Science.gov

Sample records for plastic shrinkage cracking

  1. PLASTIC SHRINKAGE CONTROLLING EFFECT BY POLYPROPYLENE SHORT FIBER WITH HYDROPHILY

    NASA Astrophysics Data System (ADS)

    Hosoda, Akira; Sadatsuki, Yoshitomo; Oshima, Akihiro; Ishii, Akina; Tsubaki, Tatsuya

    The aim of this research is to clarify the mechanism of controlling plastic shrinkage crack by adding small amout of synthetic short fiber, and to propose optimum polypropylene short fiber to control plastic shrinkage crack. In this research, the effect of the hydrophily of polypropylene fiber was investigated in the amount of plastic shrinkage of mortar, total area of plastic shrinkage crack, and bond properties between fiber and mortar. The plastic shrinkage test of morar was conducted under high temperature, low relative humidity, and constant wind velocity. When polypropylene fiber had hydrophily, the amount of plastic shrinkage of mortar was restrained, which was because cement paste in morar was captured by hydrophilic fiber and then bleeding of mortar was restrained. With hydrophily, plastic shrinkage of mortar was restrained and bridging effect was improved due to better bond, which led to remarkable reduction of plastic shrinkage crack. Based on experimental results, the way of developing optimum polypropylene short fiber for actual construction was proposed. The fiber should have large hydrophily and small diameter, and should be used in as small amount as possible in order not to disturb workability of concrete.

  2. Study on effects of solar radiation and rain on shrinkage, shrinkage cracking and creep of concrete

    SciTech Connect

    Asamoto, Shingo; Ohtsuka, Ayumu; Kuwahara, Yuta; Miura, Chikako

    2011-06-15

    In this paper, the effects of actual environmental actions on shrinkage, creep and shrinkage cracking of concrete are studied comprehensively. Prismatic specimens of plain concrete were exposed to three sets of artificial outdoor conditions with or without solar radiation and rain to examine the shrinkage. For the purpose of studying shrinkage cracking behavior, prismatic concrete specimens with reinforcing steel were also subjected to the above conditions at the same time. The shrinkage behavior is described focusing on the effects of solar radiation and rain based on the moisture loss. The significant environment actions to induce shrinkage cracks are investigated from viewpoints of the amount of the shrinkage and the tensile strength. Finally, specific compressive creep behavior according to solar radiation and rainfall is discussed. It is found that rain can greatly inhibit the progresses of concrete shrinkage and creep while solar radiation is likely to promote shrinkage cracking and creep.

  3. Plastic shrinkage of mortars with shrinkage reducing admixture and lightweight aggregates studied by neutron tomography

    SciTech Connect

    Wyrzykowski, Mateusz; Trtik, Pavel; Münch, Beat; Weiss, Jason; Vontobel, Peter; Lura, Pietro

    2015-07-15

    Water transport in fresh, highly permeable concrete and rapid water evaporation from the concrete surface during the first few hours after placement are the key parameters influencing plastic shrinkage cracking. In this work, neutron tomography was used to determine both the water loss from the concrete surface due to evaporation and the redistribution of fluid that occurs in fresh mortars exposed to external drying. In addition to the reference mortar with a water to cement ratio (w/c) of 0.30, a mortar with the addition of pre-wetted lightweight aggregates (LWA) and a mortar with a shrinkage reducing admixture (SRA) were tested. The addition of SRA reduced the evaporation rate from the mortar at the initial stages of drying and reduced the total water loss. The pre-wetted LWA released a large part of the absorbed water as a consequence of capillary pressure developing in the fresh mortar due to evaporation.

  4. Evaluation of shrinkage and cracking in concrete of ring test by acoustic emission method

    NASA Astrophysics Data System (ADS)

    Watanabe, Takeshi; Hashimoto, Chikanori

    2015-03-01

    Drying shrinkage of concrete is one of the typical problems related to reduce durability and defilation of concrete structures. Lime stone, expansive additive and low-heat Portland cement are used to reduce drying shrinkage in Japan. Drying shrinkage is commonly evaluated by methods of measurement for length change of mortar and concrete. In these methods, there is detected strain due to drying shrinkage of free body, although visible cracking does not occur. In this study, the ring test was employed to detect strain and age cracking of concrete. The acoustic emission (AE) method was adopted to detect micro cracking due to shrinkage. It was recognized that in concrete using lime stone, expansive additive and low-heat Portland cement are effective to decrease drying shrinkage and visible cracking. Micro cracking due to shrinkage of this concrete was detected and evaluated by the AE method.

  5. Assessment and prediction of drying shrinkage cracking in bonded mortar overlays

    SciTech Connect

    Beushausen, Hans Chilwesa, Masuzyo

    2013-11-15

    Restrained drying shrinkage cracking was investigated on composite beams consisting of substrate concrete and bonded mortar overlays, and compared to the performance of the same mortars when subjected to the ring test. Stress development and cracking in the composite specimens were analytically modeled and predicted based on the measurement of relevant time-dependent material properties such as drying shrinkage, elastic modulus, tensile relaxation and tensile strength. Overlay cracking in the composite beams could be very well predicted with the analytical model. The ring test provided a useful qualitative comparison of the cracking performance of the mortars. The duration of curing was found to only have a minor influence on crack development. This was ascribed to the fact that prolonged curing has a beneficial effect on tensile strength at the onset of stress development, but is in the same time not beneficial to the values of tensile relaxation and elastic modulus. -- Highlights: •Parameter study on material characteristics influencing overlay cracking. •Analytical model gives good quantitative indication of overlay cracking. •Ring test presents good qualitative indication of overlay cracking. •Curing duration has little effect on overlay cracking.

  6. Elastic-plastic analysis of growing cracks

    SciTech Connect

    Rice, J.R.; Drugan, W.J.; Sham, T.L.

    1980-01-01

    The elastic-plastic stress and deformation fields at the tip of a crack which grow in an ideally plastic solid under plane strain, small-scale yielding conditions is discussed. Asymptotic analysis suggests a crack-tip stress state similar to that of the classical Prandtl field, but containing elastic unloading between the centered fan region and the trailing constant stress plastic region. The near tip expression for the rate of opening displacement delta at distance r from the growing tip is found to have the same form suggested by Rice and Sorensen, delta = ..cap alpha..J/sigma/sub 0/ + ..beta..(sigma/sub 0//E)a ln (R/r), but now the presence of the elastic wedge causes ..beta.. to have the revised value of 5.08 (for Poisson ratio ..nu.. = 0.3). Here, a = crack length, sigma/sub 0/ = yield strength, E = elastic modulus, and J denotes the far-field value (1 - ..nu../sup 2/) K/sup 2//E for the small scale yielding conditions considered. The parameters ..cap alpha.. and R cannot be determined from the asymptotic analysis, but ..cap alpha.. is approximately the same for stationary and growing cracks, and R scales approximately with the size of the plastic zone, being about 15 to 30% larger. For large scale yielding, a similar form applies with possible variations in ..cap alpha.. and ..beta.., at least in cases which maintain triaxial constraint at the crack tip, but in the fully yielded case R is expected to be proportional to the dimension of the uncracked ligament. The model crack growth criterion of Rice and Sorensen, requiring a critical delta at some fixed r from the tip, is reexamined. Results suggest that the J versus ..delta..a relation describing growth will be dependent on the extent of yielding, although it is suggested that this dependency might be small for highly ductile materials, provided that a similar triaxial constraint is maintained in all cases.

  7. Development and construction of low-cracking high-performance concrete (LC-HPC) bridge decks: Free shrinkage tests, restrained ring tests, construction experience, and crack survey results

    NASA Astrophysics Data System (ADS)

    Yuan, Jiqiu

    2011-12-01

    The development, construction, and evaluation of low-cracking high-performance concrete (LC-HPC) bridge decks are described based on laboratory test results and experiences gained during the construction of 13 LC-HPC bridge decks in Kansas, along with another deck bid under the LC-HPC specifications but for which the owner did not enforce the specification. This study is divided into four parts covering (1) an evaluation of the free shrinkage properties of LC-HPC candidate mixtures, (2) an investigation of the relationship between the evaporable water content in the cement paste and the free shrinkage of concrete, (3) a study of the restrained shrinkage performance of concrete using restrained ring tests, and (4) a description of the construction and preliminary evaluation of LC-HPC and control bridge decks constructed in Kansas. The first portion of the study involves evaluating the effects of the duration of curing, fly ash, and a shrinkage reducing admixture (SRA) on the free-shrinkage characteristics of concrete mixtures. The results indicate that an increase of curing period reduces free shrinkage. With 7 days of curing, concretes containing fly ash as a partial replacement for cement exhibit higher free shrinkage than concretes with 100% portland cement. When the curing period is increased to 14, 28, and 56 days, the adverse effect of adding fly ash on free shrinkage is minimized and finally reversed. The addition of an SRA significantly reduces free shrinkage for both the 100% portland cement mixture and the mixture containing fly ash. The second portion of the study investigates the relationship between the evaporable water content in the cement paste and the free shrinkage of concrete. A linear relationship between free shrinkage and evaporable water content in the cement paste is observed. For a given mixture, specimens cured for a longer period contain less evaporable water and exhibit lower free shrinkage and less weight loss in the free shrinkage

  8. Consideration of the effects on fuel particle behavior from shrinkage cracks in the inner pyrocarbon layer

    NASA Astrophysics Data System (ADS)

    Miller, Gregory K.; Petti, David A.; Varacalle, Dominic J.; Maki, John T.

    2001-06-01

    The fundamental design for a gas-cooled pebble bed reactor relies on an understanding of the behavior of coated particle fuel. The coating layers surrounding the fuel kernels in these spherical particles consist of pyrolytic carbon layers and a silicon carbide (SiC) layer. These coating layers act as a pressure vessel that retains fission product gases. A small percentage of fuel particles may fail during irradiation in the mode of a traditional pressure vessel failure. Fuel performance models used to predict particle behavior have traditionally been one-dimensional models that focus on this failure mechanism. Results of irradiation experiments, however, show that many more fuel particles fail than would be predicted by this mechanism alone. Post-irradiation examinations indicate that multi-dimensional effects, such as the presence of shrinkage cracks in the inner pyrolytic carbon layer (IPyC), contribute to these unexplained failures. Results of a study performed to evaluate the significance of cracking in the IPyC layer on behavior of a fuel particle are presented herein, which indicate that shrinkage cracks could contribute significantly to fuel particle failures.

  9. Deformation fields near a steady fatigue crack with anisotropic plasticity

    DOE PAGESBeta

    Gao, Yanfei

    2015-11-30

    In this work, from finite element simulations based on an irreversible, hysteretic cohesive interface model, a steady fatigue crack can be realized if the crack extension exceeds about twice the plastic zone size, and both the crack increment per loading cycle and the crack bridging zone size are smaller than the plastic zone size. The corresponding deformation fields develop a plastic wake behind the crack tip and a compressive residual stress field ahead of the crack tip. In addition, the Hill’s plasticity model is used to study the role of plastic anisotropy on the retardation of fatigue crack growth andmore » the elastic strain fields. It is found that for Mode-I cyclic loading, an enhanced yield stress in directions that are inclined from the crack plane will lead to slower crack growth rate, but this retardation is insignificant for typical degrees of plastic anisotropy. Furthermore, these results provide key inputs for future comparisons to neutron and synchrotron diffraction measurements that provide full-field lattice strain mapping near fracture and fatigue crack tips, especially in textured materials such as wrought or rolled Mg alloys.« less

  10. Deformation fields near a steady fatigue crack with anisotropic plasticity

    SciTech Connect

    Gao, Yanfei

    2015-11-30

    In this work, from finite element simulations based on an irreversible, hysteretic cohesive interface model, a steady fatigue crack can be realized if the crack extension exceeds about twice the plastic zone size, and both the crack increment per loading cycle and the crack bridging zone size are smaller than the plastic zone size. The corresponding deformation fields develop a plastic wake behind the crack tip and a compressive residual stress field ahead of the crack tip. In addition, the Hill’s plasticity model is used to study the role of plastic anisotropy on the retardation of fatigue crack growth and the elastic strain fields. It is found that for Mode-I cyclic loading, an enhanced yield stress in directions that are inclined from the crack plane will lead to slower crack growth rate, but this retardation is insignificant for typical degrees of plastic anisotropy. Furthermore, these results provide key inputs for future comparisons to neutron and synchrotron diffraction measurements that provide full-field lattice strain mapping near fracture and fatigue crack tips, especially in textured materials such as wrought or rolled Mg alloys.

  11. Considerations of crack growth and plasticity in finite element analysis

    NASA Technical Reports Server (NTRS)

    Lee, J. D.; Liebowitz, H.

    1978-01-01

    A finite-element analysis was made of crack growth in a center-cracked specimen subjected to monotonically increasing load until the point of fast fracture. Since part of the specimen experienced unloading, the boundary value problem which was formulated was based upon incremental theory of plasticity. Experimental load and crack size records were utilized. Linear relations between plastic energy and crack growth were observed. Fracture toughness parameters, which were evaluated at the onset of unstable crack propagation from finite-element analysis, were in good agreement with those determined experimentally.

  12. Self-healing of drying shrinkage cracks in cement-based materials incorporating reactive MgO

    NASA Astrophysics Data System (ADS)

    Qureshi, T. S.; Al-Tabbaa, A.

    2016-08-01

    Excessive drying shrinkage is one of the major issues of concern for longevity and reduced strength performance of concrete structures. It can cause the formation of cracks in the concrete. This research aims to improve the autogenous self-healing capacity of traditional Portland cement (PC) systems, adding expansive minerals such as reactive magnesium oxide (MgO) in terms of drying shrinkage crack healing. Two different reactive grades (high ‘N50’and moderately high ‘92–200’) of MgO were added with PC. Cracks were induced in the samples with restraining end prisms through natural drying shrinkage over 28 days after casting. Samples were then cured under water for 28 and 56 days, and self-healing capacity was investigated in terms of mechanical strength recovery, crack sealing efficiency and improvement in durability. Finally, microstructures of the healing materials were investigated using FT-IR, XRD, and SEM-EDX. Overall N50 mixes show higher expansion and drying shrinkage compared to 92–200 mixes. Autogenous self-healing performance of the MgO containing samples were much higher compared to control (only PC) mixes. Cracks up to 500 μm were sealed in most MgO containing samples after 28 days. In the microstructural investigations, highly expansive Mg-rich hydro-carbonate bridges were found along with traditional calcium-based, self-healing compounds (calcite, portlandite, calcium silicate hydrates and ettringite).

  13. Flash Cracking Reactor for Waste Plastic Processing

    NASA Technical Reports Server (NTRS)

    Timko, Michael T.; Wong, Hsi-Wu; Gonzalez, Lino A.; Broadbelt, Linda; Raviknishan, Vinu

    2013-01-01

    Conversion of waste plastic to energy is a growing problem that is especially acute in space exploration applications. Moreover, utilization of heavy hydrocarbon resources (wastes, waxes, etc.) as fuels and chemicals will be a growing need in the future. Existing technologies require a trade-off between product selectivity and feedstock conversion. The objective of this work was to maintain high plastic-to-fuel conversion without sacrificing the liquid yield. The developed technology accomplishes this goal with a combined understanding of thermodynamics, reaction rates, and mass transport to achieve high feed conversion without sacrificing product selectivity. The innovation requires a reaction vessel, hydrocarbon feed, gas feed, and pressure and temperature control equipment. Depending on the feedstock and desired product distribution, catalyst can be added. The reactor is heated to the desired tempera ture, pressurized to the desired pressure, and subject to a sweep flow at the optimized superficial velocity. Software developed under this project can be used to determine optimal values for these parameters. Product is vaporized, transferred to a receiver, and cooled to a liquid - a form suitable for long-term storage as a fuel or chemical. An important NASA application is the use of solar energy to convert waste plastic into a form that can be utilized during periods of low solar energy flux. Unlike previous work in this field, this innovation uses thermodynamic, mass transport, and reaction parameters to tune product distribution of pyrolysis cracking. Previous work in this field has used some of these variables, but never all in conjunction for process optimization. This method is useful for municipal waste incinerator operators and gas-to-liquids companies.

  14. Crack monitoring capability of plastic optical fibers for concrete structures

    NASA Astrophysics Data System (ADS)

    Zhao, Jinlei; Bao, Tengfei; Chen, Rui

    2015-08-01

    Optical fibers have been widely used in structural health monitoring. Traditional silica fibers are easy to break in field applications due to their brittleness. Thus, silica fibers are proposed to be replaced by plastic optical fibers (POFs) in crack monitoring in this study. Moreover, considering the uncertainty of crack propagation direction in composite materials, the influence of the angles between fibers and cracks on the monitoring capability of plastic optical fibers is studied. A POF sensing device was designed and the relationship between light intensity loss and crack width under different fiber/crack angles was first measured through the device. Then, three-point bend tests were conducted on concrete beams. POFs were glued to the bottom surfaces of the beams and light intensity loss with crack width was measured. Experimental results showed that light intensity loss in plastic optical fibers increased with crack width increase. Therefore, application of plastic optical fibers in crack monitoring is feasible. Moreover, the results also showed that the sensitivity of the POF crack sensor decreased with the increase of angles between fibers and cracks.

  15. Shrinkage Cracking: A mechanism for self-sustaining carbon mineralization reactions in olivine rocks

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Fusseis, F.; Lisabeth, H. P.; Xing, T.; Xiao, X.; De Andrade, V. J. D.; Karato, S. I.

    2015-12-01

    The hydration and carbonation of olivine results in an up to ~44% increase in solid molar volume, which may choke off of fluid supply and passivate reactive surfaces, thus preventing further carbonation reactions. The carbonation of olivine has ben studied extensively in the laboratory. To date, observations from these experimental studies indicate that carbonation reaction rates generally decrease with time and the extent of carbonation is limited in olivine rocks. Field studies, however, show that 100% hydration and carbonation occur naturally in ultramafic rocks. The disagreement between the laboratory results under controlled conditions and the field observations underlines the lack of understanding of the mechanisms responsible for the self-sustaining carbonation interaction in nature. We developed a state-of-the-art pressurized hydrothermal cell that is transparent to X-rays to characterize the real-time evolution of pore geometry during fluid-rock interaction using in-situ synchrotron-based X-ray microtomography. Through a time series of high-resolution 3-dimensional images, we document the microstructural evolution of a porous olivine aggregate reacting with a sodium bicarbonate solution at elevated pressure and temperature conditions. We observed porosity increases, near constant rate of crystal growth, and pervasive reaction-induced fractures. Based on the nanometer scale tomography data, we propose that shrinkage cracking is the mechanism responsible for producing new reactive surface and keep the carbonation reaction self-sustaining in our experiment. Shrinkage cracks are commonly observed in drying mud ponds, cooling lava flows and ice wedge fields. Stretching of a contracting surface bonded to a substrate of nearly constant dimensions leads to a stress buildup in the surface layer. When the stress exceeds the tensile strength, polygonal cracks develop in the surface layer. In our experiments, the stretching mismatch between the surface and interior of

  16. Modeling and Analysis of Process Parameters for Evaluating Shrinkage Problems During Plastic Injection Molding of a DVD-ROM Cover

    NASA Astrophysics Data System (ADS)

    Öktem, H.

    2012-01-01

    Plastic injection molding plays a key role in the production of high-quality plastic parts. Shrinkage is one of the most significant problems of a plastic part in terms of quality in the plastic injection molding. This article focuses on the study of the modeling and analysis of the effects of process parameters on the shrinkage by evaluating the quality of the plastic part of a DVD-ROM cover made with Acrylonitrile Butadiene Styrene (ABS) polymer material. An effective regression model was developed to determine the mathematical relationship between the process parameters (mold temperature, melt temperature, injection pressure, injection time, and cooling time) and the volumetric shrinkage by utilizing the analysis data. Finite element (FE) analyses designed by Taguchi (L27) orthogonal arrays were run in the Moldflow simulation program. Analysis of variance (ANOVA) was then performed to check the adequacy of the regression model and to determine the effect of the process parameters on the shrinkage. Experiments were conducted to control the accuracy of the regression model with the FE analyses obtained from Moldflow. The results show that the regression model agrees very well with the FE analyses and the experiments. From this, it can be concluded that this study succeeded in modeling the shrinkage problem in our application.

  17. Crack tip plasticity in single crystal UO2: Atomistic simulations

    SciTech Connect

    Yongfeng Zhang; Paul C. Millett; Michael Tonks; Bulent Biner; Xiang-Yang Liu; David A. Andersson

    2012-11-01

    The fracture behavior of single crystal uranium dioxide is studied using molecular dynamics simulations at room temperature. Initially, an elliptical notch is created on either {111} or {110} planes, and tensile loading is applied normal to the crack planes. For cracks on both planes, shielding of crack tips by plastic deformation is observed, and crack extension occurs for crack on {111} planes only. Two plastic processes, dislocation emission and phase transformation are identified at crack tips. The dislocations have a Burgers vector of ?110?/2, and glide on {100} planes. Two metastable phases, the so-called Rutile and Scrutinyite phases, are identified during the phase transformation, and their relative stability is confirmed by separate density- functional-theory calculations. Examination of stress concentration near crack tips reveals that dislocation emission is not an effective shielding mechanism. The formation of new phases may effectively shield the crack provided all phase interfaces formed near the crack tips are coherent, as in the case of cracks residing on {110} planes.

  18. The influence of shrinkage-cracking on the drying behaviour of White Portland cement using Single-Point Imaging (SPI).

    PubMed

    Beyea, S D; Balcom, B J; Bremner, T W; Prado, P J; Cross, A R; Armstrong, R L; Grattan-Bellew, P E

    1998-11-01

    The removal of water from pores in hardened cement paste smaller than 50 nm results in cracking of the cement matrix due to the tensile stresses induced by drying shrinkage. Cracks in the matrix fundamentally alter the permeability of the material, and therefore directly affect the drying behaviour. Using Single-Point Imaging (SPI), we obtain one-dimensional moisture profiles of hydrated White Portland cement cylinders as a function of drying time. The drying behaviour of White Portland cement, is distinctly different from the drying behaviour of related concrete materials containing aggregates. PMID:9875607

  19. An elastic-plastic finite element analysis of crack initiation, stable crack growth, and instability

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1984-01-01

    Studies have been conducted to develop efficient techniques to simulate crack extension and to examine various local and global fracture criteria. Of the considered criteria, the crack-tip-opening angle (CTOA) or displacement (CTOD) at a specified distance from the crack tip was shown to be most suited for modeling stable crack growth and instability during the fracture process. The results obtained in a number of studies show the necessity for studying different crack configurations when assessing the validity of any fracture criteria. One of the objectives of the present investigation is related to a critical evaluation of the CTOD growth criterion using an elastic-plastic finite element analysis under monotonic loading to failure. The analysis was found to predict three stages of crack growth behavior under monotonic loading to failure. Calculated CTOD values agreed well with experimental values for crack growth initiation.

  20. Fatigue crack growth in the highly plastic regime

    SciTech Connect

    Kim, K.S.; Baik, Y.M.

    1997-12-31

    This paper evaluates the performance of {Delta}J{sup {star}}, {Delta}J[superscript karet] and {Delta}K as fracture parameters for center-cracked plate specimens of Alloy 718 under R{sub {sigma}} = 0, nominally elastic and plastic loading at elevated temperatures. The parameters {Delta}J{sup {star}} and {Delta}J[superscript caret] are computed from the results of an elastic-plastic finite element analysis of crack growth. At 538 C the results show, in contrast to the previous results of R{sup {var_epsilon}} = {minus}1 strain control tests, that the correlation of crack growth rates with {Delta}J{sup {star}} or {Delta}J[superscript caret] deviates from the relation of the Paris law type while {Delta}K gives a satisfactory correlation. The correlation at 649 C is poor for all three parameters. The finite element analysis shows that the crack closing behavior diminishes and eventually disappears as the crack tip plasticity increases due to crack growth or increased applied stress.

  1. The role of cyclic plastic zone size on fatigue crack growth behavior in high strength steels

    NASA Astrophysics Data System (ADS)

    Korda, Akhmad A.; Miyashita, Y.; Mutoh, Y.

    2015-09-01

    The role of cyclic plastic zone in front of the crack tip was studied in high strength steels. Estimated plastic zone size would be compared with actual observation. Strain controlled fatigue tests of the steels were carried out to obtain cyclic stress-strain curves for plastic zone estimation. Observations of plastic zone were carried out using in situ SEM fatigue crack growth tests under a constant-ΔK. Hard microstructures in structural steels showed to inhibit the extent of plastic deformation around the crack tip. The rate of crack growth can be correlated with the size of plastic zone. The smaller the plastic zone size, the slower the fatigue crack growth.

  2. Relative shrinkage of adipocytes by paraffin in proportion to plastic embedding in human adipose tissue before and after weight loss.

    PubMed

    Verhoef, Sanne P M; van Dijk, Paul; Westerterp, Klaas R

    2013-01-01

    Adipocyte size is a major modulator of endocrine functioning of adipose tissue and methods allowing accurate determination of adipocyte size are important to study energy metabolism. The aim of this study was to assess the relative shrinkage of adipocytes before and after weight loss by comparing adipose tissue from the same subjects embedded in paraffin and plastic. 18 healthy subjects (5 males and 13 females) aged 20-50 y with a BMI of 28-38 kg/m² followed a very low energy diet for 8 weeks. Adipose tissue biopsies were taken prior to and after weight loss and were processed for paraffin and plastic sections. Parameters of adipocyte size were determined with computer image analysis. Mean adipocyte size was smaller in paraffin compared to plastic embedded tissue both before (66 ± 4 vs. 103 ± 5 μm, P < 0.001) as after weight loss (62 ± 4 vs. 91 ± 5 μm, P < 0.001). Relative shrinkage of adipocytes in paraffin embedded tissue in proportion to plastic embedded tissue was not significantly different before and after weight loss (73 and 69%, respectively). Shrinkage due to the type of embedding of the adipose tissue can be ignored when comparing before and after weight loss. Plastic embedding of adipose tissue provides more accurate and sensitive results. PMID:24331678

  3. Elastic-plastic analysis of crack in ductile adhesive joint

    SciTech Connect

    Ikeda, Toru; Miyazaki, Noriyuki; Yamashita, Akira; Munakata, Tsuyoshi

    1995-11-01

    The fracture of a crack in adhesive is important to the structural integrity of adhesive structures and composite materials. Though the fracture toughness of a material should be constant according to fracture mechanics, it is said that the fracture toughness of a crack in an adhesive joint depends on the bond thickness. In the present study, the elastic-plastic stress analyses of a crack in a thin adhesive layer are performed by the combination of the boundary element method and the finite element method. The effect of adhesive thickness on the J-integral, the Q`-factor which is a modified version of the Q-factor, and the crack tip opening displacement (CTOD) are investigated. It is found from the analyses that the CTOD begins to decrease at very thin bond thickness, the Q`-factor being almost constant. The decrease of the fracture toughness at very thin adhesive layer is expected by the present analysis.

  4. Subcritical crack propagation due to chemical rock weakening: macroscale chemo-plasticity and chemo-elasticity modeling

    NASA Astrophysics Data System (ADS)

    Hueckel, T.; Hu, M.

    2015-12-01

    Crack propagation in a subcritically stressed rock subject to chemically aggressive environment is analyzed and numerically simulated. Chemically induced weakening is often encountered in hydraulic fracturing of low-permeability oil/gas reservoirs and heat reservoirs, during storage of CO2 and nuclear waste corroding canisters, and other circumstances when rock matrix acidizing is involved. Upon acidizing, mineral mass dissolution is substantially enhanced weakening the rock and causing crack propagation and eventually permeability changes in the medium. The crack process zone is modeled mathematically via a chemo-plastic coupling and chemo-elastic coupling model. In plasticity a two-way coupling is postulated between mineral dissolution and a yield limit of rock matrix. The rate of dissolution is described by a rate law, but the mineral mass removal per unit volume is also a function of a variable internal specific surface area, which is in turn affected by the micro-cracking (treated as a plastic strain). The behavior of the rock matrix is modeled as rigid-plastic adding a chemical softening capacity to Cam-Clay model. Adopting the Extended Johnson's approximation of processes around the crack tip, the evolution of the stress field and deformation as a function of the chemically enhanced rock damage is modeled in a simplified way. In addition, chemical reactive transport is made dependent on plastic strain representing micro-cracking. Depending on mechanical and chemical boundary conditions, the area of enhanced chemical softening is near or somewhat away from the crack tip.In elasticity, chemo-mechanical effect is postulated via a chemical volumetric shrinkage strain proportional to mass removal variable, conceived analogously to thermal expansion. Two versions are considered: of constant coefficient of shrinkage and a variable one, coupled to deviatoric strain. Airy Potential approach used for linear elasticity is extended considering an extra term, which is

  5. Effects of crack tip plastic zone on corrosion fatigue cracking of alloy 690(TT) in pressurized water reactor environments

    NASA Astrophysics Data System (ADS)

    Xiao, J.; Qiu, S. Y.; Chen, Y.; Fu, Z. H.; Lin, Z. X.; Xu, Q.

    2015-01-01

    Alloy 690(TT) is widely used for steam generator tubes in pressurized water reactor (PWR), where it is susceptible to corrosion fatigue. In this study, the corrosion fatigue behavior of Alloy 690(TT) in simulated PWR environments was investigated. The microstructure of the plastic zone near the crack tip was investigated and labyrinth structures were observed. The relationship between the crack tip plastic zone and fatigue crack growth rates and the environment factor Fen was illuminated.

  6. Elastic plastic fracture mechanics methodology for surface cracks

    NASA Technical Reports Server (NTRS)

    Ernst, Hugo A.; Lambert, D. M.

    1994-01-01

    The Elastic Plastic Fracture Mechanics Methodology has evolved significantly in the last several years. Nevertheless, some of these concepts need to be extended further before the whole methodology can be safely applied to structural parts. Specifically, there is a need to include the effect of constraint in the characterization of material resistance to crack growth and also to extend these methods to the case of 3D defects. As a consequence, this project was started as a 36 month research program with the general objective of developing an elastic plastic fracture mechanics methodology to assess the structural reliability of pressure vessels and other parts of interest to NASA which may contain flaws. The project is divided into three tasks that deal with (1) constraint and thickness effects, (2) three-dimensional cracks, and (3) the Leak-Before-Burst (LBB) criterion. This report period (March 1994 to August 1994) is a continuation of attempts to characterize three dimensional aspects of fracture present in 'two dimensional' or planar configuration specimens (Chapter Two), especially, the determination of, and use of, crack face separation data. Also, included, are a variety of fracture resistance testing results (J(m)R-curve format) and a discussion regarding two materials of NASA interest (6061-T651 Aluminum alloy and 1N718-STA1 nickel-base super alloy) involving a bases for like constraint in terms of ligament dimensions, and their comparison to the resulting J(m)R-curves (Chapter Two).

  7. Elastic plastic fracture mechanics methodology for surface cracks

    NASA Astrophysics Data System (ADS)

    Ernst, Hugo A.; Lambert, D. M.

    1994-08-01

    The Elastic Plastic Fracture Mechanics Methodology has evolved significantly in the last several years. Nevertheless, some of these concepts need to be extended further before the whole methodology can be safely applied to structural parts. Specifically, there is a need to include the effect of constraint in the characterization of material resistance to crack growth and also to extend these methods to the case of 3D defects. As a consequence, this project was started as a 36 month research program with the general objective of developing an elastic plastic fracture mechanics methodology to assess the structural reliability of pressure vessels and other parts of interest to NASA which may contain flaws. The project is divided into three tasks that deal with (1) constraint and thickness effects, (2) three-dimensional cracks, and (3) the Leak-Before-Burst (LBB) criterion. This report period (March 1994 to August 1994) is a continuation of attempts to characterize three dimensional aspects of fracture present in 'two dimensional' or planar configuration specimens (Chapter Two), especially, the determination of, and use of, crack face separation data. Also, included, are a variety of fracture resistance testing results (J(m)R-curve format) and a discussion regarding two materials of NASA interest (6061-T651 Aluminum alloy and 1N718-STA1 nickel-base super alloy) involving a bases for like constraint in terms of ligament dimensions, and their comparison to the resulting J(m)R-curves (Chapter Two).

  8. Observations on hydrogen induced delayed plasticity and cracking in 4340 steel

    SciTech Connect

    Wert, J.A.

    1983-02-01

    The crack growth rates measured by potential drop provided strong evidence that crack advance occurs continuously during hydrogen assisted cracking. If crack growth occurred by the stepwise HIDP-C mechanism, variations in growth rate would be expected to appear in the potential drop results. For example, during the period of plastic zone extension, a low crack growth rate would be expected, followed by a period of higher crack growth rate during actual extension of the crack. The results obtained in this investigation do not eliminate the possibility that stepwise crack growth occurred at different points along the crack front at different times, appearing as continuous average crack advance. Furthermore, these results do not provide evidence for the mechanism of crack extension. The results do show that the average crack front advance is continuous during hydrogen assisted cracking, not stepwise, as would be expected for the HIDP-C mechanism of crack growth. 13 references.

  9. Development of a Practical Methodology for Elastic-Plastic and Fully Plastic Fatigue Crack Growth

    NASA Technical Reports Server (NTRS)

    McClung, R. C.; Chell, G. G.; Lee, Y.-D.; Russell, D. A.; Orient, G. E.

    1999-01-01

    A practical engineering methodology has been developed to analyze and predict fatigue crack growth rates under elastic-plastic and fully plastic conditions. The methodology employs the closure-corrected effective range of the J-integral, (Delta)J(sub eff), as the governing parameter. The methodology contains original and literature J and (Delta)J solutions for specific geometries, along with general methods for estimating J for other geometries and other loading conditions, including combined mechanical loading and combined primary and secondary loading. The methodology also contains specific practical algorithms that translate a J solution into a prediction of fatigue crack growth rate or life, including methods for determining crack opening levels, crack instability conditions, and material properties. A critical core subset of the J solutions and the practical algorithms has been implemented into independent elastic-plastic NASGRO modules. All components of the entire methodology, including the NASGRO modules, have been verified through analysis and experiment, and limits of applicability have been identified.

  10. Development of a Practical Methodology for Elastic-Plastic and Fully Plastic Fatigue Crack Growth

    NASA Technical Reports Server (NTRS)

    McClung, R. C.; Chell, G. G.; Lee, Y. -D.; Russell, D. A.; Orient, G. E.

    1999-01-01

    A practical engineering methodology has been developed to analyze and predict fatigue crack growth rates under elastic-plastic and fully plastic conditions. The methodology employs the closure-corrected effective range of the J-integral, delta J(sub eff) as the governing parameter. The methodology contains original and literature J and delta J solutions for specific geometries, along with general methods for estimating J for other geometries and other loading conditions, including combined mechanical loading and combined primary and secondary loading. The methodology also contains specific practical algorithms that translate a J solution into a prediction of fatigue crack growth rate or life, including methods for determining crack opening levels, crack instability conditions, and material properties. A critical core subset of the J solutions and the practical algorithms has been implemented into independent elastic-plastic NASGRO modules. All components of the entire methodology, including the NASGRO modules, have been verified through analysis and experiment, and limits of applicability have been identified.

  11. Discrete dislocation plasticity and crack tip fields in single crystals

    NASA Astrophysics Data System (ADS)

    Van der Giessen, E.; Deshpande, V. S.; Cleveringa, H. H. M.; Needleman, A.

    2001-09-01

    Small-scale yielding around a stationary plane strain mode I crack is analyzed using discrete dislocation plasticity. The dislocations are all of edge character, and are modeled as line singularities in a linear elastic material. Superposition is used to represent the solution in terms of analytical fields for edge dislocations in a half-space and a numerical image solution that enforces the boundary conditions. The description of the dislocation dynamics includes the lattice resistance to dislocation motion, dislocation nucleation, interaction with obstacles and annihilation. A model planar crystal with three slip systems is considered. Two slip system orientations are analyzed that differ by a 90° rotation. The non-hardening, single crystal plasticity continuum slip solution of Rice (Mech. Mater. 6 (1987) 317) for this model crystal predicts that slip and kink bands emerge for both crystal geometries, while Drugan (J. Mech. Phys. Solids 49 (2001) 2155) has obtained kink band free solutions. For a reference set of parameter values, kink band free solutions are found in one orientation while the emergence of kink bands is seen in the other orientation. However, lowering the dislocation source density suppresses the formation of kink bands in this orientation as well. In all calculations, the opening stress in the immediate vicinity of the crack tip is much larger than predicted by continuum slip theory.

  12. Elastic plastic fracture mechanics methodology for surface cracks

    NASA Technical Reports Server (NTRS)

    Ernst, Hugo A.; Boatwright, D. W.; Curtin, W. J.; Lambert, D. M.

    1993-01-01

    The Elastic Plastic Fracture Mechanics (EPFM) Methodology has evolved significantly in the last several years. Nevertheless, some of these concepts need to be extended further before the whole methodology can be safely applied to structural parts. Specifically, there is a need to include the effect of constraint in the characterization of material resistance to crack growth and also to extend these methods to the case of 3D defects. As a consequence, this project was started as a 36 month research program with the general objective of developing an EPFM methodology to assess the structural reliability of pressure vessels and other parts of interest to NASA containing defects. This report covers a computer modelling algorithm used to simulate the growth of a semi-elliptical surface crack; the presentation of a finite element investigation that compared the theoretical (HRR) stress field to that produced by elastic and elastic-plastic models; and experimental efforts to characterize three dimensional aspects of fracture present in 'two dimensional', or planar configuration specimens.

  13. An Evaluation of the Plasticity-Induced Crack-Closure Concept and Measurement Methods

    NASA Technical Reports Server (NTRS)

    Newman, James C., Jr.

    1998-01-01

    An assessment of the plasticity-induced crack-closure concept is made, in light of some of the questions that have been raised on the validity of the concept, and the assumptions that have been made concerning crack-dp damage below the crack-opening stress. The impact of using other crack-tip parameters, such as the cyclic crack-tip displacement, to model crack-growth rate behavior was studied. Crack-growth simulations, using a crack-closure model, showed a close relation between traditional Delta K eff, and the cyclic crack-tip displacement (Delta eff) for an aluminum alloy and a steel. Evaluations of the cyclic hysteresis energy demonstrated that the cyclic plastic damage below the crack-opening stress was negligible in the Paris crack-growth regime. Some of the standard and newly proposed remote measurement methods to determine the 'effective' crack-tip driving parameter were evaluated on middle-crack tension specimens. A potential source of the Kmax effect on crack-growth rates was studied on an aluminum alloy. Results showed that the ratio of Kmax to Kc had a strong effect on crack-growth rates at high stress ratios and at low stress ratios for very high stress levels. The crack-closure concept and the traditional crack-growth rate equations were able to correlate and predict crack-growth rates under these extreme conditions.

  14. Modeling Near-Crack-Tip Plasticity from Nano- to Micro-Scales

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Saether, Erik; Hochhalter, Jake D.; Yamakov, Vesselin I.

    2010-01-01

    Several efforts that are aimed at understanding the plastic deformation mechanisms related to crack propagation at the nano-, meso- and micro-length scales including atomistic simulation, discrete dislocation plasticity, strain gradient plasticity and crystal plasticity are discussed. The paper focuses on discussion of newly developed methodologies and their application to understanding damage processes in aluminum and its alloys. Examination of plastic mechanisms as a function of increasing length scale illustrates increasingly complex phenomena governing plasticity

  15. Assessment of Cracks in Stress Concentration Regions with Localized Plastic Zones

    SciTech Connect

    Friedman, E.

    1998-11-25

    Marty brittle fracture evaluation procedures include plasticity corrections to elastically computed stress intensity factors. These corrections, which are based on the existence of a plastic zone in the vicinity of the crack tip, can overestimate the plasticity effect for a crack embedded in a stress concentration region in which the elastically computed stress exceeds the yield strength of the material in a localized zone. The interactions between the crack, which acts to relieve the high stresses driving the crack, plasticity effects in the stress concentration region, and the nature and source of the loading are examined by formulating explicit flaw finite element models for a crack emanating from the root of a notch located in a panel subject to an applied tensile stress. The results of these calculations provide conditions under which a crack-tip plasticity correction based on the Irwin plastic zone size overestimates the plasticity effect. A failure assessment diagram (FAD) curve is used to characterize the effect of plasticity on the crack driving force and to define a less restrictive plasticity correction for cracks at notch roots when load-controlled boundary conditions are imposed. The explicit flaw finite element results also demonstrate that stress intensity factors associated with load-controlled boundary conditions, such as those inherent in the ASME Boiler and Pressure Vessel Code as well as in most handbooks of stress intensity factors, can be much higher than those associated with displacement-controlled conditions, such as those that produce residual or thermal stresses. Under certain conditions, the inclusion of plasticity effects for cracks loaded by displacement-controlled boundary conditions reduces the crack driving force thus justifying the elimination of a plasticity correction for such loadings. The results of this study form the basis for removing unnecessary conservatism from flaw evaluation procedures that utilize plasticity

  16. Three-dimensional elastic-plastic analysis of shallow cracks in single-edge-crack-tension specimens

    NASA Technical Reports Server (NTRS)

    Shivakumar, Kunigal N.; Newman, James C., Jr.

    1990-01-01

    Three dimensional, elastic-plastic, finite element results are presented for single-edge crack-tension specimens with several shallow crack-length-to-width ratios (0.05 less than or equal to a/W less than or equal to 0.5). Results showed the need to model the initial yield plateau in the stress-strain behavior to accurately model deformation of the A36 steel specimens. The crack-tip-opening-displacement was found to be linearly proportional to the crack-mouth-opening displacement. A new deformation dependent plastic-eta factor equation is presented for calculating the J-integral from test load-displacement records. This equation was shown to be accurate for all crack lengths considered.

  17. Comparison of experiment and theory for elastic-plastic plane strain crack growth

    SciTech Connect

    Hermann, L; Rice, J R

    1980-02-01

    Recent theoretical results on elastic-plastic plane strain crack growth, and experimental results for crack growth in a 4140 steel in terms of the theoretical concepts are reviewed. The theory is based on a recent asymptotic analysis of crack surface opening and strain distributions at a quasi-statically advancing crack tip in an ideally-plastic solid. The analysis is incomplete in that some of the parameters which appear in it are known only approximately, especially at large scale yielding. Nevertheless, it suffices to derive a relation between the imposed loading and amount of crack growth, prior to general yielding, based on the assumption that a geometrically similar near-tip crack profile is maintained during growth. The resulting predictions for the variation of J with crack growth are found to fit well to the experimental results obtained on deeply cracked compact specimens.

  18. Plastic zone size and crack tip opening displacement of a Dugdale crack interacting with a coated circular inclusion

    NASA Astrophysics Data System (ADS)

    Hoh, H. J.; Xiao, Z. M.; Luo, J.

    2010-09-01

    An analytical investigation on the plastic zone size of a crack near a coated circular inclusion under three different loading conditions of uniaxial tension, uniform tension and pure shear was carried out. Both the crack and coated circular inclusion are embedded in an infinite matrix, with the crack oriented along the radial direction of the inclusion. In the solution procedure, the crack is simulated as a continuous distribution of edge dislocations. With the Dugdale model of small-scale yielding [J. Mech. Phys. Solids 8 (1960) p. 100], two thin strips of yielded plastic zones are introduced at both crack tips. Using the solution for a coated circular inclusion interacting with a single dislocation as the Green's function, the physical problem is formulated into a set of singular integral equations. Using the method of Erdogan and Gupta [Q. J. Appl. Math. 29 (1972) p. 525] and iterative numerical procedures, the singular integral equations are solved numerically for the plastic zone sizes and crack tip opening displacement.

  19. Development of a Fatigue Crack Growth Coupon for Highly Plastic Stress Conditions

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.; Aggarwal, Pravin K.; Swanson, Gregory R.

    2003-01-01

    The analytical approach used to develop a novel fatigue crack growth coupon for highly plastic stress field condition is presented in this paper. The flight hardware investigated is a large separation bolt that has a deep notch, which produces a large plastic zone at the notch root when highly loaded. Four test specimen configurations are analyzed in an attempt to match the elastic-plastic stress field and crack constraint conditions present in the separation bolt. Elastic-plastic finite element analysis is used to compare the stress fields and critical fracture parameters. Of the four test specimens analyzed, the modified double-edge notch tension - 3 (MDENT-3) most closely approximates the stress field, J values, and crack constraint conditions found in the flight hardware. The MDENT-3 is also most insensitive to load misalignment and/or load redistribution during crack growth.

  20. The use of COD and plastic instability in crack propagation and arrest in shells

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Ratwani, M.

    1974-01-01

    The initiation, growth, and possible arrest of fracture in cylindrical shells containing initial defects are dealt with. For those defects which may be approximated by a part-through semi-elliptic surface crack which is sufficiently shallow so that part of the net ligament in the plane of the crack is still elastic, the existing flat plate solution is modified to take into account the shell curvature effect as well as the effect of the thickness and the small scale plastic deformations. The problem of large defects is then considered under the assumptions that the defect may be approximated by a relatively deep meridional part-through surface crack and the net ligament through the shell wall is fully yielded. The results given are based on an 8th order bending theory of shallow shells using a conventional plastic strip model to account for the plastic deformations around the crack border.

  1. Elasto-plastic bending of cracked plates, including the effects of crack closure. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Jones, D. P.

    1972-01-01

    A capability for solving elasto-plastic plate bending problems is developed using assumptions consistent with Kirchhoff plate theory. Both bending and extensional modes of deformation are admitted with the two modes becoming coupled as yielding proceeds. Equilibrium solutions are obtained numerically by determination of the stationary point of a functional which is analogous to the potential strain energy. The stationary value of the functional for each load increment is efficiently obtained through use of the conjugate gradient. This technique is applied to the problem of a large centrally through cracked plate subject to remote circular bending. Comparison is drawn between two cases of the bending problem. The first neglects the possibility of crack face interference with bending, and the second includes a kinematic prohibition against the crack face from passing through the symmetry plane. Results are reported which isolate the effects of elastoplastic flow and crack closure.

  2. Solidification Microstructure, Segregation, and Shrinkage of Fe-Mn-C Twinning-Induced Plasticity Steel by Simulation and Experiment

    NASA Astrophysics Data System (ADS)

    Lan, Peng; Tang, Haiyan; Zhang, Jiaquan

    2016-06-01

    A 3D cellular automaton finite element model with full coupling of heat, flow, and solute transfer incorporating solidification grain nucleation and growth was developed for a multicomponent system. The predicted solidification process, shrinkage porosity, macrosegregation, grain orientation, and microstructure evolution of Fe-22Mn-0.7C twinning-induced plasticity (TWIP) steel match well with the experimental observation and measurement. Based on a new solute microsegregation model using the finite difference method, the thermophysical parameters including solid fraction, thermal conductivity, density, and enthalpy were predicted and compared with the results from thermodynamics and experiment. The effects of flow and solute transfer in the liquid phase on the solidification microstructure of Fe-22Mn-0.7C TWIP steel were compared numerically. Thermal convection decreases the temperature gradient in the liquid steel, leading to the enlargement of the equiaxed zone. Solute enrichment in front of the solid/liquid interface weakens the thermal convection, resulting in a little postponement of columnar-to-equiaxed transition (CET). The CET behavior of Fe-Mn-C TWIP steel during solidification was fully described and mathematically quantized by grain morphology statistics for the first time. A new methodology to figure out the CET location by linear regression of grain mean size with least-squares arithmetic was established, by which a composition design strategy for Fe-Mn-C TWIP steel according to solidification microstructure, matrix compactness, and homogeneity was developed.

  3. Solidification Microstructure, Segregation, and Shrinkage of Fe-Mn-C Twinning-Induced Plasticity Steel by Simulation and Experiment

    NASA Astrophysics Data System (ADS)

    Lan, Peng; Tang, Haiyan; Zhang, Jiaquan

    2016-04-01

    A 3D cellular automaton finite element model with full coupling of heat, flow, and solute transfer incorporating solidification grain nucleation and growth was developed for a multicomponent system. The predicted solidification process, shrinkage porosity, macrosegregation, grain orientation, and microstructure evolution of Fe-22Mn-0.7C twinning-induced plasticity (TWIP) steel match well with the experimental observation and measurement. Based on a new solute microsegregation model using the finite difference method, the thermophysical parameters including solid fraction, thermal conductivity, density, and enthalpy were predicted and compared with the results from thermodynamics and experiment. The effects of flow and solute transfer in the liquid phase on the solidification microstructure of Fe-22Mn-0.7C TWIP steel were compared numerically. Thermal convection decreases the temperature gradient in the liquid steel, leading to the enlargement of the equiaxed zone. Solute enrichment in front of the solid/liquid interface weakens the thermal convection, resulting in a little postponement of columnar-to-equiaxed transition (CET). The CET behavior of Fe-Mn-C TWIP steel during solidification was fully described and mathematically quantized by grain morphology statistics for the first time. A new methodology to figure out the CET location by linear regression of grain mean size with least-squares arithmetic was established, by which a composition design strategy for Fe-Mn-C TWIP steel according to solidification microstructure, matrix compactness, and homogeneity was developed.

  4. Three-dimensional elastic-plastic finite-element analyses of constraint variations in cracked bodies

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Bigelow, C. A.; Shivakumar, K. N.

    1993-01-01

    Three-dimensional elastic-plastic (small-strain) finite-element analyses were used to study the stresses, deformations, and constraint variations around a straight-through crack in finite-thickness plates for an elastic-perfectly plastic material under monotonic and cyclic loading. Middle-crack tension specimens were analyzed for thicknesses ranging from 1.25 to 20 mm with various crack lengths. Three local constraint parameters, related to the normal, tangential, and hydrostatic stresses, showed similar variations along the crack front for a given thickness and applied stress level. Numerical analyses indicated that cyclic stress history and crack growth reduced the local constraint parameters in the interior of a plate, especially at high applied stress levels. A global constraint factor alpha(sub g) was defined to simulate three-dimensional effects in two-dimensional crack analyses. The global constraint factor was calculated as an average through-the-thickness value over the crack-front plastic region. Values of alpha(sub g) were found to be nearly independent of crack length and were related to the stress-intensity factor for a given thickness.

  5. Crack Growth Prediction Methodology for Multi-Site Damage: Layered Analysis and Growth During Plasticity

    NASA Technical Reports Server (NTRS)

    James, Mark Anthony

    1999-01-01

    A finite element program has been developed to perform quasi-static, elastic-plastic crack growth simulations. The model provides a general framework for mixed-mode I/II elastic-plastic fracture analysis using small strain assumptions and plane stress, plane strain, and axisymmetric finite elements. Cracks are modeled explicitly in the mesh. As the cracks propagate, automatic remeshing algorithms delete the mesh local to the crack tip, extend the crack, and build a new mesh around the new tip. State variable mapping algorithms transfer stresses and displacements from the old mesh to the new mesh. The von Mises material model is implemented in the context of a non-linear Newton solution scheme. The fracture criterion is the critical crack tip opening displacement, and crack direction is predicted by the maximum tensile stress criterion at the crack tip. The implementation can accommodate multiple curving and interacting cracks. An additional fracture algorithm based on nodal release can be used to simulate fracture along a horizontal plane of symmetry. A core of plane strain elements can be used with the nodal release algorithm to simulate the triaxial state of stress near the crack tip. Verification and validation studies compare analysis results with experimental data and published three-dimensional analysis results. Fracture predictions using nodal release for compact tension, middle-crack tension, and multi-site damage test specimens produced accurate results for residual strength and link-up loads. Curving crack predictions using remeshing/mapping were compared with experimental data for an Arcan mixed-mode specimen. Loading angles from 0 degrees to 90 degrees were analyzed. The maximum tensile stress criterion was able to predict the crack direction and path for all loading angles in which the material failed in tension. Residual strength was also accurately predicted for these cases.

  6. A plane stress finite element model for elastic-plastic mode I/II crack growth

    NASA Astrophysics Data System (ADS)

    James, Mark Anthony

    A finite element program has been developed to perform quasi-static, elastic-plastic crack growth simulations. The model provides a general framework for mixed-mode I/II elastic-plastic fracture analysis using small strain assumptions and plane stress, plane strain, and axisymmetric finite elements. Cracks are modeled explicitly in the mesh. As the cracks propagate, automatic remeshing algorithms delete the mesh local to the crack tip, extend the crack, and build a new mesh around the new tip. State variable mapping algorithms transfer stresses and displacements from the old mesh to the new mesh. The von Mises material model is implemented in the context of a non-linear Newton solution scheme. The fracture criterion is the critical crack tip opening displacement, and crack direction is predicted by the maximum tensile stress criterion at the crack tip. The implementation can accommodate multiple curving and interacting cracks. An additional fracture algorithm based on nodal release can be used to simulate fracture along a horizontal plane of symmetry. A core of plane strain elements can be used with the nodal release algorithm to simulate the triaxial state of stress near the crack tip. Verification and validation studies compare analysis results with experimental data and published three-dimensional analysis results. Fracture predictions using nodal release for compact tension, middle-crack tension, and multi-site damage test specimens produced accurate results for residual strength and link-up loads. Curving crack predictions using remeshing/mapping were compared with experimental data for an Arcan mixed-mode specimen. Loading angles from 0 degrees to 90 degrees were analyzed. The maximum tensile stress criterion was able to predict the crack direction and path for all loading angles in which the material failed in tension. Residual strength was also accurately predicted for these cases.

  7. Modeling and Characterization of Near-Crack-Tip Plasticity from Micro- to Nano-Scales

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Saether, Erik; Hochhalter, Jacob; Smith, Stephen W.; Ransom, Jonathan B.; Yamakov, Vesselin; Gupta, Vipul

    2010-01-01

    Methodologies for understanding the plastic deformation mechanisms related to crack propagation at the nano-, meso- and micro-length scales are being developed. These efforts include the development and application of several computational methods including atomistic simulation, discrete dislocation plasticity, strain gradient plasticity and crystal plasticity; and experimental methods including electron backscattered diffraction and video image correlation. Additionally, methodologies for multi-scale modeling and characterization that can be used to bridge the relevant length scales from nanometers to millimeters are being developed. The paper focuses on the discussion of newly developed methodologies in these areas and their application to understanding damage processes in aluminum and its alloys.

  8. Modeling and Characterization of Near-Crack-Tip Plasticity from Micro- to Nano-Scales

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Saether, Erik; Hochhalter, Jacob; Smith, Stephen W.; Ransom, Jonathan B.; Yamakov, Vesselin; Gupta, Vipul

    2011-01-01

    Methodologies for understanding the plastic deformation mechanisms related 10 crack propagation at the nano, meso- and micro-length scales are being developed. These efforts include the development and application of several computational methods including atomistic simulation, discrete dislocation plasticity, strain gradient plasticity and crystal plasticity; and experimental methods including electron backscattered diffraction and video image correlation. Additionally, methodologies for multi-scale modeling and characterization that can be used to bridge the relevant length scales from nanometers to millimeters are being developed. The paper focuses on the discussion of newly developed methodologies in these areas and their application to understanding damage processes in aluminum and its alloys.

  9. Thermal activation of crack-tip plasticity: The brittle or ductile response of a stationary crack loaded to failure

    NASA Astrophysics Data System (ADS)

    Hartmaier, Alexander; Gumbsch, Peter

    2005-01-01

    Metals with a body centered cubic crystal structure, like tungsten, exhibit a pronounced semibrittle regime at intermediate temperatures. In this regime their fracture toughness strongly depends on loading rate and temperature. Crack-tip plasticity has been studied with two-dimensional numerical simulations on different length scales. The method of discrete dislocation dynamics has been employed to test various assumptions made on the deformation mechanisms and the origin of the strong loading rate and temperature dependence of fracture toughness in this regime. A continuum elasticity-viscoplasticity model capable of describing larger plastic deformations yields complementary information with respect to the discrete dislocation method. Despite of their fundamental differences, both simulations consistently show that crack-tip plasticity can be described as a time-dependent microplastic deformation with well-defined activation energy and that the blunting of the crack tip plays an important role for the transition from semibrittle to ductile behavior. Based on general findings of the numerical simulations an Arrheniuslike relation between loading rate and temperature at points of constant fracture toughness is derived. This scaling relation shows the dominance of dislocation mobility as the rate limiting factor for fracture toughness and for the brittle-to-ductile transition itself. The results of our simulations are also consistent with experimental data gathered on tungsten single crystals. Thus, the proposed scaling relation can be used to predict fracture toughnesses in a wide range of temperatures and loading rates, based on only a small number of experiments.

  10. Tests and analyses for fully plastic fracture mechanics of plane strain mode I crack growth

    SciTech Connect

    McClintock, F.A.; Parks, D.M.; Kim, Y.J.

    1995-12-31

    Under monotonic loading, structures should ideally be ductile enough to provide continued resistance during crack growth. For fully plastic crack growth in low strength alloys, existing asymptotic solutions for elastic-plastic growing cracks are not applicable because they reach the fracture strain only in regions small compared to the inhomogeneities of the actual fracture process. For the limiting case of non-hardening fully-plastic plane strain crack growth, in a number of geometries and loadings the near-tip fields are characterized in terms of three parameters: an effective angle 2{theta}{sub s} between a pair of slip planes, and the normal stress {sigma}{sub s} and the increment of displacement {delta}u{sub s} across the planes. This three-parameter characterization is in contrast to the one- or two-parameter (K or J and T or Q) characterization in linear or non-linear elastic fracture mechanics. These {theta}{sub s}, {sigma}{sub s}, and {delta}u{sub s} parameters are found form the far-field geometries and loadings through slip line fields or least upper bound analyses based on circular arcs. The resulting crack growth, in terms of the crack tip opening angle (CTOA), is a function of {theta}{sub s}, {sigma}{sub s}, and the material. The geometry of the crack growing between two moving slip planes emanating from its tip reduces this function to the critical fracture shear strain left behind the slip planes, {gamma}f, as a function of {sigma}{sub s}. {gamma}f({sigma}{sub s}) is found theoretically from a hole initiation and growth model. It is also found from preliminary fully plastic crack growth experiments on unequally grooved specimens with fixed-grip extension or 4-point bending of a 1018 CF steel.

  11. Elasto-plastic analysis of a mode I edge crack with application to a surface notch.

    NASA Technical Reports Server (NTRS)

    Francis, P. H.

    1971-01-01

    A finite element analysis has been undertaken of the mechanical state of a plate containing a crack subjected to mode I loading. Specifically, a localized, well-defined surface depression (dimple) previously observed on the back surface of plate specimens immediately behind the plane of the crack was examined. The approach taken is concerned with defining more precisely the dimpling behavior as a function of relative flaw depth and applied stress level, as well as the development of the plastic zone at the crack tip.

  12. Numerical Analysis of Crack Tip Plasticity and History Effects under Mixed Mode Conditions

    NASA Astrophysics Data System (ADS)

    Lopez-Crespo, Pablo; Pommier, Sylvie

    The plastic behaviour in the crack tip region has a strong influence on the fatigue life of engineering components. In general, residual stresses developed as a consequence of the plasticity being constrained around the crack tip have a significant role on both the direction of crack propagation and the propagation rate. Finite element methods (FEM) are commonly employed in order to model plasticity. However, if millions of cycles need to be modelled to predict the fatigue behaviour of a component, the method becomes computationally too expensive. By employing a multiscale approach, very precise analyses computed by FEM can be brought to a global scale. The data generated using the FEM enables us to identify a global cyclic elastic-plastic model for the crack tip region. Once this model is identified, it can be employed directly, with no need of additional FEM computations, resulting in fast computations. This is done by partitioning local displacement fields computed by FEM into intensity factors (global data) and spatial fields. A Karhunen-Loeve algorithm developed for image processing was employed for this purpose. In addition, the partitioning is done such as to distinguish into elastic and plastic components. Each of them is further divided into opening mode and shear mode parts. The plastic flow direction was determined with the above approach on a centre cracked panel subjected to a wide range of mixed-mode loading conditions. It was found to agree well with the maximum tangential stress criterion developed by Erdogan and Sih, provided that the loading direction is corrected for residual stresses. In this approach, residual stresses are measured at the global scale through internal intensity factors.

  13. Elastic-Plastic J-Integral Solutions or Surface Cracks in Tension Using an Interpolation Methodology

    NASA Technical Reports Server (NTRS)

    Allen, P. A.; Wells, D. N.

    2013-01-01

    No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format.

  14. Three-dimensional elastic-plastic finite-element analysis of fatigue crack propagation

    NASA Technical Reports Server (NTRS)

    Goglia, G. L.; Chermahini, R. G.

    1985-01-01

    Fatigue cracks are a major problem in designing structures subjected to cyclic loading. Cracks frequently occur in structures such as aircraft and spacecraft. The inspection intervals of many aircraft structures are based on crack-propagation lives. Therefore, improved prediction of propagation lives under flight-load conditions (variable-amplitude loading) are needed to provide more realistic design criteria for these structures. The main thrust was to develop a three-dimensional, nonlinear, elastic-plastic, finite element program capable of extending a crack and changing boundary conditions for the model under consideration. The finite-element model is composed of 8-noded (linear-strain) isoparametric elements. In the analysis, the material is assumed to be elastic-perfectly plastic. The cycle stress-strain curve for the material is shown Zienkiewicz's initial-stress method, von Mises's yield criterion, and Drucker's normality condition under small-strain assumptions are used to account for plasticity. The three-dimensional analysis is capable of extending the crack and changing boundary conditions under cyclic loading.

  15. Numerical evaluation of crack growth in polymer electrolyte fuel cell membranes based on plastically dissipated energy

    NASA Astrophysics Data System (ADS)

    Ding, Guoliang; Santare, Michael H.; Karlsson, Anette M.; Kusoglu, Ahmet

    2016-06-01

    Understanding the mechanisms of growth of defects in polymer electrolyte membrane (PEM) fuel cells is essential for improving cell longevity. Characterizing the crack growth in PEM fuel cell membrane under relative humidity (RH) cycling is an important step towards establishing strategies essential for developing more durable membrane electrode assemblies (MEA). In this study, a crack propagation criterion based on plastically dissipated energy is investigated numerically. The accumulation of plastically dissipated energy under cyclical RH loading ahead of the crack tip is calculated and compared to a critical value, presumed to be a material parameter. Once the accumulation reaches the critical value, the crack propagates via a node release algorithm. From the literature, it is well established experimentally that membranes reinforced with expanded polytetrafluoroethylene (ePTFE) reinforced perfluorosulfonic acid (PFSA) have better durability than unreinforced membranes, and through-thickness cracks are generally found under the flow channel regions but not land regions in unreinforced PFSA membranes. We show that the proposed plastically dissipated energy criterion captures these experimental observations and provides a framework for investigating failure mechanisms in ionomer membranes subjected to similar environmental loads.

  16. Development of Advanced Life Prediction Tools for Elastic-Plastic Fatigue Crack Growth

    NASA Technical Reports Server (NTRS)

    Gregg, Wayne; McGill, Preston; Swanson, Greg; Wells, Doug; Throckmorton, D. A. (Technical Monitor)

    2001-01-01

    The objective of this viewgraph presentation is to develop a systematic approach to improving the fracture control process, including analytical tools, standards, guidelines, and awareness. Analytical tools specifically for elastic-plastic fracture analysis is a regime that is currently empirical for the Space Shuttle External Tank (ET) and is handled by simulated service testing of pre-cracked panels.

  17. Dynamic crack propagation in elastic-perfectly plastic solids under plane stress conditions

    NASA Astrophysics Data System (ADS)

    Deng, Xiaomin; Rosakis, Ares J.

    THE phenomenon of steady-state dynamic crack propagation in elastic-perfectly plastic solids under mode I plane stress, small-scale yielding conditions is investigated numerically. An Eulerian finite element scheme is employed. The materials are assumed to obey the von Mises yield criterion and the associated flow rule. The ratio of the crack tip plastic zone size to that of the element nearest to the crack tip is of the order of 1.6 × 10 4. Two subjects of general interest are discussed. These are the asymptotic structure of the crack tip stress and deformation fields, and the appropriateness of a crack growth fracture criterion based on the far-field dynamic stress intensity factor. The crack-line solution by ACHENBACH and LI (Report NU-SML-TR-No. 84-1, Dept. of Civil Engineering, Northwestern University, Evanston, IL 60201, 1984a; in Fundamentals of Deformation and Fracture (edited by B.A. Brilby et al.). Cambridge University Press, 1984b) is discussed and compared to the numerical solution. The results of this study strongly indicate that the crack tip strain and velocity fields possess logarithmic singularities, which is consistent with the assumptions in the asymptotic analysis by Gao ( Int. J. Fracture34, 111, 1987). However, it is revealed that the crack tip field variations in Gao's solution present features often contrary to the numerical findings. To this end, a preliminary asymptotic analysis is performed in an effort to resolve certain issues. Finally, the critical plastic strain criterion ( MCCLINTOCK and IRWIN, in Fracture Toughness Testing and Its Applications, ASTM STP 381, p. 84, 1964) is adopted to obtain theoretical relations between the critical dynamic stress intensity factor and the crack propagation speed. These relations are found to agree well with experimental measurements by Rosakis et al. ( J. Mech. Phys. Solids32, 443, 1984) and by ZEHNDER and ROSAKIS ( Int. J. Fracture, to appear 1990), performed on thin 4340 steel plates whose

  18. In situ investigation of the effect of hydrogen on the plastic deformation ahead of the crack tip and the crack propagation of 0.15C-1.5Mn-0.17V-0.012N steel

    SciTech Connect

    Liao, B.; Nan, Y.; Hu, Y.; Kang, D.T.

    1998-02-01

    The influence of hydrogen on the deformation ahead of the crack tip and the crack propagation were observed and studied in situ under transmission electron microscopy with dynamic tensile deformation for steel. The results show that hydrogen can promote local plastic deformation ahead of the crack tip and change the mode of crack propagation so that the crack will propagate in a zigzag path.

