Science.gov

Sample records for plast reconstr surg

  1. Surges

    NASA Astrophysics Data System (ADS)

    Shibata, K.; Murdin, P.

    2000-11-01

    Surges are cool plasma jets ejected from small flare-like chromospheric bright points, such as subflares or Ellerman bombs (moustaches) near sunspots (see SOLAR CHROMOSPHERE: ELLERMAN BOMBS). They are a kind of active prominences, usually observed in Hα at ground-based observatories, although space observations (such as with EUV telescope) also detect surges. Figure 1 shows a typical example of a...

  2. PLAST: parallel local alignment search tool for database comparison

    PubMed Central

    Nguyen, Van Hoa; Lavenier, Dominique

    2009-01-01

    Background Sequence similarity searching is an important and challenging task in molecular biology and next-generation sequencing should further strengthen the need for faster algorithms to process such vast amounts of data. At the same time, the internal architecture of current microprocessors is tending towards more parallelism, leading to the use of chips with two, four and more cores integrated on the same die. The main purpose of this work was to design an effective algorithm to fit with the parallel capabilities of modern microprocessors. Results A parallel algorithm for comparing large genomic banks and targeting middle-range computers has been developed and implemented in PLAST software. The algorithm exploits two key parallel features of existing and future microprocessors: the SIMD programming model (SSE instruction set) and the multithreading concept (multicore). Compared to multithreaded BLAST software, tests performed on an 8-processor server have shown speedup ranging from 3 to 6 with a similar level of accuracy. Conclusion A parallel algorithmic approach driven by the knowledge of the internal microprocessor architecture allows significant speedup to be obtained while preserving standard sensitivity for similarity search problems. PMID:19821978

  3. Centrifugal Compressor Surge Controlled

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2003-01-01

    It shows the variation in compressor mass flow with time as the mass flow is throttled to drive the compressor into surge. Surge begins where wide variations in mass flow occur. Air injection is then turned on to bring about a recovery from the initial surge condition and stabilize the compressor. The throttle is closed further until surge is again initiated. Air injection is increased to again recover from the surge condition and stabilize the compressor.

  4. Compressor surge control method

    SciTech Connect

    Dziubakowski, D.J.; Keys, M.A.I.V.; Shaffer, J.J.

    1990-02-13

    This patent describes a method of controlling surge in a centrifugal compressor having a predetermined surge condition line and providing a combined output with a base load means. It comprises: establishing a main surge control line offset from the centrifugal compressor surge condition line according to a function of pressure differentials across the centrifugal compressor and across an orifice in the inlet line of the centrifugal compressor; establishing a feed forward control signal which is a function of a variable associated with the base load means which may cause the surge condition in the centrifugal compressor; and establishing an anticipatory surge control line offset from the main surge control line as a function of the established main surge control line and the established feed forward control signal.

  5. Pressure surge attenuator

    DOEpatents

    Christie, Alan M.; Snyder, Kurt I.

    1985-01-01

    A pressure surge attenuation system for pipes having a fluted region opposite crushable metal foam. As adapted for nuclear reactor vessels and heads, crushable metal foam is disposed to attenuate pressure surges.

  6. Karakoram glacier surge dynamics

    NASA Astrophysics Data System (ADS)

    Quincey, D. J.; Braun, M.; Glasser, N. F.; Bishop, M. P.; Hewitt, K.; Luckman, A.

    2011-09-01

    We examine the surges of five glaciers in the Pakistan Karakoram using satellite remote sensing to investigate the dynamic nature of surges in this region and how they may be affected by climate. Surface velocity maps derived by feature-tracking quantify the surge development spatially in relation to the terminus position, and temporally with reference to seasonal weather. We find that the season of surge initiation varies, that each surge develops gradually over several years, and that maximum velocities are recorded within the lowermost 10 km of the glacier. Measured peak surge velocities are between one and two orders of magnitude greater than during quiescence. We also note that two of the glaciers are of a type not previously reported to surge. The evidence points towards recent Karakoram surges being controlled by thermal rather than hydrological conditions, coinciding with high-altitude warming from long-term precipitation and accumulation patterns.

  7. Compressor surge counter

    DOEpatents

    Castleberry, Kimberly N.

    1983-01-01

    A surge counter for a rotating compressor is provided which detects surging by monitoring the vibration signal from an accelerometer mounted on the shaft bearing of the compressor. The circuit detects a rapid increase in the amplitude envelope of the vibration signal, e.g., 4 dB or greater in less than one second, which is associated with a surge onset and increments a counter. The circuit is rendered non-responsive for a period of about 5 seconds following the detection which corresponds to the duration of the surge condition. This prevents multiple registration of counts during the surge period due to rapid swings in vibration amplitude during the period.

  8. Compressor surge prevention

    SciTech Connect

    McLeister, L.

    1995-09-01

    One of the more difficult challenges facing compressor and control engineers is designing compressor control and anti-surge packages that maximize efficiency while maintaining safe compressor operating conditions. This paper focuses specifically on centrifugal compressor anti-surge philosophies. The conditions that precipitate surge in centrifugal compressors will be explored along with risk reduction techniques. Axial and reciprocating compressors have slightly different characteristics and are topics for another discussion.

  9. Deep FIFO Surge Buffer

    NASA Technical Reports Server (NTRS)

    Temple, Gerald; Siegel, Marc; Amitai, Zwie

    1991-01-01

    First-in/first-out (FIFO) temporarily stores short surges of data generated by data-acquisition system at excessively high rate and releases data at lower rate suitable for processing by computer. Size and complexity reduced while capacity enhanced by use of newly developed, sophisticated integrated circuits and by "byte-folding" scheme doubling effective depth and data rate.

  10. Svalbard surging glacier landsystems

    NASA Astrophysics Data System (ADS)

    Lovell, Harold; Benn, Douglas; Lukas, Sven; Flink, Anne

    2014-05-01

    The percentage of Svalbard glaciers thought to be of surge-type is somewhere between 13-90% according to different sources variously based on statistical analysis and observations of diagnostic glaciological and geomorphological features, e.g. looped moraines. Developing a better understanding of which of these figures, if either, is most realistic is important in the context of glacier dynamics and related contributions of small glaciers and ice caps to sea level change in the immediate future. We present detailed geomorphological assessments of the margins of several known surge-type glaciers in Svalbard in order to update and improve the existing framework by which they are identified, and to provide a foundation for future reassessments of the surge-type glacier population based on distinct landform-sediment assemblages. Three landsystems are proposed: (1) Surges of small valley glaciers produce a prominent ice-cored latero-frontal moraine at their surge maximum and are characterised by an inner zone of ice stagnation terrain (hummocky topography, kettle lakes, debris flows) with no or only very few poorly-defined bedforms (crevasse squeeze ridges, eskers and flutes) and no recessional moraines. Many of these glaciers may have surged in the past but show no signs that they have the capability to do so again in the future. (2) Larger land-terminating glaciers, often with several tributaries, typically produce a push moraine complex which contains evidence for multiple advances, as identified from ridge-meltwater channel relationships. The inner zone often contains a large lagoon, partly dammed by the push moraine complex, and widespread ice stagnation terrain. Crevasse squeeze ridges, eskers and flutes are well-defined but small and limited in number and distribution. (3) Surges of large tidewater glaciers produce distinctive, often multi-generational, landform assemblages both in submarine and lateral terrestrial positions. The well-preserved submarine record

  11. Surge-damping vacuum valve

    DOEpatents

    Bullock, Jack C.; Kelly, Benjamin E.

    1980-01-01

    A valve having a mechanism for damping out flow surges in a vacuum system which utilizes a slotted spring-loaded disk positioned adjacent the valve's vacuum port. Under flow surge conditions, the differential pressure forces the disk into sealing engagement with the vacuum port, thereby restricting the flow path to the slots in the disk damping out the flow surge.

  12. Communicating Storm Surge Forecast Uncertainty

    NASA Astrophysics Data System (ADS)

    Troutman, J. A.; Rhome, J.

    2015-12-01

    When it comes to tropical cyclones, storm surge is often the greatest threat to life and property along the coastal United States. The coastal population density has dramatically increased over the past 20 years, putting more people at risk. Informing emergency managers, decision-makers and the public about the potential for wind driven storm surge, however, has been extremely difficult. Recently, the Storm Surge Unit at the National Hurricane Center in Miami, Florida has developed a prototype experimental storm surge watch/warning graphic to help communicate this threat more effectively by identifying areas most at risk for life-threatening storm surge. This prototype is the initial step in the transition toward a NWS storm surge watch/warning system and highlights the inundation levels that have a 10% chance of being exceeded. The guidance for this product is the Probabilistic Hurricane Storm Surge (P-Surge) model, which predicts the probability of various storm surge heights by statistically evaluating numerous SLOSH model simulations. Questions remain, however, if exceedance values in addition to the 10% may be of equal importance to forecasters. P-Surge data from 2014 Hurricane Arthur is used to ascertain the practicality of incorporating other exceedance data into storm surge forecasts. Extracting forecast uncertainty information through analyzing P-surge exceedances overlaid with track and wind intensity forecasts proves to be beneficial for forecasters and decision support.

  13. High conductance surge cable

    DOEpatents

    Murray, Matthew M.; Wilfong, Dennis H.; Lomax, Ralph E.

    1998-01-01

    An electrical cable for connecting transient voltage surge suppressers to ectrical power panels. A strip of electrically conductive foil defines a longitudinal axis, with a length of an electrical conductor electrically attached to the metallic foil along the longitudinal axis. The strip of electrically conductive foil and the length of an electrical conductor are covered by an insulating material. For impedance matching purposes, triangular sections can be removed from the ends of the electrically conductive foil at the time of installation.

  14. High conductance surge cable

    DOEpatents

    Murray, M.M.; Wilfong, D.H.; Lomax, R.E.

    1998-12-08

    An electrical cable for connecting transient voltage surge suppressors to electrical power panels. A strip of electrically conductive foil defines a longitudinal axis, with a length of an electrical conductor electrically attached to the metallic foil along the longitudinal axis. The strip of electrically conductive foil and the length of an electrical conductor are covered by an insulating material. For impedance matching purposes, triangular sections can be removed from the ends of the electrically conductive foil at the time of installation. 6 figs.

  15. A Motor Surge Voltage Suppression Method with Surge Energy Regeneration

    NASA Astrophysics Data System (ADS)

    Shimizu, Toshihisa; Saito, Mikiya; Nakamura, Masanobu; Miyazaki, Tomoo

    A method for motor surge voltage suppression is proposed in this paper. The proposed method has following advantages: (1) an LC filter is not required for suppressing the surge voltage at the motor terminal, (2) the energy stored in the main power cable, which cause the motor surge voltage, is regenerated to the inverter dc bus line, and (3) effective surge suppression is achieved stably regardless of the power cable length and power rating of the system. Consequently, the proposed method has advantage in volume and efficiency compared to conventional surge suppression methods. In this paper, the circuit configuration of the system is shown and the operation principle of the proposed method is explained. Effectiveness of this method is confirmed through the experimental results.

  16. Surge and stall in centrifugal compressors

    NASA Astrophysics Data System (ADS)

    Vandenbraembussche, R.

    Surge and stall are defined, and experimental and theoretical investigations of surge in compressors, stall in vaned flow passages, and stall in vaneless flow passages are reviewed. Ways to delay surge and stall are outlined. Actions to influence the surge limit during design or to correct for an eventual misprediction often decrease efficiency when the range has to be increased. The main action to avoid surge and stall is a safe design of impeller and diffuser and a correct matching of both components.

  17. Experimental Investigation of a Surge Control on a Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Novik, David; Heppler, Herbert; Stiglic, Paul M

    1955-01-01

    The action of a surge control that reduced fuel flow after receiving an indication of surge initiation was investigated. The control system could successfully limit surge to only 1 cycle but could not completely eliminate surge. Inability to interrupt a surge cycle before its completion was attributed to the conclusion that a surge cycle is irreversible.

  18. Is Seasonal Timing of Surge Initiation or Termination Related to Surge Character and Development?

    NASA Astrophysics Data System (ADS)

    Jiskoot, H.; Low, R. H.

    2011-12-01

    While glacier surging is generally not induced by external climate forcing, the character of surges may depend on climate and weather conditions. Cumulative mass balance can control surge interval, frequency, occurrence and vigour, and the timing of surge initiation and termination is suggested to be related to weather and season, where episodes of exceptional melting may be precursors of surges and their termination. In temperate glaciers, surge initiation is suggested to coincide with the existence of inefficient subglacial drainage, which is unable to discharge surplus melt, while surge termination is suggested to coincide with a sudden increase in subglacial drainage efficiency and an abundance of surface meltwater. This implies surge initiation in winter or spring and termination in summer. Surge initiation in thermally-regulated surges of polythermal glaciers may not be directly dependent on the influx of surface meltwater, but rather on reaching a critical thickness combined with water storage at the bed. These surges are therefore suggested to potentially start and terminate in any season. Although seasonal timing of surges in a handful of (mainly Alaskan) glaciers concurs with the hypothesis that temperate glaciers start (stop) surging in a season of low (high) water input, there are examples of surge initiations in seasons other than winter or spring and terminations in seasons other than summer. This paper presents the first comprehensive analysis of seasonal timing of surges worldwide. Of 30 surge events in 26 glaciers with known surge development in Alaska, Greenland, Svalbard, Iceland, the Pamir and Karakoram, we analysed surge initiation and termination dates and potential correlations between seasonal timing of surges and surge development (duration and progression). Following Murray et al. (2003) surges were classified as Alaskan-type (temperate glaciers with sudden surge initiation/termination and a short surge phase: 22 surges of 18 glaciers) or

  19. Surge propagation in gas insulated substation

    SciTech Connect

    Matsumura, S.; Nitta, T.

    1981-06-01

    Surge propagation performance in a 550 kV gas insulated substation is studied experimentally and by computer simulation using the Electro-Magnetic Transients Program. Extra capacitance added to the system by the components of GIS such as potential devices, branch buses, circuit breakers deform the wave shape of the travelling surges. A simple modeling technique to represent GIS in surge analysis is proposed and its applicability is proved. Paper No. 80 SM 658-5.

  20. Observing storm surges from satellite altimetry

    NASA Astrophysics Data System (ADS)

    Han, Guoqi

    2016-07-01

    Storm surges can cause catastrophic damage to properties and loss of life in coastal communities. Thus it is important to enhance our capabilities of observing and forecasting storm surges for mitigating damage and loss. In this presentation we show examples of observing storm surges around the world using nadir satellite altimetry, during Hurricane Sandy, Igor, and Isaac, as well as other cyclone events. The satellite observations are evaluated against tide-gauge observations and discussed for dynamic mechanisms. We also show the potential of a new wide-swath altimetry mission, the Surface Water and Ocean Topography (SWOT), for observing storm surges.

  1. Extreme Storm Surges in the North Sea

    NASA Astrophysics Data System (ADS)

    Goennert, G.; Buß, Th.; Mueller, O.; Thumm, S.

    2009-04-01

    Extreme Storm Surges in the North Sea Gabriele Gönnert, Olaf Müller, Thomas Buß and Sigrid Thumm Climate Change will cause a rise of the sea level and probably more frequent and more violent storm surges. This has serious consequences for the safety of people as well as for their values and assets behind the dikes. It is therefore inevitable to first assess how sea level rise and an extreme storm surge event designes. In a second step it is possible to determine the risk for specific locations and develop strategies. The Project XtremRisk - Extreme Storm Surges at the North Sea Coast and in Estuaries. Risk calculation and risk strategies, funded by the German Federal Government will help answering these questions. The „Source-Pathway-Receptor" Concept will be used as a basis for risk analysis and development of new strategies. The Project offers methods to assess the development of extreme events under the conditions of today. Under conditions reflecting the climate change it will be tried to design an extreme event. For these three main points will be considered: a) Analysis and calculation of each factor, which produce a storm surge and its maximum level occurring in the last 100 years. These are: - maximum surge level: surge (due to the wind), - influence of the tide and the interaction between surge and tide, - influence of external surges , b) The hydrodynamics of a storm surge cause nonlinear effects in the interaction of the named factors. These factors and effects will both be taken into account to calculate the magnitude of the extreme storm surge. This step is very complex and need additional examination by numerical models. c) Analysis of the different scenarios to mean sea level rise and to the increase of wind speed due to the climate change. The presentation will introduce methods and show first results of the analysis of extreme events and the mean sea level rise.

  2. A Global Database of Tropical Storm Surges

    NASA Astrophysics Data System (ADS)

    Needham, Hal F.; Keim, Barry D.; Sathiaraj, David; Shafer, Mark

    2013-06-01

    Tropical cyclone-generated storm surges are among the world's most deadly and costly natural disasters. The destructive nature of this hazard was clearly seen last fall, as Hurricane Sandy generated a devastating storm surge along the mid-Atlantic coast. The storm killed 147 people and caused approximately $50 billion in economic losses [Blake et al., 2012].

  3. Global warming and extreme storm surges

    NASA Astrophysics Data System (ADS)

    Grinsted, Aslak

    2013-04-01

    I will show empirical evidence for how global warming has changed extreme storm surge statistics for different regions in the world. Are there any detectable changes beyond what we expect from sea level rise. What does this suggest about the future of hurricane surges such as from hurricane Katrina and superstorm Sandy?

  4. Conductive surge testing of circuits and systems

    NASA Technical Reports Server (NTRS)

    Richman, P.

    1980-01-01

    Techniques are given for conductive surge testing of powered electronic equipment. The correct definitions of common and normal mode are presented. Testing requires not only spike-surge generators with a suitable range of open-circuit voltage and short-circuit current waveshapes, but also appropriate means, termed couplers, for connecting test surges to the equipment under test. Key among coupler design considerations is minimization of fail positives resulting from reduction in delivered surge energy due to the coupler. Back-filters and the lines on which they are necessary, are considered as well as ground-fault and ground potential rise. A method for monitoring delivered and resulting surge waves is mentioned.

  5. A Study of Surges: II. On the Relationship between Chromospheric Surges and Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Liu, Yu

    2008-05-01

    Liu et al. ( Astrophys. J. 628, 1056, 2005a) described one surge coronal mass ejection (CME) event showing a close relationship between solar chromospheric surge ejection and CME that had not been noted before. In this work, large Hα surges (>72 Mm, or 100 arcsec) are studied. Eight of these were associated with CMEs. According to their distinct morphological features, Hα surges can be classified into three types: jetlike, diffuse, and closed loop. It was found that all of the jetlike surges were associated with jetlike CMEs (with angular widths ≤30 degrees); the diffuse surges were all associated with wide-angle CMEs ( e.g., halo); the closed-loop surges were not associated with CMEs. The exclusive relation between Hα surges and CMEs indicates difference in magnetic field configurations. The jetlike surges and related narrow CMEs propagate along coronal fields that are originally open. The unusual transverse mass motions in the diffuse surges are suggested to be due to magnetic reconnections in the corona that produce wide-angle CMEs. For the closed-loop surges, their paths are just outlining stable closed loops close to the solar surface. Thus no CMEs are associated with them.

  6. Physical attributes of hurricane surges and their role in surge warning

    NASA Astrophysics Data System (ADS)

    Irish, J. L.

    2012-12-01

    In the last decade, the US has experienced some of its largest surges and hurricane-related damages on record. Effective evacuation in advance of a hurricane strike requires accurate estimation of the hurricane surge hazard that effectively conveys risk not only to government decision makers but also to the general public. Two primary challenges exist with the current structure for surge warning. First, existing computational methods for developing accurate, quantitative surge forecasts, namely surge height and inundation estimation, are limited by time and computational resources. Second, due primarily to the popularity and wide use of the Saffir-Simpson wind scale to convey the complete hurricane hazard, the public's perception of surge hazard is inaccurate. Here, we use dimensionless scaling and hydrodynamics arguments to quantify the influence of hurricane variables and regional geographic characteristics on the surge response. It will be shown that hurricane surge primarily scales with the hurricane's central pressure, and size and with continental shelf width at the landfall location (Irish et al. 2009, Nat. Haz.; Song et al. in press, Nat. Haz.). Secondary influences include the hurricane's forward speed and path. The developed physical scaling is applied in two ways: (1) as a means for expanding the utility of computational simulations for real-time surge height forecasting and (2) as a means to convey relative surge hazard via a readily evaluated algebraic surge scale. In the first application, the use of this physical scaling to develop surge response functions (SRF) enables instantaneous algebraic calculation of maximum surge height at any location of interest for any hurricane meteorological condition, without loss of accuracy gained via high-resolution computational simulation. When coupled with joint probability statistics, the use of SRFs enables rapid development of continuous probability density functions for probabilistic surge forecasting (Irish

  7. Properties of the Central American cold surge

    NASA Technical Reports Server (NTRS)

    Mcguirk, James P.; Reding, Philip J.; Zhang, Yuxia

    1993-01-01

    The Central American cold surge (CACS) is a frontal incursion from the United States into Central America and resembles the East Asian cold surge. They occur more frequently than analyzed by NMC or by published results, based on our observations between 1979 and 1990. Climatology and structure are quantified, based on surface and upper air stations throughout Central America and satellite products from GOES visible and infrared sensors and SSM/I precipitable water and rain rate sensors.

  8. Storm-surge prediction at the Tanshui estuary: development model for maximum storm surges

    NASA Astrophysics Data System (ADS)

    Tsai, C.-P.; You, C.-Y.; Chen, C.-Y.

    2013-12-01

    This study applies artificial networks, including both the supervised multilayer perception neural network and the radial basis function neural network to the prediction of storm-surges at the Tanshui estuary in Taiwan. The optimum parameters for the prediction of the maximum storm-surges based on 22 previous sets of data are discussed. Two different neural network methods are adopted to build models for the prediction of storm surges and the importance of each factor is also discussed. The factors relevant to the maximum storm surges, including the pressure difference, maximum wind speed and wind direction at the Tanshui Estuary and the flow rate at the upstream station, are all investigated. These good results can further be applied to build a neural network model for prediction of storm surges with time series data.

  9. Base surge in recent volcanic eruptions

    USGS Publications Warehouse

    Moore, J.G.

    1967-01-01

    A base surge, first identified at the Bikini thermonuclear undersea explosion, is a ring-shaped basal cloud that sweeps outward as a density flow from the base of a vertical explosion column. Base surges are also common in shallow underground test explosions and are formed by expanding gases which first vent vertically and then with continued expansion rush over the crater lip (represented by a large solitary wave in an underwater explosion), tear ejecta from it, and feed a gas-charged density flow, which is the surge cloud. This horizontally moving cloud commonly has an initial velocity of more than 50 meters per second and can carry clastic material many kilometers. Base surges are a common feature of many recent shallow, submarine and phreatic volcanic eruptions. They transport ash, mud, lapilli, and blocks with great velocity and commonly sandblast and knock down trees and houses, coat the blast side with mud, and deposit ejecta at distances beyond the limits of throw-out trajectories. Close to the eruption center, the base surge can erode radial channels and deposit material with dune-type bedding. ?? 1967 Stabilimento Tipografico Francesco Giannini & Figli.

  10. Electrodynamics of the westward traveling surge

    NASA Technical Reports Server (NTRS)

    Kan, J. R.; Kamide, Y.

    1985-01-01

    It is shown that the global convection pattern, the ionospheric current, and the field-aligned current associated with the westward traveling surge in the asymptotic state can be modeled quantitatively as consequences of a blockage of the Hall current from closure in the magnetosphere via field-aligned currents. The conductivity is allowed to increase self-consistently with increasing upward field-aligned current in the model. This inclusion of the self-consistent enhanced ionospheric conductivity due to discrete auroral precipitations is found to generate a localized intense westward electrojet on the poleward side of the Harang discontinuity. The westward electrojet is also found to rotate counterclockwise, merging into the eastward electrojet around the leading edge of the surge. Thus the major features of the westward traveling surge can be reproduced reasonably well in the model.

  11. Global Storm Surge Forecasting and Information System

    NASA Astrophysics Data System (ADS)

    Buckman, Lorraine; Verlaan, Martin; Weerts, Albrecht

    2015-04-01

    The Global Storm Surge Forecasting and Information System is a first-of-its-kind operational forecasting system for storm surge prediction on a global scale, taking into account tidal and extra-tropical storm events in real time. The system, built and hosted by Deltares, provides predictions of water level and surge height up to 10 days in advance from numerical simulations and measurement data integrated within an operational IT environment. The Delft-FEWS software provides the operational environment in which wind forecasts and measurement data are collected and processed, and serves as a platform from which to run the numerical model. The global Delft3D model is built on a spherical, flexible mesh with a resolution around 5 km in near-shore coastal waters and an offshore resolution of 50 km to provide detailed information at the coast while limiting the computational time required. By using a spherical grid, the model requires no external boundary conditions. Numerical global wind forecasts are used as forcing for the model, with plans to incorporate regional meteorological forecasts to better capture smaller, tropical storms using the Wind Enhanced Scheme for generation of tropical winds (WES). The system will be automated to collect regional wind forecasts and storm warning bulletins which are incorporated directly into the model calculations. The forecasting system provides real-time water level and surge information in areas that currently lack local storm surge prediction capability. This information is critical for coastal communities in planning their flood strategy and during disaster response. The system is also designed to supply boundary conditions for coupling finer-scale regional models. The Global Storm Surge Forecasting and Information System is run within the Deltares iD-Lab initiative aiming at collaboration with universities, consultants and interested organizations. The results of the system will be made available via standards such as net

  12. Computer-assisted mapping of pyroclastic surges.

    PubMed

    Malin, M C; Sheridan, M F

    1982-08-13

    Volcanic hazard maps of surge boundaries and deposit thickness can be created by using a simplified eruption model based on an "energy line" concept of pyroclastic surge and flow emplacement. Computer image-processing techniques may be used to combine three-dimensional representations of the energy relations of pyroclasts moving under the influence of gravity (defined by an "energy cone") with digital topographic models of volcanoes to generate theoretical hazard maps. The deposit boundary and thickness calculated for the 18 May 1980 eruption of Mount St. Helens are qualitatively similar to those actually observed. PMID:17817534

  13. The Big Flood: North Sea storm surge.

    PubMed

    McRobie, Allan; Spencer, Tom; Gerritsen, Herman

    2005-06-15

    In the 50 years since the catastrophic southern North Sea storm surge of 31 January-1 February 1953, there have been technological advances in the engineering of flood protection, increased understanding of physical processes in shallow seas and estuaries, and developments in the mathematical statistics of extreme events. This introductory paper reviews how the scientific understanding of surge events, their impacts and the human responses to them is evolving on many fronts, often across disciplinary boundaries. The question of how the long-term nature of the problem itself will be influenced by possible climate, land use and policy changes is addressed, along with their associated uncertainties. PMID:16191649

  14. Surge discharge capability and thermal stability of a metal oxide surge arrester

    SciTech Connect

    Kan, M.; Kojima, S.; Nishiwaki, S.; Sato, T.; Yanabu, S.

    1983-02-01

    The surge discharge capability and the thermal stability of a metal oxide surge arrester were examined experimentally. It was found that the breakdown energy is nearly the same against the switching surge and the temporary overvoltage of various peak values and time durations. Heat dissipation capability of an 84kV porcelain-type model arrester was examined and found to be less than that of a small model unit, while this relation of the value had been considered opposite in a previously published paper. From these experimental data, the limit at high operation stress was found to be determined by the thermal stability rather than by the discharge capability

  15. Exercising Tactically for Taming Postmeal Glucose Surges.

    PubMed

    Chacko, Elsamma

    2016-01-01

    This review seeks to synthesize data on the timing, intensity, and duration of exercise found scattered over some 39 studies spanning 3+ decades into optimal exercise conditions for controlling postmeal glucose surges. The results show that a light aerobic exercise for 60 min or moderate activity for 20-30 min starting 30 min after meal can efficiently blunt the glucose surge, with minimal risk of hypoglycemia. Exercising at other times could lead to glucose elevation caused by counterregulation. Adding a short bout of resistance exercise of moderate intensity (60%-80%  VO2max) to the aerobic activity, 2 or 3 times a week as recommended by the current guidelines, may also help with the lowering of glucose surges. On the other hand, high-intensity exercise (>80%  VO2max) causes wide glucose fluctuations and its feasibility and efficacy for glucose regulation remain to be ascertained. Promoting the kind of physical activity that best counters postmeal hyperglycemia is crucial because hundreds of millions of diabetes patients living in developing countries and in the pockets of poverty in the West must do without medicines, supplies, and special diets. Physical activity is the one tool they may readily utilize to tame postmeal glucose surges. Exercising in this manner does not violate any of the current guidelines, which encourage exercise any time. PMID:27073714

  16. SURGE: Smart Ultrasound Remote Guidance Experiment

    NASA Technical Reports Server (NTRS)

    Peterson, Sean

    2009-01-01

    Exploration-class missions lead to longer communication delays with mission control. May not always have communication capability to stream real-time ultrasound images. SURGE explores use of a "just-in-time" learning tool, called OPEL = On-Board Proficiency Enhancer Light as an aid to a hypothetical crew medical officer working autonomously.

  17. Exercising Tactically for Taming Postmeal Glucose Surges

    PubMed Central

    Chacko, Elsamma

    2016-01-01

    This review seeks to synthesize data on the timing, intensity, and duration of exercise found scattered over some 39 studies spanning 3+ decades into optimal exercise conditions for controlling postmeal glucose surges. The results show that a light aerobic exercise for 60 min or moderate activity for 20–30 min starting 30 min after meal can efficiently blunt the glucose surge, with minimal risk of hypoglycemia. Exercising at other times could lead to glucose elevation caused by counterregulation. Adding a short bout of resistance exercise of moderate intensity (60%–80%  VO2max) to the aerobic activity, 2 or 3 times a week as recommended by the current guidelines, may also help with the lowering of glucose surges. On the other hand, high-intensity exercise (>80%  VO2max) causes wide glucose fluctuations and its feasibility and efficacy for glucose regulation remain to be ascertained. Promoting the kind of physical activity that best counters postmeal hyperglycemia is crucial because hundreds of millions of diabetes patients living in developing countries and in the pockets of poverty in the West must do without medicines, supplies, and special diets. Physical activity is the one tool they may readily utilize to tame postmeal glucose surges. Exercising in this manner does not violate any of the current guidelines, which encourage exercise any time. PMID:27073714

  18. Instability and surge development in debris flows

    NASA Astrophysics Data System (ADS)

    Zanuttigh, Barbara; Lamberti, Alberto

    2007-09-01

    Debris flows are often described as a succession of surges, which are characterized by enhanced peak depth and velocity and therefore by a tremendous increase of their destructive power. For given characteristics of the base flow, if the channel is sufficiently long to allow an appreciable wave development, the linear stability analysis in shallow streams is shown to provide a reasonable prediction of the critical flow condition and of the instability growth rate. The one-dimensional (1-D) theory, however, does not allow the determination of the wave period of the fastest growing perturbations. Debris waves most frequently develop following a mechanism similar to water roll waves: Instabilities grow up becoming clearly distinguishable waves, and then waves overtake one another with increasing wave period and amplitude. The typical hydrograph of a multiple-peak event is shown to be composed of a first surge, which is usually characterized by the highest depth, the longest duration, the greatest erosive power, and the most symmetrical shape, and of secondary waves that burst on the flow tail in the recession phase. The characteristics of the first surge can be explained by two different mechanisms. All waves that rise up near the flood crest run faster than this first surge and coalesce into it, causing its high depth and great volume. Moreover, segregation during the flow induces the concentration of boulders at the fronts, contributing to its depth enhancement, erosive power, and symmetrical shape. When a debris surge impacts a structure, the force pattern can be interpreted as the superposition of the reflection of the bouldery front and the formation of a vertical muddy jet due to the impact of the front wedge. Wave reflection can be described by a 1-D mass and momentum balance across the front, whereas the pressure impulse, due to the incompressibility of the interstitial fluid, can be analyzed through inviscid formulations validated for the representation of

  19. View of Stand Pipe (Surge Tank) from FS 502. Looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Stand Pipe (Surge Tank) from FS 502. Looking northeast - Childs-Irving Hydroelectric Project, Childs System, Stand Pipe (Surge Tank), Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  20. 7 CFR 58.237 - Condensed surge supply.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Condensed surge supply. 58.237 Section 58.237... Procedures § 58.237 Condensed surge supply. Surge tanks or balance tanks if used between the evaporators and dryer shall be used to hold only the minimum amount of condensed product necessary for a uniform flow...

  1. 7 CFR 58.237 - Condensed surge supply.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Condensed surge supply. 58.237 Section 58.237... Procedures § 58.237 Condensed surge supply. Surge tanks or balance tanks if used between the evaporators and dryer shall be used to hold only the minimum amount of condensed product necessary for a uniform flow...

  2. 7 CFR 58.237 - Condensed surge supply.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Condensed surge supply. 58.237 Section 58.237... Procedures § 58.237 Condensed surge supply. Surge tanks or balance tanks if used between the evaporators and dryer shall be used to hold only the minimum amount of condensed product necessary for a uniform flow...

  3. 7 CFR 58.237 - Condensed surge supply.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Condensed surge supply. 58.237 Section 58.237... Procedures § 58.237 Condensed surge supply. Surge tanks or balance tanks if used between the evaporators and dryer shall be used to hold only the minimum amount of condensed product necessary for a uniform flow...

  4. 7 CFR 58.237 - Condensed surge supply.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Condensed surge supply. 58.237 Section 58.237... Procedures § 58.237 Condensed surge supply. Surge tanks or balance tanks if used between the evaporators and dryer shall be used to hold only the minimum amount of condensed product necessary for a uniform flow...

