic complementation was proven to be a convenient method to study the function of P. falciparum GCH1. A series of domain truncations revealed that the conserved core domain of GCH1 is responsible for its enzymatic activity. Homology modelling fits P. falciparum GCH1 into the classic Tunnelling-fold structure with well-conserved catalytic residues at the active site. Conclusions

  12. Anopheline species and their Plasmodium infection status in Aligarh, India.

    PubMed

    Saifi, Muheet Alam; Alyousif, Mohamed Saleh; Amoudi, Mikky A

    2016-09-01

    Malaria is a global issue and India contributes substantially to global malaria incidence. Information related to malaria vectors is very limited in Aligarh. The environmental and climatological situations permit the continual breeding of vectors in permanent breeding sites. This study was designed with the aim to screen all the anophelines species and possible malaria vectors in three different localities of Aligarh. Anopheles mosquitoes were collected from three different localities (Fort, Jalali and Tappal) during peak malaria transmission season (July to November) by using mouth aspirator and CDC light traps. Enzyme-linked immunosorbent assay (ELISA) was done to detect Plasmodium falciparum, Plasmodium vivax-210 and P. vivax-247 circumsporozoite proteins (CSP) from the collected female species. A total of 794 female anopheline mosquitoes belonging to 7 species were collected by different methods. Circumsporozoite protein-enzyme-linked immunosorbent assay was performed with 780 anopheline mosquitoes out of which 13 mosquitoes were positive in CSP-ELISA. Thus, the overall infection rate was 1.66% (13/780). Four (0.51%) mosquitoes belonging to three species were positive for P. falciparum, 7 (0.89%) mosquitoes belonging to three species were positive for VK 210 and 2 (0.25%) mosquitoes belonging to Anopheles culicifacies and Anopheles stephensi species were positive for VK 247. No mixed infection was found in this study. According to species, the highest infection rate was observed in An. culicifacies (7/288, 2.43%) followed by An. stephensi (2.40%) and Anopheles annularis (1.98%). An. culicifacies and An. stephensi were previously incriminated as malaria vectors in Aligarh. There was, however, no previous report in favor of infections in An. annularis in Aligarh. The on-going Malaria Control Program in India needs up to date information on malaria vectors. A major challenge is the lack of knowledge about vectors and their role in malaria transmission. Findings of

  13. The effects of urbanization on global Plasmodium vivax malaria transmission

    PubMed Central

    2012-01-01

    Background Many recent studies have examined the impact of urbanization on Plasmodium falciparum malaria endemicity and found a general trend of reduced transmission in urban areas. However, none has examined the effect of urbanization on Plasmodium vivax malaria, which is the most widely distributed malaria species and can also cause severe clinical syndromes in humans. In this study, a set of 10,003 community-based P. vivax parasite rate (PvPR) surveys are used to explore the relationships between PvPR in urban and rural settings. Methods The PvPR surveys were overlaid onto a map of global urban extents to derive an urban/rural assignment. The differences in PvPR values between urban and rural areas were then examined. Groups of PvPR surveys inside individual city extents (urban) and surrounding areas (rural) were identified to examine the local variations in PvPR values. Finally, the relationships of PvPR between urban and rural areas within the ranges of 41 dominant Anopheles vectors were examined. Results Significantly higher PvPR values in rural areas were found globally. The relationship was consistent at continental scales when focusing on Africa and Asia only, but in the Americas, significantly lower values of PvPR in rural areas were found, though the numbers of surveys were small. Moreover, except for the countries in the Americas, the same trends were found at national scales in African and Asian countries, with significantly lower values of PvPR in urban areas. However, the patterns at city scales among 20 specific cities where sufficient data were available were less clear, with seven cities having significantly lower PvPR values in urban areas and two cities showing significantly lower PvPR in rural areas. The urban–rural PvPR differences within the ranges of the dominant Anopheles vectors were generally, in agreement with the regional patterns found. Conclusions Except for the Americas, the patterns of significantly lower P. vivax transmission in

  14. ZIPCO, a putative metal ion transporter, is crucial for Plasmodium liver-stage development.

    PubMed

    Sahu, Tejram; Boisson, Bertrand; Lacroix, Céline; Bischoff, Emmanuel; Richier, Quentin; Formaglio, Pauline; Thiberge, Sabine; Dobrescu, Irina; Ménard, Robert; Baldacci, Patricia

    2014-11-01

    The malaria parasite, Plasmodium, requires iron for growth, but how it imports iron remains unknown. We characterize here a protein that belongs to the ZIP (Zrt-, Irt-like Protein) family of metal ion transport proteins and have named ZIP domain-containing protein (ZIPCO). Inactivation of the ZIPCO-encoding gene in Plasmodium berghei, while not affecting the parasite's ability to multiply in mouse blood and to infect mosquitoes, greatly impairs its capacity to develop inside hepatocytes. Iron/zinc supplementation and depletion experiments suggest that ZIPCO is required for parasite utilization of iron and possibly zinc, consistent with its predicted function as a metal transporter. This is the first report of a ZIP protein having a crucial role in Plasmodium liver-stage development, as well as the first metal ion transporter identified in Plasmodium pre-erythrocytic stages. Because of the drastic dependence on iron of Plasmodium growth, ZIPCO and related proteins might constitute attractive drug targets to fight against malaria. PMID:25257508

  15. ZIPCO, a putative metal ion transporter, is crucial for Plasmodium liver-stage development

    PubMed Central

    Sahu, Tejram; Boisson, Bertrand; Lacroix, Céline; Bischoff, Emmanuel; Richier, Quentin; Formaglio, Pauline; Thiberge, Sabine; Dobrescu, Irina; Ménard, Robert; Baldacci, Patricia

    2014-01-01

    The malaria parasite, Plasmodium, requires iron for growth, but how it imports iron remains unknown. We characterize here a protein that belongs to the ZIP (Zrt-, Irt-like Protein) family of metal ion transport proteins and have named ZIP domain-containing protein (ZIPCO). Inactivation of the ZIPCO-encoding gene in Plasmodium berghei, while not affecting the parasite's ability to multiply in mouse blood and to infect mosquitoes, greatly impairs its capacity to develop inside hepatocytes. Iron/zinc supplementation and depletion experiments suggest that ZIPCO is required for parasite utilization of iron and possibly zinc, consistent with its predicted function as a metal transporter. This is the first report of a ZIP protein having a crucial role in Plasmodium liver-stage development, as well as the first metal ion transporter identified in Plasmodium pre-erythrocytic stages. Because of the drastic dependence on iron of Plasmodium growth, ZIPCO and related proteins might constitute attractive drug targets to fight against malaria. PMID:25257508

  16. Antibody-mediated inhibition of Aedes aegypti midgut trypsins blocks sporogonic development of Plasmodium gallinaceum.

    PubMed Central

    Shahabuddin, M; Lemos, F J; Kaslow, D C; Jacobs-Lorena, M

    1996-01-01

    The peritrophic matrix (PM) that forms around a blood meal is a potential barrier of Plasmodium development in mosquitoes. Previously, we have shown that to traverse the PM, Plasmodium ookinetes secrete a prochitinase and that an inhibitor of chitinase blocks further parasite development. Here we report that it is the mosquito trypsin that activates the Plasmodium prochitinase. Trypsin was identified as the chitinase-activating enzyme by two criteria: (i) trypsin activity and activating activity comigrated on one-dimensional gels, and (ii) activating activity and penetration of the PM by Plasmodium parasites were both hindered by trypsin-specific inhibitors. Subsequently, we examined the effect of antitrypsin antibodies on the parasite life cycle. Antibodies prepared against a recombinant blackfly trypsin effectively and specifically inhibited mosquito trypsin activity. Moreover, when incorporated into an infective blood meal, the antitrypsin antibodies blocked infectivity of Aedes aegypti mosquitoes by Plasmodium gallinaceum. This block of infectivity could be reversed by exogenously provided chitinase, strongly suggesting that the antibodies act by inhibiting prochitinase activation and not on the parasite itself. This work led to the identification of a mosquito antigen, i.e., midgut trypsin, as a novel target for blocking malaria transmission. PMID:8641775

  17. An impossible journey? The development of Plasmodium falciparum NF54 in Culex quinquefasciatus.

    PubMed

    Knöckel, Julia; Molina-Cruz, Alvaro; Fischer, Elizabeth; Muratova, Olga; Haile, Ashley; Barillas-Mury, Carolina; Miller, Louis H

    2013-01-01

    Although Anopheles mosquitoes are the vectors for human Plasmodium spp., there are also other mosquito species-among them culicines (Culex spp., Aedes spp.)-present in malaria-endemic areas. Culicine mosquitoes transmit arboviruses and filarial worms to humans and are vectors for avian Plasmodium spp., but have never been observed to transmit human Plasmodium spp. When ingested by a culicine mosquito, parasites could either face an environment that does not allow development due to biologic incompatibility or be actively killed by the mosquito's immune system. In the latter case, the molecular mechanism of killing must be sufficiently powerful that Plasmodium is not able to overcome it. To investigate how human malaria parasites develop in culicine mosquitoes, we infected Culex quinquefasciatus with Plasmodium falciparum NF54 and monitored development of parasites in the blood bolus and midgut epithelium at different time points. Our results reveal that ookinetes develop in the midgut lumen of C. quinquefasciatus in slightly lower numbers than in Anopheles gambiae G3. After 30 hours, parasites have invaded the midgut and can be observed on the basal side of the midgut epithelium by confocal and transmission electron microscopy. Very few of the parasites in C. quinquefasciatus are alive, most of them are lysed. Eight days after the mosquito's blood meal, no oocysts can be found in C. quinquefasciatus. Our results suggest that the mosquito immune system could be involved in parasite killing early in development after ookinetes have crossed the midgut epithelium and come in contact with the mosquito hemolymph. PMID:23658824

  18. In silico identification of genetically attenuated vaccine candidate genes for Plasmodium liver stage.

    PubMed

    Kumar, Hirdesh; Frischknecht, Friedrich; Mair, Gunnar R; Gomes, James

    2015-12-01

    Genetically attenuated parasites (GAPs) that lack genes essential for the liver stage of the malaria parasite, and therefore cause developmental arrest, have been developed as live vaccines in rodent malaria models and recently been tested in humans. The genes targeted for deletion were often identified by trial and error. Here we present a systematic gene - protein and transcript - expression analyses of several Plasmodium species with the aim to identify candidate genes for the generation of novel GAPs. With a lack of liver stage expression data for human malaria parasites, we used data available for liver stage development of Plasmodium yoelii, a rodent malaria model, to identify proteins expressed in the liver stage but absent from blood stage parasites. An orthology-based search was then employed to identify orthologous proteins in the human malaria parasite Plasmodium falciparum resulting in a total of 310 genes expressed in the liver stage but lacking evidence of protein expression in blood stage parasites. Among these 310 possible GAP candidates, we further studied Plasmodium liver stage proteins by phyletic distribution and functional domain analyses and shortlisted twenty GAP-candidates; these are: fabB/F, fabI, arp, 3 genes encoding subunits of the PDH complex, dnaJ, urm1, rS5, ancp, mcp, arh, gk, lisp2, valS, palm, and four conserved Plasmodium proteins of unknown function. Parasites lacking one or several of these genes might yield new attenuated malaria parasites for experimental vaccination studies. PMID:26348884

  19. Detection of avian malaria (Plasmodium spp.) in native land birds of American Samoa

    USGS Publications Warehouse

    Jarvi, S.I.; Farias, M.E.M.; Baker, H.; Freifeld, H.B.; Baker, P.E.; Van Gelder, E.; Massey, J.G.; Atkinson, C.T.

    2003-01-01

    This study documents the presence of Plasmodium spp. in landbirds of central Polynesia. Blood samples collected from eight native and introduced species from the island of Tutuila, American Samoa were evaluated for the presence of Plasmodium spp. by nested rDNA PCR, serology and/or microscopy. A total of 111/188 birds (59%) screened by nested PCR were positive. Detection of Plasmodium spp. was verified by nucleotide sequence comparisons of partial 18S ribosomal RNA and TRAP (thrombospondin-related anonymous protein) genes using phylogenetic analyses. All samples screened by immunoblot to detect antibodies that cross-react with Hawaiian isolates of Plasmodium relictum (153) were negative. Lack of cross-reactivity is probably due to antigenic differences between the Hawaiian and Samoan Plasmodium isolates. Similarly, all samples examined by microscopy (214) were negative. The fact that malaria is present, but not detectable by blood smear evaluation is consistent with low peripheral parasitemia characteristic of chronic infections. High prevalence of apparently chronic infections, the relative stability of the native land bird communities, and the presence of mosquito vectors which are considered endemic and capable of transmitting avian Plasmodia, suggest that these parasites are indigenous to Samoa and have a long coevolutionary history with their hosts.

  20. Spatial association with PTEX complexes defines regions for effector export into Plasmodium falciparum-infected erythrocytes.

    PubMed

    Riglar, David T; Rogers, Kelly L; Hanssen, Eric; Turnbull, Lynne; Bullen, Hayley E; Charnaud, Sarah C; Przyborski, Jude; Gilson, Paul R; Whitchurch, Cynthia B; Crabb, Brendan S; Baum, Jake; Cowman, Alan F

    2013-01-01

    Export of proteins into the infected erythrocyte is critical for malaria parasite survival. The majority of effector proteins are thought to export via a proteinaceous translocon, resident in the parasitophorous vacuole membrane surrounding the parasite. Identification of the Plasmodium translocon of exported proteins and its biochemical association with exported proteins suggests it performs this role. Direct evidence for this, however, is lacking. Here using viable purified Plasmodium falciparum merozoites and three-dimensional structured illumination microscopy, we investigate remodelling events immediately following parasite invasion. We show that multiple complexes of the Plasmodium translocon of exported proteins localize together in foci that dynamically change in clustering behaviour. Furthermore, we provide conclusive evidence of spatial association between exported proteins and exported protein 2, a core component of the Plasmodium translocon of exported proteins, during native conditions and upon generation of translocation intermediates. These data provide the most direct cellular evidence to date that protein export occurs at regions of the parasitophorous vacuole membrane housing the Plasmodium translocon of exported proteins complex. PMID:23361006

  1. Spatial association with PTEX complexes defines regions for effector export into Plasmodium falciparum-infected erythrocytes

    PubMed Central

    Riglar, David T.; Rogers, Kelly L.; Hanssen, Eric; Turnbull, Lynne; Bullen, Hayley E.; Charnaud, Sarah C.; Przyborski, Jude; Gilson, Paul R.; Whitchurch, Cynthia B.; Crabb, Brendan S.; Baum, Jake; Cowman, Alan F.

    2013-01-01

    Export of proteins into the infected erythrocyte is critical for malaria parasite survival. The majority of effector proteins are thought to export via a proteinaceous translocon, resident in the parasitophorous vacuole membrane surrounding the parasite. Identification of the Plasmodium translocon of exported proteins and its biochemical association with exported proteins suggests it performs this role. Direct evidence for this, however, is lacking. Here using viable purified Plasmodium falciparum merozoites and three-dimensional structured illumination microscopy, we investigate remodelling events immediately following parasite invasion. We show that multiple complexes of the Plasmodium translocon of exported proteins localize together in foci that dynamically change in clustering behaviour. Furthermore, we provide conclusive evidence of spatial association between exported proteins and exported protein 2, a core component of the Plasmodium translocon of exported proteins, during native conditions and upon generation of translocation intermediates. These data provide the most direct cellular evidence to date that protein export occurs at regions of the parasitophorous vacuole membrane housing the Plasmodium translocon of exported proteins complex. PMID:23361006

  2. Complication of Corticosteroid Treatment by Acute Plasmodium malariae Infection Confirmed by Small-Subunit rRNA Sequencing▿

    PubMed Central

    To, Kelvin K. W.; Teng, Jade L. L.; Wong, Samson S. Y.; Ngan, Antonio H. Y.; Yuen, Kwok-Yung; Woo, Patrick C. Y.

    2010-01-01

    We report a case of acute Plasmodium malariae infection complicating corticosteroid treatment for membranoproliferative glomerulonephritis in a patient from an area where P. malariae infection is not endemic. A peripheral blood smear showed typical band-form trophozoites compatible with P. malariae or Plasmodium knowlesi. SSU rRNA sequencing confirmed the identity to be P. malariae. PMID:20739487

  3. Adverse Pregnancy Outcomes in an Area Where Multidrug-Resistant Plasmodium vivax and Plasmodium falciparum Infections Are Endemic

    PubMed Central

    Poespoprodjo, Jeanne Rini; Fobia, Wendy; Kenangalem, Enny; Lampah, Daniel A.; Warikar, Noah; Seal, Andrew; McGready, Rose; Sugiarto, Paulus; Tjitra, Emiliana; Anstey, Nicholas M.; Price, Ric N.

    2009-01-01

    Background Plasmodium falciparum infection exerts a considerable burden on pregnant women, but less is known about the adverse consequences of Plasmodium vivax infection. Methods In Papua, Indonesia, where multiple drug resistance to both species has emerged, we conducted a cross-sectional hospital-based study to quantify the risks and consequences of maternal malaria. Results From April 2004 through December 2006, 3046 pregnant women were enrolled in the study. The prevalence of parasitemia at delivery was 16.8% (432 of 2570 women had infections), with 152 (35.2%) of these 432 infections being associated with fever. The majority of infections were attributable to P. falciparum (250 [57.9%]); 146 (33.8%) of the infections were attributable to P. vivax, and 36 (8.3%) were coinfections with both species. At delivery, P. falciparum infection was associated with severe anemia (hemoglobin concentration, <7 g/dL; odds ratio [OR], 2.8; 95% confidence interval [95% CI], 2.0–4.0) and a 192 g (95% CI, 119–265) reduction in mean birth weight (P < .001). P. vivax infection was associated with an increased risk of moderate anemia (hemoglobin concentration, 7–11 g/dL; OR, 1.8; 95% CI, 1.2–2.9; P = .01) and a 108 g (95% CI, 17.5–199) reduction in mean birth weight (P < .019). Parasitemia was associated with preterm delivery (OR, 1.5; 95% CI, 1.1–2.0; P = .02) and stillbirth (OR, 2.3; 95% CI, 1.3–4.1; P = .007) but was not associated with these outcomes after controlling for the presence of fever and severe anemia, suggesting that malaria increases the risk of preterm delivery and stillbirth through fever and contribution to severe anemia rather than through parasitemia per se. Conclusions These observations highlight the need for novel, safe, and effective treatment and prevention strategies against both multidrug-resistant P. falciparum and multidrug-resistant P. vivax infections in pregnant women in areas of mixed endemicity. PMID:18419439

  4. Transgenerational effect of infection in Plasmodium-infected mosquitoes.

    PubMed

    Pigeault, R; Vézilier, J; Nicot, A; Gandon, S; Rivero, A

    2015-03-01

    Transgenerational effects of infection have a huge potential to influence the prevalence and intensity of infections in vectors and, by extension, disease epidemiology. These transgenerational effects may increase the fitness of offspring through the transfer of protective immune factors. Alternatively, however, infected mothers may transfer the costs of infection to their offspring. Although transgenerational immune protection has been described in a dozen invertebrate species, we still lack a complete picture of the incidence and importance of transgenerational effects of infection in most invertebrate groups. The existence of transgenerational infection effects in mosquito vectors is of particular interest because of their potential for influencing parasite prevalence and intensity and, by extension, disease transmission. Here we present what we believe to be the first study on transgenerational infection effects in a mosquito vector infected with malaria parasites. The aim of this experiment was to quantify both the benefits and the costs of having an infected mother. We find no evidence of transgenerational protection in response to a Plasmodium infection. Having an infected mother does, however, entail considerable fecundity costs for the offspring: fecundity loss is three times higher in infected offspring issued from infected mothers than in infected offspring issued from uninfected mothers. We discuss the implications of our results and we call for more studies looking at transgenerational effects of infection in disease vectors. PMID:25762571

  5. Plasmodium falciparum polypeptides released during in vitro cultivation*

    PubMed Central

    Da Silva, L. Rodriguez; Loche, M.; Dayal, R.; Perrin, L. H.

    1983-01-01

    Synchronous cultures of Plasmodium falciparum were successively labelled with (35S)-methionine and both the supernatants and the pellets of infected red blood cells were collected. The release of TCA-precipitable material in the culture supernatants was low during the development of ring forms and trophozoites, increased during schizogony, and was maximum at the time of schizont rupture and merozoite reinvasion. Analysis of the supernatants by SDS — PAGE and autoradiography showed that both polypeptides common to the various developmental stages of the parasite and schizont/merozoite-specific polypeptides were released. Polypeptides of relative molecular mass 140 000, 82 000 and, to a lower degree, 41 000 were present in high amounts in the culture supernatants. These polypeptides have been shown to be the target of monoclonal antibodies that are able to inhibit the growth of P. falciparum cultures, and may be involved in protective immunity. The released polypeptides may also be used as target antigens in immunodiagnostic tests aiming at the detection of malaria infection. ImagesFig. 2AFig. 2BFig. 3 PMID:6340846

  6. Complexity of Infection and Genetic Diversity in Cambodian Plasmodium vivax

    PubMed Central

    Friedrich, Lindsey R.; Popovici, Jean; Kim, Saorin; Dysoley, Lek; Zimmerman, Peter A.; Menard, Didier; Serre, David

    2016-01-01

    Background Plasmodium vivax is the most widely distributed human malaria parasite with 2.9 billion people living in endemic areas. Despite intensive malaria control efforts, the proportion of cases attributed to P. vivax is increasing in many countries. Genetic analyses of the parasite population and its dynamics could provide an assessment of the efficacy of control efforts, but, unfortunately, these studies are limited in P. vivax by the lack of informative markers and high-throughput genotyping methods. Methodology/Principal Findings We developed a sequencing-based assay to simultaneously genotype more than 100 SNPs and applied this approach to ~500 P. vivax-infected individuals recruited across nine locations in Cambodia between 2004 and 2013. Our analyses showed that the vast majority of infections are polyclonal (92%) and that P. vivax displays high genetic diversity in Cambodia without apparent geographic stratification. Interestingly, our analyses also revealed that the proportion of monoclonal infections significantly increased between 2004 and 2013, possibly suggesting that malaria control strategies in Cambodia may be successfully affecting the parasite population. Conclusions/Significance Our findings demonstrate that this high-throughput genotyping assay is efficient in characterizing P. vivax diversity and can provide valuable insights to assess the efficacy of malaria elimination programs or to monitor the spread of specific parasites. PMID:27018585

  7. Resistance of Plasmodium falciparum to antimalarial drugs in Equatorial Guinea.

    PubMed

    Roche, J; Benito, A; Ayecaba, S; Amela, C; Molina, R; Alvar, J

    1993-10-01

    One hundred and sixty-six children from Equatorial Guinea, all under 10 years of age and with acute uncomplicated falciparum malaria, were randomly allocated to four groups and treated with one of the following regimens: chloroquine or amodiaquine (25 mg base/kg body weight over 3 days), quinine (8 mg/kg every 8 h for 3 or 5 days), and sulphadoxine-pyrimethamine (25-1.25 mg/kg, in one dose). The parasite clearance rates up to day 14 were 28% with chloroquine, 74% with amodiaquine, and 95% with quinine or sulphadoxine-pyrimethamine. The times required to clear asexual blood forms of Plasmodium falciparum in sensitive cases were 64, 70, 73 and 65 h, respectively. Although quinine and sulphadoxine-pyrimethamine are equally effective, quinine is recommended for treatment of multidrug-resistant malaria in paediatric patients, essentially because of the risk of serious reactions to sulpha drugs. Health providers are, however, encouraged to keep supplies of sulphadoxine-pyrimethamine as an option and to refer patients quickly, if required. PMID:8311568

  8. Experimental Immunization Based on Plasmodium Antigens Isolated by Antibody Affinity

    PubMed Central

    Kamali, Ali N.; Marín-García, Patricia; Azcárate, Isabel G.; Puyet, Antonio; Diez, Amalia; Bautista, José M.

    2015-01-01

    Vaccines blocking malaria parasites in the blood-stage diminish mortality and morbidity caused by the disease. Here, we isolated antigens from total parasite proteins by antibody affinity chromatography to test an immunization against lethal malaria infection in a murine model. We used the sera of malaria self-resistant ICR mice to lethal Plasmodium yoelii yoelii 17XL for purification of their IgGs which were subsequently employed to isolate blood-stage parasite antigens that were inoculated to immunize BALB/c mice. The presence of specific antibodies in vaccinated mice serum was studied by immunoblot analysis at different days after vaccination and showed an intensive immune response to a wide range of antigens with molecular weight ranging between 22 and 250 kDa. The humoral response allowed delay of the infection after the inoculation to high lethal doses of P. yoelii yoelii 17XL resulting in a partial protection against malaria disease, although final survival was managed in a low proportion of challenged mice. This approach shows the potential to prevent malaria disease with a set of antigens isolated from blood-stage parasites. PMID:26539558

  9. Genetic architecture of artemisinin-resistant Plasmodium falciparum.

    PubMed

    Miotto, Olivo; Amato, Roberto; Ashley, Elizabeth A; MacInnis, Bronwyn; Almagro-Garcia, Jacob; Amaratunga, Chanaki; Lim, Pharath; Mead, Daniel; Oyola, Samuel O; Dhorda, Mehul; Imwong, Mallika; Woodrow, Charles; Manske, Magnus; Stalker, Jim; Drury, Eleanor; Campino, Susana; Amenga-Etego, Lucas; Thanh, Thuy-Nhien Nguyen; Tran, Hien Tinh; Ringwald, Pascal; Bethell, Delia; Nosten, Francois; Phyo, Aung Pyae; Pukrittayakamee, Sasithon; Chotivanich, Kesinee; Chuor, Char Meng; Nguon, Chea; Suon, Seila; Sreng, Sokunthea; Newton, Paul N; Mayxay, Mayfong; Khanthavong, Maniphone; Hongvanthong, Bouasy; Htut, Ye; Han, Kay Thwe; Kyaw, Myat Phone; Faiz, Md Abul; Fanello, Caterina I; Onyamboko, Marie; Mokuolu, Olugbenga A; Jacob, Christopher G; Takala-Harrison, Shannon; Plowe, Christopher V; Day, Nicholas P; Dondorp, Arjen M; Spencer, Chris C A; McVean, Gilean; Fairhurst, Rick M; White, Nicholas J; Kwiatkowski, Dominic P

    2015-03-01

    We report a large multicenter genome-wide association study of Plasmodium falciparum resistance to artemisinin, the frontline antimalarial drug. Across 15 locations in Southeast Asia, we identified at least 20 mutations in kelch13 (PF3D7_1343700) affecting the encoded propeller and BTB/POZ domains, which were associated with a slow parasite clearance rate after treatment with artemisinin derivatives. Nonsynonymous polymorphisms in fd (ferredoxin), arps10 (apicoplast ribosomal protein S10), mdr2 (multidrug resistance protein 2) and crt (chloroquine resistance transporter) also showed strong associations with artemisinin resistance. Analysis of the fine structure of the parasite population showed that the fd, arps10, mdr2 and crt polymorphisms are markers of a genetic background on which kelch13 mutations are particularly likely to arise and that they correlate with the contemporary geographical boundaries and population frequencies of artemisinin resistance. These findings indicate that the risk of new resistance-causing mutations emerging is determined by specific predisposing genetic factors in the underlying parasite population. PMID:25599401

  10. Analysis of Breath Specimens for Biomarkers of Plasmodium falciparum Infection

    PubMed Central

    Berna, Amalia Z.; McCarthy, James S.; Wang, Rosalind X.; Saliba, Kevin J.; Bravo, Florence G.; Cassells, Julie; Padovan, Benjamin; Trowell, Stephen C.

    2015-01-01

    Currently, the majority of diagnoses of malaria rely on a combination of the patient's clinical presentation and the visualization of parasites on a stained blood film. Breath offers an attractive alternative to blood as the basis for simple, noninvasive diagnosis of infectious diseases. In this study, breath samples were collected from individuals during controlled malaria to determine whether specific malaria-associated volatiles could be detected in breath. We identified 9 compounds whose concentrations varied significantly over the course of malaria: carbon dioxide, isoprene, acetone, benzene, cyclohexanone, and 4 thioethers. The latter group, consisting of allyl methyl sulfide, 1-methylthio-propane, (Z)-1-methylthio-1-propene, and (E)-1-methylthio-1-propene, had not previously been associated with any disease or condition. Before the availability of antimalarial drug treatment, there was evidence of concurrent 48-hour cyclical changes in the levels of both thioethers and parasitemia. When thioether concentrations were subjected to a phase shift of 24 hours, a direct correlation between the parasitemia and volatile levels was revealed. Volatile levels declined monotonically approximately 6.5 hours after initial drug treatment, correlating with clearance of parasitemia. No thioethers were detected in in vitro cultures of Plasmodium falciparum. The metabolic origin of the thioethers is not known, but results suggest that interplay between host and parasite metabolic pathways is involved in the production of these thioethers. PMID:25810441

  11. Atorvastatin prevents Plasmodium falciparum cytoadherence and endothelial damage

    PubMed Central

    2011-01-01

    Background The adhesion of Plasmodium falciparum parasitized red blood cell (PRBC) to human endothelial cells (EC) induces inflammatory processes, coagulation cascades, oxidative stress and apoptosis. These pathological processes are suspected to be responsible for the blood-brain-barrier and other organs' endothelial dysfunctions observed in fatal cases of malaria. Atorvastatin, a drug that belongs to the lowering cholesterol molecule family of statins, has been shown to ameliorate endothelial functions and is widely used in patients with cardiovascular disorders. Methods The effect of this compound on PRBC induced endothelial impairments was assessed using endothelial co-culture models. Results Atorvastatin pre-treatment of EC was found to reduce the expression of adhesion molecules and P. falciparum cytoadherence, to protect cells against PRBC-induced apoptosis and to enhance endothelial monolayer integrity during co-incubation with parasites. Conclusions These results might suggest a potential interest use of atorvastatin as a protective treatment to interfere with the pathophysiological cascades leading to severe malaria. PMID:21356073

  12. Plasmodium falciparum Merozoite Surface Protein 6 Is a Dimorphic Antigen

    PubMed Central

    Pearce, J. Andrew; Triglia, Tony; Hodder, Anthony N.; Jackson, David C.; Cowman, Alan F.; Anders, Robin F.

    2004-01-01

    Merozoite surface protein 1 (MSP1) is a highly polymorphic Plasmodium falciparum merozoite surface protein implicated in the invasion of human erythrocytes during the asexual cycle. It forms a complex with MSP6 and MSP7 on the merozoite surface, and this complex is released from the parasite around the time of erythrocyte invasion. MSP1 and many other merozoite surface proteins contain dimorphic elements in their protein structures, and here we show that MSP6 is also dimorphic. The sequences of eight MSP6 genes indicate that the alleles of each dimorphic form of MSP6 are highly conserved. The smaller 3D7-type MSP6 alleles are detected in parasites from all malarious regions of the world, whereas K1-type MSP6 alleles have only been detected in parasites from mainland Southeast Asia. Cleavage of MSP6, which produces the p36 fragment in 3D7-type MSP6 and associates with MSP1, also occurs in K1-type MSP6 but at a different site in the protein. Anti-3D7 MSP6 antibodies weakly inhibited erythrocyte invasion by homologous 3D7 merozoites but did not inhibit a parasite line expressing the K1-type MSP6 allele. Antibodies from hyperimmune individuals affinity purified on an MSP3 peptide cross-reacted with MSP6; therefore, MSP6 may also be a target of antibody-dependent cellular inhibition. PMID:15039357

  13. The Molecular Basis of Folate Salvage in Plasmodium falciparum

    PubMed Central

    Salcedo-Sora, J. Enrique; Ochong, Edwin; Beveridge, Susan; Johnson, David; Nzila, Alexis; Biagini, Giancarlo A.; Stocks, Paul A.; O'Neill, Paul M.; Krishna, Sanjeev; Bray, Patrick G.; Ward, Stephen A.

    2011-01-01

    Tetrahydrofolates are essential cofactors for DNA synthesis and methionine metabolism. Malaria parasites are capable both of synthesizing tetrahydrofolates and precursors de novo and of salvaging them from the environment. The biosynthetic route has been studied in some detail over decades, whereas the molecular mechanisms that underpin the salvage pathway lag behind. Here we identify two functional folate transporters (named PfFT1 and PfFT2) and delineate unexpected substrate preferences of the folate salvage pathway in Plasmodium falciparum. Both proteins are localized in the plasma membrane and internal membranes of the parasite intra-erythrocytic stages. Transport substrates include folic acid, folinic acid, the folate precursor p-amino benzoic acid (pABA), and the human folate catabolite pABAGn. Intriguingly, the major circulating plasma folate, 5-methyltetrahydrofolate, was a poor substrate for transport via PfFT2 and was not transported by PfFT1. Transport of all folates studied was inhibited by probenecid and methotrexate. Growth rescue in Escherichia coli and antifolate antagonism experiments in P. falciparum indicate that functional salvage of 5-methyltetrahydrofolate is detectable but trivial. In fact pABA was the only effective salvage substrate at normal physiological levels. Because pABA is neither synthesized nor required by the human host, pABA metabolism may offer opportunities for chemotherapeutic intervention. PMID:21998306

  14. Population structure and recent evolution of Plasmodium falciparum

    PubMed Central

    Rich, Stephen M.; Ayala, Francisco J.

    2000-01-01

    Plasmodium falciparum is the agent of malignant malaria, one of mankind's most severe maladies. The parasite exhibits antigenic polymorphisms that have been postulated to be ancient. We have proposed that the extant world populations of P. falciparum have derived from one single parasite, a cenancestor, within the last 5,000–50,000 years. This inference derives from the virtual or complete absence of synonymous nucleotide polymorphisms at genes not involved in immune or drug responses. Seeking to conciliate this claim with extensive antigenic polymorphism, we first note that allele substitutions or polymorphisms can arise very rapidly, even in a single generation, in large populations subject to strong natural selection. Second, new alleles can arise not only by single-nucleotide mutations, but also by duplication/deletion of short simple-repeat DNA sequences, a process several orders of magnitude faster than single-nucleotide mutation. We analyze three antigenic genes known to be extremely polymorphic: Csp, Msp-1, and Msp-2. We identify regions consisting of tandem or proximally repetitive short DNA sequences, including some previously unnoticed. We conclude that the antigenic polymorphisms are consistent with the recent origin of the world populations of P. falciparum inferred from the analysis of nonantigenic genes. PMID:10860962

  15. Intrarectal quinine for treating Plasmodium falciparum malaria: a systematic review

    PubMed Central

    Eisenhut, Michael; Omari, Aika; MacLehose, Harriet G

    2005-01-01

    Background In children with malaria caused by Plasmodium falciparum, quinine administered rectally may be easier to use and less painful than intramuscular or intravenous administration. The objective of this review was to compare the effectiveness of intrarectal with intravenous or intramuscular quinine for treating falciparum malaria. Methods All randomized and quasi-randomized controlled trials comparing intrarectal with intramuscular or intravenous quinine for treating people with falciparum malaria located through the following sources were included: Cochrane Infectious Diseases Group Specialized Register, CENTRAL, MEDLINE, EMBASE, LILACS and CINAHL. Trial quality was assessed and data, including adverse event data, were extracted. Dichotomous data were analysed using odds ratios and continuous data using weighted mean difference. Results Eight randomized controlled trials (1,247 children) fulfilled the inclusion criteria. The same principal investigator led seven of the trials. Five compared intrarectal with intravenous quinine, and six compared intrarectal with intramuscular treatment. No statistically significant difference was detected for death, parasite clearance by 48 hours and seven days, parasite and fever clearance time, coma recovery time, duration of hospitalization and time before drinking began. One trial (898 children) reported that intrarectal was less painful than intramuscular administration. Conclusion No difference in the effect on parasites and clinical illness was detected for the use of intrarectal quinine compared with other routes, but most trials were small. Pain during application may be less with intrarectal quinine. Further larger trials, in patients with severe malaria and in adults, are required before the intrarectal route could be recommended. PMID:15904520

  16. Plasmodium Drug Targets Outside the Genetic Control of the Parasite

    PubMed Central

    Sullivan, David J.

    2014-01-01

    Drug development often seeks to find “magic bullets” which target microbiologic proteins while not affecting host proteins. Paul Ehrlich tested methylene blue as an antimalarial but this dye was not superior to quinine. Many successful antimalarial therapies are “magic shotguns” which target many Plasmodium pathways with little interference in host metabolism. Two malaria drug classes, the 8-aminoquinolines and the artemisinins interact with cytochrome P450s and host iron protoporphyrin IX or iron, respectively, to generate toxic metabolites and/or radicals, which kill the parasite by interference with many proteins. The non 8-amino antimalarial quinolines like quinine or piperaquine bind heme to inhibit the process of heme crystallization, which results in multiple enzyme inhibition and membrane dysfunction. The quinolines and artemisinins are rapidly parasiticidal in contrast to metal chelators, which have a slower parasite clearance rate with higher drug concentrations. Iron chelators interfere with the artemisinins but otherwise represent a strategy of targeting multiple enzymes containing iron. Interest has been revived in antineoplastic drugs that target DNA metabolism as antimalarials. Specific drug targeting or investigation of the innate immunity directed to the more permeable trophozoite or schizont infected erythrocyte membrane has been under explored. Novel drug classes in the antimalarial development pipeline which either target multiple proteins or unchangeable cellular targets will slow the pace of drug resistance acquisition. PMID:22973888

  17. Human cerebral malaria and Plasmodium falciparum genotypes in Malawi

    PubMed Central

    2012-01-01

    Background Cerebral malaria, a severe form of Plasmodium falciparum infection, is an important cause of mortality in sub-Saharan African children. A Taqman 24 Single Nucleotide Polymorphisms (SNP) molecular barcode assay was developed for use in laboratory parasites which estimates genotype number and identifies the predominant genotype. Methods The 24 SNP assay was used to determine predominant genotypes in blood and tissues from autopsy and clinical patients with cerebral malaria. Results Single genotypes were shared between the peripheral blood, the brain, and other tissues of cerebral malaria patients, while malaria-infected patients who died of non-malarial causes had mixed genetic signatures in tissues examined. Children with retinopathy-positive cerebral malaria had significantly less complex infections than those without retinopathy (OR = 3.7, 95% CI [1.51-9.10]).The complexity of infections significantly decreased over the malaria season in retinopathy-positive patients compared to retinopathy-negative patients. Conclusions Cerebral malaria patients harbour a single or small set of predominant parasites; patients with incidental parasitaemia sustain infections involving diverse genotypes. Limited diversity in the peripheral blood of cerebral malaria patients and correlation with tissues supports peripheral blood samples as appropriate for genome-wide association studies of parasite determinants of pathogenicity. PMID:22314206

  18. A genome-wide map of diversity in Plasmodium falciparum.

    PubMed

    Volkman, Sarah K; Sabeti, Pardis C; DeCaprio, David; Neafsey, Daniel E; Schaffner, Stephen F; Milner, Danny A; Daily, Johanna P; Sarr, Ousmane; Ndiaye, Daouda; Ndir, Omar; Mboup, Soulyemane; Duraisingh, Manoj T; Lukens, Amanda; Derr, Alan; Stange-Thomann, Nicole; Waggoner, Skye; Onofrio, Robert; Ziaugra, Liuda; Mauceli, Evan; Gnerre, Sante; Jaffe, David B; Zainoun, Joanne; Wiegand, Roger C; Birren, Bruce W; Hartl, Daniel L; Galagan, James E; Lander, Eric S; Wirth, Dyann F

    2007-01-01

    Genetic variation allows the malaria parasite Plasmodium falciparum to overcome chemotherapeutic agents, vaccines and vector control strategies and remain a leading cause of global morbidity and mortality. Here we describe an initial survey of genetic variation across the P. falciparum genome. We performed extensive sequencing of 16 geographically diverse parasites and identified 46,937 SNPs, demonstrating rich diversity among P. falciparum parasites (pi = 1.16 x 10(-3)) and strong correlation with gene function. We identified multiple regions with signatures of selective sweeps in drug-resistant parasites, including a previously unidentified 160-kb region with extremely low polymorphism in pyrimethamine-resistant parasites. We further characterized 54 worldwide isolates by genotyping SNPs across 20 genomic regions. These data begin to define population structure among African, Asian and American groups and illustrate the degree of linkage disequilibrium, which extends over relatively short distances in African parasites but over longer distances in Asian parasites. We provide an initial map of genetic diversity in P. falciparum and demonstrate its potential utility in identifying genes subject to recent natural selection and in understanding the population genetics of this parasite. PMID:17159979

  19. Laboratory detection of artemisinin-resistant Plasmodium falciparum.

    PubMed

    Chotivanich, Kesinee; Tripura, Rupam; Das, Debashish; Yi, Poravuth; Day, Nicholas P J; Pukrittayakamee, Sasithon; Chuor, Char Meng; Socheat, Duong; Dondorp, Arjen M; White, Nicholas J

    2014-06-01

    Conventional 48-h in vitro susceptibility tests have low sensitivity in identifying artemisinin-resistant Plasmodium falciparum, defined phenotypically by low in vivo parasite clearance rates. We hypothesized originally that this discrepancy was explained by a loss of ring-stage susceptibility and so developed a simple field-adapted 24-h trophozoite maturation inhibition (TMI) assay focusing on the ring stage and compared it to the standard 48-h schizont maturation inhibition (WHO) test. In Pailin, western Cambodia, where artemisinin-resistant P. falciparum is prevalent, the TMI test mean (95% confidence interval) 50% inhibitory concentration (IC50) for artesunate was 6.8 (5.2 to 8.3) ng/ml compared with 1.5 (1.2 to 1.8) ng/ml for the standard 48-h WHO test (P = 0.001). TMI IC50s correlated significantly with the in vivo responses to artesunate (parasite clearance time [r = 0.44, P = 0.001] and parasite clearance half-life [r = 0.46, P = 0.001]), whereas the standard 48-h test values did not. On continuous culture of two resistant isolates, the artemisinin-resistant phenotype was lost after 6 weeks (IC50s fell from 10 and 12 ng/ml to 2.7 and 3 ng/ml, respectively). Slow parasite clearance in falciparum malaria in western Cambodia results from reduced ring-stage susceptibility. PMID:24663013

  20. Resistance to Therapies for Infection by Plasmodium vivax

    PubMed Central

    Baird, J. Kevin

    2009-01-01

    The gravity of the threat posed by vivax malaria to public health has been poorly appreciated. The widely held misperception of Plasmodium vivax as being relatively infrequent, benign, and easily treated explains its nearly complete neglect across the range of biological and clinical research. Recent evidence suggests a far higher and more-severe disease burden imposed by increasingly drug-resistant parasites. The two frontline therapies against vivax malaria, chloroquine and primaquine, may be failing. Despite 60 years of nearly continuous use of these drugs, their respective mechanisms of activity, resistance, and toxicity remain unknown. Although standardized means of assessing therapeutic efficacy against blood and liver stages have not been developed, this review examines the provisional in vivo, ex vivo, and animal model systems for doing so. The rationale, design, and interpretation of clinical trials of therapies for vivax malaria are discussed in the context of the nuance and ambiguity imposed by the hypnozoite. Fielding new drug therapies against real-world vivax malaria may require a reworking of the strategic framework of drug development, namely, the conception, testing, and evaluation of sets of drugs designed for the cure of both blood and liver asexual stages as well as the sexual blood stages within a single therapeutic regimen. PMID:19597012

  1. Submicroscopic Plasmodium falciparum infections in pregnancy in Ghana.

    PubMed

    Mockenhaupt, F P; Rong, B; Till, H; Eggelte, T A; Beck, S; Gyasi-Sarpong, C; Thompson, W N; Bienzle, U

    2000-03-01

    Malarial parasitaemia below the threshold of microscopy but detectable by polymerase chain reaction (PCR) assays is common in endemic regions. This study was conducted to examine prevalence, predictors, and effects of submicroscopic Plasmodium falciparum infections in pregnancy. In a cross-sectional study among 530 pregnant women in Ghana, plasmodial infections were assessed by microscopy and PCR assays. Concentrations of haemoglobin and C-reactive protein (CRP) were measured and antimalarial drugs (chloroquine, pyrimethamine) in urine were demonstrated by ELISA dipsticks. By microscopy, 32% of the women were found to harbour malaria parasites. This rate increased to 63% adding the results of the parasite-specific PCR. P. falciparum was present in all but one infection. With increasing gravidity, infection rates and parasite densities decreased and the proportions of submicroscopic parasitaemia among infected women grew. Correspondingly, anaemia, fever and evidence of inflammation (CRP > 0.6 mg/dl) were more frequent in primigravidae than in multigravidae. Antimalarial drugs were detected in 65% of the women and were associated with a reduced prevalence of P. falciparum infections and a raised proportion of submicroscopic parasitaemia. Both gravidity and antimalarial drug use were independent predictors of submicroscopic P. falciparum infections. These infections caused a slight reduction of Hb levels and considerably increased serum concentrations of CRP. Conventional microscopy underestimates the actual extent of malarial infections in pregnancy in endemic regions. Submicroscopic P. falciparum infections are frequent and may contribute to mild anaemia and inflammation in seemingly aparasitaemic pregnant women. PMID:10747278

  2. Reduced erythrocyte deformability associated with hypoargininemia during Plasmodium falciparum malaria

    PubMed Central

    Rey, Juliana; Buffet, Pierre A.; Ciceron, Liliane; Milon, Geneviève; Mercereau-Puijalon, Odile; Safeukui, Innocent

    2014-01-01

    The mechanisms underlying reduced red blood cell (RBC) deformability during Plasmodium falciparum (Pf) malaria remain poorly understood. Here, we explore the possible involvement of the L-arginine and nitric oxide (NO) pathway on RBC deformability in Pf-infected patients and parasite cultures. RBC deformability was reduced during the acute attack (day0) and returned to normal values upon convalescence (day28). Day0 values correlated with plasma L-arginine levels (r = 0.69; p = 0.01) and weakly with parasitemia (r = −0.38; p = 0.006). In vitro, day0 patient's plasma incubated with ring-stage cultures at 41°C reduced RBC deformability, and this effect correlated strongly with plasma L-arginine levels (r = 0.89; p < 0.0001). Moreover, addition of exogenous L-arginine to the cultures increased deformability of both Pf-free and trophozoite-harboring RBCs. NO synthase activity, evidenced in Pf-infected RBCs, induced L-arginine-dependent NO production. These data show that hypoargininemia during P. falciparum malaria may altogether impair NO production and reduce RBC deformability, particularly at febrile temperature. PMID:24441939

  3. Serological Evidence of Discrete Spatial Clusters of Plasmodium falciparum Parasites

    PubMed Central

    Bejon, Philip; Turner, Louise; Lavstsen, Thomas; Cham, Gerald; Olotu, Ally; Drakeley, Chris J.; Lievens, Marc; Vekemans, Johan; Savarese, Barbara; Lusingu, John; von Seidlein, Lorenz; Bull, Peter C.; Marsh, Kevin; Theander, Thor G.

