Science.gov

Sample records for plasmonic hole array

  1. Ultrafast optical control of terahertz surface plasmons in subwavelength hole-arrays at room temperature

    NASA Astrophysics Data System (ADS)

    Azad, Abul K.; Chen, Hou-Tong; Taylor, Antoinette J.; Zhang, Weili; O'Hara, John F.

    2011-02-01

    Extraordinary optical transmission through subwavelength metallic hole-arrays has been an active research area since its first demonstration. The frequency selective resonance properties of subwavelength metallic hole arrays, generally known as surface plasmon polaritons, have potential use in functional plasmonic devices such as filters, modulators, switches, etc. Such plasmonic devices are also very promising for future terahertz applications. Ultrafast switching or modulation of the resonant behavior of the 2-D metallic arrays in terahertz frequencies is of particular interest for high speed communication and sensing applications. In this paper, we demonstrate ultrafast optical control of surface plasmon enhanced resonant terahertz transmission in two-dimensional subwavelength metallic hole arrays fabricated on gallium arsenide based substrates. Optically pumping the arrays creates a thin conductive layer in the substrate reducing the terahertz transmission amplitude of both the resonant mode and the direct transmission. Under low optical fluence, the terahertz transmission is more greatly affected by resonance damping than by propagation loss in the substrate. An ErAs:GaAs nanoisland superlattice substrate is shown to allow ultrafast control with a switching recovery time of ~10 ps. We also present resonant terahertz transmission in a hybrid plasmonic film comprised of an integrated array of subwavelength metallic islands and semiconductor hole arrays. Optically pumping the semiconductor hole arrays favors excitation of surface plasmon resonance. A large dynamic transition between a dipolar localized surface plasmon mode and a surface plasmon resonance near 0.8 THz is observed under near infrared optical excitation. The reversal in transmission amplitude from a stop-band to a pass-band and up to π/ 2 phase shift achieved in the hybrid plasmonic film make it promising in large dynamic phase modulation, optical changeover switching, and active terahertz

  2. Transmittance of long-wavelength infrared surface plasmon by hexagonal periodic metal hole arrays

    NASA Astrophysics Data System (ADS)

    Lee, Byungwoo; Kwak, Hoe Min; Kim, Ha Sul

    2016-03-01

    For long wave length infrared transmission, a surface plasmonic device, having the periodic subwavelength metal hole array on Si substrate, was fabricated using photo-lithography and electron beam evaporation. The maximum transmitted wavelength was adjustable arbitrarily as a function of the period hole arrays. The maximum transmittance was measured 70.3% at 15.4 μm with a plasmonic device composed of a pitch of 5 μm and hole arrays of 3 μm. When the hole size became larger than a half pitch of the hole array, the transmitted infrared spectrum was split into two peaks. The surface plasmon mode of the six degenerated (1,0) Ag/Si was split from three to five modes depending on the incident beam angle. The blue and red wavelength shifts were measured at the same time.

  3. Ultrafast optical control of terahertz surface plasmons in subwavelength hole-arrays at room temperature

    SciTech Connect

    Azad, Abul Kalam; Chen, Hou - Tong; Taylor, Antoinette; O' Hara, John

    2010-12-10

    Extraordinary optical transmission through subwavelength metallic hole-arrays has been an active research area since its first demonstration. The frequency selective resonance properties of subwavelength metallic hole arrays, generally known as surface plasmon polaritons, have potential use in functional plasmonic devices such as filters, modulators, switches, etc. Such plasmonic devices are also very promising for future terahertz applications. Ultrafast switching or modulation of the resonant behavior of the 2-D metallic arrays in terahertz frequencies is of particular interest for high speed communication and sensing applications. In this paper, we demonstrate optical control of surface plasmon enhanced resonant terahertz transmission in two-dimensional subwavelength metallic hole arrays fabricated on gallium arsenide based substrates. Optically pumping the arrays creates a conductive layer in the substrate reducing the terahertz transmission amplitude of both the resonant mode and the direct transmission. Under low optical fluence, the terahertz transmission is more greatly affected by resonance damping than by propagation loss in the substrate. An ErAs:GaAs nanoisland superlattice substrate is shown to allow ultrafast control with a switching recovery time of {approx}10 ps. We also present resonant terahertz transmission in a hybrid plasmonic film comprised of an integrated array of subwavelength metallic islands and semiconductor holes. A large dynamic transition between a dipolar localized surface plasmon mode and a surface plasmon resonance near 0.8 THz is observed under near infrared optical excitation. The reversal in transmission amplitude from a stopband to a passband and up to {pi}/2 phase shift achieved in the hybrid plasmonic film make it promising in large dynamic phase modulation, optical changeover switching, and active terahertz plasmonics.

  4. Spoof surface plasmon polaritons in terahertz transmission through subwavelength hole arrays analyzed by coupled oscillator model

    PubMed Central

    Yin, Shan; Lu, Xinchao; Xu, Ningning; Wang, Shuang; E., Yiwen; Pan, Xuecong; Xu, Xinlong; Liu, Hongyao; Chen, Lu; Zhang, Weili; Wang, Li

    2015-01-01

    Both the localized resonance and excitation of spoof surface plasmon polaritons are observed in the terahertz transmission spectra of periodic subwavelength hole arrays. Analyzing with the coupled oscillator model, we find that the terahertz transmission is actually facilitated by three successive processes: the incident terahertz field first initiates the localized oscillation around each hole, and then the spoof surface plasmon polaritons are excited by the localized resonance, and finally the two resonances couple and contribute to the transmission. Tailoring the localized resonance by hole size, the coupling strength between spoof surface plasmon polaritons and localized resonances is quantitatively extracted. The hole size dependent transmittance and the coupling mechanism are further confirmed by fitting the measured spectra to a modified multi-order Fano model. PMID:26548493

  5. Ultrafast optical control of terahertz surface plasmon polariton in subwavelength hole-arrays at noon temperature

    SciTech Connect

    Azad, Abul K; Chen, Houtong; Taylor, Antoinette; O' Hara, John F; Kasarla, Satish; Zhang, Weili; Tian, Zhen; Lu, Xinchao

    2008-01-01

    We demonstrate ultrafast optical control of surface plasmon assisted terahertz (THz) transmission in a subwavelength metallic hole array on a semiconductor substrate. The transient photoconductivity of the substrate allows modulation of the THz resonance amplitude via optical excitation with a time scale of {approx}10 ps.

  6. A study of angle dependent surface plasmon polaritons in nano-hole array structures

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Shankar; Najiminaini, Mohamadreza; Singh, Mahi R.; Carson, Jeffrey J. L.

    2016-07-01

    We report that the light-matter interaction in metallic nano-hole array structures possess a subwavelength hole radius and periodicity. The transmission coefficient for nano-hole array structures was measured for different angles of incidence of light. Each measured transmission spectrum had several peaks due to surface plasmon polaritons. A theory of the transmission coefficient was developed based on the quantum density matrix method. It was found that the location of the surface plasmon polariton and the heights of the spectral peaks were dependent on the angle of incidence of light. Good agreement was observed between the experimental and theoretical results. This property of these structures has opened up new possibilities for sensing applications.

  7. A Metasurface Anti-reflection Coating for Enhancing Surface Plasmon-Polariton of Metallic Hole Array

    NASA Astrophysics Data System (ADS)

    Bhattarai, Khagendra; Jeon, Jiyeon; Kim, Jun; Ku, Zahyun; Lee, Sang Jun; Zhou, Jiangfeng; Usf, Usa Collaboration; Kriss, Korea Collaboration; Afrl, Usa Collaboration

    We demonstrate a metasurface made of metallic disk resonator array as an anti-reflection (AR) coating to enhance (reduce) the transmission (reflection) through metal hole array (MHA). Our result show that the simulated (measured) transmission at the first order surface plasmon-polariton (SPP) resonance is increased up to 82 %(88%) compared to uncoated MHA. The electric field of the surface wave is also enhanced by 33%. Using an effective medium theory, we show that the metasurface operates at off-resonance wavelengths and can be understood as a thin film that exhibits high effective permittivity (~30) with very low loss (loss tangent ~0.005). Thus we reveal the mechanism of the metasurface AR coating as the traditional thin film AR coating. With tunable effective permittivity, our structure provides great flexibility to achieve AR coating for general substance at any wavelength.

  8. Investigation of plasmon resonance tunneling through subwavelength hole arrays in highly doped conductive ZnO films

    SciTech Connect

    Nader, Nima Vangala, Shivashankar; Hendrickson, Joshua R.; Leedy, Kevin D.; Cleary, Justin W.; Look, David C.; Guo, Junpeng

    2015-11-07

    Experimental results pertaining to plasmon resonance tunneling through a highly conductive zinc oxide (ZnO) layer with subwavelength hole-arrays is investigated in the mid-infrared regime. Gallium-doped ZnO layers are pulsed-laser deposited on a silicon wafer. The ZnO has metallic optical properties with a bulk plasma frequency of 214 THz, which is equivalent to a free space wavelength of 1.4 μm. Hole arrays with different periods and hole shapes are fabricated via a standard photolithography process. Resonant mode tunneling characteristics are experimentally studied for different incident angles and compared with surface plasmon theoretical calculations and finite-difference time-domain simulations. Transmission peaks, higher than the baseline predicted by diffraction theory, are observed in each of the samples at wavelengths that correspond to the excitation of surface plasmon modes.

  9. Investigation of plasmon resonance tunneling through subwavelength hole arrays in highly doped conductive ZnO films

    NASA Astrophysics Data System (ADS)

    Nader, Nima; Vangala, Shivashankar; Hendrickson, Joshua R.; Leedy, Kevin D.; Look, David C.; Guo, Junpeng; Cleary, Justin W.

    2015-11-01

    Experimental results pertaining to plasmon resonance tunneling through a highly conductive zinc oxide (ZnO) layer with subwavelength hole-arrays is investigated in the mid-infrared regime. Gallium-doped ZnO layers are pulsed-laser deposited on a silicon wafer. The ZnO has metallic optical properties with a bulk plasma frequency of 214 THz, which is equivalent to a free space wavelength of 1.4 μm. Hole arrays with different periods and hole shapes are fabricated via a standard photolithography process. Resonant mode tunneling characteristics are experimentally studied for different incident angles and compared with surface plasmon theoretical calculations and finite-difference time-domain simulations. Transmission peaks, higher than the baseline predicted by diffraction theory, are observed in each of the samples at wavelengths that correspond to the excitation of surface plasmon modes.

  10. Characterization of plasmonic hole arrays as transparent electrical contacts for organic photovoltaics using high-brightness Fourier transform methods

    PubMed Central

    Camino, Fernando E.; Nam, Chang-Yong; Pang, Yutong T.; Hoy, Jessica; Eisaman, Matthew D.; Black, Charles T.; Sfeir, Matthew Y.

    2014-01-01

    We present a methodology for probing light-matter interactions in prototype photovoltaic devices consisting of an organic semiconductor active layer with a semitransparent metal electrical contact exhibiting surface plasmon-based enhanced optical transmission. We achieve high-spectral irradiance in a spot size of less than 100 μm using a high-brightness laser-driven light source and appropriate coupling optics. Spatially resolved Fourier transform photocurrent spectroscopy in the visible and near-infrared spectral regions allows us to measure external quantum efficiency with high sensitivity in small-area devices (<1 mm2). This allows for rapid fabrication of variable-pitch sub-wavelength hole arrays in metal films for use as transparent electrical contacts, and evaluation of the evanescent and propagating mode coupling to resonances in the active layer. PMID:25705085

  11. Characterization of plasmonic hole arrays as transparent electrical contacts for organic photovoltaics using high-brightness Fourier transform methods

    DOE PAGESBeta

    Camino, Fernando E.; Nam, Chang-Yong; Pang, Yutong T.; Hoy, Jessica; Eisaman, Matthew D.; Black, Charles T.; Sfeir, Matthew Y.

    2014-05-15

    Here we present a methodology for probing light-matter interactions in prototype photovoltaic devices consisting of an organic semiconductor active layer with a semitransparent metal electrical contact exhibiting surface plasmon-based enhanced optical transmission. We achieve high-spectral irradiance in a spot size of less than 100 μm using a high-brightness laser-driven light source and appropriate coupling optics. Spatially resolved Fourier transform photocurrent spectroscopy in the visible and near-infrared spectral regions allows us to measure external quantum efficiency with high sensitivity in small-area devices (<1 mm2). Lastly, this allows for rapid fabrication of variable-pitch sub-wavelength hole arrays in metal films for use asmore » transparent electrical contacts, and evaluation of the evanescent and propagating mode coupling to resonances in the active layer.« less

  12. Characterization of plasmonic hole arrays as transparent electrical contacts for organic photovoltaics using high-brightness Fourier transform methods

    SciTech Connect

    Camino, Fernando E.; Nam, Chang-Yong; Pang, Yutong T.; Hoy, Jessica; Eisaman, Matthew D.; Black, Charles T.; Sfeir, Matthew Y.

    2014-05-15

    Here we present a methodology for probing light-matter interactions in prototype photovoltaic devices consisting of an organic semiconductor active layer with a semitransparent metal electrical contact exhibiting surface plasmon-based enhanced optical transmission. We achieve high-spectral irradiance in a spot size of less than 100 μm using a high-brightness laser-driven light source and appropriate coupling optics. Spatially resolved Fourier transform photocurrent spectroscopy in the visible and near-infrared spectral regions allows us to measure external quantum efficiency with high sensitivity in small-area devices (<1 mm2). Lastly, this allows for rapid fabrication of variable-pitch sub-wavelength hole arrays in metal films for use as transparent electrical contacts, and evaluation of the evanescent and propagating mode coupling to resonances in the active layer.

  13. Interferometric Plasmonic Lensing with Nanohole Arrays

    SciTech Connect

    Gong, Yu; Joly, Alan G.; El-Khoury, Patrick Z.; Hess, Wayne P.

    2014-12-18

    Nonlinear photoemission electron microscopy (PEEM) of nanohole arrays in gold films maps propagating surface plasmons (PSPs) launched from lithographically patterned structures. Strong near field photoemission patterns are observed in the PEEM images, recorded following low angle of incidence irradiation of nanohole arrays with sub-15 fs laser pulses centered at 780 nm. The recorded photoemission patterns are attributed to constructive and destructive interferences between PSPs launched from the individual nanoholes which comprise the array. By exploiting the wave nature of PSPs, we demonstrate how varying the array geometry (hole diameter, pitch, and number of rows/columns) ultimately yields intense localized photoemission. Through a combination of PEEM and finite-difference time-domain simulations, we identify the optimal array geometry for efficient light coupling and interferometric plasmonic lensing. We show a preliminary application of inteferometric plasmonic lensing by enhancing the photoemission from the vertex of a gold triangle using nanohole array.

  14. Tailoring terahertz plasmons with silver nanorod arrays

    PubMed Central

    Cao, Wei; Song, Chunyuan; Lanier, Thomas E.; Singh, Ranjan; O'Hara, John F.; Dennis, William M.; Zhao, Yiping; Zhang, Weili

    2013-01-01

    Plasmonic materials that strongly interact with light are ideal candidates for designing subwavelength photonic devices. We report on direct coupling of terahertz waves in metallic nanorods by observing the resonant transmission of surface plasmon polariton waves through lithographically patterned films of silver nanorod (100 nm in diameter) micro-hole arrays. The best enhancement in surface plasmon resonant transmission is obtained when the nanorods are perfectly aligned with the electric field direction of the linearly polarized terahertz wave. This unique polarization-dependent propagation of surface plasmons in structures fabricated from nanorod films offers promising device applications. We conclude that the anisotropy of nanoscale metallic rod arrays imparts a material anisotropy relevant at the microscale that may be utilized for the fabrication of plasmonic and metamaterial based devices for operation at terahertz frequencies.

  15. A phased antenna array for surface plasmons.

    PubMed

    Dikken, Dirk Jan W; Korterik, Jeroen P; Segerink, Frans B; Herek, Jennifer L; Prangsma, Jord C

    2016-01-01

    Surface plasmon polaritons are electromagnetic waves that propagate tightly bound to metal surfaces. The concentration of the electromagnetic field at the surface as well as the short wavelength of surface plasmons enable sensitive detection methods and miniaturization of optics. We present an optical frequency plasmonic analog to the phased antenna array as it is well known in radar technology and radio astronomy. Individual holes in a thick gold film act as dipolar emitters of surface plasmon polaritons whose phase is controlled individually using a digital spatial light modulator. We show experimentally, using a phase sensitive near-field microscope, that this optical system allows accurate directional emission of surface waves. This compact and flexible method allows for dynamically shaping the propagation of plasmons and holds promise for nanophotonic applications employing propagating surface plasmons. PMID:27121099

  16. A phased antenna array for surface plasmons

    NASA Astrophysics Data System (ADS)

    Dikken, Dirk Jan W.; Korterik, Jeroen P.; Segerink, Frans B.; Herek, Jennifer L.; Prangsma, Jord C.

    2016-04-01

    Surface plasmon polaritons are electromagnetic waves that propagate tightly bound to metal surfaces. The concentration of the electromagnetic field at the surface as well as the short wavelength of surface plasmons enable sensitive detection methods and miniaturization of optics. We present an optical frequency plasmonic analog to the phased antenna array as it is well known in radar technology and radio astronomy. Individual holes in a thick gold film act as dipolar emitters of surface plasmon polaritons whose phase is controlled individually using a digital spatial light modulator. We show experimentally, using a phase sensitive near-field microscope, that this optical system allows accurate directional emission of surface waves. This compact and flexible method allows for dynamically shaping the propagation of plasmons and holds promise for nanophotonic applications employing propagating surface plasmons.

  17. A phased antenna array for surface plasmons

    PubMed Central

    Dikken, Dirk Jan W.; Korterik, Jeroen P.; Segerink, Frans B.; Herek, Jennifer L.; Prangsma, Jord C.

    2016-01-01

    Surface plasmon polaritons are electromagnetic waves that propagate tightly bound to metal surfaces. The concentration of the electromagnetic field at the surface as well as the short wavelength of surface plasmons enable sensitive detection methods and miniaturization of optics. We present an optical frequency plasmonic analog to the phased antenna array as it is well known in radar technology and radio astronomy. Individual holes in a thick gold film act as dipolar emitters of surface plasmon polaritons whose phase is controlled individually using a digital spatial light modulator. We show experimentally, using a phase sensitive near-field microscope, that this optical system allows accurate directional emission of surface waves. This compact and flexible method allows for dynamically shaping the propagation of plasmons and holds promise for nanophotonic applications employing propagating surface plasmons. PMID:27121099

  18. Long-wavelength infrared surface plasmons on Ga-doped ZnO films excited via 2D hole arrays for extraordinary optical transmission

    NASA Astrophysics Data System (ADS)

    Cleary, Justin W.; Esfahani, Nima Nader; Vangala, Shivashankar; Guo, Junpeng; Hendrickson, Joshua R.; Leedy, Kevin D.; Thomson, Darren; Look, David C.

    2013-09-01

    Extraordinary optical transmission (EOT) through highly conductive ZnO films with sub-wavelength hole arrays is investigated in the long-wavelength infrared regime. EOT is facilitated by the excitation of surface plasmon polaritons (SPPs) and can be tuned utilizing the physical structure size such as period. Pulse laser deposited Ga-doped ZnO has been shown to have fluctuations in optical and electrical parameters based on fabrication techniques, providing a complimentary tuning means. The sub-wavelength 2D hole arrays are fabricated in the Ga-doped ZnO films via standard lithography and etching processes. Optical reflection measurements completed with a microscope coupled FTIR system contain absorption resonances that are in agreement with analytical theories for excitation of SPPs on 2D structures. EOT through Ga-doped ZnO is numerically demonstrated at wavelengths where SPPs are excited. This highly conductive ZnO EOT structure may prove useful in novel integrated components such as tunable biosensors or surface plasmon coupling mechanisms.

  19. Self-assembled plasmonic nanohole arrays.

    PubMed

    Lee, Si Hoon; Bantz, Kyle C; Lindquist, Nathan C; Oh, Sang-Hyun; Haynes, Christy L

    2009-12-01

    We present a simple and massively parallel nanofabrication technique to produce self-assembled periodic nanohole arrays over a millimeter-sized area of metallic film, with a tunable hole shape, diameter, and periodicity. Using this method, 30 x 30 microm(2) defect-free areas of 300 nm diameter or smaller holes were obtained in silver; this area threshold is critical because it is larger than the visible wavelength propagation length of surface plasmon waves ( approximately 27 microm) in the silver film. Measured optical transmission spectra show highly homogeneous characteristics across the millimeter-size patterned area, and they are in good agreement with FDTD simulations. The simulations also reveal intense electric fields concentrated near the air/silver interface, which was used for surface-enhanced Raman spectroscopy (SERS). Enhancement factors (EFs) measured with different hole shape and excitation wavelengths on the self-assembled nanohole arrays were 10(4)-10(6). With an additional Ag electroless plating step, the EF was further increased up to 3 x 10(6). The periodic nanohole arrays produced using this tunable self-assembly method show great promise as inexpensive SERS substrates as well as surface plasmon resonance biosensing platforms. PMID:19831350

  20. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array.

    PubMed

    Chou, Stephen Y; Ding, Wei

    2013-01-14

    Three of central challenges in solar cells are high light coupling into solar cell, high light trapping and absorption in a sub-absorption-length-thick active layer, and replacement of the indium-tin-oxide (ITO) transparent electrode used in thin-film devices. Here, we report a proposal and the first experimental study and demonstration of a new ultra-thin high-efficiency organic solar cell (SC), termed "plasmonic cavity with subwavelength hole-array (PlaCSH) solar cell", that offers a solution to all three issues with unprecedented performances. The ultrathin PlaCSH-SC is a thin plasmonic cavity that consists of a 30 nm thick front metal-mesh electrode with subwavelength hole-array (MESH) which replaces ITO, a thin (100 nm thick) back metal electrode, and in-between a polymer photovoltaic active layer (P3HT/PCBM) of 85 nm thick (1/3 average absorption-length). Experimentally, the PlaCSH-SCs have achieved (1) light coupling-efficiency/absorptance as high as 96% (average 90%), broad-band, and Omni acceptance (light coupling nearly independent of both light incident angle and polarization); (2) an external quantum efficiency of 69% for only 27% single-pass active layer absorptance; leading to (3) a 4.4% power conversion efficiency (PCE) at standard-solar-irradiation, which is 52% higher than the reference ITO-SC (identical structure and fabrication to PlaCSH-SC except MESH replaced by ITO), and also is among the highest PCE for the material system that was achievable previously only by using thick active materials and/or optimized polymer compositions and treatments. In harvesting scattered light, the Omni acceptance can increase PCE by additional 81% over ITO-SC, leading to a total 175% increase (i.e. 8% PCE). Furthermore, we found that (a) after formation of PlaCSH the light reflection and absorption by MESH are reduced by 2 to 6 fold from the values when it is alone; and (b) the sheet resistance of a 30 nm thick MESH is 2.2 ohm/sq or less-4.5 fold or more lower

  1. VERTICAL PILLAR ARRAYS FOR PLASMON NANOCAVITIES

    SciTech Connect

    Bora, M; Fasenfest, B; Behymer, E; Chang, A; Nguyen, H; Britten, J; Larson, C; Bond, T

    2010-04-02

    We investigate tunable plasmon resonant cavity arrays in paired parallel nanowire waveguides. Resonances are observed when the waveguide length is an odd multiple of quarter plasmon wavelengths, consistent with boundary conditions of node and antinode at the ends. Two nanowire waveguides satisfy the dispersion relation of a planar metal-dielectric-metal waveguide of equivalent width equal to the square field average weighted gap. Confinement factors over 10{sup 3} are possible due to plasmon focusing in the inter-wire space.

  2. Plasmon resonant cavities in vertical nanowire arrays

    SciTech Connect

    Bora, M; Bond, T; Behymer, E; Chang, A

    2010-02-23

    We investigate tunable plasmon resonant cavity arrays in paired parallel nanowire waveguides. Resonances are observed when the waveguide length is an odd multiple of quarter plasmon wavelengths, consistent with boundary conditions of node and antinode at the ends. Two nanowire waveguides satisfy the dispersion relation of a planar metal-dielectric-metal waveguide of equivalent width equal to the square field average weighted gap. Confinement factors over 103 are possible due to plasmon focusing in the inter-wire space.

  3. Enhanced Optical Transmission Mediated by Localized Plasmons in Anisotropic, 3D Nanohole Arrays

    PubMed Central

    Yang, Jiun-Chan; Gao, Hanwei; Suh, Jae Yong; Zhou, Wei; Lee, Min Hyung; Odom, Teri W.

    2010-01-01

    This paper describes 3D nanohole arrays whose high optical transmission is mediated more by localized surface plasmon (LSP) excitations than by surface plasmon polaritons (SPPs). First, LSPs on 3D hole arrays lead to optical transmission an order of magnitude higher than 2D planar hole arrays. Second, LSP-mediated transmission is broadband and more tunable than SPP-enhanced transmission which is restricted by Bragg coupling. Third, for the first time, two types of surface plasmons can be selectively excited and manipulated on the same plasmonic substrate. This new plasmonic substrate fabricated by high-throughput nanolithography techniques paves the way for cutting-edge optoelectronic and biomedical applications. PMID:20698633

  4. Plasmon resonant cavities in vertical nanowire arrays

    DOEpatents

    Bora, Mihail; Bond, Tiziana C.; Fasenfest, Benjamin J.; Behymer, Elaine M.

    2014-07-15

    Tunable plasmon resonant cavity arrays in paired parallel nanowire waveguides are presented. Resonances can be observed when the waveguide length is an odd multiple of quarter plasmon wavelengths, consistent with boundary conditions of node and antinode at the ends. Two nanowire waveguides can satisfy the dispersion relation of a planar metal-dielectric-metal waveguide of equivalent width equal to the square field average weighted gap. Confinement factors of over 10.sup.3 are possible due to plasmon focusing in the inter-wire space.

  5. Plasmonic nanopatch array for optical integrated circuit applications.

    PubMed

    Qu, Shi-Wei; Nie, Zai-Ping

    2013-01-01

    Future plasmonic integrated circuits with the capability of extremely high-speed data processing at optical frequencies will be dominated by the efficient optical emission (excitation) from (of) plasmonic waveguides. Towards this goal, plasmonic nanoantennas, currently a hot topic in the field of plasmonics, have potential to bridge the mismatch between the wave vector of free-space photonics and that of the guided plasmonics. To manipulate light at will, plasmonic nanoantenna arrays will definitely be more efficient than isolated nanoantennas. In this article, the concepts of microwave antenna arrays are applied to efficiently convert plasmonic waves in the plasmonic waveguides into free-space optical waves or vice versa. The proposed plasmonic nanoantenna array, with nanopatch antennas and a coupled wedge plasmon waveguide, can also act as an efficient spectrometer to project different wavelengths into different directions, or as a spatial filter to absorb a specific wavelength at a specified incident angle. PMID:24201454

  6. Plasmonic nanopatch array for optical integrated circuit applications

    PubMed Central

    Qu, Shi-Wei; Nie, Zai-Ping

    2013-01-01

    Future plasmonic integrated circuits with the capability of extremely high-speed data processing at optical frequencies will be dominated by the efficient optical emission (excitation) from (of) plasmonic waveguides. Towards this goal, plasmonic nanoantennas, currently a hot topic in the field of plasmonics, have potential to bridge the mismatch between the wave vector of free-space photonics and that of the guided plasmonics. To manipulate light at will, plasmonic nanoantenna arrays will definitely be more efficient than isolated nanoantennas. In this article, the concepts of microwave antenna arrays are applied to efficiently convert plasmonic waves in the plasmonic waveguides into free-space optical waves or vice versa. The proposed plasmonic nanoantenna array, with nanopatch antennas and a coupled wedge plasmon waveguide, can also act as an efficient spectrometer to project different wavelengths into different directions, or as a spatial filter to absorb a specific wavelength at a specified incident angle. PMID:24201454

  7. Plasmon enhanced linear and nonlinear photoluminescence in planar nanoparticle arrays (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Walsh, Gary F.; Dal Negro, Luca

    2015-09-01

    Light emission from metal nanoparticles has potential appications as a highly sensitive refractive index detector. In order for this protential to be realized the mechanics of plasmon enhanced photoluminescence (PL) in planar nanoparticle arrays must be understude. We present an experimental exploreation of emission spectra and realitive efficiency of gold PL in nanoplasmonic arrays. We demonstrate tunability of metal PL by nanoparticle size and discover the critical role of near-field interparticle coupling on emission efficiency. We show that direct excition of plasmon resonances by photoexcited electron-hole pairs is the primary contributer to the metalic nanoparticle emission spectrum. We additionally show that emission is quenched by near-field interactions between nanoparticles leading to spectral broading by increased non-radiative plasmon decay. Finally, we show a correlation between plasmon life-time and PL efficiency. We explore this phenominan for both linear and nonlinear PL. Experimental results are supported by numerical simulations of plasmon life-time.

  8. Large-area nanogap plasmon resonator arrays for plasmonics applications

    NASA Astrophysics Data System (ADS)

    Jin, Mingliang; van Wolferen, Henk; Wormeester, Herbert; van den Berg, Albert; Carlen, Edwin T.

    2012-07-01

    Large-area (~8000 mm2) Au nanogap plasmon resonator array substrates manufactured using maskless laser interference lithography (LIL) with high uniformity are presented. The periodically spaced subwavelength nanogap arrays are formed between adjacent nanopyramid (NPy) structures with precisely defined pitch and high length density (~1 km cm-2), and are ideally suited as scattering sites for surface enhanced Raman scattering (SERS), as well as refractive index sensing. The two-dimensional grid arrangement of NPy structures renders the excitation of the plasmon resonators minimally dependent on the incident polarization. The SERS average enhancement factor (AEF) has been characterized using over 30 000 individual measurements of benzenethiol (BT) chemisorbed on the Au NPy surfaces. From the 1(a1), βCCC + νCS ring mode (1074 cm-1) of BT on surfaces with pitch λg = 200 nm, AEF = 0.8 × 106 and for surfaces with λg = 500 nm, AEF = 0.3 × 107 from over 99% of the imaged spots. Maximum AEFs > 108 have been measured in both cases.

  9. Patterned Plasmonic Nanoparticle Arrays for Microfluidic and Multiplexed Biological Assays.

    PubMed

    He, Jie; Boegli, Michelle; Bruzas, Ian; Lum, William; Sagle, Laura

    2015-11-17

    For applications ranging from medical diagnostics and drug screening to chemical and biological warfare detection, inexpensive, rapid-readout, portable devices are required. Localized surface plasmon resonance (LSPR) technologies show substantial promise toward meeting these goals, but the generation of portable, multiplexed and/or microfluidic devices incorporating sensitive nanoparticle arrays is only in its infancy. Herein, we have combined photolithography with Hole Mask Colloidal lithography to pattern uniform nanoparticle arrays for both microfluidic and multiplexed devices. The first proof-of-concept study is carried out with 5- and 7-channel microfluidic devices to acquire one-shot binding curves and protein binding kinetic data. The second proof-of-concept study involved the fabrication of a 96-spot plate that can be inserted into a standard plate reader for the multiplexed detection of protein binding. This versatile fabrication technique should prove useful in next generation chips for bioassays and genetic screening. PMID:26494412

  10. Surface plasmons and magneto-optic activity in hexagonal Ni anti-dot arrays.

    PubMed

    Papaioannou, Evangelos Th; Kapaklis, Vassilios; Melander, Emil; Hjörvarsson, Björgvin; Pappas, Spiridon D; Patoka, Piotr; Giersig, Michael; Fumagalli, Paul; Garcia-Martin, Antonio; Ctistis, Georgios

    2011-11-21

    The influence of surface plasmons on the magneto-optic activity in a two-dimensional hexagonal array is addressed. The experiments were performed using hexagonal array of circular holes in a ferromagnetic Ni film. Well pronounced troughs are observed in the optical reflectivity, resulting from the presence of surface plasmons. The surface plasmons are found to strongly enhance the magneto-optic response (Kerr rotation), as compared to a continuous film of the same composition. The influence of the hexagonal symmetry of the pattern on the coupling between the plasmonic excitations is demonstrated, using optical diffraction measurements and theoretical calculations of the magneto-optic and of the angular dependence of the optical activity. PMID:22109411

  11. Tuning the 3D plasmon field of nanohole arrays

    NASA Astrophysics Data System (ADS)

    Couture, Maxime; Liang, Yuzhang; Poirier Richard, Hugo-Pierre; Faid, Rita; Peng, Wei; Masson, Jean-Francois

    2013-11-01

    Modern photonics is being revolutionized through the use of nanostructured plasmonic materials, which confine light to sub-diffraction limit resolution providing universal, sensitive, and simple transducers for molecular sensors. Understanding the mechanisms by which light interacts with plasmonic crystals is essential for developing application-focussed devices. The strong influence of grating coupling on electromagnetic field distribution, frequency and degeneracy of plasmon bands has now been characterized using hexagonal nanohole arrays. An equation for nanohole arrays was derived to demonstrate the strong influence of incidence and rotation angle on optical properties of 2D plasmonic crystals such as nanohole arrays. Consequently, we report experimental data that are in strong agreement with finite difference time-domain (FDTD) simulations that clearly demonstrate the influence of the grating coupling conditions on the optical properties (such as plasmon degeneracy and bandwidth), and on the distribution of the plasmon field around nanohole arrays (including tuneable penetration depths and highly localized fields). The tuneable 3D plasmon field allowed for controlled sensing properties and by increasing the angle of incidence to 30 degrees, the resonance wavelength was tuned from 1000 to 600 nm, and the sensitivity was enhanced by nearly 300% for a protein assay using surface plasmon resonance (SPR) and by 40% with surface-enhanced Raman scattering (SERS) sensors.Modern photonics is being revolutionized through the use of nanostructured plasmonic materials, which confine light to sub-diffraction limit resolution providing universal, sensitive, and simple transducers for molecular sensors. Understanding the mechanisms by which light interacts with plasmonic crystals is essential for developing application-focussed devices. The strong influence of grating coupling on electromagnetic field distribution, frequency and degeneracy of plasmon bands has now been

  12. Engineering plasmon-enhanced Au light emission with planar arrays of nanoparticles.

    PubMed

    Walsh, Gary F; Dal Negro, Luca

    2013-02-13

    By systematically investigating the light emission and scattering properties of arrays of Au nanoparticles with varying size and separation, we demonstrate tunability and control of metal photoluminescence and unveil the critical role of near-field plasmonic coupling for the engineering of active metal nanostructures. We show that the decay of photoexcited electron-hole pairs into localized surface plasmons (LSPs) dramatically modifies the Au emission wavelength, line shape, and quantum efficiency depending both on particles size and separation. In particular, in arrays with near-field coupled nanoparticles we demonstrate broad light scattering and emission spectra that scale differently with respect to nanoparticle size due to the enhanced LSP nonradiative decay caused by near-field interparticle coupling. Our experimental results are fully supported by semianalytical extinction simulations based on rigorous coupled wave analysis, which demonstrate the importance of tuning plasmonic near-field coupling for the engineering of active devices based on light emitting arrays of metallic nanoparticles. PMID:23339774

  13. Polarization dependent, surface plasmon induced photoconductance in gold nanorod arrays

    NASA Astrophysics Data System (ADS)

    Diefenbach, S.; Erhard, N.; Schopka, J.; Martin, A.; Karnetzky, C.; Iacopino, D.; Holleitner, A. W.

    2014-03-01

    We report on the photoconductance in two-dimensional arrays of gold nanorods which is strongly enhanced at the frequency of the longitudinal surface plasmon of the nanorods. The arrays are formed by a combination of droplet deposition and stamping of gold nanorod solutions on SiO2 substrates. We find that the plasmon induced photoconductance is sensitive to the linear polarization of the exciting photons. We interpret the occurrence of the photoconductance as a bolometric enhancement of the arrays' conductance upon excitation of the longitudinal surface plasmon resonance of the nanorods.

  14. Extraordinary enhancement of porphyrin photocurrent utilizing plasmonic silver arrays.

    PubMed

    Sugawa, Kosuke; Uchida, Koji; Takeshima, Naoto; Jin, Shota; Tsunenari, Natsumi; Takeda, Hideyuki; Kida, Yuki; Akiyama, Tsuyoshi; Otsuki, Joe; Takase, Kouichi; Yamada, Sunao

    2016-08-25

    We demonstrate up to ∼630-fold enhancement of the photocurrent from a porphyrin monolayer on a plasmonic Ag-array electrode showing plasmon absorption in the Q-band region relative to that on a planar Ag electrode. The photocurrent obtained by the Q-band excitation in the plasmonic electrodes even exceeded that obtained by the Soret-band excitation in a normal, nonplasmonic electrode. PMID:27420651

  15. Real-time tunable lasing from plasmonic nanocavity arrays

    NASA Astrophysics Data System (ADS)

    Yang, Ankun; Hoang, Thang B.; Dridi, Montacer; Deeb, Claire; Mikkelsen, Maiken H.; Schatz, George C.; Odom, Teri W.

    2015-04-01

    Plasmon lasers can support ultrasmall mode confinement and ultrafast dynamics with device feature sizes below the diffraction limit. However, most plasmon-based nanolasers rely on solid gain materials (inorganic semiconducting nanowire or organic dye in a solid matrix) that preclude the possibility of dynamic tuning. Here we report an approach to achieve real-time, tunable lattice plasmon lasing based on arrays of gold nanoparticles and liquid gain materials. Optically pumped arrays of gold nanoparticles surrounded by liquid dye molecules exhibit lasing emission that can be tuned as a function of the dielectric environment. Wavelength-dependent time-resolved experiments show distinct lifetime characteristics below and above the lasing threshold. By integrating gold nanoparticle arrays within microfluidic channels and flowing in liquid gain materials with different refractive indices, we achieve dynamic tuning of the plasmon lasing wavelength. Tunable lattice plasmon lasers offer prospects to enhance and detect weak physical and chemical processes on the nanoscale in real time.

  16. Real-time tunable lasing from plasmonic nanocavity arrays

    PubMed Central

    Yang, Ankun; Hoang, Thang B.; Dridi, Montacer; Deeb, Claire; Mikkelsen, Maiken H.; Schatz, George C.; Odom, Teri W.

    2015-01-01

    Plasmon lasers can support ultrasmall mode confinement and ultrafast dynamics with device feature sizes below the diffraction limit. However, most plasmon-based nanolasers rely on solid gain materials (inorganic semiconducting nanowire or organic dye in a solid matrix) that preclude the possibility of dynamic tuning. Here we report an approach to achieve real-time, tunable lattice plasmon lasing based on arrays of gold nanoparticles and liquid gain materials. Optically pumped arrays of gold nanoparticles surrounded by liquid dye molecules exhibit lasing emission that can be tuned as a function of the dielectric environment. Wavelength-dependent time-resolved experiments show distinct lifetime characteristics below and above the lasing threshold. By integrating gold nanoparticle arrays within microfluidic channels and flowing in liquid gain materials with different refractive indices, we achieve dynamic tuning of the plasmon lasing wavelength. Tunable lattice plasmon lasers offer prospects to enhance and detect weak physical and chemical processes on the nanoscale in real time. PMID:25891212

  17. Parallel fabrication of plasmonic nanocone sensing arrays.

    PubMed

    Horrer, Andreas; Schäfer, Christian; Broch, Katharina; Gollmer, Dominik A; Rogalski, Jan; Fulmes, Julia; Zhang, Dai; Meixner, Alfred J; Schreiber, Frank; Kern, Dieter P; Fleischer, Monika

    2013-12-01

    A fully parallel approach for the fabrication of arrays of metallic nanocones and triangular nanopyramids is presented. Different processes utilizing nanosphere lithography for the creation of etch masks are developed. Monolayers of spheres are reduced in size and directly used as masks, or mono- and double layers are employed as templates for the deposition of aluminum oxide masks. The masks are transferred into an underlying gold or silver layer by argon ion milling, which leads to nanocones or nanopyramids with very sharp tips. Near the tips the enhancement of an external electromagnetic field is particularly strong. This fact is confirmed by numerical simulations and by luminescence imaging in a confocal microscope. Such localized strong fields can amongst others be utilized for high-resolution, high-sensitivity spectroscopy and sensing of molecules near the tip. Arrays of such plasmonic nanostructures thus constitute controllable platforms for surface-enhanced Raman spectroscopy. A thin film of pentacene molecules is evaporated onto both nanocone and nanopyramid substrates, and the observed Raman enhancement is evaluated. PMID:24302595

  18. Biosensing using plasmonic nanohole arrays with small, homogenous and tunable aperture diameters.

    PubMed

    Xiong, Kunli; Emilsson, Gustav; Dahlin, Andreas B

    2016-06-21

    Plasmonic nanohole arrays are widely used for optical label-free molecular detection. An important factor for many applications is the diameter of the apertures. So far nanohole arrays with controllable diameters below 100 nm have not been demonstrated and it has not been systematically investigated how the diameter influences the optical properties. In this work we fine-tune the diameter in short range ordered nanohole arrays down to 50 nm. The experimental far field spectra show how the wavelength of maximum extinction remains unaffected while the transmission maximum blue shifts with smaller diameters. The near field is visualized by numerical simulations, showing a homogenous enhancement throughout the cylindrical void at the transmission maximum for diameters between 50 and 100 nm. For diameters below 50 nm plasmon excitation is no longer possible experimentally or by simulations. Further, we investigate the refractive index sensing capabilities of the smaller holes. As the diameter was reduced, the sensitivity in terms of resonance shift with bulk liquid refractive index was found to be unaltered. However, for the transmission maximum the sensitivity becomes more strongly localized to the hole interior. By directing molecular binding to the bottom of the holes we demonstrate how smaller holes enhance the sensitivity in terms of signal per molecule. A real-time detection limit well below one protein per nanohole is demonstrated. The smaller plasmonic nanoholes should be suitable for studies of molecules confined in small volumes and as mimics of biological nanopores. PMID:26867475

  19. Optofluidic plasmonic onchip nanosensor array for biodetection

    NASA Astrophysics Data System (ADS)

    Huang, Min

    Surface plasmon resonance (SPR) sensing has been demonstrated in the past decade to be the gold standard technique for biochemical interaction analysis, and plays an important role in drug discovery and biomedical research. The technique circumvents the need of fluorescence/radioactive tagging or enzymatic detection, enables ultrasensitive remote sensing, and quantitatively monitors bio-interaction in real time. Although SPR has these attractive features that can satisfy most research/clinic requirements, there still exist problems that limit its applications. First, the reflection geometry of the prism coupling scheme adds limitations for high throughput screening application. Additionally, SPR instrumentations are bulky and not suitable for point-of-care settings. Moreover, the SPR sensor is embedded in conventional micro-fluidic cells, in which the sensor performance is limited by inefficient analyte transport. Suspended plasmonic nanohole array (PNA) offers an opportunity to overcome these limitations. A collinear excitation/collection coupling scheme combined with the small footprint of PNA provides unique platform for multiplexing and system minimization. The suspended nanohole structure also offers a unique configuration to integrate nano-photonics with nano-fluidics. This thesis focuses on developing a lab-on-a-chip PNA platform for point-of-care bio-detection. To achieve this, we first demonstrate that the figure-of-merit of our PNA sensor surpasses that of the prism coupled SPR. We also show that the ultrasensitive label-free PNA sensor is able to directly detect intact viruses from biological media at clinically relevant concentrations with little sample preparation. We then present a plasmonic microarray with over one million PNA sensors on a microscope slide for high throughput screening applications. A dual-color filter imaging method is introduced to increase the accuracy, reliability, and signal-to-noise ratio in a highly multiplexed manner. Finally

  20. Plasmon coupling in extended structures: Graphene superlattice nanoribbon arrays

    NASA Astrophysics Data System (ADS)

    Rodrigo, Daniel; Low, Tony; Farmer, Damon B.; Altug, Hatice; Avouris, Phaedon

    2016-03-01

    Interaction between localized plasmons in isolated proximal nanostructures is a well-studied phenomenon. Here we explore plasmon-plasmon interactions in connected extended systems. Such systems can now be easily produced experimentally using graphene. However, the mechanisms of plasmonic interactions in extended systems are not well understood. We employ finite-element methods to study these interactions in graphene superlattice nanoribbon arrays with a periodically modulated electrochemical potential or number of layers. We find a rich variation in the resulting plasmonic resonances depending on the dimensions, the electrochemical potentials (doping), and the separation of the nanoribbon segments, and we demonstrate the involvement of both transverse and longitudinal plasmon-plasmon interactions. For example, unlike predictions based on the well-known "orbital hybridization model," the energies of the resulting hybrid plasmonic resonances in the extended system can lie between the energies of the plasmons in the individual components. Our results demonstrate that the plasmonic spectra of graphene superlattice structures can be easily adjusted, continuously tuned, and used to enhance optical fields in the infrared and terahertz regions of the electromagnetic spectrum.

  1. High-resolution plasmonic structural colors from nanohole arrays with bottom metal disks.

    PubMed

    Lu, Bing-Rui; Xu, Chen; Liao, Jianfeng; Liu, Jianpeng; Chen, Yifang

    2016-04-01

    We present transmissive plasmonic structural colors from subwavelength nanohole arrays with bottom metal disks for scaled-up manufacturing by nanoimprint lithography (NIL). Comprehensive theoretical and experimental studies are carried out to understand the specific extraordinary optical transmission behavior of the structures with such bottom metal disks. Distinctive colors covering the entire visible spectrum can be generated by changing the structural dimensions of hole arrays in Ag covered by the metal disks. The plasmonic energy hybridization theory is applied to explain the unstable color output with shallow holes so that a large processing window during NIL could be achieved for mass production. A high-resolution of 127,000 dots per inch is demonstrated with potential applications, including color filters and displays, high-resolution color printing, CMOS color imaging, and anti-counterfeiting. PMID:27192246

  2. Giant-enhancement of extraordinary optical transmission through nanohole arrays blocked by plasmonic gold mushroom caps

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Hu, Pidong; Liu, Chengpu

    2015-01-01

    An improved plasmonic hole array nanostructure model with the holes blocked by gold mushroom caps is proposed and it can realize a giant transmission with efficiency up to 65%, 182% larger than the unblocked nanohole array, due to the strong coupling between caps and holes, which plays the role of a cavity antenna. Moreover, the numerical investigation confirms that it provides more consistency with the practical experimental situations, than the nanodisk model instead. As expected, the light transmission sensitively depends on the geometric parameters of this new nanostructure; as the cap-hole's gap or cap's diameter vary, there always exists an optimal transmission efficiency. More interesting is that the corresponding optimal wavelength decreases with the gap's increment or the diameter's decrement, particularly in an exponential decaying way, and the decay rate is obviously influenced by the cap's parameters.

  3. The effect of holes in the dispersion relation of propagative surface plasmon modes of nanoperforated semitransparent metallic films

    SciTech Connect

    Kekesi, R. Meneses-Rodríguez, D.; García-Pérez, F.; González, M. U.; García-Martín, A.; Cebollada, A.; Armelles, G.

    2014-10-07

    We have analysed the effect that holes have on the properties of propagative surface plasmon modes in semitransparent nanoperforated Au films. The modes have been excited in Kretschmann configuration. Contrary to continuous films, where only one mode is excited, two modes are observed in Au nanohole array. The origin of this different behavior is discussed using effective optical properties for the nanoperforated films. The presence of the holes affects the effective optical constants of the membranes in two ways: it changes the contribution of the free electrons, and it gives rise to a localized transition due to a hole induced plasmon resonance. This localized transition interacts with the propagative surface plasmon modes, originating the two detected modes.

  4. Subwavelength modulational instability and plasmon oscillons in nanoparticle arrays.

    PubMed

    Noskov, Roman E; Belov, Pavel A; Kivshar, Yuri S

    2012-03-01

    We study modulational instability in nonlinear arrays of subwavelength metallic nanoparticles and analyze numerically nonlinear scenarios of the instability development. We demonstrate that modulational instability can lead to the formation of regular periodic or quasiperiodic modulations of the polarization. We reveal that such nonlinear nanoparticle arrays can support long-lived standing and moving oscillating nonlinear localized modes--plasmon oscillons. PMID:22463637

  5. Applications of spoof planar plasmonic waveguide to frequency-scanning circularly polarized patch array

    NASA Astrophysics Data System (ADS)

    Bai, Xue; Qu, Shi-Wei; Yi, Huan

    2014-08-01

    Spoof planar plasmonic waveguides (SPPWs) show potential applications in many microwave and terahertz systems, e.g. imaging, communication and sensing, due to their capability of highly confining spoof surface plasmon polaritons (SPPs) and relatively low propagation loss. Meanwhile, efficient electromagnetic emission from the SPPWs is one of the dominant factors in the practical applications. In this article, we demonstrate a beam-scanning circularly polarized (CP) antenna based on the SPPW of blind-hole array, which can efficiently convert spoof SPPs propagating in the SPPW into free-space emissions. Several centre-inclined rectangular patches are adopted to achieve the CP emission. The antenna array was designed and fabricated in the microwave frequency band, and the measured results validate the good emission performance of the proposed array, e.g. high gain and wide-scan angle. Finally, the proposed idea can be further extended into the terahertz frequency band.

  6. Enhanced broadband absorption in gold by plasmonic tapered coaxial holes.

    PubMed

    Mo, Lei; Yang, Liu; Nadzeyka, Achim; Bauerdick, Sven; He, Sailing

    2014-12-29

    Gold absorbers based on plasmonic tapered coaxial holes (PTCHs) are demonstrated theoretically and experimentally. An average absorption of over 0.93 is obtained theoretically in a broad wavelength range from 300 nm to 900 nm without polarization sensitivity due to the structural symmetry. Strong scattering of the incident light by the tapered coaxial holes is the main reason for the high absorption in the short wavelength range below about 550 nm, while gap surface plasmon polaritons propagating along the taper dominate the resonance-induced high absorption in the long wavelength range. Combining two PTCHs with different structural parameters can further enhance the absorption and thus increase the spectral bandwidth, which is verified by a sample fabricated by focused ion beam milling. This design is promising to be extended to other metals to realize effective and efficient light harvesting and absorption. PMID:25607189

  7. Regular arrays of Al nanoparticles for plasmonic applications

    SciTech Connect

    Schade, Martin Bohley, Christian; Sardana, Neha; Schilling, Jörg; Fuhrmann, Bodo; Schlenker, Sven; Leipner, Hartmut S.

    2014-02-28

    Optical properties of aluminium nanoparticles deposited on glass substrates are investigated. Laser interference lithography allows a quick deposition of regular, highly periodic arrays of nanostructures with different sizes and distances in order to investigate the shift of the surface plasmon resonance for, e.g., photovoltaic, plasmonic or photonic applications. The variation of the diameter of cylindrical Al nanoparticles exhibits a nearly linear shift of the surface plasmon resonance between 400 nm and 950 nm that is independent from the polarization vector of the incident light. Furthermore, particles with quadratic or elliptic base areas are presented exhibiting more complex and polarization vector dependent transmission spectra.

  8. Surface plasmonic lightening characteristics through liquid crystal microlens arrays controlled electrically

    NASA Astrophysics Data System (ADS)

    Tang, Qingle

    2015-12-01

    An approach for representing and evaluating surface plasmonic lightening through cylindrical liquid crystal microlens arrays (CLCMAs) of 128×128, is proposed. The CLCMAs are typical sandwiched structures, in which the LC materials with a thickness of ~20μm is fully filled into a preshaped microcavity with a pair of parallel electrodes fabricated by silica wafers coated by an indium-tin-oxide (ITO) film. The top electrode is patterned using an arrayed micro-rectangle-hole with a size of 200×60μm2 and a minimum spacing of 50μm. The surface plasmonic radiation is excited and further participates the focusing of incident beams in the visible range. The output light fields involving the plasmonic radiation are investigated. Rising the voltage signal from ~1.4 to ~5.5VRMS, the excited plasmonic radiation will sequentially present typical states including the beam converging state, focusing together with partial incident beams, and lightening mainly along the edge of individual ITO micro-rectangle-hole.

  9. Extreme optical chirality of plasmonic nanohole arrays due to chiral Fano resonance

    NASA Astrophysics Data System (ADS)

    Kondratov, A. V.; Gorkunov, M. V.; Darinskii, A. N.; Gainutdinov, R. V.; Rogov, O. Y.; Ezhov, A. A.; Artemov, V. V.

    2016-05-01

    We study the physical origin of extreme optical chirality of subwavelength arrays of chiral holes in metal. We reconstruct the nanoscale relief of the hole arrays by the atomic-force microscopy and post-process the data to acquire an average unit-cell shape clear of noise and defects. For this shape, we perform the electromagnetic finite difference time domain simulations that reproduce all important features observed by the light-transmission experiments, including the notably strong circular dichroism and optical activity covering the whole range of possible values. To interpret the simulation results, we develop a chiral coupled-mode model which yields analytical expressions that fit accurately the numerical data in a broad wavelength range. Our conclusions undoubtedly link the extreme optical chirality to the plasmon resonances of chiral holes and the associated chiral Fano-type transmission resonance.

  10. Sensitivity Tuning through Additive Heterogeneous Plasmon Coupling between 3D Assembled Plasmonic Nanoparticle and Nanocup Arrays.

    PubMed

    Seo, Sujin; Zhou, Xiangfei; Liu, Gang Logan

    2016-07-01

    Plasmonic substrates have fixed sensitivity once the geometry of the structure is defined. In order to improve the sensitivity, significant research effort has been focused on designing new plasmonic structures, which involves high fabrication costs; however, a method is reported for improving sensitivity not by redesigning the structure but by simply assembling plasmonic nanoparticles (NPs) near the evanescent field of the underlying 3D plasmonic nanostructure. Here, a nanoscale Lycurgus cup array (nanoLCA) is employed as a base colorimetric plasmonic substrate and an assembly template. Compared to the nanoLCA, the NP assembled nanoLCA (NP-nanoLCA) exhibits much higher sensitivity for both bulk refractive index sensing and biotin-streptavidin binding detection. The limit of detection of the NP-nanoLCA is at least ten times smaller when detecting biotin-streptavidin conjugation. The numerical calculations confirm the importance of the additive plasmon coupling between the NPs and the nanoLCA for a denser and stronger electric field in the same 3D volumetric space. Tunable sensitivity is accomplished by controlling the number of NPs in each nanocup, or the number density of the hot spots. This simple yet scalable and cost-effective method of using additive heterogeneous plasmon coupling effects will benefit various chemical, medical, and environmental plasmon-based sensors. PMID:27206214

  11. Metallic nanodot arrays by stencil lithography for plasmonic biosensing applications.

    PubMed

    Vazquez-Mena, Oscar; Sannomiya, Takumi; Villanueva, Luis G; Voros, Janos; Brugger, Juergen

    2011-02-22

    The fabrication of gold nanodots by stencil lithography and its application for optical biosensing based on localized surface plasmon resonance are presented. Arrays of 50-200 nm wide nanodots with different spacing of 50-300 nm are fabricated without any resist, etching, or lift-off process. The dimensions and morphology of the nanodots were characterized by scanning electron and atomic force microscopy. The fabricated nanodots showed localized surface plasmon resonance in their extinction spectra in the visible range. The resonance wavelength depends on the periodicity and dimensions of the nanodots. Bulk refractive index measurements and model biosensing of streptavidin were successfully performed based on the plasmon resonance shift induced by local refractive index change when biomolecules are adsorbed on the nanodots. These results demonstrate the potential of stencil lithography for the realization of plasmon-based biosensing devices. PMID:21192666

  12. Metamaterial-based theoretical description of light scattering by metallic nano-hole array structures

    SciTech Connect

    Singh, Mahi R.; Najiminaini, Mohamadreza; Carson, Jeffrey J. L.; Balakrishnan, Shankar

    2015-05-14

    We have experimentally and theoretically investigated the light-matter interaction in metallic nano-hole array structures. The scattering cross section spectrum was measured for three samples each having a unique nano-hole array radius and periodicity. Each measured spectrum had several peaks due to surface plasmon polaritons. The dispersion relation and the effective dielectric constant of the structure were calculated using transmission line theory and Bloch's theorem. Using the effective dielectric constant and the transfer matrix method, the surface plasmon polariton energies were calculated and found to be quantized. Using these quantized energies, a Hamiltonian for the surface plasmon polaritons was written in the second quantized form. Working with the Hamiltonian, a theory of scattering cross section was developed based on the quantum scattering theory and Green's function method. For both theory and experiment, the location of the surface plasmon polariton spectral peaks was dependant on the array periodicity and radii of the nano-holes. Good agreement was observed between the experimental and theoretical results. It is proposed that the newly developed theory can be used to facilitate optimization of nanosensors for medical and engineering applications.

  13. SERS Amplification from Self-Organized Arrays of Plasmonic Nanocrescents.

    PubMed

    Giordano, Maria Caterina; Foti, Antonino; Messina, Elena; Gucciardi, Pietro Giuseppe; Comoretto, Davide; Buatier de Mongeot, Francesco

    2016-03-01

    We report on the surface-enhanced Raman scattering (SERS) efficiency of self-organized arrays of Au nanocrescents confined on monolayers of polystyrene nanospheres. A dichroic SERS emission in the visible spectrum is observed due to the selective excitation of a localized surface plasmon (LSP) resonance along the "short axis" of the Au nanocrescents. Under these conditions SERS signal amplifications in the range of 10(3) have been observed with respect to a flat reference Au film. The far field and near field plasmonic response of Au nanocrescent arrays have been investigated as a function of the metal dose deposited onto the polymeric spheres. In this way, we show the possibility of simply tailoring the SERS emission by engineering the morphology of the plasmonic nanocrescents. We highlight the SERS activity of chains of satellite nanoclusters that decorate the border of each connected crescent and sustain isotropic high energy LSP resonances in the visible spectrum. PMID:26824254

  14. Plane wave scattering from a plasmonic nanowire array spacer-separated from a plasmonic film

    NASA Astrophysics Data System (ADS)

    Thomas, Arun; Trivedi, Rahul; Dhawan, Anuj

    2016-06-01

    In this paper, we present a theoretical analysis of the electromagnetic response of a plasmonic nanowire–spacer–plasmonic film system. The analytical solution presented in this paper is a full-wave solution, which is used to compute the fields scattered by the plasmonic nanostructure system on illumination by a plane electromagnetic wave. The physical structure comprises of an array of plasmonic nanowires made of a plasmonic metal such as gold or silver placed over a plasmonic film of the same material and separated from it by a dielectric spacer such as silica or alumina. Such a nanostructure exhibits a spectrum that is extremely sensitive to various geometric and electromagnetic parameters such as spacer thickness and spacer refractive index, which makes it favourable for various sensing applications such as chemical and biological sensing, strain sensing, position sensing, vibration sensing, and thickness sensing. We report a comparison of our analytical solution with a numerical rigorous coupled wave analysis of the same structure with the plasmonic medium being treated as local in nature.

  15. Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films.

    PubMed

    Ctistis, G; Papaioannou, E; Patoka, P; Gutek, J; Fumagalli, P; Giersig, M

    2009-01-01

    In this study, we present our experimental results on the optical, magnetic, as well as magneto-optic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films. Different meshes were used with hole diameters ranging between 220 and 330 nm while the interhole distance has been kept constant at 470 nm. The hole pattern modifies completely the magnetic behavior of the cobalt films; it gives rise to an increase of the coercive field of the in-plane magnetization with increasing hole diameter and to the appearance of out-of-plane magnetization components. Magneto-optic measurements show a spectacular magneto-optic response at wavelengths where surface plasmon-polaritons are supported by the structure as deduced in optical measurements. The experiments demonstrate the ability to artificially control the magnetic and thus the magneto-optic properties in hole array structures. PMID:19072720

  16. Self-deflecting plasmonic lattice solitons and surface modes in chirped plasmonic arrays.

    PubMed

    Li, Chunyan; Cui, Ran; Ye, Fangwei; Kartashov, Yaroslav V; Torner, Lluis; Chen, Xianfeng

    2015-03-15

    We show that chirped metal-dielectric waveguide arrays with focusing cubic nonlinearity can support plasmonic lattice solitons that undergo self-deflection in the transverse plane. Such lattice solitons are deeply subwavelength self-sustained excitations, although they cover several periods of the array. Upon propagation, the excitations accelerate in the transverse plane and follow trajectories curved in the direction in which the separation between neighboring metallic layers decreases, a phenomenon that yields considerable deflection angles. The deflection angle can be controlled by varying the array chirp. We also reveal the existence of surface modes at the boundary of truncated plasmonic chirped array that form even in the absence of nonlinearity. PMID:25768141

  17. Real-Time Label-Free Surface Plasmon Resonance Biosensing with Gold Nanohole Arrays Fabricated by Nanoimprint Lithography

    PubMed Central

    Martinez-Perdiguero, Josu; Retolaza, Aritz; Otaduy, Deitze; Juarros, Aritz; Merino, Santos

    2013-01-01

    In this work we present a surface plasmon resonance sensor based on enhanced optical transmission through sub-wavelength nanohole arrays. This technique is extremely sensitive to changes in the refractive index of the surrounding medium which result in a modulation of the transmitted light. The periodic gold nanohole array sensors were fabricated by high-throughput thermal nanoimprint lithography. Square periodic arrays with sub-wavelength hole diameters were obtained and characterized. Using solutions with known refractive index, the array sensitivities were obtained. Finally, protein absorption was monitored in real-time demonstrating the label-free biosensing capabilities of the fabricated devices. PMID:24135989

  18. Cooperative optical trapping in asymmetric plasmon nanocavity arrays.

    PubMed

    Guo, Ling; Sun, Zhijun

    2015-11-30

    We propose a scheme using cooperative interaction of antiphase resonance modes to enhance optical trapping in plasmonic nanostructures. This is implemented with a subwavelength array of asymmetric binary nanogrooves (e.g. different depths) in metal. When damping and inter-coupling of antiphase fields in the nanogrooves are mediated satisfying a critical condition, light can be cooperatively trapped in the nanogrooves, demonstrating perfect absorption at nearly the intrinsic resonance frequency of the deeper nanogrooves. A harmonic oscillator model is developed to interpret the cooperative interaction processes. The phenomenon has been also implemented in asymmetric ternary nanogroove arrays. In terms of compositions and intra-coupling mechanisms, the asymmetric binary/ternary plasmonic nanostructure arrays are crystalline molecular-metamaterials, analogous to electronic crystals composed of covalence-bond molecules. PMID:26698759

  19. Plasmonic Tipless Pyramid Arrays for Cell Poration.

    PubMed

    Courvoisier, Sébastien; Saklayen, Nabiha; Huber, Marinus; Chen, Jun; Diebold, Eric D; Bonacina, Luigi; Wolf, Jean-Pierre; Mazur, Eric

    2015-07-01

    Improving the efficiency, cell survival, and throughput of methods to modify and control the genetic expression of cells is of great benefit to biology and medicine. We investigate, both computationally and experimentally, a nanostructured substrate made of tipless pyramids for plasmonic-induced transfection. By optimizing the geometrical parameters for an excitation wavelength of 800 nm, we demonstrate a 100-fold intensity enhancement of the electric near field at the cell-substrate contact area, while the low absorption typical for gold is maintained. We demonstrate that such a substrate can induce transient poration of cells by a purely optically induced process. PMID:26079771

  20. Direct spectral imaging of plasmonic nanohole arrays for real-time sensing.

    PubMed

    Seiler, Spencer T; Rich, Isabel S; Lindquist, Nathan C

    2016-05-01

    Plasmon-enhanced optical transmission through arrays of nano-structured holes has led to the development of a new generation of optical sensors. In this paper, to dramatically simplify the standard optical setups of these sensors, we position the nanoholes, an LED illumination source and a spacer layer directly on top of a CMOS imager chip. Transmitted light diffracts from the nanohole array, spreading into a spectrum over the space of a millimeter to land on the imager as a full spectrum. Our chip is used as a sensor in both a liquid and a gas environment. The spectrum is monitored in real-time and the plasmon-enhanced transmission peaks shift upon exposure to different concentrations of glycerol-in-water solutions or ethanol vapors in nitrogen. While liquids provide good refractive index contrast for sensing, to enhance sensitivity to solvent vapors, we filled the nanoholes with solvatochromic dyes. This on-chip solution circumvents the bulky components (e.g. microscopes, coupling optics, and spectrometers) needed for traditional plasmonic sensing setups, uses the nanohole array as both the sensing surface and a diffraction grating, and maintains good sensitivity. Finally, we show simultaneous sensing from two side-by-side locations, demonstrating potential for multiplexing and lab on a chip integration. PMID:27010077

  1. Direct spectral imaging of plasmonic nanohole arrays for real-time sensing

    NASA Astrophysics Data System (ADS)

    Seiler, Spencer T.; Rich, Isabel S.; Lindquist, Nathan C.

    2016-05-01

    Plasmon-enhanced optical transmission through arrays of nano-structured holes has led to the development of a new generation of optical sensors. In this paper, to dramatically simplify the standard optical setups of these sensors, we position the nanoholes, an LED illumination source and a spacer layer directly on top of a CMOS imager chip. Transmitted light diffracts from the nanohole array, spreading into a spectrum over the space of a millimeter to land on the imager as a full spectrum. Our chip is used as a sensor in both a liquid and a gas environment. The spectrum is monitored in real-time and the plasmon-enhanced transmission peaks shift upon exposure to different concentrations of glycerol-in-water solutions or ethanol vapors in nitrogen. While liquids provide good refractive index contrast for sensing, to enhance sensitivity to solvent vapors, we filled the nanoholes with solvatochromic dyes. This on-chip solution circumvents the bulky components (e.g. microscopes, coupling optics, and spectrometers) needed for traditional plasmonic sensing setups, uses the nanohole array as both the sensing surface and a diffraction grating, and maintains good sensitivity. Finally, we show simultaneous sensing from two side-by-side locations, demonstrating potential for multiplexing and lab on a chip integration.

  2. A thermal plasmonic sensor platform: resistive heating of nanohole arrays.

    PubMed

    Virk, Mudassar; Xiong, Kunli; Svedendahl, Mikael; Käll, Mikael; Dahlin, Andreas B

    2014-06-11

    We have created a simple and efficient thermal plasmonic sensor platform by letting a DC current heat plasmonic nanohole arrays. The sensor can be used to determine thermodynamic parameters in addition to monitoring molecular reactions in real-time. As an application example, we use the thermal sensor to determine the kinetics and activation energy for desorption of thiol monolayers on gold. Further, the temperature of the metal can be measured optically by the spectral shift of the bonding surface plasmon mode (0.015 nm/K). We show that this resonance shift is caused by thermal lattice expansion, which reduces the plasma frequency of the metal. The sensor is also used to determine the thin film thermal expansion coefficient through a theoretical model for the expected resonance shift. PMID:24807397

  3. Tunable Plasmonic Nanohole Arrays Actuated by a Thermoresponsive Hydrogel Cushion

    PubMed Central

    2015-01-01

    New plasmonic structure with actively tunable optical characteristics based on thermoresponsive hydrogel is reported. It consists of a thin, template-stripped Au film with arrays of nanoholes that is tethered to a transparent support by a cross-linked poly(N-isopropylacrylamide) (pNIPAAm)-based polymer network. Upon a contact of the porous Au surface with an aqueous environment, a rapid flow of water through the pores enables swelling and collapsing of the underlying pNIPAAm network. The swelling and collapsing could be triggered by small temperature changes around the lower critical solution temperature (LCST) of the hydrogel. The process is reversible, and it is associated with strong refractive index changes of Δn ∼ 0.1, which characteristically alters the spectrum of surface plasmon modes supported by the porous Au film. This approach can offer new attractive means for optical biosensors with flow-through architecture and actively tunable plasmonic transmission optical filters. PMID:27182290

  4. Gap plasmon resonator arrays for unidirectional launching and shaping of surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Lei, Zeyu; Yang, Tian

    2016-04-01

    We report the design and experimental realization of a type of miniaturized device for efficient unidirectional launching and shaping of surface plasmon polaritons (SPPs). Each device consists of an array of evenly spaced gap plasmon resonators with varying dimensions. Particle swarm optimization is used to achieve a theoretical two-dimensional launching efficiency of about 51%, under the normal illumination of a 5-μm waist Gaussian beam at 780 nm. By modifying the wavefront of the SPPs, unidirectional SPPs with focused, Bessel, and Airy profiles are launched and imaged with leakage radiation microscopy.

  5. Functional optical devices using highly ordered hole array architectures of anodic porous alumina

    NASA Astrophysics Data System (ADS)

    Masuda, Hideki; Kondo, Toshiaki; Nishio, Kazuyuki

    2011-12-01

    The fabrication of highly ordered anodic porous alumina and its application to the fabrication of several types of functional optical devices are described. Highly ordered hole array structures of anodic porous alumina, which were formed under appropriate anodizing conditions, were applied as a starting structure in several processes for the fabrication of ordered structures used for the functional optical devices. On the basis of these processes, twodimensional photonic crystals and localized surface plasmonic devices were prepared.

  6. Sensing with prism-based near-infrared surface plasmon resonance spectroscopy on nanohole array platforms.

    PubMed

    Kegel, Laurel L; Boyne, Devon; Booksh, Karl S

    2014-04-01

    Nanohole arrays exhibit unique surface plasmon resonance (SPR) characteristics according to hole periodicity, diameter, and excitation wavelength (λ(SPR)). This contribution investigates the SPR characteristics and surface sensitivity of various nanohole arrays with the aim of tuning the parameters for optimal sensing capability. Both the Bragg surface plasmons (SPs) arising from diffraction by the periodic holes and the traditional propagating SPs are characterized with emphasis on sensing capability of the propagating SPs. Several trends in bulk sensitivity and penetration depth were established, and the surface sensitivity was calculated from bulk sensitivity and penetration depth of the SPs for different analyte thicknesses. Increased accuracy and precision in penetration depth values were achieved by incorporating adsorbate effects on substrate permittivity. The optimal nanohole array conditions for highest surface sensitivity were determined (820 nm periodicity, 0.27 diameter/periodicity, and λ(SPR) = 1550 nm), which demonstrated an increase in surface sensitivity for the 10 nm analyte over continuous gold films at their optimal λ(SPR) (1300 nm) and conventional visible λ(SPR) (700 nm). PMID:24499170

  7. Plasmonic Zener tunneling in binary graphene sheet arrays.

    PubMed

    Fan, Yang; Wang, Bing; Wang, Kai; Long, Hua; Lu, Peixiang

    2016-07-01

    We investigate the plasmonic Zener tunneling (ZT) in arrays of weakly coupled graphene sheet waveguides. By alternatively arranging the graphene waveguides with two different chemical potentials, the single surface plasmon polariton (SPP) band splits into two minibands, and tunneling between them occurs at the edge of the Brillouin zone. With a linear gradient of the propagation constant introduced by appropriately tuning the chemical potential distribution over the graphene sheet, the SPPs exhibit a sequence of Bloch oscillations and ZT transitions in the arrays. The simulated tunneling rate coincides with the theoretical analysis based on the coupled-mode theory, which can be tuned by varying the chemical potential difference between adjacent graphene. PMID:27367080

  8. Vector plasmonic lattice solitons in nonlinear graphene-pair arrays.

    PubMed

    Wang, Zhouqing; Wang, Bing; Wang, Kai; Long, Hua; Lu, Peixiang

    2016-08-01

    We investigate the vector plasmonic lattice solitons (PLSs) in nonlinear graphene-pair arrays (GPAs) consisting of periodically arranged double graphene sheets, which are spatially separated. There are two dispersion bands for the Bloch modes in the array due to the coupling of surface plasmon polaritons (SPPs) between the graphene pairs. The vector PLSs composed of two components originate from the nonlinear interaction of Bloch modes in different bands. Both components undergo mutual self-trapping through the balance between diffraction and self-focusing nonlinearity of graphene. Thanks to the strong confinement of SPPs, the vector PLSs can be squeezed into a lateral width of ∼λ/100. The study provides a promising approach to all-optical control on a deep-subwavelength scale. PMID:27472633

  9. Highly tunable plasmonic nanoring arrays for nanoparticle manipulation and detection

    NASA Astrophysics Data System (ADS)

    Sergides, M.; Truong, V. G.; Chormaic, S. Nic

    2016-09-01

    The advancement of trapping and detection of nano-objects at very low laser powers in the near-infra-red region (NIR) is crucial for many applications. Singular visible-light nano-optics based on abrupt phase changes have recently demonstrated a significant improvement in molecule detection. Here, we propose and demonstrate tunable plasmonic nanodevices, which can improve both the trapping field enhancement and detection of nano-objects using singular phase drops in the NIR range. The plasmonic nanostructures, which consist of gaps with dimensions 50 nm × 50 nm connecting nanorings in arrays is discussed. These gaps act as individual detection and trapping sites. The tunability of the system is evident from extinction and reflection spectra while increasing the aperture size in the arrays. Additionally, in the region where the plasmonic nano-array exhibits topologically-protected, near-zero reflection behaviour, the phase displays a rapid change. Our experimental data predict that, using this abrupt phase changes, one can improve the detection sensitivity by 10 times compared to the extinction spectra method. We finally report experimental evidence of 100 nm polystyrene beads trapping using low incident power on these devices. The overall design demonstrates strong capability as an optical, label-free, non-destructive tool for single molecule manipulation where low trapping intensity, minimal photo bleaching and high sensitivity is required.