  5. Earth Observation in aid of surge monitoring and forecasting: ESA's eSurge Project

    NASA Astrophysics Data System (ADS)

    Harwood, Phillip; Cipollini, Paolo; Snaith, Helen; Høyer, Jacob; Dwyer, Ned; Dunne, Declan; Stoffelen, Ad; Donlon, Craig

    2013-04-01

    The understanding and realistic modelling of surges supports both preparation and mitigation activities and should eventually bring enormous societal benefits, especially to some of the world's poorest countries. Earth Observation data from satellites have an important role to play in storm surge monitoring and forecasting, but the full uptake of these data by the users (such as environmental agencies and tidal prediction centres) must be first encouraged by showcasing their usefulness, and then supported by providing easy access. The European Space Agency has recognized the above needs and, through its Data User Element (DUE) programme, has initiated in 2011 the eSurge project, whose aims are: a) to contribute through Earth Observation to an integrated approach to storm surge, wave, sea-level and flood forecasting as part of a wider optimal strategy for building an improved forecast and warning capability for coastal inundation; and b) to increase the use of the advanced capabilities of ESA and other satellite data for storm surge applications. The project is led by Logica UK, with NOC (UK), DMI (Denmark), CMRC (Ireland) and KNMI (Netherlands) as scientific partners. eSurge aims to provide easy access to a wide range of relevant data for a range of historical surge events, as well as performing a series of experiments to demonstrate the value of this data, and running workshops and training courses to help users make use of the available data. The eSurge database of Earth Observation and in situ measurements for past surge events is now publicly available. In 2013 the project moves into its service demonstration phase, adding more data and events, including a demonstration near real time service. The project works closely with its users in order to meet their needs and to maximise the return of this data. A novel dataset provided by eSurge is coastal altimetry. Coastal altimetry has a prominent role to play as it measures directly the total water level envelope

  6. The use of coastal altimetry to support storm surge studies in project eSurge

    NASA Astrophysics Data System (ADS)

    Cipollini, P.; Harwood, P.; Snaith, H.; Vignudelli, S.; West, L.; Zecchetto, S.; Donlon, C.

    2012-04-01

    One of the most promising applications of the new field of coastal altimetry, i.e. the discipline aiming to recover meaningful estimates of geophysical parameters (sea level, significant wave height and wind speed) from satellite altimeter data in the coastal zone, is the study of storm surges. The understanding and realistic modelling of surges supports both preparation and mitigation activities and should eventually bring enormous societal benefits, especially to some of the world's poorest countries (like Bangladesh). Earth Observation data have an important role to play in storm surge monitoring and forecasting, but the full uptake of these data by users (such as environmental agencies and tidal prediction centres) must first be encouraged by showcasing their usefulness, and then supported by providing easy access. Having recognized the above needs, The European Space Agency has recently launched a Data User Element (DUE) project called eSurge. The main purposes of eSurge are a) to contribute to an integrated approach to storm surge, wave, sea-level and flood forecasting through Earth Observation, as part of a wider optimal strategy for building an improved forecast and early warning capability for coastal inundation; and b) to increase the use of the advanced capabilities of ESA and other satellite data for storm surge applications. The project is led by Logica UK, with NOC (UK), DMI (Denmark), CMRC (Ireland) and KNMI (Netherlands) as scientific partners. A very important component of eSurge is the development, validation and provision of dedicated coastal altimetry products, which is the focus of the present contribution. Coastal altimetry has a prominent role to play as it measures the total water level envelope directly, and this is one of the key quantities required by storm surge applications and services. But it can also provide important information on the wave field in the coastal strip, which helps the development of more realistic wave models that in

  7. Guiding Surge Reduction Strategies via Characterization of Coastal Surge Propagation and Internal Surge Generation within a Complex Bay/Estuary System, Galveston Bay, TX

    NASA Astrophysics Data System (ADS)

    Bass, B.; Torres, J.; Irza, N.; Bedient, P. B.; Dawson, C.; Proft, J.

    2015-12-01

    In this study, Hurricane Ike (2008) and a suite of synthetic storms are simulated in order to evaluate how different hurricane landfalls, wind intensities, and radius to maximum winds influence the surge response in complex semi-enclosed bays such as Galveston Bay, located along the Texas Gulf Coast. The Advanced CIRCulation and Simulating Waves Nearshore (ADCIRC+SWAN) models are employed to quantify surge in terms of its relative coastal contributions that propagate across barrier islands and tidal inlets and subsequently into Galveston Bay, the surge generated locally within the Bay itself, and the interaction between these coastal and local components of surge. Results from this research will further the current understanding of surge interactions in bay systems and guide coastal engineering surge reduction projects that need to consider multiple lines of defense to protect complex bay/estuary systems such as Galveston Bay, TX.

  8. Hypergravity induced prolactin surge in female rats

    NASA Technical Reports Server (NTRS)

    Megory, E.; Oyama, J.

    1985-01-01

    Acute initial exposure to hypergravity (HG) was previously found to induce prolonged diestrous in rats, which was followed by return to normal estrous cycling upon more prolonged exposure to continuous HG. Bromergocryptine was found to prevent this prolonged diestrous. In this study it is found that in female rats 20 h of 3.14 G exposure (D-1 1200 h until D-2 0800 h) can induce prolactin surge at D-2 1600 h. Shorter exposure time (8 h), or exposure during a different part of the estrous cycle (19 h: from D-1 0700 h until D-2 0200 h) could not elicit this prolactin surge. Similar exposure of male rats of HG did not alter significantly their prolactin levels. It is possible that the hypothalamus of male and female rats responds differently to stimulation by HG.

  9. Pumped storage: Surge in the southeast

    SciTech Connect

    Hunt, J.M.; Hunt, R.T.

    1996-01-01

    In the past decade, there has been a surge of interest by independent power producers (IPPs) in developing pumped storage hydropower projects. However, of the 100 applicants for preliminary permits for pumped storage projects, only nine submitted license applications for development and none have been built. Two large pumped storage projects proposed by IPPs, Summit in Ohio and Mount Hope in New Jersey, received their Federal Energy Regulatory Commission (FERC) licenses in record time.

  10. Developments in a centrifugal compressor surge control -- a technology assessment

    SciTech Connect

    Botros, K.K.; Henderson, J.F. )

    1994-04-01

    There are a number of surge control schemes in current use for centrifugal compressors employed in natural gas transmission systems. Basically, these schemes consist of a set of detection devices that either anticipate surge or detect it at its inception, and a set of control devices that act to prevent surge from occurring. A patent search was conducted in an attempt to assess the level and direction of technology development over the last 20 years and to define the focus for future R D activities. In addition, the paper presents the current state of technology in three areas: surge control, surge detection, and surge suppression. Patent data obtained from on-line databases showed that most of the emphasis has been on surge control rather than on detection and control and that the current trend in surge control will likely continue toward incremental improvement of a basic or conventional surge control strategy. Various surge suppression techniques can be grouped in two categories: (1) those that are focused on better compressor interior design, and (2) others that attempt to suppress surge by external and operational means.

  11. Uncertainty in hurricane surge simulation due to land cover specification

    NASA Astrophysics Data System (ADS)

    Ferreira, Celso M.; Irish, Jennifer L.; Olivera, Francisco

    2014-03-01

    Hurricane storm surge is one of the most costly natural hazards in the United States. Numerical modeling to predict and estimate hurricane surge flooding is currently widely used for research, planning, decision making, and emergency response. Land cover plays an important role in hurricane surge numerical modeling because of its impacts on the forcing (changes in wind momentum transfer to water column) and dissipation (bottom friction) mechanisms of storm surge. In this study, the hydrodynamic model ADCIRC was used to investigate predicted surge response in bays on the central and lower Texas coast using different land cover data sets: (1) Coastal Change Analysis Program for 1996, 2001, and 2006; (2) the National Land Cover Dataset for 1992, 2001, and 2006; and (3) the National Wetlands Inventory for 1993. Hypothetical storms were simulated with varying the storm track, forward speed, central pressure, and radius to maximum wind, totaling 140 simulations. Data set choice impacts the mean of maximum surges throughout the study area, and variability in the surge prediction due to land cover data set choice strongly depends on storm characteristics and geographical location of the bay in relation to storm track. Errors in surge estimation due to land cover choice are approximately 7% of the surge value, with change in surge prediction varying by as much as 1 m, depending on location and storm condition. Finally, the impact of land cover choice on the accuracy of simulating surges for Hurricane Bret in 1999 is evaluated.

  12. Surge capacity for healthcare systems: a conceptual framework.

    PubMed

    Kaji, Amy; Koenig, Kristi L; Bey, Tareg

    2006-11-01

    This report reflects the proceedings of a breakout session, "Surge Capacity: Defining Concepts," at the 2006 Academic Emergency Medicine Consensus Conference, "Science of Surge Capacity." Although there are several general descriptions of surge capacity in the literature, there is no universally accepted standard definition specifying the various components. Thus, the objectives of this breakout session were to better delineate the components of surge capacity and to outline the key considerations when planning for surge capacity. Participants were from diverse backgrounds and included academic and community emergency physicians, economists, hospital administrators, and experts in mathematical modeling. Three essential components of surge capacity were identified: staff, stuff, and structure. The focus on enhancing surge capacity during a catastrophic event will be to increase patient-care capacity, rather than on increasing things, such as beds and medical supplies. Although there are similarities between daily surge and disaster surge, during a disaster, the goal shifts from the day-to-day operational focus on optimizing outcomes for the individual patient to optimizing those for a population. Other key considerations in defining surge capacity include psychosocial behavioral issues, convergent volunteerism, the need for special expertise and supplies, development of a standard of care appropriate for a specific situation, and standardization of a universal metric for surge capacity. PMID:16968688

  13. Developments in centrifugal compressor surge control: A technology assessment

    NASA Astrophysics Data System (ADS)

    Botros, K. K.; Henderson, J. F.

    1994-04-01

    There are a number of surge control schemes in current use for centrifugal compressors employed in natural gas transmission systems. Basically, these schemes consist of a set of detection devices that either anticipate surge or detect it at its inception, and a set of control devices that act to prevent surge from occurring. A patent search was conducted in an attempt to assess the level and direction of technology development over the last 20 years and to define the focus for future R&D activities. In addition, the paper presents the current state of technology in three areas: surge control, surge detection, and surge suppression. Patent data obtained from on-line databases showed that most of the emphasis has been on surge control rather than on detection and control and that the current trend in surge control will likely continue toward incremental improvement of a basic or conventional surge control strategy. Various surge suppression techniques can be grouped in two categories: (i) those that are focused on better compressor interior design, and (ii) others that attempt to suppress surge by external and operational means.

  14. Atlantic hurricane surge response to geoengineering

    SciTech Connect

    Moore, John C.; Grinsted, Aslak; Guo, Xiaoran; Yu, Xiaoyong; Jevrejeva, Svetlana; Rinke, Annette; Cui, Xuefeng; Kravitz, Ben; Lenton, Andrew; Watanabe, Shingo; Ji, Duoying

    2015-10-26

    Devastating Atlantic hurricanes are relatively rare events. However their intensity and frequency in a warming world may rapidly increase by a factor of 2-7 for each degree of increase in mean global temperature. Geoengineering by stratospheric sulphate aerosol injection cools the tropics relative to the polar regions, including the hurricane main development region in the Atlantic, suggesting that geoengineering may be an effective method of controlling hurricanes. We examine this hypothesis using 8 Earth System Model simulations of climate under the GeoMIP G3 and G4 schemes that use stratospheric aerosols to reduce the radiative forcing under the RCP4.5 scenario. Global mean temperature increases are greatly ameliorated by geoengineering, and tropical temperature increases are at most half of those in RCP4.5, but sulphate injection would have to double between 2020 and 2070 to balance RCP 4.5 to nearly 10 Tg SO2 yr-1, with consequent implications for damage to stratospheric ozone. We project changes in storm frequencies using a temperature-dependent Generalized Extreme Value statistical model calibrated by historical storm surges from 1923 and observed temperatures. The numbers of storm surge events as big as the one that caused the 2005 Katrina hurricane are reduced by about 50% compared with no geoengineering, but this is only marginally statistically significant. However, when sea level rise differences at 2070 between RCP4.5 and geoengineering are factored in to coastal flood risk, we find that expected flood levels are reduced by about 40 cm for 5 year events and perhaps halved for 50 year surges.

  15. Atlantic hurricane surge response to geoengineering

    PubMed Central

    Moore, John C.; Grinsted, Aslak; Guo, Xiaoran; Yu, Xiaoyong; Jevrejeva, Svetlana; Rinke, Annette; Cui, Xuefeng; Kravitz, Ben; Lenton, Andrew; Watanabe, Shingo; Ji, Duoying

    2015-01-01

    Devastating floods due to Atlantic hurricanes are relatively rare events. However, the frequency of the most intense storms is likely to increase with rises in sea surface temperatures. Geoengineering by stratospheric sulfate aerosol injection cools the tropics relative to the polar regions, including the hurricane Main Development Region in the Atlantic, suggesting that geoengineering may mitigate hurricanes. We examine this hypothesis using eight earth system model simulations of climate under the Geoengineering Model Intercomparison Project (GeoMIP) G3 and G4 schemes that use stratospheric aerosols to reduce the radiative forcing under the Representative Concentration Pathway (RCP) 4.5 scenario. Global mean temperature increases are greatly ameliorated by geoengineering, and tropical temperature increases are at most half of those temperature increases in the RCP4.5. However, sulfate injection would have to double (to nearly 10 teragrams of SO2 per year) between 2020 and 2070 to balance the RCP4.5, approximately the equivalent of a 1991 Pinatubo eruption every 2 y, with consequent implications for stratospheric ozone. We project changes in storm frequencies using a temperature-dependent generalized extreme value statistical model calibrated by historical storm surges and observed temperatures since 1923. The number of storm surge events as big as the one caused by the 2005 Katrina hurricane are reduced by about 50% compared with no geoengineering, but this reduction is only marginally statistically significant. Nevertheless, when sea level rise differences in 2070 between the RCP4.5 and geoengineering are factored into coastal flood risk, we find that expected flood levels are reduced by about 40 cm for 5-y events and about halved for 50-y surges. PMID:26504210

  16. Atlantic hurricane surge response to geoengineering.

    PubMed

    Moore, John C; Grinsted, Aslak; Guo, Xiaoran; Yu, Xiaoyong; Jevrejeva, Svetlana; Rinke, Annette; Cui, Xuefeng; Kravitz, Ben; Lenton, Andrew; Watanabe, Shingo; Ji, Duoying

    2015-11-10

    Devastating floods due to Atlantic hurricanes are relatively rare events. However, the frequency of the most intense storms is likely to increase with rises in sea surface temperatures. Geoengineering by stratospheric sulfate aerosol injection cools the tropics relative to the polar regions, including the hurricane Main Development Region in the Atlantic, suggesting that geoengineering may mitigate hurricanes. We examine this hypothesis using eight earth system model simulations of climate under the Geoengineering Model Intercomparison Project (GeoMIP) G3 and G4 schemes that use stratospheric aerosols to reduce the radiative forcing under the Representative Concentration Pathway (RCP) 4.5 scenario. Global mean temperature increases are greatly ameliorated by geoengineering, and tropical temperature increases are at most half of those temperature increases in the RCP4.5. However, sulfate injection would have to double (to nearly 10 teragrams of SO2 per year) between 2020 and 2070 to balance the RCP4.5, approximately the equivalent of a 1991 Pinatubo eruption every 2 y, with consequent implications for stratospheric ozone. We project changes in storm frequencies using a temperature-dependent generalized extreme value statistical model calibrated by historical storm surges and observed temperatures since 1923. The number of storm surge events as big as the one caused by the 2005 Katrina hurricane are reduced by about 50% compared with no geoengineering, but this reduction is only marginally statistically significant. Nevertheless, when sea level rise differences in 2070 between the RCP4.5 and geoengineering are factored into coastal flood risk, we find that expected flood levels are reduced by about 40 cm for 5-y events and about halved for 50-y surges. PMID:26504210

  17. Glacier surge after ice shelf collapse.

    PubMed

    De Angelis, Hernán; Skvarca, Pedro

    2003-03-01

    The possibility that the West Antarctic Ice Sheet will collapse as a consequence of ice shelf disintegration has been debated for many years. This matter is of concern because such an event would imply a sudden increase in sea level. Evidence is presented here showing drastic dynamic perturbations on former tributary glaciers that fed sections of the Larsen Ice Shelf on the Antarctic Peninsula before its collapse in 1995. Satellite images and airborne surveys allowed unambiguous identification of active surging phases of Boydell, Sjögren, Edgeworth, Bombardier, and Drygalski glaciers. This discovery calls for a reconsideration of former hypotheses about the stabilizing role of ice shelves. PMID:12624263

  18. Performance Comparison of the European Storm Surge Models and Chaotic Model in Forecasting Extreme Storm Surges

    NASA Astrophysics Data System (ADS)

    Siek, M. B.; Solomatine, D. P.

    2009-04-01

    Storm surge modeling has rapidly developed considerably over the past 30 years. A number of significant advances on operational storm surge models have been implemented and tested, consisting of: refining computational grids, calibrating the model, using a better numerical scheme (i.e. more realistic model physics for air-sea interaction), implementing data assimilation and ensemble model forecasts. This paper addresses the performance comparison between the existing European storm surge models and the recently developed methods of nonlinear dynamics and chaos theory in forecasting storm surge dynamics. The chaotic model is built using adaptive local models based on the dynamical neighbours in the reconstructed phase space of observed time series data. The comparison focused on the model accuracy in forecasting a recently extreme storm surge in the North Sea on November 9th, 2007 that hit the coastlines of several European countries. The combination of a high tide, north-westerly winds exceeding 50 mph and low pressure produced an exceptional storm tide. The tidal level was exceeded 3 meters above normal sea levels. Flood warnings were issued for the east coast of Britain and the entire Dutch coast. The Maeslant barrier's two arc-shaped steel doors in the Europe's biggest port of Rotterdam was closed for the first time since its construction in 1997 due to this storm surge. In comparison to the chaotic model performance, the forecast data from several European physically-based storm surge models were provided from: BSH Germany, DMI Denmark, DNMI Norway, KNMI Netherlands and MUMM Belgium. The performance comparison was made over testing datasets for two periods/conditions: non-stormy period (1-Sep-2007 till 14-Oct-2007) and stormy period (15-Oct-2007 till 20-Nov-2007). A scalar chaotic model with optimized parameters was developed by utilizing an hourly training dataset of observations (11-Sep-2005 till 31-Aug-2007). The comparison results indicated the chaotic

  19. Hospital Bioterrorism Planning and Burn Surge

    PubMed Central

    Myers, Brent; Cairns, Charles B.; Rich, Preston B.; Hultman, C. Scott; Charles, Anthony G.; Jones, Samuel W.; Schmits, Grace L.; Skarote, Mary Beth; Holmes, James H.; Cairns, Bruce A.

    2014-01-01

    On the morning of June 9, 2009, an explosion occurred at a manufacturing plant in Garner, North Carolina. By the end of the day, 68 injured patients had been evaluated at the 3 Level I trauma centers and 3 community hospitals in the Raleigh/Durham metro area (3 people who were buried in the structural collapse died at the scene). Approximately 300 employees were present at the time of the explosion, when natural gas being vented during the repair of a hot water heater ignited. The concussion from the explosion led to structural failure in multiple locations and breached additional natural gas, electrical, and ammonia lines that ran overhead in the 1-story concrete industrial plant. Intent is the major difference between this type of accident and a terrorist using an incendiary device to terrorize a targeted population. But while this disaster lacked intent, the response, rescue, and outcomes were improved as a result of bioterrorism preparedness. This article discusses how bioterrorism hospital preparedness planning, with an all-hazards approach, became the basis for coordinated burn surge disaster preparedness. This real-world disaster challenged a variety of systems, hospitals, and healthcare providers to work efficiently and effectively to manage multiple survivors. Burn-injured patients served as a focus for this work. We describe the response, rescue, and resuscitation provided by first responders and first receivers as well as efforts made to develop burn care capabilities and surge capacity. PMID:24527874

  20. Method and system for turbomachinery surge detection

    DOEpatents

    Faymon, David K.; Mays, Darrell C.; Xiong, Yufei

    2004-11-23

    A method and system for surge detection within a gas turbine engine, comprises: measuring the compressor discharge pressure (CDP) of the gas turbine over a period of time; determining a time derivative (CDP.sub.D ) of the measured (CDP) correcting the CDP.sub.D for altitude, (CDP.sub.DCOR); estimating a short-term average of CDP.sub.DCOR.sup.2 ; estimating a short-term average of CDP.sub.DCOR ; and determining a short-term variance of corrected CDP rate of change (CDP.sub.roc) based upon the short-term average of CDP.sub.DCOR and the short-term average of CDP.sub.DCOR.sup.2. The method and system then compares the short-term variance of corrected CDP rate of change with a pre-determined threshold (CDP.sub.proc) and signals an output when CDP.sub.roc >CDP.sub.proc. The method and system provides a signal of a surge within the gas turbine engine when CDP.sub.roc remains>CDP.sub.proc for pre-determined period of time.

  1. Hospital bioterrorism planning and burn surge.

    PubMed

    Kearns, Randy D; Myers, Brent; Cairns, Charles B; Rich, Preston B; Hultman, C Scott; Charles, Anthony G; Jones, Samuel W; Schmits, Grace L; Skarote, Mary Beth; Holmes, James H; Cairns, Bruce A

    2014-01-01

    On the morning of June 9, 2009, an explosion occurred at a manufacturing plant in Garner, North Carolina. By the end of the day, 68 injured patients had been evaluated at the 3 Level I trauma centers and 3 community hospitals in the Raleigh/Durham metro area (3 people who were buried in the structural collapse died at the scene). Approximately 300 employees were present at the time of the explosion, when natural gas being vented during the repair of a hot water heater ignited. The concussion from the explosion led to structural failure in multiple locations and breached additional natural gas, electrical, and ammonia lines that ran overhead in the 1-story concrete industrial plant. Intent is the major difference between this type of accident and a terrorist using an incendiary device to terrorize a targeted population. But while this disaster lacked intent, the response, rescue, and outcomes were improved as a result of bioterrorism preparedness. This article discusses how bioterrorism hospital preparedness planning, with an all-hazards approach, became the basis for coordinated burn surge disaster preparedness. This real-world disaster challenged a variety of systems, hospitals, and healthcare providers to work efficiently and effectively to manage multiple survivors. Burn-injured patients served as a focus for this work. We describe the response, rescue, and resuscitation provided by first responders and first receivers as well as efforts made to develop burn care capabilities and surge capacity. PMID:24527874

  2. Over 400 previously undocumented Svalbard surge-type glaciers identified

    NASA Astrophysics Data System (ADS)

    Farnsworth, Wesley R.; Ingólfsson, Ólafur; Retelle, Michael; Schomacker, Anders

    2016-07-01

    Identifying glaciers that exhibit surge-type behavior is important when using evidence of ice front fluctuations as a proxy for reconstructing past climate oscillations. This study identifies previously undocumented surge-type glaciers in Svalbard, based on the presence of crevasse squeeze ridges in glacier forelands. Crevasse squeeze ridges are landforms suggested to be unique to surging glacier land systems. Estimates vary greatly as to the actual percentage of surge-type glaciers in Svalbard, and consequently their distribution pattern is poorly understood. A detailed survey of recent (2008-2012), high-resolution aerial imagery from TopoSvalbard, provided by the Norwegian Polar Institute, allowed for a survey of all the glacier forelands in Svalbard. Before our study, 277 individual glaciers in Svalbard have been documented to exhibit surge behavior. By using crevasse squeeze ridges as indicators of surge behavior, we have identified 431 additional glaciers that have surged. We suggest that this is a modest value as the unique surge landforms were not visible in approximately one-third of the forelands with documented surge histories. Limits to the crevasse squeeze ridge technique are presented and potential controlling factors for crevasse squeeze ridge formation/preservation are discussed.

  3. Sensitivity of hurricane surge to morphological parameters of coastal wetlands

    NASA Astrophysics Data System (ADS)

    Loder, N. M.; Irish, J. L.; Cialone, M. A.; Wamsley, T. V.

    2009-10-01

    Given the history and future risk of storm surge in the United States, functional storm protection techniques are needed to protect vital sectors of the economy and coastal communities. It is widely hypothesized that coastal wetlands offer protection from storm surge and wave action, though the extent of this protection is unknown due to the complexities of flow through vegetation. Here we present the sensitivity of storm-surge numerical modeling results to various coastal wetlands characteristics. An idealized grid domain and 400-km 2 marsh feature were used to evaluate the effects of marsh characteristics on hurricane surge, including the effects of bottom friction, elevation, and continuity (the ratio of healthy marsh to open water area within the total wetland area). Through coupled hydrodynamic and wave model simulations, it is confirmed that increased bottom friction reduces storm-surge levels for most storms. However, increases in depth associated with marsh elevation loss generally results in a reduction of surge. As marsh continuity is decreased, coastal surge increases as a result of enhanced surge conveyance into and out of the marsh. Storm surge is parameterized in terms of marsh morphology, namely marsh elevation, frictional characteristics, and degree of segmentation, which will assist in the justification for and optimization of marsh restoration in terms of storm protection.

  4. Tide and skew surge independence: New insights for flood risk

    NASA Astrophysics Data System (ADS)

    Williams, Joanne; Horsburgh, Kevin J.; Williams, Jane A.; Proctor, Robert N. F.

    2016-06-01

    Storm surges are a significant hazard to coastal communities around the world, putting lives at risk and costing billions of dollars in damage. Understanding how storm surges and high tides interact is crucial for estimating extreme water levels so that we can protect coastal communities. We demonstrate that in a tidal regime the best measure of a storm surge is the skew surge, the difference between the observed and predicted high water within a tidal cycle. Based on tide gauge records spanning decades from the UK, U.S., Netherlands, and Ireland we show that the magnitude of high water exerts no influence on the size of the most extreme skew surges. This is the first systematic proof that any storm surge can occur on any tide, which is essential for understanding worst-case scenarios. The lack of surge generation dependency on water depth emphasizes the dominant natural variability of weather systems in an observation-based analysis. Weak seasonal relationships between skew surges and high waters were identified at a minority of locations where long-period changes to the tidal cycle interact with the storm season. Our results allow advances to be made in methods for estimating the joint probabilities of storm surges and tides.

  5. Physically based assessment of hurricane surge threat under climate change

    NASA Astrophysics Data System (ADS)

    Lin, Ning; Emanuel, Kerry; Oppenheimer, Michael; Vanmarcke, Erik

    2012-06-01

    Storm surges are responsible for much of the damage and loss of life associated with landfalling hurricanes. Understanding how global warming will affect hurricane surges thus holds great interest. As general circulation models (GCMs) cannot simulate hurricane surges directly, we couple a GCM-driven hurricane model with hydrodynamic models to simulate large numbers of synthetic surge events under projected climates and assess surge threat, as an example, for New York City (NYC). Struck by many intense hurricanes in recorded history and prehistory, NYC is highly vulnerable to storm surges. We show that the change of storm climatology will probably increase the surge risk for NYC; results based on two GCMs show the distribution of surge levels shifting to higher values by a magnitude comparable to the projected sea-level rise (SLR). The combined effects of storm climatology change and a 1m SLR may cause the present NYC 100-yr surge flooding to occur every 3-20yr and the present 500-yr flooding to occur every 25-240yr by the end of the century.

  6. On the surging potential of polar ice streams: Part 1, Sliding and surging of large ice masses: A review

    SciTech Connect

    McInnes, B.; Radok, U.; Budd, W.F.; Smith, I.N.

    1985-01-01

    The main features of glacier surges were well known by the time the first detailed glacier dynamics and ice flow law came into being during the 1950s. The surging potential of polar ice streams raises additional questions which remain to be answered by a combination of observations and model refinements. This report reviews the available evidence on glacier sliding, and the main concepts and hypotheses that have been advanced for the surging phenomenon.

  7. Storm surges formation in the White and Barents Seas

    NASA Astrophysics Data System (ADS)

    Arkhipkin, Victor; Dobrolyubov, Sergey; Korablina, Anastasia; Myslenkov, Stanislav

    2016-04-01

    Investigation of storm surges in the Arctic seas are of high priority in Russia due to the active development of offshore oil and gas, construction of facilities in the coastal zone, as well as for the safety of navigation. It is important to study the variability of surges, to predict this phenomena and subsequent economic losses, thus including such information into the Russian Arctic Development Program 2020. Surges in the White and Barents Seas are caused mainly by deep cyclones of two types: "diving" from the north (88% of all cyclones) and western. The average height of the storm surges in the White Sea is 0.6-0.9 m. An average duration of storm surges is about 80 hours. Mathematical modeling is used to analyze the characteristics of storm surges formation in the Dvina Bay of the White Sea, and in the Varandey village on the Barents Sea coast. Calculating storm surge heights in the White and Barents seas is performed using the ADCIRC model on an unstructured grid with a step from 20 km in the Barents Sea to 100 m in the White Sea. Unstructured grids allowed keeping small features of the coastline of the White and Barents seas, small islands and shallow banks, and assessing their impact on the development and transformation of wind-generated waves. The ADCIRC model used data of wind field reanalysis CFSv2. The storm surges were simulated for the time period from 1979 to 2010 and included scenarios with / without direct atmospheric pressure forcing, waves and tides. Numerical experiments have revealed distribution of storm surges in channels of the Northern Dvina River delta. The storm surges spreads in the model from the north-north-west of the Dvina Bay. As storm surge moves from the wellhead to the seaside estuary of the Northern Dvina (district Solombala), its height increases from 0.5 to 2 m. We also found a non-linear interaction of the surge and tide during the phase of surge destruction. This phenomenon is the highest in the period of low water, and the

  8. Surges Initiated by Newly-emerging Satellite Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Wang, Jun-feng; Zhou, Tuan-hui; Ji, Hai-sheng

    2014-01-01

    On July 22, 2011 and in the active region NOAA 11259 there ap- peared the event of the ejection of solar atmospheric Hα surges. According to the full-disc Hα observations of the Big Bear Solar Observatory in United States, three consecutive surges at one and the same place in the north of the main spot of the active region were discovered. The trajectories of these three surges exhib- ited the figure of straight lines, and their integral configuration is like an inverted Eiffel Tower. The first two surges are quite similar, and in each of them there appeared two bright points in the northern part of the main spot. After several minutes, the surges appeared in the midst of bright points. When the bright- ness of the bright points attained the maximum value, the surges spouted out from the midst of bright points. And after reaching the maximum altitude, they quickly vanished. Before the ejection of the third surge took place, no bright points appeared. Besides, its maximal altitude is merely one half of that of the first two surges. Via a comparison with the SDO/HMI (Solar Dynamics Obser- vatory/Helioseismic and Magnetic Imager) data of radial magnetic fields, it is found that in more than one hour before the appearance of the first surge there emerged bipolar magnetic fields in the region of ejection. Besides, in several min- utes before the ejection of each Hα surge the magnetic fluxes of positive polarity diminished. Via our analysis it is found that there appeared reconnections be- tween the newly emerging satellite magnetic fields and the preexisting magnetic fields in the spot, and this caused the continuous ejections of Hα surges.

  9. Practical control strategy eliminates FCCU compressor surge problems

    SciTech Connect

    Campos, M.C.M.M.; Rodriques, P.S.B. )

    1993-01-11

    This paper reports that the control system originally designed for the fluid catalytic cracking unit (FCCU) compressor at Petroleo Brasileiro SA's (Petrobras) Presidente Bernardes refinery, in Sao Paulo, Brazil, was inadequate. The system required almost permanent flow recirculation to prevent surge. An improved antisurge control strategy was implemented in mid-1990. Since then, the unit has operated without the former surge problems.

  10. Scenario-based Storm Surge Vulnerability Assessment of Catanduanes

    NASA Astrophysics Data System (ADS)

    Suarez, J. K. B.

    2015-12-01

    After the devastating storm surge effect of Typhoon Haiyan, the public recognized an improved communication about risks, vulnerabilities and what is threatened by storm surge. This can be provided by vulnerability maps which allow better visual presentations and understanding of the risks and vulnerabilities. Local implementers can direct the resources needed for protection of these areas. Moreover, vulnerability and hazard maps are relevant in all phases of disaster management designed by the National Disaster Risk Reduction Council (NDRRMC) - disaster preparedness, prevention and mitigation and response and recovery and rehabilitation. This paper aims to analyze the vulnerability of Catanduanes, a coastal province in the Philippines, to storm surges in terms of four parameters: population, built environment, natural environment and agricultural production. The vulnerability study relies on the storm surge inundation maps based on the Department of Science and Technology Nationwide Operational Assessment of Hazards' (DOST-Project NOAH) proposed four Storm Surge Advisory (SSA) scenarios (1-2, 3, 4, and 5 meters) for predicting storm surge heights. To determine total percent affected for each parameter elements, an overlay analysis was performed in ArcGIS Desktop. Moreover, vulnerability and hazard maps are generated as a final output and a tool for visualizing the impacts of storm surge event at different surge heights. The result of this study would help the selected province to know their present condition and adapt strategies to strengthen areas where they are found to be most vulnerable in order to prepare better for the future.

  11. 14 CFR 33.65 - Surge and stall characteristics.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Surge and stall characteristics. 33.65 Section 33.65 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.65 Surge...

  12. 14 CFR 33.65 - Surge and stall characteristics.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Surge and stall characteristics. 33.65 Section 33.65 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.65 Surge...

  13. 14 CFR 33.65 - Surge and stall characteristics.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Surge and stall characteristics. 33.65 Section 33.65 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.65 Surge...

  14. 14 CFR 33.65 - Surge and stall characteristics.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Surge and stall characteristics. 33.65 Section 33.65 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.65 Surge...

  15. 14 CFR 33.65 - Surge and stall characteristics.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Surge and stall characteristics. 33.65 Section 33.65 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.65 Surge...

  16. Harmful effects of lightning surge discharge on communications terminal equipments

    NASA Astrophysics Data System (ADS)

    Liang, Sisi; Xu, Xiaoying; Tao, Zhigang; Dai, Yanling

    2013-03-01

    The interference problem of lightning surges on electronic and telecommunication products were examined, and a series of experiments were conducted to analyze the failure situations to find out the mechanisms of failures caused by the lightning surge. In addition, the ways in which lightning surges damaged equipment were deduced. It was found that failure positions were scattered and appeared in groups, and most of them were ground discharge. Internet access transformer had high withstand-voltage under the lightning pulse, and the lightning surge seldom passed through the internet access transformer. The lightning current can release to the ground via the computer network adapter of the terminal user. The study will help to improve the performance of lightning surge protection circuit and protection level.