    2011-01-01

    Background Malaria transmission may be considered to be homogenous with well-mixed parasite populations (as in the classic Ross/Macdonald models). Marked fine-scale heterogeneity of transmission has been observed in the field (i.e., over a few kilometres), but there are relatively few data on the degree of mixing. Since the Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) is highly polymorphic, the host's serological responses may be used to infer exposure to parasite sub-populations. Methods and Findings We measured the antibody responses to 46 individual PfEMP1 domains at four time points among 450 children in Kenya, and identified distinct spatial clusters of antibody responses to individual domains. 35 domains showed strongly significant sero-clusters at p = 0.001. Individuals within the high transmission hotspot showed the greatest diversity of anti-PfEMP1 responses. Individuals outside the hotspot had a less diverse range of responses, even if as individuals they were at relatively intense exposure. Conclusions We infer that antigenically distinct sub-populations of parasites exist on a fine spatial scale in a study area of rural Kenya. Further studies should examine antigenic variation over longer periods of time and in different study areas. PMID:21747921

  4. Genetic architecture of artemisinin-resistant Plasmodium falciparum

    PubMed Central

    Miotto, Olivo; Amato, Roberto; Ashley, Elizabeth A; MacInnis, Bronwyn; Almagro-Garcia, Jacob; Amaratunga, Chanaki; Lim, Pharath; Mead, Daniel; Oyola, Samuel O; Dhorda, Mehul; Imwong, Mallika; Woodrow, Charles; Manske, Magnus; Stalker, Jim; Drury, Eleanor; Campino, Susana; Amenga-Etego, Lucas; Thanh, Thuy-Nhien Nguyen; Tran, Hien Tinh; Ringwald, Pascal; Bethell, Delia; Nosten, Francois; Phyo, Aung Pyae; Pukrittayakamee, Sasithon; Chotivanich, Kesinee; Chuor, Char Meng; Nguon, Chea; Suon, Seila; Sreng, Sokunthea; Newton, Paul N; Mayxay, Mayfong; Khanthavong, Maniphone; Hongvanthong, Bouasy; Htut, Ye; Han, Kay Thwe; Kyaw, Myat Phone; Faiz, Md Abul; Fanello, Caterina I; Onyamboko, Marie; Mokuolu, Olugbenga A; Jacob, Christopher G; Takala-Harrison, Shannon; Plowe, Christopher V; Day, Nicholas P; Dondorp, Arjen M; Spencer, Chris C A; McVean, Gilean; Fairhurst, Rick M; White, Nicholas J; Kwiatkowski, Dominic P

    2015-01-01

    We report a large multicenter genome-wide association study of Plasmodium falciparum resistance to artemisinin, the frontline antimalarial drug. Across 15 locations in Southeast Asia, we identified at least 20 mutations in kelch13 (PF3D7_1343700) affecting the encoded propeller and BTB/POZ domains, which were associated with a slow parasite clearance rate after treatment with artemisinin derivatives. Nonsynonymous polymorphisms in fd (ferredoxin), arps10 (apicoplast ribosomal protein S10), mdr2 (multidrug resistance protein 2) and crt (chloroquine resistance transporter) also showed strong associations with artemisinin resistance. Analysis of the fine structure of the parasite population showed that the fd, arps10, mdr2 and crt polymorphisms are markers of a genetic background on which kelch13 mutations are particularly likely to arise and that they correlate with the contemporary geographical boundaries and population frequencies of artemisinin resistance. These findings indicate that the risk of new resistance-causing mutations emerging is determined by specific predisposing genetic factors in the underlying parasite population. PMID:25599401

  5. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria

    NASA Astrophysics Data System (ADS)

    Ariey, Frédéric; Witkowski, Benoit; Amaratunga, Chanaki; Beghain, Johann; Langlois, Anne-Claire; Khim, Nimol; Kim, Saorin; Duru, Valentine; Bouchier, Christiane; Ma, Laurence; Lim, Pharath; Leang, Rithea; Duong, Socheat; Sreng, Sokunthea; Suon, Seila; Chuor, Char Meng; Bout, Denis Mey; Ménard, Sandie; Rogers, William O.; Genton, Blaise; Fandeur, Thierry; Miotto, Olivo; Ringwald, Pascal; Le Bras, Jacques; Berry, Antoine; Barale, Jean-Christophe; Fairhurst, Rick M.; Benoit-Vical, Françoise; Mercereau-Puijalon, Odile; Ménard, Didier

    2014-01-01

    Plasmodium falciparum resistance to artemisinin derivatives in southeast Asia threatens malaria control and elimination activities worldwide. To monitor the spread of artemisinin resistance, a molecular marker is urgently needed. Here, using whole-genome sequencing of an artemisinin-resistant parasite line from Africa and clinical parasite isolates from Cambodia, we associate mutations in the PF3D7_1343700 kelch propeller domain (`K13-propeller') with artemisinin resistance in vitro and in vivo. Mutant K13-propeller alleles cluster in Cambodian provinces where resistance is prevalent, and the increasing frequency of a dominant mutant K13-propeller allele correlates with the recent spread of resistance in western Cambodia. Strong correlations between the presence of a mutant allele, in vitro parasite survival rates and in vivo parasite clearance rates indicate that K13-propeller mutations are important determinants of artemisinin resistance. K13-propeller polymorphism constitutes a useful molecular marker for large-scale surveillance efforts to contain artemisinin resistance in the Greater Mekong Subregion and prevent its global spread.

  6. Genetic diversity of Plasmodium vivax in Kolkata, India

    PubMed Central

    Kim, Jung-Ryong; Imwong, Mallika; Nandy, Amitabha; Chotivanich, Kesinee; Nontprasert, Apichart; Tonomsing, Naowarat; Maji, Ardhendu; Addy, Manjulika; Day, Nick PJ; White, Nicholas J; Pukrittayakamee, Sasithon

    2006-01-01

    Background Plasmodium vivax malaria accounts for approximately 60% of malaria cases in Kolkata, India. There has been limited information on the genotypic polymorphism of P. vivax in this malaria endemic area. Three highly polymorphic and single copy genes were selected for a study of genetic diversity in Kolkata strains. Methods Blood from 151 patients with P. vivax infection diagnosed in Kolkata between April 2003 and September 2004 was genotyped at three polymorphic loci: the P. vivax circumsporozoite protein (pvcs), the merozoite surface protein 1 (pvmsp1) and the merozoite surface protein 3-alpha (pvmsp3-alpha). Results Analysis of these three genetic markers revealed that P. vivax populations in Kolkata are highly diverse. A large number of distinguishable alleles were found from three genetic markers: 11 for pvcs, 35 for pvmsp1 and 37 for pvmsp3-alpha. These were, in general, randomly distributed amongst the isolates. Among the 151 isolates, 142 unique genotypes were detected the commonest genotype at a frequency of less than 2% (3/151). The overall rate of mixed genotype infections was 10.6%. Conclusion These results indicate that the P. vivax parasite population is highly diverse in Kolkata, despite the low level of transmission. The genotyping protocols used in this study may be useful for differentiating re-infection from relapse and recrudescence in studies assessing of malarial drug efficacy in vivax malaria. PMID:16907979

  7. Expression of Plasmodium falciparum surface antigens in Escherichia coli.

    PubMed Central

    Ardeshir, F; Flint, J E; Reese, R T

    1985-01-01

    The asexual blood stages of the human malarial parasite Plasmodium falciparum produce many antigens, only some of which are important for protective immunity. Most of the putative protective antigens are believed to be expressed in schizonts and merozoites, the late stages of the asexual cycle. With the aim of cloning and characterizing genes for important parasite antigens, we used late-stage P. falciparum mRNA to construct a library of cDNA sequences inserted in the Escherichia coli expression vector pUC8. Nine thousand clones from the expression library were immunologically screened in situ with serum from Aotus monkeys immune to P. falciparum, and 95 clones expressing parasite antigens were identified. Mice were immunized with lysates from 49 of the bacterial clones that reacted with Aotus sera, and the mouse sera were tested for their reactivity with parasite antigens by indirect immunofluorescence, immunoprecipitation, and immunoblotting assays. Several different P. falciparum antigens were identified by these assays. Indirect immunofluorescence studies of extracellular merozoites showed that three of these antigens appear to be located on the merozoite surface. Thus, we have identified cDNA clones to three different P. falciparum antigens that may be important in protective immunity. Images PMID:3887406

  8. Expression of Plasmodium falciparum lactate dehydrogenase in Escherichia coli.

    PubMed

    Bzik, D J; Fox, B A; Gonyer, K

    1993-05-01

    A Plasmodium falciparum gene is described which encodes lactate dehydrogenase activity (P. falciparum LDH). The P. falciparum LDH gene contains no introns and is present in a single copy on chromosome 13. P. falciparum LDH was expressed in all asexual blood stages as a 1.6-kb mRNA. The predicted 316 amino acid protein coding region of P. falciparum LDH was inserted into the prokaryotic expression vector pKK223-3 and a 33-kDa protein having LDH activity was synthesized in Escherichia coli. P. falciparum LDH primary structure displays high amino acid similarity (50-57%) to vertebrate and bacterial LDH, but lacks the amino terminal extension observed in all vertebrate LDH. The majority of amino acid residues implicated in substrate and coenzyme binding and catalysis of other LDH are well conserved in P. falciparum LDH. However, several notable differences in amino acid composition were observed. P. falciparum LDH contained several distinctive single amino acid insertions and deletions compared to other LDH enzymes, and most remarkably, it contained a novel insertion of 5 amino acids within the conserved mobile loop region near arginine residue 109, a residue which is known to make contact with pyruvate in the ternary complex of other LDH. These results suggest that novel features of P. falciparum LDH primary structure may be correlated with previously characterized and distinctive kinetic, biochemical, immunochemical, and electrophoretic properties of P. falciparum LDH. PMID:8515777

  9. Immunogenicity of recombinant Plasmodium falciparum SERA proteins in rodents.

    PubMed

    Barr, P J; Inselburg, J; Green, K M; Kansopon, J; Hahm, B K; Gibson, H L; Lee-Ng, C T; Bzik, D J; Li, W B; Bathurst, I C

    1991-03-01

    We have expressed defined regions of the serine-repeat antigen (SERA) of the Honduras-1 strain of Plasmodium falciparum in the yeast Saccharomyces cerevisiae. Amino-terminal domains of the natural SERA protein have been shown previously to be targets for parasite-inhibitory murine monoclonal antibodies. Two recombinant SERA antigens were selected for purification and immunological analysis. The first (SERA 1), corresponding to amino acids 24-285 of the natural SERA precursor, was expressed by the ubiquitin fusion method. This allowed for in vivo cleavage by endogenous yeast ubiquitin hydrolase, and subsequent isolation of the mature polypeptide. The second, larger protein (SERA N), encompassing amino acids 24-506, was expressed at only low levels using this system, but could be isolated in high yields when fused to human gamma-interferon (gamma-IFN). Each purified protein was used to immunize mice with either Freund's adjuvant or a muramyl tripeptide adjuvant that has been used in humans. Sera from immunized mice were shown to be capable of in vitro inhibition of invasion of erythrocytes by the Honduras-1 strain of P. falciparum. The results suggest that a recombinant SERA antigen may be an effective component of a candidate malaria vaccine. PMID:2052035

  10. In vitro drug sensitivity of Plasmodium falciparum in Acre, Brazil.

    PubMed Central

    Kremsner, P. G.; Zotter, G. M.; Feldmeier, H.; Graninger, W.; Kollaritsch, M.; Wiedermann, G.; Rocha, R. M.; Wernsdorfer, W. H.

    1989-01-01

    In Acre, the westernmost state of Brazil in the Amazon region, the sensitivity of Plasmodium falciparum to chloroquine, amodiaquine, mefloquine, quinine and sulfadoxine/pyrimethamine was determined in vitro by the Rieckmann microtechnique. The study was performed between January and June 1987; the in vitro parasite responses to all antimalarial drugs were determined according to the recommendations of WHO. Of 83 isolates of P. falciparum, all were sensitive to mefloquine and of 87 isolates of P. falciparum, 84 (97%) were sensitive to quinine. The EC50 for mefloquine was 0.27 mumol/l and for quinine 4.60 mumol/l. In contrast, 65 of 89 (73%) and 70 of 83 (84%) isolates were resistant to amodiaquine and chloroquine, respectively; 11 isolates even grew at 6.4 mumol chloroquine/l. The EC50 for amodiaquine was 0.34 mumol/l and for chloroquine 0.73 mumol/l. Sulfadoxine/pyrimethamine resistance was seen in 23 of 25 (92%) cases. These data clearly indicate that in the western part of the Amazon region the 4-aminoquinolines, as well as sulfadoxine/pyrimethamine, can no longer be recommended for the treatment of P. falciparum infections. PMID:2670298

  11. Contribution of inflammasome genetics in Plasmodium vivax malaria.

    PubMed

    Santos, Marina L S; Reis, Edione Cristina; Bricher, Pamela N; Sousa, Tais N; Brito, Cristiana F A; Lacerda, Marcus V G; Fontes, Cor J F; Carvalho, Luzia H; Pontillo, Alessandra

    2016-06-01

    Recent reports showed that, in mice, symptomatic Plasmodium infection triggers NLRP3/NLRP12-dependent inflammasome formation and caspase-1 activation in monocytes. In humans, few works demonstrated that inflammasome is activated in malaria. As Plasmodiumvivax is a potent inducer of inflammatory response we hypothesised that inflammasome genetics might affect P. vivax malaria clinical presentation. For this purpose, selected SNPs in inflammasome genes were analysed among patients with symptomatic P. vivax malaria. 157 Brazilian Amazon patients with P. vivax malaria were genotyped for 10 single nucleotide polymorphisms (SNPs) in inflammasome genes NLRP1, NLRP3, AIM2, CARD8, IL1B, IL18 and MEFV. Effect of SNPs on hematologic and clinical parameters was analysed by multivariate analysis. Our data suggested an important role of NLRP1 inflammasome receptor in shaping the clinical presentation of P. vivax malaria, in term of presence of fever, anaemia and thrombocytopenia. Moreover IL1B rs1143634 resulted significantly associated to patients' parasitaemia, while IL18 rs5744256 plays a protective role against the development of anaemia. Polymorphisms in inflammasome genes could affect one or other aspects of malaria pathogenesis. Moreover, these data reveal novel aspects of P.vivax/host interaction that involved NLRP1-inflammasome. PMID:26946405

  12. Plasmodium falciparum dolichol phosphate mannose synthase represents a novel clade

    SciTech Connect

    Shams-Eldin, Hosam Santos de Macedo, Cristiana; Niehus, Sebastian; Dorn, Caroline; Kimmel, Juergen; Azzouz, Nahid; Schwarz, Ralph T.

    2008-06-06

    Dolichol phosphate mannose synthase (DPM) catalyzes the reaction between dolichol phosphate (Dol-P) and guanosine diphosphate mannose (GDP-Man) to form dolichol-phosphate-mannose (Dol-P-Man). This molecule acts as mannose donor for N-glycosylation and glycosylphosphatidylinositol (GPI) biosynthesis. The Plasmodium falciparum DPM1 (Pfdpm1) possesses a single predicted transmembrane region near the N-, but not the C-terminus. Here we show that the cloned Pfdpm1 gene failed to complement a Saccharomyces cerevisiae mutant indicating that the parasite gene does not belong to the baker's yeast group, as was previously assumed. Furthermore, Pfdpm1 was unable to complement a mouse mutant deficient in DPM but efficiently complements the Schizosaccharomyces pombe fission yeast mutant, indicating a difference between fission yeast and mammalian DPM genes. Therefore, we reanalyzed the hydrophobicity scales of all known DPMs and consequently reclassify the DPM clade into six major novel subgroups. Furthermore, we show that Pfdpm1 represents a unique enzyme among these subgroups.

  13. In vitro sensitivity of Plasmodium falciparum to artesunate in Thailand.

    PubMed Central

    Wongsrichanalai, C.; Wimonwattrawatee, T.; Sookto, P.; Laoboonchai, A.; Heppner, D. G.; Kyle, D. E.; Wernsdorfer, W. H.

    1999-01-01

    Reported are the in vitro susceptibilities of Plasmodium falciparum to artesunate, mefloquine, quinine and chloroquine of 86 isolates and to dihydroartemisinin of 45 isolates collected from areas of high resistance to mefloquine within Thailand near the borders with Myanmar and Cambodia, and from southern Thailand where P. falciparum is generally still sensitive to mefloquine. All the isolates were highly sensitive to artesunate, but the geometric mean IC50S were higher in isolates from the Thai-Myanmar and Thai-Cambodian borders than in those from southern Thailand. The IC50S for mefloquine and artesunate were strongly correlated (Pearson r = 0.605; n = 86; P < 0.00001). As expected, the in vitro sensitivities to dihydroartemisinin and artesunate were similar and strongly correlated (at IC50, Pearson r = 0.695; n = 45; P < 0.00002). The correlation between the activity of mefloquine and artesunate requires further investigation in order to determine the potential for development of cross-resistance in nature. Our results suggest that combination with mefloquine is not the ideal way of protecting the usefulness of artemisinin and its derivatives. A search for more suitable partner drugs to these compounds and careful regulation of their use are necessary in the interest of ensuring their long therapeutic life span. PMID:10361756

  14. Efficacy of scopadulcic acid A against Plasmodium falciparum in vitro.

    PubMed

    Riel, Michael A; Kyle, Dennis E; Milhous, Wilbur K

    2002-04-01

    Scoparia dulcis is a perennial herb widely distributed in many tropical countries. It is used as an herbal remedy for gastrointestinal and many other ailments, and in Nicaragua extracts are used to treat malaria. Phytochemical screening has shown that scopadulcic acid A (SDA), scopadulcic acid B (SDB), and semisynthetic analogues are pharmacologically active compounds from S. dulcis. SDB has antiviral activity against Herpes simplex virus type 1, antitumor activity in various human cell lines, and direct inhibitory activity against porcine gastric H(+), K(+)-ATPase. A methyl ester of scopadulcic acid B showed the most potent inhibitory activity against gastric proton pumps of 30 compounds tested in one study. Compounds with antiviral, antifungal, and antitumor activity often show activity against Plasmodium falciparum. In P. falciparum, the plasma membrane and food vacuole have H(+)-ATPases and the acidocalcisome has an H(+)-Ppase. These proton pumps are potential targets for antimalarial therapy and may have their function disrupted by compounds known to inhibit gastric proton pumps. We tested pure SDA and found in vitro activity against P. falciparum with an IC(50) of 27 and 19 microM against the D6 and W2 clones, respectively. The IC(50) against the multidrug-resistant isolate, TM91C235, was 23 microM. PMID:11975516

  15. The gene encoding topoisomerase II from Plasmodium falciparum.

    PubMed Central

    Cheesman, S; McAleese, S; Goman, M; Johnson, D; Horrocks, P; Ridley, R G; Kilbey, B J

    1994-01-01

    The gene for topoisomerase II has been isolated from genomic libraries of strain K1 of the human malarial parasite, Plasmodium falciparum. The sequence reveals an open reading frame of 4194 nucleotides which predicts a polypeptide of 1398 amino acids. There are apparently no introns. The sequence is present as a single copy which has an identity of 47.4% and a similarity of 65.4% with its human homologue. Sequences conserved in topoisomerase II from other species are present in Pftopoisomerase II but in addition it has two adjacent asparagine-rich insertions which are unique to it. We have also detected asparagine-rich regions in the gene for PfDNA polymerase alpha. The gene for Pftopoisomerase II has been localised to chromosome 14 and northern analysis reveals a transcript of 5.8 kb. Two independent antisera raised in mice against glutathione-S-transferase fusion proteins containing the amino terminal portion of the malarial protein detect a weak band on western blots at about 160kDa, the expected size of the protein. Use of the same antisera for immunofluorescence analysis suggests that the protein is present at all stages of intraerythrocytic growth of the parasite. Images PMID:8041616

  16. Characterization of N-myristoyltransferase from Plasmodium falciparum.

    PubMed Central

    Gunaratne, R S; Sajid, M; Ling, I T; Tripathi, R; Pachebat, J A; Holder, A A

    2000-01-01

    The gene coding for myristoyl-CoA:protein N-myristoyltransferase (NMT) has been cloned from the malaria parasite Plasmodium falciparum. The gene appears to be single copy and mRNA is expressed in asexual blood-stage forms. Comparison of cDNA and genomic sequences identified three small introns. The open reading frame codes for a 410-amino-acid protein and no evidence of forms with an extended N-terminal coding sequence was obtained. Residues important in substrate binding and in the catalytic mechanism in other species are conserved. The protein was expressed from a plasmid in Escherichia coli, partially purified and shown to have enzymic activity using a synthetic peptide substrate. Comparison of the malaria parasite protein with that derived from the human gene showed a different pattern of inhibition by chemical modification. Human NMT activity was inhibited by diethylpyrocarbonate and partially inhibited by iodacetamide, whereas P. falciparum NMT activity was not inhibited by either pre-treatment. Since the enzyme in infectious fungi is a target for potential chemotherapeutic drugs, it should also be investigated in the context of parasitic infections such as that responsible for malaria. PMID:10816442

  17. Characterization of the 26S proteasome network in Plasmodium falciparum

    PubMed Central

    Wang, Lihui; Delahunty, Claire; Fritz-Wolf, Karin; Rahlfs, Stefan; Helena Prieto, Judith; Yates, John R.; Becker, Katja

    2015-01-01

    In eukaryotic cells, the ubiquitin-proteasome system as a key regulator of protein quality control is an excellent drug target. We therefore aimed to analyze the 26S proteasome complex in the malaria parasite Plasmodium falciparum, which still threatens almost half of the world’s population. First, we established an affinity purification protocol allowing for the isolation of functional 26S proteasome complexes from the parasite. Subunit composition of the proteasome and component stoichiometry were studied and physiologic interacting partners were identified via in situ protein crosslinking. Furthermore, intrinsic ubiquitin receptors of the plasmodial proteasome were determined and their roles in proteasomal substrate recognition were analyzed. Notably, PfUSP14 was characterized as a proteasome-associated deubiquitinase resulting in the concept that targeting proteasomal deubiquitinating activity in P. falciparum may represent a promising antimalarial strategy. The data provide insights into a profound network orchestrated by the plasmodial proteasome and identified novel drug target candidates in the ubiquitin-proteasome system. PMID:26639022

  18. Proteomic analysis of Plasmodium in the mosquito: progress and pitfalls

    PubMed Central

    WASS, M. N.; STANWAY, R.; BLAGBOROUGH, A. M.; LAL, K.; PRIETO, J. H.; RAINE, D.; STERNBERG, M. J. E.; TALMAN, A. M.; TOMLEY, F.; YATES, J.; SINDEN, R. E.

    2012-01-01

    SUMMARY Here we discuss proteomic analyses of whole cell preparations of the mosquito stages of malaria parasite development (i.e. gametocytes, microgamete, ookinete, oocyst and sporozoite) of Plasmodium berghei. We also include critiques of the proteomes of two cell fractions from the purified ookinete, namely the micronemes and cell surface. Whereas we summarise key biological interpretations of the data, we also try to identify key methodological constraints we have met, only some of which we were able to resolve. Recognising the need to translate the potential of current genome sequencing into functional understanding, we report our efforts to develop more powerful combinations of methods for the in silico prediction of protein function and location. We have applied this analysis to the proteome of the male gamete, a cell whose very simple structural organisation facilitated interpretation of data. Some of the in silico predictions made have now been supported by ongoing protein tagging and genetic knockout studies. We hope this discussion may assist future studies. PMID:22336136

  19. Polycyclic amines as chloroquine resistance modulating agents in Plasmodium falciparum.

    PubMed

    Joubert, Jacques; Kapp, Erika; Taylor, Dale; Smith, Peter J; Malan, Sarel F

    2016-02-15

    Pentacycloundecylamines (PCUs) and adamantane amines, such as NGP1-01 (1) and amantadine, have shown significant channel blocking activities. They are postulated to act as chemosensitizers and circumvent the resistance of the plasmodia parasite against chloroquine (CQ) by inhibiting the p-glycoprotein efflux pump and enabling the accumulation of CQ inside the parasite digestive vacuole. Twelve polycyclic amines containing either a PCU or adamantane amine moiety conjugated to different aromatic functionalities through various tethered linkers were selected based on their channel blocking abilities and evaluated as potential chemosensitizers. Compounds 2, 4, 5 and 10 showed significant voltage-gated calcium channel (VGCC) blocking ability (IC50=0.27-35 μM) and were able to alter the CQ IC50 in differing degrees (45-81%) in the multidrug resistant Plasmodium falciparum Dd2 isolate. Among them, the PCU-dansyl amine compound (4) displayed the best potential to act as a chemosensitizer against the Dd2 strain at a 1 μM concentration (RMI=0.19) while displaying moderate antiplasmodial activity (Dd2 IC50=6.25 μM) and low in vitro cytotoxicity against a mammalian cell line (CHO, IC50=119 μM). Compounds 2 and 10 also showed some promising chemosensitizing abilities (RMI=0.36 and 0.35 respectively). A direct correlation was found between the VGCC blocking ability of these polycyclic amines and their capacity to act as CQ resistance modulating agents. PMID:26832222

  20. Interactive transcriptome analysis of malaria patients and infecting Plasmodium falciparum

    PubMed Central

    Yamagishi, Junya; Natori, Anna; Tolba, Mohammed E.M.; Mongan, Arthur E.; Sugimoto, Chihiro; Katayama, Toshiaki; Kawashima, Shuichi; Makalowski, Wojciech; Maeda, Ryuichiro; Eshita, Yuki; Tuda, Josef

    2014-01-01

    To understand the molecular mechanisms of parasitism in vivo, it is essential to elucidate how the transcriptomes of the human hosts and the infecting parasites affect one another. Here we report the RNA-seq analysis of 116 Indonesian patients infected with the malaria parasite Plasmodium falciparum (Pf). We extracted RNAs from their peripheral blood as a mixture of host and parasite transcripts and mapped the RNA-seq tags to the human and Pf reference genomes to separate the respective tags. We were thus able to simultaneously analyze expression patterns in both humans and parasites. We identified human and parasite genes and pathways that correlated with various clinical data, which may serve as primary targets for drug developments. Of particular importance, we revealed characteristic expression changes in the human innate immune response pathway genes including TLR2 and TICAM2 that correlated with the severity of the malaria infection. We also found a group of transcription regulatory factors, JUND, for example, and signaling molecules, TNFAIP3, for example, that were strongly correlated in the expression patterns of humans and parasites. We also identified several genetic variations in important anti-malaria drug resistance-related genes. Furthermore, we identified the genetic variations which are potentially associated with severe malaria symptoms both in humans and parasites. The newly generated data should collectively lay a unique foundation for understanding variable behaviors of the field malaria parasites, which are far more complex than those observed under laboratory conditions. PMID:25091627

  1. Development of Plasmodium berghei ookinetes to young oocysts in vitro.

    PubMed

    Syafruddin; Arakawa, R; Kamimura, K; Kawamoto, F

    1992-01-01

    The mosquito stage of Plasmodium berghei was cultivated in vitro, with special attention to ookinete transformation into early oocyst. The ookinetes were obtained by in vitro culture of gametocytes taken from infected mice, purified by density gradient of metrizoic acid or a lymphocyte separation medium, and incubated either in acellular culture or in co-cultivations with mosquito cells. In acellular culture, the ookinetes were found to aggregate with each other and transformed from banana to round shapes. Their inner pellicular membranes and subpellicular microtubules partially disappeared, indicating that development to early oocyst had occurred. Co-cultivation wtih Aedes albopictus cells (C6/36 clone) revealed that ookinetes transformed into early oocyst in the medium, or invaded the cells and then transformed to early oocysts within the cell cytoplasm as well. However all of these transformed cells failed to develop further, i.e., neither deposition of the oocyst capsule nor nuclear division was observed. Many ookinetes which failed to penetrate the Aedes cells were phagocytized within three days of culture. A significant difference between invaded and transformed oocysts and phagocytized ookinetes was seen in that the former lacked vacuole membrane. Co-cultivation with Toxorhynchites amboinensis cells (TRA-284-SFG clone) permitted transformation of ookinetes into early oocysts in the medium as in the acellular culture, but no ookinete invasion nor phagocytosis by the cell was observed. PMID:1578408

  2. Platelets Potentiate Brain Endothelial Alterations Induced by Plasmodium falciparum

    PubMed Central

    Wassmer, Samuel C.; Combes, Valéry; Candal, Francisco J.; Juhan-Vague, Irène; Grau, Georges E.

    2006-01-01

    Brain lesions of cerebral malaria (CM) are characterized by a sequestration of Plasmodium falciparum-parasitized red blood cells (PRBC) and platelets within brain microvessels, as well as by blood-brain barrier (BBB) disruption. In the present study, we evaluated the possibility that PRBC and platelets induce functional alterations in brain endothelium. In a human brain endothelial cell line, named HBEC-5i, exhibiting most of the features demanded for a pathophysiological study of BBB, tumor necrosis factor (TNF) or lymphotoxin α (LT-α) reduced transendothelial electrical resistance (TEER), enhanced the permeability to 70-kDa dextran, and increased the release of microparticles, a recently described indicator of disease severity in CM patients. In vitro cocultures showed that platelets or PRBC can have a direct cytotoxic effect on activated, but not on resting, HBEC-5i cells. Platelet binding was required, as platelet supernatant had no effect. Furthermore, platelets potentiated the cytotoxicity of PRBC for TNF- or LT-α-activated HBEC-5i cells when they were added prior to these cells on the endothelial monolayers. This effect was not observed when platelets were added after PRBC. Both permeability and TEER were strongly affected, and the apoptosis rate of HBEC-5i cells was dramatically increased. These findings provide insights into the mechanisms by which platelets can be deleterious to the brain endothelium during CM. PMID:16369021

  3. Identification of two integral membrane proteins of Plasmodium falciparum

    SciTech Connect

    Smythe, J.A.; Coppel, R.L.; Brown, G.V.; Ramasamy, R.; Kemp, D.J.; Anders, R.F. )

    1988-07-01

    The authors describe the isolation and cloning of two integral membrane protein antigens of Plasmodium falciparum. The antigens were isolated by Triton X-114 temperature-dependent phase separation, electrophoretically transferred to nitrocellulose, and used to affinity-purify monospecific human antibodies. These antibodies were used to isolate the corresponding cDNA clones from a phage {lambda}gt11-Amp3 cDNA expression library. Clone Ag512 corresponds to a M{sub r} 55,000 merozoite rhoptry antigen, and clone Ag513 corresponds to a M{sub r} 45,000 merozoite surface antigen. Both proteins can be biosynthetically labeled with ({sup 3}H)glucosamine and ({sup 3}H)myristic acid, suggesting that they may be anchored in membranes via a glycosylphosphatidylinositol moiety. Similarities in the C-terminal sequences of the M{sub r} 45,000 merozoite surface antigen and the Trypanosoma brucei variant surface glycoproteins provides further evidence that this antigen has a glycosylphosphatidylinositol anchor.

  4. Genome sequence of the human malaria parasite Plasmodium falciparum

    PubMed Central

    Gardner, Malcolm J.; Hall, Neil; Fung, Eula; White, Owen; Berriman, Matthew; Hyman, Richard W.; Carlton, Jane M.; Pain, Arnab; Nelson, Karen E.; Bowman, Sharen; Paulsen, Ian T.; James, Keith; Eisen, Jonathan A.; Rutherford, Kim; Salzberg, Steven L.; Craig, Alister; Kyes, Sue; Chan, Man-Suen; Nene, Vishvanath; Shallom, Shamira J.; Suh, Bernard; Peterson, Jeremy; Angiuoli, Sam; Pertea, Mihaela; Allen, Jonathan; Selengut, Jeremy; Haft, Daniel; Mather, Michael W.; Vaidya, Akhil B.; Martin, David M. A.; Fairlamb, Alan H.; Fraunholz, Martin J.; Roos, David S.; Ralph, Stuart A.; McFadden, Geoffrey I.; Cummings, Leda M.; Subramanian, G. Mani; Mungall, Chris; Venter, J. Craig; Carucci, Daniel J.; Hoffman, Stephen L.; Newbold, Chris; Davis, Ronald W.; Fraser, Claire M.; Barrell, Bart

    2013-01-01

    The parasite Plasmodium falciparum is responsible for hundreds of millions of cases of malaria, and kills more than one million African children annually. Here we report an analysis of the genome sequence of P. falciparum clone 3D7. The 23-megabase nuclear genome consists of 14 chromosomes, encodes about 5,300 genes, and is the most (A + T)-rich genome sequenced to date. Genes involved in antigenic variation are concentrated in the subtelomeric regions of the chromosomes. Compared to the genomes of free-living eukaryotic microbes, the genome of this intracellular parasite encodes fewer enzymes and transporters, but a large proportion of genes are devoted to immune evasion and host–parasite interactions. Many nuclear-encoded proteins are targeted to the apicoplast, an organelle involved in fatty-acid and isoprenoid metabolism. The genome sequence provides the foundation for future studies of this organism, and is being exploited in the search for new drugs and vaccines to fight malaria. PMID:12368864

  5. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria

    PubMed Central

    Ariey, Frédéric; Witkowski, Benoit; Amaratunga, Chanaki; Beghain, Johann; Langlois, Anne-Claire; Khim, Nimol; Kim, Saorin; Duru, Valentine; Bouchier, Christiane; Ma, Laurence; Lim, Pharath; Leang, Rithea; Duong, Socheat; Sreng, Sokunthea; Suon, Seila; Chuor, Char Meng; Bout, Denis Mey; Ménard, Sandie; Rogers, William O.; Genton, Blaise; Fandeur, Thierry; Miotto, Olivo; Ringwald, Pascal; Le Bras, Jacques; Berry, Antoine; Barale, Jean-Christophe; Fairhurst, Rick M.; Benoit-Vical, Françoise; Mercereau-Puijalon, Odile; Ménard, Didier

    2016-01-01

    Plasmodium falciparum resistance to artemisinin derivatives in southeast Asia threatens malaria control and elimination activities worldwide. To monitor the spread of artemisinin resistance, a molecular marker is urgently needed. Here, using whole-genome sequencing of an artemisinin-resistant parasite line from Africa and clinical parasite isolates from Cambodia, we associate mutations in the PF3D7_1343700 kelch propeller domain (‘K13-propeller’) with artemisinin resistance in vitro and in vivo. Mutant K13-propeller alleles cluster in Cambodian provinces where resistance is prevalent, and the increasing frequency of a dominant mutant K13-propeller allele correlates with the recent spread of resistance in western Cambodia. Strong correlations between the presence of a mutant allele, in vitro parasite survival rates and in vivo parasite clearance rates indicate that K13-propeller mutations are important determinants of artemisinin resistance. K13-propeller polymorphism constitutes a useful molecular marker for large-scale surveillance efforts to contain artemisinin resistance in the Greater Mekong Subregion and prevent its global spread. PMID:24352242

  6. Kinetic mechanism of Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase.

    PubMed

    Roy, Sourav; Nagappa, Lakshmeesha K; Prahladarao, Vasudeva S; Balaram, Hemalatha

    2015-12-01

    Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase (PfHGXPRT) exhibits a kinetic mechanism that differs from that of the human homolog. Human HGPRT follows a steady-state ordered mechanism, wherein PRPP binding precedes the binding of hypoxanthine/guanine and release of product IMP/GMP is the rate limiting step. In the current study, initial velocity kinetics with PfHGXPRT indicates a steady-state ordered mechanism, wherein xanthine binding is conditional to the binding of PRPP. The value of the rate constant for IMP dissociation is greater by 183-fold than the kcat for hypoxanthine phosphoribosylation and this results in the absence of burst in progress curves from pre-steady-state kinetics. Further, IMP binding is 1000 times faster (4s(-1) at 0.5μM IMP) when compared to the kcat (3.9±0.2×10(-3)s(-1)) for the reverse IMP pyrophosphorolysis reaction. These results lend support to the fact that in both forward and reverse reactions, the process of chemical conversion (formation of IMP/hypoxanthine) is slow and the events of ligand association and dissociation are faster. PMID:26902413

  7. Plasmodium yoelii: induction of attenuated mutants by irradiation

    SciTech Connect

    Waki, S.; Yonome, I.; Suzuki, M.

    1986-12-01

    When erythrocytic forms of Plasmodium yoelii nigeriensis, which is invariably fatal in mice, were exposed to X rays, the dose to reduce surviving parasites to one millionth was 100 gray (10 Krad). A suspension of 5 X 10(6) per ml of parasitized erythrocyte was irradiated at 100 gray, and 0.2 ml aliquots were inoculated into 22 mice. Eleven mice showed patent parasitemia, and in these the growth curves were less steep than that found in nonirradiated parasites. The infections of 8 mice of the 11 were self-resolving, and the attenuated feature of the parasites maintained following a limited number of blood passages. The parasites were slowly growing even in nude mice and cause self-resolving infections in intact mice. BALB/c mice immunized with the attenuated parasites were protected against subsequent challenge infections with the original virulent erythrocytic and sporogonic forms. These findings indicate that attenuated mutants of malaria parasites can be readily induced by this method.

  8. Monkey-derived monoclonal antibodies against Plasmodium falciparum

    SciTech Connect

    Stanley, H.A.; Reese, R.T.

    1985-09-01

    A system has been developed that allows efficient production of monkey monoclonal antibodies from owl monkeys. Splenocytes or peripheral blood lymphocytes from monkeys immune to the human malarial parasite, Plasmodium falciparum, were fused with P3X63 Ag8.653 mouse myelomas. The resulting hybridomas were screened by an indirect fluorescent antibody test for the production of monkey monoclonal antibodies (mAb) reactive with P. falciparum. Most of the mAb reacted with the P. falciparum merozoites and immunoprecipitated a parasite-derived glycoprotein having a relative molecular weight of 185,000. These mAb gave a minimum of five different immunoprecipitation patterns, thus demonstrating that a large number of polypeptides obtained when parasitized erythrocytes are solubilized share epitopes with this large glycoprotein. In addition, mAb were obtained that reacted with antigens associated with the infected erythrocyte membrane. One of these mAb bound a M/sub r/ 95,000 antigen. Radioimmunoprecipitation assays using /sup 125/T-antibodies were done.

  9. Identification of a Plasmodium falciparum Phospholipid Transfer Protein*

    PubMed Central

    van Ooij, Christiaan; Withers-Martinez, Chrislaine; Ringel, Alessa; Cockcroft, Shamshad; Haldar, Kasturi; Blackman, Michael J.

    2013-01-01

    Infection of erythrocytes by the human malaria parasite Plasmodium falciparum results in dramatic modifications to the host cell, including changes to its antigenic and transport properties and the de novo formation of membranous compartments within the erythrocyte cytosol. These parasite-induced structures are implicated in the transport of nutrients, metabolic products, and parasite proteins, as well as in parasite virulence. However, very few of the parasite effector proteins that underlie remodeling of the host erythrocyte are functionally characterized. Using bioinformatic examination and modeling, we have found that the exported P. falciparum protein PFA0210c belongs to the START domain family, members of which mediate transfer of phospholipids, ceramide, or fatty acids between membranes. In vitro phospholipid transfer assays using recombinant PFA0210 confirmed that it can transfer phosphatidylcholine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin between phospholipid vesicles. Furthermore, assays using HL60 cells containing radiolabeled phospholipids indicated that orthologs of PFA0210c can also transfer phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine. Biochemical and immunochemical analysis showed that PFA0210c associates with membranes in infected erythrocytes at mature stages of intracellular parasite growth. Localization studies in live parasites revealed that the protein is present in the parasitophorous vacuole during growth and is later recruited to organelles in the parasite. Together these data suggest that PFA0210c plays a role in the formation of the membranous structures and nutrient phospholipid transfer in the malaria-parasitized erythrocyte. PMID:24043620

  10. Dissecting the role of glutathione biosynthesis in Plasmodium falciparum

    PubMed Central

    Patzewitz, Eva-Maria; Wong, Eleanor H; Müller, Sylke

    2012-01-01

    Glutathione (γ-glutamylcysteinyl-glycine, GSH) has vital functions as thiol redox buffer and cofactor of antioxidant and detoxification enzymes. Plasmodium falciparum possesses a functional GSH biosynthesis pathway and contains mM concentrations of the tripeptide. It was impossible to delete in P. falciparum the genes encoding γ-glutamylcysteine synthetase (γGCS) or glutathione synthetase (GS), the two enzymes synthesizing GSH, although both gene loci were not refractory to recombination. Our data show that the parasites cannot compensate for the loss of GSH biosynthesis via GSH uptake. This suggests an important if not essential function of GSH biosynthesis pathway for the parasites. Treatment with the irreversible inhibitor of γGCS L-buthionine sulfoximine (BSO) reduced intracellular GSH levels in P. falciparum and was lethal for their intra-erythrocytic development, corroborating the suggestion that GSH biosynthesis is important for parasite survival. Episomal expression of γgcs in P. falciparum increased tolerance to BSO attributable to increased levels of γGCS. Concomitantly expression of glutathione reductase was reduced leading to an increased GSH efflux. Together these data indicate that GSH levels are tightly regulated by a functional GSH biosynthesis and the reduction of GSSG. PMID:22151036

  11. Effects of Mefloquine Use on Plasmodium vivax Multidrug Resistance

    PubMed Central

    Khim, Nimol; Andrianaranjaka, Voahangy; Popovici, Jean; Kim, Saorin; Ratsimbasoa, Arsene; Benedet, Christophe; Barnadas, Celine; Durand, Remy; Thellier, Marc; Legrand, Eric; Musset, Lise; Menegon, Michela; Severini, Carlo; Nour, Bakri Y.M.; Tichit, Magali; Bouchier, Christiane; Mercereau-Puijalon, Odile

    2014-01-01

    Numerous studies have indicated a strong association between amplification of the multidrug resistance-1 gene and in vivo and in vitro mefloquine resistance of Plasmodium falciparum. Although falciparum infection usually is not treated with mefloquine, incorrect diagnosis, high frequency of undetected mixed infections, or relapses of P. vivax infection triggered by P. falciparum infections expose non–P. falciparum parasites to mefloquine. To assess the consequences of such unintentional treatments on P. vivax, we studied variations in number of Pvmdr-1 (PlasmoDB accession no. PVX_080100, NCBI reference sequence NC_009915.1) copies worldwide in 607 samples collected in areas with different histories of mefloquine use from residents and from travelers returning to France. Number of Pvmdr-1 copies correlated with drug use history. Treatment against P. falciparum exerts substantial collateral pressure against sympatric P. vivax, jeopardizing future use of mefloquine against P. vivax. A drug policy is needed that takes into consideration all co-endemic species of malaria parasites. PMID:25272023

  12. Molecular Aspects of Plasmodium falciparum Infection during Pregnancy

    PubMed Central

    Ndam, Nicaise Tuikue; Deloron, Philippe

    2007-01-01

    Cytoadherence of Plasmodium-falciparum-parasitized red blood cells (PRBCs) to host receptors is the key phenomenon in the pathological process of the malaria disease. Some of these interactions can originate poor outcomes responsible for 1 to 3 million annual deaths mostly occurring among children in sub-Saharan Africa. Pregnancy-associated malaria (PAM) represents an important exception of the disease occurring at adulthood in malaria endemic settings. Consequences of this are shared between the mother (maternal anemia) and the baby (low birth weight and infant mortality). Demonstrating that parasites causing PAM express specific variant surface antigens (VSAPAM), including the P. falciparum erythrocyte membrane protein 1 (P f EMP1) variant VAR2CSA, that are targets for protective immunity has strengthened the possibility for the development of PAM-specific vaccine. In this paper, we review the molecular basis of malaria pathogenesis attributable to the erythrocyte stages of the parasites, and findings supporting potential anti-PAM vaccine components evidenced in PAM. PMID:17641725

  13. Plasmodium circumflexum in a Shikra (Accipiter badius): phylogeny and ultra-structure of the haematozoa.

    PubMed

    Salakij, Jarernsak; Lertwatcharasarakul, Preeda; Kasorndorkbua, Chaiyan; Salakij, Chaleow

    2012-08-01

    A wild-caught, juvenile Shikra (Accipiter badius) was evaluated for rehabilitation at the Kasetsart University Raptor Rehabilitation Unit (KURRU) with a history of weakness. Plasmodium sp. was observed by both light and electron microscopy in blood obtained on day 1 of evaluation. Based on the appearance of erythrocytic meronts and gametocytes, the parasites were defined as Plasmodium (Giovannolaia) circumflexum. The sequence analysis of the mitochondrial cytochrome b gene from the plasmodia was closely related to parasites found in the Grey-headed woodpecker from Myanmar and the Brown hawk-owl from Singapore. Transmission electron microscopic examination revealed organelles in the haematozoa and heterophils that ingested the plasmodia. This is the first recorded case of Plasmodium circumflexum in a wild Shikra. This note emphasises the molecular characterisation and ultra-structure of the haematozoa. PMID:23094585

  14. Kanizsa illusory contours appearing in the plasmodium pattern of Physarum polycephalum.

    PubMed

    Tani, Iori; Yamachiyo, Masaki; Shirakawa, Tomohiro; Gunji, Yukio-Pegio

    2014-01-01

    The plasmodium of Physarum polycephalum is often used in the implementation of non-linear computation to solve optimization problems, and this organismal feature was not used in this analysis to compute perception and/or sensation in humans. In this paper, we focused on the Kanizsa illusion, which is a well-known visual illusion resulting from the differentiation-integration of the visual field, and compared the illusion with the adaptive network in the plasmodium of P. polycephalum. We demonstrated that the network pattern mimicking the Kanizsa illusion can be produced by an asynchronous automata-fashioned model of the foraging slime mold and by the real plasmodia of P. polycephalum. Because the protoplasm of the plasmodium is transported depending on both local and global computation, it may contain differentiation-integration processes. In this sense, we can extend the idea of perception and computation. PMID:24616883

  15. Cysteamine, the natural metabolite of pantetheinase, shows specific activity against Plasmodium.

    PubMed

    Min-Oo, Gundula; Ayi, Kodjo; Bongfen, Silayuv E; Tam, Mifong; Radovanovic, Irena; Gauthier, Susan; Santiago, Helton; Rothfuchs, Antonio Gigliotti; Roffê, Ester; Sher, Alan; Mullick, Alaka; Fortin, Anny; Stevenson, Mary M; Kain, Kevin C; Gros, Philippe

    2010-08-01

    In mice, loss of pantetheinase activity causes susceptibility to infection with Plasmodium chabaudi AS. Treatment of mice with the pantetheinase metabolite cysteamine reduces blood-stage replication of P. chabaudi and significantly increases survival. Similarly, a short exposure of Plasmodium to cysteamine ex vivo is sufficient to suppress parasite infectivity in vivo. This effect of cysteamine is specific and not observed with a related thiol (dimercaptosuccinic acid) or with the pantethine precursor of cysteamine. Also, cysteamine does not protect against infection with the parasite Trypanosoma cruzi or the fungal pathogen Candida albicans, suggesting cysteamine acts directly against the parasite and does not modulate host inflammatory response. Cysteamine exposure also blocks replication of P. falciparum in vitro; moreover, these treated parasites show higher levels of intact hemoglobin. This study highlights the in vivo action of cysteamine against Plasmodium and provides further evidence for the involvement of pantetheinase in host response to this infection. PMID:20219464

  16. Cysteamine, the natural metabolite of pantetheinase, shows specific activity against Plasmodium

    PubMed Central

    Min-Oo, Gundula; Ayi, Kodjo; Bongfen, Silayuv E.; Tam, Mifong; Radovanovic, Irena; Gauthier, Susan; Santiago, Helton; Rothfuchs, Antonio Gigliotti; Roffê, Ester; Sher, Alan; Mullick, Alaka; Fortin, Anny; Stevenson, Mary M.; Kain, Kevin C.; Gros, Philippe

    2016-01-01

    In mice, loss of pantetheinase activity causes susceptibility to infection with Plasmodium chabaudi AS. Treatment of mice with the pantetheinase metabolite cysteamine reduces blood-stage replication of P. chabaudi and significantly increases survival. Similarly, a short exposure of Plasmodium to cysteamine ex vivo is sufficient to suppress parasite infectivity in vivo. This effect of cysteamine is specific and not observed with a related thiol (dimercaptosuccinic acid) or with the pantethine precursor of cysteamine. Also, cysteamine does not protect against infection with the parasite Trypanosoma cruzi or the fungal pathogen Candida albicans, suggesting cysteamine acts directly against the parasite and does not modulate host inflammatory response. Cysteamine exposure also blocks replication of P. falciparum in vitro; moreover, these treated parasites show higher levels of intact hemoglobin. This study highlights the in vivo action of cysteamine against Plasmodium and provides further evidence for the involvement of pantetheinase in host response to this infection. PMID:20219464

  17. The remarkable journey of adaptation of the Plasmodium falciparum malaria parasite to New World anopheline mosquitoes

    PubMed Central

    Molina-Cruz, Alvaro; Barillas-Mury, Carolina

    2014-01-01

    Plasmodium falciparum originated in Africa, dispersed around the world as a result of human migration and had to adapt to several different indigenous anopheline mosquitoes. Anophelines from the New World are evolutionary distant form African ones and this probably resulted in a more stringent selection of Plasmodium as it adapted to these vectors. It is thought that Plasmodium has been genetically selected by some anopheline species through unknown mechanisms. The mosquito immune system can greatly limit infection and P. falciparum evolved a strategy to evade these responses, at least in part mediated by Pfs47, a highly polymorphic gene. We propose that adaptation of P. falciparum to new vectors may require evasion of their immune system. Parasites with a Pfs47 haplotype compatible with the indigenous mosquito vector would be able to survive and be transmitted. The mosquito antiplasmodial response could be an important determinant of P. falciparum population structure and could affect malaria transmission in the Americas. PMID:25185006

  18. The remarkable journey of adaptation of the Plasmodium falciparum malaria parasite to New World anopheline mosquitoes.