  19. Limitations to leading-order asymptotic solutions for ELASTIC PLASTIC crack growth

    NASA Astrophysics Data System (ADS)

    Drugan, W. J.

    1998-12-01

    Previous work has shown that there are significant discrepancies between leading-order asymptotic analytical solutions for the elastic-plastic fields near growing crack tips and detailed numerical finite element solutions of the same problems. The evidence is clearest in the simplest physically realistic case : quasi-static anti-plane shear crack growth in homogeneous, isotropic elastic-ideally plastic material. There, the sole extant asymptotic analytical solution involves a plastic loading sector of radial stress characteristics extending about 20° from ahead of the crack, followed by elastic unloading, whereas detailed numerical finite element solutions show the presence of an additional sector of plastic loading, extending from about 20 to about 50°, that is comprised of non-radial characteristics. To explore how the asymptotic analysis can completely miss this important solution feature, we derive an exact representation for the stress and deformation fields in such a propagating region of non-radial characteristics, as well as in the other allowable solution regions. These exact solutions contain arbitrary functions, which are determined by applying asymptotic analysis to the solutions and assembling a complete near-tip solution, valid through second order, that is in agreement with the numerical finite element results. In so doing, we prove that the angular extent of the sector of non-radial characteristics, while substantial until extremely close to the crack tip, vanishes in the limit as the tip is approached, and that the solution in this sector is not of variable-separable form. Beyond resolving the analytical-numerical discrepancies in this specific anti-plane shear problem, the analysis serves to caution, by explicit example, that purely leading-order asymptotic solutions to nonlinear crack growth problems cannot in general capture all essential physical features of the near-tip fields, and that the often-invoked assumption of variable

  20. The surface-forming energy release rate based fracture criterion for elastic-plastic crack propagation

    NASA Astrophysics Data System (ADS)

    Xiao, Si; Wang, He-Ling; Liu, Bin; Hwang, Keh-Chih

    2015-11-01

    The J-integral based criterion is widely used in elastic-plastic fracture mechanics. However, it is not rigorously applicable when plastic unloading appears during crack propagation. One difficulty is that the energy density with plastic unloading in the J-integral cannot be defined unambiguously. In this paper, we alternatively start from the analysis on the power balance, and propose a surface-forming energy release rate (ERR), which represents the energy available for separating the crack surfaces during the crack propagation and excludes the loading-mode-dependent plastic dissipation. Therefore the surface-forming ERR based fracture criterion has wider applicability, including elastic-plastic crack propagation problems. Several formulae are derived for calculating the surface-forming ERR. From the most concise formula, it is interesting to note that the surface-forming ERR can be computed using only the stress and deformation of the current moment, and the definition of the energy density or work density is avoided. When an infinitesimal contour is chosen, the expression can be further simplified. For any fracture behaviors, the surface-forming ERR is proven to be path-independent, and the path-independence of its constituent term, so-called Js-integral, is also investigated. The physical meanings and applicability of the proposed surface-forming ERR, traditional ERR, Js-integral and J-integral are compared and discussed. Besides, we give an interpretation of Rice paradox by comparing the cohesive fracture model and the surface-forming ERR based fracture criterion.

  1. 3 users abandon plastic rooftop-sprinkler systems: say sun warps and cracks pipes

    SciTech Connect

    Galvin, C.

    1982-05-03

    Cold temperature and exposure to the sun have cracked and warped plastic piping used for rooftop sprinklers and caused some users to remove the systems they hoped would reduce cooling costs. Manufacturers of the polyvinyl chloride (PVC) pipe, however, claim the cracking was due to improper draining. Copper tubing can be used, but at a 20 to 50% increase in cost. Chemical treatment to repel ultraviolet rays must be used on PVC piping to withstand sunlight. Several users report their experiences with rooftop sprinkling systems. (DCK)

  2. ZIP3D: An elastic and elastic-plastic finite-element analysis program for cracked bodies

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Newman, J. C., Jr.

    1990-01-01

    ZIP3D is an elastic and an elastic-plastic finite element program to analyze cracks in three dimensional solids. The program may also be used to analyze uncracked bodies or multi-body problems involving contacting surfaces. For crack problems, the program has several unique features including the calculation of mixed-mode strain energy release rates using the three dimensional virtual crack closure technique, the calculation of the J integral using the equivalent domain integral method, the capability to extend the crack front under monotonic or cyclic loading, and the capability to close or open the crack surfaces during cyclic loading. The theories behind the various aspects of the program are explained briefly. Line-by-line data preparation is presented. Input data and results for an elastic analysis of a surface crack in a plate and for an elastic-plastic analysis of a single-edge-crack-tension specimen are also presented.

  3. Properties of high-performance concrete containing shrinkage-reducing admixture

    SciTech Connect

    Folliard, K.J.; Berke, N.S.

    1997-09-01

    The effects of a recently developed shrinkage-reducing admixture on high-performance concrete properties are described. High-performance concrete mixtures containing silica fume were cast with and without shrinkage-reducing admixture. The mechanical properties, drying shrinkage, and resistance to restrained shrinkage cracking were investigated. The results show that the shrinkage-reducing admixture effectively reduced the shrinkage of high-performance concrete, and resulted in a significant decrease in restrained shrinkage cracking.

  4. Development of a Fatigue Crack Growth Coupon for Highly Plastic Stress Conditions

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.; Aggarwal, Pravin K.; Swanson, Gregory R.

    2003-01-01

    This paper presents an analytical approach used to develop a novel fatigue crack growth coupon for a highly plastic 3-D stress field condition. The flight hardware investigated in this paper is a large separation bolt that fractures using pyrotechnics at the appointed time during the flight sequence. The separation bolt has a deep notch that produces a severe stress concentration and a large plastic zone when highly loaded. For this geometry, linear-elastic fracture mechanics (LEFM) techniques are not valid due to the large nonlinear stress field. Unfortunately, industry codes that are generally available for fracture mechanics analysis and fatigue crack growth (e.g. NASGRO (11) are limited to LEFM and are available for only a limited number of geometries. The results of LEFM based codes are questionable when used on geometries with significant plasticity. Therefore elastic-plastic fracture mechanics (EPFM) techniques using the finite element method (FEM) were used to analyze the bolt and test coupons. scale flight hardware is very costly in t e r n of assets, laboratory resources, and schedule. Therefore to alleviate some of these problems, a series of novel test coupons were developed to simulate the elastic-plastic stress field present in the bolt.

  5. Analytical Round Robin for Elastic-Plastic Analysis of Surface Cracked Plates: Phase I Results

    NASA Technical Reports Server (NTRS)

    Wells, D. N.; Allen, P. A.

    2012-01-01

    An analytical round robin for the elastic-plastic analysis of surface cracks in flat plates was conducted with 15 participants. Experimental results from a surface crack tension test in 2219-T8 aluminum plate provided the basis for the inter-laboratory study (ILS). The study proceeded in a blind fashion given that the analysis methodology was not specified to the participants, and key experimental results were withheld. This approach allowed the ILS to serve as a current measure of the state of the art for elastic-plastic fracture mechanics analysis. The analytical results and the associated methodologies were collected for comparison, and sources of variability were studied and isolated. The results of the study revealed that the J-integral analysis methodology using the domain integral method is robust, providing reliable J-integral values without being overly sensitive to modeling details. General modeling choices such as analysis code, model size (mesh density), crack tip meshing, or boundary conditions, were not found to be sources of significant variability. For analyses controlled only by far-field boundary conditions, the greatest source of variability in the J-integral assessment is introduced through the constitutive model. This variability can be substantially reduced by using crack mouth opening displacements to anchor the assessment. Conclusions provide recommendations for analysis standardization.

  6. J-integral elastic plastic fracture mechanics evaluation of the stability of cracks in nuclear reactor pressure vessels

    SciTech Connect

    Gomez, M. P.; McMeeking, R. M.; Parks, D. M.

    1980-06-01

    Contributions were made toward developing a new methodology to assess the stability of cracks in pressure vessels made from materials that exhibit a significant increase in toughness during the early increments of crack growth. It has a wide range of validity from linear elastic to fully plastic behavior.

  7. Application of critical COD and plastic instability concepts to fracture of shells. [Crack Opening Displacement

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Ratwani, M.

    1974-01-01

    The paper deals with the initiation, growth, and possible arrest of fracture in shell structures containing initial defects which may be approximated by an isolated part-through crack. The main study is restricted to the structures in which the net section of the shell wall around the defect zone is fully yielded. The problem is solved by using an 8th order shallow shell theory with a conventional plastic strip model to account for the plastic deformations. Using the critical COD or the plastic instability as fracture criterion, the results are applied to the fracture propagation and arrest in shells. The calculated results are then compared with those obtained from the experiments on zircaloy, aluminum, and steel pipes.

  8. Probabilistic elastic-plastic fracture analysis of circumferentially cracked pipes with finite-length surface flaws

    SciTech Connect

    Rahman, S.

    1996-12-01

    A new probabilistic model was developed for predicting elastic-plastic fracture response of circumferentially cracked pipes with finite-length, constant-depth, internal surface flaws subject to remote bending loads. It involves engineering estimation of energy release rate, J-tearing theory for characterizing ductile fracture, and standard methods of structural reliability theory. The underlying J-estimation model is based on deformation theory of plasticity, constitutive law characterized by power law model for stress-strain curve, and an equivalence criterion incorporating reduced thickness analogy for simulating system compliance due to the presence of a crack. New equations were developed to predict J-integral and were evaluated by comparing with available finite-element results from the current literature. Both analytical and simulation methods were formulated to determine the probabilistic characteristics of J. The same methods were used later to predict the probability of crack initiation and net-section collapse as a function of the applied load. Numerical examples are provided to illustrate the proposed methodology.

  9. Probabilistic elastic-plastic fracture analysis of cracked pipes with circumferential through-wall flaws

    SciTech Connect

    Rahman, S.; Brust, F.

    1995-11-01

    A probabilistic fracture model was developed to analyze circumferential through-walled-cracked pipes subjected to bending loads. It involved elastic-plastic finite element analysis for estimating energy releases rates, J-tearing theory for characterizing ductile fracture, and standard methods of structural reliability theory for conduction probabilistic analysis. The evaluation of J-integral was based on the deformation theory of plasticity and power-law idealizations of the stress-strain and fracture toughness curves. This allows J to be expressed in terms of non-dimensional influence functions (F- and h{sub 1}-functions) that depend on the crack size, pipe geometry, and material hardening constant. New equations were proposed to represent these functions and were applied to conduct stochastic pipe fracture evaluations. Both analytical and simulation methods were formulated to determine the probabilistic characteristics of J. The same methods were used later to predict the failure probability of pipes as a function of the applied load. Numerical examples are provided to illustrate the proposed methodology. The validity of J-integral based on the proposed equations for predicting crack driving force in a through-wall-cracked pipe was evaluated by comparing with available results in the current literature. Probability densities of J-integral were predicted as a function of applied loads. Failure probabilities corresponding to three different performance criteria were evaluated for a stainless steel nuclear piping in the Boiling Water Reactor plant. The results suggest that large differences may exist in the failure probability estimates produced by these performance criteria.

  10. Development of methods for predicting large crack growth in elastic-plastic work-hardening materials in fully plastic conditions

    NASA Technical Reports Server (NTRS)

    Ford, Hugh; Turner, C. E.; Fenner, R. T.; Curr, R. M.; Ivankovic, A.

    1995-01-01

    The objects of the first, exploratory, stage of the project were listed as: (1) to make a detailed and critical review of the Boundary Element method as already published and with regard to elastic-plastic fracture mechanics, to assess its potential for handling present concepts in two-dimensional and three-dimensional cases. To this was subsequently added the Finite Volume method and certain aspects of the Finite Element method for comparative purposes; (2) to assess the further steps needed to apply the methods so far developed to the general field, covering a practical range of geometries, work hardening materials, and composites: to consider their application under higher temperature conditions; (3) to re-assess the present stage of development of the energy dissipation rate, crack tip opening angle and J-integral models in relation to the possibilities of producing a unified technology with the previous two items; and (4) to report on the feasibility and promise of this combined approach and, if appropriate, make recommendations for the second stage aimed at developing a generalized crack growth technology for its application to real-life problems.

  11. A crystal plasticity based methodology for modeling fatigue crack initiation and estimating material coefficients to predict fatigue crack initiation life at micro, nano and macro scales

    NASA Astrophysics Data System (ADS)

    Voothaluru, Rohit

    Fatigue failure is a dominant mechanism that governs the failure of components and structures in many engineering applications. In conventional engineering applications due to the design specifications, a significant proportion of the fatigue life is spent in the crack initiation phase. In spite of the large number of works addressing fatigue life modeling, the problem of modeling crack initiation life still remains a major challenge. In this work, a novel computational methodology based upon crystal plasticity formulations has been developed to predict crack initiation life at macro, micro and nano length scales. The crystal plasticity based constitutive model has been employed to model the micromechanical deformation and damage accumulation under cyclic loading in polycrystalline metals. This work provides a first of its kind, fundamental basis for employing crystal plasticity formulations for evaluating a quantifiable estimate of fatigue crack initiation life. A semi-empirical energy based fatigue crack initiation criterion s employed to allow for accurate modeling of the underlying microstructural phenomenon leading to the initiation of cracks at different material length scales. The results of the fatigue crack initiation life prediction in case of polycrystalline metals such as Copper and Nickel demonstrated that the crack initiation life prediction using the proposed methodology yielded an improvement of more than 30% in comparison to the existing continuum methodologies for fatigue crack initiation prediction and more than 80% improvement compared to the existing analytical models. The computational methodology developed in this work also provides a first of its kind technique to evaluate the fatigue crack initiation coefficient in the form of energy dissipation coefficient that can be used at varying length scales. The methodology and the computational framework proposed in this work, are developed such that experimental inputs are used to improve

  12. Feasibility of crack monitoring in a road tunnel based on a low cost plastic optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Schenato, L.; Bossi, G.; Marcato, G.; Dwivedi, S.; Janse-Van Vuuren, D.; Ahlstedt, M.; Pasuto, A.

    2015-09-01

    In this work, a low cost optical fiber sensing system for cracks growth monitoring in the concrete lining of a road tunnel is presented. A plastic optical fiber (POF), with large dynamic strain range, is used for sensing by means of phase measurement of a RF modulated optical signal. Preliminary results suggest that the system represents a viable solution to the aim of crack monitoring.

  13. Characterisation of plastic zones around crack-tips in pure single-crystal tungsten using electron backscatter diffraction

    NASA Astrophysics Data System (ADS)

    Murphy, J. D.; Wilkinson, A. J.; Roberts, S. G.

    2009-07-01

    Plastic zones around crack-tips in tungsten were characterised by electron backscatter diffraction (EBSD). Pre-cracks were made in ~1mm square cross section beams of pure single-crystal tungsten using a spark erosion method. The beams were loaded at different temperatures to a range of stress intensity factors below the fracture toughness. High resolution EBSD patterns were recorded in a two dimensional array in the vicinity of the crack-tip on sectioned samples. Cross-correlation based analysis of these patterns was used to determine lattice rotations associated with the plastic deformation near the cracks. Crystal rotations in the plane of observation were found to dominate over rotations in other planes. For all specimens deformed above the brittle-to-ductile transition temperature, plastic zones were found to extend from the crack tips on along narrow bands along {110} planes. The sizes of the plastic zones and their associated lattice rotations were determined as a function of loading history.

  14. Elastic-Plastic Finite Element Analysis of Fatigue Crack Growth in Mode 1 and Mode 2 Conditions

    NASA Technical Reports Server (NTRS)

    Nakagaki, M.; Atluri, S. N.

    1978-01-01

    Presented is an alternate cost-efficient and accurate elastic-plastic finite element procedure to analyze fatigue crack closure and its effects under general spectrum loading. Both Modes 1 and 2 type cycling loadings are considered. Also presented are the results of an investigation, using the newly developed procedure, of various factors that cause crack growth acceleration or retardation and delay effects under high-to-low, low-to-high, single overload, and constant amplitude type cyclic loading in a Mode 1 situation. Further, the results of an investigation of a centercracked panel under external pure shear (Mode 2) cyclic loading, of constant amplitude, are reported.

  15. Elasto-plastic flow in cracked bodies using a new finite element model. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Karabin, M. E., Jr.

    1977-01-01

    Cracked geometries were studied by finite element techniques with the aid of a new special element embedded at the crack tip. This model seeked to accurately represent the singular stresses and strains associated with the elasto-plastic flow process. The present model was not restricted to a material type and did not predetermine a singularity. Rather the singularity was treated as an unknown. For each step of the incremental process the nodal degrees of freedom and the unknown singularity were found through minimization of an energy-like functional. The singularity and nodal degrees of freedom were determined by means of an iterative process.

  16. Crack

    MedlinePlus

    ... sound the drug makes as it heats up. Short-Term Effects Crack is a stimulant that is absorbed through ... quickly, after about 5 or 10 minutes. Other short-term effects include: higher heart rate, breathing rate, blood pressure , ...

  17. Elastic-plastic fracture of cylindrical shells containing a part-through circumferential crack

    SciTech Connect

    Ezzat, H.; Erdogan, F.

    1982-11-01

    The problem of fatigue crack propagation and ductile fracture of a cylindrical shell containing a macroscopic circumferential flaw is considered. The main interest in the study is in applications to line pipes and other cylindrical containers under secondary axial stresses in addition to the primary stresses coming from the internal pressure. The stress intensity factor for the part-through crack used in analyzing and correlating the fatigue crack propagation rate is obtained by using a line spring model in conjunction with Reissner's shell theory. To analyze the ductile fracture instability and to correlate the experimental and theoretical results, the crack mouth opening displacement is used as the parameter. The limited data on fatigue crack propagation give the expected result, namely that the crack propagation rate in pipes may be predicted from the fatigue results performed on simpler geometries provided the stress intensity factors in pipes are calculated with sufficient accuracy. 14 references.

  18. The role of macroscopic hardening and individual length-scales on crack tip stress elevation from phenomenological strain gradient plasticity

    NASA Astrophysics Data System (ADS)

    Komaragiri, Uday; Agnew, Sean R.; Gangloff, Richard P.; Begley, Matthew R.

    This paper quantifies the effect of strain gradient plasticity (SGP) on crack tip stress elevation for a broad range of applied loading conditions and constitutive model parameters, including both macroscopic hardening parameters and individual material length-scales controlling gradient effects. Finite element simulations incorporating the Fleck-Hutchinson SGP theory are presented for an asymptotically sharp stationary crack. Results identify fundamental scaling relationships describing (i) the physical length-scales over which strain gradients are prominent, and (ii) the degree of stress elevation over conventional Hutchinson-Rice-Rosengren (HRR) fields. Results illustrate that the three length-scale theory predicts much larger SGP effects than the single length-scale theory. Critically, the first length-scale parameter dominates SGP stress elevation: this suggests that SGP effects in fracture can be predicted using the length-scales extracted from nanoindentation, which exhibits similar behavior. Transitional loading/material parameters are identified that establish regimes of SGP relevance: this provides the foundation for the rational application of SGP when developing new micromechanical models of crack tip damage mechanisms and associated subcritical crack propagation behavior in structural alloys.

  19. Effects of thickness on plasticity-induced fatigue crack closure: Analysis and experiment

    SciTech Connect

    Hsu, C.; Chan, K.K.; Yu, J.

    1999-07-01

    The crack-opening stress was measured using a strain gage technique on 7050 aluminum alloy, under constant amplitude and repeated overload. The behavior of crack-opening stress predicted by Newman's FASTRAN-II is consistent with the experimental results for repeated overload. It is also found that the FASTRAN-II program is capable of predicting crack growth on the 7050-T76 aluminum plate and 7050-T76 aluminum plate and 7050-T7452 aluminum hand forging under complex simulated flight loading which contains a significant number of compression cycles.

  20. Catalytic thermal cracking of post-consumer waste plastics to fuels: Part 1 - Kinetics and optimization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermogravimetric analysis (TGA) was used to investigate thermal and catalytic pyrolysis of waste plastics such as prescription bottles (polypropylene/PP), high density polyethylene, landfill liners (polyethylene/PE), packing materials (polystyrene/PS), and foams (polyurethane/PU) into crude plastic...

  1. An analytical model which combines roughness- and plasticity- induced fatigue crack closure

    NASA Astrophysics Data System (ADS)

    Chen, Nong

    In this study an analytical PICC-RICC Model was developed to describe better the near-threshold fatigue behavior. The PICC-RICC Model was built upon a strip-yield type PICC model originally proposed by Newman and later modified by Hou and Lawrence. A zigzag crack growth path was introduced to simulate surface roughness. The two opposing crack surfaces were considered to be translated and thus mismatched by the mixed-mode displacements occurring near the deflected crack tip. The model is powerful and unique in that it combines the effects of RICC and PICC. Thus, the gradual transition from RICC to PICC dominated crack closure is handled naturally by this model. The influences of the geometrical features of the surface roughness, R-ratio and the cyclic load range on RICC were examined using the PICC-RICC Model. Near-threshold fatigue behavior of various materials was predicted. The effect of microstructure on the RICC level was studied. The predicted results compared favorably with experimental data. The fatigue notch size effect was investigated using the PICC-RICC model. The initial crack length (asb{i}) for propagation was estimated. The predicted notch fatigue strength compared favorably with the Initiation-Propagation (I-P) Model prediction and test data. The existence of a "worst case notch" previously postulated using the I-P Model was confirmed.

  2. Embedded Fibre Bragg Grating Sensor Response Model: Crack Growing Detection in Fibre Reinforced Plastic Materials

    NASA Astrophysics Data System (ADS)

    Pereira, G.; Mikkelsen, L. P.; McGugan, M.

    2015-07-01

    This article presents a novel method to simulate the sensor output response of a Fibre Bragg Grating (FBG) sensor when embedded in a host material (Composite material or adhesive), during a crack growing/damage event. A finite element model of the crack growth mechanisms was developed, and different fracture modes were addressed. Then an output algorithm was developed to predict the sensor spectrum change during the different stages of the crack growing. Thus, it is possible to identify specific phenomenon that will only happen within the proximity of a crack, as compression field ahead the crack or non-uniform strain, and then identify the presence of such damage in the structure. Experimental tests were conducted in order to validate this concept and support the model. The FBG sensor response model was applied in a delamination of a Wind Turbine trailing edge, to demonstrate the applicability of this technique to more complicated structures, and to be used as a structural health monitoring design tool.

  3. Shock-induced structural phase transition, plasticity, and brittle cracks in aluminum nitride ceramic.

    PubMed

    Branicio, Paulo S; Kalia, Rajiv K; Nakano, Aiichiro; Vashishta, Priya

    2006-02-17

    Atomistic mechanisms of fracture accompanying structural phase transformation (SPT) in AlN ceramic under hypervelocity impact are investigated using a 209 x 10(6) atom molecular-dynamics simulation. The shock wave generated by the impact splits into an elastic wave and a slower SPT wave that transforms the wurtzite structure into the rocksalt phase. The interaction between the reflected elastic wave and the SPT wave front generates nanovoids and dislocations into the wurtzite phase. Nanovoids coalesce into mode I cracks while dislocations give rise to kink bands and mode II cracking. PMID:16606007

  4. Cure shrinkage in epoxy grouts for grouted repairs

    NASA Astrophysics Data System (ADS)

    Shamsuddoha, Md.; Islam, Md. Mainul; Aravinthan, Thiru; Manalo, Allan; Lau, Kin-tak

    2013-08-01

    Structures can go through harsh environmental adversity and can experience material loss and cracks during their service lives. Infill material is used to ensure a supporting bed for a grouted repair. Epoxy grouts are used for repairing and rehabilitating structures, such as foundations, bridges, piers, transportation pipelines, etc., because they are resistant to typical chemicals and possess superior mechanical properties than other grouts. The resin based infill used inside the void or cracked space of the repair is vulnerable to shrinkage. When these filled grouts have high resin content, cracks can develop from residual stresses, which can affect the load transfer performance. It follows that interlayer separation and cracking of infill layer can occur in a grouted repair. In this study, volumetric shrinkage of two epoxy grouts was measured over 28 days using a Pycnometer. The highest volumetric shrinkage measured after 7 days was found to be 2.72%. The results suggest that the volumetric shrinkage can be reduced to 1.1% after 7 days, through the introduction of a coarse aggregate filler; a 2.5 times reduction in shrinkage. About 98% and 92% of the total shrinkage over the 28 day period, of the unfilled and filled grouts respectively, was found to occur within 7 days of mixing. The gel-time shrinkages were also calculated, to determine the "postgel" part of the curing contraction which subsequently produces residual stresses in the hardened grout systems.

  5. Development of shrinkage resistant microfibre-reinforced cement-based composites

    NASA Astrophysics Data System (ADS)

    Hamedanimojarrad, P.; Adam, G.; Ray, A.; Thomas, P.; Vessalas, K.

    2012-06-01

    Different shrinkage types may cause serious durability dilemma on restrained concrete parts due to crack formation and propagation. Several classes of fibres are used by concrete industry in order to reduce crack size and crack number. In previous studies, most of these fibre types were found to be effective in reducing the number and sizes of the cracks, but not in shrinkage strain reduction. This study deals with the influence of a newly introduced type of polyethylene fibre on drying shrinkage reduction. The novel fibre is a polyethylene microfibre in a new geometry, which is proved to reduce the amount of total shrinkage in mortars. This special hydrophobic polyethylene microfibre also reduces moisture loss of mortar samples. The experimental results on short and long-term drying shrinkage as well as on several other properties are reported. The hydrophobic polyethylene microfibre showed promising improvement in shrinkage reduction even at very low concentrations (0.1% of cement weight).

  6. Mechanics of fatigue crack closure

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr. (Editor); Elber, Wolf (Editor)

    1988-01-01

    Papers are presented on plasticity induced crack closure, crack closure in fatigue crack growth, the dependence of crack closure on fatigue loading variables, and a procedure for standardizing crack closure levels. Also considered are a statistical approach to crack closure determination, the crack closure behavior of surface cracks under pure bending, closure measurements on short fatigue cracks, and crack closure under plane strain conditions. Other topics include fatigue crack closure behavior at high stress ratios, the use of acoustic waves for the characterization of closed fatigue cracks, and the influence of fatigue crack wake length and state of stress on crack closure.

  7. Analysis, prediction, and case studies of early-age cracking in bridge decks

    NASA Astrophysics Data System (ADS)

    ElSafty, Adel; Graeff, Matthew K.; El-Gharib, Georges; Abdel-Mohti, Ahmed; Mike Jackson, N.

    2016-05-01

    Early-age cracking can adversely affect strength, serviceability, and durability of concrete bridge decks. Early age is defined as the period after final setting, during which concrete properties change rapidly. Many factors can cause early-age bridge deck cracking including temperature change, hydration, plastic shrinkage, autogenous shrinkage, and drying shrinkage. The cracking may also increase the effect of freeze and thaw cycles and may lead to corrosion of reinforcement. This research paper presents an analysis of causes and factors affecting early-age cracking. It also provides a tool developed to predict the likelihood and initiation of early-age cracking of concrete bridge decks. Understanding the concrete properties is essential so that the developed tool can accurately model the mechanisms contributing to the cracking of concrete bridge decks. The user interface of the implemented computer Excel program enables the user to input the properties of the concrete being monitored. The research study and the developed spreadsheet were used to comprehensively investigate the issue of concrete deck cracking. The spreadsheet is designed to be a user-friendly calculation tool for concrete mixture proportioning, temperature prediction, thermal analysis, and tensile cracking prediction. The study also provides review and makes recommendations on the deck cracking based mainly on the Florida Department of Transportation specifications and Structures Design Guidelines, and Bridge Design Manuals of other states. The results were also compared with that of other commercially available software programs that predict early-age cracking in concrete slabs, concrete pavement, and reinforced concrete bridge decks. The outcome of this study can identify a set of recommendations to limit the deck cracking problem and maintain a longer service life of bridges.

  8. Analysis, prediction, and case studies of early-age cracking in bridge decks

    NASA Astrophysics Data System (ADS)

    ElSafty, Adel; Graeff, Matthew K.; El-Gharib, Georges; Abdel-Mohti, Ahmed; Mike Jackson, N.

    2016-06-01

    Early-age cracking can adversely affect strength, serviceability, and durability of concrete bridge decks. Early age is defined as the period after final setting, during which concrete properties change rapidly. Many factors can cause early-age bridge deck cracking including temperature change, hydration, plastic shrinkage, autogenous shrinkage, and drying shrinkage. The cracking may also increase the effect of freeze and thaw cycles and may lead to corrosion of reinforcement. This research paper presents an analysis of causes and factors affecting early-age cracking. It also provides a tool developed to predict the likelihood and initiation of early-age cracking of concrete bridge decks. Understanding the concrete properties is essential so that the developed tool can accurately model the mechanisms contributing to the cracking of concrete bridge decks. The user interface of the implemented computer Excel program enables the user to input the properties of the concrete being monitored. The research study and the developed spreadsheet were used to comprehensively investigate the issue of concrete deck cracking. The spreadsheet is designed to be a user-friendly calculation tool for concrete mixture proportioning, temperature prediction, thermal analysis, and tensile cracking prediction. The study also provides review and makes recommendations on the deck cracking based mainly on the Florida Department of Transportation specifications and Structures Design Guidelines, and Bridge Design Manuals of other states. The results were also compared with that of other commercially available software programs that predict early-age cracking in concrete slabs, concrete pavement, and reinforced concrete bridge decks. The outcome of this study can identify a set of recommendations to limit the deck cracking problem and maintain a longer service life of bridges.

  9. Non-isothermal kinetic studies of co-combustion and co-cracking of coal and plastic blends using thermogravimetric analysis

    SciTech Connect

    Nabeel, A.; Khan, T.A.; Sharma, D.K.

    2009-07-01

    The kinetics of co-combustion/co-cracking of Topa coal with polystyrene, poly(vinyl chloride), and bakelite have been studied by theromogravimetric analysis at a linear heating rate of 20C/min in a stream of air for combustion and in nitrogen for cracking with a flow rate of 20 cm{sup 3}/min up to the temperature of 900C under non-isothermal conditions. The order of reaction and overall activation energy of the reactions have been calculated. These studies may help in synergistic production of value-added organic compounds and spatiality chemicals from coal and plastics.

  10. Crack tip deformation and fatigue crack growth

    NASA Technical Reports Server (NTRS)

    Liu, H.-W.

    1981-01-01

    Recent research on fatigue crack growth is summarized. Topics discussed include the use of the differential stress intensity factor to characterize crack tip deformation, the use of the unzipping model to study the growth of microcracks and the fatigue crack growth in a ferritic-martensitic steel, and the development of a model of fatige crack growth threshold. It is shown that in the case of small yielding, the differential stress intensity factor provides an adequate description of cyclic plastic deformation at the crack tip and correlates well with the crack growth rate. The unzipping model based on crack tip shear decohesion process is found to be in good agreement with the measured crack growth and striation spacing measurements. The proposed model of crack growth threshold gives correct predictions of the crack growth behavior in the near-threshold region.

  11. Roof System EPDM Shrinkage.

    ERIC Educational Resources Information Center

    Betker, Edward

    1998-01-01

    Looks at Ethylene Propylene Diene Terpolymer rubber roof membranes and the potential problems associated with this material's shrinkage. Discusses how long such a roof should perform and issues affecting repair or replacement. Recommends that a building's function be considered in any roofing decision. (RJM)

  12. Seismic-frequency laboratory measurements of shear mode viscoelasticity in crustal rocks I: competition between cracking and plastic flow in thermally cycled Carrara marble

    NASA Astrophysics Data System (ADS)

    Lu, Cao; Jackson, Ian

    1996-03-01

    In the first phase of a seismic-frequency study of the viscoelasticity of cracked and fluid-saturated crustal rocks, forced torsional oscillation experiments have been conducted on specimens of Carrara marble subjected to multiple thermal cycles up to 560°C, under confining pressure of 50 MPa. The experimental results showed distinctly different behaviour of both the shear modulus and internal friction between the first and subsequent thermal cycles. A pronounced reduction in shear modulus ( G) observed during the first series of thermal cycles at temperature T < 300°C is attributed to thermal cracking. This large modulus deficit is recovered at higher temperatures, presumably through crack closure by plastic deformation processes that are also reflected in time dependence (over hours) of the shear modulus at temperatures above 300°C. Following the first excursion to 500°C, the shear modulus varies reproducibly with thermal cycling with a monotonic temperature dependence dominated by intrinsic (anharmonic) effects. It is inferred that thermal cracking in Carrara marble is suppressed by plastic flow following the first cycle to 500°C. The experimental results suggest that thermal history has strong effects on mechanical properties of calcite rock (Carrara marble) measured at relatively low temperatures. Internal friction or attenuation of Carrara marble is generally low and temperature-insensitive at low temperatures (< 400°C), but increases dramatically at 400-500°C. The frequency-dependence of internal friction at high temperatures (> 400°C), presumably due to dislocation relaxation, contrasts with frequency-independent Q-1 at lower temperatures. The relatively sudden onset of markedly frequency-dependence seismic wave attenuation might prove to be a useful diagnostic of temperature under crustal conditions.

  13. ZIP2DL: An Elastic-Plastic, Large-Rotation Finite-Element Stress Analysis and Crack-Growth Simulation Program

    NASA Technical Reports Server (NTRS)

    Deng, Xiaomin; Newman, James C., Jr.

    1997-01-01

    ZIP2DL is a two-dimensional, elastic-plastic finte element program for stress analysis and crack growth simulations, developed for the NASA Langley Research Center. It has many of the salient features of the ZIP2D program. For example, ZIP2DL contains five material models (linearly elastic, elastic-perfectly plastic, power-law hardening, linear hardening, and multi-linear hardening models), and it can simulate mixed-mode crack growth for prescribed crack growth paths under plane stress, plane strain and mixed state of stress conditions. Further, as an extension of ZIP2D, it also includes a number of new capabilities. The large-deformation kinematics in ZIP2DL will allow it to handle elastic problems with large strains and large rotations, and elastic-plastic problems with small strains and large rotations. Loading conditions in terms of surface traction, concentrated load, and nodal displacement can be applied with a default linear time dependence or they can be programmed according to a user-defined time dependence through a user subroutine. The restart capability of ZIP2DL will make it possible to stop the execution of the program at any time, analyze the results and/or modify execution options and resume and continue the execution of the program. This report includes three sectons: a theoretical manual section, a user manual section, and an example manual secton. In the theoretical secton, the mathematics behind the various aspects of the program are concisely outlined. In the user manual section, a line-by-line explanation of the input data is given. In the example manual secton, three types of examples are presented to demonstrate the accuracy and illustrate the use of this program.

  14. Improvement of fatigue life and prevention of internal crack initiation of chopped carbon fiber reinforced plastics modified with micro glass fibers

    NASA Astrophysics Data System (ADS)

    Fujitani, Ryohei; Okubo, Kazuya; Fujii, Toru

    2016-04-01

    The purpose of this study is to improve fatigue properties of chopped carbon fiber reinforced plastics fabricated by SMC (Sheet Molding Compound) method and to clarify the mechanism for improvement. To enhance the properties, micro glass fibers with 500nm in diameter were added directly into vinyl ester resin with 0.3wt% contents. The chopped carbon fiber reinforced plastics were fabricated and cured at room temperature for 1hour under 1MPa and then at 60degree-C for 3hours. After curing, the fabricated plate was cut into the dimension of specimen. Tensile and bending strength and fatigue life of chopped carbon fiber reinforced plastics were investigated by tensile and three point bending test and cyclic tension-tension test, respectively. The behavior of strain concentration around the tips of carbon fiber were discussed with model specimen on the observations with DIC (Digital Image Correlation) method and polarizing microscope under tensile loading, in which one chopped carbon fiber was embedded into the matrix. In conclusion, when toughened vinyl ester resin modified with micro glass fibers was used as matrix, tensile and bending strength and fatigue life of chopped carbon fiber reinforced plastics were increased 56.6%, 49.8% and 14 to 23 times compared with those of unmodified specimens. It should be explained that static and dynamic properties of chopped carbon fiber reinforced plastics were improved by that crack initiation and propagation were prevented according to the prevention of the locally increasing of strain around the tip of carbon fiber, when vinyl ester resin modified with micro glass fibers was used as matrix.

  15. Crack-induced debonding failure in fiber reinforced plastics (FRP) strengthened concrete beams: Experimental and theoretical analysis

    NASA Astrophysics Data System (ADS)

    Pan, Jinlong

    External bonding of FRP plates to the tension substrate of RC beams has been accepted as an efficient and effective technique for flexural strengthening. In this thesis, different problems related to crack-induced debonding of the FRP plate in the flexural strengthened concrete beams have been investigated. FRP strengthened RC beam may fail by FRP debonding from the bottom of a major flexural crack in the span. This kind of failure is studied with the direct shear test in the present research work. Our experimental investigation focuses on the effect of concrete composition on the bond behavior between FRP and concrete. Based on the test results, the bond capacity of the specimen is found to be governed by the concrete surface tensile strength, aggregate size and aggregate content. Then, the neural network is employed to derive an empirical expression for the interfacial fracture energy in terms of concrete surface tensile strength and aggregate content. Using the empirical equation, simulated bond capacity is in good agreement with experimental results. In the FRP strengthened RC beams, debonding of the FRP plate often occurs under the presence of multiple cracks along the span. In the present thesis, experimental and theoretical investigations are performed to study the effect of multiple secondary cracks on the debonding behavior and ultimate load capacity. A new analytical model for FRP debonding under multiple cracks has been developed. The effect of the multiple secondary cracks on the shear softening in the debonded zone is explicitly considered in the model. Using the new model, the simulated values of ultimate load when debonding occurs are in good agreement with measured values. In the FRP strengthened RC beams, concrete cover separation or plate end debonding can be avoided by applying tapers at the FRP plate end. In this situation, it is easier for FRP debonding to be induced by a major flexural crack close to the support. To study the effect of the

  16. Crack Detection in Fibre Reinforced Plastic Structures Using Embedded Fibre Bragg Grating Sensors: Theory, Model Development and Experimental Validation

    PubMed Central

    Pereira, G. F.; Mikkelsen, L. P.; McGugan, M.

    2015-01-01

    In a fibre-reinforced polymer (FRP) structure designed using the emerging damage tolerance and structural health monitoring philosophy, sensors and models that describe crack propagation will enable a structure to operate despite the presence of damage by fully exploiting the material’s mechanical properties. When applying this concept to different structures, sensor systems and damage types, a combination of damage mechanics, monitoring technology, and modelling is required. The primary objective of this article is to demonstrate such a combination. This article is divided in three main topics: the damage mechanism (delamination of FRP), the structural health monitoring technology (fibre Bragg gratings to detect delamination), and the finite element method model of the structure that incorporates these concepts into a final and integrated damage-monitoring concept. A novel method for assessing a crack growth/damage event in fibre-reinforced polymer or structural adhesive-bonded structures using embedded fibre Bragg grating (FBG) sensors is presented by combining conventional measured parameters, such as wavelength shift, with parameters associated with measurement errors, typically ignored by the end-user. Conjointly, a novel model for sensor output prediction (virtual sensor) was developed using this FBG sensor crack monitoring concept and implemented in a finite element method code. The monitoring method was demonstrated and validated using glass fibre double cantilever beam specimens instrumented with an array of FBG sensors embedded in the material and tested using an experimental fracture procedure. The digital image correlation technique was used to validate the model prediction by correlating the specific sensor response caused by the crack with the developed model. PMID:26513653

  17. Crack Detection in Fibre Reinforced Plastic Structures Using Embedded Fibre Bragg Grating Sensors: Theory, Model Development and Experimental Validation.

    PubMed

    Pereira, G F; Mikkelsen, L P; McGugan, M

    2015-01-01

    In a fibre-reinforced polymer (FRP) structure designed using the emerging damage tolerance and structural health monitoring philosophy, sensors and models that describe crack propagation will enable a structure to operate despite the presence of damage by fully exploiting the material's mechanical properties. When applying this concept to different structures, sensor systems and damage types, a combination of damage mechanics, monitoring technology, and modelling is required. The primary objective of this article is to demonstrate such a combination. This article is divided in three main topics: the damage mechanism (delamination of FRP), the structural health monitoring technology (fibre Bragg gratings to detect delamination), and the finite element method model of the structure that incorporates these concepts into a final and integrated damage-monitoring concept. A novel method for assessing a crack growth/damage event in fibre-reinforced polymer or structural adhesive-bonded structures using embedded fibre Bragg grating (FBG) sensors is presented by combining conventional measured parameters, such as wavelength shift, with parameters associated with measurement errors, typically ignored by the end-user. Conjointly, a novel model for sensor output prediction (virtual sensor) was developed using this FBG sensor crack monitoring concept and implemented in a finite element method code. The monitoring method was demonstrated and validated using glass fibre double cantilever beam specimens instrumented with an array of FBG sensors embedded in the material and tested using an experimental fracture procedure. The digital image correlation technique was used to validate the model prediction by correlating the specific sensor response caused by the crack with the developed model. PMID:26513653

  18. Store Security: Internal Shrinkage Control.

    ERIC Educational Resources Information Center

    Everhardt, Richard M.

    The document presents a 10-week training program designed to provide helpful and proven methods for controlling internal shrinkage in retail stores. Shrinkage includes the three problems of shoplifting, employee theft, and errors, each of which is addressed by the course. Ohio's laws are also discussed. The format for the course content section is…

  19. Elastic-Plastic J-Integral Solutions or Surface Cracks in Tension Using an Interpolation Methodology. Appendix C -- Finite Element Models Solution Database File, Appendix D -- Benchmark Finite Element Models Solution Database File

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.; Wells, Douglas N.

    2013-01-01

    No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format.

  20. Effects of drying conditions, admixtures and specimen size on shrinkage strains

    SciTech Connect

    Al-Saleh, Saleh A. . E-mail: alsaleh@dr.com; Al-Zaid, Rajeh Z.

    2006-10-15

    The paper presents the results of an experimental investigation on the effects of drying conditions, specimen size and presence of plasticizing admixture on the development of shrinkage strains. The measurements are taken in a harsh (50 deg. C and 5% R.H.) and a moderate environment (28 deg. C and 50% R.H.). The results include strain development at various levels of cross sections of concrete prisms. The drying conditions are found to be the dominant parameter affecting the shrinkage strain development particularly in specimens of smaller sizes. The effect of plasticizing admixture on shrinkage strains is negligible.

  1. Deep micro-machining of poly-ethylene terephthalate for plastic MEMS applications

    NASA Astrophysics Data System (ADS)

    Pajouhi, H.; Mohajerzadeh, S.; Nayeri, F.; Sanaee, Z.

    2010-12-01

    Etching of poly-ethylene terephathalate (PET) is achieved using a chemical solution in di-methyl-formamide assisted by ultra-violet illumination. Deep vertical features suitable for plastic micro-machining, are obtained with features of the order of 2 μm and aspect ratios of the order of 10. By using tin (Sn) as the masking layer, the problem of crack formation on the PET surface during this photochemical etching technique is totally resolved. High etch-rates as 20 μm/h are obtained at a low etching temperature of 60 °C. To improve the thermal dissipation during the etching and to minimize the plastic shrinkage, a layer of silicone-rubber is applied on the backside of the PET. We have successfully fabricated and assembled an all-plastic one directional micro-valve. Preliminary plastic-based micro-structures are demonstrated.

  2. Reducing the drying shrinkage of cement paste by admixture surface treatments

    SciTech Connect

    Xu, Y.; Chung, D.D.L.

    2000-02-01

    The drying shrinkage of concrete during curing is a source of residual stress and cracks. The problem is particularly severe for a large structure, such as a large concrete floor. Surface treatment of carbon fibers and/or silica fume by silane prior to using these admixtures in cement paste increases the effectiveness of these admixtures for reducing the drying shrinkage. Silane treatment of fibers is more effective than dichromate treatment or ozone treatment.

  3. Crack nucleation using combined crystal plasticity modelling, high-resolution digital image correlation and high-resolution electron backscatter diffraction in a superalloy containing non-metallic inclusions under fatigue

    PubMed Central

    Zhang, Tiantian; Britton, Ben; Shollock, Barbara; Dunne, Fionn

    2016-01-01

    A crystal plasticity finite-element model, which explicitly and directly represents the complex microstructures of a non-metallic agglomerate inclusion within polycrystal nickel alloy, has been developed to study the mechanistic basis of fatigue crack nucleation. The methodology is to use the crystal plasticity model in conjunction with direct measurement at the microscale using high (angular) resolution-electron backscatter diffraction (HR-EBSD) and high (spatial) resolution-digital image correlation (HR-DIC) strain measurement techniques. Experimentally, this sample has been subjected to heat treatment leading to the establishment of residual (elastic) strains local to the agglomerate and subsequently loaded under conditions of low cyclic fatigue. The full thermal and mechanical loading history was reproduced within the model. HR-EBSD and HR-DIC elastic and total strain measurements demonstrate qualitative and quantitative agreement with crystal plasticity results. Crack nucleation by interfacial decohesion at the nickel matrix/agglomerate inclusion boundaries is observed experimentally, and systematic modelling studies enable the mechanistic basis of the nucleation to be established. A number of fatigue crack nucleation indicators are also assessed against the experimental results. Decohesion was found to be driven by interface tensile normal stress alone, and the interfacial strength was determined to be in the range of 1270–1480 MPa. PMID:27279765

  4. Fatigue crack layer propagation in silicon-iron

    NASA Technical Reports Server (NTRS)

    Birol, Y.; Welsch, G.; Chudnovsky, A.

    1986-01-01

    Fatigue crack propagation in metal is almost always accompanied by plastic deformation unless conditions strongly favor brittle fracture. The analysis of the plastic zone is crucial to the understanding of crack propagation behavior as it governs the crack growth kinetics. This research was undertaken to study the fatigue crack propagation in a silicon iron alloy. Kinetic and plasticity aspects of fatigue crack propagation in the alloy were obtained, including the characterization of damage evolution.

  5. Mechanisms for shrinkage fracturing at Meridiani Planum

    NASA Astrophysics Data System (ADS)

    Watters, W. A.; Squyres, S. W.

    2009-12-01

    We investigate the role of water in fracturing at Meridiani Planum with the aim of shedding light on the history of densely-fractured outcroppings of light-toned rocks at low-latitudes on Mars. The fractures that occur throughout the inter-crater plains at Meridiani exhibit many characteristics of shrinkage cracks: they have significant width (i.e., not hairline), commonly connect in 90-degree and 120-degree junctions, and exhibit a "hierarchical" organization: i.e., the longest fractures are widest, and narrower fractures terminate against wider fractures at 90-degree junctions (T-shaped). Using the Pancam and Navcam stereo-pair images acquired by the Opportunity rover, we have measured the geometric scaling of fracture networks at Meridiani (e.g., fracture width vs. fracture separation) as well as the total volume change. We have also characterized the diversity of patterns in detail, as well as the modification of fractures and polygonal "tiles" by wind-blown sand abrasion. Identical observations were carried-out for an analogue site where similar fractures are ubiquitous in the playas of Death Valley, California, and where modification processes are also comparable. By also estimating the expected volume change and results from numerical models of shrinkage fracturing, we evaluate the likelihood of three candidate contraction mechanisms: loss of water bound in hydrated minerals (dehydration), loss of water from pore spaces (desiccation), and contraction from cooling (thermal fracturing). The evidence to date favors the second of these (desiccation); this result would have significant implications for the history of Meridiani since the time when sulfate-rich sediments were deposited.

  6. Scale Shrinkage in Vertical Equating.

    ERIC Educational Resources Information Center

    Camilli, Gregory; And Others

    1993-01-01

    Three potential causes of scale shrinkage (measurement error, restriction of range, and multidimensionality) in item response theory vertical equating are discussed, and a more comprehensive model-based approach to establishing vertical scales is described. Test data from the National Assessment of Educational Progress are used to illustrate the…

  7. Shrinkage estimators for covariance matrices.

    PubMed

    Daniels, M J; Kass, R E

    2001-12-01

    Estimation of covariance matrices in small samples has been studied by many authors. Standard estimators, like the unstructured maximum likelihood estimator (ML) or restricted maximum likelihood (REML) estimator, can be very unstable with the smallest estimated eigenvalues being too small and the largest too big. A standard approach to more stably estimating the matrix in small samples is to compute the ML or REML estimator under some simple structure that involves estimation of fewer parameters, such as compound symmetry or independence. However, these estimators will not be consistent unless the hypothesized structure is correct. If interest focuses on estimation of regression coefficients with correlated (or longitudinal) data, a sandwich estimator of the covariance matrix may be used to provide standard errors for the estimated coefficients that are robust in the sense that they remain consistent under misspecification of the covariance structure. With large matrices, however, the inefficiency of the sandwich estimator becomes worrisome. We consider here two general shrinkage approaches to estimating the covariance matrix and regression coefficients. The first involves shrinking the eigenvalues of the unstructured ML or REML estimator. The second involves shrinking an unstructured estimator toward a structured estimator. For both cases, the data determine the amount of shrinkage. These estimators are consistent and give consistent and asymptotically efficient estimates for regression coefficients. Simulations show the improved operating characteristics of the shrinkage estimators of the covariance matrix and the regression coefficients in finite samples. The final estimator chosen includes a combination of both shrinkage approaches, i.e., shrinking the eigenvalues and then shrinking toward structure. We illustrate our approach on a sleep EEG study that requires estimation of a 24 x 24 covariance matrix and for which inferences on mean parameters critically

  8. Effect of the Key Mixture Parameters on Shrinkage of Reactive Powder Concrete

    PubMed Central

    Zubair, Ahmed

    2014-01-01

    Reactive powder concrete (RPC) mixtures are reported to have excellent mechanical and durability characteristics. However, such concrete mixtures having high amount of cementitious materials may have high early shrinkage causing cracking of concrete. In the present work, an attempt has been made to study the simultaneous effects of three key mixture parameters on shrinkage of the RPC mixtures. Considering three different levels of the three key mixture factors, a total of 27 mixtures of RPC were prepared according to 33 factorial experiment design. The specimens belonging to all 27 mixtures were monitored for shrinkage at different ages over a total period of 90 days. The test results were plotted to observe the variation of shrinkage with time and to see the effects of the key mixture factors. The experimental data pertaining to 90-day shrinkage were used to conduct analysis of variance to identify significance of each factor and to obtain an empirical equation correlating the shrinkage of RPC with the three key mixture factors. The rate of development of shrinkage at early ages was higher. The water to binder ratio was found to be the most prominent factor followed by cement content with the least effect of silica fume content. PMID:25050395

  9. Effect of the key mixture parameters on shrinkage of reactive powder concrete.

    PubMed

    Ahmad, Shamsad; Zubair, Ahmed; Maslehuddin, Mohammed

    2014-01-01

    Reactive powder concrete (RPC) mixtures are reported to have excellent mechanical and durability characteristics. However, such concrete mixtures having high amount of cementitious materials may have high early shrinkage causing cracking of concrete. In the present work, an attempt has been made to study the simultaneous effects of three key mixture parameters on shrinkage of the RPC mixtures. Considering three different levels of the three key mixture factors, a total of 27 mixtures of RPC were prepared according to 3(3) factorial experiment design. The specimens belonging to all 27 mixtures were monitored for shrinkage at different ages over a total period of 90 days. The test results were plotted to observe the variation of shrinkage with time and to see the effects of the key mixture factors. The experimental data pertaining to 90-day shrinkage were used to conduct analysis of variance to identify significance of each factor and to obtain an empirical equation correlating the shrinkage of RPC with the three key mixture factors. The rate of development of shrinkage at early ages was higher. The water to binder ratio was found to be the most prominent factor followed by cement content with the least effect of silica fume content. PMID:25050395

  10. Star-Shaped Crystallographic Cracking of Localized Nanoporous Defects.

    PubMed

    Renner, Frank Uwe; Ankah, Genesis Ngwa; Bashir, Asif; Ma, Duancheng; Biedermann, P Ulrich; Shrestha, Buddha Ratna; Nellessen, Monika; Khorashadizadeh, Anahita; Losada-Pérez, Patricia; Duarte, Maria Jazmin; Raabe, Dierk; Valtiner, Markus

    2015-09-01

    On self-assembled monolayer-covered Cu-Au substrates, localized volume shrinkage at initial dealloying sites leads to cracks within the attacked regions. It is started from well-controlled surface structures to gain fundamental insights in the driving mechanisms of localized corrosion and crack formation. Both the crack density and the crack morphology are critically dependent on surface orientation, crystallography, and inhibitor molecule species. PMID:26192203

  11. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Kim, K. S.; Vanstone, R. H.; Malik, S. N.; Laflen, J. H.

    1988-01-01

    A study was performed to examine the applicability of path-independent (P-I) integrals to crack growth problems in hot section components of gas turbine aircraft engines. Alloy 718 was used and the experimental parameters included combined temperature and strain cycling, thermal gradients, elastic-plastic strain levels, and mean strains. A literature review was conducted of proposed P-I integrals, and those capable of analyzing hot section component problems were selected and programmed into the postprocessor of a finite element code. Detailed elastic-plastic finite element analyses were conducted to simulate crack growth and crack closure of the test specimen, and to evaluate the P-I integrals. It was shown that the selected P-I integrals are very effective for predicting crack growth for isothermal conditions.

  12. Spontaneous shrinkage of vestibular schwannoma

    PubMed Central

    Romani, Rossana; Pollock, Jonathan

    2016-01-01

    Background: “Watch, wait, and rescan” (WWR) has an established place as a successful management option for a significant proportion of vestibular schwannomas (VS) as an alternative to microsurgical removal or stereotactic radiotherapy. VS may grow slowly and continuously, followed by stagnation or even shrinkage. We present two case reports of spontaneous shrinkage of VS along with a review of the literature. Case Description: A 29-year-old female presented with a progressive history of visual blurring and intermittent diplopia over 2 months. A 29 mm of maximum intracranial diameter (ICD) VS with secondary obstructive hydrocephalus was diagnosed. The patient underwent a ventriculo-peritoneal shunt with resolution of her symptoms and opted for initial WWR management. Interval scanning between 2007 and 2014 showed progressive reduction in the maximum ICD together with reduction in the degree of central tumor enhancement. Maximum ICD at most recent follow up was 22 mm. A 28-year-old female was referred with right sensorineural deafness. A right VS of maximum ICD of 27 mm was diagnosed. Initial WWR management was planned after discussion. Serial imaging showed an initial increase in the size of the tumor followed by progressive reduction in size. The most recent follow up showed a maximum ICD of 20 mm. Conclusion: Early WWR management can be associated with spontaneous shrinkage of VS over time. Prospective clinical study of larger numbers of such cases using the UK VS database may help to identify predictive factors for the spontaneous regression of VS. PMID:27280055

  13. Cure shrinkage of thermoset composites

    SciTech Connect

    Russell, J.D. )

    1993-01-01

    The shrinkage of thermoset composites during cure was studied using a volumetric dilatometer. The material systems studied were AS4 carbon fiber/Hercules' 3501-6 epoxy, IM7 carbon fiber/Hercules 8551-7A toughened epoxy and IM7 carbon fiber/BASF's 5250-4 bismaleimide. Shrinkage of the samples due to both polymerization and thermal expansion effects was seen. The volume changes of the materials during cure were then compared to results from dynamic mechanical analysis (DMA) and dielectric cure monitoring. Maximums in volume corresponded to minimums in storage and loss modulus from DMA and maximums in the dielectric loss factor. Resin shrinkage during the 177 deg C (350 F) hold corresponded to the onset of polymerization seen by the rapid increase in the storage modulus and the decrease in the dielectric loss factor response due to reduced ion mobility. These results show that volumetric dilatometry can be an effective tool in the development of materials processing strategies and can be useful in studying residual stresses in composites. 9 refs.

  14. Numerical and experimental studies of drying and shrinkage induced microcracking in concrete

    NASA Astrophysics Data System (ADS)

    Jankovic, D.

    2007-12-01

    The aim of this research is to investigate moisture flow in cement paste and Interface Transition Zone, around aggregate, as well as associated shrinkage induced strains, and subsequent microcracking. Two coupled methods are used: numerical simulations and experiments. The moisture flow is numerically simulated by Lattice Gas Automata, while drying experiments are performed in Environmental Scanning Electron Microscope (ESEM) in order to determine drying deformations and shrinkage coefficient. The moisture movement simulation by Lattice Gas Automata, a type of cellular automata, involves different drying collision rules, which results in different density (moisture content) at each node. Special attention is given to the effect of the presence of aggregate particles on the moisture flow in concrete, which are considered rigid obstacles. The shrinkage deformation is considered a linear function of the moisture content if the relative humidity, RH does not exceed 40%. The calculated moisture gradient from the numerical analysis and an assumed shrinkage coefficient are used to calculate drying shrinkage induced strains and stresses using the basic equations. To determine the drying shrinkage coefficient for the RH range 100% to 20%, new experimental techniques of drying in ESEM are used. Small paste samples are cast in a specially developed mould with 2 mm thickness and afterwards carefully grounded and polished to a thickness of required 1 mm. The used variables in the tests are: various cement types, w/c ratio, sample age and curing conditions. Drying shrinkage displacements and strains are determined in order to calculate the drying shrinkage coefficient. These experimentally obtained values of the coefficient are compared with the literature data and used in numerical simulations of shrinkage induced strains, stresses and cracking in drying concrete.

  15. Towards a better understanding of the cracking behavior in soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding and modeling shrinkage-induced cracks helps bridge the gap between flow problem in the laboratory and at the field. Modeling flow at the field scale with Darcian fluxes developed at the laboratory scales is challenged with preferential flows attributed to the cracking behavior of soils...

  16. Crack growth in single-crystal silicon

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Leipold, M. H.

    1986-01-01

    Crack growth in single-crystal silicon at room temperature in air was evaluated by double torsion (DT) load-relaxation method and monitored by acoustic emission (AE) technique. Both DT and AE methods indicated lack of subcritical crack growth in silicon. At the critical stress intensity factor, the crack front was found to be jumping several times in a 'mirror' region and then followed by fast crack growth in a 'hackle' region. Hackle marks were found to be associated with plastic deformation at the tip of the fast moving crack. No dislocation etch pits were found in the 'mirror' region, in which crack growth may result from interatomic bonds broken at the crack tip under stress without any plastic deformation. Acoustic emission appears to be spontaneously generated from both interatomic bonds broken and dislocation generation at the moving crack tip during the crack growth in single-crystal silicon.

  17. Devitrification and shrinkage behavior of silica fibers

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1972-01-01

    Devitrification and shrinkage of three batches of silica fibers were investigated in the temperature range of 1200 to 1350 C. Fibers with high water and impurity content devitrified rapidly to cristobalite and quartz and exhibited rapid, but the least amount of, shrinkage. A batch with low water and impurity content devitrified more slowly to cristobalite only and underwent severe shrinkage by the mechanism of viscous flow. A third batch of intermediate purity level and low water content devitrified at a moderate rate mainly to cristobalite but shrunk very rapidly. Completely devitrified silica fibers did not exhibit any further shrinkage.

  18. Cracking of high-solids epoxy coatings on steel structures in The Netherlands

    SciTech Connect

    Bijen, J. ); Montfort, J. van

    1999-05-01

    High-solids epoxy coatings on steel flood barriers in The Netherlands showed cracking shortly after application. An investigation revealed the cause of cracking. It appeared that shrinkage-induced stresses caused the coatings to fail. Two cracking phenomena are described and simulated by an accelerated test and computer modeling.

  19. Corrosion cracking

    SciTech Connect

    Goel, V.S.

    1986-01-01

    Various papers on corrosion cracking are presented. The topics addressed include: unique case studies on hydrogen embrittlement failures in components used in aeronautical industry; analysis of subcritical cracking in a Ti-5Al-2.5Sn liquid hydrogen control valve; corrosion fatigue and stress corrosion cracking of 7475-T7351 aluminum alloy; effects of salt water environment and loading frequency on crack initiation in 7075-T7651 aluminum alloy and Ti-6Al-4V; stress corrosion cracking of 4340 steel in aircraft ignition starter residues. Also discussed are: stress corrosion cracking of a titanium alloy in a hydrogen-free environment; automation in corrosion fatigue crack growth rate measurements; the breaking load method, a new approach for assessing resistance to growth of early stage stress corrosion cracks; stress corrosion cracking properties of 2090 Al-Li alloy; repair welding of cracked free machining Invar 36; radial bore cracks in rotating disks.

  20. Opening and closing of cracks at high cyclic strains

    NASA Technical Reports Server (NTRS)

    Iyyer, N. S.; Dowling, N. E.

    1986-01-01

    The closure behavior of cracks of different length and at different cyclic strain levels (ranging from predominantly elastic to grossly plastic strains) was studied to observe the effect of residual crack-tip plasticity on crack closure. Cracks were initiated either naturally or artificially (from electric discharge machining pits) in uniaxial test specimens of strengthened alloy steel AISI 4340 with a grain size of 0.016 mm. It was found that, at high strains, cracks closed only when the lowest stress level in the cycle was approached. The stress or the strain opening level depended upon the exact point along the crack length where the observations were made. As the plastic deformation increased, the relative crack opening level was found to decrease and approach the value of stress ratio R. The experimental results were compared with those of three analytical models of crack closure and opening, demonstrating the limitations of the currently available elastic-plastic crack growth analysis.

  1. Recycle plastics into feedstocks

    SciTech Connect

    Kastner, H.; Kaminsky, W.

    1995-05-01

    Thermal cracking of mixed-plastics wastes with a fluidized-bed reactor can be a viable and cost-effective means to meet mandatory recycling laws. Strict worldwide environmental statutes require the hydrocarbon processing industry (HPI) to develop and implement product applications and technologies that reuse post-consumer mixed-plastics waste. Recycling or reuse of plastics waste has a broad definition. Recycling entails more than mechanical regranulation and remelting of polymers for film and molding applications. A European consortium of academia and refiners have investigated if it is possible and profitable to thermally crack plastics into feedstocks for refining and petrochemical applications. Development and demonstration of pyrolysis methods show promising possibilities of converting landfill garbage into valuable feedstocks such as ethylene, propylene, BTX, etc. Fluidized-bed reactor technologies offer HPI operators a possible avenue to meet recycling laws, conserve raw materials and yield a profit. The paper describes thermal cracking for feedstocks and pyrolysis of polyolefins.

  2. A cure shrinkage model for analyzing the stresses and strains in encapsulated assemblies

    NASA Astrophysics Data System (ADS)

    Chambers, R. S.; Lagasse, R. R.; Guess, T. R.; Plazek, D. J.; Bero, C.

    Electrical component assemblies are encapsulated to provide delicate parts with voltage isolation and protection against damage caused by shock, vibration, and harsh atmospheric environments. During cure, thermosetting resins shrink and harden simultaneously. If the natural deformation of the resin is constrained by adhesion to the mold or to relatively stiff embedded components, cure shrinkage stresses are generated in the encapsulant. Subsequent cooling or thermal cycling produces additional stresses that are caused by the mismatches in thermal strains among the materials in the encapsulated assembly. Although cure shrinkage stresses frequently are neglected because they are considerably smaller than thermal stresses, cure shrinkage stresses can cause delamination or fractures in the encapsulant, since the partially cured resin is not as tough as the fully cured material. Cracks generated during cure can compromise performance (e.g., permit dielectric breakdown), degrade a component's protection, and grow under subsequent thermal cycling producing residual stresses that differ from those found in uncracked assemblies.

  3. Compressed sensing recovery via nonconvex shrinkage penalties

    NASA Astrophysics Data System (ADS)

    Woodworth, Joseph; Chartrand, Rick

    2016-07-01

    The {{\\ell }}0 minimization of compressed sensing is often relaxed to {{\\ell }}1, which yields easy computation using the shrinkage mapping known as soft thresholding, and can be shown to recover the original solution under certain hypotheses. Recent work has derived a general class of shrinkages and associated nonconvex penalties that better approximate the original {{\\ell }}0 penalty and empirically can recover the original solution from fewer measurements. We specifically examine p-shrinkage and firm thresholding. In this work, we prove that given data and a measurement matrix from a broad class of matrices, one can choose parameters for these classes of shrinkages to guarantee exact recovery of the sparsest solution. We further prove convergence of the algorithm iterative p-shrinkage (IPS) for solving one such relaxed problem.

  4. Fracture mechanics parameters for small fatigue cracks

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1992-01-01

    This paper presents a review of some common small-crack test specimens, the underlying causes of the small-crack effect, and the fracture-mechanics parameters that have been used to correlate or predict their growth behavior. This review concentrates on continuum mechanics concepts and on the nonlinear behavior of small cracks. The paper reviews some stress-intensity factor solutions for small-crack test specimens and develops some simple elastic-plastic J integral and cyclic J integral expressions that include the influence of crack-closure. These parameters were applied to small-crack growth data on two aluminum alloys, and a fatigue life prediction methodology is demonstrated. For these materials, the crack-closure transient from the plastic wake was found to be the major factor in causing the small-crack effect.

  5. Temperature dependence of autogenous shrinkage of silica fume cement pastes with a very low water–binder ratio

    SciTech Connect

    Maruyama, I.; Teramoto, A.

    2013-08-15

    Ultra-high-strength concrete with a large unit cement content undergoes considerable temperature increase inside members due to hydration heat, leading to a higher risk of internal cracking. Hence, the temperature dependence of autogenous shrinkage of cement pastes made with silica fume premixed cement with a water–binder ratio of 0.15 was studied extensively. Development of autogenous shrinkage showed different behaviors before and after the inflection point, and dependence on the temperature after mixing and subsequent temperature histories. The difference in autogenous shrinkage behavior poses problems for winter construction because autogenous shrinkage may increase with decrease in temperature after mixing before the inflection point and with increase in temperature inside concrete members with large cross sections.

  6. Effect of shrinkage and moisture content on the physical characteristics of blended cement mortars

    SciTech Connect

    Kanna, V.; Olson, R.A.; Jennings, H.M.