  17. Application of short-data methods on extreme surge levels

    NASA Astrophysics Data System (ADS)

    Feng, X.

    2014-12-01

    Tropical cyclone-induced storm surges are among the most destructive natural hazards that impact the United States. Unfortunately for academic research, the available time series for extreme surge analysis are very short. The limited data introduces uncertainty and affects the accuracy of statistical analyses of extreme surge levels. This study deals with techniques applicable to data sets less than 20 years, including simulation modelling and methods based on the parameters of the parent distribution. The verified water levels from water gauges spread along the Southwest and Southeast Florida Coast, as well as the Florida Keys, are used in this study. Methods to calculate extreme storm surges are described and reviewed, including 'classical' methods based on the generalized extreme value (GEV) distribution and the generalized Pareto distribution (GPD), and approaches designed specifically to deal with short data sets. Incorporating global-warming influence, the statistical analysis reveals enhanced extreme surge magnitudes and frequencies during warm years, while reduced levels of extreme surge activity are observed in the same study domain during cold years. Furthermore, a non-stationary GEV distribution is applied to predict the extreme surge levels with warming sea surface temperatures. The non-stationary GEV distribution indicates that with 1 Celsius degree warming in sea surface temperature from the baseline climate, the 100-year return surge level in Southwest and Southeast Florida will increase by up to 40 centimeters. The considered statistical approaches for extreme surge estimation based on short data sets will be valuable to coastal stakeholders, including urban planners, emergency managers, and the hurricane and storm surge forecasting and warning system.

  18. Risk Assessment of Hurricane Storm Surge for Tampa Bay

    NASA Astrophysics Data System (ADS)

    Lin, N.; Emanuel, K.

    2011-12-01

    Hurricane storm surge presents a major hazard for the United States and many other coastal areas around the world. Risk assessment of current and future hurricane storm surge provides the basis for risk mitigation and related decision making. This study investigates the hurricane surge risk for Tampa Bay, located on the central west coast of Florida. Although fewer storms have made landfall in the central west Florida than in regions farther west in the Gulf of Mexico and the east coast of U.S., Tampa Bay is highly vulnerable to storm surge due to its geophysical features. It is surrounded by low-lying lands, much of which may be inundated by a storm tide of 6 m. Also, edge waves trapped on the west Florida shelf can propagate along the coastline and affect the sea level outside the area of a forced storm surge; Tampa Bay may be affected by storms traversing some distance outside the Bay. Moreover, when the propagation speed of the edge wave is close to that of a storm moving parallel to the coast, resonance may occur and the water elevation in the Bay may be greatly enhanced. Therefore, Tampa Bay is vulnerable to storms with a broad spectrum of characteristics. We apply a model-based risk assessment method to carry out the investigation. To estimate the current surge risk, we apply a statistical/deterministic hurricane model to generate a set of 1500 storms for the Tampa area, under the observed current climate (represented by 1981-2000 statistics) estimated from the NCAR/NCEP reanalysis. To study the effect of climate change, we use four climate models, CNRM-CM3, ECHAM, GFDL-CM2.0, and MIROC3.2, respectively, to drive the hurricane model to generate four sets of 1500 Tampa storms under current climate conditions (represented by 1981-2000 statistics) and another four under future climate conditions of the IPCC-AR4 A1B emission scenario (represented by 2081-2100 statistics). Then, we apply two hydrodynamic models, the Advanced Circulation (ADCIRC) model and the Sea

  19. Reassessing Storm Surge Risk for New York City (Invited)

    NASA Astrophysics Data System (ADS)

    Lin, N.; Emanuel, K.

    2013-12-01

    New York City (NYC) is highly vulnerable to tropical cyclone (TC) storm surge flooding. In a previous study, we coupled a (reanalysis- or GCM-driven) hurricane model with hydrodynamic models to simulate large numbers of synthetic surge events under observed and projected climates and assess surge threat for NYC. The storm surge return levels under the current and future climates (IPCC AR4 A1B scenario) were obtained. The results showed that the distribution of surge levels may shift to higher values in the future by a magnitude comparable to the projected sea-level rise. The study focused on typical TCs that have a storm size of the climatological mean for the Atlantic Basin and pass within a 200-km radius of the Battery, NYC. In October 2012, Hurricane Sandy, a barely Category-1 storm that made landfall about 200-km southwest from the Battery, caused the highest surge flooding of the instrumental record (~3.5 m above the mean sea level or ~2.8 m surge over the high tide) at the Battery. The extreme surge was due to the fact that the storm was a 'hybrid' event, undergoing extensive extratropical transition when making landfall almost perpendicularly to the NJ coast with an unusually large size. Sandy's case calls for a reassessment of storm surge risk for NYC that account for the special features of the storms in this region. In this reassessment, we account for the effect of extratropical transition on the wind fields through improving the surface background wind estimation, which was assumed to be uniform for typical TCs, by developing a representation of the interaction between the highly localized potential vorticity anomaly of the TC and its environmental baroclinic fields. We account for the storm size variation through incorporating the full probability distribution of the size for the region. Our preliminary results show that estimated wind and surge return levels are much higher with the effect of extratropical transition. The effect of the storm size

  20. Opposition Surge: Sunlight Glinting off Mars

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Mars Global Surveyor was presented with a unique opportunity February 13-18, 1998, to image sunlight glinting off of the surface and atmospheric haze of Mars. Orbits 130-137 were devoted to obtaining MOC images of this effect, also known as opposition surge. During each orbit in mid-February, the Mars Global Surveyor spacecraft passed close to and through the line between the Sun and the center of Mars. In other words, the phase angle (angle between the Sun's incident light and the direction from the surface to the spacecraft) was near zero degrees. The sunlight reflecting from Mars near the zero phase angle produces the rare sun-glint phenomenon. The size and brightness of the glint depends on the physical properties of the surface (dust, sand, and rock distribution) and the atmosphere (haze/suspended dust). Studies of these images are expected to yield important information that can be compared with thermal emission observations.

    The picture is a color composite of MOC images 13601 (red wide angle) and 13602 (blue wide angle). The green-color band is synthesized from the red and blue using a relationship well-understood from Viking images of the late 1970s. The large, dark region near the top-center of the picture is Sinus Meridiani. The circular feature at the upper right is the impact basin, Schiaparelli. The opposition surge feature --the sun glint-- is centered around 21.0oS latitude, 4.1oW longitude.

    The two images were taken on Mars Global Surveyor's 136th orbit on February 18, 1998. Orbit 136 was the second-to-last orbit on which MOC obtained images of Mars during the first aerobraking phase (AB-1) of the mission. MOC was off between the end of AB-1 on February 19, 1998, until the start of Science Phasing Orbit-1 phase (SPO-1), which began March 28 and ended April 28, 1998.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its

  1. Storm Surge Simulation and Ensemble Forecast for Hurricane Irene (2011)

    NASA Astrophysics Data System (ADS)

    Lin, N.; Emanuel, K.

    2012-12-01

    Hurricane Irene, raking the U.S. East Coast during the period of 26-30 August 2011, caused widespread damage estimated at $15.8 billion and was responsible for 49 direct deaths (Avila and Cangialosi, 2011). Although the most severe impact in the northeastern U.S. was catastrophic inland flooding, with its unusually large size, Irene also generated high waves and storm surges and caused moderate to major coastal flooding. The most severe surge damage occurred between Oregon Inlet and Cape Hatteras in North Carolina (NC). Significant storm surge damage also occurred along southern Chesapeake Bay, and moderate and high surges were observed along the coast from New Jersey (NJ) northward. A storm surge of 0.9-1.8 m caused hundreds of millions of dollars in property damage in New York City (NYC) and Long Island, despite the fact that the storm made landfall to the west of NYC with peak winds of no more than tropical storm strength. Making three U.S. landfalls (in NC, NJ, and NY), Hurricane Irene provides a unique case for studying storm surge along the eastern U.S. coastline. We apply the hydrodynamic model ADCIRC (Luettich et al. 1992) to conduct surge simulations for Pamlico Sound, Chesapeake Bay, and NYC, using best track data and parametric wind and pressure models. The results agree well with tidal-gauge observations. Then we explore a new methodology for storm surge ensemble forecasting and apply it to Irene. This method applies a statistical/deterministic hurricane model (Emanuel et al. 2006) to generate large numbers of storm ensembles under the storm environment described by the 51 ECMWF ensemble members. The associated surge ensembles are then generated with the ADCIRC model. The numerical simulation is computationally efficient, making the method applicable to real-time storm surge ensemble forecasting. We report the results for NYC in this presentation. The ADCIRC simulation using the best track data generates a storm surge of 1.3 m and a storm tide of 2.1 m

  2. Observing storm surges from space: Hurricane Igor off Newfoundland.

    PubMed

    Han, Guoqi; Ma, Zhimin; Chen, Dake; Deyoung, Brad; Chen, Nancy

    2012-01-01

    Coastal communities are becoming increasingly more vulnerable to storm surges under a changing climate. Tide gauges can be used to monitor alongshore variations of a storm surge, but not cross-shelf features. In this study we combine Jason-2 satellite measurements with tide-gauge data to study the storm surge caused by Hurricane Igor off Newfoundland. Satellite observations reveal a storm surge of 1 m in the early morning of September 22, 2010 (UTC) after the passage of the storm, consistent with the tide-gauge measurements. The post-storm sea level variations at St. John's and Argentia are associated with free equatorward-propagating continental shelf waves (with a phase speed of ~10 m/s and a cross-shelf decaying scale of ~100 km). The study clearly shows the utility of satellite altimetry in observing and understanding storm surges, complementing tide-gauge observations for the analysis of storm surge characteristics and for the validation and improvement of storm surge models. PMID:23259048

  3. Semidiurnal perturbations to the surge of Hurricane Irene

    NASA Astrophysics Data System (ADS)

    Branyon, J. M.; Olabarrieta, M.; Valle-Levinson, A.

    2013-05-01

    Hurricane Irene caused storm surges along the entire eastern United States coast, from Florida to Maine, in August 2011. The surge reached maximum levels of >1.5 m around New York City. Irene's surges were dominated by onshore winds and were followed by water-level set-down because of offshore winds. However, detided (observed minus predicted) water levels displayed semidiurnal (M2) oscillations off northern Florida and southern Georgia as the hurricane was impacting the South Atlantic Bight. The oscillations attained maximum amplitude (~0.4 m) when the hurricane's eye approached the coastline in South Carolina on August 27th. The M2 frequency of the oscillations implied tide surge interactions caused by a phase lag in the quasi-standing tides of the region. These unanticipated oscillations resembled Kelvin waves as they propagated southward and were greater than the initial surge observed in northern Florida and southern Georgia. It is proposed that these 'semidiurnal surges' were caused by surface, bottom and Reynolds stresses and need to be accounted for in future forecasts of storm surges.

  4. Submarine landforms characteristic of glacier surges in two Spitsbergen fjords

    NASA Astrophysics Data System (ADS)

    Ottesen, D.; Dowdeswell, J. A.; Benn, D. I.; Kristensen, L.; Christiansen, H. H.; Christensen, O.; Hansen, L.; Lebesbye, E.; Forwick, M.; Vorren, T. O.

    2008-08-01

    Well-preserved submarine landforms, all less than 100 years old, are imaged on high-resolution swath bathymetry obtained from Van Keulenfjorden and Rindersbukta (inner Van Mijenfjorden), Spitsbergen, Svalbard. Several tidewater glaciers in these fjords have surged in the last few hundred years. Streamlined landforms, found within the limits of known surges, are interpreted as mega-scale glacial lineations (MSGL) formed subglacially beneath actively surging ice. Large transverse ridges are terminal moraines formed by thrusting at the maximum position of glacier surges. Sediment lobes at the distal margins of terminal moraines are interpreted as glacigenic debris flows, formed either by failure of the frontal slopes of thrust moraines or from deforming sediment extruded from beneath the glacier. Sinuous ridges are eskers, formed after surge termination by the sedimentary infilling of subglacial conduits. Concordant ridges, parallel to former ice margins, are interpreted as minor push moraines, probably formed annually during winter glacier readvance. Discordant ridges, oblique to former ice margins, are interpreted as crevasse-squeeze ridges, forming when soft subglacial sediments are injected into basal crevasses. These submarine landforms have been deposited in the following sequence based on cross-cutting relationships between them, linked to stages of the surge cycle: (1) MSGL; (2a) terminal moraines and (2b) lobe-shaped debris flows; (3) isolated areas of crevasse-fill ridges; (4) eskers and (5) annual retreat ridges. A descriptive landsystem model for tidewater surge-type glaciers has been developed, whose wider applicability is emphasised by comparison with two areas in Isfjorden, Spitsbergen. The model also has a number of features in common with landsystem models for terrestrial surge-type glaciers, but is likely to be more complete since submarine landforms are particularly well preserved. The landforms discussed here may be produced and preserved in

  5. State of the Art of Demand Surge Modeling

    NASA Astrophysics Data System (ADS)

    Olsen, A.; Porter, K.

    2009-04-01

    Among other phenomena, many insurance loss models estimate the increased losses in large-scale disasters--referred to here as catastrophes--compared to the losses in small-scale disasters. This amplification of loss has been traditionally and loosely called "demand surge," although there is a clear need for more specific terminology. Many factors have been identified as drivers of demand surge. First among them is the sudden and temporary increased demand for construction materials and labor that overwhelms local supplies. The purpose of the present research is to describe in qualitative terms the current understanding of demand surge in the broad sense of amplification of insured loss. Aspects of demand surge were observed following the 1886 Charleston, South Carolina, and 1906 San Francisco, U.S. earthquakes. More recently, the aftermaths of Cyclone Tracy, Hurricane Andrew, the Northridge Earthquake, the 1999 windstorms in France, the 2004-5 hurricane seasons on the Gulf Coast, and the 2007 floods in the U.K. all evidenced demand surge in one form or another. Each event highlights particular aspects of the broader demand-surge phenomena. In other words, there are general themes associated with demand surge, which have greater or lesser expression in each historic event. Pieces of the broader demand-surge phenomena have been described by mathematical models, with varying degrees of complexity. For example, researchers have used linear input-output or nonlinear computable general equilibrium models to describe the response of construction costs to a catastrophe. Ultimately the present research will include the gathering of evidence through interviews, field observations, reviews of academic and insurance industry literature, and data collection. This evidence will then inform and validate a general quantitative, mathematical model of the demand-surge process.

  6. Pressure surge reflector for pipe type cable system

    SciTech Connect

    Chu, H.; El Badaly, H.A.; Ghafurian, R. ); Aabo, T.; Ringlee, R.R.; Williams, J.A. ); Melcher, J. )

    1990-04-01

    This paper describes work performed on the development and testing of a pressure surge reflector, designed to reduce the pressure seen at potheads during an electrical failure in a pipe type cable system. The reflector is designed to protect the potheads from failing due to the pressure surge that may be large enough to fracture the porcelain, particularly when the electrical failure is physically close to the pothead. Test results show that the prototype reflector will lower the pressure significantly, bringing the pressure surge below the factory pressure test level for standard potheads.

  7. Surge-like behavior at the non-surge type Matanuska Glacier, Alaska

    NASA Astrophysics Data System (ADS)

    Furuya, M.; Abe, T.

    2014-12-01

    Seasonal glacier velocity changes are attributed to subglacial slip associated with water pressure changes that occur because of the seasonal variability of meltwater input. Abe and Furuya (2014) reported winter speed-up signals and their downglacier propagation at a number of glaciers near the border of Alaska and Yukon, based on ALOS/PALSAR radar image analyses. Here we perform the similar analyses at the Chugach mountain range of South Central Alaska, and report the spatial-temporal evolution of the Matanuska Glacier. Matanuska Glacier is the largest accessible glacier in Alaska with its nearly 40 km length and 5 km width near the terminus. Comparing the winter velocity images in 2007, 2008 and 2010, those in 2010 were about 1.5-2 times faster than those during the previous two years. In addition, comparing the fall and winter velocities, winter velocities were apparently faster at every 2007-2008, 2009-2010, and 2010-2011 season. These data indicate winter speed-up or mini-surge signals even at a temperate and non-surgetype Matanuska Glacier. We also examine the spatial-temporal elevation changes, using data from the LiDAR altimeter in the Icebridge mission, and found significant elevation increase near the terminus. Winter speed-up may not be uncommon at Alaskan/Yukon glaciers. Lingle and Fatland (2003) detected faster speed in winter than in fall at non-surging Seward Glacier in the St. Elias Mountains; this is the only published and unambiguous report of winter speed-up, to our knowledge. Combined with earlier glacier hydrological studies, Lingle and Fatland proposed englacial water storage and gravity-driven water flow toward the bed in winter regardless of whether a given glacier is surge-type or not, and considered that the capacity of englacial water storage would control if a given glacier was surge-type or not. We consider that our measurements are complementary to Lingle and Fatland's observations and lend further support for their hypothesis. Basal

  8. Inverter Surge Voltage Endurance with Various Surge Voltage Waveforms of Organic / Inorganic Nano-composite Enameled Wire

    NASA Astrophysics Data System (ADS)

    Kikuchi, Hideyuki; Hanawa, Hidehito

    We developed the new power supply that is able to output various kinds of surge voltage waveform and investigated partial discharge resistance of the nano-composite enameled wires using colloid solution mixing method. Experimental results revealed the relationship between surge voltage waveform and failure time of voltage endurance, as well as the difference in the strength and frequency of the partial discharge under the various kinds of surge voltage waveform. In addition, the developed nano-composite enameled wires have been verified to contribute to the improvement of the motor quality until the present time because long lifetime was confirmed in voltage endurance test with the damaged enameled wire and actual motor.

  9. Semidiurnal perturbations to the surge of Hurricane Sandy

    NASA Astrophysics Data System (ADS)

    Valle-Levinson, Arnoldo; Olabarrieta, Maitane; Valle, Alvaro

    2013-05-01

    Hurricane Sandy drove storm surges throughout the eastern seaboard of the United States, from Miami to Maine, at the end of October 2012. The surge was particularly high (>3 m) in coastal New York. In the southeastern United States, the surge was <1 m but had striking semidiurnal perturbations that reached a range of ~0.5 m in northern Florida and southern Georgia. These oscillations are typically not considered in surge forecasts and their origin needs to be understood for future forecasts. Analytical and numerical approaches indicated that semidiurnal perturbations arose from an interaction between astronomical tide and wind forcing. This combination of forcing caused phase shifts between incident and reflected tidal waves that customarily produce quasi-standing tidal conditions in the area. Atmospheric forcing of sufficient strength, which threshold remains to be established, disrupted such quasi-standing tidal behavior through Coriolis accelerations and triggered the semidiurnal perturbations.

  10. DETAIL OF TWO PENSTOCKS EXITING SURGE TANK TOWARD THE TURBINES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF TWO PENSTOCKS EXITING SURGE TANK TOWARD THE TURBINES FOR GENERATORS #3 AND #4. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Elwha Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  11. GENERAL VIEW TO SOUTH OF WESTBANK SPILLWAY, PENSTOCK, SURGE TANK, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW TO SOUTH OF WEST-BANK SPILLWAY, PENSTOCK, SURGE TANK, AND ELWHA POWERHOUSE. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Elwha Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  12. VIEW OF SURGE TANK AND TRANSFORMER YARD FROM HILL ABOVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF SURGE TANK AND TRANSFORMER YARD FROM HILL ABOVE POWERHOUSE. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Glines Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  13. VIEW OF PENSTOCK AND SURGE TANK LEADING INTO SOUTH SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF PENSTOCK AND SURGE TANK LEADING INTO SOUTH SIDE OF ELWHA POWERHOUSE. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Elwha Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  14. VIEW TO NORTH OF ELWHA RIVER, POWERHOUSE, SURGE TANK, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW TO NORTH OF ELWHA RIVER, POWERHOUSE, SURGE TANK, AND PENSTOCK. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Elwha Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  15. GLINES POWERHOUSE, TAILRACE, AND SURGE TANK WITH TRANSFORMER YARD IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GLINES POWERHOUSE, TAILRACE, AND SURGE TANK WITH TRANSFORMER YARD IN FOREGROUND; DAM AND RESERVOIR TO SOUTH. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Glines Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  16. VIEW TO EAST FROM HILLTOP: SURGE TANK AND TRANSFORMER YARD, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW TO EAST FROM HILLTOP: SURGE TANK AND TRANSFORMER YARD, WITH POWERHOUSE AND RIVER BELOW. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Glines Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  17. AERIAL PHOTO, LOOKING SOUTH, SHOWING POWERHOUSE, SURGE TANK, TRANSFORMER YARD, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL PHOTO, LOOKING SOUTH, SHOWING POWERHOUSE, SURGE TANK, TRANSFORMER YARD, GLINES DAM, AND LAKE MILLS RESERVOIR. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Glines Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  18. VIEW TO SOUTHWEST OF PENSTOCK AND SURGE TANK ABOVE GLINES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW TO SOUTHWEST OF PENSTOCK AND SURGE TANK ABOVE GLINES POWERHOUSE. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Glines Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  19. Surging glaciers in Iceland - research status and future challenges

    NASA Astrophysics Data System (ADS)

    Ingolfsson, Olafur

    2013-04-01

    Twenty six Icelandic outlet glaciers, ranging from 0.5-1.500 km2, are known to surge, with terminal advances ranging from of few tens of meters to about 10 km. The geomorphic signatures of surges vary, from large-scale folded and thrusted end moraine systems, extensive dead-ice fields and drumlinized forefields to drift sheets where fast ice-flow indicators are largely missing. Case studies from the forefields of Brúarjökull, Eyjabakkajökull and Múlajökull surging glaciers will be presented. At Brúarjökull, extremely rapid ice flow during surge was sustained by overpressurized water causing decoupling beneath a thick sediment sequence that was coupled to the glacier. The ice-marginal position of the 1890 surge is marked by a sedimentary wedge formed within five days and a large moraine ridge that formed in about one day ("instantaneous end-moraine"). Three different qualitative and conceptual models are required to explain the genesis of the Eyjabakkajökull moraines: a narrow, single-crested moraine ridge at the distal end of a marginal sediment wedge formed in response to decoupling of the subglacial sediment from the bedrock and associated downglacier sediment transport; large lobate end moraine ridges with multiple, closely spaced, asymmetric crests formed by proglacial piggy-back thrusting; moraine ridges with different morphologies may reflect different members of an end moraine continuum. A parallel study highlighting the surge history of Eyjabakkajökull over the last 4400 years suggests climate control on surge frequencies. The Múlajökull studies concern an active drumlin field (>100 drumlins) that is being exposed as the glacier retreats. The drumlins form through repeated surges, where each surge causes deposition of till bed onto the drumlin while similtaneously eroding the sides. Finally, a new landsystem model for surging North Iceland cirque glaciers will be introduced. References Benediktsson,I. Ö., Schomacker, A., Lokrantz, H. & Ing

  20. Operating stability of hydroelectric stations with downstream surge tanks

    SciTech Connect

    Murav`ev, O.A.; Berlin, V.V.

    1995-10-01

    The possibilities for reducing the cross-sectional area of downstream surge tanks under the condition of providing stable regimes of the hydroelectric power plant are analyzed. Two calculation methods are described.

  1. Thermospheric poleward wind surge at midlatitudes during great storm intervals

    NASA Astrophysics Data System (ADS)

    Zhang, Shun-Rong; Erickson, Philip J.; Foster, John C.; Holt, John M.; Coster, Anthea J.; Makela, Jonathan J.; Noto, John; Meriwether, John W.; Harding, Brian J.; Riccobono, Juanita; Kerr, Robert B.

    2015-07-01

    We report a significant poleward surge in thermospheric winds at subauroral and midlatitudes following the 17-18 March 2015 great geomagnetic storm. This premidnight surge is preceded by strong westward winds. These disturbances were observed over three sites with geodetic latitudes 35-42°N in the American sector by Fabry-Perot interferometers at 630 nm wavelength. Prior to the wind disturbances, subauroral polarization streams (SAPS) were measured by the Millstone Hill incoherent scatter radar between 20 and 02 UT. We identify the observed neutral wind variations as driven by SAPS, through a scenario where strong ion flows cause a westward neutral wind, subsequently establishing a poleward wind surge due to the poleward Coriolis force on that westward wind. These regional disturbances appear to have prevented the well-known storm time equatorward wind surge from propagating into low latitudes, with the consequence that the classic disturbance dynamo mechanism failed to occur.

  2. 2. FOREMAN'S HOUSE, SURGE TANK AND TOP OF POWERHOUSE. VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. FOREMAN'S HOUSE, SURGE TANK AND TOP OF POWERHOUSE. VIEW TO EAST-NORTHEAST. - Rainbow Hydroelectric Facility, On north bank of Missouri River 2 miles Northeast of Great Falls, & end of Rainbow Dam Road, Great Falls, Cascade County, MT

  3. 5. HOUSE No. 16 AND SURGE TANK. ROOF OF POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. HOUSE No. 16 AND SURGE TANK. ROOF OF POWERHOUSE IN BACKGROUND. VIEW TO NORTHEAST. - Rainbow Hydroelectric Facility, On north bank of Missouri River 2 miles Northeast of Great Falls, & end of Rainbow Dam Road, Great Falls, Cascade County, MT

  4. Typhoon storm surge disaster and its forecasting in China

    SciTech Connect

    Wang Xinian; Ye Lin; Bao Chenglan

    1993-12-31

    This paper reviews new technologies for determining storm surges potential along China`s coastlines. The new monitoring stations and computer programs allow for the Chinese government to make predictions on the height of the storm surges and the effects that this will have on coastal flooding and stability and safety of offshore platforms. The paper reviews the history of the system and the numerical forecasting results generated by this program.

  5. Planning for partnerships: Maximizing surge capacity resources through service learning.

    PubMed

    Adams, Lavonne M; Reams, Paula K; Canclini, Sharon B

    2015-01-01

    Infectious disease outbreaks and natural or human-caused disasters can strain the community's surge capacity through sudden demand on healthcare activities. Collaborative partnerships between communities and schools of nursing have the potential to maximize resource availability to meet community needs following a disaster. This article explores how communities can work with schools of nursing to enhance surge capacity through systems thinking, integrated planning, and cooperative efforts. PMID:26750818

  6. Substorm simulation: Formation of westward traveling surge

    NASA Astrophysics Data System (ADS)

    Ebihara, Y.; Tanaka, T.

    2015-12-01

    Auroral substorm expansion is characterized by initial brightening of aurora, followed by a bulge expanding in all directions, and a westward traveling surge (WTS). On the basis of the result obtained by a global magnetohydrodynamic simulation, we propose a scenario for the onset and the subsequent formation of WTS. (1) Near-Earth neutral line releases magnetic tension in the near-Earth plasma sheet to compress plasma and accelerate it earthward. (2) Earthward, perpendicular flow is converted to parallel flow in the near-Earth tail region. (3) Plasma moves earthward parallel to a field line. The plasma pressure is additionally enhanced at off-equator with an expanding slow-mode variation. (4) Flow vorticities coexist near the off-equatorial high-pressure region. Resultant field-aligned current (FAC) is connected to the ionosphere, which may manifest initial brightening. (5) Due to continued earthward flow, the high-plasma pressure region continues to expand to the east and west. (6) The ionospheric conductivity continues to increase in the upward FAC region, and the conductivity gradient becomes steeper. (7) The convergence of the Hall current gives rise to divergent electric field near the steep gradient of the conductivity. (8) Due to the divergent electric field, magnetospheric plasma moves counterclockwise at low altitude (in the Northern Hemisphere). (9) The additional flow vorticity generates a localized upward FAC at low altitudes, which may manifest WTS, and redistributes the ionospheric current and conductivity. Thus, WTS may be maintained in a self-consistent manner, and be a natural consequence of the overflow of the Hall current.

  7. Centrifugal compressor controller for minimizing power consumption while avoiding surge

    SciTech Connect

    Haley, P.F.; Junk, B.S.; Renaud, M.A.; Rentmeester, P.C.

    1987-08-18

    For use with a variable capacity centrifugal compressor driven by an electric motor, a controller is described for adjusting the capacity of the compressor to satisfy a demand, minimize electric power consumption and avoid a surge condition. The controller consists of: a. means for sensing an operating parameter that is indicative of the capacity of the compressor; b. means for setting a selected setpoint that represents a desired value of the operating parameter; c. surge sensing means for detecting an impending surge by sensing fluctuation in the electric current supplied to the compressor motor, wherein an impending surge is detected whenever fluctuations in excess of a predetermined amplitude occur in excess of a predetermined frequency; and d. control means, responsive to the operating parameter sensing means, the setpoint setting means, and the surge sensing means, for controlling the compressor, such that its capacity is minimally above a level that would cause a surge condition yet is sufficient to maintain the operating parameter at the setpoint.

  8. Improved PV system reliability results from surge evaluations at Sandia National Laboratories

    SciTech Connect

    Russell H. Bonn; Sigifredo Gonzalez

    2000-04-11

    Electrical surges on ac and dc inverter power wiring and diagnostic cables have the potential to shorten the lifetime of power electronics. These surges may be caused by either nearby lightning or capacitor switching transients. This paper contains a description of ongoing surge evaluations of PV power electronics and surge mitigation hardware at Sandia.

  9. Modelling of tide and surge elevations in the Solent and surrounding waters: The importance of tide-surge interactions

    NASA Astrophysics Data System (ADS)

    Quinn, Niall; Atkinson, Peter M.; Wells, Neil C.

    2012-10-01

    A regional two-dimensional hydrodynamic model using the MIKE-21 software and data from a pre-operational forecasting system of the English Channel is described and applied to the Solent-Southampton Water estuarine system. The regional model was able to predict surge heights with a root mean squared error (RMSE) accuracy of 0.09 m during a three month hindcast in the winter of 2009, comparing closely with accuracy assessments from other independent systems. However, consistent underprediction of tidal harmonic constituent amplitudes was present throughout the region leading to errors in the prediction of the total water level elevations. Despite the complex nature of the Solent tidal regime, interpolation of tidal elevations from harmonic analysis at fixed tide gauge locations was shown to be effective in reducing this uncertainty at gauged and un-gauged sites. The degree to which tide-surge interactions were taking place was examined. Of particular interest was the quantification of the sensitivity of the predicted surge to the levels of uncertainty expected in the prediction of the tide within a complex nearshore region such as the Solent. The tide-surge interaction during three surge events was shown to be greatest in the Western Solent and Southampton Waters regions, where the tidal uncertainty was greatest. Interaction between the tide and surge resulted in a change of up to 0.3 m (11%) in the predicted total peak water level when the surge was added to the harmonic analysis-based tidal prediction. Despite the significant effect of removing the tide-surge interactions, tests indicated that the error in tidal range expected in the regional models tidal prediction altered the prediction of the surge only enough to induce changes in peak total water elevations by up to 0.03 m during an event on 10th March 2008. The findings suggest that the current tidal predictions in complex estuarine systems, such as the Solent, are of high enough quality to reproduce the

  10. Surge-type glaciers in the Tien Shan (Central Asia)

    NASA Astrophysics Data System (ADS)

    Mukherjee, Kriti; Bolch, Tobias

    2016-04-01

    Surge-type glaciers in High Mountain Asia are mostly observed in Karakoram and Pamir. However, few surge-type glaciers also exist in the Tien Shan, but have not comprehensively studied in detail in the recent literature. We identified surge-type glaciers in the Tien Shan either from available literature or by manual interpretation using available satellite images (such as Corona, Hexagon, Landsat, SPOT, IRS) for the period 1960 to 2014. We identified 39 possible surge-type glaciers, showing typical characteristics like looped moraines. Twenty-two of them rapidly advanced during different periods or a surge was clearly described in the literature. For the remaining possible surge-type glaciers either the advance, in terms of time and length, were not mentioned in detail in the literature, or the glaciers have remained either stable or retreated during the entire period of our study. Most of the surge-type glaciers cluster in the Inner Tien Shan (especially in the Ak-Shiirak rage) and the Central Tien Shan, are in size and are facing North, West or North West. Pronounced surge events were observed for North Inylchek and Samoilowitsch glaciers, both of which are located in the Central Tien Shan. Samoilowitsch Glacier retreated by more than 3 km between 1960 (length ~8.9 km) and 1992 (~5.8 km), advanced by almost 3 km until 2006 and slightly retreated thereafter. The most pronounced advance occurred between 2000 and 2002. DEM differencing (based on SRTM3 data and stereo Hexagon and Cartosat-1 data) revealed a significant thickening in the middle reaches (reservoir area) of the glacier between 1973 and 2000 while the surface significantly lowered in the middle and upper parts of the glacier between 2000 and 2006. Hence, the ice mass was transferred to the lower reaches (receiving area) and caused the advance with a maximum thickening of more than 80 m. The ~30 km long North Inylchek Glacier retreated since 1943 and showed a very rapid advance of ~3.5 km especially in

  11. Substorm-associated radar auroral surges

    SciTech Connect

    Freeman, M.P.; Southwood, D.J. ); Lester, M.; Yeoman, T.K. ); Reeves, G.D. )

    1992-08-01

    The authors report a recurrent convection signature observed in the E region ionosphere within {approximately}2 hours of the dusk meridian by the SABRE radar facility. In a typical event, the irregularity drift speed in the SABRE field of view is seen to increase from about 300 m s{sup {minus}1} to of the order of 1 km s{sup {minus}1} in the space of about 10 min. The speed subsequently remains at the enhanced level for 10 min or longer before declining as rapidly as its onset. The total event duration ranges between 30 min and 1 hour. As the irregularity drift speed increases the direction of the drift velocity changes, rotating poleward. At the same time, the radar backscatter power decreases. The onset of the drift speed enhancement crosses the SABRE field of view as a front moving from east to west. Detailed study of individual events indicates that the events are associated with increases in the {vert bar}AL{vert bar} index and with the injection of energetic particles into geosynchronous orbit. The authors thus suggest that the events are a part of the magnetospheric response to the onset of a geomagnetic substorm. However, while each event appears to be associated with a substorm onset, not every substorm onset is associated with an event, at least not at SABRE. They estimate the speed at which the substorm-initiated ionospheric flow enhancement moves from the nightside to be 1-4 km s{sup {minus}1}, a figure that is consistent with the rate at which the drift velocity front crosses the SABRE field of view. Although the front is associated with a rotation in the drift velocity, they see little evidence of strong vertical vorticity as the front passes. However, shears in the flow do develop subsequently which seem likely to correspond to field-aligned current. Although associated with substorm onset, they argue that these events are distinct from westward traveling surges and appear to differ from the midlatitude phenomenon known as subauroral ion drifts.