  10. Mid-infrared extraordinary transmission through Ga-doped ZnO films with 2D hole arrays

    NASA Astrophysics Data System (ADS)

    Cleary, Justin W.; Nader Esfahani, Nima; Vangala, Shiva; Guo, Junpeng; Hendrickson, Joshua R.; Leedy, Kevin D.; Look, David C.

    2014-03-01

    Extraordinary optical transmission (EOT), through highly conductive ZnO films with sub-wavelength hole arrays is investigated in the long-wavelength infrared regime. EOT is facilitated by the excitation of surface plasmon polaritons (SPPs) on Ga-Doped ZnO films and can be tuned utilizing the physical parameters such as film thickness, period, hole size, and hole shape, as well as doping of the film. Analytical and finite-difference time-domain calculations are completed for 1 micron thick films with square, circular, and triangular hole arrays demonstrating SPP coupling and EOT. The fundamental plasmonic modes are observed in each of these hole shapes at wavelengths that correspond to strong EOT peaks. Doping tunability for these structures is also observed. Ga-doped ZnO films are grown via pulsed laser deposition (PLD) on silicon with plasma frequencies in the near-infrared. The sub-wavelength 2D hole arrays are fabricated in the Ga-doped ZnO films via standard lithography and etching processes. This highly conductive ZnO EOT structure may prove useful in novel integrated components such as tunable biosensors or surface plasmon coupling mechanisms.

  11. Plasmonic lattice solitons in nonlinear graphene sheet arrays.

    PubMed

    Wang, Zhouqing; Wang, Bing; Long, Hua; Wang, Kai; Lu, Peixiang

    2015-12-14

    We investigate the plasmonic lattice solitons (PLSs) in nonlinear graphene sheet arrays (GSAs) composed of spatially separated graphene sheets embedded in dielectric. Both the nonlinearities of graphene and dielectric are considered. The self-focusing PLSs at the Brillouin zone edges can be yielded by balancing the normal diffraction of surface plasmon polaritons (SPPs) via either the nonlinear effect of graphene or self-focusing dielectric. The self-defocusing PLSs corresponding to anomalous diffraction of SPPs at the Brillouin zone center could be yielded by the nonlinearity of self-defocusing dielectric alone. The width and propagation distance of the PLSs are dependent on the period of the GSAs and the chemical potential of graphene. Thanks to the strong confinement of SPPs, the PLSs in GSAs can be squeezed into an effective width as small as λ/250. The study may find applications in optical circuits and switches on deep-subwavelength scale. PMID:26699057

  12. Plasmon-Enhanced Photoelectrochemical Water Splitting with Size-Controllable Gold Nanodot Arrays

    SciTech Connect

    Kim, HJ; Lee, SH; Upadhye, AA; Ro, I; Tejedor-Tejedor, MI; Anderson, MA; Kim, WB; Huber, GW

    2014-10-01

    Size-controllable Au nanodot arrays (50, 63, and 83 nm dot size) with a narrow size distribution (+/- 5%) were prepared by a direct contact printing method on an indium tin oxide (ITO) substrate. Titania was added to the Au nanodots using TiO2 sols of 2-3 nm in size. This created a precisely controlled Au nanodot with 110 nm of TiO2 overcoats. Using these precisely controlled nanodot arrays, the effects of Au nanodot size and TiO2 overcoats were investigated for photoelectrochemical water splitting using a three-electrode system with a fiber-optic visible light source. From UV-vis measurement, the localized surface plasmon resonance (LSPR) peak energy (ELSPR) increased and the LSPR line width (G) decreased with decreasing Au nanodot size. The generated plasmonic enhancement for the photoelectrochemical water splitting reaction increased with decreasing Au particle size. The measured plasmonic enhancement for light on/off experiments was 25 times for the 50 nm Au size and 10 times for the 83 nm Au nanodot size. The activity of each catalyst increased by a factor of 6 when TiO2 was added to the Au nanodots for all the samples. The activity of the catalyst was proportional to the quality factor (defined as Q = E-LSPR/Gamma) of the plasmonic metal nanostructure. The enhanced water splitting performance with the decreased Au nanodot size is probably due to more generated charge carriers (electron/hole pair) by local field enhancement as the quality factor increases.

  13. Fabrication of doubly resonant plasmonic nanopatch arrays on graphene

    NASA Astrophysics Data System (ADS)

    Grande, M.; Stomeo, T.; Bianco, G. V.; Vincenti, M. A.; de Ceglia, D.; Petruzzelli, V.; Bruno, G.; De Vittorio, M.; Scalora, M.; D'Orazio, A.

    2013-06-01

    We report theoretical and experimental investigations of the optical response of two-dimensional periodic arrays of rectangular gold nanopatches grown on a monolayer graphene placed on a glass substrate. We discuss the numerical analysis and optical characterization by means of reflection spectra and show that rectangular nanopatches display a polarization-dependent response, at normal incidence, which leads to double plasmonic resonances due to the Wood anomaly. We detail the fabrication process highlighting how the resist primer and the adhesion layer can reduce and impede the graphene doping due to the environment and to the nanopatches, respectively, by means of Raman spectroscopy.

  14. Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing.

    PubMed

    Im, Hyungsoon; Bantz, Kyle C; Lee, Si Hoon; Johnson, Timothy W; Haynes, Christy L; Oh, Sang-Hyun

    2013-05-21

    Self-assembled plasmonic nanoring cavity arrays are formed alongside the curvature of highly packed metallic nanosphere gratings. The sub-10-nm gap size is precisely tuned via atomic layer deposition and highly ordered arrays are produced over a cm-sized area. The resulting hybrid nanostructure boosts coupling efficiency of light into plasmons, and shows an improved SERS detection limit. These substrates are used for SERS detection of the biological analyte, adenine, followed by concurrent localized surface plasmon resonance sensing. PMID:23436239

  15. Fabrication of large arrays of plasmonic nanostructures via double casting

    NASA Astrophysics Data System (ADS)

    Lo, Joanne C.; Horsley, David A.; Skinner, Jack L.

    2012-03-01

    Large arrays of periodic nanostructures are widely used for plasmonic applications, including ultrasensitive particle sensing, optical nanoantennas, and optical computing; however, current fabrication processes (e.g., e-beam lithography and nanoimprint lithography) remain time consuming and expensive. Previously, researchers have utilized double casting methods to effectively fabricate large-scale arrays of microscale features. Despite significant progress, employing such techniques at the nanoscale has remained a challenge due to cracking and incomplete transfer of the nanofeatures. To overcome these issues, here we present a double casting methodology for fabricating large-scale arrays of nanostructures. We demonstrate this technique by creating large (0.5 cm × 1 cm) arrays of 150 nm nanoholes and 150 nm nanopillars from one silicon master template with nanopillars. To preclude cracking and incomplete transfer problems, a hard-PDMS/soft-PDMS (h-PDMS/s-PDMS) composite stamp was used to replicate the features from: (i) the silicon template, and (ii) the resulting PDMS template. Our double casting technique can be employed repeatedly to create positive and negative copies of the original silicon template as desired. By drastically reducing the cost, time, and labor associated with creating separate silicon templates for large arrays of different nanostructures, this methodology will enable rapid prototyping for diverse applications in nanotechnological fields.

  16. Hybrid tandem solar cell enhanced by a metallic hole-array as the intermediate electrode.

    PubMed

    Zhang, Xuanru; Huang, Qiuping; Hu, Jigang; Knize, Randy J; Lu, Yalin

    2014-10-20

    A metallic hole-array structure was inserted into a tandem solar cell structure as an intermediate electrode, which allows a further fabrication of a novel and efficient hybrid organic-inorganic tandem solar cell. The inserted hole-array layer reflects the higher-energy photons back to the top cell, and transmits lower-energy photons to the bottom cell via the extraordinary optical transmission (EOT) effect. In this case light absorption in both top and bottom subcells can be simultaneously enhanced via both structural and material optimizations. Importantly, this new design could remove the constraints of requiring lattice-matching and current-matching between the used two cascaded subcells in a conventional tandem cell structure, and therefore, the tunnel junction could be no longer required. As an example, a novel PCBM/CIGS tandem cell was designed and investigated. A systematic modeling study was made on the structural parameter tuning, with the period ranging from a few hundreds nanometers to over one micrometer. Surface plasmon polaritons, magnetic plasmon polaritons, localized surface plasmons, and optical waveguide modes were found to participate in the EOT and the light absorption enhancement. Impressively, more than 40% integrated power enhancement can be achieved in a variable structural parameter range. PMID:25607297

  17. Enhanced Optical Transmission and Sensing of a Thin Metal Film Perforated with a Compound Subwavelength Circular Hole Array

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangnan; Liu, Guiqiang; Liu, Zhengqi; Hu, Ying; Cai, Zhengjie

    2015-12-01

    We propose and numerically investigate the optical transmission behaviors of a sub-wavelength metal film perforated with a two-dimensional square array of compound circular holes. Enhanced optical transmission is obtained by using the finite-difference time-domain (FDTD) method, which can be mainly attributed to the excitation and coupling of localized surface plasmon resonances (LSPRs) and surface plasmon polaritons (SPPs), and Fano Resonances. The redshift of the transmission peak can be achieved by enlarging the size and number of small holes, the environmental dielectric constant. These indicate that the proposed structure has potential applications in integrated optoelectronic devices such as plasmonic filters and sensors. supported by National Natural Science Foundation of China (Nos. 11464019, 11264017, 11004088), Young Scientist Development Program of China (No. 20142BCB23008) and the Natural Science Foundation of Jiangxi Province, China (Nos. 2014BAB212001, 20112BBE5033)

  18. Fabrication of 250-nm-hole arrays in glass and fused silica by UV laser ablation

    NASA Astrophysics Data System (ADS)

    Karstens, R.; Gödecke, A.; Prießner, A.; Ihlemann, J.

    2016-09-01

    Parallel nanohole drilling in glass using an ArF excimer laser (193 nm) is demonstrated. For the first time, hole arrays with 500 nm pitch and individual holes with 250 nm diameter and more than 100 nm depth are fabricated by phase mask imaging using a Schwarzschild objective. Holes in soda lime glass are drilled by direct ablation; fused silica is processed by depositing a SiOx-film on SiO2, patterning the SiOx by ablation, and finally oxidizing the remaining SiOx to SiO2. Thermally induced ordered dewetting of noble metal films deposited on such templates may be used for the fabrication of plasmonic devices.

  19. Turning on plasmonic lattice modes in metallic nanoantenna arrays via silicon thin films.

    PubMed

    Sadeghi, Seyed M; Gutha, Rithvik R; Wing, Waylin J

    2016-07-15

    We study control of optical coupling of plasmon resonances in metallic nanoantenna arrays using ultrathin layers of silicon. This technique allows one to establish and tune plasmonic lattice modes of such arrays, demonstrating a controlled transformation from the localized surface plasmon resonances of individual nanoantennas to their optimized collective lattice modes. Depending on the polarization and incident angle of light, our results support two different types of the silicon-induced plasmonic lattice resonances. For s-polarization these resonances follow the Rayleigh anomaly, while for p-polarization an increase in the incident angle makes the lattice resonances significantly narrower and slightly blueshifted. PMID:27420537

  20. Double Fano-type resonances in heptamer-hole array transmission spectra with high refractive index sensing

    NASA Astrophysics Data System (ADS)

    He, Jinna; Ding, Pei; Wang, Junqiao; Fan, Chunzhen; Liang, Erjun

    2015-09-01

    Nanohole arrays or individual nanohole oligomers in metallic films have attracted intense attention due to their unique optical properties such as extraordinary optical transmission or Fano resonance. However, the nanohole oligomer array still remains largely unexplored. In this work, we numerically investigate the heptamer-hole arrays in an optically thin silver film, which can support double Fano-type resonances in the transmission spectra. The two Fano-type transmissions arise from the interference between the non-resonant direct transmission through holes and the resonant indirect scatterings based on the excitations of surface plasmons polaritons (SPPs, set up by the array periodicity) and a sub-radiant localized surface plasmon resonance (LSPR, arising from the anti-bonding hybridization between the central and the surrounding holes). Because of their different physical mechanisms, the two Fano resonances can be tuned independently. In addition, the LSPR-related Fano resonance shows an ultra-high sensitivity to surrounding dielectric medium with a figure of merit of 25 due to its sub-radiant feature, far larger than the SPP-related Fano resonance, offering tremendous potentials for plasmonic biosensors.

  1. Plasmonic channel waveguides in random arrays of metallic nanoparticles.

    PubMed

    Pisano, Eduardo; Coello, Victor; Garcia-Ortiz, Cesar E; Chen, Yiting; Beermann, Jonas; Bozhevolnyi, Sergey I

    2016-07-25

    We report detailed characterization of surface plasmon-polariton guiding along 1-, 1.5- and 2-μm-wide channels in high-density (~75 μm-2) random arrays of gold 70-nm-high and 50-nm-wide nanoparticles fabricated on a 70-nm-thin gold film supported by a 170-μm-thick silica substrate. The mode propagation losses, effective index dispersion, and scattering parameters are characterized using leakage-radiation microscopy, in direct and Fourier planes, in the wavelength range of 740-840 nm. It is found that the mode supported by 2-μm-wide channels propagates over > 10 μm in straight waveguides, with the corresponding S-bends and Y-splitters functioning reasonably well. The results show that the SPP waves can efficiently be guided by narrow scattering-free channels cut through randomly corrugated surface regions. The potential of this waveguiding mechanism is yet to be fully explored by tuning the scattering mean-free path and localization length via the density and size of random nanoparticles. Nevertheless, the results obtained are encouraging and promising diverse applications of these waveguide components in plasmonic circuitry. PMID:27464159

  2. Optical transmission through double-layer, laterally shifted metallic subwavelength hole arrays

    SciTech Connect

    Marset, zsolt; Hang, z. h.; Chan, C. T.; Kravchenko, Ivan I; Bower, J. E.

    2010-01-01

    We measure the transmission of infra-red radiation through double-layer metal lms with periodic arrays of subwavelength holes. When the two metal lms are placed in su ciently close proximity, two types of transmission resonances emerge. For the surface plasmon mode, the electromagnetic eld is concentrated on the outer surface of the entire metallic layer stack. In contrast, for the guided mode the eld is con ned to the gap between the two metal layers. Our measurements indicate that as the two layers are laterally shifted from perfect alignment, the peak transmission frequency of the guided mode decreases signi cantly, while that of the surface plasmon mode remains largely unchanged, in agreement with numerical calculations.

  3. Tailoring the sensing capabilities of nanohole arrays in gold films with Wood's anomaly-surface plasmon polaritons

    SciTech Connect

    McMahon, J. M; Henzie, J.; Odom, T. W.; Schatz, G. C.; Gray, S. K.; Northwestern Univ.

    2009-01-01

    Surface plasmon polaritons (SPPs) and diffraction effects such as Rayleigh anomalies (RAs) play key roles in the transmission of light through periodic subwavelength hole arrays in metal films. Using a combination of theory and experiment we show how refractive index (RI) sensitive transmission features arise from hole arrays in thin gold films. We show that large transmission amplitude changes occur over a narrow range of RI values due to coupling between RAs and SPPs on opposite sides of the metal film. Furthermore, we show how to predict, on the basis of a relatively simple analysis, the periodicity and other system parameters that should be used to achieve this 'RA-SPP' effect for any desired RI range.

  4. Large-Area Graphene Nanodot Array for Plasmon-Enhanced Infrared Spectroscopy.

    PubMed

    Zhang, Kai; Zhang, Lei; Yap, Fung Ling; Song, Peng; Qiu, Cheng-Wei; Loh, Kian Ping

    2016-03-01

    Graphene nanodot arrays (GNDAs) are fabricated by block copolymer lithography in a high-throughput manner. The GNDA shows strong broadband plasmonic resonances in the mid-IR region with high localized field enhancement, thus allowing plasmon-enhanced infrared spectroscopy with reliable sensitivity and selectivity to be performed. PMID:26753556

  5. Enhancement of hole injection and electroluminescence by ordered Ag nanodot array on indium tin oxide anode in organic light emitting diode

    SciTech Connect

    Jung, Mi E-mail: Dockha@kist.re.kr; Mo Yoon, Dang; Kim, Miyoung; Kim, Chulki; Lee, Taikjin; Hun Kim, Jae; Lee, Seok; Woo, Deokha E-mail: Dockha@kist.re.kr; Lim, Si-Hyung

    2014-07-07

    We report the enhancement of hole injection and electroluminescence (EL) in an organic light emitting diode (OLED) with an ordered Ag nanodot array on indium-tin-oxide (ITO) anode. Until now, most researches have focused on the improved performance of OLEDs by plasmonic effects of metal nanoparticles due to the difficulty in fabricating metal nanodot arrays. A well-ordered Ag nanodot array is fabricated on the ITO anode of OLED using the nanoporous alumina as an evaporation mask. The OLED device with Ag nanodot arrays on the ITO anode shows higher current density and EL enhancement than the one without any nano-structure. These results suggest that the Ag nanodot array with the plasmonic effect has potential as one of attractive approaches to enhance the hole injection and EL in the application of the OLEDs.

  6. Enhanced refractive index sensitivity of elevated short-range ordered nanohole arrays in optically thin plasmonic Au films.

    PubMed

    Bochenkov, Vladimir E; Frederiksen, Maj; Sutherland, Duncan S

    2013-06-17

    A simple development of the colloidal lithography technique is demonstrated for fabrication of perforated plasmonic metal films elevated above the substrate surface. The bulk refractive index sensitivity of short-range ordered nanohole arrays in 20 nm thick Au films exhibits an increase of up to 37% due to reduction of substrate effect caused by lifting with a 40 nm silica layer. Analysis of the local electric field distribution suggests that the sensitivity increase is due to revealing of the enhanced field near the holes. PMID:23787663

  7. Fabrication of plasmonic AgBr/Ag nanoparticles-sensitized TiO2 nanotube arrays and their enhanced photo-conversion and photoelectrocatalytic properties

    NASA Astrophysics Data System (ADS)

    Wang, Qingyao; Qiao, Jianlei; Jin, Rencheng; Xu, Xiaohui; Gao, Shanmin

    2015-03-01

    Plasmonic photosensitizer AgBr/Ag nanospheres supported on TiO2 nanotube arrays (TiO2 NTs) are prepared by successive ionic layer adsorption and reaction (SILAR) technique followed by photoreduction methods. The structural and surface morphological properties of AgBr/Ag nanoparticles sensitized TiO2 NTs and their photoelectrochemical performance are investigated and discussed. A detailed formation mechanism of the TiO2 NTs/AgBr/Ag is proposed. The TiO2 NTs/AgBr/Ag exhibit excellent photocurrent and photoelectrocatalytic activities under visible light irradiation. Efficient utilization of solar energy to create electron-hole pairs is attributed to the significant visible light response and surface plasmon resonance of Ag nanoparticles. This finding indicates that the high photosensitivity of the TiO2 NTs-based surface plasmon resonance materials could be applied toward the development of new plasmonic visible-light-sensitive photovoltaic fuel cells and photocatalysts.

  8. Using a Semiconductor-to-Metal Transition to Control Optical Transmission through Subwavelength Hole Arrays

    DOE PAGESBeta

    Donev, E. U.; Suh, J. Y.; Lopez, R.; Feldman, L. C.; Haglund, R. F.

    2008-01-01

    We describe a simple configuration in which the extraordinary optical transmission effect through subwavelength hole arrays in noble-metal films can be switched by the semiconductor-to-metal transition in an underlying thin film of vanadium dioxide. In these experiments, the transition is brought about by thermal heating of the bilayer film. The surprising reverse hysteretic behavior of the transmission through the subwavelength holes in the vanadium oxide suggest that this modulation is accomplished by a dielectric-matching condition rather than plasmon coupling through the bilayer film. The results of this switching, including the wavelength dependence, are qualitatively reproduced by a transfer matrix model.more » The prospects for effecting a similar modulation on a much faster time scale by using ultrafast laser pulses to trigger the semiconductor-to-metal transition are also discussed.« less

  9. Plasmon enhanced broadband optical absorption in ultrathin silicon nanobowl array for photoactive devices applications

    NASA Astrophysics Data System (ADS)

    Sun, Rui-Nan; Peng, Kui-Qing; Hu, Bo; Hu, Ya; Zhang, Fu-Qiang; Lee, Shuit-Tong

    2015-07-01

    Both photonic and plasmonic nanostructures are key optical components of photoactive devices for light harvesting, enabling solar cells with significant thickness reduction, and light detectors capable of detecting photons with sub-band gap energies. In this work, we study the plasmon enhanced broadband light absorption and electrical properties of silicon nanobowl (SiNB) arrays. The SiNB-metal photonic-plasmonic nanostructure-based devices exhibited superior light-harvesting ability across a wide range of wavelengths up to the infrared regime well below the band edge of Si due to effective optical coupling between the SiNB array and incident sunlight, as well as electric field intensity enhancement around metal nanoparticles due to localized surface plasmon resonance. The photonic-plasmonic nanostructure is expected to result in infrared-light detectors and high-efficiency solar cells by extending light-harvesting to infrared frequencies.

  10. Plasmon enhanced broadband optical absorption in ultrathin silicon nanobowl array for photoactive devices applications

    SciTech Connect

    Sun, Rui-Nan; Peng, Kui-Qing Hu, Bo; Hu, Ya; Zhang, Fu-Qiang; Lee, Shuit-Tong

    2015-07-06

    Both photonic and plasmonic nanostructures are key optical components of photoactive devices for light harvesting, enabling solar cells with significant thickness reduction, and light detectors capable of detecting photons with sub-band gap energies. In this work, we study the plasmon enhanced broadband light absorption and electrical properties of silicon nanobowl (SiNB) arrays. The SiNB-metal photonic-plasmonic nanostructure-based devices exhibited superior light-harvesting ability across a wide range of wavelengths up to the infrared regime well below the band edge of Si due to effective optical coupling between the SiNB array and incident sunlight, as well as electric field intensity enhancement around metal nanoparticles due to localized surface plasmon resonance. The photonic-plasmonic nanostructure is expected to result in infrared-light detectors and high-efficiency solar cells by extending light-harvesting to infrared frequencies.

  11. Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays

    NASA Astrophysics Data System (ADS)

    Kim, Seyoon; Jang, Min Seok; Brar, Victor W.; Tolstova, Yulia; Mauser, Kelly W.; Atwater, Harry A.

    2016-08-01

    Subwavelength metallic slit arrays have been shown to exhibit extraordinary optical transmission, whereby tunnelling surface plasmonic waves constructively interfere to create large forward light propagation. The intricate balancing needed for this interference to occur allows for resonant transmission to be highly sensitive to changes in the environment. Here we demonstrate that extraordinary optical transmission resonance can be coupled to electrostatically tunable graphene plasmonic ribbons to create electrostatic modulation of mid-infrared light. Absorption in graphene plasmonic ribbons situated inside metallic slits can efficiently block the coupling channel for resonant transmission, leading to a suppression of transmission. Full-wave simulations predict a transmission modulation of 95.7% via this mechanism. Experimental measurements reveal a modulation efficiency of 28.6% in transmission at 1,397 cm-1, corresponding to a 2.67-fold improvement over transmission without a metallic slit array. This work paves the way for enhancing light modulation in graphene plasmonics by employing noble metal plasmonic structures.

  12. Efficient design, accurate fabrication and effective characterization of plasmonic quasicrystalline arrays of nano-spherical particles

    NASA Astrophysics Data System (ADS)

    Namin, Farhad A.; Yuwen, Yu A.; Liu, Liu; Panaretos, Anastasios H.; Werner, Douglas H.; Mayer, Theresa S.

    2016-02-01

    In this paper, the scattering properties of two-dimensional quasicrystalline plasmonic lattices are investigated. We combine a newly developed synthesis technique, which allows for accurate fabrication of spherical nanoparticles, with a recently published variation of generalized multiparticle Mie theory to develop the first quantitative model for plasmonic nano-spherical arrays based on quasicrystalline morphologies. In particular, we study the scattering properties of Penrose and Ammann- Beenker gold spherical nanoparticle array lattices. We demonstrate that by using quasicrystalline lattices, one can obtain multi-band or broadband plasmonic resonances which are not possible in periodic structures. Unlike previously published works, our technique provides quantitative results which show excellent agreement with experimental measurements.

  13. Laser-ablative engineering of phase singularities in plasmonic metamaterial arrays for biosensing applications

    SciTech Connect

    Aristov, Andrey I.; Kabashin, Andrei V.; Zywietz, Urs; Evlyukhin, Andrey B.; Reinhardt, Carsten; Chichkov, Boris N.

    2014-02-17

    By using methods of laser-induced transfer combined with nanoparticle lithography, we design and fabricate large-area gold nanoparticle-based metamaterial arrays exhibiting extreme Heaviside-like phase jumps in reflected light due to a strong diffractive coupling of localized plasmons. When employed in sensing schemes, these phase singularities provide the sensitivity of 5 × 10{sup 4} deg. of phase shift per refractive index unit change that is comparable with best values reported for plasmonic biosensors. The implementation of sensor platforms on the basis of such metamaterial arrays promises a drastic improvement of sensitivity and cost efficiency of plasmonic biosensing devices.

  14. Experimental study on the effect of boundary condition for transmission properties of periodical metal hole arrays in terahertz range

    NASA Astrophysics Data System (ADS)

    Xu, Jiaming; Xie, Le; Gao, Chunmei; Li, Zhou; Chen, Lin; Zhu, Yiming

    2013-08-01

    A metal hole arrays terahertz filter based on surface plasmon polaritons and fabricated by aluminum slab of different holes scales have been experimentally investigated by using THz time-domain spectroscopy system from 0.1 to 2.7 THz. The experiment results indicated there is a transmission peak at 0.26 THz, approximately. The results in simulation by finite element method agree well with the experimental one for the big scale sample. The mismatch of experimental and simulated results for small scale sample can be attributed to boundary condition and insufficient periodical extension. Further, the theoretical analyses about extraordinary optical transmission and filter phenomena are also discussed.

  15. Sensing applications based on plasmonic nanopores: The hole story.

    PubMed

    Dahlin, Andreas B

    2015-07-21

    A review of sensing applications based on plasmonic nanopores is given. Many new types of plasmonic nanopores have recently been fabricated, including pores penetrating multilayers of thin films, using a great variety of fabrication techniques based on either serial nanolithography or self-assembly. One unique advantage with nanopores compared to other plasmonic sensors is that sample liquids can flow through the surface, which increases the rate of binding and improves the detection limit under certain conditions. Also, by utilizing the continuous metal films, electrical control can be implemented for electrochemistry, dielectrophoresis and resistive heating. Much effort is still spent on trying to improve sensor performance in various ways, but the literature uses inconsistent benchmark parameters. Recently plasmonic nanopores have been used to analyse targets of high clinical or academic interest. Although this is an important step forward, one should probably reflect upon whether the same results could have been achieved with another optical technique. Overall, this critical review suggests that the research field would benefit by focusing on applications where plasmonic nanopores truly can offer unique advantages over similar techniques. PMID:25675146

  16. Strong modulation of plasmons in Graphene with the use of an Inverted pyramid array diffraction grating

    NASA Astrophysics Data System (ADS)

    Matthaiakakis, N.; Mizuta, H.; Charlton, M. D. B.

    2016-06-01

    An optical device configuration allowing efficient electrical tuning of surface plasmon wavelength and absorption in a suspended/conformal graphene film is reported. An underlying 2-dimensional array of inverted rectangular pyramids greatly enhances optical coupling to the graphene film. In contrast to devices utilising 1D grating or Kretchman prism coupling configurations, both s and p polarization can excite plasmons due to symmetry of the grating structure. Additionally, the excited high frequency plasmon mode has a wavelength independent of incident photon angle allowing multidirectional coupling. By combining analytical methods with Rigorous Coupled-Wave Analysis, absorption of plasmons is mapped over near infrared spectral range as a function of chemical potential. Strong control over both plasmon wavelength and strength is provided by an ionic gel gate configuration. 0.04eV change in chemical potential increases plasmon energy by 0.05 eV shifting plasmon wavelength towards the visible, and providing enhancement in plasmon absorption. Most importantly, plasmon excitation can be dynamically switched off by lowering the chemical potential and moving from the intra-band to the inter-band transition region. Ability to electrically tune plasmon properties can be utilized in applications such as on-chip light modulation, photonic logic gates, optical interconnect and sensing applications.

  17. Strong modulation of plasmons in Graphene with the use of an Inverted pyramid array diffraction grating

    PubMed Central

    Matthaiakakis, N.; Mizuta, H.; Charlton, M. D. B.

    2016-01-01

    An optical device configuration allowing efficient electrical tuning of surface plasmon wavelength and absorption in a suspended/conformal graphene film is reported. An underlying 2-dimensional array of inverted rectangular pyramids greatly enhances optical coupling to the graphene film. In contrast to devices utilising 1D grating or Kretchman prism coupling configurations, both s and p polarization can excite plasmons due to symmetry of the grating structure. Additionally, the excited high frequency plasmon mode has a wavelength independent of incident photon angle allowing multidirectional coupling. By combining analytical methods with Rigorous Coupled-Wave Analysis, absorption of plasmons is mapped over near infrared spectral range as a function of chemical potential. Strong control over both plasmon wavelength and strength is provided by an ionic gel gate configuration. 0.04eV change in chemical potential increases plasmon energy by 0.05 eV shifting plasmon wavelength towards the visible, and providing enhancement in plasmon absorption. Most importantly, plasmon excitation can be dynamically switched off by lowering the chemical potential and moving from the intra-band to the inter-band transition region. Ability to electrically tune plasmon properties can be utilized in applications such as on-chip light modulation, photonic logic gates, optical interconnect and sensing applications. PMID:27278301

  18. Strong modulation of plasmons in Graphene with the use of an Inverted pyramid array diffraction grating.

    PubMed

    Matthaiakakis, N; Mizuta, H; Charlton, M D B

    2016-01-01

    An optical device configuration allowing efficient electrical tuning of surface plasmon wavelength and absorption in a suspended/conformal graphene film is reported. An underlying 2-dimensional array of inverted rectangular pyramids greatly enhances optical coupling to the graphene film. In contrast to devices utilising 1D grating or Kretchman prism coupling configurations, both s and p polarization can excite plasmons due to symmetry of the grating structure. Additionally, the excited high frequency plasmon mode has a wavelength independent of incident photon angle allowing multidirectional coupling. By combining analytical methods with Rigorous Coupled-Wave Analysis, absorption of plasmons is mapped over near infrared spectral range as a function of chemical potential. Strong control over both plasmon wavelength and strength is provided by an ionic gel gate configuration. 0.04eV change in chemical potential increases plasmon energy by 0.05 eV shifting plasmon wavelength towards the visible, and providing enhancement in plasmon absorption. Most importantly, plasmon excitation can be dynamically switched off by lowering the chemical potential and moving from the intra-band to the inter-band transition region. Ability to electrically tune plasmon properties can be utilized in applications such as on-chip light modulation, photonic logic gates, optical interconnect and sensing applications. PMID:27278301

  19. Plasmonic resonance absorption spectra in mid-infrared in an array of graphene nanoresonators

    NASA Astrophysics Data System (ADS)

    Abeysinghe, Don C.; Myers, Joshua; Nader Esfahani, Nima; Hendrickson, Joshua R.; Cleary, Justin W.; Walker, Dennis E.; Chen, Kuei-Hsien; Chen, Li-Chyong; Mou, Shin

    2013-12-01

    We experimentally demonstrated graphene plasmon resonant absorption in mid-IR by utilizing an array of graphene nanoribbon resonators on SiO2 substrate. By tuning resonator width we probed the graphene plasmons with λp <= λ0/100 and plasmon resonances as high as 0.240 eV (2100 cm-1) for 40 nm wide nanoresonators. Resonant absorption spectra revealed plasmon dispersion as well as plasmon damping due to the interaction of graphene plasmons with the surface polar phonons in SiO2 substrate and intrinsic graphene optical phonons. Graphene nanoribbons with varying widths enabled us to identify the damping mechanisms of graphene plasmons and much reduced damping was observed when the plasmon resonance frequencies were close to the substrate polar phonon frequencies. Then, by direct ebeam exposure of graphene nanoresonators, we effectively changed the carrier density and caused red-shift of the plasmon spectra. This work will provide insight into light-sensitive, frequency-tunable photodetectors based on graphene's plasmonic excitations.

  20. Plasmonic electric near-field enhancement in self-organized gold nanoparticles in macroscopic arrays

    NASA Astrophysics Data System (ADS)

    Mondes, V.; Antonsson, E.; Plenge, J.; Raschpichler, C.; Halfpap, I.; Menski, A.; Graf, C.; Kling, M. F.; Rühl, E.

    2016-06-01

    When plasmonic nanoparticles are incorporated into nanostructures and they are exposed to external optical fields, plasmonic coupling causes electric near-field enhancement which is significantly larger than that of isolated nanoparticles. We report on the plasmonic coupling in arrays of gold nanospheres (20 ± 3 and 50 ± 4 nm) prepared by colloidal chemistry and self-organization. This yields field enhancement in arrays with areas of several mm2 and provides an alternative approach to lithographic methods for preparation of nanostructures for plasmonic applications. Gold nanospheres are surface-functionalized by organic ligands, which define the interparticle distance in the array upon self-organization of the nanoparticles. The experiments are accompanied by finite-difference time-domain simulations, which quantify the dependence of the field enhancement on the interparticle distance.

  1. Flux avalanches in superconducting films with periodic arrays of holes.

    SciTech Connect

    Vlasko-Vlasov, V.; Welp, U.; Metlushko, V.; Crabtree, G. W.; Materials Science Division; Inst. of Solid State Physics RAS

    2000-01-01

    The magnetic flux dynamics in Nb films with periodic hole arrays is studied magneto-optically. Flux motion in the shape of microavalanches along {l_brace}100{r_brace} and {l_brace}110{r_brace} directions of the hole lattice is observed. At lower temperatures anisotropic large scale thermo-magnetic avalanches dominate flux entry and exit. At T-T{sub c} critical-state-like field patterns periodically appear at fractions of the matching field.

  2. Surface plasmon enhanced quantum transport in a hybrid metal nanoparticle array

    NASA Astrophysics Data System (ADS)

    Sun, Lin; Nan, Yali; Xu, Shang; Zhang, Sishi; Han, Min

    2014-07-01

    Hybrid Pd-Ag nanoparticle arrays composed of randomly distributed Pd nanoparticles in dense packing and a small number of dispersed Ag nanoparticles were fabricated with controlled coverage. Photo-enhanced conductance was observed in the nanoparticle arrays. Largest enhancement, which can be higher than 20 folds, was obtained with 450 nm light illumination. This wavelength was found to correlate with the surface plasmon resonance of the Ag nanoparticles. Electron transport measurements showed there were significant Coulomb blockade in the nanoparticle arrays and the blockade could be overcome with the surface plasmon enhanced local field of Ag nanoparticles induced by light illumination.

  3. The facile fabrication of tunable plasmonic gold nanostructure arrays using microwave plasma

    NASA Astrophysics Data System (ADS)

    Hsu, Chuen-Yuan; Huang, Jing-Wen; Gwo, Shangjr; Lin, Kuan-Jiuh

    2010-01-01

    Fabrication of isolated noble metal nanoparticles embedded in transparent substrates is the fasting growing demand for innovative plasmonic technologies. Here we report a simple and effective methodology for the preparation of highly stable plasmonic nanoparticles embedded in a glass surface. Size-controllable (10-70 nm) Au nanoparticles were rapidly prepared when subjected to the home-microwave plasma. Accordingly, the optical extinction maximum of the localized surface plasmon resonance (LSPR) can be systematically tuned in the range 532-586 nm. We find that the plasmonic structures are exceedingly stable toward immersion in ethanol solvents and pass successfully the adhesive tape test, which makes our system highly promising for efficient transmission-LSPR nanosensors. Besides, the attractive features of substrate-bound plasmonic nanostructures include its low cost, versatility, robustness, reusability and a promising ability to make a multi-arrayed LSPR biochip.

  4. EM Wave Transmission through a Nano-hole in a Plasmonic Layer

    NASA Astrophysics Data System (ADS)

    Desire Miessein, Desire; Horing, Norman J. Morgenstern; Lenzing, Harry; Gumbs, Godfrey

    We examine the role of the angle of incidence of an incoming EM wave in its transmission through a subwavelength nano-hole in a thin semiconductor plasmonic layer. Fully detailed calculations and results are exhibited for p- and s-polarizations of the incident wave for a variety of incident angles in the near, middle and far zones of the transmitted radiation. Our dyadic Green's function formulation includes both (1) the electromagnetic field transmitted directly through the 2D plasmonic layer and (2) the radiation emanating from the nano-hole. Interference fringes due to this superposition are explicitly exhibited. Based on an integral equation formulation, this dyadic Green's function approach does not involve any appeal to metallic boundary conditions. It incorporates the role of the 2D plasmon of the semiconductor layer, which is smeared due to its lateral wave number dependence. We find that the interference fringes, which are clustered near the nano-hole, flatten to a uniform level of transmission directly through the sheet alone at large distances from the nano-hole.

  5. Control of the plasmonic resonance of a graphene coated plasmonic nanoparticle array combined with a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    De Sio, Luciano; Cataldi, Ugo; Bürgi, Thomas; Tabiryan, Nelson; Bunning, Timothy J.

    2016-07-01

    We report on the fabrication and characterization of a switchable plasmonic device based on a conductive graphene oxide (cGO) coated plasmonic nanoparticle (NP) array, layered with nematic liquid crystal (NLC) as an active medium. A monolayer of NPs has been immobilized on a glass substrate through electrostatic interaction, and then grown in place using nanochemistry. This monolayer is then coated with a thin (less then 100nm) cGO film which acts simultaneously as both an electro-conductive and active medium. The combination of the conductive NP array with a separate top cover substrate having both cGO and a standard LC alignment layer is used for aligning a NLC film in a hybrid configuration. The system is analysed in terms of morphological and electro-optical properties. The spectral response of the sample characterized after each element is added (air, cGO, NLC) reveals a red-shift of the localized plasmonic resonance (LPR) frequency of approximately 62nm with respect to the NP array surrounded by air. The application of an external voltage (8Vpp) is suitable to modulate (blue shift) the LPR frequency by approximately 22nm.

  6. Enhanced vibrational spectroscopy, intracellular refractive indexing for label-free biosensing and bioimaging by multiband plasmonic-antenna array.

    PubMed

    Chen, Cheng-Kuang; Chang, Ming-Hsuan; Wu, Hsieh-Ting; Lee, Yao-Chang; Yen, Ta-Jen

    2014-10-15

    In this study, we report a multiband plasmonic-antenna array that bridges optical biosensing and intracellular bioimaging without requiring a labeling process or coupler. First, a compact plasmonic-antenna array is designed exhibiting a bandwidth of several octaves for use in both multi-band plasmonic resonance-enhanced vibrational spectroscopy and refractive index probing. Second, a single-element plasmonic antenna can be used as a multifunctional sensing pixel that enables mapping the distribution of targets in thin films and biological specimens by enhancing the signals of vibrational signatures and sensing the refractive index contrast. Finally, using the fabricated plasmonic-antenna array yielded reliable intracellular observation was demonstrated from the vibrational signatures and intracellular refractive index contrast requiring neither labeling nor a coupler. These unique features enable the plasmonic-antenna array to function in a label-free manner, facilitating bio-sensing and imaging development. PMID:24836017

  7. Tunable plasmonic response of metallic nanoantennna heterodimer arrays modified by atomic-layer deposition

    NASA Astrophysics Data System (ADS)

    Wambold, Raymond A.; Borst, Benjamin D.; Qi, Jie; Weisel, Gary J.; Willis, Brian G.; Zimmerman, Darin T.

    2016-04-01

    We present a systematic study of tunable, plasmon extinction characteristics of arrays of nanoscale antennas that have potential use as sensors, energy-harvesting devices, catalytic converters, in near-field optical microscopy, and in surface-enhanced spectroscopy. Each device is composed of a palladium triangular-prism antenna and a flat counter-electrode. Arrays of devices are fabricated on silica using electron-beam lithography, followed by atomic-layer deposition of copper. Optical extinction is measured by employing a broadband light source in a confocal, transmission arrangement. We characterize the plasmon resonance behavior by examining the dependence on device length, the gap spacing between the electrodes, material properties, and the device array density, all of which contribute in varying degrees to the measured response. We employ finite-difference time-domain simulations to demonstrate good qualitative agreement between experimental trends and theory and use scanning electron microscopy to correlate plasmonic extinction characteristics with changes in morphology.

  8. Plasmonic Hot Hole Generation by Interband Transition in Gold-Polyaniline

    NASA Astrophysics Data System (ADS)

    Barman, Tapan; Hussain, Amreen A.; Sharma, Bikash; Pal, Arup R.

    2015-12-01

    Studies on hot carrier science and technology associated with various types of nanostructures are dominating today’s nanotechnology research. Here we report a novel synthesis of polyaniline-gold (PAni-Au) nanocomposite thin films with gold nanostructures (AuNs) of desired shape and size uniformly incorporated in the polymer matrix. According to shape as well as size variation of AuNs, two tunable plasmonic UV-Visible absorption bands are observed in each of the nanocomposites. Plasmonic devices are fabricated using PAni-Au nanocomposite having different UV-Visible plasmon absorption bands. However, all the devices show strong photoelectrical responses in the blue region (400-500 nm) of the visible spectrum. The d-band to sp-band (d-sp) transition of electrons in AuNs produces hot holes that are the only carriers in the material responsible for photocurrent generation in the device. This work provides an experimental evidence of novel plasmonic hot hole generation process that was still a prediction.

  9. Plasmonic Hot Hole Generation by Interband Transition in Gold-Polyaniline

    PubMed Central

    Barman, Tapan; Hussain, Amreen A.; Sharma, Bikash; Pal, Arup R.

    2015-01-01

    Studies on hot carrier science and technology associated with various types of nanostructures are dominating today’s nanotechnology research. Here we report a novel synthesis of polyaniline-gold (PAni-Au) nanocomposite thin films with gold nanostructures (AuNs) of desired shape and size uniformly incorporated in the polymer matrix. According to shape as well as size variation of AuNs, two tunable plasmonic UV-Visible absorption bands are observed in each of the nanocomposites. Plasmonic devices are fabricated using PAni-Au nanocomposite having different UV-Visible plasmon absorption bands. However, all the devices show strong photoelectrical responses in the blue region (400–500 nm) of the visible spectrum. The d-band to sp-band (d-sp) transition of electrons in AuNs produces hot holes that are the only carriers in the material responsible for photocurrent generation in the device. This work provides an experimental evidence of novel plasmonic hot hole generation process that was still a prediction. PMID:26656664

  10. Momentum-dependent group velocity of surface plasmon polaritons in two-dimensional metallic nanohole array.

    PubMed

    Cao, Z L; Ong, H C

    2016-06-13

    We determine the momentum-dependent group velocities of ( ± 1,0) and (0, ± 1) Bloch-like surface plasmon polaritons (SPPs) in two-dimensional Au nanohole array by measuring their propagation lengths and decay lifetimes at different SPP propagation length via angle- and polarization-resolved reflectivity spectroscopy and real- and Fourier-space microscopy. We find the decay length and lifetime, as well as group velocity, are highly dependent on the propagation direction. In particular, close to the Γ-M direction where two SPPs begin to interfere, the group velocity decreases due to the increase of the standing wave character. More importantly, the two SPPs are strongly interacted with each other at the Γ-M direction, resulting in forming the dark and bright modes. We find the group velocity of the dark mode is higher that of the bright mode despite its higher quality factor, or longer decay lifetime. We attribute such difference to the distinct field symmetries of dark and bright modes, yielding different effective indices. While bright mode has fields mostly concentrated at the flat metal region to produce higher effective index and therefore lower velocity, the fields of the dark mode are located near the air hole, resulting in higher velocity. PMID:27410269

  11. Plasmonic silver nanoparticles loaded titania nanotube arrays exhibiting enhanced photoelectrochemical and photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Nishanthi, S. T.; Iyyapushpam, S.; Sundarakannan, B.; Subramanian, E.; Pathinettam Padiyan, D.

    2015-01-01

    A combination of electrochemical anodization and photochemical reduction is employed to fabricate highly ordered silver loaded titania nanotubes (Ag/TNT) arrays. The Ag/TNT samples show an extended optical absorbance from UV to visible region owing to the surface plasmon resonance effect of Ag. The photoluminescence intensity of Ag/TNT is significantly lower than that of pure titania revealing a decrease in charge carrier recombination. The photoelectrochemical properties of the prepared samples are studied using linear sweep and transient photocurrent measurements. Compared with pure TNT, the Ag loaded samples show a higher photoelectrochemical activity. The results demonstrate an efficient separation of photogenerated electron-hole pairs and the consequent increase in lifetime of charge carriers by Ag/TNT. The photocatalytic results of methyl orange dye degradation show that the Ag/TNT-3-05 sample exhibits the maximum degradation efficiency of 98.85% with kinetic rate constant of 0.0236(5) min-1 for 180 min light illumination.

  12. Multiple beam interference lithography: A tool for rapid fabrication of plasmonic arrays of arbitrary shaped nanomotifs.

    PubMed

    Vala, M; Homola, J

    2016-07-11

    A novel method enabling rapid fabrication of 2D periodic arrays of plasmonic nanoparticles across large areas is presented. This method is based on the interference of multiple coherent beams originating from diffraction of large-diameter collimated beam on a transmission phase mask. Mutual orientation of the interfering beams is determined by parameters of the used phase mask. Herein, parameters of the phase mask (periods and modulation depth) are selected to yield an interference pattern with high contrast and narrow well-separated maxima. Finally, multiple beam interference lithography (MBIL)-based fabrication of periodic plasmonic arrays with selected nanomotifs including discs, disc dimers, rods and bowtie antennas is demonstrated. PMID:27410838

  13. Novel and simple route to fabricate fully biocompatible plasmonic mushroom arrays adhered on silk biopolymer

    NASA Astrophysics Data System (ADS)

    Park, Joonhan; Choi, Yunkyoung; Lee, Myungjae; Jeon, Heonsu; Kim, Sunghwan

    2014-12-01

    A fully biocompatible plasmonic quasi-3D nanostructure is demonstrated by a simple and reliable fabrication method using strong adhesion between gold and silk fibroin. The quasi-3D nature gives rise to complex photonic responses in reflectance that are prospectively useful in bio/chemical sensing applications. Laser interference lithography is utilized to fabricate large-area plasmonic nanostructures.A fully biocompatible plasmonic quasi-3D nanostructure is demonstrated by a simple and reliable fabrication method using strong adhesion between gold and silk fibroin. The quasi-3D nature gives rise to complex photonic responses in reflectance that are prospectively useful in bio/chemical sensing applications. Laser interference lithography is utilized to fabricate large-area plasmonic nanostructures. Electronic supplementary information (ESI) available: The incident angle dependence of reflectance spectra and the atomic force microscopy image of the Au nanoparticle array on a silk film after 1 hour of ultrasonication. See DOI: 10.1039/c4nr05172f

  14. Optimization of the particle density to maximize the SERS enhancement factor of periodic plasmonic nanostructure array.

    PubMed

    Wei, Shuhua; Zheng, Mengjie; Xiang, Quan; Hu, Hailong; Duan, Huigao

    2016-09-01

    Low-cost surface-enhanced Raman scattering (SERS) substrate with the largest possible enhancement factor is highly desirable for SERS-based sensing applications. In this work, we systematically investigated how the density of plasmonic nanostructures affects the intensity of SERS signal. By directly depositing of metallic layer on electron-beam-lithography defined dielectric nanoposts, plasmonic structures array with different densities were reliably fabricated for SERS measurements. Two main experimental phenomena were obtained: (1) the SERS intensity did not increase monotonically when increasing the density of plasmonic structures, and (2) these ultra-dense plasmonic structures resulted in the maximal SERS intensity. These results could be well explained based on finite-difference time domain (FDTD) simulations and provide robust experimental evidences to guide the design of the best possible SERS substrate. PMID:27607665

  15. Real-time concentration monitoring in microfluidic system via plasmonic nanocrescent arrays.

    PubMed

    Zhou, Bingpu; Xiao, Xiao; Liu, Ting; Gao, Yibo; Huang, Yingzhou; Wen, Weijia

    2016-03-15

    In this work, on-chip bio/chemical sensor was reported based on localized surface plasmon resonance of nanocrescent patterns fabricated via electron beam lithography. The nanocrescent arrays with different dimensional features exhibited controllable plasmonic properties in accordance with the simulation results based on the finite-difference time-domain model. The highest refractive index sensitivity of the fabricated samples was achieved to be ~699.2 nm/RIU with a figure of merit of ~3.1 when the two opposite crescents own a gap of ~43.3 nm. Such obtained plasmonic sensor was further integrated into the microfluidic system which can simply control the specific analyte concentrations via tuning the flow rate ratios between two injecting microstreams. Our method has successfully demonstrated the capability of the nanocrescent patterns as on-chip plasmonic bio/chemical sensor for real-time monitoring of dynamic concentrations in the microchannel. PMID:26436326

  16. Efficient design, accurate fabrication and effective characterization of plasmonic quasicrystalline arrays of nano-spherical particles.

    PubMed

    Namin, Farhad A; Yuwen, Yu A; Liu, Liu; Panaretos, Anastasios H; Werner, Douglas H; Mayer, Theresa S

    2016-01-01

    In this paper, the scattering properties of two-dimensional quasicrystalline plasmonic lattices are investigated. We combine a newly developed synthesis technique, which allows for accurate fabrication of spherical nanoparticles, with a recently published variation of generalized multiparticle Mie theory to develop the first quantitative model for plasmonic nano-spherical arrays based on quasicrystalline morphologies. In particular, we study the scattering properties of Penrose and Ammann- Beenker gold spherical nanoparticle array lattices. We demonstrate that by using quasicrystalline lattices, one can obtain multi-band or broadband plasmonic resonances which are not possible in periodic structures. Unlike previously published works, our technique provides quantitative results which show excellent agreement with experimental measurements. PMID:26911709

  17. Surface plasmon tunneling through a touching gold nanocylinder array on a thin gold film

    NASA Astrophysics Data System (ADS)

    Xie, Suxia; Li, Hongjian; Fu, Shaoli; Xie, Ding; Xu, Haiqing; Zhou, Xin; Liu, Zhimin

    2011-04-01

    The optical property of a structure composed of a touching gold nanocylinder array on a thin gold film is investigated using finite-difference time-domain (FDTD) method. It is discovered that the transmission behavior can be tuned by tuning the geometry of the structure. As the film thickness increases, the transmission mode associated with the localized surface plasmon resonance blue shifts accompanied with a decrease of magnitude and full width at half maximum, and a second transmission appear due to the interaction of the plasmons on the cylinder with their images induced on the film. The localized waveguide resonance diminishes but the second resonance peak is intensified and broadened noticeably with the separation of the cylinder array and film increase. The cylinder radius size influences the localized surface plasmon resonance mode obviously. These results may be helpful for the design of a novel optical device.

  18. Efficient design, accurate fabrication and effective characterization of plasmonic quasicrystalline arrays of nano-spherical particles

    PubMed Central

    Namin, Farhad A.; Yuwen, Yu A.; Liu, Liu; Panaretos, Anastasios H.; Werner, Douglas H.; Mayer, Theresa S.

    2016-01-01

    In this paper, the scattering properties of two-dimensional quasicrystalline plasmonic lattices are investigated. We combine a newly developed synthesis technique, which allows for accurate fabrication of spherical nanoparticles, with a recently published variation of generalized multiparticle Mie theory to develop the first quantitative model for plasmonic nano-spherical arrays based on quasicrystalline morphologies. In particular, we study the scattering properties of Penrose and Ammann- Beenker gold spherical nanoparticle array lattices. We demonstrate that by using quasicrystalline lattices, one can obtain multi-band or broadband plasmonic resonances which are not possible in periodic structures. Unlike previously published works, our technique provides quantitative results which show excellent agreement with experimental measurements. PMID:26911709

  19. High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy.

    PubMed

    Aksu, Serap; Yanik, Ahmet A; Adato, Ronen; Artar, Alp; Huang, Min; Altug, Hatice

    2010-07-14

    The introduction of high-throughput and high-resolution nanofabrication techniques operating at low cost and low complexity is essential for the advancement of nanoplasmonic and nanophotonic fields. In this paper, we demonstrate a novel fabrication approach based on nanostencil lithography for high-throughput fabrication of engineered infrared plasmonic nanorod antenna arrays. The technique relying on deposition of materials through a shadow mask enables plasmonic substrates supporting spectrally sharp collective resonances. We show that reflectance spectra of these antenna arrays are comparable to that of arrays fabricated by electron beam lithography. We also show that nanostencils can be reused multiple times to fabricate a series of infrared nanoantenna arrays with identical optical responses. Finally, we demonstrate fabrication of plasmonic nanostructures in a variety of shapes with a single metal deposition step on different substrates, including nonconducting ones. Our approach, by enabling the reusability of the stencil and offering flexibility on the substrate choice and nanopattern design, could facilitate the transition of plasmonic technologies to the real-world applications. PMID:20560536

  20. Robustness of plasmon phased array nanoantennas to disorder

    PubMed Central

    Arango, Felipe Bernal; Thijssen, Rutger; Brenny, Benjamin; Coenen, Toon; Koenderink, A. Femius

    2015-01-01

    We present cathodoluminescence experiments that quantify the response of plasmonic Yagi-Uda antennas fabricated on one-dimensional silicon nitride waveguides as function of electron beam excitation position and emission wavelength. At the near-infrared antenna design wavelength cathodoluminescence signal robustly is strongest when exciting the antenna at the reflector element. Yet at just slightly shorter wavelengths the signal is highly variable from antenna to antenna and wavelength to wavelength. Hypothesizing that fabrication randomness is at play, we analyze the resilience of plasmon Yagi-Uda antennas to varations in element size of just 5 nm. While in our calculations the appearance of directivity is robust, both the obtained highest directivity and the wavelength at which it occurs vary markedly between realizations. The calculated local density of states is invariably high at the reflector for the design wavelength, but varies dramatically in spatial distribution for shorter wavelengths, consistent with the cathodoluminescence experiments. PMID:26038871

  1. Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays

    PubMed Central

    Kim, Seyoon; Jang, Min Seok; Brar, Victor W.; Tolstova, Yulia; Mauser, Kelly W.; Atwater, Harry A.

    2016-01-01

    Subwavelength metallic slit arrays have been shown to exhibit extraordinary optical transmission, whereby tunnelling surface plasmonic waves constructively interfere to create large forward light propagation. The intricate balancing needed for this interference to occur allows for resonant transmission to be highly sensitive to changes in the environment. Here we demonstrate that extraordinary optical transmission resonance can be coupled to electrostatically tunable graphene plasmonic ribbons to create electrostatic modulation of mid-infrared light. Absorption in graphene plasmonic ribbons situated inside metallic slits can efficiently block the coupling channel for resonant transmission, leading to a suppression of transmission. Full-wave simulations predict a transmission modulation of 95.7% via this mechanism. Experimental measurements reveal a modulation efficiency of 28.6% in transmission at 1,397 cm−1, corresponding to a 2.67-fold improvement over transmission without a metallic slit array. This work paves the way for enhancing light modulation in graphene plasmonics by employing noble metal plasmonic structures. PMID:27499258

  2. Plasmon-mediated photocatalytic activity of wet-chemically prepared ZnO nanowire arrays.

    PubMed

    Dao, Thang Duy; Han, Gui; Arai, Nono; Nabatame, Toshihide; Wada, Yoshiki; Hoang, Chung Vu; Aono, Masakazu; Nagao, Tadaaki

    2015-03-21

    We report on measurements and simulations of the efficient sunlight-driven and visible-active photocatalysts composed of plasmonic metal nanoparticles and ZnO nanowire (NW) arrays fabricated via an all-wet-chemical route. Because of the coupling between the ZnO dielectric response and the excitation of the Ag or Au nanoparticles, efficient electronic excitation can be induced in the vicinity of the metal-ZnO interfaces because optically-excited plasmonic particles can not only concentrate the electromagnetic field at the ZnO/particle interface, but also act as efficient sources of plasmonic hot electrons to be injected into the conduction band of the ZnO catalyst. The catalytic activities of the fabricated ZnO NWs are examined by photodegradation of methylene blue and by photocurrent measurements in a photovoltaic configuration. Numerical electromagnetic simulations were used to understand the behavior of the light on the nanometer-scale to clarify the catalytic enhancement mechanisms in both the ultraviolet (UV) and visible (VIS) regions. In addition, simulation results indicated that a near-surface normal but slightly tilted ZnO NW array geometry would provide an increased optical path length and enhanced multiple scattering and absorption processes arising from the localized surface plasmon resonances of the nanoparticles. The results obtained here clarify the role of the plasmon resonance and provide us with useful knowledge for the development of metal-oxide nano-hybrid materials for solar energy conversion. PMID:25700130

  3. Plasmonic interferometric sensor arrays for high-performance label-free biomolecular detection.

    PubMed

    Gao, Yongkang; Xin, Zheming; Zeng, Beibei; Gan, Qiaoqiang; Cheng, Xuanhong; Bartoli, Filbert J

    2013-12-21

    A plasmonic interferometric biosensor that consists of arrays of circular aperture-groove nanostructures patterned on a gold film for phase-sensitive biomolecular detection is demonstrated. The phase and amplitude of interfering surface plasmon polaritons (SPPs) in the proposed device can be effectively engineered by structural tuning, providing flexible and efficient control over the plasmon line shape observed through SPP interference. Spectral fringes with high contrast, narrow linewidth, and large amplitude have been experimentally measured and permit the sensitive detection of protein surface coverage as low as 0.4 pg mm(-2). This sensor resolution compares favorably with commercial prism-based surface plasmon resonance systems (0.1 pg mm(-2)) but is achieved here using a significantly simpler collinear transmission geometry, a miniaturized sensor footprint, and a low-cost compact spectrometer. Furthermore, we also demonstrate superior sensor performance using the intensity interrogation method, which can be combined with CCD imaging to upscale our platform to high-throughput array sensing. A novel low-background interferometric sensing scheme yields a high sensing figure of merit (FOM*) of 146 in the visible region, surpassing that of previous plasmonic biosensors and facilitating ultrasensitive high-throughput detection. PMID:24173621

  4. Simulated study of plasmonic coupling in noble bimetallic alloy nanosphere arrays

    SciTech Connect

    Bansal, Amit Verma, S. S.

    2014-05-15

    The plasmonic coupling between the interacting noble metal nanoparticles plays an important role to influence the optical properties of arrays. In this work, we have extended the Mie theory results of our recent communication to include the effect of particle interactions between the alloy nanoparticles by varying interparticle distance and number of particles. The localized surface plasmon resonance (LSPR) peak position, full width at half maxima (FWHM) and scattering efficiency of one dimensional (1D) bimetallic alloy nanosphere (BANS) arrays of earlier optimized compositions i.e. Ag{sub 0.75}Au{sub 0.25}, Au{sub 0.25}Cu{sub 0.75} and Ag{sub 0.50}Cu{sub 0.50} have been studied presently by using discrete dipole approximation (DDA) simulations. Studies have been made to optimize size of the nanosphere, number of spheres in the arrays, material and the interparticle distance. It has been found that both the scattering efficiency and FWHM (bandwidth) can be controlled in the large region of the electromagnetic (EM) spectrum by varying the number of interacting particles and interparticle distance. In comparison to other alloy arrays, Ag{sub 0.50}Cu{sub 0.50} BANS arrays (each of particle radius 50 nm) shows larger tunability of LSPR with wide bandwidth (essential condition for plasmonic solar cells)

  5. Plasmonic filter array for on-chip near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Erwen; Chong, Xinyuan; Ren, Fanghui; Wang, Alan X.

    2016-03-01

    We demonstrate an ultra-compact on-chip spectrometer for near-infrared (NIR) spectroscopy based on narrow-band band-pass filter array. Each individual filter consists of a plasmonic metallic grating with subwavelength period and extremely narrow slits on a quartz substrate, with a polymer cover layer as the waveguide layer. A narrow-band guided-mode resonance (GMR) associated with a surface-plasmon resonance (SPR) gives rise to the narrow-band transmission spectrum. Full width at half maximum (FWHM) of fabricated filter's spectrum is measured to be from 7 to 13 nm, and the operation bandwidth of the entire filter array covers wavelength range over 270 nm from 1510 to 1780 nm. We measure the NIR absorbance spectrum of xylene using our filter array device to demonstrate its application as a spectrometer.

  6. Tunable Au-Ag nanobowl arrays for size-selective plasmonic biosensing.

    PubMed

    Jana, Debrina; Lehnhoff, Emily; Bruzas, Ian; Robinson, Jendai; Lum, William; Sagle, Laura

    2016-08-01

    Selectivity is often a major obstacle for localized surface plasmon resonance-based biosensing in complex biological solutions. An additional degree of selectivity can be achieved through the incorporation of shape complementarity on the nanoparticle surface. Here, we report the versatile fabrication of substrate-bound Au-Ag nanobowl arrays through the galvanic ion replacement of silver nanodisk arrays. Both localized surface plasmon resonance (LSPR) and surface enhanced Raman spectroscopy (SERS) were carried out to detect the binding of analytes of varying size to the nanobowl arrays. Large increases in the LSPR and SERS response were measured for analytes that were small enough to enter the nanobowls, compared to those too large to come into contact with the interior of the nanobowls. This size-selective sensing should prove useful in both size determination and differentiation of large analytes in biological solutions, such as viruses, fungi, and bacterial cells. PMID:27111025

  7. Optics and Nonlinear Buckling Mechanics in Large-Area, Highly Stretchable Arrays of Plasmonic Nanostructures.

    PubMed

    Gao, Li; Zhang, Yihui; Zhang, Hui; Doshay, Sage; Xie, Xu; Luo, Hongying; Shah, Deesha; Shi, Yan; Xu, Siyi; Fang, Hui; Fan, Jonathan A; Nordlander, Peter; Huang, Yonggang; Rogers, John A

    2015-06-23

    Large-scale, dense arrays of plasmonic nanodisks on low-modulus, high-elongation elastomeric substrates represent a class of tunable optical systems, with reversible ability to shift key optical resonances over a range of nearly 600 nm at near-infrared wavelengths. At the most extreme levels of mechanical deformation (strains >100%), nonlinear buckling processes transform initially planar arrays into three-dimensional configurations, in which the nanodisks rotate out of the plane to form linear arrays with "wavy" geometries. Analytical, finite-element, and finite-difference time-domain models capture not only the physics of these buckling processes, including all of the observed modes, but also the quantitative effects of these deformations on the plasmonic responses. The results have relevance to mechanically tunable optical systems, particularly to soft optical sensors that integrate on or in the human body. PMID:25906085

  8. Plasmonic arrays of titanium nitride nanoparticles fabricated from epitaxial thin films.

    PubMed

    Murai, Shunsuke; Fujita, Koji; Daido, Yohei; Yasuhara, Ryuichiro; Kamakura, Ryosuke; Tanaka, Katsuhisa

    2016-01-25

    We have fabricated two-dimensional periodic arrays of titanium nitride (TiN) nanoparticles from epitaxial thin films. The thin films of TiN, deposited on sapphire and single crystalline magnesium oxide substrates by a pulsed laser deposition, are metallic and show reasonably small optical loss in the visible and near infrared regions. The thin films prepared were structured to the arrays of nanoparticles with the pitch of 400 nm by the combination of nanoimprint lithography and reactive ion etching. Optical transmission indicates that the arrays support the collective plasmonic modes, where the localized surface plasmon polaritons in TiN nanoparticles are radiatively coupled through diffraction. Numerical simulation visualizes the intense fields accumulated both in the nanoparticles and in between the particles, confirming that the collective mode originates from the simultaneous excitation of localized surface plasmon polaritons and diffraction. This study experimentally verified that the processing of TiN thin films with the nanoimprint lithography and reactive ion etching is a powerful and versatile way of preparing plasmonic nanostructures. PMID:26832498

  9. Surface enhanced Raman scattering by graphene-nanosheet-gapped plasmonic nanoparticle arrays for multiplexed DNA detection

    NASA Astrophysics Data System (ADS)

    Duan, Bo; Zhou, Jiajing; Fang, Zheng; Wang, Chenxu; Wang, Xiujuan; Hemond, Harold F.; Chan-Park, Mary B.; Duan, Hongwei

    2015-07-01

    We have developed a new type of surface enhanced Raman scattering (SERS) substrate with thiolated graphene oxide (tGO) nanosheets sandwiched between two layers of closely packed plasmonic nanoparticles. The trilayered substrate is built up through alternative loading of interfacially assembled plasmonic nanoparticle arrays and tGO nanosheets, followed by coating the nanoparticle surfaces with poly(ethylene glycol) (PEG). Here tGO plays multifunctional roles as a 2D scaffold to immobilized interfacially assembled plasmonic nanoparticles, a nanospacer to create SERS-active nanogaps between two layers of nanoparticle arrays, and a molecule harvester to enrich molecules of interest via π-π interaction. In particular, the molecule harvesting capability of the tGO nanospacer and the stealth properties of PEG coating on the plasmonic nanoparticles collectively lead to preferential positioning of selective targets such as aromatic molecules and single-stranded DNA at the SERS-active nanogap hotspots. We have demonstrated that an SERS assay based on the PEGylated trilayered substrate, in combination with magnetic separation, allows for sensitive, multiplexed ``signal-off'' detection of DNA sequences of bacterial pathogens.We have developed a new type of surface enhanced Raman scattering (SERS) substrate with thiolated graphene oxide (tGO) nanosheets sandwiched between two layers of closely packed plasmonic nanoparticles. The trilayered substrate is built up through alternative loading of interfacially assembled plasmonic nanoparticle arrays and tGO nanosheets, followed by coating the nanoparticle surfaces with poly(ethylene glycol) (PEG). Here tGO plays multifunctional roles as a 2D scaffold to immobilized interfacially assembled plasmonic nanoparticles, a nanospacer to create SERS-active nanogaps between two layers of nanoparticle arrays, and a molecule harvester to enrich molecules of interest via π-π interaction. In particular, the molecule harvesting capability of

  10. High performing phase-based surface plasmon resonance sensing from metallic nanohole arrays

    SciTech Connect

    Cao, Z. L.; Wong, S. L.; Ong, H. C.; Wu, S. Y.; Ho, H. P.

    2014-04-28

    We show the spectral figure-of-merit (FOM) from nanohole arrays can be larger than 1900/RIU by phase-based surface plasmon resonance. By using temporal coupled mode theory, we find the p-s polarization phase jump is the sharpest when both the absorption and radiative decay rates of surface plasmon polaritons are matched, yielding an extremely small spectral differential phase linewidth and thus superior FOM. The result is supported by numerical simulation and experiment. As a demonstration, we show the phase detection outperforms the conventional spectral counterpart significantly by sensing the binding of bovine serum albumin antibodies under identical condition.

  11. Control over plasmon enhanced Raman and fluorescence from quasi free-standing Au nanorod arrays

    NASA Astrophysics Data System (ADS)

    Damm, Signe; Lordan, Frances; Murphy, Antony; McMillen, Mark; Pollard, Robert; Rice, James H.

    2014-08-01

    Nanoscale structures made from coinage metals such as gold or silver possess localized surface plasmon-polariton (LSP) excitations when the material interacts with light of the correct frequency and polarization. LSPs generated from freestanding 2D nanorod arrays have been applied to enable surface-enhanced Raman scattering (SERS) and surface enhanced fluorescence (SEF) spectra from Rhodamine 6G molecules adsorbed on the surface of the arrays. We study the conditions that optimize SERS and SEF from self-standing Au nanorod arrays by studying the effect of changing the surrounding environment using Al2O3 as a dielectric spacer layer.

  12. EDITORIAL: Focus on Plasmonics FOCUS ON PLASMONICS

    NASA Astrophysics Data System (ADS)

    Bozhevolnyi, Sergey; García-Vidal, Francisco

    2008-10-01

    , Zhengtong Liu, Hsiao-Kuan Yuan, Rasmus H Pedersen, Alexandra Boltasseva, Jiji Chen, Joseph Irudayaraj, Alexander V Kildishev and Vladimir M Shalaev Confinement and propagation characteristics of subwavelength plasmonic modes R F Oulton, G Bartal, D F P Pile and X Zhang Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film F de León-Pérez, G Brucoli, F J García-Vidal and L Martín-Moreno Shaping and manipulation of light fields with bottom-up plasmonic structures C Girard, E Dujardin, G Baffou and R Quidant Gold nanorods and nanospheroids for enhancing spontaneous emission A Mohammadi, V Sandoghdar and M Agio Generation of surface plasmons at single subwavelength slits: from slit to ridge plasmon J-Y Laluet, A Drezet, C Genet and T W Ebbesen Mode mapping of plasmonic stars using TPL microscopy P Ghenuche, S Cherukulappurath and R Quidant Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field G A Wurtz, W Hendren, R Pollard, R Atkinson, L Le Guyader, A Kirilyuk, Th Rasing, I I Smolyaninov and A V Zayats Nanoplasmonic renormalization and enhancement of Coulomb interactions M Durach, A Rusina, V I Klimov and M I Stockman Bulk and surface sensitivities of surface plasmon waveguides Pierre Berini Mapping plasmons in nanoantennas via cathodoluminescence R Gómez-Medina, N Yamamoto, M Nakano and F J García de Abajo Theoretical analysis of gold nano-strip gap plasmon resonators T Søndergaard, J Jung, S I Bozhevolnyi and G Della Valle Surface plasmon polariton-mediated enhancement of the emission of dye molecules on metallic gratings J Gómez Rivas, G Vecchi and V Giannini Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core-shell nanoparticles beyond the quasistatic limit Mark W Knight and Naomi J Halas Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency T H Taminiau, F D Stefani and N F van Hulst Green

  13. Plasmon-Enhanced Light Absorption in GaAs Nanowire Array Solar Cells

    NASA Astrophysics Data System (ADS)

    Li, Yanhong; Yan, Xin; Wu, Yao; Zhang, Xia; Ren, Xiaomin

    2015-11-01

    In this paper, we propose a plasmon-enhanced solar cell structure based on a GaAs nanowire array decorated with metal nanoparticles. The results show that by engineering the metallic nanoparticles, localized surface plasmon could be excited, which can concentrate the incident light and propagate the energy to nanowires. The surface plasmon can dramatically enhance the absorbance of near-bandgap light, and the enhancement is influenced by the size and material of nanoparticles. By optimizing the particle parameters, a large absorbance enhancement of 50 % at 760 nm and a high conversion efficiency of 14.5 % can be obtained at a low diameter and period ratio ( D/ P ratio) of 0.3. The structure is promising for low-cost high-performance nanoscale solar cells.