    1998-10-01

    The effects of drying on mortars containing Portland cement blended with fly ash or slag on the shrinkage, extent of surface cracking, pore size distribution as measured by mercury intrusion porosimetry, flexural strength, fracture toughness, and Young`s modulus are reported. Specimens were exposed to conditions of 100% relative humidity (RH), 50% RH, and/or oven-drying at 105 C. Drying coarsened the pore structure and increased the density of surface cracks, but surprisingly increased the flexural strength and the fracture toughness, and as anticipated lowered the Young`s modulus. This was regardless of the content of mineral admixture.

  7. Study of multiple cracks in airplane fuselage by micromechanics and complex variables

    NASA Technical Reports Server (NTRS)

    Denda, Mitsunori; Dong, Y. F.

    1994-01-01

    Innovative numerical techniques for two dimensional elastic and elastic-plastic multiple crack problems are presented using micromechanics concepts and complex variables. The simplicity and the accuracy of the proposed method will enable us to carry out the multiple-site fatigue crack propagation analyses for airplane fuselage by incorporating such features as the curvilinear crack path, plastic deformation, coalescence of cracks, etc.

  8. Selective Formation of Zigzag Edges in Graphene Cracks.

    PubMed

    Fujihara, Miho; Inoue, Ryosuke; Kurita, Rei; Taniuchi, Toshiyuki; Motoyui, Yoshihito; Shin, Shik; Komori, Fumio; Maniwa, Yutaka; Shinohara, Hisanori; Miyata, Yasumitsu

    2015-09-22

    We report the thermally induced unconventional cracking of graphene to generate zigzag edges. This crystallography-selective cracking was observed for as-grown graphene films immediately following the cooling process subsequent to chemical vapor deposition (CVD) on Cu foil. Results from Raman spectroscopy show that the crack-derived edges have smoother zigzag edges than the chemically formed grain edges of CVD graphene. Using these cracks as nanogaps, we were also able to demonstrate the carrier tuning of graphene through the electric field effect. Statistical analysis of visual observations indicated that the crack formation results from uniaxial tension imparted by the Cu substrates together with the stress concentration at notches in the polycrystalline graphene films. On the basis of simulation results using a simplified thermal shrinkage model, we propose that the cooling-induced tension is derived from the transient lattice expansion of narrow Cu grains imparted by the thermal shrinkage of adjacent Cu grains. PMID:26288323

  9. Analysis of crack closure under plane strain conditions

    NASA Technical Reports Server (NTRS)

    Fleck, Norman A.; Newman, James C., Jr.

    1988-01-01

    The phenomenon of plasticity-induced crack closure is associated with the development of residual material on the flanks of an advancing fatigue crack. While it is easy to see that this residual material can come from the side faces of a specimen under plane stress conditions, it is difficult to discover the origin of this extra volume of material on the crack flanks when it is assumed that plane deformations occur and plastic flow is incompressible. The purpose of this paper is to determine whether plasticity-induced fatigue crack closure occurs in an elastic-perfectly plastic body under plane strain conditions.

  10. Analysis of crack closure under plane strain conditions

    NASA Technical Reports Server (NTRS)

    Fleck, N. A.; Newman, J. C.

    1986-01-01

    The phenomenon of plasticity-induced crack closure is associated with the development of residual material on the flanks of an advancing fatigue crack. While it is easy to see that this residual material can come from the side faces of a specimen under plane stress conditions, it is difficult to discover the origin of this extra volume of material on the crack flanks when it is assumed that plane deformations occur and plastic flow is incompressible. The purpose of this paper is to determine whether plasticity-induced fatigue crack closure occurs in an elastic-perfectly plastic body under plane strain conditions.

  11. Crack-free conditions in welding of glass by ultrashort laser pulse.

    PubMed

    Miyamoto, Isamu; Cvecek, Kristian; Schmidt, Michael

    2013-06-17

    The spatial distribution of the laser energy absorbed by nonlinear absorption process in bulk glass w(z) is determined and thermal cycles due to the successive ultrashort laser pulse (USLP) is simulated using w(z) based on the transient thermal conduction model. The thermal stress produced in internal melting of bulk glass by USLP is qualitatively analyzed based on a simple thermal stress model, and crack-free conditions are studied in glass having large coefficient of thermal expansion. In heating process, cracks are prevented when the laser pulse impinges into glass with temperatures higher than the softening temperature of glass. In cooling process, shrinkage stress is suppressed to prevent cracks, because the embedded molten pool produced by nonlinear absorption process behaves like an elastic body under the compressive stress field unlike the case of CW-laser welding where the molten pool having a free surface produced by linear absorption process is plastically deformed under the compressive stress field. PMID:23787618

  12. Analysis of internal crack healing mechanism under rolling deformation.

    PubMed

    Gao, Haitao; Ai, Zhengrong; Yu, Hailiang; Wu, Hongyan; Liu, Xianghua

    2014-01-01

    A new experimental method, called the 'hole filling method', is proposed to simulate the healing of internal cracks in rolled workpieces. Based on the experimental results, the evolution in the microstructure, in terms of diffusion, nucleation and recrystallisation were used to analyze the crack healing mechanism. We also validated the phenomenon of segmented healing. Internal crack healing involves plastic deformation, heat transfer and an increase in the free energy introduced by the cracks. It is proposed that internal cracks heal better under high plastic deformation followed by slow cooling after rolling. Crack healing is controlled by diffusion of atoms from the matrix to the crack surface, and also by the nucleation and growth of ferrite grain on the crack surface. The diffusion mechanism is used to explain the source of material needed for crack healing. The recrystallisation mechanism is used to explain grain nucleation and growth, accompanied by atomic migration to the crack surface. PMID:25003518

  13. Analysis of Internal Crack Healing Mechanism under Rolling Deformation

    PubMed Central

    Gao, Haitao; Ai, Zhengrong; Yu, Hailiang; Wu, Hongyan; Liu, Xianghua

    2014-01-01

    A new experimental method, called the ‘hole filling method’, is proposed to simulate the healing of internal cracks in rolled workpieces. Based on the experimental results, the evolution in the microstructure, in terms of diffusion, nucleation and recrystallisation were used to analyze the crack healing mechanism. We also validated the phenomenon of segmented healing. Internal crack healing involves plastic deformation, heat transfer and an increase in the free energy introduced by the cracks. It is proposed that internal cracks heal better under high plastic deformation followed by slow cooling after rolling. Crack healing is controlled by diffusion of atoms from the matrix to the crack surface, and also by the nucleation and growth of ferrite grain on the crack surface. The diffusion mechanism is used to explain the source of material needed for crack healing. The recrystallisation mechanism is used to explain grain nucleation and growth, accompanied by atomic migration to the crack surface. PMID:25003518

  14. Fatigue-Crack-Growth Structural Analysis

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1986-01-01

    Elastic and plastic deformations calculated under variety of loading conditions. Prediction of fatigue-crack-growth lives made with FatigueCrack-Growth Structural Analysis (FASTRAN) computer program. As cyclic loads are applied to initial crack configuration, FASTRAN predicts crack length and other parameters until complete break occurs. Loads are tensile or compressive and of variable or constant amplitude. FASTRAN incorporates linear-elastic fracture mechanics with modifications of load-interaction effects caused by crack closure. FASTRAN considered research tool, because of lengthy calculation times. FASTRAN written in FORTRAN IV for batch execution.

  15. The noncontinuum crack tip deformation behavior of surface microcracks

    NASA Astrophysics Data System (ADS)

    Morris, W. L.

    1980-07-01

    The crack tip opening displacement (CTOD) of small surface fatigue cracks (lengths of the grain size) in Al 2219-T851 depends upon the location of a crack relative to the grain boundaries. Both CTOD and crack tip closure stress are greatest when the crack tip is a large distance from the next grain boundary in the direction of crack propagation. Contrary to behavioral trends predicted by continuum fracture mechanics, crack length has no detectable effect on the contribution of plastic deformation to CTOD. It is apparent from these observations that the region of significant plastic deformation is confined by the grain boundaries, resulting in a plastic zone size that is insensitive to crack length and to external load.

  16. Heat shrinkage of electron beam modified EVA

    NASA Astrophysics Data System (ADS)

    Datta, Sujit K.; Chaki, T. K.; Tikku, V. K.; Pradhan, N. K.; Bhowmick, A. K.

    1997-10-01

    Heat shrinkage of electron beam modified ethylene vinyl acetate copolymer (EVA) has been investigated over a range of times, temperatures, stretching, irradiation doses and trimethylolpropane trimethacrylate (TMPTMA) levels. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) and stretched (100% elongation) sample shrinks to a maximum level when kept at 453K temperature for 60 s. The heat shrinkage of samples irradiated with radiation doses of 20, 50, 100 and 150 kGy increases sharply with increasing stretching in the initial stage. Amnesia rating decreases with increasing radiation dose and TMPTMA level as well as gel content. The high radiation dose and TMPTMA level lower the heat shrinkage due to the chain scission. The effect of temperature at which extension is carried out on heat shrinkage is marginal. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) EVA tubes of different dimensions expanded in a laboratory grade tube expander show similar behaviour at 453K and 60 s. The X-ray and DSC studies reveal that the crystallinity increases on stretching due to orientation of chains and it decreases to a considerable extent on heat shrinking. The theoretical and experimental values of heat shrinkage for tubes and rectangular strips are in good accord, when the radiation dose is 50 kGy and TMPTMA level 1%.

  17. Non-Ionotropic NMDA Receptor Signaling Drives Activity-Induced Dendritic Spine Shrinkage

    PubMed Central

    Stein, Ivar S.; Gray, John A.

    2015-01-01

    The elimination of dendritic spine synapses is a critical step in the refinement of neuronal circuits during development of the cerebral cortex. Several studies have shown that activity-induced shrinkage and retraction of dendritic spines depend on activation of the NMDA-type glutamate receptor (NMDAR), which leads to influx of extracellular calcium ions and activation of calcium-dependent phosphatases that modify regulators of the spine cytoskeleton, suggesting that influx of extracellular calcium ions drives spine shrinkage. Intriguingly, a recent report revealed a novel non-ionotropic function of the NMDAR in the regulation of synaptic strength, which relies on glutamate binding but is independent of ion flux through the receptor (Nabavi et al., 2013). Here, we tested whether non-ionotropic NMDAR signaling could also play a role in driving structural plasticity of dendritic spines. Using two-photon glutamate uncaging and time-lapse imaging of rat hippocampal CA1 neurons, we show that low-frequency glutamatergic stimulation results in shrinkage of dendritic spines even in the presence of the NMDAR d-serine/glycine binding site antagonist 7-chlorokynurenic acid (7CK), which fully blocks NMDAR-mediated currents and Ca2+ transients. Notably, application of 7CK or MK-801 also converts spine enlargement resulting from a high-frequency uncaging stimulus into spine shrinkage, demonstrating that strong Ca2+ influx through the NMDAR normally overcomes a non-ionotropic shrinkage signal to drive spine growth. Our results support a model in which NMDAR signaling, independent of ion flux, drives structural shrinkage at spiny synapses. SIGNIFICANCE STATEMENT Dendritic spine elimination is vital for the refinement of neural circuits during development and has been linked to improvements in behavioral performance in the adult. Spine shrinkage and elimination have been widely accepted to depend on Ca2+ influx through NMDA-type glutamate receptors (NMDARs) in conjunction with long

  18. Cyclic plasticity models and application in fatigue analysis

    NASA Technical Reports Server (NTRS)

    Kalev, I.

    1981-01-01

    An analytical procedure for prediction of the cyclic plasticity effects on both the structural fatigue life to crack initiation and the rate of crack growth is presented. The crack initiation criterion is based on the Coffin-Manson formulae extended for multiaxial stress state and for inclusion of the mean stress effect. This criterion is also applied for the accumulated damage ahead of the existing crack tip which is assumed to be related to the crack growth rate. Three cyclic plasticity models, based on the concept of combination of several yield surfaces, are employed for computing the crack growth rate of a crack plane stress panel under several cyclic loading conditions.

  19. Correction of EB-induced shrinkage in contour measurements

    NASA Astrophysics Data System (ADS)

    Ohashi, Takeyoshi; Hotta, Shoji; Yamaguchi, Atsuko; Tanaka, Junichi; Kawada, Hiroki

    2014-04-01

    We have proposed a new method for correcting electron beam (EB)-induced photoresist shrinkage in two-dimensional pattern contours extracted from a scanning electron microscope image. This method restores the original shrinkage-free contour from the experimentally determined "shrunk contour", based on a shrinkage model which takes into account of the elastic nature of the shrinkage phenomena caused by the photoresist-volume reduction. Verification of this shrinkage model was demonstrated by using ArF resist patterns as follows. First, the model was calibrated with the shrinkage data of several line patters with different linewidth prior to the contour correction. Next, the amount of shrinkage of elbow patterns was measured by comparing its contours obtained with small and sufficiently large EB dosages. It was found that the shrinkage of the inner edge of the elbow corner was smaller than that of the outer edge, which can be interpreted as a result of the elastic deformation. Finally, validity of shrinkage correction was examined. The model calculation correctly reproduced the observed shrinkage including its dependence on the location in the pattern. The restored contour showed a good consistency with the experimental results and the total root-mean-square error of the shrinkage correction was 0.5 nm. This result confirmed that our shrinkage model adequately describes the shrinkage of two dimensional patterns. Consequently, proposed shrinkage correction method is expected to improve the accuracy of contour measurements by a critical dimension-scanning electron microscope.

  20. S-N curve for crack initiation and an estimate of fatigue crack nucleus size

    SciTech Connect

    Yang, C.Y.; Palusamy, S.S.; Liaw, P.K.; Ren, W.

    1997-12-01

    A study of fatigue life prediction was made for ASTM A533 Grade B nuclear pressure vessel steel. The objectives of the study were to predict the S-N curve, representing crack initiation, and to estimate the average crack nucleus size using an engineering approach. The plastic replica method was used to monitor crack initiation and growth from well-polished specimens under uniaxial tension-tension stressing. Two methods were used to estimate crack nucleus size: (1) backcalculating crack length via the da/dN versus {Delta}K relationship, and (2) evaluating an assumed relationship between the endurance limit and the threshold stress intensity factor range. Crack nucleus size estimated by these two methods are fairly consistent when the effects of crack closure and plastic zone correction are taken into account.

  1. Shrinkage and Sintering Behavior of a Low-Temperature Sinterable Nanosilver Die-Attach Paste

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Zhao, Meihua; Chen, Xu; Lu, Guo-Quan; Ngo, Khai; Luo, Shufang

    2012-09-01

    The drying and densification behavior of a nanosilver paste was studied by shrinkage and weight-loss measurements to provide fundamental understanding on the sintering behavior of the nanomaterial for packaging power devices and modules. The measured shrinkage behavior was found to be in good agreement with the weight-loss behavior of the paste as measured by thermogravitational analysis, and the comparison offered direct evidence of ~10% shrinkage contributed by late-stage densification of silver nanoparticles (NPs). It was found that sintered silver joints could be achieved without cracks or delamination under a ramp-soak temperature profile for bonding small-area chips, e.g., 3 mm × 3 mm or smaller. However, for bonding large-area chips, e.g., 5 mm × 5 mm or larger, rapid evaporation of the entrapped organic species caused the chips to delaminate, leading to large longitudinal cracks at the joint interface. Finally, examination of the microstructure evolution of the silver die-attach material revealed that binder molecules inhibited necking of the silver NPs and delayed densification during the sintering process of the nanosilver paste.

  2. Effect of size on cracking of materials

    NASA Technical Reports Server (NTRS)

    Glucklick, J.

    1971-01-01

    Brittle behavior of large mild steel elements, glass plasticity, and fatigue specimen size sensitivity are manifestations of strain-energy size effect. Specimens physical size effect on material cracking initiation occurs according to flaw distribution statistics. Fracture size effect depends on stability or instability of crack propagation.

  3. Modeling the Interactions Between Multiple Crack Closure Mechanisms at Threshold

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Riddell, William T.; Piascik, Robert S.

    2003-01-01

    A fatigue crack closure model is developed that includes interactions between the three closure mechanisms most likely to occur at threshold; plasticity, roughness, and oxide. This model, herein referred to as the CROP model (for Closure, Roughness, Oxide, and Plasticity), also includes the effects of out-of plane cracking and multi-axial loading. These features make the CROP closure model uniquely suited for, but not limited to, threshold applications. Rough cracks are idealized here as two-dimensional sawtooths, whose geometry induces mixed-mode crack- tip stresses. Continuum mechanics and crack-tip dislocation concepts are combined to relate crack face displacements to crack-tip loads. Geometric criteria are used to determine closure loads from crack-face displacements. Finite element results, used to verify model predictions, provide critical information about the locations where crack closure occurs.

  4. Kinetics of fatigue cracks in iron in electrolytic hydrogen impregnation

    SciTech Connect

    Pokhmurskii, V.I.; Bilyi, L.M.

    1985-05-01

    Fatigue failure of metals is localized in the zone of plastic deformation at the tip of the developing crack. Crack development depends to a large extent upon the parameters of the deformed volume, the loading conditions, and features of the material microstructure. It may be assumed that the medium, especially a hydrogen-impregnating medium, leads to a change in the zone of plastic deformation and thereby influences the rate of fatigue crack growth. This work is devoted to a study of cyclic crack resistance and determination of the zone of plastic deformation of failure specimens of Armco iron under conditions of the action of a hydrogen-impregnating medium.

  5. Compensating for Shrinkage in Machined Ceramics

    NASA Technical Reports Server (NTRS)

    Aguilar, L.; Fitchett, B. T.

    1986-01-01

    Technique insures machined ceramics shrink to correct dimensions after baked in kiln. New method automatically compensates during machining for shrinkage later, when part baked. Applicable to numerically controlled machines that include provision to adjust for variations in cuttingtool size, but do not provide for automatic verification of dimensions of machined parts.

  6. Cross-Validation, Shrinkage, and Multiple Regression.

    ERIC Educational Resources Information Center

    Hynes, Kevin

    One aspect of multiple regression--the shrinkage of the multiple correlation coefficient on cross-validation is reviewed. The paper consists of four sections. In section one, the distinction between a fixed and a random multiple regression model is made explicit. In section two, the cross-validation paradigm and an explanation for the occurrence…

  7. A Bayesian Shrinkage Approach for AMMI Models.

    PubMed

    da Silva, Carlos Pereira; de Oliveira, Luciano Antonio; Nuvunga, Joel Jorge; Pamplona, Andrezza Kéllen Alves; Balestre, Marcio

    2015-01-01

    Linear-bilinear models, especially the additive main effects and multiplicative interaction (AMMI) model, are widely applicable to genotype-by-environment interaction (GEI) studies in plant breeding programs. These models allow a parsimonious modeling of GE interactions, retaining a small number of principal components in the analysis. However, one aspect of the AMMI model that is still debated is the selection criteria for determining the number of multiplicative terms required to describe the GE interaction pattern. Shrinkage estimators have been proposed as selection criteria for the GE interaction components. In this study, a Bayesian approach was combined with the AMMI model with shrinkage estimators for the principal components. A total of 55 maize genotypes were evaluated in nine different environments using a complete blocks design with three replicates. The results show that the traditional Bayesian AMMI model produces low shrinkage of singular values but avoids the usual pitfalls in determining the credible intervals in the biplot. On the other hand, Bayesian shrinkage AMMI models have difficulty with the credible interval for model parameters, but produce stronger shrinkage of the principal components, converging to GE matrices that have more shrinkage than those obtained using mixed models. This characteristic allowed more parsimonious models to be chosen, and resulted in models being selected that were similar to those obtained by the Cornelius F-test (α = 0.05) in traditional AMMI models and cross validation based on leave-one-out. This characteristic allowed more parsimonious models to be chosen and more GEI pattern retained on the first two components. The resulting model chosen by posterior distribution of singular value was also similar to those produced by the cross-validation approach in traditional AMMI models. Our method enables the estimation of credible interval for AMMI biplot plus the choice of AMMI model based on direct posterior

  8. A Bayesian Shrinkage Approach for AMMI Models

    PubMed Central

    de Oliveira, Luciano Antonio; Nuvunga, Joel Jorge; Pamplona, Andrezza Kéllen Alves

    2015-01-01

    Linear-bilinear models, especially the additive main effects and multiplicative interaction (AMMI) model, are widely applicable to genotype-by-environment interaction (GEI) studies in plant breeding programs. These models allow a parsimonious modeling of GE interactions, retaining a small number of principal components in the analysis. However, one aspect of the AMMI model that is still debated is the selection criteria for determining the number of multiplicative terms required to describe the GE interaction pattern. Shrinkage estimators have been proposed as selection criteria for the GE interaction components. In this study, a Bayesian approach was combined with the AMMI model with shrinkage estimators for the principal components. A total of 55 maize genotypes were evaluated in nine different environments using a complete blocks design with three replicates. The results show that the traditional Bayesian AMMI model produces low shrinkage of singular values but avoids the usual pitfalls in determining the credible intervals in the biplot. On the other hand, Bayesian shrinkage AMMI models have difficulty with the credible interval for model parameters, but produce stronger shrinkage of the principal components, converging to GE matrices that have more shrinkage than those obtained using mixed models. This characteristic allowed more parsimonious models to be chosen, and resulted in models being selected that were similar to those obtained by the Cornelius F-test (α = 0.05) in traditional AMMI models and cross validation based on leave-one-out. This characteristic allowed more parsimonious models to be chosen and more GEI pattern retained on the first two components. The resulting model chosen by posterior distribution of singular value was also similar to those produced by the cross-validation approach in traditional AMMI models. Our method enables the estimation of credible interval for AMMI biplot plus the choice of AMMI model based on direct posterior

  9. Atomic simulation of cracks under mixed mode loading

    NASA Technical Reports Server (NTRS)

    Mullins, M.

    1984-01-01

    A discrete atomic model of a crack tip in iron under mixed mode loads is examined. The results indicate that the behavior of the crack at the atomic scale as a function of the ratio of mode I to mode II component of load is quite complex. In general, crack tip plasticity appears to increase as the mode II component of load increases.

  10. Visual simulation of fatigue crack growth

    SciTech Connect

    Wang, S.; Margolin, H.; Lin, F.B.

    1998-07-01

    An attempt has been made to visually simulate fatigue crack propagation from a precrack. An integrated program was developed for this purpose. The crack-tip shape was determined at four load positions in the first load cycle. The final shape was a blunt front with an ear profile at the precrack tip. A more general model, schematically illustrating the mechanism of fatigue crack growth and striation formation in a ductile material, was proposed based on this simulation. According to the present model, fatigue crack growth is an intermittent process; cyclic plastic shear strain is the driving force applied to both state 1 and 2 crack growth. No fracture mode transition occurs between the two stages in the present study. The crack growth direction alternates, moving up and down successively, producing fatigue striations. A brief examination has been made of the crack growth path in a ductile two-phase material.

  11. Shrinkage of Dental Composite in Simulated Cavity Measured with Digital Image Correlation

    PubMed Central

    Li, Jianying; Thakur, Preetanjali; Fok, Alex S. L.

    2014-01-01

    Polymerization shrinkage of dental resin composites can lead to restoration debonding or cracked tooth tissues in composite-restored teeth. In order to understand where and how shrinkage strain and stress develop in such restored teeth, Digital Image Correlation (DIC) was used to provide a comprehensive view of the displacement and strain distributions within model restorations that had undergone polymerization shrinkage. Specimens with model cavities were made of cylindrical glass rods with both diameter and length being 10 mm. The dimensions of the mesial-occlusal-distal (MOD) cavity prepared in each specimen measured 3 mm and 2 mm in width and depth, respectively. After filling the cavity with resin composite, the surface under observation was sprayed with first a thin layer of white paint and then fine black charcoal powder to create high-contrast speckles. Pictures of that surface were then taken before curing and 5 min after. Finally, the two pictures were correlated using DIC software to calculate the displacement and strain distributions. The resin composite shrunk vertically towards the bottom of the cavity, with the top center portion of the restoration having the largest downward displacement. At the same time, it shrunk horizontally towards its vertical midline. Shrinkage of the composite stretched the material in the vicinity of the “tooth-restoration” interface, resulting in cuspal deflections and high tensile strains around the restoration. Material close to the cavity walls or floor had direct strains mostly in the directions perpendicular to the interfaces. Summation of the two direct strain components showed a relatively uniform distribution around the restoration and its magnitude equaled approximately to the volumetric shrinkage strain of the material. PMID:25079865

  12. Shrinkage of dental composite in simulated cavity measured with digital image correlation.

    PubMed

    Li, Jianying; Thakur, Preetanjali; Fok, Alex S L

    2014-01-01

    Polymerization shrinkage of dental resin composites can lead to restoration debonding or cracked tooth tissues in composite-restored teeth. In order to understand where and how shrinkage strain and stress develop in such restored teeth, Digital Image Correlation (DIC) was used to provide a comprehensive view of the displacement and strain distributions within model restorations that had undergone polymerization shrinkage. Specimens with model cavities were made of cylindrical glass rods with both diameter and length being 10 mm. The dimensions of the mesial-occlusal-distal (MOD) cavity prepared in each specimen measured 3 mm and 2 mm in width and depth, respectively. After filling the cavity with resin composite, the surface under observation was sprayed with first a thin layer of white paint and then fine black charcoal powder to create high-contrast speckles. Pictures of that surface were then taken before curing and 5 min after. Finally, the two pictures were correlated using DIC software to calculate the displacement and strain distributions. The resin composite shrunk vertically towards the bottom of the cavity, with the top center portion of the restoration having the largest downward displacement. At the same time, it shrunk horizontally towards its vertical midline. Shrinkage of the composite stretched the material in the vicinity of the "tooth-restoration" interface, resulting in cuspal deflections and high tensile strains around the restoration. Material close to the cavity walls or floor had direct strains mostly in the directions perpendicular to the interfaces. Summation of the two direct strain components showed a relatively uniform distribution around the restoration and its magnitude equaled approximately to the volumetric shrinkage strain of the material. PMID:25079865

  13. Effect of expansive admixtures on the shrinkage and mechanical properties of high-performance fiber-reinforced cement composites.

    PubMed

    Choi, Won-Chang; Yun, Hyun-Do

    2013-01-01

    High-performance fiber-reinforced cement composites (HPFRCCs) are characterized by strain-hardening and multiple cracking during the inelastic deformation process, but they also develop high shrinkage strain. This study investigates the effects of replacing Portland cement with calcium sulfoaluminate-based expansive admixtures (CSA EXAs) to compensate for the shrinkage and associated mechanical behavior of HPFRCCs. Two types of CSA EXA (CSA-K and CSA-J), each with a different chemical composition, are used in this study. Various replacement ratios (0%, 8%, 10%, 12%, and 14% by weight of cement) of CSA EXA are considered for the design of HPFRCC mixtures reinforced with 1.5% polyethylene (PE) fibers by volume. Mechanical properties, such as shrinkage compensation, compressive strength, flexural strength, and direct tensile strength, of the HPFRCC mixtures are examined. Also, crack width and development are investigated to determine the effects of the EXAs on the performance of the HPFRCC mixtures, and a performance index is used to quantify the performance of mixture. The results indicate that replacements of 10% CSA-K (Type 1) and 8% CSA-J (Type 2) considerably enhance the mechanical properties and reduce shrinkage of HPFRCCs. PMID:24376382

  14. Effect of Expansive Admixtures on the Shrinkage and Mechanical Properties of High-Performance Fiber-Reinforced Cement Composites

    PubMed Central

    Choi, Won-Chang; Yun, Hyun-Do

    2013-01-01

    High-performance fiber-reinforced cement composites (HPFRCCs) are characterized by strain-hardening and multiple cracking during the inelastic deformation process, but they also develop high shrinkage strain. This study investigates the effects of replacing Portland cement with calcium sulfoaluminate-based expansive admixtures (CSA EXAs) to compensate for the shrinkage and associated mechanical behavior of HPFRCCs. Two types of CSA EXA (CSA-K and CSA-J), each with a different chemical composition, are used in this study. Various replacement ratios (0%, 8%, 10%, 12%, and 14% by weight of cement) of CSA EXA are considered for the design of HPFRCC mixtures reinforced with 1.5% polyethylene (PE) fibers by volume. Mechanical properties, such as shrinkage compensation, compressive strength, flexural strength, and direct tensile strength, of the HPFRCC mixtures are examined. Also, crack width and development are investigated to determine the effects of the EXAs on the performance of the HPFRCC mixtures, and a performance index is used to quantify the performance of mixture. The results indicate that replacements of 10% CSA-K (Type 1) and 8% CSA-J (Type 2) considerably enhance the mechanical properties and reduce shrinkage of HPFRCCs. PMID:24376382

  15. Polymerization shrinkage, flexural and compression properties of low-shrinkage dental resin composites.

    PubMed

    Park, Jeong-Kil; Lee, Geun-Ho; Kim, Jong-Hwa; Park, Mi-Gyoung; Ko, Ching-Chang; Kim, Hyung-Il; Kwon, Yong Hoon

    2014-01-01

    This study evaluated the polymerization shrinkage, flexural and compressive properties of low-shrinkage resin composites. For the study, four methacrylate-based and one silorane-based resin composites were light cured using three different light-curing units (LCUs) and their polymerization shrinkage, flexural (strength (FS) and modulus (FM)) and compressive (strength (CS) and modulus (CM)) properties were evaluated. Data were statistically analyzed using ANOVA and a post-hoc Tukey test. The polymerization shrinkage ranged approximately 7.6-14.2 μm for 2-mm thick specimens depending on the resin product and LCU. Filtek LS showed the least shrinkage while the rest shrank approximately 13.2-14.2 μm. However, Filtek LS showed the greatest shrinkage difference for the used LCUs. FS and CS of the tested specimens ranged 96.2-152.1 MPa and 239.2-288.4 MPa, respectively, depending on the resin product and LCU. The highest and lowest FS and FM were recorded for the methacrylate-based resin composites. Among the specimens, Filtek LS showed the lowest CS and CM. PMID:24492120

  16. Statistical crack mechanics

    SciTech Connect

    Dienes, J.K.

    1983-01-01

    An alternative to the use of plasticity theory to characterize the inelastic behavior of solids is to represent the flaws by statistical methods. We have taken such an approach to study fragmentation because it offers a number of advantages. Foremost among these is that, by considering the effects of flaws, it becomes possible to address the underlying physics directly. For example, we have been able to explain why rocks exhibit large strain-rate effects (a consequence of the finite growth rate of cracks), why a spherical explosive imbedded in oil shale produces a cavity with a nearly square section (opening of bedding cracks) and why propellants may detonate following low-speed impact (a consequence of frictional hot spots).

  17. On Generating Fatigue Crack Growth Thresholds

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Newman, James, Jr.; Forman, Royce G.

    2003-01-01

    The fatigue crack growth threshold, defining crack growth as either very slow or nonexistent, has been traditionally determined with standardized load reduction methodologies. These experimental procedures can induce load history effects that result in crack closure. This history can affect the crack driving force, i.e. during the unloading process the crack will close first at some point along the wake or blunt at the crack tip, reducing the effective load at the crack tip. One way to reduce the effects of load history is to propagate a crack under constant amplitude loading. As a crack propagates under constant amplitude loading, the stress intensity factor range, Delta K, will increase, as will the crack growth rate. da/dN. A fatigue crack growth threshold test procedure is experimentally validated that does not produce load history effects and can be conducted at a specified stress ratio, R. The authors have chosen to study a ductile aluminum alloy where the plastic deformations generated during testing may be of the magnitude to impact the crack opening.

  18. Activity-Dependent Dendritic Spine Shrinkage and Growth Involve Downregulation of Cofilin via Distinct Mechanisms

    PubMed Central

    Calabrese, Barbara; Saffin, Jean-Michel; Halpain, Shelley

    2014-01-01

    A current model posits that cofilin-dependent actin severing negatively impacts dendritic spine volume. Studies suggested that increased cofilin activity underlies activity-dependent spine shrinkage, and that reduced cofilin activity induces activity-dependent spine growth. We suggest instead that both types of structural plasticity correlate with decreased cofilin activity. However, the mechanism of inhibition determines the outcome for spine morphology. RNAi in rat hippocampal cultures demonstrates that cofilin is essential for normal spine maintenance. Cofilin-F-actin binding and filament barbed-end production decrease during the early phase of activity-dependent spine shrinkage; cofilin concentration also decreases. Inhibition of the cathepsin B/L family of proteases prevents both cofilin loss and spine shrinkage. Conversely, during activity-dependent spine growth, LIM kinase stimulates cofilin phosphorylation, which activates phospholipase D-1 to promote actin polymerization. These results implicate novel molecular mechanisms and prompt a revision of the current model for how cofilin functions in activity-dependent structural plasticity. PMID:24740405

  19. Knuckle Cracking

    MedlinePlus

    ... older obese people. Question: Can cracking knuckles / joints lead to arthritis? Answer: There is no evidence of ... or damaged joints due to arthritis could potentially lead more easily to ligament injury or acute trauma ...

  20. Generating Fatigue Crack Growth Thresholds with Constant Amplitude Loads

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Newman, James C., J.; Forman, Royce G.

    2002-01-01

    The fatigue crack growth threshold, defining crack growth as either very slow or nonexistent, has been traditionally determined with standardized load reduction methodologies. Some experimental procedures tend to induce load history effects that result in remote crack closure from plasticity. This history can affect the crack driving force, i.e. during the unloading process the crack will close first at some point along the wake, reducing the effective load at the crack tip. One way to reduce the effects of load history is to propagate a crack under constant amplitude loading. As a crack propagates under constant amplitude loading, the stress intensity factor, K, will increase, as will the crack growth rate, da/dN. A fatigue crack growth threshold test procedure is developed and experimentally validated that does not produce load history effects and can be conducted at a specified stress ratio, R.

  1. Current research on fatigue cracks

    SciTech Connect

    Tanaka, T.; Jono, M.; Komai, K.

    1987-01-01

    This first volume of CJMR (Current Japanese Materials Research), contains thirteen chapters concerning the above three themes of fatigue cracks. Each chapter is not a single paper as appearing in many academic journals and transactions, but a systematic review of the current achievement by each author with the emphasis on important points. The common feature is that the elaborated experimental techniques and theoretical approaches, some of which are quite unique, are introduced by respective authors to make clear the difficulty arising in the observation of small cracks and analysis of data. Theoretical models are proposed from the viewpoint of fracture mechanics to link the two thresholds of fatigue limit and crack growth, and intensive discussions are made for further development of the theory. Threshold stress intensity factors and the growth rate of medium and long sized cracks are also discussed, together with their opening behavior. The influencing factors are plastic zone size, the stress ratio and residual stress distribution occurring in welded joints. Mode II crack growth is of great significance since the initial fatigue cracks propagate mainly in shear mode. The problems of fatigue crack growth in corrosive environment is highly important since its retardation and enhancement take place in structural steels affected by the variety of factors. Life prediction in such environments poses another important problem. These are systematically discussed in this book.

  2. Distinct spontaneous shrinkage of a sporadic vestibular schwannoma.

    PubMed

    Huang, Xiaowen; Caye-Thomasen, Per; Stangerup, Sven-Eric

    2013-04-01

    We present a case with outspoken spontaneous vestibular schwannoma shrinkage and review the related literature. The patient was initially diagnosed with a left-sided, intrameatal vestibular schwannoma, which subsequently grew into the cerebello-pontine angle (CPA), followed by total shrinkage of the CPA component without any intervention over a 12-year observation period. The literature on spontaneous tumor shrinkage was retrieved by searching the subject terms "vestibular schwannoma, conservative management" in PubMed/MEDLINE database, without a time limit. Of the published data, the articles on "shrinkage" or "negative growth" or "regression" or "involution" of the tumor were selected, and the contents on the rate, extent and mechanism of spontaneous tumor shrinkage were extracted and reviewed. The reported rate of spontaneous shrinkage of vestibular schwannoma is 5-10% of patients managed conservatively. Extreme shrinkage of the tumor may occur spontaneously. PMID:22858145

  3. Shrinkage deformation of cement foam concrete

    NASA Astrophysics Data System (ADS)

    Kudyakov, A. I.; Steshenko, A. B.

    2015-01-01

    The article presents the results of research of dispersion-reinforced cement foam concrete with chrysotile asbestos fibers. The goal was to study the patterns of influence of chrysotile asbestos fibers on drying shrinkage deformation of cement foam concrete of natural hardening. The chrysotile asbestos fiber contains cylindrical fiber shaped particles with a diameter of 0.55 micron to 8 microns, which are composed of nanostructures of the same form with diameters up to 55 nm and length up to 22 microns. Taking into account the wall thickness, effective reinforcement can be achieved only by microtube foam materials, the so- called carbon nanotubes, the dimensions of which are of power less that the wall pore diameter. The presence of not reinforced foam concrete pores with perforated walls causes a decrease in its strength, decreases the mechanical properties of the investigated material and increases its shrinkage. The microstructure investigation results have shown that introduction of chrysotile asbestos fibers in an amount of 2 % by weight of cement provides the finely porous foam concrete structure with more uniform size closed pores, which are uniformly distributed over the volume. This reduces the shrinkage deformation of foam concrete by 50%.

  4. Interaction of Cracks Between Two Adjacent Indents in Glass

    NASA Technical Reports Server (NTRS)

    Choi, S. R.; Salem, J. A.

    1993-01-01

    Experimental observations of the interaction behavior of cracks between two adjacent indents were made using an indentation technique in soda-lime glass. It was specifically demonstrated how one indent crack initiates and propagates in the vicinity of another indent crack. Several types of crack interactions were examined by changing the orientation and distance of one indent relative to the other. It was found that the residual stress field produced by elastic/plastic indentation has a significant influence on controlling the mode of crack interaction. The interaction of an indent crack with a free surface was also investigated for glass and ceramic specimens.

  5. Silorane- and high filled-based "low-shrinkage" resin composites: shrinkage, flexural strength and modulus.

    PubMed

    Arrais, Cesar Augusto Galvão; Oliveira, Marcelo Tavares de; Mettenburg, Donald; Rueggeberg, Frederick Allen; Giannini, Marcelo

    2013-01-01

    This study compared the volumetric shrinkage (VS), flexural strength (FS) and flexural modulus (FM) properties of the low-shrinkage resin composite Aelite LS (Bisco) to those of Filtek LS (3M ESPE) and two regular dimethacrylate-based resin composites, the microfilled Heliomolar (Ivoclar Vivadent) and the microhybrid Aelite Universal (Bisco). The composites (n = 5) were placed on the Teflon pedestal of a video-imaging device, and VS was recorded every minute for 5 min after 40 s of light exposure. For the FS and FM tests, resin discs (0.6 mm in thickness and 6.0 mm in diameter) were obtained (n = 12) and submitted to a piston-ring biaxial test in a universal testing machine. VS, FS, and FM data were submitted to two-way repeated measures and one-way ANOVA, respectively, followed by Tukey's post-hoc test (a = 5%). Filtek LS showed lower VS than did Aelite LS, which in turn showed lower shrinkage than did the other composites. Aelite Universal and Filtek LS exhibited higher FS than did Heliomolar and Aelite LS, both of which exhibited the highest FM. No significant difference in FM was noted between Filtek LS and Aelite Universal, while Heliomolar exhibited the lowest values. Aelite LS was not as effective as Filtek LS regarding shrinkage, although both low-shrinkage composites showed lower VS than did the other composites. Only Filtek LS exhibited FS and FM comparable to those of the regular microhybrid dimethacrylate-based resin composite. PMID:23459774

  6. Matrix cracking in brittle-matrix composites with tailored interfaces

    SciTech Connect

    Danchaivijit, S.; Chao, L.Y.; Shetty, D.K.

    1995-10-01

    Matrix cracking from controlled through cracks with bridging filaments was studied in a model unidirectional composite of SiC filaments in an epoxy-bonded alumina matrix. An unbonded, frictional interface was produced by moderating the curing shrinkage of the epoxy with the alumina filler and coating the filaments with a releasing agent. Uniaxial tension test specimens (2.5 x 25 x 125 mm) with filament-bridged through cracks were fabricated by a novel two-step casting technique involving casting, precracking and joining of cracked and uncracked sections. Distinct matrix-cracking stresses, corresponding to the extension of the filament-bridged cracks, were measured in uniaxial tension tests using a high-sensitivity extensometer. The crack-length dependence of the matrix-cracking stress was found to be in good agreement with the prediction of a fracture-mechanics analysis that employed a new crack-closure force-crack-opening displacement relation in the calculation of the stress intensity for fiber-bridged cracks. The prediction was based on independent experimental measurements of the matrix fracture toughness (K{sub cm}), the interfacial sliding friction stress ({tau}) and the residual stress in the matrix ({sigma}{sub m}{sup I}). The matrix-cracking stress for crack lengths (2a) greater than 3 mm was independent of the crack length and agreed with the prediction of the steady-state theory of Budiansky, Hutchinson and Evans. Tests on specimens without the deliberately introduced cracks indicated a matrix-cracking stress significantly higher than the steady-state stress.

  7. Influence of fatigue crack wake length and state of stress on crack closure

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Fisher, D. M.

    1986-01-01

    The location of crack closure with respect to crack wake and specimen thickness under different loading conditions was determined. The rate of increase of K sub CL in the crack wake was found to be significantly higher for plasticity induced closure in comparison to roughness induced closure. Roughness induced closure was uniform throughout the thickness of the specimen while plasticity induced closure levels were 50 percent higher in the near surface region than in the midthickness. The influence of state of stress on low-high load interaction effects was also examined. Load interaction effects differed depending upon the state of stress and were explained in terms of delta K sub eff.

  8. Closure of fatigue cracks at high strains

    NASA Technical Reports Server (NTRS)

    Iyyer, N. S.; Dowling, N. E.

    1985-01-01

    Experiments were conducted on smooth specimens to study the closure behavior of short cracks at high cyclic strains under completely reversed cycling. Testing procedures and methodology, and closure measurement techniques, are described in detail. The strain levels chosen for the study cover from predominantly elastic to grossly plastic strains. Crack closure measurements are made at different crack lengths. The study reveals that, at high strains, cracks close only as the lowest stress level in the cycle is approached. The crack opening is observed to occur in the compressive part of the loading cycle. The applied stress needed to open a short crack under high strain is found to be less than for cracks under small scale yielding. For increased plastic deformations, the value of sigma sub op/sigma sub max is observed to decrease and approaches the value of R. Comparison of the experimental results with existing analysis is made and indicates the limitations of the small scale yielding approach where gross plastic deformation behavior occurs.

  9. Do low-shrink composites reduce polymerization shrinkage effects?

    PubMed

    Tantbirojn, D; Pfeifer, C S; Braga, R R; Versluis, A

    2011-05-01

    Progress in polymer science has led to continuous reduction of polymerization shrinkage, exemplified by a new generation of "low-shrink composites". The common inference that shrinkage stress effects will be reduced in teeth restored with such restoratives with lower shrinkage was tested in extracted human premolars. Mesio-occluso-distal slot-shaped cavities were cut and restored with a conventional (SupremePlus) or low-shrink (RefleXions, Premise, Kalore, and LS) composite (N = 5). We digitized the coronal surfaces before and 10 min after restoration to determine cuspal deflection from the buccal and lingual volume change/area. We also determined the main properties involved (total shrinkage, post-gel shrinkage, degree of conversion, and elastic modulus), as well as microleakage, to verify adequate bonding. It was shown that, due to shrinkage stresses, buccal and lingual surfaces pulled inward after restoration (9-14 microns). Only Kalore and LS resulted in significantly lower tooth deformation (ANOVA/Student-Newman-Keuls post hoc, p = 0.05). The other two low-shrink composites, despite having the lowest and highest total shrinkage values, did not cause significant differences in cuspal deflection. Deflection seemed most related to the combination of post-gel shrinkage and elastic modulus. Therefore, even for significantly lower total shrinkage values, shrinkage stress is not necessarily reduced. PMID:21282725

  10. Analysis of fatigue crack propagation

    NASA Technical Reports Server (NTRS)

    Liu, H. W.

    1972-01-01

    The correlation between fatigue crack propagation and stress intensity factor is analyzed. When determining fatigue crack propagation rate, a crack increment, delta a, and its corresponding increment in load cycles, delta N, are measured. Fatigue crack propagation must be caused by a shear and/or a normal separation mode. Both of these two processes are discrete if one looks at the atomic level. If the average deformation and fracture properties over the crack increments, delta a, can be considered as homogeneous, if the characteristic discrete lengths of sigma a, if the plastic zone size is small, and if a plate is thick enough to insure a plane strain case, da/dN is proportional to delta K squared. Any deviation of empirical data from this relation must be caused by the fact that one or more of these conditions are not satisfied. The effects of plate thickness and material inhomogeneity are discussed in detail. A shear separation mode of fatigue crack propagation is described and is used to illustrate the effects of material inhomogeneity.

  11. Nanozeolites doped photopolymer layers with reduced shrinkage.

    PubMed

    Moothanchery, Mohesh; Naydenova, Izabela; Mintova, Svetlana; Toal, Vincent

    2011-12-01

    An acrylamide based photopolymer doped with pure silica MFI-type zeolite (silicalite-1) nanoparticles has been characterized for holographic recording purposes. The concentrations of the silicalite-1 nanoparticles in the photopolymer layers were 1, 2.5, 5 and 7.5 wt. %. The inclusion of silicalite-1 nanoparticle in the photopolymer has resulted in an increase of the diffraction efficiency by up to 40%, and decrease of the shrinkage from 1.32% to 0.57%. The best results were obtained in layers doped with 5 wt. % silicalite-1 nanoparticles. PMID:22273971

  12. Self-repair of cracks in brittle material systems

    NASA Astrophysics Data System (ADS)

    Dry, Carolyn M.

    2016-04-01

    One of the most effective uses for self repair is in material systems that crack because the cracks can allow the repair chemical to flow into the crack damage sites in all three dimensions. In order for the repair chemical to stay in the damage site and flow along to all the crack and repair there must be enough chemical to fill the entire crack. The repair chemical must be designed appropriately for the particular crack size and total volume of cracks. In each of the three examples of self repair in crackable brittle systems, the viscosity and chemical makeup and volume of the repair chemicals used is different for each system. Further the chemical delivery system has to be designed for each application also. Test results from self repair of three brittle systems are discussed. In "Self Repair of Concrete Bridges and Infrastructure" two chemicals were used due to different placements in bridges to repair different types of cracks- surface shrinkage and shear cracks, In "Airplane Wings and Fuselage, in Graphite" the composite has very different properties than the concrete bridges. In the graphite for airplane components the chemical also had to survive the high processing temperatures. In this composite the cracks were so definite and deep and thin that the repair chemical could flow easily and repair in all layers of the composite. In "Ceramic/Composite Demonstrating Self Repair" the self repair system not only repaired the broken ceramic but also rebounded the composite to the ceramic layer

  13. Theoretical Model of the Effect of Crack Tip Blunting on the Ultimate Tensile Strength of Welds in 2219-T87 Aluminum

    NASA Technical Reports Server (NTRS)

    Beil, R. J.

    1982-01-01

    A theoretical model representing blunting of a crack tip radius through diffusion of vacancies is presented. The model serves as the basis for a computer program which calculates changes, due to successive weld heat passes, in the ultimate tensile strength of 2219-T81 aluminum. In order for the model to yield changes of the same order in the ultimate tensile strength as that observed experimentally, a crack tip radius of the order of .001 microns is required. Such sharp cracks could arise in the fusion zone of a weld from shrinkage cavities or decohered phase boundaries between dendrites and the eutectic phase, or, possibly, from plastic deformation due to thermal stresses encountered during the welding process. Microstructural observations up to X2000 (resolution of about .1 micron) did not, in the fusion zone, show structural details which changed significantly under the influence of a heat pass, with the exception of possible small changes in the configuration of the interdendritic eutectic and in porosity build-up in the remelt zone.

  14. Plastic Surgery

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Plastic Surgery KidsHealth > For Teens > Plastic Surgery Print A ... her forehead lightened with a laser? What Is Plastic Surgery? Just because the name includes the word " ...

  15. Shrinkage, stress, and modulus of dimethacrylate, ormocer, and silorane composites

    PubMed Central

    Bacchi, Atais; Feitosa, Victor Pinheiro; da Silva Fonseca, Andrea Soares Quirino; Cavalcante, Larissa Maria Assad; Silikas, Nikolaos; Schneider, Luis Felipe Jochins

    2015-01-01

    Purpose: to evaluate the shrinkage, polymerization stress, elastic and bulk modulus resulting from composites formulated by siloranes, 2nd generation ormocers, and dimethacrylates. Materials and Methods: The bonded disc method was used to evaluate volumetric shrinkage. The polymerization stress was evaluated by mean of the Bioman. Cylindrical specimens (5 mm thickness and 6 mm diameter) were submitted to gradual loading. Young's and bulk modulus were obtained from the slope of the stress/strain curve. Data were analyzed using one-way analysis of variance and Tukey's test (5%). Results: Grandio and ormocer showed significant higher elastic and bulk modulus. Silorane presented significant lowest bulk modulus and maximum shrinkage. Ormocer and silorane presented lower values for the maximum rate of shrinkage. Extra-low shrinkage (ELS) composite presented the greatest maximum shrinkage. The higher maximum rate of shrinkage was attained by Grandio and ELS, statistically similar from each other. The silorane showed lower values of maximum stress and maximum rate of stress. The higher values of maximum stress were presented by ELS and Grandio, statistical similar between them. Grandio showed the significantly greatest maximum rate of stress. Conclusion: Silorane showed to promote lower shrinkage/stress among the composites, with the lowest elastic modulus. Ormocer showed lower shrinkage/stress than methacrylates despite of its high modulus. PMID:26430302

  16. Measurement and analysis of critical crack tip processes associated with variable amplitude fatigue crack growth

    NASA Technical Reports Server (NTRS)

    Hudak, S. J., Jr.; Davidson, D. L.; Chan, K. S.

    1983-01-01

    Crack growth retardation following overloads can result in overly conservative life predictions in structures subjected to variable amplitude fatigue loading when linear damage accumulation procedures are employed. Crack closure is believed to control the crack growth retardation, although the specific closure mechanism is debatable. Information on the relative contributions to crack closure from: (1) plasticity left in the wake of the advancing crack and (2) crack tip residual stresses is provided. The delay period and corresponding crack growth rate transients following overloads are systematically measured as a function of load ratio (R) and overload magnitude. These responses are correlated in terms of the local 'driving force' for crack growth as measured by crack tip opening loads and delta K sub eff. The latter measurements are obtained using a scanning electron microscope equipped with a cyclic loading stage; measurements are quantified using a relatively new stereoimaging technique. Combining experimental results with analytical predictions suggests that both plastic wake and residual stress mechanism are operative, the latter becoming predominate as R increases.

  17. A fracture criterion for widespread cracking in thin-sheet aluminum alloys

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Dawicke, D. S.; Sutton, M. A.; Bigelow, C. A.

    1993-01-01

    An elastic-plastic finite-element analysis was used with a critical crack-tip-opening angle (CTOA) fracture criterion to model stable crack growth in thin-sheet 2024-T3 aluminum alloy panels with single and multiple-site damage (MSD) cracks. Comparisons were made between critical angles determined from the analyses and those measured with photographic methods. Calculated load against crack extension and load against crack-tip displacement on single crack specimens agreed well with test data even for large-scale plastic deformations. The analyses were also able to predict the stable tearing behavior of large lead cracks in the presence of stably tearing MSD cracks. Small MSD cracks significantly reduced the residual strength for large lead cracks.

  18. Experimental validation of 2D profile photoresist shrinkage model

    NASA Astrophysics Data System (ADS)

    Bunday, Benjamin; Cordes, Aaron; Self, Andy; Ferry, Lorena; Danilevsky, Alex

    2011-03-01

    For many years, lithographic resolution has been the main obstacle in allowing the pace of transistor densification to meet Moore's Law. For the 32 nm node and beyond, new lithography techniques will be used, including immersion ArF (iArF) lithography and extreme ultraviolet lithography (EUVL). As in the past, these techniques will use new types of photoresists with the capability to print smaller feature widths and pitches. These smaller feature sizes will also require the use of thinner layers of photoresists, such as under 100 nm. In previous papers, we focused on ArF and iArF photoresist shrinkage. We evaluated the magnitude of shrinkage for both R&D and mature resists as a function of chemical formulation, lithographic sensitivity, scanning electron microscope (SEM) beam condition, and feature size. Shrinkage results were determined by the well accepted methodology described in SEMATECH's CD-SEM Unified Specification. In other associated works, we first developed a 1-D model for resist shrinkage for the bottom linewidth and then a 2-D profile model that accounted for shrinkage of all aspects of a trapezoidal profile along a given linescan. A fundamental understanding of the phenomenology of the shrinkage trends was achieved, including how the shrinkage behaves differently for different sized and shaped features. In the 1-D case, calibration of the parameters to describe the photoresist material and the electron beam was all that was required to fit the models to real shrinkage data, as long as the photoresist was thick enough that the beam could not penetrate the entire layer of resist. The later 2-D model included improvements for solving the CD shrinkage in thin photoresists, which is now of great interest for upcoming realistic lithographic processing to explore the change in resist profile with electron dose and to predict the influence of initial resist profile on shrinkage characteristics. The 2-D model also included shrinkage due to both the primary

  19. Analyses of Fatigue Crack Growth and Closure Near Threshold Conditions for Large-Crack Behavior

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1999-01-01

    A plasticity-induced crack-closure model was used to study fatigue crack growth and closure in thin 2024-T3 aluminum alloy under constant-R and constant-K(sub max) threshold testing procedures. Two methods of calculating crack-opening stresses were compared. One method was based on a contact-K analyses and the other on crack-opening-displacement (COD) analyses. These methods gave nearly identical results under constant-amplitude loading, but under threshold simulations the contact-K analyses gave lower opening stresses than the contact COD method. Crack-growth predictions tend to support the use of contact-K analyses. Crack-growth simulations showed that remote closure can cause a rapid rise in opening stresses in the near threshold regime for low-constraint and high applied stress levels. Under low applied stress levels and high constraint, a rise in opening stresses was not observed near threshold conditions. But crack-tip-opening displacement (CTOD) were of the order of measured oxide thicknesses in the 2024 alloy under constant-R simulations. In contrast, under constant-K(sub max) testing the CTOD near threshold conditions were an order-of-magnitude larger than measured oxide thicknesses. Residual-plastic deformations under both constant-R and constant-K(sub max) threshold simulations were several times larger than the expected oxide thicknesses. Thus, residual-plastic deformations, in addition to oxide and roughness, play an integral part in threshold development.

  20. Crack interaction with 3-D dislocation loops

    NASA Astrophysics Data System (ADS)

    Gao, Huajian

    CRACKS in a solid often interact with other crystal defects such as dislocation loops. The interaction effects are of 3-D character yet their analytical treatment has been mostly limited to the 2-D regime due to mathematical complications. This paper shows that distribution of the stress intensity factors along a crack front due to arbitrary dislocation loops may be expressed as simple line integrals along the loop contours. The method of analysis is based on the 3-D Bueckner-Rice weight function theory for elastic crack analysis. Our results have significantly simplified the calculations for 3-D dislocation loops produced in the plastic processes at the crack front due to highly concentrated crack tip stress fields. Examples for crack-tip 3-D loops and 2-D straight dislocations emerging from the crack tip are given to demonstrate applications of the derived formulae. The results are consistent with some previous analytical solutions existing in the literature. As further applications we also analyse straight dislocations that are parallel or perpendicular to the crack plane but are not parallel to the crack front.

  1. Dynamics of tissue shrinkage during ablative temperature exposures

    PubMed Central

    Rossmann, Christian; Garrett-Mayer, Elizabeth; Rattay, Frank; Haemmerich, Dieter

    2014-01-01

    There is a lack of studies that examine dynamics of heat-induced shrinkage of organ tissues. Clinical procedures such as radiofrequency ablation, microwave ablation or high-intensity focused ultrasound, use heat to treat diseases such as cancer and cardiac arrhythmia. When heat is applied to tissues, shrinkage occurs due to protein denaturation, dehydration, and contraction of collagen at temperatures greater 50ºC. This is particularly relevant for image-guided procedures such as tumor ablation, where pre- and post-treatment images are compared and any changes in dimensions must be considered to avoid misinterpretations of the treatment outcome. We present data from ex vivo, isothermal shrinkage tests in porcine liver tissue, where axial changes in tissue length were recorded during 15 minutes of heating to temperatures between 60 and 95ºC. A mathematical model was developed to accurately describe the time and temperature-dependent shrinkage behavior. Shrinkage dynamics had same characteristics independent of temperature; the estimated relative shrinkage, adjusted for time since death, after 15 min heating to temperatures of 60, 65, 75, 85 and 95ºC, was 12.3, 13.8, 16.6, 19.2, and 21.7%, respectively. Our results demonstrate shrinkage dynamics of organ tissues, and suggest the importance of considering tissue shrinkage for thermal ablative treatments. PMID:24345880

  2. COMBINED BLEACHING, SHRINKAGE PREVENTION, AND BIOPOLISHING OF WOOL FABRICS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We had established that alkaline hydrogen peroxide systems that included dicyandiamide, gluconic acid, and Triton X surfactant, used alone or followed by enzyme treatments, controlled shrinkage in wool fabrics to 2.95% and 1.16%, respectively. We have perfected this system for complete shrinkage co...

  3. Factors affecting the shrinkage of fly ash geopolymers

    NASA Astrophysics Data System (ADS)

    Ridtirud, Charoenchai; Chindaprasirt, Prinya; Pimraksa, Kedsarin

    2011-02-01

    The shrinkage of fly ash geopolymers was studied in the present study. Fly ash was used as the source material for making the geopolymers. The effects of the concentration of NaOH, sodium silicate-to-NaOH ratio, liquid-to-ash ratio, curing temperature, and curing time on shrinkage were investigated. The geopolymers were cured at 25, 40, and 60°C, respectively. The results indicate that the shrinkage of geopolymers is strongly dependent on curing temperature and liquid-to-ash ratio. The increase in shrinkage is associated with the low strength development of geopolymers. It is also found that NaOH concentration and sodium silicate-to-NaOH ratio also affect the shrinkage of geopolymers but to a lesser extent.

  4. State-dependent diffusion of actin-depolymerizing factor/cofilin underlies the enlargement and shrinkage of dendritic spines

    PubMed Central

    Noguchi, Jun; Hayama, Tatsuya; Watanabe, Satoshi; Ucar, Hasan; Yagishita, Sho; Takahashi, Noriko; Kasai, Haruo

    2016-01-01

    Dendritic spines are the postsynaptic sites of most excitatory synapses in the brain, and spine enlargement and shrinkage give rise to long-term potentiation and depression of synapses, respectively. Because spine structural plasticity is accompanied by remodeling of actin scaffolds, we hypothesized that the filamentous actin regulatory protein cofilin plays a crucial role in this process. Here we investigated the diffusional properties of cofilin, the actin-severing and depolymerizing actions of which are activated by dephosphorylation. Cofilin diffusion was measured using fluorescently labeled cofilin fusion proteins and two-photon imaging. We show that cofilins are highly diffusible along dendrites in the resting state. However, during spine enlargement, wild-type cofilin and a phosphomimetic cofilin mutant remain confined to the stimulated spine, whereas a nonphosphorylatable mutant does not. Moreover, inhibition of cofilin phosphorylation with a competitive peptide disables spine enlargement, suggesting that phosphorylated-cofilin accumulation is a key regulator of enlargement, which is localized to individual spines. Conversely, spine shrinkage spreads to neighboring spines, even though triggered by weaker stimuli than enlargement. Diffusion of exogenous cofilin injected into a pyramidal neuron soma causes spine shrinkage and reduced PSD95 in spines, suggesting that diffusion of dephosphorylated endogenous cofilin underlies the spreading of spine shrinkage and long-term depression. PMID:27595610

  5. State-dependent diffusion of actin-depolymerizing factor/cofilin underlies the enlargement and shrinkage of dendritic spines.

    PubMed

    Noguchi, Jun; Hayama, Tatsuya; Watanabe, Satoshi; Ucar, Hasan; Yagishita, Sho; Takahashi, Noriko; Kasai, Haruo

    2016-01-01

    Dendritic spines are the postsynaptic sites of most excitatory synapses in the brain, and spine enlargement and shrinkage give rise to long-term potentiation and depression of synapses, respectively. Because spine structural plasticity is accompanied by remodeling of actin scaffolds, we hypothesized that the filamentous actin regulatory protein cofilin plays a crucial role in this process. Here we investigated the diffusional properties of cofilin, the actin-severing and depolymerizing actions of which are activated by dephosphorylation. Cofilin diffusion was measured using fluorescently labeled cofilin fusion proteins and two-photon imaging. We show that cofilins are highly diffusible along dendrites in the resting state. However, during spine enlargement, wild-type cofilin and a phosphomimetic cofilin mutant remain confined to the stimulated spine, whereas a nonphosphorylatable mutant does not. Moreover, inhibition of cofilin phosphorylation with a competitive peptide disables spine enlargement, suggesting that phosphorylated-cofilin accumulation is a key regulator of enlargement, which is localized to individual spines. Conversely, spine shrinkage spreads to neighboring spines, even though triggered by weaker stimuli than enlargement. Diffusion of exogenous cofilin injected into a pyramidal neuron soma causes spine shrinkage and reduced PSD95 in spines, suggesting that diffusion of dephosphorylated endogenous cofilin underlies the spreading of spine shrinkage and long-term depression. PMID:27595610

  6. Cracking resistance in steam pipe fittings having various microdamage levels

    SciTech Connect

    Mints, I.I.; Googe, S.Yu.; Shul`gina, N.G.

    1995-05-01

    Cracking resistance and metal damage are considered in relation to structural state for steam-pipe fittings during use. An approximate scheme is given for estimating the maximum permissible operating time in the plastic state in relation to the depth of an observed crack-type defect.

  7. J-integral values for cracks in conventional fatigue specimens

    SciTech Connect

    O`Donnell, T.P.; O`Donnell, W.J.

    1996-12-01

    Comprehensive S-N fatigue data has been developed worldwide using conventional low-cycle fatigue tests. Such tests use smooth unnotched specimens subjected to controlled axial deflection or strain ranges. The tests must be run in the plastic regime in order to achieve the required cycles-to-failure. Recent developments have highlighted the need to understand and interpret the significance of the resulting strain range vs. cycles to failure data in terms of crack initiation and propagation. Since conventional fatigue tests are conducted in the plastic regime, linear elastic fracture mechanics cannot be used to accurately quantify crack growth in such tests. Elastic-plastic J-integral theory, however, has been shown to provide excellent correlations of crack growth in the elastic, elastic-plastic and grossly-plastic regimes for a wide range of geometric and loading conditions. The authors are applying this theory to the low-cycle fatigue specimen crack behavior. As cracks progress in conventional fatigue specimens, bending becomes significant. Since fatigue testing machines are quite stiff relative to the small fatigue specimens, the ends of the specimen are constrained to remain parallel, and this reduces bending in the cracked cross-section. Three-dimensional finite element elastic-plastic analyses are required to include these constraints in the J-integral solutions.

  8. Evolution of Residual-Strain Distribution through an Overload-Induced Retardation Period during Fatigue Crack Growth

    SciTech Connect

    Lee, S. Y.; Sun, Yinan; An, Ke; Choo, Hahn; Hubbard, Camden R; Liaw, Peter K

    2010-01-01

    Neutron diffraction was employed to investigate the crack-growth retardation phenomenon after a single tensile overload by mapping both one-dimensional and two-dimensional residual-strain distributions around the crack tip in a series of compact-tension specimens representing various crack-growth stages through an overload-induced retardation period. The results clearly show a large compressive residual-strain field near the crack tip immediately after the overload. As the fatigue crack propagates through the overload-induced plastic zone, the compressive residual strains are gradually relaxed, and a new compressive residual-strain field is developed around the propagating crack tip, illustrating that the subsequent fatigue-induced plastic zone grows out of the large plastic zone caused by the overloading. The relationship between the overload-induced plastic zone and subsequent fatigue-induced plastic zone, and its influence on the residual-strain distributions in the perturbed plastic zone are discussed.

  9. Effective Expansion: Balance between Shrinkage and Hygroscopic Expansion.

    PubMed

    Suiter, E A; Watson, L E; Tantbirojn, D; Lou, J S B; Versluis, A

    2016-05-01

    The purpose of this study was to investigate the relationship between hygroscopic expansion and polymerization shrinkage for compensation of polymerization shrinkage stresses in a restored tooth. One resin-modified glass-ionomer (RMGI) (Ketac Nano, 3M ESPE), 2 compomers (Dyract, Dentsply; Compoglass, Ivoclar), and a universal resin-based composite (Esthet•X HD, Dentsply) were tested. Volumetric change after polymerization ("total shrinkage") and during 4 wk of water storage at 37°C was measured using an optical method (n= 10). Post-gel shrinkage was measured during polymerization using a strain gauge method (n= 10). Extracted human molars with large mesio-occluso-distal slot preparations were restored with the tested restorative materials. Tooth surfaces at baseline (preparation), after restoration, and during 4 wk of 37°C water storage were scanned with an optical scanner to determine cuspal flexure (n= 8). Occlusal interface integrity was measured using dye penetration. Data were analyzed using analysis of variance and post hoc tests (significance level 0.05). All tested materials shrunk after polymerization. RMGI had the highest total shrinkage (4.65%) but lowest post-gel shrinkage (0.35%). Shrinkage values dropped significantly during storage in water but had not completely compensated polymerization shrinkage after 4 wk. All restored teeth initially exhibited inward (negative) cuspal flexure due to polymerization shrinkage. Cuspal flexure with the RMGI restoration was significantly less (-6.4 µm) than with the other materials (-12.1 to -14.1 µm). After 1 d, cuspal flexure reversed to +5.0 µm cuspal expansion with the RMGI and increased to +9.3 µm at 4 wk. After 4 wk, hygroscopic expansion compensated cuspal flexure in a compomer (Compoglass) and reduced flexure with Dyract and resin-based composite. Marginal integrity (93.7% intact restoration wall) was best for the Compoglass restorations and lowest (73.1%) for the RMGI restorations. Hygroscopic

  10. A method for the analysis of the growth of short fatigue cracks

    SciTech Connect

    McEvily, A.J.; Shin, Y.S.