  12. Observing Storm Surges from Space: A New Opportunity

    NASA Astrophysics Data System (ADS)

    Han, Guoqi; Ma, Zhimin; Chen, Dake; de Young, Brad; Chen, Nancy

    2013-04-01

    Coastal tide gauges can be used to monitor variations of a storm surge along the coast, but not in the cross-shelf direction. As a result, the cross-shelf structure of a storm surge has rarely been observed. In this study we focus on Hurricane Igor-induced storm surge off Newfoundland, Canada. Altimetric observations at about 2:30, September 22, 2010 UTC (hours after the passage of Hurricane Igor) reveal prominent cross-shelf variation of sea surface height during the storm passage, including a large nearshore slope and a mid-shelf depression. A significant coastal surge of 1 m derived from satellite altimetry is found to be consistent with tide-gauge measurements at nearby St. John's station. The post-storm sea level variations at St. John's and Argentia are argued to be associated with free equatorward-propagating continental shelf waves (with phase speeds of 11-13 m/s), generated along the northeast Newfoundland coast hours after the storm moved away from St. John's. The cross-shelf e-folding scale of the shelf wave was estimated to be ~100 km. We further show approximate agreement of altimetric and tide-gauge observations in the Gulf of Mexico during Hurricane Katrina (2005) and Isaac (2012). The study for the first time in the literature shows the robustness of satellite altimetry to observe storm surges, complementing tide-gauge observations for the analysis of storm surge characteristics and for the validation and improvement of storm surge models.

  13. A High Density Storm Surge Monitoring Network: Evaluating the Ability of Wetland Vegetation to Reduce Storm Surge

    NASA Astrophysics Data System (ADS)

    Lawler, S.; Denton, M.; Ferreira, C.

    2013-12-01

    Recent tropical storm activity in the Chesapeake Bay and a potential increase in the predicted frequency and magnitude of weather systems have drawn increased attention to the need for improved tools for monitoring, modeling and predicting the magnitude of storm surge, coastal flooding and the respective damage to infrastructure and wetland ecosystems. Among other forms of flood protection, it is believed that coastal wetlands and vegetation can act as a natural barrier that slows hurricane flooding, helping to reduce the impact of storm surge. However, quantifying the relationship between the physical process of storm surge and its attenuation by wetland vegetation is an active area of research and the deployment of in-situ measuring devices is crucial to data collection efforts in this field. The United States Geological Survey (USGS) mobile storm-surge network has already successfully provided a framework for evaluating hurricane induced storm surge water levels on a regional scale through the use of in-situ devices installed in areas affected by storm surge during extreme events. Based on the success of the USGS efforts, in this study we adapted the monitoring network to cover relatively small areas of wetlands and coastal vegetation with an increased density of sensors. Groups of 6 to 10 water level sensors were installed in sites strategically selected in three locations on the Virginia coast of the lower Chesapeake Bay area to monitor different types of vegetation and the resulting hydrodynamic patterns (open coast and inland waters). Each group of sensors recorded time series data of water levels for both astronomical tide circulation and meteorological induced surge. Field campaigns were carried out to survey characteristics of vegetation contributing to flow resistance (i.e. height, diameter and stem density) and mapped using high precision GPS. A geodatabase containing data from field campaigns will support the development and calibration of

  14. A mechanism for African monsoon breaks: Mediterranean cold air surges

    NASA Astrophysics Data System (ADS)

    Vizy, Edward K.; Cook, Kerry H.

    2009-01-01

    Surges of cold air from the Mediterranean into northern Africa during the boreal summer are documented, and their influence on monsoon breaks is analyzed using Tropical Rainfall Measuring Mission rainfall estimates and reanalysis products. Between 1998 and 2006, 6-10 cold air surges occurred each summer, with low-level temperature anomalies ranging from less than -1 K to over -6 K. Composite analysis indicates that cold air surges over northern Africa persist for 2-10 days and travel equatorward at approximately 5.5 m s-1, which is 0.5-1.5 m s-1 faster than the observed climatological low-level meridional flow. Northern African cold surges have characteristics similar to surges observed elsewhere in the world, including a hydrostatically induced ridge of surface pressure and an amplified upper tropospheric ridge/trough pattern. The African cold surge is preceded by the passage of a shortwave trough and an intensification of the upper tropospheric subtropical westerly jet streak over the Mediterranean Sea. These events are associated with increased confluence in the jet entrance region over the central Mediterranean, an enhanced direct secondary circulation, subsidence, and low-level ageostrophic northerly flow over northeastern Africa. Composite analysis shows that the passage of a cold surge is associated with an enhancement in convective activity over southern Algeria, western Niger, northern Mali, and Mauritania 2 to 5 days before the surge reaches the eastern Sahel (˜17.5°N), when northeasterly flow channeled between the Atlas and Ahaggar Mountains strengthens and transports relatively moist air from the western Mediterranean and eastern North Atlantic over the region and increases moisture convergence over western Africa north of 20°N. Over the eastern Sahel of Sudan and eastern Chad, the composite results reveal a break in convective activity and decrease in low-level convergence when the surge arrives that persists for about 6 days. These results offer

  15. Surge recovery techniques for the Tevatron cold compressors

    SciTech Connect

    Martinez, A.; Klebaner, A.L.; Makara, J.N.; Theilacker, J.C.; /Fermilab

    2006-01-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, made by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations [1]. The compressor is designed to pump 60 g/s of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/s and operating speeds between 40 and 95 krpm. Since initial commissioning in 1993, Tevatron transient conditions such as quench recovery have led to multiple-location machine trips as a result of the cold compressors entering the surge regime. Historically, compressors operating at lower inlet pressures and higher speeds have been especially susceptible to these machine trips and it was not uncommon to have multiple compressor trips during large multiple-house quenches. In order to cope with these events and limit accelerator down time, surge recovery techniques have been implemented in an attempt to prevent the compressors from tripping once the machine entered this surge regime. This paper discusses the different methods of surge recovery that have been employed. Data from tests performed at the Cryogenic Test Facility at Fermilab as well as actual Tevatron operational data were utilized. In order to aid in the determination of the surge region, a full mapping study was undertaken to characterize the entire pressure field of the cold compressor. These techniques were then implemented and tested at several locations in the Tevatron with some success.

  16. Eyjabakkajokull Glacial Landsystem, Iceland: Geomorphic Impact of Multiple Surges

    NASA Astrophysics Data System (ADS)

    Ingolfsson, O.; Schomacker, A.; Benediktsson, I.

    2013-12-01

    A new glacial geomorphological map of the Eyjabakkajökull forefield in Iceland is presented. The map covers c. 60 km2 and is based on high-resolution aerial photographs recorded in August 2008 as well as field checking. Landforms are manually registered in a geographical information system (ArcGIS) based on inspection of orthorectified imagery and digital elevation models of the area. We mapped subglacially streamlined landforms such as flutes and drumlins on the till plain, supraglacial landforms such as ice-cored moraine, pitted outwash, and concertina eskers, and ice-marginal landforms such as the large, multi-crested 1890 surge end moraine and smaller single-crested end moraines. The glaciofluvial landforms are represented by outwash plains, minor outwash fans, and sinuous eskers. Extramarginal sediments were also registered and consist mainly of old sediments in wetlands or locally weathered bedrock. Eyjabakkajökull has behaved as a surge-type glacier for 2200 years; hence, the mapped landforms originate from multiple surges. Landforms such as large glaciotectonic end moraines, hummocky moraine, long flutes, crevasse-fill ridges, and concertina eskers are characteristic for surge-type glaciers. The surging glacier landsystem of Eyjabakkajökull serves as a modern analog to the landsystems of terrestrial paleo-ice streams.

  17. Surge Recovery Techniques for the Tevatron Cold Compressors

    NASA Astrophysics Data System (ADS)

    Martinez, A.; Klebaner, A. L.; Makara, J. N.; Theilacker, J. C.

    2006-04-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, made by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations. The compressor is designed to pump 60 g/s of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/s and operating speeds between 40 and 95 krpm. Since initial commissioning in 1993, Tevatron transient conditions such as quench recovery have led to multiple-location machine trips as a result of the cold compressors entering the surge regime. Historically, compressors operating at lower inlet pressures and higher speeds have been especially susceptible to these machine trips and it was not uncommon to have multiple compressor trips during large multiple-house quenches. In order to cope with these events and limit accelerator down time, surge recovery techniques have been implemented in an attempt to prevent the compressors from tripping once the machine entered this surge regime. This paper discusses the different methods of surge recovery that have been employed. Data from tests performed at the Cryogenic Test Facility at Fermilab as well as actual Tevatron operational data were utilized. In order to aid in the determination of the surge region, a full mapping study was undertaken to characterize the entire pressure field of the cold compressor. These techniques were then implemented and tested at several locations in the Tevatron with some success.

  18. Opposition Surge: Lab Studies and Theoretical Models

    NASA Astrophysics Data System (ADS)

    Nelson, R. M.; Hapke, B. W.; Smythe, W. D.; Hale, A. S.; Piatek, J. L.; Green, J.

    The opposition effect, a non-linear intensity increase in the reflectance phase curve with decreasing phase angle, has long been observed in solar system bodies and in laboratory investigations of the angular scattering properties of particulate media[1]. It has been attributed to two processes. One, shadow hiding, is the elimination of shadows mutually cast between the regolith grains as the phase angle decreases[2]. The other is coherent constructive interference between rays of light traveling along identical but opposite paths in multiply scattering media (CBOE). [3,4,5,6]. We report the results of an investigation into the opposition surge of particulate materials of the same particle size and packing density but of differing reflectance. The measurements were made on the long arm goniometer at JPL. The phase angle studied varied from 0.05 to 5o. Samples of Al2O3, diamond, Si4C, and B4C were presented with linearly and circularly polarized light from a laser of wavelength 0.633 µm. The uncompressed, 22-24 µm samples differed widely in reflectance. Many published models of CBOE suggest that as the materials become more absorbing the shape of the phase curve should become more rounded near 0o [7,8 9, 10, 11,12,13]. We find that, regardless of reflectance, the phase curve exhibits increasing slope with decreasing phase angle down to the angular limit of our measurement. It becomes more sharply peaked and does not become rounded. Our measurements of powdered materials, including lunar regolith samples[14,15,16], do not agree with current models of coherent backscatter, which predict a rounding and truncation of the opposition effect peak near zero phase. This lack of rounding is consistent with the hypothesis that very long light paths contribute to the CBOE of particulate materials including planetary regoliths. This work was performed at NASA's JPL under a grant from NASA's Planetary Geology / Geophysics program. References: [1] T. Gehrels, Astrrophys. J. 123

  19. A global reanalysis of storm surges and extreme sea levels

    NASA Astrophysics Data System (ADS)

    Muis, Sanne; Verlaan, Martin; Winsemius, Hessel C.; Aerts, Jeroen C. J. H.; Ward, Philip J.

    2016-06-01

    Extreme sea levels, caused by storm surges and high tides, can have devastating societal impacts. To effectively protect our coasts, global information on coastal flooding is needed. Here we present the first global reanalysis of storm surges and extreme sea levels (GTSR data set) based on hydrodynamic modelling. GTSR covers the entire world's coastline and consists of time series of tides and surges, and estimates of extreme sea levels. Validation shows that there is good agreement between modelled and observed sea levels, and that the performance of GTSR is similar to that of many regional hydrodynamic models. Due to the limited resolution of the meteorological forcing, extremes are slightly underestimated. This particularly affects tropical cyclones, which requires further research. We foresee applications in assessing flood risk and impacts of climate change. As a first application of GTSR, we estimate that 1.3% of the global population is exposed to a 1 in 100-year flood.

  20. A global reanalysis of storm surges and extreme sea levels.

    PubMed

    Muis, Sanne; Verlaan, Martin; Winsemius, Hessel C; Aerts, Jeroen C J H; Ward, Philip J

    2016-01-01

    Extreme sea levels, caused by storm surges and high tides, can have devastating societal impacts. To effectively protect our coasts, global information on coastal flooding is needed. Here we present the first global reanalysis of storm surges and extreme sea levels (GTSR data set) based on hydrodynamic modelling. GTSR covers the entire world's coastline and consists of time series of tides and surges, and estimates of extreme sea levels. Validation shows that there is good agreement between modelled and observed sea levels, and that the performance of GTSR is similar to that of many regional hydrodynamic models. Due to the limited resolution of the meteorological forcing, extremes are slightly underestimated. This particularly affects tropical cyclones, which requires further research. We foresee applications in assessing flood risk and impacts of climate change. As a first application of GTSR, we estimate that 1.3% of the global population is exposed to a 1 in 100-year flood. PMID:27346549

  1. A global reanalysis of storm surges and extreme sea levels

    PubMed Central

    Muis, Sanne; Verlaan, Martin; Winsemius, Hessel C.; Aerts, Jeroen C. J. H.; Ward, Philip J.

    2016-01-01

    Extreme sea levels, caused by storm surges and high tides, can have devastating societal impacts. To effectively protect our coasts, global information on coastal flooding is needed. Here we present the first global reanalysis of storm surges and extreme sea levels (GTSR data set) based on hydrodynamic modelling. GTSR covers the entire world's coastline and consists of time series of tides and surges, and estimates of extreme sea levels. Validation shows that there is good agreement between modelled and observed sea levels, and that the performance of GTSR is similar to that of many regional hydrodynamic models. Due to the limited resolution of the meteorological forcing, extremes are slightly underestimated. This particularly affects tropical cyclones, which requires further research. We foresee applications in assessing flood risk and impacts of climate change. As a first application of GTSR, we estimate that 1.3% of the global population is exposed to a 1 in 100-year flood. PMID:27346549

  2. Analytical Study of Cavitation Surge in a Hydraulic System.

    PubMed

    Kang, Donghyuk; Yokota, Kazuhiko

    2014-10-01

    In order to clarify effects of an accumulator, pipe lengths and gradients of pressure and suction performances on cavitation surge, one-dimensional stability analyses of cavitation surge were performed in hydraulic systems consisting of an upstream tank, an inlet pipe, a cavitating pump, a downstream pipe, and a downstream tank. An accumulator located upstream or downstream of the cavitating pump was included in the analysis. Increasing the distance between the upstream accumulator and the cavitating pump enlarged the stable region. On the other hand, decreasing the distance between the downstream accumulator and the cavitating pump enlarged the stable region. Furthermore, the negative gradient of a suction performance curve and the positive gradient of a pressure performance curve cause cavitation surge. PMID:25278638

  3. Homogeneous record of Atlantic hurricane surge threat since 1923.

    PubMed

    Grinsted, Aslak; Moore, John C; Jevrejeva, Svetlana

    2012-11-27

    Detection and attribution of past changes in cyclone activity are hampered by biased cyclone records due to changes in observational capabilities. Here we construct an independent record of Atlantic tropical cyclone activity on the basis of storm surge statistics from tide gauges. We demonstrate that the major events in our surge index record can be attributed to landfalling tropical cyclones; these events also correspond with the most economically damaging Atlantic cyclones. We find that warm years in general were more active in all cyclone size ranges than cold years. The largest cyclones are most affected by warmer conditions and we detect a statistically significant trend in the frequency of large surge events (roughly corresponding to tropical storm size) since 1923. In particular, we estimate that Katrina-magnitude events have been twice as frequent in warm years compared with cold years (P < 0.02). PMID:23071336

  4. On improving storm surge forecasting using an adjoint optimal technique

    NASA Astrophysics Data System (ADS)

    Li, Yineng; Peng, Shiqiu; Yan, Jing; Xie, Lian

    2013-12-01

    A three-dimensional ocean model and its adjoint model are used to simultaneously optimize the initial conditions (IC) and the wind stress drag coefficient (Cd) for improving storm surge forecasting. To demonstrate the effect of this proposed method, a number of identical twin experiments (ITEs) with a prescription of different error sources and two real data assimilation experiments are performed. Results from both the idealized and real data assimilation experiments show that adjusting IC and Cd simultaneously can achieve much more improvements in storm surge forecasting than adjusting IC or Cd only. A diagnosis on the dynamical balance indicates that adjusting IC only may introduce unrealistic oscillations out of the assimilation window, which can be suppressed by the adjustment of the wind stress when simultaneously adjusting IC and Cd. Therefore, it is recommended to simultaneously adjust IC and Cd to improve storm surge forecasting using an adjoint technique.

  5. A Field Study of Lightning Surges Propagating through Low-voltage Electric Appliances

    NASA Astrophysics Data System (ADS)

    Ishii, Tsunayoshi; Sakamoto, Yoshiki; Oguchi, Shuichi; Okabe, Shigemitsu

    In today's highly information-based society, lightning damage has a significant impact on an increasing number of electric appliances such as personal computers and facsimile machines. Lightning surge protection devices for electric appliances are on the market and concern for lightning protection has been increasing, but there are still many unknown aspects of lightning surges that propagate into residences. To provide effective lightning protection measures, clarification of surge propagation patterns is needed. The Tokyo Electric Power Company has observed the patterns of lightning surge propagation into houses using lightning surge waveform detectors installed at ordinary residences and obtained data on 30 lightning surge current waveforms between 2008 and 2009. This paper discusses various aspects of lightning surge currents propagating into low-voltage appliances, including home electric appliances, based on the lightning surge current waveform data obtained from lightning observations. The result revealed the patterns of lightning surge currents propagating into the ground and lines of low-voltage appliances.

  6. Community health facility preparedness for a cholera surge in Haiti.

    PubMed

    Mobula, Linda Meta; Jacquet, Gabrielle A; Weinhauer, Kristin; Alcidas, Gladys; Thomas, Hans-Muller; Burnham, Gilbert

    2013-01-01

    With increasing population displacement and worsening water insecurity after the 2010 earthquake, Haiti experienced a large cholera outbreak. Our goal was to evaluate the strengths and weaknesses of seven community health facilities' ability to respond to a surge in cholera cases. Since 2010, Catholic Relief Services (CRS) with a number of public and private donors has been working with seven health facilities in an effort to reduce morbidity and mortality from cholera infection. In November 2012, CRS through the Centers for Disease Control and Prevention (CDC)'s support, asked the Johns Hopkins Center for Refugee and Disaster Response to conduct a cholera surge simulation tabletop exercise at these health facilities to improve each facility's response in the event of a cholera surge. Using simulation development guidelines from the Pan American Health Organization and others, a simulation scenario script was produced that included situations of differing severity, supply chain, as well as a surge of patients. A total of 119 hospital staff from seven sites participated in the simulation exercise including community health workers, clinicians, managers, pharmacists, cleaners, and security guards. Clinics that had challenges during the simulated clinical care of patients were those that did not appropriately treat all cholera patients according to protocol, particularly those that were vulnerable, those that would need additional staff to properly treat patients during a surge of cholera, and those that required a better inventory of supplies. Simulation-based activities have the potential to identify healthcare delivery system vulnerabilities that are amenable to intervention prior to a cholera surge. PMID:24481887

  7. Geological Controls on Glacier Surging?: Statistics and Speculation

    NASA Astrophysics Data System (ADS)

    Flowers, G. E.; Crompton, J. W.

    2015-12-01

    Glacier surging represents an end-member behavior in the spectrum of ice dynamics, involving marked acceleration and high flow speeds due to abrupt changes in basal mechanics. Though much effort has been devoted to understanding the role of basal hydrology and thermal regime in fast glacier flow, fewer studies have addressed the potential role of the geologic substrate. One interesting observation is that surge-type glaciers appear almost universally associated with unconsolidated (till) beds, and several large-scale statistical studies have revealed correlations between glacier surging and bedrock properties. We revisit this relationship using field measurements. We selected 20 individual glaciers for sampling in a 40x40 km region of the St. Elias Mountains of Yukon, Canada. Eleven of these glaciers are known to surge and nine are not. The 20 study glaciers are underlain by lithologies that we have broadly classified into two types: metasedimentary only and mixed metasedimentary-granodiorite. We characterized geological and geotechnical properties of the bedrock in each basin, and analyzed the hydrochemistry and mineralogy and grain size distribution (GSD) of the suspended sediments in the proglacial streams. Here we focus on some intriguing results of the GSD analysis. Using statistical techniques, including significance testing and principal component analysis, we find that: (1) lithology determines GSD for non-surge-type glaciers, with metasedimentary basins associated with finer mean grain sizes and mixed-lithology basins with coarser mean grain sizes, but (2) the GSDs associated with surge-type glaciers are intermediate between the distributions described above, and are statistically indistinguishable between metasedimentary and mixed lithology basins. The latter suggests either that surge-type glaciers in our study area occur preferentially in basins where various processes conspire to produce a characteristic GSD, or that the surge cycle itself exerts an

  8. Aging assessment of surge protective devices in nuclear power plants

    SciTech Connect

    Davis, J.F.; Subudhi, M.; Carroll, D.P.

    1996-01-01

    An assessment was performed to determine the effects of aging on the performance and availability of surge protective devices (SPDs), used in electrical power and control systems in nuclear power plants. Although SPDs have not been classified as safety-related, they are risk-important because they can minimize the initiating event frequencies associated with loss of offsite power and reactor trips. Conversely, their failure due to age might cause some of those initiating events, e.g., through short circuit failure modes, or by allowing deterioration of the safety-related component(s) they are protecting from overvoltages, perhaps preventing a reactor trip, from an open circuit failure mode. From the data evaluated during 1980--1994, it was found that failures of surge arresters and suppressers by short circuits were neither a significant risk nor safety concern, and there were no failures of surge suppressers preventing a reactor trip. Simulations, using the ElectroMagnetic Transients Program (EMTP) were performed to determine the adequacy of high voltage surge arresters.

  9. A conceptual current surge protector for incandescent lamps

    NASA Technical Reports Server (NTRS)

    Macomber, G. A.

    1970-01-01

    Negative-temperature coefficient device /thermistor/ in series with a lamp filament alleviates high filament surge current during initial application of power. The thermistor should be selected for a cold resistance approximately equal to one fourth of the normal hot resistance of the filaments to be protected.

  10. DETAIL OF PENSTOCK ENTERING SURGE TANK AND SOUTH SIDE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF PENSTOCK ENTERING SURGE TANK AND SOUTH SIDE OF POWERHOUSE. 69-KV TRANSMISSION TOWERS WITH LIGHTENING ARRESTORS ARE SEEN ON HILLSIDE TO THE NORTH. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Elwha Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  11. 17. SECTION DRAWING OF SURGE TANK, PENSTOCK, AND POWERHOUSE, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. SECTION DRAWING OF SURGE TANK, PENSTOCK, AND POWERHOUSE, SHOWING TURBINE, GENERATOR, AND TRANSFORMERS INSTALLED IN POWERHOUSE, INTERIOR Part Sectional and Elevation of Power House and Penstock, drawing E-966. Drawn by F. J. Rotter, December 27, 1922 - Enloe Dam, Power House, On Similkameen River, Oroville, Okanogan County, WA

  12. Hospital-Based Coalition to Improve Regional Surge Capacity

    PubMed Central

    Terndrup, Thomas E.; Leaming, James M.; Adams, R. Jerry; Adoff, Spencer

    2012-01-01

    Introduction Surge capacity for optimization of access to hospital beds is a limiting factor in response to catastrophic events. Medical facilities, communication tools, manpower, and resource reserves exist to respond to these events. However, these factors may not be optimally functioning to generate an effective and efficient surge response. The objective was to improve the function of these factors. Methods Regional healthcare facilities and supporting local emergency response agencies developed a coalition (the Healthcare Facilities Partnership of South Central Pennsylvania; HCFP-SCPA) to increase regional surge capacity and emergency preparedness for healthcare facilities. The coalition focused on 6 objectives: (1) increase awareness of capabilities and assets, (2) develop and pilot test advanced planning and exercising of plans in the region, (3) augment written medical mutual aid agreements, (4) develop and strengthen partnership relationships, (5) ensure National Incident Management System compliance, and (6) develop and test a plan for effective utilization of volunteer healthcare professionals. Results In comparison to baseline measurements, the coalition improved existing areas covered under all 6 objectives documented during a 24-month evaluation period. Enhanced communications between the hospital coalition, and real-time exercises, were used to provide evidence of improved preparedness for putative mass casualty incidents. Conclusion The HCFP-SCPA successfully increased preparedness and surge capacity through a partnership of regional healthcare facilities and emergency response agencies. PMID:23316266

  13. 48 CFR 252.217-7001 - Surge option.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... services called for under this contract by no more than ___ percent; and/or (2) Accelerate the rate of...-MGMT-80969) is included in the contract, the option delivery schedule shall be the production rate... shall be used. (2) If there is no Production Surge Plan in the contract, the Contractor shall, within...

  14. Study of surge current effects on solid tantalum capacitors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Results are presented of a 2,000 hour cycled life test program conducted to determine the effect of short term surge current screening on approximately 47 micron f/volt solid tantalum capacitors. The format provides average values and standard deviations of the parameters, capacitance, dissipation factor, and equivalent series resistance at 120 Hz, 1KHz, abd 40 KHz.

  15. Assessment of Hospital Management and Surge Capacity in Disasters

    PubMed Central

    Shabanikiya, Hamidreza; Gorgi, Hasan Abolghasem; Seyedin, Hesam; Jafari, Mehdi

    2016-01-01

    Background Hospital administrators play a key role in the effective management of surge capacity in disasters, but there is little information available about the characteristics required to manage this. Objectives In this study, we aimed to identify characteristics of hospital administrators that are important in the effective management of surge capacity in disasters. Materials and Methods This was a qualitative study. Semi-structured purposive interviews were conducted with 28 hospital administrators who had experience working in surge situations in hospitals during disasters. Framework analysis was used to analyze the data. Results Three themes and 12 subthemes were identified. The themes were as follows: 1) crisis managerial characteristics, 2) personal characteristics, and 3) specific requirements. Conclusions In this study, some characteristics that had a positive impact on the success of a manager in a hospital surge situation were identified. These characteristics ought to be taken into account when appointing hospital administrators and designing training programs for hospital administrators with the aim of being better prepared to face disasters. PMID:27626015

  16. Debris entrainment and landform genesis during tidewater glacier surges

    NASA Astrophysics Data System (ADS)

    Lovell, Harold; Fleming, Edward J.; Benn, Douglas I.; Hubbard, Bryn; Lukas, Sven; Rea, Brice R.; Noormets, Riko; Flink, Anne E.

    2015-08-01

    The englacial entrainment of basal debris during surges presents an opportunity to investigate processes acting at the glacier bed. The subsequent melt-out of debris-rich englacial structures during the quiescent phase produces geometrical ridge networks on glacier forelands that are diagnostic of surge activity. We investigate the link between debris entrainment and proglacial geomorphology by analyzing basal ice, englacial structures, and ridge networks exposed at the margins of Tunabreen, a tidewater surge-type glacier in Svalbard. The basal ice facies display clear evidence for brittle and ductile tectonic deformation, resulting in overall thickening of the basal ice sequence. The formation of debris-poor dispersed facies ice is the result of strain-induced metamorphism of meteoric ice near the bed. Debris-rich englacial structures display a variety of characteristics and morphologies and are interpreted to represent the incorporation and elevation of subglacial till via the squeezing of till into basal crevasses and hydrofracture exploitation of thrust faults, reoriented crevasse squeezes, and preexisting fractures. These structures are observed to melt-out and form embryonic geometrical ridge networks at the base of a terrestrially grounded ice cliff. Ridge networks are also located at the terrestrial margins of Tunabreen, neighboring Von Postbreen, and in a submarine position within Tempelfjorden. Analysis of network characteristics allows these ridges to be linked to different formational mechanisms of their parent debris-rich englacial structures. This in turn provides an insight into variations in the dominant tectonic stress regimes acting across the glacier during surges.

  17. Monitoring Inland Storm Surge and Flooding from Hurricane Rita

    USGS Publications Warehouse

    McGee, Benton D.; Tollett, Roland W.; Mason, Jr., Robert R.

    2006-01-01

    Pressure transducers (sensors) and high-water marks were used to document the inland water levels related to storm surge generated by Hurricane Rita in southwestern Louisiana and southeastern Texas. On September 22-23, 2005, an experimental monitoring network of sensors was deployed at 33 sites over an area of about 4,000 square miles to record the timing, extent, and magnitude of inland hurricane storm surge and coastal flooding. Sensors were programmed to record date and time, temperature, and barometric or water pressure. Water pressure was corrected for changes in barometric pressure and salinity. Elevation surveys using global-positioning systems and differential levels were used to relate all storm-surge water-level data, reference marks, benchmarks, sensor measuring points, and high-water marks to the North American Vertical Datum of 1988 (NAVD 88). The resulting data indicated that storm-surge water levels over 14 feet above NAVD 88 occurred at three locations, and rates of water-level rise greater than 5 feet per hour occurred at three locations near the Louisiana coast.

  18. 4. ROOF OF TWOSTALL GARAGE, SURGE TANK, HOUSE No. 16, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. ROOF OF TWO-STALL GARAGE, SURGE TANK, HOUSE No. 16, RELIEF TANK IN BACKGROUND. VIEW TO SOUTH. - Rainbow Hydroelectric Facility, On north bank of Missouri River 2 miles Northeast of Great Falls, & end of Rainbow Dam Road, Great Falls, Cascade County, MT

  19. SPH Simulation of Impact of a Surge on a Wall

    NASA Astrophysics Data System (ADS)

    Diwakar, Manoj Kumar; Mohapatra, Pranab Kumar; Tripathi, Shivam

    2014-05-01

    Structures located on the downstream of a dam are prone to impact of the surge due to dam break flow. Ramsden (1996) experimentally studied the run-up height on a vertical wall due to propagation of bore and surge on dry bed and measured their impact on the wall. Mohapatra et al. (2000) applied Navier Stokes equations to numerically study the impact of bore on vertical and inclined walls. They also obtained the evolution of surge on dry bed. In the present work, the impact of a surge wave due to dam break flow against the wall is modeled with a two-dimensional smoothed particle hydrodynamics (SPH) model. SPH is a mesh-free method that relies on the particle view of the field problem and approximates the continuity and momentum equations on a set of particles. The method solves the strong form of Navier-Stokes equations. The governing equations are solved numerically in the vertical plane. The propagation of the surge wave, its impact and the maximum run-up on the wall located at the boundary are analyzed. Surface profile, velocity field and pressure distributions are simulated. Non-dimensional run-up height obtained from the present numerical model is 0.86 and is in good agreement with the available experimental data of Ramsden (1996) which is in the range of 0.75-0.9. Also, the simulated profile of the surge tip was comparable to the empirical equations refereed in Ramsden (1996). The model is applied to the study the maximum force and the run-up height on inclined walls with different inclinations. The results indicate that the maximum force and the run-up height on the wall increase with the increment of wall inclination. Comparison of numerical results with analytical solutions derived from shallow water equations clearly shows the breakdown of shallow water assumption during the impact. In addition to these results, the numerical simulation yields the complete velocity and pressure ?elds which may be used to design structures located in the path of a dam

  20. Forecasting of Storm Surge Floods Using ADCIRC and Optimized DEMs

    NASA Technical Reports Server (NTRS)

    Valenti, Elizabeth; Fitzpatrick, Patrick

    2005-01-01

    Increasing the accuracy of storm surge flood forecasts is essential for improving preparedness for hurricanes and other severe storms and, in particular, for optimizing evacuation scenarios. An interactive database, developed by WorldWinds, Inc., contains atlases of storm surge flood levels for the Louisiana/Mississippi gulf coast region. These atlases were developed to improve forecasting of flooding along the coastline and estuaries and in adjacent inland areas. Storm surge heights depend on a complex interaction of several factors, including: storm size, central minimum pressure, forward speed of motion, bottom topography near the point of landfall, astronomical tides, and most importantly, maximum wind speed. The information in the atlases was generated in over 100 computational simulations, partly by use of a parallel-processing version of the ADvanced CIRCulation (ADCIRC) model. ADCIRC is a nonlinear computational model of hydrodynamics, developed by the U.S. Army Corps of Engineers and the US Navy, as a family of two- and three-dimensional finite element based codes. It affords a capability for simulating tidal circulation and storm surge propagation over very large computational domains, while simultaneously providing high-resolution output in areas of complex shoreline and bathymetry. The ADCIRC finite-element grid for this project covered the Gulf of Mexico and contiguous basins, extending into the deep Atlantic Ocean with progressively higher resolution approaching the study area. The advantage of using ADCIRC over other storm surge models, such as SLOSH, is that input conditions can include all or part of wind stress, tides, wave stress, and river discharge, which serve to make the model output more accurate.