  14. Plasmon-Enhanced Light Absorption in GaAs Nanowire Array Solar Cells.

    PubMed

    Li, Yanhong; Yan, Xin; Wu, Yao; Zhang, Xia; Ren, Xiaomin

    2015-12-01

    In this paper, we propose a plasmon-enhanced solar cell structure based on a GaAs nanowire array decorated with metal nanoparticles. The results show that by engineering the metallic nanoparticles, localized surface plasmon could be excited, which can concentrate the incident light and propagate the energy to nanowires. The surface plasmon can dramatically enhance the absorbance of near-bandgap light, and the enhancement is influenced by the size and material of nanoparticles. By optimizing the particle parameters, a large absorbance enhancement of 50 % at 760 nm and a high conversion efficiency of 14.5 % can be obtained at a low diameter and period ratio (D/P ratio) of 0.3. The structure is promising for low-cost high-performance nanoscale solar cells. PMID:26546326

  15. Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays

    SciTech Connect

    Li, Shi-Qiang; Bruce Buchholz, D.; Zhou, Wei; Ketterson, John B.; Ocola, Leonidas E.; Sakoda, Kazuaki; Chang, Robert P. H.

    2014-06-09

    Diffractively coupled plasmonic resonances possess both ultra-sharp linewidths and giant electric field enhancement around plasmonic nanostructures. They can be applied to create a new generation of sensors, detectors, and nano-optical devices. However, all current designs require stringent index-matching at the resonance condition that limits their applicability. Here, we propose and demonstrate that it is possible to relieve the index-matching requirement and to induce ultra-sharp plasmon resonances in an ordered vertically aligned optical nano-antenna phased array by transforming a dipole resonance to a monopole resonance with a mirror plane. Due to the mirror image effect, the monopole resonance not only retained the dipole features but also enhanced them. The engineered resonances strongly suppressed the radiative decay channel, resulting in a four-order of magnitude enhancement in local electric field and a Q-factor greater than 200.

  16. Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays

    NASA Astrophysics Data System (ADS)

    Li, Shi-Qiang; Zhou, Wei; Bruce Buchholz, D.; Ketterson, John B.; Ocola, Leonidas E.; Sakoda, Kazuaki; Chang, Robert P. H.

    2014-06-01

    Diffractively coupled plasmonic resonances possess both ultra-sharp linewidths and giant electric field enhancement around plasmonic nanostructures. They can be applied to create a new generation of sensors, detectors, and nano-optical devices. However, all current designs require stringent index-matching at the resonance condition that limits their applicability. Here, we propose and demonstrate that it is possible to relieve the index-matching requirement and to induce ultra-sharp plasmon resonances in an ordered vertically aligned optical nano-antenna phased array by transforming a dipole resonance to a monopole resonance with a mirror plane. Due to the mirror image effect, the monopole resonance not only retained the dipole features but also enhanced them. The engineered resonances strongly suppressed the radiative decay channel, resulting in a four-order of magnitude enhancement in local electric field and a Q-factor greater than 200.

  17. Observation of optical domino modes in arrays of non-resonant plasmonic nanoantennas

    NASA Astrophysics Data System (ADS)

    Sinev, Ivan S.; Samusev, Anton K.; Voroshilov, Pavel M.; Mukhin, Ivan S.; Denisyuk, Andrey I.; Guzhva, Mikhail E.; Belov, Pavel A.; Simovski, Constantin R.

    2014-09-01

    Domino modes are highly-confined collectivemodes that were first predicted for a periodic arrangement of metallic parallelepipeds in far-infrared region. The main feature of domino modes is the advantageous distribution of the local electric field, which is concentrated between metallic elements (hot spots), while its penetration depth in metal is much smaller than the skin-depth. Therefore, arrays of non-resonant plasmonic nanoantennas exhibiting domino modes can be employed as broadband light trapping coatings for thin-film solar cells. However, until now in the excitation of such modes was demonstrated only in numerical simulations. Here, we for the first time demonstrate experimentally the excitation of optical domino modes in arrays of non-resonant plasmonic nanoantennas. We characterize the nanoantenna arrays produced by means of electron beam lithography both experimentally using an aperture-type near-field scanning optical microscope and numerically. The proof of domino modes concept for plasmonic arrays of nanoantennas in the visible spectral region opens new pathways for development of low-absorptive structures for effective focusing of light at the nanoscale.

  18. Broadband on-chip near-infrared spectroscopy based on a plasmonic grating filter array.

    PubMed

    Li, Erwen; Chong, Xinyuan; Ren, Fanghui; Wang, Alan X

    2016-05-01

    We demonstrate an ultra-compact, broadband on-chip near-infrared (NIR) spectroscopy system based on a narrow-band plasmonic filter array. The entire filter array, consisting of 28 individual subwavelength metallic gratings, was monolithically integrated in a thin gold film on a quartz substrate, covering a 270 nm spectra from 1510 nm to 1780 nm. In order to achieve a high spectral resolution, extremely narrow slits are created for the gratings with a polymer waveguide layer on top, generating narrow-band guided-mode resonances through coupling with the surface-plasmon resonances of the metallic gratings. Experimental results show that the transmission bands of the filter array have full width at half-maximum of only 7 nm-13 nm, which is sufficient for NIR spectroscopy. The NIR absorption spectroscopy of xylene using the on-chip plasmonic filter array matches very well with the results from conventional Fourier transform infrared spectroscopy, which proves the great potential for NIR sensing applications. PMID:27128037

  19. Multi-resonant plasmonic nanodome arrays for label-free biosensing applications.

    PubMed

    Choi, Charles J; Semancik, Steve

    2013-09-01

    The characteristics and utility of plasmonic nanodome arrays capable of supporting multiple resonance modes are described. A low-cost, large-area replica molding process is used to produce, on flexible plastic substrates, two-dimensional periodic arrays of cylinders that are subsequently coated with SiO2 and Ag thin films to form dome-shaped structures, with 14 nm spacing between the features, in a precise and reproducible fashion. Three distinct optical resonance modes, a grating diffraction mode and two localized surface plasmon resonance (LSPR) modes, are observed experimentally and confirmed by finite-difference-time-domain (FDTD) modeling which is used to calculate the electromagnetic field distribution of each resonance around the nanodome array structure. Each optical mode is characterized by measuring sensitivity to bulk refractive index changes and to surface effects, which are examined using stacked polyelectrolyte layers. The utility of the plasmonic nanodome array as a functional interface for biosensing applications is demonstrated by performing a bioassay to measure the binding affinity constant between protein A and human immunoglobulin G (IgG) as a model system. The nanoreplica molding process presented in this work allows for simple, inexpensive, high-throughput fabrication of nanoscale plasmonic structures over a large surface area (120 × 120 mm(2)) without the requirement for high resolution lithography or additional processes such as etching or liftoff. The availability of multiple resonant modes, each with different optical properties, allows the nanodome array surface to address a wide range of biosensing problems with various target analytes of different sizes and configurations. PMID:23884400

  20. Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering.

    PubMed

    Zheng, Peng; Cushing, Scott K; Suri, Savan; Wu, Nianqiang

    2015-09-01

    The wide plasmonic tuning range of nanotriangle and nanohole array patterns fabricated by nanosphere lithography makes them promising in surface-enhanced Raman scattering (SERS) sensors. Unfortunately, it is challenging to optimize these patterns for SERS sensing because their optical response is a complex mixture of localized surface plasmon resonance (SPR) and propagating surface plasmon polariton (SPP). In this paper, transmission and reflection measurements are combined with finite difference time domain simulations to identify and separate each plasmonic mode, discerning which resonance leads to the electromagnetic field enhancement. The SERS enhancement is found to be dominated by the absorption, which is shifted from the transmission and reflection dips usually used as tuning points, and by the 'gap' defects formed within the pattern. These effects have different spectral and geometric dependences, forming two optimization curves which can be used to predict the best performance for a given excitation wavelength. The developed model is verified with experimental SERS measurements for several nanohole sizes and periodicities, and then used to give optimal fabrication parameters for a range of measurement conditions. The results will promote the application of two-dimensional plasmonic nanoarrays in SERS sensors. PMID:25586930

  1. Self-assembled large-area annular cavity arrays with tunable cylindrical surface plasmons for sensing.

    PubMed

    Ni, Haibin; Wang, Ming; Shen, Tianyi; Zhou, Jing

    2015-02-24

    Surface plasmons that propagate along cylindrical metal/dielectric interfaces in annular apertures in metal films, called cylindrical surface plasmons (CSPs), exhibit attractive optical characteristics. However, it is challenging to fabricate these nanocoaxial structures. Here, we demonstrate a practical low-cost route to manufacture highly ordered, large-area annular cavity arrays (ACAs) that can support CSPs with great tunability. By employing a sol-gel coassembly method, reactive ion etching and metal sputtering techniques, regular, highly ordered ACAs in square-centimeter-scale with a gap width tunable in the range of several to hundreds of nanometers have been produced with good reproducibility. Ag ACAs with a gap width of 12 nm and a gap height of 635 nm are demonstrated. By finite-difference time-domain simulation, we confirm that the pronounced dips in the reflectance spectra of ACAs are attributable to CSP resonances excited in the annular gaps. By adjusting etching time and Ag film thickness, the CSP dips can be tuned to sweep the entire optical range of 360 to 1800 nm without changing sphere size, which makes them a promising candidate for forming integrated plasmonic sensing arrays. The high tunability of the CSP resonant frequencies together with strong electric field enhancement in the cavities make the ACAs promising candidates for surface plasmon sensors and SERS substrates, as, for example, they have been used in liquid refractive index (RI) sensing, demonstrating a sensitivity of 1505 nm/RIU and a figure of merit of 9. One of the CSP dips of ACAs with a certain geometry size is angle- (0-70 degrees) and polarization-independent and can be used as a narrow-band absorber. Furthermore, the nano annular cavity arrays can be used to construct solar cells, nanolasers and nanoparticle plasmonic tweezers. PMID:25639937

  2. Plasmonic ultra-broadband polarizers based on Ag nano wire-slit arrays

    NASA Astrophysics Data System (ADS)

    Han, Chunrui; Tam, Wing Yim

    2015-02-01

    We propose ultra-broadband reflective and absorptive polarizers in the visible range using multi-scaled Ag nano wire-slit arrays. The nano arrays can be tuned from reflective to absorptive by incorporating Ag wires/strips with different lengths/widths. The ultra-broadband nature of the absorptive array, with averaged absorption as high as ˜80%, is due to collective excitations of plasmonic resonances in the Ag wires/strips with different length scales. The nano arrays are realized experimentally by using a simple two-times shadowing vapor deposition method. They exhibit broadband transmission difference, in good agreement with simulations. Our multi-scaled nano array design has potential applications as broadband linear polarizers and anti-reflective materials in both optics and photovoltaics.

  3. Slanted gold mushroom array: a switchable bi/tridirectional surface plasmon polariton splitter.

    PubMed

    Shen, Yang; Fang, Guisheng; Cerjan, Alexander; Chi, Zhenguo; Fan, Shanhui; Jin, Chongjun

    2016-08-25

    Surface plasmon polaritons (SPPs) show great promise in providing an ultracompact platform for integrated photonic circuits. However, challenges remain in easily and efficiently coupling light into and subsequently routing SPPs. Here, we theoretically propose and experimentally demonstrate a switchable bi/tridirectional beam splitter which can simultaneously perform both tasks. The photonic device consists of a periodic array of slanted gold 'mushrooms' composed of angled dielectric pillars with gold caps extruding from a periodic array of perforations in a gold film. The unidirectional coupling results from the interference of the in-plane guided modes scattered by a pair of dislocated gold gratings, while the output channel is determined by the polarization of the incident beam. This device, in combination with dynamic polarization modulation techniques, has the potential to serve as a router or switch in plasmonic integrated circuits. PMID:27523083

  4. Plasmonic nanohole array sensors fabricated by template transfer with improved optical performance.

    PubMed

    Jia, Peipei; Jiang, Hao; Sabarinathan, Jayshri; Yang, Jun

    2013-05-17

    Surface plasmon resonance sensors of the nanohole array type provide a promising platform for label-free biosensing on surfaces. For their extensive use, an efficient fabrication procedure to make nanoscale features on metallic films is required. We develop a simple and robust template-transfer approach to structure periodic nanohole arrays in optically thick Au films on poly(dimethylsiloxane) substrates. This technique significantly simplifies the process of sensor fabrication and reduces the cost of the device. A spectral analysis approach is also developed for improving the sensor performance. The sensitivity of the resulting sensor to refractive index change is 522 nm/RIU (refractive index unit) and the resolution is improved to 2 × 10(-5) RIU, which are among the best reported values for localized surface plasmon resonance sensors. We also demonstrate the limit of detection of this sensor for cardiac troponin-I. PMID:23579785

  5. Plasmonic nanohole array sensors fabricated by template transfer with improved optical performance

    NASA Astrophysics Data System (ADS)

    Jia, Peipei; Jiang, Hao; Sabarinathan, Jayshri; Yang, Jun

    2013-05-01

    Surface plasmon resonance sensors of the nanohole array type provide a promising platform for label-free biosensing on surfaces. For their extensive use, an efficient fabrication procedure to make nanoscale features on metallic films is required. We develop a simple and robust template-transfer approach to structure periodic nanohole arrays in optically thick Au films on poly(dimethylsiloxane) substrates. This technique significantly simplifies the process of sensor fabrication and reduces the cost of the device. A spectral analysis approach is also developed for improving the sensor performance. The sensitivity of the resulting sensor to refractive index change is 522 nm/RIU (refractive index unit) and the resolution is improved to 2 × 10-5 RIU, which are among the best reported values for localized surface plasmon resonance sensors. We also demonstrate the limit of detection of this sensor for cardiac troponin-I.

  6. Linearly polarized light emission from quantum dots with plasmonic nanoantenna arrays.

    PubMed

    Ren, Mengxin; Chen, Mo; Wu, Wei; Zhang, Lihui; Liu, Junku; Pi, Biao; Zhang, Xinzheng; Li, Qunqing; Fan, Shoushan; Xu, Jingjun

    2015-05-13

    Polarizers provide convenience in generating polarized light, meanwhile their adoption raises problems of extra weight, cost, and energy loss. Aiming to realize polarizer-free polarized light sources, herein, we present a plasmonic approach to achieve direct generation of linearly polarized optical waves at the nanometer scale. Periodic slot nanoantenna arrays are fabricated, which are driven by the transition dipole moments of luminescent semiconductor quantum dots. By harnessing interactions between quantum dots and scattered fields from the nanoantennas, spontaneous emission with a high degree of linear polarization is achieved from such hybrid antenna system with polarization perpendicular to antenna slot. We also demonstrate that the polarization is engineerable in aspects of both spectrum and magnitude by tailoring plasmonic resonance of the antenna arrays. Our findings will establish a basis for the development of innovative polarized light-emitting devices, which are useful in optical displays, spectroscopic techniques, optical telecommunications, and so forth. PMID:25877386

  7. Parasitic antenna effect in terahertz plasmon detector array for real-time imaging system

    NASA Astrophysics Data System (ADS)

    Yang, Jong-Ryul; Lee, Woo-Jae; Ryu, Min Woo; Rok Kim, Kyung; Han, Seong-Tae

    2015-10-01

    The performance uniformity of each pixel integrated with a patch antenna in a terahertz plasmon detector array is very important in building the large array necessary for a real-time imaging system. We found a parasitic antenna effect in the terahertz plasmon detector whose response is dependent on the position of the detector pixel in the illumination area of the terahertz beam. It was also demonstrated that the parasitic antenna effect is attributed to the physical structure consisting of signal pads, bonding wires, and interconnection lines on a chip and a printed circuit board. Experimental results show that the performance of the detector pixel is determined by the sum of the effects of each parasitic antenna and the on-chip integrated antenna designed to detect signals at the operating frequency. The parasitic antenna effect can be minimized by blocking the interconnections with a metallic shield.

  8. Membrane protein biosensing with plasmonic nanopore arrays and pore-spanning lipid membranes

    PubMed Central

    Im, Hyungsoon; Wittenberg, Nathan J.; Lesuffleur, Antoine; Lindquist, Nathan C.; Oh, Sang-Hyun

    2010-01-01

    Integration of solid-state biosensors and lipid bilayer membranes is important for membrane protein research and drug discovery. In these sensors, it is critical that the solid-state sensing material does not have adverse effects on the conformation or functionality of membrane-bound molecules. In this work, pore-spanning lipid membranes are formed over an array of periodic nanopores in free-standing gold films for surface plasmon resonance (SPR) kinetic binding assays. The ability to perform kinetic assays with a transmembrane protein is demonstrated with α-hemolysin (α-HL). The incorporation of α-HL into the membrane followed by specific antibody binding (anti-α-HL) red-shifts the plasmon resonance of the gold nanopore array, which is optically monitored in real time. Subsequent fluorescence imaging reveals that the antibodies primarily bind in nanopore regions, indicating that α-HL incorporation preferentially occurs into areas of pore-spanning lipid membranes. PMID:21218136

  9. Vector magnetic measurement based on directional scattering between polarized plasmon wave and arrayed nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaochuan; Guo, Tuan; Liu, Fu; Wu, Qiang; Li, Jie; Cheng, Linghao; Guan, Bai-Ou

    2015-09-01

    A vector magnetic field sensor based on surface plasmon resonance (SPR) of a 15° tilted fiber Bragg grating (TFBG) and magnetic fluid is proposed and experimentally demonstrated. Both the orientation and the amplitude of the magnetic fields can be determined unambiguously via the wavelength and intensity monitoring of the SPR, which is essentially dominated by the arrayed Fe3O4 nanoparticles over the nanometric-film of fiber surface.

  10. Evaporative Self-Assembly of Gold Nanorods into Macroscopic 3D Plasmonic Superlattice Arrays.

    PubMed

    Li, Penghui; Li, Yong; Zhou, Zhang-Kai; Tang, Siying; Yu, Xue-Feng; Xiao, Shu; Wu, Zhongzhen; Xiao, Quanlan; Zhao, Yuetao; Wang, Huaiyu; Chu, Paul K

    2016-04-01

    Millimeter-scale 3D superlattice arrays composed of dense, regular, and vertically aligned gold nanorods are fabricated by evaporative self-assembly. The regular organization of the gold nanorods into a macroscopic superlattice enables the production of a plasmonic substrate with excellent sensitivity and reproducibility, as well as reliability in surface-enhanced Raman scattering. The work bridges the gap between nanoscale materials and macroscopic applications. PMID:26823278

  11. Normal and anomalous plasmonic lattice modes of gold nanodisk arrays in inhomogeneous media

    NASA Astrophysics Data System (ADS)

    Sadeghi, S. M.; Wing, W. J.; Campbell, Q.

    2016-03-01

    We study plasmonic lattice modes in two dimensional arrays of large metallic nanodisks in strongly inhomogeneous environments with controlled dielectric asymmetries. This is done within the two limits of positive (air/substrate) and negative (Si/substrate) asymmetries. In the former, the nanodisks are exposed to air, while in the latter, they are fully embedded in a dielectric material with a refractive index much higher than that of the glass substrate (Si). Our results show that in the air/substrate limit, the arrays can mainly support two distinct visible and infrared peaks associated with the optical coupling of multipolar plasmonic resonances of nanodisks in air and substrate (normal modes). As the nanodisks are gradually embedded in Si, i.e., going from the positive to negative asymmetry limit, the visible peak undergoes more than 200 nm red shift without significant mode degradation. Our results show that as this transition happens, a third peak (anomalous mode) becomes dominant. The amplitude and wavelength of this peak increase quadratically with the thickness of the Si layer, indicating formation of a unique collective mode. We study the impact of this mode on the emission semiconductor quantum dots, demonstrating they become much brighter as the result of the long-reach plasmonic fields of the nanodisks when the arrays are in this mode.

  12. Lithographically Patterned Nanoscale Electrodeposition of Plasmonic, Bimetallic, Semiconductor, Magnetic, and Polymer Nanoring Arrays

    PubMed Central

    2015-01-01

    Large area arrays of magnetic, semiconducting, and insulating nanorings were created by coupling colloidal lithography with nanoscale electrodeposition. This versatile nanoscale fabrication process allows for the independent tuning of the spacing, diameter, and width of the nanorings with typical values of 1.0 μm, 750 nm, and 100 nm, respectively, and was used to form nanorings from a host of materials: Ni, Co, bimetallic Ni/Au, CdSe, and polydopamine. These nanoring arrays have potential applications in memory storage, optical materials, and biosensing. A modified version of this nanoscale electrodeposition process was also used to create arrays of split gold nanorings. The size of the split nanoring opening was controlled by the angle of photoresist exposure during the fabrication process and could be varied from 50% down to 10% of the ring circumference. The large area (cm2 scale) gold split nanoring array surfaces exhibited strong polarization-dependent plasmonic absorption bands for wavelengths from 1 to 5 μm. Plasmonic nanoscale split ring arrays are potentially useful as tunable dichroic materials throughout the infrared and near-infrared spectral regions. PMID:25553204

  13. Plasmonic nanohole arrays on Si-Ge heterostructures: an approach for integrated biosensors

    NASA Astrophysics Data System (ADS)

    Augel, L.; Fischer, I. A.; Dunbar, L. A.; Bechler, S.; Berrier, A.; Etezadi, D.; Hornung, F.; Kostecki, K.; Ozdemir, C. I.; Soler, M.; Altug, H.; Schulze, J.

    2016-03-01

    Nanohole array surface plasmon resonance (SPR) sensors offer a promising platform for high-throughput label-free biosensing. Integrating nanohole arrays with group-IV semiconductor photodetectors could enable low-cost and disposable biosensors compatible to Si-based complementary metal oxide semiconductor (CMOS) technology that can be combined with integrated circuitry for continuous monitoring of biosamples and fast sensor data processing. Such an integrated biosensor could be realized by structuring a nanohole array in the contact metal layer of a photodetector. We used Fouriertransform infrared spectroscopy to investigate nanohole arrays in a 100 nm Al film deposited on top of a vertical Si-Ge photodiode structure grown by molecular beam epitaxy (MBE). We find that the presence of a protein bilayer, constitute of protein AG and Immunoglobulin G (IgG), leads to a wavelength-dependent absorptance enhancement of ~ 8 %.

  14. Hedgehog subwavelength hole arrays: control over the THz enhanced transmission

    NASA Astrophysics Data System (ADS)

    Navarro-Cía, M.; Rodriguez-Ulibarri, Pablo; Beruete, M.

    2013-01-01

    By backing or sandwiching a holey metal layer with or between isotropic dielectric slabs, additional peaks of transmission within the long-wavelength regime arise as a result of the induced transverse magnetic (TM) or transverse electric (TE) grounded dielectric modes. A similar control of the complex surface wave modes, and thus of the extraordinary transmission (ET) peaks, is demonstrated here via anisotropic slabs in the form of a fakir's bed of nails. However, it is shown that those ET peaks formed from TE modes are suppressed because of the inherent dispersion characteristics of the free-standing grounded pins. This allows the red-shifting of the ET for the polarization parallel to the larger in-plane period of the hole array, but unlike the dielectric isotropic slab configuration, the orthogonal polarization remains inhibited. In memoriam Professor Mario Sorolla.

  15. Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude

    NASA Astrophysics Data System (ADS)

    Guo, Peijun; Schaller, Richard D.; Ketterson, John B.; Chang, Robert P. H.

    2016-04-01

    All-optical control of plasmons can enable optical switches with high speeds, small footprints and high on/off ratios. Here we demonstrate ultrafast plasmon modulation in the near-infrared (NIR) to mid-infrared (MIR) range by intraband pumping of indium tin oxide nanorod arrays (ITO-NRAs). We observe redshifts of localized surface plasmon resonances arising from a change of the plasma frequency of ITO, which is governed by the conduction band non-parabolicity. We generalize the plasma frequency for non-parabolic bands, quantitatively model the fluence-dependent plasma frequency shifts, and show that different from noble metals, the lower electron density in ITO enables a remarkable change of electron distributions, yielding a significant plasma frequency modulation and concomitant large transient bleaches and induced absorptions, which can be tuned spectrally by tailoring the ITO-NRA geometry. The low electron heat capacity explains the sub-picosecond kinetics that is much faster than noble metals. Our work demonstrates a new scheme to control infrared plasmons for optical switching, telecommunications and sensing.

  16. Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering

    PubMed Central

    Zheng, Peng; Cushing, Scott K.; Suri, Savan; Wu, Nianqiang

    2015-01-01

    The wide plasmonic tuning range of nanotriangle and nanohole array patterns fabricated by nanosphere lithography makes them promising in surface-enhanced Raman scattering (SERS) sensors. Unfortunately, it is challenging to optimize these patterns for SERS sensing because their optical response is a complex mixture of localized and propagating surface plasmons. In this paper, transmission and reflection measurements are combined with finite difference time domain simulations to identify and separate each plasmonic mode, discerning which resonance leads to the electromagnetic field enhancement. The SERS enhancement is found to be dominated by the absorption, which is shifted from the transmission and reflection dips usually used as tuning points, and by the ‘gap’ defects formed within the pattern. These effects have different spectral and geometric dependences, forming two optimization curves which can be used to predict the best performance for a given excitation wavelength. The developed model is verified with experimental SERS measurements for several nanohole sizes and periodicities, and then used to give optimal fabrication parameters for a range of measurement conditions. The results will promote the application of two-dimensional plasmonic nanoarrays in SERS sensors. PMID:25586930

  17. Super-radiant plasmon mode is more efficient for SERS than the sub-radiant mode in highly packed 2D gold nanocube arrays

    SciTech Connect

    Mahmoud, Mahmoud A.

    2015-08-21

    The field coupling in highly packed plasmonic nanoparticle arrays is not localized due to the energy transport via the sub-radiant plasmon modes, which is formed in addition to the regular super-radiant plasmon mode. Unlike the sub-radiant mode, the plasmon field of the super-radiant mode cannot extend over long distances since it decays radiatively with a shorter lifetime. The coupling of the plasmon fields of gold nanocubes (AuNCs) when organized into highly packed 2D arrays was examined experimentally. Multiple plasmon resonance optical peaks are observed for the AuNC arrays and are compared to those calculated using the discrete dipole approximation. The calculated electromagnetic plasmon fields of the arrays displayed high field intensity for the nanocubes located in the center of the arrays for the lower energy super-radiant mode, while the higher energy sub-radiant plasmon mode displayed high field intensity at the edges of the arrays. The Raman signal enhancement by the super-radiant plasmon mode was found to be one hundred fold greater than that by sub-radiant plasmon mode because the super-radiant mode has higher scattering and stronger plasmon field intensity relative to the sub-radiant mode.

  18. Formation and dissolution of microbubbles on highly-ordered plasmonic nanopillar arrays.

    PubMed

    Liu, Xiumei; Bao, Lei; Dipalo, Michele; De Angelis, Francesco; Zhang, Xuehua

    2015-01-01

    Bubble formation from plasmonic heating of nanostructures is of great interest in many applications. In this work, we study experimentally the intrinsic effects of the number of three-dimensional plasmonic nanostructures on the dynamics of microbubbles, largely decoupled from the effects of dissolved air. The formation and dissolution of microbubbles is observed on exciting groups of 1, 4, and 9 nanopillars. Our results show that the power threshold for the bubble formation depends on the number density of the nanopillars in highly-ordered arrays. In the degassed water, both the growth rate and the maximal radius of the plasmonic microbubbles increase with an increase of the illuminated pillar number, due to the heat balance between the heat loss across the bubble and the collective heating generated from the nanopillars. Interestingly, our results show that the bubble dissolution is affected by the spatial arrangement of the underlying nanopillars, due to the pinning effect on the bubble boundary. The bubbles on nanopillar arrays dissolve in a jumping mode with step-wise features on the dissolution curves, prior to a smooth dissolution phase for the bubble pinned by a single pillar. The insight from this work may facilitate the design of nanostructures for efficient energy conversion. PMID:26687143

  19. Formation and dissolution of microbubbles on highly-ordered plasmonic nanopillar arrays

    PubMed Central

    Liu, Xiumei; Bao, Lei; Dipalo, Michele; De Angelis, Francesco; Zhang, Xuehua

    2015-01-01

    Bubble formation from plasmonic heating of nanostructures is of great interest in many applications. In this work, we study experimentally the intrinsic effects of the number of three-dimensional plasmonic nanostructures on the dynamics of microbubbles, largely decoupled from the effects of dissolved air. The formation and dissolution of microbubbles is observed on exciting groups of 1, 4, and 9 nanopillars. Our results show that the power threshold for the bubble formation depends on the number density of the nanopillars in highly-ordered arrays. In the degassed water, both the growth rate and the maximal radius of the plasmonic microbubbles increase with an increase of the illuminated pillar number, due to the heat balance between the heat loss across the bubble and the collective heating generated from the nanopillars. Interestingly, our results show that the bubble dissolution is affected by the spatial arrangement of the underlying nanopillars, due to the pinning effect on the bubble boundary. The bubbles on nanopillar arrays dissolve in a jumping mode with step-wise features on the dissolution curves, prior to a smooth dissolution phase for the bubble pinned by a single pillar. The insight from this work may facilitate the design of nanostructures for efficient energy conversion. PMID:26687143

  20. Design and Implementation of Noble Metal Nanoparticle Cluster Arrays for Plasmon Enhanced Biosensing

    PubMed Central

    Yan, Bo; Boriskina, Svetlana V.; Reinhard, Björn M.

    2011-01-01

    Nanoparticle Cluster Arrays (NCAs) are a class of electromagnetic materials that comprise chemically defined nanoparticles assembled into clusters of defined size in an extended deterministic arrangement. NCAs are fabricated through integration of chemically synthesized building blocks into predefined patterns using a hybrid top-down/bottom-up fabrication approach that overcomes some of the limitations of conventional top-down fabrication methods with regard to minimum available feature size and structural complexity. NCAs can sustain near-field interactions between nanoparticles within individual clusters as well as between entire neighboring clusters. The availability of near-field interactions on multiple length scales - together with the ability to further enhance the coupled plasmon modes through photonic modes in carefully designed array morphologies - leads to a multiscale cascade electromagnetic field enhancement throughout the array. This feature article introduces the design and fabrication fundamentals of NCAs and characterizes the electromagnetic coupling mechanisms in the arrays. Furthermore, it reviews how the optical properties of NCAs can be tuned through the size and shape of the nanoparticle building blocks and the geometry, size, and separation of the assembled clusters. NCAs have potential applications in many different areas; this feature article focuses on plasmon enhanced biosensing and surface enhanced Raman spectroscopy (SERS), in particular. PMID:22299057

  1. Template-Stripped Smooth Ag Nanohole Arrays with Silica Shells for Surface Plasmon Resonance Biosensing

    PubMed Central

    Im, Hyungsoon; Lee, Si Hoon; Wittenberg, Nathan J.; Johnson, Timothy W.; Lindquist, Nathan C.; Nagpal, Prashant; Norris, David J.; Oh, Sang-Hyun

    2011-01-01

    Inexpensive, reproducible and high-throughput fabrication of nanometric apertures in metallic films can benefit many applications in plasmonics, sensing, spectroscopy, lithography and imaging. Here we use template stripping to pattern periodic nanohole arrays in optically thick, smooth Ag films with a silicon template made via nanoimprint lithography. Ag is a low-cost material with good optical properties, but it suffers from poor chemical stability and biocompatibility. However, a thin silica shell encapsulating our template-stripped Ag nanoholes facilitates biosensing applications by protecting the Ag from oxidation as well as providing a robust surface that can be readily modified with a variety of biomolecules using well-established silane chemistry. The thickness of the conformal silica shell can be precisely tuned by atomic layer deposition, and a 15-nm-thick silica shell can effectively prevent fluorophore quenching. The Ag nanohole arrays with silica shells can also be bonded to polydimethylsiloxane (PDMS) microfluidic channels for fluorescence imaging, formation of supported lipid bilayers, and real-time, label-free SPR sensing. Additionally, the smooth surfaces of the template-stripped Ag films enhance refractive index sensitivity compared with as-deposited, rough Ag films. Because nearly centimeter-sized nanohole arrays can be produced inexpensively without using any additional lithography, etching or lift-off, this method can facilitate widespread applications of metallic nanohole arrays for plasmonics and biosensing. PMID:21770414

  2. SAFOD Site Characterization using the Pilot Hole Seismic Array

    NASA Astrophysics Data System (ADS)

    Malin, P.; Chavarria, J.; Shalev, E.; Walter, L.

    2004-12-01

    Since we installed it in July 2002 and its demise in July 2004, we used a 32 level array of 3-component, 15 Hz seismographs in the Pilot Hole to study the structure and properties of the SAFOD site. The array levels were spaced at 40 m intervals, with the deepest level at 2096 m. A catalogue of several hundred earthquakes and explosions was recorded with the array, mostly with a sampling rate of 2 kHz. We found that the seismograms from these events contain significant information about the structure and properties of the SAFOD site and San Andreas Fault. These data show source and receiver position-sensitive travel time variations in the P- and S-waves. They also commonly contain several secondary phases between the direct waves. By analyzing the data with a variety of travel time ratio, tomographic, and wave-field migration techniques, we have been able to map changes in Vp/Vs along the SAF and along the PH itself. Along the SAF, a northwest-to-southeast reduction in Vp/Vs correlates well with a reduction in fault creep. Between the SAF and PH, P-wave tomography indicates that a large body of rocks with slow velocities is present. By migrating the secondary phases with Kirchhoff methods, we have been able to image SAF-paralleling structures, both within the low velocity body, and on its edges. As one possible interpretation, we have suggested that these features represent a faulted and fault bounded sedimentary section. So far this interpretation has fit the results of the SAFOD 2004 drilling. The presence of these faults and the unexpected volume of sedimentary rocks, which also appear fluid saturated, have important implication how local stresses and strains distribute and build during the earthquake cycle.

  3. Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Gao, Li; Zhang, Yihui; Xie, Xu; Doshay, Sage; Fang, Hui; Fan, Jonathan A.; Nordlander, Peter; Huang, Yonggang; Rogers, John A.; Deesha, Shad; Xu, Siyi

    2015-09-01

    Large scale, dense arrays of plasmonic nanodisks (Au) on low modulus, high elongation elastomeric substrates (PDMS) represent a class of tunable optical system, with reversible ability to shift plasmon resonances, originating from array deformation, over a range of nearly 600nm in the visible region. At the most extreme levels of mechanical deformation (strains <100%), non-linear buckling processes transform initially planar arrays into three dimensional configurations, in which the nanodisks rotate out of the plane, giving rise to an increase of transition rate, to form linear arrays with `wavy' geometries. Analytical and finite element models capture not only the physics of these buckling processes, including all of distinct modes that occur, but also the quantitative effects of these deformations on the plasmonic responses. The results have relevance to mechanically tunable optical systems, with potential relevance to soft optical sensors that integrate on or in the human body.

  4. Tunable, broadband and high-efficiency Si/Ge hot luminescence with plasmonic nanocavity array

    NASA Astrophysics Data System (ADS)

    Qi, Gongmin; Zhang, Miao; Wang, Lin; Mu, Zhiqiang; Ren, Wei; Li, Wei; Di, Zengfeng; Wang, Xi

    2016-06-01

    In addition to the massive application in the electronics industry for decades, silicon has been considered as one of the best candidates for the photonics industry. However, a high-efficiency, broadband light source is still a challenge. In this paper, we theoretically propose a Si/Ge based platform consisting of plasmonic nanocavity array to realize the tunable, broadband, and high-efficiency Si/Ge hot luminescence from infrared to visible region with large luminescence enhancement (about 103). It is demonstrated that the large luminescence enhancement is due to the resonance between the intrinsic hot luminescence and the plasmonic nanocavity modes with ultra-small effective mode volumes. And, the size and Ge composition of Si 1 - x Ge x nanowire can be tuned to realize the tunable and broadband luminescence. This study gives rise to many applications in silicon photonics, like ultrafast optical communications, sensors, and on-chip spectral measurements.

  5. Quantum Symmetry Breaking of Exciton/Polaritons in a Metal-Nanorod Plasmonic Array.

    PubMed

    Zaster, Svitlana; Bittner, Eric R; Piryatinski, Andrei

    2016-05-19

    We study the collective, superradiant behavior in the system of emitter-dressed Ag nanorods. Starting from the Drude model for the plasmon oscillations, we arrive at a semiempirical Hamiltonian describing the coupling between quantized surface plasmon modes and the quantum emitters that can be controlled by manipulating their geometry, spacing, and orientation. Further, identifying the lowest polariton mode as SP-states dressed by excitons in the vicinity of k = 0, we examine conditions allowing for the polariton quantum-phase transition. Though the system is formally a 1D array, we show that the polariton states of interest can undergo a quantum-phase transition to form a Bose condensate at finite temperatures for physically accessible parameter ranges. PMID:26905014

  6. Survey of plasmonic gaps tuned at sub-nanometer scale in self-assembled arrays

    NASA Astrophysics Data System (ADS)

    Qian, Li-Hua; Yi, Li-Zhi; Wang, Gui-Sheng; Zhang, Chao; Yuan, Song-Liu

    2016-04-01

    Creating nanoscale and sub-nanometer gaps between noble metal nanoparticles is critical for the applications of plasmonics and nanophotonics. To realize simultaneous attainments of both the optical spectrum and the gap size, the ability to tune these nanoscale gaps at the sub-nanometer scale is particularly desirable. Many nanofabrication methodologies, including electron beam lithography, self-assembly, and focused ion beams, have been tested for creating nanoscale gaps that can deliver significant field enhancement. Here, we survey recent progress in both the reliable creation of nanoscale gaps in nanoparticle arrays using self-assemblies and in the in-situ tuning techniques at the sub-nanometer scale. Precisely tunable gaps, as we expect, will be good candidates for future investigations of surface-enhanced Raman scattering, non-linear optics, and quantum plasmonics.

  7. Confined acoustic and optical plasmons in double-layered quantum-wire arrays with strong tunneling

    NASA Astrophysics Data System (ADS)

    Dethlefsen, A. F.; Heyn, Ch.; Heitmann, D.; Schüller, C.

    2006-05-01

    We investigate electronic excitations in GaAs-AlxGa1-xAs double-layered quantum wire arrays with strong tunneling coupling by resonant inelastic light scattering. By applying an external electric field, we can change the one-dimensional (1D) electron density and the symmetry of the double quantum-well (DQW) structure at the same time. We identify confined optical 1D intersubband plasmons (COP) and confined acoustic 1D intersubband plasmons (CAP). Due to the tunneling coupling, the energies of the CAP exhibit a minimum for a symmetric DQW potential, whereas the energies of the COP are dominated by the total carrier density, and are nearly insensitive to the symmetry of the potential.

  8. Size-controllable micro-bubble generation using a nanoimprinted plasmonic nanopillar array absorber in the near-infrared region

    NASA Astrophysics Data System (ADS)

    Yang, Sheng-Chieh; Fischer, Wolf-Joachim; Yang, Tsung-Lin

    2016-05-01

    Size-controllable micro-bubble generation from thermoplasmonic effect is of great interest in many fields. In this study, photothermal bubble generation is demonstrated by using a near-infrared plasmonic absorber. A plasmonic nanopillar array is fabricated using a simple and low-cost soft thermal nanoimprint lithography process. Under near-infrared illumination, the plasmonic absorber becomes a highly efficient nanosource of heat because of enhanced light absorption at the localized surface plasmon resonance wavelength. The plasmonic substrate is able to generate size-tunable bubbles, depending on the illumination power and exposure time. The results of finite-difference time-domain simulations exhibit close agreement with the experimental observations. This study could provide alternative chemical synthesis approaches in solvothermal chemistry and sol-gel chemistry.

  9. Plasmonic Based Sensing Using an Array of Au-Metal Oxide Thin Films

    SciTech Connect

    Joy, N.; Rogers, Phillip H.; Nandasiri, Manjula I.; Thevuthasan, Suntharampillai; Carpenter, Michael A.

    2012-12-04

    An optical plasmonic-based sensing array has been developed and tested for the selective and sensitive detection of H2, CO, and NO2 at a temperature of 500°C in an oxygen-containing background. The three element sensing array used Au nanoparticles embedded in separate thin films of yttria stabilized zirconia (YSZ), CeO2, and TiO2. A peak in the absorbance spectrum due to a localized surface plasmon resonance (LSPR) on the Au nanoparticles was monitored for each film during gas exposures and showed a blue shift in the peak positions for the reducing gases, H2 and CO, and a red shift for the oxidizing gas NO2. A more in-depth look at the sensing response was performed using the multivariate methods of principal component analysis (PCA) analysis and linear discriminant analysis (LDA) on data from across the entire absorbance spectrum range. Qualitative results from both methods showed good separation between the three analytes for both the full array and the Au-TiO2 sample. Quantification of LDA cluster separation using the Mahalanobis distance showed better cluster separation for the array, but there were some instances with the lowest concentrations where the single Au-TiO2 film had better separation than the array. A second method to quantify cluster separation in LDA space was developed using multidimensional volume analysis of the individual cluster volume, overlapped cluster volume and empty volume between clusters. Compared to the individual sensing elements, the array showed less cluster overlap, smaller cluster volumes, and more space between clusters, all of which were expected for improved separability between the analytes.

  10. Sensitive surface plasmon resonance enabled by templated periodic arrays of gold nanodonuts

    NASA Astrophysics Data System (ADS)

    Dou, Xuan; Lin, Yuh-Chieh; Choi, Baeck; Wu, Kedi; Jiang, Peng

    2016-05-01

    Here we report a simple and scalable colloidal lithography technology for fabricating periodic arrays of gold nanodonuts for sensitive surface plasmon resonance (SPR) analysis. This new bottom-up approach leverages a unique polymer wetting layer between a self-assembled, non-close-packed monolayer silica colloidal crystal and a silicon substrate to template ordered gold nanodonuts with tunable geometries over wafer-sized areas. The processes involved in this templating nanofabrication approach, including spin coating, oxygen plasma etching, and metal sputtering, are all compatible with standard microfabrication technologies. Specular reflection measurements reveal that the efficient electromagnetic coupling of the incident light with the tunable SPR modes of the templated gold nanodonut arrays enables good spectral tunability. Bulk refractive index sensing experiments show that a high SPR sensitivity of ∼758 nm per refractive index unit, which outperforms many plasmonic nanostructures fabricated by both top-down and bottom-up approaches, can be achieved using the templated gold nanodonut arrays. Numerical finite-difference time-domain simulations have also been performed to complement the optical characterization and the theoretical results match well with the experimental measurements.

  11. Sensitive surface plasmon resonance enabled by templated periodic arrays of gold nanodonuts.

    PubMed

    Dou, Xuan; Lin, Yuh-Chieh; Choi, Baeck; Wu, Kedi; Jiang, Peng

    2016-05-13

    Here we report a simple and scalable colloidal lithography technology for fabricating periodic arrays of gold nanodonuts for sensitive surface plasmon resonance (SPR) analysis. This new bottom-up approach leverages a unique polymer wetting layer between a self-assembled, non-close-packed monolayer silica colloidal crystal and a silicon substrate to template ordered gold nanodonuts with tunable geometries over wafer-sized areas. The processes involved in this templating nanofabrication approach, including spin coating, oxygen plasma etching, and metal sputtering, are all compatible with standard microfabrication technologies. Specular reflection measurements reveal that the efficient electromagnetic coupling of the incident light with the tunable SPR modes of the templated gold nanodonut arrays enables good spectral tunability. Bulk refractive index sensing experiments show that a high SPR sensitivity of ∼758 nm per refractive index unit, which outperforms many plasmonic nanostructures fabricated by both top-down and bottom-up approaches, can be achieved using the templated gold nanodonut arrays. Numerical finite-difference time-domain simulations have also been performed to complement the optical characterization and the theoretical results match well with the experimental measurements. PMID:27040938

  12. Controlled plasmon enhanced fluorescence by silver nanoparticles deposited onto nanotube arrays.

    PubMed

    Zhang, Zhenglong; Wu, Yanni; Dong, Jun; Gao, Wei; Han, Qingyan; Zheng, Hairong

    2016-09-14

    Three-dimensional (3D) plasmonic nanostructures of porous alumina array (PAA) with silver nanoparticles (AgNPs) were prepared for enhancing fluorescence emission. In order to avoid fluorescence quenching effects and obtain clear fluorescence enhancement, the molecules were separated by using such 3D substrates, and the mean distance between the molecules and nanoparticles' surface can be easily controlled by changing the diameters of the PAA tube. It was found that the PAA tube with smaller size provides better fluorescence enhancement. Enhanced cross section, a new fluorescence enhanced factor, combined with the simulation of localized electromagnetic field enhancement was presented to understand the experimental results. PMID:27406632

  13. Controlled plasmon enhanced fluorescence by silver nanoparticles deposited onto nanotube arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenglong; Wu, Yanni; Dong, Jun; Gao, Wei; Han, Qingyan; Zheng, Hairong

    2016-09-01

    Three-dimensional (3D) plasmonic nanostructures of porous alumina array (PAA) with silver nanoparticles (AgNPs) were prepared for enhancing fluorescence emission. In order to avoid fluorescence quenching effects and obtain clear fluorescence enhancement, the molecules were separated by using such 3D substrates, and the mean distance between the molecules and nanoparticles’ surface can be easily controlled by changing the diameters of the PAA tube. It was found that the PAA tube with smaller size provides better fluorescence enhancement. Enhanced cross section, a new fluorescence enhanced factor, combined with the simulation of localized electromagnetic field enhancement was presented to understand the experimental results.

  14. Plasmon-Driven Dynamic Response of a Hierarchically Structural Silver-Decorated Nanorod Array for Sub-10 nm Nanogaps.

    PubMed

    Wang, Yi; Wang, Hailong; Wang, Yuyang; Shen, Yanting; Xu, Shuping; Xu, Weiqing

    2016-06-22

    Plasmonic nanogaps serve as a useful configuration for light concentration and local field amplification owing to the extreme localization of surface plasmons. Here, a smart plasmonic nanogap device is fabricated by the dynamic response of an Ag decorated hierarchically structural vertical polymer nanorod array under the light irradiation. Seven nanorods in one unit bend because of plasmonic heating effect and they are centrally collected due to the attraction of the plasmon-induced polaritons, leading to the significantly enhanced local electromagnetic field at the sub-10 nm gaps among the constricted nanorod tops. Compared with tuning capillarity in microscale by wetting and drying, using light as external stimuli is much easier and more tunable in nanoscale. This plasmonic nanogap device is used for a surface-enhanced Raman scattering (SERS) substrate. Its hydrophobic surface with a contact angle of 142 degree can make the probed aqueous solution only access to the Ag tips of nanorods. Thus, the analytes can be driven to the "hot spot" regions where located at the tops of nanorods during the solvent evaporation process, which is beneficial to SERS detection. Discovery of this smart plasmon-driven process broadens the scope for further functionality of both the dynamic nanostructure design and the smart plasmonic devices in the communities of chemistry, biomedicine, and microfluidic engineering. PMID:27250862

  15. Plasmonic nanoantenna arrays for surface-enhanced Raman spectroscopy of lipid molecules embedded in a bilayer membrane.

    PubMed

    Kühler, Paul; Weber, Max; Lohmüller, Theobald

    2014-06-25

    We demonstrate a strategy for surface-enhanced Raman spectroscopy (SERS) of supported lipid membranes with arrays of plasmonic nanoantennas. Colloidal lithography refined with plasma etching is used to synthesize arrays of triangular shaped gold nanoparticles. Reducing the separation distance between the triangle tips leads to plasmonic coupling and to a strong enhancement of the electromagnetic field in the nanotriangle gap. As a result, the Raman scattering intensity of molecules that are located at this plasmonic "hot-spot" can be increased by several orders of magnitude. The nanoantenna array is then embedded with a supported phospholipid membrane which is fluid at room temperature and spans the antenna gap. This configuration offers the advantage that molecules that are mobile within the bilayer membrane can enter the "hot-spot" region via diffusion and can therefore be measured by SERS without static entrapment or adsorption of the molecules to the antenna itself. PMID:24896979

  16. Spin-Dependent Emission from Arrays of Planar Chiral Nanoantennas Due to Lattice and Localized Plasmon Resonances.

    PubMed

    Cotrufo, Michele; Osorio, Clara I; Koenderink, A Femius

    2016-03-22

    Chiral plasmonic nanoantennas manifest a strong asymmetric response to circularly polarized light. Particularly, the geometric handedness of a plasmonic structure can alter the circular polarization state of light emitted from nearby sources, leading to a spin-dependent emission direction. In past experiments, these effects have been attributed entirely to the localized plasmonic resonances of single antennas. In this work, we demonstrate that, when chiral nanoparticles are arranged in diffractive arrays, lattice resonances play a primary role in determining the spin-dependent emission of light. We fabricate 2D diffractive arrays of planar chiral metallic nanoparticles embedded in a light-emitting dye-doped slab. By measuring the polarized photoluminescence enhancement, we show that the geometric chirality of the array's unit cell induces a preferential circular polarization, and that both the localized surface plasmon resonance and the delocalized hybrid plasmonic-photonic mode contribute to this phenomenon. By further mapping the angle-resolved degree of circular polarization, we demonstrate that strong chiral dissymmetries are mainly localized at the narrow emission directions of the surface lattice resonances. We validate these results against a coupled dipole model calculation, which correctly reproduces the main features. Our findings demonstrate that, in diffractive arrays, lattice resonances play a primary role into the light spin-orbit effect, introducing a highly nontrivial behavior in the angular spectra. PMID:26854880

  17. Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons

    NASA Astrophysics Data System (ADS)

    Nikitin, A. Yu.; Guinea, F.; Garcia-Vidal, F. J.; Martin-Moreno, L.

    2012-02-01

    Resonance diffraction in the periodic array of graphene microribbons is theoretically studied following a recent experiment [L. Ju , Nature Nanotech.1748-338710.1038/nnano.2011.146 6, 630 (2011)]. Systematic studies over a wide range of parameters are presented. It is shown that a much richer resonant picture would be observable for higher relaxation times of charge carriers: More resonances appear and transmission can be totally suppressed. The comparison with the absorption cross-section of a single ribbon shows that the resonant features of the periodic array are associated with leaky plasmonic modes. The longest-wavelength resonance provides the highest visibility of the transmission dip and has the strongest spectral shift and broadening with respect to the single-ribbon resonance, due to collective effects.

  18. Nanoplasmonic biosensor: coupling electrochemistry to localized surface plasmon resonance spectroscopy on nanocup arrays.

    PubMed

    Zhang, Diming; Lu, Yanli; Jiang, Jing; Zhang, Qian; Yao, Yao; Wang, Ping; Chen, Bilian; Cheng, Qiaoyuan; Liu, Gang Logan; Liu, Qingjun

    2015-05-15

    The nanoscale Lycurgus cup arrays were hybrid structures of nanocups and nanoparticles with ultrasensitivity to refractive index change. In this study, an electrochemical localized surface plasmon resonance (LSPR) sensor was developed by coupling electrochemistry to LSPR spectroscopy measurement on the nanoscale cup arrays (nanoCA). Based on the combination of electrochemistry and LSPR measurement, the electrochemical LSPR on nanoCA was observed with significant resonance wavelength shifts in electrochemical modulation. The synchronous implementation of cyclic voltammetry and optical transmission spectrum can be used to obtain multiply sensing information and investigate the enhancement for LSPR from electrochemical scanning. The electrochemical enhanced LSPR was utilized as biosensor to detect biomolecules. The electrochemical LSPR biosensor with synchronous electrochemical and optical implement showed higher sensitivity than that of conventional optical LSPR measurement. Detecting with multi-transducer parameters and high sensitivity, the electrochemical LSPR provided a promising approach for chemical and biological detection. PMID:25172029

  19. T-shaped plasmonic array as a narrow-band thermal emitter or biosensor.

    PubMed

    Chang, Yia-Chung; Wang, Chih-Ming; Abbas, Mohammed N; Shih, Ming-Hsiung; Tsai, Din Ping

    2009-08-01

    A T-shaped plasmonic array is proposed for application as an effective thermal emitter or biosensor. The reflection and thermal radiation properties of a T-shaped array are investigated theoretically. The angular dependent reflectance spectrum shows a clear resonant dip at 0.36 eV for full polar angles. No other significant localized resonant mode is found in the investigated spectral range from 0.12 eV to 0.64 eV. According to the Kirchhoff's law, the thermal radiation of the proposed structure can lead to a sharp peak at 3.5 microm with low sideband emission. We have also found that the T-shaped structure filled with organic material such as PMMA with different thicknesses (10 nm -50 nm) can lead to significant shift of the resonance wavelength. Thus, the T-shaped structure can also be used as a good sensor for organic materials. PMID:19654760

  20. Nonlinear absorption tuning by composition control in bimetallic plasmonic nanoprism arrays

    NASA Astrophysics Data System (ADS)

    Cesca, Tiziana; Michieli, Niccolò; Kalinic, Boris; Sánchez-Espinoza, Ana; Rattin, Marco; Russo, Valentina; Mattarello, Valentina; Scian, Carlo; Mazzoldi, Paolo; Mattei, Giovanni

    2015-07-01

    The nonlinear absorption properties of bidimensional arrays of Au-Ag bilayered nanoprisms have been investigated by z-scan measurements as a function of the bimetallic nanoprism composition. A tunable ps laser system was used to excite the ultrafast, electronic nonlinear response matching the laser wavelength with the quadrupolar surface plasmon resonances, in the visible range, of each nanoprism array. Due to the strong electromagnetic field confinement effects at the nanoprism tips, demonstrated by finite element method simulations, these nanosystems proved to have enhanced nonlinear optical properties. Moreover, a tunable changeover from reverse saturable absorption (RSA) to saturable absorption (SA) can be obtained by properly controlling the bimetallic composition of the nanoprisms, without modifying the overall morphology of the nanosystems. This capability makes these nanosystems extremely interesting for the realization of solid-state nanophotonic devices with enhanced ultrafast nonlinear optical properties.The nonlinear absorption properties of bidimensional arrays of Au-Ag bilayered nanoprisms have been investigated by z-scan measurements as a function of the bimetallic nanoprism composition. A tunable ps laser system was used to excite the ultrafast, electronic nonlinear response matching the laser wavelength with the quadrupolar surface plasmon resonances, in the visible range, of each nanoprism array. Due to the strong electromagnetic field confinement effects at the nanoprism tips, demonstrated by finite element method simulations, these nanosystems proved to have enhanced nonlinear optical properties. Moreover, a tunable changeover from reverse saturable absorption (RSA) to saturable absorption (SA) can be obtained by properly controlling the bimetallic composition of the nanoprisms, without modifying the overall morphology of the nanosystems. This capability makes these nanosystems extremely interesting for the realization of solid

  1. Fano Resonance and Spectrally Modified Photoluminescence Enhancement in Monolayer MoS2 Integrated with Plasmonic Nanoantenna Array.

    PubMed

    Lee, Bumsu; Park, Joohee; Han, Gang Hee; Ee, Ho-Seok; Naylor, Carl H; Liu, Wenjing; Johnson, A T Charlie; Agarwal, Ritesh

    2015-05-13

    The manipulation of light-matter interactions in two-dimensional atomically thin crystals is critical for obtaining new optoelectronic functionalities in these strongly confined materials. Here, by integrating chemically grown monolayers of MoS2 with a silver-bowtie nanoantenna array supporting narrow surface-lattice plasmonic resonances, a unique two-dimensional optical system has been achieved. The enhanced exciton-plasmon coupling enables profound changes in the emission and excitation processes leading to spectrally tunable, large photoluminescence enhancement as well as surface-enhanced Raman scattering at room temperature. Furthermore, due to the decreased damping of MoS2 excitons interacting with the plasmonic resonances of the bowtie array at low temperatures stronger exciton-plasmon coupling is achieved resulting in a Fano line shape in the reflection spectrum. The Fano line shape, which is due to the interference between the pathways involving the excitation of the exciton and plasmon, can be tuned by altering the coupling strengths between the two systems via changing the design of the bowties lattice. The ability to manipulate the optical properties of two-dimensional systems with tunable plasmonic resonators offers a new platform for the design of novel optical devices with precisely tailored responses. PMID:25926239

  2. In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting.

    PubMed

    Ge, Ming-Zheng; Cao, Chun-Yan; Li, Shu-Hui; Tang, Yu-Xin; Wang, Lu-Ning; Qi, Ning; Huang, Jian-Ying; Zhang, Ke-Qin; Al-Deyab, S S; Lai, Yue-Kun

    2016-03-01

    An ultrasonication-assisted in situ deposition strategy was utilised to uniformly decorate plasmonic Ag nanoparticles on vertically aligned TiO2 nanotube arrays (NTAs) to construct a Ag@TiO2 NTA composite. The Ag nanoparticles act as efficient surface plasmon resonance (SPR) photosensitizers to drive photocatalytic water splitting under visible light irradiation. The Ag nanoparticles were uniformly deposited on the surface and inside the highly oriented TiO2 nanotubes. The visible-light-driven hydrogen production activities of silver nanoparticle anchored TiO2 nanotube array photocatalysts were evaluated using methanol as a sacrificial reagent in water under a 500 W Xe lamp with a UV light cutoff filter (λ ≥ 420 nm). It was found that the hydrogen production rate of the Ag@TiO2 NTAs prepared with ultrasonication-assisted deposition for 5 min was approximately 15 times higher than that of its pristine TiO2 NTAs counterpart. The highly efficient photocatalytic hydrogen evolution is attributed to the SPR effect of Ag for enhanced visible light absorption and boosting the photogenerated electron-hole separation/transfer. This strategy is promising for the design and construction of high efficiency TiO2 based photocatalysts for solar energy conversion. PMID:26878901

  3. Confined surface plasmon sensors based on strongly coupled disk-in-volcano arrays.

    PubMed

    Ai, Bin; Wang, Limin; Möhwald, Helmuth; Yu, Ye; Zhang, Gang

    2015-02-14

    Disk-in-volcano arrays are reported to greatly enhance the sensing performance due to strong coupling in the nanogaps between the nanovolcanos and nanodisks. The designed structure, which is composed of a nanovolcano array film and a disk in each cavity, is fabricated by a simple and efficient colloidal lithography method. By tuning structural parameters, the disk-in-volcano arrays show greatly enhanced resonances in the nanogaps formed by the disks and the inner wall of the volcanos. Therefore they respond to the surrounding environment with a sensitivity as high as 977 nm per RIU and with excellent linear dependence on the refraction index. Moreover, through mastering the fabrication process, biological sensing can be easily confined to the cavities of the nanovolcanos. The local responsivity has the advantages of maximum surface plasmon energy density in the nanogaps, reducing the sensing background and saving expensive reagents. The disk-in-volcano arrays also possess great potential in applications of optical and electrical trapping and single-molecule analysis, because they enable establishment of electric fields across the gaps. PMID:25384425

  4. Spatial and spectral selective characteristics of the plasmonic sensing using metallic nanoslit arrays

    NASA Astrophysics Data System (ADS)

    Ge, Caiwang; Guo, Zhongyi; Sun, Yongxuan; Shen, Fei; Tao, Yifei; Zhang, Jingran; Li, Rongzhen; Luo, Linbao

    2016-01-01

    A novel spatial and spectral selective plasmonic sensing based on the metal nanoslit arrays has been proposed and investigated theoretically, which shows a high performance in the multiplexing biomolecular detections. By properly tuning the geometric parameters of metal nanoslit arrays, the enhanced optical fields at different regions can be obtained selectively due to the excitation of SPP, cavity mode (CM), and their coupling effects. Simulation results show that the resonances of the metal nanoslit arrays at different spatial locations and different wavelengths can be achieved simultaneously. A relative bigger red-shift of 57 nm can be realized when a layer of biomolecular film is adsorbing at the slit walls, and the corresponding total intensity difference will be enhanced near 10 times compared to that at the top surface. In addition, when a BSA protein monolayer is adsorbing at slit walls with different slit widths, the corresponding wavelength shifts can reach to more than 80 nm by modulating the widths of the slit. The simulated results demonstrate that our designed metal nanoslit arrays can serve as a portable, low-cost biosensing with a high spatial and spectral selective performance.

  5. Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays.

    PubMed

    Huang, Chen-Han; Lin, Hsing-Ying; Lau, Ben-Chao; Liu, Chih-Yi; Chui, Hsiang-Chen; Tzeng, Yonhua

    2010-12-20

    We report on plasmon induced optical switching of electrical conductivity in two-dimensional (2D) arrays of silver (Ag) nanoparticles encapsulated inside nanochannels of porous anodic aluminum oxide (AAO) films. The reversible switching of photoconductivity greatly enhanced by an array of closely spaced Ag nanoparticles which are isolated from each other and from the ambient by thin aluminum oxide barrier layers are attributed to the improved electron transport due to the localized surface plasmon resonance and coupling among Ag nanoparticles. The photoconductivity is proportional to the power, and strongly dependent on the wavelength of light illumination. With Ag nanoparticles being isolated from the ambient environments by a thin layer of aluminum oxide barrier layer of controlled thickness in nanometers to tens of nanometers, deterioration of silver nanoparticles caused by environments is minimized. The electrochemically fabricated nanostructured Ag/AAO is inexpensive and promising for applications to integrated plasmonic circuits and sensors. PMID:21197062

  6. Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas

    SciTech Connect

    Berry, Christopher W.; Hashemi, Mohammad R.; Jarrahi, Mona

    2014-02-24

    An array of 3 × 3 plasmonic photoconductive terahertz emitters with logarithmic spiral antennas is fabricated on a low temperature (LT) grown GaAs substrate and characterized in response to a 200 fs optical pump from a Ti:sapphire mode-locked laser at 800 nm wavelength. A microlens array is used to split and focus the optical pump beam onto the active area of each plasmonic photoconductive emitter element. Pulsed terahertz radiation with record high power levels up to 1.9 mW in the 0.1–2 THz frequency range is measured at an optical pump power of 320 mW. The record high power pulsed terahertz radiation is enabled by the use of plasmonic contact electrodes, enhancing the photoconductor quantum efficiencies, and by increasing the overall device active area, mitigating the carrier screening effect and thermal breakdown at high optical pump power levels.

  7. Oil-in-water emulsion as fabrication platform for uniform plasmon-controlled two-dimensional metallic nanoparticle array

    NASA Astrophysics Data System (ADS)

    Kagawa, Ryusuke; Takeyasu, Nobuyuki; Kaneta, Takashi; Takemoto, Yoshito

    2016-07-01

    Gold/silver nanoparticles were trapped at the oil/water interface of oil droplets dispersed in water. The metallic nanoparticles were self-assembled into a uniform two-dimensional large array structure through the aggregation and coalescence of the nanoparticle-covered oil droplets. The plasmon resonance of the array structure was tunable and a surface-enhanced Raman scattering measurement was performed with the silver nanoparticle array. The enhancement factor was ∼105 and enhanced Raman signals were observed over the whole array ( ≳ \\text{cm}2) with high reproducibility, which is an advantage of a self-assembly method using a liquid/liquid interface.

  8. Cooperative absorption of terahertz radiation by plasmon modes in an array of field-effect transistors with two-dimensional electron channel

    SciTech Connect

    Popov, V. V.; Tsymbalov, G. M.; Fateev, D. V.; Shur, M. S.

    2006-09-18

    The authors computer simulations show that plasmon modes excited in an array of field-effect transistors with two-dimensional electron channel strongly couple to terahertz radiation due to the synchronization of plasma oscillations in different unit cells of the array. It is shown that in such a device the higher-order plasmon modes are excited much more effectively than in a large area two-dimensional electron channel coupled to terahertz radiation by a slit-grating gate. Effective excitation of the higher-order plasmon modes makes it possible to design terahertz plasmonic devices with operating frequencies up to 15 THz or even higher.

  9. Flow visualization of film cooling with spanwise injection from a small array of holes and compound-angle injection from a large array

    NASA Technical Reports Server (NTRS)

    Russell, L. M.

    1978-01-01

    Film injection from discrete holes in a smooth, flat plate was studied for two configurations: (1) spanwise injection through a four hole staggered array; and (2) compound angle injection through a 49 hole staggered array. The ratio of boundary layer thicknesses to hole diameter and the Reynolds number were typical of gas turbine film cooling applications. Streaklines showing the motion of the injected air were obtained by photographing small, neutrally buoyant, helium-filled soap bubbles that followed the flow field.

  10. Au nanostructure arrays for plasmonic applications: annealed island films versus nanoimprint lithography.

    PubMed

    Lopatynskyi, Andrii M; Lytvyn, Vitalii K; Nazarenko, Volodymyr I; Guo, L Jay; Lucas, Brandon D; Chegel, Volodymyr I

    2015-01-01

    This paper attempts to compare the main features of random and highly ordered gold nanostructure arrays (NSA) prepared by thermally annealed island film and nanoimprint lithography (NIL) techniques, respectively. Each substrate possesses different morphology in terms of plasmonic enhancement. Both methods allow such important features as spectral tuning of plasmon resonance position depending on size and shape of nanostructures; however, the time and cost is quite different. The respective comparison was performed experimentally and theoretically for a number of samples with different geometrical parameters. Spectral characteristics of fabricated NSA exhibited an expressed plasmon peak in the range from 576 to 809 nm for thermally annealed samples and from 606 to 783 nm for samples prepared by NIL. Modelling of the optical response for nanostructures with typical shapes associated with these techniques (parallelepiped for NIL and semi-ellipsoid for annealed island films) was performed using finite-difference time-domain calculations. Mathematical simulations have indicated the dependence of electric field enhancement on the shape and size of the nanoparticles. As an important point, the distribution of electric field at so-called 'hot spots' was considered. Parallelepiped-shaped nanoparticles were shown to yield maximal enhancement values by an order of magnitude greater than their semi-ellipsoid-shaped counterparts; however, both nanoparticle shapes have demonstrated comparable effective electrical field enhancement values. Optimized Au nanostructures with equivalent diameters ranging from 85 to 143 nm and height equal to 35 nm were obtained for both techniques, resulting in the largest electrical field enhancement. The application of island film thermal annealing method for nanochips fabrication can be considered as a possible cost-effective platform for various surface-enhanced spectroscopies; while the NIL-fabricated NSA looks like more effective for

  11. Au nanostructure arrays for plasmonic applications: annealed island films versus nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Lopatynskyi, Andrii M.; Lytvyn, Vitalii K.; Nazarenko, Volodymyr I.; Guo, L. Jay; Lucas, Brandon D.; Chegel, Volodymyr I.

    2015-03-01

    This paper attempts to compare the main features of random and highly ordered gold nanostructure arrays (NSA) prepared by thermally annealed island film and nanoimprint lithography (NIL) techniques, respectively. Each substrate possesses different morphology in terms of plasmonic enhancement. Both methods allow such important features as spectral tuning of plasmon resonance position depending on size and shape of nanostructures; however, the time and cost is quite different. The respective comparison was performed experimentally and theoretically for a number of samples with different geometrical parameters. Spectral characteristics of fabricated NSA exhibited an expressed plasmon peak in the range from 576 to 809 nm for thermally annealed samples and from 606 to 783 nm for samples prepared by NIL. Modelling of the optical response for nanostructures with typical shapes associated with these techniques (parallelepiped for NIL and semi-ellipsoid for annealed island films) was performed using finite-difference time-domain calculations. Mathematical simulations have indicated the dependence of electric field enhancement on the shape and size of the nanoparticles. As an important point, the distribution of electric field at so-called `hot spots' was considered. Parallelepiped-shaped nanoparticles were shown to yield maximal enhancement values by an order of magnitude greater than their semi-ellipsoid-shaped counterparts; however, both nanoparticle shapes have demonstrated comparable effective electrical field enhancement values. Optimized Au nanostructures with equivalent diameters ranging from 85 to 143 nm and height equal to 35 nm were obtained for both techniques, resulting in the largest electrical field enhancement. The application of island film thermal annealing method for nanochips fabrication can be considered as a possible cost-effective platform for various surface-enhanced spectroscopies; while the NIL-fabricated NSA looks like more effective for sensing of

  12. Synergistic Effect of Surface Plasmonic particles and Surface Passivation layer on ZnO Nanorods Array for Improved Photoelectrochemical Water Splitting

    NASA Astrophysics Data System (ADS)

    Liu, Yichong; Yan, Xiaoqin; Kang, Zhuo; Li, Yong; Shen, Yanwei; Sun, Yihui; Wang, Li; Zhang, Yue

    2016-07-01

    One-dimensional zinc oxide nanorods array exhibit excellent electron mobility and thus hold great potential as photoanode for photoelelctrochemical water splitting. However, the poor absorption of visible light and the prominent surface recombination hider the performance improvement. In this work, Au nanoparticles and aluminium oxide were deposited onto the surface of ZnO nanorods to improve the PEC performance. The localized surface plasmon resonance of Au NPs could expand the absorption spectrum to visible region. Simultaneously, the surface of passivation with Au NPs and Al2O3 largely suppressed the photogenerated electron-hole recombination. As a result, the optimal solar-to-hydrogen efficiency of ZnO/Au/Al2O3 with 5 cycles was 6.7 times that of pristine ZnO, ascribed to the synergistic effect of SPR and surface passivation. This research reveals that the synergistic effect could be used as an important method to design efficient photoanodes for photoelectrochemical devices.

  13. Design of large scale plasmonic nanoslit arrays for arbitrary mode conversion and demultiplexing.

    PubMed

    Wahl, Pierre; Tanemura, Takuo; Vermeulen, Nathalie; Van Erps, Jürgen; Miller, David A B; Thienpont, Hugo

    2014-01-13

    We present an iterative design method for the coupling and the mode conversion of arbitrary modes to focused surface plasmons using a large array of aperiodically randomly located slits in a thin metal film. As the distance between the slits is small and the number of slits is large, significant mutual coupling occurs between the slits which makes an accurate computation of the field scattered by the slits difficult. We use an accurate modal source radiator model to efficiently compute the fields in a significantly shorter time compared with three-dimensional (3D) full-field rigorous simulations, so that iterative optimization is efficiently achieved. Since our model accounts for mutual coupling between the slits, the scattering by the slits of both the source wave and the focused surface plasmon can be incorporated in the optimization scheme. We apply this method to the design of various types of couplers for arbitrary fiber modes and a mode demultiplexer that focuses three orthogonal fiber modes to three different foci. Finally, we validate our design results using fully vectorial 3D finite-difference time-domain (FDTD) simulations. PMID:24515024

  14. Enhanced light emission from large-area monolayer MoS₂ using plasmonic nanodisc arrays.

    PubMed

    Butun, Serkan; Tongay, Sefaattin; Aydin, Koray

    2015-04-01

    Single-layer direct band gap semiconductors such as transition metal dichalcogenides are quite attractive for a wide range of electronics, photonics, and optoelectronics applications. Their monolayer thickness provides significant advantages in many applications such as field-effect transistors for high-performance electronics, sensor/detector applications, and flexible electronics. However, for optoelectronics and photonics applications, inherent monolayer thickness poses a significant challenge for the interaction of light with the material, which therefore results in poor light emission and absorption behavior. Here, we demonstrate enhanced light emission from large-area monolayer MoS2 using plasmonic silver nanodisc arrays, where enhanced photoluminescence up to 12-times has been measured. Observed phenomena stem from the fact that plasmonic resonance couples to both excitation and emission fields and thus boosts the light-matter interaction at the nanoscale. Reported results allow us to engineer light-matter interactions in two-dimensional materials and could enable highly efficient photodetectors, sensors, and photovoltaic devices, where photon absorption and emission efficiency highly dictate the device performance. PMID:25729895

  15. Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography.