    1995-10-01

    A method for the analysis of the fatigue crack growth rate for short cracks has been developed and is applied to the case of fatigue crack growth of short surface cracks in a 1045 carbon steel. The method entails three modifications to standard LEFM procedures. These modifications include the use of a material constant to bridge between smooth and cracked specimen behavior, consideration of the plastic zone size to crack length ratio, and incorporation of the development of crack closure. Comparisons are made between calculations based upon this approach and experimental data.

  11. Comparison of fatigue crack propagation in Modes I and III

    SciTech Connect

    Ritchie, R.O.

    1985-06-01

    The propagation behavior of fatigue cracks in Mode III (anti-plane shear), measured under cyclic torsion, is described and compared with more commonly encountered behavior under Mode I (tensile opening) loads. It is shown that a unique, global characterization of Mode III growth rates, akin to the Paris ''law'' in Mode I, is only possible if characterizating parameters appropriate to large-scale yielding are employed and allowance is made for crack tip shielding from sliding crack surface interference (i.e., friction and abrasion) between mating fracture surfaces. Based on the crack tip stress and deformation fields for Mode III stationary cracks, the cyclic crack tip displacement, (..delta..CTD/sub III/, and plastic strain intensity range ..delta..GAMMA/sub III/, have been proposed and are found to provide an adequate description of behavior in a range of steels, provided crack surface interference is minimized. The magnitude of this interference, which is somewhat analogous to crack closure in Mode I, is further examined in the light of the complex fractography of torsional fatigue failures and the question of a ''fatigue threshold'' for Mode III crack growth. Finally, micro-mechanical models for cyclic crack extension in anti-plane shear are briefly described, and the contrasting behavior between Mode III and Mode I cracks subjected to simple variable amplitude spectra is examined in terms of the differing role of crack tip blunting and closure in influencing shear, as opposed to tensile opening, modes of crack growth.

  12. Fatigue life and crack growth prediction methodology

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Phillips, E. P.; Everett, R. A., Jr.

    1993-01-01

    The capabilities of a plasticity-induced crack-closure model and life-prediction code to predict fatigue crack growth and fatigue lives of metallic materials are reviewed. Crack-tip constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective-stress-intensity factor range (delta(K(sub eff))) under constant-amplitude loading. Some modifications to the delta(K(sub eff))-rate relations were needed in the near threshold regime to fit small-crack growth rate behavior and endurance limits. The model was then used to calculate small- and large-crack growth rates, and in some cases total fatigue lives, for several aluminum and titanium alloys under constant-amplitude, variable-amplitude, and spectrum loading. Fatigue lives were calculated using the crack growth relations and microstructural features like those that initiated cracks. Results from the tests and analyses agreed well.

  13. Anisotropic shrinkage characteristics of tape cast alumina

    NASA Astrophysics Data System (ADS)

    Patwardhan, Jaideep Suresh

    Dimensional control during sintering is a major issue in ceramics processing to avoid high post-sintering costs associated with machining of the fired ceramic part to desired tolerances and dimensions. Ceramic forming processes such as tape casting, injection molding, and extrusion involve shear of anisotropic particles resulting in preferential alignment of the particles in the green body. This preferential alignment causes directionality in mechanical, electrical, optical, and magnetic properties and most importantly warpage or distortion during sintering. A large effort has been devoted to synthesizing ceramic green bodies with minimal density gradients and uniform packing and modeling the sintering behavior evolution but little effort has been devoted to characterizing orientation of particles and the effect of preferential alignment on sintering shrinkage anisotropy. A systematic study was initiated to study the effect of processing variables such as shear rate, solids loading, temperature, and binder content on aqueous tape cast alumina. Three different alumina systems: A16-SG, Baikowski RC-UFX DBM and RC-LS DBM were investigated. Aqueous tapes of high solids loading alumina (56 vol. %) were tape cast at various speeds and thicknesses and assuming plane Couette flow a shear rate regime of 21--270 s-1 was investigated. Higher shear rates and high solids loading resulted in higher in-plane anisotropy whereas the anisotropy in the thickness direction was higher for low solids loading systems. The anisotropy was found to be fairly constant above a certain critical shear rate (˜100 s-1) irrespective of the temperature and the solids loading and this correlated with the viscosity-shear rate relationship of the cast slips. The higher shrinkage anisotropy in the thickness direction for the low solids loading systems (35 and 45 vol. %) was attributed to the higher amount of organics in the slip required to sustain the suitable viscosity for tape casting and

  14. Plastic Jellyfish.

    ERIC Educational Resources Information Center

    Moseley, Christine

    2000-01-01

    Presents an environmental science activity designed to enhance students' awareness of the hazards of plastic waste for wildlife in aquatic environments. Discusses how students can take steps to reduce the effects of plastic waste. (WRM)

  15. Phenomenology of electron-beam-induced photoresist shrinkage trends

    NASA Astrophysics Data System (ADS)

    Bunday, Benjamin; Cordes, Aaron; Allgair, John; Tileli, Vasiliki; Avitan, Yohanan; Peltinov, Ram; Bar-zvi, Maayan; Adan, Ofer; Cottrell, Eric; Hand, Sean

    2009-03-01

    For many years, lithographic resolution has been the main obstacle in keeping the pace of transistor densification to meet Moore's Law. For the 45 nm node and beyond, new lithography techniques are being considered, including immersion ArF (iArF) lithography and extreme ultraviolet lithography (EUVL). As in the past, these techniques will use new types of photoresists with the capability to print 45 nm node (and beyond) feature widths and pitches. In a previous paper [1], we focused on ArF and iArF photoresist shrinkage. We evaluated the magnitude of shrinkage for both R&D and mature resists as a function of chemical formulation, lithographic sensitivity, scanning electron microscope (SEM) beam condition, and feature size. Shrinkage results were determined by the well accepted methodology described in ISMI's CD-SEM Unified Specification [2]. A model for resist shrinkage, while derived elsewhere [3], was presented, that can be used to curve-fit to the shrinkage data resulting from multiple repeated measurements of resist features. Parameters in the curve-fit allow for metrics quantifying total shrinkage, shrinkage rate, and initial critical dimension (CD) from before e-beam exposure. The ability to know this original CD is the most desirable result; in this work, the ability to use extrapolation to solve for a given original CD value was also experimentally validated by CD-atomic force microscope (AFM) reference metrology. Historically, many different conflicting shrinkage results have been obtained among the many works generated through the litho-metrology community. This work, backed up by an exhaustive dataset, will present an explanation that makes sense of these apparent discrepancies. Past models for resist shrinkage inherently assumed that the photoresist line is wider than the region of the photoresist to be shrunk [3], or, in other words, the e-beam never penetrates enough to reach all material in the interior of a feature; consequently, not all photoresist

  16. Probing the origins and control of shrinkage stress in dental resin-composites: I. Shrinkage stress characterization technique.

    PubMed

    Lu, H; Stansbury, J W; Dickens, S H; Eichmiller, F C; Bowman, C N

    2004-10-01

    The accurate and reliable characterization of the polymerization shrinkage stress is becoming increasingly important, as the shrinkage stress still is a major drawback of current dimethacrylate-based dental materials and restricts its range of applications. The purpose of this research is to develop a novel shrinkage stress measurement device to elucidate the shrinkage stress evolution of dental restorative composites while allowing for controlled sample deformation during the polymerization. Furthermore, the device is designed to mimic the clinically relevant cusp-to-cusp displacement by systematically adjusting the instrument compliance, the bonded surface area/unbonded area by sample geometry, and the total bonded area by sample diameter. The stress measurement device based on the cantilever beam deflection theory has been successfully developed and characterized using a commercial dental composite. It was shown that this device is a highly effective, practical and reliable shrinkage stress measurement tool, which enables its facile applications to the investigation of shrinkage stress kinetics of both commercial and experimental composites, as well as for probing various aspects that dictate shrinkage stress development. PMID:15516870

  17. Plasticity effects in hydraulic fracturing

    SciTech Connect

    Medlin, W.L.; Masse, L.

    1986-09-01

    The importance of reservoir rock plasticity in fracturing operations has been investigated by laboratory experiments and field results. A Lagrangian formulation for crack propagation provided the basis for the laboratory experiments. A simple crack propagation experiment showed that plasticity effects can be observed and that the importance of plasticity depends on the relative magnitudes of surface energy and energy dissipated in plastic deformation of a reservoir rock. The latter can be evaluated by laboratory measurements of a plasticity coefficient, ..cap alpha.., which comes out of the Lagrangian analysis. To measure ..cap alpha.., the authors developed a triaxial system for applying tensile stress to rock cores under confining pressure at strain rates characteristic of fracturing operations. Strain gauges mounted on each core were used with a servo-controlled press to apply strain at a linear rate between 10/sup -4/ and 10/sup -6/ seconds /sup -1/ and to obtain stress/strain data to the point of tensile failure. To distinguish between plasticity and nonlinear elastic phenomena, the authors also obtained strain hysteresis data.

  18. Straining graphene using thin film shrinkage methods.

    PubMed

    Shioya, Hiroki; Craciun, Monica F; Russo, Saverio; Yamamoto, Michihisa; Tarucha, Seigo

    2014-03-12

    Theoretical works suggest the possibility and usefulness of strain engineering of graphene by predicting remarkable properties, such as Dirac cone merging, bandgap opening and pseudo magnetic field generation. However, most of these predictions have not yet been confirmed because it is experimentally difficult to control the magnitude and type (e.g., uniaxial, biaxial, and so forth) of strain in graphene devices. Here we report two novel methods to apply strain without bending the substrate. We employ thin films of evaporated metal and organic insulator deposited on graphene, which shrink after electron beam irradiation or heat application. These methods make it possible to apply both biaxial strain and in-plane isotropic compressive strain in a well-controlled manner. Raman spectroscopy measurements show a clear splitting of the degenerate states of the G-band in the case of biaxial strain, and G-band blue shift without splitting in the case of in-plane isotropic compressive strain. In the case of biaxial strain application, we find out the ratio of the strain component perpendicular to the stretching direction is at least three times larger than what was previously observed, indicating that shrinkage of the metal or organic insulator deposited on graphene induces both tensile and compressive strain in this atomically thin material. Our studies present for the first time a viable way to apply strain to graphene without the need to bend the substrate. PMID:24490629

  19. Straining Graphene Using Thin Film Shrinkage Methods

    PubMed Central

    2014-01-01

    Theoretical works suggest the possibility and usefulness of strain engineering of graphene by predicting remarkable properties, such as Dirac cone merging, bandgap opening and pseudo magnetic field generation. However, most of these predictions have not yet been confirmed because it is experimentally difficult to control the magnitude and type (e.g., uniaxial, biaxial, and so forth) of strain in graphene devices. Here we report two novel methods to apply strain without bending the substrate. We employ thin films of evaporated metal and organic insulator deposited on graphene, which shrink after electron beam irradiation or heat application. These methods make it possible to apply both biaxial strain and in-plane isotropic compressive strain in a well-controlled manner. Raman spectroscopy measurements show a clear splitting of the degenerate states of the G-band in the case of biaxial strain, and G-band blue shift without splitting in the case of in-plane isotropic compressive strain. In the case of biaxial strain application, we find out the ratio of the strain component perpendicular to the stretching direction is at least three times larger than what was previously observed, indicating that shrinkage of the metal or organic insulator deposited on graphene induces both tensile and compressive strain in this atomically thin material. Our studies present for the first time a viable way to apply strain to graphene without the need to bend the substrate. PMID:24490629

  20. Shrinkage covariance matrix approach for microarray data

    NASA Astrophysics Data System (ADS)

    Karjanto, Suryaefiza; Aripin, Rasimah

    2013-04-01

    Microarray technology was developed for the purpose of monitoring the expression levels of thousands of genes. A microarray data set typically consists of tens of thousands of genes (variables) from just dozens of samples due to various constraints including the high cost of producing microarray chips. As a result, the widely used standard covariance estimator is not appropriate for this purpose. One such technique is the Hotelling's T2 statistic which is a multivariate test statistic for comparing means between two groups. It requires that the number of observations (n) exceeds the number of genes (p) in the set but in microarray studies it is common that n < p. This leads to a biased estimate of the covariance matrix. In this study, the Hotelling's T2 statistic with the shrinkage approach is proposed to estimate the covariance matrix for testing differential gene expression. The performance of this approach is then compared with other commonly used multivariate tests using a widely analysed diabetes data set as illustrations. The results across the methods are consistent, implying that this approach provides an alternative to existing techniques.

  1. Finite element solutions for crack-tip behavior in small-scale yielding

    NASA Technical Reports Server (NTRS)

    Tracey, D. M.

    1976-01-01

    The subject considered is the stress and deformation fields in a cracked elastic-plastic power law hardening material under plane strain tensile loading. An incremental plasticity finite element formulation is developed for accurate analysis of the complete field problem including the extensively deformed near tip region, the elastic-plastic region, and the remote elastic region. The formulation has general applicability and was used to solve the small scale yielding problem for a set of material hardening exponents. Distributions of stress, strain, and crack opening displacement at the crack tip and through the elastic-plastic zone are presented as a function of the elastic stress intensity factor and material properties.

  2. Fatigue crack propagation in aluminum-lithium alloys

    NASA Technical Reports Server (NTRS)

    Rao, K. T. V.; Ritchie, R. O.; Piascik, R. S.; Gangloff, R. P.

    1989-01-01

    The principal mechanisms which govern the fatigue crack propagation resistance of aluminum-lithium alloys are investigated, with emphasis on their behavior in controlled gaseous and aqueous environments. Extensive data describe the growth kinetics of fatigue cracks in ingot metallurgy Al-Li alloys 2090, 2091, 8090, and 8091 and in powder metallurgy alloys exposed to moist air. Results are compared with data for traditional aluminum alloys 2024, 2124, 2618, 7075, and 7150. Crack growth is found to be dominated by shielding from tortuous crack paths and resultant asperity wedging. Beneficial shielding is minimized for small cracks, for high stress ratios, and for certain loading spectra. While water vapor and aqueous chloride environments enhance crack propagation, Al-Li-Cu alloys behave similarly to 2000-series aluminum alloys. Cracking in water vapor is controlled by hydrogen embrittlement, with surface films having little influence on cyclic plasticity.

  3. Applying strain into graphene by SU-8 resist shrinkage

    NASA Astrophysics Data System (ADS)

    Takamura, Makoto; Hibino, Hiroki; Yamamoto, Hideki

    2016-07-01

    We investigated the use of the shrinkage of SU-8 resist caused by thermal annealing to apply strain into graphene grown by the chemical-vapor-deposition (CVD) method. We demonstrate that the shrinkage of resist deposited on top of graphene on a substrate induces a local tensile strain within a distance of 1–2 μm from the edge of the resist. The thermal shrinkage of SU-8 will allow us to design the local strain in graphene on substrates. We also show that the shrinkage induces a large tensile strain in graphene suspended between two bars of SU-8. We expect that a much larger strain can be induced by suppressing defects in CVD-grown graphene.

  4. Crack, crack house sex, and HIV risk.

    PubMed

    Inciardi, J A

    1995-06-01

    Limited attention has been focused on HIV risk behaviors of crack smokers and their sex partners, yet there is evidence that the crack house and the crack-using life-style may be playing significant roles in the transmission of HIV and other sexually transmitted diseases. The purposes of this research were to study the attributes and patterns of "sex for crack" exchanges, particularly those that occurred in crack houses, and to assess their potential impact on the spread of HIV. Structured interviews were conducted with 17 men and 35 women in Miami, Florida, who were regular users of crack and who had exchanged sex for crack (or for money to buy crack) during the past 30 days. In addition, participant observation was conducted in 8 Miami crack houses. Interview and observational data suggest that individuals who exchange sex for crack do so with considerable frequency, and through a variety of sexual activities. Systematic data indicated that almost a third of the men and 89% of the women had had 100 or more sex partners during the 30-day period prior to study recruitment. Not only were sexual activities anonymous, extremely frequent, varied, uninhibited (often undertaken in public areas of crack houses), and with multiple partners but, in addition, condoms were not used during the majority of contacts. Of the 37 subjects who were tested for HIV and received their test results 31% of the men and 21% of the women were HIV seropositive. PMID:7611845

  5. Permeability Enhancement in Fine-Grained Sediments by Chemically Induced Clay Fabric Shrinkage

    SciTech Connect

    Wijesinghe, A M; Kansa, E J; Viani, B E; Blake, R G; Roberts, J J; Huber, R D

    2004-02-26

    The National Research Council [1] identified the entrapment of contaminants in fine-grained clay-bearing soils as a major impediment to the timely and cost-effective remediation of groundwater to regulatory standards. Contaminants trapped in low-permeability, low-diffusivity, high-sorptivity clays are not accessible to advective flushing by treatment fluids from permeable zones, and slowly diffuse out to recontaminate previously cleaned permeable strata. We propose to overcome this barrier to effective remediation by exploiting the ability of certain nontoxic EPA-approved chemicals (e.g., ethanol) to shrink and alter the fabric of clays, and thereby create macro-porosity and crack networks in fine-grained sediments. This would significantly reduce the distance and time scales of diffusive mass transport to advectively flushed boundaries, to yield orders of magnitude reduction in the time required to complete remediation. Given that effective solutions to this central problem of subsurface remediation do not yet exist, the cost and time benefits of successful deployment of this novel concept, both as a stand-alone technology and as an enabling pre-treatment for other remedial technologies that rely on advective delivery, is likely to be very large. This project, funded as a 1-year feasibility study by LLNL's LDRD Program, is a multi-directorate, multi-disciplinary effort that leverages expertise from the Energy & Environment Directorate, the Environmental Restoration Division, and the Manufacturing & Materials Evaluation Division of Mechanical Engineering. In this feasibility study, a ''proof-of-principle'' experiment was performed to answer the central question: ''Can clay shrinkage induced by ethanol in clay-bearing sediments overcome realistic confining stresses, crack clay, and increase its effective permeability by orders of magnitude within a time that is much smaller than the time required for diffusive mass transport of ethanol in the unaltered sediment

  6. A new system for crack closure of cementitious materials using shrinkable polymers

    SciTech Connect

    Jefferson, Anthony; Joseph, Christopher; Lark, Robert; Isaacs, Ben; Dunn, Simon; Weager, Brendon

    2010-05-15

    This paper presents details of an original crack-closure system for cementitious materials using shrinkable polymer tendons. The system involves the incorporation of unbonded pre-oriented polymer tendons in cementitious beams. Crack closure is achieved by thermally activating the shrinkage mechanism of the restrained polymer tendons after the cement-based material has undergone initial curing. The feasibility of the system is demonstrated in a series of small scale experiments on pre-cracked prismatic mortar specimens. The results from these tests show that, upon activation, the polymer tendon completely closes the preformed macro-cracks and imparts a significant stress across the crack faces. The potential of the system to enhance the natural autogenous crack healing process and generally improve the durability of concrete structures is addressed.

  7. NSCLC tumor shrinkage prediction using quantitative image features.

    PubMed

    Hunter, Luke A; Chen, Yi Pei; Zhang, Lifei; Matney, Jason E; Choi, Haesun; Kry, Stephen F; Martel, Mary K; Stingo, Francesco; Liao, Zhongxing; Gomez, Daniel; Yang, Jinzhong; Court, Laurence E

    2016-04-01

    The objective of this study was to develop a quantitative image feature model to predict non-small cell lung cancer (NSCLC) volume shrinkage from pre-treatment CT images. 64 stage II-IIIB NSCLC patients with similar treatments were all imaged using the same CT scanner and protocol. For each patient, the planning gross tumor volume (GTV) was deformed onto the week 6 treatment image, and tumor shrinkage was quantified as the deformed GTV volume divided by the planning GTV volume. Geometric, intensity histogram, absolute gradient image, co-occurrence matrix, and run-length matrix image features were extracted from each planning GTV. Prediction models were generated using principal component regression with simulated annealing subset selection. Performance was quantified using the mean squared error (MSE) between the predicted and observed tumor shrinkages. Permutation tests were used to validate the results. The optimal prediction model gave a strong correlation between the observed and predicted tumor shrinkages with r=0.81 and MSE=8.60×10(-3). Compared to predictions based on the mean population shrinkage this resulted in a 2.92 fold reduction in MSE. In conclusion, this study indicated that quantitative image features extracted from existing pre-treatment CT images can successfully predict tumor shrinkage and provide additional information for clinical decisions regarding patient risk stratification, treatment, and prognosis. PMID:26878137

  8. The measurement of polymerization shrinkage of composite resins with ESPI

    NASA Astrophysics Data System (ADS)

    Zhang, Zhang; Yang, Guo Biao

    2008-09-01

    In the current study, we used the method of electronic speckle pattern interferometry (ESPI) to measure polymerization shrinkage of composite resins. Standardized cavities were prepared and placed into the ESPI apparatus before the cavities were filled with composites (n=2) .The ESPI apparatus was constructed to measure the out-of-plane displacement of the resins surface during the polymerization. Experiments demonstrated that the ESPI technique was a viable method to measure the deformation of composite resins. It was responsive and sensitive to dimensional changes. We found that cavity shape, size and C- factor influenced the date of resins shrinkage. And the tooth deformation in response to polymerization of resins was measured by the ESPI too. We concluded that ESPI was a feasible method for assessing resins deformation induced by its polymerization shrinkage when it was bonded in tooth cavities. And the results were greatly influenced by the dimensions of cavities , or interface adhesive and so on. It could also measure the tooth deformation induced by shrinkage of bonded composite resins. We found that resins polymerization shrinkage date may overestimate shrinkage-induced tooth deformation.

  9. Variations of a global constraint factor in cracked bodies under tension and bending loads

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Crews, J. H., Jr.; Bigelow, C. A.; Dawicke, D. S.

    1994-01-01

    Elastic-plastic finite-element analyses were used to calculate stresses and displacements around a crack in finite-thickness plates for an elastic-perfectly plastic material. Middle- and edge-crack specimens were analyzed under tension and bending loads. Specimens were 1.25 to 20 mm thick with various widths and crack lengths. A global constraint factor alpha(sub g), an averaged normal-stress to flow-stress ratio over the plastic region, was defined to simulate three-dimensional (3D) effects in two-dimensional (2D) models. For crack lengths and uncracked ligament lengths greater than four times the thickness, the global constraint factor was found to be nearly a unique function of a normalized stress-intensity factor (related to plastic-zone size to thickness ratio) from small- to large-scale yielding conditions for various specimen types and thickness. For crack length-to-thickness ratios less than four, the global constraint factor was specimen type, crack length and thickness dependent. Using a 2D strip-yield model and the global constraint factors, plastic-zone sizes and crack-tip displacements agreed reasonably well with the 3D analyses. For a thin sheet aluminum alloy, the critical crack-tip-opening angle during stable tearing was found to be independent of specimen type and crack length for crack length-to-thickness ratios greater than 4.

  10. Variations of a global constraint factor in cracked bodies under tension and bending loads

    NASA Astrophysics Data System (ADS)

    Newman, J. C., Jr.; Crews, J. H., Jr.; Bigelow, C. A.; Dawicke, D. S.

    1994-05-01

    Elastic-plastic finite-element analyses were used to calculate stresses and displacements around a crack in finite-thickness plates for an elastic-perfectly plastic material. Middle- and edge-crack specimens were analyzed under tension and bending loads. Specimens were 1.25 to 20 mm thick with various widths and crack lengths. A global constraint factor alpha(sub g), an averaged normal-stress to flow-stress ratio over the plastic region, was defined to simulate three-dimensional (3D) effects in two-dimensional (2D) models. For crack lengths and uncracked ligament lengths greater than four times the thickness, the global constraint factor was found to be nearly a unique function of a normalized stress-intensity factor (related to plastic-zone size to thickness ratio) from small- to large-scale yielding conditions for various specimen types and thickness. For crack length-to-thickness ratios less than four, the global constraint factor was specimen type, crack length and thickness dependent. Using a 2D strip-yield model and the global constraint factors, plastic-zone sizes and crack-tip displacements agreed reasonably well with the 3D analyses. For a thin sheet aluminum alloy, the critical crack-tip-opening angle during stable tearing was found to be independent of specimen type and crack length for crack length-to-thickness ratios greater than 4.

  11. Fatigue crack closure behavior at high stress ratios

    NASA Technical Reports Server (NTRS)

    Turner, C. Christopher; Carman, C. Davis; Hillberry, Ben M.

    1988-01-01

    Fatigue crack delay behavior at high stress ratio caused by single peak overloads was investigated in two thicknesses of 7475-T731 aluminum alloy. Closure measurements indicated no closure occurred before or throughout the overload plastic zones following the overload. This was further substantiated by comparing the specimen compliance following the overload with the compliance of a low R ratio test when the crack was fully open. Scanning electron microscope studies revealed that crack tunneling and possibly reinitiation of the crack occurred, most likely a result of crack-tip blunting. The number of delay cycles was greater for the thinner mixed mode stress state specimen than for the thicker plane strain stress state specimen, which is similar to low R ratio test results and may be due to a larger plastic zone for the mixed mode cased.

  12. Finite-element analysis of initiation, stable crack growth and instability using a crack-tip-opening displacement criterion

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1982-01-01

    An elastic-plastic (incremental and small strain) finite element analysis was used with a crack growth criterion to study crack initiation, stable crack growth, and instability under monotonic loading to failure of metallic materials. The crack growth criterion was a critical crack-tip-opening displacement (CTOD) at a specified distance from the crack tip, or equivalently, a critical crack-tip-opening angle (CTOA). Whenever the CTOD (or CTOA) equaled or exceeded a critical value, the crack was assumed to grow. Single values of critical CTOD were used in the analysis to model crack initiation, stable crack growth, and instability for 7075-T651 and 2024-T351 aluminum alloy compact specimens. Calculated and experimentally measured CTOD values at initiation agreed well for both aluminum alloys. These critical CTOD values were also used to predict failure loads on center-crack tension specimens and a specially-designed three-hole-crack tension specimen made of the two aluminum alloys and of 304 stainless steel. All specimens were 12.7 mm thick. Predicted failure loads for 7075-T651 aluminum alloy and 304 stainless steel specimens were generally within + or - 15 percent of experimental failure loads, whereas the predicted failure loads for 2024-T351 aluminum alloy specimens were generally within + or - 5 percent of the experimental loads.

  13. Variation of crack-opening stresses in three-dimensions - Finite thickness plate

    NASA Technical Reports Server (NTRS)

    Chermahini, R. G.; Blom, A. F.

    1991-01-01

    A 3D elastic-plastic finite-element analysis is conducted to study crack-growth behavior of thin and thick center-cracked specimens under constant-amplitude loading conditions. The numerical analysis and the specimen configuration and loading are described for both the thin and thick conditions. Stabilized crack-opening stresses of interior and exterior regions are given as are the closure and opening profiles of the crack-surface plane after the tenth cycle. The effect of thickness is discussed with respect to the crack-opening stress levels and the plastic zones of the interior and exterior regions. A load-reduced-displacement technique allows the calculation of the crack-opening stresses at three locations on the crack surface plane. The constraint effect related to thickness gives a lower stabilized crack-opening stress level for the thick specimens.

  14. Acoustic Emission Technique for Characterizing Deformation and Fatigue Crack Growth in Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Raj, Baldev; Mukhopadhyay, C. K.; Jayakumar, T.

    2003-03-01

    Acoustic emission (AE) during tensile deformation and fatigue crack growth (FCG) of austenitic stainless steels has been studied. In AISI type 316 stainless steel (SS), AE has been used to detect micro plastic yielding occurring during macroscopic plastic deformation. In AISI type 304 SS, relation of AE with stress intensity factor and plastic zone size has been studied. In AISI type 316 SS, fatigue crack growth has been characterised using acoustic emission.

  15. J-integral estimates for cracks in infinite bodies

    NASA Technical Reports Server (NTRS)

    Dowling, N. E.

    1986-01-01

    An analysis and discussion is presented of existing estimates of the J-integral for cracks in infinite bodies. Equations are presented which provide convenient estimates for Ramberg-Osgood type elastoplastic materials containing cracks and subjected to multiaxial loading. The relationship between J and the strain normal to the crack is noted to be only weakly dependent on state of stress. But the relationship between J and the stress normal to the crack is strongly dependent on state of stress. A plastic zone correction term often employed is found to be arbitrary, and its magnitude is seldom significant.

  16. VERIFICATION OF 3-PHASES COMPOSITE MODEL FOR DRYING SHRINKAGE OF CONCRETE WITH DEFFERENT AGGREGATE PROPERTIES

    NASA Astrophysics Data System (ADS)

    Tanaka, Kie; Shima, Hiroshi

    Properties of aggregate are not taken into account in current codes for drying shrinkage of concrete although the drying shrinkage is affected by the properties of aggregate. Aggregate restrains cement paste from shrinkage so that the drying shrinkage of concrete is controlled by drying shrinkage and Young's modulus of aggregate itself. The effect of the aggregate properties on drying shrinkage of concrete can be calculated by composite model in which concrete consists of cement paste and aggregate. Several different kind of coarse aggregate were used in order to verify a 3-phases composite model for drying shrinkage. Drying shrinkage and Young's modulus of cement paste, aggregate and concrete were measured. It was verified that drying shrinkage of concrete can be estimated accurately by the composite model associating with both drying shrinkage and Young's modulus of aggregate.

  17. Modelling microstructurally sensitive fatigue short crack growth

    NASA Astrophysics Data System (ADS)

    de Los Rios, E. R.; Xin, X. J.; Navarro, A.

    1994-10-01

    Microstructurally sensitive fatigue short crack growth can occur in many engineering components devoid of large defects. Continuum mechanics principles, including linear elastic fracture mechanics, used in damage tolerance design and life prediction methods are not applicable in these situations and therefore new concepts need to be developed to characterize this type of growth. A microstructurally sensitive model of fatigue crack growth is presented in which the effect of microstructure is dominant in the early stage of growth but plays a negligible role after the crack has gone through the transition from structure-sensitive to structure-insensitive growth. The effect of both microstructure and structure sensitive variables on the transition from short cracks to continuum mechanics and the conditions for crack instability leading to final failure are examined. The microstructural variables incorporated in the equations that describe the model are those controlling the extent and intensity of crack tip plasticity such as grain size, precipitation and dispersion hardening, strain hardening and mis-orientation between grains. It is expected that the concepts developed within the model will form the basis for the design of new crack-resistant materials.

  18. Contact of nonflat crack surfaces during fatigue

    SciTech Connect

    Sehitoglu, H.; Garcia, A.M.

    1999-07-01

    A model has been developed to predict crack opening and closure behavior for propagating fatigue cracks which are nonflat and undergo significant sliding displacements. Crack surfaces were characterized by a random distribution of asperity heights, density of asperities, and asperity radii. The propagating crack was subdivided into ligaments and each ligament was treated as a contact problem between two randomly rough surfaces. The far-field tensile stresses were varied in a cyclic manner for R = 0.1 and {minus}1 loading conditions. The contact stresses at the minimal load were determined by analyzing the local crushing of the asperities. Then, upon loading the crack opening, stresses were computed when the contact stresses were overcome. The results of crack opening stresses were correlated with CTOD/{sigma}{sub 0} where CTOD is the crack-tip opening displacement and {sigma}{sub 0} is the average asperity height. The asperity effects on closure were compared with plasticity-induced closure results from the literature for identification of conditions when one mechanism dominates the other.

  19. Fatigue life and crack growth prediction methodology

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Phillips, E. P.; Everett, Richard A., Jr.

    1994-01-01

    This paper reviews the capabilities of a plasticity-induced crack-closure model and life-prediction code to predict fatigue crack growth and fatigue lives of metallic materials. Crack-tip constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective stress-intensity factor range (Delta K(sub eff)) under constant amplitude loading. Some modifications to the Delta K(sub eff)-rate relations were needed in the near threshold regime to fit small-crackgrowth rate behavior and endurance limits. The model was then used to calculate small- and large-crack growth rates, and in some cases total fatigue lives, for several aluminum and titanium alloys under constant-amplitude, variable-amplitude, and spectrum loading. Fatigue lives were calculated using the crack-growth relations and microstructural features like those that initiated cracks. Results from the tests and analyses agreed well.

  20. Intergranular Strain Evolution near Fatigue Crack Tips in Polycrystalline Metals

    SciTech Connect

    Zheng, Lili; Gao, Yanfei; Lee, Sooyeol; Barabash, Rozaliya; Lee, Jinhaeng; Liaw, Peter K

    2011-01-01

    The deformation field near a steady fatigue crack includes a plastic zone in front of the crack tip and a plastic wake behind it, and the magnitude, distribution, and history of the residual strain along the crack path depend on the stress multiaxiality, material properties, and history of stress intensity factor and crack growth rate. An in situ, full-field, non-destructive measurement of lattice strain (which relies on the intergranular interactions of the inhomogeneous deformation fields in neighboring grains) by neutron diffraction techniques has been performed for the fatigue test of a Ni-based superalloy compact tension specimen. These microscopic grain level measurements provided unprecedented information on the fatigue growth mechanisms. A two-scale model is developed to predict the lattice strain evolution near fatigue crack tips in polycrystalline materials. An irreversible, hysteretic cohesive interface model is adopted to simulate a steady fatigue crack, which allows us to generate the stress/strain distribution and history near the fatigue crack tip. The continuum deformation history is used as inputs for the micromechanical analysis of lattice strain evolution using the slip-based crystal plasticity model, thus making a mechanistic connection between macro- and micro-strains. Predictions from perfect grain-boundary simulations exhibit the same lattice strain distributions as in neutron diffraction measurements, except for discrepancies near the crack tip within about one-tenth of the plastic zone size. By considering the intergranular damage, which leads to vanishing intergranular strains as damage proceeds, we find a significantly improved agreement between predicted and measured lattice strains inside the fatigue process zone. Consequently, the intergranular damage near fatigue crack tip is concluded to be responsible for fatigue crack growth.

  1. TESTING AND ANALYSIS OF CAP CONCRETE STRESS AND STRAIN DUE TO SHRINKAGE, CREEP, AND EXPANSION FINAL REPORT

    SciTech Connect

    Guerrero, H.; Restivo, M.

    2011-08-01

    In-situ decommissioning of Reactors P- and R- at the Savannah River Site will require filling the reactor vessels with a special concrete based on materials such as magnesium phosphate, calcium aluminate or silica fume. Then the reactor vessels will be overlain with an 8 ft. thick layer of Ordinary Portland Cement (OPC) steel reinforced concrete, called the 'Cap Concrete'. The integrity of this protective layer must be assured to last for a sufficiently long period of time to avoid ingress of water into the reactor vessel and possible movement of radioactive contamination into the environment. During drying of this Cap Concrete however, shrinkage strains are set up in the concrete as a result of diffusion and evaporation of water from the top surface. This shrinkage varies with depth in the poured slab due to a non-uniform moisture distribution. This differential shrinkage results in restraint of the upper layers with larger shrinkage by lower layers with lesser displacements. Tensile stresses can develop at the surface from the strain gradients in the bulk slab, which can lead to surface cracking. Further, a mechanism called creep occurs during the curing period or early age produces strains under the action of restraining forces. To investigate the potential for surface cracking, an experimental and analytical program was started under TTQAP SRNL-RP-2009-01184. Slab sections made of Cap Concrete mixture were instrumented with embedded strain gages and relative humidity sensors and tested under controlled environmental conditions of 23 C and relative humidities (RH) of 40% and 80% over a period of 50 days. Calculation methods were also developed for predictions of stress development in the full-scale concrete placement over the reactor vessels. These methods were evaluated by simulating conditions for the test specimens and the calculation results compared to the experimental data. A closely similar test with strain gages was performed by Kim and Lee for a

  2. Elastic-plastic models for multi-site damage

    NASA Technical Reports Server (NTRS)

    Actis, Ricardo L.; Szabo, Barna A.

    1994-01-01

    This paper presents recent developments in advanced analysis methods for the computation of stress site damage. The method of solution is based on the p-version of the finite element method. Its implementation was designed to permit extraction of linear stress intensity factors using a superconvergent extraction method (known as the contour integral method) and evaluation of the J-integral following an elastic-plastic analysis. Coarse meshes are adequate for obtaining accurate results supported by p-convergence data. The elastic-plastic analysis is based on the deformation theory of plasticity and the von Mises yield criterion. The model problem consists of an aluminum plate with six equally spaced holes and a crack emanating from each hole. The cracks are of different sizes. The panel is subjected to a remote tensile load. Experimental results are available for the panel. The plasticity analysis provided the same limit load as the experimentally determined load. The results of elastic-plastic analysis were compared with the results of linear elastic analysis in an effort to evaluate how plastic zone sizes influence the crack growth rates. The onset of net-section yielding was determined also. The results show that crack growth rate is accelerated by the presence of adjacent damage, and the critical crack size is shorter when the effects of plasticity are taken into consideration. This work also addresses the effects of alternative stress-strain laws: The elastic-ideally-plastic material model is compared against the Ramberg-Osgood model.

  3. Influence of light-curing protocols on polymerization shrinkage and shrinkage force of a dual-cured core build-up resin composite.

    PubMed

    Tauböck, Tobias T; Bortolotto, Tissiana; Buchalla, Wolfgang; Attin, Thomas; Krejci, Ivo

    2010-08-01

    This study investigated the influence of time delay and duration of photo-activation on linear polymerization shrinkage, shrinkage force, and hardening of a dual-cured core build-up resin composite. The test material (Rebilda DC) was light-cured for 20 or 60 s either early (2 min) or late (7 min) after the start of mixing. Non-irradiated self-cured specimens served as controls. Linear shrinkage and shrinkage force were measured for 60 min using custom-made devices. Knoop hardness was determined at the end of the observation period. Self-cured controls, showing a linear shrinkage similar to that of specimens early light-cured for 20 s generated the lowest shrinkage force and hardness. A shorter light exposure time (20 s vs. 60 s) reduced linear shrinkage, shrinkage force, and hardness when early light-curing was performed, but did not affect the three properties in specimens light-cured late after the start of mixing. Late photo-activation increased linear shrinkage, irrespective of irradiation time, and resulted in a higher shrinkage force and hardness for short light exposure time. A moderate correlation was found between the two shrinkage properties studied (r(2) = 0.65). In conclusion, improvements in shrinkage behavior of the tested core build-up material were associated with inferior hardening, making it important to adapt curing protocols to the clinical situation. PMID:20662918

  4. Corrosion pitting and environmentally assisted small crack growth

    PubMed Central

    Turnbull, Alan

    2014-01-01

    In many applications, corrosion pits act as precursors to cracking, but qualitative and quantitative prediction of damage evolution has been hampered by lack of insights into the process by which a crack develops from a pit. An overview is given of recent breakthroughs in characterization and understanding of the pit-to-crack transition using advanced three-dimensional imaging techniques such as X-ray computed tomography and focused ion beam machining with scanning electron microscopy. These techniques provided novel insights with respect to the location of crack development from a pit, supported by finite-element analysis. This inspired a new concept for the role of pitting in stress corrosion cracking based on the growing pit inducing local dynamic plastic strain, a critical factor in the development of stress corrosion cracks. Challenges in quantifying the subsequent growth rate of the emerging small cracks are then outlined with the potential drop technique being the most viable. A comparison is made with the growth rate for short cracks (through-thickness crack in fracture mechanics specimen) and long cracks and an electrochemical crack size effect invoked to rationalize the data. PMID:25197249

  5. Corrosion pitting and environmentally assisted small crack growth.

    PubMed

    Turnbull, Alan

    2014-09-01

    In many applications, corrosion pits act as precursors to cracking, but qualitative and quantitative prediction of damage evolution has been hampered by lack of insights into the process by which a crack develops from a pit. An overview is given of recent breakthroughs in characterization and understanding of the pit-to-crack transition using advanced three-dimensional imaging techniques such as X-ray computed tomography and focused ion beam machining with scanning electron microscopy. These techniques provided novel insights with respect to the location of crack development from a pit, supported by finite-element analysis. This inspired a new concept for the role of pitting in stress corrosion cracking based on the growing pit inducing local dynamic plastic strain, a critical factor in the development of stress corrosion cracks. Challenges in quantifying the subsequent growth rate of the emerging small cracks are then outlined with the potential drop technique being the most viable. A comparison is made with the growth rate for short cracks (through-thickness crack in fracture mechanics specimen) and long cracks and an electrochemical crack size effect invoked to rationalize the data. PMID:25197249

  6. Gear Crack Propagation Investigation

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Reduced weight is a major design goal in aircraft power transmissions. Some gear designs incorporate thin rims to help meet this goal. Thin rims, however, may lead to bending fatigue cracks. These cracks may propagate through a gear tooth or into the gear rim. A crack that propagates through a tooth would probably not be catastrophic, and ample warning of a failure could be possible. On the other hand, a crack that propagates through the rim would be catastrophic. Such cracks could lead to disengagement of a rotor or propeller from an engine, loss of an aircraft, and fatalities. To help create and validate tools for the gear designer, the NASA Lewis Research Center performed in-house analytical and experimental studies to investigate the effect of rim thickness on gear-tooth crack propagation. Our goal was to determine whether cracks grew through gear teeth (benign failure mode) or through gear rims (catastrophic failure mode) for various rim thicknesses. In addition, we investigated the effect of rim thickness on crack propagation life. A finite-element-based computer program simulated gear-tooth crack propagation. The analysis used principles of linear elastic fracture mechanics, and quarter-point, triangular elements were used at the crack tip to represent the stress singularity. The program had an automated crack propagation option in which cracks were grown numerically via an automated remeshing scheme. Crack-tip stress-intensity factors were estimated to determine crack-propagation direction. Also, various fatigue crack growth models were used to estimate crack-propagation life. Experiments were performed in Lewis' Spur Gear Fatigue Rig to validate predicted crack propagation results. Gears with various backup ratios were tested to validate crack-path predictions. Also, test gears were installed with special crack-propagation gages in the tooth fillet region to measure bending-fatigue crack growth. From both predictions and tests, gears with backup ratios

  7. The engineering significance of shrinkage and swelling soils in blast damage investigations

    SciTech Connect

    Vitton, S.J.; Harris, W.W.

    1996-12-01

    In the US each year it has been estimated that expansive soils cause approximately $9.0 billion in damage to buildings, roads, airports, and other facilities. This figure alone exceeds the damage estimate for earthquakes, floods, tornadoes, and hurricanes combined. Unfortunately, some cases of expansive soil damage (swelling) are blamed on rock blasting operations if the blasting operations are located within the immediate area. While simple tests, such as the Atterberg limits test, can characterize a soil as expansive, it does not necessarily answer the question whether the foundation soils are causing distresses to a structure. In particular, it appears that once a soil has been labeled as nonexpansive it is no longer considered as a problem soil, in which case blast vibrations become the prime suspect. It should be emphasized, however, that even non-plastic soils, those soils with low to nonexistent plastic indexes, can exhibit significant shrinkage characteristics that can result in significant damage to structures. While expansive soil is a function of the mineralogy of the soil particles, i.e., swelling clay minerals, shrinkage is caused by the loss of moisture from soil as capillary pressures exceed the cohesion or tensile strength and is therefore a function of the soils particle size and its pore size distribution. This is a significant problem for all fine grained soils regardless of the soil`s mineralogy. It`s particularly important for regions of the US that typically have a positive water balance but experience significant drought periods when soil moisture is lost.

  8. Geosynthetic clay liners shrinkage under simulated daily thermal cycles.

    PubMed

    Sarabadani, Hamid; Rayhani, Mohammad T

    2014-04-01

    Geosynthetic clay liners are used as part of composite liner systems in municipal solid waste landfills and other applications to restrict the escape of contaminants into the surrounding environment. This is attainable provided that the geosynthetic clay liner panels continuously cover the subsoil. Previous case histories, however, have shown that some geosynthetic clay liner panels are prone to significant shrinkage and separation when an overlying geomembrane is exposed to solar radiation. Experimental models were initiated to evaluate the potential shrinkage of different geosynthetic clay liner products placed over sand and clay subsoils, subjected to simulated daily thermal cycles (60°C for 8 hours and 22°C for 16 hours) modelling field conditions in which the liner is exposed to solar radiation. The variation of geosynthetic clay liner shrinkage was evaluated at specified times by a photogrammetry technique. The manufacturing techniques, the initial moisture content, and the aspect ratio (ratio of length to width) of the geosynthetic clay liner were found to considerably affect the shrinkage of geosynthetic clay liners. The particle size distribution of the subsoil and the associated suction at the geosynthetic clay liner-subsoil interface was also found to have significant effects on the shrinkage of the geosynthetic clay liner. PMID:24718363

  9. Comparative analysis of polymerization shrinkage of different resin composites.

    PubMed

    Barretto, Iana Coutinho; Pontes, Luana Farias; Carneiro, Karina Kato; Araujo, Jesuina Lamartine Nogueira; Ballester, Rafael Yague; Silva, Cecy Martins

    2015-01-01

    This study sought to compare the shrinkage of 3 resin composites after polymerization, using different curing modes and 2 methods of analysis, with 45 samples in each group. To evaluate free linear shrinkage, specimens were prepared in Teflon molds (8 mm diameter x 2 mm thick) with 1 of 2 methacrylate-based resins or a silorane-based resin. To evaluate wall-to-wall shrinkage, cavities (1.5 mm thick x 3 mm diameter) were prepared in 45 healthy bovine incisors and then restored. In both tests, the same curing lights were used: conventional quartz-tungsten-halogen, a conventional light-emitting diode (LED), and an exponential LED. Gaps were measured microscopically, and the gap percentage was calculated. The results were analyzed by 2-way ANOVA and Tukey's test (α = 0.05). Curing modes differed significantly in the free linear shrinkage test group, while resin composites did not. In the wall-to-wall shrinkage group, there were significant differences between the resin composites. PMID:25734285

  10. A computer program for cyclic plasticity and structural fatigue analysis

    NASA Technical Reports Server (NTRS)

    Kalev, I.

    1980-01-01

    A computerized tool for the analysis of time independent cyclic plasticity structural response, life to crack initiation prediction, and crack growth rate prediction for metallic materials is described. Three analytical items are combined: the finite element method with its associated numerical techniques for idealization of the structural component, cyclic plasticity models for idealization of the material behavior, and damage accumulation criteria for the fatigue failure.

  11. Crack growth monitoring at CFRP bond lines

    NASA Astrophysics Data System (ADS)

    Rahammer, M.; Adebahr, W.; Sachse, R.; Gröninger, S.; Kreutzbruck, M.

    2016-02-01

    With the growing need for lightweight technologies in aerospace and automotive industries, fibre-reinforced plastics, especially carbon-fibre (CFRP), are used with a continuously increasing annual growth rate. A promising joining technique for composites is adhesive bonding. While rivet holes destroy the fibres and cause stress concentration, adhesive bond lines distribute the load evenly. Today bonding is only used in secondary structures due to a lack of knowledge with regard to long-term predictability. In all industries, numerical simulation plays a critical part in the development process of new materials and structures, while it plays a vital role when it comes to CFRP adhesive bondings conducing the predictability of life time and damage tolerance. The critical issue with adhesive bondings is crack growth. In a dynamic tensile stress testing machine we dynamically load bonded CFRP coupon specimen and measure the growth rate of an artificially started crack in order to feed the models with the results. We also investigate the effect of mechanical crack stopping features. For observation of the bond line, we apply two non-contact NDT techniques: Air-coupled ultrasound in slanted transmission mode and active lockin-thermography evaluated at load frequencies. Both methods give promising results for detecting the current crack front location. While the ultrasonic technique provides a slightly higher accuracy, thermography has the advantage of true online monitoring, because the measurements are made while the cyclic load is being applied. The NDT methods are compared to visual inspection of the crack front at the specimen flanks and show high congruence. Furthermore, the effect of crack stopping features within the specimen on the crack growth is investigated. The results show, that not all crack fronts are perfectly horizontal, but all of them eventually come to a halt in the crack stopping feature vicinity.

  12. Crack opening stretch in a plate of finite width

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Bakioglu, M.

    1974-01-01

    The problem of a uniaxially stressed plate of finite width containing a centrally located damage zone is considered. It is assumed that the flaw may be represented by a part-through crack perpendicular to the plate surface, the net ligaments in the plane of the crack and through-the-thickness narrow strips ahead of the crack ends are fully yielded, and in the yielded sections the material may carry only a constant normal traction with magnitude equal to the yield strength. The problem is solved by neglecting the bending effects and the crack opening stretches at the center and the ends of the crack are obtained. Some applications of the results are indicated by using the concepts of critical crack opening stretch and constant slope plastic instability.

  13. Crack opening stretch in a plate of finite width

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Bakioglu, M.

    1975-01-01

    The problem of a uniaxially stressed plate of finite width containing a centrally located damage zone is considered. It is assumed that the flaw may be represented by a part-through crack perpendicular to the plate surface, the net ligaments in the plane of the crack and through-the-thickness narrow strips ahead of the crack ends are fully yielded, and in the yielded sections the material may carry only a constant normal traction with magnitude equal to the yield strength. The problem is solved by neglecting the bending effects and the crack opening stretches at the center and the ends of the crack are obtained. Some applications of the results are indicated by using the concepts of critical crack opening stretch and constant slope plastic instability.

  14. Crack spectra analysis

    SciTech Connect

    Tiernan, M.

    1980-09-01

    Crack spectra derived from velocity data have been shown to exhibit systematics which reflect microstructural and textural differences between samples (Warren and Tiernan, 1980). Further research into both properties and information content of crack spectra have yielded the following: Spectral features are reproducible even at low pressures; certain observed spectral features may correspond to non-in-situ crack populations created during sample retrieval; the functional form of a crack spectra may be diagnostic of the sample's grain texture; hysteresis is observed in crack spectra between up and down pressure runs - it may be due to friction between the faces of closed crack populations.

  15. Mediated patterning of sol-gel thin layers: Shrinkage, decohesion, and lift-off

    NASA Astrophysics Data System (ADS)

    Mikalsen, Erik Arthur

    This thesis explores the unique de-cohesion and lift-off processes that occur during mediated patterning of integrated sol-gel thin films of functional materials. Mediated deposition, an additive patterning approach, was introduced by Jeon et al. (J. Mater. Res., 10[12]: 2996--9 (1995)), where microcontact printing (mu-CP) facilitated the selective transfer of a molecular 'ink' (e.g., octadecyltrichlorosilane, ODTS) to the substrate, and de-cohesion of sol-gel films occurred exclusively above the printed ink regions after heat treatment (<150°C). Patterned sol-gel films of uniform thickness were revealed after facile lift-off of cracked fragments, without the use of etchants. In this thesis, the origin and mechanics of de-cohesion and lift-off were determined through direct observations and measurements. The disparate mechanical behaviors of sol-gel films on functionalized and unmodified surfaces were determined, with emphasis on interfacial strength, in-plane biaxial stress, thin film mechanics, and crack propagation for sol-gel layers on silicon, glass and fused silica substrates. In addition, direct patterning of sol-gel layers was demonstrated for the first time on curved glassy surfaces using mu-CP and mediated patterning methods. The shrinkage and densification of sol-gel layers were determined by in-situ and ex-situ measurements, where a ˜30% decrease in thickness (t) was typical during drying of sol-gel layers (T < 300°C). Constrained shrinkage, resulting from adhesion to the supporting silicon substrate, led to a coherent (crack-free) film with biaxial stresses of ˜200 MPa (t ˜ 50 nm). For ODTS-mediated sol-gel films, however, precise in-situ wafer curvature measurements determined that film stresses never exceeded 75 MPa. Additionally, interfacial adhesive strength between the substrate and the sol-gel film were evaluated for the first time using a unique pulsed-laser stress-wave technique. An adhesive strength threshold of 15 MPa was determined for

  16. Plastics Technology.

    ERIC Educational Resources Information Center

    Barker, Tommy G.

    This curriculum guide is designed to assist junior high schools industrial arts teachers in planning new courses and revising existing courses in plastics technology. Addressed in the individual units of the guide are the following topics: introduction to production technology; history and development of plastics; safety; youth leadership,…

  17. STUDY ON THE EVALUATION FOR DRYING SHRINKAGE PROPERTIES OF COARSE AGGREGATE

    NASA Astrophysics Data System (ADS)

    Yamada, Hiroshi; Katahira, Hiroshi; Watanabe, Hiroshi

    Drying shrinkage of coarse aggregate is one of principal indexes to evaluate drying shrinkage of concrete. However, testing of drying shrinkage of a coarse aggregate particle has not been commonly conducted. We carried out measurement of drying shrinkage of a coarse aggregate particle using wire strain gauges and discussed the variation in the measurement. We found that variation among particles in drying shrinkage strain of coarse aggregate is intrinsic and much bigger than test result due to the simplified unidirectional strain measurement under the assumption of ignoring multi-axial strain field. Strong relationship between the mean value of drying shrinkage strain of coarse aggregate and drying shrinkage strain of concrete prism specimens was observed, which indicates that measured drying shrinkage strain of aggregate particles intrinsically contains large variation, however the mean value is an effective index to estimate drying shrinkage of concrete.

  18. Crack curving in a ductile pressurized fuselage

    NASA Astrophysics Data System (ADS)

    Lam, Paul W.

    magnitude of CTOA and CTOD depends on the structural geometry, and including plasticity increases the crack tip displacements. An estimate of the strain in the skin flaps at the crack tip may indicate the tendency for flapping. Out-of-plane effects become significant as the crack propagates and curves.

  19. A nonlinear fracture mechanics approach to the growth of small cracks

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1983-01-01

    An analytical model of crack closure is used to study the crack growth and closure behavior of small cracks in plates and at notches. The calculated crack opening stresses for small and large cracks, together with elastic and elastic plastic fracture mechanics analyses, are used to correlate crack growth rate data. At equivalent elastic stress intensity factor levels, calculations predict that small cracks in plates and at notches should grow faster than large cracks because the applied stress needed to open a small crack is less than that needed to open a large crack. These predictions agree with observed trends in test data. The calculations from the model also imply that many of the stress intensity factor thresholds that are developed in tests with large cracks and with load reduction schemes do not apply to the growth of small cracks. The current calculations are based upon continuum mechanics principles and, thus, some crack size and grain structure exist where the underlying fracture mechanics assumptions become invalid because of material inhomogeneity (grains, inclusions, etc.). Admittedly, much more effort is needed to develop the mechanics of a noncontinuum. Nevertheless, these results indicate the importance of crack closure in predicting the growth of small cracks from large crack data.

  20. Gear crack propagation investigations

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Ballarini, Roberto

    1996-01-01

    Analytical and experimental studies were performed to investigate the effect of gear rim thickness on crack propagation life. The FRANC (FRacture ANalysis Code) computer program was used to simulate crack propagation. The FRANC program used principles of linear elastic fracture mechanics, finite element modeling, and a unique re-meshing scheme to determine crack tip stress distributions, estimate stress intensity factors, and model crack propagation. Various fatigue crack growth models were used to estimate crack propagation life based on the calculated stress intensity factors. Experimental tests were performed in a gear fatigue rig to validate predicted crack propagation results. Test gears were installed with special crack propagation gages in the tooth fillet region to measure bending fatigue crack growth. Good correlation between predicted and measured crack growth was achieved when the fatigue crack closure concept was introduced into the analysis. As the gear rim thickness decreased, the compressive cyclic stress in the gear tooth fillet region increased. This retarded crack growth and increased the number of crack propagation cycles to failure.

  1. Prediction of ALLOY SHRINKAGE FACTORS FOR THE INVESTMENT CASTING PROCESS

    SciTech Connect

    Sabau, Adrian S

    2006-01-01

    This study deals with the experimental measurements and numerical predictions of alloy shrinkage factors (SFs) related to the investment casting process. The dimensions of the A356 aluminum alloy casting were determined from the numerical simulation results of solidification, heat transfer, fluid dynamics, and deformation phenomena. The investment casting process was carried out using wax patterns of unfilled wax and shell molds that were made of fused silica with a zircon prime coat. The dimensions of the die tooling, wax pattern, and casting were measured, in order to determine the actual tooling allowances. Several numerical simulations were carried out, to assess the level of accuracy for the casting shrinkage. The solid fraction threshold, at which the transition from the fluid dynamics to the solid dynamics occurs, was found to be important in predicting shrinkage factors (SFs). It was found that accurate predictions were obtained for all measued dimensions when the shell mold was considered a deformable material.

  2. Impact of Reaction Shrinkage on Stress in Semiconductor Packages

    NASA Astrophysics Data System (ADS)

    Mengel, Manfred; Mahler, Joachim

    2009-11-01

    The reliability of a semiconductor package is strongly influenced by the adhesion and temperature behavior of the package encapsulant. This study considers the effect of mold shrinkage during the encapsulation molding process. Four commercially available molds were investigated using warpage and thermomechanical analysis. It could be demonstrated that, for all four types, when molded on a silicon substrate, the temperature at which no stress occurred was in a range of 28-60°C above the molding temperature. This is caused by the shrinkage due to a crosslinking reaction of the mold polymer during the molding process. For a more precise understanding and simulation of the stress behavior inside a molded package, the effect of reaction shrinkage has to be considered.

  3. Shrinkage Stresses Generated during Resin-Composite Applications: A Review

    PubMed Central

    Schneider, Luis Felipe J.; Cavalcante, Larissa Maria; Silikas, Nick

    2010-01-01

    Many developments have been made in the field of resin composites for dental applications. However, the manifestation of shrinkage due to the polymerization process continues to be a major problem. The material's shrinkage, associated with dynamic development of elastic modulus, creates stresses within the material and its interface with the tooth structure. As a consequence, marginal failure and subsequent secondary caries, marginal staining, restoration displacement, tooth fracture, and/or post-operative sensitivity are clinical drawbacks of resin-composite applications. The aim of the current paper is to present an overview about the shrinkage stresses created during resin-composite applications, consequences, and advances. The paper is based on results of many researches that are available in the literature. PMID:20948573

  4. Bayesian Nonparametric Shrinkage Applied to Cepheid Star Oscillations.

    PubMed

    Berger, James; Jefferys, William; Müller, Peter

    2012-01-01

    Bayesian nonparametric regression with dependent wavelets has dual shrinkage properties: there is shrinkage through a dependent prior put on functional differences, and shrinkage through the setting of most of the wavelet coefficients to zero through Bayesian variable selection methods. The methodology can deal with unequally spaced data and is efficient because of the existence of fast moves in model space for the MCMC computation. The methodology is illustrated on the problem of modeling the oscillations of Cepheid variable stars; these are a class of pulsating variable stars with the useful property that their periods of variability are strongly correlated with their absolute luminosity. Once this relationship has been calibrated, knowledge of the period gives knowledge of the luminosity. This makes these stars useful as "standard candles" for estimating distances in the universe. PMID:24368873

  5. A shrinkage probability hypothesis density filter for multitarget tracking

    NASA Astrophysics Data System (ADS)

    Tong, Huisi; Zhang, Hao; Meng, Huadong; Wang, Xiqin

    2011-12-01

    In radar systems, tracking targets in low signal-to-noise ratio (SNR) environments is a very important task. There are some algorithms designed for multitarget tracking. Their performances, however, are not satisfactory in low SNR environments. Track-before-detect (TBD) algorithms have been developed as a class of improved methods for tracking in low SNR environments. However, multitarget TBD is still an open issue. In this article, multitarget TBD measurements are modeled, and a highly efficient filter in the framework of finite set statistics (FISST) is designed. Then, the probability hypothesis density (PHD) filter is applied to multitarget TBD. Indeed, to solve the problem of the target and noise not being separated correctly when the SNR is low, a shrinkage-PHD filter is derived, and the optimal parameter for shrinkage operation is obtained by certain optimization procedures. Through simulation results, it is shown that our method can track targets with high accuracy by taking advantage of shrinkage operations.

  6. Shrinkage stress development in dental composites—An analytical treatment

    PubMed Central

    Fok, Alex S.L.

    2013-01-01

    Objectives The aim of this paper is to develop a comprehensive mathematical model for shrinkage stress development in dental composites that can account for the combined effect of material properties, specimen geometry and external constraints. Methods A viscoelastic model that includes the composite’s elastic, creep and shrinkage strains, and their interaction with the sample’s dimensions and the external constraint is developed. The model contains two dimensionless parameters. The first one represents the compliance of the external constraint relative to that of the composite sample, and the second controls the rate of shrinkage stress decay through creep. The resulting differential equation is solved for two special cases: zero compliance and zero creep. Predictions for shrinkage stress measurements are then made using the analytical solutions for instruments with different compliances, samples with different thicknesses and composites with different filler fractions. Results The model correctly predicts how shrinkage stress increases with time, its dependence on the interaction between the entire system’s compliance and the material properties, and the effect of the filler fraction on its maximum value. Comparisons with reported shrinkage stress measurements have provided very good agreement between theory and experiments. Significance The results provided by the model can help to resolve most, if not all, of the seemingly conflicting experimental observations reported in the literature. They can also provide some useful guidelines for optimizing the mechanical performance of dental composite restorations. The compliance ratio, a new parameter derived from the model, represents a fuller description of the constraints of the system. PMID:24029101

  7. Polymerization shrinkage stress of composites photoactivated by different light sources.

    PubMed

    Pires-de-Souza, Fernanda de Carvalho Panzeri; Drubi Filho, Brahim; Casemiro, Luciana Assirati; Garcia, Lucas da Fonseca Roberti; Consani, Simonides

    2009-01-01

    The purpose of this study was to compare the polymerization shrinkage stress of composite resins (microfilled, microhybrid and hybrid) photoactivated by quartz-tungsten halogen light (QTH) and light-emitting diode (LED). Glass rods (5.0 mm x 5.0 cm) were fabricated and had one of the surfaces air-abraded with aluminum oxide and coated with a layer of an adhesive system, which was photoactivated with the QTH unit. The glass rods were vertically assembled, in pairs, to a universal testing machine and the composites were applied to the lower rod. The upper rod was placed closer, at 2 mm, and an extensometer was attached to the rods. The 20 composites were polymerized by either QTH (n=10) or LED (n=10) curing units. Polymerization was carried out using 2 devices positioned in opposite sides, which were simultaneously activated for 40 s. Shrinkage stress was analyzed twice: shortly after polymerization (t40s) and 10 min later (t10min). Data were analyzed statistically by 2-way ANOVA and Tukey's test (alpha=5%). The shrinkage stress for all composites was higher at t10min than at t40s, regardless of the activation source. Microfilled composite resins showed lower shrinkage stress values compared to the other composite resins. For the hybrid and microhybrid composite resins, the light source had no influence on the shrinkage stress, except for microfilled composite at t10min. It may be concluded that the composition of composite resins is the factor with the strongest influence on shrinkage stress. PMID:20069256

  8. Model-based adhesive shrinkage compensation for increased bonding repeatability

    NASA Astrophysics Data System (ADS)

    Müller, Tobias; Schlette, Christian; Lakshmanan, Shunmuganathan; Haag, Sebastian; Zontar, Daniel; Sauer, Sebastian; Wenzel, Christian; Brecher, Christian; Roβmann, Jürgen

    2016-03-01

    The assembly process of optical components consists of two phases - the alignment and the bonding phase. Precision - or better process repeatability - is limited by the latter one. The limitation of the alignment precision is given by the measurement equipment and the manipulation technology applied. Today's micromanipulators in combination with beam imaging setups allow for an alignment in the range of far below 100nm. However, once precisely aligned optics need to be fixed in their position. State o f the art in optics bonding for laser systems is adhesive bonding with UV-curing adhesives. Adhesive bonding is a multi-factorial process and thus subject to statistical process deviations. As a matter of fact, UV-curing adhesives inherit shrinkage effects during their curing process, making offsets for shrinkage compensation mandatory. Enhancing the process control of the adhesive bonding process is the major goal of the activities described in this paper. To improve the precision of shrinkage compensation a dynamic shrinkage prediction is envisioned by Fraunhofer IPT. Intense research activities are being practiced to gather a deeper understanding of the parameters influencing adhesive shrinkage behavior. These effects are of different nature - obviously being the raw adhesive material itself as well as its condition, the bonding geometry, environmental parameters like surrounding temperature and of course process parameters such as curing properties. Understanding the major parameters and linking them in a model-based shrinkage-prediction environment is the basis for improved process control. Results are being deployed by Fraunhofer in prototyping, as well as volume production solutions for laser systems.

  9. Growth rate models for short surface cracks in AI 2219-T851

    NASA Astrophysics Data System (ADS)

    Morris, W. L.; James, M. R.; Buck, O.

    1981-01-01

    Rates of fatigue propagation of short Mode I surface cracks in Al 2219-T851 are measured as a function of crack length and of the location of the surface crack tips relative to the grain boundaries. The measured rates are then compared to values predicted from crack growth models. The crack growth rate is modeled with an underlying assumption that slip responsible for early propagation does not extend in significant amounts beyond the next grain boundary in the direction of crack propagation. Two models that contain this assumption are combined: 1) cessation of propagation into a new grain until a mature plastic zone is developed; 2) retardation of propagation by crack closure stress, with closure stress calculated from the location of a crack tip relative to the grain boundary. The transition from short to long crack growth behavior is also discussed.

  10. The effect of material heterogeneity and random loading on the mechanics of fatigue crack growth

    NASA Technical Reports Server (NTRS)

    Srivatsan, T. S.; Sambandham, M.; Bharucha-Reid, A. T.