  1. Distribution of auroral surges in the evening sector

    SciTech Connect

    Kidd, S.R.; Rostoker, G. )

    1991-04-01

    Over the past dacades a large statistical data base has been gathered consisting of both ground-based magnetometer and all-sky camera records from which researchers have inferred the distribution of substorm expansive phase events across the nighttime sector. Almost without exception, the activity distribution has been based on single station data acquired over periods of years. However, to truly establish the occurrence frequency of substorm expansive phase events, it is necessary to view the entire nighttime sector instantaneously in the light of evidence which shows that more than one expansive phase disturbance can be in progress across the broad expanse of the evening sector. In this paper, the authors study the distribution of regions of localized auroral luminosity in the poleward portion of the evening sectorauroral oval using images in the ultraviolet portion of the auroral spectrum acquired by the Viking satellite over 9 months in 1986. They find that auroral surge activity peaks in the hour before local magnetic midnight, with the probability of detecting a surge steadily decreasing to 10% of the probability of finding a surge in the hour prior to midnight as one moves westward towards 1,900 MLT. They show that their conclusion is not dependent on the threshold chosen for surge identification over a reasonable portion of the intensity range covered by the Viking imager. They further show that for the interval of several months near sunspot minimum in 1986 there is better than a 90% chance that no surge will be detected in a 1-hour range of magnetic local time if one were to sample that segment of the auroral oval at any arbitrary time.

  2. Application of rule based methods to predicting storm surge

    NASA Astrophysics Data System (ADS)

    Royston, S. J.; Horsburgh, K. J.; Lawry, J.

    2012-04-01

    The accurate forecast of storm surge, the long wavelength sea level response to meteorological forcing, is imperative for flood warning purposes. There remain regions of the world where operational forecast systems have not been developed and in these locations it is worthwhile considering numerically simpler, data-driven techniques to provide operational services. In this paper, we investigate the applicability of a class of data driven methods referred to as rule based models to the problem of forecasting storm surge. The accuracy of the rule based model is found to be comparable to several alternative data-driven techniques, all of which result in marginally worse but acceptable forecasts compared with the UK's operational hydrodynamic forecast model, given the reduction in computational effort. Promisingly, the rule based model is considered to be skillful in forecasting total water levels above a given flood warning threshold, with a Brier Skill Score of 0.58 against a climatological forecast (the operational storm surge system has a Brier Skill Score of up to 0.75 for the same data set). The structure of the model can be interrogated as IF-THEN rules and we find that the model structure in this case is consistent with our understanding of the physical system. Furthermore, the rule based approach provides probabilistic forecasts of storm surge, which is much more informative to flood warning managers than alternative approaches. Therefore, the rule based model provides reasonably skillful forecasts in comparison with the operational forecast model, for a significant reduction in development and run time, and is therefore considered to be an appropriate data driven approach that could be employed to forecast storm surge in regions of the world where a fully fledged hydrodynamic forecast system does not exist, provided a good observational and meteorological forecast can be made.

  3. Impact of hurricanes storm surges on the groundwater resources

    USGS Publications Warehouse

    Van Biersel, T. P.; Carlson, D.A.; Milner, L.R.

    2007-01-01

    Ocean surges onto coastal lowlands caused by tropical and extra tropical storms, tsunamis, and sea level rise affect all coastal lowlands and present a threat to drinking water resources of many coastal residents. In 2005, two such storms, Hurricanes Katrina and Rita struck the Gulf Coast of the US. Since September 2005, water samples have been collected from water wells impacted by the hurricanes' storm surges along the north shore of Lake Pontchartrain in southeastern Louisiana. The private and public water wells tested were submerged by 0.6-4.5 m of surging saltwater for several hours. The wells' casing and/or the associated plumbing were severely damaged. Water samples were collected to determine if storm surge water inundated the well casing and, if so, its effect on water quality within the shallow aquifers of the Southern Hills Aquifer System. In addition, the samples were used to determine if the impact on water quality may have long-term implication for public health. Laboratory testing for several indicator parameters (Ca/Mg, Cl/Si, chloride, boron, specific conductance and bacteria) indicates that surge water entered water wells' casing and the screened aquifer. Analysis of the groundwater shows a decrease in the Ca/Mg ratio right after the storm and then a return toward pre-Katrina values. Chloride concentrations were elevated right after Katrina and Rita, and then decreased downward toward pre-Katrina values. From September 2005 to June 2006, the wells showed improvement in all the saltwater intrusion indicators. ?? 2007 Springer-Verlag.

  4. Review of Surge Arresters for Power Systems and Transition of their Standards

    NASA Astrophysics Data System (ADS)

    Shirakawa, Shingo; Kojima, Soji

    Surge arresters have contributed to supply electric power suppressing lightning surge on transmission lines in case of the occurrence of lightning phenomena.Surge arresters using zinc oxide (ZnO) elements are suitable for insulation coordination, and are enable to reduce LIWV (Lightning Impulse Withstand Voltage) and construction cost of power systems. This paper describes transitions of developments, applications and standard of surge arresters for power systems.

  5. Characterization of a storm surge exposed arctic inlet: Shaktoolik, Alaska

    NASA Astrophysics Data System (ADS)

    Ohman, K. A.; Erikson, L. H.; Kinsman, N.

    2011-12-01

    The Inupiaq community of Shaktoolik, in northwestern Alaska is constructed on a low-lying barrier spit located on Norton Sound. The inhabited portion of the spit is ~200m across and vulnerable to flooding from both the open water and lagoon sides during storm events. Previously modeled storm events estimate elevated sea surfaces reaching a maximum storm surge of 6.4m (21 feet) in the Norton Sound region. Historical storm events have been documented every few years in the region, usually occurring during the fall, but storm surge heights in Shaktoolik have never been recorded. An inlet is located at the northern terminus of the barrier spit, adjacent to the community, and provides access for fishing boats to and from the sheltered lagoon. This research focuses on the responses of Shaktoolik's inlet to storm surge and subsequent flooding of the spit. Fieldwork conducted in July 2011 focused on mapping the on land and nearshore coastal morphology of the barrier system. Prior to this, limited baseline data about the Shaktoolik coastal zone was available. The research goals for this project are to understand the morphodynamics of the inlet and surrounding coastal area and to analyze impacts on the inlet by storm surge events. This study is in support of a larger geohazard mapping project with the Alaska Department of Geological and Geophysical Surveys. Onshore, beach profiles and wrackline positions were surveyed, and grain size samples were collected north and south of the inlet. These data provide insight into the longshore sediment transport patterns, past flood levels, and the extent of possible flooding and inundation in the future. In the nearshore, bathymetric data, current velocity measurements, and suspended and bedload sediment samples were obtained seaward of the spit, in the inlet, and within the lagoon. Nearshore measurements characterize the inlet channel depths and composition, and locate areas of sediment deposition. In addition, three months of fall

  6. Characteristics of Vector Surge Relays for Distributed Synchronous Generator Protection

    SciTech Connect

    Freitas, Walmir; Xu, Wilsun; Huang, Zhenyu; Vieira, Jose C.

    2007-02-28

    This work presented a detailed investigation on the performance characteristics if vector surge relays to detect islanding of distributed synchronous generators. A detection time versus active power imbalance curve is proposed to evaluate the relay performance. Computer simulations are used to obtain the performance curves. The concept of critical active power imbalance is introduced based on these curves. Main factors affecting the performance of the relays are analyzed. The factors investigated are voltage-dependent loads, load power factor, inertia constant of the generator, generator excitation system control mode, feeder length and R/X ratio as well as multi-distributed generators. The results are a useful guideline to evaluate the effectiveness of anti-islanding schemes based on vector surge relays for distributed generation applications.

  7. Numerical Experiments for Storm Surge Inundation in Korean Coastal Area

    NASA Astrophysics Data System (ADS)

    Yoon, J.; Shim, J.; Jun, K.

    2012-12-01

    Sea-level rising due to climate change following the global warming and the increased intensity of typhoon are magnifying inundation hazards up to the unpredictable level, resulting from the typhoon surge in Korea and other coastal states around the world. Typhoon is the most serious natural disaster in Korean coastal area. Many people died by storm surge inundation every year. And typhoon caused a lot of damage to property. Climate changes due to global warming are producing a stronger natural disaster. Coastal zones have been damaged by typhoons and accompanying storm surge. Especially, the most serious loss of life and terrible property damage caused by typhoon Maemi in 2003. The typhoon Maemi invaded Korean Peninsula leaving property loss of $ 4 Billion and killing 131 people. After then, there has been an increased interest in these coastal zone problems. If storm surges coincide with high tides, the loss of life and property damage due to high waters arc even worse. Therefore it is desirable to accurately forecast the amount water level increase. In this study, using a numerical model FVCOM(finite volume coastal circulation model, Chen et al.,2004), storm surge was simulated to examine its fluctuation characteristics for the coastal area behind Masan, Yeosu and Busan city in Korea. In the numerical model, a moving boundary condition(wet-dry treatment) was incorporated to explain wave inundation. To simulate the inundation scenario, the model grids were extended up to the area inside the lowland in application of the digital elevation data(DEM) made by precisely combining the aero-LiDAR survey data and bathymetry data for the 3 demonstration regions of Busan, Masan and Yeosu. Minimum grid of 300 m unstructured triangular mesh applied to calculate the storm surge was adopted as a grid system. And the minimum grid size of 30 m was built near Busan, Masan and Yeosu area which are the fine coastal regions and where the inundation is simulated. Numerically

  8. Production of a short-lived filament by a surge

    NASA Technical Reports Server (NTRS)

    Zirin, H.

    1976-01-01

    A large surge was observed on September 17, 1971 part of which, after travelling 200,000 km across the surface, returned to the surface to form a filament. The filament lasted about 30 minutes, then rose up and returned to the source of the surge. This was interpreted as the filling of a semi-stable magnetic trap. Analysis of the microwave radio burst showed it to have been produced by a source optically thick at 8,800 MHz, with area 4 (arc min)squared and T approximately 275,000 deg, N squared sub eV approximately 7 x 10 to the 48th power. The soft x-ray burst showed a component at 12 x 1,00.000 deg with N squared sub eV approximately 3 x 10 to the 48th power.

  9. Dynamic stall on a pitching and surging airfoil

    NASA Astrophysics Data System (ADS)

    Dunne, Reeve; McKeon, Beverley J.

    2015-08-01

    Vertical axis wind turbine blades undergo dynamic stall due to the large angle of attack variation they experience during a turbine rotation. The flow over a single blade was modeled using a sinusoidally pitching and surging airfoil in a non-rotating frame with a constant freestream flow at a mean chord Reynolds number of . Two-dimensional, time-resolved velocity fields were acquired using particle image velocimetry. Vorticity contours were used to visualize shear layer and vortex activity. A low-order model of dynamic stall was developed using dynamic mode decomposition, from which primary and secondary dynamic separation modes were identified. The interaction between these two modes was able to capture the physics of dynamic stall and as such can be extended to other turbine configurations and problems in unsteady aerodynamics. Results from the linear pitch/surge frame are extrapolated to the rotating VAWT frame to investigate the behavior of identified flow structures.

  10. Use of historical information in extreme storm surges frequency analysis

    NASA Astrophysics Data System (ADS)

    Hamdi, Yasser; Duluc, Claire-Marie; Deville, Yves; Bardet, Lise; Rebour, Vincent

    2013-04-01

    The prevention of storm surge flood risks is critical for protection and design of coastal facilities to very low probabilities of failure. The effective protection requires the use of a statistical analysis approach having a solid theoretical motivation. Relating extreme storm surges to their frequency of occurrence using probability distributions has been a common issue since 1950s. The engineer needs to determine the storm surge of a given return period, i.e., the storm surge quantile or design storm surge. Traditional methods for determining such a quantile have been generally based on data from the systematic record alone. However, the statistical extrapolation, to estimate storm surges corresponding to high return periods, is seriously contaminated by sampling and model uncertainty if data are available for a relatively limited period. This has motivated the development of approaches to enlarge the sample extreme values beyond the systematic period. The nonsystematic data occurred before the systematic period is called historical information. During the last three decades, the value of using historical information as a nonsystematic data in frequency analysis has been recognized by several authors. The basic hypothesis in statistical modeling of historical information is that a perception threshold exists and that during a giving historical period preceding the period of tide gauging, all exceedances of this threshold have been recorded. Historical information prior to the systematic records may arise from high-sea water marks left by extreme surges on the coastal areas. It can also be retrieved from archives, old books, earliest newspapers, damage reports, unpublished written records and interviews with local residents. A plotting position formula, to compute empirical probabilities based on systematic and historical data, is used in this communication paper. The objective of the present work is to examine the potential gain in estimation accuracy with the

  11. Rapid Response Measurements of Hurricane Waves and Storm Surge

    NASA Astrophysics Data System (ADS)

    Gravois, U.

    2010-12-01

    Andrew (1992), Katrina (2005), and Ike (2008) are recent examples of extensive damage that resulted from direct hurricane landfall. Some of the worst damages from these hurricanes are caused by wind driven waves and storm surge flooding. The potential for more hurricane disasters like these continues to increase as a result of population growth and real estate development in low elevation coastal regions. Observational measurements of hurricane waves and storm surge play an important role in future mitigation efforts, yet permanent wave buoy moorings and tide stations are more sparse than desired. This research has developed a rapid response method using helicopters to install temporary wave and surge gauges ahead of hurricane landfall. These temporary installations, with target depths from 10-15 m and 1-7 km offshore depending on the local shelf slope, increase the density of measurement points where the worst conditions are expected. The method has progressed to an operational state and has successfully responded to storms Ernesto (2006), Noel (2007), Fay (2008), Gustav (2008), Hanna (2008) and Ike (2008). The temporary gauges are pressure data loggers that measure at 1 Hz continuously for 12 days and are post-processed to extract surge and wave information. For the six storms studied, 45 out of 49 sensors were recovered by boat led scuba diver search teams, with 43 providing useful data for an 88 percent success rate. As part of the 20 sensor Hurricane Gustav response, sensors were also deployed in lakes and bays inLouisiana, east of the Mississippi river delta. Gustav was the largest deployment to date. Generally efforts were scaled back for storms that were not anticipated to be highly destructive. For example, the cumulative total of sensors deployed for Ernesto, Noel, Fay and Hanna was only 20. Measurement locations for Gustav spanned over 800 km of exposed coastline from Louisiana to Florida with sensors in close proximity to landfall near Cocodrie

  12. Source of a Prominent Poleward Surge During Solar Cycle 24

    NASA Astrophysics Data System (ADS)

    Yeates, A. R.; Baker, D.; van Driel-Gesztelyi, L.

    2015-11-01

    As an observational case study, we consider the origin of a prominent poleward surge of leading polarity, visible in the magnetic butterfly diagram during Solar Cycle 24. A new technique is developed for assimilating individual regions of strong magnetic flux into a surface-flux transport model. By isolating the contribution of each of these regions, the model shows the surge to originate primarily in a single high-latitude activity group consisting of a bipolar active region present in Carrington Rotations 2104 - 05 (November 2010 - January 2011) and a multipolar active region in Rotations 2107 - 08 (February - April 2011). This group had a strong axial dipole moment opposed to Joy's law. On the other hand, the modelling suggests that the transient influence of this group on the butterfly diagram will not be matched by a large long-term contribution to the polar field because it is located at high latitude. This is in accordance with previous flux-transport models.

  13. Pressurizer with a mechanically attached surge nozzle thermal sleeve

    DOEpatents

    Wepfer, Robert M

    2014-03-25

    A thermal sleeve is mechanically attached to the bore of a surge nozzle of a pressurizer for the primary circuit of a pressurized water reactor steam generating system. The thermal sleeve is attached with a series of keys and slots which maintain the thermal sleeve centered in the nozzle while permitting thermal growth and restricting flow between the sleeve and the interior wall of the nozzle.

  14. Tide Gauge And Satellite Altimetry Integration For Storm Surge Prediction

    NASA Astrophysics Data System (ADS)

    Andersen, Ole B.; Cheng, Y.; Deng, X.; Steward, M.; Gharinerat, Z.

    2013-12-01

    Integrating coarse temporal sampling by the satellite altimeter in the deep ocean with the high temporal sampling at tide gauges in sparse location along the coast has been used to improve the forecast of high water in the North Sea along the Danish Coast and storm surges along the Northeast coast of Australia. Along with satellite altimetric data, we have tried to investigate high frequency signals (surges) using data from the past 20 years to investigate existence of ability to capture surges in the regions. We have selected several representative high water events on the two continents based on tide gauge recordings and investigated the capability of the satellite altimeters to capture these in the sea surface height. On the European coast we find that when two or more satellites are available we capture more than 90% of the extreme sea level events. In the Great Barrier Reef section of the Northeast Australia, we have investigated several large cyclones causing much destruction when they hit the coast. One of these being the Cyclone Larry, which hit the Queensland coast in March 2006 and caused both losses of lives as well as huge devastation. Here we demonstrate the importance of integrating tide gauges with satellite altimetry for forecasting high water at the city of Townville in North East Australia.

  15. New insights in the ongoing surge of the Austfonna icecap

    NASA Astrophysics Data System (ADS)

    Schellenberger, T.; Dunse, T.; Kääb, A.; Hagen, J. O.; Schuler, T.; Reijmer, C.

    2014-12-01

    Basin-3, a major drainage basin of the Austfonna icecap in NE-Svalbard switched to full surge mode in autumn 2012 after a multiannual, stepwise acceleration of its northern branch. A time series of velocity maps from repeat TerraSAR-X acquisitions revealed a maximum speed at the terminus of >18 m d-1 around the turn of the year 2012. The frontal ablation of Basin-3 was estimated to 4.2±1.6 Gt a-1 between April 2012 and May 2013, tripling the total dynamic mass loss from the largest icecap in the Eurasian arctic. Today, TerraSAR-X, Radarsat-2 and GPS data show that the surge is still ongoing. While the speed at the calving front dropped to 10 m d-1 until July 2014, areas further inland continued to accelerate after the climax, and 10 m d-1 were also measured ~20 km inland in summer 2014. This development will be further investigated by exploiting a time series of velocity maps based on Radarsat-2 Fine Beam data starting from July 2014, which will, other than the TerraSAR-X data, cover almost the entire fast flowing part of the basin. By combining both datasets we will extend the estimation of the frontal ablation and related sea-level rise contribution of the Basin-3 surge.

  16. Using satellite altimetry and tide gauges for storm surge warning

    NASA Astrophysics Data System (ADS)

    Andersen, O. B.; Cheng, Y.; Deng, X.; Steward, M.; Gharineiat, Z.

    2015-03-01

    The combination of the coarse temporal sampling by satellite altimeters in the deep ocean with the high temporal sampling at sparsely located tide gauges along the coast has been used to improve the forecast of high water for the North Sea along the Danish Coast and for the northeast coast of Australia. For both locations we have tried to investigate the possibilities and limitations of the use of satellite altimetry to capture high frequency signals (surges) using data from the past 20 years. The two regions are chosen to represent extra-tropical and tropical storm surge conditions. We have selected several representative high water events on the two continents based on tide gauge recordings and investigated the capability of satellite altimetry to capture these events in the sea surface height data. Due to the lack of recent surges in the North Sea we focused on general high water level and found that in the presence of two or more satellites we could capture more than 90% of the high water sea level events. In the Great Barrier Reef section of the northeast Australian coast, we have investigated several large tropical cyclones; one of these being Cyclone Larry, which hit the Queensland coast in March 2006 and caused both loss of lives as well as huge devastation. Here we demonstrate the importance of integrating tide gauges with satellite altimetry for forecasting high water at the city of Townsville in northeast Australia.

  17. Modeling potential tsunami river surge in Redwood Creek, California

    NASA Astrophysics Data System (ADS)

    Courtney, J. E.; Admire, A. R.; Nicolini, T.; Dengler, L. A.

    2013-12-01

    Significant destruction can be caused by tsunami penetration in estuaries and up river channels. In the 1964 tsunami on the west coast of North America, much of the resulting damage was caused by tsunami river bores penetrating miles inland. A HEC-RAS model is used in this study to look at the likely extent of inundation from both distant and near-field tsunamis in Redwood Creek on the north coast of California. The Redwood Creek drainage basin has been analyzed extensively for riverine flooding, levee stability and sediment transport. The unsteady flow model in HEC-RAS uses an implicit finite difference scheme to approximate solutions to the continuity and momentum equations. Two different scenarios are evaluated in this analysis: 1. tsunami propagation up a dry river channel; 2. tsunami propagation up a partially full river channel. Scenario 1 provides the baseline for propagation behavior without river flow influence. Scenario 2 uses the HEC-RAS model to determine steady state conditions in the channel for different flow rates to establish initial boundary conditions. The tsunami magnitude and flow conditions are altered to determine the effect on tsunami surge propagation. This is achieved by altering the downstream boundary conditions to simulate the influence of a tsunami surge propagation event. A sensitivity analysis is conducted on the model parameters. The study will assist in tsunami hazard modeling and mitigation in areas where tsunami surge propagation is a concern to communities located along rivers.

  18. Satellite measurements through the center of a substorm surge

    SciTech Connect

    Weimer, D.R.; Craven, J.D.; Frank, L.A.; Hanson, W.B.; Maynard, N.C.; Hoffman, R.A.; Slavin, J.A.

    1994-12-01

    Measurements have been made of electric and magnetic fields, plasma drifts, and electron precipitation within a surge at the westward, leading edge of the auroral {open_quotes}bulge{close_quotes} at the peak of the substorm expansion phase. The trajectory of the DE 2 satellite over the auroral emissions is determined from nearly simultaneous observations with the imager on the DE 1 satellite at a higher altitude. The electric field and plasma drift measurements have enabled the authors to deduce the basic configuration of the ionospheric electric potential, or plasma convection, around the surge. The electric potential shows that the bulge is associated with a protrusion of the dawn convection cell into the dusk cell, poleward of the {open_quotes}Harang discontinuity.{close_quotes} This protrusion contains a westward electric field that strongly enhances the westward electrojet current by the creation of a {open_quotes}Cowling channel.{close_quotes} This westward electric field, and the associated Cowling current, appear to terminate within the surge, which contains an intense, upward field-aligned current. The magnetic field measurements show that the region containing this field-aligned current is shaped more like a cylinder rather than a long sheet. The total current is found to exceed one-half million amperes. 34 refs., 11 figs.

  19. Surge dynamics in the Nathorstbreen glacier system, Svalbard

    NASA Astrophysics Data System (ADS)

    Sund, M.; Lauknes, T. R.; Eiken, T.

    2014-04-01

    Nathorstbreen glacier system (NGS) recently experienced the largest surge in Svalbard since 1936, and this was examined using spatial and temporal observations from DEM differencing, time series of surface velocities from satellite synthetic aperture radar (SAR) and other sources. The upper basins with maximum accumulation during quiescence corresponded to regions of initial lowering. Initial speed-up exceeded quiescent velocities by a factor of several tens. This suggests that polythermal glacier surges are initiated in the temperate area before mass is displaced downglacier. Subsequent downglacier mass displacement coincided with areas where glacier velocity increased by a factor of 100-200 times (stage 2). After more than 5 years, the joint NGS terminus advanced abruptly into the fjord during winter, increasing velocities even more. The advance was followed by up-glacier propagation of crevasses, indicating the middle and subsequently the upper part of the glaciers reacting to the mass displacement. NGS advanced ~15 km, while another ~3 km length was lost due to calving. Surface lowering of ~50 m was observed in some up-glacier areas, and in 5 years the total glacier area increased by 20%. Maximum measured flow rates were at least 25 m d-1, 2500 times quiescent velocity, while average velocities were about 10 m d-1. The surges of Zawadzkibreen cycle with ca. 70-year periods.

  20. Population vulnerability to storm surge flooding in coastal Virginia, USA.

    PubMed

    Liu, Hua; Behr, Joshua G; Diaz, Rafael

    2016-07-01

    This study aims to assess the vulnerability of populations to storm surge flooding in 12 coastal localities of Virginia, USA. Population vulnerability is assessed by way of 3 physical factors (elevation, slope, and storm surge category), 3 built-up components (road availability, access to hospitals, and access to shelters), and 3 household conditions (storm preparedness, financial constraints to recovering from severe weather events, and health fragility). Fuzzy analysis is used to generate maps illustrating variation in several types of population vulnerability across the region. When considering physical factors and household conditions, the most vulnerable neighborhoods to sea level rise and storm surge flooding are largely found in urban areas. However, when considering access to critical infrastructure, we find rural residents to be more vulnerable than nonrural residents. These detailed assessments can inform both local and state governments in catastrophic planning. In addition, the methodology may be generalized to assess vulnerability in other coastal corridors and communities. The originality is highlighted by evaluating socioeconomic conditions at refined scale, incorporating a broader range of human perceptions and predispositions, and employing a geoinformatics approach combining physical, built-up, and socioeconomic conditions for population vulnerability assessment. Integr Environ Assess Manag 2016;12:500-509. © 2015 SETAC. PMID:26295749

  1. Risk-based inspection of pressurizer surge lines

    NASA Astrophysics Data System (ADS)

    Shah, Nitin J.; Dwivedy, Keshab K.

    1996-11-01

    The Reactor Coolant System (RCS) piping of a pressurized water reactor (PWR) plant is probably the best in terms of resistance to known degradation mechanisms of passive components. However, a failure in the RCS piping is extremely important in terms of safety and economic significance. Therefore, an effective management tool is needed to mitigate the potential effects of degradation due to aging or other effects such that plant reliability and availability are not affected. Currently, the RCS piping of all US PWR plants is being subjected to inservice inspection (ISI) based upon certain deterministics criteria set by the ASME code and the NRC regulatory guide. Even though the history of large RCS piping has not shown any degradation, the ISI continues at many locations at greta expense to the plant owners whereas, there can be only a few locations of relatively high vulnerability. A risk based ISI can provide an alternative and cost-effective solution in this situation. Pressurizer surge line is a unique segment in the RCS which is subjected to significant transient loadings due to stratification and striping during the normal heatup and cooldown processes. Therefore, the surge line is considered for illustration. Examples of structural reliability studies of pressurizer surge lines in four PWR units are presented in this paper to demonstrate possible reduction of ISI and significant cost saving without reduction of plant safety or reliability.

  2. Satellite measurements through the center of a substorm surge

    NASA Technical Reports Server (NTRS)

    Weimer, D. R.; Craven, J. D.; Frank, L. A.; Hanson, W. B.; Maynard, N. C.; Hoffman, R. A.; Slavin, J. A.

    1994-01-01

    Measurements have been made of electric and magnetic fields, plasma drifts, and electron precipatation within a surge at the westward, leading edge of the auroral 'bulge' at the peak of the substorm expansion phase. The trajectroy of the Dynamics Explorer 2 (DE 2) satellite over the auroral emissions is determined from nearly simultaneous observations with the imager on the DE 1 satellite at a higher altitude. The electric field and plasma drift measurements have enabled us to deduce the basic configuration of the ionospheric electric potential, or plasma convection, around the surge. The electric potential shows that the bulge is associated with a protrusion of the dawn convection cell into the dusk cell, poleward of the 'Harang discontinity.' This protrusion conains a westward electric field that strongly enhances the westard electrojet current by the creation of a "Cowling channel.' This westward electric field, and the associated Cowling current, appear to terminate within the surge, which contains an intense, upward field-aligned current. The magneitc field measurements show that the region containing this field-aligned current is shaped more like a cylinger rather than a long sheet. The total is found to exceed one-half million amperes.

  3. Hypothalamic control of the male neonatal testosterone surge.

    PubMed

    Clarkson, Jenny; Herbison, Allan E

    2016-02-19

    Sex differences in brain neuroanatomy and neurophysiology underpin considerable physiological and behavioural differences between females and males. Sexual differentiation of the brain is regulated by testosterone secreted by the testes predominantly during embryogenesis in humans and the neonatal period in rodents. Despite huge advances in understanding how testosterone, and its metabolite oestradiol, sexually differentiate the brain, little is known about the mechanism that actually generates the male-specific neonatal testosterone surge. This review examines the evidence for the role of the hypothalamus, and particularly the gonadotropin-releasing hormone (GnRH) neurons, in generating the neonatal testosterone surge in rodents and primates. Kisspeptin-GPR54 signalling is well established as a potent and critical regulator of GnRH neuron activity during puberty and adulthood, and we argue here for an equally important role at birth in driving the male-specific neonatal testosterone surge in rodents. The presence of a male-specific population of preoptic area kisspeptin neurons that appear transiently in the perinatal period provide one possible source of kisspeptin drive to neonatal GnRH neurons in the mouse. PMID:26833836

  4. A 300 Year Surge History of the Drangajökull Ice Cap, Northwest Iceland: Surge Frequency and Little Ice Age Maximum

    NASA Astrophysics Data System (ADS)

    Brynjolfsson, S.; Schomacker, A.; Ingolfsson, O.; Gudmundsdottir, E. R.

    2014-12-01

    Over the last 300 years, each of the three surge-type outlet glaciers of the Drangajökull ice cap in north-west Iceland has surged 2-4 times. There is valuable historical information available on the surge frequencies since the Little Ice Age (LIA) maximum because of the proximity of the surging outlets, Reykjarfjarðarjökull, Leirufjarðarjökull and Kaldalónsjökull to farms and pastures. We have reconstructed the surge history of the Drangajökull ice cap, based on geomorphological mapping, sedimentary studies and review of historical records. Geomorphological mapping of the glacier forefields revealed twice as many end-moraines than previously recognized. This indicates a higher surge frequency than previously perceived. A clear relationship between the surge frequency and climate cannot be established, however, surges were more frequent during the 19th century and the earliest 20th century compared to the cool 18th century and the warmer late part of the 20th century. We have estimated the magnitude of the LIA maximum surge events by reconstruction of Digital Elevation Models (DEMs) that can be compared with modern DEMs. As reference points for the digital elevation modelling we used the recently mapped lateral moraines and historical information on the exposure timing of nunataks. During the LIA maximum surge events the outlet glaciers extended 3-3.5 km further down-valley than at present. Their ice volumes were at least 2-2.5 km3 greater than after their most recent surges in the beginning of the 21st century.

  5. Influence of dynorphin on estradiol- and cervical stimulation-induced prolactin surges in ovariectomized rats.

    PubMed

    Stathopoulos, Andrea M; Helena, Cleyde V; Cristancho-Gordo, Ruth; Gonzalez-Iglesias, Arturo E; Bertram, Richard

    2016-08-01

    Prolactin is an anterior pituitary hormone necessary for fertility, pregnancy maintenance, lactation, and aspects of maternal behavior. In rodents, there is a surge of prolactin on the afternoon of proestrus, and a semi-circadian pattern of prolactin surges during early pregnancy, with a diurnal and nocturnal surge every day. Both of these patterns can be replicated in ovariectomized rats. A prior study demonstrated that central antagonism of κ-opioid receptors, the target of dynorphin, largely abolished the nocturnal prolactin surge in pregnant rats. We build on this to determine whether dynorphin, perhaps from the arcuate population that co-express kisspeptin, neurokinin B, and dynorphin (KNDy neurons), also contributes to the estradiol- or cervical stimulation-induced surges in ovariectomized rats. Ovariectomized rats were treated with either estradiol or cervical stimulation to induce prolactin surge(s). Blood samples were taken around the expected surge time to determine the effect of either acute κ-opioid receptor antagonism or previous chemical ablation of the KNDy population on prolactin levels. Dynorphin antagonism does significantly disrupt the nocturnal prolactin surge, but it does not contribute to the estradiol-induced surge. Chemical ablation of KNDy neurons had opposite effects; ablation of 40 % of the KNDy neurons had no impact on the nocturnal prolactin surge, while a somewhat larger ablation significantly reduced the size of the estradiol-induced surge. We conclude that dynorphin is likely a controlling factor for the nocturnal surge induced by cervical stimulation, and that other KNDy neuron products must play a role in the estradiol-induced surge. PMID:27038317

  6. Reliability Effects of Surge Current Testing of Solid Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2007-01-01

    Solid tantalum capacitors are widely used in space applications to filter low-frequency ripple currents in power supply circuits and stabilize DC voltages in the system. Tantalum capacitors manufactured per military specifications (MIL-PRF-55365) are established reliability components and have less than 0.001% of failures per 1000 hours (the failure rate is less than 10 FIT) for grades D or S, thus positioning these parts among electronic components with the highest reliability characteristics. Still, failures of tantalum capacitors do happen and when it occurs it might have catastrophic consequences for the system. This is due to a short-circuit failure mode, which might be damaging to a power supply, and also to the capability of tantalum capacitors with manganese cathodes to self-ignite when a failure occurs in low-impedance applications. During such a failure, a substantial amount of energy is released by exothermic reaction of the tantalum pellet with oxygen generated by the overheated manganese oxide cathode, resulting not only in destruction of the part, but also in damage of the board and surrounding components. A specific feature of tantalum capacitors, compared to ceramic parts, is a relatively large value of capacitance, which in contemporary low-size chip capacitors reaches dozens and hundreds of microfarads. This might result in so-called surge current or turn-on failures in the parts when the board is first powered up. Such a failure, which is considered as the most prevalent type of failures in tantalum capacitors [I], is due to fast changes of the voltage in the circuit, dV/dt, producing high surge current spikes, I(sub sp) = Cx(dV/dt), when current in the circuit is unrestricted. These spikes can reach hundreds of amperes and cause catastrophic failures in the system. The mechanism of surge current failures has not been understood completely yet, and different hypotheses were discussed in relevant literature. These include a sustained scintillation

  7. Evolution of the 3-dimensional video system for facial motion analysis: ten years' experiences and recent developments.