    PubMed

    Molina-Cruz, Alvaro; Barillas-Mury, Carolina

    2014-08-01

    Plasmodium falciparum originated in Africa, dispersed around the world as a result of human migration and had to adapt to several different indigenous anopheline mosquitoes. Anophelines from the New World are evolutionary distant form African ones and this probably resulted in a more stringent selection of Plasmodium as it adapted to these vectors. It is thought that Plasmodium has been genetically selected by some anopheline species through unknown mechanisms. The mosquito immune system can greatly limit infection and P. falciparum evolved a strategy to evade these responses, at least in part mediated by Pfs47, a highly polymorphic gene. We propose that adaptation of P. falciparum to new vectors may require evasion of their immune system. Parasites with a Pfs47 haplotype compatible with the indigenous mosquito vector would be able to survive and be transmitted. The mosquito antiplasmodial response could be an important determinant of P. falciparum population structure and could affect malaria transmission in the Americas. PMID:25185006

  19. Energy metabolism affects susceptibility of Anopheles gambiae mosquitoes to Plasmodium infection.

    PubMed

    Oliveira, Jose Henrique M; Gonçalves, Renata L S; Oliveira, Giselle A; Oliveira, Pedro L; Oliveira, Marcus F; Barillas-Mury, Carolina

    2011-06-01

    Previous studies showed that Anopheles gambiae L3-5 females, which are refractory (R) to Plasmodium infection, express higher levels of genes involved in redox-metabolism and mitochondrial respiration than susceptible (S) G3 females. Our studies revealed that R females have reduced longevity, faster utilization of lipid reserves, impaired mitochondrial state-3 respiration, increased rate of mitochondrial electron leak and higher expression levels of several glycolytic enzyme genes. Furthermore, when state-3 respiration was reduced in S females by silencing expression of the adenine nucleotide translocator (ANT), hydrogen peroxide generation was higher and the mRNA levels of lactate dehydrogenase increased in the midgut, while the prevalence and intensity of Plasmodium berghei infection were significantly reduced. We conclude that there are broad metabolic differences between R and S An. gambiae mosquitoes that influence their susceptibility to Plasmodium infection. PMID:21320598

  20. Plasmodium durae Herman from the introduced common peafowl in northern Nigeria.

    PubMed

    Laird, M

    1978-02-01

    Plasmodium (Giovannolaia) durae Herman was originally described from Kenya, the type host being the common turkey, Meleagris gallopavo Linnaeus. There are no field records of this association outside of Africa, where the parasite, herein reported from another introduced and domesticated bird (the common peafowl, Pavo cristatus Linnaeus), was recently listed from 2 native Phasianidae of the genus Francolinus. The justification for the present identification is submitted against background data concerning malaria parasites from turkeys and other Galliformes in Africa and elsewhere, and restraint is urged in describing yet more "new species" of avian Plasmodium belonging to morphologically close taxa within Novyella and Giovannolaia. A near relative of P. durae, Plasmodium dissanaikei de Jong, is transferred from the former subgenus to the latter one. PMID:660569

  1. Asparagine requirement in Plasmodium berghei as a target to prevent malaria transmission and liver infections.

    PubMed

    Nagaraj, Viswanathan A; Mukhi, Dhanunjay; Sathishkumar, Vinayagam; Subramani, Pradeep A; Ghosh, Susanta K; Pandey, Rajeev R; Shetty, Manjunatha C; Padmanaban, Govindarajan

    2015-01-01

    The proteins of Plasmodium, the malaria parasite, are strikingly rich in asparagine. Plasmodium depends primarily on host haemoglobin degradation for amino acids and has a rudimentary pathway for amino acid biosynthesis, but retains a gene encoding asparagine synthetase (AS). Here we show that deletion of AS in Plasmodium berghei (Pb) delays the asexual- and liver-stage development with substantial reduction in the formation of ookinetes, oocysts and sporozoites in mosquitoes. In the absence of asparagine synthesis, extracellular asparagine supports suboptimal survival of PbAS knockout (KO) parasites. Depletion of blood asparagine levels by treating PbASKO-infected mice with asparaginase completely prevents the development of liver stages, exflagellation of male gametocytes and the subsequent formation of sexual stages. In vivo supplementation of asparagine in mice restores the exflagellation of PbASKO parasites. Thus, the parasite life cycle has an absolute requirement for asparagine, which we propose could be targeted to prevent malaria transmission and liver infections. PMID:26531182

  2. Parasite-induced ER stress response in hepatocytes facilitates Plasmodium liver stage infection.

    PubMed

    Inácio, Patricia; Zuzarte-Luís, Vanessa; Ruivo, Margarida T G; Falkard, Brie; Nagaraj, Nagarjuna; Rooijers, Koos; Mann, Matthias; Mair, Gunnar; Fidock, David A; Mota, Maria M

    2015-08-01

    Upon infection of a mammalian host, Plasmodium parasites first replicate inside hepatocytes, generating thousands of new parasites. Although Plasmodium intra-hepatic development represents a substantial metabolic challenge to the host hepatocyte, how infected cells respond to and integrate this stress remains poorly understood. Here, we present proteomic and transcriptomic analyses, revealing that the endoplasmic reticulum (ER)-resident unfolded protein response (UPR) is activated in host hepatocytes upon Plasmodium berghei infection. The expression of XBP1s--the active form of the UPR mediator XBP1--and the liver-specific UPR mediator CREBH is induced by P. berghei infection in vivo. Furthermore, this UPR induction increases parasite liver burden. Altogether, our data suggest that ER stress is a central feature of P. berghei intra-hepatic development, contributing to the success of infection. PMID:26113366

  3. Asparagine requirement in Plasmodium berghei as a target to prevent malaria transmission and liver infections

    PubMed Central

    Nagaraj, Viswanathan A.; Mukhi, Dhanunjay; Sathishkumar, Vinayagam; Subramani, Pradeep A.; Ghosh, Susanta K.; Pandey, Rajeev R.; Shetty, Manjunatha C.; Padmanaban, Govindarajan

    2015-01-01

    The proteins of Plasmodium, the malaria parasite, are strikingly rich in asparagine. Plasmodium depends primarily on host haemoglobin degradation for amino acids and has a rudimentary pathway for amino acid biosynthesis, but retains a gene encoding asparagine synthetase (AS). Here we show that deletion of AS in Plasmodium berghei (Pb) delays the asexual- and liver-stage development with substantial reduction in the formation of ookinetes, oocysts and sporozoites in mosquitoes. In the absence of asparagine synthesis, extracellular asparagine supports suboptimal survival of PbAS knockout (KO) parasites. Depletion of blood asparagine levels by treating PbASKO-infected mice with asparaginase completely prevents the development of liver stages, exflagellation of male gametocytes and the subsequent formation of sexual stages. In vivo supplementation of asparagine in mice restores the exflagellation of PbASKO parasites. Thus, the parasite life cycle has an absolute requirement for asparagine, which we propose could be targeted to prevent malaria transmission and liver infections. PMID:26531182

  4. Parasite-induced ER stress response in hepatocytes facilitates Plasmodium liver stage infection

    PubMed Central

    Inácio, Patricia; Zuzarte-Luís, Vanessa; Ruivo, Margarida TG; Falkard, Brie; Nagaraj, Nagarjuna; Rooijers, Koos; Mann, Matthias; Mair, Gunnar; Fidock, David A; Mota, Maria M

    2015-01-01

    Upon infection of a mammalian host, Plasmodium parasites first replicate inside hepatocytes, generating thousands of new parasites. Although Plasmodium intra-hepatic development represents a substantial metabolic challenge to the host hepatocyte, how infected cells respond to and integrate this stress remains poorly understood. Here, we present proteomic and transcriptomic analyses, revealing that the endoplasmic reticulum (ER)-resident unfolded protein response (UPR) is activated in host hepatocytes upon Plasmodium berghei infection. The expression of XBP1s—the active form of the UPR mediator XBP1—and the liver-specific UPR mediator CREBH is induced by P. berghei infection in vivo. Furthermore, this UPR induction increases parasite liver burden. Altogether, our data suggest that ER stress is a central feature of P. berghei intra-hepatic development, contributing to the success of infection. PMID:26113366

  5. Epidemiology and Infectivity of Plasmodium falciparum and Plasmodium vivax Gametocytes in Relation to Malaria Control and Elimination

    PubMed Central

    Bousema, Teun; Drakeley, Chris

    2011-01-01

    Summary: Malaria remains a major cause of morbidity and mortality in the tropics, with Plasmodium falciparum responsible for the majority of the disease burden and P. vivax being the geographically most widely distributed cause of malaria. Gametocytes are the sexual-stage parasites that infect Anopheles mosquitoes and mediate the onward transmission of the disease. Gametocytes are poorly studied despite this crucial role, but with a recent resurgence of interest in malaria elimination, the study of gametocytes is in vogue. This review highlights the current state of knowledge with regard to the development and longevity of P. falciparum and P. vivax gametocytes in the human host and the factors influencing their distribution within endemic populations. The evidence for immune responses, antimalarial drugs, and drug resistance influencing infectiousness to mosquitoes is reviewed. We discuss how the application of molecular techniques has led to the identification of submicroscopic gametocyte carriage and to a reassessment of the human infectious reservoir. These components are drawn together to show how control measures that aim to reduce malaria transmission, such as mass drug administration and a transmission-blocking vaccine, might better be deployed. PMID:21482730

  6. In Vitro Activity of wALADin Benzimidazoles against Different Life Cycle Stages of Plasmodium Parasites

    PubMed Central

    Lentz, Christian S.; Sattler, Julia M.; Fendler, Martina; Gottwalt, Simon; Halls, Victoria S.; Strassel, Silke; Arriens, Sandra; Hannam, Jeffrey S.; Specht, Sabine; Famulok, Michael; Mueller, Ann-Kristin; Hoerauf, Achim

    2014-01-01

    wALADin1 benzimidazoles are specific inhibitors of δ-aminolevulinic acid dehydratase from Wolbachia endobacteria of filarial nematodes. We report that wALADin1 and two derivatives killed blood stage Plasmodium falciparum in vitro (50% inhibitory concentrations, 39, 7.7, and 12.8 μM, respectively). One of these derivatives inhibited gliding motility of Plasmodium berghei ANKA infectious sporozoites with nanomolar affinity and blocked invasion into hepatocytes but did not affect intrahepatocytic replication. Hence, wALADin1 benzimidazoles are tools to study gliding motility and potential antiplasmodial drug candidates. PMID:25313210

  7. Plasmodium spp. In a captive raptor collection of a Safaripark in northwest Italy.

    PubMed

    Scaglione, F E; Cannizzo, F T; Chiappino, L; Sereno, A; Ripepi, M; Salamida, S; Manuali, E; Bollo, E

    2016-02-01

    Blood parasites infect all vertebrates (Clayton and Moore 1997). Avian malaria parasites (Plasmodium spp., Plasmodiidae) are cosmopolitan in their distribution and are responsible for severe diseases in domestic and wild birds.In September 2009, nine raptorial birds that either arrived recently or were maintained as permanent residents at the Safaripark Pombia (northwest Italy) showed loss of stamina, developing listlessness, anorexia and regurgitation. Within one month three animals died and were necropsied.Following the diagnosis of Plasmodium infection all other raptorial birds were treated: clinical improvement was observed in all birds, and blood smears made after one month resulted negative for parasites. PMID:26850550

  8. Reduced polymorphism in the Kelch propeller domain in Plasmodium vivax isolates from Cambodia.

    PubMed

    Popovici, Jean; Kao, Sokheng; Eal, Leanghor; Bin, Sophalai; Kim, Saorin; Ménard, Didier

    2015-01-01

    Polymorphism in the ortholog gene of the Plasmodium falciparum K13 gene was investigated in Plasmodium vivax isolates collected in Cambodia. All of them were Sal-1 wild-type alleles except two (2/284, 0.7%), and P. vivax K12 polymorphism was reduced compared to that of the P. falciparum K13 gene. Both mutant allele isolates had the same nonsynonymous mutation at codon 552 (V552I) and were from Ratanak Kiri province. These preliminary data should encourage additional studies for associating artemisinin or chloroquine resistance and K12 polymorphism. PMID:25385109

  9. Reduced Polymorphism in the Kelch Propeller Domain in Plasmodium vivax Isolates from Cambodia

    PubMed Central

    Popovici, Jean; Kao, Sokheng; Eal, Leanghor; Bin, Sophalai; Kim, Saorin

    2014-01-01

    Polymorphism in the ortholog gene of the Plasmodium falciparum K13 gene was investigated in Plasmodium vivax isolates collected in Cambodia. All of them were Sal-1 wild-type alleles except two (2/284, 0.7%), and P. vivax K12 polymorphism was reduced compared to that of the P. falciparum K13 gene. Both mutant allele isolates had the same nonsynonymous mutation at codon 552 (V552I) and were from Ratanak Kiri province. These preliminary data should encourage additional studies for associating artemisinin or chloroquine resistance and K12 polymorphism. PMID:25385109

  10. Targeting the gyrase of Plasmodium falciparum with topoisomerase poisons.

    PubMed

    Tang Girdwood, Sonya C; Nenortas, Elizabeth; Shapiro, Theresa A

    2015-06-15

    Drug-resistant malaria poses a major public health problem throughout the world and the need for new antimalarial drugs is growing. The apicoplast, a chloroplast-like organelle essential for malaria parasite survival and with no counterpart in humans, offers an attractive target for selectively toxic new therapies. The apicoplast genome (plDNA) is a 35 kb circular DNA that is served by gyrase, a prokaryotic type II topoisomerase. Gyrase is poisoned by fluoroquinolone antibacterials that stabilize a catalytically inert ternary complex of enzyme, its plDNA substrate, and inhibitor. We used fluoroquinolones to study the gyrase and plDNA of Plasmodium falciparum. New methods for isolating and separating plDNA reveal four topologically different forms and permit a quantitative exam of perturbations that result from gyrase poisoning. In keeping with its role in DNA replication, gyrase is most abundant in late stages of the parasite lifecycle, but several lines of evidence indicate that even in these cells the enzyme is present in relatively low abundance: about 1 enzyme for every two plDNAs or a ratio of 1 gyrase: 70 kb DNA. For a spectrum of quinolones, correlation was generally good between antimalarial activity and gyrase poisoning, the putative molecular mechanism of drug action. However, in P. falciparum there is evidence for off-target toxicity, particularly for ciprofloxacin. These studies highlight the utility of the new methods and of fluoroquinolones as a tool for studying the in situ workings of gyrase and its plDNA substrate. PMID:25881748

  11. Characterization of native PfABCG protein in Plasmodium falciparum.

    PubMed

    Edaye, Sonia; Georges, Elias

    2015-09-15

    The Plasmodium falciparum genome encodes 16 members of ABC proteins, with one member of the ABCG subfamily (PfABCG). Analysis of PfABCG amino acid sequence shows equal sequence identity to hsABCG1 and G2. Using N-terminal directed antibody against a recombinant fragment of PfABCG, we show that PfABCG migrates with an apparent molecular mass of 65KDa polypeptide on SDS-PAGE. PfABCG is expressed in all four stages of the parasite erythrocytic life cycle, with lower and higher expression in ring and late trophozoite stages, respectively. The protein localizes to the plasma membrane and a novel spherical structure beneath the cell membrane. Similar localization is also observed in gametocytes where PfABCG is highly expressed. Analysis of PfABCG genomic sequences for polymorphisms and changes in protein expression between different strains of P. falciparum revealed identical nucleotide sequence among the different strains, but variable protein expression. PfABCG expression is least in HB3 chloroquine sensitive strain, while higher expression levels are seen in other chloroquine-sensitive and -resistant strains, with highest levels of expression in 7G8. The differential expression of PfABCG in three chloroquine-sensitive strains (e.g., 3D7, HB3 and D10) predicts the sensitivity of the different strains to ketotifen, an anti-histaminic drug, whereby low expression is associated with decreased sensitivity to ketotifen. Taken together, the results in this report provide the first description of native PfABCG expression and subcellular localization in asexual stages of the parasite and its localization in gametocytes. It remains to be determined if PfABCG is functionally equivalent to mammalian ABCG1, ABCG2 or both. PMID:26239803

  12. Fucosylated Chondroitin Sulfate Inhibits Plasmodium falciparum Cytoadhesion and Merozoite Invasion

    PubMed Central

    Bastos, Marcele F.; Albrecht, Letusa; Kozlowski, Eliene O.; Lopes, Stefanie C. P.; Blanco, Yara C.; Carlos, Bianca C.; Castiñeiras, Catarina; Vicente, Cristina P.; Werneck, Claudio C.; Wunderlich, Gerhard; Ferreira, Marcelo U.; Marinho, Claudio R. F.; Mourão, Paulo A. S.; Pavão, Mauro S. G.

    2014-01-01

    Sequestration of Plasmodium falciparum-infected erythrocytes (Pf-iEs) in the microvasculature of vital organs plays a key role in the pathogenesis of life-threatening malaria complications, such as cerebral malaria and malaria in pregnancy. This phenomenon is marked by the cytoadhesion of Pf-iEs to host receptors on the surfaces of endothelial cells, on noninfected erythrocytes, and in the placental trophoblast; therefore, these sites are potential targets for antiadhesion therapies. In this context, glycosaminoglycans (GAGs), including heparin, have shown the ability to inhibit Pf-iE cytoadherence and growth. Nevertheless, the use of heparin was discontinued due to serious side effects, such as bleeding. Other GAG-based therapies were hampered due to the potential risk of contamination with prions and viruses, as some GAGs are isolated from mammals. In this context, we investigated the effects and mechanism of action of fucosylated chondroitin sulfate (FucCS), a unique and highly sulfated GAG isolated from the sea cucumber, with respect to P. falciparum cytoadhesion and development. FucCS was effective in inhibiting the cytoadherence of Pf-iEs to human lung endothelial cells and placenta cryosections under static and flow conditions. Removal of the sulfated fucose branches of the FucCS structure virtually abolished the inhibitory effects of FucCS. Importantly, FucCS rapidly disrupted rosettes at high levels, and it was also able to block parasite development by interfering with merozoite invasion. Collectively, these findings highlight the potential of FucCS as a candidate for adjunct therapy against severe malaria. PMID:24395239

  13. Functional Analysis of Sirtuin Genes in Multiple Plasmodium falciparum Strains

    PubMed Central

    Merrick, Catherine J.; Jiang, Rays H. Y.; Skillman, Kristen M.; Samarakoon, Upeka; Moore, Rachel M.; Dzikowski, Ron; Ferdig, Michael T.; Duraisingh, Manoj T.

    2015-01-01

    Plasmodium falciparum, the causative agent of severe human malaria, employs antigenic variation to avoid host immunity. Antigenic variation is achieved by transcriptional switching amongst polymorphic var genes, enforced by epigenetic modification of chromatin. The histone-modifying ‘sirtuin’ enzymes PfSir2a and PfSir2b have been implicated in this process. Disparate patterns of var expression have been reported in patient isolates as well as in cultured strains. We examined var expression in three commonly used laboratory strains (3D7, NF54 and FCR-3) in parallel. NF54 parasites express significantly lower levels of var genes compared to 3D7, despite the fact that 3D7 was originally a clone of the NF54 strain. To investigate whether this was linked to the expression of sirtuins, genetic disruption of both sirtuins was attempted in all three strains. No dramatic changes in var gene expression occurred in NF54 or FCR-3 following PfSir2b disruption, contrasting with previous observations in 3D7. In 3D7, complementation of the PfSir2a genetic disruption resulted in a significant decrease in previously-elevated var gene expression levels, but with the continued expression of multiple var genes. Finally, rearranged chromosomes were observed in the 3D7 PfSir2a knockout line. Our results focus on the potential for parasite genetic background to contribute to sirtuin function in regulating virulence gene expression and suggest a potential role for sirtuins in maintaining genome integrity. PMID:25780929

  14. Product Release Pathways in Human and Plasmodium falciparum Phosphoribosyltransferase.

    PubMed

    Karmakar, Tarak; Roy, Sourav; Balaram, Hemalatha; Prakash, Meher K; Balasubramanian, Sundaram

    2016-08-22

    Atomistic molecular dynamics (MD) simulations coupled with the metadynamics technique were carried out to delineate the product (PPi.2Mg and IMP) release mechanisms from the active site of both human (Hs) and Plasmodium falciparum (Pf) hypoxanthine-guanine-(xanthine) phosphoribosyltransferase (HG(X)PRT). An early movement of PPi.2Mg from its binding site has been observed. The swinging motion of the Asp side chain (D134/D145) in the binding pocket facilitates the detachment of IMP, which triggers the opening of flexible loop II, the gateway to the bulk solvent. In PfHGXPRT, PPi.2Mg and IMP are seen to be released via the same path in all of the biased MD simulations. In HsHGPRT too, the product molecules follow similar routes from the active site; however, an alternate but minor escape route for PPi.2Mg has been observed in the human enzyme. Tyr 104 and Phe 186 in HsHGPRT and Tyr 116 and Phe 197 in PfHGXPRT are the key residues that mediate the release of IMP, whereas the motion of PPi.2Mg away from the reaction center is guided by the negatively charged Asp and Glu and a few positively charged residues (Lys and Arg) that line the product release channels. Mutations of a few key residues present in loop II of Trypanosoma cruzi (Tc) HGPRT have been shown to reduce the catalytic efficiency of the enzyme. Herein, in silico mutation of corresponding residues in loop II of HsHGPRT and PfHGXPRT resulted in partial opening of the flexible loop (loop II), thus exposing the active site to bulk water, which offers a rationale for the reduced catalytic activity of these two mutant enzymes. Investigations of the product release from these HsHGPRT and PfHGXPRT mutants delineate the role of these important residues in the enzymatic turnover. PMID:27404508

  15. Neglected Plasmodium vivax malaria in northeastern States of India

    PubMed Central

    Sharma, Vinod P.; Dev, Vas; Phookan, Sobhan

    2015-01-01

    Background & objectives: The northeastern States of India are co-endemic for Plasmodium falciparum and P. vivax malaria. The transmission intensity is low-to-moderate resulting in intermediate to stable malaria. Malaria control prioritized P. falciparum being the predominant and life threatening infection (>70%). P. vivax malaria remained somewhat neglected. The present study provides a status report of P. vivax malaria in the northeastern States of India. Methods: Data on spatial distribution of P. vivax from seven northeastern States (Arunachal Pradesh, Assam, Manipur, Meghalaya, Mizoram, Nagaland and Tripura) were analysed retrospectively from 2008–2013. In addition, cross-sectional malarial surveys were conducted during 1991-2012 in malaria endemic pockets across the States of Assam, Meghalaya, Mizoram and Tripura to ascertain the prevalence of P. vivax in different age groups. Results: Vivax malaria was encountered in all northeastern States but there existed a clear division of two malaria ecotypes supporting ≤30 and >30 per cent of total malaria cases. High proportions of P. vivax cases (60–80%) were seen in Arunachal Pradesh and Nagaland in the north with alpine environment, 42-67 per cent in Manipur, whereas in Assam it varied from 23-31 per cent with subtropical and tropical climate. Meghalaya, Tripura and Mizoram had the lowest proportion of P. vivax cases. Malaria cases were recorded in all age groups but a higher proportion of P. vivax consistently occurred among <5 yr age group compared to P. falciparum (P<0.05). P. vivax cases were recorded throughout the year with peak coinciding with rainy season although transmission intensity and duration varied. Interpretation & conclusions: In northeast India, P. vivax is a neglected infection. Estimating the relapsing pattern and transmission dynamics of P. vivax in various ecological settings is an important pre-requisite for planning malaria elimination in the northeastern States. PMID:26139771

  16. Heterologous Protection against Malaria after Immunization with Plasmodium falciparum Sporozoites

    PubMed Central

    van Gemert, Geert-Jan; Graumans, Wouter; van de Vegte-Bolmer, Marga; van Lieshout, Lisette; Haks, Mariëlle C.; Hermsen, Cornelus C.; Scholzen, Anja; Visser, Leo G.; Sauerwein, Robert W.

    2015-01-01

    Background Sterile protection in >90% of volunteers against homologous Plasmodium falciparum infection has been achieved only using the controlled human malaria infection (CHMI) model. This efficient model involves whole parasite immunizations under chloroquine prophylaxis (CPS-immunization), requiring only 30–45 mosquitoes bites infected with P. falciparum-sporozoites. Given the large diversity of P. falciparum parasites, it is essential to assess protection against heterologous parasite strains. Methods In an open-label follow-up study, 16 volunteers previously CPS-immunized and challenged with P. falciparum NF54 (West-Africa) in a dose de-escalation and challenge trial were re-challenged with clone NF135.C10 (Cambodia) at 14 months after the last immunization (NCT01660854). Results Two out of thirteen NF54 protected volunteers previously fully protected against NF54 were also fully protected against NF135.C10, while 11/13 showed a delayed patency (median prepatent period of 10.5 days (range 9.0–15.5) versus 8.5 days in 5 malaria-naïve controls (p = 0.0005). Analysis of patency by qPCR indicated a 91 to >99% estimated reduction of liver parasite load in 7/11 partially protected subjects. Three volunteers previously not protected against NF54, were also not protected against NF135.C10. Conclusion This study shows that CPS-immunization can induce heterologous protection for a period of more than one year, which is a further impetus for clinical development of whole parasite vaccines. Trial Registration Clinicaltrials.gov NCT01660854 PMID:25933168

  17. The Fragmented Mitochondrial Ribosomal RNAs of Plasmodium falciparum

    PubMed Central

    Feagin, Jean E.; Harrell, Maria Isabel; Lee, Jung C.; Coe, Kevin J.; Sands, Bryan H.; Cannone, Jamie J.; Tami, Germaine; Schnare, Murray N.; Gutell, Robin R.

    2012-01-01

    Background The mitochondrial genome in the human malaria parasite Plasmodium falciparum is most unusual. Over half the genome is composed of the genes for three classic mitochondrial proteins: cytochrome oxidase subunits I and III and apocytochrome b. The remainder encodes numerous small RNAs, ranging in size from 23 to 190 nt. Previous analysis revealed that some of these transcripts have significant sequence identity with highly conserved regions of large and small subunit rRNAs, and can form the expected secondary structures. However, these rRNA fragments are not encoded in linear order; instead, they are intermixed with one another and the protein coding genes, and are coded on both strands of the genome. This unorthodox arrangement hindered the identification of transcripts corresponding to other regions of rRNA that are highly conserved and/or are known to participate directly in protein synthesis. Principal Findings The identification of 14 additional small mitochondrial transcripts from P. falcipaurm and the assignment of 27 small RNAs (12 SSU RNAs totaling 804 nt, 15 LSU RNAs totaling 1233 nt) to specific regions of rRNA are supported by multiple lines of evidence. The regions now represented are highly similar to those of the small but contiguous mitochondrial rRNAs of Caenorhabditis elegans. The P. falciparum rRNA fragments cluster on the interfaces of the two ribosomal subunits in the three-dimensional structure of the ribosome. Significance All of the rRNA fragments are now presumed to have been identified with experimental methods, and nearly all of these have been mapped onto the SSU and LSU rRNAs. Conversely, all regions of the rRNAs that are known to be directly associated with protein synthesis have been identified in the P. falciparum mitochondrial genome and RNA transcripts. The fragmentation of the rRNA in the P. falciparum mitochondrion is the most extreme example of any rRNA fragmentation discovered. PMID:22761677

  18. Artesunate plus pyronaridine for treating uncomplicated Plasmodium falciparum malaria

    PubMed Central

    Bukirwa, Hasifa; Unnikrishnan, B; Kramer, Christine V; Sinclair, David; Nair, Suma; Tharyan, Prathap

    2014-01-01

    Background The World Health Organization (WHO) recommends that people with uncomplicated Plasmodium falciparum malaria are treated using Artemisinin-based Combination Therapy (ACT). ACT combines three-days of a short-acting artemisinin derivative with a longer-acting antimalarial which has a different mode of action. Pyronaridine has been reported as an effective antimalarial over two decades of use in parts of Asia, and is currently being evaluated as a partner drug for artesunate. Objectives To evaluate the efficacy and safety of artesunate-pyronaridine compared to alternative ACTs for treating people with uncomplicated P. falciparum malaria. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register; Cochrane Central Register of Controlled Trials (CENTRAL), published in The Cochrane Library; MEDLINE; EMBASE; LILACS; ClinicalTrials.gov; the metaRegister of Controlled Trials (mRCT); and the WHO International Clinical Trials Search Portal up to 16 January 2014. We searched reference lists and conference abstracts, and contacted experts for information about ongoing and unpublished trials. Selection criteria Randomized controlled trials of artesunate-pyronaridine versus other ACTs in adults and children with uncomplicated P. falciparum malaria. For the safety analysis, we also included adverse events data from trials comparing any treatment regimen containing pyronaridine with regimens not containing pyronaridine. Data collection and analysis Two authors independently assessed trial eligibility and risk of bias, and extracted data. We combined dichotomous data using risk ratios (RR) and continuous data using mean differences (MD), and presented all results with a 95% confidence interval (CI). We used the GRADE approach to assess the quality of evidence. Main results We included six randomized controlled trials enrolling 3718 children and adults. Artesunate-pyronaridine versus artemether-lumefantrine In two multicentre trials, enrolling

  19. Hemoglobinopathies: slicing the Gordian knot of Plasmodium falciparum malaria pathogenesis.

    PubMed

    Taylor, Steve M; Cerami, Carla; Fairhurst, Rick M

    2013-01-01

    Plasmodium falciparum malaria kills over 500,000 children every year and has been a scourge of humans for millennia. Owing to the co-evolution of humans and P. falciparum parasites, the human genome is imprinted with polymorphisms that not only confer innate resistance to falciparum malaria, but also cause hemoglobinopathies. These genetic traits--including hemoglobin S (HbS), hemoglobin C (HbC), and α-thalassemia--are the most common monogenic human disorders and can confer remarkable degrees of protection from severe, life-threatening falciparum malaria in African children: the risk is reduced 70% by homozygous HbC and 90% by heterozygous HbS (sickle-cell trait). Importantly, this protection is principally present for severe disease and largely absent for P. falciparum infection, suggesting that these hemoglobinopathies specifically neutralize the parasite's in vivo mechanisms of pathogenesis. These hemoglobin variants thus represent a "natural experiment" to identify the cellular and molecular mechanisms by which P. falciparum produces clinical morbidity, which remain partially obscured due to the complexity of interactions between this parasite and its human host. Multiple lines of evidence support a restriction of parasite growth by various hemoglobinopathies, and recent data suggest this phenomenon may result from host microRNA interference with parasite metabolism. Multiple hemoglobinopathies mitigate the pathogenic potential of parasites by interfering with the export of P. falciparum erythrocyte membrane protein 1 (PfEMP1) to the surface of the host red blood cell. Few studies have investigated their effects upon the activation of the innate and adaptive immune systems, although recent murine studies suggest a role for heme oxygenase-1 in protection. Ultimately, the identification of mechanisms of protection and pathogenesis can inform future therapeutics and preventive measures. Hemoglobinopathies slice the "Gordian knot" of host and parasite

  20. Chloroquine-resistant Plasmodium vivax malaria in Debre Zeit, Ethiopia

    PubMed Central

    Teka, Hiwot; Petros, Beyene; Yamuah, Lawrence; Tesfaye, Gezahegn; Elhassan, Ibrahim; Muchohi, Simon; Kokwaro, Gilbert; Aseffa, Abraham; Engers, Howard

    2008-01-01

    Background Plasmodium vivax accounts for about 40% of all malaria infection in Ethiopia. Chloroquine (CQ) is the first line treatment for confirmed P. vivax malaria in the country. The first report of CQ treatment failure in P. vivax was from Debre Zeit, which suggested the presence of chloroquine resistance. Methods An in vivo drug efficacy study was conducted in Debre Zeit from June to August 2006. Eighty-seven patients with microscopically confirmed P. vivax malaria, aged between 8 months and 52 years, were recruited and treated under supervision with CQ (25 mg/kg over three days). Clinical and parasitological parameters were assessed during the 28 day follow-up period. CQ and desethylchloroquine (DCQ) blood and serum concentrations were determined with high performance liquid chromatography (HPLC) in patients who showed recurrent parasitaemia. Results Of the 87 patients recruited in the study, one was lost to follow-up and three were excluded due to P. falciparum infection during follow-up. A total of 83 (95%) of the study participants completed the follow-up. On enrolment, 39.8% had documented fever and 60.2% had a history of fever. The geometric mean parasite density of the patients was 7045 parasites/μl. Among these, four patients had recurrent parasitaemia on Day 28. The blood CQ plus DCQ concentrations of these four patients were all above the minimal effective concentration (> 100 ng/ml). Conclusion Chloroquine-resistant P. vivax parasites are emerging in Debre Zeit, Ethiopia. A multi-centre national survey is needed to better understand the extent of P. vivax resistance to CQ in Ethiopia. PMID:18959774

  1. Amodiaquine failure associated with erythrocytic glutathione in Plasmodium falciparum malaria

    PubMed Central

    Zuluaga, Lina; Pabón, Adriana; López, Carlos; Ochoa, Aleida; Blair, Silvia

    2007-01-01

    Objective To establish the relationship between production of glutathione and the therapeutic response to amodiaquine (AQ) monotherapy in Plasmodium falciparum non-complicated malaria patients. Methodology Therapeutic response to AQ was evaluated in 32 patients with falciparum malaria in two townships of Antioquia, Colombia, and followed-up for 28 days. For every patient, total glutathione and enzymatic activity (glutathione reductase, GR, and γ-glutamylcysteine synthetase, γ-GCS) were determined in parasitized erythrocytes, non-infected erythrocytes and free parasites, on the starting day (day zero, before ingestion of AQ) and on the day of failure (in case of occurrence). Results There was found an AQ failure of 31.25%. Independent of the therapeutic response, on the starting day and on the day of failure, lower total glutathione concentration and higher GR activities in parasitized erythrocytes were found, compared with non-infected erythrocytes (p < 0.003). In addition, only on the day of failure, γ-GCS activity of parasitized erythrocytes was higher, compared with that of healthy erythrocytes (p = 0.01). Parasitized and non-parasitized erythrocytes in therapeutic failure patients (TF) had higher total glutathione on the starting day compared with those of adequate clinical response (ACR) (p < 0.02). Parasitized erythrocytes of TF patients showed lower total glutathione on the failure day, compared with starting day (p = 0.017). No differences was seen in the GR and γ-GCS activities by compartment, neither between the two therapeutic response groups nor between the two treatment days. Conclusion This study is a first approach to explaining P. falciparum therapeutic failure in humans through differences in glutathione metabolism in TF and ACR patients. These results suggest a role for glutathione in the therapeutic failure to antimalarials. PMID:17451604

  2. Crystal structure of truncated aspartate transcarbamoylase from Plasmodium falciparum.

    PubMed

    Lunev, Sergey; Bosch, Soraya S; Batista, Fernando de Assis; Wrenger, Carsten; Groves, Matthew R

    2016-07-01

    The de novo pyrimidine-biosynthesis pathway of Plasmodium falciparum is a promising target for antimalarial drug discovery. The parasite requires a supply of purines and pyrimidines for growth and proliferation and is unable to take up pyrimidines from the host. Direct (or indirect) inhibition of de novo pyrimidine biosynthesis via dihydroorotate dehydrogenase (PfDHODH), the fourth enzyme of the pathway, has already been shown to be lethal to the parasite. In the second step of the plasmodial pyrimidine-synthesis pathway, aspartate and carbamoyl phosphate are condensed to N-carbamoyl-L-aspartate and inorganic phosphate by aspartate transcarbamoylase (PfATC). In this paper, the 2.5 Å resolution crystal structure of PfATC is reported. The space group of the PfATC crystals was determined to be monoclinic P21, with unit-cell parameters a = 87.0, b = 103.8, c = 87.1 Å, α = 90.0, β = 117.7, γ = 90.0°. The presented PfATC model shares a high degree of homology with the catalytic domain of Escherichia coli ATC. There is as yet no evidence of the existence of a regulatory domain in PfATC. Similarly to E. coli ATC, PfATC was modelled as a homotrimer in which each of the three active sites is formed at the oligomeric interface. Each active site comprises residues from two adjacent subunits in the trimer with a high degree of evolutional conservation. Here, the activity loss owing to mutagenesis of the key active-site residues is also described. PMID:27380369

  3. Identification of inhibitors of Plasmodium falciparum gametocyte development

    PubMed Central

    2013-01-01

    Background Plasmodium falciparum gametocytes, specifically mature stages, are the only stage in man transmissible to the mosquito vector responsible for malaria transmission. Anti-malarial drugs capable of killing these forms are considered essential for the eradication of malaria. The comprehensive profiling of in vitro activity of anti-malarial compounds against both early (I-III) and late (IV-V) stage P. falciparum gametocytes, along with the high throughput screening (HTS) outcomes from the MMV malaria box are described. Method Two anti-gametocyte HTS assays based on confocal fluorescence microscopy, utilizing both a gametocyte specific protein (pfs16-Luc-GFP) and a viability marker (MitoTracker Red CM-H2XRos) (MTR), were used for the measurement of anti-gametocytocidal activity. This combination provided a direct observation of gametocyte number per assay well, whilst defining the viability of each gametocyte imaged. Results IC50 values were obtained for 36 current anti-malarial compounds for activities against asexual, early and late stage gametocytes. The MMV malaria box was screened and actives progressed for IC50 evaluation. Seven % of the “drug-like” and 21% of the “probe-like” compounds from the MMV malaria box demonstrated equivalent activity against both asexual and late stage gametocytes. Conclusions The assays described were shown to selectively identify compounds with gametocytocidal activity and have been demonstrated suitable for HTS with the capability of screening in the order of 20,000 compounds per screening campaign, two to three times per seven-day week. PMID:24206914

  4. pfmdr2 confers heavy metal resistance to Plasmodium falciparum.