    1985-01-01

    This paper reviews experimental work on the influence of variable amplitude or random loads on the mechanics and micromechanisms of fatigue crack growth. Implications are discussed in terms of the crack driving force, local plasticity, crack closure, crack blunting, and microstructure. Due to heterogeneity in the material's microstructure, the crack growth rate varies with crack tip position. Using the weakest link theory, an expression for crack growth rate is obtained as the expectation of a random variable. This expression is used to predict the crack growth rates for aluminum alloys, a titanium alloy, and a nickel steel in the mid-range region. It is observed, using the present theory, that the crack growth rate obeys the power law for small stress intensity factor range, and that the power is a function of a material constant.

  11. Cocaine (Coke, Crack) Facts

    MedlinePlus

    ... That People Abuse » Cocaine (Coke, Crack) Facts Cocaine (Coke, Crack) Facts Listen Cocaine is a white ... Version Download "My life was built around getting cocaine and getting high." Stacey is recovering from her ...

  12. Crack propagation in graphene

    NASA Astrophysics Data System (ADS)

    Budarapu, P. R.; Javvaji, B.; Sutrakar, V. K.; Roy Mahapatra, D.; Zi, G.; Rabczuk, T.

    2015-08-01

    The crack initiation and growth mechanisms in an 2D graphene lattice structure are studied based on molecular dynamics simulations. Crack growth in an initial edge crack model in the arm-chair and the zig-zag lattice configurations of graphene are considered. Influence of the time steps on the post yielding behaviour of graphene is studied. Based on the results, a time step of 0.1 fs is recommended for consistent and accurate simulation of crack propagation. Effect of temperature on the crack propagation in graphene is also studied, considering adiabatic and isothermal conditions. Total energy and stress fields are analyzed. A systematic study of the bond stretching and bond reorientation phenomena is performed, which shows that the crack propagates after significant bond elongation and rotation in graphene. Variation of the crack speed with the change in crack length is estimated.

  13. Shrinkage Prediction for the Investment Casting of Stainless Steels

    SciTech Connect

    Sabau, Adrian S

    2007-01-01

    In this study, the alloy shrinkage factors were obtained for the investment casting of 17-4PH stainless steel parts. For the investment casting process, unfilled wax and fused silica with a zircon prime coat were used for patterns and shell molds, respectively. Dimensions of the die tooling, wax pattern, and casting were measured using a Coordinate Measurement Machine in order to obtain the actual tooling allowances. The alloy dimensions were obtained from numerical simulation results of solidification, heat transfer, and deformation phenomena. The numerical simulation results for the shrinkage factors were compared with experimental results.

  14. ACCELERATED MRI USING ITERATIVE NON-LOCAL SHRINKAGE

    PubMed Central

    Mohsin, Yasir Q.; Ongie, Gregory; Jacob, Mathews

    2015-01-01

    We introduce a fast iterative non-local shrinkage algorithm to recover MRI data from undersampled Fourier measurements. This approach is enabled by the reformulation of current non-local schemes as an alternating algorithm to minimize a global criterion. The proposed algorithm alternates between a non-local shrinkage step and a quadratic subproblem. The resulting algorithm is observed to be considerably faster than current alternating non-local algorithms. We use efficient continuation strategies to minimize local minima issues. The comparisons of the proposed scheme with state-of-the-art regularization schemes show a considerable reduction in alias artifacts and preservation of edges. PMID:25570265

  15. Crack mitigation in concrete bridge decks through experimental analysis and computer modeling

    NASA Astrophysics Data System (ADS)

    Richardson, Douglas M.

    Bridge deck cracking can cause deterioration of bridge decks, leading to a shorter life span and poor performance. Throughout the US, cracking has been identified as a problem, with transverse cracking along the deck at regular spacings being the most prominent type. This problem is usually caused by drying shrinkage within the concrete. The material properties, restraint, and distances without expansion joints all affect the crack pattern within the deck. This study will delve into the reasons that bridge decks crack, the strains that are associated with drying shrinkage, and possible methods for abating its effects. The research is divided into two parts, the first being laboratory experimentation, which was conducted through the use of two 7 ft. x 10 ft. experimental concrete bridge bays. Each bay was instrumented with strain and temperature gages throughout the deck and girders, which collected data for six months. The first deck was poured with a control concrete mix used currently in Illinois. The second deck was poured with a type K expansive concrete, which could battle the effects of shrinkage. For both decks, the results suggest a compressive strain throughout the rebar and along the top surface of the concrete, except for the locations where cracks are found (at these locations the strain slopes upward into tension). The strain in the type K deck, though, was notably less than that in the control deck and the onset of cracking was delayed by three weeks, giving the indication of an improvement over the current mix design. The second portion of the research was focused on using a finite element model to replicate the bridge bay and study the results. Equivalent temperature loading was used to apply the shrinkage loads recorded during the experimental portion of the research. The model was then expanded to encompass a full-scale bridge and in order to provide some insight into shrinkage strain in the real world. The end goal is to help alleviate cracking

  16. J-integral of circumferential crack in large diameter pipes

    NASA Astrophysics Data System (ADS)

    Ji, Wei; Chao, Yuh J.; Sutton, M. A.; Lam, P. S.; Mertz, G. E.

    Large diameter thin-walled pipes are encountered in a low pressure nuclear power piping system. Fracture parameters such as K and J, associated with postulated cracks, are needed to assess the safety of the structure, for example, prediction of the onset of tile crack growth and the stability of the crack. The Electric Power Research Institute (EPRI) has completed a comprehensive study of cracks in pipes and handbook-type data is available. However, for some large diameter, thin-walled pipes the needed information is not included in the handbook. This paper reports our study of circumferential cracks in large diameter, thin-walled pipes (R/t=30 to 40) under remote bending or tension loads. Elastic-Plastic analyses using the finite element method were performed to determine the elastic and fully plastic J values for various pipe/crack geometries. A non-linear Ramberg-Osgood material model is used with strain hardening exponents (n) that range from 3 to 10. A number of circumferential, through thickness cracks were studied with half crack angles ranging from 0.063(pi) to 0.5(pi). Results are tabulated for use with the EPRI estimation scheme.

  17. Crack Growth Simulation and Residual Strength Prediction in Airplane Fuselages

    NASA Technical Reports Server (NTRS)

    Chen, Chuin-Shan; Wawrzynek, Paul A.; Ingraffea, Anthony R.

    1999-01-01

    The objectives were to create a capability to simulate curvilinear crack growth and ductile tearing in aircraft fuselages subjected to widespread fatigue damage and to validate with tests. Analysis methodology and software program (FRANC3D/STAGS) developed herein allows engineers to maintain aging aircraft economically, while insuring continuous airworthiness, and to design more damage-tolerant aircraft for the next generation. Simulations of crack growth in fuselages were described. The crack tip opening angle (CTOA) fracture criterion, obtained from laboratory tests, was used to predict fracture behavior of fuselage panel tests. Geometrically nonlinear, elastic-plastic, thin shell finite element crack growth analyses were conducted. Comparisons of stress distributions, multiple stable crack growth history, and residual strength between measured and predicted results were made to assess the validity of the methodology. Incorporation of residual plastic deformations and tear strap failure was essential for accurate residual strength predictions. Issue related to predicting crack trajectory in fuselages were also discussed. A directional criterion, including T-stress and fracture toughness orthotropy, was developed. Curvilinear crack growth was simulated in coupon and fuselage panel tests. Both T-stress and fracture toughness orthotropy were essential to predict the observed crack paths. Flapping of fuselages were predicted. Measured and predicted results agreed reasonable well.

  18. Dynamic crack propagation through nanoporous media

    NASA Astrophysics Data System (ADS)

    Nguyen, Thao; Wilkerson, Justin

    2015-06-01

    The deformation and failure of nanoporous metals may be considerably different than that of more traditional bulk porous metals. The length scales in traditional bulk porous metals are typically large enough for classic plasticity and buckling to be operative. However, the extremely small length scales associated with nanoporous metals may inhibit classic plasticity mechanisms. Here, we motivate an alternative nanovoid growth mechanism mediated by dislocation emission. Following an approach similar to Lubarda and co-workers, we make use of stability arguments applied to the analytic solutions of the elastic interactions of dislocations and voids to derive a simple stress-based criterion for emission activation. We then propose a dynamic nanovoid growth law that is motivated by the kinetics of dislocation emission. The resulting failure model is implemented into a commercial finite element software to simulate dynamic crack growth. The simulations reveal that crack propagation through a nanoporous media proceeds at somewhat faster velocities than through the more traditional bulk porous metal.

  19. Short crack growth behavior

    SciTech Connect

    Sadananda, K.; Vasudevan, A.K.

    1997-12-01

    The authors have re-evaluated short crack growth behavior using concepts developed recently, and they show that these concepts provide a unified framework that can explain both short and long crack growth behavior without resorting to the crack closure effect. They consider that the behavior of long cracks, including the effects of load ratio, R, is fundamental. they had shown previously that, since fatigue is at least a two-parameter problem in that at least two load parameters are required for an unambiguous description, there are two critical driving forces required simultaneously for fatigue cracks to grow. In extending this analysis to the growth of short cracks, they reject the current notion of the lack of similitude for short cracks and express the similitude as a fundamental postulate that, for a given crack growth mechanism, equal crack tip driving forces result in equal crack growth rates. Short crack growth behavior confirms the concept that two parameters are required to define fatigue; consequently, for fatigue cracks to grow, two thresholds need to be satisfied simultaneously. The authors present examples from the literature to illustrate the concepts discussed.

  20. Micromechanisms of fatigue crack propagation in particulate-reinforced metal-matrix composites

    SciTech Connect

    Shang, Jianku.

    1989-01-01

    Consequences of the interaction of cracks with SiC particles are examined with emphasis on micromechanisms influencing fatigue crack propagation in high strength aluminum alloy matrix composites. Fatigue crack propagation is found to show three distinct regimes; each accompanied by growth mechanisms reflecting different roles of SiC particles. At near-threshold levels, SiC particles impeded fatigue crack growth by deflecting the crack to promote roughness-induced crack closure and by acting as crack traps along the crack front. A two-dimensional crack trapping analysis based on the interaction of a finite crack with a SiC particle indicates that a limiting criterion for fatigue crack growth in SiC{sub p}/Al composites can be established, which requires that the maximum plastic-zone size exceed the effective mean particle size or that the tensile stress in the matrix beyond the particle on the crack front exceed the yield strength of the material. Implications of crack closure and crack trapping to near-threshold crack growth, including load-ration and particle-size dependence of fatigue thresholds, are discussed in terms of contributions from each mechanism. At higher stress intensities, limited fracture of SiC particles ahead of the crack tip leads to the development of uncracked ligaments along the crack length, resulting in a reduced crack-tip stress intensity from ligament bridging. Micromechanical models are developed for such bridges induced by both overlapping cracks and co-planar ligaments, based on the notion of a limiting crack opening displacement or limiting strain in the ligament. The predicted reduction in crack tip stress intensity is shown to be consistent with experimental observations.

  1. Influence of crack history on the stable tearing behavior of a thin-sheet material with multiple cracks

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Newman, J. C., Jr.; Sutton, M. A.; Amstutz, B. E.

    1994-01-01

    Fracture tests were conducted on 2.3mm thick, 305mm wide sheets of 2024-T3 aluminum alloy with from one to five collinear cracks. The cracks were introduced (crack history) into the specimens by three methods: saw cutting, fatigue precracking at a low stress range, and fatigue precracking at a high stress range. For the single crack tests, the initial crack history influenced the stress required for the onset of stable crack growth and the first 10mm of crack growth. The effect on failure stress was about 4 percent or less. For the multiple crack tests, the initial crack history was shown to cause differences of more than 20 percent in the link-up stress and 13 percent in failure stress. An elastic-plastic finite element analysis employing the CTOA fracture criterion was used to predict the fracture behavior of the single and multiple crack tests. The numerical predictions were within 7 percent of the observed link-up and failure stress in all the tests.

  2. Fatigue crack growth behavior and overload effect of AISI 304 stainless steel in different atmospheres

    NASA Astrophysics Data System (ADS)

    Kelestemur, Mehmet Halidun

    1998-12-01

    AISI 304 stainless steel shows strain induced martensitic transformation at the crack tip. Such transformation may have effects on crack closure during fatigue crack propagation. Due to importance of AISI 304 in structural applications, the fatigue crack propagation and martensitic transformation in this material have to be investigated thoroughly. Fatigue crack growth behavior, overload retardation and characterization of martensitic transformation at the crack tip upon fatigue loading were investigated in 304 stainless steel at three different atmospheres, namely dry argon, moist air (75% relative humidity) and hydrogen. Comparison in various atmospheres showed that moist air did not influence that fatigue crack growth rate. However, in hydrogen atmosphere the material did not show threshold behavior and the crack growth rate was considerably higher. It was found that roughness-induced crack closure was the primary mechanism in the threshold region. Fractographic pictures taken by SEM and direct observation of crack profile showed that crack deflection and branching occurred during the fatigue crack propagation and plasticity-induced crack closure was not the primary closure mechanism. The influence of fatigue crack propagation on the rate and size of martensitic transformation at the crack tip was investigated. The overload retardation of the material was lower at hydrogen atmosphere. This low degree of retardation was explained by hydrogen embrittlement mechanism. Fractographic observations show striations at the overload zone in argon atmosphere indicating ductile fracture. In hydrogen atmosphere, overload area shows secondary cracks which represent brittle fracture. Crack closure measurements and modified Paris law did not show evidence for different retardation mechanisms at different atmospheres. It is found that primary retardation mechanisms were crack deflection, crack blunting and roughness-induced crack closure after application of overload(s). An

  3. Mixed-mode crack behavior. ASTM special technical publication 1325

    SciTech Connect

    Miller, K.J.; McDowell, D.L.

    1999-07-01

    This conference was international and balanced in scope, as witnessed by the presentation of over 20 papers addressing the following topics: (1) Elastic-Plastic Fracture; (2) Three-Dimensional Cracks; (3) Anisotropic Fracture and Applications; (4) Fracture of Composite Materials; (5) Mixed-Mode Fracture Toughness; (6) Mixed-Mode Fatigue Crack Growth; and (7) Experimental Studies in Mixed-Mode Fatigue and Fracture. Separate abstracts were prepared for all papers.

  4. New methods to quantify the cracking performance of cementitious systems made with internal curing

    NASA Astrophysics Data System (ADS)

    Schlitter, John L.

    The use of high performance concretes that utilize low water-cement ratios have been promoted for use in infrastructure based on their potential to increase durability and service life because they are stronger and less porous. Unfortunately, these benefits are not always realized due to the susceptibility of high performance concrete to undergo early age cracking caused by shrinkage. This problem is widespread and effects federal, state, and local budgets that must maintain or replace deterioration caused by cracking. As a result, methods to reduce or eliminate early age shrinkage cracking have been investigated. Internal curing is one such method in which a prewetted lightweight sand is incorporated into the concrete mixture to provide internal water as the concrete cures. This action can significantly reduce or eliminate shrinkage and in some cases causes a beneficial early age expansion. Standard laboratory tests have been developed to quantify the shrinkage cracking potential of concrete. Unfortunately, many of these tests may not be appropriate for use with internally cured mixtures and only provide limited amounts of information. Most standard tests are not designed to capture the expansive behavior of internally cured mixtures. This thesis describes the design and implementation of two new testing devices that overcome the limitations of current standards. The first device discussed in this thesis is called the dual ring. The dual ring is a testing device that quantifies the early age restrained shrinkage performance of cementitious mixtures. The design of the dual ring is based on the current ASTM C 1581-04 standard test which utilizes one steel ring to restrain a cementitious specimen. The dual ring overcomes two important limitations of the standard test. First, the standard single ring test cannot restrain the expansion that takes place at early ages which is not representative of field conditions. The dual ring incorporates a second restraining ring

  5. Crack Instability Predictions Using a Multi-Term Approach

    NASA Technical Reports Server (NTRS)

    Zanganeh, Mohammad; Forman, Royce G.

    2015-01-01

    Present crack instability analysis for fracture critical flight hardware is normally performed using a single parameter, K(sub C), fracture toughness value obtained from standard ASTM 2D geometry test specimens made from the appropriate material. These specimens do not sufficiently match the boundary conditions and the elastic-plastic constraint characteristics of the hardware component, and also, the crack instability of most commonly used aircraft and aerospace structural materials have some amount of stable crack growth before fracture which makes the normal use of a K(sub C) single parameter toughness value highly approximate. In the past, extensive studies have been conducted to improve the single parameter (K or J controlled) approaches by introducing parameters accounting for the geometry or in-plane constraint effects. Using 'J-integral' and 'A' parameter as a measure of constraint is one of the most accurate elastic-plastic crack solutions currently available. In this work the feasibility of the J-A approach for prediction of the crack instability was investigated first by ignoring the effects of stable crack growth i.e. using a critical J and A and second by considering the effects of stable crack growth using the corrected J-delta a using the 'A' parameter. A broad range of initial crack lengths and a wide range of specimen geometries including C(T), M(T), ESE(T), SE(T), Double Edge Crack (DEC), Three-Hole-Tension (THT) and NC (crack from a notch) manufactured from Al7075 were studied. Improvements in crack instability predictions were observed compared to the other methods available in the literature.

  6. Effect of power density on shrinkage of dental resin materials.

    PubMed

    Oberholzer, Theunis G; Pameijer, Cornelis H; Grobler, Sias R; Rossouw, Roelof J

    2003-01-01

    This study compares volumetric changes and rates of shrinkage during different stages of polymerization of dental resin composites and compomers exposed to the same total energy by using two different combinations of power density and exposure duration. A hybrid composite and its equivalent flowable and a compomer and its equivalent flowable were exposed using a halogen curing unit set at 400 mW/cm2 for 40 seconds and 800 mW/cm2 for 20 seconds: delivering 16 J/cm2 in both cases. Volumetric changes were recorded every 0.5 seconds using a mercury dilatometer. Ten replications per test condition were performed and the data were subjected to ANOVA. Statistically significant differences in shrinkage values and rates among different power densities were determined by means of paired t-tests at a 95% confidence level. Significantly more shrinkage (p<0.05) was found for the higher filled materials, Z250 and Dyract AP, when higher power density was used. However, no significant differences were found between their flowable counterparts when exposed to various power densities. Of the four materials, only Dyract AP exhibited no significant difference in shrinkage rate when various power densities were used. All the other materials exhibited significantly higher rates (p<0.05) at the higher power density. PMID:14531610

  7. Validity Shrinkage in Ridge Regression: A Simulation Study.

    ERIC Educational Resources Information Center

    Faden, Vivian; Bobko, Philip

    1982-01-01

    Ridge regression offers advantages over ordinary least squares estimation when a validity shrinkage criterion is considered. Comparisons of cross-validated multiple correlations indicate that ridge estimation is superior when the predictors are multicollinear, the number of predictors is large relative to sample size, and the population multiple…

  8. Scale Shrinkage and the Estimation of Latent Distribution Parameters.

    ERIC Educational Resources Information Center

    Camilli, Gregory

    1988-01-01

    The phenomenon of scale shrinkage is examined. Focus is on the pattern of decreasing variances in item response theory scale scores from fall to spring within a grade. It is demonstrated that questions concerning population distributions of true ability can be addressed with empirical Bayes techniques. (TJH)

  9. Shrinkage Estimation of Linear Combinations of True Scores.

    ERIC Educational Resources Information Center

    Longford, Nicholas T.

    1997-01-01

    It is demonstrated that, in the presence of population information, a linear combination of true scores can be estimated more efficiently than by the same linear combination of the observed scores. Three criteria for optimality are discussed, but they yield the same solution, described as a multivariate shrinkage estimator. (Author/SLD)

  10. Bayesian Shrinkage Analysis of Quantitative Trait Loci for Dynamic Traits

    PubMed Central

    Yang, Runqing; Xu, Shizhong

    2007-01-01

    Many quantitative traits are measured repeatedly during the life of an organism. Such traits are called dynamic traits. The pattern of the changes of a dynamic trait is called the growth trajectory. Studying the growth trajectory may enhance our understanding of the genetic architecture of the growth trajectory. Recently, we developed an interval-mapping procedure to map QTL for dynamic traits under the maximum-likelihood framework. We fit the growth trajectory by Legendre polynomials. The method intended to map one QTL at a time and the entire QTL analysis involved scanning the entire genome by fitting multiple single-QTL models. In this study, we propose a Bayesian shrinkage analysis for estimating and mapping multiple QTL in a single model. The method is a combination between the shrinkage mapping for individual quantitative traits and the Legendre polynomial analysis for dynamic traits. The multiple-QTL model is implemented in two ways: (1) a fixed-interval approach where a QTL is placed in each marker interval and (2) a moving-interval approach where the position of a QTL can be searched in a range that covers many marker intervals. Simulation study shows that the Bayesian shrinkage method generates much better signals for QTL than the interval-mapping approach. We propose several alternative methods to present the results of the Bayesian shrinkage analysis. In particular, we found that the Wald test-statistic profile can serve as a mechanism to test the significance of a putative QTL. PMID:17435239

  11. Are trees able to grow in periods of stem shrinkage?

    PubMed

    Zweifel, Roman; Haeni, Matthias; Buchmann, Nina; Eugster, Werner

    2016-08-01

    Separating continuously measured stem radius (SR) fluctuations into growth-induced irreversible stem expansion (GRO) and tree water deficit-induced reversible stem shrinkage (TWD) requires a conceptualization of potential growth processes that may occur during periods of shrinking and expanding SR below a precedent maximum. Here, we investigated two physiological concepts: the linear growth (LG) concept, assuming linear growth, versus the zero growth (ZG) concept, assuming no growth during periods of stem shrinkage. We evaluated the physiological mechanisms underlying these two concepts and assessed their respective plausibilities using SR data obtained from 15 deciduous and evergreen trees. The application of the LG concept produced steady growth rates, whereas growth rates varied strongly under the ZG concept, more in accordance with mechanistic expectations. Further, growth increased for a maximum of 120 min after periods of stem shrinkage, indicating limited growth activity during those periods. However, this extra growth was found to be a small fraction of total growth only. Furthermore, TWD under the ZG concept was better explained by a hydraulic plant model than TWD under the LG concept. We conclude that periods of stem shrinkage allow for very little growth in the four tree species investigated. However, further studies should focus on obtaining independent growth data to ultimately validate these findings. PMID:27189708

  12. Measurement Error, Multidimensionality, and Scale Shrinkage: A Reply to Yen and Burket.

    ERIC Educational Resources Information Center

    Camilli, Gregory

    1999-01-01

    Yen and Burket suggested that shrinkage in vertical equating cannot be understood apart from multidimensionality. Reviews research on reliability, multidimensionality, and scale shrinkage, and explores issues of practical importance to educators. (SLD)

  13. Effects of constraint on crack growth under aircraft spectrum loading

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1992-01-01

    The objective is to study the effects of constraint on fatigue crack growth under aircraft spectrum loading. A plasticity-induced crack-closure model that accounts for constraint variations during the transition from flat-to-slant crack growth was used to correlate crack-growth rate data under constant-amplitude loading and to calculate crack growth under simulated aircraft spectrum loading. The model was applied to several thin-sheet aluminum alloy materials. Under laboratory air conditions, the transition was shown to be related to the size of the cyclic plastic zone based on the effective stress-intensity factor range for several sheet materials and thicknesses. Results from three-dimensional, elastic-plastic, finite-element analyses of a flat, straight-through crack in a thin-sheet aluminum alloy specimen showed a constraint loss similar to that assumed in the model. Using test data and the closure model, the location of the constraint-loss regime in terms of growth rate and the value of the constraint factor at these rates were determined by trial and error. The model was then used to calculate crack growth under the TWIST spectrum. The calculated results agreed reasonably well with test data. In general, the model predicted shorter crack-growth lives than tests under the TWIST spectrum by about 40 percent. For the TWIST spectrum clipped at Level 3, the calculated lives were within about 20 percent. The results demonstrated that constraint variations, especially for thin-sheet alloys, should be accounted for to predict crack growth under typical aircraft spectra.

  14. Cure shrinkage effects in epoxy and polycyanate matrix composites

    SciTech Connect

    Spellman, G.P.

    1995-12-22

    A relatively new advanced composite matrix, polycyanate ester, was evaluated for cure shrinkage. The chemical cure shrinkage of composites is difficult to model but a number of clever experimental techniques are available to the investigator. In this work the method of curing a prepreg layup on top of a previously cured laminate of identical ply composition is utilized. The polymeric matrices used in advanced composites have been primarily epoxies and therefore a common system of this type, Fiberite 3501-6, was used as a base case material. Three polycyanate matrix systems were selected for the study. These are: Fiberite 954-2A, YLA RS-3, and Bryte Technology BTCy-1. The first three of these systems were unidirectional prepreg with carbon fiber reinforcement. The Bryte Technology material was reinforced with E-glass fabric. The technique used to evaluate cure shrinkage results in distortion of the flatness of an otherwise symmetric laminate. The first laminate is cured in a conventional fashion. An identical layup is cured on this first laminate. During the second cure all constituents are exposed to the same thermal cycles. However, only the new portion of the laminate will experience volumetric changes associate with matrix cure. The additional strain of cure shrinkage results in an unsymmetric distribution of residual stresses and an associated warpage of the laminate. The baseline material, Fiberite 3501-6, exhibited cure shrinkage that was in accordance with expectations. Cure strains were {minus}4.5E-04. The YLA RS-3 material had cure strains somewhat lower at {minus}3.2E-04. The Fiberite 954-2A cure strain was {minus}1.5E-04 that is 70% lower than the baseline material. The glass fabric material with the Bryte BTCy-1 matrix did not result in meaningful results because the processing methods were not fully compatible with the material.

  15. Small-crack effects in high-strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Wu, X. R.; Venneri, S. L.; Li, C. G.

    1994-01-01

    The National Aeronautics and Space Administration and the Chinese Aeronautical Establishment participated in a Fatigue and Fracture Mechanics Cooperative Program. The program objectives were to identify and characterize crack initiation and growth of small cracks (10 microns to 2 mm long) in commonly used US and PRC aluminum alloys, to improve fracture mechanics analyses of surface- and corner-crack configurations, and to develop improved life-prediction methods. Fatigue and small-crack tests were performed on single-edgenotch tension (SENT) specimens and large-crack tests were conducted on center-crack tension specimens for constant-amplitude (stress ratios of -1, 0, and 0.5) and Mini-TWIST spectrum loading. The plastic replica method was used to monitor the initiation and growth of small fatigue cracks at the semicircular notch. Crack growth results from each laboratory on 7075-T6 bare and LC9cs clad aluminum alloys agreed well and showed that fatigue life was mostly crack propagation from a material defect (inclusion particles or void) or from the cladding layer. Finite-element and weight-function methods were used to determine stress intensity factors for surface and corner cracks in the SENT specimens. Equations were then developed and used in a crack growth and crack-closure model to correlate small- and large-crack data and to make life predictions for various load histories. The cooperative program produced useful experimental data and efficient analysis methods for improving life predictions. The results should ultimately improve aircraft structural reliability and safety.

  16. A Monte Carlo Evaluation of Estimated Parameters of Five Shrinkage Estimate Formuli.

    ERIC Educational Resources Information Center

    Newman, Isadore; And Others

    A Monte Carlo study was conducted to estimate the efficiency of and the relationship between five equations and the use of cross validation as methods for estimating shrinkage in multiple correlations. Two of the methods were intended to estimate shrinkage to population values and the other methods were intended to estimate shrinkage from sample…

  17. A Monte Carlo Evaluation of Estimated Parameters of Five Shrinkage Estimate Formuli.

    ERIC Educational Resources Information Center

    Newman, Isadore; And Others

    1979-01-01

    A Monte Carlo simulation was employed to determine the accuracy with which the shrinkage in R squared can be estimated by five different shrinkage formulas. The study dealt with the use of shrinkage formulas for various sample sizes, different R squared values, and different degrees of multicollinearity. (Author/JKS)

  18. Crack Growth Behavior in the Threshold Region for High Cyclic Loading

    NASA Technical Reports Server (NTRS)

    Forman, R.; Figert, J.; Beek, J.; Ventura, J.; Martinez, J.; Samonski, F.

    2011-01-01

    The present studies show that fanning in the threshold regime is likely caused by other factors than a plastic wake developed during load shedding. The cause of fanning at low R-values is a result of localized roughness, mainly formation of a faceted crack surface morphology , plus crack bifurcations which alters the crack closure at low R-values. The crack growth behavior in the threshold regime involves both crack closure theory and the dislocation theory of metals. Research will continue in studying numerous other metal alloys and performing more extensive analysis, such as the variation in dislocation properties (e.g., stacking fault energy) and its effects in different materials.

  19. Investigation of Helicopter Longeron Cracks

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Baughman, James; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurgical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  20. Material grain size and crack size influences on cleavage fracturing.

    PubMed

    Armstrong, Ronald W

    2015-03-28

    A review is given of the analogous dependence on reciprocal square root of grain size or crack size of fracture strength measurements reported for steel and other potentially brittle materials. The two dependencies have much in common. For onset of cleavage in steel, attention is focused on relationship of the essentially athermal fracture stress compared with a quite different viscoplastic yield stress behaviour. Both grain-size-dependent stresses are accounted for in terms of dislocation pile-up mechanics. Lowering of the cleavage stress occurs in steel because of carbide cracking. For crack size dependence, there is complication of localized crack tip plasticity in fracture mechanics measurements. Crack-size-dependent conventional and indentation fracture mechanics measurements are described also for results obtained on the diverse materials: polymethylmethacrylate, silicon crystals, alumina polycrystals and WC-Co (cermet) composites. PMID:25713456

  1. The analysis of crack tip fields in ferroelastic materials

    NASA Astrophysics Data System (ADS)

    Carka, Dorinamaria; Landis, Chad M.

    2011-09-01

    The stress and strain fields near a stationary crack in a ferroelastic material are analyzed. The constitutive response of the material is taken to be characteristic of a polycrystalline sample assembled from randomly oriented tetragonal single crystal grains. The constitutive law accounts for the strain saturation, asymmetry in tension versus compression, Bauschinger effects, reverse switching, and strain reorientation that can occur in these materials due to the non-proportional loading that can arise near a crack tip. Detailed finite element calculations are carried out to determine the stress and strain fields in the vicinity of the crack tip, and to compute values for the J-integral on various integration paths around the tip. The results of the calculations are discussed in relation to results for growing cracks and for stationary cracks in standard elastic-plastic materials.

  2. Three-dimensional crack growth assessment by microtopographic examination

    SciTech Connect

    Lloyd, W.R.; Piascik, R.S.

    1995-12-31

    The initial stage of the stable tearing process in two 2.3 mm sheet 2024-T3 aluminum alloy M(T) specimens are analyzed using fracture surface microtopography reconstruction techniques. The local crack tip opening angles (CTOA) in the interior of the specimens are determined relative to both crack extension and through-thickness position. The microtopographic analysis of cracks grown in the L-T and T-L orientations reveal that interior CTOA is comparable to those measured on the surface using standard optical analysis methods. Similar to surface CTOA results, interior (mid-thickness) CTOA exhibit a transient behavior; CTOA transitions from high angles, at near crack initiation, to a lower steady-state value of 5 deg. and 4.2 deg. for L-T and T-L, respectively, at crack lengths greater than 1.5mm. Fracture surface topographic projection maps are used to study the evolution of crack front tunneling during the initial stage of the fracture process. Stable tearing initiates at mid-thickness followed by a crack front tunneling process to a depth of approximately 2mm. A brief discussion of the basis of the fracture process reconstruction method is provided and comments on the general utility of microtopographic fracture surface examination for general assessment of elastic-plastic and fully-plastic fracture processes are made.

  3. Fretting induced plasticity in blade/disk contacts

    NASA Astrophysics Data System (ADS)

    Gao, Guofeng

    Finite element analyses of fretting contacts were developed for different pad geometries and material combinations. A better understanding of the surface tractions and life predictions for crack nucleation and propagation is achieved by including the effects of plasticity and the representative crack in the finite element modeling. Pure elastic finite element results were validated with the existing elastic solution suite based on Singular Integral Equations (SIEs). The elastic-perfectly-plastic analysis of a rigid cylindrical pad on an isotropic half-space was compared with the results in the literature. Different shapes of rigid indenters were examined and the results were compared with those from the SIEs. Fretting contacts with similar and dissimilar isotropic materials were studied. The effects of plasticity on fretting life were highlighted by comparing the results from pure elastic analyses and elastic-plastic analyses. Finite element modelings involving SCN materials with different rotations of material principle axes were also investigated. The crack nucleation life was calculated with the Modified Manson-McKnight model. This model, modified by stressed area approach, usually generates significantly conservative estimates when pure elastic stress results are used. When plasticity is taken into account, the life prediction accuracy for crack nucleation was proven to be improved tremendously. A representative crack was incorporated into the FEM model at the trailing edge of contact to study its effects on surface tractions and crack propagation life. The originally smooth pressure distribution has a singularity at the edge of contact and the contact size expands due to the crack growth. The crack propagation life was evaluated by using the modified crack closure method and the Paris law.

  4. Recent advances in the modelling of crack growth under fatigue loading conditions

    NASA Technical Reports Server (NTRS)

    Dekoning, A. U.; Tenhoeve, H. J.; Henriksen, T. K.

    1994-01-01

    Fatigue crack growth associated with cyclic (secondary) plastic flow near a crack front is modelled using an incremental formulation. A new description of threshold behaviour under small load cycles is included. Quasi-static crack extension under high load excursions is described using an incremental formulation of the R-(crack growth resistance)- curve concept. The integration of the equations is discussed. For constant amplitude load cycles the results will be compared with existing crack growth laws. It will be shown that the model also properly describes interaction effects of fatigue crack growth and quasi-static crack extension. To evaluate the more general applicability the model is included in the NASGRO computer code for damage tolerance analysis. For this purpose the NASGRO program was provided with the CORPUS and the STRIP-YIELD models for computation of the crack opening load levels. The implementation is discussed and recent results of the verification are presented.

  5. Finite-element analysis of crack growth under monotonic and cyclic loading

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1977-01-01

    An elastic-plastic (incremental) finite-element analysis, in conjunction with a crack-growth criterion, was used to study crack-growth behavior under monotonic and cyclic loading. The crack-growth criterion was based on crack-tip strain. Whenever the crack-tip strain equals or exceeds a critical strain value, the crack grows. The effects of element-mesh size, critical strain, strain hardening, and specimen type (tension or bending) on crack growth under monotonic loading were investigated. Crack growth under cyclic loading (constant amplitude and simple variable amplitude) were also studied. A combined hardening theory, which incorporates features of both isotropic and kinematic hardening under cyclic loading, was also developed for smooth yield surfaces and was used in the analysis.

  6. New Class of Plastic Bulk Metallic Glass

    SciTech Connect

    Chen, L. Y.; Jiang, Q. K.; Wang, X. D.; Cao, Q. P.; Zeng, Y. W.; Jiang, J. Z.; Fu, Z. D.; Zhang, S. L.; Zhang, G. Q.; Hao, X. P.; Wang, B. Y.; Franz, H.; Liu, Y. G.; Xie, H. S.

    2008-02-22

    An intrinsic plastic Cu{sub 45}Zr{sub 46}Al{sub 7}Ti{sub 2} bulk metallic glass (BMG) with high strength and superior compressive plastic strain of up to 32.5% was successfully fabricated by copper mold casting. The superior compressive plastic strain was attributed to a large amount of randomly distributed free volume induced by Ti minor alloying, which results in extensive shear band formation, branching, interaction and self-healing of minor cracks. The mechanism of plasticity presented here suggests that the creation of a large amount of free volume in BMGs by minor alloying or other methods might be a promising new way to enhance the plasticity of BMGs.

  7. Fatigue crack propagation rate model based on a dislocation mechanism

    NASA Technical Reports Server (NTRS)

    Mazumdar, P. K.; Jeelani, S.

    1986-01-01

    It has been noted that the crack propagation exponent p for most metals usually varies between values of 2 and 4, and that the motion of dislocations plays an important part in determining the exponent p. Attention is presently given to the significance of the exponent p in terms of the motion of dislocations, in view of the theory of thermally activated plastic flow and the cumulative plastic strain concept for a failure criterion.

  8. Numerical Analysis of Surface Cracks at Regions of Curvature in Oxide Scales

    SciTech Connect

    Williamson, Richard L; Wright, Julie Knibloe; Steffler, Eric Darwin; Cannon, R. M.

    2003-02-01

    Finite element simulations are used to examine surface cracks at regions of local curvature (corners or convolutions) in protective oxide scales. Stresses are generated during cooling from oxide formation temperatures. Three different modeling approaches are employed, since each adds some insight to crack behavior. For the first, a series of standard static analyses with varying crack lengths is used to approximate crack motion. Next, a simple node-release technique is used, permitting dynamic crack growth along an assumed path. Finally, a model based on an arbitrary crack path is employed, wherein the crack path is included as an unknown and is part of the solution. To quantify geometric effects, three different ratios of corner radii to scale thickness are considered. Further, the influence of the substrate material is investigated by considering both perfectly-plastic and work-hardening behavior. The computed stress-intensity factor at the crack tip is compared to the fracture toughness of the scale material to predict crack growth. Simulations indicate that sharper corners and lower substrate yield strengths increase crack growth potential. Reductions in the stress-intensity factor with increasing crack length are observed that result from the constraining effects of the substrate. Predictions of crack trajectory indicate initial crack motion perpendicular to the free surface of the scale, followed by a near 90° turn, resulting in a crack path nearly parallel to the free surface.

  9. Fracture Test Methods for Plastically Responding COPV Liners

    NASA Technical Reports Server (NTRS)

    Dawicke, David S.; Lewis, Joseph C.

    2009-01-01

    An experimental procedure for evaluating the validity of using uniaxial tests to provide a conservative bound on the fatigue crack growth rate behavior small cracks in bi-axially loaded Composite Overwrapped Pressure Vessel (COPV) liners is described. The experimental procedure included the use of a laser notch to quickly generate small surface fatigue cracks with the desired size and aspect ratios. An out-of-plane constraint system was designed to allow fully reversed, fully plastic testing of thin sheet uniaxial coupons. Finally, a method was developed to determine to initiate small cracks in the liner of COPVs.

  10. Degradation of Oxo-Biodegradable Plastic by Pleurotus ostreatus

    PubMed Central

    da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Nunes, Mateus Dias; da Silva, Marliane de Cássia Soares; Kasuya, Maria Catarina Megumi

    2013-01-01

    Growing concerns regarding the impact of the accumulation of plastic waste over several decades on the environmental have led to the development of biodegradable plastic. These plastics can be degraded by microorganisms and absorbed by the environment and are therefore gaining public support as a possible alternative to petroleum-derived plastics. Among the developed biodegradable plastics, oxo-biodegradable polymers have been used to produce plastic bags. Exposure of this waste plastic to ultraviolet light (UV) or heat can lead to breakage of the polymer chains in the plastic, and the resulting compounds are easily degraded by microorganisms. However, few studies have characterized the microbial degradation of oxo-biodegradable plastics. In this study, we tested the capability of Pleurotus ostreatus to degrade oxo-biodegradable (D2W) plastic without prior physical treatment, such as exposure to UV or thermal heating. After 45 d of incubation in substrate-containing plastic bags, the oxo-biodegradable plastic, which is commonly used in supermarkets, developed cracks and small holes in the plastic surface as a result of the formation of hydroxyl groups and carbon-oxygen bonds. These alterations may be due to laccase activity. Furthermore, we observed the degradation of the dye found in these bags as well as mushroom formation. Thus, P. ostreatus degrades oxo-biodegradable plastics and produces mushrooms using this plastic as substrate. PMID:23967057

  11. Degradation of oxo-biodegradable plastic by Pleurotus ostreatus.

    PubMed

    da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Nunes, Mateus Dias; da Silva, Marliane de Cássia Soares; Kasuya, Maria Catarina Megumi

    2013-01-01

    Growing concerns regarding the impact of the accumulation of plastic waste over several decades on the environmental have led to the development of biodegradable plastic. These plastics can be degraded by microorganisms and absorbed by the environment and are therefore gaining public support as a possible alternative to petroleum-derived plastics. Among the developed biodegradable plastics, oxo-biodegradable polymers have been used to produce plastic bags. Exposure of this waste plastic to ultraviolet light (UV) or heat can lead to breakage of the polymer chains in the plastic, and the resulting compounds are easily degraded by microorganisms. However, few studies have characterized the microbial degradation of oxo-biodegradable plastics. In this study, we tested the capability of Pleurotus ostreatus to degrade oxo-biodegradable (D2W) plastic without prior physical treatment, such as exposure to UV or thermal heating. After 45 d of incubation in substrate-containing plastic bags, the oxo-biodegradable plastic, which is commonly used in supermarkets, developed cracks and small holes in the plastic surface as a result of the formation of hydroxyl groups and carbon-oxygen bonds. These alterations may be due to laccase activity. Furthermore, we observed the degradation of the dye found in these bags as well as mushroom formation. Thus, P. ostreatus degrades oxo-biodegradable plastics and produces mushrooms using this plastic as substrate. PMID:23967057

  12. Plastic Bronchitis.

    PubMed

    Rubin, Bruce K

    2016-09-01

    Plastic bronchitis is an uncommon and probably underrecognized disorder, diagnosed by the expectoration or bronchoscopic removal of firm, cohesive, branching casts. It should not be confused with purulent mucous plugging of the airway as seen in patients with cystic fibrosis or bronchiectasis. Few medications have been shown to be effective and some are now recognized as potentially harmful. Current research directions in plastic bronchitis research include understanding the genetics of lymphatic development and maldevelopment, determining how abnormal lymphatic malformations contribute to cast formation, and developing new treatments. PMID:27514587

  13. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Kim, K. S.; Vanstone, R. H.

    1992-01-01

    The purpose of this program was to extend the work performed in the base program (CR 182247) into the regime of time-dependent crack growth under isothermal and thermal mechanical fatigue (TMF) loading, where creep deformation also influences the crack growth behavior. The investigation was performed in a two-year, six-task, combined experimental and analytical program. The path-independent integrals for application to time-dependent crack growth were critically reviewed. The crack growth was simulated using a finite element method. The path-independent integrals were computed from the results of finite-element analyses. The ability of these integrals to correlate experimental crack growth data were evaluated under various loading and temperature conditions. The results indicate that some of these integrals are viable parameters for crack growth prediction at elevated temperatures.

  14. CRACK MODELLING FOR RADIOGRAPHY

    SciTech Connect

    Chady, T.; Napierala, L.

    2010-02-22

    In this paper, possibility of creation of three-dimensional crack models, both random type and based on real-life radiographic images is discussed. Method for storing cracks in a number of two-dimensional matrices, as well algorithm for their reconstruction into three-dimensional objects is presented. Also the possibility of using iterative algorithm for matching simulated images of cracks to real-life radiographic images is discussed.

  15. Crack Modelling for Radiography

    NASA Astrophysics Data System (ADS)

    Chady, T.; Napierała, L.

    2010-02-01

    In this paper, possibility of creation of three-dimensional crack models, both random type and based on real-life radiographic images is discussed. Method for storing cracks in a number of two-dimensional matrices, as well algorithm for their reconstruction into three-dimensional objects is presented. Also the possibility of using iterative algorithm for matching simulated images of cracks to real-life radiographic images is discussed.

  16. Thermal cracking of butadiene

    SciTech Connect

    Duisters, H.A.M. )

    1994-01-01

    This paper presents experimental data on the thermal cracking of butadiene in a pilot plant, under conditions representative of industrial operation. The product distribution of pure-butadiene cracking is shown. Results from cocracking experiments in naphtha and C[sub 4]-raffinate are also presented. It is shown that butadiene cracking can be an interesting outlet for the increasing butadiene overcapacity in steam crackers. Some aspects of coke formation during butadiene pyrolysis are addressed as well.

  17. The Effect of Water on Crack Interaction

    NASA Astrophysics Data System (ADS)

    Gaede, O.; Regenauer-Lieb, K.

    2009-04-01

    While the mechanical coupling between pore fluid and solid phase is relatively well understood, quantitative studies dealing with chemical-mechanical weakening in geological materials are rare. Many classical poroelastic problems can be addressed with the simple law of effective stress. Experimental studies show that the presence of a chemically active fluid can have effects that exceed the predictions of the law of effective stress. These chemical fluid-rock interactions alter the mechanical properties of the solid phase. Especially chemical-mechanical weakening has important ramifications for many areas of applied geosciences ranging from nuclear waste disposal over reservoir enhancement to fault stability. In this study, we model chemically induced changes of the size of the process zone around a crack tip. The knowledge of the process zone size is used to extend existing effective medium approximations of cracked solids. The stress distribution around a crack leads to a chemical potential gradient. This gradient will be a driver for mass diffusion through the solid phase. As an example, mass diffusion is towards the crack tip for a mode I crack. In this case a chemical reaction, that weakens the solid phase, will increase the size of the process zone around the crack tip. We apply our model to the prominent hydrolytic weakening effect observed in the quartz-water system (Griggs and Blacic, 1965). Hydrolytic weakening is generally attributed to water hydrolyzing the strong Si-O bonds of the quartz crystal. The hydrolysis replaces a Si-O-Si bridge with a relatively weak hydrogen bridge between two silanol groups. This enhances dislocation mobility and hence the yield stress is reduced. The plastic process zone around a crack tip is therefore larger in a wet crystal than in a dry crystal. We calculate the size of the process zone by solving this coupled mechanical-chemical problem with the Finite Element code ABAQUS. We consider single crack, collinear crack and

  18. Automatic crack propagation tracking

    NASA Technical Reports Server (NTRS)

    Shephard, M. S.; Weidner, T. J.; Yehia, N. A. B.; Burd, G. S.

    1985-01-01

    A finite element based approach to fully automatic crack propagation tracking is presented. The procedure presented combines fully automatic mesh generation with linear fracture mechanics techniques in a geometrically based finite element code capable of automatically tracking cracks in two-dimensional domains. The automatic mesh generator employs the modified-quadtree technique. Crack propagation increment and direction are predicted using a modified maximum dilatational strain energy density criterion employing the numerical results obtained by meshes of quadratic displacement and singular crack tip finite elements. Example problems are included to demonstrate the procedure.

  19. Comninou contact zones for a crack parallel to an interface

    SciTech Connect

    Joseph, P.F.; Gadi, K.S.; Erdogen, F.

    1995-12-31

    One of the interesting features in studying the state of stress in elastic solids near singular points, is the so called complex singularity that gives rise to an apparent local oscillatory behavior in the stress and displacement fields. The region in which this occurs is very small, much smaller than any plastic zone would be, and therefore the oscillations can be ignored in practical applications. Nevertheless, it is a matter of interesting theoretical investigation. The Comninou model of a small contact zone near the crack tip appears to correct for this anomaly within the framework of the linear theory. This model seems to make sense out of a {open_quotes}solution{close_quotes} that violates the boundary conditions. Erdogan and Joseph, showed (to themselves anyway) that the Comninou model actually has a physical basis. They considered a crack parallel to an interface where the order of the singularity is always real. With great care in solving the singular integral equations, it was shown that as the crack approaches the interface, a pinching effect is observed at the crack tip. This pinching effect proves that in the limit as the crack approaches the interface, the correct way to handle the problem is to consider crack surface contact. In this way, the issue of {open_quotes}oscillations{close_quotes} is never encountered for the interface crack problem. In the present study, the value of h/a that corresponds to crack closure (zero value of the stress intensity factor) will be determined for a given material pair for tensile loading. An asymptotic numerical method for the solution of singular integral equations making use of is used to obtain this result. Results for the crack opening displacement near the tip of the crack and the behavior of the stress intensity factor for cracks very close to the interface are presented. Among other interesting issues to be discussed, this solution shows that the semi-infinite crack parallel to an interface is closed.

  20. Surface Enhancement Improves Crack Resistance

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The low plasticity burnishing (LPB) process produces a deep layer of surface compression in a quick and affordable manner to produce metal surfaces free of scratches, nicks, and gouges. The process, designed for easy inclusion in the manufacturing environment, can be performed with conventional Computer Numerical Control machine tools. This allows parts to be processed during manufacturing, rather than as a post process in a separate facility. A smooth, free-rolling spherical ball suspended in a fluid allows for single-point contact. The ball comes into mechanical contact only with the surface to be burnished, and can be moved in any direction. LPB can be applied to all types of carbon and alloy steel, stainless steel, cast iron, aluminum, titanium, and nickel- based super alloys. In addition to improving a surface's resistance to fatigue and damage, treatment stops the growth of shallow cracks. The LPB process is used on the leading edges of turbine blades to improve resistance to foreign object damage and crack growth. This means significant savings for aircraft owners, since maintenance requirements to inspect for fatigue damage, replace parts, and remove corrosion damage increase the cost of operation.

  1. Cosmetic Plastic Surgery Statistics

    MedlinePlus

    2014 Cosmetic Plastic Surgery Statistics Cosmetic Procedure Trends 2014 Plastic Surgery Statistics Report Please credit the AMERICAN SOCIETY OF PLASTIC SURGEONS when citing statistical data or using ...

  2. Plastics Technician.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document contains 16 units to consider for use in a tech prep competency profile for the occupation of plastics technician. All the units listed will not necessarily apply to every situation or tech prep consortium, nor will all the competencies within each unit be appropriate. Several units appear within each specific occupation and would…

  3. Remarks on the usefulness of toluidine blue staining for RNA cytophotometry in plastic embedded tissues.

    PubMed

    Meyer, W; Zschemisch, N H

    1999-06-01

    The study demonstrates the usefulness of water-soluble plastic resins for the cytological quantification of RNA contents after toluidine blue staining. In this way shrinkage artefacts in delicate tissues are avoided and more exact cytophotometrical results can be obtained from embryological material. PMID:10432183

  4. Simulation of shrinkage and warpage of semi-crystalline thermoplastics

    NASA Astrophysics Data System (ADS)

    Hopmann, Ch.; Borchmann, N.; Spekowius, M.; Weber, M.; Schöngart, M.

    2015-05-01

    Today, the simulation of the injection molding process is state of the art. Besides the simulation of the manufacturing process, commercial simulation tools allow a prediction of the structural properties of the final part. Especially the complex shrinkage and warpage behavior is of interest as it significantly influences the part quality. Although modern simulation tools provide qualitatively correct results for several materials and processing conditions, significant deviations from the real component's behavior can occur for semi-crystalline thermoplastics. One underlying reason is the description on the macro scale used in these simulation tools. However, in semi-crystalline materials significant effects take place on the micro scale, e.g. crystalline superstructures that cannot be neglected. As part of a research project at IKV, investigations are carried out to improve the simulation accuracy of shrinkage and warpage. To point out differences in the accuracy of commercially available simulation tools, a reference part is computed for the materials polypropylene and polyoxymethylene. The results are validated by injection molding experiments. The shrinkage and warpage behavior is characterized by optical measuring technology. In future, models for the description of the pvT behavior of semi-crystalline thermoplastics will be implemented into the software package SphäroSim which was developed at IKV. With this software, crystallization kinetics for semi-crystalline thermoplastics can be calculated on the micro scale. With the newly implemented pvT models the calculation of shrinkage and warpage for semi-crystalline thermoplastics will be enabled on the micro scale.

  5. COMPARATIVE ANALYSIS OF THE SHRINKAGE STRESS OF COMPOSITE RESINS

    PubMed Central

    Pereira, Rosana Aparecida; de Araujo, Paulo Amarante; Castañeda-Espinosa, Juan Carlos; Mondelli, Rafael Francisco Lia

    2008-01-01

    The aim of this study was to compare the shrinkage stress of composite resins by three methods. In the first method, composites were inserted between two stainless steel plates. One of the plates was connected to a 20 kgf load cell of a universal testing machine (EMIC-DL-500). In the second method, disk-shaped cavities were prepared in 2-mm-thick Teflon molds and filled with the different composites. Gaps between the composites and molds formed after polymerization were evaluated microscopically. In the third method, the wall-to-wall shrinkage stress of the resins that were placed in bovine dentin cavities was evaluated. The gaps were measured microscopically. Data were analyzed by one-way ANOVA and Tukey's test (α=0.05). The obtained contraction forces were: Grandio = 12.18 ± 0.428N; Filtek Z 250 = 11.80 ± 0.760N; Filtek Supreme = 11.80 ± 0.707 N; and Admira = 11.89 ± 0.647 N. The gaps obtained between composites and Teflon molds were: Filtek Z 250 = 0.51 ± 0.0357%; Filtek Supreme = 0.36 ± 0.0438%; Admira = 0.25 ± 0.0346% and Grandio = 0.16 ± 0.008%. The gaps obtained in wall-to-wall contraction were: Filtek Z 250 = 11.33 ± 2.160 μm; Filtek Supreme = 10.66 ± 1.211μm; Admira = 11.16 ± 2.041 μm and Grandio = 10.50 ± 1.224 μm. There were no significant differences among the composite resins obtained with the first (shrinkage stress generated during polymerization) and third method (wall-to-wall shrinkage). The composite resins obtained with the second method (Teflon method) differed significantly regarding gap formation. PMID:19089286

  6. Shrinkage regression-based methods for microarray missing value imputation

    PubMed Central

    2013-01-01

    Background Missing values commonly occur in the microarray data, which usually contain more than 5% missing values with up to 90% of genes affected. Inaccurate missing value estimation results in reducing the power of downstream microarray data analyses. Many types of methods have been developed to estimate missing values. Among them, the regression-based methods are very popular and have been shown to perform better than the other types of methods in many testing microarray datasets. Results To further improve the performances of the regression-based methods, we propose shrinkage regression-based methods. Our methods take the advantage of the correlation structure in the microarray data and select similar genes for the target gene by Pearson correlation coefficients. Besides, our methods incorporate the least squares principle, utilize a shrinkage estimation approach to adjust the coefficients of the regression model, and then use the new coefficients to estimate missing values. Simulation results show that the proposed methods provide more accurate missing value estimation in six testing microarray datasets than the existing regression-based methods do. Conclusions Imputation of missing values is a very important aspect of microarray data analyses because most of the downstream analyses require a complete dataset. Therefore, exploring accurate and efficient methods for estimating missing values has become an essential issue. Since our proposed shrinkage regression-based methods can provide accurate missing value estimation, they are competitive alternatives to the existing regression-based methods. PMID:24565159

  7. Arthroscopic Thermal Capsular Shrinkage for Palmar Midcarpal Instability

    PubMed Central

    Hargreaves, David G.

    2014-01-01

    Background Arthroscopic capsular shrinkage has been previously used to stabilize major joints. This is the first series of its use in the wrist for palmar midcarpal instability (PMCI). Materials and Methods This is a medium-term retrospective review of 13 patients (15 wrists) at an average follow-up of 48 months postoperative. All patients were assessed with a functional questionnaire for instability and a Disabilities of the Arm, Shoulder, and Hand (DASH) score, as well as clinical examination. Description of Technique Arthroscopic capsular shrinkage was performed to the palmar and dorsal capsules of the radiocarpal and midcarpal joints using a bipolar thermal probe. All wrists were immobilized for 6 weeks post operation. Results 100% follow-up was achieved . All cases had an improvement in the frequency and severity of instability symptoms. The average DASH score was significantly reduced. There were no complications. The average loss of movement following the procedure was 15%. Conclusions The medium-term results show that wrist instability due to PMCI can be improved significantly by thermal capsular shrinkage with only a minimal amount of secondary stiffness. PMID:25097808

  8. Shrinkage processes in standard-size Norway spruce wood specimens with different vulnerability to cavitation

    PubMed Central

    ROSNER, SABINE; KARLSSON, BO; KONNERTH, JOHANNES; HANSMANN, CHRISTIAN

    2011-01-01

    Summary The aim of this study was to observe the radial shrinkage of Norway spruce [Picea abies (L. Karst.)] trunkwood specimens with different hydraulic vulnerability to cavitation from the fully saturated state until the overall shrinkage reaches a stable value, and to relate wood shrinkage and recovery from shrinkage to cavitations of the water column inside the tracheids. Radial shrinkage processes in standard-size sapwood specimens (6 mm × 6 mm × 100 mm; radial, tangential and longitudinal) obtained at different positions within the trunk, representing different ages of the cambium, were compared. Cavitation events were assessed by acoustic emission (AE) testing, hydraulic vulnerability by the AE feature analysis and shrinkage was calculated from the changes in contact pressure between the 150 kHz AE transducer and the wood specimen. Two shrinkage processes were observed in both juvenile (annual rings 1 and 2) and mature wood (annual rings 17–19), the first one termed tension shrinkage and the second one cell wall shrinkage process, which started when most of the tracheids reached relative water contents below fiber saturation. Maximum tension shrinkage coincided with high-energy AEs, and the periods of shrinkage recovery could be traced to tension release due to cavitation. Juvenile wood, which was less sensitive to cavitation, had lower earlywood tracheid diameters and was less prone to deformation due to tensile strain than mature wood, showed a lower cell wall shrinkage, and thus total shrinkage. Earlywood lumen diameters and maximum tension shrinkage were strongly positively related to each other, meaning that bigger tracheids are more prone to deformation at the same water tension than the smaller tracheids. PMID:19797244

  9. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy.

    PubMed

    Withers, P J

    2015-03-01

    To better understand the relationship between the nucleation and growth of defects and the local stresses and phase changes that cause them, we need both imaging and stress mapping. Here, we explore how this can be achieved by bringing together synchrotron X-ray diffraction and tomographic imaging. Conventionally, these are undertaken on separate synchrotron beamlines; however, instruments capable of both imaging and diffraction are beginning to emerge, such as ID15 at the European Synchrotron Radiation Facility and JEEP at the Diamond Light Source. This review explores the concept of three-dimensional crack-tip X-ray microscopy, bringing them together to probe the crack-tip behaviour under realistic environmental and loading conditions and to extract quantitative fracture mechanics information about the local crack-tip environment. X-ray diffraction provides information about the crack-tip stress field, phase transformations, plastic zone and crack-face tractions and forces. Time-lapse CT, besides providing information about the three-dimensional nature of the crack and its local growth rate, can also provide information as to the activation of extrinsic toughening mechanisms such as crack deflection, crack-tip zone shielding, crack bridging and crack closure. It is shown how crack-tip microscopy allows a quantitative measure of the crack-tip driving force via the stress intensity factor or the crack-tip opening displacement. Finally, further opportunities for synchrotron X-ray microscopy are explored. PMID:25624521

  10. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy

    PubMed Central

    Withers, P. J.

    2015-01-01

    To better understand the relationship between the nucleation and growth of defects and the local stresses and phase changes that cause them, we need both imaging and stress mapping. Here, we explore how this can be achieved by bringing together synchrotron X-ray diffraction and tomographic imaging. Conventionally, these are undertaken on separate synchrotron beamlines; however, instruments capable of both imaging and diffraction are beginning to emerge, such as ID15 at the European Synchrotron Radiation Facility and JEEP at the Diamond Light Source. This review explores the concept of three-dimensional crack-tip X-ray microscopy, bringing them together to probe the crack-tip behaviour under realistic environmental and loading conditions and to extract quantitative fracture mechanics information about the local crack-tip environment. X-ray diffraction provides information about the crack-tip stress field, phase transformations, plastic zone and crack-face tractions and forces. Time-lapse CT, besides providing information about the three-dimensional nature of the crack and its local growth rate, can also provide information as to the activation of extrinsic toughening mechanisms such as crack deflection, crack-tip zone shielding, crack bridging and crack closure. It is shown how crack-tip microscopy allows a quantitative measure of the crack-tip driving force via the stress intensity factor or the crack-tip opening displacement. Finally, further opportunities for synchrotron X-ray microscopy are explored. PMID:25624521

  11. Stress Intensity Factor Plasticity Correction for Flaws in Stress Concentration Regions

    SciTech Connect

    Friedman, E.; Wilson, W.K.

    2000-02-01

    Plasticity corrections to elastically computed stress intensity factors are often included in brittle fracture evaluation procedures. These corrections are based on the existence of a plastic zone in the vicinity of the crack tip. Such a plastic zone correction is included in the flaw evaluation procedure of Appendix A to Section XI of the ASME Boiler and Pressure Vessel Code. Plasticity effects from the results of elastic and elastic-plastic explicit flaw finite element analyses are examined for various size cracks emanating from the root of a notch in a panel and for cracks located at fillet fadii. The results of these caluclations provide conditions under which the crack-tip plastic zone correction based on the Irwin plastic zone size overestimates the plasticity effect for crack-like flaws embedded in stress concentration regions in which the elastically computed stress exceeds the yield strength of the material. A failure assessment diagram (FAD) curve is employed to graphically c haracterize the effect of plasticity on the crack driving force. The Option 1 FAD curve of the Level 3 advanced fracture assessment procedure of British Standard PD 6493:1991, adjusted for stress concentration effects by a term that is a function of the applied load and the ratio of the local radius of curvature at the flaw location to the flaw depth, provides a satisfactory bound to all the FAD curves derived from the explicit flaw finite element calculations. The adjusted FAD curve is a less restrictive plasticity correction than the plastic zone correction of Section XI for flaws embedded in plastic zones at geometric stress concentrators. This enables unnecessary conservatism to be removed from flaw evaluation procedures that utilize plasticity corrections.

  12. An experimental investigation of transient fatigue crack growth phenomena under elevated temperature conditions in superalloy 718 and titanium Ti-1100. Ph.D. Thesis

    SciTech Connect

    Rosenberger, A.H.

    1993-01-01

    Two transient crack growth phenomena are investigated in high temperature structural alloys. The first phenomenon examined is the growth behavior of small cracks under elastic-plastic conditions in Alloy 718 at 650 C. The second phenomenon to be investigated is the mechanism of the creep-fatigue crack growth in a new near-alpha titanium alloy, Ti-1100. Understanding these phenomena is essential for accurate fracture mechanics based residual life component management techniques. The first part of the dissertation is an experimental study of the elastic-plastic fatigue behavior of small surface cracks in Alloy 718 at 650 C conducted under conditions of total strain control. During cycling, the crack growth was continuously monitored using a direct current potential drop technique while the influence of crack closure was monitored using a laser interferometry technique measuring the crack mouth opening displacement. The crack tip plastic zone size was also measured using a post-test delta phase decoration technique. Results show that the growth rates of the small cracks correlate well with long crack data when using an appropriate elastic-plastic driving force parameter. The anomalous crack growth rates observed in some experiments were found to be experimental transients dominated by the crack initiation fracture and do not represent an intrinsic behavior of Alloy 718. The second part of this document deals with a series of crack growth experiments performed on the near-alpha titanium alloy, Ti-1100, to determine the mechanism of the creep-fatigue interaction. Based on pure creep crack growth results, the increase in the creep-fatigue crack growth rate is not amenable to separate contributions of creep crack growth and fatigue crack growth. A mechanism has been proposed to account for the increase in creep-fatigue crack growth rate based on the planar slip of titanium alloys which results in the formation of dislocation pileups at the prior beta grain boundaries.

  13. Fatigue-Life Prediction Methodology Using Small-Crack Theory

    NASA Technical Reports Server (NTRS)

    Newmann, James C., Jr.; Phillips, Edward P.; Swain, M. H.

    1997-01-01

    This paper reviews the capabilities of a plasticity-induced crack-closure model to predict fatigue lives of metallic materials using 'small-crack theory' for various materials and loading conditions. Crack-tip constraint factors, to account for three-dimensional state-of-stress effects, were selected to correlate large-crack growth rate data as a function of the effective-stress-intensity factor range (delta K(eff)) under constant-amplitude loading. Some modifications to the delta k(eff)-rate relations were needed in the near-threshold regime to fit measured small-crack growth rate behavior and fatigue endurance limits. The model was then used to calculate small- and large-crack growth rates, and to predict total fatigue lives, for notched and un-notched specimens made of two aluminum alloys and a steel under constant-amplitude and spectrum loading. Fatigue lives were calculated using the crack-growth relations and microstructural features like those that initiated cracks for the aluminum alloys and steel for edge-notched specimens. An equivalent-initial-flaw-size concept was used to calculate fatigue lives in other cases. Results from the tests and analyses agreed well.

  14. Surface-crack growth: Models, experiments, and structures; Proceedings of the Symposium, Sparks, NV, Apr. 25, 1988

    NASA Technical Reports Server (NTRS)

    Reuter, Walter G. (Editor); Underwood, John H. (Editor); Newman, James C., Jr. (Editor)

    1990-01-01

    The present volume on surface-crack growth modeling, experimental methods, and structures, discusses elastoplastic behavior, the fracture analysis of three-dimensional bodies with surface cracks, optical measurements of free-surface effects on natural surfaces and through cracks, an optical and finite-element investigation of a plastically deformed surface flaw under tension, fracture behavior prediction for rapidly loaded surface-cracked specimens, and surface cracks in thick laminated fiber composite plates. Also discussed are a novel study procedure for crack initiation and growth in thermal fatigue testing, the growth of surface cracks under fatigue and monotonically increasing load, the subcritical growth of a surface flaw, surface crack propagation in notched and unnotched rods, and theoretical and experimental analyses of surface cracks in weldments.

  15. A model for the formation of fatigue striations and its relationship with small fatigue crack growth in an aluminum alloy

    SciTech Connect

    Shyam, Amit; Lara-Curzio, Edgar

    2010-01-01

    The fatigue crack growth process involves damage accumulation and crack extension. The two sub-processes that lead to fatigue crack extension were quantified separately in a recent model for small fatigue crack growth applicable to engineering alloys. Here, we report the results of an experimental investigation to assess the assumptions of that model. The fatigue striation formation in an aluminum alloy is modeled and it is verified that the number of cycles required for striation formation is related to the cyclic crack tip opening displacement and that the striation spacing is related to the monotonic crack tip displacement. It is demonstrated that extensive cyclic crack tip plasticity in the aluminum alloy causes a reduction in the magnitude of the slope of the fatigue crack propagation curves. The implications of these results on the fatigue crack propagation lifetime calculations are identified.

  16. Crack layer theory

    NASA Technical Reports Server (NTRS)

    Chudnovsky, A.