    PubMed

    Tzou, Chieh-Han John; Pona, Igor; Placheta, Eva; Hold, Alina; Michaelidou, Maria; Artner, Nicole; Kropatsch, Walter; Gerber, Hans; Frey, Manfred

    2012-08-01

    Since the implementation of the computer-aided system for assessing facial palsy in 1999 by Frey et al (Plast Reconstr Surg. 1999;104:2032-2039), no similar system that can make an objective, three-dimensional, quantitative analysis of facial movements has been marketed. This system has been in routine use since its launch, and it has proven to be reliable, clinically applicable, and therapeutically accurate. With the cooperation of international partners, more than 200 patients were analyzed. Recent developments in computer vision--mostly in the area of generative face models, applying active--appearance models (and extensions), optical flow, and video-tracking-have been successfully incorporated to automate the prototype system. Further market-ready development and a business partner will be needed to enable the production of this system to enhance clinical methodology in diagnostic and prognostic accuracy as a personalized therapy concept, leading to better results and higher quality of life for patients with impaired facial function. PMID:21734549

  8. Simple Correction of the Congenital Cleft Earlobe.

    PubMed

    Karaci, Selman; Köse, Rüştü

    2016-07-01

    The appearance of the ear is an important component of the facial characteristics. Lower auricular malformations are less frequent than total or upper auricular malformations. The patients are affected unilaterally in general. Cleft earlobe is frequently encountered among earlobe anomalies. The presented case may be classified as longitudinal type according to Kitayama (Jpn J Plast Reconstr Surg 11:663-670, 1980). Many of the correction methods may lead to patient discomfort due to possible conspicuous scar. The patient was a 5 year old girl. In the presented case, a simple method has been performed. Satisfactory outcome is achieved. As a simple method applying longitudinal division and rotation procedure does not have marginal excision. Furthermore there is no additional incision outside the cleft margin. Local flap and graft are not applied. Conservative approach was maintained with respect to scar occurrence. This method is not favourable in the case of acquired split earlobe deformities due to the wide cleft surface. Postoperative 3rd-month appearance demonstrated adequate correction. PMID:27408464

  9. INCREASED FLEXIBILITY OF TURBO-COMPRESSORS IN NATURAL GAS TRANSMISSION THROUGH DIRECT SURGE CONTROL

    SciTech Connect

    Robert J. McKee

    2003-05-01

    This preliminary phase 1 report summarizes the background and the work on the ''Increased Flexibility of Turbo-Compressors in Natural Gas Transmission through Direct Surge Control'' project to date. The importance of centrifugal compressors for natural gas transmission is discussed, and the causes of surge and the consequences of current surge control approaches are explained. Previous technology development, including findings from early GMRC research, previous surge detection work, and selected publications, are presented. The project is divided into three Phases to accomplish the project objectives of verifying near surge sensing, developing a prototype surge control system (sensor and controller), and testing/demonstrating the benefits of direct surge control. Specification for the direct surge control sensor and controller developed with guidance from the industry Oversight Committee is presented in detail. Results of CFD modeling conducted to aid in interpreting the laboratory test results are shown and explained. An analysis of the system dynamics identified the data sampling and handling requirements for direct surge control. A detailed design process for surge detection probes has been developed and explained in this report and has been used to prepare drag probes for the laboratory compressor test and the first field test. The surge detection probes prepared for testing have been bench tested and flow tested to determine and calibrate their sensitivity to flow forces as shown in data presented in this report. The surge detection drag probes have been shown to perform as expected and as required to detect approaching surge. Laboratory test results of surge detection in the SwRI centrifugal compressor demonstrated functionality of the surge detection probes and a change in the impeller inlet flow pattern prior to surge. Although the recirculation cannot be detected because of the specific geometry of this compressor, there are changes that indicate the

  10. Surge-tectonic evolution of southeastern Asia: a geohydrodynamics approach

    NASA Astrophysics Data System (ADS)

    Meyerhoff, Arthur A.

    The repeated need for ad hoc modifications in plate-tectonic models to explain the evolution of southeastern Asia reveals their inability to fully explain the complex features and dynamics of this region. As one example, the hypothesis does not provide a mechanism to explain the 180° turns and twists along the strike of several foldbelts and island arcs in the region (e.g. Banda arc). Convection-cell configuration renders such 180° contortions and Rayleigh-Bénard-type convection impossible. However, during the last 10 years, new data bearing on the convection-cell problem have become available in the form of seismotomographic images of the earth's interior. These images show that (i) mantle diapirs as proposed by traditional plate-tectonic models do not exist; (ii) there is no discernible pattern of upper or lower mantle convection, and thus no longer an adequate mechanism to move plates; and (iii) the lithosphere above a depth of about 80 km is permeated by an interconnected network of low-velocity channels. Seismic-reflection studies of the low-velocity channels discovered on the seismotomographic images reveal that these channels have walls with a 7.1-7.8 km s -1 P-wave velocity. Commonly, the interiors of the channels are acoustically transparent, with much slower P-wave velocities, in places as low as 5.4 km s -1. The author and co-workers have interpreted the low velocities as evidence for the presence of partial melt in the channels, and they postulated that this melt moves preferentially eastward as a result of the earth's rotation. They named these channels "surge channels" and their new hypothesis for earth dynamics "surge tectonics". Surge channels underlie every type of tectonic belt, which includes mid-ocean ridges, aseismic ridges, continental rifts, strike-slip fracture zones, and foldbelts. In southeastern Asia, surge channels—mainly foldbelts—lie between all platform and cratonic massifs. These massifs, platforms, and tectonics belts

  11. Effect of hurricane paths on storm surge response at Tianjin, China

    NASA Astrophysics Data System (ADS)

    Feng, Xingru; Yin, Baoshu; Yang, Dezhou

    2012-06-01

    A hurricane induced storm surge simulation system was developed for Tianjin coast, which consists of a hurricane model and a storm surge model. The peak storm surge result of the simulation agreed well with that of the observation. Three observed paths (Rita, Mimie and WINNIE) and a hypothetical path (Rita2) were chosen as the selective hurricane paths according to their positions relative to Tianjin. The sensitivity of Tianjin storm surge to the four paths was investigated using the validated storm surge simulation system. Three groups of experiments were done. In group one, the models were forced by the wind field and air pressure; in group two and three the models were forced by the wind only and the air pressure only respectively. In the experiments, the hurricane moved with a fixed speed and an intensity of 50 year return period. The simulation results show that path of the type Rita2 is the easiest to cause storm surge disaster in Tianjin, and the effect of air pressure forcing is most evident for path of the type Rita in Tianjin storm surge process. The above conclusions were analyzed through the evolution of the wind fields and the air pressure distributions. Comparing the experiment results of Group one, two and three, it can be seen that the storm surge is mainly induced by the wind forcing and the nonlinear interaction between the effect of wind forcing and air pressure forcing on the storm surge tends to weaken the storm surge.

  12. Surges of outlet glaciers from the Drangajökull ice cap, northwest Iceland

    NASA Astrophysics Data System (ADS)

    Brynjólfsson, Skafti; Schomacker, Anders; Korsgaard, Niels J.; Ingólfsson, Ólafur

    2016-09-01

    Surface elevation and volume changes of the Drangajökull surge-type glaciers, Reykjarfjarðarjökull and Leirufjarðarjökull, were studied by comparing digital elevation models that pre-date and post-date their most recent surges. Annual glacier-frontal measurements were used to estimate average ice velocities during the last surge of the glaciers. The observations show a distinct ice discharge, most of which was from the upper reservoir areas, down to the receiving areas during the surges. The surface draw-down in the reservoir areas was usually 10-30 m during the surges, while the thickening of the receiving areas was significantly more variable, on the order of 10-120 m. Despite a negative geodetic net mass balance derived from the digital elevation models, the reservoir areas have been gaining mass since the surge terminations. This surface thickening along with considerable ablation of the receiving areas will most likely return the glacier surface profiles to the pre-surge stage. Our results indicate that (a) greatest surface thinning in the upper reservoir areas of Drangajökull rather than proximal to the equilibrium line during Vatnajökull surges and (b) development of Drangajökull surges that resembles Svalbard surge-type glaciers rather than Vatnajökull surge-type glaciers. The contrasting surge characteristics could be explained by differences in glacier geometry, topography and substratum of the Drangajökull and Vatnajökull surge-type glaciers.

  13. Verifications on the Installed Number of Surge Arresters for 66-500kV Power Systems in Japan

    NASA Astrophysics Data System (ADS)

    Shirakawa, Shingo; Kobayashi, Takayuki; Tanae, Hiroshi; Takamatsu, Tadashi; Kumai, Toshiya; Imura, Hajime; Nishimura, Seisuke

    Surge arresters have contributed to supply of electric power by suppressing lightning surge on transmission lines in case of lightning phenomena. Surge arresters using zinc oxide (ZnO) elements are suitable for insulation coordination, and are enable to reduce LIWV (Lightning Impulse Withstand Voltage) and construction cost of power systems. This paper describes applications and results of surge arresters to verify effectiveness of surge protection for 66-500kV power systems in Japan.

  14. Active stabilization to prevent surge in centrifugal compression systems

    NASA Technical Reports Server (NTRS)

    Epstein, Alan H.; Greitzer, Edward M.; Simon, Jon S.; Valavani, Lena

    1993-01-01

    This report documents an experimental and analytical study of the active stabilization of surge in a centrifugal engine. The aims of the research were to extend the operating range of a compressor as far as possible and to establish the theoretical framework for the active stabilization of surge from both an aerodynamic stability and a control theoretic perspective. In particular, much attention was paid to understanding the physical limitations of active stabilization and how they are influenced by control system design parameters. Previously developed linear models of actively stabilized compressors were extended to include such nonlinear phenomena as bounded actuation, bandwidth limits, and robustness criteria. This model was then used to systematically quantify the influence of sensor-actuator selection on system performance. Five different actuation schemes were considered along with four different sensors. Sensor-actuator choice was shown to have a profound effect on the performance of the stabilized compressor. The optimum choice was not unique, but rather shown to be a strong function of some of the non-dimensional parameters which characterize the compression system dynamics. Specifically, the utility of the concepts were shown to depend on the system compliance to inertia ratio ('B' parameter) and the local slope of the compressor speedline. In general, the most effective arrangements are ones in which the actuator is most closely coupled to the compressor, such as a close-coupled bleed valve inlet jet, rather than elsewhere in the flow train, such as a fuel flow modulator. The analytical model was used to explore the influence of control system bandwidth on control effectiveness. The relevant reference frequency was shown to be the compression system's Helmholtz frequency rather than the surge frequency. The analysis shows that control bandwidths of three to ten times the Helmholtz frequency are required for larger increases in the compressor flow range

  15. Vulnerability of Coastal Communities from Storm Surge and Flood Disasters

    PubMed Central

    Bathi, Jejal Reddy; Das, Himangshu S.

    2016-01-01

    Disasters in the form of coastal storms and hurricanes can be very destructive. Preparing for anticipated effects of such disasters can help reduce the public health and economic burden. Identifying vulnerable population groups can help prioritize resources for the most needed communities. This paper presents a quantitative framework for vulnerability measurement that incorporates both socioeconomic and flood inundation vulnerability. The approach is demonstrated for three coastal communities in Mississippi with census tracts being the study unit. The vulnerability results are illustrated as thematic maps for easy usage by planners and emergency responders to assist in prioritizing their actions to vulnerable populations during storm surge and flood disasters. PMID:26907313

  16. High Resolution Hurricane Storm Surge and Inundation Modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Luettich, R.; Westerink, J. J.

    2010-12-01

    Coastal counties are home to nearly 60% of the U.S. population and industry that accounts for over 16 million jobs and 10% of the U.S. annual gross domestic product. However, these areas are susceptible to some of the most destructive forces in nature, including tsunamis, floods, and severe storm-related hazards. Since 1900, tropical cyclones making landfall on the US Gulf of Mexico Coast have caused more than 9,000 deaths; nearly 2,000 deaths have occurred during the past half century. Tropical cyclone-related adjusted, annualized losses in the US have risen from 1.3 billion from 1949-1989, to 10.1 billion from 1990-1995, and $35.8 billion per year for the period 2001-2005. The risk associated with living and doing business in the coastal areas that are most susceptible to tropical cyclones is exacerbated by rising sea level and changes in the characteristics of severe storms associated with global climate change. In the five years since hurricane Katrina devastated the northern Gulf of Mexico Coast, considerable progress has been made in the development and utilization of high resolution coupled storm surge and wave models. Recent progress will be presented with the ADCIRC + SWAN storm surge and wave models. These tightly coupled models use a common unstructured grid in the horizontal that is capable of covering large areas while also providing high resolution (i.e., base resolution down to 20m plus smaller subgrid scale features such as sea walls and levees) in areas that are subject to surge and inundation. Hydrodynamic friction and overland winds are adjusted to account for local land cover. The models scale extremely well on modern high performance computers allowing rapid turnaround on large numbers of compute cores. The models have been adopted for FEMA National Flood Insurance Program studies, hurricane protection system design and risk analysis, and quasi-operational forecast systems for several regions of the country. They are also being evaluated as

  17. Surge Nozzle NDE Specimen Mechanical Stress Improvement Analysis

    SciTech Connect

    Fredette, Lee F.

    2011-07-14

    The purpose of this project was to perform a finite element analysis of a pressurized water reactor pressurizer surge nozzle mock-up to predict both the weld residual stresses created in its construction and the final stress state after the application of the Mechanical Stress Improvement Process (MSIP). Strain gages were applied to the inner diameter of the mock-up to record strain changes during the MSIP. These strain readings were used in an attempt to calculate the final stress state of the mock-up as well.

  18. Vulnerability of Coastal Communities from Storm Surge and Flood Disasters.

    PubMed

    Bathi, Jejal Reddy; Das, Himangshu S

    2016-02-01

    Disasters in the form of coastal storms and hurricanes can be very destructive. Preparing for anticipated effects of such disasters can help reduce the public health and economic burden. Identifying vulnerable population groups can help prioritize resources for the most needed communities. This paper presents a quantitative framework for vulnerability measurement that incorporates both socioeconomic and flood inundation vulnerability. The approach is demonstrated for three coastal communities in Mississippi with census tracts being the study unit. The vulnerability results are illustrated as thematic maps for easy usage by planners and emergency responders to assist in prioritizing their actions to vulnerable populations during storm surge and flood disasters. PMID:26907313

  19. Surge-tectonic evolution of southeastern Asia: a geohydrodynamics approach

    NASA Astrophysics Data System (ADS)

    Meyerhoff, Arthur A.

    The repeated need for ad hoc modifications in plate-tectonic models to explain the evolution of southeastern Asia reveals their inability to fully explain the complex features and dynamics of this region. As one example, the hypothesis does not provide a mechanism to explain the 180° turns and twists along the strike of several foldbelts and island arcs in the region (e.g. Banda arc). Convection-cell configuration renders such 180° contortions and Rayleigh-Bénard-type convection impossible. However, during the last 10 years, new data bearing on the convection-cell problem have become available in the form of seismotomographic images of the earth's interior. These images show that (i) mantle diapirs as proposed by traditional plate-tectonic models do not exist; (ii) there is no discernible pattern of upper or lower mantle convection, and thus no longer an adequate mechanism to move plates; and (iii) the lithosphere above a depth of about 80 km is permeated by an interconnected network of low-velocity channels. Seismic-reflection studies of the low-velocity channels discovered on the seismotomographic images reveal that these channels have walls with a 7.1-7.8 km s -1 P-wave velocity. Commonly, the interiors of the channels are acoustically transparent, with much slower P-wave velocities, in places as low as 5.4 km s -1. The author and co-workers have interpreted the low velocities as evidence for the presence of partial melt in the channels, and they postulated that this melt moves preferentially eastward as a result of the earth's rotation. They named these channels "surge channels" and their new hypothesis for earth dynamics "surge tectonics". Surge channels underlie every type of tectonic belt, which includes mid-ocean ridges, aseismic ridges, continental rifts, strike-slip fracture zones, and foldbelts. In southeastern Asia, surge channels—mainly foldbelts—lie between all platform and cratonic massifs. These massifs, platforms, and tectonics belts

  20. Probabilistic modelling of sea surges in coastal urban areas

    NASA Astrophysics Data System (ADS)

    Georgiadis, Stylianos; Jomo Danielsen Sørup, Hjalte; Arnbjerg-Nielsen, Karsten; Nielsen, Bo Friis

    2016-04-01

    Urban floods are a major issue for coastal cities with severe impacts on economy, society and environment. A main cause for floods are sea surges stemming from extreme weather conditions. In the context of urban flooding, certain standards have to be met by critical infrastructures in order to protect them from floods. These standards can be so strict that no empirical data is available. For instance, protection plans for sub-surface railways against floods are established with 10,000 years return levels. Furthermore, the long technical lifetime of such infrastructures is a critical issue that should be considered, along with the associated climate change effects in this lifetime. We present a case study of Copenhagen where the metro system is being expanded at present with several stations close to the sea. The current critical sea levels for the metro have never been exceeded and Copenhagen has only been severely flooded from pluvial events in the time where measurements have been conducted. However, due to the very high return period that the metro has to be able to withstand and due to the expectations to sea-level rise due to climate change, reliable estimates of the occurrence rate and magnitude of sea surges have to be established as the current protection is expected to be insufficient at some point within the technical lifetime of the metro. The objective of this study is to probabilistically model sea level in Copenhagen as opposed to extrapolating the extreme statistics as is the practice often used. A better understanding and more realistic description of the phenomena leading to sea surges can then be given. The application of hidden Markov models to high-resolution data of sea level for different meteorological stations in and around Copenhagen is an effective tool to address uncertainty. For sea surge studies, the hidden states of the model may reflect the hydrological processes that contribute to coastal floods. Also, the states of the hidden Markov

  1. Simulation of storm surge and wave due to typhoon Isewan (5915)

    NASA Astrophysics Data System (ADS)

    Yuk, Jin-Hee; Kim, Kyeong Ok; Lee, Han Soo; Choi, Byung Ho

    2015-06-01

    An integrally coupled wave-tide-surge model was developed and then applied to the simulation of the wave-typhoon surge for the typhoon Isewan (typhoon Vera (5915)), which is the strongest typhoon that has struck Japan and caused incalculable damage. An integrally coupled tide-surge-wave model using identical and homogeneous meshes in an unstructured grid system was used to correctly resolve the physics of wave-circulation interaction in both models. All model components were validated independently. The storm surge and wave properties such as the surge height, the significant wave height, wave period and direction were reproduced reasonably under the meteorological forcing, which was reprocessed to be close to the observations. The resulting modeling system can be used extensively for the prediction of the storm surge and waves and the usual barotropic forecast.

  2. Investigation of X24C-2 10-Stage Axial-Flow Compressor. III - Surge Characteristics

    NASA Technical Reports Server (NTRS)

    Buckner, Howard A., Jr.; Downing, Richard M.

    1948-01-01

    Compressor operation at low air flows for a given speed is limited by unstable flow conditions, commonly called surge. An investigation of surge in centrifugal compressors (reference 1) showed that the pulsation of pressures and velocities occurred when the slope of the compressor characteristic curve was positive and that the magnitude and frequency, as well as the incidence of surge, depended on the capacity and resistance of the total system. Although the theory presented in reference 1 is applicable to axial-floe compressors, little experimental information is available on the surge characteristics of the individual stages of axial-flow compressors, or on the variation of the surge characteristics with operating conditions. During the investigation to determine the performance of the X24C-2 compressor (references 2 and 3), instrumentation was added to study the surge characteristics and to determine the effect of speed and inlet pressure on the frequency, amplitude, and phase relation of the pressure pulsations behind each stage.

  3. Time-frequency analysis of the Surge Onset in the Centrifugal Blower

    NASA Astrophysics Data System (ADS)

    Liskiewicz, Grzegorz; Horodko, Longin

    2015-09-01

    Time frequency analysis of the surge onset was performed in the centrifugal blower. A pressure signal was registered at the blower inlet, outlet and three locations at the impeller shroud. The time-frequency scalograms were obtained by means of the Continuous Wavelet Transform (CWT). The blower was found to successively operate in four different conditions: stable working condition, inlet recirculation, transient phase and deep surge. Scalograms revealed different spectral structures of aforementioned phases and suggest possible ways of detecting the surge predecessors.

  4. Semidiurnal Perturbation to Storm Surge at the Apex of the South Atlantic Bight

    NASA Astrophysics Data System (ADS)

    Feng, X.; Olabarrieta, M.; Valle-Levinson, A.

    2015-12-01

    Semidiurnal surge is a phenomenon that one can see M2 tidal energy in surge signals. The occurrence of semidiurnal surges was dominant at the apex of the South Atlantic Bight (SAB) and was a product of tide-surge interactions. It is essential to storm surge forecasting system as the semidiurnal surge could significantly affect the timing and height of the peak storm surge. The presentation exposes the a real case study during the first week of October in 2005, which reals a consistent semidiurnal surge event induced by the passage of cold frond on the SAB, follow with a landfall event of Tropical Storm Tammy in the north of the Florida. It is found that the semidiurnal surge happened with a phase delay and tidal amplitude reduction of the observed tide at the apex of the SAB, as well as highly associated with parallel-to-shore wind stress. Coriolis acceleration, in the momentum equation of the primary tidal direction (normal-to-shore) on the SAB, is suspected to be one of the fundamental mechanisms contributing to the orientation of the semidiurnal surge. The relevance of the Coriolis force to this phenomenon enhanced with the increase of the parallel-to-shore wind stress. Meanwhile, sea bottom friction, which reinforced by the wind-induced oceanic current, retarded and dampened the tides, thus resulted in the semidiurnal tidal signal in the surge. Geophysical factors, including tidal amplitude, coastline shape and storm parameters, all influence the severity of the semidiurnal surges on the SAB, and their effects were explored via idealized numerical experiments.

  5. Mapping and Visualization of Storm-Surge Dynamics for Hurricane Katrina and Hurricane Rita

    USGS Publications Warehouse

    Gesch, Dean B.

    2009-01-01

    The damages caused by the storm surges from Hurricane Katrina and Hurricane Rita were significant and occurred over broad areas. Storm-surge maps are among the most useful geospatial datasets for hurricane recovery, impact assessments, and mitigation planning for future storms. Surveyed high-water marks were used to generate a maximum storm-surge surface for Hurricane Katrina extending from eastern Louisiana to Mobile Bay, Alabama. The interpolated surface was intersected with high-resolution lidar elevation data covering the study area to produce a highly detailed digital storm-surge inundation map. The storm-surge dataset and related data are available for display and query in a Web-based viewer application. A unique water-level dataset from a network of portable pressure sensors deployed in the days just prior to Hurricane Rita's landfall captured the hurricane's storm surge. The recorded sensor data provided water-level measurements with a very high temporal resolution at surveyed point locations. The resulting dataset was used to generate a time series of storm-surge surfaces that documents the surge dynamics in a new, spatially explicit way. The temporal information contained in the multiple storm-surge surfaces can be visualized in a number of ways to portray how the surge interacted with and was affected by land surface features. Spatially explicit storm-surge products can be useful for a variety of hurricane impact assessments, especially studies of wetland and land changes where knowledge of the extent and magnitude of storm-surge flooding is critical.

  6. Modelling a storm surge event in Liverpool Bay with FVCOM.

    NASA Astrophysics Data System (ADS)

    Hall, P.

    2012-04-01

    A model of the Irish Sea/Liverpool Bay area has been developed using the finite volume, unstructured mesh code FVCOM. The model has been run with meteorological forcing to simulate the storm surge event of January 2007. This event has previously been modelled with the POLCOMS code, the results of which were used for a comparison of accuracy and computational efficiency of the two approaches. The wind speed (and hence wind stress) together with atmospheric pressure have been applied to the model as surface boundary conditions for a period of a few days to allow the model to settle down, and then the results for the peak of the storm on January 18th 2007 have been analysed to give metrics for the accuracy of the sea surface elevation that is predicted against measurements taken at Hilbre Island, near the mouth of the River Dee in Liverpool Bay. It was found that by changing the wind stress formulation within the FVCOM code a significant improvement in the accuracy of the model results could be obtained for the period of this surge event.

  7. Development of a nonfragmenting distribution surge arrester. Final report

    SciTech Connect

    Koch, R.E.

    1984-08-01

    This report describes the investigation and testing carried out in the development of a nonfragmenting distribution surge arrester. It is commonly assumed that pressure buildup in a failing surge arrester will cause the porcelain to burst unless the pressure is rapidly relieved. Even after pressure relief, however, the porcelain can shatter from the thermal shock produced by the internal arc. There is little published information on the sequence of events during failure and the relative importance of pressure and thermal stress. A prerequisite for the design of a nonfragmenting arrester is a thorough knowledge of the failure mechanism. Extensive testing was performed to determine the contribution of both pressure and heat to porcelain breakage. This research demonstrated the importance of thermal shock and led to the design of an ablative thermal shield for the porcelain housing. This was combined with pressure relief provided by end-cap venting and a retaining system to prevent ejection of internal parts. The final result was the design and production of nonfragmenting distribution arresters rated 9 kV through 27 kV.

  8. New technology and tool prepared for communication against storm surges.

    NASA Astrophysics Data System (ADS)

    Letkiewicz, Beata

    2010-05-01

    The aim of the presentation is description of the new technology and tool prepared for communication, information and issue of warnings against storm surges. The Maritime Branch of the Institute of Meteorology and Water Management is responsible for preparing the forecast as warning, where the end users are Government Officials and Public. The Maritime Branch carry out the project "Strengthening the administrative capacity in order to improve the management of Polish coastal zone environment" (supported by a grant from Norway through the Norwegian Financial Mechanism). The expected final result of the project is web site www.baltyk.pogodynka.pl. One of the activities of the project is - set up of information website www.baltyk.pogodynka.pl, giving public access to the complied data. Information on web site: - meta data - marine data (on-line measurement: sea level, water temperature, salinity, oxygen concentration); - data bases of mathematical model outputs - forecast data (sea level, currents); - ice conditions of the Baltic Sea, - instructions, information materials with information of polish coastal zone. The aim of set up of the portal is development of communication between users of the system, exchange of the knowledge of marine environment and natural hazards such as storm surges, improving the ability of the region in the scope of the data management about the sea environment and the coastal zone.

  9. Avoiding compressor surge during emergency shutdown hybridturbine systems

    SciTech Connect

    Pezzini, Paolo; Tucker, David; Traverso, Alberto

    2013-01-01

    A new emergency shutdown procedure for a direct-fired fuel cell turbine hybrid power system was evaluated using a hardware-based simulation of an integrated gasifier/fuel cell/turbine hybrid cycle (IGFC), implemented through the Hybrid Performance (Hyper) project at the National Energy Technology Laboratory, U.S. Department of Energy (NETL). The Hyper facility is designed to explore dynamic operation of hybrid systems and quantitatively characterize such transient behavior. It is possible to model, test, and evaluate the effects of different parameters on the design and operation of a gasifier/fuel cell/gas turbine hybrid system and provide a means of quantifying risk mitigation strategies. An open-loop system analysis regarding the dynamic effect of bleed air, cold air bypass, and load bank is presented in order to evaluate the combination of these three main actuators during emergency shutdown. In the previous Hybrid control system architecture, catastrophic compressor failures were observed when the fuel and load bank were cut off during emergency shutdown strategy. Improvements were achieved using a nonlinear fuel valve ramp down when the load bank was not operating. Experiments in load bank operation show compressor surge and stall after emergency shutdown activation. The difficulties in finding an optimal compressor and cathode mass flow for mitigation of surge and stall using these actuators are illustrated.

  10. Blunting post-meal glucose surges in people with diabetes

    PubMed Central

    Chacko, Elsamma

    2016-01-01

    Worldwide, the morbidity and mortality associated with non-communicable diseases have been climbing steadily - with costs aggressively keeping pace. This letter highlights a decidedly low-cost way to address the challenges posed by diabetes. High levels of postprandial blood glucose are disproportionately linked to much of the microvascular damage which, in the end, leads to macrovascular complications and organ failures. Systematically controlling post-meal glucose surges is a critical element of overall glycemic management in diabetes. Diet, exercise and medications form a triad of variables that individuals engaged in diabetes self-management may manipulate to achieve their targeted glucose levels. As a rule, diabetes patients in developing countries as well as those living in the pockets of poverty in the western world cannot afford special diets, medications, glucometers and supplies, lab tests and office visits. Exercise is the one option that is readily accessible to all. Decades of research in laboratory settings, viewed holistically, have established that light to moderate aerobic exercise for up to 60 min starting 30 min after the first bite into a meal can blunt the ensuing glucose surge effectively. Moderate resistance exercise, moderate endurance exercise or a combination of the two, practiced post-meal has also been found to improve many cardio-metabolic markers: Glucose, high density lipoprotein, triglycerides, and markers of oxidative stress. On the other hand, pre-breakfast exercise and high-intensity exercise in general have been decidedly counterproductive. PMID:27326346

  11. Enkephalin surges in dorsal neostriatum as a signal to eat.

    PubMed

    DiFeliceantonio, Alexandra G; Mabrouk, Omar S; Kennedy, Robert T; Berridge, Kent C

    2012-10-23

    Compulsive overconsumption of reward characterizes disorders ranging from binge eating to drug addiction. Here, we provide evidence that enkephalin surges in an anteromedial quadrant of dorsal neostriatum contribute to generating intense consumption of palatable food. In ventral striatum, mu opioid circuitry contributes an important component of motivation to consume reward. In dorsal neostriatum, mu opioid receptors are concentrated within striosomes that receive inputs from limbic regions of prefrontal cortex. We employed advanced opioid microdialysis techniques that allow detection of extracellular enkephalin levels. Endogenous >150% enkephalin surges in anterior dorsomedial neostriatum were triggered as rats began to consume palatable chocolates. In contrast, dynorphin levels remained unchanged. Furthermore, a causal role for mu opioid stimulation in overconsumption was demonstrated by observations that microinjection in the same anterior dorsomedial quadrant of a mu receptor agonist ([D-Ala2, N-MePhe4, Gly-ol]-enkephalin; DAMGO) generated intense >250% increases in intake of palatable sweet food (without altering hedonic impact of sweet tastes). Mapping by "Fos plume" methods confirmed the hyperphagic effect to be anatomically localized to the anteromedial quadrant of the dorsal neostriatum, whereas other quadrants were relatively ineffective. These findings reveal that opioid signals in anteromedial dorsal neostriatum are able to code and cause motivation to consume sensory reward. PMID:23000149

  12. Facilitating Adaptation to Changing Storm Surge Patterns in Western Alaska.

    NASA Astrophysics Data System (ADS)

    Murphy, K. A.; Holman, A.; Reynolds, J.

    2014-12-01

    Coastal regions of North America are already experiencing the effects of climate change and the consequences of new storm patterns and sea level rise. These climate change effects are even more pronounced in western Alaska where the loss of sea ice in early winter and spring are exposing the coast to powerful winter storms that are visibly altering the landscape, putting coastal communities at risk, and are likely impacting important coastal wildlife habitat in ways we don't yet understand. The Western Alaska Landscape Conservation Cooperative has funded a suite of projects to improve the information available to assist managers and communities to adapt changes in coastal storms and their impacts. Projects range from modeling tide, wave and storm surge patters, to ShoreZone and NHD mapping, to bathymetry mapping, community vulnerability assessments and risks to important wildlife habitat. This group of diverse projects has helped stimulate momentum among partners which will lead to better tools for communities to respond to dangerous storms. For example, the State of Alaska and NOAA are working together to compile a series of community-scale maps that utilize best-available datasets to streamline communication about forecasted storm surges, local elevations and potentially impacted infrastructure during storm events that may lead to coastal flooding.

  13. Modulating surge prevention control for a variable geometry diffuser

    SciTech Connect

    Evenson, K.W.; Kuhn, D.J.; Nesdill, T.; Sumegi, R.B.

    1993-06-29

    A method is described for preventing surge of a gas turbine engine compressor having a variable geometry diffuser that is positionable between a maximum open setting and minimum open setting, comprising the steps of: receiving a plurality of signals representative of the engine's inlet temperature, inlet pressure, compressor discharge pressure and the diffuser position respectively; preselecting a compressor pressure ratio representative of minimum permissible surge margin with the diffuser in the maximum open setting; calculating a first maximum compressor discharge pressure from the inlet temperature and pressure signals and the preselected pressure ratio and generating a signal thereof, combining the calculated discharge pressure signal with the discharge pressure signal to form an error signal; preselecting a maximum open setting for the diffuser and adjusting the maximum setting for variations in inlet pressure, and generating a command signal thereof; combining the command signal with the error signal and the diffuser position signal to form a second command signal; receiving the second command signal and generating a control signal for the diffuser; and repeating the previous steps until the error signal is substantially zero.

  14. Improving surge capacity for biothreats: experience from Taiwan.

    PubMed

    Shih, Fuh-Yuan; Koenig, Kristi L

    2006-11-01

    This article discusses Taiwan's experience in managing surge needs based on recent events, including the 1999 earthquake, severe acute respiratory syndrome in 2003, airliner crashes in 1998 and 2001, and yearly typhoons and floods. Management techniques are compared and contrasted with U.S. approaches. The authors discuss Taiwan's practices of sending doctors to the scene of an event and immediately recalling off-duty hospital personnel, managing volunteers, designating specialty hospitals, and use of incident management systems. The key differences in bioevents, including the mathematical myths regarding individual versus population care, division of stockpiles, the Maginot line, and multi-jurisdictional responses, are highlighted. Several recent initiatives aimed at mitigating biothreats have begun in Taiwan, but their efficacy has not yet been tested. These include the integration of the emergency medical services and health-facility medical systems with other response systems; the use of the hospital emergency incident command system; crisis risk-communications approaches; and the use of practical, hands-on training programs. Other countries may gain valuable insights for mitigating and managing biothreats by studying Taiwan's experiences in augmenting surge capacity. PMID:17015413

  15. Blunting post-meal glucose surges in people with diabetes.

    PubMed

    Chacko, Elsamma

    2016-06-10

    Worldwide, the morbidity and mortality associated with non-communicable diseases have been climbing steadily - with costs aggressively keeping pace. This letter highlights a decidedly low-cost way to address the challenges posed by diabetes. High levels of postprandial blood glucose are disproportionately linked to much of the microvascular damage which, in the end, leads to macrovascular complications and organ failures. Systematically controlling post-meal glucose surges is a critical element of overall glycemic management in diabetes. Diet, exercise and medications form a triad of variables that individuals engaged in diabetes self-management may manipulate to achieve their targeted glucose levels. As a rule, diabetes patients in developing countries as well as those living in the pockets of poverty in the western world cannot afford special diets, medications, glucometers and supplies, lab tests and office visits. Exercise is the one option that is readily accessible to all. Decades of research in laboratory settings, viewed holistically, have established that light to moderate aerobic exercise for up to 60 min starting 30 min after the first bite into a meal can blunt the ensuing glucose surge effectively. Moderate resistance exercise, moderate endurance exercise or a combination of the two, practiced post-meal has also been found to improve many cardio-metabolic markers: Glucose, high density lipoprotein, triglycerides, and markers of oxidative stress. On the other hand, pre-breakfast exercise and high-intensity exercise in general have been decidedly counterproductive. PMID:27326346

  16. Dynamics of surge-type glaciers in West Kunlun Shan, Northwestern Tibet

    NASA Astrophysics Data System (ADS)

    Yasuda, Takatoshi; Furuya, Masato

    2015-11-01

    Here we examine 31 glaciers in the West Kunlun Shan of the northwestern Tibetan Plateau and identify 9 as surge type. The method is based on satellite synthetic aperture radar and Landsat optical images, the former going back to 1992, the latter to 1972. To identify surge-type glaciers, we consider temporal changes in velocity, changes in glacier terminus position, propagation of a surge bulge, presence of looped and/or contoured medial moraines, and extensive crevassing. Other than the nine surge-type glaciers, we identify two that have likely surged, and six that may be surge type. But no glacier surges more than once during the observation period, meaning that the recurrence interval exceeds 42 years. In addition, we examine the evolution of the surface velocities at two surging glaciers with the unprecedented temporal resolution of down to 11 days over ˜7 years. The results show clear seasonal modulations by as much as ˜200% in early winter against those in early summer. This seasonal modulation in surface velocity suggests the presence of surface meltwater that reroutes through the englacial and subglacial drainage systems. Thus, our findings suggest that the hydrological processes originating in the surface meltwater play an important role in maintaining the yearlong active surging phase.