    PubMed

    Rosenberg, Elli; Litus, Ilena; Schwarzfuchs, Nurit; Sinay, Rosa; Schlesinger, Pnina; Golenser, Jacob; Baumeister, Stefan; Lingelbach, Klaus; Pollack, Yaakov

    2006-09-15

    Heavy metals are required by all organisms for normal function, but high levels of heavy metals are toxic. Therefore, homeostasis of these metals is crucial. In the human malaria-causing agent Plasmodium falciparum, the mechanisms of heavy metal transport have yet to be characterized. We have developed a P. falciparum line resistant to heavy metals from a wild-type line sensitive to heavy metals. A molecular and biochemical analysis of the involvement of the P. falciparum multidrug resistance 2 (pfmdr2) gene, an ABC-type transporter, in heavy metal homeostasis was studied. Using a novel uptake assay applied on these two strains, it was demonstrated that, when exposed to heavy metals, the sensitive line accumulates metal, whereas no accumulation was observed in the resistant line. The accumulation occurs within the parasite itself and not in the cytoplasm of the red blood cell. This difference in the accumulation pattern is not a result of amplification of the pfmdr2 gene or of a change in the expression pattern of the gene in the two lines. Sequencing of the gene from both lines revealed a major difference; a stop codon is found in the sensitive line upstream of the normal termination, resulting in a truncated protein that lacks 188 amino acids that contain a portion of the essential cytoplasmatic transporter domain, thereby rendering it inactive. In contrast, the resistant line harbors a full-length, active protein. These findings strongly suggest that the PFMDR2 protein acts as an efflux pump of heavy metals. PMID:16849328

  5. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria

    PubMed Central

    Mbengue, Alassane; Bhattacharjee, Souvik; Pandharkar, Trupti; Liu, Haining; Estiu, Guillermina; Stahelin, Robert V.; Rizk, Shahir; Njimoh, Dieudonne L.; Ryan, Yana; Chotivanich, Kesinee; Nguon, Chea; Ghorbal, Mehdi; Lopez-Rubio, Jose-Juan; Pfrender, Michael; Emrich, Scott; Mohandas, Narla; Dondorp, Arjen M.; Wiest, Olaf; Haldar, Kasturi

    2015-01-01

    Artemisinins are the corner stone of anti-malarial drugs1. Emergence and spread of resistance to them2–4 raises risk of wiping out recent gains achieved in reducing world-wide malaria burden and threatens future malaria control and elimination on a global level. Genome wide association studies (GWAS) have revealed parasite genetic loci associated with artemisinin resistance5–10. However, there is no consensus on biochemical targets of artemisinin. Whether and how these targets interact with genes identified by GWAS, remains unknown. Here we provide biochemical and cellular evidence that artemisinins are potent inhibitors of Plasmodium falciparum phosphatidylinositol-3-kinase (PfPI3K), revealing an unexpected mechanism of action. In resistant clinical strains, increased PfPI3K was associated with the C580Y mutation in P. falciparum Kelch13 (PfKelch13), a primary marker of artemisinin resistance. Polyubiquitination of PfPI3K and its binding to PfKelch13 were reduced by PfKelch13 mutation, which limited proteolysis of PfPI3K and thus increased levels of the kinase as well as its lipid product phosphatidylinositol 3-phosphate (PI3P). We find PI3P levels to be predictive of artemisinin resistance in both clinical and engineered laboratory parasites as well as across non-isogenic strains. Elevated PI3P induced artemisinin resistance in absence of PfKelch13 mutations, but remained responsive to regulation by PfKelch13. Evidence is presented for PI3P-dependent signaling, where transgenic expression of an additional kinase confers resistance. Together these data present PI3P as the key mediator of artemisinin resistance and the sole PfPI3K as an important target for malaria elimination. PMID:25874676

  6. Suppression of erythroid development in vitro by Plasmodium vivax

    PubMed Central

    2012-01-01

    Background Severe anaemia due to dyserythropoiesis has been documented in patients infected with Plasmodium vivax, however the mechanism responsible for anaemia in vivax malaria is poorly understood. In order to better understand the role of P. vivax infection in anaemia the inhibition of erythropoiesis using haematopoietic stem cells was investigated. Methods Haematopoietic stem cells/CD34+ cells, isolated from normal human cord blood were used to generate growing erythroid cells. Exposure of CD34+ cells and growing erythroid cells to P. vivax parasites either from intact or lysed infected erythrocytes (IE) was examined for the effect on inhibition of cell development compared with untreated controls. Results Both lysed and intact infected erythrocytes significantly inhibited erythroid growth. The reduction of erythroid growth did not differ significantly between exposure to intact and lysed IE and the mean growth relative to unexposed controls was 59.4 ± 5.2 for lysed IE and 57 ± 8.5% for intact IE. Interestingly, CD34+ cells/erythroid progenitor cells were susceptible to the inhibitory effect of P. vivax on cell expansion. Exposure to P. vivax also inhibited erythroid development, as determined by the reduced expression of glycophorin A (28.1%) and CD 71 (43.9%). Moreover, vivax parasites perturbed the division of erythroid cells, as measured by the Cytokinesis Block Proliferation Index, which was reduced to 1.35 ± 0.05 (P-value < 0.01) from a value of 2.08 ± 0.07 in controls. Neither TNF-a nor IFN-g was detected in the culture medium of erythroid cells treated with P. vivax, indicating that impaired erythropoiesis was independent of these cytokines. Conclusions This study shows for the first time that P. vivax parasites inhibit erythroid development leading to ineffective erythropoiesis and highlights the potential of P. vivax to cause severe anaemia. PMID:22624872

  7. Correlation between 'H' blood group antigen and Plasmodium falciparum invasion.

    PubMed

    Pathak, Vrushali; Colah, Roshan; Ghosh, Kanjaksha

    2016-06-01

    The ABO blood group system is the most important blood group system in clinical practice. The relationship between Plasmodium falciparum and ABO blood groups has been studied for many years. This study was undertaken to investigate the abilities of different blood group erythrocytes to support in vitro growth of P. falciparum parasites. P. falciparum parasites of four different strains (3D7, 7G8, Dd2 and RKL9) were co-cultured with erythrocytes of blood group 'A', 'B', 'O' (n = 10 for each) and 'O(h)' (Bombay group) (n = 7) for 5 days. Statistically significant differences were observed on the fourth day among the mean percent parasitemias of 'O', non-'O' ('A' and 'B') and 'O(h)' group cultures. The parasitemias of four strains ranged from 12.23 to 14.66, 11.68 to 13.24, 16.89 to 22.3, and 7.37 to 11.27 % in 'A', 'B', 'O' and Bombay group cultures, respectively. As the expression of H antigen decreased from 'O' blood group to 'A' and 'B' and then to Bombay blood group, parasite invasion (percent parasitemia) also decreased significantly (p < 0.01) and concomitantly, indicating the association of parasite invasion with the amount of H antigen present on the surface of erythrocyte. Thus, the question arises, could H antigen be involved in P. falciparum invasion? To evaluate erythrocyte invasion inhibition, 'O' group erythrocytes were virtually converted to Bombay group-like erythrocytes by the treatment of anti-H lectins extracted from Ulex europaeus seeds. Mean percent parasitemia of lectin-treated cultures on the fourth day was significantly lower (p < 0.05) than that of non-treated cultures and was found to be similar with the mean percent parasitemia demonstrated by the Bombay group erythrocyte cultures, thus further strengthening the hypothesis. PMID:27071756

  8. In Vitro Susceptibility of Plasmodium vivax to Antimalarials in Colombia

    PubMed Central

    Fernández, Diana; Segura, César; Arboleda, Margarita; Garavito, Giovanny; Blair, Silvia

    2014-01-01

    The in vitro susceptibilities of 30 isolates of Plasmodium vivax to a number of antimalarials (chloroquine [CQ], mefloquine, amodiaquine, quinine, and artesunate [AS]) were evaluated. The isolates came from the region of Urabá in Colombia, in which malaria is endemic, and were evaluated by the schizont maturation test. The 50% inhibitory concentration (IC50) was 0.6 nM (95% confidence interval [CI], 0.3 to 1.0 nM) for artesunate, 8.5 nM (95% CI, 5.6 to 13.0 nM) for amodiaquine, 23.3 nM (95% CI, 12.4 to 44.1 nM) for chloroquine, 55.6 nM (95% CI, 36.8 to 84.1 nM) for mefloquine, and 115.3 nM (95% CI, 57.7 to 230.5 nM) for quinine. The isolates were classified according to whether the initial parasites were mature or immature trophozoites (Tfz). It was found that the IC50s for chloroquine and artesunate were significantly different in the two aforementioned groups (P < 0.001). The IC50s of CQ and AS were higher in the isolates from mature Tfz (CQ, 39.3 nM versus 17 nM; AS, 1.4 nM versus 0.3 nM), and 10% of the isolates showed lower susceptibilities to one of the antimalarial drugs, 13.3% to two antimalarial drugs, and 3.3% to more than three antimalarial drugs. It should be highlighted that despite the extensive use of chloroquine in Colombia, P. vivax continues to be susceptible to antimalarials. This is the first report, to our knowledge, showing in vitro susceptibilities of P. vivax isolates to antimalarials in Colombia. PMID:25114141

  9. Plasmodium vivax Diversity and Population Structure across Four Continents.

    PubMed

    Koepfli, Cristian; Rodrigues, Priscila T; Antao, Tiago; Orjuela-Sánchez, Pamela; Van den Eede, Peter; Gamboa, Dionicia; van Hong, Nguyen; Bendezu, Jorge; Erhart, Annette; Barnadas, Céline; Ratsimbasoa, Arsène; Menard, Didier; Severini, Carlo; Menegon, Michela; Nour, Bakri Y M; Karunaweera, Nadira; Mueller, Ivo; Ferreira, Marcelo U; Felger, Ingrid

    2015-01-01

    Plasmodium vivax is the geographically most widespread human malaria parasite. To analyze patterns of microsatellite diversity and population structure across countries of different transmission intensity, genotyping data from 11 microsatellite markers was either generated or compiled from 841 isolates from four continents collected in 1999-2008. Diversity was highest in South-East Asia (mean allelic richness 10.0-12.8), intermediate in the South Pacific (8.1-9.9) Madagascar and Sudan (7.9-8.4), and lowest in South America and Central Asia (5.5-7.2). A reduced panel of only 3 markers was sufficient to identify approx. 90% of all haplotypes in South Pacific, African and SE-Asian populations, but only 60-80% in Latin American populations, suggesting that typing of 2-6 markers, depending on the level of endemicity, is sufficient for epidemiological studies. Clustering analysis showed distinct clusters in Peru and Brazil, but little sub-structuring was observed within Africa, SE-Asia or the South Pacific. Isolates from Uzbekistan were exceptional, as a near-clonal parasite population was observed that was clearly separated from all other populations (FST>0.2). Outside Central Asia FST values were highest (0.11-0.16) between South American and all other populations, and lowest (0.04-0.07) between populations from South-East Asia and the South Pacific. These comparisons between P. vivax populations from four continents indicated that not only transmission intensity, but also geographical isolation affect diversity and population structure. However, the high effective population size results in slow changes of these parameters. This persistency must be taken into account when assessing the impact of control programs on the genetic structure of parasite populations. PMID:26125189

  10. Red Blood Cell Polymorphism and Susceptibility to Plasmodium vivax

    PubMed Central

    Zimmerman, Peter A.; Ferreira, Marcelo U.; Howes, Rosalind E.; Mercereau-Puijalon, Odile

    2013-01-01

    Resistance to Plasmodium vivax blood-stage infection has been widely recognised to result from absence of the Duffy (Fy) blood group from the surface of red blood cells (RBCs) in individuals of African descent. Interestingly, recent studies from different malaria-endemic regions have begun to reveal new perspectives on the association between Duffy gene polymorphism and P. vivax malaria. In Papua New Guinea and the Americas, heterozygous carriers of a Duffy-negative allele are less susceptible to P. vivax infection than Duffy-positive homozygotes. In Brazil, studies show that the Fya antigen, compared to Fyb, is associated with lower binding to the P. vivax Duffy-binding protein and reduced susceptibility to vivax malaria. Additionally, it is interesting that numerous studies have now shown that P. vivax can infect RBCs and cause clinical disease in Duffy-negative people. This suggests that the relationship between P. vivax and the Duffy antigen is more complex than customarily described. Evidence of P. vivax Duffy-independent red cell invasion indicates that the parasite must be evolving alternative red cell invasion pathways. In this chapter, we review the evidence for P. vivax Duffy-dependent and Duffy-independent red cell invasion. We also consider the influence of further host gene polymorphism associated with malaria endemicity on susceptibility to vivax malaria. The interaction between the parasite and the RBC has significant potential to influence the effectiveness of P. vivax-specific vaccines and drug treatments. Ultimately, the relationships between red cell polymorphisms and P. vivax blood-stage infection will influence our estimates on the population at risk and efforts to eliminate vivax malaria. PMID:23384621

  11. Rosetting in Plasmodium vivax: A Cytoadhesion Phenotype Associated with Anaemia

    PubMed Central

    Marín-Menéndez, Alejandro; Bardají, Azucena; Martínez-Espinosa, Flor E.; Bôtto-Menezes, Camila; Lacerda, Marcus V.; Ortiz, Jon; Cisteró, Pau; Piqueras, Mireia; Felger, Ingrid; Müeller, Ivo; Ordi, Jaume; del Portillo, Hernando; Menéndez, Clara; Wahlgren, Mats; Mayor, Alfredo

    2013-01-01

    Background Plasmodium vivax can potentially lead to life-threatening episodes but the mechanisms underlying severe disease remain poorly defined. Cytoadhesion of infected erythrocytes may contribute to P. vivax sequestration and organ injury although its physiological impact is still unknown. Here, we aimed to describe clinically-relevant cytoadhesive phenotypes of P. vivax isolates. Methodology/Principal findings Rosetting and adhesion to CSA, CD36, ICAM1, placental and brain cryosections were determined in P. vivax peripheral isolates from 12 pregnant women, 24 non-pregnant women and 23 men from Manaus (Brazil). P. falciparum co-infection was excluded by PCR and P. vivax isolates were genotyped by assessing the size polymorphism of microsatellites ms2, ms20 and msp1F3 through capillary electrophoresis of PCR products. P. vivax monoinfection was confirmed by PCR in 59 isolates, with 50 (85%) of them being single-clone infections. One P. vivax haplotype was more frequently found among pregnant women (33%) than in non-pregnant women (0%) and men (4%; p = 0.010). Rosetting was observed in 64% of the isolates, adhesion to CSA in 15%, to ICAM1 in 12% and to placental cryosections in 9%, being similar among pregnant and non-pregnant groups. Intensity of rosetting was higher among anaemic individuals compared to non-anaemic (p = 0.010) and decreased with increasing haematocrit (p = 0.033) and haemoglobin levels (p = 0.015). Conclusions/Significance P. vivax peripheral isolates from pregnant women do not exhibit a prominent adhesion to CSA, although other parasite phenotypes still unknown may increase the propagation of certain P. vivax clones observed among pregnant hosts. Rosetting is a frequent cytoadhesive phenotype in P. vivax infections that may contribute to the development of anaemia. PMID:23593522

  12. Transmission and Control of Plasmodium knowlesi: A Mathematical Modelling Study

    PubMed Central

    Imai, Natsuko; White, Michael T.; Ghani, Azra C.; Drakeley, Chris J.

    2014-01-01

    Introduction Plasmodium knowlesi is now recognised as a leading cause of malaria in Malaysia. As humans come into increasing contact with the reservoir host (long-tailed macaques) as a consequence of deforestation, assessing the potential for a shift from zoonotic to sustained P. knowlesi transmission between humans is critical. Methods A multi-host, multi-site transmission model was developed, taking into account the three areas (forest, farm, and village) where transmission is thought to occur. Latin hypercube sampling of model parameters was used to identify parameter sets consistent with possible prevalence in macaques and humans inferred from observed data. We then explore the consequences of increasing human-macaque contact in the farm, the likely impact of rapid treatment, and the use of long-lasting insecticide-treated nets (LLINs) in preventing wider spread of this emerging infection. Results Identified model parameters were consistent with transmission being sustained by the macaques with spill over infections into the human population and with high overall basic reproduction numbers (up to 2267). The extent to which macaques forage in the farms had a non-linear relationship with human infection prevalence, the highest prevalence occurring when macaques forage in the farms but return frequently to the forest where they experience higher contact with vectors and hence sustain transmission. Only one of 1,046 parameter sets was consistent with sustained human-to-human transmission in the absence of macaques, although with a low human reproduction number (R0H = 1.04). Simulations showed LLINs and rapid treatment provide personal protection to humans with maximal estimated reductions in human prevalence of 42% and 95%, respectively. Conclusion This model simulates conditions where P. knowlesi transmission may occur and the potential impact of control measures. Predictions suggest that conventional control measures are sufficient at reducing the risk of

  13. Plasmodium falciparum var gene expression is modified by host immunity

    PubMed Central

    Warimwe, George M.; Keane, Thomas M.; Fegan, Gregory; Musyoki, Jennifer N.; Newton, Charles R. J. C.; Pain, Arnab; Berriman, Matthew; Marsh, Kevin; Bull, Peter C.

    2009-01-01

    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a potentially important family of immune targets, which play a central role in the host–parasite interaction by binding to various host molecules. They are encoded by a diverse family of genes called var, of which there are ≈60 copies in each parasite genome. In sub-Saharan Africa, although P. falciparum infection occurs throughout life, severe malarial disease tends to occur only in childhood. This could potentially be explained if (i) PfEMP1 variants differ in their capacity to support pathogenesis of severe malaria and (ii) this capacity is linked to the likelihood of each molecule being recognized and cleared by naturally acquired antibodies. Here, in a study of 217 Kenyan children with malaria, we show that expression of a group of var genes “cys2,” containing a distinct pattern of cysteine residues, is associated with low host immunity. Expression of cys2 genes was associated with parasites from young children, those with severe malaria, and those with a poorly developed antibody response to parasite-infected erythrocyte surface antigens. Cys-2 var genes form a minor component of all genomic var repertoires analyzed to date. Therefore, the results are compatible with the hypothesis that the genomic var gene repertoire is organized such that PfEMP1 molecules that confer the most virulence to the parasite tend also to be those that are most susceptible to the development of host immunity. This may help the parasite to adapt effectively to the development of host antibodies through modification of the host–parasite relationship. PMID:20018734

  14. Plasmodium falciparum Variant Surface Antigen Expression Patterns during Malaria

    PubMed Central

    2005-01-01

    The variant surface antigens expressed on Plasmodium falciparum–infected erythrocytes are potentially important targets of immunity to malaria and are encoded, at least in part, by a family of var genes, about 60 of which are present within every parasite genome. Here we use semi-conserved regions within short var gene sequence “tags” to make direct comparisons of var gene expression in 12 clinical parasite isolates from Kenyan children. A total of 1,746 var clones were sequenced from genomic and cDNA and assigned to one of six sequence groups using specific sequence features. The results show the following. (1) The relative numbers of genomic clones falling in each of the sequence groups was similar between parasite isolates and corresponded well with the numbers of genes found in the genome of a single, fully sequenced parasite isolate. In contrast, the relative numbers of cDNA clones falling in each group varied considerably between isolates. (2) Expression of sequences belonging to a relatively conserved group was negatively associated with the repertoire of variant surface antigen antibodies carried by the infected child at the time of disease, whereas expression of sequences belonging to another group was associated with the parasite “rosetting” phenotype, a well established virulence determinant. Our results suggest that information on the state of the host–parasite relationship in vivo can be provided by measurements of the differential expression of different var groups, and need only be defined by short stretches of sequence data. PMID:16304608

  15. Plasmodium vivax Diversity and Population Structure across Four Continents

    PubMed Central

    Koepfli, Cristian; Rodrigues, Priscila T.; Antao, Tiago; Orjuela-Sánchez, Pamela; Van den Eede, Peter; Gamboa, Dionicia; van Hong, Nguyen; Bendezu, Jorge; Erhart, Annette; Barnadas, Céline; Ratsimbasoa, Arsène; Menard, Didier; Severini, Carlo; Menegon, Michela; Nour, Bakri Y. M.; Karunaweera, Nadira; Mueller, Ivo; Ferreira, Marcelo U.; Felger, Ingrid

    2015-01-01

    Plasmodium vivax is the geographically most widespread human malaria parasite. To analyze patterns of microsatellite diversity and population structure across countries of different transmission intensity, genotyping data from 11 microsatellite markers was either generated or compiled from 841 isolates from four continents collected in 1999–2008. Diversity was highest in South-East Asia (mean allelic richness 10.0–12.8), intermediate in the South Pacific (8.1–9.9) Madagascar and Sudan (7.9–8.4), and lowest in South America and Central Asia (5.5–7.2). A reduced panel of only 3 markers was sufficient to identify approx. 90% of all haplotypes in South Pacific, African and SE-Asian populations, but only 60–80% in Latin American populations, suggesting that typing of 2–6 markers, depending on the level of endemicity, is sufficient for epidemiological studies. Clustering analysis showed distinct clusters in Peru and Brazil, but little sub-structuring was observed within Africa, SE-Asia or the South Pacific. Isolates from Uzbekistan were exceptional, as a near-clonal parasite population was observed that was clearly separated from all other populations (FST>0.2). Outside Central Asia FST values were highest (0.11–0.16) between South American and all other populations, and lowest (0.04–0.07) between populations from South-East Asia and the South Pacific. These comparisons between P. vivax populations from four continents indicated that not only transmission intensity, but also geographical isolation affect diversity and population structure. However, the high effective population size results in slow changes of these parameters. This persistency must be taken into account when assessing the impact of control programs on the genetic structure of parasite populations. PMID:26125189

  16. Monoclonal antibodies produced against sporozoites of the human parasite Plasmodium malariae abolish infectivity of sporozoites of the simian parasite Plasmodium brasilianum.

    PubMed Central

    Cochrane, A H; Barnwell, J W; Collins, W E; Nussenzweig, R S

    1985-01-01

    We have used a sporozoite neutralization assay to define the biological relevance of the cross-reactivity of two monoclonal antibodies, raised against sporozoites of the human parasite Plasmodium malariae (Uganda 1/CDC), with sporozoites of the simian parasite Plasmodium brasilianum (Colombian). In vitro incubation of each of these two monoclonal antibodies with sporozoites of P. brasilianum totally abolished the infectivity of these parasites for Saimiri sciureus. Using Western blot analysis and one of the P. malariae monoclonal antibodies, we identified two sporozoite proteins characteristic of the Colombian isolate of P. brasilianum with apparent molecular weights of 56,000 and 66,000. The same monoclonal antibody identified two proteins in an extract of the Peruvian isolate of P. brasilianum with apparent molecular weights of 59,000 and 69,000. Images PMID:3899939

  17. In situ hybridization and sequence analysis reveal an association of Plasmodium spp. with mortalities in wild passerine birds in Austria.

    PubMed

    Dinhopl, Nora; Nedorost, Nora; Mostegl, Meike M; Weissenbacher-Lang, Christiane; Weissenböck, Herbert

    2015-04-01

    Native European passerine birds are frequently clinically inapparent carriers of haemosporidian parasites of the genus Plasmodium. Clinical disease and death are only exceptionally reported. In the present study, tissue samples of 233 wild passerine birds found dead in Eastern Austria were examined by in situ hybridization (ISH) and partial cytochrome B gene sequence analysis for the presence, abundance and taxonomic assignment of Plasmodium spp. In 34 cases (14.6%), ISH yielded a positive result with large numbers of developmental stages in different cell types of the spleen, liver, brain and lung. The abundance of the tissue stages, which was comparable to fatal cases of avian malaria in penguins, suggested a major contribution to the cause of death. Genetic analysis revealed infections with representatives of three different valid species of Plasmodium, Plasmodium elongatum, Plasmodium lutzi and Plasmodium vaughani. Genetically identical parasite lineages had been found in a previous study in penguins kept in the Vienna zoo, providing evidence for the role of wild birds as reservoir hosts. Further, this study provides evidence that several species of Plasmodium are able to abundantly proliferate in endemic wild birds ultimately resulting in mortalities. PMID:25636246

  18. In Vitro Alterations Do Not Reflect a Requirement for Host Cell Cycle Progression during Plasmodium Liver Stage Infection

    PubMed Central

    Hanson, Kirsten K.; March, Sandra; Ng, Shengyong; Bhatia, Sangeeta N.

    2014-01-01

    Prior to invading nonreplicative erythrocytes, Plasmodium parasites undergo their first obligate step in the mammalian host inside hepatocytes, where each sporozoite replicates to generate thousands of merozoites. While normally quiescent, hepatocytes retain proliferative capacity and can readily reenter the cell cycle in response to diverse stimuli. Many intracellular pathogens, including protozoan parasites, manipulate the cell cycle progression of their host cells for their own benefit, but it is not known whether the hepatocyte cell cycle plays a role during Plasmodium liver stage infection. Here, we show that Plasmodium parasites can be observed in mitotic hepatoma cells throughout liver stage development, where they initially reduce the likelihood of mitosis and ultimately lead to significant acquisition of a binucleate phenotype. However, hepatoma cells pharmacologically arrested in S phase still support robust and complete Plasmodium liver stage development, which thus does not require cell cycle progression in the infected cell in vitro. Furthermore, murine hepatocytes remain quiescent throughout in vivo infection with either Plasmodium berghei or Plasmodium yoelii, as do Plasmodium falciparum-infected primary human hepatocytes, demonstrating that the rapid and prodigious growth of liver stage parasites is accomplished independent of host hepatocyte cell cycle progression during natural infection. PMID:25416236

  19. The ears of the African elephant: unexpected high seroprevalence of Plasmodium ovale and Plasmodium malariae in healthy populations in Western Africa

    PubMed Central

    2014-01-01

    Background Malaria Is A Life-Threatening Pathology In Africa. Plasmodium Falciparum And Plasmodium Vivax Attract The Most Focus Because Of Their High Prevalence And Mortality. Knowledge About The Prevalence Of The Cryptic Pathogens Plasmodium Ovale And Plasmodium Malariae Is Limited. Thanks To Recombinant Tools, Their Seroprevalence Was Measured For The First Time, As Well As The Prevalence Of Mixed Infections In A Malaria-Asymptomatic Population In Benin, A Malaria-Endemic Country. Methods A Panel Of 1,235 Blood Donations Collected Over Ten Months In Benin Was Used For Validation Of The Recombinant Tools. Recombinant P. Falciparum, P. Malariae, P. Ovale MSP1, And P. Falciparum AMA1 Were Engineered And Validated On A Biobank With Malaria-Infected Patients (N = 144) Using A Species-Speific ELISA Test (Recelisa). Results Were Compared To An ELISA Using A Native P. Falciparum Antigen (NatELISA). Results Among Microscopically Negative African Blood Donors, 85% (1,050/1,235) Present Antibodies Directed To Native P. Falciparum, 94.4% (1,166/1,235) To rPfMSP1 And rPfAMA1, 56.8% (702/1,235) To rPoMSP1, 67.5% (834/1235) To rPmMSP1 And 45.3% Of The Malaria Seropositive Population Had Antibodies Recognizing The Three Species. Conclusion A High Rate Of Antibodies Against P. Ovale And P. Malariae Was Found In Asymptomatic Blood Donors. The Proportion Of Mixed Infections Involving Three Species Was Also Unexpected. These Data Suggest That Determining Seroprevalence For These Cryptic Species Is An Appropriate Tool To Estimate Their Incidence, At The Eve Of Upcoming Anti-P. Falciparum Vaccination Campaigns. PMID:24946685

  20. Characteristics of Travel-Related Severe Plasmodium vivax and Plasmodium falciparum Malaria in Individuals Hospitalized at a Tertiary Referral Center in Lima, Peru.

    PubMed

    Llanos-Chea, Fiorella; Martínez, Dalila; Rosas, Angel; Samalvides, Frine; Vinetz, Joseph M; Llanos-Cuentas, Alejandro

    2015-12-01

    Severe Plasmodium falciparum malaria is uncommon in South America. Lima, Peru, while not endemic for malaria, is home to specialized centers for infectious diseases that admit and manage patients with severe malaria (SM), all of whom contracted infection during travel. This retrospective study describes severe travel-related malaria in individuals admitted to one tertiary care referral hospital in Lima, Peru; severity was classified based on criteria published by the World Health Organization in 2000. Data were abstracted from medical records of patients with SM admitted to Hospital Nacional Cayetano Heredia from 2006 to 2011. Of 33 SM cases with complete clinical data, the mean age was 39 years and the male/female ratio was 2.8. Most cases were contracted in known endemic regions within Peru: Amazonia (47%), the central jungle (18%), and the northern coast (12%); cases were also found in five (15%) travelers returning from Africa. Plasmodium vivax was most commonly identified (71%) among the severe infections, followed by P. falciparum (18%); mixed infections composed 11% of the group. Among the criteria of severity, jaundice was most common (58%), followed by severe thrombocytopenia (47%), hyperpyrexia (32%), and shock (15%). Plasmodium vivax mono-infection predominated as the etiology of SM in cases acquired in Peru. PMID:26483126

  1. Gestational malaria associated to Plasmodium vivax and Plasmodium falciparum placental mixed-infection followed by foetal loss: a case report from an unstable transmission area in Brazil.

    PubMed

    Carvalho, Bruna O; Matsuda, Joycenéa S; Luz, Sergio L B; Martinez-Espinosa, Flor E; Leite, Juliana A; Franzin, Fernanda; Orlandi, Patrícia P; Gregoracci, Gustavo B; Lacerda, Marcus V G; Nogueira, Paulo A; Costa, Fabio T M

    2011-01-01

    Gestational malaria is a multi-factorial syndrome leading to poor outcomes for both the mother and foetus. Although an unusual increasing in the number of hospitalizations caused by Plasmodium vivax has been reported in Brazil, mortality is rarely observed. This is a report of a gestational malaria case that occurred in the city of Manaus (Amazonas State, Brazil) and resulted in foetal loss. The patient presented placental mixed-infection by Plasmodium vivax and Plasmodium falciparum after diagnosis by nested-PCR, however microscopic analysis failed to detect P. falciparum in the peripheral blood. Furthermore, as the patient did not receive proper treatment for P. falciparum and hospitalization occurred soon after drug treatment, it seems that P. falciparum pathology was modulated by the concurrent presence of P. vivax. Collectively, this case confirms the tropism towards the placenta by both of these species of parasites, reinforces the notion that co-existence of distinct malaria parasites interferes on diseases' outcomes, and opens discussions regarding diagnostic methods, malaria treatment during pregnancy and prenatal care for women living in unstable transmission areas of malaria, such as the Brazilian Amazon. PMID:21708032

  2. Nek5 promotes centrosome integrity in interphase and loss of centrosome cohesion in mitosis

    PubMed Central

    Sahota, Navdeep K.; Pelletier, Laurence; Morrison, Ciaran G.

    2015-01-01

    Nek5 is a poorly characterized member of the NIMA-related kinase family, other members of which play roles in cell cycle progression and primary cilia function. Here, we show that Nek5, similar to Nek2, localizes to the proximal ends of centrioles. Depletion of Nek5 or overexpression of kinase-inactive Nek5 caused unscheduled separation of centrosomes in interphase, a phenotype also observed upon overexpression of active Nek2. However, separated centrosomes that resulted from Nek5 depletion remained relatively close together, exhibited excess recruitment of the centrosome linker protein rootletin, and had reduced levels of Nek2. In addition, Nek5 depletion led to loss of PCM components, including γ-tubulin, pericentrin, and Cdk5Rap2, with centrosomes exhibiting reduced microtubule nucleation. Upon mitotic entry, Nek5-depleted cells inappropriately retained centrosome linker components and exhibited delayed centrosome separation and defective chromosome segregation. Hence, Nek5 is required for the loss of centrosome linker proteins and enhanced microtubule nucleation that lead to timely centrosome separation and bipolar spindle formation in mitosis. PMID:25963817

  3. Nek5 promotes centrosome integrity in interphase and loss of centrosome cohesion in mitosis.

    PubMed

    Prosser, Suzanna L; Sahota, Navdeep K; Pelletier, Laurence; Morrison, Ciaran G; Fry, Andrew M

    2015-05-11

    Nek5 is a poorly characterized member of the NIMA-related kinase family, other members of which play roles in cell cycle progression and primary cilia function. Here, we show that Nek5, similar to Nek2, localizes to the proximal ends of centrioles. Depletion of Nek5 or overexpression of kinase-inactive Nek5 caused unscheduled separation of centrosomes in interphase, a phenotype also observed upon overexpression of active Nek2. However, separated centrosomes that resulted from Nek5 depletion remained relatively close together, exhibited excess recruitment of the centrosome linker protein rootletin, and had reduced levels of Nek2. In addition, Nek5 depletion led to loss of PCM components, including γ-tubulin, pericentrin, and Cdk5Rap2, with centrosomes exhibiting reduced microtubule nucleation. Upon mitotic entry, Nek5-depleted cells inappropriately retained centrosome linker components and exhibited delayed centrosome separation and defective chromosome segregation. Hence, Nek5 is required for the loss of centrosome linker proteins and enhanced microtubule nucleation that lead to timely centrosome separation and bipolar spindle formation in mitosis. PMID:25963817

  4. Emergence and transitions of dynamic patterns of thickness oscillation of the plasmodium of the true slime mold Physarum polycephalum

    NASA Astrophysics Data System (ADS)

    Takagi, Seiji; Ueda, Tetsuo

    2008-03-01

    The emergence and transitions of various spatiotemporal patterns of thickness oscillation were studied in the freshly isolated protoplasm of the Physarum plasmodium. New patterns, such as standing waves, and chaotic and rotating spirals, developed successively before the well-documented synchronous pattern appeared. There was also a spontaneous opposite transition from synchrony to chaotic and rotating spirals. Rotating spiral waves were observed in the large migrating plasmodium, where the vein structures were being destroyed. Thus, the Physarum plasmodium exhibits versatile patterns, which are generally expected in coupled oscillator systems. This paper discusses the physiological roles of spatiotemporal patterns, comparing them with other biological systems.

  5. In silico analysis of Plasmodium species specific UvrD helicase.

    PubMed

    Tuteja, Renu

    2013-03-01

    Malaria is still a devastating disease caused by the mosquito-transmitted parasite Plasmodium, particularly Plasmodium falciparum. During the last few years the situation has worsened in many ways, mainly due to malarial parasites becoming increasingly resistant to several anti-malarial drugs. Thus there is an urgent need to find alternate ways to control malaria and therefore it is necessary to identify new drug targets and new classes of anti-malarial drugs. A malaria vaccine would be the ultimate weapon to fight this deadly disease but unfortunately despite encouraging advances a vaccine is not likely soon. DNA helicases from the PcrA/UvrD/Rep (PUR) subfamily are important for the survival of the various organisms, mainly pathogenic bacteria. Members from this subfamily can be targeted and inhibited by a variety of synthetic compounds. Using bioinformatics analysis we have shown that UvrD from this subfamily is the only member present in the P. falciparum genome, while PcrA and Rep are absent in the genome. UvrD from the parasite shows no homology to any protein or enzyme from human and thus can be considered as a strong potential drug target. In the present study we report an in silico analysis of this important enzyme from a variety of Plasmodium species. The results suggest that among all the species of Plasmodium, P. falciparum contains the largest UvrD and this enzyme is variable at the sequence and structural level. PMID:23750298

  6. Amplification of a Gene Related to Mammalian mdr Genes in Drug-Resistant Plasmodium falciparum

    NASA Astrophysics Data System (ADS)

    Wilson, Craig M.; Serrano, Adelfa E.; Wasley, Annemarie; Bogenschutz, Michael P.; Shankar, Anuraj H.; Wirth, Dyann F.

    1989-06-01

    The malaria parasite Plasmodium falciparum contains at least two genes related to the mammalian multiple drug resistance genes, and at least one of the P. falciparum genes is expressed at a higher level and is present in higher copy number in a strain that is resistant to multiple drugs than in a strain that is sensitive to the drugs.

  7. Transmission Risk from Imported Plasmodium vivax Malaria in the China–Myanmar Border Region

    PubMed Central

    Wang, Duoquan; Li, Shengguo; Cheng, Zhibin; Cotter, Chris; Hwang, Jimee; Li, Xishang; Yin, Shouqin; Wang, Jiazhi; Bai, Liang; Zheng, Zhi; Wang, Sibao

    2015-01-01

    Malaria importation and local vector susceptibility to imported Plasmodium vivax infection are a continuing risk along the China–Myanmar border. Malaria transmission has been prevented in 3 border villages in Tengchong County, Yunnan Province, China, by use of active fever surveillance, integrated vector control measures, and intensified surveillance and response. PMID:26401843

  8. Translational repression of the cpw-wpc gene family in the malaria parasite Plasmodium.

    PubMed

    Rao, Pavitra N; Santos, Jorge M; Pain, Arnab; Templeton, Thomas J; Mair, Gunnar R

    2016-10-01

    The technical challenges of working with the sexual stages of the malaria parasite Plasmodium have hindered the characterization of sexual stage antigens in the quest for a successful malaria transmission-blocking vaccine. One such predicted and largely uncharacterized group of sexual stage candidate antigens is the CPW-WPC family of proteins. CPW-WPC proteins are named for a characteristic domain that contains two conserved motifs, CPxxW and WPC. Conserved across Apicomplexa, this family is also present earlier in the Alveolata in the free-living, non-parasitophorous, photosynthetic chromerids, Chromera and Vitrella. In Plasmodium falciparum and Plasmodium berghei blood stage parasites, the transcripts of all nine cpw-wpc genes have been detected in gametocytes. RNA immunoprecipitation followed by reverse transcriptase-PCR reveals all P. berghei cpw-wpc transcripts to be bound by the translational repressors DOZI and CITH, and thus are likely under translational control prior to transmission from the rodent host to the mosquito vector in P. berghei. The GFP tagging of two endogenous P. berghei genes confirmed translational silencing in the gametocyte and translation in ookinetes. By establishing a luciferase transgene assay, we show that the 3' untranslated region of PF3D7_1331400 controls protein expression of this reporter in P. falciparum gametocytes. Our analyses suggest that cpw-wpc genes are translationally silenced in gametocytes across Plasmodium spp. and activated during ookinete formation and thus may have a role in transmission to the mosquito. PMID:27312996

  9. Artesunate Misuse and Plasmodium falciparum Malaria in Traveler Returning from Africa

    PubMed Central

    Shahinas, Dea; Lau, Rachel; Khairnar, Krishna; Hancock, David

    2010-01-01

    Plasmodium falciparum malaria developed in an African-born traveler who returned to Canada after visiting Nigeria. While there, she took artesunate prophylactically. Isolates had an elevated 50% inhibitory concentration to artemisinin, artesunate, and artemether, compared with that of other African isolates. Inappropriate use of artemisinin derivatives can reduce P. falciparum susceptibility. PMID:20875291

  10. Artesunate misuse and Plasmodium falciparum malaria in traveler returning from Africa.

    PubMed

    Shahinas, Dea; Lau, Rachel; Khairnar, Krishna; Hancock, David; Pillai, Dylan R

    2010-10-01

    Plasmodium falciparum malaria developed in an African-born traveler who returned to Canada after visiting Nigeria. While there, she took artesunate prophylactically. Isolates had an elevated 50% inhibitory concentration to artemisinin, artesunate, and artemether, compared with that of other African isolates. Inappropriate use of artemisinin derivatives can reduce P. falciparum susceptibility. PMID:20875291

  11. Plasmodium vivax Malaria among Military Personnel, French Guiana, 1998–2008

    PubMed Central

    Texier, Gaëtan; Ollivier, Lénaïck; Galoisy-Guibal, Laurent; Michel, Rémy; Meynard, Jean-Baptiste; Decam, Christophe; Verret, Catherine; Pommier de Santi, Vincent; Spiegel, André; Boutin, Jean-Paul; Migliani, René; Deparis, Xavier

    2011-01-01

    We obtained health surveillance epidemiologic data on malaria among French military personnel deployed to French Guiana during 1998–2008. Incidence of Plasmodium vivax malaria increased and that of P. falciparum remained stable. This new epidemiologic situation has led to modification of malaria treatment for deployed military personnel. PMID:21762587

  12. Enlightening the malaria parasite life cycle: bioluminescent Plasmodium in fundamental and applied research

    PubMed Central

    Siciliano, Giulia; Alano, Pietro

    2015-01-01

    The unicellular protozoan parasites of the genus Plasmodium impose on human health worldwide the enormous burden of malaria. The possibility to genetically modify several species of malaria parasites represented a major advance in the possibility to elucidate their biology and is now turning laboratory lines of transgenic Plasmodium into precious weapons to fight malaria. Amongst the various genetically modified plasmodia, transgenic parasite lines expressing bioluminescent reporters have been essential to unveil mechanisms of parasite gene expression and to develop in vivo imaging approaches in mouse malaria models. Mainly the human malaria parasite Plasmodium falciparum and the rodent parasite P. berghei have been engineered to express bioluminescent reporters in almost all the developmental stages of the parasite along its complex life cycle between the insect and the vertebrate hosts. Plasmodium lines expressing conventional and improved luciferase reporters are now gaining a central role to develop cell based assays in the much needed search of new antimalarial drugs and to open innovative approaches for both fundamental and applied research in malaria. PMID:26029172

  13. Inference of the Oxidative Stress Network in Anopheles stephensi upon Plasmodium Infection

    PubMed Central

    Shrinet, Jatin; Nandal, Umesh Kumar; Adak, Tridibes; Bhatnagar, Raj K.; Sunil, Sujatha

    2014-01-01

    Ookinete invasion of Anopheles midgut is a critical step for malaria transmission; the parasite numbers drop drastically and practically reach a minimum during the parasite's whole life cycle. At this stage, the parasite as well as the vector undergoes immense oxidative stress. Thereafter, the vector undergoes oxidative stress at different time points as the parasite invades its tissues during the parasite development. The present study was undertaken to reconstruct the network of differentially expressed genes involved in oxidative stress in Anopheles stephensi during Plasmodium development and maturation in the midgut. Using high throughput next generation sequencing methods, we generated the transcriptome of the An. stephensi midgut during Plasmodium vinckei petteri oocyst invasion of the midgut epithelium. Further, we utilized large datasets available on public domain on Anopheles during Plasmodium ookinete invasion and Drosophila datasets and arrived upon clusters of genes that may play a role in oxidative stress. Finally, we used support vector machines for the functional prediction of the un-annotated genes of An. stephensi. Integrating the results from all the different data analyses, we identified a total of 516 genes that were involved in oxidative stress in An. stephensi during Plasmodium development. The significantly regulated genes were further extracted from this gene cluster and used to infer an oxidative stress network of An. stephensi. Using system biology approaches, we have been able to ascertain the role of several putative genes in An. stephensi with respect to oxidative stress. Further experimental validations of these genes are underway. PMID:25474020

  14. Plasmodium falciparum Serine/Threonine Phosphoprotein Phosphatases (PPP): From Housekeeper to 'Holy Grail'

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Availability of complete genome sequence for Plasmodium falciparum has been useful in drawing a comprehensive metabolic map of the parasite. Distinct and unique metabolic characteristics of the parasite may be exploited as potential targets for new antimalarial drug discovery research. Reversible ph...

  15. Diagnostic and therapeutic pitfalls associated with primaquine-tolerant Plasmodium vivax.

    PubMed

    Spudick, Jeanne M; Garcia, Lynne S; Graham, David M; Haake, David A

    2005-02-01

    We describe a U.S. Army Ranger returning from duty in Afghanistan and Iraq with life-threatening infection due to Plasmodium vivax. Morphological variants were observed in blood films prepared using samples collected by venipuncture. The patient's multiple relapses indicate infection with primaquine-tolerant P. vivax. Strategies for relapse prevention using primaquine are reviewed. PMID:15695723

  16. A non-pharmaceutical form of Artemisia annua is not effective in preventing Plasmodium falciparum malaria.

    PubMed

    Lagarce, Laurence; Lerolle, Nicolas; Asfar, Pierre; Le Govic, Yohann; Lainé-Cessac, Pascale; de Gentile, Ludovic

    2016-05-01

    Non-pharmaceutical forms of Artemisia annua (a Chinese plant containing artemisinin) are used by some travellers who believe these products are safer than anti-malarial drugs. We report two cases of severe Plasmodium falciparum malaria requiring hospitalization in an Intensive Care Unit following prophylaxis with non-pharmaceutical A. annua in French travellers. PMID:27432906

  17. Plasmodium falciparum malaria occurring 8 years after leaving an endemic area.

    PubMed

    Szmitko, Paul E; Kohn, Magdie L; Simor, Andrew E

    2009-01-01

    A 29-year-old patient who was born in Angola developed Plasmodium falciparum malaria 8 years after leaving Africa. She had not returned to a malaria-endemic area, and there were no apparent risks of local or nosocomial acquisition of malaria in Canada. She recovered after treatment with oral quinine sulfate and doxycycline. PMID:18945569

  18. Novel Mutations in K13 Propeller Gene of Artemisinin-Resistant Plasmodium falciparum

    PubMed Central

    Uemura, Haruki; Kimata, Isao; Ichinose, Yoshio; Logedi, John; Omar, Ahmeddin H.; Kaneko, Akira

    2015-01-01

    We looked for mutations in the Plasmodium falciparum K13 propeller gene of an artemisinin-resistant parasite on islands in Lake Victoria, Kenya, where transmission in 2012–2013 was high. The 4 new types of nonsynonymous, and 5 of synonymous, mutations we detected among 539 samples analyzed provide clues to understanding artemisinin-resistant parasites. PMID:25695257

  19. Novel mutations in K13 propeller gene of artemisinin-resistant Plasmodium falciparum.

    PubMed

    Isozumi, Rie; Uemura, Haruki; Kimata, Isao; Ichinose, Yoshio; Logedi, John; Omar, Ahmeddin H; Kaneko, Akira

    2015-03-01

    We looked for mutations in the Plasmodium falciparum K13 propeller gene of an artemisinin-resistant parasite on islands in Lake Victoria, Kenya, where transmission in 2012-2013 was high. The 4 new types of nonsynonymous, and 5 of synonymous, mutations we detected among 539 samples analyzed provide clues to understanding artemisinin-resistant parasites. PMID:25695257

  20. A crucial piece in the puzzle of the artemisinin resistance mechanism in Plasmodium falciparum.

    PubMed

    Bozdech, Zbynek; Ferreira, Pedro E; Mok, Sachel

    2015-08-01

    The spread of resistance of malaria infections to artemisinin is a major concern for the future. The Plasmodium falciparum phosphatidylinositol-3-kinase (PfPI3K) may be a potential target of artemisinin and effector of resistance. This could be mediated by the Kelch13 protein, the molecular marker of resistance that modulates PfPI3K ubiquitination. PMID:26169358

  1. Slow Clearance of Plasmodium falciparum in Severe Pediatric Malaria, Uganda, 2011-2013.

    PubMed

    Hawkes, Michael; Conroy, Andrea L; Opoka, Robert O; Namasopo, Sophie; Zhong, Kathleen; Liles, W Conrad; John, Chandy C; Kain, Kevin C

    2015-07-01

    Plasmodium falciparum resistance to artemisinin derivatives is emerging in Asia. We examined molecular markers of resistance in 78 children in Uganda who had severe malaria and were treated with intravenous artesunate. We observed in the K13-propeller domain, A578S, a low-frequency (3/78), nonsynonymous, single-nucleotide polymorphism associated with prolonged parasite clearance. PMID:26079933

  2. Slow Clearance of Plasmodium falciparum in Severe Pediatric Malaria, Uganda, 2011–2013

    PubMed Central

    Hawkes, Michael; Conroy, Andrea L.; Opoka, Robert O.; Namasopo, Sophie; Zhong, Kathleen; Liles, W. Conrad; John, Chandy C.

    2015-01-01

    Plasmodium falciparum resistance to artemisinin derivatives is emerging in Asia. We examined molecular markers of resistance in 78 children in Uganda who had severe malaria and were treated with intravenous artesunate. We observed in the K13-propeller domain, A578S, a low-frequency (3/78), nonsynonymous, single-nucleotide polymorphism associated with prolonged parasite clearance. PMID:26079933

  3. Ingested human insulin inhibits the mosquito NF-¿B-dependent immune response to Plasmodium falciparum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We showed previously that ingested human insulin activates the insulin/IGF-1 signaling pathway in Anopheles stephensi and increases the susceptibility of these mosquitoes to Plasmodium falciparum. In other organisms insulin can alter immune responsiveness through regulation of NF-kB transcription fa...

  4. Plasmodium falciparum infection increases Anopheles gambiae attraction to nectar sources and sugar uptake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plasmodium parasites are known to manipulate the behaviour of their vectors so as to enhance their transmission. However, it is unknown if this vector manipulation also affects mosquito-plant interaction and sugar uptake. Dual-choice olfactometer and probing assays were used to study plant seeking b...

  5. Imported Plasmodium knowlesi Malaria in a French Tourist Returning from Thailand

    PubMed Central

    Berry, Antoine; Iriart, Xavier; Wilhelm, Nathalie; Valentin, Alexis; Cassaing, Sophie; Witkowski, Benoit; Benoit-Vical, Françoise; Menard, Sandie; Olagnier, David; Fillaux, Judith; Sire, Stephane; Coustumier, Alain Le; Magnaval, Jean-François

    2011-01-01

    We report a case of imported Plasmodium knowlesi malaria in a French tourist following a vacation in Thailand. This case shows, first, tourists may contract knowlesi malaria even only staying on the beach and second, the diagnosis remains difficult, even with polymerase chain reaction methods. PMID:21460005

  6. Structural determinants of the 5'-methylthioinosine specificity of Plasmodium purine nucleoside phosphorylase.

    PubMed

    Donaldson, Teraya M; Ting, Li-Min; Zhan, Chenyang; Shi, Wuxian; Zheng, Renjian; Almo, Steven C; Kim, Kami

    2014-01-01

    Plasmodium parasites rely upon purine salvage for survival. Plasmodium purine nucleoside phosphorylase is part of the streamlined Plasmodium purine salvage pathway that leads to the phosphorylysis of both purines and 5'-methylthiopurines, byproducts of polyamine synthesis. We have explored structural features in Plasmodium falciparum purine nucleoside phosphorylase (PfPNP) that affect efficiency of catalysis as well as those that make it suitable for dual specificity. We used site directed mutagenesis to identify residues critical for PfPNP catalytic activity as well as critical residues within a hydrophobic pocket required for accommodation of the 5'-methylthio group. Kinetic analysis data shows that several mutants had disrupted binding of the 5'-methylthio group while retaining activity for inosine. A triple PfPNP mutant that mimics Toxoplasma gondii PNP had significant loss of 5'-methylthio activity with retention of inosine activity. Crystallographic investigation of the triple mutant PfPNP with Tyr160Phe, Val66Ile, andVal73Ile in complex with the transition state inhibitor immucillin H reveals fewer hydrogen bond interactions for the inhibitor in the hydrophobic pocket. PMID:24416224

  7. Imported chloroquine-resistant Plasmodium vivax in Singapore: case report and literature review.

    PubMed

    Lim, Poh Lian; Mok, Ying Juan; Lye, David C; Leo, Yee Sin

    2010-01-01

    Chloroquine-resistant Plasmodium vivax (CRPV) infection is emerging as a clinically significant problem. Detailed travel history is crucial to the management of imported malarial cases. We report a 58-year-old business traveler who returned from Indonesia and experienced relapse due to CRPV. The epidemiology and diagnostic challenges of CRPV for travel medicine clinicians are reviewed. PMID:20074103

  8. Genome-Wide Patterns of Genetic Polymorphism and Signatures of Selection in Plasmodium vivax

    PubMed Central

    Cornejo, Omar E.; Fisher, David; Escalante, Ananias A.