    PubMed

    Luo, Jun; Zeng, Bo; Wang, Changtao; Gao, Ping; Liu, Kaipeng; Pu, Mingbo; Jin, Jinjin; Zhao, Zeyu; Li, Xiong; Yu, Honglin; Luo, Xiangang

    2015-11-28

    Nanofabrication technology with high-resolution, high-throughput and low-cost is essential for the development of nanoplasmonic and nanophotonic devices. At present, most metasurfaces are fabricated in a point by point writing manner with electron beam lithography or a focused ion beam, which imposes a serious cost barrier with respect to practical applications. Near field optical lithography, seemingly providing a high-resolution and low-cost way, however, suffers from the ultra shallow depth and poor fidelity of obtained photoresist patterns due to the exponential decay feature of evanescent waves. Here, we propose a method of surface plasmonic imaging lithography by introducing a reflective plasmonic lens to amplify and compensate evanescent waves, resulting in the production of nano resist patterns with high fidelity, contrast and enhanced depth beyond that usually obtained by near field optical lithography. As examples, a discrete and anisotropically arrayed nano-slots mask pattern with different orientations and a size of 40 nm × 120 nm could be imaged in photoresist and transferred successfully onto a metal layer through an etching process. Evidence for the pattern quality is given by virtue of the fabricated metasurface lens devices showing good focusing performance in experiments. It is believed that this method provides a parallel, low-cost, high-throughput and large-area nanofabrication route for fabricating nanostructures of holograms, vortex phase plates, bio-sensors and solar cells etc. PMID:26507847

  16. Observation of a hole-size-dependent energy shift of the surface-plasmon resonance in Ni antidot thin films

    SciTech Connect

    Fang, H.; Akinoglu, E. M.; Fumagalli, P.; Caballero, B.; García-Martín, A.; Papaioannou, E. Th.; Cuevas, J. C.; Giersig, M.

    2015-04-13

    A combined experimental and theoretical study of the magneto-optic properties of a series of nickel antidot thin films is presented. The hole diameter varies from 869 down to 636 nm, while the lattice periodicity is fixed at 920 nm. This results in an overall increase of the polar Kerr rotation with decreasing hole diameter due to the increasing surface coverage with nickel. In addition, at photon energies of 2.7 and 3.3 eV, where surface-plasmon excitations are expected, we observe distinct features in the polar Kerr rotation not present in continuous nickel films. The spectral position of the peaks exhibits a red shift with decreasing hole size. This is explained within the context of an effective medium theory by a change in the effective dielectric function of the Ni thin films.

  17. Large-area, ordered hexagonal arrays of nanoscale holes or dots from block copolymer templates

    SciTech Connect

    Vedrine, Josee; Hong, Young-Rae; Marencic, Andrew P.; Register, Richard A.; Adamson, Douglas H.; Chaikin, Paul M.

    2007-10-01

    Hexagonal arrays of nanoscale holes or metal dots (25 nm in diameter and 39 nm in period), with orientational order extending over the entire square-centimeter array area, were fabricated on unpatterned silicon wafer substrates using a shear-aligned sphere-forming diblock copolymer template. Since two or more layers of spherical nanodomains are required to achieve alignment in the block copolymer film, but pattern transfer requires a single layer, a multistep etching process was developed, whereby the top layer of a shear-aligned bilayer was evenly removed, leaving the ordered bottom layer as the fabrication template for hole and dot arrays free from grain boundaries.

  18. Complex modes and effective refractive index in 3D periodic arrays of plasmonic nanospheres.

    PubMed

    Campione, Salvatore; Steshenko, Sergiy; Albani, Matteo; Capolino, Filippo

    2011-12-19

    We characterize the modes with complex wavenumber for both longitudinal and transverse polarization states (with respect to the mode traveling direction) in three dimensional (3D) periodic arrays of plasmonic nanospheres, including metal losses. The Ewald representation of the required dyadic periodic Green's function to represent the field in 3D periodic arrays is derived from the scalar case, which can be analytically continued into the complex wavenumber space. We observe the presence of one longitudinal mode and two transverse modes, one forward and one backward. Despite the presence of two modes for transverse polarization, we notice that the forward one is "dominant" (i.e., it contributes most to the field in the array). Therefore, in case of transverse polarization, we describe the composite material in terms of a homogenized effective refractive index, comparing results from (i) modal analysis, (ii) Maxwell Garnett theory, (iii) Nicolson-Ross-Weir retrieval method from scattering parameters for finite thickness structures (considering different thicknesses, showing consistency of results), and (iv) the fitting of the fields obtained through HFSS simulations. The agreement among the different methods justifies the performed homogenization procedure in case of transverse polarization. PMID:22274192

  19. Plasmon-enhanced second-harmonic generation from hybrid ZnO-covered silver-bowl array

    NASA Astrophysics Data System (ADS)

    Yang, Mingming; Shen, Shaoxin; Wang, Xiangjie; Yu, Binbin; Huang, Shengli; Xu, Die; Hu, Jiawen; Yang, Zhilin

    2016-06-01

    High-efficient, plasmon-enhanced nonlinear phenomena based on hybrid nanostructures, which combine nonlinear dielectrics with plasmonic metals, are of fundamental importance for various applications ranging from all-optical switching to imaging or bio-sensing. However, the high loss of the excitation energy in nanostructures and the poor spatial overlap between the plasmon enhancement and the bulk of nonlinear materials largely limit the operation of plasmon-enhanced nonlinear effects, resulting in low nonlinear conversion efficiency. Here, we design and fabricate a ZnO-covered, 2D silver-bowl array, which can serve as an efficient platform for plasmon-enhanced second-harmonic generation (PESHG). Validated by experiments and simulations, we demonstrate that the high spatial overlap between the near-field enhancement and the ZnO film plays the key role for this nanostructure-based PESHG process. The enhancement mainly originates from the fundamental wavelength-derived plasmon resonance, providing an enhancement factor of approximately 33 times. These results achieved pave the way for future applications, which require localized light sources at nanoscale.

  20. Plasmon-enhanced second-harmonic generation from hybrid ZnO-covered silver-bowl array.

    PubMed

    Yang, Mingming; Shen, Shaoxin; Wang, Xiangjie; Yu, Binbin; Huang, Shengli; Xu, Die; Hu, Jiawen; Yang, Zhilin

    2016-06-01

    High-efficient, plasmon-enhanced nonlinear phenomena based on hybrid nanostructures, which combine nonlinear dielectrics with plasmonic metals, are of fundamental importance for various applications ranging from all-optical switching to imaging or bio-sensing. However, the high loss of the excitation energy in nanostructures and the poor spatial overlap between the plasmon enhancement and the bulk of nonlinear materials largely limit the operation of plasmon-enhanced nonlinear effects, resulting in low nonlinear conversion efficiency. Here, we design and fabricate a ZnO-covered, 2D silver-bowl array, which can serve as an efficient platform for plasmon-enhanced second-harmonic generation (PESHG). Validated by experiments and simulations, we demonstrate that the high spatial overlap between the near-field enhancement and the ZnO film plays the key role for this nanostructure-based PESHG process. The enhancement mainly originates from the fundamental wavelength-derived plasmon resonance, providing an enhancement factor of approximately 33 times. These results achieved pave the way for future applications, which require localized light sources at nanoscale. PMID:27145724

  1. Oscillons, solitons, and domain walls in arrays of nonlinear plasmonic nanoparticles

    PubMed Central

    Noskov, Roman; Belov, Pavel; Kivshar, Yuri

    2012-01-01

    The study of metal nanoparticles plays a central role in the emerging novel technologies employing optics beyond the diffraction limit. Combining strong surface plasmon resonances, high intrinsic nonlinearities and deeply subwavelength scales, arrays of metal nanoparticles offer a unique playground to develop novel concepts for light manipulation at the nanoscale. Here we suggest a novel principle to control localized optical energy in chains of nonlinear subwavelength metal nanoparticles based on the fundamental nonlinear phenomenon of modulation instability. In particular, we demonstrate that modulation instability can lead to the formation of long-lived standing and moving nonlinear localized modes of several distinct types such as bright and dark solitons, oscillons, and domain walls. We analyze the properties of these nonlinear localized modes and reveal different scenarios of their dynamics including transformation of one type of mode to another. We believe this work paves a way towards the development of nonlinear nanophotonics circuitry. PMID:23170198

  2. Compact Feeding Network for Array Radiations of Spoof Surface Plasmon Polaritons

    NASA Astrophysics Data System (ADS)

    Xu, Jun Jun; Yin, Jia Yuan; Zhang, Hao Chi; Cui, Tie Jun

    2016-03-01

    We propose a splitter feeding network for array radiations of spoof surface plasmon polaritons (SPPs), which are guided by ultrathin corrugated metallic strips. Based on the coupled mode theory, SPP fields along a single waveguide in a certain frequency range can be readily coupled into two adjacent branch waveguides with the same propagation constants. We propose to load U-shaped particles anti-symmetrically at the ends of such two branch waveguides, showing a high integration degree of the feeding network. By controlling linear phase modulations produced by the U-shaped particle chain, we demonstrate theoretically and experimentally that the SPP fields based on bound modes can be efficiently radiated to far fields in broadside direction. The proposed method shows that the symmetry of electromagnetic field modes can be exploited to the SPP transmission network, providing potential solutions to compact power dividers and combiners for microwave and optical devices and systems.

  3. On-chip near-infrared spectroscopy of CO2 using high resolution plasmonic filter array

    NASA Astrophysics Data System (ADS)

    Chong, Xinyuan; Li, Erwen; Squire, Kenneth; Wang, Alan X.

    2016-05-01

    We report an ultra-compact, cost-effective on-chip near-infrared spectroscopy system for CO2 sensing using narrow-band optical filter array based on plasmonic gratings with a waveguide layer. By varying the periodicity of the gratings, the transmission spectra of the filters can be continuously tuned to cover the 2.0 μm sensing window with high spectral resolution around 10 nm. Our experimental results show that the on-chip spectroscopy system can resolve the two symmetric vibrational bands of CO2 at 2.0 μm wavelength, which proves its potential to replace the expensive commercial IR spectroscopy system for on-site gas sensing.

  4. Compact Feeding Network for Array Radiations of Spoof Surface Plasmon Polaritons.

    PubMed

    Xu, Jun Jun; Yin, Jia Yuan; Zhang, Hao Chi; Cui, Tie Jun

    2016-01-01

    We propose a splitter feeding network for array radiations of spoof surface plasmon polaritons (SPPs), which are guided by ultrathin corrugated metallic strips. Based on the coupled mode theory, SPP fields along a single waveguide in a certain frequency range can be readily coupled into two adjacent branch waveguides with the same propagation constants. We propose to load U-shaped particles anti-symmetrically at the ends of such two branch waveguides, showing a high integration degree of the feeding network. By controlling linear phase modulations produced by the U-shaped particle chain, we demonstrate theoretically and experimentally that the SPP fields based on bound modes can be efficiently radiated to far fields in broadside direction. The proposed method shows that the symmetry of electromagnetic field modes can be exploited to the SPP transmission network, providing potential solutions to compact power dividers and combiners for microwave and optical devices and systems. PMID:26948142

  5. Fast and cost-effective fabrication of large-area plasmonic transparent biosensor array.

    PubMed

    Intartaglia, R; Beke, S; Moretti, M; De Angelis, F; Diaspro, A

    2015-03-01

    Surface enhanced Raman-based sensors are widely used for chemical and biological species analysis; but to date the high cost, long production time, hazardous, and toxic content as well as small sensing area and opacity are limiting their capabilities for widespread applications in the medical and environmental fields. We present a novel cost-effective method for fast laser-based fabrication of affordable large-area and transparent periodic arrays of ligand-free metallic nanoparticles, offering a maximum possibility for the adsorption/immobilization of molecules and labeling. Further, we demonstrate a remarkable detection limit in the picomolar range by means of Raman scattering, thus evidencing a superior signal-to-noise ratio compared to other sensor substrates. The high sensitivity performance along with a fast and cheap fabrication procedure of reusable large-area transparent plasmonic devices opens the route for direct, in situ multimodal optical analysis with broad applications in the biomedical/analytical fields. PMID:25591078

  6. Compact Feeding Network for Array Radiations of Spoof Surface Plasmon Polaritons

    PubMed Central

    Xu, Jun Jun; Yin, Jia Yuan; Zhang, Hao Chi; Cui, Tie Jun

    2016-01-01

    We propose a splitter feeding network for array radiations of spoof surface plasmon polaritons (SPPs), which are guided by ultrathin corrugated metallic strips. Based on the coupled mode theory, SPP fields along a single waveguide in a certain frequency range can be readily coupled into two adjacent branch waveguides with the same propagation constants. We propose to load U-shaped particles anti-symmetrically at the ends of such two branch waveguides, showing a high integration degree of the feeding network. By controlling linear phase modulations produced by the U-shaped particle chain, we demonstrate theoretically and experimentally that the SPP fields based on bound modes can be efficiently radiated to far fields in broadside direction. The proposed method shows that the symmetry of electromagnetic field modes can be exploited to the SPP transmission network, providing potential solutions to compact power dividers and combiners for microwave and optical devices and systems. PMID:26948142

  7. Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement

    NASA Astrophysics Data System (ADS)

    Cheng, Zi-Qiang; Nan, Fan; Yang, Da-Jie; Zhong, Yu-Ting; Ma, Liang; Hao, Zhong-Hua; Zhou, Li; Wang, Qu-Quan

    2015-01-01

    Seeking plasmonic nanostructures with large field confinement and enhancement is significant for photonic and electronic nanodevices with high sensitivity, reproducibility, and tunability. Here, we report the synthesis of plasmonic arrays composed of two-segment dimer nanorods and coaxial cable nanorods with ~1 nm gap insulated by a self-assembled Raman molecule monolayer. The gap-induced plasmon coupling generates an intense field in the gap region of the dimer junction and the cable interlayer. As a result, the longitudinal plasmon resonance of nanorod arrays with high tunability is obviously enhanced. Most interestingly, the field enhancement of dimer nanorod arrays can be tuned by the length ratio L1/L2 of the two segments, and the maximal enhancement appears at L1/L2 = 1. In that case, the two-photon luminescence (TPL) of dimer nanorod arrays and the Raman intensity in the dimer junction is enhanced by 27 and 30 times, respectively, under resonant excitation. In the same way, the Raman intensity in the gap region is enhanced 16 times for the coaxial cable nanorod arrays. The plasmonic nanorod arrays synthesized by the facile method, having tunable plasmon properties and large field enhancement, indicate an attractive pathway to the photonic nanodevices.Seeking plasmonic nanostructures with large field confinement and enhancement is significant for photonic and electronic nanodevices with high sensitivity, reproducibility, and tunability. Here, we report the synthesis of plasmonic arrays composed of two-segment dimer nanorods and coaxial cable nanorods with ~1 nm gap insulated by a self-assembled Raman molecule monolayer. The gap-induced plasmon coupling generates an intense field in the gap region of the dimer junction and the cable interlayer. As a result, the longitudinal plasmon resonance of nanorod arrays with high tunability is obviously enhanced. Most interestingly, the field enhancement of dimer nanorod arrays can be tuned by the length ratio L1/L2 of

  8. Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography

    NASA Astrophysics Data System (ADS)

    Luo, Jun; Zeng, Bo; Wang, Changtao; Gao, Ping; Liu, Kaipeng; Pu, Mingbo; Jin, Jinjin; Zhao, Zeyu; Li, Xiong; Yu, Honglin; Luo, Xiangang

    2015-11-01

    Nanofabrication technology with high-resolution, high-throughput and low-cost is essential for the development of nanoplasmonic and nanophotonic devices. At present, most metasurfaces are fabricated in a point by point writing manner with electron beam lithography or a focused ion beam, which imposes a serious cost barrier with respect to practical applications. Near field optical lithography, seemingly providing a high-resolution and low-cost way, however, suffers from the ultra shallow depth and poor fidelity of obtained photoresist patterns due to the exponential decay feature of evanescent waves. Here, we propose a method of surface plasmonic imaging lithography by introducing a reflective plasmonic lens to amplify and compensate evanescent waves, resulting in the production of nano resist patterns with high fidelity, contrast and enhanced depth beyond that usually obtained by near field optical lithography. As examples, a discrete and anisotropically arrayed nano-slots mask pattern with different orientations and a size of 40 nm × 120 nm could be imaged in photoresist and transferred successfully onto a metal layer through an etching process. Evidence for the pattern quality is given by virtue of the fabricated metasurface lens devices showing good focusing performance in experiments. It is believed that this method provides a parallel, low-cost, high-throughput and large-area nanofabrication route for fabricating nanostructures of holograms, vortex phase plates, bio-sensors and solar cells etc.Nanofabrication technology with high-resolution, high-throughput and low-cost is essential for the development of nanoplasmonic and nanophotonic devices. At present, most metasurfaces are fabricated in a point by point writing manner with electron beam lithography or a focused ion beam, which imposes a serious cost barrier with respect to practical applications. Near field optical lithography, seemingly providing a high-resolution and low-cost way, however, suffers

  9. Fabrication of 3-μm diameter pin hole array (PHA) on thick W substrates

    NASA Astrophysics Data System (ADS)

    Levato, T.; Pathak, N. C.; Cecchetti, C. A.; Ciricosta, O.; Koester, P.; Labate, L.; Giulietti, A.; Giulietti, D.; De Angelis, F.; Di Fabrizio, E.; Delogu, P.; Gizzi, L. A.

    2010-02-01

    Pin-hole arrays are used for a variety of applications including, for example, X-ray imaging of laser-plasmas for fusion relevant studies [1]. More recently, a novel X-ray imaging technique has been proposed (this conference L. A. Gizzi et al.) within the High Power Laser Energy Research Facility (HiPER) to obtain spectrally resolved X-ray imaging [2] using single photon detection [3]. This technique requires a large number of images or, alternatively, large arrays of pin-holes, possibly with very small diameter («10 μm) [4]. In view of this, a technique was implemented for the fabrication of large arrays of pin-holes in thick metal substrates. Here we report on the optimizations of the laser-matter interaction process to obtain high aspect ratio cylinder-like pin-hole on heavy metal substrate by using a frequency-doubled Ti:Sa femtosecond laser pulses operating at 10 Hz. The influence of an air breakdown and a (ns)prepulse, on the drilled pin-hole, is showed by means of SEM images both for surface effects and internal quality of the channels, with evidence of micro and nano-sized structures. The holes drilled at an intensity just below the laser breakdown threshold for plasma creation in air, have an internal diameter of about 3 μm on a W substrate of 70 μm thickness, a micro-cylinder-like shape and no detectable deviations of the axis from a straight line. Arrays of up to 800 pin-holes were produced with the pin-hole properties being highly stable across the array. The final X-ray transmission is showed by using a μ-focus X-ray source.

  10. Fabrication of 3-{mu}m diameter pin hole array (PHA) on thick W substrates

    SciTech Connect

    Levato, T.; Pathak, N. C.; Ciricosta, O.; Cecchetti, C. A.; Koester, P.; Labate, L.; Giulietti, A.; Gizzi, L. A.; Giulietti, D.; De Angelis, F.; Di Fabrizio, E.; Delogu, P.

    2010-02-02

    Pin-hole arrays are used for a variety of applications including, for example, X-ray imaging of laser-plasmas for fusion relevant studies. More recently, a novel X-ray imaging technique has been proposed (this conference L. A. Gizzi et al.) within the High Power Laser Energy Research Facility (HiPER) to obtain spectrally resolved X-ray imaging using single photon detection. This technique requires a large number of images or, alternatively, large arrays of pin-holes, possibly with very small diameter (<<10 {mu}m). In view of this, a technique was implemented for the fabrication of large arrays of pin-holes in thick metal substrates. Here we report on the optimizations of the laser-matter interaction process to obtain high aspect ratio cylinder-like pin-hole on heavy metal substrate by using a frequency-doubled Ti:Sa femtosecond laser pulses operating at 10 Hz. The influence of an air breakdown and a (ns)prepulse, on the drilled pin-hole, is showed by means of SEM images both for surface effects and internal quality of the channels, with evidence of micro and nano-sized structures. The holes drilled at an intensity just below the laser breakdown threshold for plasma creation in air, have an internal diameter of about 3 {mu}m on a W substrate of 70 {mu}m thickness, a micro-cylinder-like shape and no detectable deviations of the axis from a straight line. Arrays of up to 800 pin-holes were produced with the pin-hole properties being highly stable across the array. The final X-ray transmission is showed by using a mu-focus X-ray source.

  11. High-precision micro-through-hole array in quartz glass machined by infrared picosecond laser

    NASA Astrophysics Data System (ADS)

    Ji, Lingfei; Hu, Yan; Li, Jian; Wang, Wenhao; Jiang, Yijian

    2015-11-01

    Circle and triangle micro-through-hole arrays without cracks, chips, and debris were machined in 0.3-mm-thick quartz glass by picosecond laser (wavelength = 1064 nm, pulse width ~12 ps) in air ambient. The diameter of each circle through-hole was 550 μm, and the side length of each triangle hole is 500 μm; 30 μm spacing between the adjacent hole edges and the smooth machined surface with R a = 0.8 μm roughness depicted the high precision of the high-density micro-through-hole arrays. The fundamental properties of the ps laser processing of quartz glass were investigated. The laser ablation threshold fluence of the quartz glass was determined as 3.49 J/cm2. Based on the fundamental investigation, a quantitative design of the cutting path for micro-machining of the through-holes with various geometries in quartz glass was developed. The work presents a more practical ps laser micro-machining technique for micro-through-hole arrays in glass-like materials for industrial application due to the precise quality, flexibility in geometries, ease of manipulation, and large-scale application.

  12. Plasmon resonance and perfect light absorption in subwavelength trench arrays etched in gallium-doped zinc oxide film

    SciTech Connect

    Hendrickson, Joshua R. Leedy, Kevin; Cleary, Justin W.; Vangala, Shivashankar; Nader, Nima; Guo, Junpeng

    2015-11-09

    Near-perfect light absorption in subwavelength trench arrays etched in highly conductive gallium-doped zinc oxide films was experimentally observed in the mid infrared regime. At wavelengths corresponding to the resonant excitation of surface plasmons, up to 99% of impinging light is efficiently trapped and absorbed in the periodic trenches. Scattering cross sectional calculations reveal that each individual trench acts like a vertical split ring resonator with a broad plasmon resonance spectrum. The coupling of these individual plasmon resonators in the grating structure leads to enhanced photon absorption and significant resonant spectral linewidth narrowing. Ellipsometry measurements taken before and after device fabrication result in different permittivity values for the doped zinc oxide material, indicating that localized annealing occurred during the plasma etching process due to surface heating. Simulations, which incorporate a 50 nm annealed region at the zinc oxide surface, are in a good agreement with the experimental results.

  13. Dense two-dimensional silver single and double nanoparticle arrays with plasmonic response in wide spectral range.

    PubMed

    Drozdowicz-Tomsia, Krystyna; Baltar, Henrique T M C M; Goldys, Ewa M

    2012-06-19

    We report the properties of plasmons in dense planar arrays of silver single and double nanostructures with various geometries fabricated by electron beam lithography (EBL) as a function of their size and spacing. We demonstrate a strong plasmon coupling mechanism due to near-field dipolar interactions between adjacent nanostructures, which produces a major red shift of the localized surface plasmon resonance (LSPR) in silver nanoparticles and leads to strong maximum electric field enhancements in a broad spectral range. The extinction spectra and maximum electric field enhancements are theoretically modeled by using the finite element method. Our modeling revealed that strong averaged electric field enhancements of up to 60 in visible range and up to 40 in mid-infrared result from hybridization of multipolar resonances in such dense nanostructures; these are important for applications in surface enhanced spectroscopies. PMID:22439753

  14. Plasmon resonance and perfect light absorption in subwavelength trench arrays etched in gallium-doped zinc oxide film

    NASA Astrophysics Data System (ADS)

    Hendrickson, Joshua R.; Vangala, Shivashankar; Nader, Nima; Leedy, Kevin; Guo, Junpeng; Cleary, Justin W.

    2015-11-01

    Near-perfect light absorption in subwavelength trench arrays etched in highly conductive gallium-doped zinc oxide films was experimentally observed in the mid infrared regime. At wavelengths corresponding to the resonant excitation of surface plasmons, up to 99% of impinging light is efficiently trapped and absorbed in the periodic trenches. Scattering cross sectional calculations reveal that each individual trench acts like a vertical split ring resonator with a broad plasmon resonance spectrum. The coupling of these individual plasmon resonators in the grating structure leads to enhanced photon absorption and significant resonant spectral linewidth narrowing. Ellipsometry measurements taken before and after device fabrication result in different permittivity values for the doped zinc oxide material, indicating that localized annealing occurred during the plasma etching process due to surface heating. Simulations, which incorporate a 50 nm annealed region at the zinc oxide surface, are in a good agreement with the experimental results.

  15. Bottom-Up Nanofabrication of Supported Noble Metal Alloy Nanoparticle Arrays for Plasmonics.

    PubMed

    Nugroho, Ferry A A; Iandolo, Beniamino; Wagner, Jakob B; Langhammer, Christoph

    2016-02-23

    Mixing different elements at the nanoscale to obtain alloy nanostructures with fine-tuned physical and chemical properties offers appealing opportunities for nanotechnology and nanoscience. However, despite widespread successful application of alloy nanoparticles made by colloidal synthesis in heterogeneous catalysis, nanoalloy systems have been used very rarely in solid-state devices and nanoplasmonics-related applications. One reason is that such applications require integration in arrays on a surface with compelling demands on nanoparticle arrangement, uniformity in surface coverage, and optimization of the surface density. These cannot be fulfilled even using state-of-the-art self-assembly strategies of colloids. As a solution, we present here a generic bottom-up nanolithography-compatible fabrication approach for large-area arrays of alloy nanoparticles on surfaces. To illustrate the concept, we focus on Au-based binary and ternary alloy systems with Ag, Cu, and Pd, due to their high relevance for nanoplasmonics and complete miscibility, and characterize their optical properties. Moreover, as an example for the relevance of the obtained materials for integration in devices, we demonstrate the superior and hysteresis-free plasmonic hydrogen-sensing performance of the AuPd alloy nanoparticle system. PMID:26828308

  16. Graphene Plasmonics

    NASA Astrophysics Data System (ADS)

    Mou, Shin; Abeysinghe, Don; Nader, Nima; Hendrickson, Joshua; Cleary, Justin; Elhamri, Said

    Plasmon, the collective free charge carrier oscillation, has been a popular research theme recently mostly associated with surface plasmon in metal nanoparticles. After the discovery of graphene, researchers soon began to study plasmonic effects with or within graphene, for instance, decorating graphene with metal nanoparticles to enhance optical processes via plasmonic field enhancement. Following that, people also gained interests in studying the intrinsic plasmon of graphene. Graphene, a tunable semimetal under field effect, demonstrates tunable plasmon resonances at room temperature, which enables new capabilities beyond those of metal-nanoparticle surface plasmons. In this project, we would like to show intrinsic graphene plasmon resonances in that we experimentally demonstrated polarization dependent and gate-bias tunable plasmon-resonance absorption in the mid-infrared regime of 5-14 um by utilizing an array of graphene nanoribbon resonators. By scaling nanoribbon width and charge densities, we probed graphene plasmons with plasmon resonance energy as high as 0.26 meV (2100 cm-1) for 40 nm wide nanoresonators. The result reveals the intriguing nature of graphene plasmon in graphene nanoribbons where the nanoribbon edge plays critical roles by introducing extra doping and damping the graphene plasmon resonance.

  17. Tunable Lattice Coupling of Multipole Plasmon Modes and Near-Field Enhancement in Closely Spaced Gold Nanorod Arrays

    PubMed Central

    Huang, Yu; Zhang, Xian; Ringe, Emilie; Hou, Mengjing; Ma, Lingwei; Zhang, Zhengjun

    2016-01-01

    Considering the nanogap and lattice effects, there is an attractive structure in plasmonics: closely spaced metallic nanoarrays. In this work, we demonstrate experimentally and theoretically the lattice coupling of multipole plasmon modes for closely spaced gold nanorod arrays, offering a new insight into the higher order cavity modes coupled with each other in the lattice. The resonances can be greatly tuned by changes in inter-rod gaps and nanorod heights while the influence of the nanorod diameter is relatively insignificant. Experimentally, pronounced suppressions of the reflectance are observed. Meanwhile, the near-field enhancement can be further enhanced, as demonstrated through surface enhanced Raman scattering (SERS). We then confirm the correlation between the near-field and far-field plasmonic responses, which is significantly important for maximizing the near-field enhancement at a specific excitation wavelength. This lattice coupling of multipole plasmon modes is of broad interest not only for SERS but also for other plasmonic applications, such as subwavelength imaging or metamaterials. PMID:26983501

  18. Aluminum nanopyramid array with tunable ultraviolet-visible-infrared wavelength plasmon resonances for rapid detection of carbohydrate antigen 199.

    PubMed

    Li, Wanbo; Qiu, Yongcai; Zhang, Li; Jiang, Lelun; Zhou, Zhangkai; Chen, Huanjun; Zhou, Jianhua

    2016-05-15

    Aluminum-based localized surface plasmon resonance (LSPR) holds attractive properties include low cost, high natural abundance, and ease of processing by a wide variety of methods including complementary metal oxide semiconductor process, making itself having an edge over conventional ones induced by noble metal. However, the inherent drawbacks of plasmonic mode limited on UV-green wavelength, low refractive index sensitivity, as well as heavy-shape-dependence greatly prevent aluminum plasmonics from real-life biosensing. Here, we demonstrated a uniform quasi-3-dimensional Al nanopyramid array (NPA) structure with tunable ultraviolet-visible-infrared (UV-vis-NIR) plasmon resonances for biosensing. By changing the reflection measuring angle, we could easily obtain typical peaks simultaneously exhibited on the reflectance spectrum across UV-vis-NIR wave region. The Al NPAs carried out high refractive index sensitivities which even comparable with that of noble metal, and can be used as a biosensor for directly detecting cytochrome c and carbohydrate antigen 199 in air after the sensing surface was washed cleanly and dried; the limits of detection were determined to be 800 nM and 29 ng/mL, respectively. Our proposed work therefore initiates the low-cost, high-performance biosensing using aluminum plasmonics, which would find wide applications in rapid diagnosis, mobile-healthcare and environmental monitoring. PMID:26748367

  19. Tunable Lattice Coupling of Multipole Plasmon Modes and Near-Field Enhancement in Closely Spaced Gold Nanorod Arrays

    NASA Astrophysics Data System (ADS)

    Huang, Yu; Zhang, Xian; Ringe, Emilie; Hou, Mengjing; Ma, Lingwei; Zhang, Zhengjun

    2016-03-01

    Considering the nanogap and lattice effects, there is an attractive structure in plasmonics: closely spaced metallic nanoarrays. In this work, we demonstrate experimentally and theoretically the lattice coupling of multipole plasmon modes for closely spaced gold nanorod arrays, offering a new insight into the higher order cavity modes coupled with each other in the lattice. The resonances can be greatly tuned by changes in inter-rod gaps and nanorod heights while the influence of the nanorod diameter is relatively insignificant. Experimentally, pronounced suppressions of the reflectance are observed. Meanwhile, the near-field enhancement can be further enhanced, as demonstrated through surface enhanced Raman scattering (SERS). We then confirm the correlation between the near-field and far-field plasmonic responses, which is significantly important for maximizing the near-field enhancement at a specific excitation wavelength. This lattice coupling of multipole plasmon modes is of broad interest not only for SERS but also for other plasmonic applications, such as subwavelength imaging or metamaterials.

  20. Tunable Lattice Coupling of Multipole Plasmon Modes and Near-Field Enhancement in Closely Spaced Gold Nanorod Arrays.

    PubMed

    Huang, Yu; Zhang, Xian; Ringe, Emilie; Hou, Mengjing; Ma, Lingwei; Zhang, Zhengjun

    2016-01-01

    Considering the nanogap and lattice effects, there is an attractive structure in plasmonics: closely spaced metallic nanoarrays. In this work, we demonstrate experimentally and theoretically the lattice coupling of multipole plasmon modes for closely spaced gold nanorod arrays, offering a new insight into the higher order cavity modes coupled with each other in the lattice. The resonances can be greatly tuned by changes in inter-rod gaps and nanorod heights while the influence of the nanorod diameter is relatively insignificant. Experimentally, pronounced suppressions of the reflectance are observed. Meanwhile, the near-field enhancement can be further enhanced, as demonstrated through surface enhanced Raman scattering (SERS). We then confirm the correlation between the near-field and far-field plasmonic responses, which is significantly important for maximizing the near-field enhancement at a specific excitation wavelength. This lattice coupling of multipole plasmon modes is of broad interest not only for SERS but also for other plasmonic applications, such as subwavelength imaging or metamaterials. PMID:26983501

  1. Optical transmission through hexagonal arrays of subwavelength holes in thin metal films.

    PubMed

    Ctistis, G; Patoka, P; Wang, X; Kempa, K; Giersig, M

    2007-09-01

    We have studied the light transmission through hexagonal arrays of subwavelength holes in thin gold and aluminum films, varying the film thickness between 20 and 120 nm while the hole diameter as well as the interhole distance have been kept constant at approximately 300 and approximately 500 nm, respectively. The films were characterized by means of UV-vis spectroscopy and scanning near-field optical microscopy (SNOM). PMID:17715985

  2. Enhanced photoemission from laser-excited plasmonic nano-objects in periodic arrays

    NASA Astrophysics Data System (ADS)

    Fedorov, N.; Geoffroy, G.; Duchateau, G.; Štolcová, L.; Proška, J.; Novotný, F.; Domonkos, M.; Jouin, H.; Martin, P.; Raynaud, M.

    2016-08-01

    The process of photoelectron emission from gold surfaces covered with nano-objects that are organized in the form of a periodic array is addressed in the short laser pulse regime (≤slant 50 fs) at moderate intensities ∼ {{10}10} W cm‑2 and for various laser wavelengths. The emission spectrum from a gold single crystal measured under the same conditions is used for reference. The comparison of the photo-emission yield and the energy of the ejected electrons with their counterparts from the (more simple) reference system shows that the periodic conditions imposed on the target surface drastically enhance both quantities. In addition to the standard mechanism of Coulomb explosion, a second mechanism comes into play, driven by surface plasmon excitation. This can be clearly demonstrated by varying the laser wavelength. This interpretation of the experimental data is supported by predictions from model calculations that account both for the primary quantum electron emission and for the subsequent surface-plasmon-driven acceleration in the vacuum. Despite the fact that the incident laser intensity is as low as ∼ 5× {{10}10} W cm‑2, such a structured target permits generating electrons with energies as high as 300 eV. Experiments with two incident laser beams of different wavelengths with an adjustable delay, have also been carried out. The results show that there exist various channels for the decay of the photo-emission signal, depending on the target type. These observations are shedding light on the various relaxation mechanisms that take place on different timescales.

  3. Enhanced photoemission from laser-excited plasmonic nano-objects in periodic arrays.

    PubMed

    Fedorov, N; Geoffroy, G; Duchateau, G; Štolcová, L; Proška, J; Novotný, F; Domonkos, M; Jouin, H; Martin, P; Raynaud, M

    2016-08-10

    The process of photoelectron emission from gold surfaces covered with nano-objects that are organized in the form of a periodic array is addressed in the short laser pulse regime ([Formula: see text] fs) at moderate intensities [Formula: see text] W cm(-2) and for various laser wavelengths. The emission spectrum from a gold single crystal measured under the same conditions is used for reference. The comparison of the photo-emission yield and the energy of the ejected electrons with their counterparts from the (more simple) reference system shows that the periodic conditions imposed on the target surface drastically enhance both quantities. In addition to the standard mechanism of Coulomb explosion, a second mechanism comes into play, driven by surface plasmon excitation. This can be clearly demonstrated by varying the laser wavelength. This interpretation of the experimental data is supported by predictions from model calculations that account both for the primary quantum electron emission and for the subsequent surface-plasmon-driven acceleration in the vacuum. Despite the fact that the incident laser intensity is as low as [Formula: see text] W cm(-2), such a structured target permits generating electrons with energies as high as 300 eV. Experiments with two incident laser beams of different wavelengths with an adjustable delay, have also been carried out. The results show that there exist various channels for the decay of the photo-emission signal, depending on the target type. These observations are shedding light on the various relaxation mechanisms that take place on different timescales. PMID:27299999

  4. Fundamental and applied localized surface plasmon resonance spectroscopy studies from nanoparticle arrays to single nanoparticles

    NASA Astrophysics Data System (ADS)

    Bingham, Julia Marie

    The overarching theme of this work is to understand how the localized surface plasmon resonance (LSPR) of metallic nanoparticles can be utilized for sensing applications. The work presented here describes the use of both nanoparticle arrays and single nanoparticles. Specifically, nanoparticle arrays demonstrate sensing capabilities for inhibin A, prostate specific antigen (PSA), gas and vapors, and the dye, Nile Red. A new wide-field imaging apparatus is developed to characterize multiple single nanoparticles simultaneously as well as correlate the nanoparticle structural details using transmission electron microscopy (TEM), ultimately to develop single nanoparticle sensors. From these studies, LSPR spectroscopy is shown to be a valuable tool for sensor development. In the studies utilizing nanoparticle arrays, LSPR spectroscopy proves to be a feasible technique to detect inhibin A and PSA using a sandwich assay format. However, binding constants are determined to be several orders of magnitude lower than expected for PSA. It is hypothesized that the method to immobilize the capture antibody affected the affinity for PSA. Using a high resolution LSPR spectrometer, gas and vapor sensing on the basis of small refractive index (RI) changes is demonstrated. Nile Red is used to investigate the interaction between the polarity-dependent dye absorbance and the RI dependent LSPR of Ag nanoparticles. A wide-field LSPR imaging method using a liquid crystal tunable filter is used to measure the scattering spectra of multiple Ag nanoparticles in parallel and the RI response of multiple single nanoparticles is determined. This method also provides the ability to characterize moving Ag nanoparticles by measuring the scattering spectra of the particles while simultaneously tracking their motion. Consequently, single particle diffusion coefficients are determined. As an example, several single Ag nanoprisms are tracked, the LSPR scattering spectrum of each moving particle is

  5. Ultrathin efficient perovskite solar cells employing a periodic structure of a composite hole conductor for elevated plasmonic light harvesting and hole collection

    NASA Astrophysics Data System (ADS)

    Long, Mingzhu; Chen, Zefeng; Zhang, Tiankai; Xiao, Yubin; Zeng, Xiaoliang; Chen, Jian; Yan, Keyou; Xu, Jianbin

    2016-03-01

    We developed a molecule/polymer composite hole transporting material (HTM) with a periodic microstructure for morphology replication of a corrugated Au electrode, which in combination plays a dual role in the optical and electronic enhancement of high performance perovskite solar cells (PSCs). The electro-optics revealed that perovskite couldn't readily extinct the red light even though the thickness increased to 370 nm, but we found that the quasi periodic microstructure composite (PMC) HTM in combination with the conformal Au electrode could promote the absorption through the enhanced cavity effects, leading to comparable absorption even using much thinner perovskite (240 nm). We identified that the cavity was the combination of Fabry-Pérot interferometer and surface plasmonic resonance, with light harvesting enhancement through surface plasmon polariton or waveguide modes that propagate in the plane of the perovskite layer. On the other hand, the PMC HTM increased hole conductivity by one order of magnitude with respect to standard spiro-OMeTAD HTM due to molecular packing and self-assembly, embodying traceable hole mobility and density elevation up to 3 times, and thus the hysteresis was greatly avoided. Owing to dual optical and electronic enhancement, the PMC PSC afforded high efficiency PSC using as thin as 240 nm perovskite layer, delivering a Voc of 1.05 V, Jsc of 22.9 mA cm-2, FF of 0.736, and efficiency amounting to 17.7% PCE, the highest efficiency with ultrathin perovskite layer.We developed a molecule/polymer composite hole transporting material (HTM) with a periodic microstructure for morphology replication of a corrugated Au electrode, which in combination plays a dual role in the optical and electronic enhancement of high performance perovskite solar cells (PSCs). The electro-optics revealed that perovskite couldn't readily extinct the red light even though the thickness increased to 370 nm, but we found that the quasi periodic microstructure

  6. Plasmonic black metals via radiation absorption by two-dimensional arrays of ultra-sharp convex grooves

    PubMed Central

    Beermann, Jonas; Eriksen, René L.; Holmgaard, Tobias; Pedersen, Kjeld; Bozhevolnyi, Sergey I.

    2014-01-01

    Plasmonic black surfaces formed by two-dimensional arrays of ultra-sharp convex metal grooves, in which the incident radiation is converted into gap surface plasmon polaritons (GSPPs) and subsequently absorbed (via adiabatic nanofocusing), are fabricated and investigated experimentally for gold, nickel, and palladium, using scanning electron microscopy, optical microscopy, and reflection spectroscopy for their characterization. Absolute reflectivity spectra obtained for all fabricated arrays demonstrate very efficient and broadband absorption of unpolarized light exceeding the level of 95%, averaged over the investigated wavelength range of 400–985 nm. The highest averaged absorption level (~97%) is achieved with 250-nm-period arrays in palladium that also has the highest melting temperature (~1552°C), promising thereby potential applications for broadband absorption, e.g., within thermophotovoltaics. For one-dimensional arrays, GSPPs are excited only with the electric field polarized perpendicular to the groove orientation, resulting in 94–96% absorption of the appropriately polarized light for the arrays in nickel and palladium while featuring practically flat surface reflectivity spectra for the orthogonal polarization. The largest ratio (~10.7) between averaged reflectivities for orthogonal polarizations is achieved with the groove arrays in palladium, pointing thereby towards applications as broadband and low-dispersion linear polarizers operating in reflection, e.g., within ultra-fast optics. PMID:25365991

  7. Observing the dynamics of supermassive black hole binaries with pulsar timing arrays.

    PubMed

    Mingarelli, C M F; Grover, K; Sidery, T; Smith, R J E; Vecchio, A

    2012-08-24

    Pulsar timing arrays are a prime tool to study unexplored astrophysical regimes with gravitational waves. Here, we show that the detection of gravitational radiation from individually resolvable supermassive black hole binary systems can yield direct information about the masses and spins of the black holes, provided that the gravitational-wave-induced timing fluctuations both at the pulsar and at Earth are detected. This in turn provides a map of the nonlinear dynamics of the gravitational field and a new avenue to tackle open problems in astrophysics connected to the formation and evolution of supermassive black holes. We discuss the potential, the challenges, and the limitations of these observations. PMID:23002736

  8. Plasmon-enhanced Electrically Light-emitting from ZnO Nanorod Arrays/p-GaN Heterostructure Devices

    PubMed Central

    Lu, Junfeng; Shi, Zengliang; Wang, Yueyue; Lin, Yi; Zhu, Qiuxiang; Tian, Zhengshan; Dai, Jun; Wang, Shufeng; Xu, Chunxiang

    2016-01-01

    Effective and bright light-emitting-diodes (LEDs) have attracted broad interests in fundamental research and industrial application, especially on short wavelength LEDs. In this paper, a well aligned ZnO nanorod arrays grown on the p-GaN substrate to form a heterostructured light-emitting diode and Al nanoparticles (NPs) were decorated to improve the electroluminescence performance. More than 30-folds enhancement of the electroluminescence intensity was obtained compared with the device without Al NPs decoration. The investigation on the stable and transient photoluminescence spectraof the ZnO nanorod arrays before and after Al NPs decoration demonstrated that the metal surface plasmon resonance coupling with excitons of ZnO leads to the enhancement of the internal quantum efficiency (IQE). Our results provide aneffective approach to design novel optoelectronic devices such as light-emitting diodes and plasmonic nanolasers. PMID:27181337

  9. Flexible Near-Infrared Photovoltaic Devices Based on Plasmonic Hot-Electron Injection into Silicon Nanowire Arrays.

    PubMed

    Liu, Dong; Yang, Dong; Gao, Yang; Ma, Jun; Long, Ran; Wang, Chengming; Xiong, Yujie

    2016-03-24

    The development of flexible near-infrared (NIR) photovoltaic (PV) devices containing silicon meets the strong demands for solar utilization, portability, and sustainable manufacture; however, improvements in the NIR light absorption and conversion efficiencies in ultrathin crystalline Si are required. We have developed an approach to improve the quantum efficiency of flexible PV devices in the NIR spectral region by integrating Si nanowire arrays with plasmonic Ag nanoplates. The Ag nanoplates can directly harvest and convert NIR light into plasmonic hot electrons for injection into Si, while the Si nanowire arrays offer light trapping. Taking the wavelength of 800 nm as an example, the external quantum efficiency has been improved by 59 % by the integration Ag nanoplates. This work provides an alternative strategy for the design and fabrication of flexible NIR PVs. PMID:26929103

  10. Plasmon-enhanced Electrically Light-emitting from ZnO Nanorod Arrays/p-GaN Heterostructure Devices.

    PubMed

    Lu, Junfeng; Shi, Zengliang; Wang, Yueyue; Lin, Yi; Zhu, Qiuxiang; Tian, Zhengshan; Dai, Jun; Wang, Shufeng; Xu, Chunxiang

    2016-01-01

    Effective and bright light-emitting-diodes (LEDs) have attracted broad interests in fundamental research and industrial application, especially on short wavelength LEDs. In this paper, a well aligned ZnO nanorod arrays grown on the p-GaN substrate to form a heterostructured light-emitting diode and Al nanoparticles (NPs) were decorated to improve the electroluminescence performance. More than 30-folds enhancement of the electroluminescence intensity was obtained compared with the device without Al NPs decoration. The investigation on the stable and transient photoluminescence spectraof the ZnO nanorod arrays before and after Al NPs decoration demonstrated that the metal surface plasmon resonance coupling with excitons of ZnO leads to the enhancement of the internal quantum efficiency (IQE). Our results provide aneffective approach to design novel optoelectronic devices such as light-emitting diodes and plasmonic nanolasers. PMID:27181337

  11. Plasmonic analogue of electromagnetically induced transparency in a T-shaped metallic nanohole array and its sensing performance

    NASA Astrophysics Data System (ADS)

    Wan, Ming Li; Sun, Xiao Jun; Song, Yue Li; Li, Yong; Zhou, Feng Qun

    2014-11-01

    In this paper, a plasmonic analogue of electromagnetically induced transparency (EIT) is demonstrated theoretically in a T-shaped silver nanohole array. A sharply narrow reflectance transparency window is clearly observed within the background spectrum of the broad dipole-like resonance at optical frequencies when structural asymmetry is introduced. Furthermore, the transparency peak exhibits highly sensitive response to the refractive index of surrounding medium and yield a sensitivity of 725 nm/refractive index unit (RIU), which ensures our proposed nanohole array as an excellent plasmonic sensor. In addition, the dependence of figure of merit (FOM) on structural asymmetry is investigated numerically to optimize the sensing performance of the EIT-based sensor.

  12. Ultrathin efficient perovskite solar cells employing a periodic structure of a composite hole conductor for elevated plasmonic light harvesting and hole collection.

    PubMed

    Long, Mingzhu; Chen, Zefeng; Zhang, Tiankai; Xiao, Yubin; Zeng, Xiaoliang; Chen, Jian; Yan, Keyou; Xu, Jianbin

    2016-03-28

    We developed a molecule/polymer composite hole transporting material (HTM) with a periodic microstructure for morphology replication of a corrugated Au electrode, which in combination plays a dual role in the optical and electronic enhancement of high performance perovskite solar cells (PSCs). The electro-optics revealed that perovskite couldn't readily extinct the red light even though the thickness increased to 370 nm, but we found that the quasi periodic microstructure composite (PMC) HTM in combination with the conformal Au electrode could promote the absorption through the enhanced cavity effects, leading to comparable absorption even using much thinner perovskite (240 nm). We identified that the cavity was the combination of Fabry-Pérot interferometer and surface plasmonic resonance, with light harvesting enhancement through surface plasmon polariton or waveguide modes that propagate in the plane of the perovskite layer. On the other hand, the PMC HTM increased hole conductivity by one order of magnitude with respect to standard spiro-OMeTAD HTM due to molecular packing and self-assembly, embodying traceable hole mobility and density elevation up to 3 times, and thus the hysteresis was greatly avoided. Owing to dual optical and electronic enhancement, the PMC PSC afforded high efficiency PSC using as thin as 240 nm perovskite layer, delivering a V(oc) of 1.05 V, J(sc) of 22.9 mA cm(-2), FF of 0.736, and efficiency amounting to 17.7% PCE, the highest efficiency with ultrathin perovskite layer. PMID:26377231

  13. In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting

    NASA Astrophysics Data System (ADS)

    Ge, Ming-Zheng; Cao, Chun-Yan; Li, Shu-Hui; Tang, Yu-Xin; Wang, Lu-Ning; Qi, Ning; Huang, Jian-Ying; Zhang, Ke-Qin; Al-Deyab, S. S.; Lai, Yue-Kun

    2016-02-01

    An ultrasonication-assisted in situ deposition strategy was utilised to uniformly decorate plasmonic Ag nanoparticles on vertically aligned TiO2 nanotube arrays (NTAs) to construct a Ag@TiO2 NTA composite. The Ag nanoparticles act as efficient surface plasmon resonance (SPR) photosensitizers to drive photocatalytic water splitting under visible light irradiation. The Ag nanoparticles were uniformly deposited on the surface and inside the highly oriented TiO2 nanotubes. The visible-light-driven hydrogen production activities of silver nanoparticle anchored TiO2 nanotube array photocatalysts were evaluated using methanol as a sacrificial reagent in water under a 500 W Xe lamp with a UV light cutoff filter (λ >= 420 nm). It was found that the hydrogen production rate of the Ag@TiO2 NTAs prepared with ultrasonication-assisted deposition for 5 min was approximately 15 times higher than that of its pristine TiO2 NTAs counterpart. The highly efficient photocatalytic hydrogen evolution is attributed to the SPR effect of Ag for enhanced visible light absorption and boosting the photogenerated electron-hole separation/transfer. This strategy is promising for the design and construction of high efficiency TiO2 based photocatalysts for solar energy conversion.An ultrasonication-assisted in situ deposition strategy was utilised to uniformly decorate plasmonic Ag nanoparticles on vertically aligned TiO2 nanotube arrays (NTAs) to construct a Ag@TiO2 NTA composite. The Ag nanoparticles act as efficient surface plasmon resonance (SPR) photosensitizers to drive photocatalytic water splitting under visible light irradiation. The Ag nanoparticles were uniformly deposited on the surface and inside the highly oriented TiO2 nanotubes. The visible-light-driven hydrogen production activities of silver nanoparticle anchored TiO2 nanotube array photocatalysts were evaluated using methanol as a sacrificial reagent in water under a 500 W Xe lamp with a UV light cutoff filter (λ >= 420 nm

  14. Lithographically patterned electrodeposition of gold, silver, and nickel nanoring arrays with widely tunable near-infrared plasmonic resonances.

    PubMed

    Halpern, Aaron R; Corn, Robert M

    2013-02-26

    A novel low-cost nanoring array fabrication method that combines the process of lithographically patterned nanoscale electrodeposition (LPNE) with colloidal lithography is described. Nanoring array fabrication was accomplished in three steps: (i) a thin (70 nm) sacrificial nickel or silver film was first vapor-deposited onto a plasma-etched packed colloidal monolayer; (ii) the polymer colloids were removed from the surface, a thin film of positive photoresist was applied, and a backside exposure of the photoresist was used to create a nanohole electrode array; (iii) this array of nanoscale cylindrical electrodes was then used for the electrodeposition of gold, silver, or nickel nanorings. Removal of the photoresist and sacrificial metal film yielded a nanoring array in which all of the nanoring dimensions were set independently: the inter-ring spacing was fixed by the colloidal radius, the radius of the nanorings was controlled by the plasma etching process, and the width of the nanorings was controlled by the electrodeposition process. A combination of scanning electron microscopy (SEM) measurements and Fourier transform near-infrared (FT-NIR) absorption spectroscopy were used to characterize the nanoring arrays. Nanoring arrays with radii from 200 to 400 nm exhibited a single strong NIR plasmonic resonance with an absorption maximum wavelength that varied linearly from 1.25 to 3.33 μm as predicted by a simple standing wave model linear antenna theory. This simple yet versatile nanoring array fabrication method was also used to electrodeposit concentric double gold nanoring arrays that exhibited multiple NIR plasmonic resonances. PMID:23330883

  15. Slanted annular aperture arrays as enhanced-transmission metamaterials: Excitation of the plasmonic transverse electromagnetic guided mode

    SciTech Connect

    Ndao, Abdoulaye; Salut, Roland; Baida, Fadi I.; Belkhir, Abderrahmane

    2013-11-18

    We present here the fabrication and the optical characterization of slanted annular aperture arrays engraved into silver film. An experimental enhanced transmission based on the excitation of the cutoff-less plasmonic guided mode of the nano-waveguides (the transmission electron microscopy mode) is demonstrated and agrees well with the theoretical predicted results. By the way, even if it is less efficient (70% → 20%), an enhanced transmission can occur at larger wavelength value (720 nm–930 nm) compared to conventional annular aperture arrays structure by correctly setting the metal thickness.

  16. Surface Plasmon Enhanced Photocatalysis of Au/Pt-decorated TiO2 Nanopillar Arrays

    PubMed Central

    Shuang, Shuang; Lv, Ruitao; Xie, Zheng; Zhang, Zhengjun

    2016-01-01

    The low quantum yields and lack of visible light utilization hinder the practical application of TiO2 in high-performance photocatalysis. Herein, we present a design of TiO2 nanopillar arrays (NPAs) decorated with both Au and Pt nanoparticles (NPs) directly synthesized through successive ion layer adsorption and reaction (SILAR) at room temperature. Au/Pt NPs with sizes of ~4 nm are well-dispersed on the TiO2 NPAs as evidenced by electron microscopic analyses. The present design of Au/Pt co-decoration on the TiO2 NPAs shows much higher visible and ultraviolet (UV) light absorption response, which leads to remarkably enhanced photocatalytic activities on both the dye degradation and photoelectrochemical (PEC) performance. Its photocatalytic reaction efficiency is 21 and 13 times higher than that of pure TiO2 sample under UV-vis and visible light, respectively. This great enhancement can be attributed to the synergy of electron-sink function of Pt and surface plasmon resonance (SPR) of Au NPs, which significantly improves charge separation of photoexcited TiO2. Our studies demonstrate that through rational design of composite nanostructures one can harvest visible light through the SPR effect to enhance the photocatalytic activities initiated by UV-light, and thus realize more effectively utilization of the whole solar spectrum for energy conversion. PMID:27215703

  17. Properties of plasmonic arrays produced by pulsed-laser nanostructuring of thin Au films

    PubMed Central

    Siuzdak, Katarzyna; Atanasov, Peter A; Bittencourt, Carla; Dikovska, Anna; Nedyalkov, Nikolay N; Śliwiński, Gerard

    2014-01-01

    Summary A brief description of research advances in the area of short-pulse-laser nanostructuring of thin Au films is followed by examples of experimental data and a discussion of our results on the characterization of structural and optical properties of gold nanostructures. These consist of partially spherical or spheroidal nanoparticles (NPs) which have a size distribution (80 ± 42 nm) and self-organization characterized by a short-distance order (length scale ≈140 nm). For the NP shapes produced, an observably broader tuning range (of about 150 nm) of the surface plasmon resonance (SPR) band is obtained by renewal thin film deposition and laser annealing of the NP array. Despite the broadened SPR bands, which indicate damping confirmed by short dephasing times not exceeding 4 fs, the self-organized Au NP structures reveal quite a strong enhancement of the optical signal. This was consistent with the near-field modeling and micro-Raman measurements as well as a test of the electrochemical sensing capability. PMID:25551038

  18. Surface Plasmon Enhanced Photocatalysis of Au/Pt-decorated TiO2 Nanopillar Arrays.

    PubMed

    Shuang, Shuang; Lv, Ruitao; Xie, Zheng; Zhang, Zhengjun

    2016-01-01

    The low quantum yields and lack of visible light utilization hinder the practical application of TiO2 in high-performance photocatalysis. Herein, we present a design of TiO2 nanopillar arrays (NPAs) decorated with both Au and Pt nanoparticles (NPs) directly synthesized through successive ion layer adsorption and reaction (SILAR) at room temperature. Au/Pt NPs with sizes of ~4 nm are well-dispersed on the TiO2 NPAs as evidenced by electron microscopic analyses. The present design of Au/Pt co-decoration on the TiO2 NPAs shows much higher visible and ultraviolet (UV) light absorption response, which leads to remarkably enhanced photocatalytic activities on both the dye degradation and photoelectrochemical (PEC) performance. Its photocatalytic reaction efficiency is 21 and 13 times higher than that of pure TiO2 sample under UV-vis and visible light, respectively. This great enhancement can be attributed to the synergy of electron-sink function of Pt and surface plasmon resonance (SPR) of Au NPs, which significantly improves charge separation of photoexcited TiO2. Our studies demonstrate that through rational design of composite nanostructures one can harvest visible light through the SPR effect to enhance the photocatalytic activities initiated by UV-light, and thus realize more effectively utilization of the whole solar spectrum for energy conversion. PMID:27215703

  19. Tunable plasmonic resonances based on elliptical annular aperture arrays on conducting substrates for advanced biosensing.

    PubMed

    Liang, Yuzhang; Peng, Wei; Li, Lixia; Qian, Siyu; Wang, Qiao

    2015-08-15

    Introducing a conducting metal layer and the structural asymmetry to elliptical annular aperture arrays, multiple plasmonic coupled-resonant modes are generated under normal incidence in the visible light range. The electromagnetic fields can be strongly enhanced at resonant modes in this device, which increases the interaction volume of the detected analyte and optical fields; therefore, multiple plamonic coupled modes exhibit higher refractive index sensitivity than as large as 610 nm/RIU. The distinct Fano-like resonance around a wavelength of 681 nm originates from the interference between bonding dipolar and the quadrupolar modes. Due to the excitation of sharp spectral features as narrow as 7 nm, high figure of merits of 94 at the Fano-like dip is obtained in a wide refractive index range of 1.33-1.40. Furthermore, to generate strong Fano-like resonance, the geometric shape of ellipse is selected, which is a good geometric shape candidate compared to the circle shape. This device is promising for biosensing applications with high sensitivity and low limit of detection. PMID:26274691

  20. Surface Plasmon Enhanced Photocatalysis of Au/Pt-decorated TiO2 Nanopillar Arrays

    NASA Astrophysics Data System (ADS)

    Shuang, Shuang; Lv, Ruitao; Xie, Zheng; Zhang, Zhengjun

    2016-05-01

    The low quantum yields and lack of visible light utilization hinder the practical application of TiO2 in high-performance photocatalysis. Herein, we present a design of TiO2 nanopillar arrays (NPAs) decorated with both Au and Pt nanoparticles (NPs) directly synthesized through successive ion layer adsorption and reaction (SILAR) at room temperature. Au/Pt NPs with sizes of ~4 nm are well-dispersed on the TiO2 NPAs as evidenced by electron microscopic analyses. The present design of Au/Pt co-decoration on the TiO2 NPAs shows much higher visible and ultraviolet (UV) light absorption response, which leads to remarkably enhanced photocatalytic activities on both the dye degradation and photoelectrochemical (PEC) performance. Its photocatalytic reaction efficiency is 21 and 13 times higher than that of pure TiO2 sample under UV-vis and visible light, respectively. This great enhancement can be attributed to the synergy of electron-sink function of Pt and surface plasmon resonance (SPR) of Au NPs, which significantly improves charge separation of photoexcited TiO2. Our studies demonstrate that through rational design of composite nanostructures one can harvest visible light through the SPR effect to enhance the photocatalytic activities initiated by UV-light, and thus realize more effectively utilization of the whole solar spectrum for energy conversion.

  1. Plasmon-enhanced photoelectrochemical water splitting using au nanoparticles decorated on hematite nanoflake arrays.

    PubMed

    Wang, Lei; Zhou, Xuemei; Nguyen, Nhat Truong; Schmuki, Patrik

    2015-02-01

    Hematite nanoflake arrays were decorated with Au nanoparticles through a simple solution chemistry approach. We show that the photoactivity of Au-decorated Fe2 O3 electrodes for photoelectrochemical water oxidation can be effectively enhanced in the UV/Visible region compared with the bare Fe2 O3 . Au-nanoparticle-decorated Fe2 O3 nanoflake electrodes exhibit a significant cathodic shift of the onset potential up to 0.6 V [vs. reversible hydrogen electrode (RHE)], and a two times increase in the water oxidation photocurrent is achieved at 1.23 VRHE . A maximum photocurrent of 2.0 mA cm(-2) at 1.6 VRHE is obtained in 1 M KOH under AM 1.5 (100 mW cm(-2) ) conditions. The enhancement in photocurrent can be attributed to the Au nanoparticles acting as plasmonic photosensitizers that increase the optical absorption. PMID:25581403

  2. Fast terahertz optoelectronic amplitude modulator based on plasmonic metamaterial antenna arrays and graphene

    NASA Astrophysics Data System (ADS)

    Jessop, David S.; Sol, Christian W. O.; Xiao, Long; Kindness, Stephen J.; Braeuninger-Weimer, Philipp; Lin, Hungyen; Griffiths, Jonathan P.; Ren, Yuan; Kamboj, Varun S.; Hofmann, Stephan; Zeitler, J. Axel; Beere, Harvey E.; Ritchie, David A.; Degl'Innocenti, Riccardo

    2016-02-01

    The growing interest in terahertz (THz) technologies in recent years has seen a wide range of demonstrated applications, spanning from security screening, non-destructive testing, gas sensing, to biomedical imaging and communication. Communication with THz radiation offers the advantage of much higher bandwidths than currently available, in an unallocated spectrum. For this to be realized, optoelectronic components capable of manipulating THz radiation at high speeds and high signal-to-noise ratios must be developed. In this work we demonstrate a room temperature frequency dependent optoelectronic amplitude modulator working at around 2 THz, which incorporates graphene as the tuning medium. The architecture of the modulator is an array of plasmonic dipole antennas surrounded by graphene. By electrostatically doping the graphene via a back gate electrode, the reflection characteristics of the modulator are modified. The modulator is electrically characterized to determine the graphene conductivity and optically characterization, by THz time-domain spectroscopy and a single-mode 2 THz quantum cascade laser, to determine the optical modulation depth and cut-off frequency. A maximum optical modulation depth of ~ 30% is estimated and is found to be most (least) sensitive when the electrical modulation is centered at the point of maximum (minimum) differential resistivity of the graphene. A 3 dB cut-off frequency > 5 MHz, limited only by the area of graphene on the device, is reported. The results agree well with theoretical calculations and numerical simulations, and demonstrate the first steps towards ultra-fast, graphene based THz optoelectronic devices.

  3. Modulation of localized surface plasmon resonance for an array of Ag nanostructures layered with nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Shang, Zhenzhen; Huang, Haishen; Wan, Yuan; Deng, Luogen

    2016-08-01

    Sensitivity of the localized surface plasmon resonance (LSPR) for an array of Ag (silver) nanostructures layered with nematic liquid crystals (NLC) is investigated. Calculations are made by using finite-difference time-domain (FDTD) method under different geometrical and environmental parameters. Results show that the LSPR wavelength in this array can be controlled and tuned to infrared wavelength range by the rotation of the NLC optical-axis. The rotation of the array and the modifications to height of the NLC layer, the size and periods of the array can affect the sensitivity of the LSPR. The sensitivity is higher when the optical-axis is in xoz plane, than that for the optical-axis in xoy plane. An improved sensitivity has been obtained in the simulation.

  4. 3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for high-performance photoelectrochemical water splitting.

    PubMed

    Zhang, Xing; Liu, Yang; Kang, Zhenhui

    2014-03-26

    Plasmonic photoelectrochemical (PEC) water splitting is very promising in the conversion of abundant solar energy into chemical energy. However, the solar-to-hydrogen efficiencies reported so far are still too low for practical use, which can be improved by optimizing the design and synthesis of individual blocks (i. e., the compositions, sizes, shapes of the metal and the coupling semiconductors) and the assembly of these blocks into targeted three-dimensional (3D) structures. Here, we constructed a composite plasmonic metal/semiconductor photoanode by decorating gold nanoparticles (Au NPs) on 3D branched ZnO nanowire arrays (B-ZnO NWs) through a series of simple solution chemical routes. The 3D ordered Au/B-ZnO NWs photoanodes exhibited excellent PEC activities in both ultraviolet and visible region. The improved photoactivities in visible region were demonstrated to be caused by the surface-plasmon-resonance effect of Au NPs. The photoconversion efficiency of Au/B-ZnO NWs photoanode reached 0.52% under simulated sunlight illumination. This is a high value of solar-to-hydrogen efficiencies reported till nowadays for plasmonic PEC water splitting, which was mainly benefit from the extensive metal/semiconductor interfaces for efficient extraction of hot electron from Au NPs and excellent charge-carries collection efficiency of the 3D ordered Au/B-ZnO NWs photoelectrode. PMID:24598779

  5. Highly uniform hole spacing micro brushes based on aligned carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Yang, Zhi; Zhu, Xingzhong; Huang, Xiaolu; Cheng, Yingwu; Liu, Yun; Geng, Huijuan; Wu, Yue; Su, Yanjie; Wei, Hao; Zhang, Yafei

    2013-11-01

    Highly uniform hole spacing micro brushes were fabricated based on aligned carbon nanotube (CNT) arrays synthesized by chemical vapor deposition method with the assistance of anodic aluminum oxide (AAO) template. Different micro brushes from CNT arrays were constructed on silicon, glass, and polyimide substrates, respectively. The micro brushes had highly uniform hole spacing originating from the regularly periodic pore structure of AAO template. The CNT arrays, serving as bristles, were firmly grafted on the substrates. The brushes can easily clean particles with scale of micrometer on the surface of silicon wafer and from the narrow spaces between the electrodes in a series of cleaning experiments. The results show the potential application of the CNT micro brushes as a cleaning tool in microelectronics manufacture field.

  6. Broadband sound attenuation on a periodic array of rectangular profile holes in plate

    NASA Astrophysics Data System (ADS)

    Moiseyenko, R. P.; Pennec, Y.; Marchal, R.; Bonello, B.; Djafari-Rouhani, B.

    2014-04-01

    Transmission of acoustic waves through a periodic array of sub-wavelength slits or holes have been studied in several recent works in relation with physical phenomena such as resonant (extraordinary) transmission, broadband sound shielding or acoustic induced transparency (AIT). In this work, we present for the first time the study of analogous phenomena for Lamb waves propagating in a thin plate. We study the transmission through one or two rows of a periodic array constituted by thin bridges separated by rectangular holes. When two rows of such an array are considered, the choice of the distance between both rows allows the realization of a broadband attenuation up to 99% in the transmission. These investigations should have implications for sound isolation, filtering and sensing applications.

  7. Highly uniform hole spacing micro brushes based on aligned carbon nanotube arrays

    PubMed Central

    2013-01-01

    Highly uniform hole spacing micro brushes were fabricated based on aligned carbon nanotube (CNT) arrays synthesized by chemical vapor deposition method with the assistance of anodic aluminum oxide (AAO) template. Different micro brushes from CNT arrays were constructed on silicon, glass, and polyimide substrates, respectively. The micro brushes had highly uniform hole spacing originating from the regularly periodic pore structure of AAO template. The CNT arrays, serving as bristles, were firmly grafted on the substrates. The brushes can easily clean particles with scale of micrometer on the surface of silicon wafer and from the narrow spaces between the electrodes in a series of cleaning experiments. The results show the potential application of the CNT micro brushes as a cleaning tool in microelectronics manufacture field. PMID:24274897

  8. Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer.

    PubMed

    Li, Jiangtian; Cushing, Scott K; Zheng, Peng; Senty, Tess; Meng, Fanke; Bristow, Alan D; Manivannan, Ayyakkannu; Wu, Nianqiang

    2014-06-11

    This paper presents a sandwich-structured CdS-Au-TiO2 nanorod array as the photoanode in a photoelectrochemical cell (PEC) for hydrogen generation via splitting water. The gold nanoparticles sandwiched between the TiO2 nanorod and the CdS quantum dot (QD) layer play a dual role in enhancing the solar-to-chemical energy conversion efficiency. First, the Au nanoparticles serve as an electron relay, which facilitates the charge transfer between CdS and TiO2 when the CdS QDs are photoexcited by wavelengths shorter than 525 nm. Second, the Au nanoparticles act as a plasmonic photosensitizer, which enables the solar-to-hydrogen conversion at wavelengths longer than the band edge of CdS, extending the photoconversion wavelength from 525 to 725 nm. The dual role of Au leads to a photocurrent of 4.07 mA/cm(2) at 0 V (vs Ag|AgCl) under full solar spectrum irradiation and a maximum solar-to-chemical energy conversion efficiency of 2.8%. An inversion analysis is applied to the transient absorption spectroscopy data, tracking the transfer of electrons and holes in the heterostructure, relating the relaxation dynamics to the underlying coupled rate equation and revealing that trap-state Auger recombination is a dominant factor in interfacial charge transfer. It is found that addition of Au nanoparticles increases the charge-transfer lifetime, reduces the trap-state Auger rate, suppresses the long-time scale back transfer, and partially compensates the negative effects of the surface trap states. Finally, the plasmonic energy-transfer mechanism is identified as direct transfer of the plasmonic hot carriers, and the interfacial Schottky barrier height is shown to modulate the plasmonic hot electron transfer and back transfer. Transient absorption characterization of the charge transfer shows defect states cannot be ignored when designing QD-sensitized solar cells. This facile sandwich structure combines both the electrical and the optical functions of Au nanoparticles into a

  9. Terahertz spectroscopy of two-dimensional subwavelength plasmonic structures

    SciTech Connect

    Azad, Abul K; Chen, Houtong; Taylor, Antoinette; O' Hara, John F; Han, Jiaguang; Lu, Xinchao; Zhang, Weili

    2009-01-01

    The fascinating properties of plasmonic structures have had significant impact on the development of next generation ultracompact photonic and optoelectronic components. We study two-dimensional plasmonic structures functioning at terahertz frequencies. Resonant terahertz response due to surface plasmons and dipole localized surface plasmons were investigated by the state-of-the-art terahertz time domain spectroscopy (THz-TDS) using both transmission and reflection configurations. Extraordinary terahertz transmission was demonstrated through the subwavelength metallic hole arrays made from good conducting metals as well as poor metals. Metallic arrays m!lde from Pb, generally a poor metal, and having optically thin thicknesses less than one-third of a skin depth also contributed in enhanced THz transmission. A direct transition of a surface plasmon resonance from a photonic crystal minimum was observed in a photo-doped semiconductor array. Electrical controls of the surface plasmon resonances by hybridization of the Schottkey diode between the metallic grating and the semiconductor substrate are investigated as a function of the applied reverse bias. In addition, we have demonstrated photo-induced creation and annihilation of surface plasmons with appropriate semiconductors at room temperature. According to the Fano model, the transmission properties are characterized by two essential contributions: resonant excitation of surface plasmons and nonresonant direct transmission. Such plasmonic structures may find fascinating applications in terahertz imaging, biomedical sensing, subwavelength terahertz spectroscopy, tunable filters, and integrated terahertz devices.

  10. Localized surface plasmon resonances in graphene ribbon arrays for sensing of dielectric environment at infrared frequencies

    NASA Astrophysics Data System (ADS)

    Vasić, Borislav; Isić, Goran; Gajić, Radoš

    2013-01-01

    High confinement of surface plasmon polaritons in graphene at infrared frequencies enhances the light-matter interaction and can be used for the sensing of the environment. The considered sensing platform consists of parallel graphene ribbons which enables efficient coupling of an electromagnetic field into localized surface plasmons. Changes in the environment are then detected by measuring the resulting frequency shifts of the plasmonic resonances. It is shown that the graphene ribbons have the sensitivity comparable to the sensitivity of noble metal nanoparticles at visible frequencies, which enable sensing of only several nanometers thick films at wavelengths around ten microns. At the same time, the tunability of graphene plasmons enables a design of broadband substrates for surface enhanced infrared absorption of thin films. By changing the Fermi level in graphene, the plasmonic resonance of graphene ribbons can be adjusted to desired vibrational mode which facilitates detection of multiple absorption bands.