  17. An H&beta surge and X-ray jet - Magnetic properties and velocity patterns

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Wang, J.; Liu, Y.

    2000-09-01

    We described simultaneous observations of a surge in H&beta and an X-ray jet in NOAA 8100 on November 1, 1997. We found that the H&beta surge was spatially coincident with the X-ray jet. They occurred at the site where the pre-existing magnetic flux was ``cancelled" by a newly emerging flux of opposite polarity. At the base of the surge we identified surge-flaring in the H&beta filtergrams, and both blueshifts and redshifts in the H&beta Dopplergrams. The X-ray jet appeared about 2 hours after the first appearance of the surge. The surge consisted of two ejecting threads. Initially, these two components were twisted together, then became untwisted before the appearance of the X-ray jet. This example presents an alternative scenario of plasma ejection. The magnetic reconnection in the lower atmosphere, which was responsible for the H&beta surge, created the twisted surge threads; the X-ray jet likely resulted from a fast reconnection in the upper atmosphere, which took place well after the H&beta surge.

  18. Brief Communication: Twelve-year cyclic surging episodes at Donjek Glacier in Yukon, Canada

    NASA Astrophysics Data System (ADS)

    Abe, Takahiro; Furuya, Masato; Sakakibara, Daiki

    2016-07-01

    Surge-type glaciers repeat their short active phase and their much longer quiescent phase usually every several decades or longer, but detailed observations of the evolution cycles have been limited to only a few glaciers. Here we report three surging episodes in 1989, 2001, and 2013 at Donjek Glacier in the Yukon, Canada, indicating remarkably regular and short repeat cycles of 12 years. The surging area is limited within the ˜ 20 km section from the terminus, originating in an area where the flow width significantly narrows downstream, suggesting a strong control of the valley constriction on the surge dynamics.

  19. INCREASED FLEXIBILITY OF TURBO-COMPRESSORS IN NATURAL GAS TRANSMISSION THROUGH DIRECT SURGE CONTROL

    SciTech Connect

    Robert J. McKee; Danny M. Deffenbaugh

    2004-12-01

    This annual progress report describes the third year's technical progress in a three-year program. This report introduces the benefits of improved surge detection and summarizes what is known about internal flows as surge precursors in centrifugal compressors. Early research results and findings concerning surge in centrifugal compressors and possible precursors to surge are presented. Laboratory test results in modern compressors with 3D impellers are described in detail and used to show the changes in internal flow patterns that occur as a compressor approaches surge. It was found that older compressors with recessed impeller blading (2D geometry) do not have the same accessible flow patterns. The laboratory test results indicate a large increase in potential operating range for modern compressors. This annual report also presents results from the field testing conducted during the course of this third year. The field test results showed similar changes in the surge probe strain signals and the same type, although of less magnitude, of indication that the compressor is approaching surge. An algorithm for identifying the nearness of surge has been proposed and evaluated with the available data. This project is co-funded by the Gas Machinery Research Council (GMRC) and by Siemens Energy and Automation (Siemens). The results of the project include a step-by-step process for design, sizing, and installation of surge detection probes and for implementation of the direct surge control in centrifugal compressor controllers. This work is considered a step towards the successful implementation of direct surge control for improved flexibility and efficiency in natural gas transmission compressors.

  20. A review of tropical cyclone-generated storm surges: Global data sources, observations, and impacts

    NASA Astrophysics Data System (ADS)

    Needham, Hal F.; Keim, Barry D.; Sathiaraj, David

    2015-06-01

    Tropical cyclone-generated storm surges are among the world's most deadly and destructive natural hazards. This paper provides the first comprehensive global review of tropical storm surge data sources, observations, and impacts while archiving data in SURGEDAT, a global database. Available literature has provided data for more than 700 surge events since 1880, the majority of which are found in the western North Atlantic (WNA), followed by Australia/Oceania, the western North Pacific (WNP), and the northern Indian Ocean (NIO). The Bay of Bengal (BOB) in the NIO consistently observes the world's highest surges, as this subbasin averages five surges ≥5 m per decade and has observed credible storm tide levels reaching 13.7 m. The WNP observes the highest rate of low-magnitude surges, as the coast of China averages 54 surges ≥1 m per decade, and rates are likely higher in the Philippines. The U.S. Gulf Coast observes the second highest frequency of both high-magnitude (≥5 m) and low-magnitude (≥1 m) surges. The BOB observes the most catastrophic surge impacts, as 59% of global tropical cyclones that have killed at least 5000 people occurred in this basin. The six deadliest cyclones in this region have each killed at least 140,000 people, and two events have killed 300,000. Storm surge impacts transportation, agriculture, and energy sectors in the WNA. Oceania experiences long-term impacts, including contamination of fresh water and loss of food supplies, although the highest surges in this region are lower than most other basins.

  1. Zinc Oxide Surge Arresters and HVDC 125kV-upgrade 500kV Converter Stations

    NASA Astrophysics Data System (ADS)

    Shirakawa, Shingo; Kobayashi, Takayuki; Matsushita, Yoshinao; Sakai, Takehisa; Suzuki, Hironori; Ozaki, Yuzo

    Gapless Metal (Zinc) Oxide Surge Arresters for a.c. systems contribute to the insulation co-ordination based on the suppression of lightning surges and switching surges. These gapless metal oxide surge arresters using ZnO elements are effective to HVDC systems. This paper describes basic characteristics of ZnO (zinc oxide) elements for d.c. systems and applications of gapless surge arresters to HVDC 125kV frequency converters, HVDC 250kV, upgrade HVDC 500kV converter stations, and HVDC 500kV cables of Japan through the experience of developments and applications of gapless metal oxide surge arresters.

  2. Study of Discharging Characteristics of Hollow Cathode Surge Protective Gap

    NASA Astrophysics Data System (ADS)

    Yao, Xueling; Chen, Jingliang; Xu, Xiaowei; Liu, Yong; Zhao, Yong

    2010-02-01

    A hollow cathode surge protective gap (HCSPG) was designed, and the discharge characteristics was investigated in an air and nitrogen gas environment. For both the gap spacing D and the hole diameter varphi of HCSPG of 3 mm, the voltage protective value Up of HCSPG is about 3.5 kV and its converting time tc exceeds 100 ns at an air pressure from 10 Pa to 100 Pa. The maximum converting time tc from glow to arc discharging reaches 1600 ns at an air pressure of 100 Pa, while the minimum converting time tc is 120 ns at 10 Pa. For a triggered HCSPG, Up is reduced to about 1.6 kV while the converting time is 120 ns with a semiconductor trigger device and 50 ns with a dielectric porcelain trigger device under an air pressure of 100 Pa.

  3. Assessing surge capacity for radiation victims with marrow toxicity.

    PubMed

    Davids, Matthew S; Case, Cullen; Hornung, Raymond; Chao, Nelson J; Chute, John P; Coleman, C Norman; Weisdorf, Daniel; Confer, Dennis L; Weinstock, David M

    2010-10-01

    Hematologists/oncologists would provide essential care for victims of a catastrophic radiation incident, such as the detonation of an improvised nuclear device (IND). The US Radiation Injury Treatment Network (RITN) is a voluntary consortium of 37 academic medical centers, 8 blood donor centers, and 7 umbilical cord banks focused on preparedness for radiation incidents. The RITN conducted 2 tabletop exercises to evaluate response capability after a hypothetical IND detonation in a U.S. city. In the 2008 exercise, medical centers voluntarily accepted 1757 victims at their institutions, a small fraction of the number in need. In the 2009 exercise, each center was required to accept 300 victims. In response, the centers outlined multiple strategies to increase bed availability, extend staff and resources, and support family and friends accompanying transferred victims. The exercises highlighted shortcomings in current planning and future steps for improving surge capacity that are applicable to various mass casualty scenarios. PMID:20399880

  4. Preparing for the surge: perspectives on marathon medical preparedness.

    PubMed

    Chiampas, George; Jaworski, Carrie A

    2009-01-01

    In preparing for medical coverage of a mass participation event such as a marathon, race directors and their medical staff members need to account for the unexpected. Extremes in weather as well as the potential for outside threats need to be given consideration before race day in order to adequately prepare. Through the recruitment of local expertise from various agencies in one's community during both the planning stages, and on race day, the added stressors of such extremes will be minimized, if not eliminated. This article will provide concrete examples of how the Chicago Marathon has used its own experiences with such extremes. Readers will be given useful tools to implement in their own marathons or other mass participation events-planning to equip them better for the unexpected surge. PMID:19436168

  5. Designs for surge immunity in critical electronic facilities

    NASA Technical Reports Server (NTRS)

    Roberts, Edward F., Jr.

    1991-01-01

    In recent years, Federal Aviation Administration (FAA) embarked on a program replacing older tube type electronic equipment with newer solid state equipment. This replacement program dramatically increased the susceptibility of the FAA's facilities to lightning related damages. The proposal is presented of techniques which may be employed to lessen the susceptibility of new FAA electronic facility designs to failures resulting from lightning related surges and transients as well as direct strikes. The general concept espoused is one of a consistent system approach employing both perimeter and internal protection. It compares the technique presently employed to reduce electronic noise with other techniques which reduce noise while lowering susceptibility to lightning related damage. It is anticipated that these techniques will be employed in the design of an Air Traffic Control Tower in a high isokeraunic area. This facility would be subjected to rigorous monitoring over a multi-year period to provide quantitative data hopefully supporting the advantage of this design.

  6. Surge of neurophysiological coherence and connectivity in the dying brain

    PubMed Central

    Borjigin, Jimo; Lee, UnCheol; Liu, Tiecheng; Pal, Dinesh; Huff, Sean; Klarr, Daniel; Sloboda, Jennifer; Hernandez, Jason; Wang, Michael M.; Mashour, George A.

    2013-01-01

    The brain is assumed to be hypoactive during cardiac arrest. However, the neurophysiological state of the brain immediately following cardiac arrest has not been systematically investigated. In this study, we performed continuous electroencephalography in rats undergoing experimental cardiac arrest and analyzed changes in power density, coherence, directed connectivity, and cross-frequency coupling. We identified a transient surge of synchronous gamma oscillations that occurred within the first 30 s after cardiac arrest and preceded isoelectric electroencephalogram. Gamma oscillations during cardiac arrest were global and highly coherent; moreover, this frequency band exhibited a striking increase in anterior–posterior-directed connectivity and tight phase-coupling to both theta and alpha waves. High-frequency neurophysiological activity in the near-death state exceeded levels found during the conscious waking state. These data demonstrate that the mammalian brain can, albeit paradoxically, generate neural correlates of heightened conscious processing at near-death. PMID:23940340

  7. SAPS onset timing during substorms and the westward traveling surge

    NASA Astrophysics Data System (ADS)

    Mishin, Evgeny, V.

    2016-07-01

    We present multispacecraft observations in the magnetosphere and conjugate ionosphere of the onset time of subauroral polarization streams (SAPS) and tens of keV ring current injections on the duskside in three individual substorms. This is probably the first unequivocal determination of the substorm SAPS onset timing. The time lag between the SAPS and substorm onsets is much shorter than the gradient-curvature drift time of ˜10 keV ions in the plasmasphere. It seemingly depends on the propagation time of substorm-injected plasma from the dipolarization onset region to the plasmasphere, as well as on the SAPS position. These observations suggest that fast onset SAPS and ring current injections are causally related to the two-loop system of the westward traveling surge.

  8. Substorm Bulge/Surge Controlled by Polar Cap Flow Channels

    NASA Astrophysics Data System (ADS)

    Lyons, L. R.; Nishimura, T.; Zou, Y.; Gallardo-Lacourt, B.; Donovan, E.; Shiokawa, K.; Nicolls, M. J.; Chen, S.; Ruohoniemi, J. M.; Nishitani, N.; McWilliams, K. A.

    2015-12-01

    Previous studies have provided evidence that localized channels of enhanced polar cap flow drive plasma sheet/auroral oval flow channels, auroral poleward boundary intensifications and streamers, and substorm onset. Evidence has also indicated that a persistence of such flow channels after substorm onset may enhance post-onset auroral poleward expansion and activity. Here, we combine auroral imager and radar observations to show evidence that polar-cap flow channels can directly feed the substorm bulge westward motion, i.e., the westward traveling surge, and its poleward expansion well into the pre-existing polar cap. By taking advantage of the capability of tracing polar cap arcs and patches over long distances with red line imaging, we are able to trace flow features that strongly affect the substorm bulge across the polar cap for up to ~1-1.5 hr prior to their impacting and affecting the substorm bulge.

  9. Role of exogenous estrogen in initiation of estrus and induction of an LH surge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Among cattle the LH surge that causes ovulation occurs shortly after the onset of a spontaneous estrus. In addition an injection of 100 'g of GnRH can induce an LH surge capable of inducing ovulation. We hypothesized that different preovulatory estradiol profiles would result in different ovulator...

  10. INCREASED FLEXIBILITY OF TURBO-COMPRESSORS IN NATURAL GAS TRANSMISSION THROUGH DIRECT SURGE CONTROL

    SciTech Connect

    Robert J. Mckee; Danny M. Deffenbaugh

    2003-12-01

    This annual progress report describes the second year's technical progress in a three-year program. This report summarizes what is known about internal flows as surge precursors in centrifugal compressors and focuses on accessing factors that affect pre-surge detection. An attempt is made in this analysis to identify and quantify factors concerning compressor design and operations that affect the detection of pre-surge conditions. This progress report presents results from recent laboratory tests conducted during the course of this second year. This project is co-funded by the Gas Machinery Research Council (GMRC) and by Siemens Energy and Automation (Siemens). The most recently available measured pre-surge internal flow data is parameterized to help identify factors that affect the indications that a compressor is approaching surge. Theoretical arguments are applied to access the factors that influence surge precursors and surge initiation in different centrifugal compressors. This work is considered a step in accessing the factors that affect the success or limitations of pre-surge detection in natural gas pipeline compressors.

  11. Integrated control of output and surge for a dynamic compressor control system

    SciTech Connect

    Enterline, L. L.; Kaya, A.

    1985-12-31

    An integrated control system for both the output and surge protection of a centrifugal compressor in a chilled, water system is provided by biasing the output of a feed forward and cascade centrifugal compressor output control logic module with the output of a coordinating control logic module, which utilized a surge control logic module output to establish the biasing signal.

  12. Propagation of a westward traveling surge and the development of persistent auroral features

    SciTech Connect

    Craven, J.D.; Frank, L.A.; Akasofu, S.I.

    1989-01-01

    Imaging instrumentation on board the spacecraft Dynamics Explorer 1 (DE 1) is used to observe the large-scale motion of a surge over 7000 km along the auroral oval from near local midnight. Average speed of the surge is 2.2 km/s. Ground-based observations at Fort Yukon, Alaska, show the classical looped, multiple-arc structure of a westward traveling surge as it passes overhead. Within the 6-min temporal resolution provide with DE 1, the surge advances initially at a speed of about 8 km.s followed by a steady decline to about 1 km/s over a period of 17 min. This sequence is then repeated a second time, beginning with a significant intensification of the surge form. This intense surge activity is not accompanied by significant auroral activity near magnetic midnight. Following passage of the surge, persistent and localized bright emission regions remain along the auroral oval for several tens of minutes. Average separation distances are approximately 700 km. If these persistent features identify the sites of individual stepwise advances of the surge, the average time per advance is about 5 min.

  13. Phase I Report for SERRI Project No. 80037: Investigation of surge and wave reduction by vegetation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surge and waves generated by hurricanes and other severe storms can cause devastating damage of property and loss of life in coastal areas. Vegetation in wetlands, coastal fringes and stream floodplains can reduce storm surge and waves while providing ecological benefits and complementing traditiona...

  14. Workers With Irregular Hours During Seasonal Work Surges: Promoting Healthy Sleep.

    PubMed

    Butterfield, Patricia

    2016-03-01

    A significant proportion of the labor force works irregular hours during harvest, summer, or holiday work surges. Unfortunately such workers are often uninformed about the importance of sleep and fatigue management. Seasonally timed worker training can improve health and safety outcomes during work surges. PMID:26941083

  15. Propagation of a westward traveling surge and the development of persistent auroral features

    SciTech Connect

    Craven, J.D.; Frank, L.A. ); Akasofu, S.I. )

    1989-06-01

    Imaging instrumentation on board the spacecraft Dynamics Explorer 1 (DE 1) is used to observe the large-scale motion of a surge over 7,000 km along the auroral oval from near local midnight. Average speed of the surge is 2.2 km/s. Ground-based observations at Fort Yukon, Alaska, show the classical looped, multiple-arc structure of a westward traveling surge as it passes overhead. Within the 6-min temporal resolution provided with DE 1, the surge advances initially at a speed of about 8 km/s followed by a steady decline to about 1 km/s over a period of 17 min. This sequence is then repeated a second time, beginning with a significant intensification of the surge form. This intense surge activity is not accompanied by significant auroral activity near magnetic midnight. Following passage of the surge, persistent and localized bright emission regions remain along the auroral oval for several tens of minutes. Average separation distances are approximately 700 km. If these persistent features identify the sites of individual stepwise advances of the surge, the average time per advance is about 5 min.

  16. SUPPRESSION OF THE LUTEINIZING HORMONE SURGE BY CHLORDIMEFORM IN OVARIECTOMIZED, STEROID-PRIMED FEMALE RATS

    EPA Science Inventory

    The midcycle surge of luteinizing hormone (LH) from the pituitary provides the physiological trigger in the mammalian female for the process of ovulation. ccordingly, any agent that compromises the LH surge could function as a reproductive toxicant. ince ovariectomized (OVX) rats...

  17. Identifying surging glaciers in the Central Karakoram for improved climate change impact assessment

    NASA Astrophysics Data System (ADS)

    Paul, Frank; Bolch, Tobias; Mölg, Nico; Rastner, Philipp

    2015-04-01

    Several recent studies have investigated glacier changes in the Karakoram mountain range, a region where glaciers behave differently (mass gain and advancing tongues) compared to most other regions in the world. Attribution of this behaviour to climate change is challenging, as many glaciers in the Karakoram are of surge type and have actively surged in the recent past. The measured changes in length, area, volume or velocity in this region are thus depending on the time-period analysed and include non-climatic components. Hence, a proper analysis of climate change impacts on glaciers in this region requires a separation of the surging from the non-surging glaciers. This is challenging as the former often lack the typical surface characteristics such as looped moraines (e.g. when they are steep and small) and/or they merge (during a surge) with a larger non-surging glacier and create looped moraines on its surface. By analysing time series of satellite images that are available since 1961, the heterogeneous behaviour of glaciers in the Karakoram can be revealed. In this study, we have analysed changes in glacier terminus positions in the Karakoram over different time periods from 1961 to 2014 for several hundred glaciers using Corona KH-4 and KH-4B, Hexagon KH-9, Terra ASTER, and Landsat MSS, TM, ETM+ and OLI satellite data. For the last 15 years, high-speed animations of image time-series reveal details of glacier flow and surge dynamics that are otherwise difficult to detect. For example, several of the larger glaciers with surging tributaries (e.g. Panmah, Sarpo Laggo, Skamri, K2 glacier) are stationary and downwasting despite the mass contributions from the surging glaciers. The analysis of the entire time series reveals a complex pattern of changes through time with retreating, advancing, surging and stationary glaciers that are partly regionally clustered. While most of the non-surging glaciers show only small changes in terminus position (±100 m or less

  18. Experiments and modelling of surge in small centrifugal compressor for automotive engines

    SciTech Connect

    Galindo, J.; Serrano, J.R.; Climent, H.; Tiseira, A.

    2008-01-15

    In this paper the surge phenomenon in small centrifugal compressors used for turbocharging internal combustion engines is analyzed. The experimental work was focused on the measurement of compressor behaviour within the surge zone by means of a specifically designed facility. The presented model is based on the introduction of a fluid inertia term that accounts for the non quasi steady effects and the use of a compressor map extended to the surge and negative flows zone obtained from experimental tests. The compressor model was implemented in a one-dimensional gas-dynamic model. The comparison of the modelled and measured evolution of instantaneous pressure during deep surge operation shows good agreement. Furthermore, the model is also able to predict the amplitude and frequency of pressure pulses when the compressor operates in surge with different outlet duct lengths. (author)

  19. Local amplification of storm surge by Super Typhoon Haiyan in Leyte Gulf

    PubMed Central

    Mori, Nobuhito; Kato, Masaya; Kim, Sooyoul; Mase, Hajime; Shibutani, Yoko; Takemi, Tetsuya; Tsuboki, Kazuhisa; Yasuda, Tomohiro

    2014-01-01

    Typhoon Haiyan, which struck the Philippines in November 2013, was an extremely intense tropical cyclone that had a catastrophic impact. The minimum central pressure of Typhoon Haiyan was 895 hPa, making it the strongest typhoon to make landfall on a major island in the western North Pacific Ocean. The characteristics of Typhoon Haiyan and its related storm surge are estimated by numerical experiments using numerical weather prediction models and a storm surge model. Based on the analysis of best hindcast results, the storm surge level was 5–6 m and local amplification of water surface elevation due to seiche was found to be significant inside Leyte Gulf. The numerical experiments show the coherent structure of the storm surge profile due to the specific bathymetry of Leyte Gulf and the Philippines Trench as a major contributor to the disaster in Tacloban. The numerical results also indicated the sensitivity of storm surge forecast. PMID:25821268

  20. Marine record of surge-induced outburst floods from the Bering Glacier, Alaska

    NASA Astrophysics Data System (ADS)

    Jaeger, John M.; Nittrouer, Charles A.

    1999-09-01

    The Bering Glacier, Alaska, is the largest temperate glacier in the world. It episodically surges with rapid advances of the glacier terminus followed by large outburst floods delivering freshwater and sediment to the adjacent Gulf of Alaska. We describe the marine record of the 1993 1995 surge and document a 100 yr history of surges recorded in marine sedimentary deposits seaward of the Bering Glacier. In 1994 and 1995, we collected box cores that contained high-porosity laminated sediments at the seabed surface. Profiles of 234Th and chlorophyll-a indicate that these sediments were deposited very rapidly (0.1 cm · day-1) in association with the surge. A 250-cm-long kasten core extended this record, in which 7 laminated beds, 10 30 cm thick, alternated with bioturbated sediments. On the basis of 210Pb chronology, 6 of these beds accumulated in the past 100 yr and can be correlated with historical surges.

  1. The insulation coordination and surge arrester design for HTS cable system in Icheon substation

    NASA Astrophysics Data System (ADS)

    Lee, Hansang; Yoon, Dong-Hee; Lee, Seung-Ryul; Yang, Byeong-Mo; Jang, Gilsoo

    2013-01-01

    This paper proposes an insulation coordination and surge arrester design for HTS (High-Temperature Superconducting) cable system in Icheon substation in Korea. In the aspect of the economic analysis, since the HTS cable is very expensive, the insulation coordination to prevent the dielectric breakdown caused by the lightning surge should be considered carefully. Also, in the aspect of the power system reliability, since the HTS cable has much more capacity compared than conventional power cables and the ripple effect from the HTS cable failure may lead to the wide area blackout, an intensive study for insulation coordination from lightning surge is one of the most important considerations. In this paper, the insulation coordination for lightning surge is verified using HTS cable and power equipment models and the design of the proper surge arrester is proposed.

  2. Development of models for maximum and time variation of storm surges at the Tanshui estuary

    NASA Astrophysics Data System (ADS)

    Tsai, C.-P.; You, C.-Y.

    2014-09-01

    In this study, artificial neural networks, including both multilayer perception and the radial basis function neural networks, are applied for modeling and forecasting the maximum and time variation of storm surges at the Tanshui estuary in Taiwan. The physical parameters, including both the local atmospheric pressure and the wind field factors, for finding the maximum storm surges, are first investigated based on the training of neural networks. Then neural network models for forecasting the time series of storm surges are accordingly developed using the major meteorological parameters with time variations. The time series of storm surges for six typhoons were used for training and testing the models, and data for three typhoons were used for model forecasting. The results show that both neural network models perform very well for the forecasting of the time variation of storm surges.

  3. The reduction of storm surge by vegetation canopies: Three-dimensional simulations

    NASA Astrophysics Data System (ADS)

    Sheng, Y. Peter; Lapetina, Andrew; Ma, Gangfeng

    2012-10-01

    Significant buffering of storm surges by vegetation canopies has been suggested by limited observations and simple numerical studies, particularly following recent Hurricanes Katrina, Rita, and Wilma. Here we simulate storm surge and inundation over idealized topographies using a three-dimensional vegetation-resolving storm surge model coupled to a shallow water wave model and show that a sufficiently wide and tall vegetation canopy reduces inundation on land by 5 to 40 percent, depending upon various storm and canopy parameters. Effectiveness of the vegetation in dissipating storm surge and inundation depends on the intensity and forward speed of the hurricane, as well as the density, height, and width of the vegetation canopy. Reducing the threat to coastal vegetation from development, sea level rise, and other anthropogenic factors would help to protect many coastal regions against storm surges.

  4. A new dynamical index for classification of cold surge types over East Asia

    NASA Astrophysics Data System (ADS)

    Park, Tae-Won; Ho, Chang-Hoi; Jeong, Jee-Hoon; Heo, Jin-Woo; Deng, Yi

    2015-11-01

    The cold surges over East Asia can be classified into wave-train type and blocking type according to their dynamic origins. In the present study, two dynamic indices are proposed to objectively identify cold surge types using potential temperature ( θ) on the dynamic tropopause at 2-potential vorticity units (2-PVU) surface. The two indices are designed to represent primary characteristics of the two types of cold surge. The wave-train index ( WI) is defined as a difference of anomalous θ on the 2-PVU surface between the western North Pacific and northeast China, which captures a southward (northward) intrusion of cold (warm) air mass related to the trough-ridge pattern. The blocking index ( BI) is defined as a difference of anomalous θ between the subarctic region and northeast China, which indicates air mass overturning related to a reversal of the usual meridional θ gradient commonly observed in the occurrence of blocking type cold surge. Composite analyses based on the distribution of the WI and BI clearly demonstrate the dynamic evolutions of corresponding cold surge types. The wave-train cold surge is associated with a southeastward expansion of the Siberian High and northerly wind near surface, which is caused by growing baroclinic waves. During the blocking cold surge, a geopotential height dipole indicating the subarctic blocking and deepening of East Asian coastal trough induces a southward expansion of the Siberian High and northeasterly wind. Compared to the wave-train type, the blocking cold surge exhibits a longer duration and stronger intensity. In the new framework of these dynamic indices, we can detect a third type of cold surge when both the wave-train and the blocking occur together. In addition, we can exclude the events that do not have the essential features of the upper tropospheric disturbances or the subarctic anticyclonic circulation, which are responsible for cold surge occurrence, using the new indices.

  5. Observations of an Emerging Flux Region Surge: Implications for Coronal Mass Ejections Triggered by Emerging Flux

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Su, J. T.; Morimoto, T.; Kurokawa, H.; Shibata, K.

    2005-08-01

    It is well known that coronal mass ejections (CMEs) are often associated with flares and filament eruptions. Previous studies of CMEs, however, have not established any association between CMEs and surges. In this paper, we present a detailed analysis of a large emerging flux region (EFR) surge and a jetlike CME, both observed on 1998 April 16. Our analysis shows a close temporal and spatial relationship between the two. Using observations from the Large Angle and Spectrometric Coronagraph (LASCO) and Hida Flare Monitoring Telescope (Hα, Hα+/-0.8 Å), we found that the CME's onset time and central position angle were coincident with the surge features. Magnetograms and Hα filtergrams showed that the surge resulted from the successive emergence of a bipolar sunspot group, NOAA Active Region 8203, which was the only active region in the northern hemisphere. The surge was impulsively accelerated at around the peak time of the GOES SXR flux. The associated CME appeared in the field of view of LASCO C2 16 minutes after the surge disappeared. Importantly, observations from the EUV Imaging Telescope at λ195 Å clearly demonstrate topological changes in the coronal field due to its interaction with the EFR. An initially closed EFR-loop system opened up during the surge. There was no filament involved in this surge-CME event. We propose that the onset of the CME resulted from the significant restructuring of the large-scale coronal magnetic field as a result of flux emergence in the active region. This surge-CME event strongly suggests that emerging flux may not only trigger a surge but also simultaneously trigger a CME by means of small-scale reconnection in the lower atmosphere.

  6. Spatial distribution of erosion and deposition during a glacier surge: Brúarjökull, Iceland

    NASA Astrophysics Data System (ADS)

    Korsgaard, Niels J.; Schomacker, Anders; Benediktsson, Ívar Örn; Larsen, Nicolaj K.; Ingólfsson, Ólafur; Kjær, Kurt H.

    2015-12-01

    Time-series of digital elevation models (DEMs) of the forefield of the Brúarjökull surge-type glacier in Iceland were used to quantify the volume of material that was mobilized by the 1963-1964 surge. The DEMs were produced by stereophotogrammetry on aerial photographs from before the surge (1961) and after (1988 and 2003). The analysis was performed on two DEMs of Difference (DoDs), i.e., a 1961-2003 DoD documenting the impact of the surge and a 1988-2003 DoD documenting the post-surge modification of the juvenile surging glacier landsystem. Combined with a digital geomorphological map, the DoDs allow us to quantify the impact of the surge on a landsystem scale down to individual landforms. A total of 34.2 ± 11.3 × 106 m3 of material was mobilized in the 30.7-km2 study area as a result of the most recent surge event. Of these, 17.4 ± 6.6 × 106 m3 of the material were eroded and 16.8 ± 4.7 × 106 m3 were deposited. More than half of the deposited volume was ice-cored landforms. This study demonstrates that although the total mobilized mass volume is high, the net volume gain of ice and sediment deposited as landforms in the forefield caused by the surge is low. Furthermore, deposition of new dead-ice from the 1963-1964 surge constitutes as much as 64% of the volume gain in the forefield. The 1988-2003 DoD is used to quantify the melt-out of this dead-ice and other paraglacial modification of the recently deglaciated forefield of Brúarjökull.

  7. Storm surge and wave simulations in the Gulf of Mexico using a consistent drag relation for atmospheric and storm surge models

    NASA Astrophysics Data System (ADS)

    Vatvani, D.; Zweers, N. C.; van Ormondt, M.; Smale, A. J.; de Vries, H.; Makin, V. K.

    2012-07-01

    To simulate winds and water levels, numerical weather prediction (NWP) and storm surge models generally use the traditional bulk relation for wind stress, which is characterized by a wind drag coefficient. A still commonly used drag coefficient in those models, some of them were developed in the past, is based on a relation, according to which the magnitude of the coefficient is either constant or increases monotonically with increasing surface wind speed (Bender, 2007; Kim et al., 2008; Kohno and Higaki, 2006). The NWP and surge models are often tuned independently from each other in order to obtain good results. Observations have indicated that the magnitude of the drag coefficient levels off at a wind speed of about 30 m s-1, and then decreases with further increase of the wind speed. Above a wind speed of approximately 30 m s-1, the stress above the air-sea interface starts to saturate. To represent the reducing and levelling off of the drag coefficient, the original Charnock drag formulation has been extended with a correction term. In line with the above, the Delft3D storm surge model is tested using both Charnock's and improved Makin's wind drag parameterization to evaluate the improvements on the storm surge model results, with and without inclusion of the wave effects. The effect of waves on storm surge is included by simultaneously simulating waves with the SWAN model on identical model grids in a coupled mode. However, the results presented here will focus on the storm surge results that include the wave effects. The runs were carried out in the Gulf of Mexico for Katrina and Ivan hurricane events. The storm surge model was initially forced with H*wind data (Powell et al., 2010) to test the effect of the Makin's wind drag parameterization on the storm surge model separately. The computed wind, water levels and waves are subsequently compared with observation data. Based on the good results obtained, we conclude that, for a good reproduction of the storm

  8. Development of Dimensionless Surge Response Functions for Hazard Assessment at Panama City, Florida

    NASA Astrophysics Data System (ADS)

    Taylor, N. R.; Irish, J. L.; Hagen, S. C.; Kaihatu, J. M.; McLaughlin, P. W.