    2015-01-01

    Plasmodium vivax is the most prevalent human malaria parasite outside of Africa. Yet, studies aimed to identify genes with signatures consistent with natural selection are rare. Here, we present a comparative analysis of the pattern of genetic variation of five sequenced isolates of P. vivax and its divergence with two closely related species, Plasmodium cynomolgi and Plasmodium knowlesi, using a set of orthologous genes. In contrast to Plasmodium falciparum, the parasite that causes the most lethal form of human malaria, we did not find significant constraints on the evolution of synonymous sites genome wide in P. vivax. The comparative analysis of polymorphism and divergence across loci allowed us to identify 87 genes with patterns consistent with positive selection, including genes involved in the “exportome” of P. vivax, which are potentially involved in evasion of the host immune system. Nevertheless, we have found a pattern of polymorphism genome wide that is consistent with a significant amount of constraint on the replacement changes and prevalent negative selection. Our analyses also show that silent polymorphism tends to be larger toward the ends of the chromosomes, where many genes involved in antigenicity are located, suggesting that natural selection acts not only by shaping the patterns of variation within the genes but it also affects genome organization. PMID:25523904

  9. A septate polycarbonate cell culture unit used for Plasmodium falciparum and hybridomas.

    PubMed

    Thélu, J; Ambroise-Thomas, P

    1988-01-01

    A new material, makrolon, is used for the construction of a large-scale cell culture vessel. It is strong, light, transparent, thermostable, septate and inexpensive. Several independent vessels of 500 ml each can be stacked. It has been used for Plasmodium falciparum and hybridoma cultures, where frequent renewal of the medium and a large gas/liquid interface are required. PMID:3068844

  10. Avian Plasmodium infection in field-collected mosquitoes during 2012-2013 in Tarlac, Philippines.

    PubMed

    Chen, Tien-Huang; Aure, Wilfredo E; Cruz, Estrella Irlandez; Malbas, Fedelino F; Teng, Hwa-Jen; Lu, Liang-Chen; Kim, Kyeong Soon; Tsuda, Yoshio; Shu, Pei-Yun

    2015-12-01

    Global warming threatens to increase the spread and prevalence of mosquito-transmitted diseases. Certain pathogens may be carried by migratory birds and transmitted to local mosquito populations. Mosquitoes were collected in the northern Philippines during bird migration seasons to detect avian malaria parasites as well as for the identification of potential vector species and the estimation of infections among local mosquito populations. We used the nested PCR to detect the avian malaria species. Culex vishnui (47.6%) was the most abundant species collected and Cx. tritaeniorhynchus (13.8%) was the second most abundant. Avian Plasmodium parasites were found in eight mosquito species, for which the infection rates were between 0.5% and 6.2%. The six Plasmodium genetic lineages found in this study included P. juxtanucleare -GALLUS02, Tacy7 (Donana04), CXBIT01, Plasmodium species LIN2 New Zealand, and two unclassified lineages. The potential mosquito vectors for avian Plasmodium parasites in the Philippines were Cq. crassipes, Cx. fuscocephala, Cx. quinquefasciatus, Cx. sitiens, Cx. vishnui, and Ma. Uniformis; two major genetic lineages, P. juxtanucleare and Tacy7, were identified. PMID:26611975

  11. The exported Plasmodium berghei protein IBIS1 delineates membranous structures in infected red blood cells

    PubMed Central

    Ingmundson, Alyssa; Nahar, Carolin; Brinkmann, Volker; Lehmann, Maik J; Matuschewski, Kai

    2012-01-01

    Summary The importance of pathogen-induced host cell remodelling has been well established for red blood cell infection by the human malaria parasite Plasmodium falciparum. Exported parasite-encoded proteins, which often possess a signature motif, termed Plasmodium export element (PEXEL) or host-targeting (HT) signal, are critical for the extensive red blood cell modifications. To what extent remodelling of erythrocyte membranes also occurs in non-primate hosts and whether it is in fact a hallmark of all mammalian Plasmodium parasites remains elusive. Here we characterize a novel Plasmodium berghei PEXEL/HT-containing protein, which we term IBIS1. Temporal expression and spatial localization determined by fluorescent tagging revealed the presence of IBIS1 at the parasite/host interface during both liver and blood stages of infection. Targeted deletion of the IBIS1 protein revealed a mild impairment of intra-erythrocytic growth indicating a role for these structures in the rapid expansion of the parasite population in the blood in vivo. In red blood cells, the protein localizes to dynamic, punctate structures external to the parasite. Biochemical and microscopic data revealed that these intra-erythrocytic P. berghei-induced structures (IBIS) are membranous indicating that P. berghei, like P. falciparum, creates an intracellular membranous network in infected red blood cells. PMID:22329949

  12. Asymptomatic Plasmodium Infections in Children in Low Malaria Transmission Setting, Southwestern Uganda1

    PubMed Central

    Roh, Michelle E.; Oyet, Caesar; Orikiriza, Patrick; Wade, Martina; Kiwanuka, Gertrude N.; Mwanga-Amumpaire, Juliet; Boum, Yap

    2016-01-01

    A survey of asymptomatic children in Uganda showed Plasmodium malariae and P. falciparum parasites in 45% and 55% of microscopy-positive samples, respectively. Although 36% of microscopy-positive samples were negative by rapid diagnostic test, 75% showed P. malariae or P. ovale parasites by PCR, indicating that routine diagnostic testing misses many non–P. falciparum malarial infections. PMID:27434741

  13. Asymptomatic Plasmodium Infections in Children in Low Malaria Transmission Setting, Southwestern Uganda(1).

    PubMed

    Roh, Michelle E; Oyet, Caesar; Orikiriza, Patrick; Wade, Martina; Kiwanuka, Gertrude N; Mwanga-Amumpaire, Juliet; Parikh, Sunil; Boum, Yap

    2016-08-01

    A survey of asymptomatic children in Uganda showed Plasmodium malariae and P. falciparum parasites in 45% and 55% of microscopy-positive samples, respectively. Although 36% of microscopy-positive samples were negative by rapid diagnostic test, 75% showed P. malariae or P. ovale parasites by PCR, indicating that routine diagnostic testing misses many non-P. falciparum malarial infections. PMID:27434741

  14. Chloroquine resistance of Plasmodium falciparum is associated with severity of disease in Nigerian children.

    PubMed

    Olumese, P E; Amodu, O K; Björkman, A; Adeyemo, A A; Gbadegesin, R A; Walker, O

    2002-01-01

    Chloroquine resistance of Plasmodium falciparum in vitro was significantly higher in isolates from patients with severe malaria than those with uncomplicated disease. This association may be due to either progression of uncomplicated to severe disease following chloroquine failure or increased virulence of chloroquine-resistant parasites. The implication of this for antimalarial treatment policy is discussed. PMID:12497979

  15. A Nondiscriminating Glutamyl-tRNA Synthetase in the Plasmodium Apicoplast

    PubMed Central

    Mailu, Boniface M.; Ramasamay, Gowthaman; Mudeppa, Devaraja G.; Li, Ling; Lindner, Scott E.; Peterson, Megan J.; DeRocher, Amy E.; Kappe, Stefan H. I.; Rathod, Pradipsinh K.; Gardner, Malcolm J.

    2013-01-01

    The malaria parasite Plasmodium falciparum and related organisms possess a relict plastid known as the apicoplast. Apicoplast protein synthesis is a validated drug target in malaria because antibiotics that inhibit translation in prokaryotes also inhibit apicoplast protein synthesis and are sometimes used for malaria prophylaxis or treatment. We identified components of an indirect aminoacylation pathway for Gln-tRNAGln biosynthesis in Plasmodium that we hypothesized would be essential for apicoplast protein synthesis. Here, we report our characterization of the first enzyme in this pathway, the apicoplast glutamyl-tRNA synthetase (GluRS). We expressed the recombinant P. falciparum enzyme in Escherichia coli, showed that it is nondiscriminating because it glutamylates both apicoplast tRNAGlu and tRNAGln, determined its kinetic parameters, and demonstrated its inhibition by a known bacterial GluRS inhibitor. We also localized the Plasmodium berghei ortholog to the apicoplast in blood stage parasites but could not delete the PbGluRS gene. These data show that Gln-tRNAGln biosynthesis in the Plasmodium apicoplast proceeds via an essential indirect aminoacylation pathway that is reminiscent of bacteria and plastids. PMID:24072705

  16. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes

    PubMed Central

    Ferguson, David J. P.; Kaindama, Mbinda L.; Brusini, Lorenzo; Joshi, Nimitray; Rchiad, Zineb; Brady, Declan; Guttery, David S.; Wheatley, Sally P.; Yamano, Hiroyuki; Holder, Anthony A.; Pain, Arnab; Wickstead, Bill; Tewari, Rita

    2015-01-01

    Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei. PMID:26565797

  17. An Impossible Journey? The Development of Plasmodium falciparum NF54 in Culex quinquefasciatus

    PubMed Central

    Knöckel, Julia; Molina-Cruz, Alvaro; Fischer, Elizabeth; Muratova, Olga; Haile, Ashley; Barillas-Mury, Carolina; Miller, Louis H.

    2013-01-01

    Although Anopheles mosquitoes are the vectors for human Plasmodium spp., there are also other mosquito species–among them culicines (Culex spp., Aedes spp.)–present in malaria-endemic areas. Culicine mosquitoes transmit arboviruses and filarial worms to humans and are vectors for avian Plasmodium spp., but have never been observed to transmit human Plasmodium spp. When ingested by a culicine mosquito, parasites could either face an environment that does not allow development due to biologic incompatibility or be actively killed by the mosquito’s immune system. In the latter case, the molecular mechanism of killing must be sufficiently powerful that Plasmodium is not able to overcome it. To investigate how human malaria parasites develop in culicine mosquitoes, we infected Culex quinquefasciatus with Plasmodium falciparum NF54 and monitored development of parasites in the blood bolus and midgut epithelium at different time points. Our results reveal that ookinetes develop in the midgut lumen of C. quinquefasciatus in slightly lower numbers than in Anopheles gambiae G3. After 30 hours, parasites have invaded the midgut and can be observed on the basal side of the midgut epithelium by confocal and transmission electron microscopy. Very few of the parasites in C. quinquefasciatus are alive, most of them are lysed. Eight days after the mosquito’s blood meal, no oocysts can be found in C. quinquefasciatus. Our results suggest that the mosquito immune system could be involved in parasite killing early in development after ookinetes have crossed the midgut epithelium and come in contact with the mosquito hemolymph. PMID:23658824

  18. Disruption of Parasite hmgb2 Gene Attenuates Plasmodium berghei ANKA Pathogenicity

    PubMed Central

    Lawson-Hogban, Nadou; Boisson, Bertrand; Soares, Miguel P.; Péronet, Roger; Smith, Leanna; Ménard, Robert; Huerre, Michel; Mécheri, Salah

    2015-01-01

    Eukaryotic high-mobility-group-box (HMGB) proteins are nuclear factors involved in chromatin remodeling and transcription regulation. When released into the extracellular milieu, HMGB1 acts as a proinflammatory cytokine that plays a central role in the pathogenesis of several immune-mediated inflammatory diseases. We found that the Plasmodium genome encodes two genuine HMGB factors, Plasmodium HMGB1 and HMGB2, that encompass, like their human counterparts, a proinflammatory domain. Given that these proteins are released from parasitized red blood cells, we then hypothesized that Plasmodium HMGB might contribute to the pathogenesis of experimental cerebral malaria (ECM), a lethal neuroinflammatory syndrome that develops in C57BL/6 (susceptible) mice infected with Plasmodium berghei ANKA and that in many aspects resembles human cerebral malaria elicited by P. falciparum infection. The pathogenesis of experimental cerebral malaria was suppressed in C57BL/6 mice infected with P. berghei ANKA lacking the hmgb2 gene (Δhmgb2 ANKA), an effect associated with a reduction of histological brain lesions and with lower expression levels of several proinflammatory genes. The incidence of ECM in pbhmgb2-deficient mice was restored by the administration of recombinant PbHMGB2. Protection from experimental cerebral malaria in Δhmgb2 ANKA-infected mice was associated with reduced sequestration in the brain of CD4+ and CD8+ T cells, including CD8+ granzyme B+ and CD8+ IFN-γ+ cells, and, to some extent, neutrophils. This was consistent with a reduced parasite sequestration in the brain, lungs, and spleen, though to a lesser extent than in wild-type P. berghei ANKA-infected mice. In summary, Plasmodium HMGB2 acts as an alarmin that contributes to the pathogenesis of cerebral malaria. PMID:25916985

  19. Disruption of Parasite hmgb2 Gene Attenuates Plasmodium berghei ANKA Pathogenicity.

    PubMed

    Briquet, Sylvie; Lawson-Hogban, Nadou; Boisson, Bertrand; Soares, Miguel P; Péronet, Roger; Smith, Leanna; Ménard, Robert; Huerre, Michel; Mécheri, Salah; Vaquero, Catherine

    2015-07-01

    Eukaryotic high-mobility-group-box (HMGB) proteins are nuclear factors involved in chromatin remodeling and transcription regulation. When released into the extracellular milieu, HMGB1 acts as a proinflammatory cytokine that plays a central role in the pathogenesis of several immune-mediated inflammatory diseases. We found that the Plasmodium genome encodes two genuine HMGB factors, Plasmodium HMGB1 and HMGB2, that encompass, like their human counterparts, a proinflammatory domain. Given that these proteins are released from parasitized red blood cells, we then hypothesized that Plasmodium HMGB might contribute to the pathogenesis of experimental cerebral malaria (ECM), a lethal neuroinflammatory syndrome that develops in C57BL/6 (susceptible) mice infected with Plasmodium berghei ANKA and that in many aspects resembles human cerebral malaria elicited by P. falciparum infection. The pathogenesis of experimental cerebral malaria was suppressed in C57BL/6 mice infected with P. berghei ANKA lacking the hmgb2 gene (Δhmgb2 ANKA), an effect associated with a reduction of histological brain lesions and with lower expression levels of several proinflammatory genes. The incidence of ECM in pbhmgb2-deficient mice was restored by the administration of recombinant PbHMGB2. Protection from experimental cerebral malaria in Δhmgb2 ANKA-infected mice was associated with reduced sequestration in the brain of CD4(+) and CD8(+) T cells, including CD8(+) granzyme B(+) and CD8(+) IFN-γ(+) cells, and, to some extent, neutrophils. This was consistent with a reduced parasite sequestration in the brain, lungs, and spleen, though to a lesser extent than in wild-type P. berghei ANKA-infected mice. In summary, Plasmodium HMGB2 acts as an alarmin that contributes to the pathogenesis of cerebral malaria. PMID:25916985

  20. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes.

    PubMed

    Roques, Magali; Wall, Richard J; Douglass, Alexander P; Ramaprasad, Abhinay; Ferguson, David J P; Kaindama, Mbinda L; Brusini, Lorenzo; Joshi, Nimitray; Rchiad, Zineb; Brady, Declan; Guttery, David S; Wheatley, Sally P; Yamano, Hiroyuki; Holder, Anthony A; Pain, Arnab; Wickstead, Bill; Tewari, Rita

    2015-11-01

    Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei. PMID:26565797

  1. Population Genetics of Plasmodium vivax in the Peruvian Amazon

    PubMed Central

    Delgado-Ratto, Christopher; Gamboa, Dionicia; Soto-Calle, Veronica E.; Van den Eede, Peter; Torres, Eliana; Sánchez-Martínez, Luis; Contreras-Mancilla, Juan; Rosanas-Urgell, Anna; Rodriguez Ferrucci, Hugo; Llanos-Cuentas, Alejandro; Erhart, Annette

    2016-01-01

    Background Characterizing the parasite dynamics and population structure provides useful information to understand the dynamic of transmission and to better target control interventions. Despite considerable efforts for its control, vivax malaria remains a major health problem in Peru. In this study, we have explored the population genetics of Plasmodium vivax isolates from Iquitos, the main city in the Peruvian Amazon, and 25 neighbouring peri-urban as well as rural villages along the Iquitos-Nauta Road. Methodology/ Results From April to December 2008, 292 P. vivax isolates were collected and successfully genotyped using 14 neutral microsatellites. Analysis of the molecular data revealed a similar proportion of monoclonal and polyclonal infections in urban areas, while in rural areas monoclonal infections were predominant (p = 0.002). Multiplicity of infection was higher in urban (MOI = 1.5–2) compared to rural areas (MOI = 1) (p = 0.003). The level of genetic diversity was similar in all areas (He = 0.66–0.76, p = 0.32) though genetic differentiation between areas was substantial (PHIPT = 0.17, p<0.0001). Principal coordinate analysis showed a marked differentiation between parasites from urban and rural areas. Linkage disequilibrium was detected in all the areas (IAs = 0.08–0.49, for all p<0.0001). Gene flow among the areas was stablished through Bayesian analysis of migration models. Recent bottleneck events were detected in 4 areas and a recent parasite expansion in one of the isolated areas. In total, 87 unique haplotypes grouped in 2 or 3 genetic clusters described a sub-structured parasite population. Conclusion/Significance Our study shows a sub-structured parasite population with clonal propagation, with most of its components recently affected by bottleneck events. Iquitos city is the main source of parasite spreading for all the peripheral study areas. The routes of transmission and gene flow and the reduction of the parasite population described

  2. Confirmed Plasmodium vivax Resistance to Chloroquine in Central Vietnam

    PubMed Central

    Hong, Nguyen Van; Van, Nguyen Van; Louisa, Melva; Baird, Kevin; Xa, Nguyen Xuan; Peeters Grietens, Koen; Hung, Le Xuan; Duong, Tran Thanh; Rosanas-Urgell, Anna; Speybroeck, Niko; D'Alessandro, Umberto; Erhart, Annette

    2015-01-01

    Plasmodium vivax resistance to chloroquine (CQ) is currently reported in almost all countries where P. vivax is endemic. In Vietnam, despite a first report on P. vivax resistance to chloroquine published in the early 2000s, P. vivax was still considered sensitive to CQ. Between May 2009 and December 2011, a 2-year cohort study was conducted in central Vietnam to assess the recommended radical cure regimen based on a 10-day course of primaquine (0.5 mg/kg/day) together with 3 days of CQ (25 mg/kg). Here we report the results of the first 28-day follow-up estimating the cumulative risk of P. vivax recurrences together with the corresponding CQ blood concentrations, among other endpoints. Out of 260 recruited P. vivax patients, 240 completed treatment and were followed up to day 28 according to the WHO guidelines. Eight patients (3.45%) had a recurrent P. vivax infection, at day 14 (n = 2), day 21 (n = 1), and day 28 (n = 5). Chloroquine blood concentrations, available for 3/8 recurrent infections (days 14, 21, and 28), were above the MIC (>100 ng/ml whole blood) in all of these cases. Fever and parasitemia (both sexual and asexual stages) were cleared by day 3. Anemia was common at day 0 (35.8%), especially in children under 10 years (50%), and hemoglobin (Hb) recovery at day 28 was substantial among anemic patients (median change from day 0 to 28, +1.7 g/dl; interquartile range [IQR], +0.7 to +3.2). This report, based on CQ blood levels measured at the time of recurrences, confirms for the first time P. vivax CQ resistance in central Vietnam and calls for further studies using standardized protocols for accurately monitoring the extent and evolution of P. vivax resistance to chloroquine in Vietnam. These results, together with the mounting evidence of artemisinin resistance in central Vietnam, further highlight the increasing threat of antimalarial drug resistance to malaria elimination in Vietnam. PMID:26392501

  3. Spread of Artemisinin Resistance in Plasmodium falciparum Malaria

    PubMed Central

    Ashley, E.A.; Dhorda, M.; Fairhurst, R.M.; Amaratunga, C.; Lim, P.; Suon, S.; Sreng, S.; Anderson, J.M.; Mao, S.; Sam, B.; Sopha, C.; Chuor, C.M.; Nguon, C.; Sovannaroth, S.; Pukrittayakamee, S.; Jittamala, P.; Chotivanich, K.; Chutasmit, K.; Suchatsoonthorn, C.; Runcharoen, R.; Hien, T.T.; Thuy-Nhien, N.T.; Thanh, N.V.; Phu, N.H.; Htut, Y.; Han, K-T.; Aye, K.H.; Mokuolu, O.A.; Olaosebikan, R.R.; Folaranmi, O.O.; Mayxay, M.; Khanthavong, M.; Hongvanthong, B.; Newton, P.N.; Onyamboko, M.A.; Fanello, C.I.; Tshefu, A.K.; Mishra, N.; Valecha, N.; Phyo, A.P.; Nosten, F.; Yi, P.; Tripura, R.; Borrmann, S.; Bashraheil, M.; Peshu, J.; Faiz, M.A.; Ghose, A.; Hossain, M.A.; Samad, R.; Rahman, M.R.; Hasan, M.M.; Islam, A.; Miotto, O.; Amato, R.; MacInnis, B.; Stalker, J.; Kwiatkowski, D.P.; Bozdech, Z.; Jeeyapant, A.; Cheah, P.Y.; Sakulthaew, T.; Chalk, J.; Intharabut, B.; Silamut, K.; Lee, S.J.; Vihokhern, B.; Kunasol, C.; Imwong, M.; Tarning, J.; Taylor, W.J.; Yeung, S.; Woodrow, C.J.; Flegg, J.A.; Das, D.; Smith, J.; Venkatesan, M.; Plowe, C.V.; Stepniewska, K.; Guerin, P.J.; Dondorp, A.M.; Day, N.P.; White, N.J.

    2014-01-01

    BACKGROUND Artemisinin resistance in Plasmodium falciparum has emerged in Southeast Asia and now poses a threat to the control and elimination of malaria. Mapping the geographic extent of resistance is essential for planning containment and elimination strategies. METHODS Between May 2011 and April 2013, we enrolled 1241 adults and children with acute, uncomplicated falciparum malaria in an open-label trial at 15 sites in 10 countries (7 in Asia and 3 in Africa). Patients received artesunate, administered orally at a daily dose of either 2 mg per kilogram of body weight per day or 4 mg per kilogram, for 3 days, followed by a standard 3-day course of artemisinin-based combination therapy. Parasite counts in peripheral-blood samples were measured every 6 hours, and the parasite clearance half-lives were determined. RESULTS The median parasite clearance half-lives ranged from 1.9 hours in the Democratic Republic of Congo to 7.0 hours at the Thailand–Cambodia border. Slowly clearing in fections (parasite clearance half-life >5 hours), strongly associated with single point mutations in the “propeller” region of the P. falciparum kelch protein gene on chromosome 13 (kelch13), were detected throughout mainland Southeast Asia from southern Vietnam to central Myanmar. The incidence of pretreatment and post-treatment gametocytemia was higher among patients with slow parasite clearance, suggesting greater potential for transmission. In western Cambodia, where artemisinin-based combination therapies are failing, the 6-day course of antimalarial therapy was associated with a cure rate of 97.7% (95% confidence interval, 90.9 to 99.4) at 42 days. CONCLUSIONS Artemisinin resistance to P. falciparum, which is now prevalent across mainland Southeast Asia, is associated with mutations in kelch13. Prolonged courses of artemisinin-based combination therapies are currently efficacious in areas where standard 3-day treatments are failing. (Funded by the U.K. Department of

  4. Protease-associated cellular networks in malaria parasite Plasmodium falciparum

    PubMed Central

    2011-01-01

    Background Malaria continues to be one of the most severe global infectious diseases, responsible for 1-2 million deaths yearly. The rapid evolution and spread of drug resistance in parasites has led to an urgent need for the development of novel antimalarial targets. Proteases are a group of enzymes that play essential roles in parasite growth and invasion. The possibility of designing specific inhibitors for proteases makes them promising drug targets. Previously, combining a comparative genomics approach and a machine learning approach, we identified the complement of proteases (degradome) in the malaria parasite Plasmodium falciparum and its sibling species [1-3], providing a catalog of targets for functional characterization and rational inhibitor design. Network analysis represents another route to revealing the role of proteins in the biology of parasites and we use this approach here to expand our understanding of the systems involving the proteases of P. falciparum. Results We investigated the roles of proteases in the parasite life cycle by constructing a network using protein-protein association data from the STRING database [4], and analyzing these data, in conjunction with the data from protein-protein interaction assays using the yeast 2-hybrid (Y2H) system [5], blood stage microarray experiments [6-8], proteomics [9-12], literature text mining, and sequence homology analysis. Seventy-seven (77) out of 124 predicted proteases were associated with at least one other protein, constituting 2,431 protein-protein interactions (PPIs). These proteases appear to play diverse roles in metabolism, cell cycle regulation, invasion and infection. Their degrees of connectivity (i.e., connections to other proteins), range from one to 143. The largest protease-associated sub-network is the ubiquitin-proteasome system which is crucial for protein recycling and stress response. Proteases are also implicated in heat shock response, signal peptide processing, cell cycle

  5. Artemisinin-naphthoquine for treating uncomplicated Plasmodium falciparum malaria

    PubMed Central

    Isba, Rachel; Zani, Babalwa; Gathu, Michael; Sinclair, David

    2015-01-01

    Background The World Health Organization (WHO) recommends artemisinin-based combination therapy (ACT) for treating people with Plasmodium falciparum malaria. Five combinations are currently recommended, all administered over three days. Artemisinin-naphthoquine is a new combination developed in China, which is being marketed as a one-day treatment. Although shorter treatment courses may improve adherence, the WHO recommends at least three days of the short-acting artemisinin component to eliminate 90% P. falciparum parasites in the bloodstream, before leaving the longer-acting partner drug to clear the remaining parasites. Objectives To evaluate the efficacy and safety of the artemisinin-naphthoquine combination for treating adults and children with uncomplicated P. falciparum malaria. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register; Cochrane Central Register of Controlled Trials (CENTRAL) published in The Cochrane Library; MEDLINE; EMBASE; and LILACS up to January 2015. We also searched the metaRegister of Controlled Trials (mRCT) using 'malaria' and 'arte* OR dihydroarte*' as search terms. Selection criteria Randomized controlled trials comparing artemisinin-naphthoquine combinations with established WHO-recommended ACTs for the treatment of adults and children with uncomplicated malaria due to P. falciparum. Data collection and analysis Two review authors independently assessed trials for eligibility and risk of bias, and extracted data. We analysed primary outcomes in line with the WHO 'Protocol for assessing and monitoring antimalarial drug efficacy' and compared drugs using risk ratios (RR) and 95% confidence intervals (CI). Secondary outcomes were effects on gametocytes, haemoglobin, and adverse events. We assessed the quality of evidence using the GRADE approach. Main results Four trials, enrolling 740 adults and children, met the inclusion criteria. Artemisinin-naphthoquine was administered as a single dose (two

  6. Primaquine or other 8-aminoquinoline for reducing Plasmodium falciparum transmission

    PubMed Central

    Graves, Patricia M; Gelband, Hellen; Garner, Paul

    2015-01-01

    Background Mosquitoes become infected with Plasmodium when they ingest gametocyte-stage parasites from an infected person's blood. Plasmodium falciparum gametocytes are sensitive to the drug primaquine (PQ) and other 8-aminoquinolines (8AQ); these drugs could prevent parasite transmission from infected people to mosquitoes, and consequently reduce the incidence of malaria. However, PQ will not directly benefit the individual, and could be harmful to those with glucose-6-phosphate dehydrogenase (G6PD) deficiency. In 2010, The World Health Organization (WHO) recommended a single dose of PQ at 0.75 mg/kg, alongside treatment for P. falciparum malaria to reduce transmission in areas approaching malaria elimination. In 2013 the WHO revised this to 0.25 mg/kg due to concerns about safety. Objectives To assess whether giving PQ or an alternative 8AQ alongside treatment for P. falciparum malaria reduces malaria transmission, and to estimate the frequency of severe or haematological adverse events when PQ is given for this purpose. Search methods We searched the following databases up to 10 Feb 2014 for trials: the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in The Cochrane Library; MEDLINE; EMBASE; LILACS; metaRegister of Controlled Trials (mRCT); and the WHO trials search portal using 'malaria*', 'falciparum', and 'primaquine' as search terms. In addition, we searched conference proceedings and reference lists of included studies, and contacted researchers and organizations. Selection criteria Randomized controlled trials (RCTs) or quasi-RCTs comparing PQ (or alternative 8AQ) given as a single dose or short course alongside treatment for P. falciparum malaria with malaria treatment given without PQ/8AQ in adults or children. Data collection and analysis Two authors independently screened all abstracts, applied inclusion criteria, and extracted data. We sought evidence of an impact on

  7. Risk factors for Plasmodium falciparum and Plasmodium vivax gametocyte carriage in Papua New Guinean children with uncomplicated malaria.

    PubMed

    Karl, Stephan; Laman, Moses; Moore, Brioni R; Benjamin, John M; Salib, Mary; Lorry, Lina; Maripal, Samuel; Siba, Peter; Robinson, Leanne J; Mueller, Ivo; Davis, Timothy M E

    2016-08-01

    There are limited data on gametocytaemia risk factors before/after treatment with artemisinin combination therapy in children from areas with transmission of multiple Plasmodium species. We utilised data from a randomised trial comparing artemether-lumefantrine (AL) and artemisinin-naphthoquine (AN) in 230 Papua New Guinean children aged 0.5-5 years with uncomplicated malaria in whom determinants of gametocytaemia by light microscopy were assessed at baseline using logistic regression and during follow-up using multilevel mixed effects modelling. Seventy-four (32%) and 18 (8%) children presented with P. falciparum and P. vivax gametocytaemia, respectively. Baseline P. falciparum gametocytaemia was associated with Hackett spleen grade 1 (odds ratio (95% CI) 4.01 (1.60-10.05) vs grade 0; P<0.001) and haemoglobin (0.95 (0.92-0.97) per 1g/L increase; P<0.001), and P. falciparum asexual parasitaemia in slide-positive cases (0.36 (0.19-0.68) for a 10-fold increase; P=0.002). Baseline P. vivax gametocytaemia was associated with Hackett grade 2 (12.66 (1.31-122.56); P=0.028), mixed P. falciparum/vivax infection (0.16 (0.03-1.00); P=0.050), P. vivax asexual parasitaemia (5.68 (0.98-33.04); P=0.053) and haemoglobin (0.94 (0.88-1.00); P=0.056). For post-treatment P. falciparum gametocytaemia, independent predictors were AN vs AL treatment (4.09 (1.43-11.65)), haemoglobin (0.95 (0.93-0.97)), presence/absence of P. falciparum asexual forms (3.40 (1.66-0.68)) and day post-treatment (0.086 (0.82-0.90)) (P<0.001). Post-treatment P. vivax gametocytaemia was predicted by presence of P. vivax asexual forms (596 (12-28,433); P<0.001). Consistent with slow P. falciparum gametocyte maturation, low haemoglobin, low asexual parasite density and higher spleen grading, markers of increased prior infection exposure/immunity, were strong associates of pre-treatment gametocyte positivity. The persistent inverse association between P. falciparum gametocytaemia and haemoglobin during follow

  8. Purification Methodology for Viable and Infective Plasmodium vivax Gametocytes That Is Compatible with Transmission-Blocking Assays

    PubMed Central

    Vera, Omaira; Brelas de Brito, Paula; Albrecht, Letusa; Martins-Campos, Keillen Monick; Pimenta, Paulo F. P.; Monteiro, Wuelton M.; Lacerda, Marcus V. G.

    2015-01-01

    Significant progress toward the control of malaria has been achieved, especially regarding Plasmodium falciparum infections. However, the unique biology of Plasmodium vivax hampers current control strategies. The early appearance of P. vivax gametocytes in the peripheral blood and the impossibility of culturing this parasite are major drawbacks. Using blood samples from 40 P. vivax-infected patients, we describe here a methodology to purify viable gametocytes and further infect anophelines. This method opens new avenues to validate transmission-blocking strategies. PMID:26239989

  9. Purification Methodology for Viable and Infective Plasmodium vivax Gametocytes That Is Compatible with Transmission-Blocking Assays.

    PubMed

    Vera, Omaira; Brelas de Brito, Paula; Albrecht, Letusa; Martins-Campos, Keillen Monick; Pimenta, Paulo F P; Monteiro, Wuelton M; Lacerda, Marcus V G; Lopes, Stefanie C P; Costa, Fabio T M

    2015-10-01

    Significant progress toward the control of malaria has been achieved, especially regarding Plasmodium falciparum infections. However, the unique biology of Plasmodium vivax hampers current control strategies. The early appearance of P. vivax gametocytes in the peripheral blood and the impossibility of culturing this parasite are major drawbacks. Using blood samples from 40 P. vivax-infected patients, we describe here a methodology to purify viable gametocytes and further infect anophelines. This method opens new avenues to validate transmission-blocking strategies. PMID:26239989

  10. An Epithelial Serine Protease, AgESP, Is Required for Plasmodium Invasion in the Mosquito Anopheles gambiae

    PubMed Central

    Rodrigues, Janneth; Oliveira, Giselle A.; Kotsyfakis, Michalis; Dixit, Rajnikant; Molina-Cruz, Alvaro; Jochim, Ryan; Barillas-Mury, Carolina

    2012-01-01

    Background Plasmodium parasites need to cross the midgut and salivary gland epithelia to complete their life cycle in the mosquito. However, our understanding of the molecular mechanism and the mosquito genes that participate in this process is still very limited. Methodology/Principal Findings We identified an Anopheles gambiae epithelial serine protease (AgESP) that is constitutively expressed in the submicrovillar region of mosquito midgut epithelial cells and in the basal side of the salivary glands that is critical for Plasmodium parasites to cross these two epithelial barriers. AgESP silencing greatly reduces Plasmodium berghei and Plasmodium falciparum midgut invasion and prevents the transcriptional activation of gelsolin, a key regulator of actin remodeling and a reported Plasmodium agonist. AgESP expression is highly induced in midgut cells invaded by Plasmodium, suggesting that this protease also participates in the apoptotic response to invasion. In salivary gland epithelial cells, AgESP is localized on the basal side–the surface with which sporozoites interact. AgESP expression in the salivary gland is also induced in response to P. berghei and P. falciparum sporozoite invasion, and AgESP silencing significantly reduces the number of sporozoites that invade this organ. Conclusion Our findings indicate that AgESP is required for Plasmodium parasites to effectively traverse the midgut and salivary gland epithelial barriers. Plasmodium parasites need to modify the actin cytoskeleton of mosquito epithelial cells to successfully complete their life cycle in the mosquito and AgESP appears to be a major player in the regulation of this process. PMID:22509400

  11. Host compatibility rather than vector–host-encounter rate determines the host range of avian Plasmodium parasites

    PubMed Central

    Medeiros, Matthew C. I.; Hamer, Gabriel L.; Ricklefs, Robert E.

    2013-01-01

    Blood-feeding arthropod vectors are responsible for transmitting many parasites between vertebrate hosts. While arthropod vectors often feed on limited subsets of potential host species, little is known about the extent to which this influences the distribution of vector-borne parasites in some systems. Here, we test the hypothesis that different vector species structure parasite–host relationships by restricting access of certain parasites to a subset of available hosts. Specifically, we investigate how the feeding patterns of Culex mosquito vectors relate to distributions of avian malaria parasites among hosts in suburban Chicago, IL, USA. We show that Plasmodium lineages, defined by cytochrome b haplotypes, are heterogeneously distributed across avian hosts. However, the feeding patterns of the dominant vectors (Culex restuans and Culex pipiens) are similar across these hosts, and do not explain the distributions of Plasmodium parasites. Phylogenetic similarity of avian hosts predicts similarity in their Plasmodium parasites. This effect was driven primarily by the general association of Plasmodium parasites with particular host superfamilies. Our results suggest that a mosquito-imposed encounter rate does not limit the distribution of avian Plasmodium parasites across hosts. This implies that compatibility between parasites and their avian hosts structure Plasmodium host range. PMID:23595266

  12. Plasmodium falciparum Thioredoxin Reductase (PfTrxR) and Its Role as a Target for New Antimalarial Discovery.

    PubMed

    McCarty, Sara E; Schellenberger, Amanda; Goodwin, Douglas C; Fuanta, Ngolui Rene; Tekwani, Babu L; Calderón, Angela I

    2015-01-01

    The growing resistance to current antimalarial drugs is a major concern for global public health. The pressing need for new antimalarials has led to an increase in research focused on the Plasmodium parasites that cause human malaria. Thioredoxin reductase (TrxR), an enzyme needed to maintain redox equilibrium in Plasmodium species, is a promising target for new antimalarials. This review paper provides an overview of the structure and function of TrxR, discusses similarities and differences between the thioredoxin reductases (TrxRs) of different Plasmodium species and the human forms of the enzyme, gives an overview of modeling Plasmodium infections in animals, and suggests the role of Trx functions in antimalarial drug resistance. TrxR of Plasmodium falciparum is a central focus of this paper since it is the only Plasmodium TrxR that has been crystallized and P. falciparum is the species that causes most malaria cases. It is anticipated that the information summarized here will give insight and stimulate new directions in which research might be most beneficial. PMID:26111176

  13. Role of Different Pfcrt and Pfmdr-1 Mutations in Conferring Resistance to Antimalaria Drugs in Plasmodium falciparum.

    PubMed

    Ibraheem, Zaid O; Abd Majid, R; Noor, S Mohd; Sedik, H Mohd; Basir, R

    2014-01-01

    Emergence of drugs resistant strains of Plasmodium falciparum has augmented the scourge of malaria in endemic areas. Antimalaria drugs act on different intracellular targets. The majority of them interfere with digestive vacuoles (DVs) while others affect other organelles, namely, apicoplast and mitochondria. Prevention of drug accumulation or access into the target site is one of the mechanisms that plasmodium adopts to develop resistance. Plasmodia are endowed with series of transporters that shuffle drugs away from the target site, namely, pfmdr (Plasmodium falciparum multidrug resistance transporter) and pfcrt (Plasmodium falciparum chloroquine resistance transporter) which exist in DV membrane and are considered as putative markers of CQ resistance. They are homologues to human P-glycoproteins (P-gh or multidrug resistance system) and members of drug metabolite transporter (DMT) family, respectively. The former mediates drifting of xenobiotics towards the DV while the latter chucks them outside. Resistance to drugs whose target site of action is intravacuolar develops when the transporters expel them outside the DVs and vice versa for those whose target is extravacuolar. In this review, we are going to summarize the possible pfcrt and pfmdr mutation and their role in changing plasmodium sensitivity to different anti-Plasmodium drugs. PMID:25506039

  14. A World Malaria Map: Plasmodium falciparum Endemicity in 2007

    PubMed Central

    Hay, Simon I; Guerra, Carlos A; Gething, Peter W; Patil, Anand P; Tatem, Andrew J; Noor, Abdisalan M; Kabaria, Caroline W; Manh, Bui H; Elyazar, Iqbal R. F; Brooker, Simon; Smith, David L; Moyeed, Rana A; Snow, Robert W

    2009-01-01

    Background Efficient allocation of resources to intervene against malaria requires a detailed understanding of the contemporary spatial distribution of malaria risk. It is exactly 40 y since the last global map of malaria endemicity was published. This paper describes the generation of a new world map of Plasmodium falciparum malaria endemicity for the year 2007. Methods and Findings A total of 8,938 P. falciparum parasite rate (PfPR) surveys were identified using a variety of exhaustive search strategies. Of these, 7,953 passed strict data fidelity tests for inclusion into a global database of PfPR data, age-standardized to 2–10 y for endemicity mapping. A model-based geostatistical procedure was used to create a continuous surface of malaria endemicity within previously defined stable spatial limits of P. falciparum transmission. These procedures were implemented within a Bayesian statistical framework so that the uncertainty of these predictions could be evaluated robustly. The uncertainty was expressed as the probability of predicting correctly one of three endemicity classes; previously stratified to be an informative guide for malaria control. Population at risk estimates, adjusted for the transmission modifying effects of urbanization in Africa, were then derived with reference to human population surfaces in 2007. Of the 1.38 billion people at risk of stable P. falciparum malaria, 0.69 billion were found in Central and South East Asia (CSE Asia), 0.66 billion in Africa, Yemen, and Saudi Arabia (Africa+), and 0.04 billion in the Americas. All those exposed to stable risk in the Americas were in the lowest endemicity class (PfPR2−10 ≤ 5%). The vast majority (88%) of those living under stable risk in CSE Asia were also in this low endemicity class; a small remainder (11%) were in the intermediate endemicity class (PfPR2−10 > 5 to < 40%); and the remaining fraction (1%) in high endemicity (PfPR2−10 ≥ 40%) areas. High endemicity was widespread in the

  15. Aminoindoles, a novel scaffold with potent activity against Plasmodium falciparum.

    PubMed

    Barker, Robert H; Urgaonkar, Sameer; Mazitschek, Ralph; Celatka, Cassandra; Skerlj, Renato; Cortese, Joseph F; Tyndall, Erin; Liu, Hanlan; Cromwell, Mandy; Sidhu, Amar Bir; Guerrero-Bravo, Jose E; Crespo-Llado, Keila N; Serrano, Adelfa E; Lin, Jing-Wen; Janse, Chris J; Khan, Shahid M; Duraisingh, Manoj; Coleman, Bradley I; Angulo-Barturen, Inigo; Jiménez-Díaz, María Belén; Magán, Noemí; Gomez, Vanesa; Ferrer, Santiago; Martínez, María Santos; Wittlin, Sergio; Papastogiannidis, Petros; O'Shea, Thomas; Klinger, Jeffrey D; Bree, Mark; Lee, Edward; Levine, Mikaela; Wiegand, Roger C; Munoz, Benito; Wirth, Dyann F; Clardy, Jon; Bathurst, Ian; Sybertz, Edmund

    2011-06-01

    This study characterizes aminoindole molecules that are analogs of Genz-644442. Genz-644442 was identified as a hit in a screen of ~70,000 compounds in the Broad Institute's small-molecule library and the ICCB-L compound collection at Harvard Medical School. Genz-644442 is a potent inhibitor of Plasmodium falciparum in vitro (50% inhibitory concentrations [IC₅₀s], 200 to 285 nM) and inhibits P. berghei in vivo with an efficacy of > 99% in an adapted version of Peters' 4-day suppressive test (W. Peters, Ann. Trop. Med. Parasitol. 69:155-171, 1975). Genz-644442 became the focus of medicinal chemistry optimization; 321 analogs were synthesized and were tested for in vitro potency against P. falciparum and for in vitro absorption, distribution, metabolism, and excretion (ADME) properties. This yielded compounds with IC₅₀s of approximately 30 nM. The lead compound, Genz-668764, has been characterized in more detail. It is a single enantiomer with IC₅₀s of 28 to 65 nM against P. falciparum in vitro. In the 4-day P. berghei model, when it was dosed at 100 mg/kg of body weight/day, no parasites were detected on day 4 postinfection. However, parasites recrudesced by day 9. Dosing at 200 mg/kg/day twice a day resulted in cures of 3/5 animals. The compound had comparable activity against P. falciparum blood stages in a human-engrafted NOD-scid mouse model. Genz-668764 had a terminal half-life of 2.8 h and plasma trough levels of 41 ng/ml when it was dosed twice a day orally at 55 mg/kg/day. Seven-day rat safety studies showed a no-observable-adverse-effect level (NOAEL) at 200 mg/kg/day; the compound was not mutagenic in Ames tests, did not inhibit the hERG channel, and did not have potent activity against a broad panel of receptors and enzymes. Employing allometric scaling and using in vitro ADME data, the predicted human minimum efficacious dose of Genz-668764 in a 3-day once-daily dosing regimen was 421 mg/day/70 kg, which would maintain plasma trough levels

  16. [Plasmodium falciparum malaria: evaluation of three imported cases].

    PubMed

    İnkaya, Ahmet Çağkan; Kaya, Filiz; Yıldız, İrem; Uzun, Ömrüm; Ergüven, Sibel

    2016-04-01

    Among Plasmodium species the causative agent of malaria in Turkey is P.vivax, however the incidence of imported falciparum malaria cases is steadily increasing. P.falciparum may cause severe malaria with the involvement of central nervous system, acute renal failure, severe anemia or acute respiratory distress syndrome. Furhermore most of the casualties due to malaria are related with P.falciparum. There is recently, a considerable increase in malaria infections especially in tropical areas. In this report, three cases, who have admitted to our hospital with three different clinical presentations of falciparum malaria, and all shared common history of travelling to Africa were presented. First case was a 27 years old, male patient who returned from Malawi seven days ago where he stayed for two weeks. He admitted to our hospital with the complaints of sensation of cold, shivering and fever. In physical examination his body temperature was 37.9°C, C-reactive protein level was high, and the other systemic results were normal. The second case was a 25 years old, male patient who returned from Gambia two weeks ago. He was suffering from fever, headache, shivering and unable to maintain his balance. The patient's body temperature was 38°C. Laboratory tests revealed hyperbilirubinemia and thrombocytopenia. Parasitological examination of the Giemsa-stained peripheral blood smear of these two patients demonstrated ring forms compatible with P.falciparum. Treatment was commenced with arthemeter plus lumefantrine, resulting with complete cure. Third case was a 46 years old, male patient who had been working in Uganda, and returned to Turkey two weeks ago. He had sudden onset of fever, headache, nausea and vomiting and impaired consciousness. His peripheral blood smear revealed ring-formed trophozoites and banana-shaped gametocytes of P.falciparum. Arthemeter plus lumefantrine therapy was started, however, he developed severe thrombocytopenia and jaundice under treatment

  17. Use of a colorimetric (DELI) test for the evaluation of chemoresistance of Plasmodium falciparum and Plasmodium vivax to commonly used anti-plasmodial drugs in the Brazilian Amazon

    PubMed Central

    2013-01-01

    Background The emergence and spread of Plasmodium falciparum and Plasmodium vivax resistance to available anti-malarial drugs represents a major drawback in the control of malaria and its associated morbidity and mortality. The aim of this study was to evaluate the chemoresistance profile of P. falciparum and P. vivax to commonly used anti-plasmodial drugs in a malaria-endemic area in the Brazilian Amazon. Methods The study was carried out in Manaus (Amazonas state), in the Brazilian Amazon. A total of 88 P. falciparum and 178 P. vivax isolates was collected from 2004 to 2007. The sensitivity of P. falciparum isolates was determined to chloroquine, quinine, mefloquine and artesunate and the sensitivity of P. vivax isolates was determined to chloroquine and mefloquine, by using the colorimetric DELI test. Results As expected, a high prevalence of P. falciparum isolates resistant to chloroquine (78.1%) was observed. The prevalence of isolates with profile of resistance or decreased sensitivity for quinine, mefloquine and artesunate was 12.7, 21.2 and 11.7%, respectively. In the case of P. vivax, the prevalence of isolates with profile of resistance for chloroquine and mefloquine was 9.8 and 28%, respectively. No differences in the frequencies of isolates with profile of resistance or geometric mean IC50s were seen when comparing the data obtained in 2004, 2005, 2006 and 2007, for all tested anti-malarials. Conclusions The great majority of P. falciparum isolates in the Brazilian malaria-endemic area remain resistant to chloroquine, and the decreased sensitivity to quinine, mefloquine and artesunate observed in 10–20% of the isolates must be taken with concern, especially for artesunate. Plasmodium vivax isolates also showed a significant proportion of isolates with decreased sensitivity to chloroquine (first-line drug) and mainly to mefloquine. The data presented here also confirm the usefulness of the DELI test to generate results able to impact on public health

  18. Malarial parasite diversity in chimpanzees: the value of comparative approaches to ascertain the evolution of Plasmodium falciparum antigens

    PubMed Central

    2013-01-01

    Background Plasmodium falciparum shares its most recent common ancestor with parasites found in African apes; these species constitute the so-called Laverania clade. In this investigation, the evolutionary history of Plasmodium lineages found in chimpanzees (Pan troglodytes) was explored. Methods Here, the remainders of 74 blood samples collected as part of the chimpanzees’ routine health examinations were studied. For all positive samples with parasite lineages belonging to the Laverania clade, the complete mitochondrial genome (mtDNA), the gene encoding dihydrofolate reductase-thymidylate synthase (dhfr-ts), the chloroquine resistance transporter (Pfcrt), the circumsporozoite protein (csp), merozoite surface protein 2 (msp2), and the DBL-1 domain from var2CSA were amplified, cloned, and sequenced. Other Plasmodium species were included in the mtDNA, dhfr-ts, and csp analyses. Phylogenetic and evolutionary genetic analyses were performed, including molecular clock analyses on the mtDNA. Results/Conclusions Nine chimpanzees were malaria positive (12.2%); four of those infections were identified as P. falciparum, two as a Plasmodium reichenowi-like parasite or Plasmodium sp., one as Plasmodium gaboni, and two as Plasmodium malariae. All P. falciparum isolates were resistant to chloroquine indicating that the chimpanzees acquired such infections from humans in recent times. Such findings, however, are not sufficient for implicating chimpanzees as an animal reservoir for P. falciparum. Timing estimates support that the Laverania clade has co-existed with hominids for a long-period of time. The proposed species P. gaboni, Plasmodium billbrayi, and Plasmodium billcollinsi are monophyletic groups supporting that they are indeed different species. An expanded CSP phylogeny is presented, including all the Laverania species and other malarial parasites. Contrasting with other Plasmodium, the Laverania csp exhibits great conservation at the central tandem repeat region

  19. Lactate dehydrogenase as a marker of Plasmodium infection in malaria vector Anopheles.

    PubMed

    Riandey, M F; Sannier, C; Peltre, G; Monteny, N; Cavaleyra, M

    1996-06-01

    Lactate dehydrogenase (Ldh) electrophoresis showed the presence of Plasmodium yoelii yoelii in Anopheles stephensi and An. gambiae. The Ldh appeared as an additional band (pLdh) whose activity was more intense with 3-acetyl pyridine adenine dinucleotide as coenzyme than with beta nicotin-amide adenine dinucleotide. Several allelic forms occurred both in the vector and the host. The isoelectric point of Ldh, similar in the vector and host, differed from those of Ldh from mosquito and mouse. The presence of pLdh was detected from the 2nd to the 28th day of infection. The pLdh appeared to be proportional to the number of sporozoites present in infected salivary glands. However, pLdh was not found in salivary glands or midguts, but it was detected in the rest of the corresponding mosquito. The origin and use of pLdh as a marker of Plasmodium in its vector is discussed. PMID:8827592

  20. How prevalent are Plasmodium ovale and P. malariae in East Asia?

    PubMed

    Kawamoto, F; Liu, Q; Ferreira, M U; Tantular, I S

    1999-10-01

    Plasmodium ovale and Plasmodium malariae, two of the four human malaria parasites, are usually found at very low prevalence in East Asia, even in areas with intense malaria transmission. In this article, Fumihiko Kawamoto, Qing Liu, Marcelo Ferreira and Indah Tantular review data obtained in recent field surveys, using alternative diagnostic methods such as acridine orange staining and PCR-based methods, to evaluate the prevalence of these two malaria species in East Asia. They argue that these species might be much more prevalent in East Asia than reported previously. In addition, they discuss the implications of sequence variations found in the small subunit ribosomal RNA genes of the two species targeted by diagnostic PCR and compare morphological criteria for speciation of malaria parasites stained with Giemsa and acridine orange. PMID:10481157

  1. In vitro and in vivo characterization of the antimalarial lead compound SSJ-183 in Plasmodium models

    PubMed Central

    Schleiferböck, Sarah; Scheurer, Christian; Ihara, Masataka; Itoh, Isamu; Bathurst, Ian; Burrows, Jeremy N; Fantauzzi, Pascal; Lotharius, Julie; Charman, Susan A; Morizzi, Julia; Shackleford, David M; White, Karen L; Brun, Reto; Wittlin, Sergio

    2013-01-01

    The objective of this work was to characterize the in vitro (Plasmodium falciparum) and in vivo (Plasmodium berghei) activity profile of the recently discovered lead compound SSJ-183. The molecule showed in vitro a fast and strong inhibitory effect on growth of all P. falciparum blood stages, with a tendency to a more pronounced stage-specific action on ring forms at low concentrations. Furthermore, the compound appeared to be equally efficacious on drug-resistant and drug-sensitive parasite strains. In vivo, SSJ-183 showed a rapid onset of action, comparable to that seen for the antimalarial drug artesunate. SSJ-183 exhibited a half-life of about 10 hours and no significant differences in absorption or exposure between noninfected and infected mice. SSJ-183 appears to be a promising new lead compound with an attractive antimalarial profile. PMID:24255594

  2. In Vitro Activity and Interaction of Clindamycin Combined with Dihydroartemisinin against Plasmodium falciparum

    PubMed Central

    Ramharter, M.; Noedl, H.; Winkler, H.; Graninger, W.; Wernsdorfer, W. H.; Kremsner, P. G.; Winkler, S.