  11. Water flattens graphene wrinkles: laser shock wrapping of graphene onto substrate-supported crystalline plasmonic nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    Hu, Yaowu; Lee, Seunghyun; Kumar, Prashant; Nian, Qiong; Wang, Wenqi; Irudayaraj, Joseph; Cheng, Gary J.

    2015-11-01

    Hot electron injection into an exceptionally high mobility material can be realized in graphene-plasmonic nanoantenna hybrid nanosystems, which can be exploited for several front-edge applications including photovoltaics, plasmonic waveguiding and molecular sensing at trace levels. Wrinkling instabilities of graphene on these plasmonic nanostructures, however, would cause reactive oxygen or sulfur species to diffuse and react with the materials, decrease charge transfer rates and block intense hot-spots. No ex situ graphene wrapping technique has been explored so far to control these wrinkles. Here, we present a method to generate seamless integration by using water as a flyer to transfer the laser shock pressure to wrap graphene onto plasmonic nanocrystals. This technique decreases the interfacial gap between graphene and the covered substrate-supported plasmonic nanoparticle arrays by exploiting a shock pressure generated by the laser ablation of graphite and the water impermeable nature of graphene. Graphene wrapping of chemically synthesized crystalline gold nanospheres, nanorods and bipyramids with different field confinement capabilities is investigated. A combined experimental and computational method, including SEM and AFM morphological investigation, molecular dynamics simulation, and Raman spectroscopy characterization, is used to demonstrate the effectiveness of this technique. Graphene covered gold bipyramid exhibits the best result among the hybrid nanosystems studied. We have shown that the hybrid system fabricated by laser shock can be used for enhanced molecular sensing. The technique developed has the characteristics of tight integration, and chemical/thermal stability, is instantaneous in nature, possesses a large scale and room temperature processing capability, and can be further extended to integrate other 2D materials with various 0-3D nanomaterials.Hot electron injection into an exceptionally high mobility material can be realized in graphene-plasmonic

  12. The local surface plasmon resonance property and refractive index sensitivity of metal elliptical nano-ring arrays

    SciTech Connect

    Lin, Weihua Wang, Qian; Dong, Anhua; Li, Qiuze

    2014-11-15

    In this paper, we systematically investigate the optical property and refractive index sensitivity (RIS) of metal elliptical nano-ring (MENR) arranged in rectangle lattice by finite-difference time-domain method. Eight kinds of considered MENRs are divided into three classes, namely fixed at the same outer size, at the same inner size, and at the same middle size. All MENR arrays show a bonding mode local surface plasmon resonance (LSPR) peak in the near-infrared region under longitudinal and transverse polarizations, and lattice diffraction enhanced LSPR peaks emerge, when the LSPR peak wavelength (LSPRPW) matches the effective lattice constant of the array. The LSPRPW is determined by the charge moving path length, the parallel and cross interactions induced by the stable distributed charges, and the moving charges inter-attraction. High RIS can be achieved by small particle distance arrays composed of MENRs with big inner size and small ring-width. On the other hand, for a MENR array, the comprehensive RIS (including RIS and figure of merit) under transverse polarization is superior to that under longitudinal polarization. Furthermore, on condition that compared arrays are fixed at the same lattice constant, the phenomenon that the RIS of big ring-width MENR arrays may be higher than that of small ring-width MENR arrays only appears in the case of compared arrays with relatively small lattice constant and composed of MENRs fixed at the same inner size simultaneously. Meanwhile, the LSPRPW of the former MENR arrays is also larger than that of the latter MENR arrays. Our systematic results may help experimentalists work with this type of systems.

  13. Constraints on individual supermassive black hole binaries from pulsar timing array limits on continuous gravitational waves

    NASA Astrophysics Data System (ADS)

    Schutz, Katelin; Ma, Chung-Pei

    2016-06-01

    Pulsar timing arrays (PTAs) are placing increasingly stringent constraints on the strain amplitude of continuous gravitational waves emitted by supermassive black hole binaries on subparsec scales. In this paper, we incorporate independent information about the dynamical masses Mbh of supermassive black holes in specific galaxies at known distances and use this additional information to further constrain whether or not those galaxies could host a detectable supermassive black hole binary. We estimate the strain amplitudes from individual binaries as a function of binary mass ratio for two samples of nearby galaxies: (1) those with direct dynamical measurements of Mbh in the literature, and (2) the 116 most massive early-type galaxies (and thus likely hosts of the most massive black holes) within 108 Mpc from the MASSIVE Survey. Our exploratory analysis shows that the current PTA upper limits on continuous waves (as a function of angular position in the sky) can already constrain the mass ratios of hypothetical black hole binaries in many galaxies in our samples. The constraints are stronger for galaxies with larger Mbh and at smaller distances. For the black holes with Mbh ≳ 5 × 109 M⊙ at the centres of NGC 1600, NGC 4889, NGC 4486 (M87), and NGC 4649 (M60), any binary companion in orbit within the PTA frequency bands would have to have a mass ratio of a few per cent or less.

  14. Sub-100-nm ordered silicon hole arrays by metal-assisted chemical etching

    PubMed Central

    2013-01-01

    Sub-100-nm silicon nanohole arrays were fabricated by a combination of the site-selective electroless deposition of noble metals through anodic porous alumina and the subsequent metal-assisted chemical etching. Under optimum conditions, the formation of deep straight holes with an ordered periodicity (e.g., 100 nm interval, 40 nm diameter, and high aspect ratio of 50) was successfully achieved. By using the present method, the fabrication of silicon nanohole arrays with 60-nm periodicity was also achieved. PMID:24090268

  15. A semi-analytical model for the approximation of plasmonic bands in arrays of metal wires in photonic crystal fibers.

    PubMed

    Spittel, Ron; Bartelt, Harmut; Schmidt, Markus A

    2014-05-19

    We present a highly efficient semi-analytical and straightforward-to-implement model for the determination of plasmonic band edges of metallic nanowire arrays inside photonic crystal fibers. The model relies on the approximation of the hexagonal unit cell by a circle and using particular boundary conditions, showing an accurate agreement with finite element simulations. The model reduces simulation time by a factor of 100, thus representing an efficient tool for structure design. It further allows the calculation of all relevant modes in the system by slight changes of the entries in a 4 × 4 matrix. PMID:24921296

  16. Machining hole arrays in polyimide using a UV solid state laser and predetermined temporal pulse patterns

    NASA Astrophysics Data System (ADS)

    Mullan, Claire; Ilie, Diana; O'Connor, Gerard M.; Favre, Sebastian; Glynn, Thomas J.

    2007-02-01

    A solid-state UV laser was used to make arrays of reproducible percussion-drilled micron-sized holes in polyimide. An optical switch was employed as a pulse picker to select specific patterns of pulses from the high repetition rate laser beam. The ability to control and vary the number of pulses per burst and the time between bursts enhanced the drilling rate while minimizing thermal damage around the holes. The optimum pulse patterns were determined experimentally. A photodiode acted as a breakthrough sensor to end the drilling and optimize the exit hole size and quality. Results were compared with computer simulations of the drilling process based on modeling of the laser/material interaction.

  17. Vortex interaction enhanced saturation number and caging effect in a superconducting film with a honeycomb array of nanoscale holes.

    SciTech Connect

    Latimer, M. L.; Berdiyorov, G. R.; Xiao, Z. L.; Kwok, W. K.; Peeters, F. M.

    2012-01-01

    The electrical transport properties of a MoGe thin film with a honeycomb array of nanoscale holes are investigated. The critical current of the system shows nonmatching anomalies as a function of applied magnetic field, enabling us to distinguish between multiquanta vortices trapped in the holes and interstitial vortices located between the holes. The number of vortices trapped in each hole is found to be larger than the saturation number predicted for an isolated hole and shows a nonlinear field dependence, leading to the caging effect as predicted from the Ginzburg-Landau (GL) theory. Our experimental results are supplemented by numerical simulations based on the GL theory.

  18. Plasmon enhanced CdS-quantum dot sensitized solar cell using ZnO nanorods array deposited with Ag nanoparticles as photoanode

    NASA Astrophysics Data System (ADS)

    Eskandari, M.; Ahmadi, V.; Yousefi rad, M.; Kohnehpoushi, S.

    2015-04-01

    CdS-quantum dot sensitized solar cell using ZnO nanorods (ZnO NRs) array deposited with Ag nanoparticles (Ag NPs) as photoanode was fabricated. Light absorption effect of Ag NPs on improvement of the cell performance was investigated. Performance improvement of metal nanoparticles (MNPs) was controlled by the structure design and architecture. Different decorations and densities of Ag NPs were utilized on the photoanode. Results showed that using 5% Ag NPs in the photoanode results in the increased efficiency, fill factor, and circuit current density from 0.28% to 0.60%, 0.22 to 0.29, and 2.18 mA/cm2 to 3.25 mA/cm2, respectively. Also, incident photon-to-current efficiencies (IPCE) results showed that cell performance improvement is related to enhanced absorption in the photoanode, which is because of the surface plasmonic resonance and light scattering of Ag NPs in the photoanode. Measurements of electrochemical impedance spectroscopy revealed that hole transfer kinetics increases with introduction of Ag NPs into photoanode. Also, it is shown that chemical capacitance increases with introduction of Ag NPs. Such increase can be attributed to the surface palsmonic resonance of Ag NPs which leads to absorption of more light in the photoanode and generation of more photoelectron in the photoanode.

  19. Synergistic Effect of Surface Plasmonic particles and Surface Passivation layer on ZnO Nanorods Array for Improved Photoelectrochemical Water Splitting.

    PubMed

    Liu, Yichong; Yan, Xiaoqin; Kang, Zhuo; Li, Yong; Shen, Yanwei; Sun, Yihui; Wang, Li; Zhang, Yue

    2016-01-01

    One-dimensional zinc oxide nanorods array exhibit excellent electron mobility and thus hold great potential as photoanode for photoelelctrochemical water splitting. However, the poor absorption of visible light and the prominent surface recombination hider the performance improvement. In this work, Au nanoparticles and aluminium oxide were deposited onto the surface of ZnO nanorods to improve the PEC performance. The localized surface plasmon resonance of Au NPs could expand the absorption spectrum to visible region. Simultaneously, the surface of passivation with Au NPs and Al2O3 largely suppressed the photogenerated electron-hole recombination. As a result, the optimal solar-to-hydrogen efficiency of ZnO/Au/Al2O3 with 5 cycles was 6.7 times that of pristine ZnO, ascribed to the synergistic effect of SPR and surface passivation. This research reveals that the synergistic effect could be used as an important method to design efficient photoanodes for photoelectrochemical devices. PMID:27443692

  20. The role of Rabi splitting tuning in the dynamics of strongly coupled J-aggregates and surface plasmon polaritons in nanohole arrays.

    PubMed

    Wang, Hai; Toma, Andrea; Wang, Hai-Yu; Bozzola, Angelo; Miele, Ermanno; Haddadpour, Ali; Veronis, Georgios; De Angelis, Francesco; Wang, Lei; Chen, Qi-Dai; Xu, Huai-Liang; Sun, Hong-Bo; Zaccaria, Remo Proietti

    2016-07-21

    We have investigated the influence of Rabi splitting tuning on the dynamics of strongly coupled J-aggregate/surface plasmon polariton systems. In particular, the Rabi splitting was tuned by modifying the J-aggregate molecule concentration while a polaritonic system was provided by a nanostructure formed by holes array in a golden layer. From the periodic and concentration changes we have identified, through numerical and experimental steady-state analyses, the best geometrical configuration for maximizing Rabi splitting, which was then used for transient absorption measurements. It was found that in transient absorption spectra, under upper band excitation, two bleaching peaks appear when a nanostructured polaritonic pattern is used. Importantly, their reciprocal distance increases upon increase of J-aggregate concentration, a result confirmed by steady-state analysis. In a similar manner it was also found that the lifetime of the upper band is intimately related to the coupling strength. In particular, we argue that with strong coupling strength, i.e. high J-aggregate concentration, a short lifetime of the upper band has to be expected due to the suppression of the bottleneck effect. This result supports the idea that the dynamics of hybrid systems is profoundly dependent on Rabi splitting. PMID:27350590

  1. The role of Rabi splitting tuning in the dynamics of strongly coupled J-aggregates and surface plasmon polaritons in nanohole arrays

    NASA Astrophysics Data System (ADS)

    Wang, Hai; Toma, Andrea; Wang, Hai-Yu; Bozzola, Angelo; Miele, Ermanno; Haddadpour, Ali; Veronis, Georgios; de Angelis, Francesco; Wang, Lei; Chen, Qi-Dai; Xu, Huai-Liang; Sun, Hong-Bo; Zaccaria, Remo Proietti

    2016-07-01

    We have investigated the influence of Rabi splitting tuning on the dynamics of strongly coupled J-aggregate/surface plasmon polariton systems. In particular, the Rabi splitting was tuned by modifying the J-aggregate molecule concentration while a polaritonic system was provided by a nanostructure formed by holes array in a golden layer. From the periodic and concentration changes we have identified, through numerical and experimental steady-state analyses, the best geometrical configuration for maximizing Rabi splitting, which was then used for transient absorption measurements. It was found that in transient absorption spectra, under upper band excitation, two bleaching peaks appear when a nanostructured polaritonic pattern is used. Importantly, their reciprocal distance increases upon increase of J-aggregate concentration, a result confirmed by steady-state analysis. In a similar manner it was also found that the lifetime of the upper band is intimately related to the coupling strength. In particular, we argue that with strong coupling strength, i.e. high J-aggregate concentration, a short lifetime of the upper band has to be expected due to the suppression of the bottleneck effect. This result supports the idea that the dynamics of hybrid systems is profoundly dependent on Rabi splitting.

  2. Synergistic Effect of Surface Plasmonic particles and Surface Passivation layer on ZnO Nanorods Array for Improved Photoelectrochemical Water Splitting

    PubMed Central

    Liu, Yichong; Yan, Xiaoqin; Kang, Zhuo; Li, Yong; Shen, Yanwei; Sun, Yihui; Wang, Li; Zhang, Yue

    2016-01-01

    One-dimensional zinc oxide nanorods array exhibit excellent electron mobility and thus hold great potential as photoanode for photoelelctrochemical water splitting. However, the poor absorption of visible light and the prominent surface recombination hider the performance improvement. In this work, Au nanoparticles and aluminium oxide were deposited onto the surface of ZnO nanorods to improve the PEC performance. The localized surface plasmon resonance of Au NPs could expand the absorption spectrum to visible region. Simultaneously, the surface of passivation with Au NPs and Al2O3 largely suppressed the photogenerated electron-hole recombination. As a result, the optimal solar-to-hydrogen efficiency of ZnO/Au/Al2O3 with 5 cycles was 6.7 times that of pristine ZnO, ascribed to the synergistic effect of SPR and surface passivation. This research reveals that the synergistic effect could be used as an important method to design efficient photoanodes for photoelectrochemical devices. PMID:27443692

  3. Black Hole Science using Current and Future Pulsar Timing Array Constraints on Continuous Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Schutz, Katharine; Ma, Chung-Pei

    2016-01-01

    Pulsar timing arrays have already placed constraints on the strain amplitude of continuous gravitational waves coming from supermassive black hole binaries. To date, the implications of these constraints for specific nearby galaxies have yet to be studied. We incorporate independent measurements of supermassive black hole masses in specific galaxies and leverage this additional information to further constrain whether or not those galaxies could host a detectable supermassive black hole binary. We include projected masses of the supermassive black holes in galaxies that are part of the MASSIVE survey, which includes the most massive, nearby galaxies. We argue that the galaxies considered in this work are among the most likely to host an individually-resolvable supermassive black hole binary, and we find that pulsar timing already places constraints on the existence of a binary in several of these galaxies. Additionally, with these nearby galaxies in mind we calculate specifications that future PTAs would need to reach in order to constrain even more prospective binaries hosted within the sample galaxies.

  4. Astrophysical constraints on massive black hole binary evolution from pulsar timing arrays

    NASA Astrophysics Data System (ADS)

    Middleton, Hannah; Del Pozzo, Walter; Farr, Will M.; Sesana, Alberto; Vecchio, Alberto

    2016-01-01

    We consider the information that can be derived about massive black hole binary (MBHB) populations and their formation history solely from current and possible future pulsar timing array (PTA) results. We use models of the stochastic gravitational-wave background from circular MBHBs with chirp mass in the range 106-1011 M⊙ evolving solely due to radiation reaction. Our parametrized models for the black hole merger history make only weak assumptions about the properties of the black holes merging over cosmic time. We show that current PTA results place an upper limit on the black hole merger density which does not depend on the choice of a particular merger history model; however, they provide no information about the redshift or mass distribution. We show that even in the case of a detection resulting from a factor of 10 increase in amplitude sensitivity, PTAs will only put weak constraints on the source merger density as a function of mass, and will not provide any additional information on the redshift distribution. Without additional assumptions or information from other observations, a detection cannot meaningfully bound the massive black hole merger rate above zero for any particular mass.

  5. Continuous-flow microfluidic printing of proteins for array-based applications including surface plasmon resonance imaging.

    PubMed

    Natarajan, Sriram; Katsamba, Phini S; Miles, Adam; Eckman, Josh; Papalia, Giuseppe A; Rich, Rebecca L; Gale, Bruce K; Myszka, David G

    2008-02-01

    Arraying proteins is often more challenging than creating oligonucleotide arrays. Protein concentration and purity can severely limit the capacity of spots created by traditional pin and ink jet printing techniques. To improve protein printing methods, we have developed a three-dimensional microfluidic system to deposit protein samples within discrete spots (250-microm squares) on a target surface. Our current technology produces a 48-spot array within a 0.5 x 1 cm target area. A chief advantage of this method is that samples may be introduced in continuous flow, which makes it possible to expose each spot to a larger volume of sample than would be possible with standard printing methods. Using Biacore Flexchip (Biacore AB) surface plasmon resonance array-based biosensor as a chip reader, we demonstrate that the microfluidic printer is capable of spotting proteins that are dilute (<0.1 microg/ml) and contain high concentrations of contaminating protein (>10,000-fold molar excess). We also show that the spots created by the microfluidic printer are more uniform and have better-defined borders than what can be achieved with pin printing. The ability to readily print proteins using continuous flow will help expand the application of protein arrays. PMID:17868635

  6. Plasmon enhanced fluorescence studies from aligned gold nanorod arrays modified with SiO2 spacer layers

    NASA Astrophysics Data System (ADS)

    Damm, Signe; Fedele, Stefano; Murphy, Antony; Holsgrove, Kristina; Arredondo, Miryam; Pollard, Robert; Barry, James N.; Dowling, Denis P.; Rice, James H.

    2015-05-01

    Here, we demonstrate that quasi self-standing Au nanorod arrays prepared with plasma polymerisation deposited SiO2 dielectric spacers support surface enhanced fluorescence (SEF) while maintaining high signal reproducibility. We show that it is possible to find a balance between enhanced radiative and non-radiative decay rates at which the fluorescent intensity is maximized. The SEF signal optimised with a 30 nm spacer layer thickness showed a 3.5-fold enhancement with a signal variance of <15% thereby keeping the integrity of the nanorod array. We also demonstrate the decreased importance of obtaining resonance conditions when localized surface plasmon resonance is positioned within the spectral region of Au interband transitions. Procedures for further increasing the SEF enhancement factor are also discussed.

  7. Plasmon enhanced fluorescence studies from aligned gold nanorod arrays modified with SiO{sub 2} spacer layers

    SciTech Connect

    Damm, Signe; Fedele, Stefano; Rice, James H.; Murphy, Antony; Holsgrove, Kristina; Arredondo, Miryam; Pollard, Robert; Barry, James N.; Dowling, Denis P.

    2015-05-04

    Here, we demonstrate that quasi self-standing Au nanorod arrays prepared with plasma polymerisation deposited SiO{sub 2} dielectric spacers support surface enhanced fluorescence (SEF) while maintaining high signal reproducibility. We show that it is possible to find a balance between enhanced radiative and non-radiative decay rates at which the fluorescent intensity is maximized. The SEF signal optimised with a 30 nm spacer layer thickness showed a 3.5-fold enhancement with a signal variance of <15% thereby keeping the integrity of the nanorod array. We also demonstrate the decreased importance of obtaining resonance conditions when localized surface plasmon resonance is positioned within the spectral region of Au interband transitions. Procedures for further increasing the SEF enhancement factor are also discussed.

  8. Plasmonics: Electromagnetic energy transfer and switching in nanoparticle chain-arrays below the diffraction limit

    NASA Astrophysics Data System (ADS)

    Brongersma, Mark; Hartman, John; Atwater, Harry

    2000-03-01

    Integrated optics faces the fundamental limitation that, for the guiding, modulation, and amplification of light, structures are needed that have dimensions comparable to the wavelength of light. Recently, it was theoretically shown that this problem can be circumvented by transporting electromagnetic energy along linear chains of closely spaced metal nanoparticles. This transport relies on the near-field electrodynamic interaction between metal particles that sets up coupled plasmon modes. We have modeled the transport properties of corners, T's, and switches that consist of chains of metal nanoparticles. It is shown that propagation is coherent and the group velocities can exceed saturated velocities of electrons in semiconductors ( ~ 105 m/s). High efficiency transmission of energy around sharp corners (bending radius << wavelength of visible light) is possible. The transmission is a strong function of the frequency and polarization direction of the plasmon mode. Finally, the operation of a plasmon switch is modeled in which plasmon waves can be switched. Suggestions are given for the choice of metal particle and host material. These "plasmonic devices" potentially are among the smallest structures with optical functionality.

  9. Integrating plasmonic diagnostics and microfluidics.

    PubMed

    Niu, Lifang; Zhang, Nan; Liu, Hong; Zhou, Xiaodong; Knoll, Wolfgang

    2015-09-01

    Plasmonics is generally divided into two categories: surface plasmon resonance (SPR) of electromagnetic modes propagating along a (noble) metal/dielectric interface and localized SPRs (LSPRs) on nanoscopic metallic structures (particles, rods, shells, holes, etc.). Both optical transducer concepts can be combined with and integrated in microfluidic devices for biomolecular analyte detections, with the benefits of small foot-print for point-of-care detection, low-cost for one-time disposal, and ease of being integrated into an array format. The key technologies in such integration include the plasmonic chip, microfluidic channel fabrication, surface bio-functionalization, and selection of the detection scheme, which are selected according to the specifics of the targeting analytes. This paper demonstrates a few examples of the many versions of how to combine plasmonics and integrated microfluidics, using different plasmonic generation mechanisms for different analyte detections. One example is a DNA sensor array using a gold film as substrate and surface plasmon fluorescence spectroscopy and microscopy as the transduction method. This is then compared to grating-coupled SPR for poly(ethylene glycol) thiol interaction detected by angle interrogation, gold nanohole based LSPR chip for biotin-strepavidin detection by wavelength shift, and gold nanoholes/nanopillars for the detection of prostate specific antigen by quantum dot labels excited by the LSPR. Our experimental results exemplified that the plasmonic integrated microfluidics is a promising tool for understanding the biomolecular interactions and molecular recognition process as well as biosensing, especially for on-site or point-of-care diagnostics. PMID:26392832

  10. Integrating plasmonic diagnostics and microfluidics

    PubMed Central

    Niu, Lifang; Zhang, Nan; Liu, Hong; Zhou, Xiaodong; Knoll, Wolfgang

    2015-01-01

    Plasmonics is generally divided into two categories: surface plasmon resonance (SPR) of electromagnetic modes propagating along a (noble) metal/dielectric interface and localized SPRs (LSPRs) on nanoscopic metallic structures (particles, rods, shells, holes, etc.). Both optical transducer concepts can be combined with and integrated in microfluidic devices for biomolecular analyte detections, with the benefits of small foot-print for point-of-care detection, low-cost for one-time disposal, and ease of being integrated into an array format. The key technologies in such integration include the plasmonic chip, microfluidic channel fabrication, surface bio-functionalization, and selection of the detection scheme, which are selected according to the specifics of the targeting analytes. This paper demonstrates a few examples of the many versions of how to combine plasmonics and integrated microfluidics, using different plasmonic generation mechanisms for different analyte detections. One example is a DNA sensor array using a gold film as substrate and surface plasmon fluorescence spectroscopy and microscopy as the transduction method. This is then compared to grating-coupled SPR for poly(ethylene glycol) thiol interaction detected by angle interrogation, gold nanohole based LSPR chip for biotin-strepavidin detection by wavelength shift, and gold nanoholes/nanopillars for the detection of prostate specific antigen by quantum dot labels excited by the LSPR. Our experimental results exemplified that the plasmonic integrated microfluidics is a promising tool for understanding the biomolecular interactions and molecular recognition process as well as biosensing, especially for on-site or point-of-care diagnostics. PMID:26392832

  11. ZnO/Ag composite nanorod arrays for surface-plasmon-enhanced emission study

    SciTech Connect

    Pal, Anil Kumar E-mail: d.bharathimohan@gmail.com; Mohan, D. Bharathi E-mail: d.bharathimohan@gmail.com

    2014-04-24

    The surface plasmon resonance enhanced emission through coupling of surface plasmons and exciton band energies is studied in hybrid ZnO/Ag nanostructure. The catalytic growth of ZnO nanorods is controlled in seed mediated growth by altering size distribution of Ag nanoislands. X-ray diffraction shows a predominant (002) crystal plane confirming the preferential growth of ZnO nanorods on as-deposited Ag. Increase of surface roughness in Ag film by post deposition annealing process enhances the light emission due to momentum matching between surface plasmons and excitons as well as a red shift of 32 meV occurs due to multi phonon and phonon-exciton interaction.

  12. Plasmonic vertical dimer arrays as elements for biosensing.

    PubMed

    Horrer, Andreas; Krieg, Katrin; Freudenberger, Kathrin; Rau, Sabrina; Leidner, Lothar; Gauglitz, Günter; Kern, Dieter P; Fleischer, Monika

    2015-11-01

    Localized surface plasmon resonances of metallic nanoparticles can be used for biosensing because of their sensitive dependence on the refractive index of the surrounding medium. The binding of molecules to the particles causes a change of the effective refractive index in their close vicinity, which leads to a reversible shift of the resonance. We present simulations and sensing experiments of a plasmon resonance based biosensor that makes use of the narrow antisymmetric resonance in coupled plasmonic vertical dimers. The sensitivity of the antisymmetric resonance is compared with that of a surface lattice resonance for refractive index sensing of bulk and of thin layers of molecules. The functionality of such a sensor surface is demonstrated via a testosterone immunoassay for detection of antibody from a solution by binding to surface-immobilized antigen in a fluidic channel. PMID:26345439

  13. Particle-on-Film Gap Plasmons on Antireflective ZnO Nanocone Arrays for Molecular-Level Surface-Enhanced Raman Scattering Sensors.

    PubMed

    Lee, Youngoh; Lee, Jiwon; Lee, Tae Kyung; Park, Jonghwa; Ha, Minjung; Kwak, Sang Kyu; Ko, Hyunhyub

    2015-12-01

    When semiconducting nanostructures are combined with noble metals, the surface plasmons of the noble metals, in addition to the charge transfer interactions between the semiconductors and noble metals, can be utilized to provide strong surface plasmon effects. Here, we suggest a particle-film plasmonic system in conjunction with tapered ZnO nanowire arrays for ultrasensitive SERS chemical sensors. In this design, the gap plasmons between the metal nanoparticles and the metal films provide significantly improved surface-enhanced Raman spectroscopy (SERS) effects compared to those of interparticle surface plasmons. Furthermore, 3D tapered metal nanostructures with particle-film plasmonic systems enable efficient light trapping and waveguiding effects. To study the effects of various morphologies of ZnO nanostructures on the light trapping and thus the SERS enhancements, we compare the performance of three different ZnO morphologies: ZnO nanocones (NCs), nanonails (NNs), and nanorods (NRs). Finally, we demonstrate that our SERS chemical sensors enable a molecular level of detection capability of benzenethiol (100 zeptomole), rhodamine 6G (10 attomole), and adenine (10 attomole) molecules. This work presents a new design platform based on the 3D antireflective metal/semiconductor heterojunction nanostructures, which will play a critical role in the study of plasmonics and SERS chemical sensors. PMID:26575302

  14. Cloaking from surface plasmon polaritons by a circular array of point scatterers.

    PubMed

    Baumeier, Björn; Leskova, Tamara A; Maradudin, Alexei A

    2009-12-11

    In recent years it has been demonstrated both theoretically and experimentally that it is possible to cloak a predefined region of space from interaction with external volume electromagnetic waves, rendering an arbitrary object inside this region invisible to an outside observer. The several strategies that have been developed for achieving such cloaking cannot be applied directly to the cloaking of a surface feature from surface plasmon polaritons propagating on that surface. Here we demonstrate that it is possible to generate an arrangement of two concentric rings of point scatterers on a metal surface that significantly reduces the scattering of surface plasmon polaritons from an object enclosed within this circular structure. PMID:20366219

  15. Strong coupling in molecular exciton-plasmon Au nanorod array systems

    NASA Astrophysics Data System (ADS)

    Fedele, Stefano; Hakami, Manal; Murphy, Antony; Pollard, Robert; Rice, James

    2016-02-01

    We demonstrate here a strong coupling between localized surface plasmon modes in self-standing nanorods with excitons in a molecular J-aggregate layer through angular tuning. The enhanced exciton-plasmon coupling creates a Fano like line shape in the differential reflection spectra associated with the formation of hybrid states, leading to anti-crossing of the upper and lower polaritons with a Rabi frequency of 125 meV. The recreation of a Fano like line shape was found in photoluminescence demonstrating changes in the emission spectral profile under strong coupling.

  16. Ionospheric holes made by ballistic missiles from North Korea detected with a Japanese dense GPS array

    NASA Astrophysics Data System (ADS)

    Ozeki, Masaru; Heki, Kosuke

    2010-09-01

    A dense array of global positioning system (GPS) receivers is a useful tool to study ionospheric disturbances. Here we report observations by a Japanese GPS array of ionospheric holes, i.e., localized electron depletion. They were made by neutral molecules in exhaust plumes (e.g., water) of ballistic missiles from North Korea, Taepodong-1 and -2, launched on 31 August, 1998, and 5 April, 2009, respectively. Negative anomaly of electron density emerged ˜6 min after the launches in the middle of the Japan Sea, and extended eastward along the missile tracks. By comparing the numerical simulation of electron depletion and the observed change in ionospheric total electron content, we suggest that the exhaust plumes from the Taepodong-2 second stage effused up to ˜1.5 × 1026 water molecules per second. The ionospheric hole signature was used to constrain the Taepodong-2 trajectory together with other information, e.g., coordinates of the launch pad, time and coordinates of the first stage splashdown, and height and time of the second stage passage over Japan. The Taepodong-2 is considered to have reached the ionospheric F region in ˜6 min, flown above northeastern Japan ˜7 min after the launch, and crashed to the Pacific Ocean without attaining the first astronautical velocity. The ionospheric hole in the 1998 Taepodong-1 launch was much less in size, but it is difficult to compare directly the thrusts of the two missiles due to uncertainty of the Taepodong-1 trajectory.

  17. Extraordinary transmission of electromagnetic waves through sub-wavelength slot arrays mediated by spoof surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Pang, Yongqiang; Wang, Jiafu; Ma, Hua; Feng, Mingde; Xia, Song; Xu, Zhuo; Qu, Shaobo

    2016-05-01

    One-dimensional gratings consisting of sub-wavelength metallic slot arrays have been widely applied in the design of novel devices due to their polarization-selective characteristics. When the incident electric field is polarized along the slot direction, the slot arrays are opaque, behaving like a metal surface. Here we propose a scheme of making slot arrays transparent for electromagnetic (EM) waves, which is achieved by the incorporation of corrugated metal strip arrays. Incident waves are first converted into spoof surface plasmon polaritons (SSPPs) propagating along the strips. Since SSPPs confine EM fields in sub-wavelength scales, EM waves can penetrate through the sub-wavelength slots. High transmission was thus obtained, with an efficiency as high as 95%. Moreover, position and bandwidth of the transmission band can be tailored by adjusting the groove depth and the slot width, respectively. It is expected that the design may find potential applications in the multifunctional devices with frequency- and polarization-selective features.

  18. Rapid identification of Mycobacterium tuberculosis infection by a new array format-based surface plasmon resonance method

    NASA Astrophysics Data System (ADS)

    Hsieh, Shang-Chen; Chang, Chia-Chen; Lu, Chia-Chen; Wei, Chia-Fong; Lin, Chuan-Sheng; Lai, Hsin-Chih; Lin, Chii-Wann

    2012-03-01

    Tubercle bacillus [TB] is one of the most important chronic infectious diseases that cause millions of deaths annually. While conventional smear microscopy and culture methods are widely used for diagnosis of TB, the former is insensitive, and the latter takes up to 6 to 8 weeks to provide a result, limiting the value of these methods in aiding diagnosis and intermediate decisions on treatment. Therefore, a rapid detection method is essential for the diagnosis, prognosis assessment, and recurrence monitoring. A new surface plasmon resonance [SPR] biosensor based on an array format, which allowed immobilizing nine TB antigens onto the sensor chip, was constructed. Simultaneous determination of multiple TB antibodies in serum had been accomplished with this array-based SPR system. The results were compared with enzyme-linked immunosorbent assay, a conventional immunological method. Array-based SPR showed more advantages in providing label-free and real-time detection. Additionally, the high sensitivity and specificity for the detection of TB infection showed its potential for future development of biosensor arrays for TB diagnosis.

  19. Sensitivity improved plasmonic gold nanoholes array biosensor by coupling quantum-dots for the detection of specific biomolecular interactions.

    PubMed

    Niu, Lihong; Cheng, Ke; Wu, Yangqing; Wang, Tian; Shi, Qing; Liu, Dan; Du, Zuliang

    2013-12-15

    In this paper, we focused on the large-scale fabrication of gold nanoholes array capable of supporting surface plasmonic resonance (SPR) via the developed nanosphere lithography (NSL) technique, which could be used as high performance biosensor for the detection of specific streptavidin-biotin interactions. Direct UV-vis absorption mode measurement was used to monitor the SPR peak shift. For the better immobilization of biotin, the surface of gold nanoholes array was functionalized with 3-mercaptopropyl trimethoxysilane (MPTS) and 3-aminopropyl triethoxysilane (APTES). After the streptavidin binding to the biotin, the SPR peak position showed an 11 nm wavelength shift due to the refractive index change caused by the biotin-streptavidin binding. The sealing treatment was performed by using bovine serum albumin (BSA) to eliminate the influences of nonspecific adsorption for more accurate detection. Interestingly, the detection sensitivity of the gold nanoholes array could be further enhanced by coupling the water-soluble CdSe/ZnS quantum dots (QDs), which showed four-fold improvement in detection sensitivity as compared to the gold nanoholes array biosensor without the coupling of QDs. The mechanisms for the enhancement of detection sensitivity were also discussed. This would provide new capabilities for the highly sensitive measurements of biomolecular binding. PMID:23850779

  20. Ionospheric hole behind an ascending rocket observed with a dense GPS array

    NASA Astrophysics Data System (ADS)

    Furuya, T.; Heki, K.

    2008-03-01

    An ascending liquid-fuel rocket is known to make a hole in the ionosphere, or localized electron depletion, by leaving behind large amounts of neutral molecules (e.g. water) in the exhaust plume. Such a hole was made by the January 24, 2006 launch of an H-IIA rocket from Tanegashima, Southwestern Japan, and here we report its observation with a dense array of Global Positioning System receivers as a sudden and temporary decrease of total electron content. The observed disturbances have been compared with a simple numerical model incorporating the water diffusion and chemical reactions in the ionosphere. The substantial vanishing of the ionosphere lasted more than one hour, suggesting its application as a window for ground-based radio astronomical observations at low frequencies.

  1. Liquid-crystal micro-lens array with two-divided and tetragonally hole-patterned electrodes.

    PubMed

    Kawamura, Marenori; Nakamura, Kento; Sato, Susumu

    2013-11-01

    We propose a liquid crystal (LC) micro-lens array with the structure of two-divided and tetragonally hole-patterned electrodes. Each LC cell in the lens array behaves like cylindrical or spherical lens properties by electrically adjusting the applied voltages. The LC micro-lens array is useful for tuning optical properties such a focal length and deflection angle of a light emitting diode (LED) illumination system. PMID:24216873

  2. Gold Nanorods: Evaporative Self-Assembly of Gold Nanorods into Macroscopic 3D Plasmonic Superlattice Arrays (Adv. Mater. 13/2016).

    PubMed

    Li, Penghui; Li, Yong; Zhou, Zhang-Kai; Tang, Siying; Yu, Xue-Feng; Xiao, Shu; Wu, Zhongzhen; Xiao, Quanlan; Zhao, Yuetao; Wang, Huaiyu; Chu, Paul K

    2016-04-01

    On page 2511, X.-F. Yu, P. K. Chu, and co-workers demonstrate the successful fabrication of millimeter-scale three-dimensional superlattice arrays consisting of dense, regular, and vertically aligned gold nanorods by the evaporative self-assembly method. The excellent performance in surface-enhanced Raman scattering indicates applications in plasmonic substrates. PMID:27037942

  3. Broadband localized surface-plasmon-enhanced green light-emitting diodes by silver nanocone array

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Li, Yufeng; Huang, Yaping; Wang, Shuai; Feng, Lungang; Gong, Zhina; Wang, Jiangteng; Ding, Wen; Zhang, Ye; Yun, Feng

    2015-12-01

    Green light-emitting diodes (LEDs) with silver nanocone-shaped structures embedded in p-GaN have been demonstrated with the surface plasmon (SP) enhancement effect. The resonance frequency has been broadened and the strength of coupling has been considerably enhanced. Compared with the LED without Ag nanocones, the integrated photoluminescence (PL) intensity of the SP-enhanced LED was improved by ∼275%, and the electroluminescence (EL) enhancement ratio at a different wavelength was evaluated at an injection current of 50 mA/mm2. At the same time, a reduction in the recombination lifetime indicated an increased internal quantum efficiency of LEDs. The results of simulation using nanocones as well as nanorods indicate good correlation with the experimental observation of the broadening effect. This structure is promising for converting incident photons into the localized surface plasmon (LSP) mode, to enhance the emission of LEDs within a broad wavelength range.

  4. Effects of morphology, diameter and periodic distance of the Ag nanoparticle periodic arrays on the enhancement of the plasmonic field absorption in the CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Kohnehpoushi, Saman; Eskandari, Mehdi; Ahmadi, Vahid; Yousefirad, Mansooreh; Nabavi, Elham

    2016-09-01

    In this work, the numerical calculations of plasmonic field absorption of Ag nanoparticles (Ag NPs) periodic arrays in the CdSe quantum dot (QD) film are investigated by the three-dimensional finite difference time domain (FDTD). Diameter (D), periodic distance (P), and morphology effects of Ag NPs are investigated on the improvement of the plasmonic field absorption in CdSe QD film. Results show that plasmonic field absorption in CdSe QD film is enhanced with reduction of D of Ag NPs until 5 nm and reduces thereafter. It is observed that with raising D of Ag NPs, optimum plasmonic field absorption in CdSe QD film is shifted toward the higher P. Moreover, with varying morphology of Ag NPs from spherical to cylindrical, cubic, ringing and pyramid, the plasmonic field absorption is considerably enhanced in CdSe QD film and position of quadrupole plasmon mode (QPPM) is shifted toward further wavelength. For cylindrical Ag NPs, the QPPM intensity increased with raising height (H) until 15 nm and reduces thereafter.

  5. Ultra sub-wavelength surface plasmon confinement using air-gap, sub-wavelength ring resonator arrays

    NASA Astrophysics Data System (ADS)

    Lee, Jaehak; Sung, Sangkeun; Choi, Jun-Hyuk; Eom, Seok Chan; Mortensen, N. Asger; Shin, Jung H.

    2016-02-01

    Arrays of sub-wavelength, sub-10 nm air-gap plasmonic ring resonators are fabricated using nanoimprinting. In near infra-red (NIR) range, the resonator supports a single dipole mode which is excited and identified via simple normal illumination and explored through transmission measurements. By controlling both lateral and vertical confinement via a metal edge, the mode volume is successfully reduced down to 1.3 × 10-5 λ03. The advantage of such mode confinement is demonstrated by applying the resonators biosensing. Using bovine serum albumin (BSA) molecules, a dramatic enhancement of surface sensitivity up to 69 nm/nm is achieved as the modal height approaches the thickness of the adsorbed molecule layers.

  6. Ultra sub-wavelength surface plasmon confinement using air-gap, sub-wavelength ring resonator arrays

    PubMed Central

    Lee, Jaehak; Sung, Sangkeun; Choi, Jun-Hyuk; Eom, Seok Chan; Mortensen, N. Asger; Shin, Jung H.

    2016-01-01

    Arrays of sub-wavelength, sub-10 nm air-gap plasmonic ring resonators are fabricated using nanoimprinting. In near infra-red (NIR) range, the resonator supports a single dipole mode which is excited and identified via simple normal illumination and explored through transmission measurements. By controlling both lateral and vertical confinement via a metal edge, the mode volume is successfully reduced down to 1.3 × 10−5 λ03. The advantage of such mode confinement is demonstrated by applying the resonators biosensing. Using bovine serum albumin (BSA) molecules, a dramatic enhancement of surface sensitivity up to 69 nm/nm is achieved as the modal height approaches the thickness of the adsorbed molecule layers. PMID:26923610

  7. Plasmon-induced charge separation at two-dimensional gold semishell arrays on SiO{sub 2}@TiO{sub 2} colloidal crystals

    SciTech Connect

    Wu, Ling; Nishi, Hiroyasu; Tatsuma, Tetsu

    2015-10-01

    Photoelectrodes based on plasmonic Au semishell (or halfshell) arrays are developed. A colloidal crystal consisting of SiO{sub 2}@TiO{sub 2} core-shell particles is prepared on a TiO{sub 2}-coated transparent electrode. A Au semishell (or halfshell) array is deposited by sputtering or evaporation on the colloidal crystal. An electrode with the semishell (or halfshell) array exhibits negative photopotential shifts and anodic photocurrents under visible light at 500-800 nm wavelengths in an aqueous electrolyte containing an electron donor. In particular, hydroquinone and ethanol are good electron donors. The photocurrents can be explained in terms of plasmon-induced charge separation at the Au-TiO{sub 2} interface.

  8. Plasmon-induced charge separation at two-dimensional gold semishell arrays on SiO2@TiO2 colloidal crystals

    NASA Astrophysics Data System (ADS)

    Wu, Ling; Nishi, Hiroyasu; Tatsuma, Tetsu

    2015-10-01

    Photoelectrodes based on plasmonic Au semishell (or halfshell) arrays are developed. A colloidal crystal consisting of SiO2@TiO2 core-shell particles is prepared on a TiO2-coated transparent electrode. A Au semishell (or halfshell) array is deposited by sputtering or evaporation on the colloidal crystal. An electrode with the semishell (or halfshell) array exhibits negative photopotential shifts and anodic photocurrents under visible light at 500-800 nm wavelengths in an aqueous electrolyte containing an electron donor. In particular, hydroquinone and ethanol are good electron donors. The photocurrents can be explained in terms of plasmon-induced charge separation at the Au-TiO2 interface.

  9. Localized surface plasmon induced enhancement of electron-hole generation with silver metal island at n-Al:ZnO/p-Cu{sub 2}O heterojunction

    SciTech Connect

    Kaur, Gurpreet Yadav, K. L.; Mitra, Anirban

    2015-08-03

    Localized surface plasmon induced generation of electron-hole pairs with inclusion of metal islands of noble metal like Ag can enhance the photocurrent. A heterostructure of n-Al:ZnO/p-Cu{sub 2}O with inclusion of Ag metalislands at the junction has been fabricated. I-V characteristic curve of these heterostructures shows a significant enhancement of photocurrent under the illumination (1.5 AMU). This enhancement of photocurrent is attributed to the supply of hot electrons generated in silver metal nanoislands. It has also been shown that inclusion of metal islands increases the absorption of solar spectrum in visible region at 500 nm. Enhancement of photocurrent may also be due to the direct resonance energy transfer from Localized Surface Plasmons of metal islands to Cu{sub 2}O.

  10. Localized surface plasmon induced enhancement of electron-hole generation with silver metal island at n-Al:ZnO/p-Cu2O heterojunction

    NASA Astrophysics Data System (ADS)

    Kaur, Gurpreet; Yadav, K. L.; Mitra, Anirban

    2015-08-01

    Localized surface plasmon induced generation of electron-hole pairs with inclusion of metal islands of noble metal like Ag can enhance the photocurrent. A heterostructure of n-Al:ZnO/p-Cu2O with inclusion of Ag metalislands at the junction has been fabricated. I-V characteristic curve of these heterostructures shows a significant enhancement of photocurrent under the illumination (1.5 AMU). This enhancement of photocurrent is attributed to the supply of hot electrons generated in silver metal nanoislands. It has also been shown that inclusion of metal islands increases the absorption of solar spectrum in visible region at 500 nm. Enhancement of photocurrent may also be due to the direct resonance energy transfer from Localized Surface Plasmons of metal islands to Cu2O.

  11. Plasmon-assisted transmission of entangled photons.

    PubMed

    Altewischer, E; van Exter, M P; Woerdman, J P

    2002-07-18

    The state of a two-particle system is said to be entangled when its quantum-mechanical wavefunction cannot be factorized into two single-particle wavefunctions. This leads to one of the strongest counter-intuitive features of quantum mechanics, namely non-locality. Experimental realization of quantum entanglement is relatively easy for photons; a starting photon can spontaneously split into a pair of entangled photons inside a nonlinear crystal. Here we investigate the effects of nanostructured metal optical elements on the properties of entangled photons. To this end, we place optically thick metal films perforated with a periodic array of subwavelength holes in the paths of the two entangled photons. Such arrays convert photons into surface-plasmon waves--optically excited compressive charge density waves--which tunnel through the holes before reradiating as photons at the far side. We address the question of whether the entanglement survives such a conversion process. Our coincidence counting measurements show that it does, so demonstrating that the surface plasmons have a true quantum nature. Focusing one of the photon beams on its array reduces the quality of the entanglement. The propagation of the surface plasmons makes the array effectively act as a 'which way' detector. PMID:12124618

  12. Meta-Optics with Nanowire Grid Arrays: Hyperbolic Fabry-Perot Modes and Hyperbolic Tamm Plasmons

    NASA Astrophysics Data System (ADS)

    Durach, Maxim; Keene, David; Lepain, Matthew

    2015-03-01

    In this talk we introduce a new class of structures - cavities formed by metal-dielectric metasurfaces. These cavities support a zoo of various resonances, including hyperbolic Tamm plasmons and hyperbolic Fabry-Perot modes, which feature anisotropic clover-leaf dispersion parallel to the metasurface and strong coupling between TM and TE polarizations in the modes. The properties and spectrum of the modes are highly tunable by the dimensional and material parameters of the structure and can be used for directional emission, modification of radiation produced by electric dipole emitters into magnetic dipole radiation as well as 90 degree polarization rotators and polarization rotation mirrors.

  13. Enhanced ultraviolet emission of ZnO microrods array based on Au surface plasmon

    NASA Astrophysics Data System (ADS)

    Feng, Wen-po; Jing, Ai-hua; Li, Jing-hua; Liang, Gao-feng

    2016-05-01

    In this work, the Au/ZnO hybrid microstructure was fabricated by assembling Au nanoparticles (NPs) onto the surface of ZnO microrods, and an obviously improved ultraviolet (UV) emission of ZnO is observed in the hybrid microstructure. About 27-fold enhancement ratio of the UV emission to the green band emission of ZnO is achieved. The underlying enhanced mechanism of the UV emission intensities can be ascribed to the charge transfer and the efficient coupling between ZnO excitons and Au surface plasmon (SP).

  14. Tunable plasmonic crystal

    DOEpatents

    Dyer, Gregory Conrad; Shaner, Eric A.; Reno, John L.; Aizin, Gregory

    2015-08-11

    A tunable plasmonic crystal comprises several periods in a two-dimensional electron or hole gas plasmonic medium that is both extremely subwavelength (.about..lamda./100) and tunable through the application of voltages to metal electrodes. Tuning of the plasmonic crystal band edges can be realized in materials such as semiconductors and graphene to actively control the plasmonic crystal dispersion in the terahertz and infrared spectral regions. The tunable plasmonic crystal provides a useful degree of freedom for applications in slow light devices, voltage-tunable waveguides, filters, ultra-sensitive direct and heterodyne THz detectors, and THz oscillators.

  15. Nanoslit cavity plasmonic modes and built-in fields enhance the CW THz radiation in an unbiased antennaless photomixers array.

    PubMed

    Mohammad-Zamani, Mohammad Javad; Neshat, Mohammad; Moravvej-Farshi, Mohammad Kazem

    2016-01-15

    A new generation unbiased antennaless CW terahertz (THz) photomixer emitters array made of asymmetric metal-semiconductor-metal (MSM) gratings with a subwavelength pitch, operating in the optical near-field regime, is proposed. We take advantage of size effects in near-field optics and electrostatics to demonstrate the possibility of enhancing the THz power by 4 orders of magnitude, compared to a similar unbiased antennaless array of the same size that operates in the far-field regime. We show that, with the appropriate choice of grating parameters in such THz sources, the first plasmonic resonant cavity mode in the nanoslit between two adjacent MSMs can enhance the optical near-field absorption and, hence, the generation of photocarriers under the slit in the active medium. These photocarriers, on the other hand, are accelerated by the large built-in electric field sustained under the nanoslits by two dissimilar Schottky barriers to create the desired large THz power that is mainly radiated downward. The proposed structure can be tuned in a broadband frequency range of 0.1-3 THz, with output power increasing with frequency. PMID:26766729

  16. Quantitative multispectral biosensing and imaging using plasmonic crystals

    NASA Astrophysics Data System (ADS)

    Stewart, Matthew E.

    Conventional surface plasmon resonance (SPR) systems use a prism to couple light into a surface plasmon mode at a metal film-dielectric interface. This cumbersome experimental setup is difficult to integrate into a robust, portable, low-cost, and high-resolution imaging-based device for rapid bioanalytical measurements. More recent work with nanostructured metals, such as nanohole arrays in gold films, enable sensing and imaging of surface binding events using simple, normal incident reflection or transmission configurations. These plasmonic structures exhibit multiple resonances that can be leveraged in sensing applications using multispectral analysis protocols. This thesis describes two new types of low-cost plasmonic crystal sensors formed by soft UV nanoimprint lithography that enable quantitative multispectral analysis of surface binding events in spectroscopic and imaging modes. The first plasmonic optic reported is a quasi-3D crystal consisting of a periodic array of nanoscale holes in a thin gold film with a second, physically separate level of isolated gold disks below each nanoscale hole. The second plasmonic optic reported is a full-3D plasmonic crystal that consists of a polymer embossed with a square array of nanowells covered with a conformal thin gold film. These crystals enable quantitative spectroscopy and imaging of surface binding events with submonolayer sensitivities and micrometer spatial resolution, and can be readily integrated into microfluidic channels for the development of compact form factor devices. Full-3D finite difference time domain calculations are used to accurately model the i transmission spectra and the electromagnetic field distributions in and around the metal nanostructures of the crystals, and to provide insight into the physics underlying the complex optical response of these novel plasmonic structures.

  17. Plasmonic photocatalysis

    NASA Astrophysics Data System (ADS)

    Zhang, Xuming; Lim Chen, Yu; Liu, Ru-Shi; Tsai, Din Ping

    2013-04-01

    Plasmonic photocatalysis has recently facilitated the rapid progress in enhancing photocatalytic efficiency under visible light irradiation, increasing the prospect of using sunlight for environmental and energy applications such as wastewater treatment, water splitting and carbon dioxide reduction. Plasmonic photocatalysis makes use of noble metal nanoparticles dispersed into semiconductor photocatalysts and possesses two prominent features—a Schottky junction and localized surface plasmonic resonance (LSPR). The former is of benefit to charge separation and transfer whereas the latter contributes to the strong absorption of visible light and the excitation of active charge carriers. This article aims to provide a systematic study of the fundamental physical mechanisms of plasmonic photocatalysis and to rationalize many experimental observations. In particular, we show that LSPR could boost the generation of electrons and holes in semiconductor photocatalysts through two different effects—the LSPR sensitization effect and the LSPR-powered bandgap breaking effect. By classifying the plasmonic photocatalytic systems in terms of their contact form and irradiation state, we show that the enhancement effects on different properties of photocatalysis can be well-explained and systematized. Moreover, we identify popular material systems of plasmonic photocatalysis that have shown excellent performance and elucidate their key features in the context of our proposed mechanisms and classifications.

  18. High Brightness Plasmon-Enhanced Nanostructured Gold Photoemitters

    SciTech Connect

    Gong, Yu; Joly, Alan G.; Kong, Lingmei; El-Khoury, Patrick Z.; Hess, Wayne P.

    2014-12-30

    Plasmonic nanohole arrays are fabricated in gold thin films by focused ion beam (FIB) lithography. Subsequent heat treatment creates sub 100 nm nanometric structures including tips, rods and flakes, all localized in the nanohole array region. The combined nanohole array and nanostructured surface comprise an efficient photoemitter. High brightness photoemission is observed from this construct using photoemission electron microscopy (PEEM), following 780 nm femtosecond (fs) laser irradiation. By comparing our observables to results of finite difference time domain (FDTD) calculations, we demonstrate that photoemission from the sub-100 nm structures is enhanced in the region of propagating surface plasmons launched from the nanohole arrays. Additionally, by tuning hole diameter and separation in the nanohole array, the photoemission intensity of nanostructured photoemitters can be controlled. We observe a photoemission enhancement of over 108, relative to photoemission from the flat region of the gold substrate at laser intensities well below the ablation threshold.

  19. An Au nanofin array for high efficiency plasmonic optical retarders at visible wavelengths

    NASA Astrophysics Data System (ADS)

    Ishii, Miho; Iwami, Kentaro; Umeda, Norihiro

    2015-01-01

    An Au nanofin array was designed and fabricated for in a microscale optical retarder with high transmittance at visible wavelengths. The array was designed on the basis of the theory of waveguides. The adopted nanocoating process realized a high aspect ratio Au structure with a period of 400 nm and a height of 800 nm. The transmittance of transverse magnetic polarized light at visible to near-infrared wavelengths exceeded 40% and a retardation of 170° was achieved at 633 nm.

  20. Earthquake source parameters determined by the SAFOD Pilot Hole seismic array

    USGS Publications Warehouse

    Imanishi, K.; Ellsworth, W.L.; Prejean, S.G.

    2004-01-01

    We estimate the source parameters of #3 microearthquakes by jointly analyzing seismograms recorded by the 32-level, 3-component seismic array installed in the SAFOD Pilot Hole. We applied an inversion procedure to estimate spectral parameters for the omega-square model (spectral level and corner frequency) and Q to displacement amplitude spectra. Because we expect spectral parameters and Q to vary slowly with depth in the well, we impose a smoothness constraint on those parameters as a function of depth using a linear first-differenfee operator. This method correctly resolves corner frequency and Q, which leads to a more accurate estimation of source parameters than can be obtained from single sensors. The stress drop of one example of the SAFOD target repeating earthquake falls in the range of typical tectonic earthquakes. Copyright 2004 by the American Geophysical Union.

  1. On the detection of eccentric supermassive black hole binaries with pulsar timing arrays

    NASA Astrophysics Data System (ADS)

    Huerta, Eliu; McWilliams, Sean; Gair, Jonathan; Taylor, Stephen

    2015-04-01

    It is believed that supermassive black holes (SMBHs) with masses between a million up to a few billion solar masses are ubiquitous in nearby galactic nuclei. Hence, the merger of a pair of galaxies hosting these compact objects may result in the formation of a compact binary that decays to small orbital separations via interactions with its stellar and gaseous environments. Recent studies suggest that these formation channels imply that SMBH binaries may have large orbital eccentricities when they become dominated by gravitational wave emission. In light of these considerations, we present a novel and comprehensive framework that we put at work to carry out an end-to-end analysis of the effect of eccentricity on the amplitude and spectrum of a stochastic, isotropic gravitational wave background from SMBH binaries and single resolvable sources that may be detected with Pulsar Timing Arrays.

  2. Sub-10 nm near-field localization by plasmonic metal nanoaperture arrays with ultrashort light pulses

    PubMed Central

    Lee, Hongki; Kim, Chulhong; Kim, Donghyun

    2015-01-01

    Near-field localization by ultrashort femtosecond light pulses has been investigated using simple geometrical nanoapertures. The apertures employ circular, rhombic, and triangular shapes to localize the distribution of surface plasmon. To understand the geometrical effect on the localization, aperture length and period of the nanoapertures were varied. Aperture length was shown to affect the performance more than aperture period due mainly to intra-aperture coupling of near-fields. Triangular apertures provided the strongest spatial localization below 10 nm in size as well as the highest enhancement of field intensity by more than 7000 times compared to the incident light pulse. Use of ultrashort pulses was found to allow much stronger light localization than with continuous-wave light. The results can be used for super-localization sensing and imaging applications where spatially localized fields can break through the limits in achieving improved sensitivity and resolution. PMID:26628326

  3. Sub-10 nm near-field localization by plasmonic metal nanoaperture arrays with ultrashort light pulses.

    PubMed

    Lee, Hongki; Kim, Chulhong; Kim, Donghyun

    2015-01-01

    Near-field localization by ultrashort femtosecond light pulses has been investigated using simple geometrical nanoapertures. The apertures employ circular, rhombic, and triangular shapes to localize the distribution of surface plasmon. To understand the geometrical effect on the localization, aperture length and period of the nanoapertures were varied. Aperture length was shown to affect the performance more than aperture period due mainly to intra-aperture coupling of near-fields. Triangular apertures provided the strongest spatial localization below 10 nm in size as well as the highest enhancement of field intensity by more than 7000 times compared to the incident light pulse. Use of ultrashort pulses was found to allow much stronger light localization than with continuous-wave light. The results can be used for super-localization sensing and imaging applications where spatially localized fields can break through the limits in achieving improved sensitivity and resolution. PMID:26628326

  4. Subwavelength silicon through-hole arrays as an all-dielectric broadband terahertz gradient index metamaterial

    SciTech Connect

    Park, Sang-Gil; Jeong, Ki-Hun; Lee, Kanghee; Han, Daehoon; Ahn, Jaewook

    2014-09-01

    Structuring at subwavelength scales brings out artificial media with anomalous optical features called metamaterials. All-dielectric metamaterials have high potential for practical applications over the whole electromagnetic spectrum owing to low loss and optical isotropy. Here, we report subwavelength silicon through-hole arrays as an all-dielectric gradient index metamaterial with broadband THz operation. The unit cell consists of a single subwavelength through-hole on highly resistive monocrystalline silicon. Depending on the fill-factor and period, the effective index was linearly modulated at 0.3–1.6 THz. The experimental results also demonstrate silicon gradient refractive index (Si-GRIN) lenses with parabolic index profiles through the spatial modification of a single unit cell along the radial direction. Si-GRIN lenses either focus 0.4–1.6 THz beam to the diffraction-limit or serve as a flat and thin solid immersion lens on the backside of THz photoconductive antenna for highly efficient pulse extraction. This all-dielectric gradient index metamaterial opens up opportunities for integrated THz GRIN optics.

  5. Searching for GW signals from eccentric supermassive black-hole binaries with pulsar-timing arrays

    NASA Astrophysics Data System (ADS)

    Taylor, Stephen; Gair, Jonathan; Huerta, Eliu; McWilliams, Sean

    2015-04-01

    The mergers of massive galaxies leads to the formation of supermassive black-hole binaries in the common merger remnants. Various mechanisms have been proposed to harden these binaries into the adiabatic GW inspiral regime, from interactions with circumbinary disks to stellar scattering. It may be the case that these mechanisms leave the binary with a residual eccentricity, such that the deviation to the time-of-arrival of pulsar signals induced by the emitted GW passing between the Earth and a pulsar will contain a signature of this eccentricity. Current pulsar-timing search pipelines only probe circular binary systems, but much effort is now being devoted to considering the influence of the binary environment on GW signals. We will detail our efforts in constructing a generalised GW search pipeline to constrain the eccentricity of single systems with arrays of precisely-timed pulsars, which may shed light on the influence of various supermassive black-hole binary hardening mechanisms and illuminate the importance of environmental couplings.

  6. Electroless deposition of Ag through-void arrays for integrated extraordinary optical transmission-based plasmonic sensing and surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Xu, Die; Chen, Shu; Li, Huanhuan; Yang, Zhilin; Hu, Jiawen

    2015-09-01

    This work reports the use of monolayer colloidal crystal of polystyrene spheres as a template combined with electroless deposition to fabricate Ag through-sphere segment void (SSV) arrays. Experimental and theoretical (finite-difference time-domain) results reveal that the structured Ag through-SSV arrays create extraordinary optical transmission (EOT) and largely enhanced localized fields, thereby enabling EOT-based plasmonic sensing with a sensitivity of 295.38 nm/RIU (RIU = refractive index unit) and reproducible enhanced Raman signal with an enhancement factor of about 104, respectively. These results suggest a low cost, feasible way to integrate plasmonic sensing and molecule-specified Raman detection on a single biochip.

  7. High-harmonic and single attosecond pulse generation using plasmonic field enhancement in ordered arrays of gold nanoparticles with chirped laser pulses.

    PubMed

    Yang, Ying-Ying; Scrinzi, Armin; Husakou, Anton; Li, Qian-Guang; Stebbings, Sarah L; Süßmann, Frederik; Yu, Hai-Juan; Kim, Seungchul; Rühl, Eckart; Herrmann, Joachim; Lin, Xue-Chun; Kling, Matthias F

    2013-01-28

    Coherent XUV sources, which may operate at MHz repetition rate, could find applications in high-precision spectroscopy and for spatio-time-resolved measurements of collective electron dynamics on nanostructured surfaces. We theoretically investigate utilizing the enhanced plasmonic fields in an ordered array of gold nanoparticles for the generation of high-harmonic, extreme-ultraviolet (XUV) radiation. By optimization of the chirp of ultrashort laser pulses incident on the array, our simulations indicate a potential route towards the temporal shaping of the plasmonic near-field and, in turn, the generation of single attosecond pulses. The inherent effects of inhomogeneity of the local fields on the high-harmonic generation are analyzed and discussed. While taking the inhomogeneity into account does not affect the optimal chirp for the generation of a single attosecond pulse, the cut-off energy of the high-harmonic spectrum is enhanced by about a factor of two. PMID:23389200

  8. On the absorption and electromagnetic field spectral shifts in plasmonic nanotriangle arrays.

    PubMed

    Vedraine, Sylvain; Hou, Renjie; Norton, Peter R; Lagugné-Labarthet, François

    2014-06-01

    The behavior of the electromagnetic field interaction with gold nanotriangles organized in bow-tie arrays is investigated. A side-by-side comparison between the measured absorbance of the array and the modelled integrated electric field resonances confined around the gold structures is presented and discussed to explain the spectral shift between both parameters. Finite difference time domain calculations and Raman measurements of gold triangles of different sizes and periodicity are systematically performed. Numerical calculations show that the spectral maximum of the electric field varies in distinct areas over the metallic structures. PMID:24921524

  9. Ionospheric hole made by the 2012 North Korean rocket observed with a dense GNSS array in Japan

    NASA Astrophysics Data System (ADS)

    Nakashima, Yuki; Heki, Kosuke

    2014-07-01

    A dense array of Global Navigation Satellite System (GNSS) receivers is useful to study ionospheric disturbances. Here we report observations by a Japanese GNSS array of an ionospheric hole, i.e., localized electron depletion, made by water vapor molecules in the exhaust plume of the second-stage engine of the Unha-3 rocket launched from North Korea, on 12 December 2012. The Russian GNSS was used for the first time to observe such an ionospheric hole. The hole emerged ~6 min after the launch above the middle of the Yellow Sea, and its size and depth suggest that the Unha-3 is slightly less powerful than the 2009 Taepodong-2 missile, also from North Korea. Smaller-scale electron depletion signatures appeared ~10 min after the launch above the southern East China Sea, which is possibly caused by the exhaust plume of the third-stage engine.

  10. On the plasmonic photovoltaic.

    PubMed

    Mubeen, Syed; Lee, Joun; Lee, Woo-Ram; Singh, Nirala; Stucky, Galen D; Moskovits, Martin

    2014-06-24

    The conversion of sunlight into electricity by photovoltaics is currently a mature science and the foundation of a lucrative industry. In conventional excitonic solar cells, electron-hole pairs are generated by light absorption in a semiconductor and separated by the "built in" potential resulting from charge transfer accompanying Fermi-level equalization either at a p-n or a Schottky junction, followed by carrier collection at appropriate electrodes. Here we report a stable, wholly plasmonic photovoltaic device in which photon absorption and carrier generation take place exclusively in the plasmonic metal. The field established at a metal-semiconductor Schottky junction separates charges. The negative carriers are high-energy (hot) electrons produced immediately following the plasmon's dephasing. Some of the carriers are energetic enough to clear the Schottky barrier or quantum mechanically tunnel through it, thereby producing the output photocurrent. Short circuit photocurrent densities in the range 70-120 μA cm(-2) were obtained for simulated one-sun AM1.5 illumination with devices based on arrays of parallel gold nanorods, conformally coated with 10 nm TiO2 films and fashioned with a Ti metal collector. For the device with short circuit currents of 120 μA cm(-2), the internal quantum efficiency is ∼2.75%, and its wavelength response tracks the absorption spectrum of the transverse plasmon of the gold nanorods indicating that the absorbed photon-to-electron conversion process resulted exclusively in the Au, with the TiO2 playing a negligible role in charge carrier production. Devices fabricated with 50 nm TiO2 layers had open-circuit voltages as high as 210 mV, short circuit current densities of 26 μA cm(-2), and a fill factor of 0.3. For these devices, the TiO2 contributed a very small but measurable fraction of the charge carriers. PMID:24861280

  11. Plasmonic spectra of individual subwavelength particles under the infrared microscope: cells and airborne dust

    NASA Astrophysics Data System (ADS)

    Coe, James V.; Lioi, David B.; Shaffer, Lindsey; Malone, Marvin A.; Luthra, Antriksh; Ravi, Aruna

    2014-03-01

    A plasmonic metal film with a subwavelength hole array (a mesh) is used to capture an individual subwavelength particle, like a single yeast cell or airborne dust particle, and an imaging infrared (IR) microscope, records a scatterfree, IR absorption spectrum of the particle. Individual spectra of wavelength scale particles usually suffer from large scattering effects. This paper starts by demonstrating the plasmonic nature of the mesh in the infrared, proceeds to how this special form of light (surface plasmon polariton mediated transmission resonance) leads to scatter-free IR absorption spectra of individual, subwavelength particles, and ends with work on yeast cells and dust particles from our laboratory air and a household filter.

  12. Study of plasmonic nanoparticle arrays for photon management in solar cells

    NASA Astrophysics Data System (ADS)

    Bläsi, Benedikt; Jüchter, Sabrina; Meisenheimer, Sarah-Katharina; Höhn, Oliver; Hauser, Hubert; Wellens, Christine; Fix, Thomas; Schwarz, Ulrich T.

    2014-05-01

    Metallic nanostructures revealing plasmonic effects are a promising approach for improved photon management in thin solar cells. Irregular structures, as found in literature, suffer from parasitic absorption as a result of the varying dimensions of the particles. The parasitic absorption can be minimized by realising regularly ordered particles. Our fabrication process, suitable to meet these requirements, is based on interference lithography (IL), UV nanoimprint lithography (UV-NIL) and lift-off. As a process capable of large area structure origination, we use IL for the realization of master structures. Combining IL with NIL as a replication technique, the process chain is very versatile concerning nanoparticle shapes, sizes and arrangements. In the UV-NIL process, a flexible silicone stamp, which was replicated from the master structure, is pressed into a resist, which is cross-linked by UV light. A plasma etching step is applied to remove the residual resist layer. Afterwards, the substrate is coated with a thin metal layer and finally a lift-off is carried out. This results in metallic nanoparticles arranged in a regular pattern on the substrate. We show simulations and experimental results of round and elliptical disks and half spheres arranged in crossed and hexagonal gratings on glass and silicon. The elliptical particles show polarization dependent resonance effects. In a model assisted parameter study, we demonstrate the influence of various structure parameters on the absorption enhancement in silicon. Finally, optical measurements of ordered silver nanoparticles on the rear side of a silicon wafer are shown.

  13. Fundamental research on the label-free detection of protein adsorption using near-infrared light-responsive plasmonic metal nanoshell arrays with controlled nanogap

    NASA Astrophysics Data System (ADS)

    Uchida, Shuhei; Zettsu, Nobuyuki; Endo, Katsuyoshi; Yamamura, Kazuya

    2013-06-01

    In this work, we focused on the label-free detection of simple protein binding using near-infrared light-responsive plasmonic nanoshell arrays with a controlled interparticle distance. The nanoshell arrays were fabricated by a combination of colloidal self-assembly and subsequent isotropic helium plasma etching under atmospheric pressure. The diameter, interparticle distance, and shape of nanoshells can be tuned with nanometric accuracy by changing the experimental conditions. The Au, Ag, and Cu nanoshell arrays, having a 240-nm diameter (inner, 200-nm polystyrene (PS) core; outer, 20-nm metal shell) and an 80-nm gap distance, exhibited a well-defined localized surface plasmon resonance (LSPR) peak at the near-infrared region. PS@Au nanoshell arrays showed a 55-nm red shift of the maximum LSPR wavelength of 885 nm after being exposed to a solution of bovine serum albumin (BSA) proteins for 18 h. On the other hand, in the case of Cu nanoshell arrays before/after incubation to the BSA solution, we found a 30-nm peak shifting. We could evaluate the difference in LSPR sensing performance by changing the metal materials.

  14. Fundamental research on the label-free detection of protein adsorption using near-infrared light-responsive plasmonic metal nanoshell arrays with controlled nanogap.

    PubMed

    Uchida, Shuhei; Zettsu, Nobuyuki; Endo, Katsuyoshi; Yamamura, Kazuya

    2013-01-01

    In this work, we focused on the label-free detection of simple protein binding using near-infrared light-responsive plasmonic nanoshell arrays with a controlled interparticle distance. The nanoshell arrays were fabricated by a combination of colloidal self-assembly and subsequent isotropic helium plasma etching under atmospheric pressure. The diameter, interparticle distance, and shape of nanoshells can be tuned with nanometric accuracy by changing the experimental conditions. The Au, Ag, and Cu nanoshell arrays, having a 240-nm diameter (inner, 200-nm polystyrene (PS) core; outer, 20-nm metal shell) and an 80-nm gap distance, exhibited a well-defined localized surface plasmon resonance (LSPR) peak at the near-infrared region. PS@Au nanoshell arrays showed a 55-nm red shift of the maximum LSPR wavelength of 885 nm after being exposed to a solution of bovine serum albumin (BSA) proteins for 18 h. On the other hand, in the case of Cu nanoshell arrays before/after incubation to the BSA solution, we found a 30-nm peak shifting. We could evaluate the difference in LSPR sensing performance by changing the metal materials. PMID:23758903

  15. Silver nanoprism arrays coupled to functional hybrid films for localized surface plasmon resonance-based detection of aromatic hydrocarbons.