    1987-01-01

    A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consisting of the main crack and surrounding damage is called crack layer (CL). Crack layer propagation is an irreversible process. The general framework of the thermodynamics of irreversible processes are employed to identify the driving forces (causes) and to derive the constitutive equation of CL propagation, that is, the relationship between the rates of the crack growth and damage dissemination from one side and the conjugated thermodynamic forces from another. The proposed law of CL propagation is in good agreement with the experimental data on fatigue CL propagation in various materials. The theory also elaborates material toughness characterization.

  17. Crack layer theory

    NASA Technical Reports Server (NTRS)

    Chudnovsky, A.

    1984-01-01

    A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consisting of the main crack and surrounding damage is called crack layer (CL). Crack layer propagation is an irreversible process. The general framework of the thermodynamics of irreversible processes are employed to identify the driving forces (causes) and to derive the constitutive equation of CL propagation, that is, the relationship between the rates of the crack growth and damage dissemination from one side and the conjugated thermodynamic forces from another. The proposed law of CL propagation is in good agreement with the experimental data on fatigue CL propagation in various materials. The theory also elaborates material toughness characterization.

  18. Prediction of Crack Growth under Variable-Amplitude Loading in Thin-Sheet 2024-T3 Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1997-01-01

    The present paper is concerned with the application of a "plasticity-induced" crack closure model to study fatigue crack growth under various load histories. The model was based on the Dugdale model but modified to leave plastically deformed material in the wake of the advancing crack. The model was used to correlate crack growth rates under constant-amplitude loading and then used to predict crack growth under variable-amplitude and spectrum loading on thin-sheet 2024- T3 aluminum alloys. Predicted crack-opening stresses agreed well with test data from the literature. The crack-growth lives agreed within a factor of two for single and repeated spike overloads/underloads and within 20 percent for spectrum loading. Differences were attributed to fretting-product-debris-induced closure and three-dimensional affects not included in the model.

  19. Fatigue crack propagation behavior of stainless steel welds

    NASA Astrophysics Data System (ADS)

    Kusko, Chad S.

    The fatigue crack propagation behavior of austenitic and duplex stainless steel base and weld metals has been investigated using various fatigue crack growth test procedures, ferrite measurement techniques, light optical microscopy, stereomicroscopy, scanning electron microscopy, and optical profilometry. The compliance offset method has been incorporated to measure crack closure during testing in order to determine a stress ratio at which such closure is overcome. Based on this method, an empirically determined stress ratio of 0.60 has been shown to be very successful in overcoming crack closure for all da/dN for gas metal arc and laser welds. This empirically-determined stress ratio of 0.60 has been applied to testing of stainless steel base metal and weld metal to understand the influence of microstructure. Regarding the base metal investigation, for 316L and AL6XN base metals, grain size and grain plus twin size have been shown to influence resulting crack growth behavior. The cyclic plastic zone size model has been applied to accurately model crack growth behavior for austenitic stainless steels when the average grain plus twin size is considered. Additionally, the effect of the tortuous crack paths observed for the larger grain size base metals can be explained by a literature model for crack deflection. Constant Delta K testing has been used to characterize the crack growth behavior across various regions of the gas metal arc and laser welds at the empirically determined stress ratio of 0.60. Despite an extensive range of stainless steel weld metal FN and delta-ferrite morphologies, neither delta-ferrite morphology significantly influence the room temperature crack growth behavior. However, variations in weld metal da/dN can be explained by local surface roughness resulting from large columnar grains and tortuous crack paths in the weld metal.

  20. Assessment of crack opening area for leak rates

    SciTech Connect

    Sharples, J.K.; Bouchard, P.J.

    1997-04-01

    This paper outlines the background to recommended crack opening area solutions given in a proposed revision to leak before break guidance for the R6 procedure. Comparisons with experimental and analytical results are given for some selected cases of circumferential cracks in cylinders. It is shown that elastic models can provide satisfactory estimations of crack opening displacement (and area) but they become increasingly conservative for values of L{sub r} greater than approximately 0.4. The Dugdale small scale yielding model gives conservative estimates of crack opening displacement with increasing enhancement for L{sub r} values greater than 0.4. Further validation of the elastic-plastic reference stress method for up to L{sub r} values of about 1.0 is presented by experimental and analytical comparisons. Although a more detailed method, its application gives a best estimate of crack opening displacement which may be substantially greater than small scale plasticity models. It is also shown that the local boundary conditions in pipework need to be carefully considered when evaluating crack opening area for through-wall bending stresses resulting from welding residual stresses or geometry discontinuities.

  1. Photochromic plastics

    SciTech Connect

    Chu, N.Y.C.

    1990-12-31

    The benefits of photochromic glazing materials as well as other switchable devices for solar control and/or use have been analyzed. The analysis indicates that the saving in cooling costs may be significant for a commercial building. This saving can be further increased if other solar control technologies which operate in the solar spectra region outside the visible range are integrated with photochromic property. Photochromic plastics have the advantage of readiness to integrate with other solar control technologies as in the case of retrofit polyester film. The glazing applications of spirooxazines have only been considered recently. The few examples described in the preceding section are just exploratory. Improvements in photochromic performance and durability are definitely probable as more spirooxazine compounds and formulations are tested and stabilization methods are discovered. Recently, an all plastic model house was constructed by General Electric in which both photochromic and electrochromic switchable windows were employed. Thus, commercialization of photochromic plastics for glazing applications may not be as remote as it was not too long ago. 66 refs., 4 figs., 1 tab.

  2. Small-crack test methods

    NASA Astrophysics Data System (ADS)

    Larsen, James M.; Allison, John E.

    This book contains chapters on fracture mechanics parameters for small fatigue cracks, monitoring small-crack growth by the replication method, measurement of small cracks by photomicroscopy (experiments and analysis), and experimental mechanics of microcracks. Other topics discussed are the real-time measurement of small-crack-opening behavior using an interferometric strain/displacement gage; direct current electrical potential measurement of the growth of small cracks; an ultrasonic method for the measurement of the size and opening behavior of small fatigue cracks; and the simulation of short crack and other low closure loading conditions, utilizing constant K(max) Delta-K-decreasing fatigue crack growth procedures.

  3. Shrinkage during holographic recording in photopolymer films determined by holographic interferometry.

    PubMed

    Moothanchery, Mohesh; Bavigadda, Viswanath; Toal, Vincent; Naydenova, Izabela

    2013-12-10

    Shrinkage of photopolymer materials is an important factor for their use in holographic data storage and for fabrication of holographic optical elements. Dimensional change in the holographic element leads to a requirement for compensation in the reading angle and/or wavelength. Normally, shrinkage is studied at the end of the polymerization process and no information about the dynamics is obtained. The aim of this study was to use holographic interferometry to measure the shrinkage that occurs during holographic recording of transmission diffraction gratings in acrylamide photopolymer layers. Shrinkage in photopolymer layers can be measured over the whole recorded area by real-time capture of holographic interferograms at regular intervals during holographic recording using a complimentary metal-oxide-semiconductor camera. The optical path length change, and hence the shrinkage, are determined from the captured fringe patterns. Through analysis of the real-time shrinkage curves, it is possible to distinguish two processes that determine the value of shrinkage in the photopolymer layer. These processes are ascribed to monomer polymerization and crosslinking of polymer chains. The dependence of shrinkage of the layers on the conditions of recording such as recording intensity, single or double beam exposure, and the physical properties of the layers, such as thickness, were studied. Higher shrinkage was observed with recordings at lower intensities and in thinner layers. Increased shrinkage was also observed in the case of single beam polymerization in comparison to the case of double beam holographic exposure. PMID:24513896

  4. Effect of modulated photo-activation on polymerization shrinkage behavior of dental restorative resin composites.

    PubMed

    Tauböck, Tobias T; Feilzer, Albert J; Buchalla, Wolfgang; Kleverlaan, Cornelis J; Krejci, Ivo; Attin, Thomas

    2014-08-01

    This study investigated the influence of modulated photo-activation on axial polymerization shrinkage, shrinkage force, and hardening of light- and dual-curing resin-based composites. Three light-curing resin composites (SDR bulk-fill, Esthet X flow, and Esthet X HD) and one dual-curing material (Rebilda DC) were subjected to different irradiation protocols with identical energy density (27 J cm(-2) ): high-intensity continuous light (HIC), low-intensity continuous light (LIC), soft-start (SS), and pulse-delay curing (PD). Axial shrinkage and shrinkage force of 1.5-mm-thick specimens were recorded in real time for 15 min using custom-made devices. Knoop hardness was determined at the end of the observation period. Statistical analysis revealed no significant differences among the curing protocols for both Knoop hardness and axial shrinkage, irrespective of the composite material. Pulse-delay curing generated the significantly lowest shrinkage forces within the three light-curing materials SDR bulk-fill, Esthet X flow, and Esthet X HD. High-intensity continuous light created the significantly highest shrinkage forces within Esthet X HD and Rebilda DC, and caused significantly higher forces than LIC within Esthet X flow. In conclusion, both the composite material and the applied curing protocol control shrinkage force formation. Pulse-delay curing decreases shrinkage forces compared with high-intensity continuous irradiation without affecting hardening and axial polymerization shrinkage. PMID:25039287

  5. Effect of crack surface geometry on fatigue crack closure

    SciTech Connect

    Drury, W.J.; Gokhale, A.M.; Antolovich, S.D.

    1995-10-01

    The geometry of crack faces often plays a critical role in reducing crack extension forces when crack closure occurs during fatigue crack growth. Most previous studies of fatigue crack closure are concerned with mechanical measure of closure as related to the crack growth rate; very little attention has been given to the geometry of the crack surfaces. The objective is to identify those aspects of crack surface geometry that are important in the closure process, to develop quantitative fractographic techniques to estimate such attributes in a statistically significant and robust manner, and to correlate them to the physical process of crack closure. For this purpose, fatigue crack propagation experiments were performed on a Ni-base superalloy and crack growth rates and crack closure loads were measured. Digital image profilometry and software-based analysis techniques were used for statistically reliable and detailed quantitative characterization of fatigue crack profiles. It is shown that the dimensionless, scale-independent attributes, such a height-to-width ratio of asperities, fractal dimensions, dimensionless roughness parameters, etc., do not represent the aspects of crack geometry that are of primary importance in the crack closure phenomena. Furthermore, it is shown that the scale-dependent characteristics, such as average asperity height, do represent the aspects of crack geometry that play an interactive role in the closure process. These observations have implications concerning the validity of geometry-dependent, closure-based models for fatigue crack growth.

  6. Effect of crack surface geometry on fatigue crack closure

    NASA Astrophysics Data System (ADS)

    Drury, W. J.; Gokhale, Arun M.; Antolovich, S. D.

    1995-10-01

    The geometry of crack faces often plays a critical role in reducing crack extension forces when crack closure occurs during fatigue crack growth. Most previous studies of fatigue crack closure are concerned with mechanical measures of closure as related to the crack growth rate; very little attention has been given to the geometry of the crack surfaces. Our objective is to identify those aspects of crack surface geometry that are important in the closure process, to develop quantitative fractographic techniques to estimate such attributes in a statistically significant and robust manner, and to correlate them to the physical process of crack closure. For this purpose, fatigue crack propagation experiments were performed on a Ni-base superalloy and crack growth rates and crack closure loads were measured. Digital image profilometry and software-based analysis techniques were used for statistically reliable and detailed quantitative characterization of fatigue crack profiles. It is shown that the dimensionless, scale-independent attributes, such as height-to-width ratio of asperities, fractal dimensions, dimensionless roughness parameters, etc., do not represent the aspects of crack geometry that are of primary importance in the crack closure phenomena. Furthermore, it is shown that the scaledependent characteristics, such as average asperity height, do represent the aspects of crack geometry that play an interactive role in the closure process. These observations have implications concerning the validity of geometry-dependent, closure-based models for fatigue crack growth.

  7. The effect of solidification rate on the growth of small fatigue cracks in a cast 319-type aluminum alloy

    SciTech Connect

    Caton, M.J.; Jones, J.W.; Boileau, J.M.; Allison, J.E.

    1999-12-01

    A study was conducted to investigate the effect of solidification rate on the growth behavior of small fatigue cracks in a 319-type aluminum alloy, a common Al-Si-Cu alloy used in automotive castings. Fatigue specimens were taken from cast material that underwent a hot isostatic pressing (HIP) process in order to eliminate shrinkage pores and to facilitate the observation of surface-initiated cracks by replication. Naturally initiated surface cracks ranging in length from 17 {micro}m to 2 mm were measured using a replication technique. Growth rates of the small cracks were calculated as a function of the elastic stress-intensity-factor range ({Delta}K). Long-crack growth-rate data (10 mm {le} length {le} 25 mm) were obtained from compact-tension (CT) specimens, and comparison to the small-crack data indicates the existence of a significant small-crack effect in this alloy. The solidification rate is shown to have a significant influence on small-crack growth behavior, with faster solidification rates resulting in slower growth rates at equivalent {Delta}K levels. A stress-level effect is also observed for both solidification rates, with faster growth rates occurring at higher applied-stress amplitudes at a given {Delta}K. A crack-growth relation proposed by Nisitani and others is modified to give reasonable correlation of small-crack growth data to different solidification rates and stress levels.

  8. The effect of solidification rate on the growth of small fatigue cracks in a cast 319-type aluminum alloy

    NASA Astrophysics Data System (ADS)

    Caton, M. J.; Jones, J. Wayne; Boileau, J. M.; Allison, J. E.

    1999-12-01

    A study was conducted to investigate the effect of solidification rate on the growth behavior of small fatigue cracks in a 319-type aluminum alloy, a common Al-Si-Cu alloy used in automotive castings. Fatigue specimens were taken from cast material that underwent a hot isostatic pressing (HIP) process in order to eliminate shrinkage pores and to facilitate the observation of surface-initiated cracks by replication. Naturally initiated surface cracks ranging in length from 17 µm to 2 mm were measured using a replication technique. Growth rates of the small cracks were calculated as a function of the elastic stress-intensity-factor range (Δ K). Long-crack growth-rate data (10 mm≤length≤25 mm) were obtained from compact-tension (CT) specimens, and comparison to the small-crack data indicates the existence of a significant small-crack effect in this alloy. The solidification rate is shown to have a significant influence on small-crack growth behavior, with faster solidification rates resulting in slower growth rates at equivalent Δ K levels. A stress-level effect is also observed for both solidification rates, with faster growth rates occurring at higher applied-stress amplitudes at a given Δ K. A crack-growth relation proposed by Nisitani and others is modified to give reasonable correlation of small-crack growth data to different solidification rates and stress levels.

  9. Microscopic observation of the tips of fast running cracks in PMMA

    NASA Astrophysics Data System (ADS)

    Zimmermann, C.; Schönert, K.

    ALTHOUGH various theoretical models exist, little experimental data is available on the material behaviour in the ultimate vicinity of the tip of fast running cracks. Using a microscope coupled image converter camera, the tips of cracks running in PMMA (polymethylmethacrylate) at speeds between 250 m s -1 and 680 m s -1 were photographed. Due to the high aperture of the optical set-up, shadow optical effects could be greatly reduced. Thus it was possible to observe the contour of the crack flanks up to the crack tip, revealing the existence of fibrils in between the flanks. Seemingly the appearance of these fibrils is connected with the onset of crack branching. Having the crack pass a microlattice, which had been vapor deposited onto the specimen surface, the displacements around the crack tip could be determined. The recorded plastic zone is of triangular shape. Experimental results are compared with theoretical predictions.

  10. Crack Formation in Powder Metallurgy Carbon Nanotube (CNT)/Al Composites During Post Heat-Treatment

    NASA Astrophysics Data System (ADS)

    Chen, Biao; Imai, Hisashi; Li, Shufeng; Jia, Lei; Umeda, Junko; Kondoh, Katsuyoshi

    2015-12-01

    After the post heat-treatment (PHT) process of powder metallurgy carbon nanotubes (CNT)/Al composites, micro-cracks were observed in the composites, leading to greatly degraded mechanical properties. To understand and suppress the crack formation, an in situ observation of CNT/Al composites was performed at elevated temperatures. PHT was also applied to various bulk pure Al and CNT/Al composites fabricated under different processes. It was observed that the composites consolidated by hot-extrusion might form micro-cracks, but those consolidated by spark plasma sintering (SPS) showed no crack after PHT. A high-temperature SPS process before hot-extrusion was effective to prevent crack formation. The release of residual stress in severe plastic deformed (SPD) materials was responsible for the cracking phenomena during the PHT process. Furthermore, a good particle bonding was essential and effective to suppress cracks for SPD materials in the PHT process.

  11. The influence of recycled expanded polystyrene (EPS) on concrete properties: Influence on flexural strength, water absorption and shrinkage

    NASA Astrophysics Data System (ADS)

    Elsalah, Jamaleddin; Al-Sahli, Yosra; Akish, Ahmed; Saad, Omar; Hakemi, Abdurrahman

    2013-12-01

    Expanded polystyrene waste in a granular form was used as a lightweight aggregate in order to produce lightweight concretë Lightweight EPS concrete composites were produced by replacing the coarse aggregate, either partially or fully with equal volume of EPS aggregates. The coarse aggregate replacements levels used were 25, 50, 75, and 100%, which corresponded to (9.20, 18.40, 27.60, and 36.8%) from total volume. The investigation is directed towards the development and performance evaluation of the concrete composites containing EPS aggregates, without addition of either bonding additives, or super-plasticizers on some concrete properties such as flexure strength, water absorption and change in length (or shrinkage). Experimental results showed that a density reduction of 12% caused flexure strength to decrease by 25.3% at a replacement level of 25% EPS. However, the reduction percentage strongly depends upon the replacement level of EPS granules. Moreover, the lower strength concretes showed a higher water absorption values compared to higher strength concrete, i.e., increasing the volume percentage of EPS increases the water absorption as well as the negative strain (shrinkage). The negative strain was higher at concretes of lower density (containing a high amount of EPS aggregate). The water to cement ratio of EPS aggregate concrete is found to be slightly lower than that of conventional concrete.

  12. Catalytic cracking process

    SciTech Connect

    Gladrow, E.M.; Winter, W.E.

    1980-04-29

    The octane number of a cracked naphtha can be significantly improved in a catalytic cracking unit, without significant decrease in naphtha yield, by maintaining certain critical concentrations of metals on the catalyst, suitably by blending or adding a heavy metals-containing component to the gas oil feed. Suitably, in a catalytic cracking process unit wherein a gas oil feed is cracked in a cracking reactor (Zone) at an elevated temperature in the presence of a cracking catalyst, the cracking catalyst is regenerated in a regenerator (Regeneration zone) by burning coke off the catalyst, and catalyst is circulated between the reactor and regenerator, sufficient of a metals-containing heavy feedstock is admixed, intermittantly or continuously, with the gas oil feed to deposit metals on said catalyst and raise the metals-content of said catalyst to a level of from about 1500 to about 6000 parts per million, preferably from about 2500 to about 4000 parts per million expressed as equivalent nickel, base the weight of the catalyst, and said metals level is maintained on the catalyst throughout the operation by withdrawing high metals-containing catalyst and adding low metals-containing catalyst to the regenerator.

  13. Crack evolution in bulk metallic glasses

    SciTech Connect

    Pauly, Simon; Lee, Min Ha; Kim, Do Hyang; Kim, Ki Buem; Sordelet, Daniel J.; Eckert, Juergen

    2009-11-15

    In the present study, the mechanisms underlying plastic deformation of a Ni-based bulk metallic glass (BMG) are explored. Based on the microstructural investigations, a model is proposed how fracture emerges in BMGs. After deformation, the glass is macroscopically more fragile indicating a decrease in the viscosity within the shear bands due to shear softening. These fluctuations of viscosity and therefore Poisson ratio between the deformed and undeformed regions appear to be the initiation sites for nanometer-scale cracks, which are aligned parallel to the applied force. Coalescence of voids is believed to form these small cracks, which eventually interconnect along the interface between the sheared and unsheared regions to form a detrimental defect resulting in fracture.

  14. Modelling of hydride cracking

    SciTech Connect

    Zheng, X.J.; Metzger, D.R.; Glinka, G.; Dubey, R.N.

    1996-12-01

    Zirconium alloys may be susceptible to hydride formation under certain service conditions, due to hydrogen diffusion and precipitation in the presence of stress concentrations and temperature gradients. The inhomogeneous brittle hydride platelets that form are modeled as plane defects of zero thickness, with fracture toughness less than that of the matrix. A fracture criterion based on sufficient energy and stress is proposed for either delayed hydride cracking (DHC) under constant loading conditions, or hydride cracking at rising loads, such as in a fracture toughness test. The fracture criterion is validated against available experimental data concerning initiation of hydride fracture in smooth specimens, and DHC in cracked specimens under various loading and temperature conditions.

  15. Shrinkage and microstructural development during drying of organically modified silica xerogels

    SciTech Connect

    Raman, N.K.; Wallace, S.; Brinker, C.J. |

    1996-07-01

    We have studied the different driving forces behind syneresis in MTES/TEOS gels by aging them in different H{sub 2}O/EtOH pore fluids. We show using shrinkage, density, contact angle, and N{sub 2} sorption measurements, the influence of gel/solvent interactions on the microstructural evolution during drying. Competing effects of syneresis (that occurs during aging) and drying shrinkage resulted in the overall linear shrinkage of the organically modified gels to be constant at {approximately}50%. Increasing the hydrophobicity of the gels caused the driving force for syneresis to change from primarily condensation reactions to a combination of condensation and solid/liquid interfacial energy. In addition the condensation driven shrinkage was observed to be irreversible, whereas the interfacial free energy driven shrinkage was observed to be partially reversible. Nitrogen sorption experiments show that xerogels with the same overall extent of shrinkage can have vastly different microstructures due to the effects of microphase separation.

  16. Resolved shear stress intensity coefficient and fatigue crack growth in large crystals

    NASA Technical Reports Server (NTRS)

    Chen, QI; Liu, Hao-Wen

    1988-01-01

    Fatigue crack growth in large grain Al alloy was studied. Fatigue crack growth is caused primarily by shear decohesion due to dislocation motion in the crack tip region. The crack paths in the large crystals are very irregular and zigzag. The crack planes are often inclined to the loading axis both in the inplane direction and the thickness direction. The stress intensity factors of such inclined cracks are approximated from the two dimensional finite element calculations. The plastic deformation in a large crystal is highly anisotropic, and dislocation motion in such crystals are driven by the resolved shear stress. The resolved shear stress intensity coefficient in a crack solid, RSSIC, is defined, and the coefficients for the slip systems at a crack tip are evaluated from the calculated stress intensity factors. The orientations of the crack planes are closely related to the slip planes with the high RSSIC values. If a single slip system has a much higher RSSIC than all the others, the crack will follow the slip plane, and the slip plane becomes the crack plane. If two or more slip systems have a high RSSIC, the crack plane is the result of the decohesion processes on these active slip planes.

  17. Effect of a weightlifting belt on spinal shrinkage.

    PubMed

    Bourne, N D; Reilly, T

    1991-12-01

    Spinal loading during weightlifting results in a loss of stature which has been attributed to a decrease in height of the intervertebral discs--so-called 'spinal shrinkage'. Belts are often used during the lifting of heavy weights, purportedly to support, stabilize and thereby attenuate the load on the spine. The purpose of this study was to examine the effects of a standard weightlifting belt in attenuating spinal shrinkage. Eight male subjects with a mean age of 24.8 years performed two sequences of circuit weight-training, one without a belt and on a separate occasion with a belt. The circuit training regimen consisted of six common weight-training exercises. These were performed in three sets of ten with a change of exercise after each set of ten repetitions. A stadiometer sensitive to within 0.01 mm was used to record alterations in stature. Measurements of stature were taken before and after completion of the circuit. The absolute visual analogue scale (AVAS) was used to measure the discomfort and pain intensity resulting from each of the two conditions. The circuit weight-training caused stature losses of 3.59mm without the belt and 2.87 mm with the belt (P greater than 0.05). The subjects complained of significantly less discomfort when the belt was worn (P less than 0.05). The degree of shrinkage was significantly correlated (r = 0.752, P less than 0.05) with perceived discomfort but only when the belt was not worn. These results suggest the potential benefits of wearing a weightlifting belt and support the hypothesis that the belt can help in stabilizing the trunk. PMID:1810615

  18. Exploiting tumor shrinkage through temporal optimization of radiotherapy

    NASA Astrophysics Data System (ADS)

    Unkelbach, Jan; Craft, David; Hong, Theodore; Papp, Dávid; Ramakrishnan, Jagdish; Salari, Ehsan; Wolfgang, John; Bortfeld, Thomas

    2014-06-01

    In multi-stage radiotherapy, a patient is treated in several stages separated by weeks or months. This regimen has been motivated mostly by radiobiological considerations, but also provides an approach to reduce normal tissue dose by exploiting tumor shrinkage. The paper considers the optimal design of multi-stage treatments, motivated by the clinical management of large liver tumors for which normal liver dose constraints prohibit the administration of an ablative radiation dose in a single treatment. We introduce a dynamic tumor model that incorporates three factors: radiation induced cell kill, tumor shrinkage, and tumor cell repopulation. The design of multi-stage radiotherapy is formulated as a mathematical optimization problem in which the total dose to the normal tissue is minimized, subject to delivering the prescribed dose to the tumor. Based on the model, we gain insight into the optimal administration of radiation over time, i.e. the optimal treatment gaps and dose levels. We analyze treatments consisting of two stages in detail. The analysis confirms the intuition that the second stage should be delivered just before the tumor size reaches a minimum and repopulation overcompensates shrinking. Furthermore, it was found that, for a large range of model parameters, approximately one-third of the dose should be delivered in the first stage. The projected benefit of multi-stage treatments in terms of normal tissue sparing depends on model assumptions. However, the model predicts large dose reductions by more than a factor of 2 for plausible model parameters. The analysis of the tumor model suggests that substantial reduction in normal tissue dose can be achieved by exploiting tumor shrinkage via an optimal design of multi-stage treatments. This suggests taking a fresh look at multi-stage radiotherapy for selected disease sites where substantial tumor regression translates into reduced target volumes.

  19. Three-dimensional chemo-thermomechanically coupled simulation of curing adhesives including viscoplasticity and chemical shrinkage

    NASA Astrophysics Data System (ADS)

    Liebl, Christoph; Johlitz, Michael; Yagimli, Bülent; Lion, Alexander

    2012-05-01

    Based on the one-dimensional material model developed by Liebl et al. (Arch Appl Mech, 2011) a three-dimensional viscoelastic-viscoplastic material model for small deformations of curing adhesives on the basis of continuum mechanics is proposed in this contribution. The model describes the most relevant phenomena which occur during curing processes in the automotive industry and includes the effects of temperature and degree of cure on the mechanical properties of the material. Thermal expansion as well as chemical shrinkage are also contained. The yield stress for the viscoplastic part of the model goes back to the work of Schlimmer and Mahnken (Int J Numer Meth Eng 63:1461-1477, 2005), but is formulated in reference to the degree of cure and the temperature. Therefore this model considers chemo-thermomechanical coupling and extends the plasticity approach of Schlimmer and Mahnken, which is devised for cured adhesives, to the whole curing range, from the uncured to the fully cured adhesive. A peculiar focus is hereby laid on epoxy resins used in the automotive industry as structural adhesives.

  20. Long Lasting Protein Synthesis- and Activity-Dependent Spine Shrinkage and Elimination after Synaptic Depression

    PubMed Central

    Ramiro-Cortés, Yazmín; Israely, Inbal

    2013-01-01

    Neuronal circuits modify their response to synaptic inputs in an experience-dependent fashion. Increases in synaptic weights are accompanied by structural modifications, and activity dependent, long lasting growth of dendritic spines requires new protein synthesis. When multiple spines are potentiated within a dendritic domain, they show dynamic structural plasticity changes, indicating that spines can undergo bidirectional physical modifications. However, it is unclear whether protein synthesis dependent synaptic depression leads to long lasting structural changes. Here, we investigate the structural correlates of protein synthesis dependent long-term depression (LTD) mediated by metabotropic glutamate receptors (mGluRs) through two-photon imaging of dendritic spines on hippocampal pyramidal neurons. We find that induction of mGluR-LTD leads to robust and long lasting spine shrinkage and elimination that lasts for up to 24 hours. These effects depend on signaling through group I mGluRs, require protein synthesis, and activity. These data reveal a mechanism for long lasting remodeling of synaptic inputs, and offer potential insights into mental retardation. PMID:23951097

  1. Photoelastic study of shrinkage fitted components for a gasturbine engine

    NASA Astrophysics Data System (ADS)

    Govindaraju, T. V.; Maheshappa, H.; Govindaraju, N.; Gargesa, G.

    A 3D photoelastic model of shrink-fitted components of a gas turbine engine such as low-pressure main shaft and compressor adopter shaft (or hub) are used to perform a photo-elastic investigation of shrink-fitted components for different relative thickness ratio and different contact length ratio. The relative rigidity of the hub is found to increase as the relative thickness ratio increases, and the relative rigidity is found to increase as the contact length ratio decreases. An optimization of the geometry of the shrinkage-fitted components is also obtained.

  2. Dynamic Void Growth and Shrinkage in Mg under Electron Irradiation

    SciTech Connect

    Xu, W. Z.; Zhang, Y. F.; Cheng, G. M.; Jian, W. W.; Millett, P. C.; Koch, C. C.; Mathaudhu, S. N.; Zhu, Y. T.

    2014-04-30

    We report in-situ atomic-scale investigation of void evolution, including growth, coalescence and shrinkage, under electron irradiation. With increasing irradiation dose, the total volume of voids increased linearly, while nucleation rate of new voids decreased slightly, and the total number of voids decreased. Some voids continued to grow while others shrank to disappear, depending on the nature of their interactions with nearby self-interstitial loops. For the first time, surface diffusion of adatoms was observed largely responsible for the void coalescence and thickening. These findings provide fundamental understanding to help with the design and modeling of irradiation-resistant materials.

  3. Quantity Effect of Radial Cracks on the Cracking Propagation Behavior and the Crack Morphology

    PubMed Central

    Chen, Jingjing; Xu, Jun; Liu, Bohan; Yao, Xuefeng; Li, Yibing

    2014-01-01

    In this letter, the quantity effect of radial cracks on the cracking propagation behavior as well as the circular crack generation on the impacted glass plate within the sandwiched glass sheets are experimentally investigated via high-speed photography system. Results show that the radial crack velocity on the backing glass layer decreases with the crack number under the same impact conditions during large quantities of repeated experiments. Thus, the “energy conversion factor” is suggested to elucidate the physical relation between the cracking number and the crack propagation speed. Besides, the number of radial crack also takes the determinative effect in the crack morphology of the impacted glass plate. This study may shed lights on understanding the cracking and propagation mechanism in laminated glass structures and provide useful tool to explore the impact information on the cracking debris. PMID:25048684

  4. A new method to measure the polymerization shrinkage kinetics of light cured composites.

    PubMed

    Lee, I B; Cho, B H; Son, H H; Um, C M

    2005-04-01

    This study was undertaken to develop a new measurement method to determine the initial dynamic volumetric shrinkage of composite resins during polymerization, and to investigate the effect of curing light intensity on the polymerization shrinkage kinetics. The instrument was basically an electromagnetic balance that was constructed with a force transducer using a position sensitive photo detector (PSPD) and a negative feedback servo amplifier. The volumetric change of composites during polymerization was detected continuously as a buoyancy change in distilled water by means of the Archimedes' principle. Using this new instrument, the dynamic patterns of the polymerization shrinkage of seven commercial composite resins were measured. The polymerization shrinkage of the composites was 1.92 approximately 4.05 volume %. The shrinkage of a packable composite was the lowest, and that of a flowable composite was the highest. The maximum rate of polymerization shrinkage increased with increasing light intensity but the peak shrinkage rate time decreased with increasing light intensity. A strong positive relationship was observed between the square root of the light intensity and the maximum shrinkage rate. The shrinkage rate per unit time, dVol%/dt, showed that the instrument can be a valuable research method for investigating the polymerization reaction kinetics. This new shrinkage-measuring instrument has some advantages that it was insensitive to temperature changes and could measure the dynamic volumetric shrinkage in real time without complicated processes. Therefore, it can be used to characterize the shrinkage kinetics in a wide range of commercial and experimental visible-light-cure materials in relation to their composition and chemistry. PMID:15790386

  5. Effect of Microstructure on the Fatigue Crack Propagation Behavior of TC4-DT Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Guo, Ping; Zhao, Yongqing; Zeng, Weidong; Liu, Jianglin

    2015-05-01

    This paper focused on the fatigue crack growth behavior of TC4-DT titanium alloy with different microstructures. Heat treatments were performed to produce different microstructures, which varied in α lamella width and cluster size. The fatigue crack propagation route was observed for different microstructures. The deformation characteristic of the crack tip plastic zone was analyzed. The results demonstrated that, for adequate mechanical properties of the alloy, the microstructure formed after performing two treatments (first, air cooling from the β-phase field, and then annealing at 550 °C for 4 h) exhibited a better fatigue anti-crack propagation ability. This result was related to the existing higher plastic deformation field in the crack tip. Wide α lamellae and coarse α colonies were found to contribute to the improvement of the fracture toughness.

  6. Effect of thermal aging on the fatigue crack growth behavior of cast duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Lü, Xu-ming; Li, Shi-lei; Zhang, Hai-long; Wang, Yan-li; Wang, Xi-tao

    2015-11-01

    The effect of thermal aging on the fatigue crack growth (FCG) behavior of Z3CN20?09M cast duplex stainless steel with low ferrite content was investigated in this study. The crack surfaces and crack growth paths were analyzed to clarify the FCG mechanisms. The microstructure and micromechanical properties before and after thermal aging were also studied. Spinodal decomposition in the aged ferrite phase led to an increase in the hardness and a decrease in the plastic deformation capacity, whereas the hardness and plastic deformation capacity of the austenite phase were almost unchanged after thermal aging. The aged material exhibited a better FCG resistance than the unaged material in the near-threshold regime because of the increased roughness-induced crack closure associated with the tortuous crack path and rougher fracture surface; however, the tendency was reversed in the Paris regime because of the cleavage fracture in the aged ferrite phases.

  7. Ethylene by Naphta Cracking

    ERIC Educational Resources Information Center

    Wiseman, Peter

    1977-01-01

    Presents a discussion of the manufacture of ethylene by thermal cracking of hydrocarbon feedstocks that is useful for introducing the subject of industrial chemistry into a chemistry curriculum. (MLH)

  8. Elevated Temperature Crack Propagation

    NASA Technical Reports Server (NTRS)

    Orange, Thomas W.

    1994-01-01

    This paper is a summary of two NASA contracts on high temperature fatigue crack propagation in metals. The first evaluated the ability of fairly simple nonlinear fracture parameters to correlate crack propagation. Hastelloy-X specimens were tested under isothermal and thermomechanical cycling at temperatures up to 980 degrees C (1800 degrees F). The most successful correlating parameter was the crack tip opening displacement derived from the J-integral. The second evaluated the ability of several path-independent integrals to correlate crack propagation behavior. Inconel 718 specimens were tested under isothermal, thermomechanical, temperature gradient, and creep conditions at temperatures up to 650 degrees C (1200 degrees F). The integrals formulated by Blackburn and by Kishimoto correlated the data reasonably well under all test conditions.

  9. Crack-growth analysis

    NASA Technical Reports Server (NTRS)

    Bianca, C.; Creager, M.

    1976-01-01

    Flexible, adaptable, integrative routine, computer program incorporates Collipriest-Ehret and Paris-Forman equations. Calculates growth from initial defect size and terminates calculation when crack is sufficiently large for critical condition. Wheeler, Willenborg, and Grumman Closure models are available.

  10. Thermal cracking of hydrocarbons

    SciTech Connect

    Braun, R.L.; Burnham, A.K.

    1988-09-01

    Knowledge of thermal cracking of hydrocarbons is important in understanding and modeling petroleum maturation. We have reviewed the literature on the thermal cracking of pure hydrocarbons and mixtures of hydrocarbons, with particular attention given to dependence of the kinetics on temperature, pressure, and phase. Major uncertainties remain with regard to pressure dependence. Based on this review, we developed a simple, four-component, three-reaction model for oil-cracking. We also developed a simple, kerogen-maturation, kinetic model that incorporates hydrogen and carbon balance and includes the most important oil- and gas-forming reactions: kerogen pyrolysis, three oil-cracking reactions, and three coke-pyrolysis reactions. Tentative stoichiometry parameters are given for lacustrine and marine kerogens. 35 refs., 5 figs., 5 tabs.

  11. Grain-by-grain study of the mechanisms of crack propagation during iodine stress corrosion cracking of Zircaloy-4

    SciTech Connect

    Haddad, R.E.; Dorado, A.O.

    1994-12-31

    This paper describes the tests conducted to determine the conditions leading to cracking of a specified grain of metal, during the iodine stress corrosion cracking (SCC) of zirconium alloys, focusing on the crystallographic orientation of crack paths, the critical stress conditions, and the significance of the fractographic features encountered. In order to perform crystalline orientation of fracture surfaces, a specially heat-treated Zircaloy-4 having very large grains, grown up to the wall thickness, was used. Careful orientation work has proved that intracrystalline pseudo-cleavage occurs only along basal planes. the effects of anisotropy, plasticity, triaxiality, and residual stresses originated in thermal contraction have to be considered to account for the influence of the stress state. A grain-by-grain calculation led to the conclusion that transgranular cracking always takes place on those bearing the maximum resolved tensile stress perpendicular to basal planes. Propagation along twin boundaries has been identified among the different fracture modes encountered.

  12. A study of subsurface crack initiation produced by rolling contact fatigue

    NASA Technical Reports Server (NTRS)

    Kumar, Arun M.; Hahn, George T.; Rubin, Carol A.

    1993-01-01

    Results of subsurface crack initiation studies produced by pure rolling contact fatigue in 7075-T6 aluminum alloy are presented in this article. Microstructural changes and subsequent crack initiation below the contacting surface in cylindrical test specimens subjected to repeated rolling contact are illustrated. The rolling conditions are simulated in a three-dimensional elastic-plastic finite element model in order to estimate the plastic strains and residual stresses in the test material. The numerically estimated distribution of plastic strains in the model correlate well with the extent of microstructural changes observed in the test specimen. Results also indicate that a combination of plastic strains and low values of residual stresses is conducive to subsurface crack initiation and growth.

  13. The kinked interface crack

    NASA Astrophysics Data System (ADS)

    Heitzer, Joerg

    1992-05-01

    Two methods for the numerical solution of the integral equation describing the kinked interface crack, one proposed by Erdogan et al. (1973) and the other by Theokaris and Iokimidis (1979), are examined. The method of Erdogan et al. is then used to solve the equation in order to determine the kinking angle of the interface crack. Results are presented for two material combinations, aluminum/epoxy and glass/ceramic, under uniaxial tension in the direction normal to the interface.

  14. Stress corrosion cracking of Alloy 600 using the constant strain rate test

    SciTech Connect

    Bulischeck, T.S.; Van Rooyen, D.

    1981-10-01

    Nuclear grade production tubing of Alloy 600 was evaluated for stress corrosion cracking (SCC) susceptibility in high purity water at 365, 345, 325, and 290 C. Reverse tube U-bend specimens provided crack initiation data and constant extension rate tests were employed to determine the crack velocities experienced in th crack propagation stage. Initial results indicate that a linear extrapolation of data received from high temperature tests can be used to predict the service life of steam generator tubing that has been plastically deformed or is continually deforming by ''denting.''

  15. A physical resist shrinkage model for full-chip lithography simulations

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Zheng, Leiwu; Ma, Maggie; Zhao, Qian; Fan, Yongfa; Zhang, Qiang; Feng, Mu; Guo, Xin; Wallow, Tom; Gronlund, Keith; Goossens, Ronald; Zhang, Gary; Lu, Yenwen

    2016-03-01

    Strong resist shrinkage effects have been widely observed in resist profiles after negative tone development (NTD) and therefore must be taken into account in computational lithography applications. However, existing lithography simulation tools, especially those designed for full-chip applications, lack resist shrinkage modeling capabilities because they are not needed until only recently when NTD processes begin to replace the conventional positive tone development (PTD) processes where resist shrinkage effects are negligible. In this work we describe the development of a physical resist shrinkage (PRS) model for full-chip lithography simulations and present its accuracy evaluation against experimental data.

  16. Effect of Measured Welding Residual Stresses on Crack Growth

    NASA Technical Reports Server (NTRS)

    Hampton, Roy W.; Nelson, Drew; Doty, Laura W. (Technical Monitor)

    1998-01-01

    Welding residual stresses in thin plate A516-70 steel and 2219-T87 aluminum butt weldments were measured by the strain-gage hole drilling and X-ray diffraction methods. The residual stress data were used to construct 3D strain fields which were modeled as thermally induced strains. These 3D strain fields were then analyzed with the WARP31) FEM fracture analysis code in order to predict their effect on fatigue and on fracture. For analyses of fatigue crack advance and subsequent verification testing, fatigue crack growth increments were simulated by successive saw-cuts and incremental loading to generate, as a function of crack length, effects on crack growth of the interaction between residual stresses and load induced stresses. The specimen experimental response was characterized and compared to the WARM linear elastic and elastic-plastic fracture mechanics analysis predictions. To perform the fracture analysis, the plate material's crack tearing resistance was determined by tests of thin plate M(T) specimens. Fracture analyses of these specimen were performed using WARP31D to determine the critical Crack Tip Opening Angle [CTOA] of each material. These critical CTOA values were used to predict crack tearing and fracture in the weldments. To verify the fracture predictions, weldment M(T) specimen were tested in monotonic loading to fracture while characterizing the fracture process.

  17. Fatigue crack growth theory and experiment: A comparative analysis

    SciTech Connect

    Sananda, K.

    1983-12-01

    A number of theoretical models have been proposed in the literature which explain the second or the fourth power dependence of fatigue crack growth rate on ..delta..K, the stress intensity factor range in the Paris-Erdogan relation da/dN = C ..delta..K /SUP m/ . All of these models pertain to the intermediate range of crack growth rates where the m values are relatively low in the range of 2 to 4. The values of m for many metals and alloys can be much larger than 4 at near threshold crack growth rates or at stress intensities close to the fast fracture, and in some cases throughout the range of ..delta..K when the faceted mode of crack growth occurs. For such cases, the models appear to have no relevance. In this report predictions of different theoretical models are critically examined in comparison to experimentally determined crack growth rates in a MA 956, oxide dispersion strengthened alloy. Cumulative damage models predict crack growth rates reasonably well except in the range where ductile striations are observed. Lack of agreement with any particular model in this range is related to the fact that at different regions across the specimen thickness different mechanisms, either plastic blunting or cumulative damage, control the crack growth.

  18. Three-term Asymptotic Stress Field Expansion for Analysis of Surface Cracked Elbows in Nuclear Pressure Vessels

    NASA Astrophysics Data System (ADS)

    Labbe, Fernando

    2007-04-01

    Elbows with a shallow surface cracks in nuclear pressure pipes have been recognized as a major origin of potential catastrophic failures. Crack assessment is normally performed by using the J-integral approach. Although this one-parameter-based approach is useful to predict the ductile crack onset, it depends strongly on specimen geometry or constraint level. When a shallow crack exists (depth crack-to-thickness wall ratio less than 0.2) and/or a fully plastic condition develops around the crack, the J-integral alone does not describe completely the crack-tip stress field. In this paper, we report on the use of a three-term asymptotic expansion, referred to as the J- A 2 methodology, for modeling the elastic-plastic stress field around a three-dimensional shallow surface crack in an elbow subjected to internal pressure and out-of-plane bending. The material, an A 516 Gr. 70 steel, used in the nuclear industry, was modeled with a Ramberg-Osgood power law and flow theory of plasticity. A finite deformation theory was included to account for the highly nonlinear behavior around the crack tip. Numerical finite element results were used to calculate a second fracture parameter A 2 for the J- A 2 methodology. We found that the used three-term asymptotic expansion accurately describes the stress field around the considered three-dimensional shallow surface crack.

  19. An experimentally verified finite element study of the stress-strain response of crack geometries experiencing large-scale yielding

    SciTech Connect

    Panontin, T.L.; Sheppard, S.D.

    1997-12-01

    Large-strain, 3-D finite element analyses with incremental plasticity were performed for a variety of crack geometries to study local crack-tip stress-strain fields and associated global fracture parameters under conditions of large-scale yielding. The geometries analyzed include thin, single-edge crack tension, single-edge crack bending, and center-crack tension fracture specimens with varying crack depth (a/W) ratios. Two materials were investigated: a high-hardening, low-strength steel and a moderate-hardening, high-strength steel. Mesh refinement studies were performed to ensure convergence of the finite element predictions. The studies examine the effects of in-plane crack-tip element size, initial crack-tip radius size, and number of through-thickness layers on predicted distributions of crack-tip stress and plastic strain and predicted values of the J-integral and CTOD. In addition, the finite element predictions of specimen behavior were verified experimentally by direct measurements, namely load displacement, load longitudinal strain, and load CTOS, made during and following testing of the fracture specimens. Representative results of the finite element analyses are presented and compared to previously published data where pertinent. Results from the mesh refinement studies and the verification testing are shown. Predicted trends among the specimens and materials in local distributions of crack-tip plastic strain, triaxiality, and opening stress as well as in global parameters, J-integral and m-factor, are discussed.

  20. Prediction of fatigue-crack growth in a high-strength aluminum alloy under variable-amplitude loading

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Dawicke, D. S.

    1989-01-01

    The present paper is concerned with the application of an analytical crack-closure model to study crack growth under various load histories. The model was based on a crack-tip plasticity concept like the Dugdale model, but modified to leave plastically deformed material in the wake of the advancing crack tip. The effect of material thickness on plasticity was accounted for by using a constraint factor on tensile yielding at the crack tip. The model was used to correlate crack-growth rates under constant-amplitude loading, and to predict crack growth under variable-amplitude loading on a high-strength aluminum alloy (7475-T7351) sheet material. The experimental data were obtained from Zhang et al. Predicted crack-growth lives agreed well with experimental data. For ten crack-growth tests subjected to various variable-amplitude load histories, the ratio of predicted-to-experimental lives ranged from 0.54 to 1.19. The mean value of the ratio of predicted-to-experimental lives was 0.95 and the standard error was 0.2 using a constraint factor of 1.9 in the model. Crack-opening stresses calculated from the model were significantly different from those determined by Zhang et al. using a striation-based experimental method.

  1. Fracture toughness of shape memory alloy actuators: effect of transformation-induced plasticity

    NASA Astrophysics Data System (ADS)

    Jape, Sameer; Solomou, Alexandros; Baxevanis, Theocharis; Lagoudas, Dimitris C.

    2016-04-01

    Numerical analysis of static cracks in a plane strain center-cracked infinite medium shape memory alloy (SMA) panel subjected to cyclic thermal variations and a constant mechanical load is conducted using the finite element method. In solid-state SMA actuators, permanent changes in the material's microstructure in the form of dislocations are caused during cyclic thermomechanical loading, leading to macroscopic irreversible strains, known as transformation induced plastic (TRIP) strains. The influence of these accumulated TRIP strains on mechanical fields close to the crack tip is investigated in the present paper. Virtual crack growth technique (VCCT) in ABAQUS FEA suite is employed to calculate the crack tip energy release rate and crack is assumed to be stationary (or static) so that the crack tip energy release rate never reaches the material specific critical value. Increase in the crack tip energy release rate is observed during cooling and its relationship with accumulation of TRIP due to cyclic transformation is studied.

  2. Crack Driving Forces in a Multilayered Coating System for Ceramic Matrix Composite Substrates

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Zhu, Dongming; Miller, Robert A.

    2005-01-01

    The effects of the top coating thickness, modulus and shrinkage strains on the crack driving forces for a baseline multilayer Yttria-Stabilized-Zirconia/Mullite/Si thermal and environment barrier coating (TEBC) system for SiC/SiC ceramic matrix composite substrates are determined for gas turbine applications. The crack driving forces increase with increasing modulus, and a low modulus thermal barrier coating material (below 10 GPa) will have no cracking issues under the thermal gradient condition analyzed. Since top coating sintering increases the crack driving forces with time, highly sintering resistant coatings are desirable to maintain a low tensile modulus and maintain a low crack driving force with time. Finite element results demonstrated that an advanced TEBC system, such as ZrO2/HfO2, which possesses improved sintering resistance and high temperature stability, exhibited excellent durability. A multi-vertical cracked structure with fine columnar spacing is an ideal strain tolerant coating capable of reducing the crack driving forces to an acceptable level even with a high modulus of 50 GPa.

  3. Modeling crack growth during Li insertion in storage particles using a fracture phase field approach

    NASA Astrophysics Data System (ADS)

    Klinsmann, Markus; Rosato, Daniele; Kamlah, Marc; McMeeking, Robert M.

    2016-07-01

    Fracture of storage particles is considered to be one of the major reasons for capacity fade and increasing power loss in many commercial lithium ion batteries. The appearance of fracture and cracks in the particles is commonly ascribed to mechanical stress, which evolves from inhomogeneous swelling and shrinkage of the material when lithium is inserted or extracted. Here, a coupled model of lithium diffusion, mechanical stress and crack growth using a phase field method is applied to investigate how the formation of cracks depends on the size of the particle and the presence or absence of an initial crack, as well as the applied flux at the boundary. The model shows great versatility in that it is free of constraints with respect to particle geometry, dimension or crack path and allows simultaneous observation of the evolution of lithium diffusion and crack growth. In this work, we focus on the insertion process. In particular, we demonstrate the presence of intricate fracture phenomena, such as, crack branching or complete breakage of storage particles within just a single half cycle of lithium insertion, a phenomenon that was only speculated about before.

  4. THE RESPONSE OF SOLIDS TO ELASTIC/ PLASTIC INDENTATION

    SciTech Connect

    Chiang, S. S.; Marshall, D. B.; Evans, A. G.

    1980-11-01

    A new approach for analysing indentation plasticity and indentation fracture is presented, The analysis permits relations to be established between material properties (notably hardness, yield strength and elastic modulus) and the dimensions of the indentation and plastic zone. The predictions are demonstrated to be fully consistent with observations performed on a wide range of materials. The indentation stress fields can also be adapted to generate predictions of indentation fracture thresholds for the three dominant crack types: radial, median and lateral cracks. The predictions are generally consistent with experimental observations.

  5. Shrinkage Estimation of Varying Covariate Effects Based On Quantile Regression

    PubMed Central

    Peng, Limin; Xu, Jinfeng; Kutner, Nancy

    2013-01-01

    Varying covariate effects often manifest meaningful heterogeneity in covariate-response associations. In this paper, we adopt a quantile regression model that assumes linearity at a continuous range of quantile levels as a tool to explore such data dynamics. The consideration of potential non-constancy of covariate effects necessitates a new perspective for variable selection, which, under the assumed quantile regression model, is to retain variables that have effects on all quantiles of interest as well as those that influence only part of quantiles considered. Current work on l1-penalized quantile regression either does not concern varying covariate effects or may not produce consistent variable selection in the presence of covariates with partial effects, a practical scenario of interest. In this work, we propose a shrinkage approach by adopting a novel uniform adaptive LASSO penalty. The new approach enjoys easy implementation without requiring smoothing. Moreover, it can consistently identify the true model (uniformly across quantiles) and achieve the oracle estimation efficiency. We further extend the proposed shrinkage method to the case where responses are subject to random right censoring. Numerical studies confirm the theoretical results and support the utility of our proposals. PMID:25332515

  6. Response Predicting LTCC Firing Shrinkage: A Response Surface Analysis Study

    SciTech Connect

    Girardi, Michael; Barner, Gregg; Lopez, Cristie; Duncan, Brent; Zawicki, Larry

    2009-02-25

    The Low Temperature Cofired Ceramic (LTCC) technology is used in a variety of applications including military/space electronics, wireless communication, MEMS, medical and automotive electronics. The use of LTCC is growing due to the low cost of investment, short development time, good electrical and mechanical properties, high reliability, and flexibility in design integration (3 dimensional (3D) microstructures with cavities are possible)). The dimensional accuracy of the resulting x/y shrinkage of LTCC substrates is responsible for component assembly problems with the tolerance effect that increases in relation to the substrate size. Response Surface Analysis was used to predict product shrinkage based on specific process inputs (metal loading, layer count, lamination pressure, and tape thickness) with the ultimate goal to optimize manufacturing outputs (NC files, stencils, and screens) in achieving the final product design the first time. Three (3) regression models were developed for the DuPont 951 tape system with DuPont 5734 gold metallization based on green tape thickness.

  7. On the variation in crack-opening stresses at different locations in a three-dimensional body

    NASA Technical Reports Server (NTRS)

    Chermahini, R. G.; Blom, Anders F.

    1990-01-01

    Crack propagation and closure behavior of thin, and thick middle crack tension specimens under constant amplitude loading were investigated using a three dimensional elastic plastic finite element analysis of fatigue crack propagation and closure. In the thin specimens the crack front closed first on the exterior (free) surface and closed last in the interior during the unloading portion of cyclic loading; a load reduced displacement technique was used to determine crack opening stresses at specified locations in the plate from the displacements calculated after the seven cycle. All the locations were on the plate external surface and were located near the crack tip, behind the crack tip, at the centerline of the crack. With this technique, the opening stresses at the specified points were found to be 0.52, 0.42, and 0.39 times the maximum applied stress.

  8. Subcritical crack growth at bimaterial interfaces. Part 3: Shear-enhanced fatigue crack growth resistance at polymer/metal interface

    SciTech Connect

    Zhang, Z.; Shang, J.K.

    1996-01-01

    Fatigue crack growth along an Al/epoxy interface was examined under different combinations of mode-I and mode-II loadings using the flexural peel technique. Fatigue crack growth rates were obtained as a function of the total strain energy rate for G{sub II}/G{sub I} ratios of 0.3 to 1.4, achieved by varying the relative thickness of the outerlayers for the flexural peel specimen. Fatigue crack growth resistance of the interface was found to increase with increasing G{sub II}/G{sub I} ratio. Such a shear-enhanced crack growth resistance of the interface resulted in a gradual transition of crack growth mechanism from interfacial at the low G{sub II}/G{sub I} ratio to cohesive at the high G{sub II}/G{sub I} ratio. Under predominantly mode-I loading, the damage in the polymer took the form of crazing and cavitation. In contrast, laminar shear occurred under highly shear loading, resulting in a larger amount of plastic dissipation at the crack tip and improved fatigue crack growth resistance.

  9. J-integral for a semi-elliptical surface crack at a bimaterial interface

    SciTech Connect

    Sharobeam, M.H.; Landes, J.D.

    1995-12-31

    Surface cracks are common defects in welded, bonded, and composite structures. The elastic-plastic fracture of these defects may be analyzed using the J-integral. The authors have recently developed a new approach to evaluate the J-integral for semi-elliptical surface cracks in panels made of homogeneous materials and subject to remote tension. This approach, which is based on load separation, allows the evaluation of J for such a three-dimensional geometry using a single specimen test record. It is analogous to the single specimen technique in two-dimensional geometries. In this article, the authors extend their study to surface cracks at bimaterial interfaces. A three-dimensional finite element model is developed to model such a crack. The J-integral is evaluated along the crack front using the virtual crack extension method. The elastic-plastic fracture behavior of the crack is studied. Load separation is also examined and the new single specimen approach for surface cracks in single material panels is extended to those at bimaterial interfaces. The study also includes a comparison between the results of surface cracks in single material panels and those at bimaterial interfaces.

  10. Dislocation mechanism based model for stage II fatigue crack propagation rate

    NASA Technical Reports Server (NTRS)

    Mazumdar, P. K.

    1986-01-01

    Repeated plastic deformation, which of course depends on dislocation mechanism, at or near the crack tip leads to the fatigue crack propagation. By involving the theory of thermally activated flow and the cumulative plastic strain criterion, an effort is made here to model the stage II fatigue crack propagation rate in terms of the dislocation mechanism. The model, therefore, provides capability to ascertain: (1) the dislocation mechanism (and hence the near crack tip microstructures) assisting the crack growth, (2) the relative resistance of dislocation mechanisms to the crack growth, and (3) the fracture surface characteristics and its interpretation in terms of the dislocation mechanism. The local microstructure predicted for the room temperature crack growth in copper by this model is in good agreement with the experimental results taken from the literature. With regard to the relative stability of such dislocation mechanisms as the cross-slip and the dislocation intersection, the model suggests an enhancement of crack growth rate with an ease of cross-slip which in general promotes dislocation cell formation and is common in material which has high stacking fault energy (produces wavy slips). Cross-slip apparently enhances crack growth rate by promoting slip irreversibility and fracture surface brittleness to a greater degree.

  11. Shear Strength Prediction By Modified Plasticity Theory For SFRC Beams

    SciTech Connect

    Colajanni, Piero; Recupero, Antonino; Spinella, Nino

    2008-07-08

    the plastic Crack Sliding Model (CSM) is extended for derivation of a physical model for the prediction of ultimate shear strength of SFRC beams, by assuming that the critical cracks is modeled by a yield lines. To this aim, the CSM is improved in order to take into account the strength increases due to the arch effect for deep beam. Then, the effectiveness factors for the concrete under biaxial stress are calibrated for fibrous concrete. The proposed model, able to provide the shear strength and the position of the critical cracks, is validate by a large set of test results collected in literature.

  12. Shrinkage of renal tissue after impregnation via the cold Biodur plastination technique.

    PubMed

    Pereira-Sampaio, Marco A; Marques-Sampaio, Beatriz P S; Sampaio, Francisco J B; Henry, Robert W

    2011-08-01

    Thorough dehydration is a key for good plastination and invariably it leads to shrinkage. Shrinkage during plastination has been studied to lesser extent. Shrinkage was studied in 10 pig kidneys including regional shrinkage (cortex, medulla, sinus) and at which stages of the process (dehydration, impregnation, curing) shrinkage occurred. Kidneys were fixation by perfusion of 10% neutral buffered formalin solution via the renal artery. The vessels and ureter were filled with colored silicone (Dow Corning, Silastic E RTV Silicone Rubber) and the kidneys were cut into one centimeter transverse slices. Two slices of each kidney were plastinated via the classic von Hagens' method. Slices were photographed at the same focal length after preparation and at the end of each stage of plastination. Slice surface area was determined by a point-counting planimetry method. Post dehydration shrinkage of the kidney was 10.21% while post impregnation 10.11%. After completion of plastination, total area of kidney slice shrinkage was 19.72%. Cortical area shrunk 12.81% after dehydration and 13.16% after impregnation. After plastination, cortical area had shrunk 24.28%. No significant shrinkage occurred in the medulla and sinus. Results demonstrate that kidney shrinkage during impregnation is as intense as during dehydration. Significant shrinkage occurred in the renal cortex but not in the medulla and sinus. This demonstrates that different tissue types, even in the same specimen, have different rates of shrinkage during dehydration and impregnation. Therefore, plastinated specimens should be used carefully in research where obtaining measures is important. PMID:21714112

  13. Surface and subsurface cracks characteristics of single crystal SiC wafer in surface machining

    SciTech Connect

    Qiusheng, Y. Senkai, C. Jisheng, P.

    2015-03-30

    Different machining processes were used in the single crystal SiC wafer machining. SEM was used to observe the surface morphology and a cross-sectional cleavages microscopy method was used for subsurface cracks detection. Surface and subsurface cracks characteristics of single crystal SiC wafer in abrasive machining were analysed. The results show that the surface and subsurface cracks system of single crystal SiC wafer in abrasive machining including radial crack, lateral crack and the median crack. In lapping process, material removal is dominated by brittle removal. Lots of chipping pits were found on the lapping surface. With the particle size becomes smaller, the surface roughness and subsurface crack depth decreases. When the particle size was changed to 1.5µm, the surface roughness Ra was reduced to 24.0nm and the maximum subsurface crack was 1.2µm. The efficiency of grinding is higher than lapping. Plastic removal can be achieved by changing the process parameters. Material removal was mostly in brittle fracture when grinding with 325# diamond wheel. Plow scratches and chipping pits were found on the ground surface. The surface roughness Ra was 17.7nm and maximum subsurface crack depth was 5.8 µm. When grinding with 8000# diamond wheel, the material removal was in plastic flow. Plastic scratches were found on the surface. A smooth surface of roughness Ra 2.5nm without any subsurface cracks was obtained. Atomic scale removal was possible in cluster magnetorheological finishing with diamond abrasive size of 0.5 µm. A super smooth surface eventually obtained with a roughness of Ra 0.4nm without any subsurface crack.

  14. Powder Processing of Fiber-Reinforced Ceramics: Strengthening of the Powder Matrix Without Shrinkage. Ph.D. Thesis

    SciTech Connect

    Tu, Wen-chiang

    1994-01-01

    Powder processing of fiber-reinforced ceramic matrix composites is limited by constrained densification if the powder matrix is allowed to shrink during heat treatment. This produces large, strength-limiting crack-like voids. The objective of this study was to avoid this damage phenomenon by strengthening the powder matrix without shrinkage by using the cyclic infiltration/pyrolysis of ceramic liquid precursors. The following issues were addressed: (1) liquid precursor infiltration kinetics, (2) microstructural development during heat treatment, and (3) the mechanical properties of the porous bodies thus produced. Si3N4 powder matrices were infiltrated with either Zr(Y)-nitrate, which produces ZrO2, or polysilazane, which converts to Si3N4 during pyrolysis. Infiltration kinetics were shown to depend on the permeability of the powder compact, as well as that of the intruded material developed after heat treatment. The large volume changes during precursor pyrolysis is manifested by the formation of randomly distributed voids, which coalesce at higher temperatures. In this study, the powder matrix cannot be made fully dense; its fracture toughness was found to increase proportionally with the fraction of filled porosity and with the fracture toughness of the intruded material. The fracture strength appeared to follow the same trend. However, relatively strong bodies can be obtained despite high porosity, provided that the strength-limiting flaws are small. Large cracks are introduced in the powder matrix during infiltration if a layer of precursor remains on the surface. Cracks which develop in the precursor layer can extend into the matrix. Fracture mechanisms of thin films-on-substrates under residual thermal stress were used to explain this phenomenon. Matrix damage can be avoided by removing the precursor layer prior to pyrolysis and/or by strengthening the powder compact before infiltration.

  15. Fatigue Crack Growth Analysis Under Spectrum Loading in Various Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Mikheevskiy, S.; Glinka, G.; Lee, E.

    2013-03-01

    The fatigue process consists, from the engineering point of view, of three stages: crack initiation, fatigue crack growth, and the final failure. It is also known that the fatigue process near notches and cracks is governed by local strains and stresses in the regions of maximum stress and strain concentrations. Therefore, the fatigue crack growth can be considered as a process of successive crack increments, and the fatigue crack initiation and subsequent growth can be modeled as one repetitive process. The assumptions mentioned above were used to derive a fatigue crack growth model based, called later as the UniGrow model, on the analysis of cyclic elastic-plastic stresses-strains near the crack tip. The fatigue crack growth rate was determined by simulating the cyclic stress-strain response in the material volume adjacent to the crack tip and calculating the accumulated fatigue damage in a manner similar to fatigue analysis of stationary notches. The fatigue crack growth driving force was derived on the basis of the stress and strain history at the crack tip and the Smith-Watson-Topper (SWT) fatigue damage parameter, D = σmaxΔɛ/2. It was subsequently found that the fatigue crack growth was controlled by a two-parameter driving force in the form of a weighted product of the stress intensity range and the maximum stress intensity factor, Δ K p K {max/1- p }. The effect of the internal (residual) stress induced by the reversed cyclic plasticity has been accounted for and therefore the two-parameter driving force made it possible to predict the effect of the mean stress including the influence of the applied compressive stress, tensile overloads, and variable amplitude spectrum loading. It allows estimating the fatigue life under variable amplitude loading without using crack closure concepts. Several experimental fatigue crack growth datasets obtained for the Al 7075 aluminum alloy were used for the verification of the proposed unified fatigue crack growth

  16. Short-crack growth behaviour in an aluminum alloy: An AGARD cooperative test program

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Edwards, P. R.

    1988-01-01

    An AGARD Cooperative Test Program on the growth of short fatigue cracks was conducted to define the significance of the short-crack effect, to compare test results from various laboratories, and to evaluate an existing analytical crack-growth prediction model. The initiation and growth of short fatigue cracks (5 micrometer to 2 mm) from the surface of a semi-circular notch in 2024-T3 aluminum alloy sheet material were monitored under various load histories. The cracks initiated from inclusion particle clusters or voids on the notch surface and generally grew as surface cracks. Tests were conducted under several constant-amplitude (stress ratios of -2, -1, 0, and 0.5) and spectrum (FALSTAFF and Gaussian) loading conditions at 3 stress levels each. Short crack growth was recorded using a plastic-replica technique. Over 250 edge-notched specimens were fatigue tested and nearly 950 cracks monitored by 12 participants from 9 countries. Long crack-growth rate data for cracks greater than 2 mm in length were obtained over a wide range in rates (10 to the -8 to 10 to the -1 mm/cycle) for all constant-amplitude loading conditions. Long crack-growth rate data for the FALSTAFF and Gaussian load sequences were also obtained.

  17. The use of electrical anisotropy measurements to monitor soil crack dynamics - laboratory evaluation

    NASA Astrophysics Data System (ADS)

    Sahraei, Amirhossein; Huisman, Johan Alexander; Zimmermann, Egon; Vereecken, Harry

    2016-04-01

    Swelling and shrinking of soil cracks is a key factor determining water fluxes in many irrigated soils. Most previous studies have used time-intensive and destructive methods for crack characterization, such as depth and volume determination from simplified geometrical measurements or liquid latex filling. Because of their destructive and time-consuming nature, these methods have only provided instantaneous estimates of the geometry and/or volume of cracks. The aim of this study is to evaluate the use of anisotropy in electrical resistivity measured with a square electrode array to determine crack depth dynamics. In a first step, the performance of the method was analyzed using a laboratory experiment where an artificial soil crack was emulated using a plastic plate in a water bath. Since cracking depth was precisely known, this experiment allowed to develop a method to estimate soil crack depth from measurements of the electrical anisotropy. In a second step, electrical anisotropy was measured during soil crack development within a soil monolith consisting of a mix of sand and bentonite. The cracking depth estimated from electrical measurement compared well with reference ruler measurements. These laboratory measurements inspired confidence in the use of electrical anisotropy for soil crack investigations, and consequently the developed methods will be applied to investigate soil crack dynamics in the field in a next step.