    2003-01-01

    Combination regimens are considered a valuable tool for the fight against drug-resistant falciparum malaria. This study was conducted to evaluate the antimalarial potential of clindamycin in combination with dihydroartemisinin in continuously cultured and in freshly isolated Plasmodium falciparum parasites, measuring the inhibition of Plasmodium falciparum histidine-rich protein II synthesis. Interaction analysis revealed a synergistic or additive mode of interaction at various concentration ratios in all continuously cultured parasites at the 50% effective concentration (EC50) level. Antagonism was not found for any of the culture-adapted parasites. In fresh P. falciparum isolates, a fixed clindamycin-dihydroartemisinin combination exhibited additive activity at the EC50 and EC90 levels. The drug mixture showed no significant activity correlation to other commonly used antimalarials. The clindamycin-dihydroartemisinin combination appears to be a promising candidate for clinical investigation. PMID:14576107

  3. Plasmodium Infection Promotes Genomic Instability and AID Dependent B Cell Lymphoma

    PubMed Central

    Robbiani, Davide F.; Deroubaix, Stephanie; Feldhahn, Niklas; Oliveira, Thiago Y.; Callen, Elsa; Wang, Qiao; Jankovic, Mila; Silva, Israel T.; Rommel, Philipp C.; Bosque, David; Eisenreich, Tom; Nussenzweig, André; Nussenzweig, Michel C.

    2015-01-01

    Summary Chronic infection with Plasmodium falciparum was epidemiologically associated with endemic Burkitt’s lymphoma, a mature B cell cancer characterized by chromosome translocation between the c-myc oncogene and Igh, over 50 years ago. Whether infection promotes B cell lymphoma, and if so by what mechanism remains unknown. To investigate the relationship between parasitic disease and lymphomagenesis we used Plasmodium chabaudi (Pc) to produce chronic malaria infection in mice. Pc induces prolonged expansion of germinal centers (GCs), unique compartments where B cells undergo rapid clonal expansion and express activation-induced cytidine deaminase (AID), a DNA mutator. GC B cells elicited during Pc infection suffer widespread DNA damage leading to chromosome translocations. Although infection does not change the overall rate, it modifies lymphomagenesis to favor mature B cell lymphomas that are AID dependent and show chromosome translocations. Thus, malaria infection favors mature B cell cancers by eliciting protracted AID expression in GC B cells. PMID:26276629

  4. Tissue-Resident CD169(+) Macrophages Form a Crucial Front Line against Plasmodium Infection.

    PubMed

    Gupta, Pravesh; Lai, Si Min; Sheng, Jianpeng; Tetlak, Piotr; Balachander, Akhila; Claser, Carla; Renia, Laurent; Karjalainen, Klaus; Ruedl, Christiane

    2016-08-01

    Tissue macrophages exhibit diverse functions, ranging from the maintenance of tissue homeostasis, including clearance of senescent erythrocytes and cell debris, to modulation of inflammation and immunity. Their contribution to the control of blood-stage malaria remains unclear. Here, we show that in the absence of tissue-resident CD169(+) macrophages, Plasmodium berghei ANKA (PbA) infection results in significantly increased parasite sequestration, leading to vascular occlusion and leakage and augmented tissue deposition of the malarial pigment hemozoin. This leads to widespread tissue damage culminating in multiple organ inflammation. Thus, the capacity of CD169(+) macrophages to contain the parasite burden and its sequestration into different tissues and to limit infection-induced inflammation is crucial to mitigating Plasmodium infection and pathogenesis. PMID:27477286

  5. Infection of Laboratory-Colonized Anopheles darlingi Mosquitoes by Plasmodium vivax

    PubMed Central

    Moreno, Marta; Tong, Carlos; Guzmán, Mitchel; Chuquiyauri, Raul; Llanos-Cuentas, Alejandro; Rodriguez, Hugo; Gamboa, Dionicia; Meister, Stephan; Winzeler, Elizabeth A.; Maguina, Paula; Conn, Jan E.; Vinetz, Joseph M.

    2014-01-01

    Anopheles darlingi Root is the most important malaria vector in the Amazonia region of South America. However, continuous propagation of An. darlingi in the laboratory has been elusive, limiting entomological, genetic/genomic, and vector–pathogen interaction studies of this mosquito species. Here, we report the establishment of an An. darlingi colony derived from wild-caught mosquitoes obtained in the northeastern Peruvian Amazon region of Iquitos in the Loreto Department. We show that the numbers of eggs, larvae, pupae, and adults continue to rise at least to the F6 generation. Comparison of feeding Plasmodium vivax ex vivo of F4 and F5 to F1 generation mosquitoes showed the comparable presence of oocysts and sporozoites, with numbers that corresponded to blood-stage asexual parasitemia and gametocytemia, confirming P. vivax vectorial capacity in the colonized mosquitoes. These results provide new avenues for research on An. darlingi biology and study of An. darlingi–Plasmodium interactions. PMID:24534811

  6. Energy metabolism affects susceptibility of A. gambiae mosquitoes to Plasmodium infection

    PubMed Central

    Oliveira, Jose Henrique M.; Gonçalves, Renata L.S.; Oliveira, Giselle A.; Oliveira, Pedro L.; Oliveira, Marcus F.; Barillas-Mury, Carolina

    2011-01-01

    Previous studies showed that A. gambiae L35 females, which are refractory (R) to Plasmodium infection, express higher levels of genes involved in redox-metabolism and mitochondrial respiration than susceptible (S) G3 females. Our studies revealed that R females have reduced longevity, faster utilization of lipid reserves, impaired mitochondrial State-3 respiration, increased rate of mitochondrial electron leak and higher expression levels of several glycolytic enzyme genes. Furthermore, when State-3 respiration was reduced in S females by silencing expression of the adenine nucleotide translocator (ANT), hydrogen peroxide generation was higher and the mRNA levels of lactate dehydrogenase increased in the midgut, while the prevalence and intensity of P. berghei infection were significantly reduced. We conclude that there are broad metabolic differences between R and S An. gambiae mosquitoes that influence their susceptibility to Plasmodium infection. PMID:21320598

  7. A Nature-Inspired Betalainic Probe for Live-Cell Imaging of Plasmodium-Infected Erythrocytes

    PubMed Central

    Gonçalves, Letícia Christina Pires; Tonelli, Renata Rosito; Bagnaresi, Piero; Mortara, Renato Arruda; Ferreira, Antonio Gilberto; Bastos, Erick Leite

    2013-01-01

    A model betalainic dye was semisynthesized from betanin, the magenta pigment of the red beet, and was effective for live-cell imaging of Plasmodium-infected red blood cells. This water-soluble fluorescent probe is photostable, excitable in the visible region and cell membrane-permeable, and its photophysical properties are not notably pH-sensitive. Fluorescence imaging microscopy of erythrocytes infected with Plasmodium falciparum, a causative agent of malaria in humans, showed that only the parasite was stained. Z-stacking analysis suggested that the probe accumulates proximal to the nucleus of the parasite. Indicaxanthin, one of the natural fluorescent betalains found in the petals of certain flowers, did not stain the parasite or the red blood cell. PMID:23342028

  8. Local Adaptation and Vector-Mediated Population Structure in Plasmodium vivax Malaria

    PubMed Central

    Gonzalez-Ceron, Lilia; Carlton, Jane M.; Gueye, Amy; Fay, Michael; McCutchan, Thomas F.; Su, Xin-zhuan

    2008-01-01

    Plasmodium vivax in southern Mexico exhibits different infectivities to 2 local mosquito vectors, Anopheles pseudopunctipennis and Anopheles albimanus. Previous work has tied these differences in mosquito infectivity to variation in the central repeat motif of the malaria parasite's circumsporozoite (csp) gene, but subsequent studies have questioned this view. Here we present evidence that P. vivax in southern Mexico comprised 3 genetic populations whose distributions largely mirror those of the 2 mosquito vectors. Additionally, laboratory colony feeding experiments indicate that parasite populations are most compatible with sympatric mosquito species. Our results suggest that reciprocal selection between malaria parasites and mosquito vectors has led to local adaptation of the parasite. Adaptation to local vectors may play an important role in generating population structure in Plasmodium. A better understanding of coevolutionary dynamics between sympatric mosquitoes and parasites will facilitate the identification of molecular mechanisms relevant to disease transmission in nature and provide crucial information for malaria control. PMID:18385220

  9. Severe Rhabdomyolysis Caused by Plasmodium vivax Malaria in the Brazilian Amazon

    PubMed Central

    Siqueira, André M.; Alexandre, Márcia A. A.; Mourão, Maria P. G.; Santos, Valquir S.; Nagahashi-Marie, Suely K.; Alecrim, Maria G. C.; Lacerda, Marcus V. G.

    2010-01-01

    Severe rhabdomyolysis (creatine phosphokinase = 29,400U/L) developed in a 16-year-old boy from Manaus, Brazil, after he started treatment with chloroquine for infection with Plasmodium vivax. Treatment led to myoglobinuria and acute renal failure. After hemodialysis, the patient improved and a muscle biopsy specimen showed no myophosphorylase or deaminase deficiency. This case of rhabdomyolysis associated with P. vivax infection showed no comorbidities. The pathogenesis is still unclear. Although rhabdomyolysis is generally reported as a complication of Plasmodium falciparum malaria, leading to metabolic and renal complications,1 it has been reported in a patient with P. vivax infection with myoadenylate deaminase deficiency.2 We report a case in a patient without typical muscle enzyme deficiencies in which severe rhabdomyolysis developed while the patients was being treated with chloroquine for a confirmed P. vivax infection. PMID:20682866

  10. Characterizing the genetic diversity of the monkey malaria parasite Plasmodium cynomolgi.

    PubMed

    Sutton, Patrick L; Luo, Zunping; Divis, Paul C S; Friedrich, Volney K; Conway, David J; Singh, Balbir; Barnwell, John W; Carlton, Jane M; Sullivan, Steven A

    2016-06-01

    Plasmodium cynomolgi is a malaria parasite that typically infects Asian macaque monkeys, and humans on rare occasions. P. cynomolgi serves as a model system for the human malaria parasite Plasmodium vivax, with which it shares such important biological characteristics as formation of a dormant liver stage and a preference to invade reticulocytes. While genomes of three P. cynomolgi strains have been sequenced, genetic diversity of P. cynomolgi has not been widely investigated. To address this we developed the first panel of P. cynomolgi microsatellite markers to genotype eleven P. cynomolgi laboratory strains and 18 field isolates from Sarawak, Malaysian Borneo. We found diverse genotypes among most of the laboratory strains, though two nominally different strains were found to be genetically identical. We also investigated sequence polymorphism in two erythrocyte invasion gene families, the reticulocyte binding protein and Duffy binding protein genes, in these strains. We also observed copy number variation in rbp genes. PMID:26980604

  11. Using bacteria to express and display anti-Plasmodium molecules in the mosquito midgut.

    PubMed

    Riehle, Michael A; Moreira, Cristina K; Lampe, David; Lauzon, Carol; Jacobs-Lorena, Marcelo

    2007-05-01

    Bacteria capable of colonizing mosquito midguts are attractive vehicles for delivering anti-malaria molecules. We genetically engineered Escherichia coli to display two anti-Plasmodium effector molecules, SM1 and phospholipase-A(2), on their outer membrane. Both molecules significantly inhibited Plasmodium berghei development when engineered bacteria were fed to mosquitoes 24h prior to an infective bloodmeal (SM1=41%, PLA2=23%). Furthermore, prevalence and numbers of engineered bacteria increased dramatically following a bloodmeal. However, E. coli survived poorly in mosquitoes. Therefore, Enterobacter agglomerans was isolated from mosquitoes and selected for midgut survival by multiple passages through mosquitoes. After four passages, E. agglomerans survivorship increased from 2 days to 2 weeks. Since E. agglomerans is non-pathogenic and widespread, it is an excellent candidate for paratransgenic control strategies. PMID:17224154

  12. Epidemiology of Plasmodium and Helminth Coinfection and Possible Reasons for Heterogeneity

    PubMed Central

    Erko, Berhanu

    2016-01-01

    Understanding the impact of helminth infections on clinical malaria is useful for designing effective malaria control strategies. Plenty of epidemiological studies have been conducted to unravel the nature of interactions between Plasmodium and helminth infection. Careful broad summarization of the existing literature suggests that Schistosoma mansoni and hookworm infections may increase the risk of clinical malaria and associated morbidities, but Trichuris trichiura infection is not associated with the occurrence of clinical malaria and related outcomes. However, findings about effect of Ascaris lumbricoides and Schistosoma haematobium infection on clinical malaria are contradictory. Furthermore, the nature of relationship of helminth infection with severe malaria has also not been determined with certainty. This review summarizes the findings of epidemiological studies of Plasmodium and helminth coinfection, placing greater emphasis on the impact of the coinfection on malaria. Possible reasons for the heterogeneity of the findings on malaria and helminth coinfections are also discussed. PMID:27092310

  13. A nature-inspired betalainic probe for live-cell imaging of Plasmodium-infected erythrocytes.

    PubMed

    Gonçalves, Letícia Christina Pires; Tonelli, Renata Rosito; Bagnaresi, Piero; Mortara, Renato Arruda; Ferreira, Antonio Gilberto; Bastos, Erick Leite

    2013-01-01

    A model betalainic dye was semisynthesized from betanin, the magenta pigment of the red beet, and was effective for live-cell imaging of Plasmodium-infected red blood cells. This water-soluble fluorescent probe is photostable, excitable in the visible region and cell membrane-permeable, and its photophysical properties are not notably pH-sensitive. Fluorescence imaging microscopy of erythrocytes infected with Plasmodium falciparum, a causative agent of malaria in humans, showed that only the parasite was stained. Z-stacking analysis suggested that the probe accumulates proximal to the nucleus of the parasite. Indicaxanthin, one of the natural fluorescent betalains found in the petals of certain flowers, did not stain the parasite or the red blood cell. PMID:23342028

  14. The role of reactive oxygen species on Plasmodium melanotic encapsulation in Anopheles gambiae

    PubMed Central

    Kumar, Sanjeev; Christophides, George K.; Cantera, Rafael; Charles, Bradley; Han, Yeon Soo; Meister, Stephan; Dimopoulos, George; Kafatos, Fotis C.; Barillas-Mury, Carolina

    2003-01-01

    Malaria transmission depends on the competence of some Anopheles mosquitoes to sustain Plasmodium development (susceptibility). A genetically selected refractory strain of Anopheles gambiae blocks Plasmodium development, melanizing, and encapsulating the parasite in a reaction that begins with tyrosine oxidation, and involves three quantitative trait loci. Morphological and microarray mRNA expression analysis suggest that the refractory and susceptible strains have broad physiological differences, which are related to the production and detoxification of reactive oxygen species. Physiological studies corroborate that the refractory strain is in a chronic state of oxidative stress, which is exacerbated by blood feeding, resulting in increased steady-state levels of reactive oxygen species, which favor melanization of parasites as well as Sephadex beads. PMID:14623973

  15. The role of reactive oxygen species on Plasmodium melanotic encapsulation in Anopheles gambiae.

    PubMed

    Kumar, Sanjeev; Christophides, George K; Cantera, Rafael; Charles, Bradley; Han, Yeon Soo; Meister, Stephan; Dimopoulos, George; Kafatos, Fotis C; Barillas-Mury, Carolina

    2003-11-25

    Malaria transmission depends on the competence of some Anopheles mosquitoes to sustain Plasmodium development (susceptibility). A genetically selected refractory strain of Anopheles gambiae blocks Plasmodium development, melanizing, and encapsulating the parasite in a reaction that begins with tyrosine oxidation, and involves three quantitative trait loci. Morphological and microarray mRNA expression analysis suggest that the refractory and susceptible strains have broad physiological differences, which are related to the production and detoxification of reactive oxygen species. Physiological studies corroborate that the refractory strain is in a chronic state of oxidative stress, which is exacerbated by blood feeding, resulting in increased steady-state levels of reactive oxygen species, which favor melanization of parasites as well as Sephadex beads. PMID:14623973

  16. Epidemiology of Plasmodium and Helminth Coinfection and Possible Reasons for Heterogeneity.

    PubMed

    Degarege, Abraham; Erko, Berhanu

    2016-01-01

    Understanding the impact of helminth infections on clinical malaria is useful for designing effective malaria control strategies. Plenty of epidemiological studies have been conducted to unravel the nature of interactions between Plasmodium and helminth infection. Careful broad summarization of the existing literature suggests that Schistosoma mansoni and hookworm infections may increase the risk of clinical malaria and associated morbidities, but Trichuris trichiura infection is not associated with the occurrence of clinical malaria and related outcomes. However, findings about effect of Ascaris lumbricoides and Schistosoma haematobium infection on clinical malaria are contradictory. Furthermore, the nature of relationship of helminth infection with severe malaria has also not been determined with certainty. This review summarizes the findings of epidemiological studies of Plasmodium and helminth coinfection, placing greater emphasis on the impact of the coinfection on malaria. Possible reasons for the heterogeneity of the findings on malaria and helminth coinfections are also discussed. PMID:27092310

  17. Vitamin and co-factor biosynthesis pathways in Plasmodium and other apicomplexan parasites

    PubMed Central

    Müller, Sylke; Kappes, Barbara

    2007-01-01

    Vitamins are essential components of the human diet. By contrast, the malaria parasite Plasmodium falciparum and related apicomplexan parasites synthesise certain vitamins, de novo, either completely or in parts. The occurrence of the various biosynthesis pathways is specific to different apicomplexan parasites, emphasising their distinct requirements for nutrients and growth factors. The absence of vitamin biosynthesis from the human host implies that inhibition of the parasite pathways may be a way to interfere specifically with parasite development. However, the precise role of biosynthesis and potential uptake of vitamins for the overall regulation of vitamin homeostasis in the parasites needs to be established first. In this review Sylke Müller and Barbara Kappes focus mainly on the procurement of vitamin B1, B5 and B6 by Plasmodium and other apicomplexan parasites. PMID:17276140

  18. Small-molecule xenomycins inhibit all stages of the Plasmodium life cycle.

    PubMed

    Erath, Jessey; Gallego-Delgado, Julio; Xu, Wenyue; Andriani, Grasiella; Tanghe, Scott; Gurova, Katerina V; Gudkov, Andrei; Purmal, Andrei; Rydkina, Elena; Rodriguez, Ana

    2015-03-01

    Widespread resistance to most antimalaria drugs in use has prompted the search for novel candidate compounds with activity against Plasmodium asexual blood stages to be developed for treatment. In addition, the current malaria eradication programs require the development of drugs that are effective against all stages of the parasite life cycle. We have analyzed the antimalarial properties of xenomycins, a novel subclass of small molecule compounds initially isolated for anticancer activity and similarity to quinacrine in biological effects on mammalian cells. In vitro studies show potent activity of Xenomycins against Plasmodium falciparum. Oral administration of xenomycins in mouse models result in effective clearance of liver and blood asexual and sexual stages, as well as effective inhibition of transmission to mosquitoes. These characteristics position xenomycins as antimalarial candidates with potential activity in prevention, treatment and elimination of this disease. PMID:25512429

  19. Small-Molecule Xenomycins Inhibit All Stages of the Plasmodium Life Cycle

    PubMed Central

    Erath, Jessey; Gallego-Delgado, Julio; Xu, Wenyue; Andriani, Grasiella; Tanghe, Scott; Gurova, Katerina V.; Gudkov, Andrei; Purmal, Andrei; Rydkina, Elena

    2014-01-01

    Widespread resistance to most antimalaria drugs in use has prompted the search for novel candidate compounds with activity against Plasmodium asexual blood stages to be developed for treatment. In addition, the current malaria eradication programs require the development of drugs that are effective against all stages of the parasite life cycle. We have analyzed the antimalarial properties of xenomycins, a novel subclass of small molecule compounds initially isolated for anticancer activity and similarity to quinacrine in biological effects on mammalian cells. In vitro studies show potent activity of Xenomycins against Plasmodium falciparum. Oral administration of xenomycins in mouse models result in effective clearance of liver and blood asexual and sexual stages, as well as effective inhibition of transmission to mosquitoes. These characteristics position xenomycins as antimalarial candidates with potential activity in prevention, treatment and elimination of this disease. PMID:25512429

  20. Human antisera detect a Plasmodium falciparum genomic clone encoding a nonapeptide repeat.

    PubMed

    Koenen, M; Scherf, A; Mercereau, O; Langsley, G; Sibilli, L; Dubois, P; Pereira da Silva, L; Müller-Hill, B

    Plasmodium falciparum causes malaria infections in its human host. Its wide distribution in tropical countries is a major world health problem. Before a vaccine can be produced, the identification and characterization of parasite antigens is necessary. This can be achieved by the cloning and subsequent analysis of genes coding for parasite antigens. Recently established cDNA banks allow the expression of cDNA derived from the simian parasite Plasmodium knowlesi and P. falciparum in Escherichia coli. Recombinants encoding parasite antigens have been identified by immunodetection in both banks. Two of them contain repetitive units of 11 (ref. 7) or 12 (ref. 5) amino acids. We describe here the construction of an expression bank made directly from randomly generated fragments of P. falciparum genomic DNA. We detect several clones which react strongly with human African immune sera. One clone expresses an antigenic determinant composed of occasionally degenerated repeats of a peptide nonamer. PMID:6090935

  1. Sexual development in Plasmodium parasites: knowing when it's time to commit.

    PubMed

    Josling, Gabrielle A; Llinás, Manuel

    2015-09-01

    Malaria is a devastating infectious disease that is caused by blood-borne apicomplexan parasites of the genus Plasmodium. These pathogens have a complex lifecycle, which includes development in the anopheline mosquito vector and in the liver and red blood cells of mammalian hosts, a process which takes days to weeks, depending on the Plasmodium species. Productive transmission between the mammalian host and the mosquito requires transitioning between asexual and sexual forms of the parasite. Blood- stage parasites replicate cyclically and are mostly asexual, although a small fraction of these convert into male and female sexual forms (gametocytes) in each reproductive cycle. Despite many years of investigation, the molecular processes that elicit sexual differentiation have remained largely unknown. In this Review, we highlight several important recent discoveries that have identified epigenetic factors and specific transcriptional regulators of gametocyte commitment and development, providing crucial insights into this obligate cellular differentiation process. PMID:26272409

  2. Population genomics studies identify signatures of global dispersal and drug resistance in Plasmodium vivax.

    PubMed

    Hupalo, Daniel N; Luo, Zunping; Melnikov, Alexandre; Sutton, Patrick L; Rogov, Peter; Escalante, Ananias; Vallejo, Andrés F; Herrera, Sócrates; Arévalo-Herrera, Myriam; Fan, Qi; Wang, Ying; Cui, Liwang; Lucas, Carmen M; Durand, Salomon; Sanchez, Juan F; Baldeviano, G Christian; Lescano, Andres G; Laman, Moses; Barnadas, Celine; Barry, Alyssa; Mueller, Ivo; Kazura, James W; Eapen, Alex; Kanagaraj, Deena; Valecha, Neena; Ferreira, Marcelo U; Roobsoong, Wanlapa; Nguitragool, Wang; Sattabonkot, Jetsumon; Gamboa, Dionicia; Kosek, Margaret; Vinetz, Joseph M; González-Cerón, Lilia; Birren, Bruce W; Neafsey, Daniel E; Carlton, Jane M

    2016-08-01

    Plasmodium vivax is a major public health burden, responsible for the majority of malaria infections outside Africa. We explored the impact of demographic history and selective pressures on the P. vivax genome by sequencing 182 clinical isolates sampled from 11 countries across the globe, using hybrid selection to overcome human DNA contamination. We confirmed previous reports of high genomic diversity in P. vivax relative to the more virulent Plasmodium falciparum species; regional populations of P. vivax exhibited greater diversity than the global P. falciparum population, indicating a large and/or stable population. Signals of natural selection suggest that P. vivax is evolving in response to antimalarial drugs and is adapting to regional differences in the human host and the mosquito vector. These findings underline the variable epidemiology of this parasite species and highlight the breadth of approaches that may be required to eliminate P. vivax globally. PMID:27348298

  3. Acyclic Immucillin Phosphonates. Second-Generation Inhibitors of Plasmodium falciparum Hypoxanthine- Guanine-Xanthine Phosphoribosyltransferase

    SciTech Connect

    Hazelton, Keith Z.; Ho, Meng-Chaio; Cassera, Maria B.; Clinch, Keith; Crump, Douglas R.; Rosario Jr., Irving; Merino, Emilio F.; Almo, Steve C.; Tyler, Peter C.; Schramm, Vern L.

    2012-06-22

    We found that Plasmodium falciparum is the primary cause of deaths from malaria. It is a purine auxotroph and relies on hypoxanthine salvage from the host purine pool. Purine starvation as an antimalarial target has been validated by inhibition of purine nucleoside phosphorylase. Hypoxanthine depletion kills Plasmodium falciparum in cell culture and in Aotus monkey infections. Hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) from P. falciparum is required for hypoxanthine salvage by forming inosine 5'-monophosphate, a branchpoint for all purine nucleotide synthesis in the parasite. We present a class of HGXPRT inhibitors, the acyclic immucillin phosphonates (AIPs), and cell permeable AIP prodrugs. The AIPs are simple, potent, selective, and biologically stable inhibitors. The AIP prodrugs block proliferation of cultured parasites by inhibiting the incorporation of hypoxanthine into the parasite nucleotide pool and validates HGXPRT as a target in malaria.

  4. Acute Disseminated Encephalomyelitis After Plasmodium Vivax Infection: Case Report and Review of Literature

    PubMed Central

    Sidhu, Jasmeet; Maheshwari, Anu; Gupta, Raju; Devgan, Veena

    2015-01-01

    Acute demyelinating encephalomyelitis (ADEM) usually occurs after viral infections or vaccination. Its occurrence after Plasmodium vivax infection is extremely uncommon. We report the case of an 8-year-old girl who had choreo-athetoid movements and ataxia after recovery from P.vivax infection. Diagnosis of ADEM was made on the basis of magnetic resonance imaging findings. The child responded to corticosteroids with complete neurological recovery. PMID:26266032

  5. Loading of erythrocyte membrane with pentacyclic triterpenes inhibits Plasmodium falciparum invasion.

    PubMed

    Ziegler, Hanne L; Staalsø, Trine; Jaroszewski, Jerzy W

    2006-06-01

    Lupeol and betulinic acid inhibit the proliferation of Plasmodium falciparum parasites by inhibition of the invasion of merozoites into erythrocytes. This conclusion is based on experiments employing parasite cultures synchronized by magnetic cell sorting (MACS). Identical inhibitory effects were observed upon incubation of synchronous parasite cultures in the presence of the triterpenoids, and when the parasite cultures were grown in a triterpenoid-free medium with erythrocytes preloaded with the triterpenoids. PMID:16732511

  6. Direct evidence for the atovaquone action on the Plasmodium cytochrome bc1 complex.

    PubMed

    Siregar, Josephine E; Kurisu, Genji; Kobayashi, Tamaki; Matsuzaki, Motomichi; Sakamoto, Kimitoshi; Mi-ichi, Fumika; Watanabe, Yoh-ichi; Hirai, Makoto; Matsuoka, Hiroyuki; Syafruddin, Din; Marzuki, Sangkot; Kita, Kiyoshi

    2015-06-01

    Atovaquone, a coenzyme Q analogue has been indicated to specifically target the cytochrome bc1 complex of the mitochondrial respiratory chain in the malarial parasite and other protozoan. Various mutations in the quinone binding site of the cytochrome b gene of Plasmodium spp. such as M133I, L144S, L271V, K272R, Y268C, Y268S, Y268N, and V284F are suggesting to associate with resistance to atovaquone. There is no direct evidence of relation between the mutations and resistance to atovaquone in Plasmodium parasite that has been available. Technical difficulties in isolating active assayable mitochondria in the malarial parasite hinder us to obtain direct biochemical evidence to support the relation between the mutations and drug resistance. The establishment of a mitochondrial isolation method for the malaria parasite has allowed us to test the degree of resistance of Plasmodium berghei isolates to atovaquone directly. We have tested the activity of dihydroorotate (DHO)-cytochrome c reductase in various P. berghei atovaquone resistant clones in the presence of a wide concentration range of atovaquone. Our results show the IC(50) of P. berghei atovaquone resistant clones is much higher (1.5 up to 40 nM) in comparison to the atovaquone sensitive clones (0.132-0.465 nM). The highest IC(50) was revealed in clones carrying Y268C and Y268N mutations (which play an important role in atovaquone resistance in Plasmodium falciparum), with an approximately 100-fold increase. The findings indicate the importance of the mutation in the quinone binding site of the cytochrome b gene and that provide a direct evidence for the atovaquone inhibitory mechanism in the cytochrome bc1 complex of the parasite. PMID:25264100

  7. Comparative Ex Vivo Activity of Novel Endoperoxides in Multidrug-Resistant Plasmodium falciparum and P. vivax

    PubMed Central

    Chalfein, Ferryanto; Prayoga, Pak; Wabiser, Frans; Wirjanata, Grennady; Sebayang, Boni; Piera, Kim A.; Wittlin, Sergio; Haynes, Richard K.; Möhrle, Jörg J.; Anstey, Nicholas M.; Kenangalem, Enny; Price, Ric N.

    2012-01-01

    The declining efficacy of artemisinin derivatives against Plasmodium falciparum highlights the urgent need to identify alternative highly potent compounds for the treatment of malaria. In Papua Indonesia, where multidrug resistance has been documented against both P. falciparum and P. vivax malaria, comparative ex vivo antimalarial activity against Plasmodium isolates was assessed for the artemisinin derivatives artesunate (AS) and dihydroartemisinin (DHA), the synthetic peroxides OZ277 and OZ439, the semisynthetic 10-alkylaminoartemisinin derivatives artemisone and artemiside, and the conventional antimalarial drugs chloroquine (CQ), amodiaquine (AQ), and piperaquine (PIP). Ex vivo drug susceptibility was assessed in 46 field isolates (25 P. falciparum and 21 P. vivax). The novel endoperoxide compounds exhibited potent ex vivo activity against both species, but significant differences in intrinsic activity were observed. Compared to AS and its active metabolite DHA, all the novel compounds showed lower or equal 50% inhibitory concentrations (IC50s) in both species (median IC50s between 1.9 and 3.6 nM in P. falciparum and 0.7 and 4.6 nM in P. vivax). The antiplasmodial activity of novel endoperoxides showed different cross-susceptibility patterns in the two Plasmodium species: whereas their ex vivo activity correlated positively with CQ, PIP, AS, and DHA in P. falciparum, the same was not apparent in P. vivax. The current study demonstrates for the first time potent activity of novel endoperoxides against drug-resistant P. vivax. The high activity against drug-resistant strains of both Plasmodium species confirms these compounds to be promising candidates for future artemisinin-based combination therapy (ACT) regimens in regions of coendemicity. PMID:22850522

  8. Field applications of agglutination and cytoadherence assays with Plasmodium falciparum from Papua New Guinea.

    PubMed

    Southwell, B R; Brown, G V; Forsyth, K P; Smith, T; Philip, G; Anders, R

    1989-01-01

    Plasmodium falciparum isolates obtained directly from patients in Papua New Guinea were tested in their first cycle of growth in vitro for adherence to melanoma cells and for susceptibility to agglutination by immune serum. Binding varied among isolates and, in many cases, increased with further rounds of replication under optimal culture conditions. Binding inhibition assays and agglutination assays demonstrated extreme heterogeneity of surface antigens; apparently none of the sera from adult patients recognized all of the variants presented. PMID:2694479

  9. Acute respiratory distress syndrome and acute renal failure from Plasmodium ovale infection with fatal outcome

    PubMed Central

    2013-01-01

    Background Plasmodium ovale is one of the causative agents of human malaria. Plasmodium ovale infection has long been thought to be non-fatal. Due to its lower morbidity, P. ovale receives little attention in malaria research. Methods Two Malaysians went to Nigeria for two weeks. After returning to Malaysia, they fell sick and were admitted to different hospitals. Plasmodium ovale parasites were identified from blood smears of these patients. The species identification was further confirmed with nested PCR. One of them was successfully treated with no incident of relapse within 12-month medical follow-up. The other patient came down with malaria-induced respiratory complication during the course of treatment. Although parasites were cleared off the circulation, the patient’s condition worsened. He succumbed to multiple complications including acute respiratory distress syndrome and acute renal failure. Results Sequencing of the malaria parasite DNA from both cases, followed by multiple sequence alignment and phylogenetic tree construction suggested that the causative agent for both malaria cases was P. ovale curtisi. Discussion In this report, the differences between both cases were discussed, and the potential capability of P. ovale in causing severe complications and death as seen in this case report was highlighted. Conclusion Plasmodium ovale is potentially capable of causing severe complications, if not death. Complete travel and clinical history of malaria patient are vital for successful diagnoses and treatment. Monitoring of respiratory and renal function of malaria patients, regardless of the species of malaria parasites involved is crucial during the course of hospital admission. PMID:24180319

  10. Erythrocyte Lysis and Xenopus laevis Oocyte Rupture by Recombinant Plasmodium falciparum Hemolysin III

    PubMed Central

    Moonah, Shannon; Sanders, Natalie G.; Persichetti, Jason K.

    2014-01-01

    Malaria kills more than 1 million people per year worldwide, with severe malaria anemia accounting for the majority of the deaths. Malaria anemia is multifactorial in etiology, including infected erythrocyte destruction and decrease in erythrocyte production, as well as destruction or clearance of noninfected erythrocytes. We identified a panspecies Plasmodium hemolysin type III related to bacterial hemolysins. The identification of a hemolysin III homologue in Plasmodium suggests a potential role in host erythrocyte lysis. Here, we report the first characterization of Plasmodium falciparum hemolysin III, showing that the soluble recombinant P. falciparum hemolysin III is a pore-forming protein capable of lysing human erythrocytes in a dose-, time-, and temperature-dependent fashion. The recombinant P. falciparum hemolysin III-induced hemolysis was partially inhibited by glibenclamide, a known channel antagonist. Studies with polyethylene glycol molecules of different molecular weights indicated a pore size of approximately 3.2 nm. Heterologous expression of recombinant P. falciparum hemolysin III in Xenopus oocytes demonstrated early hypotonic lysis similar to that of the pore-forming aquaporin control. Live fluorescence microscopy localized transfected recombinant green fluorescent protein (GFP)-tagged P. falciparum hemolysin III to the essential digestive vacuole of the P. falciparum parasite. These transfected trophozoites also possessed a swollen digestive vacuole phenotype. Native Plasmodium hemolysin III in the digestive vacuole may contribute to lysis of the parasitophorous vacuole membrane derived from the host erythrocyte. After merozoite egress from infected erythrocytes, remnant P. falciparum hemolysin III released from digestive vacuoles could potentially contribute to lysis of uninfected erythrocytes to contribute to severe life-threatening anemia. PMID:25148832

  11. An epidemiologically successful Escherichia coli sequence type modulates Plasmodium falciparum infection in the mosquito midgut.

    PubMed

    Tchioffo, Majoline T; Abate, Luc; Boissière, Anne; Nsango, Sandrine E; Gimonneau, Geoffrey; Berry, Antoine; Oswald, Eric; Dubois, Damien; Morlais, Isabelle

    2016-09-01

    Malaria transmission relies on the successful development of Plasmodium parasites in the Anopheles mosquito vector. Within the mosquito midgut, malaria parasites encounter a resident bacterial flora and parasite-bacteria interactions modulate Plasmodium development. The mechanisms by which the bacteria interact with malaria parasites are still unknown. The intestinal microbiota could regulate immune signaling pathways or produce bacterial compounds that block Plasmodium development. In this study, we characterized Escherichia coli strains previously isolated from the Anopheles mosquito midgut and investigated the putative role of two E. coli clones, 444ST95 and 351ST73, on parasite development. Sporogonic development was significantly impacted by exposure to clone 444ST95 whereas prevalence and intensity of infection were not different in mosquitoes challenged with 351ST73 as compared to control mosquitoes. This result indicates midgut bacteria exhibit intra-specific variation in their ability to inhibit Plasmodium development. Expression patterns of immune genes differed between mosquitoes challenged with 444ST95 and 351ST73 and examination of the luminal midgut surface by transmission electron microscopy revealed distinct effects of bacterial exposure on midgut epithelial cells. The 444ST95 clone strongly affected mosquito survival and parasite development and this could be associated to the Hemolysin F or other toxins released by the bacteria. Further studies will be needed to decipher the virulence factors and to determine their contribution to the observed phenotype of the 444ST95E. coli strain that belongs to the epidemiological ST95 clonal group responsible for extra intestinal infections in human and other animals. PMID:27154329

  12. High Plasmodium malariae Prevalence in an Endemic Area of the Colombian Amazon Region

    PubMed Central

    Camargo-Ayala, Paola Andrea; Cubides, Juan Ricardo; Niño, Carlos Hernando; Camargo, Milena; Rodríguez-Celis, Carlos Arturo; Quiñones, Teódulo; Sánchez-Suárez, Lizeth; Patarroyo, Manuel Elkin

    2016-01-01

    Malaria is a worldwide public health problem; parasites from the genus Plasmodium are the aetiological agent for this disease. The parasites are mostly diagnosed by conventional microscopy-based techniques; however, their limitations have led to under-registering the reported prevalence of Plasmodium species. This study has thus been aimed at evaluating the infection and coinfection prevalence of 3 species of Plasmodium spp., in an area of the Colombian Amazon region. Blood samples were taken from 671 symptomatic patients by skin puncture; a nested PCR amplifying the 18S ssRNA region was used on all samples to determine the presence of P. vivax, P. malariae and P. falciparum. Statistical analysis determined infection and coinfection frequency; the association between infection and different factors was established. The results showed that P. vivax was the species having the greatest frequency in the study population (61.4%), followed by P. malariae (43.8%) and P. falciparum (11.8%). The study revealed that 35.8% of the population had coinfection, the P. vivax/P. malariae combination occurring most frequently (28.3%); factors such as age, geographical origin and clinical manifestations were found to be associated with triple-infection. The prevalence reported in this study differed from previous studies in Colombia; the results suggest that diagnosis using conventional techniques could be giving rise to underestimating some Plasmodium spp. species having high circulation rates in Colombia (particularly in the Colombian Amazon region). The present study’s results revealed a high prevalence of P. malariae and mixed infections in the population being studied. The results provide relevant information which should facilitate updating the epidemiological panorama and species’ distribution so as to include control, prevention and follow-up measures. PMID:27467587

  13. Molecular surveillance of antimalarial drug resistance related genes in Plasmodium falciparum isolates from Eritrea.

    PubMed

    Menegon, Michela; Nurahmed, Abduselam M; Talha, Albadawi A; Nour, Bakri Y M; Severini, Carlo

    2016-05-01

    The introduction of artemisinin-based combination therapy has led to extraordinary results in malaria control, however the recent emergence of partial resistance to artemisinin therapy in Southeast Asia jeopardizes these successes. This study aimed at investigating resistance to the antimalarial drugs by evaluating the polymorphisms in the PfK13, Pfcrt and Pfmdr1 genes in Plasmodium falciparum isolates obtained from patients in Eritrea. PMID:26875763

  14. Co-infection of Plasmodium vivax Malaria and Cytomegalovirus in an Immunocompetent Neonate.

    PubMed

    Chandelia, Sudha; Jain, Sarika

    2014-12-01

    Co-infections when occur can pose substantial diagnostic and treatment challenges for clinicians. In this case report we describe a neonate with co infection of plasmodium vivax malaria with Cytomegalovirus and discuss whether it can be the result of reactivation of one by the other infection postnatally or if these infections can affect and facilitate the transplacental transmission of each other from the mother. PMID:25653999

  15. High Plasmodium malariae Prevalence in an Endemic Area of the Colombian Amazon Region.

    PubMed

    Camargo-Ayala, Paola Andrea; Cubides, Juan Ricardo; Niño, Carlos Hernando; Camargo, Milena; Rodríguez-Celis, Carlos Arturo; Quiñones, Teódulo; Sánchez-Suárez, Lizeth; Patarroyo, Manuel Elkin; Patarroyo, Manuel Alfonso

    2016-01-01

    Malaria is a worldwide public health problem; parasites from the genus Plasmodium are the aetiological agent for this disease. The parasites are mostly diagnosed by conventional microscopy-based techniques; however, their limitations have led to under-registering the reported prevalence of Plasmodium species. This study has thus been aimed at evaluating the infection and coinfection prevalence of 3 species of Plasmodium spp., in an area of the Colombian Amazon region. Blood samples were taken from 671 symptomatic patients by skin puncture; a nested PCR amplifying the 18S ssRNA region was used on all samples to determine the presence of P. vivax, P. malariae and P. falciparum. Statistical analysis determined infection and coinfection frequency; the association between infection and different factors was established. The results showed that P. vivax was the species having the greatest frequency in the study population (61.4%), followed by P. malariae (43.8%) and P. falciparum (11.8%). The study revealed that 35.8% of the population had coinfection, the P. vivax/P. malariae combination occurring most frequently (28.3%); factors such as age, geographical origin and clinical manifestations were found to be associated with triple-infection. The prevalence reported in this study differed from previous studies in Colombia; the results suggest that diagnosis using conventional techniques could be giving rise to underestimating some Plasmodium spp. species having high circulation rates in Colombia (particularly in the Colombian Amazon region). The present study's results revealed a high prevalence of P. malariae and mixed infections in the population being studied. The results provide relevant information which should facilitate updating the epidemiological panorama and species' distribution so as to include control, prevention and follow-up measures. PMID:27467587

  16. Plasmodium knowlesi in humans: a review on the role of its vectors in Malaysia.

    PubMed

    Vythilingam, Indra

    2010-04-01

    Plasmodium knowlesi in humans is life threatening, is on the increase and has been reported from most states in Malaysia. Anopheles latens and Anopheles cracens have been incriminated as vectors. Malaria is now a zoonoses and is occurring in malaria free areas of Malaysia. It is also a threat to eco-tourism. The importance of the vectors and possible control measures is reviewed here. PMID:20562807

  17. Plasmodium falciparum in Haiti: susceptibility to pyrimethamine and sulfadoxine-pyrimethamine

    PubMed Central

    Nguyen-Dinh, Phuc; Zevallos-Ipenza, Arturo; Magloire, Roc

    1984-01-01

    Eighteen patients with Plasmodium falciparum infection were studied in Port-au-Prince, Haiti, to monitor the response of the malaria parasite to sulfadoxine-pyrimethamine. In all infections the parasitaemia was cleared rapidly following treatment with standard dose of the drug combination; no recrudescence was observed during follow-up periods of 1 week (4 patients) and 4 weeks (14 patients). Parallel in vitro tests indicated that 5 of the 16 isolates successfully tested were resistant to pyrimethamine alone. PMID:6386210