    PubMed

    Brigo, Laura; Michieli, Niccolo; Artiglia, Luca; Scian, Carlo; Rizzi, Gian Andrea; Granozzi, Gaetano; Mattei, Giovanni; Martucci, Alessandro; Brusatin, Giovanna

    2014-05-28

    We report the achievement of sensitive gas detection using periodic silver nanoprisms fabricated by a simple and low-cost lithographic technique. The presence of sharp tips combined with the periodic arrangement of the nanoprisms allowed the excitement of isolated and interacting localized surface plasmon resonances. Specific sensing capabilities with respect to aromatic hydrocarbons were achieved when the metal nanoprism arrays were coupled in the near field with functional hybrid films, providing a real-time, label-free, and reversible methodology. Ultra-high-vacuum temperature-programmed desorption measurements demonstrated an interaction energy between the sensitive film and analytes in the range of 55-71 kJ/mol. The far-field optical properties and the detection sensitivity of the sensors, modeled using a finite element method, were correlated to experimental data from gas sensing tests. An absorbance variation of 1.2% could be observed and associated with a theoretical increase in the functional film refractive index of ∼0.001, as a consequence to the interaction with 30 ppm xylene. The possibility of detecting such a small variation in the refractive index suggests the highly promising sensing capabilities of the presented technique. PMID:24750118

  16. Yagi-Uda optical antenna array collimated laser based on surface plasmons

    NASA Astrophysics Data System (ADS)

    Ma, Long; Lin, Jie; Ma, Yuan; Liu, Bin; Tan, Jiubin; Jin, Peng

    2016-06-01

    The divergence and directivity of a laser with a periodic Yagi-Uda optical antenna array modulated surface are investigated by finite element method. The nanoparticle optical antenna arrays are optimized to achieve the high directivity and the small divergence by using of Helmholtz's reciprocity theorem. When the nanoparticle antenna replaced by a Yagi-Uda antenna with same size, the directivity and the signal-to-noise ratio of the modulated laser beam are notably enhanced. The main reason is that the directors of the Yagi-Uda antennas induce more energy to propagate towards the antenna transmitting direction. The results can provide valuable guidelines in designing collimated laser, which can be widely applied in the field of biologic detection, spatial optical communication and optical measurement.

  17. Tunable polymer brush/Au NPs hybrid plasmonic arrays based on host-guest interaction.

    PubMed

    Fang, Liping; Li, Yunfeng; Chen, Zhaolai; Liu, Wendong; Zhang, Junhu; Xiang, Siyuan; Shen, Huaizhong; Li, Zibo; Yang, Bai

    2014-11-26

    The fabrication of versatile gold nanoparticle (Au NP) arrays with tunable optical properties by a novel host-guest interaction are presented. The gold nanoparticles were incorporated into polymer brushes by host-guest interaction between β-cyclodextrin (β-CD) ligand of gold nanoparticles and dimethylamino group of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA). The gold nanoparticle arrays were prepared through the template of PDMAEMA brush patterns which were fabricated combining colloidal lithography and surface-initiated atom-transfer radical polymerization (SI-ATRP). The structure parameters of gold nanoparticle patterns mediated by polymer brushes such as height, diameters, periods and distances, could be easily tuned by tailoring the etching time or size of colloidal spheres in the process of colloidal lithography. The change of optical properties induced by different gold nanoparticle structures was demonstrated. The direct utilization of PDMAEMA brushes as guest avoids a series of complicated modification process and the PDMAEMA brushes can be grafted on various substrates, which broaden its applications. The prepared gold naoparticle arrays are promising in applications of nanosensors, memory storage and surface enhanced spectroscopy. PMID:25347749

  18. Describing the dispersion of plasmonic nanorod arrays via coupling of elementary excitations

    NASA Astrophysics Data System (ADS)

    Vaianella, Fabio; Maes, Bjorn

    2016-04-01

    Metamaterials such as metal-dielectric multilayers and cylindrical nanowires are well known, for instance because of their hyperbolic dispersion. Here we examine in detail the mode characteristics in an array of square and rectangular metallic nanorods. In particular we propose a method to describe the dispersion via the coupling of specific elementary excitations. Apparently, these fundamental modes depend on the size and shape of the nanorods, and on the particular symmetry of the Bloch modes. Specifically, we show that arrays of relatively small square nanorods are associated with coupling of single rod modes. In contrast, large nanorod arrays correspond with a basic structure consisting of four metallic corners. In the medium size case, the nature of the elementary excitation depends on the frequency range and Bloch mode symmetry. Finally, we study rectangular nanorods, which turn out to derive from a basic geometry with two semi-infinite rods. The analysis method is thus useful for a better comprehension of many other types of metamaterials.

  19. Optical functionality of plasmon-exciton nanomaterials in the strong coupling regime

    NASA Astrophysics Data System (ADS)

    Sukharev, Maxim

    Understanding optical plasmon-exciton interaction in hybrid plasmonic nanostructures is important for tuning the optical response, e.g. for applications in nonlinear optics, organic solar cells, or organic light-emitting diodes. In developing such nanostructures, the strong coupling phenomena play crucial role allowing to efficiently transfer energy between plasmons and molecular excitons on a femtosecond time scale. In this talk I will discuss modeling aspects of various optical phenomena at plasmonic interfaces using Maxwell-Bloch equations in three dimensions. Various plasmonic systems including periodic V-grooves, bowtie antennas, nanowires, periodic hole arrays, and others will be considered. In particular, I will demonstrate that one can design hybrid nanomaterials with highly pronounced Fano resonances using femtosecond lasers. I will show that it is possible to use ultra-short laser pulses to materials with desired properties and functionality. Electromagnetic energy transport in systems composed of closely spaced nanowires in a presence of molecular excitons will also be discussed.

  20. Detecting Eccentric Supermassive Black Hole Binaries with Pulsar Timing Arrays: Resolvable Source Strategies

    NASA Astrophysics Data System (ADS)

    Taylor, S. R.; Huerta, E. A.; Gair, J. R.; McWilliams, S. T.

    2016-01-01

    The couplings between supermassive black hole binaries (SMBHBs) and their environments within galactic nuclei have been well studied as part of the search for solutions to the final parsec problem. The scattering of stars by the binary or the interaction with a circumbinary disk may efficiently drive the system to sub-parsec separations, allowing the binary to enter a regime where the emission of gravitational waves can drive it to merger within a Hubble time. However, these interactions can also affect the orbital parameters of the binary. In particular, they may drive an increase in binary eccentricity which survives until the system’s gravitational-wave (GW) signal enters the pulsar-timing array (PTA) band. Therefore, if we can measure the eccentricity from observed signals, we can potentially deduce some of the properties of the binary environment. To this end, we build on previous techniques to present a general Bayesian pipeline with which we can detect and estimate the parameters of an eccentric SMBHB system with PTAs. Additionally, we generalize the PTA {{ F }}{{e}}-statistic to eccentric systems, and show that both this statistic and the Bayesian pipeline are robust when studying circular or arbitrarily eccentric systems. We explore how eccentricity influences the detection prospects of single GW sources, as well as the detection penalty incurred by employing a circular waveform template to search for eccentric signals, and conclude by identifying important avenues for future study.

  1. Dark current and photocurrent analysis of plasmonic nano-antenna photodetector

    NASA Astrophysics Data System (ADS)

    Kemsri, Thitikorn

    Surface plasmonic resonance (SPR) plays important roles in performance enhancement in the Quantum Dot Infrared Photodetector. It can increase the photoresponse, SPR induced surface confinement and electromagnetic field enhancement. The angular dependence of the SPR enhancement effect has been fully investigated. In this thesis, the angular dependent effects of the two dimensional subwavelength hole array (2DSHA) and circular disk array (CDA) plasmonic structures are analyzed and compared with regular quantum dot photodetector. The photocurrent and dark current of both SPR structures are at different angles. The CDA plasmonic structure shows stronger angular dependence pattern than the 2DSHA plasmonic structure. The angular dependence is analyzed and agrees with the radiation pattern of a circular aperture antenna.

  2. Multifunctional Paper Strip Based on Self-Assembled Interfacial Plasmonic Nanoparticle Arrays for Sensitive SERS Detection.

    PubMed

    Zhang, Kun; Zhao, Jingjing; Xu, Huiying; Li, Yixin; Ji, Ji; Liu, Baohong

    2015-08-01

    A smart and multifunctional paper-based SERS sensing card is generated through patterning self-assembled interfacial arrays of gold nanoparticles (AuNPs) on the tip of an arrow-shaped paper strip. It is found that the closely packed monolayer of AuNPs is evenly distributed on the paper surface, resulting in a multitude of SERS hot spots over the detection zone. The paper card, with its inherent ability to separate and preconcentrate analytes by the capillary force and polarity difference between sample components, was exploited successfully as an integrated platform, allowing for sub-attomolar (50 × 10(-18) M) detection from microliter-volume (10 μL) samples. Furthermore, the simple preparation (lithography-free process), fast detection (<5 min), and low cost (<3 cents) demonstrate that the paper card is a practical and portable sensing interface for wide application in environmental and food analysis. PMID:26186409

  3. Polarized interference imaging of dense disordered plasmonic nanoparticle arrays for biosensor applications

    NASA Astrophysics Data System (ADS)

    Bergs, Gatis; Malinovskis, Uldis; Poplausks, Raimonds; Apsite, Indra; Erts, Donats; Prikulis, Juris

    2015-09-01

    We report on light scattering by dense short-range ordered gold and silver nanoparticle arrays with 25 nm diameter and 50 nm center separation produced by masked deposition through anodized aluminum oxide membranes. Local resonant regions are formed, which scatter light with polarization components perpendicular to the incident wave due to electromagnetic coupling between particles at random angles. The observed cross-polarized far-field images have a granular structure that morphs in response to environmental variations in the article near field. We quantify the changes in the recorded images by 2D correlation matrix calculation and demonstrate the application of this approach to biomolecular sensing by using various concentrations of cysteine solution as a model system. The presented method may potentially compete with colorimetric sensor techniques since the detection setup does not require any spectroscopic instruments.

  4. Towards multielectron photocatalysis: a porphyrin array for lateral hole transfer and capture on a metal oxide surface.

    PubMed

    Brennan, Bradley J; Durrell, Alec C; Koepf, Matthieu; Crabtree, Robert H; Brudvig, Gary W

    2015-05-21

    Current molecular water-oxidation photoelectrocatalytic cells have substantial kinetic limitations under normal solar photon flux where electron-hole recombination processes may outcompete charge buildup on the catalytic centers. One method of overcoming these limitations is to design a system where multiple light-harvesting dyes work cooperatively with a single catalyst. We report a porphyrin monomer/dyad array for analysis of lateral hole transfer on a SnO2 surface consisting of a free-base porphyrin that functions to absorb light and initiate charge injection into the conduction band of SnO2, which leaves a positive charge on the organic moiety, and a free-base porphyrin/Zn-porphyrin dyad molecule that functions as a thermodynamic trap for the photoinduced holes. By using transient absorption spectroscopy, we have determined that the holes on the surface-bound free-base porphyrins are highly mobile via electron self-exchange between close-packed neighbors. The lateral charge-transfer processes were modelled by treating the system statistically with a random-walk method that utilizes experimentally derived kinetic parameters. The results of the modelling indicate that each self-exchange (hop) occurs within 25 ns and that the holes are efficiently transferred to the Zn-porphyrin. This hole-harvesting scheme provides a framework for enhancing the efficiency of multielectron photoelectrocatalytic reactions such as the four-electron oxidation of water. PMID:25904199

  5. Oscillatory penetration of near-fields in plasmonic excitation at metal-dielectric interfaces

    NASA Astrophysics Data System (ADS)

    Lee, S. C.; Kang, J. H.; Park, Q.-H.; Krishna, S.; Brueck, S. R. J.

    2016-04-01

    The electric field immediately below an illuminated metal-film that is perforated with a hole array on a dielectric consists of direct transmission and scattering of the incident light through the holes and evanescent near-field from plasmonic excitations. Depending on the size and shape of the hole apertures, it exhibits an oscillatory decay in the propagation direction. This unusual field penetration is explained by the interference between these contributions, and is experimentally confirmed through an aperture which is engineered with four arms stretched out from a simple circle to manipulate a specific plasmonic excitation available in the metal film. A numerical simulation quantitatively supports the experiment. This fundamental characteristic will impact plasmonics with the near-fields designed by aperture engineering for practical applications.

  6. Oscillatory penetration of near-fields in plasmonic excitation at metal-dielectric interfaces

    PubMed Central

    Lee, S. C.; Kang, J. H.; Park, Q-H.; Krishna, S.; Brueck, S. R. J.

    2016-01-01

    The electric field immediately below an illuminated metal-film that is perforated with a hole array on a dielectric consists of direct transmission and scattering of the incident light through the holes and evanescent near-field from plasmonic excitations. Depending on the size and shape of the hole apertures, it exhibits an oscillatory decay in the propagation direction. This unusual field penetration is explained by the interference between these contributions, and is experimentally confirmed through an aperture which is engineered with four arms stretched out from a simple circle to manipulate a specific plasmonic excitation available in the metal film. A numerical simulation quantitatively supports the experiment. This fundamental characteristic will impact plasmonics with the near-fields designed by aperture engineering for practical applications. PMID:27090841

  7. Carrying the physics of black-hole binary evolution into gravitational-wave models for pulsar-timing arrays

    NASA Astrophysics Data System (ADS)

    Taylor, Stephen; Sampson, Laura; Simon, Joseph

    2016-03-01

    There has recently been significant interest in how the galactic environments of supermassive black-hole binaries influences the stochastic gravitational-wave background signal from a population of these systems, and in how the resulting detection prospects for pulsar-timing arrays are effected. Tackling these problems requires us to have robust and computationally-efficient models for the strain spectrum as a function of different environment influences or the binary orbital eccentricity. In this talk we describe a new method of constructing these models from a small number of synthesized black-hole binary populations which have varying input physics. We use these populations to train an interpolant via Gaussian-process regression, allowing us to carry real physics into our subsequent pulsar-timing array inferences, and to also correctly propagate forward uncertainties from our interpolation.

  8. Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons

    NASA Astrophysics Data System (ADS)

    Zhang, Cen; Marvinney, Claire Elizabeth; Xu, Hai Yang; Liu, Wei Zhen; Wang, Chun Liang; Zhang, Li Xia; Wang, Jian Nong; Ma, Jian Gang; Liu, Yi Chun

    2014-12-01

    Localized surface plasmon (LSP) enhanced waveguide-type ultraviolet light-emitting diodes (LEDs) were fabricated by sputtering Ag nanoparticles (Ag-NPs) onto ZnO/MgZnO core/shell nanorod array (CS-NRA)/p-GaN heterostructures. A ~9-fold enhancement of ZnO ultraviolet electroluminescence (EL) was demonstrated by the Ag-NPs decorated LED compared with the device without Ag-NPs. Angle-dependent EL measurements, as well as finite-difference time-domain simulations of the EL intensity spatial distribution, confirmed the waveguide-type EL transmission mode along the NR's axial direction. The increased spontaneous emission rate observed in time-resolved spectroscopy suggested that the ZnO EL enhancement was attributed to LSP-exciton/polariton coupling. However, a direct coupling is very difficult to achieve between Ag-LSPs and electron-hole pairs in the active region due to their ``remote'' separation. Thereby, two possible models involving the dynamic process of interactions among excitons, photons, and LSPs, were established to understand the selective enhancement of ZnO EL.Localized surface plasmon (LSP) enhanced waveguide-type ultraviolet light-emitting diodes (LEDs) were fabricated by sputtering Ag nanoparticles (Ag-NPs) onto ZnO/MgZnO core/shell nanorod array (CS-NRA)/p-GaN heterostructures. A ~9-fold enhancement of ZnO ultraviolet electroluminescence (EL) was demonstrated by the Ag-NPs decorated LED compared with the device without Ag-NPs. Angle-dependent EL measurements, as well as finite-difference time-domain simulations of the EL intensity spatial distribution, confirmed the waveguide-type EL transmission mode along the NR's axial direction. The increased spontaneous emission rate observed in time-resolved spectroscopy suggested that the ZnO EL enhancement was attributed to LSP-exciton/polariton coupling. However, a direct coupling is very difficult to achieve between Ag-LSPs and electron-hole pairs in the active region due to their ``remote'' separation

  9. Optofluidic microsystem with quasi-3 dimensional gold plasmonic nanostructure arrays for online sensitive and reproducible SERS detection.

    PubMed

    Deng, Yan; Idso, Matthew N; Galvan, Daniel D; Yu, Qiuming

    2015-03-10

    Practical applications of chemical and biological detections through surface-enhanced Raman scattering (SERS) require high reproducibility, sensitivity, and efficiency, along with low-cost, straightforward fabrication. In this work, we integrated a poly-(dimethylsiloxane) (PDMS) chip with quasi-3D gold plasmonic nanostructure arrays (Q3D-PNAs), which serve as SERS-active substrates, into an optofluidic microsystem for online sensitive and reproducible SERS detections. The Q3D-PNA PDMS chip was fabricated through soft lithography to ensure both precision and low-cost fabrication. The optimal dimension of the Q3D-PNA in PDMS was designed using finite-difference time-domain (FDTD) electromagnetic simulations with a simulated enhancement factor (EF) of 1.6×10(6). The real-time monitoring capability of the SERS-based optofluidic microsystem was investigated by kinetic on/off experiments through alternatively flowing Rhodamine 6G (R6G) and ethanol in the microfluidic channel. A switch-off time of ∼2 min at a flow rate of 0.3 mL min(-1) was demonstrated. When applied to the detection of low concentration malathion, the SERS-based optofluidic microsystem with Q3D-PNAs showed high reproducibility, significantly improved efficiency and higher detection sensitivity via increasing the flow rate. The optofluidic microsystem presented in this paper offers a simple and low-cost approach for online, label-free chemical and biological analysis and sensing with high sensitivity, reproducibility, efficiency, and molecular specificity. PMID:25732311

  10. Generation of Localized Surface Plasmon Resonance Using Hybrid Au-Ag Nanoparticle Arrays as a Sensor of Polychlorinated Biphenyls Detection.

    PubMed

    Liu, Jing; Cai, Haoyuan; Chen, Chaoyang; Yang, Guangsong; Yang, Cheng-Fu

    2016-01-01

    In this study, the hybrid Au-Ag hexagonal lattice of triangular and square lattice of quadrate periodic nanoparticle arrays (PNAs) were designed to investigate their extinction spectra of the localized surface plasmon resonances (LSPRs). First, their simulating extinction spectra were calculated by discrete dipole approximation (DDA) numerical method by changing the media refractive index. Simulation results showed that as the media refractive index was changed from 1.0 to 1.2, the maximum peak intensity of LSPRs spectra had no apparent change and the wavelength to reveal the maximum peak intensity of LSPRs spectra was shifted lower value. Polystyrene (PS) nanospheres with two differently arranged structures were used as the templates to deposit the hybrid Au-Ag hexagonal lattice of triangular and square lattice of quadrate periodic PNAs by evaporation method. The hybrid Au-Ag hexagonal lattice of triangular and square lattice of quadrate PNAs were grown on single crystal silicon (c-Si) substrates, and their measured extinction spectra were compared with the calculated results. Finally, the fabricated hexagonal lattices of triangular PNAs were investigated as a sensor of polychlorinated biphenyl solution (PCB-77) by observing the wavelength to reveal the maximum extinction efficiency (λmax). We show that the adhesion of β-cyclodextrins (SH-β-CD) on the hybrid Au-Ag hexagonal lattice of triangular PNAs could be used to increase the variation of λmax. We also demonstrate that the adhesion of SH-β-CD increases the sensitivity and detection effect of PCB-77 in hexagonal lattice of triangular PNAs. PMID:27527188

  11. Large-area, size-tunable Si nanopillar arrays with enhanced antireflective and plasmonic properties

    NASA Astrophysics Data System (ADS)

    Niu, Lihong; Jiang, Xiaohong; Zhao, Yaolong; Ma, Haiguang; Yang, Jingjing; Cheng, Ke; Du, Zuliang

    2016-08-01

    In this paper, a novel method using the modified Langmuir–Blodgett and float-transfer techniques was introduced to construct the perfect PS monolayer nanosphere template with large area up to cm2. Based on such templates, the diameter, length, packing density, and the shape of Si nanopillar arrays (Si NPAs) could be precisely controlled and tuned through the modified nanosphere lithography combined with a metal-assisted chemical etching (NSL-MACE) method. Manipulation of the etching time can effectively avoid permanent deformation/clumping to generate size-tunable Si NPAs. The optical properties of the Si NPAs can be controlled by the Si NPA morphologies resulting from the different reactive ion etching (RIE) time and chemical etching time. The enhanced antireflective property and electromagnetic field effect of Au/Si NPAs were proved by the results. The new modified NSL-MACE technique with the capability of scale-up fabrication of Si NPAs would be helpful for potential applications in optoelectronic devices.

  12. Large-area, size-tunable Si nanopillar arrays with enhanced antireflective and plasmonic properties.

    PubMed

    Niu, Lihong; Jiang, Xiaohong; Zhao, Yaolong; Ma, Haiguang; Yang, Jingjing; Cheng, Ke; Du, Zuliang

    2016-08-01

    In this paper, a novel method using the modified Langmuir-Blodgett and float-transfer techniques was introduced to construct the perfect PS monolayer nanosphere template with large area up to cm(2). Based on such templates, the diameter, length, packing density, and the shape of Si nanopillar arrays (Si NPAs) could be precisely controlled and tuned through the modified nanosphere lithography combined with a metal-assisted chemical etching (NSL-MACE) method. Manipulation of the etching time can effectively avoid permanent deformation/clumping to generate size-tunable Si NPAs. The optical properties of the Si NPAs can be controlled by the Si NPA morphologies resulting from the different reactive ion etching (RIE) time and chemical etching time. The enhanced antireflective property and electromagnetic field effect of Au/Si NPAs were proved by the results. The new modified NSL-MACE technique with the capability of scale-up fabrication of Si NPAs would be helpful for potential applications in optoelectronic devices. PMID:27345038

  13. Metastable inhomogeneous vortex configuration with non-uniform filling fraction inside a blind hole array patterned in a BSCCO single crystal and concentrating magnetic flux inside it

    NASA Astrophysics Data System (ADS)

    Shaw, Gorky; Banerjee, S. S.; Tamegai, T.; Suderow, Hermann

    2016-06-01

    Using magneto-optical imaging, we map the local magnetic field distribution inside a hexagonally ordered array of blind holes patterned in BSCCO single crystals. The nature of the spatial distribution of local magnetic field and shielding currents across the array reveals the presence of a non-uniform vortex configuration partially matched with the blind holes at sub-matching fields. We observe that the filling fraction is different in two different regions of the array. The mean vortex configuration within the array is described as a patchy vortex configuration with the patches having different mean filling fraction. The patchy nature of the vortex configuration is more pronounced at partial filling of the array at low fields while the configuration becomes more uniform with a unique filling fraction at higher fields. The metastable nature of this patchy vortex configuration is revealed by the application of magnetic field pulses of fixed height or individual pulses of varying height to the array. The metastability of the vortex configuration allows a relatively easy way of producing flux reorganization and flux focusing effects within the blind hole array. The effect of the magnetic field pulses modifies the vortex configuration within the array and produces a uniform enhancement in the shielding current around the patterned array edges. The enhanced shielding current concentrates magnetic flux within the array by driving vortices away from the edges and towards the center of the array. The enhanced shielding current also prevents the uninhibited entry of vortices into the array. We propose that the metastable patchy vortex configuration within the blind hole array is due to a non-uniform pinning landscape leading to non-uniform filling of individual blind holes.

  14. European Pulsar Timing Array limits on continuous gravitational waves from individual supermassive black hole binaries

    NASA Astrophysics Data System (ADS)

    Babak, S.; Petiteau, A.; Sesana, A.; Brem, P.; Rosado, P. A.; Taylor, S. R.; Lassus, A.; Hessels, J. W. T.; Bassa, C. G.; Burgay, M.; Caballero, R. N.; Champion, D. J.; Cognard, I.; Desvignes, G.; Gair, J. R.; Guillemot, L.; Janssen, G. H.; Karuppusamy, R.; Kramer, M.; Lazarus, P.; Lee, K. J.; Lentati, L.; Liu, K.; Mingarelli, C. M. F.; Osłowski, S.; Perrodin, D.; Possenti, A.; Purver, M. B.; Sanidas, S.; Smits, R.; Stappers, B.; Theureau, G.; Tiburzi, C.; van Haasteren, R.; Vecchio, A.; Verbiest, J. P. W.

    2016-01-01

    We have searched for continuous gravitational wave (CGW) signals produced by individually resolvable, circular supermassive black hole binaries (SMBHBs) in the latest European Pulsar Timing Array (EPTA) data set, which consists of ultraprecise timing data on 41-ms pulsars. We develop frequentist and Bayesian detection algorithms to search both for monochromatic and frequency-evolving systems. None of the adopted algorithms show evidence for the presence of such a CGW signal, indicating that the data are best described by pulsar and radiometer noise only. Depending on the adopted detection algorithm, the 95 per cent upper limit on the sky-averaged strain amplitude lies in the range 6 × 10-15 < A < 1.5 × 10-14 at 5 nHz < f < 7 nHz. This limit varies by a factor of five, depending on the assumed source position and the most constraining limit is achieved towards the positions of the most sensitive pulsars in the timing array. The most robust upper limit - obtained via a full Bayesian analysis searching simultaneously over the signal and pulsar noise on the subset of ours six best pulsars - is A ≈ 10-14. These limits, the most stringent to date at f < 10 nHz, exclude the presence of sub-centiparsec binaries with chirp mass M_c>10^9 M_{⊙} out to a distance of about 25 Mpc, and with M_c>10^{10} M_{⊙} out to a distance of about 1Gpc (z ≈ 0.2). We show that state-of-the-art SMBHB population models predict <1 per cent probability of detecting a CGW with the current EPTA data set, consistent with the reported non-detection. We stress, however, that PTA limits on individual CGW have improved by almost an order of magnitude in the last five years. The continuing advances in pulsar timing data acquisition and analysis techniques will allow for strong astrophysical constraints on the population of nearby SMBHBs in the coming years.

  15. Prospects for gravitational-wave detection and supermassive black hole astrophysics with pulsar timing arrays

    NASA Astrophysics Data System (ADS)

    Ravi, V.; Wyithe, J. S. B.; Shannon, R. M.; Hobbs, G.

    2015-03-01

    Large-area sky surveys show that massive galaxies undergo at least one major merger in a Hubble time. Ongoing pulsar timing array (PTA) experiments are aimed at measuring the gravitational-wave (GW) emission from binary supermassive black holes (SMBHs) at the centres of galaxy merger remnants. In this paper, using the latest observational estimates for a range of galaxy properties and scaling relations, we predict the amplitude of the GW background generated by the binary SMBH population. We also predict the numbers of individual binary SMBH GW sources. We predict the characteristic strain amplitude of the GW background to lie in the range 5.1 × 10-16 < Ayr < 2.4 × 10-15 at a frequency of (1 yr)-1, with 95 per cent confidence. Higher values within this range, which correspond to the more commonly preferred choice of galaxy merger time-scale, will fall within the expected sensitivity ranges of existing PTA projects in the next few years. In contrast, we find that a PTA consisting of at least 100 pulsars observed with next-generation radio telescopes will be required to detect continuous-wave GWs from binary SMBHs. We further suggest that GW memory bursts from coalescing SMBH pairs are not viable sources for PTAs. Both the GW background and individual GW source counts are dominated by binaries formed in mergers between early-type galaxies of masses ≳5 × 1010 M⊙ at redshifts ≲1.5. Uncertainties in the galaxy merger time-scale and the SMBH mass-galaxy bulge mass relation dominate the uncertainty in our predictions.

  16. Targeting supermassive black hole binaries and gravitational wave sources for the pulsar timing array

    NASA Astrophysics Data System (ADS)

    Rosado, Pablo A.; Sesana, Alberto

    2014-04-01

    This paper presents a technique to search for supermassive black hole binaries (MBHBs) in the Sloan Digital Sky Survey (SDSS). The search is based on the peculiar properties of merging galaxies that are found in a mock galaxy catalogue from the Millennium Simulation. MBHBs are expected to be the main gravitational wave (GW) sources for pulsar timing arrays (PTAs); however, it is still unclear if the observed GW signal will be produced by a few single MBHBs, or if it will have the properties of a stochastic background. The goal of this work is to produce a map of the sky in which each galaxy is assigned a probability of having suffered a recent merger, and of hosting a MBHB that could be detected by PTAs. This constitutes a step forward in the understanding of the expected PTA signal: the skymap can be used to investigate the clustering properties of PTA sources and the spatial distribution of the observable GW signal power; moreover, galaxies with the highest probabilities could be used as inputs in targeted searches for individual GW sources. We also investigate the distribution of neighbouring galaxies around galaxies hosting MBHBs, finding that the most likely detectable PTA sources are located in dense galaxy environments. Different techniques are used in the search, including Bayesian and machine learning algorithms, with consistent outputs. Our method generates a list of galaxies classified as MBHB hosts, that can be combined with other searches to effectively reduce the number of misclassifications. The spectral coverage of the SDSS reaches less than a fifth of the sky, and the catalogue becomes severely incomplete at large redshifts; however, this technique can be applied in the future to larger catalogues to obtain complete, observationally based information of the expected GW signal detectable by PTAs.

  17. Dual pseudorandom array technique for error correction and hole filling of color structured-light three-dimensional scanning

    NASA Astrophysics Data System (ADS)

    Wijenayake, Udaya; Park, Soon-Yong

    2015-04-01

    The accurate and dense real-time acquisition of three-dimensional (3-D) data using a low-cost structured light system remains an ongoing topic in the computer vision community, as it is difficult to achieve all these features simultaneously. Among several techniques, the pseudorandom array technique is widely used in real-time 3-D scene capturing, as it tends to concentrate the entire coding scheme into a single pattern. However, existing pseudorandom array decoding methods cannot decode a given symbol in real time when missing neighbors exist. As a solution, we propose a dual pseudorandom array encoding and decoding method and a hole-filling method, which can improve the reconstruction accuracy and time. We experimentally compared our method with several others to verify that our method captures 3-D scenes quickly and densely.

  18. Aluminum plasmonic photocatalysis

    PubMed Central

    Hao, Qi; Wang, Chenxi; Huang, Hao; Li, Wan; Du, Deyang; Han, Di; Qiu, Teng; Chu, Paul K.

    2015-01-01

    The effectiveness of photocatalytic processes is dictated largely by plasmonic materials with the capability to enhance light absorption as well as the energy conversion efficiency. Herein, we demonstrate how to improve the plasmonic photocatalytic properties of TiO2/Al nano-void arrays by overlapping the localized surface plasmon resonance (LSPR) modes with the TiO2 band gap. The plasmonic TiO2/Al arrays exhibit superior photocatalytic activity boasting an enhancement of 7.2 folds. The underlying mechanisms concerning the radiative energy transfer and interface energy transfer processes are discussed. Both processes occur at the TiO2/Al interface and their contributions to photocatalysis are evaluated. The results are important to the optimization of aluminum plasmonic materials in photocatalytic applications. PMID:26497411

  19. Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons.

    PubMed

    Zhang, Cen; Marvinney, Claire Elizabeth; Xu, Hai Yang; Liu, Wei Zhen; Wang, Chun Liang; Zhang, Li Xia; Wang, Jian Nong; Ma, Jian Gang; Liu, Yi Chun

    2015-01-21

    Localized surface plasmon (LSP) enhanced waveguide-type ultraviolet light-emitting diodes (LEDs) were fabricated by sputtering Ag nanoparticles (Ag-NPs) onto ZnO/MgZnO core/shell nanorod array (CS-NRA)/p-GaN heterostructures. A ∼9-fold enhancement of ZnO ultraviolet electroluminescence (EL) was demonstrated by the Ag-NPs decorated LED compared with the device without Ag-NPs. Angle-dependent EL measurements, as well as finite-difference time-domain simulations of the EL intensity spatial distribution, confirmed the waveguide-type EL transmission mode along the NR's axial direction. The increased spontaneous emission rate observed in time-resolved spectroscopy suggested that the ZnO EL enhancement was attributed to LSP-exciton/polariton coupling. However, a direct coupling is very difficult to achieve between Ag-LSPs and electron-hole pairs in the active region due to their "remote" separation. Thereby, two possible models involving the dynamic process of interactions among excitons, photons, and LSPs, were established to understand the selective enhancement of ZnO EL. PMID:25475883

  20. Wafer-scale aluminum nano-plasmonics

    NASA Astrophysics Data System (ADS)

    George, Matthew C.; Nielson, Stew; Petrova, Rumyana; Frasier, James; Gardner, Eric

    2014-09-01

    The design, characterization, and optical modeling of aluminum nano-hole arrays are discussed for potential applications in surface plasmon resonance (SPR) sensing, surface-enhanced Raman scattering (SERS), and surface-enhanced fluorescence spectroscopy (SEFS). In addition, recently-commercialized work on narrow-band, cloaked wire grid polarizers composed of nano-stacked metal and dielectric layers patterned over 200 mm diameter wafers for projection display applications is reviewed. The stacked sub-wavelength nanowire grid results in a narrow-band reduction in reflectance by 1-2 orders of magnitude, which can be tuned throughout the visible spectrum for stray light control.

  1. Strain-driven alignment of In nanocrystals on InGaAs quantum dot arrays and coupled plasmon-quantum dot emission

    SciTech Connect

    Urbanczyk, A.; Hamhuis, G. J.; Noetzel, R.

    2010-03-15

    We report the alignment of In nanocrystals on top of linear InGaAs quantum dot (QD) arrays formed by self-organized anisotropic strain engineering on GaAs (100) by molecular beam epitaxy. The alignment is independent of a thin GaAs cap layer on the QDs revealing its origin is due to local strain recognition. This enables nanometer-scale precise lateral and vertical site registration between the QDs and the In nanocrystals and arrays in a single self-organizing formation process. The plasmon resonance of the In nanocrystals overlaps with the high-energy side of the QD emission leading to clear modification of the QD emission spectrum.

  2. Detection of eccentric supermassive black hole binaries with pulsar timing arrays: Signal-to-noise ratio calculations

    NASA Astrophysics Data System (ADS)

    Huerta, E. A.; McWilliams, Sean T.; Gair, Jonathan R.; Taylor, Stephen R.

    2015-09-01

    We present a detailed analysis of the expected signal-to-noise ratios of supermassive black hole binaries on eccentric orbits observed by pulsar timing arrays. We derive several analytical relations that extend the results of Peters and Mathews [Phys. Rev. D 131, 435 (1963)] to quantify the impact of eccentricity in the detection of single resolvable binaries in the pulsar timing array band. We present ready-to-use expressions to compute the increase/loss in signal-to-noise ratio of eccentric single resolvable sources whose dominant harmonic is located in the low/high frequency sensitivity regime of pulsar timing arrays. Building upon the work of Phinney (arXiv:astro-ph/0108028) and Enoki and Nagashima [Prog. Theor. Phys. 117, 241 (2007)], we present an analytical framework that enables the construction of rapid spectra for a stochastic gravitational-wave background generated by a cosmological population of eccentric sources. We confirm previous findings which indicate that, relative to a population of quasicircular binaries, the strain of a stochastic, isotropic gravitational-wave background generated by a cosmological population of eccentric binaries will be suppressed in the frequency band of pulsar timing arrays. We quantify this effect in terms of signal-to-noise ratios in a pulsar timing array.

  3. Plasmonic silver quantum dots coupled with hierarchical TiO2 nanotube arrays photoelectrodes for efficient visible-light photoelectrocatalytic hydrogen evolution

    PubMed Central

    Lian, Zichao; Wang, Wenchao; Xiao, Shuning; Li, Xin; Cui, Yingying; Zhang, Dieqing; Li, Guisheng; Li, Hexing

    2015-01-01

    A plasmonic Ag/TiO2 photocatalytic composite was designed by selecting Ag quantum dots (Ag QDs) to act as a surface plasmon resonance (SPR) photosensitizer for driving the visible-light driven photoelectrocatalytic hydrogen evolution. Vertically oriented hierarchical TiO2 nanotube arrays (H-TiO2-NTAs) with macroporous structure were prepared through a two-step method based on electrochemical anodization. Subsequently, Ag QDs, with tunable size (1.3-21.0 nm), could be uniformly deposited on the H-TiO2 NTAs by current pulsing approach. The unique structure of the as-obtained photoelectrodes greatly improved the photoelectric conversion efficiency. The as-obtained Ag/H-TiO2-NTAs exhibited strong visible-light absorption capability, high photocurrent density, and enhanced photoelectrocatalytic (PEC) activity toward photoelectrocatalytic hydrogen evolution under visible-light irradiation (λ > 420 nm). The enhancement in the photoelectric conversion efficiency and activity was ascribed to the synergistic effects of silver and the unique hierarchical structures of TiO2 nanotube arrays, strong SPR effect, and anti-shielding effect of ultrafine Ag QDs. PMID:26067850

  4. Plasmonic silver quantum dots coupled with hierarchical TiO2 nanotube arrays photoelectrodes for efficient visible-light photoelectrocatalytic hydrogen evolution.

    PubMed

    Lian, Zichao; Wang, Wenchao; Xiao, Shuning; Li, Xin; Cui, Yingying; Zhang, Dieqing; Li, Guisheng; Li, Hexing

    2015-01-01

    A plasmonic Ag/TiO2 photocatalytic composite was designed by selecting Ag quantum dots (Ag QDs) to act as a surface plasmon resonance (SPR) photosensitizer for driving the visible-light driven photoelectrocatalytic hydrogen evolution. Vertically oriented hierarchical TiO2 nanotube arrays (H-TiO2-NTAs) with macroporous structure were prepared through a two-step method based on electrochemical anodization. Subsequently, Ag QDs, with tunable size (1.3-21.0 nm), could be uniformly deposited on the H-TiO2 NTAs by current pulsing approach. The unique structure of the as-obtained photoelectrodes greatly improved the photoelectric conversion efficiency. The as-obtained Ag/H-TiO2-NTAs exhibited strong visible-light absorption capability, high photocurrent density, and enhanced photoelectrocatalytic (PEC) activity toward photoelectrocatalytic hydrogen evolution under visible-light irradiation (λ>420 nm). The enhancement in the photoelectric conversion efficiency and activity was ascribed to the synergistic effects of silver and the unique hierarchical structures of TiO2 nanotube arrays, strong SPR effect, and anti-shielding effect of ultrafine Ag QDs. PMID:26067850

  5. Photocatalytic reduction of triclosan on Au-Cu2O nanowire arrays as plasmonic photocatalysts under visible light irradiation.

    PubMed

    Niu, Junfeng; Dai, Yunrong; Yin, Lifeng; Shang, Jianying; Crittenden, John C

    2015-07-14

    Triclosan (TCS) is a potential threat to the environment and human health. Photocatalysis can be used to degrade TCS, but the photocatalytic efficiency is usually limited by the photoabsorptivity and photostability of the photocatalyst. In addition, some toxic by-products might also be generated during photocatalytic processes. In this study, we prepared Au-coated Cu2O nanowire arrays (Au-Cu2O NWAs) by beam sputtering Au onto Cu2O nanowires grown from a Cu foil. We found that photocatalytic degradation of TCS under visible light (420 nm < λ < 780 nm) irradiation and Au-Cu2O NWAs had several advantages. Au-Cu2O NWAs had good photoabsorptivity, high photostability (negligible activity loss after 16 runs), excellent photocatalytic activity (47.6 times faster than that of Cu2O), and low yield of dichlorodibenzo-dioxins/dichlorohydroxydibenzofurans. The degradation intermediates were identified as chlorophenoxyphenol, phenoxyphenol, chlorophenol, catechol, phenol, benzoquinone, and lower volatile acids. We developed the degradation pathway of TCS which follows electron reduction and then oxidation by reactive oxygen species. The mechanism was developed and strengthened using the radical trapping and other measurements. The unusual mechanism and photostability of Au-Cu2O NWAs were attributed to the Au/Cu2O/Cu "sandwich"-like structure. This structure yields a sustained and steady internal electric field, raises the conduction band of Cu2O, reinforces the reductive activity of the photo-generated electrons, and eliminates the photo-generated holes that are responsible for the photo-etching of Cu2O. PMID:26076905

  6. Supramolecular Organic Nanowires as Plasmonic Interconnects.

    PubMed

    Armao, Joseph J; Domoto, Yuya; Umehara, Teruhiko; Maaloum, Mounir; Contal, Christophe; Fuks, Gad; Moulin, Emilie; Decher, Gero; Javahiraly, Nicolas; Giuseppone, Nicolas

    2016-02-23

    Metallic nanostructures are able to interact with an incident electromagnetic field at subwavelength scales by plasmon resonance which involves the collective oscillation of conduction electrons localized at their surfaces. Among several possible applications of this phenomenon, the theoretical prediction is that optical circuits connecting multiple plasmonic elements will surpass classical electronic circuits at nanoscale because of their much faster light-based information processing. However, the placement and coupling of metallic elements smaller than optical wavelengths currently remain a formidable challenge by top-down manipulations. Here, we show that organic supramolecular triarylamine nanowires of ≈1 nm in diameter are able to act as plasmonic waveguides. Their self-assembly into plasmonic interconnects between arrays of gold nanoparticles leads to the bottom-up construction of basic optical nanocircuits. When the resonance modes of these metallic nanoparticles are coupled through the organic nanowires, the optical conductivity of the plasmonic layer dramatically increases from 259 to 4271 Ω(-1)·cm(-1). We explain this effect by the coupling of a hot electron/hole pair in the nanoparticle antenna with the half-filled polaronic band of the organic nanowire. We also demonstrate that the whole hybrid system can be described by using the abstraction of the lumped circuit theory, with a far field optical response which depends on the number of interconnects. Overall, our supramolecular bottom-up approach opens the possibility to implement processable, soft, and low cost organic plasmonic interconnects into a large number of applications going from sensing to metamaterials and information technologies. PMID:26814600

  7. Thin-film solar cells with InGaAs/GaAsP multiple quantum wells and a rear surface etched with light trapping micro-hole array

    NASA Astrophysics Data System (ADS)

    Watanabe, Kentaroh; Inoue, Tomoyuki; Sodabanlu, Hassanet; Sugiyama, Masakazu; Nakano, Yoshiaki

    2015-08-01

    A light trapping effect in GaAs p-i-n solar cells with InGaAs/GaAsP multiple quantum wells (MQWs) in the i-layer was demonstrated by applying a light scattering texture to the rear surface of the cell. A thin-film MQW solar cell was successfully fabricated by metal organic vapor phase epitaxy (MOVPE) to grow an inverted n-i-p photovoltaic (PV) structure; this structure was then transferred to a Si support substrate to prevent optical loss due to free carrier absorption. For the light scattering texture, the use of both the wet-etched micro-hole arrayed SiO2 dielectric layer on the rear surface of the cell and the secondarily etched micro hole array on the GaAs layer was attempted. On the SiO2 layer, the micro hole array pattern was obtained by the radio frequency sputtering of the layer followed by wet etching with photolithographic patterning. On the GaAs layer, the micro-hole array pattern was obtained by direct etching through a SiO2 template. Compared with the light scattering effects of the micro-hole-arrayed SiO2 layer, the secondarily etched GaAs rear contact layer showed a significant improvement in external quantum efficiency (EQE) in the wavelength range from 855 to 1000 nm that corresponds to the photon absorption wavelength in MQWs.

  8. Combining 3-D plasmonic gold nanorod arrays with colloidal nanoparticles as a versatile concept for reliable, sensitive, and selective molecular detection by SERS.

    PubMed

    Yilmaz, Mehmet; Senlik, Erhan; Biskin, Erhan; Yavuz, Mustafa Selman; Tamer, Ugur; Demirel, Gokhan

    2014-03-28

    The detection of molecules at an ultralow level by Surface-Enhanced Raman Spectroscopy (SERS) has recently attracted enormous interest for various applications especially in biological, medical, and environmental fields. Despite the significant progress, SERS systems are still facing challenges for practical applications related to their sensitivity, reliability, and selectivity. To overcome these limitations, in this study, we have proposed a simple yet facile concept by combining 3-D anisotropic gold nanorod arrays with colloidal gold nanoparticles having different shapes for highly reliable, selective, and sensitive detection of some hazardous chemical and biological warfare agents in trace amounts through SERS. The gold nanorod arrays were created on the BK7 glass slides or silicon wafer surfaces via the oblique angle deposition (OAD) technique without using any template material or lithography technique and their surface densities were adjusted by manipulating the deposition angle (α). It is found that gold nanorod arrays fabricated at α = 10° exhibited the highest SERS enhancement in the absence of colloidal gold nanoparticles. Synergetic enhancement was obviously observed in SERS signals when combining gold nanorod arrays with colloidal gold nanoparticles having different shapes (i.e., spherical, rod, and cage). Due to their ability to produce localized surface plasmons (LSPs) in transverse and longitudinal directions, utilization of colloidal gold nanorods as a synergetic agent led to an increase in the enhancement factor by about tenfold compared to plain gold nanorod arrays. Moreover, we have tested our approach to detect some chemical and biological toxins namely dipicolinic acid (DIP), methyl parathion (MP), and diethyl phosphoramidate (DP). For all toxins, Raman spectra with high signal-to-noise ratios and reproducibility were successfully obtained over a broad concentration range (5 ppm-10 ppb). Our results suggest that the slightly tangled and

  9. Constraints on Black Hole/Host Galaxy Co-evolution and Binary Stalling Using Pulsar Timing Arrays

    NASA Astrophysics Data System (ADS)

    Simon, Joseph; Burke-Spolaor, Sarah

    2016-07-01

    Pulsar timing arrays are now setting increasingly tight limits on the gravitational wave background from binary supermassive black holes (SMBHs). But as upper limits grow more constraining, what can be implied about galaxy evolution? We investigate which astrophysical parameters have the largest impact on predictions of the strain spectrum and provide a simple framework to directly translate between measured values for the parameters of galaxy evolution and pulsar timing array (PTA) limits on the gravitational wave background of binary SMBHs. We find that the most influential observable is the relation between a host galaxy's central bulge and its central black hole, {M}\\bullet {--}{M}{bulge}, which has the largest effect on the mean value of the characteristic strain amplitude. However, the variance of each prediction is dominated by uncertainties in galaxy stellar mass functions. Using this framework with the best published PTA limit, we can set limits on the shape and scatter of the {M}\\bullet {--}{M}{bulge} relation. We find our limits to be in contention with strain predictions using two leading measurements of this relation. We investigate several possible reasons for this disagreement. If we take the {M}\\bullet {--}{M}{bulge} relations to be correct within a simple power-law model for the gravitational wave background, then the inconsistency is reconcilable by allowing for an additional “stalling” time between a galaxy merger and evolution of a binary SMBH to sub-parsec scales, with lower limits on this timescale of ˜1–2 Gyr.

  10. The sub-micron hole array in sapphire produced by inductively-coupled plasma reactive ion etching.

    PubMed

    Shiao, Ming-Hua; Chang, Chun-Ming; Huang, Su-Wei; Lee, Chao-Te; Wu, Tzung-Chen; Hsueh, Wen-Jeng; Ma, Kung-Jeng; Chiang, Donyau

    2012-02-01

    The sub-micron hole array in a sapphire substrate was fabricated by using nanosphere lithography (NSL) combined with inductively-coupled-plasma reactive ion etching (ICP-RIE) technique. Polystyrene nanospheres of about 600 nm diameter were self-assembled on c-plane sapphire substrates by the spin-coating method. The diameter of polystyrene nanosphere was modified by using oxygen plasma in ICP-RIE system. The size of nanosphere modified by oxygen plasma was varied from 550 to 450 nm with different etching times from 15 to 35 s. The chromium thin film of 100 nm thick was then deposited on the shrunk nanospheres on the substrate by electron-beam evaporation system. The honeycomb type chromium mask can be obtained on the sapphire substrate after the polystyrene nanospheres were removed. The substrate was further etched in two sets of chlorine/Argon and boron trichloride/Argon mixture gases at constant pressure of 50 mTorr in ICP-RIE processes. The 400 nm hole array in diameter can be successfully produced under suitable boron trichloride/Argon gas flow ratio. PMID:22630019

  11. Fabrication of a micro-hole array on metal foil by nanosecond pulsed laser beam machining using a cover plate

    NASA Astrophysics Data System (ADS)

    Ha, Kyoung Ho; Lee, Se Won; Kim, Janggil; Jee, Won Young; Chu, Chong Nam

    2015-02-01

    A novel laser beam machining (LBM) method is proposed to achieve higher precision and better quality beyond the limits of a commercialized nanosecond pulsed laser system. The use of a cover plate is found to be effective for the precision machining of a thin metal foil at micro scale. For verifying the capability of cover plate laser beam machining (c-LBM) technology, a 30 by 30 array of micro-holes was fabricated on 8 µm-thick stainless steel 304 (STS) foil. As a result, thermal deformation and cracks were significantly reduced in comparison with the results using LBM without a cover plate. The standard deviation of the inscribed and circumscribed circle of the holes with a diameter of 12 µm was reduced to 33% and 81%, respectively and the average roundness improved by 77%. Moreover, the smallest diameter obtainable by c-LBM in the given equipment was found to be 6.9 µm, which was 60% less than the minimum size hole by LBM without a cover plate.

  12. A centimeter-scale sub-10 nm gap plasmonic nanorod array film as a versatile platform for enhancing light-matter interactions

    NASA Astrophysics Data System (ADS)

    Zhou, Zhang-Kai; Xue, Jiancai; Zheng, Zebo; Li, Jiahua; Ke, Yanlin; Yu, Ying; Han, Jun-Bo; Xie, Weiguang; Deng, Shaozhi; Chen, Huanjun; Wang, Xuehua

    2015-09-01

    Strongly coupled plasmonic nanostructures with sub-10 nm gaps can enable intense electric field enhancements which greatly benefit the various light-matter interactions. From the point view of practical applications, such nanostructures should be of low-cost, facile fabrication and processing, large-scale with high-yield of the ultrasmall gaps, and easy for integration with other functional components. However, nowadays techniques for reliable fabrication of these nanostructures usually involve complex, time-consuming, and expensive lithography procedures, which are limited either by their low-throughput or the small areas obtained. On the other hand, so far most of the studies on the sub-10 nm gap nanostructures mainly focused on the surface-enhanced Raman scattering and high-harmonic generations, while leaving other nonlinear optical properties unexplored. In this work, using a scalable process without any lithography procedures, we demonstrated a centimeter-scale ordered plasmonic nanorod array film (PNRAF) with well-defined sub-10 nm interparticle gaps as a versatile platform for strongly enhanced light-matter interactions. Specifically, we showed that due to its plasmon-induced localized electromagnetic field enhancements, the Au PNRAF could exhibit extraordinary intrinsic multi-photon avalanche luminescence (MAPL) and nonlinear saturable absorption (SA). Furthermore, the PNRAF can be easily integrated with semiconductor quantum dots (SQDs) as well as wide bandgap semiconductors to strongly enhance their fluorescence and photocurrent response, respectively. Our method can be easily generalized to nanorod array films consisting of other plasmonic metals and even semiconductor materials, which can have multiple functionalities derived from different materials. Overall, the findings in our study have offered a potential strategy for design and fabrication of nanostructures with ultrasmall gaps for future photonic and optoelectronic applications.Strongly coupled

  13. Enhanced infrared transmission from gold wire-grid arrays via surface plasmons in continuous graphene (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Liu, Zizhuo; Bütün, Serkan; Palacios, Edgar; Aydin, Koray

    2015-09-01

    Enhanced transmission of light through nanostructures has always been of great interest in the field of plasmonics and nanophotonics. With the aid of near-field effects, the transmission of the electromagnetic waves can be enhanced or suppressed. Much of the work on enhanced transmission has been shown to be frequency-selective. However it is possible to increase the transmission over a large frequency range by using graphene, which has shown broadband properties in many applications. Here, we propose enhanced transmission in wire grid gold structure making use of continuous graphene sheets. We use finite-difference time-domain simulations to study the optical properties of this graphene-metal hybrid structure at mid infrared (mid-IR) wavelengths. The grating structure in wire grid gold provides an ideal platform to match the momentum and excite the surface plasmon polaritons (SPPs) in monolayer graphene. Our numerical calculations show that the local electromagnetic field around the graphene is largely enhanced due to surface plasmons. Moreover, with the highly confined SPPs coupling with the incident light, the transmission through the whole structure can be broadly enhanced in the mid infrared region. We also analyze the effect of the spectrum with different periods and gold nanowire widths to evaluate the size effects of the plasmons in graphene. In addition, by tuning the Fermi level, one can control the wavelength range at which the transmission is enhanced. The mechanism of the enhancement will be explained in the calculated electric field distribution. And we will also highlight the opportunities of graphene for applications such as tunable transmission and active photonic modulator.

  14. Key Science with the Square Kilometer Array: Strong-field Tests of Gravity using Pulsars and Black Holes

    NASA Astrophysics Data System (ADS)

    Cordes, J. M.; Kramer, M.; Backer, D. C.; Lazio, T. J. W.; Science Working Groupthe Square Kilometer Array Team

    2005-12-01

    A Galactic census of pulsars with the SKA will discover most of the active pulsars in the Galaxy beamed toward us. The sheer number of pulsars discovered, along with the exceptional timing precision the SKA can provide, will revolutionize the field of pulsar astrophysics and will enable significant tests of theories of gravity. Census discoveries will almost certainly include pulsar-black hole binaries as well as pulsars orbiting the super-massive black hole in the Galactic center. These systems provide unique opportunties for probing the ultra-strong field limit of relativistic gravity and will complement future gravitational wave detections using LISA-like instruments. SKA measurements can be used to test the Cosmic Censorship Conjecture and the No-Hair theorem. The large number of millisecond pulsars discovered with the SKA will also provide a dense array of precision clocks on the sky that can be used as multiple arms of a cosmic gravitational wave detector, which can be used to detect and measure the stochastic cosmological gravitational wave background that is expected from a number of sources. In addition to gravitational tests, the large number of lines of sight will provide a detailed map of the Galaxy's electron density and magnetic fields and important information on the dynamics and evolutionary histories of neutron stars. The census will provide examples of nearly every possible outcome of the evolution of massive stars, including (as above) pulsar black-hole systems and sub-millisecond pulsars, if they exist. These objects will yield constraints on the equation of state of matter at super-nuclear densities. Masses of pulsars and their binary companions planets, white dwarfs, other neutron stars, and black holes will be determined to ˜ 1% for hundreds of objects. The SKA will also provide partial censuses of nearby galaxies through periodicity and giant-pulse detections, yielding important information on the intergalactic medium.

  15. Laser-drilled micro-hole arrays on polyurethane synthetic leather for improvement of water vapor permeability

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Wang, A. H.; Zheng, R. R.; Tang, H. Q.; Qi, X. Y.; Ye, B.

    2014-06-01

    Three kinds of lasers at 1064, 532 and 355 nm wavelengths respectively were adopted to construct micro-hole arrays on polyurethane (PU) synthetic leather with an aim to improve water vapor permeability (WVP) of PU synthetic leather. The morphology of the laser-drilled micro-holes was observed to optimize laser parameters. The WVP and slit tear resistance of the laser-drilled leather were measured. Results show that the optimized pulse energy for the 1064, 532 and 355 nm lasers are 0.8, 1.1 and 0.26 mJ, respectively. The diameters of the micro-holes drilled with the optimized laser pulse energy were about 20, 15 and 10 μm, respectively. The depths of the micro-holes drilled with the optimized pulse energy were about 21, 60 and 69 μm, respectively. Compared with the untreated samples, the highest WVP growth ratio was 38.4%, 46.8% and 53.5% achieved by the 1064, 532 and 355 nm lasers, respectively. And the highest decreasing ratio of slit tear resistance was 11.1%, 14.8%, and 22.5% treated by the 1064, 532 and 355 nm lasers, respectively. Analysis of the interaction mechanism between laser beams at three kinds of laser wavelengths and the PU synthetic leather revealed that laser micro-drilling at 355 nm wavelength displayed both photochemical ablation and photothermal ablation, while laser micro-drilling at 1064 and 532 nm wavelengths leaded to photothermal ablation only.

  16. Design of a High-Performance Micro Integrated Surface Plasmon Resonance Sensor Based on Silicon-On-Insulator Rib Waveguide Array.

    PubMed

    Yuan, Dengpeng; Dong, Ying; Liu, Yujin; Li, Tianjian

    2015-01-01

    Based on silicon-on-insulator (SOI) rib waveguide with large cross-section, a micro integrated surface plasmon resonance (SPR) biochemical sensor platform is proposed. SPR is excited at the deeply etched facet of the bend waveguide by the guiding mode and a bimetallic configuration is employed. With the advantages of SOI rib waveguide and the silicon microfabrication technology, an array of the SPR sensors can be composed to implement wavelength interrogation of the sensors' output signal, so the spectrometer or other bulky and expensive equipment are not necessary, which enables the SPR sensor to realize the miniaturization and integration of the entire sensing system. The performances of the SPR sensor element are verified by using the two-dimensional finite-different time-domain method. The parameters of the sensor element and the array are optimized for the achievement of high performance for biochemical sensing application. As a typical example, a single bimetallic SPR sensor with 3 nm Au over 32 nm Al possesses a high sensitivity of 3.968 × 104 nm/RIU, a detection-accuracy of 14.7 μm(-1). For a uniparted SPR sensor, it can achieve a detection limit of 5.04 × 10(-7) RIU. With the relative power measurement accuracy of 0.01 dB, the refractive index variation of 1.14 × 10(-5) RIU can be detected by the SPR sensor array. PMID:26193277

  17. Design of a High-Performance Micro Integrated Surface Plasmon Resonance Sensor Based on Silicon-On-Insulator Rib Waveguide Array

    PubMed Central

    Yuan, Dengpeng; Dong, Ying; Liu, Yujin; Li, Tianjian

    2015-01-01

    Based on silicon-on-insulator (SOI) rib waveguide with large cross-section, a micro integrated surface plasmon resonance (SPR) biochemical sensor platform is proposed. SPR is excited at the deeply etched facet of the bend waveguide by the guiding mode and a bimetallic configuration is employed. With the advantages of SOI rib waveguide and the silicon microfabrication technology, an array of the SPR sensors can be composed to implement wavelength interrogation of the sensors’ output signal, so the spectrometer or other bulky and expensive equipment are not necessary, which enables the SPR sensor to realize the miniaturization and integration of the entire sensing system. The performances of the SPR sensor element are verified by using the two-dimensional finite-different time-domain method. The parameters of the sensor element and the array are optimized for the achievement of high performance for biochemical sensing application. As a typical example, a single bimetallic SPR sensor with 3 nm Au over 32 nm Al possesses a high sensitivity of 3.968 × 104 nm/RIU, a detection-accuracy of 14.7 μm−1. For a uniparted SPR sensor, it can achieve a detection limit of 5.04 × 10−7 RIU. With the relative power measurement accuracy of 0.01 dB, the refractive index variation of 1.14 × 10−5 RIU can be detected by the SPR sensor array. PMID:26193277

  18. Highly sensitive, localized surface plasmon resonance fiber device for environmental sensing, based upon a structured bi-metal array of nano-wires.

    PubMed

    Allsop, Thomas; Neal, Ron; Chengbo, Mou; Kalli, Kyriacos; Webb, David

    2014-10-15

    We demonstrate a bi-metal coated (platinum and gold or silver), localized surface plasmon resonance fiber sensor with an index sensitivity exceeding 11,900 nm/RIU, yielding an index resolution of 2×10⁻⁵ in the aqueous index regime. This is one of the highest index sensitivities achieved with an optical fiber sensor. The coatings consist of arrays of bi-metal nano-wires (typically 36 nm in radius and 20 μm in length), supported by a silicon dioxide thin film on a thin substrate of germanium, the nano-wires being perpendicular to the longitudinal axis of the D-shaped fiber. PMID:25361088

  19. Defect-assisted plasmonic crystal sensor

    PubMed Central

    Briscoe, Jayson L.; Cho, Sang-Yeon; Brener, Igal

    2014-01-01

    We demonstrate enhanced sensitivity of a nanostructured plasmonic sensor that utilizes resonance in intentional structural defects within a plasmonic crystal. The measured sensitivity of the fabricated nanosensor is ~500 nm/RIU showing improvement over traditional nanohole array sensors. Furthermore, the defects provide an additional design parameter to increase sensitivity by engineering plasmon lifetime. PMID:23939114

  20. Nano-Assembled Plasmonic Crystals Devices for Sensing Applications

    NASA Astrophysics Data System (ADS)

    Lou, Yi

    The ability of plasmonic nano-structures to concentrate light into sub-wavelength volumes offers the potential for developing new devices and applications. Surface plasmons are electron oscillations that propagate on a metal surface. The interaction of light with surface plasmons can be tailored by periodic nano-structures on a surface, thus allowing miniaturized photonic devices with length scales much smaller than those currently achieved. The purpose of this dissertation is to develop a low cost self-assembly method to fabricate large area plasmonic crystals and study the physical properties of surface plasmons. Several plasmonic devices are designed using the self-assembled gold nanobump arrays. A polystyrene sphere self-assembly technique was developed for fabricating holes or bumps as small as 150 nm with spacing controlled by the sphere diameter (typically 500--700 nm). Several applications were developed, which were based on the sensitivity of the photon-plasmons coupling to 1) the surface dielectric and 2) the incident angle. A sensitivity to refractive index changes of about 100 nm per refractive index units was demonstrated by varying the surrounding dielectric environment with several chemicals for sensing applications. An increasing variation in the color of a vanadium oxides thermochromic device was observed by using surface plasmons to enhance the variation in reflection. Surface plasmons were also used in an optical modulator, where excitation by one wavelength was used to changes the transmission at a different wavelength. Using the angular sensitivity of the nano-structured plasmonic thin films, an angle of arrival sensor was fabricated. This sensor can be used to track the position of the sun or other collimated light sources like lasers. The polarization dependency of the device was studied and its behavior was explained by the lattice momentum matching mechanism. Inspired by the novel concept of this angle of arrival sensor, a wavefront sensor

  1. Two-dimensional crossover and strong coupling of plasmon excitations in arrays of one-dimensional atomic wires

    NASA Astrophysics Data System (ADS)

    Lichtenstein, T.; Aulbach, J.; Schäfer, J.; Claessen, R.; Tegenkamp, C.; Pfnür, H.

    2016-04-01

    Dimensional crossover is of high relevance to understanding real-world quasi-one-dimensional (1D) systems. Here we study the collective excitations, measured as plasmon dispersions in an electron energy loss experiment, in a tunable family of model systems, namely, Au chains on stepped Si(h h k ) substrates, that allow variations of chain widths and interchain spacings. We indeed observe 1D-like dispersions, but with a significant influence of higher dimensions. Surprisingly, we find that it is not the interchain coupling but the width of the conduction channel, as confirmed by tunneling spectroscopy, that dominates the excitations.

  2. Experimental study of convective heat transfer under arrays of impinging air jets from slots and circular holes

    NASA Astrophysics Data System (ADS)

    Can, M.; Etemog✓lu, A. B.; Avci, A.

    Impinging air jets are widely used in industry, for heating, cooling, drying, etc, because of the high heat transfer rates which is developed in the impingement region. To provide data for designers of industrial equipment, a large multi-nozzle rig was used to measure average heat transfer coefficients under arrays of both slot nozzles and circular holes. The aim of the present paper is to develop the relationship between heat transfer coefficient, air mass flow and fan power which is required for the optimum design of nozzle systems. The optimum free area was obtained directly from experimental results. The theory of optimum free area was analysed and good agreement was found between theoretical and experimental results. It was also possible to optimise the variables, to achieve minimum capital and running costs.

  3. Hole-mask colloidal nanolithography combined with tilted-angle-rotation evaporation: A versatile method for fabrication of low-cost and large-area complex plasmonic nanostructures and metamaterials

    PubMed Central

    Frank, Bettina; Neubrech, Frank; Zhang, Chunjie; Braun, Paul V; Giessen, Harald

    2014-01-01

    Summary Many nano-optical applications require a suitable nanofabrication technology. Hole-mask colloidal nanolithography has proven to be a low-cost and large-area alternative for the fabrication of complex plasmonic nanostructures as well as metamaterials. In this paper, we describe the fabrication process step by step. We manufacture a variety of different plasmonic structures ranging from simple nano-antennas over complex chiral structures to stacked composite materials for applications such as sensing. Additionally, we give details on the control of the nanostructure lateral density which allows for the multilayer-fabrication of complex nanostructures. In two accompanying movies, the fabrication strategy is explained and details are being demonstrated in the lab. The movies can be found at the website of Beilstein TV. PMID:24991494

  4. Nanospherical-lens lithographical Ag nanodisk arrays embedded in p-GaN for localized surface plasmon-enhanced blue light emitting diodes

    SciTech Connect

    Wei, Tongbo Wu, Kui; Sun, Bo; Zhang, Yonghui; Chen, Yu; Huo, Ziqiang; Hu, Qiang; Wang, Junxi; Zeng, Yiping; Li, Jinmin; Lan, Ding

    2014-06-15

    Large-scale Ag nanodisks (NDs) arrays fabricated using nanospherical-lens lithography (NLL) are embedded in p-GaN layer of an InGaN/GaN light-emitting diode (LED) for generating localized surface plasmon (LSP) coupling with the radiating dipoles in the quantum-well (QWs). Based on the Ag NDs with the controlled surface coverage, LSP leads to the improved crystalline quality of regrowth p-GaN, increased photoluminescence (PL) intensity, reduced PL decay time, and enhanced output power of LED. Compared with the LED without Ag NDs, the optical output power at a current of 350 mA of the LSP-enhanced LEDs with Ag NDs having a distance of 20 and 35 nm to QWs is increased by 26.7% and 31.1%, respectively. The electrical characteristics and optical properties of LEDs with embedded Ag NPs are dependent on the distance of between Ag NPs and QWs region. The LED with Ag NDs array structure is also found to exhibit reduced emission divergence, compared to that without Ag NDs.

  5. DPN-generated nanostructures as positive resists for preparing lithographic masters or hole arrays.

    PubMed

    Salaita, Khalid S; Lee, Seung Woo; Ginger, David S; Mirkin, Chad A

    2006-11-01

    Experiments that utilize structures generated by dip-pen nanolithography (DPN) as positive resists for fabricating nanohole arrays and lithographic masters are described. The technique takes advantage of the difference in desorption potentials for patterned structures made from 16-mercaptohexadecanoic acid (MHA) and 1-octadecanethiol (ODT), respectively. In this approach, patterns of MHA on gold are generated by DPN, and surrounding areas are passivated by ODT. Electrochemistry is used to selectively remove the MHA nanofeatures made by DPN. The exposed gold can be used as an electrode to plate silver from solution, generating raised features and structures that can be transferred to PDMS to make a lithographic master, or alternatively, they can be etched to make arrays of nanoholes. PMID:17090079

  6. Development of Uncooled Micro-bolometer Arrays Based on Hole-doped Rare-Earth Manganites

    NASA Astrophysics Data System (ADS)

    Tanyi, E.; Yong, Grace; Keshavarz, Camron; Sharma, Prakash; Rubin, Christopher; Kolagani, Rajeswari; Gross, Steven

    2013-03-01

    Material properties indicate that rare earth manganites have a competitive advantage over VOx which is a material commonly employed as bolometric sensors in state of the art uncooled imaging arrays. We will present the results of our work on developing manganite thin films for uncooled micro-bolometer arrays. By fine tuning the cation composition and stoichiometry, we have identified material compositions suitable for uncooled bolometer operation and developed thin films of these materials by Pulsed Laser Deposition (PLD) on Si. For hetero-epitaxy on Si, we employ lattice engineering schemes to circumvent problems such as chemical incompatibility and amorphization of the substrate surface due to the native oxide. We are in the process of fabricating single test bolometers and micro-bolometer arrays. We will discuss the results of materials development and device fabrication efforts and will present performance parameters and estimated figures of merit for test bolometers. We will also discuss efforts towards understanding and alleviating material problems such as the residual stresses in the thin film heterostructures which are of critical importance for the fabrication of suspended microstructures. We acknowledge support from the NSF grant ECCS 1128586 at Towson University.

  7. Vast Hole- and Electron-Polaron Spatial Extent in Oligomeric π-Conjugated Porphyrin Arrays

    NASA Astrophysics Data System (ADS)

    Angiolillo, Paul; Rawson, Jeff; Therien, Michael

    meso-Ethyne bridged π-conjugated zinc porphyrin oligomers (PZnn compounds) have been demonstrated to evince lowest excited singlet states that are globally delocalized. It has also previously been shown that hole-polaron states of these oligomers exhibit delocalization lengths that mirror the molecular spatial dimension, 7.5 nm in the case of the heptamer. Here we demonstrate that the electron-polaron states in PZnn compounds also feature vast areal delocalization. This finding is evidenced by concurrent optical and electron spin resonance measurements, coupled with electronic structure calculations that suggest atypically small reorganization energies for one-electron reduction of these materials. These results are buttressed by electron spin relaxation measurements of PZnn electron polarons that show that both T1 and T2 relaxation times are unusually large, on the order of 103 ns and 102 ns, respectively. Since rapid charge delocalization defines an important mechanism that mitigates Coulombic stabilization of photogenerated electron-hole pairs to create separated free charge carriers, and spin polarization lifetimes feature prominently in spin currents, these findings identify conjugated materials with exceptional optical, electronic, and spintronic properties.

  8. Electron Spin Relaxation of Hole and Electron Polarons in π-Conjugated Porphyrin Arrays: Spintronic Implications.

    PubMed

    Rawson, Jeff; Angiolillo, Paul J; Frail, Paul R; Goodenough, Isabella; Therien, Michael J

    2015-06-18

    Electron spin resonance (ESR) spectroscopic line shape analysis and continuous-wave (CW) progressive microwave power saturation experiments are used to probe the relaxation behavior and the relaxation times of charged excitations (hole and electron polarons) in meso-to-meso ethyne-bridged (porphinato)zinc(II) oligomers (PZnn compounds), which can serve as models for the relevant states generated upon spin injection. The observed ESR line shapes for the PZnn hole polaron ([PZnn](+•)) and electron polaron ([PZnn](-•)) states evolve from Gaussian to more Lorentzian as the oligomer length increases from 1.9 to 7.5 nm, with solution-phase [PZnn](+•) and [PZnn](-•) spin-spin (T2) and spin-lattice (T1) relaxation times at 298 K ranging, respectively, from 40 to 230 ns and 0.2 to 2.3 μs. Notably, these very long relaxation times are preserved in thick films of these species. Because the magnitudes of spin-spin and spin-lattice relaxation times are vital metrics for spin dephasing in quantum computing or for spin-polarized transport in magnetoresistive structures, these results, coupled with the established wire-like transport behavior across metal-dithiol-PZnn-metal junctions, present meso-to-meso ethyne-bridged multiporphyrin systems as leading candidates for ambient-temperature organic spintronic applications. PMID:25697578

  9. Surface plasmon interference on the surface of an aluminum-covered fiber core array for solgel fabrication of submicrometer gratings.