    2013-12-01

    Reliable and robust methods of extreme value analysis in hurricane surge forecasting are of high importance in the coastal engineering profession. The Joint Probability Method (JPM) has become the preferred statistical method over the Historical Surge Population (HSP) method, due to its ability to give more accurate surge predictions, as demonstrated by Irish et. al in 2011 (J. Geophys. Res.). One disadvantage to this method is its high computational cost; a single location can require hundreds of simulated storms, each needing one thousand computational hours or more to complete. One way of overcoming this issue is to use an interpolating function, called a surge response function, to reduce the required number of simulations to a manageable number. These sampling methods, which use physical scaling laws, have been shown to significantly reduce the number of simulated storms needed for application of the JPM method. In 2008, Irish et. al. (J. Phys. Oceanogr.) demonstrated that hurricane surge scales primarily as a function of storm size and intensity. Additionally, Song et. al. in 2012 (Nat. Hazards) has shown that surge response functions incorporating bathymetric variations yield highly accurate surge estimates along the Texas coastline. This study applies the Song. et. al. model to 73 stations along the open coast, and 273 stations within the bays, in Panama City, Florida. The model performs well for the open coast and bay areas; surge levels at most stations along the open coast were predicted with RMS errors below 0.40 meters, and R2 values at or above 0.80. The R2 values for surge response functions within bays were consistently at or above 0.75. Surge levels at most stations within the North Bay and East Bay were predicted with RMS errors below 0.40 meters; within the West Bay, surge was predicted with RMS errors below 0.52 meters. Accurately interpolating surge values along the Panama City coast and bays enables efficient use of the JPM model in order to

  9. Quantification of Sediment Transport During Glacier Surges and its Impact on Landform Architecture

    NASA Astrophysics Data System (ADS)

    Kjaer, K. H.; Schomacker, A.; Korsgaard, N. J.; Benediktsson, I. O.

    2008-12-01

    Multi-temporal DEMs (Digital Elevation Models) of glaciers and ice streams have successfully been used for extraction of changes in ice volume over time. In this study, we analysed DEMs of the Brúarjökull glacier forefield (Iceland) for 1945, prior to the last surge in 1964, and for 2003 in order to assess the effect of the surge on the sediment architecture in the forefield. The pre- and post-surge DEMs allow direct quantification of the sediment volumes that were re-distributed in the forefield by the surging ice mass in 1964. The surge-type glacier Brúarjökull has experienced six surges during the last four centuries; these are the largest surges known to have occurred in Iceland. During the most recent surge in 1963-64, the glacier advanced 8 km over a period of c. 3 months with a maximum ice flow velocity of 5 m/hr, and 700 km3 of ice were moved downglacier. The continued recession of Brúarjökull since the 1963-64 surge reveals a young landscape consisting of widely spaced and elongated bedrock hills interspaced with shallow sedimentary basins. The majority of the forefield is covered with a basal till sheet or glaciofluvial outwash fans. Mapping of the sediment thickness in the glacier forefield shows higher accumulation along ice marginal positions related to wedge formation during extremely rapid ice flow. Fast flow was sustained by overpressurized water causing sediment-bedrock decoupling beneath a thick sediment sequence that was coupled to the glacier. Elevation differences between the terrain surface in 1945 and 2003 confirm this scenario as huge quantities of sediment was eroded, deformed and transported during the last surge event. On the scale of individual landforms, it appears for a drumlin surface that is has been lowered 20 m from 1945-2003. Dead-ice melting can explain roughly 8 m of this lowering. Thus, the drumlin must have experienced 12 m of subglacial erosion during the 1964 surge. The imprint of at least four landform generations is

  10. The simulation of a storm surge and wave due to Typhoon Sarah using an integrally coupled tide-surge-wave model of the Yellow and East China Seas

    NASA Astrophysics Data System (ADS)

    Yuk, Jin-Hee; Kim, Kyeong Ok; Choi, Byung Ho

    2015-12-01

    The Yellow and East China Seas are characterized by shallow shelf seas, seasonal monsoons and typhoons, especially the Korean Peninsula's western coastal area, which features large tides, a complex coastline and many islands. This study implemented an integrally coupled tide-surge-wave model based on an unstructured grid to evaluate the impact of Typhoon Sarah, which occurred in September of 1959, on the Yellow and East China Seas and, specifically, the southern coast of Korea in terms of waves and storm surges. The model results projected a significant wave height of 2-7 m, a mean wave period of 4-14 sec, and positive surge heights that were 0.3-1 m along the southern coast of Korea. Additional model runs included two independent model runs for waves and tides, and one tide-surge model run was conducted to investigate the interactions in the wave, tide and storm surge processes. The coupled tide-surgewave model reasonably reproduced wave properties and storm surges, but uncoupled models, i.e. independent models, slightly overestimated waves and surges. The wave forces associated with the gradient radiation stress resulted in water being elevated into coastal regions, thereby the water elevation increased onshore and the reverse happened offshore. A possible water level change due to a storm equivalent to Typhoon Sarah in the year 2100 was estimated by considering a mean sea level rise of 70 cm and was generally in the range of 70-100 cm in the Yellow and East China Seas and approximately 68 cm along the southern coast of Korea.

  11. Coastal geohazards and storm surges: The Indian context

    NASA Astrophysics Data System (ADS)

    Murty, K. S.

    2009-04-01

    that hit the Orisaa coast killed more than 15,000 people and rendered more than a million people homeless. Shelters have been built in the cyclone-prone areas on the coast and the communication systems have been modernised. After the 2004 tsunami, a storm surge and tsunami warning system as been set up that operates from Hyderabad. This involved strengthening the exisiting seismological network to indicate near real time occurence of a tsunamigenic earthquake. The surge during the 1977 cyclone was one of the most devastating surges in the recent past along the east coast of India. The Indian Meteorological Department instralled cyclone warning centres on the east coast. Detection radars have been installed that can track cyclones within a range of 400 kms from the coast. Beyond this range, satellite imageries are used. The OCEAN SAT-1 AND 2 serve this purpose. Climate change is expected to cause rise of sea levels and countries with vast coastlines have necessarily to take appropriate steps to face the challenge in future and India is among them.

  12. Modelling the 2013 Typhoon Haiyan storm surge: Effect of waves, offshore winds, tide phase, and translation speed

    NASA Astrophysics Data System (ADS)

    Bilgera, P. H. T.

    2015-12-01

    Super Typhoon Haiyan, with wind speeds exceeding 300 km h-1 (160 knots) generated a storm surge in San Pedro Bay reaching heights of more than 6m in Tacloban City. Delft Dashboard (DDB), an open-source standalone Matlab based graphical user interface linked to the FLOW and WAVE modeling software of Deltares, was used to develop a coupled flow and wave storm surge model to understand the Typhoon Haiyan storm surge development and propagation. Various experiments were designed to determine the effect of waves, the occurrence of offshore winds prior to the surge, tidal phase, and typhoon translation speed on the surge height. Wave coupling decreased the surge height by about 0.5m probably due to energy dissipation from white capping, bottom friction, and depth-induced breaking. Offshore-directed winds before the arrival of the storm eye resulted to receding of the water level in San Pedro and Cancabato Bay, corroborated by eyewitness and tide gauge data. The experiment wherein the offshore winds were removed resulted to no water receding and a surge with a smaller and gentler surge front, pointing to the importance of the initial water level drawdown in contributing to the destructive power of the wave front. With regard to tides, the effect in Tacloban was actually neither linear nor additive to the surge, with higher surge coincident to low tides and lower surge coincident to high tides. Lastly, the model run with typhoon having a slower translation speed than Haiyan was found to generate higher surges.

  13. Projections of extreme storm surge levels along Europe

    NASA Astrophysics Data System (ADS)

    Vousdoukas, Michalis I.; Voukouvalas, Evangelos; Annunziato, Alessandro; Giardino, Alessio; Feyen, Luc

    2016-02-01

    Storm surges are an important coastal hazard component and it is unknown how they will evolve along Europe's coastline in view of climate change. In the present contribution, the hydrodynamic model Delft3D-Flow was forced by surface wind and atmospheric pressure fields from a 8-member climate model ensemble in order to evaluate dynamics in storm surge levels (SSL) along the European coastline (1) for the baseline period 1970-2000; and (2) during this century under the Representative Concentration Pathways RCP4.5 and RCP8.5. Validation simulations, spanning from 2008 to 2014 and driven by ERA-Interim atmospheric forcing, indicated good predictive skill (0.06 m < RMSE < 0.29 m and 10 % < RMSE < 29 % for 110 tidal gauge stations across Europe). Peak-over-threshold extreme value analysis was applied to estimate SSL values for different return periods, and changes of future SSL were obtained from all models to obtain the final ensemble. Values for most scenarios and return periods indicate a projected increase in SSL at several locations along the North European coastline, which is more prominent for RCP8.5 and shows an increasing tendency towards the end of the century for both RCP4.5 and RCP8.5. Projected SSL changes along the European coastal areas south of 50°N show minimal change or even a small decrease, with the exception of RCP8.5 under which a moderate increase is projected towards the end of the century. The present findings indicate that the anticipated increase in extreme total water levels due to relative sea level rise (RSLR), can be further enforced by an increase of the extreme SSL, which can exceed 30 % of the RSLR, especially for the high return periods and pathway RCP8.5. This implies that the combined effect could increase even further anticipated impacts of climate change for certain European areas and highlights the necessity for timely coastal adaptation and protection measures. The dataset is publicly available under this link: http://data.jrc.ec.europa.eu/collection/LISCOAST.

  14. Transcriptional effect of the LH surge in bovine granulosa cells during the peri-ovulation period.

    PubMed

    Gilbert, Isabelle; Robert, Claude; Dieleman, Steph; Blondin, Patrick; Sirard, Marc-André

    2011-02-01

    The LH surge induces a multitude of events that are essential for ovulation and corpus luteum formation. The transcriptional responses to the LH surge of preovulatory granulosa cells (GCs) are complex and still poorly understood. In this study, a genome-wide bovine oligo array was used to determine how the gene expression profile of GCs is modulated by the LH surge. GCs from three different stages were used to assess the short- and long-term effects of this hormone on follicle differentiation: 1) 2 h before induction of the LH surge, 2) 6 h and 3) 22 h after the LH surge. The results obtained were a list of differentially expressed transcripts for each GC group. To provide a comprehensive understanding of the processes at play, biological annotations were used to reveal the different functions of transcripts, confirming that the LH surge acts in a temporal manner. The pre-LH group is involved in typical tasks such as cell division, development, and proliferation, while the early response to the LH surge included features such as response to stimulus, vascularization, and lipid synthesis, which are indicative of cells preparing for ovulation. The late response of GCs revealed terms associated with protein localization and intracellular transport, corresponding to the future secretion task that will be required for the transformation of GCs into corpus luteum. Overall, results described in this study provide new insights into the different transcriptional steps that GCs go through during ovulation and before luteinization. PMID:21123518

  15. Hurricane Sandy storm surges observed by HY-2A satellite altimetry and tide gauges

    NASA Astrophysics Data System (ADS)

    Chen, Nan; Han, Guoqi; Yang, Jingsong; Chen, Dake

    2014-07-01

    Hurricane Sandy made landfall to the northeast of Atlantic City, New Jersey at 23:30 UTC on 29 October 2012 and caused large storm surges and devastating flooding along the New Jersey and New York coasts. Here we combine sea surface height measurements from the HaiYang-2A (HY-2A) satellite altimeter with coastal tide-gauge data to study the features of the Hurricane Sandy storm surges. The HY-2A altimeter captured the cross-shelf profile of surge at the time of Sandy's peak surge, with a surge magnitude of about 1.83 m at the coast and a cross-shelf decaying scale of 68 km. The altimetric surge magnitude agrees approximately with tide-gauge estimate of 1.73 m at nearby Montauk. Further analysis suggests that continental shelf waves were generated during the passage of Sandy. The continental shelf wave observed by altimetry has a propagating speed of 6.5 m/s. The post landfall free shelf wave at Atlantic City observed by tide gauges has a propagating phase speed of 6.8 m/s and cross-shelf e-folding scale of 75 km. In contrast, the post landfall sea level oscillation at Montauk is not associated with a continental shelf wave. The study indicates that satellite altimetry is capable of observing and useful for understanding features of storm surges, complementing existing coastal tide gauges.

  16. Cold Surge Activity Over the Gulf of Mexico in a Warmer Climate

    NASA Astrophysics Data System (ADS)

    Perez, Edgar; Magaña Rueda, Victor; Caetano, Ernesto; Kusunoki, S. %J. Frontiers in Earth Science, Volume 1, id. 19 (2014)

    2014-08-01

    Cold surges are a dominant feature of midlatitude tropical interaction. During the North Hemisphere (NH) winter, midlatitude waves propagating from the Rocky Mountains into the Gulf of Mexico result in cold surges, also known as Nortes or Tehuantepecers, associated with severe weather over the southern part of Mexico. The magnitude of their intense surface winds, precipitation and drops in surface temperature depends on the characteristics of the midlatitude wave propagating into the tropics. The high spatial resolution (20km X 20km) version of the TL959L60-AGC Model of the Meteorological Research Institute of Japan is used to examine changes in cold surge activity under the A1B greenhouse gas emission scenario for the 2080 - 2099 period. The model realistically reproduces the spatial and temporal characteristics of cold surges for the 1980 - 1989 control period. The effect of changes in baroclinicity, static stability and mean flow over North America suggest that in a warmer climate, increased cold surge activity over the Gulf of Mexico would occur. However, these systems would have shorter wavelength (higher phase speeds) and shorter lifespans that could reduce the total amount of winter precipitation. The increased frequency of cold surges over the Gulf of Mexico would be a consequence of weaker baroclinicity and static stability in the lower troposphere over the cold surge genesis region, along with more dominant westerly winds, resulting from ENSO-like conditions in the atmospheric circulations over North America.

  17. Study on the storm surges induced by cold waves in the Northern East China Sea

    NASA Astrophysics Data System (ADS)

    Mo, Dongxue; Hou, Yijun; Li, Jian; Liu, Yahao

    2016-08-01

    Cold wave, a kind of severe weather system, can bring strong wind and induce significant sea level rise to the Northern East China Sea. Based on CFSR data, the study shows the monthly distributions of invaded days and the spatiotemporal distributions of cold-wave wind direction and wind speed. A three-dimensional numerical model (ROMS) was developed to study storm surges induced by cold waves. The role of wind direction, wind speed, wind duration, extratropical cyclone and tide-surge interaction is investigated by conducting different sensitivity experiments. The results indicate that storm surges mainly happen at the coasts perpendicular to the wind directions. Surge range and time lag are related to the geometry of the basin and the continental shelf. The response of the sea-level fluctuations to cold wave indicates that there is a positive correlation between crests and wind speed, a negative correlation between troughs and wind speed, but no obvious correlations to wind duration. Coupled weather cold waves, which yield a larger range and a multi-peak structure of surges, can be classified according to cold wave tracks and extratropical cyclones. The tide-surge interaction has an obvious and different effect on the magnitudes and phases of storm surges for different tidal stages.

  18. The role of basal hydrology in the surging of the Laurentide Ice Sheet

    NASA Astrophysics Data System (ADS)

    Roberts, William H. G.; Payne, Antony J.; Valdes, Paul J.

    2016-08-01

    We use the Glimmer ice sheet model to simulate periodic surges over the Laurentide Ice Sheet during the Last Glacial Maximum. In contrast to previous studies we use the depth of water at the base of the ice sheet as the switch for these surges. We find that the surges are supported within the model and are quite robust across a very wide range of parameter choices, in contrast to many previous studies where surges only occur for rather specific cases. The robustness of the surges is likely due to the use of water as the switch mechanism for sliding. The statistics of the binge-purge cycles resemble observed Heinrich events. The events have a period of between 10 and 15 thousand years and can produce fluxes of ice from the mouth of Hudson Strait of 0.05 Sv - a maximum flux of 0.06 Sv is possible. The events produce an ice volume of 2.50 × 106 km3, with a range of 4.30 × 106-1.90 × 106 km3 possible. We undertake a suite of sensitivity tests varying the sliding parameter, the water drainage scheme, the sliding versus water depth parameterisation and the resolution, all of which support the ice sheet surges. This suggests that internally triggered ice sheet surges were a robust feature of the Laurentide Ice Sheet and are a possible explanation for the observed Heinrich events.

  19. North Sea storminess from a novel storm surge record since AD 1843

    NASA Astrophysics Data System (ADS)

    Dangendorf, Sönke; Müller-Navarra, Sylvin; Jensen, Jürgen; Schenk, Frederik; Wahl, Thomas; Weisse, Ralf

    2014-05-01

    The detection of potential long-term changes in historical storm statistics and storm surges plays a vitally important role for protecting coastal communities. In the absence of long homogeneous wind records, we present a novel, independent and homogeneous storm surge record based on water level observations in the North Sea since AD 1843. Storm surges are characterized by considerable inter-annual to decadal variability linked to large-scale atmospheric circulation patterns. Time periods of increased storm surge levels prevailed in the late 19th and 20th centuries without any evidence for significant long-term trends. This contradicts with recent findings based on reanalysis data, which suggest increasing storminess in the region since the late 19th century. We compare the wind and pressure fields from the 20th century reanalysis (20CRv2) with the storm surge record by applying state of the art empirical wind surge formulas. The comparison reveals that the reanalysis is a valuable tool which leads to good results over the past 100 years; previously the statistical relationship fails, leaving significantly lower values in the upper percentiles of the predicted surge time series. These low values lead to significant upward trends over the entire investigation period, which are in turn neither supported by the storm surge record nor by an independent circulation index based on homogeneous pressure readings. We therefore suggest that these differences are related to higher uncertainties in the earlier years of the 20CRv2 over the North Sea region. Reference: Dangendorf, S., Müller-Navarra, S., Jensen, J., Schenk, F., Wahl, T., and Weisse, R. (revised after minor revision): North Sea storminess from a novel storm surge record since AD 1843, Journal of Climate.

  20. The influence of domain size on the response characteristics of a hurricane storm surge model

    NASA Astrophysics Data System (ADS)

    Blain, C. A.; Westerink, J. J.; Luettich, R. A.

    1994-09-01

    The influence of domain size on boundary condition specification and on computed storm surge response is investigated. Storm surge response along the Florida shelf in the Gulf of Mexico due to Hurricane Kate is examined over three domains using two different open ocean boundary forcing functions, a still water (or zero elevation) condition and an inverted barometer condition which accounts for the atmospheric pressure component of the meteorological forcing. The first domain is relatively small and is situated primarily on the continental shelf in the region of intense storm surge generation. A second domain includes the entire Gulf of Mexico basin. The final domain covers the Gulf of Mexico, contiguous basins, and extends out into the deep Atlantic Ocean. The computed storm surge response indicates that the small domain is inadequate, since cross-shelf boundaries are in regions of significant storm surge generation where surge and therefore boundary conditions are not known a priori. Also, the behavior of resonant modes that are physically excited within the Gulf of Mexico due to the passage of the hurricane is unknown at the boundaries of this small domain. The domain that includes the entire Gulf of Mexico captures the primary storm surge well but may not correctly model resonant modes. In general, these resonant modes are difficult to accurately set up by boundary condition specification, since they may be dependent on interactions between the Gulf and contiguous basins. The primary storm surge response as well as resonant modes excited by the storm are best represented using a domain which encompasses the western North Atlantic Ocean, the Caribbean Sea, and the Gulf of Mexico. This domain with deep Atlantic Ocean boundaries facilitates simple boundary condition specification and minimizes the influence of boundary conditions on storm surge generation in coastal regions. Basin resonant modes and basin to basin interactions are also captured.

  1. Thermal structure of Svalbard glaciers and implications for thermal switch models of glacier surging

    NASA Astrophysics Data System (ADS)

    Sevestre, Heïdi; Benn, Douglas I.; Hulton, Nicholas R. J.; Bælum, Karoline

    2015-10-01

    Switches between cold- and warm-based conditions have long been invoked to explain surges of High Arctic glaciers. Here we compile existing and new data on the thermal regime of six glaciers in Svalbard to test the applicability of thermal switch models. Two of the large glaciers of our sample are water terminating while one is land terminating. All three have a well-known surge history. They have a thick basal layer of temperate ice, superimposed by cold ice. A cold terminus forms during quiescence but is mechanically removed by calving on tidewater glaciers. The other three glaciers are relatively small and are either entirely cold or have a diminishing warm core. All three bear evidence of former warm-based thermal regimes and, in two cases, surge-like behavior during the Little Ice Age. In Svalbard, therefore, three types of glaciers have switched from slow to fast flow: (1) small glaciers that underwent thermal cycles during and following the Little Ice Age (switches between cold- and warm-based conditions), (2) large terrestrial glaciers which remain warm based throughout the entire surge cycle but develop cold termini during quiescence, and (3) large tidewater glaciers that remain warm based throughout the surge cycle. Our results demonstrate that thermal switching cannot explain the surges of large glaciers in Svalbard. We apply the concept of enthalpy cycling to the spectrum of surge and surge-like behavior displayed by these glaciers and demonstrate that all Svalbard surge-type glaciers can be understood within a single conceptual framework.

  2. Identification of storm surge events over the German Bight from atmospheric reanalysis and climate model data

    NASA Astrophysics Data System (ADS)

    Befort, D. J.; Fischer, M.; Leckebusch, G. C.; Ulbrich, U.; Ganske, A.; Rosenhagen, G.; Heinrich, H.

    2015-06-01

    A new procedure for the identification of storm surge situations for the German Bight is developed and applied to reanalysis and global climate model data. This method is based on the empirical approach for estimating storm surge heights using information about wind speed and wind direction. Here, we hypothesize that storm surge events are caused by high wind speeds from north-westerly direction in combination with a large-scale wind storm event affecting the North Sea region. The method is calibrated for ERA-40 data, using the data from the storm surge atlas for Cuxhaven. It is shown that using information of both wind speed and direction as well as large-scale wind storm events improves the identification of storm surge events. To estimate possible future changes of potential storm surge events, we apply the new identification approach to an ensemble of three transient climate change simulations performed with the ECHAM5/MPIOM model under A1B greenhouse gas scenario forcing. We find an increase in the total number of potential storm surge events of about 12 % [(2001-2100)-(1901-2000)], mainly based on changes of moderate events. Yearly numbers of storm surge relevant events show high interannual and decadal variability and only one of three simulations shows a statistical significant increase in the yearly number of potential storm surge events between 1900 and 2100. However, no changes in the maximum intensity and duration of all potential events is determined. Extreme value statistic analysis confirms no frequency change of the most severe events.

  3. THE KINEMATICS AND PLASMA PROPERTIES OF A SOLAR SURGE TRIGGERED BY CHROMOSPHERIC ACTIVITY IN AR11271

    SciTech Connect

    Kayshap, P.; Srivastava, Abhishek K.; Murawski, K.

    2013-01-20

    We observe a solar surge in NOAA AR11271 using the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly 304 A image data on 2011 August 25. The surge rises vertically from its origin up to a height of Almost-Equal-To 65 Mm with a terminal velocity of Almost-Equal-To 100 km s{sup -1}, and thereafter falls and fades gradually. The total lifetime of the surge was Almost-Equal-To 20 minutes. We also measure the temperature and density distribution of the observed surge during its maximum rise and find an average temperature and a density of 2.0 MK and 4.1 Multiplication-Sign 10{sup 9} cm{sup -3}, respectively. The temperature map shows the expansion and mixing of cool plasma lagging behind the hot coronal plasma along the surge. Because SDO/HMI temporal image data do not show any detectable evidence of significant photospheric magnetic field cancellation for the formation of the observed surge, we infer that it is probably driven by magnetic-reconnection-generated thermal energy in the lower chromosphere. The radiance (and thus the mass density) oscillations near the base of the surge are also evident, which may be the most likely signature of its formation by a reconnection-generated pulse. In support of the present observational baseline of the triggering of the surge due to chromospheric heating, we devise a numerical model with conceivable implementation of the VAL-C atmosphere and a thermal pulse as an initial trigger. We find that the pulse steepens into a slow shock at higher altitudes which triggers plasma perturbations exhibiting the observed features of the surge, e.g., terminal velocity, height, width, lifetime, and heated fine structures near its base.

  4. Developing an early warning system for storm surge inundation in the Philippines

    NASA Astrophysics Data System (ADS)

    Tablazon, J.; Caro, C. V.; Lagmay, A. M. F.; Briones, J. B. L.; Dasallas, L.; Lapidez, J. P.; Santiago, J.; Suarez, J. K.; Ladiero, C.; Gonzalo, L. A.; Mungcal, M. T. F.; Malano, V.

    2014-10-01

    A storm surge is the sudden rise of sea water generated by an approaching storm, over and above the astronomical tides. This event imposes a major threat in the Philippine coastal areas, as manifested by Typhoon Haiyan on 8 November 2013 where more than 6000 people lost their lives. It has become evident that the need to develop an early warning system for storm surges is of utmost importance. To provide forecasts of the possible storm surge heights of an approaching typhoon, the Nationwide Operational Assessment of Hazards under the Department of Science and Technology (DOST-Project NOAH) simulated historical tropical cyclones that entered the Philippine Area of Responsibility. Bathymetric data, storm track, central atmospheric pressure, and maximum wind speed were used as parameters for the Japan Meteorological Agency Storm Surge Model. The researchers calculated the frequency distribution of maximum storm surge heights of all typhoons under a specific Public Storm Warning Signal (PSWS) that passed through a particular coastal area. This determines the storm surge height corresponding to a given probability of occurrence. The storm surge heights from the model were added to the maximum astronomical tide data from WXTide software. The team then created maps of probable area inundation and flood levels of storm surges along coastal areas for a specific PSWS using the results of the frequency distribution. These maps were developed from the time series data of the storm tide at 10 min intervals of all observation points in the Philippines. This information will be beneficial in developing early warnings systems, static maps, disaster mitigation and preparedness plans, vulnerability assessments, risk-sensitive land use plans, shoreline defense efforts, and coastal protection measures. Moreover, these will support the local government units' mandate to raise public awareness, disseminate information about storm surge hazards, and implement appropriate counter

  5. Developing an early warning system for storm surge inundation in the Philippines

    NASA Astrophysics Data System (ADS)

    Tablazon, Judd; Mahar Francisco Lagmay, Alfredo; Francia Mungcal, Ma. Theresa; Gonzalo, Lia Anne; Dasallas, Lea; Briones, Jo Brianne Louise; Santiago, Joy; Suarez, John Kenneth; Lapidez, John Phillip; Caro, Carl Vincent; Ladiero, Christine; Malano, Vicente

    2014-05-01

    A storm surge is the sudden rise of sea water generated by an approaching storm, over and above the astronomical tides. This event imposes a major threat in the Philippine coastal areas, as manifested by Typhoon Haiyan on 08 November 2013 where more than 6,000 people lost their lives. It has become evident that the need to develop an early warning system for storm surges is of utmost importance. To provide forecasts of the possible storm surge heights of an approaching typhoon, the Nationwide Operational Assessment of Hazards under the Department of Science and Technology (DOST-Project NOAH) simulated historical tropical cyclones that entered the Philippine Area of Responsibility. Bathymetric data, storm track, central atmospheric pressure, and maximum wind speed were used as parameters for the Japan Meteorological Agency (JMA) Storm Surge Model. The researchers calculated the frequency distribution of maximum storm surge heights of all typhoons under a specific Public Storm Warning Signal (PSWS) that passed through a particular coastal area. This determines the storm surge height corresponding to a given probability of occurrence. The storm surge heights from the model were added to the maximum astronomical tide data from WXTide software. The team then created maps of probable area inundation and flood levels of storm surges along coastal areas for a specific PSWS using the results of the frequency distribution. These maps were developed from the time series data of the storm tide at 10-minute intervals of all observation points in the Philippines. This information will be beneficial in developing early warnings systems, static maps, disaster mitigation and preparedness plans, vulnerability assessments, risk-sensitive land use plans, shoreline defense efforts, and coastal protection measures. Moreover, these will support the local government units' mandate to raise public awareness, disseminate information about storm surge hazards, and implement appropriate

  6. Experimental and Theoretical Studies of Surging in Continuous-Flow Compressors

    NASA Technical Reports Server (NTRS)

    Bullock, Robert O; Wilcox, Ward W; Moses, Jason J

    1946-01-01

    Experiments have been conducted to determine the conditions that cause surging in compressors and to determine the effect of various installations and operating conditions on the character of the velocity and pressure variations occurring during surging. These investigations were made on three compressor units and the variation of static, total, and velocity pressure with time was recorded. In addition to the experimental studies, a simplified analysis was made to determine how instability of flow may occur in a compressor. Based on this analysis, an examination was made of several possible methods of inhibiting the occurrence of surging.

  7. Projected Atlantic hurricane surge threat from rising temperatures.

    PubMed

    Grinsted, Aslak; Moore, John C; Jevrejeva, Svetlana

    2013-04-01

    Detection and attribution of past changes in cyclone activity are hampered by biased cyclone records due to changes in observational capabilities. Here, we relate a homogeneous record of Atlantic tropical cyclone activity based on storm surge statistics from tide gauges to changes in global temperature patterns. We examine 10 competing hypotheses using nonstationary generalized extreme value analysis with different predictors (North Atlantic Oscillation, Southern Oscillation, Pacific Decadal Oscillation, Sahel rainfall, Quasi-Biennial Oscillation, radiative forcing, Main Development Region temperatures and its anomaly, global temperatures, and gridded temperatures). We find that gridded temperatures, Main Development Region, and global average temperature explain the observations best. The most extreme events are especially sensitive to temperature changes, and we estimate a doubling of Katrina magnitude events associated with the warming over the 20th century. The increased risk depends on the spatial distribution of the temperature rise with highest sensitivity from tropical Atlantic, Central America, and the Indian Ocean. Statistically downscaling 21st century warming patterns from six climate models results in a twofold to sevenfold increase in the frequency of Katrina magnitude events for a 1 °C rise in global temperature (using BNU-ESM, BCC-CSM-1.1, CanESM2, HadGEM2-ES, INM-CM4, and NorESM1-M). PMID:23509254

  8. Smart Ultrasound Remote Guidance Experiment (SURGE) Preliminary Findings

    NASA Technical Reports Server (NTRS)

    Hurst, Victor; Dulchavsky, Scott; Garcia, Kathleen; Sargsyan, Ashot; Ebert, Doug

    2009-01-01

    To date, diagnostic quality ultrasound images were obtained aboard the International Space Station (ISS) using the ultrasound of the Human Research Facility (HRF) rack in the Laboratory module. Through the Advanced Diagnostic Ultrasound in Microgravity (ADUM) and the Braslet-M Occlusion Cuffs (BRASLET SDTO) studies, non-expert ultrasound operators aboard the ISS have performed cardiac, thoracic, abdominal, vascular, ocular, and musculoskeletal ultrasound assessments using remote guidance from ground-based ultrasound experts. With exploration class missions to the lunar and Martian surfaces on the horizon, crew medical officers will necessarily need to operate with greater autonomy given communication delays (round trip times of up to 5 seconds for the Moon and 90 minutes for Mars) and longer periods of communication blackouts (due to orbital constraints of communication assets). The SURGE project explored the feasibility and training requirements of having non-expert ultrasound operators perform autonomous ultrasound assessments in a simulated exploration mission outpost. The project aimed to identify experience, training, and human factors requirements for crew medical officers to perform autonomous ultrasonography. All of these aims pertained to the following risks from the NASA Bioastronautics Road Map: 1) Risk 18: Major Illness and Trauna; 2) Risk 20) Ambulatory Care; 3) Risk 22: Medical Informatics, Technologies, and Support Systems; and 4) Risk 23: Medical Skill Training and Maintenance.

  9. Surge in sulphur and halogen degassing from Ambrym volcano, Vanuatu

    NASA Astrophysics Data System (ADS)

    Bani, Philipson; Oppenheimer, Clive; Tsanev, Vitchko I.; Carn, Simon A.; Cronin, Shane J.; Crimp, Rachel; Calkins, Julie A.; Charley, Douglas; Lardy, Michel; Roberts, Tjarda R.

    2009-12-01

    Volcanoes provide important contributions to atmospheric budgets of SO2 and reactive halogens, which play significant roles in atmospheric oxidative capacity and radiation. However, the global source strengths of volcanic emissions remain poorly constrained. These uncertainties are highlighted here by the first measurements of gas emission rates from Ambrym volcano, Vanuatu. Our initial airborne ultraviolet spectroscopic measurements made in January 2005 indicate fluxes of 18-270 kg s-1 of SO2, and 62-110 g s-1 of BrO, into the atmosphere, placing Ambrym amongst the largest known contemporary point sources of both these species on Earth. We also estimate high Cl and F fluxes of ~8-14 and ~27-50 kg s-1, respectively, for this period. Further observations using both airborne and spaceborne remote sensing reveal a fluctuating SO2 output between 2004 and 2008, with a surge in the first half of 2005, and underline the substantial contribution that a single passively degassing volcano can make to the atmospheric budget of sulfur and halogens.

  10. Projected Atlantic hurricane surge threat from rising temperatures

    PubMed Central

    Grinsted, Aslak; Moore, John C.; Jevrejeva, Svetlana

    2013-01-01

    Detection and attribution of past changes in cyclone activity are hampered by biased cyclone records due to changes in observational capabilities. Here, we relate a homogeneous record of Atlantic tropical cyclone activity based on storm surge statistics from tide gauges to changes in global temperature patterns. We examine 10 competing hypotheses using nonstationary generalized extreme value analysis with different predictors (North Atlantic Oscillation, Southern Oscillation, Pacific Decadal Oscillation, Sahel rainfall, Quasi-Biennial Oscillation, radiative forcing, Main Development Region temperatures and its anomaly, global temperatures, and gridded temperatures). We find that gridded temperatures, Main Development Region, and global average temperature explain the observations best. The most extreme events are especially sensitive to temperature changes, and we estimate a doubling of Katrina magnitude events associated with the warming over the 20th century. The increased risk depends on the spatial distribution of the temperature rise with highest sensitivity from tropical Atlantic, Central America, and the Indian Ocean. Statistically downscaling 21st century warming patterns from six climate models results in a twofold to sevenfold increase in the frequency of Katrina magnitude events for a 1 °C rise in global temperature (using BNU-ESM, BCC-CSM-1.1, CanESM2, HadGEM2-ES, INM-CM4, and NorESM1-M). PMID:23509254