  18. Mosquito immune responses and compatibility between Plasmodium parasites and anopheline mosquitoes

    PubMed Central

    2009-01-01

    Background Functional screens based on dsRNA-mediated gene silencing identified several Anopheles gambiae genes that limit Plasmodium berghei infection. However, some of the genes identified in these screens have no effect on the human malaria parasite Plasmodium falciparum; raising the question of whether different mosquito effector genes mediate anti-parasitic responses to different Plasmodium species. Results Four new An. gambiae (G3) genes were identified that, when silenced, have a different effect on P. berghei (Anka 2.34) and P. falciparum (3D7) infections. Orthologs of these genes, as well as LRIM1 and CTL4, were also silenced in An. stephensi (Nijmegen Sda500) females infected with P. yoelii (17XNL). For five of the six genes tested, silencing had the same effect on infection in the P. falciparum-An. gambiae and P. yoelii-An. stephensi parasite-vector combinations. Although silencing LRIM1 or CTL4 has no effect in An. stephensi females infected with P. yoelii, when An. gambiae is infected with the same parasite, silencing these genes has a dramatic effect. In An. gambiae (G3), TEP1, LRIM1 or LRIM2 silencing reverts lysis and melanization of P. yoelii, while CTL4 silencing enhances melanization. Conclusion There is a broad spectrum of compatibility, the extent to which the mosquito immune system limits infection, between different Plasmodium strains and particular mosquito strains that is mediated by TEP1/LRIM1 activation. The interactions between highly compatible animal models of malaria, such as P. yoelii (17XNL)-An. stephensi (Nijmegen Sda500), is more similar to that of P. falciparum (3D7)-An. gambiae (G3). PMID:19643026

  19. Reactive oxygen species modulate Anopheles gambiae immunity against bacteria and Plasmodium.

    PubMed

    Molina-Cruz, Alvaro; DeJong, Randall J; Charles, Bradley; Gupta, Lalita; Kumar, Sanjeev; Jaramillo-Gutierrez, Giovanna; Barillas-Mury, Carolina

    2008-02-01

    The involvement of reactive oxygen species (ROS) in mosquito immunity against bacteria and Plasmodium was investigated in the malaria vector Anopheles gambiae. Strains of An. gambiae with higher systemic levels of ROS survive a bacterial challenge better, whereas reduction of ROS by dietary administration of antioxidants significantly decreases survival, indicating that ROS are required to mount effective antibacterial responses. Expression of several ROS detoxification enzymes increases in the midgut and fat body after a blood meal. Furthermore, expression of several of these enzymes increases to even higher levels when mosquitoes are fed a Plasmodium berghei-infected meal, indicating that the oxidative stress after a blood meal is exacerbated by Plasmodium infection. Paradoxically, a complete lack of induction of catalase mRNA and lower catalase activity were observed in P. berghei-infected midguts. This suppression of midgut catalase expression is a specific response to ookinete midgut invasion and is expected to lead to higher local levels of hydrogen peroxide. Further reduction of catalase expression by double-stranded RNA-mediated gene silencing promoted parasite clearance by a lytic mechanism and reduced infection significantly. High mosquito mortality is often observed after P. berghei infection. Death appears to result in part from excess production of ROS, as mortality can be decreased by oral administration of uric acid, a strong antioxidant. We conclude that ROS modulate An. gambiae immunity and that the mosquito response to P. berghei involves a local reduction of detoxification of hydrogen peroxide in the midgut that contributes to limit Plasmodium infection through a lytic mechanism. PMID:18065421

  20. Plasmodium falciparum evades mosquito immunity by disrupting JNK-mediated apoptosis of invaded midgut cells.

    PubMed

    Ramphul, Urvashi N; Garver, Lindsey S; Molina-Cruz, Alvaro; Canepa, Gaspar E; Barillas-Mury, Carolina

    2015-02-01

    The malaria parasite, Plasmodium, must survive and develop in the mosquito vector to be successfully transmitted to a new host. The Plasmodium falciparum Pfs47 gene is critical for malaria transmission. Parasites that express Pfs47 (NF54 WT) evade mosquito immunity and survive, whereas Pfs47 knockouts (KO) are efficiently eliminated by the complement-like system. Two alternative approaches were used to investigate the mechanism of action of Pfs47 on immune evasion. First, we examined whether Pfs47 affected signal transduction pathways mediating mosquito immune responses, and show that the Jun-N-terminal kinase (JNK) pathway is a key mediator of Anopheles gambiae antiplasmodial responses to P. falciparum infection and that Pfs47 disrupts JNK signaling. Second, we used microarrays to compare the global transcriptional responses of A. gambiae midguts to infection with WT and KO parasites. The presence of Pfs47 results in broad and profound changes in gene expression in response to infection that are already evident 12 h postfeeding, but become most prominent at 26 h postfeeding, the time when ookinetes invade the mosquito midgut. Silencing of 15 differentially expressed candidate genes identified caspase-S2 as a key effector of Plasmodium elimination in parasites lacking Pfs47. We provide experimental evidence that JNK pathway regulates activation of caspases in Plasmodium-invaded midgut cells, and that caspase activation is required to trigger midgut epithelial nitration. Pfs47 alters the cell death pathway of invaded midgut cells by disrupting JNK signaling and prevents the activation of several caspases, resulting in an ineffective nitration response that makes the parasite undetectable by the mosquito complement-like system. PMID:25552553

  1. Expression and localization of rhoptry neck protein 5 in merozoites and sporozoites of Plasmodium yoelii.

    PubMed

    Mutungi, Joe Kimanthi; Yahata, Kazuhide; Sakaguchi, Miako; Kaneko, Osamu

    2014-12-01

    Host cell invasion by Apicomplexan parasites marks a crucial step in disease establishment and pathogenesis. The moving junction (MJ) is a conserved and essential feature among parasites of this phylum during host cell invasion, thus proteins that associate at this MJ are potential targets of drug and vaccine development. In both Toxoplasma gondii and Plasmodium falciparum, a micronemal protein, Apical Membrane Antigen 1 (AMA1), and Rhoptry Neck proteins (RONs; RON2 and RON4) form an essential complex at the MJ. A new RON member, RON5, was shown to be important to stabilize RON2 during development and to associate with the MJ complex in T. gondii and also to be immunoprecipitated by anti-AMA1 antibody in P. falciparum. However, the detailed molecular nature of RON5 in Plasmodium is not well understood. In this study, Plasmodium yoelii RON5 gene (pyron5) was identified as an ortholog of P. falciparum and Plasmodium berghei ron5. The pyron5 exon-intron structure was validated by comparing genomic DNA sequences and experimentally determining full-length complementary DNA sequence. PyRON5 was detected in water-insoluble fractions but no reliable transmembrane domain(s) were predicted by transmembrane prediction algorithms. PyRON5 formed a complex with PyRON4, PyRON2, and PyAMA1 in late schizont protein extract. Taken together, we infer that these results suggest that PyRON5 associates with membrane indirectly via other MJ components. Indirect immunofluorescence assay and immunoelectron microscopy localized PyRON5 at the rhoptry neck of the late schizont merozoites and at the rhoptry of sporozoites. The two-stage expression of PyRON5 suggests that PyRON5 plays roles in invasion not only of erythrocytes, but also of mosquito salivary glands and/or mammalian hepatocytes. PMID:25102354

  2. An in silico structural insights into Plasmodium LytB protein and its inhibition.

    PubMed

    Bhuyan, Rajabrata; Nandy, Suman Kumar; Seal, Alpana

    2015-01-01

    In most of the pathogenic organisms including Plasmodium falciparum, isoprenoids are synthesized via MEP (MethylErythritol 4-Phosphate) pathway. LytB is the last enzyme of this pathway which catalyzes the conversion of (E)-4-hydroxy-3-methylbut-2-en-1-yl diphosphate (HMBPP) into the two isoprenoid precursors: isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Since the MEP pathway is not used by humans, it represents an attractive target for the development of new anti-malarial compounds or inhibitors. Here a systematic in silico study has been conducted to get an insight into the structure of Plasmodium lytB as well as its affinities towards different inhibitors. We used comparative modeling technique to predict the three-dimensional (3D) structure of Plasmodium LytB taking Escherichia coli LytB protein (PDB ID: 3KE8) as template and the model was subsequently refined through molecular dynamics (MD) simulation. A large ligand data-set containing diphospate group was subjected for virtual screening against the target using GOLD 5.2 program. Considering the mode of binding and affinities, 17 leads were selected on basis of binding energies in comparison to its substrate HMBPP (Gold.Chemscore.DG: -20.9734 kcal/mol). Among them, five were discarded because of their inhibitory activity towards other human enzymes. The rest 12 potential leads carry all the properties of any "drug like" molecule and the knowledge of Plasmodium LytB-inhibitory mechanism which can provide valuable support for the anti-malarial-inhibitor design in future. PMID:25011618

  3. Plasmodium falciparum evades mosquito immunity by disrupting JNK-mediated apoptosis of invaded midgut cells

    PubMed Central

    Ramphul, Urvashi N.; Garver, Lindsey S.; Molina-Cruz, Alvaro; Canepa, Gaspar E.; Barillas-Mury, Carolina

    2015-01-01

    The malaria parasite, Plasmodium, must survive and develop in the mosquito vector to be successfully transmitted to a new host. The Plasmodium falciparum Pfs47 gene is critical for malaria transmission. Parasites that express Pfs47 (NF54 WT) evade mosquito immunity and survive, whereas Pfs47 knockouts (KO) are efficiently eliminated by the complement-like system. Two alternative approaches were used to investigate the mechanism of action of Pfs47 on immune evasion. First, we examined whether Pfs47 affected signal transduction pathways mediating mosquito immune responses, and show that the Jun-N-terminal kinase (JNK) pathway is a key mediator of Anopheles gambiae antiplasmodial responses to P. falciparum infection and that Pfs47 disrupts JNK signaling. Second, we used microarrays to compare the global transcriptional responses of A. gambiae midguts to infection with WT and KO parasites. The presence of Pfs47 results in broad and profound changes in gene expression in response to infection that are already evident 12 h postfeeding, but become most prominent at 26 h postfeeding, the time when ookinetes invade the mosquito midgut. Silencing of 15 differentially expressed candidate genes identified caspase-S2 as a key effector of Plasmodium elimination in parasites lacking Pfs47. We provide experimental evidence that JNK pathway regulates activation of caspases in Plasmodium-invaded midgut cells, and that caspase activation is required to trigger midgut epithelial nitration. Pfs47 alters the cell death pathway of invaded midgut cells by disrupting JNK signaling and prevents the activation of several caspases, resulting in an ineffective nitration response that makes the parasite undetectable by the mosquito complement-like system. PMID:25552553

  4. An Atypical Splenic B Cell Progenitor Population Supports Antibody Production during Plasmodium Infection in Mice.

    PubMed

    Ghosh, Debopam; Wikenheiser, Daniel J; Kennedy, Brian; McGovern, Kathryn E; Stuart, Johnasha D; Wilson, Emma H; Stumhofer, Jason S

    2016-09-01

    Hematopoietic stem and progenitor cells (HSPCs) function to replenish the immune cell repertoire under steady-state conditions and in response to inflammation due to infection or stress. Whereas the bone marrow serves as the primary niche for hematopoiesis, extramedullary mobilization and differentiation of HSPCs occur in the spleen during acute Plasmodium infection, a critical step in the host immune response. In this study, we identified an atypical HSPC population in the spleen of C57BL/6 mice, with a lineage(-)Sca-1(+)c-Kit(-) (LSK(-)) phenotype that proliferates in response to infection with nonlethal Plasmodium yoelii 17X. Infection-derived LSK(-) cells upon transfer into naive congenic mice were found to differentiate predominantly into mature follicular B cells. However, when transferred into infection-matched hosts, infection-derived LSK(-) cells gave rise to B cells capable of entering into a germinal center reaction, and they developed into memory B cells and Ab-secreting cells that were capable of producing parasite-specific Abs. Differentiation of LSK(-) cells into B cells in vitro was enhanced in the presence of parasitized RBC lysate, suggesting that LSK(-) cells expand and differentiate in direct response to the parasite. However, the ability of LSK(-) cells to differentiate into B cells was not dependent on MyD88, as myd88(-/-) LSK(-) cell expansion and differentiation remained unaffected after Plasmodium infection. Collectively, these data identify a population of atypical lymphoid progenitors that differentiate into B lymphocytes in the spleen and are capable of contributing to the ongoing humoral immune response against Plasmodium infection. PMID:27448588

  5. In vitro cultivation of the exoerythrocytic stage of Plasmodium berghei in irradiated hepatoma cells

    SciTech Connect

    Hollingdale, M.R.; Leland, P.; Sigler, C.I.

    1985-01-01

    Growth of cultures of human hepatoma cells was inhibited by exposure to doses of gamma irradiation as low as 1000 rad., and the monolayers remained viable for up to 35 days. Irradiated cells were at least as susceptible to Plasmodium berghei sporozoite invasion as non-irradiated cells, and supported the entire exoerythrocytic cycle producing more infectious merozoites. Irradiated cultures may have use for culture of human malarias, and drug studies requiring synchronous cultures.

  6. In vitro infectivity of irradiated Plasmodium berghei sporozoites to cultured hepatoma cells

    SciTech Connect

    Sigler, C.I.; Leland, P.; Hollingdale, M.R.

    1984-07-01

    The invasion of gamma-irradiated Plasmodium berghei sporozoites into cultured hepatoma cells and their transformation into trophozoites was similar to invasion and transformation of non-irradiated sporozoites. However, trophozoites from irradiated sporozoites did not further develop into schizonts, but persisted within the cells for up to 3 days. Sporozoite surface protective antigen was present in trophozoites from irradiated and non-irradiated sporozoites, suggesting that hepatocyte antigen processing may contribute to the induction of anti-malarial immunity.

  7. Erythrocyte lysis and Xenopus laevis oocyte rupture by recombinant Plasmodium falciparum hemolysin III.

    PubMed

    Moonah, Shannon; Sanders, Natalie G; Persichetti, Jason K; Sullivan, David J

    2014-10-01

    Malaria kills more than 1 million people per year worldwide, with severe malaria anemia accounting for the majority of the deaths. Malaria anemia is multifactorial in etiology, including infected erythrocyte destruction and decrease in erythrocyte production, as well as destruction or clearance of noninfected erythrocytes. We identified a panspecies Plasmodium hemolysin type III related to bacterial hemolysins. The identification of a hemolysin III homologue in Plasmodium suggests a potential role in host erythrocyte lysis. Here, we report the first characterization of Plasmodium falciparum hemolysin III, showing that the soluble recombinant P. falciparum hemolysin III is a pore-forming protein capable of lysing human erythrocytes in a dose-, time-, and temperature-dependent fashion. The recombinant P. falciparum hemolysin III-induced hemolysis was partially inhibited by glibenclamide, a known channel antagonist. Studies with polyethylene glycol molecules of different molecular weights indicated a pore size of approximately 3.2 nm. Heterologous expression of recombinant P. falciparum hemolysin III in Xenopus oocytes demonstrated early hypotonic lysis similar to that of the pore-forming aquaporin control. Live fluorescence microscopy localized transfected recombinant green fluorescent protein (GFP)-tagged P. falciparum hemolysin III to the essential digestive vacuole of the P. falciparum parasite. These transfected trophozoites also possessed a swollen digestive vacuole phenotype. Native Plasmodium hemolysin III in the digestive vacuole may contribute to lysis of the parasitophorous vacuole membrane derived from the host erythrocyte. After merozoite egress from infected erythrocytes, remnant P. falciparum hemolysin III released from digestive vacuoles could potentially contribute to lysis of uninfected erythrocytes to contribute to severe life-threatening anemia. PMID:25148832

  8. Screening for Drugs Against the Plasmodium falciparum Digestive Vacuole by Imaging Flow Cytometry.

    PubMed

    Lee, Yan Quan; Hall, Brian E; Tan, Kevin S W

    2016-01-01

    Phenotypic assays are increasingly employed to provide clues about drug mechanisms. In antimalarial drug screening, however, the majority of assays are designed to only measure parasite-killing activity. We describe here a high-content assay to detect drug-mediated perturbation of the digestive vacuole integrity in the trophozoite stage of Plasmodium falciparum, using the ImageStream imaging flow cytometer. PMID:27460247

  9. Detection of Plasmodium falciparum-infected red blood cells by optical stretching

    NASA Astrophysics Data System (ADS)

    Mauritz, Jakob M. A.; Tiffert, Teresa; Seear, Rachel; Lautenschläger, Franziska; Esposito, Alessandro; Lew, Virgilio L.; Guck, Jochen; Kaminski, Clemens F.

    2010-05-01

    We present the application of a microfluidic optical cell stretcher to measure the elasticity of malaria-infected red blood cells. The measurements confirm an increase in host cell rigidity during the maturation of the parasite Plasmodium falciparum. The device combines the selectivity and sensitivity of single-cell elasticity measurements with a throughput that is higher than conventional single-cell techniques. The method has potential to detect early stages of infection with excellent sensitivity and high speed.

  10. Buffer optimization of thermal melt assays of Plasmodium proteins for detection of small-molecule ligands.

    PubMed

    Crowther, Gregory J; Napuli, Alberto J; Thomas, Andrew P; Chung, Diana J; Kovzun, Kuzma V; Leibly, David J; Castaneda, Lisa J; Bhandari, Janhavi; Damman, Christopher J; Hui, Raymond; Hol, Wim G J; Buckner, Frederick S; Verlinde, Christophe L M J; Zhang, Zhongsheng; Fan, Erkang; van Voorhis, Wesley C

    2009-07-01

    In the past decade, thermal melt/thermal shift assays have become a common tool for identifying ligands and other factors that stabilize specific proteins. Increased stability is indicated by an increase in the protein's melting temperature (Tm). In optimizing the assays for subsequent screening of compound libraries, it is important to minimize the variability of Tm measurements so as to maximize the assay's ability to detect potential ligands. The authors present an investigation of Tm variability in recombinant proteins from Plasmodium parasites. Ligands of Plasmodium proteins are particularly interesting as potential starting points for drugs for malaria, and new drugs are urgently needed. A single standard buffer (100 mM HEPES [pH 7.5], 150 mM NaCl) permitted estimation of Tm for 58 of 61 Plasmodium proteins tested. However, with several proteins, Tm could not be measured with a consistency suitable for high-throughput screening unless alternative protein-specific buffers were employed. The authors conclude that buffer optimization to minimize variability in Tm measurements increases the success of thermal melt screens involving proteins for which a standard buffer is suboptimal. PMID:19470714

  11. Plasmepsin 4-Deficient Plasmodium berghei Are Virulence Attenuated and Induce Protective Immunity against Experimental Malaria

    PubMed Central

    Spaccapelo, Roberta; Janse, Chris J.; Caterbi, Sara; Franke-Fayard, Blandine; Bonilla, J. Alfredo; Syphard, Luke M.; Di Cristina, Manlio; Dottorini, Tania; Savarino, Andrea; Cassone, Antonio; Bistoni, Francesco; Waters, Andrew P.; Dame, John B.; Crisanti, Andrea

    2010-01-01

    Plasmodium parasites lacking plasmepsin 4 (PM4), an aspartic protease that functions in the lysosomal compartment and contributes to hemoglobin digestion, have only a modest decrease in the asexual blood-stage growth rate; however, PM4 deficiency in the rodent malaria parasite Plasmodium berghei results in significantly less virulence than that for the parental parasite. P. berghei Δpm4 parasites failed to induce experimental cerebral malaria (ECM) in ECM-susceptible mice, and ECM-resistant mice were able to clear infections. Furthermore, after a single infection, all convalescent mice were protected against subsequent parasite challenge for at least 1 year. Real-time in vivo parasite imaging and splenectomy experiments demonstrated that protective immunity acted through antibody-mediated parasite clearance in the spleen. This work demonstrates, for the first time, that a single Plasmodium gene disruption can generate virulence-attenuated parasites that do not induce cerebral complications and, moreover, are able to stimulate strong protective immunity against subsequent challenge with wild-type parasites. Parasite blood-stage attenuation should help identify protective immune responses against malaria, unravel parasite-derived factors involved in malarial pathologies, such as cerebral malaria, and potentially pave the way for blood-stage whole organism vaccines. PMID:20019192

  12. DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families

    PubMed Central

    Sander, Adam F.; Lavstsen, Thomas; Rask, Thomas S.; Lisby, Michael; Salanti, Ali; Fordyce, Sarah L.; Jespersen, Jakob S.; Carter, Richard; Deitsch, Kirk W.; Theander, Thor G.; Pedersen, Anders Gorm; Arnot, David E.

    2014-01-01

    Many bacterial, viral and parasitic pathogens undergo antigenic variation to counter host immune defense mechanisms. In Plasmodium falciparum, the most lethal of human malaria parasites, switching of var gene expression results in alternating expression of the adhesion proteins of the Plasmodium falciparum-erythrocyte membrane protein 1 class on the infected erythrocyte surface. Recombination clearly generates var diversity, but the nature and control of the genetic exchanges involved remain unclear. By experimental and bioinformatic identification of recombination events and genome-wide recombination hotspots in var genes, we show that during the parasite’s sexual stages, ectopic recombination between isogenous var paralogs occurs near low folding free energy DNA 50-mers and that these sequences are heavily concentrated at the boundaries of regions encoding individual Plasmodium falciparum-erythrocyte membrane protein 1 structural domains. The recombinogenic potential of these 50-mers is not parasite-specific because these sequences also induce recombination when transferred to the yeast Saccharomyces cerevisiae. Genetic cross data suggest that DNA secondary structures (DSS) act as inducers of recombination during DNA replication in P. falciparum sexual stages, and that these DSS-regulated genetic exchanges generate functional and diverse P. falciparum adhesion antigens. DSS-induced recombination may represent a common mechanism for optimizing the evolvability of virulence gene families in pathogens. PMID:24253306

  13. Dimerization of Plasmodium vivax DBP is induced upon receptor binding and drives recognition of DARC

    PubMed Central

    Batchelor, Joseph D.; Zahm, Jacob A.; Tolia, Niraj H.

    2011-01-01

    Plasmodium vivax and Plasmodium knowlesi depend on the Duffy-Binding Protein DBL domain (RII-PvDBP or RII-PkDBP) engaging Duffy Antigen/Receptor for Chemokines on red blood cells during invasion. Inhibition of this key interaction provides an excellent opportunity for parasite control. There are competing models for whether Plasmodium ligands engage receptors as monomers or dimers, resolution of which has profound implications for parasite biology and control. We report crystallographic, solution and functional studies of RII-PvDBP, showing dimerization is required for and driven by receptor engagement. This work provides a unifying framework for prior studies and accounts for the action of naturally-acquired blocking-antibodies and the mechanism of immune evasion. We show dimerization is conserved in DBL-domain receptor-engagement, and propose receptor-mediated ligand-dimerization drives receptor affinity and specificity. Since dimerization is prevalent in signaling, our studies raise the possibility that induced dimerization activates pathways for invasion. PMID:21743458

  14. Selective inhibition of apicoplast tryptophanyl-tRNA synthetase causes delayed death in Plasmodium falciparum.

    PubMed

    Pasaje, Charisse Flerida A; Cheung, Vanessa; Kennedy, Kit; Lim, Erin E; Baell, Jonathan B; Griffin, Michael D W; Ralph, Stuart A

    2016-01-01

    The malaria parasite Plasmodium falciparum relies on efficient protein translation. An essential component of translation is the tryptophanyl-tRNA synthetase (TrpRS) that charges tRNA(trp). Here we characterise two isoforms of TrpRS in Plasmodium; one eukaryotic type localises to the cytosol and a bacterial type localises to the remnant plastid (apicoplast). We show that the apicoplast TrpRS aminoacylates bacterial tRNA(trp) while the cytosolic TrpRS charges eukaryotic tRNA(trp). An inhibitor of bacterial TrpRSs, indolmycin, specifically inhibits aminoacylation by the apicoplast TrpRS in vitro, and inhibits ex vivo Plasmodium parasite growth, killing parasites with a delayed death effect characteristic of apicoplast inhibitors. Indolmycin treatment ablates apicoplast inheritance and is rescuable by addition of the apicoplast metabolite isopentenyl pyrophosphate (IPP). These data establish that inhibition of an apicoplast housekeeping enzyme leads to loss of the apicoplast and this is sufficient for delayed death. Apicoplast TrpRS is essential for protein translation and is a promising, specific antimalarial target. PMID:27277538

  15. Interactive cost of Plasmodium infection and insecticide resistance in the malaria vector Anopheles gambiae.

    PubMed

    Alout, Haoues; Dabiré, Roch K; Djogbénou, Luc S; Abate, Luc; Corbel, Vincent; Chandre, Fabrice; Cohuet, Anna

    2016-01-01

    Insecticide resistance raises concerns for the control of vector-borne diseases. However, its impact on parasite transmission could be diverse when considering the ecological interactions between vector and parasite. Thus we investigated the fitness cost associated with insecticide resistance and Plasmodium falciparum infection as well as their interactive cost on Anopheles gambiae survival and fecundity. In absence of infection, we observed a cost on fecundity associated with insecticide resistance. However, survival was higher for mosquito bearing the kdr mutation and equal for those with the ace-1(R) mutation compared to their insecticide susceptible counterparts. Interestingly, Plasmodium infection reduced survival only in the insecticide resistant strains but not in the susceptible one and infection was associated with an increase in fecundity independently of the strain considered. This study provides evidence for a survival cost associated with infection by Plasmodium parasite only in mosquito selected for insecticide resistance. This suggests that the selection of insecticide resistance mutation may have disturbed the interaction between parasites and vectors, resulting in increased cost of infection. Considering the fitness cost as well as other ecological aspects of this natural mosquito-parasite combination is important to predict the epidemiological impact of insecticide resistance. PMID:27432257

  16. New ultrastructural analysis of the invasive apparatus of the Plasmodium ookinete.

    PubMed

    Patra, Kailash P; Vinetz, Joseph M

    2012-09-01

    Invasion of the mosquito midgut by the Plasmodium ookinete determines the success of transmission of malaria parasites from humans to mosquitoes and therefore, is a potential target for molecular intervention. Here, we show higher-resolution ultrastructural details of developing and mature P. gallinaceum ookinetes than previously available. Improved fixation and processing methods yielded substantially improved transmission electron micrographs of ookinetes, particularly with regard to visualization of subcellular secretory and other organelles. These new images provide new insights into the synthesis and function of vital invasive machinery focused on the following features: apical membrane protrusions presumptively used for attachment and protein secretion, dark spherical bodies at the apical end of the mature ookinete, and the presence of a dense array of micronemes apposed to microtubules at the apical end of the ookinete involved in constitutive secretion. This work advances understanding of the molecular and cellular details of the Plasmodium ookinete and provides the basis of future, more detailed mechanistic experimentation on the biology of the Plasmodium ookinete. PMID:22802443

  17. Plasmodium induces swelling-activated ClC-2 anion channels in the host erythrocyte.

    PubMed

    Huber, Stephan M; Duranton, Christophe; Henke, Guido; Van De Sand, Claudia; Heussler, Volker; Shumilina, Ekaterina; Sandu, Ciprian D; Tanneur, Valerie; Brand, Verena; Kasinathan, Ravi S; Lang, Karl S; Kremsner, Peter G; Hübner, Christian A; Rust, Marco B; Dedek, Karin; Jentsch, Thomas J; Lang, Florian

    2004-10-01

    Intraerythrocytic growth of the human malaria parasite Plasmodium falciparum depends on delivery of nutrients. Moreover, infection challenges cell volume constancy of the host erythrocyte requiring enhanced activity of cell volume regulatory mechanisms. Patch clamp recording demonstrated inwardly and outwardly rectifying anion channels in infected but not in control erythrocytes. The molecular identity of those channels remained elusive. We show here for one channel type that voltage dependence, cell volume sensitivity, and activation by oxidation are identical to ClC-2. Moreover, Western blots and FACS analysis showed protein and functional ClC-2 expression in human erythrocytes and erythrocytes from wild type (Clcn2(+/+)) but not from Clcn2(-/-) mice. Finally, patch clamp recording revealed activation of volume-sensitive inwardly rectifying channels in Plasmodium berghei-infected Clcn2(+/+) but not Clcn2(-/-) erythrocytes. Erythrocytes from infected mice of both genotypes differed in cell volume and inhibition of ClC-2 by ZnCl(2) (1 mm) induced an increase of cell volume only in parasitized Clcn2(+/+) erythrocytes. Lack of ClC-2 did not inhibit P. berghei development in vivo nor substantially affect the mortality of infected mice. In conclusion, activation of host ClC-2 channels participates in the altered permeability of Plasmodium-infected erythrocytes but is not required for intraerythrocytic parasite survival. PMID:15272009

  18. N'Dribala (Cochlospermum planchonii) versus chloroquine for treatment of uncomplicated Plasmodium falciparum malaria.

    PubMed

    Benoit-Vical, F; Valentin, A; Da, B; Dakuyo, Z; Descamps, L; Mallié, M

    2003-11-01

    The aim of this work was to assess the efficacy of oral N'Dribala (tuberous roots decoction of Cochlospermum planchonii Hook) treatment versus chloroquine in non-severe malaria. The study included 85 patients with uncomplicated Plasmodium falciparum infection in Banfora, Burkina Faso. Forty-six patients that received N'Dribala beverage were compared to 21 patients treated with chloroquine. All patients were monitored with clinical examination and a parasitemia control by Giemsa-stained thick films. N'Dribala appeared safe and statistically as efficient as chloroquine for the treatment of uncomplicated Plasmodium falciparum malaria. At day 5 (D5), 57% of chloroquine-treated and 52% of N'Dribala-treated patients were cured with no detectable parasitemia (parasite density (Pd): 0) and more than 90% of whole patients were asymptomatic. N'Dribala is easily available in this country, cheap, without significant side effects and efficient with a clearly demonstrated activity on Plasmodium falciparum blood stages. This study enhances the traditional use of the Cochlospermum planchonii as alternative therapy for treatment of non-severe malaria. PMID:14522441

  19. DNA Repair Mechanisms and Their Biological Roles in the Malaria Parasite Plasmodium falciparum

    PubMed Central

    Lee, Andrew H.; Symington, Lorraine S.

    2014-01-01

    SUMMARY Research into the complex genetic underpinnings of the malaria parasite Plasmodium falciparum is entering a new era with the arrival of site-specific genome engineering. Previously restricted only to model systems but now expanded to most laboratory organisms, and even to humans for experimental gene therapy studies, this technology allows researchers to rapidly generate previously unattainable genetic modifications. This technological advance is dependent on DNA double-strand break repair (DSBR), specifically homologous recombination in the case of Plasmodium. Our understanding of DSBR in malaria parasites, however, is based largely on assumptions and knowledge taken from other model systems, which do not always hold true in Plasmodium. Here we describe the causes of double-strand breaks, the mechanisms of DSBR, and the differences between model systems and P. falciparum. These mechanisms drive basic parasite functions, such as meiosis, antigen diversification, and copy number variation, and allow the parasite to continually evolve in the contexts of host immune pressure and drug selection. Finally, we discuss the new technologies that leverage DSBR mechanisms to accelerate genetic investigations into this global infectious pathogen. PMID:25184562

  20. Screening of potential targets in Plasmodium falciparum using stage-specific metabolic network analysis.

    PubMed

    Dholakia, Neel; Dhandhukia, Pinakin; Roy, Nilanjan

    2015-11-01

    The Apicomplexa parasite Plasmodium is a major cause of death in developing countries which are less equipped to bring new medicines to the market. Currently available drugs used for treatment of malaria are limited either by inadequate efficacy, toxicity and/or increased resistance. Availability of the genome sequence, microarray data and metabolic profile of Plasmodium parasite offers an opportunity for the identification of stage-specific genes important to the organism's lifecycle. In this study, microarray data were analysed for differential expression and overlapped onto metabolic pathways to identify differentially regulated pathways essential for transition to successive erythrocytic stages. The results obtained indicate that S-adenosylmethionine decarboxylase/ornithine decarboxylase, a bifunctional enzyme required for polyamine synthesis, is important for the Plasmodium cell growth in the absence of exogenous polyamines. S-adenosylmethionine decarboxylase/ornithine decarboxylase is a valuable target for designing therapeutically useful inhibitors. One such inhibitor, [Formula: see text]-difluoromethyl ornithine, is currently in use for the treatment of African sleeping sickness caused by Trypanosoma brucei. Structural studies of ornithine decarboxylase along with known inhibitors and their analogues were carried out to screen drug databases for more effective and less toxic compounds. PMID:26303382

  1. Multidrug ATP-binding cassette transporters are essential for hepatic development of Plasmodium sporozoites.

    PubMed

    Rijpma, Sanna R; van der Velden, Maarten; González-Pons, Maria; Annoura, Takeshi; van Schaijk, Ben C L; van Gemert, Geert-Jan; van den Heuvel, Jeroen J M W; Ramesar, Jai; Chevalley-Maurel, Severine; Ploemen, Ivo H; Khan, Shahid M; Franetich, Jean-Francois; Mazier, Dominique; de Wilt, Johannes H W; Serrano, Adelfa E; Russel, Frans G M; Janse, Chris J; Sauerwein, Robert W; Koenderink, Jan B; Franke-Fayard, Blandine M

    2016-03-01

    Multidrug resistance-associated proteins (MRPs) belong to the C-family of ATP-binding cassette (ABC) transport proteins and are known to transport a variety of physiologically important compounds and to be involved in the extrusion of pharmaceuticals. Rodent malaria parasites encode a single ABC transporter subfamily C protein, whereas human parasites encode two: MRP1 and MRP2. Although associated with drug resistance, their biological function and substrates remain unknown. To elucidate the role of MRP throughout the parasite life cycle, Plasmodium berghei and Plasmodium falciparum mutants lacking MRP expression were generated. P. berghei mutants lacking expression of the single MRP as well as P. falciparum mutants lacking MRP1, MRP2 or both proteins have similar blood stage growth kinetics and drug-sensitivity profiles as wild type parasites. We show that MRP1-deficient parasites readily invade primary human hepatocytes and develop into mature liver stages. In contrast, both P. falciparum MRP2-deficient parasites and P. berghei mutants lacking MRP protein expression abort in mid to late liver stage development, failing to produce mature liver stages. The combined P. berghei and P. falciparum data are the first demonstration of a critical role of an ABC transporter during Plasmodium liver stage development. PMID:26332724

  2. Plasmodium gallinaceum preferentially invades vesicular ATPase-expressing cells in Aedes aegypti midgut

    PubMed Central

    Shahabuddin, Mohammed; Pimenta, Paulo F. P.

    1998-01-01

    Penetration of the mosquito midgut epithelium is obligatory for the further development of Plasmodium parasites. Therefore, blocking the parasite from invading the midgut wall disrupts the transmission of malaria. Despite such a pivotal role in malaria transmission, the cellular and molecular interactions that occur during the invasion are not understood. Here, we demonstrate that the ookinetes of Plasmodium gallinaceum, which is related closely to the human malaria parasite Plasmodium falciparum, selectively invade a cell type in the Aedes aegypti midgut. These cells, unlike the majority of the cells in the midgut, do not stain with a basophilic dye (toluidine blue) and are less osmiophilic. In addition, they contain minimal endoplasmic reticulum, lack secretory granules, and have few microvilli. Instead, these cells are highly vacuolated and express large amounts of vesicular ATPase. The enzyme is associated with the apical plasma membrane, cytoplasmic vesicles, and tubular extensions of the basal membrane of the invaded cells. The high cost of insecticide use in endemic areas and the emergence of drug resistant malaria parasites call for alternative approaches such as modifying the mosquito to block the transmission of malaria. One of the targets for such modification is the parasite receptor on midgut cells. A step toward the identification of this receptor is the realization that malaria parasites invade a special cell type in the mosquito midgut. PMID:9520375

  3. Vital and dispensable roles of Plasmodium multidrug resistance transporters during blood- and mosquito-stage development.

    PubMed

    Rijpma, Sanna R; van der Velden, Maarten; Annoura, Takeshi; Matz, Joachim M; Kenthirapalan, Sanketha; Kooij, Taco W A; Matuschewski, Kai; van Gemert, Geert-Jan; van de Vegte-Bolmer, Marga; Siebelink-Stoter, Rianne; Graumans, Wouter; Ramesar, Jai; Klop, Onny; Russel, Frans G M; Sauerwein, Robert W; Janse, Chris J; Franke-Fayard, Blandine M; Koenderink, Jan B

    2016-07-01

    Multidrug resistance (MDR) proteins belong to the B subfamily of the ATP Binding Cassette (ABC) transporters, which export a wide range of compounds including pharmaceuticals. In this study, we used reverse genetics to study the role of all seven Plasmodium MDR proteins during the life cycle of malaria parasites. Four P. berghei genes (encoding MDR1, 4, 6 and 7) were refractory to deletion, indicating a vital role during blood stage multiplication and validating them as potential targets for antimalarial drugs. Mutants lacking expression of MDR2, MDR3 and MDR5 were generated in both P. berghei and P. falciparum, indicating a dispensable role for blood stage development. Whereas P. berghei mutants lacking MDR3 and MDR5 had a reduced blood stage multiplication in vivo, blood stage growth of P. falciparum mutants in vitro was not significantly different. Oocyst maturation and sporozoite formation in Plasmodium mutants lacking MDR2 or MDR5 was reduced. Sporozoites of these P. berghei mutants were capable of infecting mice and life cycle completion, indicating the absence of vital roles during liver stage development. Our results demonstrate vital and dispensable roles of MDR proteins during blood stages and an important function in sporogony for MDR2 and MDR5 in both Plasmodium species. PMID:26991313

  4. Interactive cost of Plasmodium infection and insecticide resistance in the malaria vector Anopheles gambiae

    PubMed Central

    Alout, Haoues; Dabiré, Roch K.; Djogbénou, Luc S.; Abate, Luc; Corbel, Vincent; Chandre, Fabrice; Cohuet, Anna

    2016-01-01

    Insecticide resistance raises concerns for the control of vector-borne diseases. However, its impact on parasite transmission could be diverse when considering the ecological interactions between vector and parasite. Thus we investigated the fitness cost associated with insecticide resistance and Plasmodium falciparum infection as well as their interactive cost on Anopheles gambiae survival and fecundity. In absence of infection, we observed a cost on fecundity associated with insecticide resistance. However, survival was higher for mosquito bearing the kdr mutation and equal for those with the ace-1R mutation compared to their insecticide susceptible counterparts. Interestingly, Plasmodium infection reduced survival only in the insecticide resistant strains but not in the susceptible one and infection was associated with an increase in fecundity independently of the strain considered. This study provides evidence for a survival cost associated with infection by Plasmodium parasite only in mosquito selected for insecticide resistance. This suggests that the selection of insecticide resistance mutation may have disturbed the interaction between parasites and vectors, resulting in increased cost of infection. Considering the fitness cost as well as other ecological aspects of this natural mosquito-parasite combination is important to predict the epidemiological impact of insecticide resistance. PMID:27432257

  5. Phylogenetic analysis of the genus Plasmodium based on the gene encoding adenylosuccinate lyase.

    PubMed

    Kedzierski, Lukasz; Escalante, Ananias A; Isea, Raul; Black, Casilda G; Barnwell, John W; Coppel, Ross L

    2002-07-01

    Phylogenetic studies of the genus Plasmodium have been performed using sequences of the nuclear, mitochondrial and plastid genes. Here we have analyzed the adenylosuccinate lyase (ASL) gene, which encodes an enzyme involved in the salvage of host purines needed by malaria parasites for DNA synthesis. The ASL gene is present in several eukaryotic as well as prokaryotic organisms and does not have repeat regions, which facilitates the accuracy of the alignment. Furthermore, it has been shown that ASL is not subject to positive natural selection. We have sequenced the ASL gene of several different Plasmodium species infecting humans, rodents, monkeys and birds and used the obtained sequences along with the previously known P. falciparum ASL sequence, for structural and phylogenetic analysis of the genus Plasmodium. The genetic divergence of ASL is comparable with that observed in other nuclear genes such as cysteine proteinase, although ASL cannot be considered conserved when compared to aldolase or superoxide dismutase, which exhibit a slower rate of evolution. Nevertheless, a protein like ASL has a rate of evolution that provides enough information for elucidating evolutionary relationships. We modeled 3D structures of the ASL protein based on sequences used in the phylogenetic analysis and obtained a consistent structure for four different species despite the divergence observed. Such models would facilitate alignment in further studies with a greater number of plasmodial species or other Apicomplexa. PMID:12798008

  6. Occurrence of avian Plasmodium and West Nile virus in culex species in Wisconsin

    USGS Publications Warehouse

    Hughes, T.; Irwin, P.; Hofmeister, E.; Paskewitz, S.M.

    2010-01-01

    The occurrence of multiple pathogens in mosquitoes and birds could affect the dynamics of disease transmission. We collected adult Culex pipiens and Cx. restuans (Cx. pipiens/restuans hereafter) from sites in Wisconsin and tested them for West Nile virus (WNV) and for avian malaria (Plasmodium). Gravid Cx. pipiens/restuans were tested for WNV using a commercial immunoassay, the RAMP?? WNV test, and positive results were verified by reverse transcriptasepolymerase chain reaction. There were 2 WNV-positive pools of Cx. pipiens/restuans in 2006 and 1 in 2007. Using a bias-corrected maximum likelihood estimation, the WNV infection rate for Cx. pipiens/restuans was 5.48/1,000 mosquitoes in 2006 and 1.08/1,000 mosquitoes in 2007. Gravid Cx. pipiens or Cx. restuans were tested individually for avian Plasmodium by a restriction enzymebased assay. Twelve mosquitoes were positive for avian Plasmodium (10.0), 2 were positive for Haemoproteus, and 3 were positive for Leucocytozoon. There were 4 mixed infections, with mosquitoes positive for >1 of the hemosporidian parasites. This work documents a high rate of hemosporidian infection in Culex spp. and illustrates the potential for co-infections with other arboviruses in bird-feeding mosquitoes and their avian hosts. In addition, hemosporidian infection rates may be a useful tool for investigating the ecological dynamics of Culex/avian interactions. ?? 2010 by The American Mosquito Control Association, Inc.

  7. Gene sequencing, modelling and immunolocalization of the protein disulfide isomerase from Plasmodium chabaudi.

    PubMed

    Novo, Carlos; Martins, Tiago M; Prata, Sofia; Lopes, Angela; Armada, Ana

    2009-11-01

    Malaria remains one of the major human parasitic diseases, particularly in subtropical regions. Most of the fatal cases are caused by Plasmodium falciparum. The rodent parasite Plasmodium chabaudi has been the model of choice in research due to its similarities to human malaria, including developmental cycle, preferential invasion of mature erythrocytes, synchrony of asexual development, antigenic variation, gene sinteny as well as similar resistance mechanisms. Protein disulfide isomerase (PDI) is an essential catalyst of the endoplasmic reticulum in different biological systems with folding and chaperone activities. Most of the proteins exported by parasites have to pass through the endoplasmic reticulum before reaching their final destination and their correct folding is critical for parasite survival. PDI constitutes a potential target for the development of alternative therapy strategies based on the inhibition of folding and chaperoning of exported proteins. We here describe the sequencing of the gene coding for the PDI from P. chabaudi and analyse the relationship to its counterpart enzymes, particularly with the PDI from other Plasmodium species. The model constructed, based on the recent model deduced from the crystallographic structure 2B5E, was compared with the previous theoretical model for the whole PDI molecule constructed by threading. A recombinant PDI from P. chabaudi was also produced and used as an antigen for monoclonal antibody production for application in PDI immunolocalization. PMID:19615402

  8. Characterization of Plasmodium phosphatidylserine decarboxylase expressed in yeast and application for inhibitor screening

    PubMed Central

    Choi, Jae-Yeon; Lawres, Lauren; Toh, Justin Y.; Voelker, Dennis R.; Ben Mamoun, Choukri

    2016-01-01

    Summary Phospholipid biosynthesis is critical for the development, differentiation and pathogenesis of several eukaryotic pathogens. Genetic studies have validated the pathway for phosphatidylethanolamine synthesis from phosphatidylserine catalyzed by phosphatidylserine decarboxylase enzymes (PSD) as a suitable target for development of antimicrobials; however no inhibitors of this class of enzymes have been discovered. We show that the Plasmodium falciparum PSD can restore the essential function of the yeast gene in strains requiring PSD for growth. Genetic, biochemical and metabolic analyses demonstrate that amino acids between positions 40 and 70 of the parasite enzyme are critical for proenzyme processing and decarboxylase activity. We used the essential role of Plasmodium PSD in yeast as a tool for screening a library of anti-malarials. One of these compounds is 7-chloro-N-(4-ethoxyphenyl)-4-quinolinamine, an inhibitor with potent activity against P. falciparum, and low toxicity toward mammalian cells. We synthesized an analog of this compound and showed that it inhibits PfPSD activity and eliminates Plasmodium yoelii infection in mice. These results highlight the importance of 4-quinolinamines as a novel class of drugs targeting membrane biogenesis via inhibition of PSD activity PMID:26585333

  9. Anopheles mortality is both age- and Plasmodium-density dependent: implications for malaria transmission

    PubMed Central

    2009-01-01

    Background Daily mortality is an important determinant of a vector's ability to transmit pathogens. Original simplifying assumptions in malaria transmission models presume vector mortality is independent of age, infection status and parasite load. Previous studies illustrate conflicting evidence as to the importance of Plasmodium-induced vector mortality, but very few studies to date have considered the effect of infection density on mosquito survival. Methods A series of three experiments were conducted, each consisting of four cages of 400-1,000 Anopheles stephensi mosquitoes fed on blood infected with different Plasmodium berghei ookinete densities per microlitre of blood. Twice daily the numbers of dead mosquitoes in each group were recorded, and on alternate days a sample of live mosquitoes from each group were dissected to determine parasite density in both midgut and salivary glands. Results Survival analyses indicate that mosquito mortality is both age- and infection intensity-dependent. Mosquitoes experienced an initially high, partly feeding-associated, mortality rate, which declined to a minimum before increasing with mosquito age and parasite intake. As a result, the life expectancy of a mosquito is shown to be dependent on both insect age and the density of Plasmodium infection. Conclusion These results contribute to understanding in greater detail the processes that influence sporogony in the mosquito, indicate the impact that parasite density could have on malaria transmission dynamics, and have implications for the design, development, and evaluation of transmission-blocking strategies. PMID:19822012

  10. Plant hairy root cultures as plasmodium modulators of the slime mold emergent computing substrate Physarum polycephalum.