    PubMed

    Wang, Wenjie; He, Miao; Zhang, Yong; Li, Shuti; He, Anhe; Wang, Xin; Hu, Candong; Zhu, Qiuxiang; Zhou, Jun; Ning, Guoxiang

    2010-11-15

    An interesting method to fabricate submicrometer gratings (SMGs) utilizing the interference of surface plasmon waves (SPWs) is presented. The stationary wave field off the aluminum (Al) layer surface of an Al-covered UV fiber core, formed by the interference of the induced SPWs, has been employed as a submicrometer photolithography tool to inscribe SMGs on the surface of a self-processing hybrid HfO(2)/SiO(2) solgel film. Using atomic force microscopy, the period of the fabricated SMGs was measured as 105 nm. The intensity distribution of the stationary wave field was measured by a near-field scanning optical microscope and anastomosed with theoretical values calculated by using FDTD simulations. PMID:21082009

  10. Nonlinear Plasmonic Sensing.

    PubMed

    Mesch, Martin; Metzger, Bernd; Hentschel, Mario; Giessen, Harald

    2016-05-11

    We introduce the concept of nonlinear plasmonic sensing, relying on third harmonic generation from simple plasmonic nanoantennas. Because of the nonlinear conversion process we observe a larger sensitivity to a local change in the refractive index as compared to the commonly used linear localized surface plasmon resonance sensing. Refractive index changes as small as 10(-3) can be detected. In order to determine the spectral position of highest sensitivity, we perform linear and third harmonic spectroscopy on plasmonic nanoantenna arrays, which are the fundamental building blocks of our sensor. Furthermore, simultaneous detection of linear and nonlinear signals allows quantitative comparison of both methods, providing further insight into the working principle of our sensor. While the signal-to-noise ratio is comparable, nonlinear sensing gives about seven times higher relative signal changes. PMID:27050296

  11. Computationally efficient analysis of extraordinary optical transmission through infinite and truncated subwavelength hole arrays

    NASA Astrophysics Data System (ADS)

    Camacho, Miguel; Boix, Rafael R.; Medina, Francisco

    2016-06-01

    The authors present a computationally efficient technique for the analysis of extraordinary transmission through both infinite and truncated periodic arrays of slots in perfect conductor screens of negligible thickness. An integral equation is obtained for the tangential electric field in the slots both in the infinite case and in the truncated case. The unknown functions are expressed as linear combinations of known basis functions, and the unknown weight coefficients are determined by means of Galerkin's method. The coefficients of Galerkin's matrix are obtained in the spatial domain in terms of double finite integrals containing the Green's functions (which, in the infinite case, is efficiently computed by means of Ewald's method) times cross-correlations between both the basis functions and their divergences. The computation in the spatial domain is an efficient alternative to the direct computation in the spectral domain since this latter approach involves the determination of either slowly convergent double infinite summations (infinite case) or slowly convergent double infinite integrals (truncated case). The results obtained are validated by means of commercial software, and it is found that the integral equation technique presented in this paper is at least two orders of magnitude faster than commercial software for a similar accuracy. It is also shown that the phenomena related to periodicity such as extraordinary transmission and Wood's anomaly start to appear in the truncated case for arrays with more than 100 (10 ×10 ) slots.

  12. Measuring the parameters of massive black hole binary systems with pulsar timing array observations of gravitational waves

    NASA Astrophysics Data System (ADS)

    Sesana, Alberto; Vecchio, Alberto

    2010-05-01

    The observation of massive black hole binaries with pulsar timing arrays (PTAs) is one of the goals of gravitational-wave astronomy in the coming years. Massive (≳108M⊙) and low-redshift (≲1.5) sources are expected to be individually resolved by upcoming PTAs, and our ability to use them as astrophysical probes will depend on the accuracy with which their parameters can be measured. In this paper we estimate the precision of such measurements using the Fisher-information-matrix formalism. For this initial study we restrict ourselves to “monochromatic” sources, i.e. binaries whose frequency evolution is negligible during the expected ≈10yr observation time, which represent the bulk of the observable population based on current astrophysical predictions. In this approximation, the system is described by seven parameters and we determine their expected statistical errors as a function of the number of pulsars in the array, the array sky coverage, and the signal-to-noise ratio (SNR) of the signal. At fixed SNR (regardless of the number of pulsars in the PTA), the gravitational-wave astronomy capability of a PTA is achieved with ≈20 pulsars; adding more pulsars (up to 1000) to the array reduces the source error box in the sky ΔΩ by a factor ≈5 and has negligible consequences on the statistical errors on the other parameters, because the correlations among parameters are already removed to a large extent. If one folds in the increase of coherent SNR proportional to the square root of the number of pulsars, ΔΩ improves as 1/SNR2 and the other parameters as 1/SNR. For a fiducial PTA of 100 pulsars uniformly distributed in the sky and a coherent SNR=10, we find ΔΩ≈40deg2, a fractional error on the signal amplitude of ≈30% (which constrains only very poorly the chirp mass—luminosity distance combination M5/3/DL), and the source inclination and polarization angles are recovered at the ≈0.3rad level. The ongoing Parkes PTA is particularly

  13. Dynamic templating: A new pathway for the assembly of large-area arrays of plasmonic, magnetic and semiconductor nanomaterials

    NASA Astrophysics Data System (ADS)

    Farzinpour, Pouyan

    Substrate-based nanostructures are of great importance due to their applications in microelectronic devices, chemical sensors, catalysis and photovoltaics. This dissertation describes a novel fabrication technique for the formation of periodic arrays of substrate-based nanoparticles. The prescribed route, referred to as dynamic templating, requires modest levels of instrumentation consisting of a sputter coater, micrometer-scale shadow masks and a tube furnace. The route has broad applicability, having already produced periodic arrays of gold, silver, copper, platinum, nickel, cobalt, germanium and Au--Ag alloys on substrates as diverse as silicon, sapphire, silicon--carbide, and glass. The newly devised method offers large-area, high-throughput capabilities for the fabrication of periodic arrays of sub-micrometer and nanometer-scale structures and overcomes a significant technological barrier to the widespread use of substrate-based templated assembly by eliminating the need for periodic templates having nanoscale features. Because this technique only requires modest levels of instrumentation, researchers are now able to fabricate periodic arrays of nanostructures that would otherwise require advanced fabrication facilities.

  14. Molecular Plasmonics.

    PubMed

    Wilson, Andrew J; Willets, Katherine A

    2016-06-12

    In this review, we survey recent advances in the field of molecular plasmonics beyond the traditional sensing modality. Molecular plasmonics is explored in the context of the complex interaction between plasmon resonances and molecules and the ability of molecules to support plasmons self-consistently. First, spectroscopic changes induced by the interaction between molecular and plasmonic resonances are discussed, followed by examples of how tuning molecular properties leads to active molecular plasmonic systems. Next, the role of the position and polarizability of a molecular adsorbate on surface-enhanced Raman scattering signals is examined experimentally and theoretically. Finally, we introduce recent research focused on using molecules as plasmonic materials. Each of these examples is intended to highlight the role of molecules as integral components in coupled molecule-plasmon systems, as well as to show the diversity of applications in molecular plasmonics. PMID:27049633

  15. A near-transparent 90∘ polarization rotator with an array of L-shaped holes inside a glass cube

    NASA Astrophysics Data System (ADS)

    Liao, Yan-Lin; Zhao, Yan; Lu, He-Ping

    2016-07-01

    We report a near-transparent 90∘ polarization rotator by using a single-layer microstructure. The co-polarization light has been suppressed by using destructive interference. At the same time, the transmission of cross-polarization light has been improved with inference effect between surface plasmon polaritons (SPPs) and localized surface plasmons (LSPs). This efficient polarization rotation mechanism may be very useful in designing polarization rotators.

  16. Ligand-exchange assisted preparation of plasmonic Au/TiO2 nanotube arrays photoanodes for visible-light-driven photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Luo, Jie; Chen, Jiaoyan; Wang, Haiyan; Liu, Huangqing

    2016-01-01

    Visible-light-driven responsive Au/TiO2 nanotube arrays nanocomposites (LE-Au/TNTs) are prepared by depositing self-assembled monolayer of 3-mercaptopropionic acid (MPA) inside TNTs and then removing the ligands on the surface of Au through direct ligand-exchange method, which is beneficial for formation of intimate Au/TNTs Schottky contact after a mild annealing process. Under visible light illumination (λ > 400 nm), the photocurrent density of LE-Au/TNTs is 202 μA/cm2, which is the highest value ever reported in Au/TiO2 systems. Moreover, the incident photon to current conversion efficiency (IPCE) of LE-Au/TNTs at surface plasmonic resonance induced absorption peak (555 nm) is 7.4%. It is worth noted that the hydrogen evolution rates of the LE-Au/TNTs under simulated solar irradiation (AM1.5G, 100 mW/cm2) are 22.5 μmol/h, which is much higher than that of pristine TNTs (8.1 μmol/h). In addition, the LE-Au/TNTs show higher photoelectrochemical water splitting performance than the Au/TNTs prepared by direct impregnation-precipitation (IPAu/TNTs) strategy, which is ascribed to the close Schottky contact between Au and TNTs for better charge separation and transfer.

  17. Effect of SiO2 Spacer-Layer Thickness on Localized Surface Plasmon-Enhanced ZnO Nanorod Array LEDs.

    PubMed

    Liu, Weizhen; Xu, Haiyang; Yan, Siyi; Zhang, Cen; Wang, Lingling; Wang, Chunliang; Yang, Liu; Wang, Xinhua; Zhang, Lixia; Wang, Jiannong; Liu, Yichun

    2016-01-27

    Localized surface plasmon (LSP)-enhanced ultraviolet LEDs have been constructed via spin-coating Ag nanoparticles onto ZnO/SiO2 core/shell nanorod array/p-GaN heterostructures. Different from the previous reports where the dielectric spacer-layer thickness was determined only through photoluminescence (PL) characterization, the SiO2 shell thickness in this work is also optimized by actual electroluminescence (EL) measurements to maximize the enhancement. It is interesting to find that the enhancement ratios derived from PL and EL measurements demonstrate different thickness dependences on SiO2 shell: an optimal 3.5-fold PL enhancement was obtained at the SiO2 thickness of 16 nm, while an "abnormal" 7-fold EL enhancement was achieved at the thickness of 12 nm. Time-resolved spectroscopy studies, as well as theoretical estimations and numerical simulations, reveal that the higher-ratio EL enhancement stems from joint contributions, both internal-quantum-efficiency improvement induced by exciton-LSP coupling and light-extraction-efficiency improvement aroused by photon-LSP coupling. PMID:26741886

  18. Biomarkers probed in saliva by surface plasmon resonance imaging coupled to matrix-assisted laser desorption/ionization mass spectrometry in array format.

    PubMed

    Musso, Johana; Buchmann, William; Gonnet, Florence; Jarroux, Nathalie; Bellon, Sophie; Frydman, Chiraz; Brunet, Didier-Luc; Daniel, Regis

    2015-02-01

    Detection of protein biomarkers is of major interest in proteomics. This work reports the analysis of protein biomarkers directly from a biological fluid, human saliva, by surface plasmon resonance imaging coupled to mass spectrometry (SPRi-MS), using a functionalized biochip in an array format enabling multiplex SPR-MS analysis. The SPR biochip presented a gold surface functionalized by a self-assembled monolayer of short poly(ethylene oxide) chains carrying an N-hydroxysuccinimide end-group for the immobilization of antibodies. The experiments were accomplished without any sample pre-purification or spiking with the targeted biomarkers. SPRi monitoring of the interactions, immune capture from the biochip surface, and finally on-chip matrix-assisted laser desorption/ionization-MS structural identification of two protein biomarkers, salivary α-amylase and lysozyme, were successively achieved directly from saliva at the femtomole level. For lysozyme, the on-chip MS identification was completed by a proteomic analysis based on an on-chip proteolysis procedure and a peptide mass fingerprint. PMID:25524230

  19. Statistical and quadrant-hole analysis of the turbulence characteristics in a 3 x 3 wind turbine array boundary layer

    NASA Astrophysics Data System (ADS)

    Gibson, Max; Kang, Hyung-Suk; Meneveau, Charles; Bayoan Cal, Raul

    2009-11-01

    Data from a wind-tunnel experiment on the flow within a 3 x 3 array of lightly loaded wind turbine models operating inside a turbulent boundary layer over a rough surface are analyzed. The data are acquired using X hot-wire anemometry and the focus of the analysis is on the possible differences of the flow structures above and below the canopy of wind turbines. Here this question is addressed using quadrant analysis. Conditional averages of turbulent dissipation (a 1-D surrogate) at various heights at 5 diameters downstream is performed for each of the 4 quadrants as well as different ``hole-sizes.'' The results imply significantly less inter-scale correlations in the low-shear region at the bottom of the wind turbine wake than at other wake locations. Inter-scale correlations above and below the wake are also significantly greater than at that low-shear region. Spectral analysis is performed to determine which scales are mostly responsible for the various levels of Reynolds stresses as functions of position in the wind turbine wake.

  20. MEASURING MASS ACCRETION RATE ONTO THE SUPERMASSIVE BLACK HOLE IN M87 USING FARADAY ROTATION MEASURE WITH THE SUBMILLIMETER ARRAY

    SciTech Connect

    Kuo, C. Y.; Asada, K.; Rao, R.; Nakamura, M.; Algaba, J. C.; Liu, H. B.; Inoue, M.; Koch, P. M.; Ho, P. T. P.; Matsushita, S.; Pu, H.-Y.; Nishioka, H.; Pradel, N.; Akiyama, K.

    2014-03-10

    We present the first constraint on the Faraday rotation measure (RM) at submillimeter wavelengths for the nucleus of M87. By fitting the polarization position angles (χ) observed with the Submillimeter Array at four independent frequencies around ∼230 GHz and interpreting the change in χ as a result of external Faraday rotation associated with accretion flow, we determine the RM of the M87 core to be between –7.5 × 10{sup 5} and 3.4 × 10{sup 5} rad m{sup –2}. Assuming a density profile of the accretion flow that follows a power-law distribution and a magnetic field that is ordered, radial, and has equipartition strength, the limit on the RM constrains the mass accretion rate M-dot to be below 9.2 × 10{sup –4} M {sub ☉} yr{sup –1} at a distance of 21 Schwarzschild radii from the central black hole. This value is at least two orders of magnitude smaller than the Bondi accretion rate, suggesting significant suppression of the accretion rate in the inner region of the accretion flow. Consequently, our result disfavors the classical advection-dominated accretion flow and prefers the adiabatic inflow-outflow solution or convection-dominated accretion flow for the hot accretion flow in M87.

  1. Active graphene plasmonics for terahertz device applications

    NASA Astrophysics Data System (ADS)

    Otsuji, Taiichi; Popov, Vyacheslav; Ryzhii, Victor

    2014-03-01

    This paper reviews recent advances in graphene active plasmonics for terahertz (THz) device applications. Two-dimensional plasmons in graphene exhibit unique optoelectronic properties and mediate extraordinary light-matter interactions. It has been discovered theoretically that when the population of Dirac fermionic carriers in graphene are inverted by optical or electrical pumping, the excitation of graphene plasmons by the THz photons results in propagating surface plasmon polaritons with giant gain in a wide THz range. Furthermore, when graphene is patterned into a micro- or nanoribbon array by grating metallization, the structure acts as an active THz plasmonic amplifier, providing a superradiant plasmonic lasing with a giant gain at the plasmon modes in a wide THz frequency range. These new findings can lead to the creation of new types of plasmonic THz emitters and lasers operating even at room temperature.

  2. Dynamic coupling of plasmonic resonators

    PubMed Central

    Lee, Suyeon; Park, Q-Han

    2016-01-01

    We clarify the nature of dynamic coupling in plasmonic resonators and determine the dynamic coupling coefficient using a simple analytic model. We show that plasmonic resonators, such as subwavelength holes in a metal film which can be treated as bound charge oscillators, couple to each other through the retarded interaction of oscillating screened charges. Our dynamic coupling model offers, for the first time, a quantitative analytic description of the fundamental symmetric and anti-symmetric modes of coupled resonators which agrees with experimental results. Our model also reveals that plasmonic electromagnetically induced transparency arises in any coupled resonators of slightly unequal lengths, as confirmed by a rigorous numerical calculation and experiments. PMID:26911786

  3. Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode

    NASA Astrophysics Data System (ADS)

    Fujiki, A.; Uemura, T.; Zettsu, N.; Akai-Kasaya, M.; Saito, A.; Kuwahara, Y.

    2010-01-01

    A significant increase in electroluminescence was achieved through coupling with localized surface plasmons in a single layer of Au nanoparticles. We fabricated a thin-film organic electroluminescence diode, which consists of an indium tin oxide (ITO) anode, a Au nanoparticle array, a Cu phthalocyanine hole transport layer, a tris(8-hydroxylquinolianato) aluminum (III) electron transport layer, a LiF electron injection layer, and an Al cathode. The device structure, with size-controlled Au particles embedded on ITO, can be used to realize the optimum distance for exciton-plasmon interactions by simply adjusting the thickness of the hole transport layer. We observed a 20-fold increase in the molecular fluorescence compared with that of a conventional diode structure.

  4. Frequency-selective plasmonic wave propagation through the overmoded waveguide with photonic-band-gap slab arrays

    SciTech Connect

    Shin, Young-Min

    2012-05-15

    Confined propagation of guided waves through the periodically corrugated channel sandwiched between two staggered dielectric photonic-band-gap slab arrays is investigated with the band-response analysis. Numerical simulations show that longitudinally polarized evanescent waves within the band gap propagate with insertion loss of {approx}-0.2 to 1 dB (-0.05 to 0.4 dB/mm at G-band) in the hybrid band filter. This structure significantly suppresses low energy modes and higher-order-modes beyond the band-gap, including background noises, down to {approx}-45 dB. This would enable the single-mode propagation in the heavily over-moded waveguide (TEM-type), minimizing abnormal excitation probability of trapped modes. This band filter could be integrated with active and passive RF components for electron beam and optoelectronic devices.

  5. Plasmonic properties and applications of metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Zhen, Yurong

    Plasmonic properties and the related novel applications are studied on various types of metallic nano-structures in one, two, or three dimensions. For 1D nanostructure, the motion of free electrons in a metal-film with nanoscale thickness is confined in its normal dimension and free in the other two. Describing the free-electron motion at metal-dielectric surfaces, surface plasmon polariton (SPP) is an elementary excitation of such motions and is well known. When further perforated with periodic array of holes, periodicity will introduce degeneracy, incur energy-level splitting, and facilitate the coupling between free-space photon and SPP. We applied this concept to achieve a plasmonic perfect absorber. The experimentally observed reflection dip splitting is qualitatively explained by a perturbation theory based on the above concept. If confined in 2D, the nanostructures become nanowires that intrigue a broad range of research interests. We performed various studies on the resonance and propagation of metal nanowires with different materials, cross-sectional shapes and form factors, in passive or active medium, in support of corresponding experimental works. Finite- Difference Time-Domain (FDTD) simulations show that simulated results agrees well with experiments and makes fundamental mode analysis possible. Confined in 3D, the electron motions in a single metal nanoparticle (NP) leads to localized surface plasmon resonance (LSPR) that enables another novel and important application: plasmon-heating. By exciting the LSPR of a gold particle embedded in liquid, the excited plasmon will decay into heat in the particle and will heat up the surrounding liquid eventually. With sufficient exciting optical intensity, the heat transfer from NP to liquid will undergo an explosive process and make a vapor envelop: nanobubble. We characterized the size, pressure and temperature of the nanobubble by a simple model relying on Mie calculations and continuous medium assumption. A

  6. Earthquake source parameters of repeating microearthquakes at Parkfield, CA, determined using the SAFOD Pilot Hole seismic array

    NASA Astrophysics Data System (ADS)

    Imanishi, K.; Ellsworth, W. L.

    2005-12-01

    We determined source parameters of repeating microearthquakes occurring at Parkfield, CA, using the SAFOD Pilot Hole seismic array. To estimate reliable source parameters, we used the empirical Green's function (EGF) deconvolution method which removes the attenuation effects and site responses by taking the spectral amplitude ratio between the spectra of the two colocated events. For earthquakes during the period from December 2002 to October 2003 whose S-P time differences are less than 1 s, we detected 34 events that classified into 14 groups. Moment magnitudes range from -0.3 to 2.1. These data were recorded at a sampling rate of 2 kHz. The dataset includes two SAFOD target repeating earthquakes which occurred on October 2003. In general, the deconvolution procedure is an unstable process, especially for higher frequencies, because small location differences result in the profound effects on the spectral ratio. This leads to large uncertainties in the estimations of corner frequencies. According to Chaverria et al. [2003], the wavetrain recorded in the Pilot Hole is dominated by reflections and conversions and not random coda waves. So, we expect that the spectral ratios of the waves between P and S wave will also reflect the source, as will the waves following S wave. We compared spectral ratios calculated from the direct waves with those from other parts of the wavetrain, and confirmed that they showed similar shapes. Therefore it is possible to obtain a more robust measure of spectral ratio by stacking the ratios calculated from shorter moving windows taken along the record following the direct waves. We further stacked all ratios obtained from each level of the array. The stacked spectral ratios were inverted for corner frequencies assuming the omega-square model. We determined static stress drops from those corner frequencies assuming a circular crack model. We also calculated apparent stresses for each event by considering frequency dependent attenuation

  7. Deep 3-GHz observations of the Lockman Hole North with the Very Large Array - I. Source extraction and uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Vernstrom, T.; Scott, Douglas; Wall, J. V.; Condon, J. J.; Cotton, W. D.; Perley, R. A.

    2016-09-01

    This is the first of two papers describing the observations and cataloguing of deep 3-GHz observations of the Lockman Hole North using the Karl G. Jansky Very Large Array. The aim of this paper is to investigate, through the use of simulated images, the uncertainties and accuracy of source-finding routines, as well as to quantify systematic effects due to resolution, such as source confusion and source size. While these effects are not new, this work is intended as a particular case study that can be scaled and translated to other surveys. We use the simulations to derive uncertainties in the fitted parameters, as well as bias corrections for the actual catalogue (presented in Paper II). We compare two different source-finding routines, OBIT and AEGEAN, and two different effective resolutions, 8 and 2.75 arcsec. We find that the two routines perform comparably well, with OBIT being slightly better at de-blending sources, but slightly worse at fitting resolved sources. We show that 30-70 per cent of sources are missed or fit inaccurately once the source size becomes larger than the beam, possibly explaining source count errors in high-resolution surveys. We also investigate the effect of blending, finding that any sources with separations smaller than the beam size are fit as single sources. We show that the use of machine-learning techniques can correctly identify blended sources up to 90 per cent of the time, and prior-driven fitting can lead to a 70 per cent improvement in the number of de-blended sources.

  8. Fano-like resonance emerging from magnetic and electric plasmon mode coupling in small arrays of gold particles.

    PubMed

    Bakhti, Saïd; Tishchenko, Alexandre V; Zambrana-Puyalto, Xavier; Bonod, Nicolas; Dhuey, Scott D; Schuck, P James; Cabrini, Stefano; Alayoglu, Selim; Destouches, Nathalie

    2016-01-01

    In this work we theoretically and experimentally analyze the resonant behavior of individual 3 × 3 gold particle oligomers illuminated under normal and oblique incidence. While this structure hosts both dipolar and quadrupolar electric and magnetic delocalized modes, only dipolar electric and quadrupolar magnetic modes remain at normal incidence. These modes couple into a strongly asymmetric spectral response typical of a Fano-like resonance. In the basis of the coupled mode theory, an analytical representation of the optical extinction in terms of singular functions is used to identify the hybrid modes emerging from the electric and magnetic mode coupling and to interpret the asymmetric line profiles. Especially, we demonstrate that the characteristic Fano line shape results from the spectral interference of a broad hybrid mode with a sharp one. This structure presents a special feature in which the electric field intensity is confined on different lines of the oligomer depending on the illumination wavelength relative to the Fano dip. This Fano-type resonance is experimentally observed performing extinction cross section measurements on arrays of gold nano-disks. The vanishing of the Fano dip when increasing the incidence angle is also experimentally observed in accordance with numerical simulations. PMID:27580515

  9. Fano-like resonance emerging from magnetic and electric plasmon mode coupling in small arrays of gold particles

    PubMed Central

    Bakhti, Saïd; Tishchenko, Alexandre V.; Zambrana-Puyalto, Xavier; Bonod, Nicolas; Dhuey, Scott D.; Schuck, P. James; Cabrini, Stefano; Alayoglu, Selim; Destouches, Nathalie

    2016-01-01

    In this work we theoretically and experimentally analyze the resonant behavior of individual 3 × 3 gold particle oligomers illuminated under normal and oblique incidence. While this structure hosts both dipolar and quadrupolar electric and magnetic delocalized modes, only dipolar electric and quadrupolar magnetic modes remain at normal incidence. These modes couple into a strongly asymmetric spectral response typical of a Fano-like resonance. In the basis of the coupled mode theory, an analytical representation of the optical extinction in terms of singular functions is used to identify the hybrid modes emerging from the electric and magnetic mode coupling and to interpret the asymmetric line profiles. Especially, we demonstrate that the characteristic Fano line shape results from the spectral interference of a broad hybrid mode with a sharp one. This structure presents a special feature in which the electric field intensity is confined on different lines of the oligomer depending on the illumination wavelength relative to the Fano dip. This Fano-type resonance is experimentally observed performing extinction cross section measurements on arrays of gold nano-disks. The vanishing of the Fano dip when increasing the incidence angle is also experimentally observed in accordance with numerical simulations. PMID:27580515

  10. DOES STELLAR FEEDBACK CREATE H I HOLES? A HUBBLE SPACE TELESCOPE/VERY LARGE ARRAY STUDY OF HOLMBERG II

    SciTech Connect

    Weisz, Daniel R.; Skillman, Evan D.; Cannon, John M.; Dolphin, Andrew E.; Kennicutt, Robert C.; Lee, Janice; Walter, Fabian E-mail: skillman@astro.umn.ed E-mail: adolphin@raytheon.co E-mail: jlee@obs.carnegiescience.ed

    2009-10-20

    We use deep Hubble Space Telescope (HST)/Advanced Camera for Surveys (ACS) F555W and F814W photometry of resolved stars in the M81 Group dwarf irregular galaxy Ho II to study the hypothesis that the holes identified in the neutral interstellar medium (H I) are created by stellar feedback. From the deep photometry, we construct color-magnitude diagrams (CMDs) and measure the star formation histories (SFHs) for stars contained in H I holes from two independent holes catalogs, as well as select control fields, i.e., similar sized regions that span a range of H I column densities. The CMDs reveal young (< 200 Myr) stellar populations inside all H I holes, which contain very few bright OB stars with ages less than 10 Myr, indicating they are not reliable tracers of H I hole locations while the recent SFHs confirm multiple episodes of star formation within most holes. Converting the recent SFHs into stellar feedback energies, we find that enough energy has been generated to have created all holes. However, the required energy is not always produced over a timescale that is less than the estimated kinematic age of the hole. A similar analysis of stars in the control fields finds that the stellar populations of the control fields and H I holes are statistically indistinguishable. However, because we are only sensitive to holes approx100 pc in diameter, we cannot tell if there are smaller holes inside the control fields. The combination of the CMDs, recent SFHs, and locations of young stars shows that the stellar populations inside H I holes are not coherent, single-aged, stellar clusters, as previously suggested, but rather multi-age populations distributed across each hole. From a comparison of the modeled and observed integrated magnitudes, and the locations and energetics of stars inside of H I holes, we propose a potential new model: a viable mechanism for creating the observed H I holes in Ho II is stellar feedback from multiple generations of SF spread out over tens

  11. Does Stellar Feedback Create H I Holes? A Hubble Space Telescope/Very Large Array Study of Holmberg II

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel R.; Skillman, Evan D.; Cannon, John M.; Dolphin, Andrew E.; Kennicutt, Robert C., Jr.; Lee, Janice; Walter, Fabian

    2009-10-01

    We use deep Hubble Space Telescope (HST)/Advanced Camera for Surveys (ACS) F555W and F814W photometry of resolved stars in the M81 Group dwarf irregular galaxy Ho II to study the hypothesis that the holes identified in the neutral interstellar medium (H I) are created by stellar feedback. From the deep photometry, we construct color-magnitude diagrams (CMDs) and measure the star formation histories (SFHs) for stars contained in H I holes from two independent holes catalogs, as well as select control fields, i.e., similar sized regions that span a range of H I column densities. The CMDs reveal young (< 200 Myr) stellar populations inside all H I holes, which contain very few bright OB stars with ages less than 10 Myr, indicating they are not reliable tracers of H I hole locations while the recent SFHs confirm multiple episodes of star formation within most holes. Converting the recent SFHs into stellar feedback energies, we find that enough energy has been generated to have created all holes. However, the required energy is not always produced over a timescale that is less than the estimated kinematic age of the hole. A similar analysis of stars in the control fields finds that the stellar populations of the control fields and H I holes are statistically indistinguishable. However, because we are only sensitive to holes ~100 pc in diameter, we cannot tell if there are smaller holes inside the control fields. The combination of the CMDs, recent SFHs, and locations of young stars shows that the stellar populations inside H I holes are not coherent, single-aged, stellar clusters, as previously suggested, but rather multi-age populations distributed across each hole. From a comparison of the modeled and observed integrated magnitudes, and the locations and energetics of stars inside of H I holes, we propose a potential new model: a viable mechanism for creating the observed H I holes in Ho II is stellar feedback from multiple generations of SF spread out over tens or

  12. Plasmonic lattice solitons in metallic nanowire materials

    NASA Astrophysics Data System (ADS)

    Swami, O. P.; Kumar, Vijendra; Nagar, A. K.

    2016-05-01

    In this paper, we demonstrate theoretically that the plasmonic lattice solitons (PLSs) are formed in array of metallic nanowires embedded in Kerr-type material. The strong nonlinearity at metal surface, combined with the tight confinement of the guiding modes of the metallic nanowires, provide the main physical mechanism for balancing the creation of plasmonic lattice solitons and wave diffraction. We show that the PLSs are satisfied in a verity of plasmonic systems, which have important applications in nanophotonics and subwavelength optics.

  13. Aluminium plasmonics

    SciTech Connect

    Gerard, Davy; Gray, Stephen K.

    2014-12-15

    In this study, we present an overview of 'aluminium plasmonics', i.e. the study of both fundamental and practical aspects of surface plasmon excitations in aluminium structures, in particular thin films and metal nanoparticles. After a brief introduction noting both some recent and historical contributions to aluminium plasmonics, we discuss the optical properties of aluminium and aluminium nanostructures and highlight a few selected studies in a host of areas ranging from fluorescence to data storage.

  14. Down-hole seismic survey system with fiber-optic accelerometer sensor array for 3-dimensions vertical seismic profile (3D-VSP)

    NASA Astrophysics Data System (ADS)

    Zou, Qilin; Wang, Liwei; Pang, Meng; Tu, Dongsheng; Zhang, Min; Liao, Yanbiao

    2006-08-01

    We demonstrated a down-hole seismic survey system that can be applied in three dimensions vertical seismic profile (VSP) detection in petroleum exploration. The results of experiments show that the system has a dynamic measurement range of 80db (ratio of maximum to minimum value) and the total delay for signal collection, process and communication is less than 200ms @ 2k bit sample rates. An array consisting of six fiber-optic accelerometers (receivers) is applied in this system. Each receiver is comprised of three fiber-optic Michelson interferometers. In order to meet the requirements of high precision and real-time measurement, the high-speed DSP chips are employed to realize the algorithms of signal filters and Phase Generated Carrier (PGC) demodulation to obtain the seismic information. Multi-ARM CPUs are introduced into the system to design the fiber-optic accelerometer array controller and the receiver array local bus that are used for real-time data communication between the multi-level receivers and controller. The system interface for traditional ELIS Down-hole Instrument Bus (EDIB) is designed by the use of FPGA so that our system can attach to EDIB and cooperate with other instruments. The design and experiments of the system are given in this paper in detail.

  15. A Very Large Array Search for Intermediate-mass Black Holes in Globular Clusters in M81

    NASA Astrophysics Data System (ADS)

    Wrobel, J. M.; Miller-Jones, J. C. A.; Middleton, M. J.

    2016-07-01

    Nantais et al. used the Hubble Space Telescope to localize probable globular clusters (GCs) in M81, a spiral galaxy at a distance of 3.63 Mpc. Theory predicts that GCs can host intermediate-mass black holes (IMBHs) with masses {M}{{BH}}∼ 100{--}{100,000} {M}ȯ . Finding IMBHs in GCs could validate a formation channel for seed BHs in the early universe, bolster gravitational-wave predictions for space missions, and test scaling relations between stellar systems and the central BHs they host. We used the NRAO Karl G. Jansky Very Large Array to search for the radiative signatures of IMBH accretion from 206 probable GCs in a mosaic of M81. The observing wavelength was 5.5 cm, and the spatial resolution was 1.″5 (26.4 pc). None of the individual GCs are detected, nor are weighted-mean image stacks of the 206 GCs and the 49 massive GCs with stellar masses {M}\\star ≳ {200,000} {M}ȯ . We apply a semiempirical model to predict the mass of an IMBH that, if undergoing accretion in the long-lived, hard X-ray state, is consistent with a given radio luminosity. The 3σ radio-luminosity upper limits correspond to IMBH masses of \\overline{{M}{{BH}}({{all}})}\\lt {42,000}\\quad {M}ȯ for the all-cluster stack and \\overline{{M}{{BH}}({{massive}})}\\lt {51,000}\\quad {M}ȯ for the massive-cluster stack. We also apply the empirical fundamental-plane relation to two X-ray-detected clusters, finding that their individual IMBH masses at 95% confidence are M BH < 99,000 M ⊙ and {M}{{BH}}\\lt {15,000} {M}ȯ . Finally, no analog of HLX-1, a strong IMBH candidate in an extragalactic star cluster, occurs in any individual GC in M81. This underscores the uniqueness or rarity of the HLX-1 phenomenon.

  16. A Very Large Array Search for Intermediate-mass Black Holes in Globular Clusters in M81

    NASA Astrophysics Data System (ADS)

    Wrobel, J. M.; Miller-Jones, J. C. A.; Middleton, M. J.

    2016-07-01

    Nantais et al. used the Hubble Space Telescope to localize probable globular clusters (GCs) in M81, a spiral galaxy at a distance of 3.63 Mpc. Theory predicts that GCs can host intermediate-mass black holes (IMBHs) with masses {M}{{BH}}˜ 100{--}{100,000} {M}ȯ . Finding IMBHs in GCs could validate a formation channel for seed BHs in the early universe, bolster gravitational-wave predictions for space missions, and test scaling relations between stellar systems and the central BHs they host. We used the NRAO Karl G. Jansky Very Large Array to search for the radiative signatures of IMBH accretion from 206 probable GCs in a mosaic of M81. The observing wavelength was 5.5 cm, and the spatial resolution was 1.″5 (26.4 pc). None of the individual GCs are detected, nor are weighted-mean image stacks of the 206 GCs and the 49 massive GCs with stellar masses {M}\\star ≳ {200,000} {M}ȯ . We apply a semiempirical model to predict the mass of an IMBH that, if undergoing accretion in the long-lived, hard X-ray state, is consistent with a given radio luminosity. The 3σ radio-luminosity upper limits correspond to IMBH masses of \\overline{{M}{{BH}}({{all}})}\\lt {42,000}\\quad {M}ȯ for the all-cluster stack and \\overline{{M}{{BH}}({{massive}})}\\lt {51,000}\\quad {M}ȯ for the massive-cluster stack. We also apply the empirical fundamental-plane relation to two X-ray-detected clusters, finding that their individual IMBH masses at 95% confidence are M BH < 99,000 M ⊙ and {M}{{BH}}\\lt {15,000} {M}ȯ . Finally, no analog of HLX-1, a strong IMBH candidate in an extragalactic star cluster, occurs in any individual GC in M81. This underscores the uniqueness or rarity of the HLX-1 phenomenon.

  17. Photoluminescence of a Plasmonic Molecule.

    PubMed

    Huang, Da; Byers, Chad P; Wang, Lin-Yung; Hoggard, Anneli; Hoener, Ben; Dominguez-Medina, Sergio; Chen, Sishan; Chang, Wei-Shun; Landes, Christy F; Link, Stephan

    2015-07-28

    Photoluminescent Au nanoparticles are appealing for biosensing and bioimaging applications because of their non-photobleaching and non-photoblinking emission. The mechanism of one-photon photoluminescence from plasmonic nanostructures is still heavily debated though. Here, we report on the one-photon photoluminescence of strongly coupled 50 nm Au nanosphere dimers, the simplest plasmonic molecule. We observe emission from coupled plasmonic modes as revealed by single-particle photoluminescence spectra in comparison to correlated dark-field scattering spectroscopy. The photoluminescence quantum yield of the dimers is found to be surprisingly similar to the constituent monomers, suggesting that the increased local electric field of the dimer plays a minor role, in contradiction to several proposed mechanisms. Aided by electromagnetic simulations of scattering and absorption spectra, we conclude that our data are instead consistent with a multistep mechanism that involves the emission due to radiative decay of surface plasmons generated from excited electron-hole pairs following interband absorption. PMID:26165983

  18. Multicolor fluorescence microscopic imaging of cancer cells on the plasmonic chip (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Tawa, Keiko; Sasakawa, Chisato; Yamamura, Shohei; Shibata, Izumi; Kataoka, Masatoshi

    2015-09-01

    A plasmonic chip which is a metal coated substrate with grating structure can provide the enhanced fluorescence by the grating-coupled surface plasmon field. In our previous studies, bright epi-fluorescence microscopic imaging of neuron cells and sensitive immunosesnsing have been reported. In this study, two kinds of breast cancer cells, MCF-7 and MDA-MB231, were observed with epi-fluorescence microscope on the plasmonic chip with 2D hole-arrays . They were multicolor stained with 4', 6-diamidino-2-phenylindole (DAPI) and allophycocyanin (APC)-labeled anti-epithelial cell adhesion molecule (EpCAM) antibody. Our plasmonic chip provided the brighter fluorescence images of these cells compared with the glass slide. Even in the cells including few EpCAM, the distribution of EpCAM was clearly observed in the cell membrane. It was found that the plasmonic chip can be one of the powerful tools to detect the marker protein existing around the chip surface even at low concentration.

  19. Multipole plasmonic lattice solitons

    SciTech Connect

    Kou Yao; Ye Fangwei; Chen Xianfeng

    2011-09-15

    We theoretically demonstrate a variety of multipole plasmonic lattice solitons, including dipoles, quadrupoles, and necklaces, in two-dimensional metallic nanowire arrays with Kerr-type nonlinearities. Such solitons feature complex internal structures with an ultracompact mode size approaching or smaller than one wavelength. Their mode sizes and the stability characteristics are studied in detail within the framework of coupled mode theory. The conditions to form and stabilize these highly confined solitons are within the experimentally achievable range.

  20. Graphene active plasmonic metamaterials for new types of terahertz lasers

    NASA Astrophysics Data System (ADS)

    Otsuji, Taiichi; Watanabe, Takayuki; Satou, Akira; Popov, Vyacheslav; Ryzhii, Victor

    2013-05-01

    This paper reviews recent advances in graphene active plasmonic metamaterials for new types of terahertz lasers. We theoretically discovered that when the population of Dirac Fermionic carriers in graphene are inverted by optical or electrical pumping the excitation of graphene plasmons by the THz photons results in propagating surface plasmon polaritons with giant gain in a wide THz range. Furthermore, when graphene is patterned in a micro- or nano-ribbon array by grating gate metallization, the structure acts as an active plasmonic metamaterial, providing a super-radiant plasmonic lasing with giant gain at the plasmon modes in a wide THz frequency range.

  1. A surface plasmon enabled liquid-junction photovoltaic cell.

    PubMed

    Lee, Woo-ram; Mubeen, Syed; Stucky, Galen D; Moskovits, Martin

    2015-01-01

    Plasmonic nanosystems have recently been shown to be capable of functioning as photovoltaics and of carrying out redox photochemistry, purportedly using the energetic electrons and holes created following plasmonic decay as charge carriers. Although such devices currently have low efficiency, they already manifest a number of favorable characteristics, such as their tunability over the entire solar spectrum and a remarkable resistance to photocorrosion. Here, we report a plasmonic photovoltaic using a 25 μm thick electrolytic liquid junction which supports the iodide/triiodide (I-/I3-) redox couple. The device produces photocurrent densities in excess of 40 μA cm(-2), an open circuit voltage (Voc) of ∼0.24 V and a fill factor of ∼0.5 using AM 1.5 G solar radiation at 100 mW cm(-2). The photocurrent and the power conversion efficiency are primarily limited by the low light absorption in the 2-D gold nanoparticle arrays. The use of a liquid junction greatly reduces dielectric breakdown in the oxide layers utilized, which must be very thin for optimal performance, leading to a great improvement in the long-term stability of the cell's performance. PMID:25740725

  2. Mass transfer during drying of colloidal film beneath a patterned mask that contains a hexagonal array of holes

    NASA Astrophysics Data System (ADS)

    Tarasevich, Yu Yu; Vodolazskaya, I. V.

    2016-02-01

    We simulated an experiment in which a thin colloidal sessile droplet is allowed to dry out on a horizontal hydrophilic surface when a mask just above the droplet predominantly allows evaporation from the droplet free surface directly beneath the holes in the mask [Harris D J, Hu H, Conrad J C and Lewis J A 2007 Phys. Rev. Lett. 98 148301]. We considered one particular case when centre-to-centre spacing between the holes is much less than the drop diameter. In our model, advection, diffusion, and sedimentation were taken into account. FlexPDE was utilized to solve an advection-diffusion equation using the finite element method. The simulation demonstrated that the colloidal particles accumulate below the holes as the solvent evaporates. Diffusion can reduce this accumulation.

  3. Progress and Perspectives of Plasmon-Enhanced Solar Energy Conversion.

    PubMed

    Cushing, Scott K; Wu, Nianqiang

    2016-02-18

    Plasmonics allows extraordinary control of light, making it attractive for application in solar energy harvesting. In metal-semiconductor heterojunctions, plasmons can enhance photoconversion in the semiconductor via three mechanisms, including light trapping, hot electron/hole transfer, and plasmon-induced resonance energy transfer (PIRET). To understand the plasmonic enhancement, the metal's geometry, constituent metal, and interface must be viewed in terms of the effects on the plasmon's dephasing and decay route. To simplify design of plasmonic metal-semiconductor heterojunctions for high-efficiency solar energy conversion, the parameters controlling the plasmonic enhancement can be distilled to the dephasing time. The plasmonic geometry can then be further refined to optimize hot carrier transfer, PIRET, or light trapping. PMID:26817500

  4. Localized surface plasmon polariton resonance in holographically structured Al-doped ZnO

    NASA Astrophysics Data System (ADS)

    George, David; Li, Li; Jiang, Yan; Lowell, David; Mao, Michelle; Hassan, Safaa; Ding, Jun; Cui, Jingbiao; Zhang, Hualiang; Philipose, Usha; Lin, Yuankun

    2016-07-01

    In this paper, we studied the localized surface plasmon polariton (SPP) resonance in hole arrays in transparent conducting aluminum-doped zinc oxide (AZO). CMOS-compatible fabrication process was demonstrated for the AZO devices. The localized SPP resonance was observed and confirmed by electromagnetic simulations. Using a standing wave model, the observed SPP was dominated by the standing-wave resonance along (1,1) direction in square lattices. This research lays the groundwork for a fabrication technique that can contribute to the core technology of future integrated photonics through its extension into tunable conductive materials.

  5. Optical Activation of Germanium Plasmonic Antennas in the Mid-Infrared.

    PubMed

    Fischer, Marco P; Schmidt, Christian; Sakat, Emilie; Stock, Johannes; Samarelli, Antonio; Frigerio, Jacopo; Ortolani, Michele; Paul, Douglas J; Isella, Giovanni; Leitenstorfer, Alfred; Biagioni, Paolo; Brida, Daniele

    2016-07-22

    Impulsive interband excitation with femtosecond near-infrared pulses establishes a plasma response in intrinsic germanium structures fabricated on a silicon substrate. This direct approach activates the plasmonic resonance of the Ge structures and enables their use as optical antennas up to the mid-infrared spectral range. The optical switching lasts for hundreds of picoseconds until charge recombination redshifts the plasma frequency. The full behavior of the structures is modeled by the electrodynamic response established by an electron-hole plasma in a regular array of antennas. PMID:27494498

  6. Optical Activation of Germanium Plasmonic Antennas in the Mid-Infrared

    NASA Astrophysics Data System (ADS)

    Fischer, Marco P.; Schmidt, Christian; Sakat, Emilie; Stock, Johannes; Samarelli, Antonio; Frigerio, Jacopo; Ortolani, Michele; Paul, Douglas J.; Isella, Giovanni; Leitenstorfer, Alfred; Biagioni, Paolo; Brida, Daniele

    2016-07-01

    Impulsive interband excitation with femtosecond near-infrared pulses establishes a plasma response in intrinsic germanium structures fabricated on a silicon substrate. This direct approach activates the plasmonic resonance of the Ge structures and enables their use as optical antennas up to the mid-infrared spectral range. The optical switching lasts for hundreds of picoseconds until charge recombination redshifts the plasma frequency. The full behavior of the structures is modeled by the electrodynamic response established by an electron-hole plasma in a regular array of antennas.

  7. Plasmon Mapping in Au@Ag Nanocube Assemblies

    PubMed Central

    2014-01-01

    Surface plasmon modes in metallic nanostructures largely determine their optoelectronic properties. Such plasmon modes can be manipulated by changing the morphology of the nanoparticles or by bringing plasmonic nanoparticle building blocks close to each other within organized assemblies. We report the EELS mapping of such plasmon modes in pure Ag nanocubes, Au@Ag core–shell nanocubes, and arrays of Au@Ag nanocubes. We show that these arrays enable the creation of interesting plasmonic structures starting from elementary building blocks. Special attention will be dedicated to the plasmon modes in a triangular array formed by three nanocubes. Because of hybridization, a combination of such nanotriangles is shown to provide an antenna effect, resulting in strong electrical field enhancement at the narrow gap between the nanotriangles. PMID:25067991

  8. From Dark to Bright: First-Order Perturbation Theory with Analytical Mode Normalization for Plasmonic Nanoantenna Arrays Applied to Refractive Index Sensing

    NASA Astrophysics Data System (ADS)

    Weiss, T.; Mesch, M.; Schäferling, M.; Giessen, H.; Langbein, W.; Muljarov, E. A.

    2016-06-01

    We present a first-order perturbation theory to calculate the frequency shift and linewidth change of photonic resonances in one- and two-dimensional periodic structures under modifications of the surrounding refractive index. Our method is based on the resonant state expansion, for which we extend the analytical mode normalization to periodic structures. We apply this theory to calculate the sensitivity of bright dipolar and much darker quadrupolar plasmonic modes by determining the maximum shift and optimal sensing volume.

  9. From Dark to Bright: First-Order Perturbation Theory with Analytical Mode Normalization for Plasmonic Nanoantenna Arrays Applied to Refractive Index Sensing.

    PubMed

    Weiss, T; Mesch, M; Schäferling, M; Giessen, H; Langbein, W; Muljarov, E A

    2016-06-10

    We present a first-order perturbation theory to calculate the frequency shift and linewidth change of photonic resonances in one- and two-dimensional periodic structures under modifications of the surrounding refractive index. Our method is based on the resonant state expansion, for which we extend the analytical mode normalization to periodic structures. We apply this theory to calculate the sensitivity of bright dipolar and much darker quadrupolar plasmonic modes by determining the maximum shift and optimal sensing volume. PMID:27341256

  10. Structural color printing based on plasmonic metasurfaces of perfect light absorption

    NASA Astrophysics Data System (ADS)

    Cheng, Fei; Gao, Jie; Luk, Ting S.; Yang, Xiaodong

    2015-06-01

    Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfect light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage.

  11. Structural color printing based on plasmonic metasurfaces of perfect light absorption

    DOE PAGESBeta

    Cheng, Fei; Gao, Jie; Luk, Ting S.; Yang, Xiaodong

    2015-06-05

    Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfectmore » light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage.« less

  12. Structural color printing based on plasmonic metasurfaces of perfect light absorption

    PubMed Central

    Cheng, Fei; Gao, Jie; Luk, Ting S.; Yang, Xiaodong

    2015-01-01

    Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfect light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage. PMID:26047486

  13. Structural color printing based on plasmonic metasurfaces of perfect light absorption

    SciTech Connect

    Cheng, Fei; Gao, Jie; Luk, Ting S.; Yang, Xiaodong

    2015-06-05

    Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfect light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage.

  14. Zooming in on a sleeping giant: milliarcsecond High Sensitivity Array imaging of the black hole binary V404 Cyg in quiescence

    NASA Astrophysics Data System (ADS)

    Miller-Jones, J. C. A.; Gallo, E.; Rupen, M. P.; Mioduszewski, A. J.; Brisken, W.; Fender, R. P.; Jonker, P. G.; Maccarone, T. J.

    2008-08-01

    Observations of the black hole X-ray binary V404 Cyg with the very long baseline interferometer the High Sensitivity Array (HSA) have detected the source at a frequency of 8.4GHz, providing a source position accurate to 0.3mas relative to the calibrator source. The observations put an upper limit of 1.3mas on the source size (5.2au at 4kpc) and a lower limit of 7 × 106 K on its brightness temperature during the normal quiescent state, implying that the radio emission must be non-thermal, most probably synchrotron radiation, possibly from a jet. The radio light curves show a short flare, with a rise time of ~30min, confirming that the source remains active in the quiescent state.

  15. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons.

    PubMed

    Mubeen, Syed; Lee, Joun; Singh, Nirala; Krämer, Stephan; Stucky, Galen D; Moskovits, Martin

    2013-04-01

    Solar conversion to electricity or to fuels based on electron-hole pair production in semiconductors is a highly evolved scientific and commercial enterprise. Recently, it has been posited that charge carriers either directly transferred from the plasmonic structure to a neighbouring semiconductor (such as TiO₂) or to a photocatalyst, or induced by energy transfer in a neighbouring medium, could augment photoconversion processes, potentially leading to an entire new paradigm in harvesting photons for practical use. The strong dependence of the wavelength at which the local surface plasmon can be excited on the nanostructure makes it possible, in principle, to design plasmonic devices that can harvest photons over the entire solar spectrum and beyond. So far, however, most such systems show rather small photocatalytic activity in the visible as compared with the ultraviolet. Here, we report an efficient, autonomous solar water-splitting device based on a gold nanorod array in which essentially all charge carriers involved in the oxidation and reduction steps arise from the hot electrons resulting from the excitation of surface plasmons in the nanostructured gold. Each nanorod functions without external wiring, producing 5 × 10(13) H₂ molecules per cm(2) per s under 1 sun illumination (AM 1.5 and 100 mW cm(-2)), with unprecedented long-term operational stability. PMID:23435280

  16. Genetically engineered plasmonic nanoarrays.

    PubMed

    Forestiere, Carlo; Pasquale, Alyssa J; Capretti, Antonio; Miano, Giovanni; Tamburrino, Antonello; Lee, Sylvanus Y; Reinhard, Björn M; Dal Negro, Luca

    2012-04-11

    In the present Letter, we demonstrate how the design of metallic nanoparticle arrays with large electric field enhancement can be performed using the basic paradigm of engineering, namely the optimization of a well-defined objective function. Such optimization is carried out by coupling a genetic algorithm with the analytical multiparticle Mie theory. General design criteria for best enhancement of electric fields are obtained, unveiling the fundamental interplay between the near-field plasmonic and radiative photonic coupling. Our optimization approach is experimentally validated by surface-enhanced Raman scattering measurements, which demonstrate how genetically optimized arrays, fabricated using electron beam lithography, lead to order of ten improvement of Raman enhancement over nanoparticle dimer antennas, and order of one hundred improvement over optimal nanoparticle gratings. A rigorous design of nanoparticle arrays with optimal field enhancement is essential to the engineering of numerous nanoscale optical devices such as plasmon-enhanced biosensors, photodetectors, light sources and more efficient nonlinear optical elements for on chip integration. PMID:22381056

  17. Extraordinary terahertz transmission through a double-layer metal array with closed ring resonators

    NASA Astrophysics Data System (ADS)

    Guo, Yadong; Yuan, Zongheng; Yuan, Yuyang; Wang, Sheng; Zhang, Wentao

    2016-07-01

    In this paper, we numerically investigate the transmission properties of a terahertz metamaterial. This metamaterial is composed of metal-dielectric-metal, which consists of metallic layers with an air hole array and one coaxial closed ring resonator in the air hole. The metamaterial in the THz range of 0.2-1 THz has three transmission peaks. We provide an explanation of the transmission peaks by means of the surface plasmon polaritons and magnetic polaritons resonance based on the distribution of the surface current. Then according to the magnetic polaritons resonance, the equivalent circuit model of the metamaterial is established. The effects of geometric parameters on the transmission peaks are discussed and studied by an equivalent circuit model and surface plasmon polaritons dispersion relation. Our metamaterial promises dual-band potential applications such as filters.

  18. Plasmon enhanced photoacoustic generation from volumetric electromagnetic hotspots.

    PubMed

    Park, Sang-Gil; Yang, Seung-Bum; Ahn, Myeong-Su; Oh, Young-Jae; Kim, Yong Tae; Jeong, Ki-Hun

    2016-01-14

    This work reports plasmon enhanced photoacoustic generation by using a three dimensional plasmonic absorber. The 3D plasmonic absorber comprises a thin polymer film on glass nanopillar arrays with nanogap-rich silver nanoislands. The 3D plasmonic absorber clearly shows 24.6 times higher enhancement of photoacoustic signals at an excitation wavelength of 630 nm than a simple polymeric absorber. The photoacoustic enhancement results from the volumetric electromagnetic field enhancement on a light-absorbing polymer through 3D plasmonic nanostructures. This novel photoacoustic absorber provides a new direction for highly efficient ultrasonic generation. PMID:26659557

  19. New lock-in phenomena in intrinsic Josephson junctions of Bi2Sr2CaCu2O8+y with hole-array

    NASA Astrophysics Data System (ADS)

    Hirata, K.; Ooi, S.; Mochiku, T.

    2013-08-01

    Dynamical behaviour of Josephson and pancake vortices (JVs and PVs) in intrinsic Josephson junctions of Bi2Sr2CaCu2O8+y (Bi-2212) single crystal with a nano-size hole-array has been studied to measure the flow-resistance of the vortices. In the magnetic field perpendicular to the superconducting layers, flow resistance of PVs measured with the in-plane current shows a matching behaviour as usually observed at the matching fields. After the measurements, the sample was fabricated into the in-line shaped structure for the c-axis current measurements to obtain the JV flow-resistance. Instead of the usually-observed lock-in phenomenon of JVs in Bi-2212, several peaks are observed with changing the angle from the in-plane magnetic field to show the enhancement of the flow-resistance at some typical angles. When PVs are introduced into the sample with changing the angle, are trapped into holes, and are interacted with JVs, it is clearly seen that the well-aligned PVs cause the enhancement of the JV flow-resistance.

  20. Substrate-Phonon-Mediated Plasmon Hybridization in Coplanar Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Dai, Qing; Yang, Xiaoxia; Kong, Xiang-Tian; Bai, Bing; Li, Zhenjun; Hu, Hai; Qiu, Xiaohui

    2015-03-01

    Mode hybridization between adjacent graphene nanoribbons determines the integration density of graphene-based plasmonic devices. Here we demonstrate this plasmon hybridization by characterizing the coupling strength of plasmons in graphene nanoribbon arrays in terms of graphene Fermi level and inter-ribbon spacing. Both experimental and computational results showed that the plasmon coupling is strongly mediated by the substrate phonons. For polar substrate, the plasmon coupling strength was limited by the plasmon-phonon interaction. In contrast, nonpolar substrate affects neither the energy distribution of original plasmon modes in graphene nanostructures nor their plasmon interactions, which increase exponentially as the inter-ribbon spacing decreases. To further explore the potential of graphene broadband plasmonics on nonpolar substrate, we propose a scheme that uses a metal-dielectric heterostructure to prevent the overlap of plasmons between neighboring graphene nanoribbons. The device structures retain the plasmon resonance frequency of the graphene ribbons and maximally isolate the plasmonic components from the surrounding electromagnetic environment, allowing modular design in integrated plasmonic circuits. Supported by National Natural Science Foundation of China (No. 51372045).

  1. Demonstration of broad photonic crystal stop band in a freely-suspended microfiber perforated by an array of rectangular holes.

    PubMed

    Yu, Yang; Ding, Wei; Gan, Lin; Li, Zhi-Yuan; Luo, Qiang; Andrews, Steve

    2014-02-10

    It is shown that photonic crystal (PhC) optical reflectors with reflectance in excess of 60% and fractional bandwidths greater than 10% can be fabricated by ion beam milling of fewer than ten periods of rectangular cross section through-holes in micron-scale tapered fibers. The optical characteristics agree well with numerical simulations when allowance is made for fabrication artefacts and we show that the radiation loss, which is partly determined by optical interference, can be suppressed by design. The freely-suspended devices are compact and robust and could form the basic building block of optical cavities and filters. PMID:24663545

  2. Nanoplasmonics of prime number arrays.

    PubMed

    Forestiere, Carlo; Walsh, Gary F; Miano, Giovanni; Dal Negro, Luca

    2009-12-21

    In this paper, we investigate the plasmonic near-field localization and the far-field scattering properties of non-periodic arrays of Ag nanoparticles generated by prime number sequences in two spatial dimensions. In particular, we demonstrate that the engineering of plasmonic arrays with large spectral flatness and particle density is necessary to achieve a high density of electromagnetic hot spots over a broader frequency range and a larger area compared to strongly coupled periodic and quasi-periodic structures. Finally, we study the far-field scattering properties of prime number arrays illuminated by plane waves and we discuss their angular scattering properties. The study of prime number arrays of metal nanoparticles provides a novel strategy to achieve broadband enhancement and localization of plasmonic fields for the engineering of nanoscale nano-antenna arrays and active plasmonic structures. PMID:20052140

  3. Deep-subwavelength nanohole arrays embedded in nanoripples fabricated by femtosecond laser irradiation.

    PubMed

    Khuat, Vanthanh; Si, Jinhai; Chen, Tao; Hou, Xun

    2015-01-15

    We report on the formation of deep-subwavelength nanohole arrays embedded in silicon carbide nanoripples fabricated by an 800 nm femtosecond laser in an underwater environment. The period of the nanoripples is about 500 nm. The ripples are perpendicular to the polarization direction of the incident laser. The diameter of the holes is about 30 nm, and the period of the hole array is about 60 nm. Nanoripple formation is attributed to interference of the incident laser and a laser-induced plasma wave. Nanohole array formation is attributed to the formation of channel plasmon polaritons in the laser-induced nanogrooves associated with the nanoripples. PMID:25679846

  4. Mid-infrared plasmonic inductors: Enhancing inductance with meandering lines

    PubMed Central

    Torres, Víctor; Ortuño, Rubén; Rodríguez-Ulibarri, Pablo; Griol, Amadeu; Martínez, Alejandro; Navarro-Cía, Miguel; Beruete, Miguel; Sorolla, Mario

    2014-01-01

    We present a mid-infrared inductor that when applied to an extraordinary transmission hole array produces a strong redshift of the resonant peak accompanied by an unprecedented enlargement of the operation bandwidth. The importance of the result is twofold: from a fundamental viewpoint, the direct applicability of equivalent circuit concepts borrowed from microwaves is demonstrated, in frequencies as high as 17 THz upholding unification of plasmonics and microwave concepts and allowing for a simplification of structure design and analysis; in practical terms, a broadband funnelling of infrared radiation with fractional bandwidth and efficiency as high as 97% and 48%, respectively, is achieved through an area less than one hundredth the squared wavelength, which leads to an impressive accessible strong field localization that may be of great interest in sensing applications. PMID:24393839

  5. Mid-infrared plasmonic inductors: Enhancing inductance with meandering lines

    NASA Astrophysics Data System (ADS)

    Torres, Víctor; Ortuño, Rubén; Rodríguez-Ulibarri, Pablo; Griol, Amadeu; Martínez, Alejandro; Navarro-Cía, Miguel; Beruete, Miguel; Sorolla, Mario

    2014-01-01

    We present a mid-infrared inductor that when applied to an extraordinary transmission hole array produces a strong redshift of the resonant peak accompanied by an unprecedented enlargement of the operation bandwidth. The importance of the result is twofold: from a fundamental viewpoint, the direct applicability of equivalent circuit concepts borrowed from microwaves is demonstrated, in frequencies as high as 17 THz upholding unification of plasmonics and microwave concepts and allowing for a simplification of structure design and analysis; in practical terms, a broadband funnelling of infrared radiation with fractional bandwidth and efficiency as high as 97% and 48%, respectively, is achieved through an area less than one hundredth the squared wavelength, which leads to an impressive accessible strong field localization that may be of great interest in sensing applications.

  6. Design and Fabrication of Ultrathin Plasmonic Nanostructures for Photovoltaics, Color Filtering and Biosensing

    NASA Astrophysics Data System (ADS)

    Zeng, Beibei

    Since the first report of the extraordinary optical transmission (EOT) phenomenon through periodic subwavelength hole arrays milled in optically-thick metal film, plasmonics have generated considerable interest because they enable new fundamental science and application technologies. Central to this phenomenon is the role of surface plasmon polaritons (SPPs), which are essentially electromagnetic waves trapped at the interface between a metal and a dielectric medium through their interactions with free electrons at the metal surface. The resonant interaction between the incident light and surface charge oscillations enables the concentration and manipulation of light at deep subwavelength scales, opening up exciting application opportunities ranging from subwavelength optics and optoelectronics to bio/chemical sensing. Furthermore, additional phenomena arise as the thickness of metal film decreases to be comparable to its skin depth (optically-thin), and the single-interface SPPs on the top and bottom metal surfaces combine to form two coupled SPPs, the long-range and short-range SPPs. Until now, much less work has focused on the study of surface plasmon resonances (SPRs) in ultrathin nanostructured metals. This dissertation seeks to elucidate underlying physical mechanisms of SPRs in ultrathin nanostructured metals and tailor them for practical applications. Inspired by state-of-the-art advances on plasmonics in optically-thick nanostructured metals, one- (1D) and two-dimensional (2D) ultrathin plasmonic nanostructures are exploited for particular applications in three essential areas: photovoltaics, color filters and biosensors, achieving superior performances compared with their optically-thick counterparts. More specifically, this thesis is focused on systematic investigations on: (1) plasmonic transparent electrodes for organic photovoltaics and polarization-insensitive optical absorption enhancement in the active layer; (2) plasmonic subtractive color filters

  7. Hole drilling on glass optical fibers by a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Hamasaki, Masayuki; Gouya, Kenji; Watanabe, Kazuhiro

    2012-01-01

    A novel optical fiber sensor has been developed for gaseous material detection by means of a femto-second laser which has ultrashort pulse and ultrahigh peak power. This sensor has attractive sensor potion consisted of drilling holes array which is machined on the glass optical fiber. Additionally, the sensor potion is coated with thin gold film. This work expects that an interaction could be induced between transmitted light through fiber core and a bottom of the drilled holes which reaches the fiber core. The interaction could induce near-field optical phenomenon excited by transmitted light through the fiber core. This scheme could make it possible to detect gaseous-material phase substances around the optical fiber. In this study, we found that localized surface plasmon (LSP) was excited by the transmitted light through the fiber core. This paper shows experiment to obtain optimum irradiation conditions and investigation for sensor principle for the development of a novel fiber sensor.

  8. Selective modification of nanoparticle arrays by laser-induced self assembly (MONA-LISA): putting control into bottom-up plasmonic nanostructuring

    NASA Astrophysics Data System (ADS)

    Kalfagiannis, Nikolaos; Siozios, Anastasios; Bellas, Dimitris V.; Toliopoulos, Dimosthenis; Bowen, Leon; Pliatsikas, Nikolaos; Cranton, Wayne M.; Kosmidis, Constantinos; Koutsogeorgis, Demosthenes C.; Lidorikis, Elefterios; Patsalas, Panos

    2016-04-01

    Nano-structuring of metals is one of the greatest challenges for the future of plasmonic and photonic devices. Such a technological challenge calls for the development of ultra-fast, high-throughput and low-cost fabrication techniques. Laser processing, accounts for the aforementioned properties, representing an unrivalled tool towards the anticipated arrival of modules based in metallic nanostructures, with an extra advantage: the ease of scalability. In the present work we take advantage of the ability to tune the laser wavelength to either match the absorption spectral profile of the metal or to be resonant with the plasma oscillation frequency, and demonstrate the utilization of different optical absorption mechanisms that are size-selective and enable the fabrication of pre-determined patterns of metal nanostructures. Thus, we overcome the greatest challenge of Laser Induced Self Assembly by combining simultaneously large-scale character with atomic-scale precision. The proposed process can serve as a platform that will stimulate further progress towards the engineering of plasmonic devices.Nano-structuring of metals is one of the greatest challenges for the future of plasmonic and photonic devices. Such a technological challenge calls for the development of ultra-fast, high-throughput and low-cost fabrication techniques. Laser processing, accounts for the aforementioned properties, representing an unrivalled tool towards the anticipated arrival of modules based in metallic nanostructures, with an extra advantage: the ease of scalability. In the present work we take advantage of the ability to tune the laser wavelength to either match the absorption spectral profile of the metal or to be resonant with the plasma oscillation frequency, and demonstrate the utilization of different optical absorption mechanisms that are size-selective and enable the fabrication of pre-determined patterns of metal nanostructures. Thus, we overcome the greatest challenge of Laser

  9. Plasmonic and nanophotonics sensors from visible to terahertz

    NASA Astrophysics Data System (ADS)

    Hassani, Alireza

    -IR. In the forth chapter, we propose two designs of effectively single mode porous polymer fibers for low-loss guiding of terahertz radiation. Designing of such a porous fiber, capable of having a low modal effective index, facilitates the phase matching of the fiber core mode and the plasmon waves bordering a low index analyte at Terahertz regime. As a first design we consider a fiber containing an array of subwavelength holes separated by sub-wavelength material veins. As a Second design, we consider a large diameter hollow core photonic bandgap Bragg fiber made of solid film layers suspended in air by a network of circular bridges. Numerical simulations of radiation, absorption and bending losses are presented; strategies for the experimental realization of both fibers are suggested. In the fifth chapter, THz plasmon-like excitation on top of a thin ferroelectric polyvinylidene fluoride (PVDF) layer covering solid-core polymeric Bragg fiber and facing liquid analyte is demonstrated theoretically. Thanks to the refractive index behavior of the ferroelectric PVDF layer we demonstrate new type of plasmonic-like excitations in THz regime which was impossible before while using metal layers in THz regime. In the sixth chapter, plasmon-like excitation at the interface between fully polymeric fiber sensor and gaseous analyte is demonstrated theoretically in terahertz regime. Such plasmonic excitation occurs on top of a ˜ 30 mum ferroelectric PVDF layer wrapped around a subwavelength porous polymer fiber. The major fraction of power guided in the air inside of the porous fiber alleviates the effects of material absorption and lowers the effective modal index to facilitate the plasmonic phase matching. In a view of designing a fiber-based sensor of analyte refractive index, phase matching of a plasmon-like mode with the fundamental core guided mode of a low loss porous fiber is then demonstrated for the challenging case of a gaseous analyte. We then demonstrate the

  10. Understanding and controlling plasmon-induced convection.

    PubMed

    Roxworthy, Brian J; Bhuiya, Abdul M; Vanka, Surya P; Toussaint, Kimani C

    2014-01-01

    The heat generation and fluid convection induced by plasmonic nanostructures is attractive for optofluidic applications. However, previously published theoretical studies predict only nanometre per second fluid velocities that are inadequate for microscale mass transport. Here we show both theoretically and experimentally that an array of plasmonic nanoantennas coupled to an optically absorptive indium-tin-oxide (ITO) substrate can generate >micrometre per second fluid convection. Crucially, the ITO distributes thermal energy created by the nanoantennas generating an order of magnitude increase in convection velocities compared with nanoantennas on a SiO2 base layer. In addition, the plasmonic array alters absorption in the ITO, causing a deviation from Beer-Lambert absorption that results in an optimum ITO thickness for a given system. This work elucidates the role of convection in plasmonic optical trapping and particle assembly, and opens up new avenues for controlling fluid and mass transport on the micro- and nanoscale. PMID:24445431

  11. Understanding and controlling plasmon-induced convection

    NASA Astrophysics Data System (ADS)

    Roxworthy, Brian J.; Bhuiya, Abdul M.; Vanka, Surya P.; Toussaint, Kimani C.

    2014-01-01

    The heat generation and fluid convection induced by plasmonic nanostructures is attractive for optofluidic applications. However, previously published theoretical studies predict only nanometre per second fluid velocities that are inadequate for microscale mass transport. Here we show both theoretically and experimentally that an array of plasmonic nanoantennas coupled to an optically absorptive indium-tin-oxide (ITO) substrate can generate >micrometre per second fluid convection. Crucially, the ITO distributes thermal energy created by the nanoantennas generating an order of magnitude increase in convection velocities compared with nanoantennas on a SiO2 base layer. In addition, the plasmonic array alters absorption in the ITO, causing a deviation from Beer-Lambert absorption that results in an optimum ITO thickness for a given system. This work elucidates the role of convection in plasmonic optical trapping and particle assembly, and opens up new avenues for controlling fluid and mass transport on the micro- and nanoscale.

  12. Selective modification of nanoparticle arrays by laser-induced self assembly (MONA-LISA): putting control into bottom-up plasmonic nanostructuring.

    PubMed

    Kalfagiannis, Nikolaos; Siozios, Anastasios; Bellas, Dimitris V; Toliopoulos, Dimosthenis; Bowen, Leon; Pliatsikas, Nikolaos; Cranton, Wayne M; Kosmidis, Constantinos; Koutsogeorgis, Demosthenes C; Lidorikis, Elefterios; Patsalas, Panos

    2016-04-14

    Nano-structuring of metals is one of the greatest challenges for the future of plasmonic and photonic devices. Such a technological challenge calls for the development of ultra-fast, high-throughput and low-cost fabrication techniques. Laser processing, accounts for the aforementioned properties, representing an unrivalled tool towards the anticipated arrival of modules based in metallic nanostructures, with an extra advantage: the ease of scalability. In the present work we take advantage of the ability to tune the laser wavelength to either match the absorption spectral profile of the metal or to be resonant with the plasma oscillation frequency, and demonstrate the utilization of different optical absorption mechanisms that are size-selective and enable the fabrication of pre-determined patterns of metal nanostructures. Thus, we overcome the greatest challenge of Laser Induced Self Assembly by combining simultaneously large-scale character with atomic-scale precision. The proposed process can serve as a platform that will stimulate further progress towards the engineering of plasmonic devices. PMID:27031573

  13. Au nanoparticle sensitized ZnO nanopencil arrays for photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Wang, Tuo; Lv, Rui; Zhang, Peng; Li, Changjiang; Gong, Jinlong

    2014-11-01

    This paper describes the synthesis of Au nanoparticle sensitized ZnO nanopencil arrays on F-doped SnO2 substrates by an aqueous chemical growth and subsequent photoreduction method. The Au-ZnO nanopencil arrays yield a photocurrent of ~1.5 mA cm-2 at 1 V versus Ag/AgCl. The enhanced photocurrent is attributed to the surface plasmon resonance effect of Au nanoparticles and the prolonged lifetime of the photo-generated electron-hole pairs. The improved stability of ZnO is due to the plasmon resonance energy transfer process enabled by the Au nanoparticles, which enhances the electric field intensity in a small, well-defined location of the ZnO semiconductor.This paper describes the synthesis of Au nanoparticle sensitized ZnO nanopencil arrays on F-doped SnO2 substrates by an aqueous chemical growth and subsequent photoreduction method. The Au-ZnO nanopencil arrays yield a photocurrent of ~1.5 mA cm-2 at 1 V versus Ag/AgCl. The enhanced photocurrent is attributed to the surface plasmon resonance effect of Au nanoparticles and the prolonged lifetime of the photo-generated electron-hole pairs. The improved stability of ZnO is due to the plasmon resonance energy transfer process enabled by the Au nanoparticles, which enhances the electric field intensity in a small, well-defined location of the ZnO semiconductor. Electronic supplementary information (ESI) available: Illustrative schematic of PEC measurements, XPS of ZnO nanorods and nanopencils. See DOI: 10.1039/c4nr03735a

  14. Plasmonic Resonant Absorption in Mid-Infrared in Graphene Nanoresonators

    NASA Astrophysics Data System (ADS)

    Abeysinghe, Don C.; Myers, Joshua; Esfahani, Nima N.; Walker, Dennis E., Jr.; Hendrickson, Joshua R.; Cleary, Justin; Mou, Shin; Air Force Research Laboratory, Materials; Manufacturing Directorate, Wright-Patterson AFB, OH, USA Team; Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, OH, USA Team

    2014-03-01

    We experimentally demonstrated polarization-sensitive, tunable plasmonic resonant absorption in the mid-infrared range of 5-14 um by utilizing an array of graphene nanoribbon resonators. By tuning resonator width and charge density, we probed graphene plasmons with λp <= λ /100 and plasmon resonance energy as high as 0.26 meV (2100 cm-1) for 40 nm wide nanoresonators. Resonant absorption spectra enabled us to map the wavevector-frequency dispersion for graphene plasmons at mid-IR energies and revealed a modified plasmon dispersion as well as plasmon damping due to intrinsic optical phonons of graphene and graphene plasmon interaction with the surface polar phonons in SiO2 substrates. Additionally, we studied spectra further by introducing intrinsic defect phonons and doping by direct electron beam irradiation of graphene nanoresonators

  15. A spectroscopic refractometer based on plasmonic interferometry

    NASA Astrophysics Data System (ADS)

    Feng, Jing; Pacifici, Domenico

    2016-02-01

    We describe the design, fabrication, and testing of a spectroscopic refractometer that employs plasmonic interferometry to measure the optical dielectric functions of materials in the visible range. The proposed device, dubbed a plasmonic refractometer, consists of an array of slit-groove plasmonic interferometers etched in a ˜300 nm-thick metal film (silver or gold) with arm lengths varying in steps of 25 nm up to ˜8 μm. The nano-groove in each interferometer is able to generate propagating surface plasmon polaritons efficiently in a broad wavelength range, without requiring prism- or grating-coupling configurations. An integrated microfluidic channel ensures uniform delivery of dielectric materials in liquid phase. Spectrally resolved plasmonic interferograms are generated by measuring light transmission spectra through the slit of each slit-groove plasmonic interferometer and plotting the normalized intensity as a function of arm length (0.26-8.16 μm) and incident wavelength (400-800 nm) for various combinations of metal/dielectric materials. Fits of the plasmonic interferograms with a surface plasmon interference model allow determination of the refractive index dispersion of a broad class of dielectric materials, over a wide range of wavelengths and dielectric constants. As proof of concept, we extract and report the dielectric functions of representative materials, such as silver, gold, water, methanol, and ethanol.