  18. Stable tearing behavior of a thin-sheet material with multiple cracks

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Newman, J. C., Jr.; Sutton, M. A.; Amstutz, B. E.

    1994-01-01

    Fracture tests were conducted on 2.3mm thick, 305mm wide sheets of 2024-T3 aluminum alloy with 1-5 collinear cracks. The cracks were introduced (crack history) into the specimens by three methods: (1) saw cutting; (2) fatigue precracking at a low stress range; and (3) fatigue precracking at a high stress range. For the single crack tests, the initial crack history influenced the stress required for the onset of stable crack growth and the first 10mm of crack growth. The effect on failure stress was about 4 percent or less. For the multiple crack tests, the initial crack history was shown to cause differences of more than 20 percent in the link-up stress and 13 percent in failure stress. An elastic-plastic finite element analysis employing the Crack Tip Opening Angle (CTOA) fracture criterion was used to predict the fracture behavior of the single and multiple crack tests. The numerical predictions were within 7 percent of the observed link-up and failure stress in all the tests.

  19. Refinery ring groove cracking experience

    SciTech Connect

    Ehmke, E.F.

    1982-05-01

    This paper presents the results of a questionnaire on the problem of ring groove cracking in reactors. The results were found to be inconclusive in providing any information on correcting the problem. One report pertaining to a ring groove crack on a 24-inch reactor nozzle served as a warning that cracks may progress beyond the overlay, through it is not known if the base metal can easily crack at low temperatures. The results did not indicate at what point the cracks occurred, but what was common to almost all cracks was that the flange had been in high-temperature, high-pressure hydrogen suggesting that dissolved hydrogen or environmental hydrogen assisted the cracking. The type of stress that contributes in the cracking has not been determined. It is indicated that many cracks were found after the questionnaire was done.

  20. FASTRAN II - FATIGUE CRACK GROWTH STRUCTURAL ANALYSIS (UNIX VERSION)

    NASA Technical Reports Server (NTRS)

    Newman, J. C.

    1994-01-01

    Predictions of fatigue crack growth behavior can be made with the Fatigue Crack Growth Structural Analysis (FASTRAN II) computer program. As cyclic loads are applied to a selected crack configuration with an initial crack size, FASTRAN II predicts crack growth as a function of cyclic load history until either a desired crack size is reached or failure occurs. FASTRAN II is based on plasticity-induced crack-closure behavior of cracks in metallic materials and accounts for load-interaction effects, such as retardation and acceleration, under variable-amplitude loading. The closure model is based on the Dugdale model with modifications to allow plastically deformed material to be left along the crack surfaces as the crack grows. Plane stress and plane strain conditions, as well as conditions between these two, can be simulated in FASTRAN II by using a constraint factor on tensile yielding at the crack front to approximately account for three-dimensional stress states. FASTRAN II contains seventeen predefined crack configurations (standard laboratory fatigue crack growth rate specimens and many common crack configurations found in structures); and the user can define one additional crack configuration. The baseline crack growth rate properties (effective stress-intensity factor against crack growth rate) may be given in either equation or tabular form. For three-dimensional crack configurations, such as surface cracks or corner cracks at holes or notches, the fatigue crack growth rate properties may be different in the crack depth and crack length directions. Final failure of the cracked structure can be modelled with fracture toughness properties using either linear-elastic fracture mechanics (brittle materials), a two-parameter fracture criterion (brittle to ductile materials), or plastic collapse (extremely ductile materials). The crack configurations in FASTRAN II can be subjected to either constant-amplitude, variable-amplitude or spectrum loading. The applied

  1. FASTRAN II - FATIGUE CRACK GROWTH STRUCTURAL ANALYSIS (IBM PC VERSION)

    NASA Technical Reports Server (NTRS)

    Newman, J. C.

    1994-01-01

    Predictions of fatigue crack growth behavior can be made with the Fatigue Crack Growth Structural Analysis (FASTRAN II) computer program. As cyclic loads are applied to a selected crack configuration with an initial crack size, FASTRAN II predicts crack growth as a function of cyclic load history until either a desired crack size is reached or failure occurs. FASTRAN II is based on plasticity-induced crack-closure behavior of cracks in metallic materials and accounts for load-interaction effects, such as retardation and acceleration, under variable-amplitude loading. The closure model is based on the Dugdale model with modifications to allow plastically deformed material to be left along the crack surfaces as the crack grows. Plane stress and plane strain conditions, as well as conditions between these two, can be simulated in FASTRAN II by using a constraint factor on tensile yielding at the crack front to approximately account for three-dimensional stress states. FASTRAN II contains seventeen predefined crack configurations (standard laboratory fatigue crack growth rate specimens and many common crack configurations found in structures); and the user can define one additional crack configuration. The baseline crack growth rate properties (effective stress-intensity factor against crack growth rate) may be given in either equation or tabular form. For three-dimensional crack configurations, such as surface cracks or corner cracks at holes or notches, the fatigue crack growth rate properties may be different in the crack depth and crack length directions. Final failure of the cracked structure can be modelled with fracture toughness properties using either linear-elastic fracture mechanics (brittle materials), a two-parameter fracture criterion (brittle to ductile materials), or plastic collapse (extremely ductile materials). The crack configurations in FASTRAN II can be subjected to either constant-amplitude, variable-amplitude or spectrum loading. The applied

  2. Heat-affected zone liquation crack on resistance spot welded TWIP steels

    SciTech Connect

    Saha, Dulal Chandra; Chang, InSung; Park, Yeong-Do

    2014-07-01

    In this study, the heat affected zone (HAZ) liquation crack and segregation behavior of the resistance spot welded twinning induced plasticity (TWIP) steel have been reported. Cracks appeared in the post-welded joints that originated at the partially melted zone (PMZ) and propagated from the PMZ through the heat affected zone (HAZ) to the base metal (BM). The crack length and crack opening widths were observed increasing with heat input; and the welding current was identified to be the most influencing parameter for crack formation. Cracks appeared at the PMZ when nugget diameter reached at 4.50 mm or above; and the liquation cracks were found to occur along two sides of the notch tip in the sheet direction rather than in the electrode direction. Cracks were backfilled with the liquid films which has lamellar structure and supposed to be the eutectic constituent. Co-segregation of alloy elements such as, C and Mn were detected on the liquid films by electron-probe microanalysis (EPMA) line scanning and element map which suggests that the liquid film was enrich of Mn and C. The eutectic constituent was identified by analyzing the calculated phase diagram along with thermal temperature history of finite element simulation. Preliminary experimental results showed that cracks have less/no significant effect on the static cross-tensile strength (CTS) and the tensile-shear strength (TSS). In addition, possible ways to avoid cracking were discussed. - Highlights: • The HAZ liquation crack during resistance spot welding of TWIP steel was examined. • Cracks were completely backfilled and healed with divorced eutectic secondary phase. • Co-segregation of C and Mn was detected in the cracked zone. • Heat input was the most influencing factor to initiate liquation crack. • Cracks have less/no significant effect on static tensile properties.

  3. Modeling dental composite shrinkage by digital image correlation and finite element methods

    NASA Astrophysics Data System (ADS)

    Chen, Terry Yuan-Fang; Huang, Pin-Sheng; Chuang, Shu-Fen

    2014-10-01

    Dental composites are light-curable resin-based materials with an inherent defect of polymerization shrinkage which may cause tooth deflection and debonding of restorations. This study aimed to combine digital image correlation (DIC) and finite element analysis (FEA) to model the shrinkage behaviors under different light curing regimens. Extracted human molars were prepared with proximal cavities for composite restorations, and then divided into three groups to receive different light curing protocols: regular intensity, low intensity, and step-curing consisting of low and high intensities. For each tooth, the composite fillings were consecutively placed under both unbonded and bonded conditions. At first, the shrinkage of the unbonded restorations was analyzed by DIC and adopted as the setting of FEA. The simulated shrinkage behaviors obtained from FEA were further validated by the measurements in the bonded cases. The results showed that different light curing regimens affected the shrinkage in unbonded restorations, with regular intensity showing the greatest shrinkage strain on the top surface. The shrinkage centers in the bonded cases were located closer to the cavity floor than those in the unbonded cases, and were less affected by curing regimens. The FEA results showed that the stress was modulated by the accumulated light energy density, while step-curing may alleviate the tensile stress along the cavity walls. In this study, DIC provides a complete description of the polymerization shrinkage behaviors of dental composites, which may facilitate the stress analysis in the numerical investigation.

  4. Microstructurally based mechanisms for modeling shrinkage of cement paste at multiple levels

    SciTech Connect

    Jennings, H.M.; Xi, Yunping

    1993-07-15

    Shrinkage of cement paste is controlled by a number of mechanisms that operate in various parts of the microstructure and at various length scales. A model for creep and shrinkage can be developed by combining several models that describe phenomena at each of several length scales, ranging from the nanometer to the meter. This model is described and preliminary results are discussed.

  5. Diffraction-based study of fatigue crack initiation and propagation in aerospace aluminum alloys

    NASA Astrophysics Data System (ADS)

    Gupta, Vipul K.

    crystallographic {111} slip-plane cracking typical of the Stage I crack growth mode observed in single crystals and high purity polycrystals of face centered cubic metals, and which has presently been assumed for the present materials within fatigue crack initiation models. Rather, the facets tend to have near-Mode I spatial orientation, which is another indicator of the importance of environmentally affected fatigue damage. The results provide a physical basis to develop microstructurally-based next generation multi-stage fatigue (MSF) models that should include a new crack decohesion criteria based upon environmental fatigue cracking mechanisms. EBSD study of small-cracks in alloy 7050-T7451, stressed in warm-humid environment, showed that crack-path orientation changes and crack-branching occurred at both low/high-angle grain and subgrain boundaries. Single surface trace analysis suggests that the crack-path differs substantially from crystallographic slip-planes. EBSD-based observations of small-crack propagation through subgrain structure, either formed by cyclic plastic strain accumulation or pre-existing (typical of unrecrystallized grain structure in the present materials), suggest that subgrain structure plays a crucial role in small fatigue crack propagation. As mentioned earlier, local fluctuations in small-crack growth rates appear to be caused by frequent interaction with subgrain boundaries, and multiple occurrences of crack-branching and crack-path orientation changes at low/high-angle grain and subgrain boundaries. The aforementioned deviation from low-index {001}/{101}-planes and the occurrence of high-index cracking planes observed by EBSD/Stereology, in this study and others, are interpreted as trans-subgranular decohesion or inter-subgranular cracking, due to trapped hydrogen. In summary, the results provide a firmer experimental foundation for, and clearer understanding of, the mechanisms of environmental fatigue cracking of aluminum alloys, especially the

  6. Multiscale modeling of crack initiation and propagation at the nanoscale

    NASA Astrophysics Data System (ADS)

    Shiari, Behrouz; Miller, Ronald E.

    2016-03-01

    Fracture occurs on multiple interacting length scales; atoms separate on the atomic scale while plasticity develops on the microscale. A dynamic multiscale approach (CADD: coupled atomistics and discrete dislocations) is employed to investigate an edge-cracked specimen of single-crystal nickel, Ni, (brittle failure) and aluminum, Al, (ductile failure) subjected to mode-I loading. The dynamic model couples continuum finite elements to a fully atomistic region, with key advantages such as the ability to accommodate discrete dislocations in the continuum region and an algorithm for automatically detecting dislocations as they move from the atomistic region to the continuum region and then correctly "converting" the atomistic dislocations into discrete dislocations, or vice-versa. An ad hoc computational technique is also applied to dissipate localized waves formed during crack advance in the atomistic zone, whereby an embedded damping zone at the atomistic/continuum interface effectively eliminates the spurious reflection of high-frequency phonons, while allowing low-frequency phonons to pass into the continuum region. The simulations accurately capture the essential physics of the crack propagation in a Ni specimen at different temperatures, including the formation of nano-voids and the sudden acceleration of the crack tip to a velocity close to the material Rayleigh wave speed. The nanoscale brittle fracture happens through the crack growth in the form of nano-void nucleation, growth and coalescence ahead of the crack tip, and as such resembles fracture at the microscale. When the crack tip behaves in a ductile manner, the crack does not advance rapidly after the pre-opening process but is blunted by dislocation generation from its tip. The effect of temperature on crack speed is found to be perceptible in both ductile and brittle specimens.

  7. Improved load ratio method for predicting crack length

    SciTech Connect

    Chen, X.; Albrecht, P.; Wright, W.; Joyce, J.A.

    1995-04-01

    The elastic compliance from unloading/reloading sequences in a load-displacement record estimates well crack length in elastic-plastic fracture toughness tests of compact tension [C(T)] and bending type specimens. The need for partial unloading of the specimen makes it difficult to run the test under static loading and impossible under either dynamic loading or very high temperatures. Furthermore, fracture toughness testing in which crack length is determined from elastic compliance requires high precision testing equipment and highly skilled technicians. As a result, such tests are confined usually to research laboratories and seldom used under production settings. To eliminate these problems, an improved load ratio method of predicting crack length is proposed that utilizes only the recorded load versus load-line displacement curve (or load versus crack-mouth-opening displacement curve) without unloading/reloading sequences. As a result, the instrumentation is much simpler than in the elastic compliance or potential drop methods. If only a monotonic load-displacement record is to be measured the fracture toughness test becomes almost as simple to perform as a tension test. The method described here improves in three ways the ``original load ratio method`` proposed by Hu et al. First, a blunting term is added to the crack length before maximum load. Second, a strain hardening correction is included after maximum load. And, third, the initial crack length and the physical (final) crack length measured at the end of the test serve to anchor the predicted crack lengths, forcing agreement between predicted and measured values. The method predicts crack extension with excellent accuracy in specimens fabricated from A302, A508, and A533B piping and pressure vessel steels, A588 and A572 structural steels, and HY-80 ship steel.

  8. Crack extension from flaws in a brittle material subjected to compression

    NASA Technical Reports Server (NTRS)

    Adams, M.; Sines, G.

    1978-01-01

    The mechanisms by which cracks extend from flaws in brittle materials subjected to compressive loads are presented. Although it is recognized that most geological materials are neither dense nor single-phase, this experimental study and analysis are restricted to single-phase, dense materials in order to provide a model amenable to analysis and experimental confirmation. The flaws which occur in dense, single-phase materials are divided into three types, each type having different characteristics of crack extension. Experimental studies of crack extension from flaws introduced into blocks of polymethylmethacrylate plastic are described. The studies show that crack extension from three dimensional flaws is more complex than two-dimensional theories predict. The extension of secondary cracks may result in more damage than that which would be predicted by considering only the primary crack extension treated by current theories. The importance of the dynamic behavior of flaws which stick and then suddenly slip is shown.

  9. NUMERICAL ANALYSIS OF CRACK AND STRAIN BEHAVIOR OF RC SLAB IN STEEL-CONCRETE COMPOSITE GIRDER UNDER NEGATIVE BENDING

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Junichi; Nakajima, Akinori; Suzuki, Yasuo

    The sophisticated numerical analysis method is required to simulate the strain behavior of the reinforcement and the crack width of the RC slab, although many researches are conducted on the cracking behavior of the RC slab in the composite girder under the negative bending. In this paper, the numerical analysis method is constructed to evaluate the strain behavior of the reinforcement and the crack width of the RC slab in the steel-concrete composite girder subjected to the negative bending. The analysis method using the rigid body spring model takes into account the imperfect composite action between the steel girder and the RC slab, the bond between the reinforcement and the concrete, and the shrinkage of the concrete. As a result, it is confirmed that the analysis method can simulate the crack and the strain behavior of RC slab quantitatively in the steel-concrete composite girder under the negative bending.

  10. Random effects and shrinkage estimation in capture-recapture models

    USGS Publications Warehouse

    Royle, J. Andrew; Link, W.A.

    2002-01-01

    We discuss the analysis of random effects in capture-recapture models, and outline Bayesian and frequentists approaches to their analysis. Under a normal model, random effects estimators derived from Bayesian or frequentist considerations have a common form as shrinkage estimators. We discuss some of the difficulties of analysing random effects using traditional methods, and argue that a Bayesian formulation provides a rigorous framework for dealing with these difficulties. In capture-recapture models, random effects may provide a parsimonious compromise between constant and completely time-dependent models for the parameters (e.g. survival probability). We consider application of random effects to band-recovery models, although the principles apply to more general situations, such as Cormack-Jolly-Seber models. We illustrate these ideas using a commonly analysed band recovery data set.

  11. BAYESIAN SHRINKAGE METHODS FOR PARTIALLY OBSERVED DATA WITH MANY PREDICTORS*

    PubMed Central

    Boonstra, Philip S.; Mukherjee, Bhramar; Taylor, Jeremy MG

    2013-01-01

    Motivated by the increasing use of and rapid changes in array technologies, we consider the prediction problem of fitting a linear regression relating a continuous outcome Y to a large number of covariates X, eg measurements from current, state-of-the-art technology. For most of the samples, only the outcome Y and surrogate covariates, W, are available. These surrogates may be data from prior studies using older technologies. Owing to the dimension of the problem and the large fraction of missing information, a critical issue is appropriate shrinkage of model parameters for an optimal bias-variance tradeoff. We discuss a variety of fully Bayesian and Empirical Bayes algorithms which account for uncertainty in the missing data and adaptively shrink parameter estimates for superior prediction. These methods are evaluated via a comprehensive simulation study. In addition, we apply our methods to a lung cancer dataset, predicting survival time (Y) using qRT-PCR (X) and microarray (W) measurements. PMID:24436727

  12. Crosslink-induced shrinkage of grafted Gaussian chains

    NASA Astrophysics Data System (ADS)

    Benetatos, Panayotis

    2014-04-01

    The statistical mechanics of polymers grafted on surfaces has been the subject of intense research activity because of many potential applications. In this paper, we analytically investigate the conformational changes caused by a single crosslink on two ideal (Gaussian) chains grafted onto a rigid planar surface. Both the crosslink and the surface reduce the number of allowed configurations. In the absence of the hard substrate, the sole effect of the crosslink is a reduction in the effective Kuhn length of a tethered chain. The crosslink-induced shrinkage (collapse) of the grafted chains (mushrooms) turns out to be a reduction in the variance of the distribution of the height of the chain rather than a reduction of the height itself.

  13. Sonar target enhancement by shrinkage of incoherent wavelet coefficients.

    PubMed

    Hunter, Alan J; van Vossen, Robbert

    2014-01-01

    Background reverberation can obscure useful features of the target echo response in broadband low-frequency sonar images, adversely affecting detection and classification performance. This paper describes a resolution and phase-preserving means of separating the target response from the background reverberation noise using a coherence-based wavelet shrinkage method proposed recently for de-noising magnetic resonance images. The algorithm weights the image wavelet coefficients in proportion to their coherence between different looks under the assumption that the target response is more coherent than the background. The algorithm is demonstrated successfully on experimental synthetic aperture sonar data from a broadband low-frequency sonar developed for buried object detection. PMID:24437766

  14. Analysis of gene set using shrinkage covariance matrix approach

    NASA Astrophysics Data System (ADS)

    Karjanto, Suryaefiza; Aripin, Rasimah

    2013-09-01

    Microarray methodology has been exploited for different applications such as gene discovery and disease diagnosis. This technology is also used for quantitative and highly parallel measurements of gene expression. Recently, microarrays have been one of main interests of statisticians because they provide a perfect example of the paradigms of modern statistics. In this study, the alternative approach to estimate the covariance matrix has been proposed to solve the high dimensionality problem in microarrays. The extension of traditional Hotelling's T2 statistic is constructed for determining the significant gene sets across experimental conditions using shrinkage approach. Real data sets were used as illustrations to compare the performance of the proposed methods with other methods. The results across the methods are consistent, implying that this approach provides an alternative to existing techniques.

  15. Ensemble Kalman filter implementations based on shrinkage covariance matrix estimation

    NASA Astrophysics Data System (ADS)

    Nino-Ruiz, Elias D.; Sandu, Adrian

    2015-11-01

    This paper develops efficient ensemble Kalman filter (EnKF) implementations based on shrinkage covariance estimation. The forecast ensemble members at each step are used to estimate the background error covariance matrix via the Rao-Blackwell Ledoit and Wolf estimator, which has been specifically developed to approximate high-dimensional covariance matrices using a small number of samples. Two implementations are considered: in the EnKF full-space (EnKF-FS) approach, the assimilation process is performed in the model space, while the EnKF reduce-space (EnKF-RS) formulation performs the analysis in the subspace spanned by the ensemble members. In the context of EnKF-RS, additional samples are taken from the normal distribution described by the background ensemble mean and the estimated background covariance matrix, in order to increase the size of the ensemble and reduce the sampling error of the filter. This increase in the size of the ensemble is obtained without running the forward model. After the assimilation step, the additional samples are discarded and only the model-based ensemble members are propagated further. Methodologies to reduce the impact of spurious correlations and under-estimation of sample variances in the context of the EnKF-FS and EnKF-RS implementations are discussed. An adjoint-free four-dimensional extension of EnKF-RS is also discussed. Numerical experiments carried out with the Lorenz-96 model and a quasi-geostrophic model show that the use of shrinkage covariance matrix estimation can mitigate the impact of spurious correlations during the assimilation process.

  16. Fatigue crack propagation in self-assembling nanocomposites

    NASA Astrophysics Data System (ADS)

    Klingler, Andreas; Wetzel, Bernd

    2016-05-01

    Self-assembling block-copolymers allow the easy manufacturing of nanocomposites due to the thermodynamically driven in situ formation of nanosized phases in thermosetting resins during the curing process. Complex mechanical dispersion processes can be avoided. The current study investigates the effect of a block-copolymer on the fatigue crack propagation resistance of a cycloaliphatic amine cured epoxy resin. It was found that a small amount of MAM triblock-copolymer significantly increases the resistance to fatigue crack propagation of epoxy. Crack growth rate and the Paris law exponent for fatigue-crack growth were considerably reduced from m=15.5 of the neat epoxy to m=8.1 of the nanocomposite. To identify the related reinforcing and fracture mechanisms structural analyses of the fractured surfaces were performed by scanning electron microscope. Characteristic features were identified to be deformation, debonding and fracture of the nano-phases as well as crack pinning. However, the highest resistance against fatigue crack propagation was achieved in a bi-continuous microstructure that consisted of an epoxy-rich phase with embedded submicron sized MAM inclusions, and which was surrounded by a block-copolymer-rich phase that showed rupture and plastic deformation.

  17. An analysis of ductile rupture modes at a crack tip

    NASA Astrophysics Data System (ADS)

    Needleman, A.; Tvergaard, V.

    A N ELASTIC-VISCOPLASTIC model of a ductile, porous solid is used to study the influence of the nucleation and growth of micro-voids in the material near the tip of a crack. Conditions of small scale yielding are assumed, and the numerical analyses of the stress and strain fields are based on finite strain theory, so that crack tip blunting is fully accounted for. An array of large inclusions or inclusion colonies, with a relatively low strength, results in large voids near the crack tip at a rather early stage, whereas small second phase particles in the matrix material between the inclusions require large strains before cavities nucleate. Various distributions of the large inclusions, and various critical strains for nucleation of the small scale voids between the inclusions, are considered. Localization of plastic flow plays an important role in determining the failure path between the crack tip and the nearest larger void, and the path is strongly sensitive to the distribution of the large inclusions. Values of the J-integral and the crack opening displacement at fracture initiation are estimated, together with values of the tearing modulus during crack growth, and these values are related to experimental results.

  18. Crack propagation and fracture in silicon wafers under thermal stress

    PubMed Central

    Danilewsky, Andreas; Wittge, Jochen; Kiefl, Konstantin; Allen, David; McNally, Patrick; Garagorri, Jorge; Elizalde, M. Reyes; Baumbach, Tilo; Tanner, Brian K.

    2013-01-01

    The behaviour of microcracks in silicon during thermal annealing has been studied using in situ X-ray diffraction imaging. Initial cracks are produced with an indenter at the edge of a conventional Si wafer, which was heated under temperature gradients to produce thermal stress. At temperatures where Si is still in the brittle regime, the strain may accumulate if a microcrack is pinned. If a critical value is exceeded either a new or a longer crack will be formed, which results with high probability in wafer breakage. The strain reduces most efficiently by forming (hhl) or (hkl) crack planes of high energy instead of the expected low-energy cleavage planes like {111}. Dangerous cracks, which become active during heat treatment and may shatter the whole wafer, can be identified from diffraction images simply by measuring the geometrical dimensions of the strain-related contrast around the crack tip. Once the plastic regime at higher temperature is reached, strain is reduced by generating dislocation loops and slip bands and no wafer breakage occurs. There is only a small temperature window within which crack propagation is possible during rapid annealing. PMID:24046487

  19. Surface crack problems in plates

    NASA Technical Reports Server (NTRS)

    Joseph, P. F.; Erdogan, F.

    1989-01-01

    The mode I crack problem in plates under membrane loading and bending is reconsidered. The purpose is to examine certain analytical features of the problem further and to provide some new results. The formulation and the results given by the classical and the Reissner plate theories for through and part-through cracks are compared. For surface cracks the three-dimensional finite element solution is used as the basis of comparison. The solution is obtained and results are given for the crack/contact problem in a plate with a through crack under pure bending and for the crack interaction problem. Also, a procedure is developed to treat the problem of subcritical crack growth and to trace the evolution of the propagating crack.

  20. Cracking the Credit Hour

    ERIC Educational Resources Information Center

    Laitinen, Amy

    2012-01-01

    The basic currency of higher education--the credit hour--represents the root of many problems plaguing America's higher education system: the practice of measuring time rather than learning. "Cracking the Credit Hour" traces the history of this time-based unit, from the days of Andrew Carnegie to recent federal efforts to define a credit hour. If…

  1. Catalytic cracking process

    DOEpatents

    Lokhandwala, Kaaeid A.; Baker, Richard W.

    2001-01-01

    Processes and apparatus for providing improved catalytic cracking, specifically improved recovery of olefins, LPG or hydrogen from catalytic crackers. The improvement is achieved by passing part of the wet gas stream across membranes selective in favor of light hydrocarbons over hydrogen.

  2. Heterosynaptic structural plasticity on local dendritic segments of hippocampal CA1 neurons

    PubMed Central

    Oh, Won Chan; Parajuli, Laxmi Kumar; Zito, Karen

    2014-01-01

    SUMMARY Competition between synapses contributes to activity-dependent refinement of the nervous system during development. Does local competition between neighboring synapses drive circuit remodeling during experience-dependent plasticity in the cerebral cortex? Here, we examined the role of activity-mediated competitive interactions in regulating dendritic spine structure and function on hippocampal CA1 neurons. We found that high-frequency glutamatergic stimulation at individual spines, which leads to input-specific synaptic potentiation, induces shrinkage and weakening of nearby unstimulated synapses. This heterosynaptic plasticity requires potentiation of multiple neighboring spines, suggesting that a local threshold of neural activity exists beyond which inactive synapses are punished. Notably, inhibition of calcineurin, IP3Rs, or group I mGluRs blocked heterosynaptic shrinkage without blocking structural potentiation, and inhibition of CaMKII blocked structural potentiation without blocking heterosynaptic shrinkage. Our results support a model in which activity-induced shrinkage signal, and not competition for limited structural resources, drives heterosynaptic structural and functional depression during neural circuit refinement. PMID:25558061

  3. Simplified computational methods for elastic and elastic-plastic fracture problems

    NASA Technical Reports Server (NTRS)

    Atluri, Satya N.

    1992-01-01

    An overview is given of some of the recent (1984-1991) developments in computational/analytical methods in the mechanics of fractures. Topics covered include analytical solutions for elliptical or circular cracks embedded in isotropic or transversely isotropic solids, with crack faces being subjected to arbitrary tractions; finite element or boundary element alternating methods for two or three dimensional crack problems; a 'direct stiffness' method for stiffened panels with flexible fasteners and with multiple cracks; multiple site damage near a row of fastener holes; an analysis of cracks with bonded repair patches; methods for the generation of weight functions for two and three dimensional crack problems; and domain-integral methods for elastic-plastic or inelastic crack mechanics.

  4. A Mixed-Mode I/II Fracture Criterion and Its Application in Crack Growth Predictions

    NASA Technical Reports Server (NTRS)

    Sutton, Michael A.; Deng, Xiaomin; Ma, Fashang; Newman, James S., Jr.

    1999-01-01

    A crack tip opening displacement (CTOD)-based, mixed mode fracture criterion is developed for predicting the onset and direction of crack growth. The criterion postulates that crack growth occurs in either the Mode I or Mode II direction, depending on whether the maximum in either the opening or the shear component of CTOD, measured at a specified distance behind the crack tip, attains a critical value. For crack growth direction prediction, the proposed CTOD criterion is shown to be equivalent to seven commonly used crack growth criteria under linearly elastic and asymptotic conditions. Under elastic-plastic conditions the CTOD criterion's prediction of the dependence of the crack growth direction on the crack-up mode mixity is in excellent agreement with the Arcan test results. Furthermore, the CTOD criterion correctly predicts the existence of a crack growth transition from mode I to mode II as the mode mixity approaches the mode II loading condition. The proposed CTOD criterion has been implemented in finite element crack growth simulation codes Z1P2DL and FRANC2DL to predict the crack growth paths in (a) a modified Arcan test specimen and fixture made of AL 2024-T34 and (b) a double cantilever beam (DCB) specimen made of AL 7050. A series of crack growth simulations have been carried out for the crack growth tests in the Arcan and DCB specimens and the results further demonstrate the applicability of the mixed mode CTOD fracture criterion crack growth predictions and residual strength analyses for airframe materials.

  5. Steady crack growth through ductile metals: Computational studies

    NASA Astrophysics Data System (ADS)

    Sobotka, James C.

    This thesis examines the crack-front response during sustained ductile tearing in structural metals at quasistatic rates using high resolution finite element computations. At load levels approaching the steady-growth regime, well-established computational methods that model material damage break down numerically as vanishingly small load increments produce increasingly large amounts of crack extension. The computational model adopted here determines the deformation history of a steadily advancing crack directly without the need for a priori (transient) analysis that considers blunting of the pre-existing stationary crack and subsequent growth through the associated initial plastic zone. Crack extension occurs at the remotely applied, fixed loading without the need for a local growth criteria. This numerical scheme utilizes a streamline integration technique to determine the elastic-plastic fields, generalized from a two-dimensional to a fully three-dimensional setting and implemented within mixed Matlab/C++/F-90 based software. Modifications of the conventional finite element formulation lead to an efficient procedure -- readily parallelized -- and determine the invariant near-front fields, representative of steady-state growth, on a fixed mesh in a boundary-layer framework. In the small-scale yielding regime, the crack front does not sense the existence of remote boundaries, and computational results retain a strong transferability among various geometric configurations where near-front, plastic deformation remains entirely enclosed by the surrounding linear-elastic material. The global stress intensity factor (KI ) and imposed T-stress fully specify displacement constraints along the far-field boundary, and in a three-dimensional setting, the panel thickness reflects the only natural length scale. The initial studies in this work consider steady crack advance within the small-scale yielding context under plane-strain conditions and mode I loading. These analyses

  6. Effect of multi-functional inhibitors on the electrochemistry within a corrosion crack

    SciTech Connect

    Omura, H.

    1984-01-01

    The electrochemical and mass transport mechanisms in stress corrosion cracking, which depend on the rate of metal dissolution and production of hydrogen, have been used to establish analytically the electrode potential distribution within the crack. When crack growth occurs by enhanced anodic dissolution of the plastically strained tip, the electrode potential at the crack tip always is more active than at the crack mouth because of the electric potential gradient that exists in the electrolyte within the crack. This also gives rise to additional or alternative electrochemical reactions such as hydrogen evolution and anodic dissolution at the crack tip. Furthermore, because of the potential difference from the crack mouth, the electrochemical driving force becomes more favorable for the development of corrosion inside the crack. The analysis predicts the distribution of electrode potential within a crack, and theoretical results have been compared with experimental measurements recorded from a model electrode system. Under free corrosion, a small potential difference may cause a concentration change of Cl/sup -/ ion and increase the chloride attack. In order to reduce the chloride and hydrogen attack, multifunctional inhibitors, such as borax-nitrite with small amounts of surfactant such as MBT or amino-methyl-propanol, are excellent inhibitors. The surfactant interferes in the dissolution reaction and blocks active chloride ion and hydrogen ion by interacting synergistically with the passive film produced by the borax-nitrite, which results in development of a stronger and thicker protective film.

  7. Microstructural changes induced near crack tip during corrosion fatigue tests in austenitic-ferritic steel.

    PubMed

    Gołebiowski, B; Swiatnicki, W A; Gaspérini, M

    2010-03-01

    Microstructural changes occurring during fatigue tests of austenitic-ferritic duplex stainless steel (DSS) in air and in hydrogen-generating environment have been investigated. Hydrogen charging of steel samples during fatigue crack growth (FCG) tests was performed by cathodic polarization of specimens in 0.1M H(2)SO(4) aqueous solution. Microstructural investigations of specimens after FCG tests were carried out using transmission electron microscopy to reveal the density and arrangement of dislocations formed near crack tip. To determine the way of crack propagation in the microstructure, electron backscatter diffraction investigations were performed on fatigue-tested samples in both kinds of environment. To reveal hydrogen-induced phase transformations the atomic force microscopy was used. The above investigations allowed us to define the character of fatigue crack propagation and microstructural changes near the crack tip. It was found that crack propagation after fatigue tests in air is accompanied with plastic deformation; a high density of dislocations is observed at large distance from the crack. After fatigue tests performed during hydrogen charging the deformed zone containing high density of dislocations is narrow compared to that after fatigue tests in air. It means that hydrogenation leads to brittle character of fatigue crack propagation. In air, fatigue cracks propagate mostly transgranularly, whereas in hydrogen-generating environment the cracks have mixed transgranular/interfacial character. PMID:20500395

  8. Crack patterns over uneven substrates.

    PubMed

    Nandakishore, Pawan; Goehring, Lucas

    2016-02-28

    Cracks in thin layers are influenced by what lies beneath them. From buried craters to crocodile skin, crack patterns are found over an enormous range of length scales. Regardless of absolute size, their substrates can dramatically influence how cracks form, guiding them in some cases, or shielding regions from them in others. Here we investigate how a substrate's shape affects the appearance of cracks above it, by preparing mud cracks over sinusoidally varying surfaces. We find that as the thickness of the cracking layer increases, the observed crack patterns change from wavy to ladder-like to isotropic. Two order parameters are introduced to measure the relative alignment of these crack networks, and, along with Fourier methods, are used to characterise the transitions between crack pattern types. Finally, we explain these results with a model, based on the Griffith criteria of fracture, that identifies the conditions for which straight or wavy cracks will be seen, and predicts how well-ordered the cracks will be. Our metrics and results can be applied to any situation where connected networks of cracks are expected, or found. PMID:26762761

  9. Random loading fatigue crack growth: Crack closure considerations

    NASA Technical Reports Server (NTRS)

    Ortiz, Keith

    1987-01-01

    The prediction of fatigue crack growth is an important element of effective fracture control for metallic structures and mechanical components, especially in the aerospace industry. The prediction techniques available and applied today are mostly based on fatigue crack growth measurements determined in constant amplitude testing. However, while many service loadings are constant amplitude, many more loadings are random amplitude. An investigation to determine which statistics of random loadings are relevant to fatigue crack closure was conducted. The fundamentals of random processes and crack closure are briefly reviewed, then the relevance of certain random process parameters to the crack closure calculation are discussed qualitatively. A course for further research is outlined.

  10. Mechanical Failure of a Plastic Bonded Explosive vs Confining Pressure

    NASA Astrophysics Data System (ADS)

    Wiegand, Donald; Elllis, Kevin; Leppard, Claire

    2011-06-01

    EDC37 fails by crack growth between 0.1 and about 7 MPa and by yield and plastic flow between about 7 and at least 138 MPa. In the low pressure range the compressive strength increases with pressure due to a threshold stress which also increases with pressure. The threshold stress is due to friction between crack surfaces and must be overcome for crack growth. In the higher pressure range the yield strength also increases with pressure but at a much lower rate. In the low pressure range the threshold stress for crack growth is less than the yield strength so primarily crack growth is observed while in the higher pressure range the yield strength is less the the threshold stress for crack growth so that only yield is observed. Thus at moderately low confining pressures greater than 7 MPa crack growth does not take place and so processes depending on crack motion such as frictional heating will not take place. Supported by AWE Aldermaston

  11. Layer model for long-term deflection analysis of cracked reinforced concrete bending members

    NASA Astrophysics Data System (ADS)

    Bacinskas, Darius; Kaklauskas, Gintaris; Gribniak, Viktor; Sung, Wen-Pei; Shih, Ming-Hsiang

    2012-05-01

    A numerical technique has been proposed for the long-term deformation analysis of reinforced concrete members subjected to a bending moment. The technique based on the layer approach in a simple and rational way deals with such complex issues as concrete cracking and tension-stiffening as well as creep and shrinkage. The approach uses the material stress-strain relationships for compressive concrete, cracked tensile concrete and steel. Such effects as linear and nonlinear creep, cracking, tension-stiffening as well as the reduction in concrete tension strength due to sustained loading have been taken into account. The shrinkage effect has been modeled by means of adequate actions of axial force and bending moment. A statistical deflection calculation analysis has been carried out for 322 experimental reinforced concrete beams reported in the literature. The comparative analysis of the experimental and the modeling results has shown that the proposed technique has well captured the time-deflection behavior of reinforced concrete flexural members. The results of the predictions by ACI 318 and Eurocode 2 design codes have been also discussed.

  12. Effect of plasma arc curing on polymerization shrinkage of orthodontic adhesive resins.

    PubMed

    Bang, H-C; Lim, B-S; Yoon, T-H; Lee, Y-K; Kim, C-W

    2004-08-01

    The purpose of this study was to evaluate the polymerization shrinkage of three orthodontic adhesive resins when polymerized with a high-energy plasma arc light (1340 mW cm(-2)) and a conventional halogen light (500 mW cm(-2)), and to correlate the polymerization shrinkage with the degree of conversion. To equalize the total light energy delivered to the adhesive resin, irradiation time was varied between 3 or 6 s for a plasma arc-curing unit, and 8 or 16 s for a halogen light-curing unit. The polymerization shrinkage of adhesive resins during the light-curing process was measured using a computer-controlled mercury dilatometer and the degree of conversion was measured using Fourier transform infrared spectroscopy. A plasma arccuring unit produced significantly lower polymerization shrinkage than a halogen light-curing unit when the equivalent total light energy was irradiated to the orthodontic adhesive resins (P < 0.05). The magnitude of polymerization shrinkage was significantly different depending on the kind of adhesive resins (P < 0.05), but there was no significant correlation between the filler fraction and the polymerization shrinkage (r2 = 0.039). There was strong correlation (r2 = 0.787) between the polymerization shrinkage and the degree of conversion with a halogen light-curing unit, but poor correlation (r2 = 0.377) was observed with a plasma arc-curing unit. PMID:15265218

  13. Effect of light intensity on linear shrinkage of photo-activated composite resins during setting.

    PubMed

    Inoue, K; Howashi, G; Kanetou, T; Masumi, S; Ueno, O; Fujii, K

    2005-01-01

    The purpose of this investigation was to examine the effects of light intensity on linear shrinkage of photo-activated composite resins during setting. The materials used were four commercially available photo-activated composite resins. Three light-irradiation instruments were selected and prepared so as to obtain four light intensities (200, 480, 800 and 1600 mW cm(-2)). The linear shrinkage during setting was examined 10 min after light irradiation using a trial balance plastometer, and the specimen thickness was 2.0 mm for all materials. The depth of cure was examined according to the test method described in the International Organization for Standardization (ISO/FDIS 4049: 2000(E)). In measuring the linear shrinkage 60 s from the start of light irradiation for 10 s, there was a significant correlation (r = 0.89-0.94) between the amount of linear shrinkage and the light intensity: an increase in light intensity produced a greater linear shrinkage. Furthermore, there was a significant correlation (r = 0.92-1.0) between the linear shrinkage and the irradiation time: an increase in irradiation time resulted in a greater linear shrinkage. Values of the depth of cure ranged from 1.69 to 3.75 mm. PMID:15634297

  14. Cure shrinkage measurement of nonconductive adhesives by means of a thermomechanical analyzer

    NASA Astrophysics Data System (ADS)

    Yu, H.; Mhaisalkar, S. G.; Wong, E. H.

    2005-08-01

    The conductivity of a nonconductive adhesive (NCA) flip chip interconnect is completely dependent on the direct mechanical contact between the integrated circuit (IC) bump and substrate pad. Cure shrinkage of NCA is critical for the formation of the final contact force in the contacts. However, measurement of the cure shrinkage during cross-linking reaction is fairly difficult. This paper introduces a new, yet simple, approach to measure cure shrinkage of adhesives using a thermo-mechanical analyzer. Isothermal studies of shrinkage change as a function of curing show four distinct regions. First, the thickness of the epoxy decreases due to decreasing viscosity and applied load, followed by a stage where the dimension change is constant as the cross-linking reaction is yet to set in. Once cross-linking begins, the shrinkage reaches a maximum followed by a plateau where the cross-linking reaction has completed. Sharp changes of the slope of cure shrinkage versus degree of cure were observed to coincide with gelation and vitrification. After gelation, a linear relationship between the cure shrinkage and degree of cure was observed to extend until the occurrence of vitrification, which quenches the cross-linking reaction. Applied load in the range of 0.05 N was found to be optimal to minimize measurement errors.

  15. Environmental fatigue of an Al-Li-Cu alloy. Part 3: Modeling of crack tip hydrogen damage

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Gangloff, Richard P.

    1992-01-01

    Environmental fatigue crack propagation rates and microscopic damage modes in Al-Li-Cu alloy 2090 (Parts 1 and 2) are described by a crack tip process zone model based on hydrogen embrittlement. Da/dN sub ENV equates to discontinuous crack advance over a distance, delta a, determined by dislocation transport of dissolved hydrogen at plastic strains above a critical value; and to the number of load cycles, delta N, required to hydrogenate process zone trap sites that fracture according to a local hydrogen concentration-tensile stress criterion. Transgranular (100) cracking occurs for process zones smaller than the subgrain size, and due to lattice decohesion or hydride formation. Intersubgranular cracking dominates when the process zone encompasses one or more subgrains so that dislocation transport provides hydrogen to strong boundary trapping sites. Multi-sloped log da/dN-log delta K behavior is produced by process zone plastic strain-hydrogen-microstructure interactions, and is determined by the DK dependent rates and proportions of each parallel cracking mode. Absolute values of the exponents and the preexponential coefficients are not predictable; however, fractographic measurements theta sub i coupled with fatigue crack propagation data for alloy 2090 established that the process zone model correctly describes fatigue crack propagation kinetics. Crack surface films hinder hydrogen uptake and reduce da/dN and alter the proportions of each fatigue crack propagation mode.

  16. Crack Growth in First Wall by Cyclic Thermal Stress

    SciTech Connect

    Nishimura, T.; Hatano, T.; Honda, T.; Saito, M.

    2003-07-15

    The long pulse operation is assumed in ITER and future reactors. If the first wall has a defect, the crack may be propagated by cyclic thermal loads. In addition, flattop of more than 300 sec during plasma burning is expected, therefore, an effect of transient creep must be included. In order to simulate a severe temperature gradient in the first wall, an experimental facility was designed using an electron beam (EB) as a heat source, which has a distinct feature that the various plasma burning scenarios can be simulated by controlling the beam power so as to make surface temperature of the specimen to be fixed. To clarify the crack growth mechanism and the effects of transient creep, elastic-plastic stress analysis and creep analysis were performed. It is concluded that the creep effect during the operation duration period enlarges the residual tensile stress in the cooling period, and that consequently the crack propagation length increases.

  17. Effects of crystallographic orientation on plastic deformation and SCC initiation of zirconium alloys

    NASA Astrophysics Data System (ADS)

    Kubo, T.; Wakashima, Y.; Amano, K.; Nagai, M.

    1985-05-01

    In order to investigate the effects of crystallographic orientation on deformation and crack initiation in iodine-induced SCC of zirconium alloys, uniaxial tensile tests of zirconium and Zircaloy-2 plates were conducted in an iodine atmosphere. The crystallographic orientation of individual grains was determined by an etch-pit technique prior to testing. After testing, the etch-pit technique showed that prismatic slip was predominant in the plastic deformation and that cleavage cracks extended along basal planes. The plastic deformation of individual grains was significantly influenced by their crystallographic orientations, which varied from one grain to another. Accordingly, inhomogeneous plastic deformation occurred between grains. The crack initiation took place preferentially at grain boundaries where differences of crystallographic orientations were large between adjacent grains. This indicated that crack initiations was caused by stress concentration due to strain incompatibility at those grain boundaries.

  18. Effects of friction and high torque on fatigue crack propagation in Mode III

    NASA Astrophysics Data System (ADS)

    Nayeb-Hashemi, H.; McClintock, F. A.; Ritchie, R. O.

    1982-12-01

    Turbo-generator and automotive shafts are often subjected to complex histories of high torques. To provide a basis for fatigue life estimation in such components, a study of fatigue crack propagation in Mode III (anti-plane shear) for a mill-annealed AISI 4140 steel (RB88, 590 MN/m2 tensile strength) has been undertaken, using torsionally-loaded, circumferentially-notched cylindrical specimens. As demonstrated previously for higher strength AISI 4340 steel, Mode III cyclic crack growth rates (dc/dN) IIIcan be related to the alternating stress intensity factor ΔKIII for conditions of small-scale yielding. However, to describe crack propagation behavior over an extended range of crack growth rates (˜10-6 to 10-2 mm per cycle), where crack growth proceeds under elastic-plastic and full plastic conditions, no correlation between (dc/dN) III and ΔKIII is possible. Accordingly, a new parameter for torsional crack growth, termed the plastic strain intensity Γ III, is introduced and is shown to provide a unique description of Mode III crack growth behavior for a wide range of testing conditions, provided a mean load reduces friction, abrasion, and interlocking between mating fracture surfaces. The latter effect is found to be dependent upon the mode of applied loading (i.e., the presence of superimposed axial loads) and the crack length and torque level. Mechanistically, high-torque surfaces were transverse, macroscopically flat, and smeared. Lower torques showed additional axial cracks (longitudinal shear cracking) perpendicular to the main transverse surface. A micro-mechanical model for the main radi l Mode III growth, based on the premise that crack advance results from Mode II coalescence of microcracks initiated at inclusions ahead of the main crack front, is extended to high nominal stress levels, and predicts that Mode III fatigue crack propagation rates should be proportional to the range of plastic strain intensity (ΔΓIII if local Mode II growth rates are

  19. Phase-field modelling of ductile fracture: a variational gradient-extended plasticity-damage theory and its micromorphic regularization.

    PubMed

    Miehe, C; Teichtmeister, S; Aldakheel, F

    2016-04-28

    This work outlines a novel variational-based theory for the phase-field modelling of ductile fracture in elastic-plastic solids undergoing large strains. The phase-field approach regularizes sharp crack surfaces within a pure continuum setting by a specific gradient damage modelling. It is linked to a formulation of gradient plasticity at finite strains. The framework includes two independent length scales which regularize both the plastic response as well as the crack discontinuities. This ensures that the damage zones of ductile fracture are inside of plastic zones, and guarantees on the computational side a mesh objectivity in post-critical ranges. PMID:27002069

  20. Study of the plastic zone around the ligament of thin sheet D.E.N.T specimen subjected to tensile

    NASA Astrophysics Data System (ADS)

    Djebali, S.; Larbi, S.; Bilek, A.

    2015-03-01

    One of the assumptions of Cotterell and Reddel's method of the essential work of fracture determination is the existence of a fracture process zone surrounded by an outer plastic zone extending to the whole ligament before crack initiation. To verify this hypothesis we developed a method based on micro hardness. The hardness values measured in the domain surrounding the tensile fracture area of ST-37-2 steel sheet D.E.N.T specimens confirm the existence of the two plastic zones. The extension of the plastic deformations to the whole ligament before the crack initiation and the circular shape of the outer plastic zone are revealed by the brittle coating method.

  1. Scaling of surface roughness in perfectly plastic disordered media

    SciTech Connect

    Barai, Pallab; Nukala, Phani K; Sampath, Rahul S; Simunovic, Srdjan

    2010-01-01

    This paper investigates surface roughness characteristics of localized plastic yield surface in a perfectly plastic disordered material. We model the plastic disordered material using perfectly plastic random spring model. Our results indicate that plasticity in a disordered material evolves in a diffusive manner until macroscopic yielding, which is in contrast to the localized failure observed in brittle fracture of disordered materials. On the other hand, the height-height fluctuations of the plastic yield surfaces generated by the spring model exhibit roughness exponents similar to those obtained in the brittle fracture of disordered materials, albeit anomalous scaling of plastic surface roughness is not observed. The local and global roughness exponents ({zeta}{sub loc} and {zeta}, respectively) are equal to each other, and the two-dimensional crack roughness exponent is estimated to be {zeta}{sub loc} = {zeta} = 0.67 {+-} 0.03. The probability density distribution p[{Delta}h({ell})] of the height differences {Delta}h({ell}) = [h(x+{ell})-h(x)] of the crack profile follows a Gaussian distribution.

  2. Thermomechanical simulation of the selective laser melting process for PA12 including volumetric shrinkage

    NASA Astrophysics Data System (ADS)

    Riedlbauer, D.; Steinmann, P.; Mergheim, J.

    2015-05-01

    The present contribution is concerned with the finite element simulation of the thermomechanical material behavior in the selective laser melting process for PA12. In the process shrinkage of the powder material is observed when becoming melt, as the porous character of the powder vanishes due to the phase transition. A nonlinear thermomechanical finite element model is developed, which captures the shrinkage of the material and includes temperature dependent material parameters. The model is used to simulate the shrinkage of the material in the process, where an adaptive mesh refinement is applied for increasing the accuracy of the simulation. The results are qualitatively compared with experimental data and show a good agreement.

  3. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Yau, J. F.; Malik, S. N.; Kim, K. S.; Vanstone, R. H.; Laflen, J. H.

    1985-01-01

    The objective of the Elevated Temperature Crack Growth Project is to evaluate proposed nonlinear fracture mechanics methods for application to combustor liners of aircraft gas turbine engines. During the first year of this program, proposed path-independent (P-I) integrals were reviewed for such applications. Several P-I integrals were implemented into a finite-element postprocessor which was developed and verified as part of the work. Alloy 718 was selected as the analog material for use in the forthcoming experimental work. A buttonhead, single-edge notch specimen was designed and verified for use in elevated-temperature strain control testing with significant inelastic strains. A crack mouth opening displacement measurement device was developed for further use.

  4. Replica-based Crack Inspection

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Smith, Stephen W.; Piascik, R. S.; Willard, Scott A.; Dawicke, David S.

    2007-01-01

    A surface replica-based crack inspection method has recently been developed for use in Space Shuttle main engine (SSME) hydrogen feedline flowliners. These flowliners exist to ensure favorable flow of liquid hydrogen over gimble joint bellows, and consist of two rings each containing 38 elongated slots. In the summer of 2002, multiple cracks ranging from 0.1 inches to 0.6 inches long were discovered; each orbiter contained at least one cracked flowliner. These long cracks were repaired and eddy current inspections ensured that no cracks longer than 0.075 inches were present. However, subsequent fracture-mechanics review of flight rationale required detection of smaller cracks, and was the driving force for development of higher-resolution inspection method. Acetate tape surface replicas have been used for decades to detect and monitor small cracks. However, acetate tape replicas have primarily been limited to laboratory specimens because complexities involved in making these replicas - requiring acetate tape to be dissolved with acetone - are not well suited for a crack inspection tool. More recently developed silicon-based replicas are better suited for use as a crack detection tool. A commercially available silicon-based replica product has been determined to be acceptable for use in SSME hydrogen feedlines. A method has been developed using this product and a scanning electron microscope for analysis, which can find cracks as small as 0.005 inches and other features (e.g., pits, scratches, tool marks, etc.) as small as 0.001 inches. The resolution of this method has been validated with dozens of cracks generated in a laboratory setting and this method has been used to locate 55 cracks (ranging in size from 0.040 inches to 0.004 inches) on space flight hardware. These cracks were removed by polishing away the cracked material and a second round of replicas confirmed the repair.

  5. Subcritical crack growth in marble

    NASA Astrophysics Data System (ADS)

    Nara, Yoshitaka; Nishida, Yuki; Toshinori, Ii; Harui, Tomoki; Tanaka, Mayu; Kashiwaya, Koki

    2016-04-01

    It is essential to study time-dependent deformation and fracturing in various rock materials to prevent natural hazards related to the failure of a rock mass. In addition, information of time-dependent fracturing is essential to ensure the long-term stability of a rock mass surrounding various structures. Subcritical crack growth is one of the main causes of time-dependent fracturing in rock. It is known that subcritical crack growth is influenced by not only stress but also surrounding environment. Studies of subcritical crack growth have been widely conducted for silicate rocks such as igneous rocks and sandstones. By contrast, information of subcritical crack growth in carbonate rocks is not enough. Specifically, influence of surrounding environment on subcritical crack growth in carbonate rock should be clarified to ensure the long-term stability of a rock mass. In this study, subcritical crack growth in marble was investigated. Especially, the influence of the temperature, relative humidity and water on subcritical crack growth in marble is investigated. As rock samples, marbles obtained in Skopje-City in Macedonia and Carrara-City in Italy were used. To measure subcritical crack growth, we used the load relaxation method of the double-torsion (DT) test. All measurements by DT test were conducted under controlled temperature and relative humidity. For both marbles, it was shown that the crack velocity in marble in air increased with increasing relative humidity at a constant temperature. Additionally, the crack velocity in water was much higher than that in air. It was also found that the crack velocity increased with increasing temperature. It is considered that temperature and water have significant influences on subcritical crack growth in marble. For Carrara marble in air, it was recognized that the value of subcritical crack growth index became low when the crack velocity was higher than 10-4 m/s. This is similar to Region II of subcritical crack growth

  6. Analytical and Experimental Study of Near-Threshold Interactions Between Crack Closure Mechanisms

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Riddell, William T.; Piascik, Robert S.

    2003-01-01

    The results of an analytical closure model that considers contributions and interactions between plasticity-, roughness-, and oxide-induced crack closure mechanisms are presented and compared with experimental data. The analytical model is shown to provide a good description of the combined influences of crack roughness, oxide debris, and plasticity in the near-threshold regime. Furthermore, analytical results indicate that closure mechanisms interact in a non-linear manner such that the total amount of closure is not the sum of closure contributions for each mechanism.

  7. Application of a substructuring technique to the problem of crack extension and closure

    NASA Technical Reports Server (NTRS)

    Armen, H., Jr.

    1974-01-01

    A substructuring technique, originally developed for the efficient reanalysis of structures, is incorporated into the methodology associated with the plastic analysis of structures. An existing finite-element computer program that accounts for elastic-plastic material behavior under cyclic loading was modified to account for changing kinematic constraint conditions - crack growth and intermittent contact of crack surfaces in two dimensional regions. Application of the analysis is presented for a problem of a centercrack panel to demonstrate the efficiency and accuracy of the technique.

  8. INTER-GROUP IMAGE REGISTRATION BY HIERARCHICAL GRAPH SHRINKAGE

    PubMed Central

    Ying, Shihui; Wu, Guorong; Liao, Shu; Shen, Dinggang

    2013-01-01

    In this paper, we propose a novel inter-group image registration method to register different groups of images (e.g., young and elderly brains) simultaneously. Specifically, we use a hierarchical two-level graph to model the distribution of entire images on the manifold, with intra-graph representing the image distribution in each group and the inter-graph describing the relationship between two groups. Then the procedure of inter-group registration is formulated as a dynamic evolution of graph shrinkage. The advantage of our method is that the topology of entire image distribution is explored to guide the image registration. In this way, each image coordinates with its neighboring images on the manifold to deform towards the population center, by following the deformation pathway simultaneously optimized within the graph. Our proposed method has been also compared with other state-of-the-art inter-group registration methods, where our method achieves better registration results in terms of registration accuracy and robustness. PMID:24443692

  9. Super-resolution optical telescopes with local light diffraction shrinkage

    NASA Astrophysics Data System (ADS)

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-12-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems.

  10. Super-resolution optical telescopes with local light diffraction shrinkage.

    PubMed

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-01-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems. PMID:26677820

  11. Super-resolution optical telescopes with local light diffraction shrinkage

    PubMed Central

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-01-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems. PMID:26677820

  12. Stable Tearing and Buckling Responses of Unstiffened Aluminum Shells with Long Cracks

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Rose, Cheryl A.

    1999-01-01

    The results of an analytical and experimental study of the nonlinear response of thin, unstiffened, aluminum cylindrical shells with a long longitudinal crack are presented. The shells are analyzed with a nonlinear shell analysis code that accurately accounts for global and local structural response phenomena. Results are presented for internal pressure and for axial compression loads. The effect of initial crack length on the initiation of stable crack growth and unstable crack growth in typical shells subjected to internal pressure loads is predicted using geometrically nonlinear elastic-plastic finite element analyses and the crack-tip-opening angle (CTOA) fracture criterion. The results of these analyses and of the experiments indicate that the pressure required to initiate stable crack growth and unstable crack growth in a shell subjected to internal pressure loads decreases as the initial crack length increases. The effects of crack length on the prebuckling, buckling and postbuckling responses of typical shells subjected to axial compression loads are also described. For this loading condition, the crack length was not allowed to increase as the load was increased. The results of the analyses and of the experiments indicate that the initial buckling load and collapse load for a shell subjected to axial compression loads decrease as the initial crack length increases. Initial buckling causes general instability or collapse of a shell for shorter initial crack lengths. Initial buckling is a stable local response mode for longer initial crack lengths. This stable local buckling response is followed by a stable postbuckling response, which is followed by general or overall instability of the shell.

  13. Stable Tearing and Buckling Responses of Unstiffened Aluminum Shells with Long Cracks

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Rose, Cheryl A.

    1998-01-01

    The results of an analytical and experimental study of the nonlinear response of thin, unstiffened, aluminum cylindrical shells with a long longitudinal crack are presented. The shells are analyzed with a nonlinear shell analysis code that accurately accounts for global and local structural response phenomena. Results are presented for internal pressure and for axial compression loads. The effect of initial crack length on the initiation of stable crack growth and unstable crack growth in typical shells subjected to internal pressure loads is predicted using geometrically nonlinear elastic-plastic finite element analyses and the crack-tip-opening angle (CTOA) fracture criterion. The results of these analyses and of the experiments indicate that the pressure required to initiate stable crack growth and unstable crack growth in a shell subjected to internal pressure loads decreases as the initial crack length increases. The effects of crack length on the prebuckling, buckling and postbuckling responses of typical shells subjected to axial compression loads are also described. For this loading condition, the crack length was not allowed to increase as the load was increased. The results of the analyses and of the experiments indicate that the initial buckling load and collapse load for a shell subjected to axial compression loads decrease as the initial crack length increases. Initial buckling causes general instability or collapse of a shell for shorter initial crack lengths. Initial buckling is a stable local response mode for longer initial crack lengths. This stable local buckling response is followed by a stable postbuckling response, which is followed by general or overall instability of the shell.

  14. Cracks and Lines

    NASA Technical Reports Server (NTRS)

    2004-01-01

    6 June 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture shows an odd area of the south polar region that has sets of fine, nearly parallel lines running from the northeast (upper right) toward southwest (lower left) and a darker, wider set of cracks with a major trend running almost perpendicular to the finer lines. The appearance of these features is enhanced by seasonal frost. Dark areas have no frost, bright areas still have frozen carbon dioxide ice. In summer, the ice would be gone and the cracks and lines less obvious when viewed from orbit. Although unknown, wind might be responsible for forming the fine set of lines, and perhaps freeze-thaw cycles of ground ice or structural deformation would have contributed to formation of the wider cracks. The image is located near 85.0oS, 324.0oW, and covers an area about 1.5 km (nearly 1 mi) across. The scene is illuminated by sunlight from the upper left.

  15. Monitoring of pre-release cracks in prestressed concrete using fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Abdel-Jaber, Hiba; Glisic, Branko

    2015-04-01

    Prestressed concrete experiences low to no tensile stresses, which results in limiting the occurrence of cracks in prestressed concrete structures. However, the nature of construction of these structures requires the concrete not to be subjected to the compressive force from the prestressing tendons until after it has gained sufficient compressive strength. Although the structure is not subjected to any dead or live load during this period, it is influenced by shrinkage and thermal variations. Thus, the concrete can experience tensile stresses before the required compressive strength has been attained, which can result in the occurrence of "pre-release" cracks. Such cracks are visually closed after the transfer of the prestressing force. However, structural capacity and behavior can be impacted if cracks are not sufficiently closed. This paper researches a method for the verification of the status of pre-release cracks after transfer of the prestressing force, and it is oriented towards achievement of Level IV Structural Health Monitoring (SHM). The method relies on measurements from parallel long-gauge fiber optic sensors embedded in the concrete prior to pouring. The same sensor network is used for the detection and characterization of cracks, as well as the monitoring of the prestressing force transfer and the determination of the extent of closure of pre-release cracks. This paper outlines the researched method and presents its application to a real-life structure, the southeast leg of Streicker Bridge on the Princeton University campus. The application structure is a curved continuous girder that was constructed in 2009. Its deck experienced four pre-release cracks that were closed beyond the critical limits based on the results of this study.

  16. Study of the Effect of Shrinkage Porosity on Strength Low Carbon Cast Steel

    NASA Astrophysics Data System (ADS)

    Ol'khovik, E.

    2015-09-01

    Today there are many computer systems for modeling of the casting technology processes. All of them allow calculating the availability and distribution of the shrinkage porosity in the test casting, but this information allows only making changes in existing casting technology. In this paper you obtain the information about changes in the local and structural mechanical properties of the casting in the presence of its volume shrinkage porosity. Article presents the results of direct experimental studies of technological defects (shrinkage and gas porosity) impact on the mechanical properties of low carbon steel castings. Methods of investigation are also disclosed, including the methods for producing of molded samples obtained at different process conditions and the crystallization apparatus which is described for the measuring of the density of the samples. There are the mathematical relationship for the elastic modulus, yield stress, elongation and fatigue characteristics fracture cast steel with low carbon content in the presence of the volumetric shrinkage porosity.

  17. Increasing Item Complexity: A Possible Cause of Scale Shrinkage for Unidimensional Item Response Theory.

    ERIC Educational Resources Information Center

    Yen, Wendy M.

    1985-01-01

    An approximate relationship is devised between the unidimensional model used in data analysis and a multidimensional model hypothesized to be generating the item responses. Scale shrinkage is successfully predicted for several sets of simulated data. (Author/LMO)

  18. Numerical Simulation on Open Wellbore Shrinkage and Casing Equivalent Stress in Bedded Salt Rock Stratum

    PubMed Central

    Liu, Jianjun

    2013-01-01

    Most salt rock has interbed of mudstone in China. Owing to the enormous difference of mechanical properties between the mudstone interbed and salt rock, the stress-strain and creep behaviors of salt rock are significantly influenced by neighboring mudstone interbed. In order to identify the rules of wellbore shrinkage and casings equivalent stress in bedded salt rock stratum, three-dimensional finite difference models were established. The effects of thickness and elasticity modulus of mudstone interbed on the open wellbore shrinkage and equivalent stress of casing after cementing operation were studied, respectively. The results indicate that the shrinkage of open wellbore and equivalent stress of casings decreases with the increase of mudstone interbed thickness. The increasing of elasticity modulus will reduce the shrinkage of open wellbore and casing equivalent stress. Research results can provide the scientific basis for the design of mud density and casing strength. PMID:24198726

  19. Electron-beam induced photoresist shrinkage influence on 2D profiles

    NASA Astrophysics Data System (ADS)

    Bunday, Benjamin; Cordes, Aaron; Allgair, John; Aguilar, Daniel Bellido; Tileli, Vasiliki; Thiel, Bradley; Avitan, Yohanan; Peltinov, Ram; Bar-Zvi, Mayaan; Adan, Ofer; Chirko, Konstantin

    2010-03-01

    For many years, lithographic resolution has been the main obstacle in keeping the pace of transistor densification to meet Moore's Law. For the 32 nm node and beyond, new lithography techniques will be used, including immersion ArF (iArF) lithography and extreme ultraviolet lithography (EUVL). As in the past, these techniques will use new types of photoresists with the capability to print smaller feature widths and pitches. Also, such smaller feature sizes will require thinner layers of photoresists, such as under 100 nm. In previous papers, we focused on ArF and iArF photoresist shrinkage. We evaluated the magnitude of shrinkage for both R&D and mature resists as a function of chemical formulation, lithographic sensitivity, scanning electron microscope (SEM) beam condition, and feature size. Shrinkage results were determined by the well accepted methodology described in ISMI's CD-SEM Unified Specification. A model for resist shrinkage, while derived elsewhere, was presented, that can be used to curve-fit to the shrinkage data resulting from multiple repeated measurements of resist features. Parameters in the curve-fit allow for metrics quantifying total shrinkage, shrinkage rate, and initial critical dimension (CD) before e-beam exposure. With these parameters and exhaustive measurements, a fundamental understanding of the phenomenology of the shrinkage trends was achieved, including how the shrinkage behaves differently for different sized features. This work was extended in yet another paper in which we presented a 1-D model for resist shrinkage that can be used to curve-fit to shrinkage curves. Calibration of parameters to describe the photoresist material and the electron beam were all that were required to fit the model to real shrinkage data, as long as the photoresist was thick enough that the beam could not penetrate the entire layer of resist. In this paper, we extend this work yet again to a 2-D model of a trapezoidal photoresist profile. This model thus

  20. Mechanical properties, volumetric shrinkage and depth of cure of short fiber-reinforced resin composite.

    PubMed

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2016-01-01

    The mechanical properties, volumetric shrinkage and depth of cure of a short fiber-reinforced resin composite (SFRC) were investigated in this study and compared to both a bulk fill resin composite (BFRC) and conventional glass/ceramic-filled resin composite (CGRC). Fracture toughness, flexural properties, volumetric shrinkage and depth of cure of the SFRC, BFRC and CGRC were measured. SFRC had significantly higher fracture toughness than BFRCs and CGRCs. The flexural properties of SFRC were comparable with BFRCs and CGRCs. SFRC showed significantly lower volumetric shrinkage than the other tested resin composites. The depth of cure of the SFRC was similar to BFRCs and higher than CGRCs. The data from this laboratory investigation suggests that SFRC exhibits improvements in fracture toughness, volumetric shrinkage and depth of cure when compared with CGRC, but depth of cure of SFRC was similar to BFRC. PMID:27251997

  1. Effective Spring Stiffness for a Planar Periodic Array of Collinear Cracks at an Interface between Two Dissimilar Isotropic Materials

    PubMed Central

    Lekesiz, Huseyin; Katsube, Noriko; Rokhlin, Stanislav I.; Seghi, Robert R.