    PubMed

    Ricigliano, Vincent; Chitaman, Javed; Tong, Jingjing; Adamatzky, Andrew; Howarth, Dianella G

    2015-01-01

    Roots of the medicinal plant Valeriana officinalis are well-studied for their various biological activities. We applied genetically transformed V. officinalis root biomass to exert control of Physarum polycephalum, an amoeba-based emergent computing substrate. The plasmodial stage of the P. polycephalum life cycle constitutes a single, multinucleate cell visible by unaided eye. The plasmodium modifies its network of oscillating protoplasm in response to spatial configurations of attractants and repellents, a behavior that is interpreted as biological computation. To program the computing behavior of P. polycephalum, a diverse and sustainable library of plasmodium modulators is required. Hairy roots produced by genetic transformation with Agrobacterium rhizogenes are a metabolically stable source of bioactive compounds. Adventitious roots were induced on in vitro V. officinalis plants following infection with A. rhizogenes. A single hairy root clone was selected for massive propagation and the biomass was characterized in P. polycephalum chemotaxis, maze-solving, and electrical activity assays. The Agrobacterium-derived roots of V. officinalis elicited a positive chemotactic response and augmented maze-solving behavior. In a simple plasmodium circuit, introduction of hairy root biomass stimulated the oscillation patterns of slime mold's surface electrical activity. We propose that manipulation of P. polycephalum with the plant root culture platform can be applied to the development of slime mold microfluidic devices as well as future models for engineering the plant rhizosphere. PMID:26236301

  11. High Prevalence of Plasmodium falciparum Infection in Asymptomatic Individuals from the Democratic Republic of the Congo

    PubMed Central

    Mvumbi, Dieudonné Makaba; Bobanga, Thierry Lengu; Melin, Pierrette; De Mol, Patrick; Kayembe, Jean-Marie Ntumba; Situakibanza, Hippolyte Nani-Tuma; Mvumbi, Georges Lelo; Nsibu, Célestin Ndosimao; Umesumbu, Solange Efundu; Hayette, Marie-Pierre

    2016-01-01

    Malaria remains a major public health problem in the Democratic Republic of Congo (DRC) with 14 million cases reported by the WHO Malaria Report in 2014. Asymptomatic malaria cases are known to be prevalent in endemic areas and are generally untreated, resulting in a significant source of gametocytes that may serve as reservoir of disease transmission. Considering that microscopy certainly underestimates the prevalence of Plasmodium infections within asymptomatic carriers and that PCR assays are currently recognized as the most sensitive methods for Plasmodium identification, this study was conducted to weigh the asymptomatic carriage in DRC by a molecular method. Six provinces were randomly selected for blood collection in which 80 to 100 individuals were included in the study. Five hundred and eighty blood samples were collected and molecular diagnosis was performed. Globally, almost half of the samples collected from asymptomatic individuals (280/580; 48.2%) had Plasmodium infections and the most species identified was P. falciparum alone in combination with P. malariae. The high prevalence reported here should interpellate the bodies involved in malaria control in DR Congo to take into account asymptomatic carriers in actions taken and consider asymptomatic malaria as a major hurdle for malaria elimination. PMID:26942036

  12. [Falciform anemia and Plasmodium falciparum malaria: a threat to flap survival?].

    PubMed

    Mariéthoz, S; Pittet, B; Loutan, L; Humbert, J; Montandon, D

    1999-02-01

    Plasmodium falciparum malaria, a parasitic disease, and sickle cell anemia, a hereditary disease, are two diseases affecting erythrocyte cycle, occurring with a high prevalence in tropical Africa. They may induce microthrombosis inducing vaso-occlusion, organ dysfunction and flap necrosis. During the acute phase of Plasmodium falciparum malaria, destruction of parasitized and healthy erythrocytes, release of parasite and erythrocyte material into the circulation, and secondary host reaction occur. Plasmodium falciparum infected erythrocytes also sequester in the microcirculation of vital organs and may interfere with microcirculatory flow in the flap during the postoperative period. The lower legs of homozygous sickle cell anemia patients are areas of marginal vascularity where minor abrasions become foci of inflammation. Inflammation results in decreased local oxygen tension, sickling of erythrocytes, increased blood viscosity and thrombosis with consequent ischemia, tissue breakdown and leg ulcer. Tissue transfer has become the procedure of choice for reconstruction of the lower third of the leg although flaps may become necrotic. The aim of this study is to analyse circumstances predisposing to surgical complications and to define preventive and therapeutic measures. A review of the literature will describe the current research and the new perspectives to treat sickle cell anemia, for example hydroxyurea and vasoactive substances (pentoxifylline, naftidrofuryl, buflomedil). PMID:10188298

  13. Selective inhibition of apicoplast tryptophanyl-tRNA synthetase causes delayed death in Plasmodium falciparum

    PubMed Central

    Pasaje, Charisse Flerida A.; Cheung, Vanessa; Kennedy, Kit; Lim, Erin E.; Baell, Jonathan B.; Griffin, Michael D. W.; Ralph, Stuart A.

    2016-01-01

    The malaria parasite Plasmodium falciparum relies on efficient protein translation. An essential component of translation is the tryptophanyl-tRNA synthetase (TrpRS) that charges tRNAtrp. Here we characterise two isoforms of TrpRS in Plasmodium; one eukaryotic type localises to the cytosol and a bacterial type localises to the remnant plastid (apicoplast). We show that the apicoplast TrpRS aminoacylates bacterial tRNAtrp while the cytosolic TrpRS charges eukaryotic tRNAtrp. An inhibitor of bacterial TrpRSs, indolmycin, specifically inhibits aminoacylation by the apicoplast TrpRS in vitro, and inhibits ex vivo Plasmodium parasite growth, killing parasites with a delayed death effect characteristic of apicoplast inhibitors. Indolmycin treatment ablates apicoplast inheritance and is rescuable by addition of the apicoplast metabolite isopentenyl pyrophosphate (IPP). These data establish that inhibition of an apicoplast housekeeping enzyme leads to loss of the apicoplast and this is sufficient for delayed death. Apicoplast TrpRS is essential for protein translation and is a promising, specific antimalarial target. PMID:27277538

  14. In Vivo and In Vitro Characterization of a Plasmodium Liver Stage-Specific Promoter

    PubMed Central

    Horstmann, Sebastian; Annoura, Takeshi; del Portillo, Hernando A.; Khan, Shahid M.; Heussler, Volker T.

    2015-01-01

    Little is known about stage-specific gene regulation in Plasmodium parasites, in particular the liver stage of development. We have previously described in the Plasmodium berghei rodent model, a liver stage-specific (lisp2) gene promoter region, in vitro. Using a dual luminescence system, we now confirm the stage specificity of this promoter region also in vivo. Furthermore, by substitution and deletion analyses we have extended our in vitro characterization of important elements within the promoter region. Importantly, the dual luminescence system allows analyzing promoter constructs avoiding mouse-consuming cloning procedures of transgenic parasites. This makes extensive mutation and deletion studies a reasonable approach also in the malaria mouse model. Stage-specific expression constructs and parasite lines are extremely valuable tools for research on Plasmodium liver stage biology. Such reporter lines offer a promising opportunity for assessment of liver stage drugs, characterization of genetically attenuated parasites and liver stage-specific vaccines both in vivo and in vitro, and may be key for the generation of inducible systems. PMID:25874388

  15. Plant hairy root cultures as plasmodium modulators of the slime mold emergent computing substrate Physarum polycephalum

    PubMed Central

    Ricigliano, Vincent; Chitaman, Javed; Tong, Jingjing; Adamatzky, Andrew; Howarth, Dianella G.

    2015-01-01

    Roots of the medicinal plant Valeriana officinalis are well-studied for their various biological activities. We applied genetically transformed V. officinalis root biomass to exert control of Physarum polycephalum, an amoeba-based emergent computing substrate. The plasmodial stage of the P. polycephalum life cycle constitutes a single, multinucleate cell visible by unaided eye. The plasmodium modifies its network of oscillating protoplasm in response to spatial configurations of attractants and repellents, a behavior that is interpreted as biological computation. To program the computing behavior of P. polycephalum, a diverse and sustainable library of plasmodium modulators is required. Hairy roots produced by genetic transformation with Agrobacterium rhizogenes are a metabolically stable source of bioactive compounds. Adventitious roots were induced on in vitro V. officinalis plants following infection with A. rhizogenes. A single hairy root clone was selected for massive propagation and the biomass was characterized in P. polycephalum chemotaxis, maze-solving, and electrical activity assays. The Agrobacterium-derived roots of V. officinalis elicited a positive chemotactic response and augmented maze-solving behavior. In a simple plasmodium circuit, introduction of hairy root biomass stimulated the oscillation patterns of slime mold's surface electrical activity. We propose that manipulation of P. polycephalum with the plant root culture platform can be applied to the development of slime mold microfluidic devices as well as future models for engineering the plant rhizosphere. PMID:26236301

  16. A vacuolar iron-transporter homologue acts as a detoxifier in Plasmodium

    PubMed Central

    Slavic, Ksenija; Krishna, Sanjeev; Lahree, Aparajita; Bouyer, Guillaume; Hanson, Kirsten K.; Vera, Iset; Pittman, Jon K.; Staines, Henry M.; Mota, Maria M.

    2016-01-01

    Iron is an essential micronutrient but is also highly toxic. In yeast and plant cells, a key detoxifying mechanism involves iron sequestration into intracellular storage compartments, mediated by members of the vacuolar iron-transporter (VIT) family of proteins. Here we study the VIT homologue from the malaria parasites Plasmodium falciparum (PfVIT) and Plasmodium berghei (PbVIT). PfVIT-mediated iron transport in a yeast heterologous expression system is saturable (Km∼14.7 μM), and selective for Fe2+ over other divalent cations. PbVIT-deficient P. berghei lines (Pbvit−) show a reduction in parasite load in both liver and blood stages of infection in mice. Moreover, Pbvit− parasites have higher levels of labile iron in blood stages and are more sensitive to increased iron levels in liver stages, when compared with wild-type parasites. Our data are consistent with Plasmodium VITs playing a major role in iron detoxification and, thus, normal development of malaria parasites in their mammalian host. PMID:26786069

  17. Anopheles species composition explains differences in Plasmodium transmission in La Guajira, northern Colombia

    PubMed Central

    Herrera-Varela, Manuela; Orjuela, Lorena I; Peñalver, Cilia; Conn, Jan E; Quiñones, Martha L

    2014-01-01

    Malaria in La Guajira, the most northern state of Colombia, shows two different epidemiological patterns. Malaria is endemic in the municipality of Dibulla whereas in Riohacha it is characterised by sporadic outbreaks. This study aimed to establish whether differences in transmission patterns could be attributed to different vector species. The most abundant adult female species were Anopheles aquasalis, exclusive to Riohacha, and Anopheles darlingi, restricted to Dibulla. Anopheles mosquitoes were identified using morphology and the molecular markers internal transcribed spacer 2 and cytochrome c oxidase I. All specimens (n = 1,393) were tested by ELISA to determine natural infection rates with Plasmodium falciparum and Plasmodium vivax. An. darlingi was positive for P. vivax 210, with an infection rate of 0.355% and an entomological inoculation rate of 15.87 infective bites/person/year. Anopheles albimanus larvae were the most common species in Riohacha, found in temporary swamps; in contrast, in Dibulla An. darlingi were detected mainly in permanent streams. Distinctive species composition and larval habitats in each municipality may explain the differences in Plasmodium transmission and suggest different local strategies should be used for vector control.

  18. The diagnosis of malaria and identification of plasmodium species by polymerase chain reaction in Turkey.

    PubMed

    Aslan, Gonul; Seyrek, Adnan; Kocagoz, Tanil; Ulukanligil, Mustafa; Erguven, Sibel; Gunalp, Ayfer

    2007-09-01

    More than half of the world's population is exposed to malaria in approximately 100 countries. Rapid diagnosis and correct treatment of cases are the main objectives of control programs in malaria endemic areas. We have developed a PCR method to determine the presence of plasmodium DNA in blood. The method can also identify the species of the plasmodium by restriction enzyme analysis of the amplified product. We evaluated the performance of this method in the diagnosis of malaria suspected cases in Turkey by comparing to microscopy of the blood smears: blood samples were obtained from 114 patients with malaria symptoms, including fever and/or chills lasting for several days, before starting treatment. Thin and thick blood smears were prepared immediately in the region of specimen collection. After isolation of DNA from blood samples, DNA was amplified by PCR and digested by restriction enzyme AluI. The obtained fragments were analyzed by agarose gel electrophoresis. The number of parasites in the thick and thin smears of the blood samples was evaluated microscopically after staining by Giemsa and results were compared by PCR results. Among 114 plasmodium positive cases detected by microscopy, 100 were also detected by PCR. There were 14 false negatives and no false positive by PCR. Compared to microscopy, the sensitivity, specificity and Positive Predictive Value (PPV) of PCR were determined as 76%, 100% and 100%, respectively. PMID:17434795

  19. A vacuolar iron-transporter homologue acts as a detoxifier in Plasmodium.

    PubMed

    Slavic, Ksenija; Krishna, Sanjeev; Lahree, Aparajita; Bouyer, Guillaume; Hanson, Kirsten K; Vera, Iset; Pittman, Jon K; Staines, Henry M; Mota, Maria M

    2016-01-01

    Iron is an essential micronutrient but is also highly toxic. In yeast and plant cells, a key detoxifying mechanism involves iron sequestration into intracellular storage compartments, mediated by members of the vacuolar iron-transporter (VIT) family of proteins. Here we study the VIT homologue from the malaria parasites Plasmodium falciparum (PfVIT) and Plasmodium berghei (PbVIT). PfVIT-mediated iron transport in a yeast heterologous expression system is saturable (Km ∼ 14.7 μM), and selective for Fe(2+) over other divalent cations. PbVIT-deficient P. berghei lines (Pbvit(-)) show a reduction in parasite load in both liver and blood stages of infection in mice. Moreover, Pbvit(-) parasites have higher levels of labile iron in blood stages and are more sensitive to increased iron levels in liver stages, when compared with wild-type parasites. Our data are consistent with Plasmodium VITs playing a major role in iron detoxification and, thus, normal development of malaria parasites in their mammalian host. PMID:26786069

  20. Genetic diversity and population structure of genes encoding vaccine candidate antigens of Plasmodium vivax

    PubMed Central

    2012-01-01

    Background A major concern in malaria vaccine development is genetic polymorphisms typically observed among Plasmodium isolates in different geographical areas across the world. Highly polymorphic regions have been observed in Plasmodium falciparum and Plasmodium vivax antigenic surface proteins such as Circumsporozoite protein (CSP), Duffy-binding protein (DBP), Merozoite surface protein-1 (MSP-1), Apical membrane antigen-1 (AMA-1) and Thrombospondin related anonymous protein (TRAP). Methods Genetic variability was assessed in important polymorphic regions of various vaccine candidate antigens in P. vivax among 106 isolates from the Amazon Region of Loreto, Peru. In addition, genetic diversity determined in Peruvian isolates was compared to population studies from various geographical locations worldwide. Results The structured diversity found in P. vivax populations did not show a geographic pattern and haplotypes from all gene candidates were distributed worldwide. In addition, evidence of balancing selection was found in polymorphic regions of the trap, dbp and ama-1 genes. Conclusions It is important to have a good representation of the haplotypes circulating worldwide when implementing a vaccine, regardless of the geographic region of deployment since selective pressure plays an important role in structuring antigen diversity. PMID:22417572

  1. Melatonin Signaling and Its Modulation of PfNF-YB Transcription Factor Expression in Plasmodium falciparum

    PubMed Central

    Lima, Wânia Rezende; Holder, Anthony A.; Garcia, Célia R. S.

    2013-01-01

    Malaria is one of the most severe tropical infectious diseases. More than 220 million people around the world have a clinical malaria infection and about one million die because of Plasmodium annually. This parasitic pathogen replicates efficiently in its human host making it difficult to eradicate. It is transmitted by mosquito vectors and so far mosquito control programs have not effectively eliminated this transmission. Because of malaria’s enormous health and economic impact and the need to develop new control and eventual elimination strategies, a big research effort has been made to better understand the biology of this parasite and its interactions with its vertebrate host. Determination of the genome sequence and organization, the elucidation of the role of key proteins, and cell signaling studies have helped to develop an understanding of the molecular mechanisms that provide the parasite’s versatility. The parasite can sense its environment and adapt to benefit its survival, indeed this is essential for it to complete its life cycle. For many years we have studied how the Plasmodium parasite is able to sense melatonin. In this review we discuss the melatonin signaling pathway and its role in the control of Plasmodium replication and development. PMID:23839089

  2. Hemoparasites in a wild primate: Infection patterns suggest interaction of Plasmodium and Babesia in a lemur species.

    PubMed

    Springer, Andrea; Fichtel, Claudia; Calvignac-Spencer, Sébastien; Leendertz, Fabian H; Kappeler, Peter M

    2015-12-01

    Hemoparasites can cause serious morbidity in humans and animals and often involve wildlife reservoirs. Understanding patterns of hemoparasite infections in natural populations can therefore inform about emerging disease risks, especially in the light of climate change and human disruption of natural ecosystems. We investigated the effects of host age, sex, host group size and season on infection patterns of Plasmodium sp., Babesia sp. and filarial nematodes in a population of wild Malagasy primates, Verreaux's sifakas (Propithecus verreauxi), as well as the effects of these infections on hematological variables. We tested 45 blood samples from 36 individuals and identified two species of Plasmodium, one species of Babesia and two species of filarial nematodes. Plasmodium spp. and Babesia sp. infections showed opposite patterns of age-dependency, with babesiosis being prevalent among young animals, while older animals were infected with Plasmodium sp. In addition, Babesia sp. infection was a statistically significant negative predictor of Plasmodium sp. infection. These results suggest that Plasmodium and Babesia parasites may interact within the host, either through cross-immunity or via resource competition, so that Plasmodium infections can only establish after babesiosis has resolved. We found no effects of host sex, host group size and season on hemoparasite infections. Infections showed high prevalences and did not influence hematological variables. This preliminary evidence supports the impression that the hosts and parasites considered in this study appear to be well-adapted to each other, resulting in persistent infections with low pathogenic and probably low zoonotic potential. Our results illustrate the crucial role of biodiversity in host-parasite relationships, specifically how within-host pathogen diversity may regulate the abundance of parasites. PMID:26767166

  3. Hemoparasites in a wild primate: Infection patterns suggest interaction of Plasmodium and Babesia in a lemur species☆

    PubMed Central

    Springer, Andrea; Fichtel, Claudia; Calvignac-Spencer, Sébastien; Leendertz, Fabian H.; Kappeler, Peter M.

    2015-01-01

    Hemoparasites can cause serious morbidity in humans and animals and often involve wildlife reservoirs. Understanding patterns of hemoparasite infections in natural populations can therefore inform about emerging disease risks, especially in the light of climate change and human disruption of natural ecosystems. We investigated the effects of host age, sex, host group size and season on infection patterns of Plasmodium sp., Babesia sp. and filarial nematodes in a population of wild Malagasy primates, Verreaux's sifakas (Propithecus verreauxi), as well as the effects of these infections on hematological variables. We tested 45 blood samples from 36 individuals and identified two species of Plasmodium, one species of Babesia and two species of filarial nematodes. Plasmodium spp. and Babesia sp. infections showed opposite patterns of age-dependency, with babesiosis being prevalent among young animals, while older animals were infected with Plasmodium sp. In addition, Babesia sp. infection was a statistically significant negative predictor of Plasmodium sp. infection. These results suggest that Plasmodium and Babesia parasites may interact within the host, either through cross-immunity or via resource competition, so that Plasmodium infections can only establish after babesiosis has resolved. We found no effects of host sex, host group size and season on hemoparasite infections. Infections showed high prevalences and did not influence hematological variables. This preliminary evidence supports the impression that the hosts and parasites considered in this study appear to be well-adapted to each other, resulting in persistent infections with low pathogenic and probably low zoonotic potential. Our results illustrate the crucial role of biodiversity in host-parasite relationships, specifically how within-host pathogen diversity may regulate the abundance of parasites. PMID:26767166

  4. Multiple lineages of Avian malaria parasites (Plasmodium) in the Galapagos Islands and evidence for arrival via migratory birds.

    PubMed

    Levin, I I; Zwiers, P; Deem, S L; Geest, E A; Higashiguchi, J M; Iezhova, T A; Jiménez-Uzcátegui, G; Kim, D H; Morton, J P; Perlut, N G; Renfrew, R B; Sari, E H R; Valkiunas, G; Parker, P G

    2013-12-01

    Haemosporidian parasites in the genus Plasmodium were recently detected through molecular screening in the Galapagos Penguin (Spheniscus mendiculus). We summarized results of an archipelago-wide screen of 3726 endemic birds representing 22 species for Plasmodium spp. through a combination of molecular and microscopy techniques. Three additional Plasmodium lineages were present in Galapagos. Lineage A-infected penguins, Yellow Warblers (Setophaga petechia aureola), and one Medium Ground Finch (Geospiza fortis) and was detected at multiple sites in multiple years [corrected]. The other 3 lineages were each detected at one site and at one time; apparently, they were transient infections of parasites not established on the archipelago. No gametocytes were found in blood smears of infected individuals; thus, endemic Galapagos birds may be dead-end hosts for these Plasmodium lineages. Determining when and how parasites and pathogens arrive in Galapagos is key to developing conservation strategies to prevent and mitigate the effects of introduced diseases. To assess the potential for Plasmodium parasites to arrive via migratory birds, we analyzed blood samples from 438 North American breeding Bobolinks (Dolichonyx oryzivorus), the only songbird that regularly migrates through Galapagos. Two of the ephemeral Plasmodium lineages (B and C) found in Galapagos birds matched parasite sequences from Bobolinks. Although this is not confirmation that Bobolinks are responsible for introducing these lineages, evidence points to higher potential arrival rates of avian pathogens than previously thought. Linajes Múltiples de Parásitos de Malaria Aviar (Plasmodium) en las Islas Galápagos y Evidencia de su Arribo por Medio de Aves Migratorias. PMID:24033638

  5. Plasmodium forresteri n. sp., from raptors in Florida and southern Georgia: its distinction from Plasmodium elongatum morphologically within and among host species and by vector susceptibility.

    PubMed

    Telford, S R; Nayar, J K; Foster, G W; Knight, J W

    1997-10-01

    Plasmodium forresteri n. sp. naturally infects eastern screech-owls (Otus asio), great horned owls (Bubo virginianus), barred owls (Strix varia), bald eagles (Haliaeetus leucocephalus), red-shouldered hawks (Buteo lineatus), broad-winged hawks (Buteo platypterus), and red-tailed hawks (Buteo jamaicensis) in Florida and southern Georgia. Schizonts occur in mature or nearly mature erythrocytes, produce 2-6 merozoites arranged most commonly in fan or cruciform configuration, with mean dimensions among host species varying from 3.7 to 4.8 x 2.5 to 3.4 microns. Gametocytes are elongate, with mean dimensions among host species varying from 11.5 to 13.1 x 2.0 to 2.4 microns. One or both gametocyte margins are irregular and often crenulate. Gametocytes seldom fill the space between the erythrocyte nucleus and margin. Species characteristics were maintained in isodiagnostic Japanese quail (Coturnix japonica) and Pekin ducks (Anas platyrhynchos). In mosquito infection studies, only Culex restuans could support sporogony of P. forresteri, in contrast to Plasmodium elongatum of raptor origin that completed sporogony in both Cx. restuans and Culex nigripalpus. PMID:9379302

  6. The emerging of the fifth malaria parasite (Plasmodium knowlesi): a public health concern?

    PubMed

    Sabbatani, Sergio; Fiorino, Sirio; Manfredi, Roberto

    2010-01-01

    After examining the most recent scientific evidences, which assessed the role of some malaria plasmodia that have monkeys as natural reservoirs, the authors focus their attention on Plasmodium knowlesi. The infective foci attributable to this last Plasmodium species have been identified during the last decade in Malaysia, in particular in the states of Sarawak and Sabah (Malaysian Borneo), and in the Pahang region (peninsular Malaysia). The significant relevance of molecular biology assays (polymerase chain reaction, or PCR, performed with specific primers for P. knowlesi), is underlined, since the traditional microscopic examination does not offer distinguishing features, especially when the differential diagnosis with Plasmodium malariae is of concern. Furthermore, Plasmodium knowlesi disease may be responsible of fatal cases, since its clinical presentation and course is more severe compared with those caused by P. malariae, paralleling a more elevated parasitemia. The most effective mosquito vector is represented by Anopheles latens; this mosquito is a parasite of both humans and monkeys. Among primates, the natural hosts are Macaca fascicularis, M. nemestina, M. inus, and Saimiri scirea. When remarking the possible severe evolution of P. knowlesi malaria, we underline the importance of an early recognition and a timely management, especially in patients who have their first onset in Western Hospitals, after journeys in Southeast Asian countries, and eventually participated in trekking excursions in the tropical forest. When malaria-like signs and symptoms are present, a timely diagnosis and treatment become crucial. In the light of its emerging epidemiological features, P. knowlesi may be added to the reknown human malaria parasites, whith includes P. vivax, P. ovale, P. malariae, and P. falciparum, as the fifth potential ethiologic agent of human malaria. Over the next few years, it will be mandatory to support an adequate surveillance and epidemiological

  7. Evaluation of three rapid diagnostic tests for the detection of human infections with Plasmodium knowlesi

    PubMed Central

    2014-01-01

    Background Plasmodium knowlesi, a malaria parasite of Southeast Asian macaques, infects humans and can cause fatal malaria. It is difficult to diagnose by microscopy because of morphological similarity to Plasmodium malariae. Nested PCR assay is the most accurate method to distinguish P. knowlesi from other Plasmodium species but is not cost effective in resource-poor settings. Rapid diagnostic tests (RDTs) are recommended for settings where malaria is prevalent. In this study, the effectiveness of three RDTs in detecting P. knowlesi from fresh and frozen patient blood samples was evaluated. Methods Forty malaria patients (28 P. knowlesi, ten P. vivax and two P. falciparum) diagnosed by microscopy were recruited in Sarawak, Malaysian Borneo during a 16-month period. Patient blood samples were used to determine parasitaemia by microscopy, confirm the Plasmodium species present by PCR and evaluate three RDTs: OptiMAL-IT, BinaxNOW® Malaria and Paramax-3. The RDTs were also evaluated using frozen blood samples from 41 knowlesi malaria patients. Results OptiMAL-IT was the most sensitive RDT, with a sensitivity of 71% (20/28; 95% CI = 54-88%) for fresh and 73% (30/41; 95% CI = 59-87%) for frozen knowlesi samples. However, it yielded predominantly falciparum-positive results due to cross-reactivity of the P. falciparum test reagent with P. knowlesi. BinaxNOW® Malaria correctly detected non-P. falciparum malaria in P. knowlesi samples but was the least sensitive, detecting only 29% (8/28; 95% CI = 12-46%) of fresh and 24% (10/41; 95% CI = 11-37%) of frozen samples. The Paramax-3 RDT tested positive for P. vivax with PCR-confirmed P. knowlesi samples with sensitivities of 40% (10/25; 95% CI = 21-59%) with fresh and 32% (13/41; 95% CI = 17-46%) with frozen samples. All RDTs correctly identified P. falciparum- and P. vivax-positive controls with parasitaemias above 2,000 parasites/μl blood. Conclusions The RDTs detected Plasmodium in P. knowlesi-infected blood samples with

  8. Regulation of Anti-Plasmodium Immunity by a LITAF-like Transcription Factor in the Malaria Vector Anopheles gambiae

    PubMed Central

    Smith, Ryan C.; Eappen, Abraham G.; Radtke, Andrea J.; Jacobs-Lorena, Marcelo

    2012-01-01

    The mosquito is the obligate vector for malaria transmission. To complete its development within the mosquito, the malaria parasite Plasmodium must overcome the protective action of the mosquito innate immune system. Here we report on the involvement of the Anopheles gambiae orthologue of a conserved component of the vertebrate immune system, LPS-induced TNFα transcription factor (LITAF), and its role in mosquito anti-Plasmodium immunity. An. gambiae LITAF-like 3 (LL3) expression is up-regulated in response to midgut invasion by both rodent and human malaria parasites. Silencing of LL3 expression greatly increases parasite survival, indicating that LL3 is part of an anti-Plasmodium defense mechanism. Electrophoretic mobility shift assays identified specific LL3 DNA-binding motifs within the promoter of SRPN6, a gene that also mediates mosquito defense against Plasmodium. Further experiments indicated that these motifs play a direct role in LL3 regulation of SRPN6 expression. We conclude that LL3 is a transcription factor capable of modulating SRPN6 expression as part of the mosquito anti-Plasmodium immune response. PMID:23093936

  9. Characterization of the Rel2-regulated transcriptome and proteome of Anopheles stephensi identifies new anti-Plasmodium factors.

    PubMed

    Pike, Andrew; Vadlamani, Alekhya; Sandiford, Simone L; Gacita, Anthony; Dimopoulos, George

    2014-09-01

    Mosquitoes possess an innate immune system that is capable of limiting infection by a variety of pathogens, including the Plasmodium spp. parasites responsible for human malaria. The Anopheles immune deficiency (IMD) innate immune signaling pathway confers resistance to Plasmodium falciparum. While some previously identified Anopheles anti-Plasmodium effectors are regulated through signaling by Rel2, the transcription factor of the IMD pathway, many components of this defense system remain uncharacterized. To begin to better understand the regulation of immune effector proteins by the IMD pathway, we used oligonucleotide microarrays and iTRAQ to analyze differences in mRNA and protein expression, respectively, between transgenic Anopheles stephensi mosquitoes exhibiting blood meal-inducible overexpression of an active recombinant Rel2 and their wild-type conspecifics. Numerous genes were differentially regulated at both the mRNA and protein levels following induction of Rel2. While multiple immune genes were up-regulated, a majority of the differentially expressed genes have no known immune function in mosquitoes. Selected up-regulated genes from multiple functional categories were tested for both anti-Plasmodium and anti-bacterial action using RNA interference (RNAi). Based on our experimental findings, we conclude that increased expression of the IMD immune pathway-controlled transcription factor Rel2 affects the expression of numerous genes with diverse functions, suggesting a broader physiological impact of immune activation and possible functional versatility of Rel2. Our study has also identified multiple novel genes implicated in anti-Plasmodium defense. PMID:24998399

  10. Characterization of the Rel2-regulated transcriptome and proteome of Anopheles stephensi identifies new anti-Plasmodium factors

    PubMed Central

    Pike, Andrew; Vadlamani, Alekhya; Sandiford, Simone L.; Gacita, Anthony; Dimopoulos, George

    2014-01-01

    Mosquitoes possess an innate immune system that is capable of limiting infection by a variety of pathogens, including the Plasmodium spp. parasites responsible for human malaria. The Anopheles immune deficiency (IMD) innate immune signaling pathway confers resistance to Plasmodium falciparum. While some previously identified Anopheles anti-Plasmodium effectors are regulated through signaling by Rel2, the transcription factor of the IMD pathway, many components of this defense system remain uncharacterized. To begin to better understand the regulation of immune effector proteins by the IMD pathway, we used oligonucleotide microarrays and iTRAQ to analyze differences in mRNA and protein expression, respectively, between transgenic An. stephensi mosquitoes exhibiting blood meal-inducible overexpression of an active recombinant Rel2 and their wild-type conspecifics. Numerous genes were differentially regulated at both the mRNA and protein levels following induction of Rel2. While multiple immune genes were up-regulated, a majority of the differentially expressed genes have no known immune function in mosquitoes. Selected up-regulated genes from multiple functional categories were tested for both anti-Plasmodium and anti-bacterial action using RNA interference (RNAi). Based on our experimental findings, we conclude that increased expression of the IMD immune pathway-controlled transcription factor Rel2 affects the expression of numerous genes with diverse functions, suggesting a broader physiological impact of immune activation and possible functional versatility of Rel2. Our study has also identified multiple novel genes implicated in anti-Plasmodium defense. PMID:24998399

  11. Implications of Plasmodium parasite infected mosquitoes on an insular avifauna: the case of Socorro Island, México.

    PubMed

    Carlson, Jenny S; Martínez-Gómez, Juan E; Cornel, Anthony; Loiseau, Claire; Sehgal, Ravinder N M

    2011-06-01

    Avian malaria (Plasmodium spp.) has been implicated in the decline of avian populations in the Hawaiian Islands and it is generally agreed that geographically isolated and immunologically naïve bird populations are particularly vulnerable to the pathogenic effects of invasive malaria parasites. In order to assess the potential disease risk of malaria to the avifauna of Socorro Island, México, we surveyed for Plasmodium isolates from 1,300 resident field-caught mosquitoes. Most of them were identified as Aedes (Ochlerotatus) taeniorhynchus (Wiedemann, 1821), which were abundant in the salt marshes. We also collected Culex quinquefasciatus Say, 1823 close to human dwellings. Mitochondrial ND5 and COII gene sequences of Ae. taeniorhynchus were analyzed and compared to corresponding sequences of mosquitoes of the Galápagos Islands, Latin America, and the North American mainland. Aedes lineages from Socorro Island clustered most closely with a lineage from the continental U.S. Plasmodium spp. DNA was isolated from both species of mosquitoes. From 38 positive pools, we isolated 11 distinct mitochondrial Cytb lineages of Plasmodium spp. Seven of the Plasmodium lineages represent previously documented avian infective strains while four were new lineages. Our results confirm a potential risk for the spread of avian malaria and underscore the need to monitor both the mosquito and avian populations as a necessary conservation measure to protect endangered bird species on Socorro Island. PMID:21635660

  12. Investigation on possible transmission of monkeys' Plasmodium to human in a populations living in the equatorial rainforest of the Democratic republic of Congo.

    PubMed

    Mvumbi, Dieudonné Makaba; Lengu Bobanga, Thierry; Umesumbu, Solange Efundu; Kunyu, Billy Shako; Ntumba Kayembe, Jean-Marie; Situakibanza, Nani-Tuma H; Mvumbi, Georges Lelo; Melin, Pierrette; De Mol, Patrick; Hayette, Marie-Pierre

    2016-04-01

    Plasmodiums are protozoa that may infect various hosts. Only five species are now recognized as naturally parasitizing humans: Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale and Plasmodium knowlesi. This fifth species, P. knowlesi, previously identified as naturally parasitizing the monkey Macaca fascicularis, has been microscopically confused for a long time with P. malariae or P. falciparum and it was not possible to correctly differentiate them until the advent of molecular biology. To date, natural human infections with P. knowlesi only occur in Southeast Asia and a similar phenomenon of natural transmission of simian plasmodium to humans has not been reported elsewhere. This study was conducted to investigate a possible transmission of African small monkey's plasmodium to humans in populations living near the rainforest of the Democratic Republic of Congo (DRC) where several species of non-human primates are living. Two successive real-time PCRs were identified in the literature and used in combination for purpose. Only P. falciparum was found in this study. However, studies with larger samples and with more advanced techniques should be conducted. PMID:27141437

  13. Investigation on possible transmission of monkeys' Plasmodium to human in a populations living in the equatorial rainforest of the Democratic republic of Congo

    PubMed Central

    Mvumbi, Dieudonné Makaba; Lengu Bobanga, Thierry; Umesumbu, Solange Efundu; Kunyu, Billy Shako; Ntumba Kayembe, Jean-Marie; Situakibanza, Nani-Tuma H.; Mvumbi, Georges Lelo; Melin, Pierrette; De Mol, Patrick; Hayette, Marie-Pierre

    2015-01-01

    Plasmodiums are protozoa that may infect various hosts. Only five species are now recognized as naturally parasitizing humans: Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale and Plasmodium knowlesi. This fifth species, P. knowlesi, previously identified as naturally parasitizing the monkey Macaca fascicularis, has been microscopically confused for a long time with P. malariae or P. falciparum and it was not possible to correctly differentiate them until the advent of molecular biology. To date, natural human infections with P. knowlesi only occur in Southeast Asia and a similar phenomenon of natural transmission of simian plasmodium to humans has not been reported elsewhere. This study was conducted to investigate a possible transmission of African small monkey's plasmodium to humans in populations living near the rainforest of the Democratic Republic of Congo (DRC) where several species of non-human primates are living. Two successive real-time PCRs were identified in the literature and used in combination for purpose. Only P. falciparum was found in this study. However, studies with larger samples and with more advanced techniques should be conducted. PMID:27141437

  14. Dihydroartemisinin-piperaquine for treating uncomplicated Plasmodium falciparum malaria

    PubMed Central

    Zani, Babalwa; Gathu, Michael; Donegan, Sarah; Olliaro, Piero L; Sinclair, David

    2014-01-01

    Background The World Health Organization (WHO) recommends Artemisinin-based Combination Therapy (ACT) for treating uncomplicated Plasmodium falciparum malaria. This review aims to assist the decision-making of malaria control programmes by providing an overview of the relative effects of dihydroartemisinin-piperaquine (DHA-P) versus other recommended ACTs. Objectives To evaluate the effectiveness and safety of DHA-P compared to other ACTs for treating uncomplicated P. falciparum malaria in adults and children. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL) published in The Cochrane Library; MEDLINE; EMBASE; LILACS, and the metaRegister of Controlled Trials (mRCT) up to July 2013. Selection criteria Randomized controlled trials comparing a three-day course of DHA-P to a three-day course of an alternative WHO recommended ACT in uncomplicated P. falciparum malaria. Data collection and analysis Two authors independently assessed trials for eligibility and risk of bias, and extracted data. We analysed primary outcomes in line with the WHO 'Protocol for assessing and monitoring antimalarial drug efficacy’ and compared drugs using risk ratios (RR) and 95% confidence intervals (CI). Secondary outcomes were effects on gametocytes, haemoglobin, and adverse events. We assessed the quality of evidence using the GRADE approach. Main results We included 27 trials, enrolling 16,382 adults and children, and conducted between 2002 and 2010. Most trials excluded infants aged less than six months and pregnant women. DHA-P versus artemether-lumefantrine In Africa, over 28 days follow-up, DHA-P is superior to artemether-lumefantrine at preventing further parasitaemia (PCR-unadjusted treatment failure: RR 0.34, 95% CI 0.30 to 0.39, nine trials, 6200 participants, high quality evidence), and although PCR-adjusted treatment failure was below 5% for both ACTs, it was consistently lower

  15. High Rates of Asymptomatic, Sub-microscopic Plasmodium vivax Infection and Disappearing Plasmodium falciparum Malaria in an Area of Low Transmission in Solomon Islands

    PubMed Central

    Waltmann, Andreea; Darcy, Andrew W.; Harris, Ivor; Koepfli, Cristian; Lodo, John; Vahi, Ventis; Piziki, David; Shanks, G. Dennis; Barry, Alyssa E.; Whittaker, Maxine; Kazura, James W.; Mueller, Ivo

    2015-01-01

    Introduction Solomon Islands is intensifying national efforts to achieve malaria elimination. A long history of indoor spraying with residual insecticides, combined recently with distribution of long lasting insecticidal nets and artemether-lumefantrine therapy, has been implemented in Solomon Islands. The impact of these interventions on local endemicity of Plasmodium spp. is unknown. Methods In 2012, a cross-sectional survey of 3501 residents of all ages was conducted in Ngella, Central Islands Province, Solomon Islands. Prevalence of Plasmodium falciparum, P. vivax, P. ovale and P. malariae was assessed by quantitative PCR (qPCR) and light microscopy (LM). Presence of gametocytes was determined by reverse transcription quantitative PCR (RT-qPCR). Results By qPCR, 468 Plasmodium spp. infections were detected (prevalence = 13.4%; 463 P. vivax, five mixed P. falciparum/P. vivax, no P. ovale or P. malariae) versus 130 by LM (prevalence = 3.7%; 126 P. vivax, three P. falciparum and one P. falciparum/P. vivax). The prevalence of P. vivax infection varied significantly among villages (range 3.0–38.5%, p<0.001) and across age groups (5.3–25.9%, p<0.001). Of 468 P. vivax infections, 72.9% were sub-microscopic, 84.5% afebrile and 60.0% were both sub-microscopic and afebrile. Local residency, low education level of the household head and living in a household with at least one other P. vivax infected individual increased the risk of P. vivax infection. Overall, 23.5% of P. vivax infections had concurrent gametocytaemia. Of all P. vivax positive samples, 29.2% were polyclonal by MS16 and msp1F3 genotyping. All five P. falciparum infections were detected in residents of the same village, carried the same msp2 allele and four were positive for P. falciparum gametocytes. Conclusion P. vivax infection remains endemic in Ngella, with the majority of cases afebrile and below the detection limit of LM. P. falciparum has nearly disappeared, but the risk of re-introductions and

  16. Performance of three multi-species rapid diagnostic tests for diagnosis of Plasmodium falciparum and Plasmodium vivax malaria in Oromia Regional State, Ethiopia

    PubMed Central

    2010-01-01

    Background Malaria transmission in Ethiopia is unstable and variable, caused by both Plasmodium falciparum and Plasmodium vivax. The Federal Ministry of Health (FMoH) is scaling up parasitological diagnosis of malaria at all levels of the health system; at peripheral health facilities this will be through use of rapid diagnostic tests (RDTs). The present study compared three RDT products to provide the FMoH with evidence to guide appropriate product selection. Methods Performance of three multi-species (pf-HRP2/pan-pLDH and pf-HRP2/aldolase) RDTs (CareStart®, ParaScreen® and ICT Combo®) was compared with 'gold standard' microscopy at three health centres in Jimma zone, Oromia Regional State. Ease of RDT use by health extension workers was assessed at community health posts. RDT heat stability was tested in a controlled laboratory setting according to WHO procedures. Results A total of 2,383 patients with suspected malaria were enrolled between May and July 2009, 23.2% of whom were found to be infected with Plasmodium parasites by microscopy. All three RDTs were equally sensitive in detecting P. falciparum or mixed infection: 85.6% (95% confidence interval 81.2-89.4). RDT specificity was similar for detection of P. falciparum or mixed infection at around 92%. For detecting P. vivax infection, all three RDTs had similar sensitivity in the range of 82.5 to 85.0%. CareStart had higher specificity in detecting P. vivax (97.2%) than both ParaScreen and ICT Combo (p < 0.001 and p = 0.05, respectively). Health extension workers preferred CareStart and ParaScreen to ICT Combo due to the clear labelling of bands on the cassette, while the 'lab in a pack' style of CareStart was the preferred design. ParaScreen and CareStart passed all heat stability testing, while ICT Combo did not perform as well. Conclusions CareStart appeared to be the most appropriate option for use at health posts in Ethiopia, considering the combination of quantitative performance, ease of use and

  17. Reduced erythrocyte susceptibility and increased host clearance of young parasites slows Plasmodium growth in a murine model of severe malaria

    NASA Astrophysics Data System (ADS)

    Khoury, David S.; Cromer, Deborah; Best, Shannon E.; James, Kylie R.; Sebina, Ismail; Haque, Ashraful; Davenport, Miles P.

    2015-05-01

    The best correlate of malaria severity in human Plasmodium falciparum (Pf) infection is the total parasite load. Pf-infected humans could control parasite loads by two mechanisms, either decreasing parasite multiplication, or increasing parasite clearance. However, few studies have directly measured these two mechanisms in vivo. Here, we have directly quantified host clearance of parasites during Plasmodium infection in mice. We transferred labelled red blood cells (RBCs) from Plasmodium infected donors into uninfected and infected recipients, and tracked the fate of donor parasites by frequent blood sampling. We then applied age-based mathematical models to characterise parasite clearance in the recipient mice. Our analyses revealed an increased clearance of parasites in infected animals, particularly parasites of a younger developmental stage. However, the major decrease in parasite multiplication in infected mice was not mediated by increased clearance alone, but was accompanied by a significant reduction in the susceptibility of RBCs to parasitisation.

  18. Plasmodium meets AAV-the (un)likely marriage of parasitology and virology, and how to make the match.

    PubMed

    Hentzschel, Franziska; Herrmann, Anne-Kathrin; Mueller, Ann-Kristin; Grimm, Dirk

    2016-07-01

    The increasing use of screening technologies in malaria research has substantially expanded our knowledge on cellular factors hijacked by the Plasmodium parasite in the infected host, including those that participate in the clinically silent liver stage. This rapid gain in our understanding of the hepatic interaction partners now requires a means to validate and further disentangle parasite-host networks in physiologically relevant liver model systems. Here, we outline seminal work that contributed to our present knowledge on the intrahepatic Plasmodium host factors, followed by a discussion of surrogate models of mammalian livers or hepatocytes. We finally describe how Adeno-associated viruses could be engineered and used as hepatotropic tools to dissect Plasmodium-host interactions, and to deliberately control these networks for antimalaria vaccination or therapy. PMID:27117587

  19. Amplification of pfmdr1, pfcrt, pvmdr1, and K13 Propeller Polymorphisms Associated with Plasmodium falciparum and Plasmodium vivax Isolates from the China-Myanmar Border

    PubMed Central

    Feng, Jun; Zhou, Daili; Lin, Yingxue; Xiao, Huihui; Yan, He

    2015-01-01

    Malaria in the China-Myanmar border region is still severe; local transmission of both falciparum and vivax malaria persists, and there is a risk of geographically expanding antimalarial resistance. In this research, the pfmdr1, pfcrt, pvmdr1, and K13-propeller genotypes were determined in 26 Plasmodium falciparum and 64 Plasmodium vivax isolates from Yingjiang county of Yunnan province. The pfmdr1 (11.5%), pfcrt (34.6%), and pvmdr1 (3.1%) mutations were prevalent at the China-Myanmar border. The indigenous samples exhibited prevalences of 14.3%, 28.6%, and 14.3% for pfmdr1 N86Y, pfcrt K76T, and pfcrt M74I, respectively, whereas the samples from Myanmar showed prevalences of 10.5%, 21.1%, and 5.3%, respectively. The most prevalent genotypes of pfmdr1 and pfcrt were Y86Y184 and M74N75T76, respectively. No pvmdr1 mutation occurred in the indigenous samples but was observed in two cases coming from Myanmar. In addition, we are the first to report on 10 patients (38.5%) with five different K13 point mutations. The F446I allele is predominant (19.2%), and its prevalence was 28.6% in the indigenous samples of Yingjiang county and 15.8% in samples from Myanmar. The present data might be helpful for enrichment of the molecular surveillance of antimalarial resistance and useful for developing and updating guidance for the use of antimalarials in this region. PMID:25691632

  20. Amplification of pfmdr1, pfcrt, pvmdr1, and K13 propeller polymorphisms associated with Plasmodium falciparum and Plasmodium vivax isolates from the China-Myanmar border.

    PubMed

    Feng, Jun; Zhou, Daili; Lin, Yingxue; Xiao, Huihui; Yan, He; Xia, Zhigui

    2015-05-01

    Malaria in the China-Myanmar border region is still severe; local transmission of both falciparum and vivax malaria persists, and there is a risk of geographically expanding antimalarial resistance. In this research, the pfmdr1, pfcrt, pvmdr1, and K13-propeller genotypes were determined in 26 Plasmodium falciparum and 64 Plasmodium vivax isolates from Yingjiang county of Yunnan province. The pfmdr1 (11.5%), pfcrt (34.6%), and pvmdr1 (3.1%) mutations were prevalent at the China-Myanmar border. The indigenous samples exhibited prevalences of 14.3%, 28.6%, and 14.3% for pfmdr1 N86Y, pfcrt K76T, and pfcrt M74I, respectively, whereas the samples from Myanmar showed prevalences of 10.5%, 21.1%, and 5.3%, respectively. The most prevalent genotypes of pfmdr1 and pfcrt were Y86Y184 and M74N75T76, respectively. No pvmdr1 mutation occurred in the indigenous samples but was observed in two cases coming from Myanmar. In addition, we are the first to report on 10 patients (38.5%) with five different K13 point mutations. The F446I allele is predominant (19.2%), and its prevalence was 28.6% in the indigenous samples of Yingjiang county and 15.8% in samples from Myanmar. The present data might be helpful for enrichment of the molecular surveillance of antimalarial resistance and useful for developing and updating guidance for the use of antimalarials in this region.