  16. Investigating the optical XNOR gate using plasmonic nano-rods

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Majid; Kaboli, Milad

    2016-04-01

    In this paper, a coherent perfect absorption (CPA)-type XNOR gate based on plasmonic nano particle is proposed. It consists of two plasmonic nano rod arrays on top of two parallel arms with quartz substrate. The operation principle is based on the absorbable formation of a conductive path in the dielectric layer of a plasmonic nano-particles waveguide. Since the CPA efficiency depends strongly on the number of plasmonic nano-rod and the nano rod location, an efficient binary optimization method based the Particle Swarm Optimization (PSO) algorithm is used to design an optimized array of the plasmonic nano-rod in order to achieve the maximum absorption coefficient in the 'off' state and the minimum absorption coefficient in the 'on' state. In Binary PSO (BPSO), a group of birds consists a matrix with binary entries, control the presence ('1‧) or the absence ('0‧) of nano rod in the array.

  17. Wafer-scale plasmonic and photonic crystal sensors

    NASA Astrophysics Data System (ADS)

    George, M. C.; Liu, J.-N.; Farhang, A.; Williamson, B.; Black, M.; Wangensteen, T.; Fraser, J.; Petrova, R.; Cunningham, B. T.

    2015-08-01

    200 mm diameter wafer-scale fabrication, metrology, and optical modeling results are reviewed for surface plasmon resonance (SPR) sensors based on 2-D metallic nano-dome and nano-hole arrays (NHA's) as well as 1-D photonic crystal sensors based on a leaky-waveguide mode resonance effect, with potential applications in label free sensing, surface enhanced Raman spectroscopy (SERS), and surface-enhanced fluorescence spectroscopy (SEFS). Potential markets include micro-arrays for medical diagnostics, forensic testing, environmental monitoring, and food safety. 1-D and 2-D nanostructures were fabricated on glass, fused silica, and silicon wafers using optical lithography and semiconductor processing techniques. Wafer-scale optical metrology results are compared to FDTD modeling and presented along with application-based performance results, including label-free plasmonic and photonic crystal sensing of both surface binding kinetics and bulk refractive index changes. In addition, SEFS and SERS results are presented for 1-D photonic crystal and 2-D metallic nano-array structures. Normal incidence transmittance results for a 550 nm pitch NHA showed good bulk refractive index sensitivity, however an intensity-based design with 665 nm pitch was chosen for use as a compact, label-free sensor at both 650 and 632.8 nm wavelengths. The optimized NHA sensor gives an SPR shift of about 480 nm per refractive index unit when detecting a series of 0-40% glucose solutions, but according to modeling shows about 10 times greater surface sensitivity when operating at 532 nm. Narrow-band photonic crystal resonance sensors showed quality factors over 200, with reasonable wafer-uniformity in terms of both resonance position and peak height.

  18. Constraining the Rate of Primordial Black Hole Explosions and Extra-Dimension Scale Using a Low-Frequency Radio Antenna Array

    NASA Astrophysics Data System (ADS)

    Cutchin, Sean E.; Simonetti, John H.; Ellingson, Steven W.; Larracuente, Amanda S.; Kavic, Michael J.

    2015-12-01

    An exploding primordial black hole (PBH) may produce a single pulse of electromagnetic radiation detectable at the low-frequency end of the radio spectrum. Furthermore, a radio transient from an exploding PBH could be a signature of an extra spatial dimension. We describe here an approach for searching for PBH explosions using a low-frequency radio antenna array, and as a practical example, the results of such a search using the Eight-meter-wavelength Transient Array (ETA). No compelling astrophysical signal was detected in ≈4 hr of data, implying an observational upper limit on the rate of exploding PBHs is 2.3 × 10-7 pc-3 yr-1 for an exploding PBH with a fireball Lorentz factor of 104.3 for the standard scenario of Page and Hawking. This rate limit is the strongest constraint yet set for PBH explosions with this fireball Lorentz factor. Observations (~300 hr) using the Arecibo Observatory were used to set a stronger constraint on the rate of PBH explosions for a fireball Lorentz factor of 104.6, but the limit set by those observations for the fireball Lorentz factor considered here are less stringent by more than an order of magnitude. The limits considered here are applicable to exploding PBHs in the halo of the Galaxy. These observations also imply an upper limit of 2.3 × 10-4 pc-3 yr-1 on the rate of PBH explosions in the context of certain extra dimension models, as described by Kavic et al. This rate limit is for a fireball Lorentz factor of 104.3, which corresponds to an extra dimension compactification scale of 5.0 × 10-18 m.

  19. Waveguide and Plasmonic Absorption-Induced Transparency.

    PubMed

    Zhong, Xiaolan; Rodrigo, Sergio G; Zhang, Lei; Samorì, Paolo; Genet, Cyriaque; Martín-Moreno, Luis; Hutchison, James A; Ebbesen, Thomas W

    2016-04-26

    Absorption-induced transparency (AIT) is one of the family of induced transparencies that has emerged in recent decades in the fields of plasmonics and metamaterials. It is a seemingly paradoxical phenomenon in which transmission through nanoholes in gold and silver is dramatically enhanced at wavelengths where a physisorbed dye layer absorbs strongly. The origin of AIT remains controversial, with both experimental and theoretical work pointing to either surface (plasmonic) or in-hole (waveguide) mechanisms. Here, we resolve this controversy by carefully filling nanoholes in a silver film with dielectric material before depositing dye on the surface. Our experiments and modeling show that not only do plasmonic and waveguide contributions to AIT both exist, but they are spectrally identical, operating in concert when the dye is both in the holes and on the surface. PMID:27063480

  20. Nanoscale plasmonic stamp lithography on silicon.

    PubMed

    Liu, Fenglin; Luber, Erik J; Huck, Lawrence A; Olsen, Brian C; Buriak, Jillian M

    2015-02-24

    Nanoscale lithography on silicon is of interest for applications ranging from computer chip design to tissue interfacing. Block copolymer-based self-assembly, also called directed self-assembly (DSA) within the semiconductor industry, can produce a variety of complex nanopatterns on silicon, but these polymeric films typically require transformation into functional materials. Here we demonstrate how gold nanopatterns, produced via block copolymer self-assembly, can be incorporated into an optically transparent flexible PDMS stamp, termed a plasmonic stamp, and used to directly functionalize silicon surfaces on a sub-100 nm scale. We propose that the high intensity electric fields that result from the localized surface plasmons of the gold nanoparticles in the plasmonic stamps upon illumination with low intensity green light, lead to generation of electron-hole pairs in the silicon that drive spatially localized hydrosilylation. This approach demonstrates how localized surface plasmons can be used to enable functionalization of technologically relevant surfaces with nanoscale control. PMID:25654172

  1. Ultrasmooth patterned metals for plasmonics and metamaterials.

    PubMed

    Nagpal, Prashant; Lindquist, Nathan C; Oh, Sang-Hyun; Norris, David J

    2009-07-31

    Surface plasmons are electromagnetic waves that can exist at metal interfaces because of coupling between light and free electrons. Restricted to travel along the interface, these waves can be channeled, concentrated, or otherwise manipulated by surface patterning. However, because surface roughness and other inhomogeneities have so far limited surface-plasmon propagation in real plasmonic devices, simple high-throughput methods are needed to fabricate high-quality patterned metals. We combined template stripping with precisely patterned silicon substrates to obtain ultrasmooth pure metal films with grooves, bumps, pyramids, ridges, and holes. Measured surface-plasmon-propagation lengths on the resulting surfaces approach theoretical values for perfectly flat films. With the use of our method, we demonstrated structures that exhibit Raman scattering enhancements above 10(7) for sensing applications and multilayer films for optical metamaterials. PMID:19644116

  2. Random array grid collimator

    DOEpatents

    Fenimore, E.E.

    1980-08-22

    A hexagonally shaped quasi-random no-two-holes touching grid collimator. The quasi-random array grid collimator eliminates contamination from small angle off-axis rays by using a no-two-holes-touching pattern which simultaneously provides for a self-supporting array increasng throughput by elimination of a substrate. The presentation invention also provides maximum throughput using hexagonally shaped holes in a hexagonal lattice pattern for diffraction limited applications. Mosaicking is also disclosed for reducing fabrication effort.

  3. Plasmonics: An ultrafast plasmonic tuning knob

    NASA Astrophysics Data System (ADS)

    Wagner, Martin; Liu, Mengkun

    2016-04-01

    Near- and mid-infrared plasmonics are exciting research areas with applications in nanoscale energy concentration, sensing or ultrafast switching for telecommunication. Now, a new efficient way to manipulate plasmon resonances in semiconductor nanoarrays at ultrafast timescales has been found.

  4. EVIDENCE FROM THE VERY LONG BASELINE ARRAY THAT J1502SE/SW ARE DOUBLE HOTSPOTS, NOT A SUPERMASSIVE BINARY BLACK HOLE

    SciTech Connect

    Wrobel, J. M.; Walker, R. C.; Fu, H. E-mail: cwalker@nrao.edu

    2014-09-01

    SDSS J150243.09+111557.3 is a merging system at z = 0.39 that hosts two confirmed active galactic nuclei (AGNs), one unobscured and one dust-obscured, offset by several kiloparsecs. Deane et al. recently reported evidence from the European VLBI Network (EVN) that the dust-obscured AGN exhibits two flat-spectrum radio sources, J1502SE/SW, offset by 26 mas (140 pc), with each source being energized by its own supermassive black hole (BH). This intriguing interpretation of a close binary BH was reached after ruling out a double-hotspot scenario, wherein both hotspots are energized by a single, central BH, a configuration occurring in the well-studied compact symmetric objects. When observed with sufficient sensitivity and resolution, an object with double hotspots should have an edge-brightened structure. We report evidence from the Very Long Baseline Array (VLBA) for just such a structure in an image of the obscured AGN with higher sensitivity and resolution than the EVN images. We thus conclude that a double-hotspot scenario should be reconsidered as a viable interpretation for J1502SE/SW, and suggest further VLBA tests of that scenario. A double-hotspot scenario could have broad implications for feedback in obscured AGNs. We also report a VLBA detection of high-brightness-temperature emission from the unobscured AGN that is offset several kiloparsecs from J1502SE/SW.

  5. Color plasmons and trains of plasmons.

    PubMed

    Dyankov, Georgi; Sekkat, Zouhair; Bousmina, Mosto

    2010-08-01

    We show that a broadband surface plasmon can be excited in a thin metal film. A train of two plasmons can be excited at conditions near the condition of broadband surface plasmon excitation. Also, a method for independent multichannel checks of biochips by wavelength addressing is proposed. PMID:20676187

  6. Protein-Peptide Arrays for Detection of Specific Anti-Hepatitis D Virus (HDV) Genotype 1, 6, and 8 Antibodies among HDV-Infected Patients by Surface Plasmon Resonance Imaging

    PubMed Central

    Villiers, Marie-Bernadette; Cortay, Jean-Claude; Cortès, Sandra; Bloquel, Bénédicte; Brichler, Ségolène; Brakha, Carine; Kay, Alan; Falah, Nisrine; Zoulim, Fabien; Marquette, Christophe

    2015-01-01

    Liver diseases linked to hepatitis B-hepatitis D virus co- or superinfections are more severe than those during hepatitis B virus (HBV) monoinfection. The diagnosis of hepatitis D virus (HDV) infection therefore remains crucial in monitoring patients but is often overlooked. To integrate HDV markers into high-throughput viral hepatitis diagnostics, we studied the binding of anti-HDV antibodies (Abs) using surface plasmon resonance imaging (SPRi). We focused on the ubiquitous HDV genotype 1 (HDV1) and the more uncommon African-HDV6 and HDV8 genotypes to define an array with recombinant proteins or peptides. Full-length and truncated small hepatitis D antigen (S-HDAg) recombinant proteins of HDV genotype 1 (HDV1) and 11 HDV peptides of HDV1, 6, and 8, representing various portions of the delta antigen were grafted onto biochips, allowing SPRi measurements to be made. Sixteen to 17 serum samples from patients infected with different HDV genotypes were injected onto protein and peptide chips. In all, Abs against HDV proteins and/or peptides were detected in 16 out of 17 infected patients (94.12%), although the amplitude of the SPR signal varied. The amino-terminal part of the protein was poorly immunogenic, while epitope 65-80, exposed on the viral ribonucleoprotein, may be immunodominant, as 9 patient samples led to a specific SPR signal on peptide 65 type 1 (65#1), independently of the infecting genotype. In this pilot study, we confirmed that HDV infection screening based on the reactivity of patient Abs against carefully chosen HDV peptides and/or proteins can be included in a syndrome-based viral hepatitis diagnostic assay. The preliminary results indicated that SPRi studying direct physical HDAg–anti-HDV Ab interactions was more convenient using linear peptide epitopes than full-length S-HDAg proteins, due to the regeneration process, and may represent an innovative approach for a hepatitis syndrome–viral etiology-exploring array. PMID:25631795

  7. Plasmonic nanoparticle scattering for color holograms

    PubMed Central

    Montelongo, Yunuen; Tenorio-Pearl, Jaime Oscar; Williams, Calum; Zhang, Shuang; Milne, William Ireland; Wilkinson, Timothy David

    2014-01-01

    This work presents an original approach to create holograms based on the optical scattering of plasmonic nanoparticles. By analogy to the diffraction produced by the scattering of atoms in X-ray crystallography, we show that plasmonic nanoparticles can produce a wave-front reconstruction when they are sampled on a diffractive plane. By applying this method, all of the scattering characteristics of the nanoparticles are transferred to the reconstructed field. Hence, we demonstrate that a narrow-band reconstruction can be achieved for direct white light illumination on an array of plasmonic nanoparticles. Furthermore, multicolor capabilities are shown with minimal cross-talk by multiplexing different plasmonic nanoparticles at subwavelength distances. The holograms were fabricated from a single subwavelength thin film of silver and demonstrate that the total amount of binary information stored in the plane can exceed the limits of diffraction and that this wavelength modulation can be detected optically in the far field. PMID:25122675

  8. Plasmonically amplified fluorescence bioassay with microarray format

    NASA Astrophysics Data System (ADS)

    Gogalic, S.; Hageneder, S.; Ctortecka, C.; Bauch, M.; Khan, I.; Preininger, Claudia; Sauer, U.; Dostalek, J.

    2015-05-01

    Plasmonic amplification of fluorescence signal in bioassays with microarray detection format is reported. A crossed relief diffraction grating was designed to couple an excitation laser beam to surface plasmons at the wavelength overlapping with the absorption and emission bands of fluorophore Dy647 that was used as a label. The surface of periodically corrugated sensor chip was coated with surface plasmon-supporting gold layer and a thin SU8 polymer film carrying epoxy groups. These groups were employed for the covalent immobilization of capture antibodies at arrays of spots. The plasmonic amplification of fluorescence signal on the developed microarray chip was tested by using interleukin 8 sandwich immunoassay. The readout was performed ex situ after drying the chip by using a commercial scanner with high numerical aperture collecting lens. Obtained results reveal the enhancement of fluorescence signal by a factor of 5 when compared to a regular glass chip.

  9. Tunable surface plasmon devices

    DOEpatents

    Shaner, Eric A.; Wasserman, Daniel

    2011-08-30

    A tunable extraordinary optical transmission (EOT) device wherein the tunability derives from controlled variation of the dielectric constant of a semiconducting material (semiconductor) in evanescent-field contact with a metallic array of sub-wavelength apertures. The surface plasmon resonance wavelength can be changed by changing the dielectric constant of the dielectric material. In embodiments of this invention, the dielectric material is a semiconducting material. The dielectric constant of the semiconducting material in the metal/semiconductor interfacial region is controllably adjusted by adjusting one or more of the semiconductor plasma frequency, the concentration and effective mass of free carriers, and the background high-frequency dielectric constant in the interfacial region. Thermal heating and/or voltage-gated carrier-concentration changes may be used to variably adjust the value of the semiconductor dielectric constant.

  10. Pin-hole array production and detailed data analysis for advanced single-shot X-ray imaging of laboratory plasmas

    NASA Astrophysics Data System (ADS)

    Levato, T.; Labate, L.; Pathak, N. C.; Cecchetti, C.; Koester, P.; Di Fabrizio, E.; Delogu, P.; Giulietti, A.; Giulietti, D.; Gizzi, L. A.

    2010-11-01

    Laser produced plasmas offer the unique opportunity to investigate physical mechanisms working at extremely high field in pulsed regime [1] (Gizzi et al., 2009). Future large scale infrastructure like HiPER and ELI may open new frontiers of knowledge in this way. Technologies needed for improving diagnostic in this field have a strong impact on a wide range of multi-disciplinary applications as for compact plasma-based accelerators [1,2] (Gizzi et al., 2009; Betti et al., 2009) laser fusion oriented experiments, three-dimensional microscopy and lithography. As an example the X-ray imaging, being a powerful diagnostic tool for deep investigation on different variety of laser produced plasma, has obtained a grooving effort in recent years. Large scale facilities working in single-pulse regime for laser fusion oriented experiments have evidenced the necessity to obtain spectrally resolved X-ray images of produced plasmas in a single shot. By combining the charge coupled devices (CCD) based single-photon detection technique with a pin-hole array (PHA) a new diagnostic technique was developed, as shown in recent experiments related to the European HiPER project [3] (Labate et al., 2009). Here we qualitatively describe the PHA production process on a heavy metal substrate by means of SEM images that show an internal diameter on the micrometer scale and an aspect ratio of about 20. The characterization of the X-ray contrast up to 90 keV is presented. The data analysis of the X-ray photons interaction on CCD, for spectrum reconstruction up to high energy, is described [4] (Levato et al., 2008).

  11. Design and fabrication of structural color by local surface plasmonic meta-molecules

    NASA Astrophysics Data System (ADS)

    Ma, Ya-Qi; Shao, Jin-Hai; Zhang, Ya-Feng; Lu, Bing-Rui; Zhang, Si-Chao; Sun, Yan; Qu, Xin-Ping; Chen, Yi-Fang

    2015-08-01

    In this paper, we propose a new form of nanostructures with Al film deposited on a patterned dielectric material for generating structural color, which is induced by local surface plasmonic resonant (LSPR) absorption in sub-wavelength-indented hole/ring arrays. Unlike other reported results obtained by using focus ion beam (FIB) to create metallic nanostructures, the nano-sized hole/ring arrays in Al film in this work are replicated by high resolution electron beam lithography (EBL) combined with self-aligned metallization. Clear structural color is observed and systematically studied by numerical simulations as well as optical characterizations. The central color is strongly related to the geometric size, which provides us with good opportunities to dye the colorless Al surface by controlling the hole/ring dimensions (both diameter and radius), and to open up broad applications in display, jewelry decoration, green production of packing papers, security code, and counterfeits prevention. Project partially supported by the National Natural Science Foundation of China (Grant No. 61205148).

  12. Plasmon wave function of graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Silveiro, I.; Plaza Ortega, J. M.; García de Abajo, F. J.

    2015-08-01

    We find the low-frequency optical response of highly doped individual and arrayed graphene nanoribbons to be accurately described in terms of plasmon wave functions (PWFs). More precisely, we focus on the lowest-order transverse dipolar mode, for which we define the wave function as the induced charge density associated with the plasmon. We show that a single universal wave function is capable of describing the normal-incidence interaction of paired, co-planar, and stacked arrays of ribbons down to small inter-ribbon distances. Our work provides both intuitive insight into graphene plasmon interactions and a practical way of accurately describing complex graphene geometries based on the PWFs of the individual components.

  13. Plasmonic trapping of sub-micro objects with metallic antennae

    NASA Astrophysics Data System (ADS)

    Sugawara, Eishi; Kato, Jun-ichi; Yamagata, Yutaka; Ozaki, Miyu; Furutani, Ryoshu

    2016-07-01

    Since optical trapping was first reported, its methods and targets have been broadened. In this paper, we propose ‘plasmonic clipping’, which traps objects on the plasmonic dot array. Localized surface plasmon polaritons (LSPPs), which localize optical energy in the nanometer-scale size and enhances the optical field, are excited in gaps between the dots. The objects are trapped by electric-field-gradient forces of LSPPs along the dot array. The dot arrays are arranged radially so that LSPPs are selectively excited in dot array corresponding to polarization direction of excitation light. The selective excitation results in directionally-selective ‘plasmonic clipping’. The radial dot arrays made of silver are numerically designed and fabricated by means of a focused ion beam (FIB). The arrays are illuminated with laser beam through the half wavelength plate to rotate polarization direction. As a result, the plasmonic clipping is observed along the array corresponding to polarization of the excitation light. It is expected to be utilized to align functional components for manufacturing, measurement, and material technologies.

  14. Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms.

    PubMed

    Navarro-Cía, Miguel; Beruete, Miguel; Agrafiotis, Spyros; Falcone, Francisco; Sorolla, Mario; Maier, Stefan A

    2009-09-28

    A complementary split ring resonator (CSRR)-based metallic layer is proposed as a route to mimic surface plasmon polaritons. A numerical analysis of the textured surface is carried out and compared to previous prominent topologies such as metal mesh, slit array, hole array, and Sievenpiper mushroom surfaces, which are studied as well from a transmission line perspective. These well-documented geometries suffer from a narrowband response, alongside, in most cases, metal thickness constraint (usually of the order of lambda/4) and non-subwavelength modal size as a result of the large dimensions of the unit cell (one dimensions is at least of the order of lambda/2). All of these limitations are overcome by the proposed CSRR-based surface. Besides, a planar waveguide is proposed as a proof of the potential of this CSRR-based metallic layer for spoof surface plasmon polariton guiding. Fundamental aspects aside, the structure under study is easy to manufacture by simple PCB techniques and it is expected to provide good performance within the frequency band from GHz to THz. PMID:19907609

  15. Plasmon and compositional mapping of plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Ringe, Emilie; Collins, Sean M.; DeSantis, Christopher J.; Skrabalak, Sara E.; Midgley, Paul A.

    2014-11-01

    Recently, co-reduction of Au and Pd has allowed the synthesis of complex Au core/AuPd shell nanoparticles with elongated tips and cubic-like symmetry. Optical studies have shown strong plasmonic behavior and high refractive index sensitivities. In this paper, we describe the composition and the near-field plasmonic behavior of those complex structures. Monochromated STEM-EELS, Cathodoluminescence, and EDS mapping reveals the different resonant modes in these particles, and shows that Pd, a poor plasmonic metal, does not prevent strong resonances and could actually be extremely helpful for plasmon-enhanced catalysis.

  16. SERS Sensing with Plasmonic Nanoantennae

    NASA Astrophysics Data System (ADS)

    Shalaev, Vladimir M.

    2004-03-01

    Plasmonic nanostructures can act as optical nanoantennae by accumulating large electromagnetic energy on the nanoscale and resulting in very efficient surface-enhanced Raman scattering (SERS). We study two SERS biosensors: i) semicontinuous metal films, representing a fractal set of nanoantennae, and ii) periodic arrays of metal nanoparticles. SERS with semicontinuous metal films is shown to be sensitive to subtle differences in conformational structures of two insulin variants: human insulin (humulin) and insulin Lyspro. The latter is an insulin analog developed by Lilly, in which only the propyl and lysyl sequence at the C-terminus of the B-chain is inverted. Humulin and Lyspro have very different clinical effects despite nearly identical structures. We show that SERS on semicontinuous metal films provides the enhancement level that allows one to distinguish the two important insulins even at the sub-monolayer density. Our theoretical and experimental studies of two-dimensional (2D) metal nanoparticle arrays yield quantitative estimates of their electromagnetic (EM) field factors, revealing a critical relationship between particle size and interparticle spacing. A new theory based on the RLC circuit analogy provides analytical results for field enhancements within the arrays. Numerical and analytical calculations suggest that the average EM enhancements for Raman scattering can approach ten to eleven orders of magnitude for Ag nanodisk and nanosphere arrays. Radiative losses related to retardation or damping effects are less critical to the EM field enhancements from periodic arrays compared to that from other nanostructured metal substrates. Theoretical calculations are in agreement with experimental observations. These findings suggest a straightforward approach for engineering arrays of plasmonic nanoantennae with direct application toward SERS.

  17. Composites with mechanically tunable plasmon frequency

    NASA Astrophysics Data System (ADS)

    Schuil, Crystal J.; Amirkhizi, Alireza V.; Bayatpur, Farhad; Nemat-Nasser, Sia

    2011-11-01

    This paper summarizes our efforts to create a composite material with a mechanically tunable plasmon frequency at the microwave band. The permittivity of the composite changes sign at the plasmon frequency. Such composites, therefore, can be used as electromagnetic filters. Theoretically, an array of non-magnetic, metallic wire coils has been shown to have a plasmon behavior that is dependent on the wire thickness, coil inner diameter, pitch and coil spacing. Here, a material is made out of an array of coils placed within a non-metallic frame, and the material plasmon frequency is tuned through altering the pitch. The coils are arranged with alternating handedness to create an effective, non-chiral medium. A transmit/receive setup is used to characterize the electromagnetic behavior of the composite. The setup consists of a vector network analyzer and two horn antennas, which are used to measure the scattering parameters of the material. These parameters are then used to calculate the permittivity. The results show an increase in the plasmon frequency with increase in the pitch. Increasing the pitch 30%, from 3 to 3.9 mm, results in a corresponding increase from 6.3 to 7.5 GHz in the frequency.

  18. Theoretical predictions for hot-carrier generation from surface plasmon decay

    PubMed Central

    Sundararaman, Ravishankar; Narang, Prineha; Jermyn, Adam S.; Goddard III, William A.; Atwater, Harry A.

    2014-01-01

    Decay of surface plasmons to hot carriers finds a wide variety of applications in energy conversion, photocatalysis and photodetection. However, a detailed theoretical description of plasmonic hot-carrier generation in real materials has remained incomplete. Here we report predictions for the prompt distributions of excited ‘hot’ electrons and holes generated by plasmon decay, before inelastic relaxation, using a quantized plasmon model with detailed electronic structure. We find that carrier energy distributions are sensitive to the electronic band structure of the metal: gold and copper produce holes hotter than electrons by 1–2 eV, while silver and aluminium distribute energies more equitably between electrons and holes. Momentum-direction distributions for hot carriers are anisotropic, dominated by the plasmon polarization for aluminium and by the crystal orientation for noble metals. We show that in thin metallic films intraband transitions can alter the carrier distributions, producing hotter electrons in gold, but interband transitions remain dominant. PMID:25511713

  19. Tunable surface plasmon wave plates.

    PubMed

    Djalalian-Assl, Amir; Cadusch, Jasper J; Balaur, Eugeniu; Aramesh, Morteza

    2016-07-01

    The highest resonant transmission through an array of holes perforated in metallic screens occurs when the dielectric constant of the substrate, the superstrate, and the hole are the same. Changes in the refractive index of the homogenous environment also produce the largest shift in resonances per refractive index unit. In this Letter, we first propose and apply a technique in realization of a freestanding bi-periodic array of holes perforated in a silver film. We then show both numerically and experimentally that shifts in (1,0) and (0,1) modes in response to changes in the refractive index of the surrounding dielectric provide a mechanism for realization of a miniaturized tunable quarter-wave plate that operates in an extraordinary optical transmission mode with a high throughput and a near unity state of circularly polarized light. PMID:27367123

  20. Gold Nanohole Array with Sub-1 nm Roughness by Annealing for Sensitivity Enhancement of Extraordinary Optical Transmission Biosensor

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Irannejad, Mehrdad; Yavuz, Mustafa; Cui, Bo

    2015-05-01

    Nanofabrication technology plays an important role in the performance of surface plasmonic devices such as extraordinary optical transmission (EOT) sensor. In this work, a double liftoff process was developed to fabricate a series of nanohole arrays of a hole diameter between 150 and 235 nm and a period of 500 nm in a 100-nm-thick gold film on a silica substrate. To improve the surface quality of the gold film, thermal annealing was conducted, by which an ultra-smooth gold film with root-mean-square (RMS) roughness of sub-1 nm was achieved, accompanied with a hole diameter shrinkage. The surface sensitivity of the nanohole arrays was measured using a monolayer of 16-mercaptohexadecanoic acid (16-MHA) molecule, and the surface sensitivity was increased by 2.5 to 3 times upon annealing the extraordinary optical transmission (EOT) sensor.

  1. Direct mapping of the UV surface plasmons.

    PubMed

    Gan, Qiaoqiang; Zhou, Liangcheng; Dierolf, Volkmar; Bartoli, Filbert J

    2009-05-01

    Researchers employed various well-developed concepts from conventional optics in designing novel plasmonic devices, which allow us to construct a framework to describe the propagation, diffraction, and interference of surface plasmon polaritons (SPPs) on a chip. Here we present what we believe to be the first direct mapping of the UV SPPs on an Al2O3/Al surface using a UV-compatible near-field scanning optical microscope system. UV SPP modes launched by one-dimensional slits or two-dimensional groove arrays and corresponding interference phenomenon were both observed, which may enrich the studies on subwavelength optics on a chip. PMID:19412260

  2. On-a-chip surface plasmon tweezers

    NASA Astrophysics Data System (ADS)

    Wong, H. M. K.; Righini, M.; Gates, J. C.; Smith, P. G. R.; Pruneri, V.; Quidant, R.

    2011-08-01

    We report on an integrated optical trapping platform operated by simple fiber coupling. The system consists of a dielectric channel optical waveguide decorated with an array of gold micro-pads. Through a suitable engineering of the waveguide mode, we achieve light coupling to the surface plasmon resonance of the gold pads that act as individual plasmonic traps. We demonstrate parallel trapping of both micrometer size polystyrene beads and yeast cells at predetermined locations on the chip with only 20 mW total incident laser power.

  3. Plasmonic "nano-fingers on nanowires" as SERS substrates.

    PubMed

    Sharma, Yashna; Dhawan, Anuj

    2016-05-01

    A surface-enhanced Raman scattering (SERS) substrate based on plasmonics-active metallic nano-finger arrays grown on arrays of triangular-shaped metal-coated silicon nanowire arrays is proposed. Finite-difference time-domain modeling is employed to numerically calculate the effect of the inter-finger gap and the growth angle of the nano-fingers on the magnitude of SERS enhancement and the plasmon resonance wavelength. Additionally, the polarization dependence of the SERS signals from these novel substrates has been studied. A protocol for the fabrication of the proposed SERS substrate is also discussed. PMID:27128080

  4. Plasmonic nanostructures fabricated using nanosphere-lithography, soft-lithography and plasma etching

    PubMed Central

    Makaryan, Taron; Enderle, Fabian; Wiedemann, Stefan; Plettl, Alfred; Marti, Othmar; Ziemann, Paul

    2011-01-01

    Summary We present two routes for the fabrication of plasmonic structures based on nanosphere lithography templates. One route makes use of soft-lithography to obtain arrays of epoxy resin hemispheres, which, in a second step, can be coated by metal films. The second uses the hexagonal array of triangular structures, obtained by evaporation of a metal film on top of colloidal crystals, as a mask for reactive ion etching (RIE) of the substrate. In this way, the triangular patterns of the mask are transferred to the substrate through etched triangular pillars. Making an epoxy resin cast of the pillars, coated with metal films, allows us to invert the structure and obtain arrays of triangular holes within the metal. Both fabrication methods illustrate the preparation of large arrays of nanocavities within metal films at low cost. Gold films of different thicknesses were evaporated on top of hemispherical structures of epoxy resin with different radii, and the reflectance and transmittance were measured for optical wavelengths. Experimental results show that the reflectivity of coated hemispheres is lower than that of coated polystyrene spheres of the same size, for certain wavelength bands. The spectral position of these bands correlates with the size of the hemispheres. In contrast, etched structures on quartz coated with gold films exhibit low reflectance and transmittance values for all wavelengths measured. Low transmittance and reflectance indicate high absorbance, which can be utilized in experiments requiring light confinement. PMID:22003451

  5. Single-plasmon interferences.

    PubMed

    Dheur, Marie-Christine; Devaux, Eloïse; Ebbesen, Thomas W; Baron, Alexandre; Rodier, Jean-Claude; Hugonin, Jean-Paul; Lalanne, Philippe; Greffet, Jean-Jacques; Messin, Gaétan; Marquier, François

    2016-03-01

    Surface plasmon polaritons are electromagnetic waves coupled to collective electron oscillations propagating along metal-dielectric interfaces, exhibiting a bosonic character. Recent experiments involving surface plasmons guided by wires or stripes allowed the reproduction of quantum optics effects, such as antibunching with a single surface plasmon state, coalescence with a two-plasmon state, conservation of squeezing, or entanglement through plasmonic channels. We report the first direct demonstration of the wave-particle duality for a single surface plasmon freely propagating along a planar metal-air interface. We develop a platform that enables two complementary experiments, one revealing the particle behavior of the single-plasmon state through antibunching, and the other one where the interferences prove its wave nature. This result opens up new ways to exploit quantum conversion effects between different bosonic species as shown here with photons and polaritons. PMID:26998521

  6. Single-plasmon interferences

    PubMed Central

    Dheur, Marie-Christine; Devaux, Eloïse; Ebbesen, Thomas W.; Baron, Alexandre; Rodier, Jean-Claude; Hugonin, Jean-Paul; Lalanne, Philippe; Greffet, Jean-Jacques; Messin, Gaétan; Marquier, François

    2016-01-01

    Surface plasmon polaritons are electromagnetic waves coupled to collective electron oscillations propagating along metal-dielectric interfaces, exhibiting a bosonic character. Recent experiments involving surface plasmons guided by wires or stripes allowed the reproduction of quantum optics effects, such as antibunching with a single surface plasmon state, coalescence with a two-plasmon state, conservation of squeezing, or entanglement through plasmonic channels. We report the first direct demonstration of the wave-particle duality for a single surface plasmon freely propagating along a planar metal-air interface. We develop a platform that enables two complementary experiments, one revealing the particle behavior of the single-plasmon state through antibunching, and the other one where the interferences prove its wave nature. This result opens up new ways to exploit quantum conversion effects between different bosonic species as shown here with photons and polaritons. PMID:26998521

  7. Localized Surface Plasmons in Nanostructured Monolayer Black Phosphorus.

    PubMed

    Liu, Zizhuo; Aydin, Koray

    2016-06-01

    Plasmonic materials provide electric-field localization and light confinement at subwavelength scales due to strong light-matter interaction around resonance frequencies. Graphene has been recently studied as an atomically thin plasmonic material for infrared and terahertz wavelengths. Here, we theoretically investigate localized surface plasmon resonances (LSPR) in a monolayer, nanostructured black phosphorus (BP). Using finite-difference time-domain simulations, we demonstrate LSPRs at mid-infrared and far-infrared wavelength regime in BP nanoribbon and nanopatch arrays. Because of strong anisotropic in-plane properties of black phosphorus emerging from its puckered crystal structure, black phosphorus nanostructures provide polarization dependent, anisotropic plasmonic response. Electromagnetic simulations reveal that monolayer black phosphorus nanostructures can strongly confine infrared radiation in an atomically thin material. Black phosphorus can find use as a highly anisotropic plasmonic devices. PMID:27152653

  8. Exploiting plasmon-induced hot electrons in molecular electronic devices.

    PubMed

    Conklin, David; Nanayakkara, Sanjini; Park, Tae-Hong; Lagadec, Marie F; Stecher, Joshua T; Chen, Xi; Therien, Michael J; Bonnell, Dawn A

    2013-05-28

    Plasmonic nanostructures can induce a number of interesting responses in devices. Here we show that hot electrons can be extracted from plasmonic particles and directed into a molecular electronic device, which represents a new mechanism of transfer from light to electronic transport. To isolate this phenomenon from alternative and sometimes simultaneous mechanisms of plasmon-exciton interactions, we designed a family of hybrid nanostructure devices consisting of Au nanoparticles and optoelectronically functional porphyin molecules that enable precise control of electronic and optical properties. Temperature- and wavelength-dependent transport measurements are analyzed in the context of optical absorption spectra of the molecules, the Au particle arrays, and the devices. Enhanced photocurrent associated with exciton generation in the molecule is distinguished from enhancements due to plasmon interactions. Mechanisms of plasmon-induced current are examined, and it is found that hot electron generation can be distinguished from other possibilities. PMID:23550717

  9. Wavelength-selective plasmonics for enhanced cultivation of microalgae

    SciTech Connect

    Ooms, Matthew D.; Jeyaram, Yogesh; Sinton, David

    2015-02-09

    Optimal photon management is a key challenge for photobioreactor design, since light gradients and varying spectral sensitivities between organisms result in uneven illumination and unused photons. This paper demonstrates wavelength specific scattering from plasmonic nano-patterned surfaces as a means of addressing the challenge of photon management in photobioreactors. Modular photobioreactors were constructed with different reflective substrates including arrays of plasmonic nanodisks, broadband reflectors, and untreated glass. It was found that the growth rate of cyanobacterium S. elongatus in photobioreactors equipped with a plasmonic substrate (R{sub 623 nm} ∼ 35%) was enhanced by 6.5% compared to photobioreactors equipped with untreated glass. Furthermore, plasmonic reflectors showed a normalized power efficiency improvement of 52% over broadband reflectors. Wavelength-specific reflection from plasmonic reflectors increases the flux of useful light to cultures without sacrificing the full spectrum.

  10. Plasmonic enhancement of ultraviolet fluorescence

    NASA Astrophysics Data System (ADS)

    Jiao, Xiaojin

    Plasmonics relates to the interaction between electromagnetic radiation and conduction electrons at metallic interfaces or in metallic nanostructures. Surface plasmons are collective electron oscillations at a metal surface, which can be manipulated by shape, texture and material composition. Plasmonic applications cover a broad spectrum from visible to near infrared, including biosensing, nanolithography, spectroscopy, optoelectronics, photovoltaics and so on. However, there remains a gap in this activity in the ultraviolet (UV, < 400 nm), where significant opportunity exists for both fundamental and application research. Motivating factors in the study of UV Plasmonics are the direct access to biomolecular resonances and native fluorescence, resonant Raman scattering interactions, and the potential for exerting control over photochemical reactions. This dissertation aims to fill in the gap of Plasmonics in the UV with efforts of design, fabrication and characterization of aluminium (Al) and magnesium (Mg) nanostructures for the application of label-free bimolecular detection via native UV fluorescence. The first contribution of this dissertation addresses the design of Al nanostructures in the context of UV fluorescence enhancement. A design method that combines analytical analysis with numerical simulation has been developed. Performance of three canonical plasmonic structures---the dipole antenna, bullseye nanoaperture and nanoaperture array---has been compared. The optimal geometrical parameters have been determined. A novel design of a compound bullseye structure has been proposed and numerically analyzed for the purpose of compensating for the large Stokes shift typical of UV fluorescence. Second, UV lifetime modification of diffusing molecules by Al nanoapertures has been experimentally demonstrated for the first time. Lifetime reductions of ~3.5x have been observed for the high quantum yield (QY) laser dye p-terphenyl in a 60 nm diameter aperture with 50

  11. Surface Plasmon's Dispersion Properties of Porous Gold Films.

    PubMed

    Stetsenko, M O; Maksimenko, L S; Rudenko, S P; Krishchenko, I M; Korchovyi, A A; Kryvyi, S B; Kaganovich, E B; Serdega, B K

    2016-12-01

    Nanostructure porous films with arrays of gold nanoparticles (Au NPs) have been produced by pulsed laser deposition. Dispersion properties of surface plasmons have been studied by the modulation-polarization spectroscopy technique. The dispersion relations for radiative modes and two types of non-radiative modes of localized and propagating surface plasmons were obtained. The branches of propagating modes were characterized by negative group velocity caused by spatial dispersion of dielectric function. The propagating modes are caused by dipole-dipole interactions between adjacent Au NPs. The frequencies and relaxation parameters of surface plasmon resonances and the plasma frequencies for Αu NPs were obtained. The relation between the surface plasmon's properties and formation conditions of films with arrays of Αu NPs is discussed. PMID:26925864

  12. Nanoscale Surface Plasmonics Sensor With Nanofluidic Control

    NASA Technical Reports Server (NTRS)

    Wei, Jianjun; Singhal, Sameer; Waldeck, David H.; Kofke, Matthew

    2013-01-01

    Conventional quantitative protein assays of bodily fluids typically involve multiple steps to obtain desired measurements. Such methods are not well suited for fast and accurate assay measurements in austere environments such as spaceflight and in the aftermath of disasters. Consequently, there is a need for a protein assay technology capable of routinely monitoring proteins in austere environments. For example, there is an immediate need for a urine protein assay to assess astronaut renal health during spaceflight. The disclosed nanoscale surface plasmonics sensor provides a core detection method that can be integrated to a lab-on-chip device that satisfies the unmet need for such a protein assay technology. Assays based upon combinations of nanoholes, nanorings, and nanoslits with transmission surface plasmon resonance (SPR) are used for assays requiring extreme sensitivity, and are capable of detecting specific analytes at concentrations as low as picomole to femtomole level in well-controlled environments. The device operates in a transmission mode configuration in which light is directed at one planar surface of the array, which functions as an optical aperture. The incident light induces surface plasmon light transmission from the opposite surface of the array. The presence of a target analyte is detected by changes in the spectrum of light transmitted by the array when a target analyte induces a change in the refractive index of the fluid within the nanochannels. This occurs, for example, when a target analyte binds to a receptor fixed to the walls of the nanochannels in the array. Independent fluid handling capability for individual nanoarrays on a nanofluidic chip containing a plurality of nanochannel arrays allows each array to be used to sense a different target analyte and/or for paired arrays to analyze control and test samples simultaneously in parallel. The present invention incorporates transmission mode nanoplasmonics and nanofluidics into a single

  13. Pixel-level plasmonic microcavity infrared photodetector

    PubMed Central

    Jing, You Liang; Li, Zhi Feng; Li, Qian; Chen, Xiao Shuang; Chen, Ping Ping; Wang, Han; Li, Meng Yao; Li, Ning; Lu, Wei

    2016-01-01

    Recently, plasmonics has been central to the manipulation of photons on the subwavelength scale, and superior infrared imagers have opened novel applications in many fields. Here, we demonstrate the first pixel-level plasmonic microcavity infrared photodetector with a single quantum well integrated between metal patches and a reflection layer. Greater than one order of magnitude enhancement of the peak responsivity has been observed. The significant improvement originates from the highly confined optical mode in the cavity, leading to a strong coupling between photons and the quantum well, resulting in the enhanced photo-electric conversion process. Such strong coupling from the localized surface plasmon mode inside the cavity is independent of incident angles, offering a unique solution to high-performance focal plane array devices. This demonstration paves the way for important infrared optoelectronic devices for sensing and imaging. PMID:27181111

  14. Pixel-level plasmonic microcavity infrared photodetector.

    PubMed

    Jing, You Liang; Li, Zhi Feng; Li, Qian; Chen, Xiao Shuang; Chen, Ping Ping; Wang, Han; Li, Meng Yao; Li, Ning; Lu, Wei

    2016-01-01

    Recently, plasmonics has been central to the manipulation of photons on the subwavelength scale, and superior infrared imagers have opened novel applications in many fields. Here, we demonstrate the first pixel-level plasmonic microcavity infrared photodetector with a single quantum well integrated between metal patches and a reflection layer. Greater than one order of magnitude enhancement of the peak responsivity has been observed. The significant improvement originates from the highly confined optical mode in the cavity, leading to a strong coupling between photons and the quantum well, resulting in the enhanced photo-electric conversion process. Such strong coupling from the localized surface plasmon mode inside the cavity is independent of incident angles, offering a unique solution to high-performance focal plane array devices. This demonstration paves the way for important infrared optoelectronic devices for sensing and imaging. PMID:27181111

  15. Controlling light with resonant plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    de Waele, R.

    2009-06-01

    Plasmons are collective oscillations of free electrons in a metal. At optical frequencies plasmons enable nanoscale confinement of light in metal nanostructures. This ability has given rise to many applications in e.g. photothermal cancer treatment, light trapping in photovoltaic cells, and sensing. Metal nanostructures also allow for manipulation of optical energy, providing such functionalities as guiding or redirecting light at the nanoscale. This thesis focuses on nanoscale control of light using three types of metal nanostructures: 1) arrays of coupled metal nanoparticles, 2) metal nanowires, and 3) (coupled) coaxial waveguides. Chapter 3 describes the optical behavior of a metal nanoparticle array illuminated sideways along the array axis. Confocal microscopy shows that field concentrates on just a few particles at the front or back side of the particle chain. By changing the illumination wavelength we can control which side of the chain becomes excited. In chapter 4 we discuss angle resolved transmission measurements to determine the dispersion relation of plasmon modes in Au and Ag particle arrays. Our results confirm that far-field dynamic interactions between particles are important, even for structures five times smaller than the wavelength. Taking into account dynamic interactions we calculate that the propagation length in plasmon particle arrays can be as much as 10 μm, which is an order of magnitude higher than previously estimated using quasi-electrostatic theory. In chapter 5 we show that metal nanowires behave as plasmon resonators. We use cathodoluminescence imaging spectroscopy to determine the eigenmodes in 500-1200-nm-long Au nanowires at a resolution less than 10 nm. By combining spectral and spatial information we determine the dispersion relation for plasmons confined within the metal nanowires. Chapter 6 focuses on coaxial plasmon waveguides. Optical transmission measurements on coaxial apertures in a Ag film point out that the plasmon

  16. Enhancing Eu(3+) magnetic dipole emission by resonant plasmonic nanostructures.

    PubMed

    Hussain, Rabia; Kruk, Sergey S; Bonner, Carl E; Noginov, Mikhail A; Staude, Isabelle; Kivshar, Yuri S; Noginova, Natalia; Neshev, Dragomir N

    2015-04-15

    We demonstrate the enhancement of magnetic dipole spontaneous emission from Eu3+ ions by an engineered plasmonic nanostructure that controls the electromagnetic environment of the emitter. Using an optical microscope setup, an enhancement in the intensity of the Eu3+ magnetic dipole emission was observed for emitters located in close vicinity to a gold nanohole array designed to support plasmonic resonances overlapping with the emission spectrum of the ions. PMID:25872041

  17. Parallel Transduction of Nanomechanical Motion Using Plasmonic Resonators

    PubMed Central

    2014-01-01

    We demonstrate parallel transduction of thermally driven mechanical motion of an array of gold-coated silicon nitride nanomechanical beams, by using near-field confinement in plasmonic metal–insulator–metal resonators supported in the gap between the gold layers. The free-space optical readout, enabled by the plasmonic resonances, allows for addressing multiple mechanical resonators in a single measurement. Light absorbed in the metal layer of the beams modifies their mechanical properties, allowing photothermal tuning of the eigenfrequencies. The appearance of photothermally driven parametric amplification indicates the possibility of plasmonic mechanical actuation. PMID:25642442

  18. Tailoring the parameters of nanohole arrays in gold films for sensing applications.

    SciTech Connect

    McMahon, J. M.; Schatz, G. C.; Gray, S. K.; Northwestern Univ.

    2007-01-01

    Subwavelength hole arrays in metal films have the potential to exhibit narrow and high refractive index (RI) sensitive transmission features. We have previously demonstrated that such features can arise from the coupling between Wood anomalies (WAs) and surface Plasmon polaritons (SPPs) on opposite sides of the metal film, the 'WA-SPP' effect. Rigorous coupled-wave analysis (RCWA) calculations on a 2D model, which are shown to give WA-SPP features very similar to that of 3D Finite-Difference Time- Domain (FDTD) calculations, are performed to determine how system parameters influence the strength of the WA-SPP effect. Herein we show that the optimum values for the film thickness and hole diameter are 45 and 175 nm, respectively.

  19. Decay of dark and bright plasmonic modes in a metallic nanoparticle dimer

    NASA Astrophysics Data System (ADS)

    Brandstetter-Kunc, Adam; Weick, Guillaume; Weinmann, Dietmar; Jalabert, Rodolfo A.

    2015-01-01

    We develop a general quantum theory of the coupled plasmonic modes resulting from the near-field interaction between localized surface plasmons in a heterogeneous metallic nanoparticle dimer. In particular, we provide analytical expressions for the frequencies and decay rates of the bright and dark plasmonic modes. We show that, for sufficiently small nanoparticles, the main decay channel for the dark plasmonic mode, which is weakly coupled to light and, hence, immune to radiation damping, is of nonradiative origin and corresponds to Landau damping, i.e., decay into electron-hole pairs.

  20. Optimizing plasmonic nanoantennas via coordinated multiple coupling

    PubMed Central

    Lin, Linhan; Zheng, Yuebing

    2015-01-01

    Plasmonic nanoantennas, which can efficiently convert light from free space into sub-wavelength scale with the local field enhancement, are fundamental building blocks for nanophotonic systems. Predominant design methods, which exploit a single type of near- or far-field coupling in pairs or arrays of plasmonic nanostructures, have limited the tunability of spectral response and the local field enhancement. To overcome this limit, we are developing a general strategy towards exploiting the coordinated effects of multiple coupling. Using Au bowtie nanoantenna arrays with metal-insulator-metal configuration as examples, we numerically demonstrate that coordinated design and implementation of various optical coupling effects leads to both the increased tunability in the spectral response and the significantly enhanced electromagnetic field. Furthermore, we design and analyze a refractive index sensor with an ultra-high figure-of-merit (254), a high signal-to-noise ratio and a wide working range of refractive indices, and a narrow-band near-infrared plasmonic absorber with 100% absorption efficiency, high quality factor of up to 114 and a wide range of tunable wavelength from 800 nm to 1,500 nm. The plasmonic nanoantennas that exploit coordinated multiple coupling will benefit a broad range of applications, including label-free bio-chemical detection, reflective filter, optical trapping, hot-electron generation, and heat-assisted magnetic recording. PMID:26423015

  1. Optimizing plasmonic nanoantennas via coordinated multiple coupling

    NASA Astrophysics Data System (ADS)

    Lin, Linhan; Zheng, Yuebing

    2015-10-01

    Plasmonic nanoantennas, which can efficiently convert light from free space into sub-wavelength scale with the local field enhancement, are fundamental building blocks for nanophotonic systems. Predominant design methods, which exploit a single type of near- or far-field coupling in pairs or arrays of plasmonic nanostructures, have limited the tunability of spectral response and the local field enhancement. To overcome this limit, we are developing a general strategy towards exploiting the coordinated effects of multiple coupling. Using Au bowtie nanoantenna arrays with metal-insulator-metal configuration as examples, we numerically demonstrate that coordinated design and implementation of various optical coupling effects leads to both the increased tunability in the spectral response and the significantly enhanced electromagnetic field. Furthermore, we design and analyze a refractive index sensor with an ultra-high figure-of-merit (254), a high signal-to-noise ratio and a wide working range of refractive indices, and a narrow-band near-infrared plasmonic absorber with 100% absorption efficiency, high quality factor of up to 114 and a wide range of tunable wavelength from 800 nm to 1,500 nm. The plasmonic nanoantennas that exploit coordinated multiple coupling will benefit a broad range of applications, including label-free bio-chemical detection, reflective filter, optical trapping, hot-electron generation, and heat-assisted magnetic recording.

  2. Optimizing plasmonic nanoantennas via coordinated multiple coupling.

    PubMed

    Lin, Linhan; Zheng, Yuebing

    2015-01-01

    Plasmonic nanoantennas, which can efficiently convert light from free space into sub-wavelength scale with the local field enhancement, are fundamental building blocks for nanophotonic systems. Predominant design methods, which exploit a single type of near- or far-field coupling in pairs or arrays of plasmonic nanostructures, have limited the tunability of spectral response and the local field enhancement. To overcome this limit, we are developing a general strategy towards exploiting the coordinated effects of multiple coupling. Using Au bowtie nanoantenna arrays with metal-insulator-metal configuration as examples, we numerically demonstrate that coordinated design and implementation of various optical coupling effects leads to both the increased tunability in the spectral response and the significantly enhanced electromagnetic field. Furthermore, we design and analyze a refractive index sensor with an ultra-high figure-of-merit (254), a high signal-to-noise ratio and a wide working range of refractive indices, and a narrow-band near-infrared plasmonic absorber with 100% absorption efficiency, high quality factor of up to 114 and a wide range of tunable wavelength from 800 nm to 1,500 nm. The plasmonic nanoantennas that exploit coordinated multiple coupling will benefit a broad range of applications, including label-free bio-chemical detection, reflective filter, optical trapping, hot-electron generation, and heat-assisted magnetic recording. PMID:26423015

  3. Silicon as a virtual plasmonic material: Acquisition of its transient optical constants and the ultrafast surface plasmon-polariton excitation

    SciTech Connect

    Danilov, P. A.; Ionin, A. A.; Kudryashov, S. I. Makarov, S. V.; Rudenko, A. A.; Saltuganov, P. N.; Seleznev, L. V.; Yurovskikh, V. I.; Zayarny, D. A.; Apostolova, T.

    2015-06-15

    Ultrafast intense photoexcitation of a silicon surface is complementarily studied experimentally and theoretically, with its prompt optical dielectric function obtained by means of time-resolved optical reflection microscopy and the underlying electron-hole plasma dynamics modeled numerically, using a quantum kinetic approach. The corresponding transient surface plasmon-polariton (SPP) dispersion curves of the photo-excited material were simulated as a function of the electron-hole plasma density, using the derived optical dielectric function model, and directly mapped at several laser photon energies, measuring spatial periods of the corresponding SPP-mediated surface relief nanogratings. The unusual spectral dynamics of the surface plasmon resonance, initially increasing with the increase in the electron-hole plasma density but damped at high interband absorption losses induced by the high-density electron-hole plasma through instantaneous bandgap renormalization, was envisioned through the multi-color mapping.

  4. Silicon as a virtual plasmonic material: Acquisition of its transient optical constants and the ultrafast surface plasmon-polariton excitation

    NASA Astrophysics Data System (ADS)

    Danilov, P. A.; Ionin, A. A.; Kudryashov, S. I.; Makarov, S. V.; Rudenko, A. A.; Saltuganov, P. N.; Seleznev, L. V.; Yurovskikh, V. I.; Zayarny, D. A.; Apostolova, T.

    2015-06-01

    Ultrafast intense photoexcitation of a silicon surface is complementarily studied experimentally and theoretically, with its prompt optical dielectric function obtained by means of time-resolved optical reflection microscopy and the underlying electron-hole plasma dynamics modeled numerically, using a quantum kinetic approach. The corresponding transient surface plasmon-polariton (SPP) dispersion curves of the photo-excited material were simulated as a function of the electron-hole plasma density, using the derived optical dielectric function model, and directly mapped at several laser photon energies, measuring spatial periods of the corresponding SPP-mediated surface relief nanogratings. The unusual spectral dynamics of the surface plasmon resonance, initially increasing with the increase in the electron-hole plasma density but damped at high interband absorption losses induced by the high-density electron-hole plasma through instantaneous bandgap renormalization, was envisioned through the multi-color mapping.

  5. Transduction of Entangled Images by Localized Surface Plasmons

    NASA Astrophysics Data System (ADS)

    Dowran, Mohammadjavad; Holtfrerich, Matthew; Lawrie, Benjamin; Davidson, Roderick; Pooser, Raphael; Marino, Alberto

    2016-05-01

    Quantum plasmonics has attracted broad interest in recent years, motivated by nano-imaging and sub-wavelength photonic circuits. The potential for nanoscale quantum information processing and quantum plasmonic sensing has led to the study of the interface between quantum optics and plasmonics. We study the interface between continuous variable entangled images and localized surface plasmons (LSPs). We generate entangled images with four-wave mixing in hot Rb atoms. The entangled images are sent through two spatially separated plasmonic structures, which consist of an array of triangular nanoholes in a silver metal film designed to excite LSPs. After transduction through the plasmonic structure, mediated by extraordinary optical transmission (EOT), the entanglement properties of the light are characterized. We show that both the entanglement and spatial properties of the light are preserved by the LSPs. This results show that the transfer of entanglement and quantum information from multi-spatial mode photons to LSPs and back to photons is a coherent process that preserves the spatial quantum information of the incident light. By addressing two spatially separated plasmonic structures, the entanglement is effectively transferred to the plasmons for a short period of time. Work supported by the W.M. Keck Foundation.

  6. Plasmon-Enhanced Upconversion.

    PubMed

    Wu, Di M; García-Etxarri, Aitzol; Salleo, Alberto; Dionne, Jennifer A

    2014-11-20

    Upconversion, the conversion of photons from lower to higher energies, is a process that promises applications ranging from high-efficiency photovoltaic and photocatalytic cells to background-free bioimaging and therapeutic probes. Existing upconverting materials, however, remain too inefficient for viable implementation. In this Perspective, we describe the significant improvements in upconversion efficiency that can be achieved using plasmon resonances. As collective oscillations of free electrons, plasmon resonances can be used to enhance both the incident electromagnetic field intensity and the radiative emission rates. To date, this approach has shown upconversion enhancements up to 450×. We discuss both theoretical underpinnings and experimental demonstrations of plasmon-enhanced upconversion, examining the roles of upconverter quantum yield, plasmonic geometry, and plasmon spectral overlap. We also discuss nonoptical consequences of including metal nanostructures near upconverting emitters. The rapidly expanding field of plasmon-enhanced upconversion provides novel fundamental insight into nanoscale light-matter interactions while improving prospects for technological relevance. PMID:26276488

  7. MEMS for Tunable Plasmonic Coupling

    NASA Astrophysics Data System (ADS)

    Stark, Tom; Imboden, Matthias; Kaya, Sabri; Mertiri, Alket; Erramilli, Shyamsunder; Bishop, David

    2015-03-01

    The localized surface plasmon resonance (LSPR) of sub-wavelength holes in metals depends upon the geometry, composition, refractive index, and near field coupling to neighboring particles. Sub-wavelength holes in metals can exhibit extraordinary optical transmission (EOT) at the resonance frequency and, for certain geometries, polarization-dependent transmission. We present a microelectromechanical system, tunable Fabry-Perot etalon. One interface is a suspended gold metamaterial and the other is a gold reflector. The reflectance, measured with a Fourier transform infrared spectrometer, exhibits the convolution of the EOT through the holes and Fabry-Perot resonances. Using MEMS, we modulate the etalon length from 1 to 20 μm, thereby tuning the free spectral range from about 5000 to 250 cm-1 and shifting the reflection minima and maxima across the infrared. When the separation between the metamaterial and gold reflector approaches the decay length of the LSP electric fields, interactions with image currents generated in the gold reflector become significant. By tuning the separation in this regime, we will tune the near field coupling between the LSPR and image currents and tune the LSPR of the system, effectively creating a sensing substrate with a tunable LSPR frequency.

  8. Ultraconfined Interlaced Plasmons

    NASA Astrophysics Data System (ADS)

    Morgado, Tiago A.; Marcos, João S.; Silveirinha, Mário G.; Maslovski, Stanislav I.

    2011-08-01

    We describe a mesoscopic excitation in strongly coupled grids of metallic nanorods, resulting from the hybridization of weakly bounded plasmons. It is shown both theoretically and experimentally that the characteristic spatial scale of the interlaced plasmons is determined by geometrical features, rather than from the electrical length of the nanorods, and that due to their wide band nature, weak sensitivity to metallic absorption, and subwavelength mode sizes, such plasmons may have exciting applications in waveguiding in the nanoscale.

  9. Satellite band structure in silicon caused by electron-plasmon coupling

    NASA Astrophysics Data System (ADS)

    Lischner, Johannes; Pálsson, G. K.; Vigil-Fowler, Derek; Nemsak, S.; Avila, J.; Asensio, M. C.; Fadley, C. S.; Louie, Steven G.

    2015-05-01

    We report an angle-resolved photoemission measurement of the wave-vector-dependent plasmon satellite structure of a three-dimensional solid, crystalline silicon. In sharp contrast to nanomaterials, which typically exhibit strongly wave-vector-dependent low-energy plasmons, the large plasmon energy of silicon facilitates the search for a plasmaron state consisting of resonantly bound holes and plasmons and its distinction from a weakly interacting plasmon-hole pair. Employing a first-principles theory, which is based on a cumulant expansion of the one-electron Green's function and contains significant electron correlation effects, we obtain good agreement with the measured photoemission spectrum for the wave-vector-dependent dispersion of the satellite feature, but without observing the existence of plasmarons in the calculations.

  10. Plasmonics: metallic nanostructures for energy guiding and sensing

    NASA Astrophysics Data System (ADS)

    Maier, Stefan A.

    2004-12-01

    We investigate the optical properties of arrays of closely spaced metal nanoparticles in view of their potential to guide electromagnetic energy with a lateral mode confinement below the diffraction limit of light. Finite-difference time-domain simulations of short arrays of noble metal nanospheres show that electromagnetic pulses at optical frequencies can propagate along the arrays due to near-field interactions between plasmon-polariton modes of adjacent nanoparticles. Near-field microscopy enables the study of energy transport in these plasmon waveguides and shows experimental evidence for energy propagation over a distance of 0.5 μm for plasmon waveguides consisting of spheroidal silver particles fabricated using electron beam lithography.

  11. Optical invisibility through metasurfaces made of plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Monti, A.; Alù, A.; Toscano, A.; Bilotti, F.

    2015-03-01

    In this paper, we investigate the application of the mantle cloaking technique to near-infrared and visible frequencies, analyzing and designing thin covers consisting of 2D arrays of plasmonic nanoparticles. First, we validate and generalize an analytical model recently appeared in the literature to describe a 2D array of plasmonic nanoparticles as a metasurface characterized by its homogenized surface reactance. We prove that the proposed model allows to efficiently design 2D mantle cloaks with an assigned surface reactance, enabling, thus, the extension of the mantle cloaking technique to optical frequencies. Then, we design realistic optical mantle cloaks made of 2D arrays of spheroidal plasmonic nanoparticles with a high eccentricity. We show that the proposed cloaks allow significant, moderately broadband cloaking effects at visible frequencies. In our designs, we consider realistic losses and non-critical nanoparticle dimensions to envision a practical realization of the proposed cloaks.

  12. Plasmonic nanoantenna hydrophones

    PubMed Central

    Maksymov, Ivan S.; Greentree, Andrew D.

    2016-01-01

    Ultrasound is a valuable biomedical imaging modality and diagnostic tool. Here we theoretically demonstrate that a single dipole plasmonic nanoantenna can be used as an optical hydrophone for MHz-range ultrasound. The nanoantenna is tuned to operate on a high-order plasmon mode, which provides an increased sensitivity to ultrasound in contrast to the usual approach of using the fundamental dipolar plasmon resonance. Plasmonic nanoantenna hydrophones may be useful for ultrasonic imaging of biological cells, cancer tissues or small blood vessels, as well as for Brillouin spectroscopy at the nanoscale. PMID:27612092

  13. Nanomembrane-based plasmonics

    NASA Astrophysics Data System (ADS)

    Jakšić, Zoran; Vuković, Slobodan M.; Buha, Jelena; Matovic, Jovan

    2011-01-01

    This paper reviews the main properties and applications of nanomembrane-based plasmonic structures, including some results presented here for the first time. Artificial nanomembranes are a novel building block in micro- and nanosystems technologies. They represent quasi-two-dimensional (2D) freestanding structures thinner than 100 nm and with giant aspect ratios that often exceed 1,000,000. They may be fabricated as various quasi-2D metal-dielectric nanocomposites with tailorable properties; they are fully symmetric in an electromagnetic sense and support long-range surface plasmon polaritons. This makes nanomembranes a convenient platform for different plasmonic structures such as subwavelength plasmonic crystals and metamaterials and applications such as plasmon waveguides and ultrasensitive bio/chemical sensors. Among other advantages of nanomembrane plasmonics is the feasibility to fabricate flexible, transferable plasmonic guides applicable to different substrates and dynamically tunable through stretching. There are various approaches to multifunctionalization of nanomembranes for plasmonics, including the use of transparent conductive oxide nanoparticles, but also the incorporation of switchable ion channels. Since the natural counterpart of the artificial nanomembranes are cell membranes, the multifunctionalization of synthetic nanomembranes ensures the introduction of bionic principles into plasmonics, at the same time extending the toolbox of the available nanostructures, materials and functions.

  14. Plasmonic nanoantenna hydrophones.

    PubMed

    Maksymov, Ivan S; Greentree, Andrew D

    2016-01-01

    Ultrasound is a valuable biomedical imaging modality and diagnostic tool. Here we theoretically demonstrate that a single dipole plasmonic nanoantenna can be used as an optical hydrophone for MHz-range ultrasound. The nanoantenna is tuned to operate on a high-order plasmon mode, which provides an increased sensitivity to ultrasound in contrast to the usual approach of using the fundamental dipolar plasmon resonance. Plasmonic nanoantenna hydrophones may be useful for ultrasonic imaging of biological cells, cancer tissues or small blood vessels, as well as for Brillouin spectroscopy at the nanoscale. PMID:27612092

  15. Tomographic Measurement Of Laser-Bored Holes

    NASA Technical Reports Server (NTRS)

    Willenberg, James D.; Roy, Jack; Spiegel, Lyle B.

    1992-01-01

    Nondestructive technique detects internal variations in arrays of small holes. Inspection method checks laser-bored holes for accuracy. Combines computed tomography and digital laminography. Both types of views made at many parallel planes within plate. System prints out tables of measured and standard deviation of diameter at all planes for each hole.

  16. Black holes

    PubMed Central

    Brügmann, B.; Ghez, A. M.; Greiner, J.

    2001-01-01

    Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries. PMID:11553801

  17. Activation Energies of Plasmonic Catalysts.

    PubMed

    Kim, Youngsoo; Dumett Torres, Daniel; Jain, Prashant K

    2016-05-11

    The activation energy of a catalytic reaction serves not only as a metric of the efficacy of a catalyst but also as a potential indicator of mechanistic differences between the catalytic and noncatalytic reaction. However, activation energies are quite underutilized in the field of photocatalysis. We characterize in detail the effect of visible light excitation on the activation enthalpy of an electron transfer reaction photocatalyzed by plasmonic Au nanoparticles. We find that in the presence of visible light photoexcitation, the activation enthalpy of the Au nanoparticle-catalyzed electron transfer reaction is significantly reduced. The reduction in the activation enthalpy depends on the excitation wavelength, the incident laser power, and the strength of a hole scavenger. On the basis of these results, we argue that the activation enthalpy reduction is directly related to the photoelectrochemical potential built-up on the Au nanoparticle under steady-state light excitation, analogous to electrochemical activation. Under optimum light excitation conditions, a potential as high as 240 mV is measured. The findings constitute more precise insights into the mechanistic role and energetic contribution of plasmonic excitation to chemical reactions catalyzed by transition metal nanoparticles. PMID:27064549

  18. Plasmon tsunamis on metallic nanoclusters.

    PubMed

    Lucas, A A; Sunjic, M

    2012-03-14

    A model is constructed to describe inelastic scattering events accompanying electron capture by a highly charged ion flying by a metallic nanosphere. The electronic energy liberated by an electron leaving the Fermi level of the metal and dropping into a deep Rydberg state of the ion is used to increase the ion kinetic energy and, simultaneously, to excite multiple surface plasmons around the positively charged hole left behind on the metal sphere. This tsunami-like phenomenon manifests itself as periodic oscillations in the kinetic energy gain spectrum of the ion. The theory developed here extends our previous treatment (Lucas et al 2011 New J. Phys. 13 013034) of the Ar(q+)/C(60) charge exchange system. We provide an analysis of how the individual multipolar surface plasmons of the metallic sphere contribute to the formation of the oscillatory gain spectrum. Gain spectra showing characteristic, tsunami-like oscillations are simulated for Ar(15+) ions capturing one electron in distant collisions with Al and Na nanoclusters. PMID:22353847

  19. Plasmonic nanohelix metamaterials with tailorable giant circular dichroism

    NASA Astrophysics Data System (ADS)

    Gibbs, J. G.; Mark, A. G.; Eslami, S.; Fischer, P.

    2013-11-01

    Plasmonic nanohelix arrays are shown to interact with electromagnetic fields in ways not typically seen with ordinary matter. Chiral metamaterials (CMMs) with feature sizes small with respect to the wavelength of visible light are a promising route to experimentally achieve such phenomena as negative refraction without the need for simultaneously negative ɛ and μ. Here we not only show that giant circular dichroism in the visible is achievable with hexagonally arranged plasmonic nanohelix arrays, but that we can precisely tune the optical activity via morphology and lattice spacing. The discrete dipole approximation is implemented to support experimental data.

  20. Plasmonic interferometers: From physics to biosensing applications

    NASA Astrophysics Data System (ADS)

    Zeng, Xie

    Optical interferometry has a long history and wide range of applications. In recent years, plasmonic interferometer arouses great interest due to its compact size and enhanced light-matter interaction. They have demonstrated attractive applications in biomolecule sensing, optical modulation/switching, and material characterization, etc. In this work, we first propose a practical far-field method to extract the intrinsic phase dispersion, revealing important phase information during interactions among free-space light, nanostructure, and SPs. The proposed approach is confirmed by both simulation and experiment. Then we design novel plasmonic interferometer structure for sensitive optical sensing applications. To overcome two major limitations suffered by previously reported double-slit plasmonic Mach-Zehnder interferometer (PMZI), two new schemes are proposed and investigated. (1) A PMZI based on end-fire coupling improves the SP coupling efficiency and enhance the interference contrast more than 50 times. (2) In another design, a multi-layered metal-insulator-metal PMZI releases the requirement for single-slit illumination, which enables sensitive, high-throughput sensing applications based on intensity modulation. We develop a sensitive, low-cost and high-throughput biosensing platform based on intensity modulation using ring-hole plasmonic interferometers. This biosensor is then integrated with cell-phone-based microscope, which is promising to develop a portable sensor for point-of-care diagnostics, epidemic disease control and food safety monitoring.