    2011-01-01

    Explicit analytical expressions are obtained for the longitudinal and transverse effective spring stiffnesses of a planar periodic array of collinear cracks at the interface between two dissimilar isotropic materials; they are shown to be identical in a general case of elastic dissimilarity (the well-known open interface crack model is employed for the solution). Since the interfacial spring stiffness can be experimentally determined from ultrasound reflection and transmission analysis, the proposed expressions can be useful in estimating the percentage of disbond area between two dissimilar materials, which is directly related to the residual strength of the interface. The effects of elastic dissimilarity, crack density and crack interaction on the effective spring stiffness are clearly represented in the solution. It is shown that in general the crack interaction weakly depends on material dissimilarity and, for most practical cases, the crack interaction is nearly the same as that for crack arrays between identical solids. This allows approximate factorization of the effective spring stiffness for an array of cracks between dissimilar materials in terms of an elastic dissimilarity factor and two factors obtained for cracks in a homogeneous material: the effective spring stiffness for non-interacting (independent) cracks and the crack interaction factor. In order to avoid the effect of the crack surface interpenetration zones on the effective spring stiffness, the range of the tensile to transverse load ratios is obtained under the assumption of small-scale contact conditions. Since real cracks are often slightly open (due to prior loading history and plastic deformation), it is demonstrated that for ultrasound applications the results obtained are valid for most practical cases of small interfacial cracks as long as the mid-crack opening normalized by the crack length is at least in the order of 10−5. PMID:23710104

  2. Spiral crack patterns observed for melt-grown spherulites of poly(L-lactic acid) upon quenching.

    PubMed

    Matsuda, Futoshi; Sobajima, Takamasa; Irie, Satoshi; Sasaki, Takashi

    2016-04-01

    In this paper, we demonstrate the characteristic spiral cracking that appears on the surface of melt-grown poly(L-lactic acid) (PLLA) spherulites with relatively large sizes (greater than 0.4mm in diameter). The crack occurs via thermal shrinkage upon quenching after crystallization. Although concentric cracks on polymer spherulites have been found to occur in quite a few studies, spiral crack patterns have never been reported so far. The present spiral crack was observed for thick spherulites (> 10 μm), whereas the concentric crack pattern was frequently observed for thin spherulites (typically 5μm). The present PLLA spherulites exhibited a non-banded structure with no apparent structural periodicity at least on the scale of the spiral pitch, and thus no direct correlation between the crack pattern and the spherulitic structure was suggested. The spiral was revealed to be largely Archimedean of which the spiral pitch increases with an increase in the thickness of the spherulite. This may be interpreted in terms of a classical mechanical model for a thin layer with no delamination from the substrate. PMID:27085999

  3. Analysis of the status of pre-release cracks in prestressed concrete structures using long-gauge sensors

    NASA Astrophysics Data System (ADS)

    Abdel-Jaber, H.; Glisic, B.

    2015-02-01

    Prestressed structures experience limited tensile stresses in concrete, which limits or completely eliminates the occurrence of cracks. However, in some cases, large tensile stresses can develop during the early age of the concrete due to thermal gradients and shrinkage effects. Such stresses can cause early-age cracks, termed ‘pre-release cracks’, which occur prior to the transfer of the prestressing force. When the prestressing force is applied to the cross-section, it is assumed that partial or full closure of the cracks occurs by virtue of the force transfer through the cracked cross-section. Verification of the closure of the cracks after the application of the prestressing force is important as it can either confirm continued structural integrity or indicate and approximate reduced structural capacity. Structural health monitoring (SHM) can be used for this purpose. This paper researches an SHM method that can be applied to prestressed beam structures to assess the condition of pre-release cracks. The sensor network used in this method consists of parallel long-gauge fiber optic strain sensors embedded in the concrete cross-sections at various locations. The same network is used for damage detection, i.e. detection and characterization of the pre-release cracks, and for monitoring the prestress force transfer. The method is validated on a real structure, a curved continuous girder. Results from the analysis confirm the safety and integrity of the structure. The method and its application are presented in this paper.

  4. On the measurement of the crack tip stress field as a means of determining Delta K(sub eff) under conditions of fatigue crack closure

    NASA Technical Reports Server (NTRS)

    Wallhead, Ian R.; Edwards, Lyndon; Poole, Peter

    1994-01-01

    The optical method of caustics has been successfully extended to enable stress intensity factors as low as 1MPa square root of m to be determined accurately for central fatigue cracks in 2024-T3 aluminium alloy test panels. The feasibility of using this technique to study crack closure, and to determine the effective stress intensity factor range, Delta K(sub eff), has been investigated. Comparisons have been made between the measured values of stress intensity factor, K(sub caus), and corresponding theoretical values, K(sub theo), for a range of fatigue cracks grown under different loading conditions. The values of K(sub caus) and K(sub theo) were in good agreement at maximum stress, where the cracks are fully open, while K(sub caus) exceeded K(sub theo) at minimum stress, due to crack closure. However, the levels of crack closure and values of Delta K(sub eff) obtained could not account for the variations of crack growth rate with loading conditions. It is concluded that the values of Delta K(sub eff), based on caustic measurements in a 1/square root of r stress field well outside the plastic zone, do not fully reflect local conditions which control crack tip behavior.

  5. Investigation of Cracks Found in Helicopter Longerons

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Baughman, James M.; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurigical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  6. Crack nucleation criterion and its application to impact indentation in glasses.

    PubMed

    Luo, Jian; Vargheese, K Deenamma; Tandia, Adama; Hu, Guangli; Mauro, John C

    2016-01-01

    Molecular dynamics (MD) simulations are used to directly observe nucleation of median cracks in oxide glasses under indentation. Indenters with sharp angles can nucleate median cracks in samples with no pre-existing flaws, while indenters with larger indenter angles cannot. Increasing the tip radius increases the critical load for nucleation of the median crack. Based upon an independent set of simulations under homogeneous loading, the fracture criterion in the domain of the principal stresses is constructed. The fracture criterion, or "fracture locus", can quantitatively explain the observed effects of indenter angle and indenter tip radius on median crack nucleation. Our simulations suggest that beyond the maximum principal stress, plasticity and multi-axial stresses should also be considered for crack nucleation under indentation, even for brittle glassy systems. PMID:27079431

  7. Crack nucleation criterion and its application to impact indentation in glasses

    PubMed Central

    Luo, Jian; Vargheese, K. Deenamma; Tandia, Adama; Hu, Guangli; Mauro, John C

    2016-01-01

    Molecular dynamics (MD) simulations are used to directly observe nucleation of median cracks in oxide glasses under indentation. Indenters with sharp angles can nucleate median cracks in samples with no pre-existing flaws, while indenters with larger indenter angles cannot. Increasing the tip radius increases the critical load for nucleation of the median crack. Based upon an independent set of simulations under homogeneous loading, the fracture criterion in the domain of the principal stresses is constructed. The fracture criterion, or “fracture locus”, can quantitatively explain the observed effects of indenter angle and indenter tip radius on median crack nucleation. Our simulations suggest that beyond the maximum principal stress, plasticity and multi-axial stresses should also be considered for crack nucleation under indentation, even for brittle glassy systems. PMID:27079431

  8. T{sub {epsilon}}{sup *} integral under plane stress crack growth

    SciTech Connect

    Omori, Yoshika; Ma, Leong; Kobayashi, A.S.; Okada, Hiroshi; Atluri, S.N.

    1997-12-01

    The T{sub {epsilon}}{sup *} integral values associated with stable crack growth in A606 HSLA steel single-edge-notched (SEN) specimens were determined experimentally and numerically. The displacement fields obtained through Moire interferometry and elastic-plastic finite element analysis were used to evaluate T{sub {epsilon}}{sup *} associated with the moving crack tip. T{sub {epsilon}}{sup *} decreased with the reduction in the size of the integration contour, {Gamma}{sub {epsilon}}, and continually increased with stable crack growth in this specimen. The measured and computed crack-tip opening angle (CTOA), on the other hand, was a constant 15{degree} during stable crack growth after dropping from the measured and computed initial high values of 35 and 57{degree}, respectively.

  9. Crack nucleation criterion and its application to impact indentation in glasses

    NASA Astrophysics Data System (ADS)

    Luo, Jian; Vargheese, K. Deenamma; Tandia, Adama; Hu, Guangli; Mauro, John C.

    2016-04-01

    Molecular dynamics (MD) simulations are used to directly observe nucleation of median cracks in oxide glasses under indentation. Indenters with sharp angles can nucleate median cracks in samples with no pre-existing flaws, while indenters with larger indenter angles cannot. Increasing the tip radius increases the critical load for nucleation of the median crack. Based upon an independent set of simulations under homogeneous loading, the fracture criterion in the domain of the principal stresses is constructed. The fracture criterion, or “fracture locus”, can quantitatively explain the observed effects of indenter angle and indenter tip radius on median crack nucleation. Our simulations suggest that beyond the maximum principal stress, plasticity and multi-axial stresses should also be considered for crack nucleation under indentation, even for brittle glassy systems.

  10. Advances in fatigue crack closure measurement and analysis: Second volume. ASTM special technical publication 1343

    SciTech Connect

    McClung, R.C.; Newman, J.C. Jr.

    1999-07-01

    The discovery of the phenomenon of plasticity-induced fatigue crack closure by Elber was truly a landmark event in the study of fatigue crack growth (FCG) and the development of practical engineering methods for fatigue life management. Subsequent research identified other contributing mechanisms for crack closure, including crack surface roughness and oxide debris. Fatigue crack closure is now understood to be an intrinsic feature of crack growth behavior that must be considered to understand or treat many FCG problems, although closure may not be an issue in all problems and does not always provide a complete explanation of crack growth behavior. As the thirtieth anniversary of the Elber discovery approached, the strong, continuing international interest in crack closure prompted the organization of another ASTM symposium. An international audience numbering over sixty-five persons heard thirty papers contributed by authors from twelve different countries, with more than half of the papers originating from outside the United States. This STP volume contains peer-reviewed manuscripts for twenty-seven of those presentations, plus one peer-reviewed paper that could not be presented at the symposium. Topics covered are: Fundamental Studies; Experimental Characterization of Closure; Load History Effects; Surface Roughness Effects; and Closure Effects on Crack Behavior. Separate abstracts were prepared for all 28 papers.

  11. Fracture of Hydrided Zircaloy-4 Sheet under Through-Thickness Crack Growth Conditions

    SciTech Connect

    Raynaud, P.A.; Koss, D.A.; Motta, A.T.; Chan, K.S.

    2007-07-01

    The failure of thin-wall components such as fuel cladding may be caused by crack initiation on the component surface and subsequent crack growth through its thickness. This study has determined the fracture toughness of hydrided cold-worked stress relieved Zircaloy-4 sheet subject to through-thickness crack growth at 25 deg. C. The experimental approach utilizes a novel procedure in which a narrow linear strip of brittle hydride blister across the specimen width creates a well-defined pre-crack upon initial loading. The subsequent crack growth resistance is then characterized by four-point bending of the specimen and an elastic-plastic fracture mechanics analysis. At room temperature, the through-thickness fracture toughness (K{sub Q}) is sensitive to the orientation of the hydride platelets, and K{sub Q} {approx_equal} 25 MPavm for crack growth through a mixed in-plane/out-of-plane hydride field. In contrast, K{sub Q} is much higher ({approx_equal} 75 MPavm) when the hydride platelets are oriented predominantly in the plane of the sheet (and therefore normal to both the crack plane and the crack growth direction). The implication of these fracture toughness values to the fracture strain behavior of hydrided Zircaloy-4 under through-thickness crack growth conditions is illustrated. (authors)

  12. Analyses of Fatigue and Fatigue-Crack Growth under Constant- and Variable-Amplitude Loading

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1999-01-01

    Studies on the growth of small cracks have led to the observation that fatigue life of many engineering materials is primarily crack growth from micro-structural features, such as inclusion particles, voids, slip-bands or from manufacturing defects. This paper reviews the capabilities of a plasticity-induced crack-closure model to predict fatigue lives of metallic materials using small-crack theory under various loading conditions. Constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective stress-intensity factor range (delta K(sub eff)) under constant-amplitude loading. Modifications to the delta K(sub eff)-rate relations in the near-threshold regime were needed to fit measured small-crack growth rate behavior. The model was then used to calculate small- and large-crack growth rates, and to predict total fatigue lives, for notched and un-notched specimens under constant-amplitude and spectrum loading. Fatigue lives were predicted using crack-growth relations and micro-structural features like those that initiated cracks in the fatigue specimens for most of the materials analyzed. Results from the tests and analyses agreed well.

  13. A Continuum-Atomistic Analysis of Transgranular Crack Propagation in Aluminum

    NASA Technical Reports Server (NTRS)

    Yamakov, V.; Saether, E.; Glaessgen, E.

    2009-01-01

    A concurrent multiscale modeling methodology that embeds a molecular dynamics (MD) region within a finite element (FEM) domain is used to study plastic processes at a crack tip in a single crystal of aluminum. The case of mode I loading is studied. A transition from deformation twinning to full dislocation emission from the crack tip is found when the crack plane is rotated around the [111] crystallographic axis. When the crack plane normal coincides with the [112] twinning direction, the crack propagates through a twinning mechanism. When the crack plane normal coincides with the [011] slip direction, the crack propagates through the emission of full dislocations. In intermediate orientations, a transition from full dislocation emission to twinning is found to occur with an increase in the stress intensity at the crack tip. This finding confirms the suggestion that the very high strain rates, inherently present in MD simulations, which produce higher stress intensities at the crack tip, over-predict the tendency for deformation twinning compared to experiments. The present study, therefore, aims to develop a more realistic and accurate predictive modeling of fracture processes.

  14. Fatigue Analyses Under Constant- and Variable-Amplitude Loading Using Small-Crack Theory

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Phillips, E. P.; Everett, R. A., Jr.

    1999-01-01

    Studies on the growth of small cracks have led to the observation that fatigue life of many engineering materials is primarily "crack growth" from micro-structural features, such as inclusion particles, voids, slip-bands or from manufacturing defects. This paper reviews the capabilities of a plasticity-induced crack-closure model to predict fatigue lives of metallic materials using "small-crack theory" under various loading conditions. Constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective stress-intensity factor range (delta-Keff) under constant-amplitude loading. Modifications to the delta-Keff-rate relations in the near-threshold regime were needed to fit measured small-crack growth rate behavior. The model was then used to calculate small-and large-crack growth rates, and to predict total fatigue lives, for notched and un-notched specimens under constant-amplitude and spectrum loading. Fatigue lives were predicted using crack-growth relations and micro-structural features like those that initiated cracks in the fatigue specimens for most of the materials analyzed. Results from the tests and analyses agreed well.

  15. Elastic-plastic characterization of a cast stainless steep pipe elbow material

    SciTech Connect

    Joyce, J.A.; Hackett, E.M.; Roe, C.

    1992-01-01

    Tests conducted in Japan as part of the High Level Vibration Test (HLVT) program for reactor piping systems revealed fatigue crack growth in a cast stainless steel pipe elbow. The material tested was equivalent to ASME SA-351CF8M. The David Taylor Research Center (DTRC) was tasked to developed the appropriate material property data to characterize cyclic deformation, cyclic elastic-plastic crack growth and ductile tearing resistance in the pipe elbow material. It was found that the cast stainless steel was very resistant to ductile crack extension. J-R curves essentially followed a blunting behavior to very high J levels. Low cycle fatigue crack growth rate data obtained on this material using a cyclic J integral approach was consistent with the high cycle fatigue crack growth rate and with a standard textbook correlation equation typical for this type of material. Evaluation of crack closure effects was essential to accurately determine the crack driving force for cyclic elastic- plastic crack growth in this material. SEM examination of several of the cyclic J test fracture surfaces indicated that fatigue was the primary mode of fracture with ductile crack extension intervening only during the last few cycles of loading.

  16. The effects of epoxy shrinkage on the Advanced X-ray Astrophysics Facility Technology Mirror Assembly

    NASA Technical Reports Server (NTRS)

    Cohen, L. M.

    1984-01-01

    A method is shown analytically which reduces the effects of epoxy shrinkage for an ultra-high precision X-ray telescope to within the system error budget. The three-dimensional shrinkage effects are discussed with reference to this telescope. The results of the analysis point to the use of an interrupted rather than continuous bond line as the best solution. Discussion of the finite element modelling techniques is included.

  17. Shrinkage stress in concrete under dry-wet cycles: an example with concrete column

    NASA Astrophysics Data System (ADS)

    Gao, Yuan; Zhang, Jun; Luosun, Yiming

    2014-02-01

    This paper focuses on the simulation of shrinkage stress in concrete structures under dry-wet environments. In the modeling, an integrative model for autogenous and drying shrinkage predictions of concrete under dry-wet cycles is introduced first. Second, a model taking both cement hydration and moisture diffusion into account synchronously is used to calculate the distribution of interior humidity in concrete. Using the above two models, the distributions of shrinkage strain and stress in concrete columns made by normal and high strength concrete respectively under dry-wet cycles are calculated. The model results show that shrinkage gradient along the radial direction of the column from the center to outer surface increases with age as the outer circumference suffers to dry. The maximum and minimum shrinkage occur at the outer surface and the center of the column, respectively, under drying condition. As wetting starts, the shrinkage strain decreases with increase of interior humidity. The closer to the wetting face, the higher the humidity and the lower the shrinkage strain, as well as the lower the shrinkage stress. As results of the dry-wet cycles acting on the outer circumference of the column, cyclic stress status is developed within the area close to the outer surface of the column. The depth of the influencing zone of dry-wet cyclic action is influenced by concrete strength and dry-wet regime. For low strength concrete, relatively deeper influencing zone is expected compared with that of high strength concrete. The models are verified by concrete-steel composite ring tests and a good agreement between model and test results is found.

  18. Automatic crack growth tracking of bimaterial interface cracks

    NASA Technical Reports Server (NTRS)

    Yehia, Nabil A. B.; Shephard, Mark S.

    1988-01-01

    The propagation process of an interfacial crack in composite material is studied using the modified maximum dilatational strain energy density criterion, NT-criterion. Some necessary assumptions have been adopted to facilitate the use of the NT-criterion in this case. The stress intensity factors at the crack tip are extracted from the complex displacement field and finite element results. A simple algorithm for automatic crack propagation is presented with an illustrative example.

  19. Effect of Environment on Fatigue Crack Wake Dislocation Structure in Al-Cu-Mg

    NASA Astrophysics Data System (ADS)

    Ro, Yunjo; Agnew, Sean R.; Gangloff, Richard P.

    2012-07-01

    Fatigue-induced dislocation structure was imaged at the crack surface using transmission electron microscopy (TEM) of focused ion beam (FIB)-prepared cross sections of naturally aged Al-4Cu-1.4Mg stressed at a constant stress intensity range (7 MPa√m) concurrent with either ultralow ( 10-8 Pa s) or high-purity (50 Pa s) water vapor exposure at 296 K (23 °C). A 200-to-600-nm-thick recovered-dislocation cell structure formed adjacent to the crack surface from planar slip bands in the plastic zone with the thickness of the cell structure and slip bands decreasing with increasing water vapor exposure. This result suggested lowered plastic strain accumulation in the moist environment relative to the vacuum. The previously reported fatigue crack surface crystallography is explained by the underlying dislocation substructure. For a vacuum, { { 1 1 1} } facets dominate the crack path from localized slip band cracking without resolvable dislocation cells, but cell formation causes some off- { { 1 1 1} } features. With water vapor present, the high level of hydrogen trapped within the developed dislocation structure could promote decohesion manifest as either low-index { { 100} } or { { 1 10} } facets, as well as high-index cracking through the fatigue-formed subgrain structure. These features and damage scenario provide a physical basis for modeling discontinuous environmental fatigue crack growth governed by both cyclic strain range and maximum tensile stress.

  20. Fatigue cracking of a bare steel first wall in an inertial confinement fusion chamber

    SciTech Connect

    Hunt, R. M.; Abbott, R. P.; Havstad, M. A.; Dunne, A. M.

    2013-06-01

    Inertial confinement fusion power plants will deposit high energy X-rays onto the outer surfaces of the first wall many times a second for the lifetime of the plant. These X-rays create brief temperature spikes in the first few microns of the wall, which cause an associated highly compressive stress response on the surface of the material. The periodicity of this stress pulse is a concern due to the possibility of fatigue cracking of the wall. We have used finite element analyses to simulate the conditions present on the first wall in order to evaluate the driving force of crack propagation on fusion-facing surface cracks. Analysis results indicate that the X-ray induced plastic compressive stress creates a region of residual tension on the surface between pulses. This tension film will likely result in surface cracking upon repeated cycling. Additionally, the compressive pulse may induce plasticity ahead of the crack tip, leaving residual tension in its wake. However, the stress amplitude decreases dramatically for depths greater than 80–100 μm into the fusion-facing surface. Crack propagation models as well as stress-life estimates agree that even though small cracks may form on the surface of the wall, they are unlikely to propagate further than 100 μm without assistance from creep or grain erosion phenomena.

  1. 3D crack tip fields for FCC single crystals

    SciTech Connect

    Cuitino, A.M.; Ortiz, M.

    1995-12-31

    Cracks in single crystals are of concern in a number of structural and non-structural applications, ranging form single-crystal turbine blades and rotors to metal interconnect lines in microcircuits. In this paper we present 3D numerical simulations of the crack-tip fields of a Cu single crystal, including stress, strain and slip activity patterns. The orientation of the crack tip is along the crystallographic orientation (101), while the crack plane is (010). A material model based on dislocation mechanics is used in these simulations. This model correctly predicts the observed behavior of Cu, including the basic hardening characteristics of single crystals, orientation dependence and stage I-II-III structure of the stress-strain curves, the observed levels of latent hardening and their variation with orientation and deformation in the primary system and slip activities and dislocation densities. We use the FEM within the context of finite deformation plasticity. In the figure below, we show the finite element mesh composed by 12-noded tetrahedrons with 6-noded triangular faces. The model simulates half of a beam, which is subjected to a concentrated load at 1/8 of total length from the support. Detailed results of the stress, deformation and slip activity are presented at different radii from crack tip and at different depths from the surface. In general, the results show a strong difference in the slip activity pattern form the interior to the exterior, while smaller differences are encountered in the stress and strain fields.

  2. Asperities, Crack Front Waves and Crack Self Healing

    NASA Astrophysics Data System (ADS)

    Rajak, Pankaj; Kalia, Rajiv; Nakano, Aiichiro; Vashishta, Priya

    We have performed petascale simulations to study nanomaterial systems capable of sensing and repairing damage in high temperature/high pressure operating conditions. The system we have studied is a ceramic nanocomposite consisting of silicon carbide/silicon dioxide core/shell nanoparticles embedded in alumina. We observe that the interaction of the crack with core/shell asperities gives rise to crack-front waves. We also study crack healing by diffusion of silica into the crack as a function of nanoparticle size and inter-particle distance. Our results are well supported by experimental observations.

  3. On the Crack Bifurcation and Fanning of Crack Growth Data

    NASA Technical Reports Server (NTRS)

    Forman, Royce G.; Zanganeh, Mohammad

    2015-01-01

    Crack growth data obtained from ASTM load shedding method for different R values show some fanning especially for aluminum alloys. It is believed by the authors and it has been shown before that the observed fanning is due to the crack bifurcation occurs in the near threshold region which is a function of intrinsic properties of the alloy. Therefore, validity of the ASTM load shedding test procedure and results is confirmed. However, this position has been argued by some experimentalists who believe the fanning is an artifact of the test procedure and thus the obtained results are invalid. It has been shown that using a special test procedure such as using compressively pre-cracked specimens will eliminate the fanning effect. Since not using the fanned data fit can result in a significantly lower calculated cyclic life, design of a component, particularly for rotorcraft and propeller systems will considerably be impacted and therefore this study is of paramount importance. In this effort both test procedures i.e. ASTM load shedding and the proposed compressive pre-cracking have been used to study the fatigue crack growth behavior of compact tension specimens made of aluminum alloy 2524-T3. Fatigue crack growth paths have been closely observed using SEM machines to investigate the effects of compression pre-cracking on the crack bifurcation behavior. The results of this study will shed a light on resolving the existing argument by better understanding of near threshold fatigue crack growth behavior.

  4. The effect of mucosal cuff shrinkage around dental implants during healing abutment replacement.

    PubMed

    Nissan, J; Zenziper, E; Rosner, O; Kolerman, R; Chaushu, L; Chaushu, G

    2015-10-01

    Soft tissue shrinkage during the course of restoring dental implants may result in biological and prosthodontic difficulties. This study was conducted to measure the continuous shrinkage of the mucosal cuff around dental implants following the removal of the healing abutment up to 60 s. Individuals treated with implant-supported fixed partial dentures were included. Implant data--location, type, length, diameter and healing abutments' dimensions--were recorded. Mucosal cuff shrinkage, following removal of the healing abutments, was measured in bucco-lingual direction at four time points--immediately after 20, 40 and 60 s. anova was used to for statistical analysis. Eighty-seven patients (49 women and 38 men) with a total of 311 implants were evaluated (120 maxilla; 191 mandible; 291 posterior segments; 20 anterior segments). Two-hundred and five (66%) implants displayed thick and 106 (34%) thin gingival biotype. Time was the sole statistically significant parameter affecting mucosal cuff shrinkage around dental implants (P < 0.001). From time 0 to 20, 40 and 60 s, the mean diameter changed from 4.1 to 4.07, 3.4 and 2.81 mm, respectively. The shrinkage was 1%, 17% and 31%, respectively. The gingival biotype had no statistically significant influence on mucosal cuff shrinkage (P = 0.672). Time required replacing a healing abutment with a prosthetic element should be minimised (up to 20/40 s), to avoid pain, discomfort and misfit. PMID:26132112

  5. Drying shrinkage of fibre-reinforced lightweight aggregate concrete containing fly ash

    SciTech Connect

    Kayali, O.; Haque, M.N.; Zhu, B.

    1999-11-01

    Lightweight aggregate concretes containing fly ash with a compressive strength between 61 to 67 NPa were produced. The lightweight aggregate used was sintered fly ash. The concretes were reinforced with either polypropylene or steel fibres. The fibres did not affect the compressive strength, but did increase the tensile strength of these concretes. The modulus of elasticity of all the lightweight concretes tested was about 21 GPa, compared to 35 GPa for the normal-weight concrete. Fibre reinforcement did not affect the value of the elastic modulus. This type of lightweight concrete, containing fly ash as 23% of the total cementitious content, resulted in long-term shrinkage that is nearly twice as large as normal-weight concrete of somewhat similar strength. Polypropylene fibre reinforcement did not reduce drying shrinkage, while steel fibres did. Early shrinkage behavior of this type of lightweight concrete was similar to normal-weight concrete. However, the rate of shrinkage of the lightweight concrete remained constant until nearly 100 days of drying. This is different from normal-weight concrete that showed appreciably after 56 days. Shrinkage of normal-weight concrete stabilized after 400 days, which shrinkage of lightweight concrete did not appear to stabilize after a similar period of continuous drying.

  6. Development of a rapid cure polydimethylsiloxane replication process with near-zero shrinkage

    NASA Astrophysics Data System (ADS)

    Badshah, Mohsin Ali; Jang, Hyungjun; Kim, Young Kyu; Kim, Tae-Hyoung; Kim, Seok-min

    2014-07-01

    Replicated polydimethylsiloxane (PDMS) micro/nanostructures are widely used in various research fields due to their inexpensiveness, flexibility, low surface energy, good optical properties, biocompatibility, chemical inertness, high durability, and easy fabrication process. However, the application of PDMS micro/nanostructures is limited when an accurate pattern shape or position is required because of the shrinkage that occurs during the PDMS curing process. In this study, we analyzed the effects of processing parameters in the PDMS replication process on the shrinkage of the final structure. Although the shrinkage can be decreased by decreasing the curing temperature, this reduction also increases the unnecessary curing time. To minimize the inherent shrinkage in the PDMS replica without an accompanying curing time increase, we propose a PDMS replication process on a high modulus substrate (glass and polymer films) with compression pressure, in which the adhesion force between the substrate and the PDMS, and the compression pressure prevent shrinkage during the curing process. Using the proposed method, a PDMS replica with less than 0.1% in-plane and vertical shrinkage was obtained at a curing temperature of 150°C and a curing time of 10 min.

  7. Dental resins based on dimer acid dimethacrylates: a route to high conversion with low polymerization shrinkage.

    PubMed

    Lu, Hui; Trujillo-Lemon, Marianela; Ge, Junhao; Stansbury, Jeffrey W

    2010-05-01

    Incomplete polymerization, volumetric shrinkage, and shrinkage stress are among the primary disadvantages of current resin-based dental composites. Generally, any attempt to increase final double bond conversion only exacerbates polymerization shrinkage and stress. The use of dimer acid-derived dimethacrylate (DADMA) monomers in novel dental resin formulations is examined in this article as a potential means to address these disparate goals. A series of high molecular weight DADMA monomers with different functional groups used to connect the C36 dimer acid core and the methacrylates were formulated with urethane dimethacrylate (UDMA) and/or ethoxylated bisphenol A dimethacrylate (Bis-EMA) at various compositions to manipulate comonomer compatibility and polymeric mechanical properties. Along with reaction kinetics, dynamic polymerization shrinkage and shrinkage stress were assessed. Specific DADMA monomers demonstrated limited miscibility with either Bis-EMA or UDMA. Appropriate ternary resin formulations produced homogeneous monomeric mixtures capable of controlled polymerization-induced phase separation (PIPS) to yield heterogeneous final polymers. Reduced polymerization shrinkage and stress along with higher conversion was observed for DADMA ternary systems compared with a bisphenol A glycidyl methacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) resin control. The PIPS process resulted in a modest volume recovery and stress relaxation in the later stages of polymerization. These results indicate that certain dimer acid-derived dimethacrylates possess the potential to replace TEGDMA as a reactive diluent in dental resins that display a favorable and unique combination of properties. PMID:20521567

  8. Ear Plastic Surgery

    MedlinePlus

    ... Meeting Calendar Find an ENT Doctor Near You Ear Plastic Surgery Ear Plastic Surgery Patient Health Information ... they may improve appearance and self-confidence. Can Ear Deformities Be Corrected? Formation of the ear during ...

  9. Plastic Surgery for Teenagers

    MedlinePlus

    ... or severe acne and scarring. Teens frequently gain self-esteem and confidence when their physical problems are corrected. ... art as a helpful index of anxiety and self-esteem with plastic surgery. Plastic and Reconstructive Surgery 2002. ...

  10. Plastic encapsulated parts

    SciTech Connect

    Castillo, T.

    1994-10-01

    Plastic semiconductor packages were characterized as possible alternatives for canned devices, which are susceptible to internal shorts caused by conductive particles. Highly accelerated stress testing (HAST) as well as electrical and mechanical testing were conducted on plastic technology devices.

  11. Periodontal Plastic Surgery

    MedlinePlus

    ... Dental Implants Dentures Direct Bonding Implants versus Bridges Orthodontics and Aligners Periodontal Plastic Surgery Porcelain Crowns Porcelain ... Dental Implants Dentures Direct Bonding Implants versus Bridges Orthodontics and Aligners Periodontal Plastic Surgery Porcelain Crowns Porcelain ...

  12. Plasticity and Geotechnics

    NASA Astrophysics Data System (ADS)

    Yu, Hai-Sui

    Plasticity and Geotechnics is the first attempt to summarize and present, in one volume, the major developments achieved to date in the field of plasticity theory for geotechnical materials and its applications to geotechnical analysis and design.

  13. Preventing Cracking of Anodized Coatings

    NASA Technical Reports Server (NTRS)

    He, Charles C.; Heslin, Thomas M.

    1995-01-01

    Anodized coatings have been used as optical and thermal surfaces in spacecraft. Particulate contamination from cracked coatings is a concern for many applications. The major cause for the cracking is the difference in the coefficient of thermal expansion between the oxide coatings and the aluminum substrate. The loss of water when the coating is exposed to a vacuum also could induce cracking of the coating. Hot-water sealing was identified as the major cause for the cracking of the coatings because of the large temperature change when the parts were immersed in boiling water and the water was absorbed in the coating. when the hot-water sealing process was eliminated, the cracking resistance of the anodized coatings was greatly improved. Also, it was found that dyed black coatings were more susceptible than clear coatings to cracking during thermo-vacuum cyclings.

  14. Fatigue-Crack-Tip Locator

    NASA Technical Reports Server (NTRS)

    Namkung, Min; Clendenin, C. Gerald; Wincheski, Buzz; Fulton, James P.; Todhunter, Ronald G.; Simpson, John W.

    1994-01-01

    Fatigue-testing system includes automated subsystem continuously tracking location of fatigue-crack tip in metal or other highly electrically conductive specimen. Fatigue-crack-tip-locating subsystem also searches specimen to find initial fatigue crack and its tip and to trace out hidden fatigue cracks and other flaws inside specimen. Subsystem operates under overall control of personal computer, which also controls load frame applying prescribed cyclic stresses to specimen. Electromagnetic flaw detector based on eddy-current principle scanned over surface of specimen. Flaw detector described in "Electromagnetic Flaw Detector Is Easier To Use" (LAR-15046). System provides automated control and monitoring of fatigue experiments, saving time for researchers and enabling experiments to run unattended 24 hours a day. All information on crack-tip trajectories and rates of growth of cracks recorded automatically, so researchers have access to more information.

  15. Mode I and mixed I/III crack initiation and propagation behavior of V-4Cr-4Ti alloy at 25{degrees}C

    SciTech Connect

    Li, H.X.; Kurtz, R.J.; Jones, R.H.

    1997-04-01

    The mode I and mixed-mode I/III fracture behavior of the production-scale heat (No. 832665) of V-4Cr-4Ti has been investigated at 25{degrees}C using compact tension (CT) specimens for a mode I crack and modified CT specimens for a mixed-mode I/III crack. The mode III to mode I load ratio was 0.47. Test specimens were vacuum annealed at 1000{degrees}C for 1 h after final machining. Both mode I and mixed-mode I/III specimens were fatigue cracked prior to J-integral testing. It was noticed that the mixed-mode I/III crack angle decreased from an initial 25 degrees to approximately 23 degrees due to crack plane rotation during fatigue cracking. No crack plane rotation occurred in the mode I specimen. The crack initiation and propagation behavior was evaluated by generating J-R curves. Due to the high ductility of this alloy and the limited specimen thickness (6.35 mm), plane strain requirements were not met so valid critical J-integral values were not obtained. However, it was found that the crack initiation and propagation behavior was significantly different between the mode I and the mixed-mode I/III specimens. In the mode I specimen crack initiation did not occur, only extensive crack tip blunting due to plastic deformation. During J-integral testing the mixed-mode crack rotated to an increased crack angle (in contrast to fatigue precracking) by crack blunting. When the crack initiated, the crack angle was about 30 degrees. After crack initiation the crack plane remained at 30 degrees until the test was completed. Mixed-mode crack initiation was difficult, but propagation was easy. The fracture surface of the mixed-mode specimen was characterized by microvoid coalescence.

  16. Shuttle Fuel Feedliner Cracking Investigation

    NASA Technical Reports Server (NTRS)

    Nesman, Tomas E.; Turner, Jim (Technical Monitor)

    2002-01-01

    This presentation provides an overview of material covered during 'Space Shuttle Fuel Feedliner Cracking Investigation MSFC Fluids Workshop' held November 19-21, 2002. Topics covered include: cracks on fuel feed lines of Orbiter space shuttles, fluid driven cracking analysis, liner structural modes, structural motion in a fluid, fluid borne drivers, three dimensional computational fluid dynamics models, fluid borne drivers from pumps, amplification mechanisms, flow parameter mapping, and flight engine flow map.

  17. Processing of plastics

    PubMed Central

    Spaak, Albert

    1975-01-01

    An overview is given of the processing of plastic materials from the handling of polymers in the pellet and powder form to manufacturing of a plastic fabricated product. Various types of equipment used and melt processing ranges of various polymer formulations to make the myriad of plastic products that are commercially available are discussed. PMID:1175556

  18. Plastics in Building.

    ERIC Educational Resources Information Center

    Skeist, Irving, Ed.

    The evaluation and use of plastics in the construction industry are explained. The contributors offer extensive, timely, and thoroughly researched data on the chemistry, properties, functions, engineering behavior, and specific applications of plastics to building requirements. The major subjects discussed in depth are--(1) the role of plastics in…

  19. Tomorrow's Plastic World

    ERIC Educational Resources Information Center

    Macdonald, Averil

    2005-01-01

    Far from being just cheap packaging materials, plastics may be the materials of tomorrow. Plastic can conduct electricity, and this opens up a host of high-tech possibilities in the home and in energy generation. These possibilities are discussed here along with how plastic can be recycled and perhaps even grown.

  20. The role of local strains from prior cold work on stress corrosion cracking of α-brass in Mattsson's solution

    SciTech Connect

    Ulaganathan, Jaganathan Newman, Roger C.

    2014-06-01

    The dynamic strain rate ahead of a crack tip formed during stress corrosion cracking (SCC) under a static load is assumed to arise from the crack propagation. The strain surrounding the crack tip would be redistributed as the crack grows, thereby having the effect of dynamic strain. Recently, several studies have shown cold work to cause accelerated crack growth rates during SCC, and the slip-dissolution mechanism has been widely applied to account for this via a supposedly increased crack-tip strain rate in cold worked material. While these interpretations consider cold work as a homogeneous effect, dislocations are generated inhomogeneously within the microstructure during cold work. The presence of grain boundaries results in dislocation pile-ups that cause local strain concentrations. The local strains generated from cold working α-brass by tensile elongation were characterized using electron backscatter diffraction (EBSD). The role of these local strains in SCC was studied by measuring the strain distributions from the same regions of the sample before cold work, after cold work, and after SCC. Though, the cracks did not always initiate or propagate along boundaries with pre-existing local strains from the applied cold work, the local strains surrounding the cracked boundaries had contributions from both the crack propagation and the prior cold work. - Highlights: • Plastic strain localization has a complex relationship with SCC susceptibility. • Surface relief created by cold work creates its own granular strain localization. • Cold work promotes crack growth but several other factors are involved.

  1. Effect of Microstructure on Time Dependent Fatigue Crack Growth Behavior In a P/M Turbine Disk Alloy

    NASA Technical Reports Server (NTRS)

    Telesman, Ignacy J.; Gabb, T. P.; Bonacuse, P.; Gayda, J.

    2008-01-01

    A study was conducted to determine the processes which govern hold time crack growth behavior in the LSHR disk P/M superalloy. Nineteen different heat treatments of this alloy were evaluated by systematically controlling the cooling rate from the supersolvus solutioning step and applying various single and double step aging treatments. The resulting hold time crack growth rates varied by more than two orders of magnitude. It was shown that the associated stress relaxation behavior for these heat treatments was closely correlated with the crack growth behavior. As stress relaxation increased, the hold time crack growth resistance was also increased. The size of the tertiary gamma' in the general microstructure was found to be the key microstructural variable controlling both the hold time crack growth behavior and stress relaxation. No relationship between the presence of grain boundary M23C6 carbides and hold time crack growth was identified which further brings into question the importance of the grain boundary phases in determining hold time crack growth behavior. The linear elastic fracture mechanics parameter, Kmax, is unable to account for visco-plastic redistribution of the crack tip stress field during hold times and thus is inadequate for correlating time dependent crack growth data. A novel methodology was developed which captures the intrinsic crack driving force and was able to collapse hold time crack growth data onto a single curve.

  2. A Multi-Parameter Approach for Calculating Crack Instability

    NASA Technical Reports Server (NTRS)

    Zanganeh, M.; Forman, R. G.

    2014-01-01

    An accurate fracture control analysis of spacecraft pressure systems, boosters, rocket hardware and other critical low-cycle fatigue cases where the fracture toughness highly impacts cycles to failure requires accurate knowledge of the material fracture toughness. However, applicability of the measured fracture toughness values using standard specimens and transferability of the values to crack instability analysis of the realistically complex structures is refutable. The commonly used single parameter Linear Elastic Fracture Mechanics (LEFM) approach which relies on the key assumption that the fracture toughness is a material property would result in inaccurate crack instability predictions. In the past years extensive studies have been conducted to improve the single parameter (K-controlled) LEFM by introducing parameters accounting for the geometry or in-plane constraint effects]. Despite the importance of the thickness (out-of-plane constraint) effects in fracture control problems, the literature is mainly limited to some empirical equations for scaling the fracture toughness data] and only few theoretically based developments can be found. In aerospace hardware where the structure might have only one life cycle and weight reduction is crucial, reducing the design margin of safety by decreasing the uncertainty involved in fracture toughness evaluations would result in lighter hardware. In such conditions LEFM would not suffice and an elastic-plastic analysis would be vital. Multi-parameter elastic plastic crack tip field quantifying developments combined with statistical methods] have been shown to have the potential to be used as a powerful tool for tackling such problems. However, these approaches have not been comprehensively scrutinized using experimental tests. Therefore, in this paper a multi-parameter elastic-plastic approach has been used to study the crack instability problem and the transferability issue by considering the effects of geometrical

  3. Retrofitting olefin cracking plants

    SciTech Connect

    Sumner, C.; Fernandez-Baujin, J.M.

    1983-12-01

    This article discusses the retrofitting of liquid crackers which produce olefins so that gaseous feedstocks can be used. Naphtha and gas oil are the predominant design feedstocks for producing olefins. The price of gaseous feedstocks such as ethane, propane and butane have become economically more attractive than liquid feedstocks. Existing liquid crackers will be able to produce ethylene at 85% or higher capacity when cracking propane and butane feedstock with only minor changes. Topics considered include revamping for vacuum gas oil (VGO) feedstocks and revamping for liquefied petroleum gas (LPG) feedstocks.

  4. Mode II fatigue crack propagation.

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Kibler, J. J.

    1971-01-01

    Fatigue crack propagation rates were obtained for 2024-T3 bare aluminum plates subjected to in-plane, mode I, extensional loads and transverse, mode II, bending loads. These results were compared to the results of Iida and Kobayashi for in-plane mode I-mode II extensional loads. The engineering significance of mode I-mode II fatigue crack growth is considered in view of the present results. A fatigue crack growth equation for handling mode I-mode II fatigue crack growth rates from existing mode I data is also discussed.

  5. Crystallography of Fatigue Crack Propagation in Precipitation-Hardened Al-Cu-Mg/Li

    NASA Astrophysics Data System (ADS)

    Ro, Yunjo; Agnew, Sean R.; Gangloff, Richard P.

    2007-12-01

    A combined electron backscatter diffraction (EBSD)/stereology method successfully quantifies the orientation of fatigue crack surfaces for Al-Li-Cu and Al-Cu-Mg alloys stressed at low Δ K, in which deformation is localized in slip bands and cracking is highly faceted. The method orients features as small as ˜1 μm in complex microstructures. Vacuum fatigue facets align within 15 deg of up to four variants of {111} slip planes, governed by the distribution of crack tip resolved shear stress. The small fraction of precisely oriented {111} facets suggests that cracking involves complex intraband and multiple-band interface paths. Water vapor and NaCl solution affect a similar dramatic change in the crack path; near-{111} facets are never observed, at odds with mechanisms for H-enhanced slip localization and associated slip band cracking. Rather, two environmental crack facet morphologies, broad flat and repeating step, exhibit a wide range of orientations between {001} and {110}, as governed by crack tip resolved normal stresses. The repetitive stepped facets appear to contain areas parallel to {100}/{110} on the ˜1- μm scale, coupled with surface curvature consistent with a mechanism of discontinuous fatigue crack growth involving H-enhanced {100}/{110} cleavage and intermingled crack tip plasticity. Broad-flat faceted regions are parallel to a variety of planes, consistent with a mechanism combining high crack tip tensile stresses and H trapped at the dislocation structure from cyclic deformation, within 1 μm of the crack tip.

  6. Three-Dimensional Gear Crack Propagation Studies

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Sane, Ashok D.; Drago, Raymond J.; Wawrzynek, Paul A.

    1998-01-01

    Three-dimensional crack growth simulation was performed on a split-tooth gear design using boundary element modeling and linear elastic fracture mechanics. Initial cracks in the fillet of the teeth produced stress intensity factors of greater magnitude (and thus, greater crack growth rates) than those in the root or groove areas of the teeth. Crack growth simulation was performed on a case study to evaluate crack propagation paths. Tooth fracture was predicted from the crack growth simulation for an initial crack in the tooth fillet region. Tooth loads on the uncracked mesh of the split-tooth design were up to five times greater than those on the cracked mesh if equal deflections of the cracked and uncracked teeth were considered. Predicted crack shapes as well as crack propagation life are presented based on calculated stress intensity factors, mixed-mode crack propagation trajectory theories, and fatigue crack growth theories.

  7. Plastic substrate technologies for flexible displays

    NASA Astrophysics Data System (ADS)

    Hanada, Toru; Shiroishi, Isao; Negishi, Tuyoto; Shiro, Takashi

    2010-02-01

    A novel plastic substrate for flexible displays was developed. The substrate consisted of a polycarbonate (PC) base film coated with a gas barrier layer and a transparent conductive thin film. PC with ultra-low intrinsic birefringence and high temperature dimensional stability was developed for the base film. The retardation of the PC base film was less than 1 nm at a wavelength of 550 nm (film thickness, 120 μm). Even at 180 °C, the elastic modulus was 2 GPa, and thermal shrinkage was less than 0.01%. The surface roughness of the PC base film was less than 0.5 nm. A silicon oxide (SiOx) gas barrier layer was deposited on the PC base film by a DC magnetron reactive sputtering method. In addition, a unique organic-inorganic hybrid material is coated on the SiOx to further improve the gas-barrier performance. The water vapor transmission rate of the film was less than 0.05 g/m2/day at 40 °C and 100% relative humidity (RH), and the permeation of oxygen was less than 0.05 cc/m2•day•atm at 40 °C and 90% RH. Indium Zinc Oxide optimized for the plastic substrate was deposited on the other side of the SiOx film by the DC magnetron sputtering method. The transmittance was 87% and the resistivity was 3.5×10-4 ohm•cm.

  8. Shear fatigue crack growth - A literature survey

    NASA Technical Reports Server (NTRS)

    Liu, H. W.

    1985-01-01

    Recent studies of shear crack growth are reviewed, emphasizing test methods and data analyses. The combined mode I and mode II elastic crack tip stress fields are considered. The development and design of the compact shear specimen are described, and the results of fatigue crack growth tests using compact shear specimens are reviewed. The fatigue crack growth tests are discussed and the results of inclined cracks in tensile panels, center cracks in plates under biaxial loading, cracked beam specimens with combined bending and shear loading, center-cracked panels and double edge-cracked plates under cyclic shear loading are examined and analyzed in detail.

  9. Early sac shrinkage predicts a low risk of late complications after endovascular aortic aneurysm repair

    PubMed Central

    Bastos Gonçalves, F; Baderkhan, H; Verhagen, H J M; Wanhainen, A; Björck, M; Stolker, R J; Hoeks, S E; Mani, K

    2014-01-01

    Background Aneurysm shrinkage has been proposed as a marker of successful endovascular aneurysm repair (EVAR). Patients with early postoperative shrinkage may experience fewer subsequent complications, and consequently require less intensive surveillance. Methods Patients undergoing EVAR from 2000 to 2011 at three vascular centres (in 2 countries), who had two imaging examinations (postoperative and after 6–18 months), were included. Maximum diameter, complications and secondary interventions during follow-up were registered. Patients were categorized according to early sac dynamics. The primary endpoint was freedom from late complications. Secondary endpoints were freedom from secondary intervention, postimplant rupture and direct (type I/III) endoleaks. Results Some 597 EVARs (71·1 per cent of all EVARs) were included. No shrinkage was observed in 284 patients (47·6 per cent), moderate shrinkage (5–9 mm) in 142 (23·8 per cent) and major shrinkage (at least 10 mm) in 171 patients (28·6 per cent). Four years after the index imaging, the rate of freedom from complications was 84·3 (95 per cent confidence interval 78·7 to 89·8), 88·1 (80·6 to 95·5) and 94·4 (90·1 to 98·7) per cent respectively. No shrinkage was an independent risk factor for late complications compared with major shrinkage (hazard ratio (HR) 3·11; P < 0·001). Moderate compared with major shrinkage (HR 2·10; P = 0·022), early postoperative complications (HR 3·34; P < 0·001) and increasing abdominal aortic aneurysm baseline diameter (HR 1·02; P = 0·001) were also risk factors for late complications. Freedom from secondary interventions and direct endoleaks was greater for patients with major sac shrinkage. Conclusion Early change in aneurysm sac diameter is a strong predictor of late complications after EVAR. Patients with major sac shrinkage have a very low risk of complications for up to 5 years. This parameter may be used to tailor postoperative surveillance. PMID:24752772

  10. Crack Growth Simulation and Residual Strength Prediction in Airplane Fuselages

    NASA Technical Reports Server (NTRS)

    Chen, Chuin-Shan; Wawrzynek, Paul A.; Ingraffea, Anthony R.

    1999-01-01

    This is the final report for the NASA funded project entitled "Crack Growth Prediction Methodology for Multi-Site Damage." The primary objective of the project was to create a capability to simulate curvilinear fatigue crack growth and ductile tearing in aircraft fuselages subjected to widespread fatigue damage. The second objective was to validate the capability by way of comparisons to experimental results. Both objectives have been achieved and the results are detailed herein. In the first part of the report, the crack tip opening angle (CTOA) fracture criterion, obtained and correlated from coupon tests to predict fracture behavior and residual strength of built-up aircraft fuselages, is discussed. Geometrically nonlinear, elastic-plastic, thin shell finite element analyses are used to simulate stable crack growth and to predict residual strength. Both measured and predicted results of laboratory flat panel tests and full-scale fuselage panel tests show substantial reduction of residual strength due to the occurrence of multi-site damage (MSD). Detailed comparisons of n stable crack growth history, and residual strength between the predicted and experimental results are used to assess the validity of the analysis methodology. In the second part of the report, issues related to crack trajectory prediction in thin shells; an evolving methodology uses the crack turning phenomenon to improve the structural integrity of aircraft structures are discussed, A directional criterion is developed based on the maximum tangential stress theory, but taking into account the effect of T-stress and fracture toughness orthotropy. Possible extensions of the current crack growth directional criterion to handle geometrically and materially nonlinear problems are discussed. The path independent contour integral method for T-stress evaluation is derived and its accuracy is assessed using a p- and hp-version adaptive finite element method. Curvilinear crack growth is simulated in

  11. Environmental fatigue of an Al-Li-Cu alloy; Part II: Microscopic hydrogen cracking processes

    SciTech Connect

    Piascik, R.S.; Gangloff, R.P.

    1993-12-01

    Microscopic fatigue crack propagation (FCP) paths in peak-aged unrecrystallized alloy 2090 are identified as functions of intrinsic da/dN-{Delta}K kinetics and environment. The FCP rates in longitudinal-transverse (LT)-oriented 2090 are accelerated by hydrogen-producing environments (pure water vapor, moist air, and aqueous NaCl), as defined in Part 1. Subgrain boundary cracking (SGC) dominates for {Delta}K values where the cyclic plastic zone is sufficient to envelop subgrains. At low {Delta}K, when this crack tip process zone is smaller than the subgrain size, environmental FCP progresses on or near [100] or [110] planes, based on etch-pit shape. For inert environments (vacuum and He) and pure O{sub 2} with crack surface oxidation, FCP produces large facets along [111] oriented slip bands. This mode does not change with {Delta}K, and T{sub 1} decorated subgrain boundaries do not effect an expected da/dN-{Delta}K transition for the inert environments. Rather, the complex dependence of da/dN on {Delta}K is controlled by the environmental contribution to process zone microstructure-plastic strain interactions. A hydrogen embrittlement mechanism for FCP in 2090 is supported by similar brittle crack paths for low pressure water vapor and the electrolyte, the SGC and [100]/[110] crystallographic cracking modes, the influence of cyclic plastic zone volume ({Delta}K), and the benignancy of O{sub 2}. The SGC may be due to hydrogen production and trapping at T{sub 1} bearing sub-boundaries after process zone dislocation transport, while crystallographic cracking may be due to lattice decohesion or hydride cracking.

  12. Effect of Crack Opening on Penetrant Crack Detectability

    NASA Technical Reports Server (NTRS)

    Weaver, Devin

    2009-01-01

    Results: From the testing we were able to determine all the cracks within the test range were detectable or better with developer. Many of the indications after development lost their linearity and gave circular indications. Our tests were performed in a laboratory and our procedure would be difficult in an industrial setting. Conclusions: The "V" did not significantly affect our ability to detect the POD cracks with fluorescent penetrant. Conduct same experiment with more cracks. The 0.025 and 0.050 POD specimens are clean and documented with the SEM. Conduct water-wash fluorescent penetrant test at EAFB. The poppet cracks are tighter than the POD specimen cracks. Flight FCV poppets: 0.01 mils (0.3 microns) Langley fatigue cracked poppets: 0.02 mils (0.5 microns) POD specimen (post 5 mils): 0.05 mils (1.4 microns) We could not detect cracks in Langley fatigue-cracked poppets with fluorescent penetrant. Investigate inability of penetrant to wet the poppet surface.

  13. Biodegradability of Plastics

    PubMed Central

    Tokiwa, Yutaka; Calabia, Buenaventurada P.; Ugwu, Charles U.; Aiba, Seiichi

    2009-01-01

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed. PMID:19865515

  14. Elastic Plastic Fracture Analysis of an Aluminum COPV Liner

    NASA Technical Reports Server (NTRS)

    Forth, Scott; Gregg, Bradley; Bailey, Nathaniel

    2012-01-01

    Onboard any space-launch vehicle, composite over-wrapped pressure vessels (COPVs) may be utilized by propulsion or environmental control systems. The failure of a COPV has the potential to be catastrophic, resulting in the loss of vehicle, crew or mission. The latest COPV designs have reduced the wall-thickness of the metallic liner to the point where the material strains plastically during operation. At this time, the only method to determine the damage tolerance lifetime (safe-life) of a plastically responding metallic liner is through full-scale COPV testing. Conducting tests costs substantially more and can be far more time consuming than performing an analysis. As a result of this cost, there is a need to establish a qualifying process through the use of a crack growth analysis tool. This paper will discuss fracture analyses of plastically responding metallic liners in COPVs. Uni-axial strain tests have been completed on laboratory specimens to collect elastic-plastic crack growth data. This data has been modeled with the crack growth analysis tool, NASGRO 6.20 to predict the response of laboratory specimens and subsequently the complexity of a COPV.

  15. ''KN'' series cracking catalysts

    SciTech Connect

    Klapstov, V.F.; Khlebrikova, M.A.; Maslova, A.A.; Nefedov, B.K.

    1986-09-01

    The basic directions in improving high-activity zeolitic cracking catalysts at the present stage are improvements in the resistance to attrition and increases in the bulk density of the catalysts, along with a changeover to relatively waste-free catalyst manufacturing technology. Catalysts of the ''KN'' series have been synthesized recently with improved quality characteristics. Low-waste technology is used in manufacturing them. Data are presented which show that the KN catalysts are better than the other Soviet catalysts. The starting materials and reagents in preparing the KN catalysts are technical alumina, rare-earth element nitrates, a natural component (such as clay conforming to specification TU-21-25-146-75), sodium hydroxide, and granulated sodium silicate. The preparation of the KN catalysts is described and no silica gel is used in manufacturing the KN series catalyst, in contrast to the RSG-6Ts catalyst. The use of KN series catalysts in place of KMTsR in catalytic cracking units will result in an increase in the naphtha yield by at least 20% by weight, as well as a reduction of the catalyst consumption by a factor of 2-3. A changeover to the commerical production of this catalyst will make it possible to reduce saline waste by a factor of 8-10 and reduce the catalyst cost by a factor of 1.5-2.

  16. Interdendritic Strain and Macrosegregation-Coupled Phenomena for Interdendritic Crack Formation in Direct-Chill Cast Sheet Ingots

    NASA Astrophysics Data System (ADS)

    EL-Bealy, Mostafa Omar

    2012-06-01

    In a study of the early stages of dendritic solidification in the direct-chill cast sheet ingots, the coupled effect of interdendritic strain and macrosegregation on the interdendritic cracks formation in dendritic equiaxed structure has been investigated by the metallographic study of ingot samples and by performing a set of mathematical analyses for AA-6061 and AA-1050 aluminum alloys. The metallographic investigation contains microstructure examinations and macrosegregation measurements of collected samples from plant trials. The mathematical analysis consists of a two-dimensional (2-D) fluid flow, heat flow, interdendritic strain, and macrosegregation-coupled model. Also, a simple approach to measure interdendritic crack has been developed based on the accumulative interdendritic strain criterion, local dendritic phases, and the crystal distortion correlation factor resulting from steep positive local segregation. The model predications have clarified the effect of high positive macrosegregation on the surface and subsurface interdendritic crack formation. It has been revealed that interdendritic strain starts to generate just below the liquidus temperature, resulting from shrinkage of liquid→solid phase transformation and contraction of dendritic solid in the incoherent mushy region. In this region, the coupled effect of the shrinkage/contraction mechanism increases the interdendritic distances between equiaxed crystals and the interdendritic crack begins to nucleate. Subsequently, in the coherent mushy region, the different interdendritic strain sources start to affect significantly the distances between equiaxed crystals in a diverse way, and therefore, the final morphology of interdendritic crack begins to form. The mechanism of interdendritic crack formation during dendritic equiaxed structure solidification and the possible solutions to this problem are discussed.

  17. Improving Reliability of Subject-Level Resting-State fMRI Parcellation with Shrinkage Estimators

    PubMed Central

    Mejia, Amanda F.; Nebel, Mary Beth; Shou, Haochang; Crainiceanu, Ciprian M.; Pekar, James J.; Mostofsky, Stewart; Caffo, Brian; Lindquist, Martin A.

    2015-01-01

    A recent interest in resting state functional magnetic resonance imaging (rsfMRI) lies in subdividing the human brain into anatomically and functionally distinct regions of interest. For example, brain parcellation is often a necessary step for defining the network nodes used in connectivity studies. While inference has traditionally been performed on group-level data, there is a growing interest in parcellating single subject data. However, this is difficult due to the inherent low signal-to-noise ratio of rsfMRI data, combined with typically short scan lengths. A large number of brain parcellation approaches employ clustering, which begins with a measure of similarity or distance between voxels. The goal of this work is to improve the reproducibility of single-subject parcellation using shrinkage-based estimators of such measures, allowing the noisy subject-specific estimator to “borrow strength” in a principled manner from a larger population of subjects. We present several empirical Bayes shrinkage estimators and outline methods for shrinkage when multiple scans are not available for each subject. We perform shrinkage on raw inter-voxel correlation estimates and use both raw and shrinkage estimates to produce parcellations by performing clustering on the voxels. While we employ a standard spectral clustering approach, our proposed method is agnostic to the choice of clustering method and can be used as a pre-processing step for any clustering algorithm. Using two datasets – a simulated dataset where the true parcellation is known and is subject-specific and a test-retest dataset consisting of two 7-minute resting-state fMRI scans from 20 subjects – we show that parcellations produced from shrinkage correlation estimates have higher reliability and validity than those produced from raw correlation estimates. Application to test-retest data shows that using shrinkage estimators increases the reproducibility of subject-specific parcellations of the motor

  18. Leaf Shrinkage with Dehydration: Coordination with Hydraulic Vulnerability and Drought Tolerance1[C][W][OPEN

    PubMed Central

    Scoffoni, Christine; Vuong, Christine; Diep, Steven; Cochard, Hervé; Sack, Lawren

    2014-01-01

    Leaf shrinkage with dehydration has attracted attention for over 100 years, especially as it becomes visibly extreme during drought. However, little has been known of its correlation with physiology. Computer simulations of the leaf hydraulic system showed that a reduction of hydraulic conductance of the mesophyll pathways outside the xylem would cause a strong decline of leaf hydraulic conductance (Kleaf). For 14 diverse species, we tested the hypothesis that shrinkage during dehydration (i.e. in whole leaf, cell and airspace thickness, and leaf area) is associated with reduction in Kleaf at declining leaf water potential (Ψleaf). We tested hypotheses for the linkage of leaf shrinkage with structural and physiological water relations parameters, including modulus of elasticity, osmotic pressure at full turgor, turgor loss point (TLP), and cuticular conductance. Species originating from moist habitats showed substantial shrinkage during dehydration before reaching TLP, in contrast with species originating from dry habitats. Across species, the decline of Kleaf with mild dehydration (i.e. the initial slope of the Kleaf versus Ψleaf curve) correlated with the decline of leaf thickness (the slope of the leaf thickness versus Ψleaf curve), as expected based on predictions from computer simulations. Leaf thickness shrinkage before TLP correlated across species with lower modulus of elasticity and with less negative osmotic pressure at full turgor, as did leaf area shrinkage between full turgor and oven desiccation. These findings point to a role for leaf shrinkage in hydraulic decline during mild dehydration, with potential impacts on drought adaptation for cells and leaves, influencing plant ecological distributions. PMID:24306532

  19. Tool-to-tool matching issues due to photoresist shrinkage effects

    NASA Astrophysics Data System (ADS)

    Bunday, Benjamin; Cordes, Aaron; Hartig, Carsten; Allgair, John; Vaid, Alok; Solecky, Eric; Rana, Narender

    2011-03-01

    Photoresist shrinkage is an important systematic uncertainty source in critical dimension-scanning electron microscope (CD-SEM) metrology of lithographic features. In terms of metrology gauge metrics, it influences both the precision and the accuracy of CD-SEM measurements, while locally damaging the sample. Minimization or elimination of shrinkage is desirable, yet elusive. Because this error source will furthermore be a factor in CD-SEM metrology on polymer materials, learning to work around this issue is necessary. Tool-to-tool matching is another important component of measurement uncertainty that metrologists must control in high volume manufacturing, and photoresist samples are a most difficult case due to shrinkage effects, as tool-to-tool biases can vary based on the sample or other parameters. In this work, we explore different shrinkage effects and their influence on matching. This will include an investigation of how the photoresist shrinkage rate varies with time from the chemical development of the photoresists, which necessitates that measurements on different tools within a group be performed in rapid succession to avoid additional error. The differences in shrinkage rates between static and dynamic load/unload cases will also be addressed, as these effects also influence matching. The results of these dynamic effect experiments will be shown to have far-reaching implications for the shrinkage phenomenon in general. Finally, various sampling schemes for matching will be explored, through both simulation and experiment, for use with shrinking materials. Included is a method whereby various fleet tools measure different locations, once per tool, within a uniform line/space grating. Finally, we will assess how well matching can be achieved using these techniques.

  20. Improving reliability of subject-level resting-state fMRI parcellation with shrinkage estimators.

    PubMed

    Mejia, Amanda F; Nebel, Mary Beth; Shou, Haochang; Crainiceanu, Ciprian M; Pekar, James J; Mostofsky, Stewart; Caffo, Brian; Lindquist, Martin A

    2015-05-15

    A recent interest in resting state functional magnetic resonance imaging (rsfMRI) lies in subdividing the human brain into anatomically and functionally distinct regions of interest. For example, brain parcellation is often a necessary step for defining the network nodes used in connectivity studies. While inference has traditionally been performed on group-level data, there is a growing interest in parcellating single subject data. However, this is difficult due to the inherent low signal-to-noise ratio of rsfMRI data, combined with typically short scan lengths. A large number of brain parcellation approaches employ clustering, which begins with a measure of similarity or distance between voxels. The goal of this work is to improve the reproducibility of single-subject parcellation using shrinkage-based estimators of such measures, allowing the noisy subject-specific estimator to "borrow strength" in a principled manner from a larger population of subjects. We present several empirical Bayes shrinkage estimators and outline methods for shrinkage when multiple scans are not available for each subject. We perform shrinkage on raw inter-voxel correlation estimates and use both raw and shrinkage estimates to produce parcellations by performing clustering on the voxels. While we employ a standard spectral clustering approach, our proposed method is agnostic to the choice of clustering method and can be used as a pre-processing step for any clustering algorithm. Using two datasets - a simulated dataset where the true parcellation is known and is subject-specific and a test-retest dataset consisting of two 7-minute resting-state fMRI scans from 20 subjects - we show that parcellations produced from shrinkage correlation estimates have higher reliability and validity than those produced from raw correlation estimates. Application to test-retest data shows that using shrinkage estimators increases the reproducibility of subject-specific parcellations of the motor cortex by