Science.gov

Sample records for plastic temporal brain

  1. A Plastic Temporal Brain Code for Conscious State Generation

    PubMed Central

    Dresp-Langley, Birgitta; Durup, Jean

    2009-01-01

    Consciousness is known to be limited in processing capacity and often described in terms of a unique processing stream across a single dimension: time. In this paper, we discuss a purely temporal pattern code, functionally decoupled from spatial signals, for conscious state generation in the brain. Arguments in favour of such a code include Dehaene et al.'s long-distance reverberation postulate, Ramachandran's remapping hypothesis, evidence for a temporal coherence index and coincidence detectors, and Grossberg's Adaptive Resonance Theory. A time-bin resonance model is developed, where temporal signatures of conscious states are generated on the basis of signal reverberation across large distances in highly plastic neural circuits. The temporal signatures are delivered by neural activity patterns which, beyond a certain statistical threshold, activate, maintain, and terminate a conscious brain state like a bar code would activate, maintain, or inactivate the electronic locks of a safe. Such temporal resonance would reflect a higher level of neural processing, independent from sensorial or perceptual brain mechanisms. PMID:19644552

  2. A plastic temporal brain code for conscious state generation.

    PubMed

    Dresp-Langley, Birgitta; Durup, Jean

    2009-01-01

    Consciousness is known to be limited in processing capacity and often described in terms of a unique processing stream across a single dimension: time. In this paper, we discuss a purely temporal pattern code, functionally decoupled from spatial signals, for conscious state generation in the brain. Arguments in favour of such a code include Dehaene et al.'s long-distance reverberation postulate, Ramachandran's remapping hypothesis, evidence for a temporal coherence index and coincidence detectors, and Grossberg's Adaptive Resonance Theory. A time-bin resonance model is developed, where temporal signatures of conscious states are generated on the basis of signal reverberation across large distances in highly plastic neural circuits. The temporal signatures are delivered by neural activity patterns which, beyond a certain statistical threshold, activate, maintain, and terminate a conscious brain state like a bar code would activate, maintain, or inactivate the electronic locks of a safe. Such temporal resonance would reflect a higher level of neural processing, independent from sensorial or perceptual brain mechanisms. PMID:19644552

  3. Psychotherapy and brain plasticity

    PubMed Central

    Collerton, Daniel

    2013-01-01

    In this paper, I will review why psychotherapy is relevant to the question of how consciousness relates to brain plasticity. A great deal of the research and theorizing on consciousness and the brain, including my own on hallucinations for example (Collerton and Perry, 2011) has focused upon specific changes in conscious content which can be related to temporal changes in restricted brain systems. I will argue that psychotherapy, in contrast, allows only a focus on holistic aspects of consciousness; an emphasis which may usefully complement what can be learnt from more specific methodologies. PMID:24046752

  4. Music drives brain plasticity

    PubMed Central

    2009-01-01

    Music is becoming more and more of an issue in the cognitive neurosciences. A major finding in this research area is that musical practice is associated with structural and functional plasticity of the brain. In this brief review, I will give an overview of the most recent findings of this research area. PMID:20948610

  5. Imaging brain plasticity after trauma

    PubMed Central

    Kou, Zhifeng; Iraji, Armin

    2014-01-01

    The brain is highly plastic after stroke or epilepsy; however, there is a paucity of brain plasticity investigation after traumatic brain injury (TBI). This mini review summarizes the most recent evidence of brain plasticity in human TBI patients from the perspective of advanced magnetic resonance imaging. Similar to other forms of acquired brain injury, TBI patients also demonstrated both structural reorganization as well as functional compensation by the recruitment of other brain regions. However, the large scale brain network alterations after TBI are still unknown, and the field is still short of proper means on how to guide the choice of TBI rehabilitation or treatment plan to promote brain plasticity. The authors also point out the new direction of brain plasticity investigation. PMID:25206874

  6. Oxytocin and Maternal Brain Plasticity.

    PubMed

    Kim, Sohye; Strathearn, Lane

    2016-09-01

    Although dramatic postnatal changes in maternal behavior have long been noted, we are only now beginning to understand the neurobiological mechanisms that support this transition. The present paper synthesizes growing insights from both animal and human research to provide an overview of the plasticity of the mother's brain, with a particular emphasis on the oxytocin system. We examine plasticity observed within the oxytocin system and discuss how these changes mediate an array of other adaptations observed within the maternal brain. We outline factors that affect the oxytocin-mediated plasticity of the maternal brain and review evidence linking disruptions in oxytocin functions to challenges in maternal adaptation. We conclude by suggesting a strategy for intervention with mothers who may be at risk for maladjustment during this transition to motherhood, while highlighting areas where further research is needed. PMID:27589498

  7. Preservation of perceptual integration improves temporal stability of bimanual coordination in the elderly: an evidence of age-related brain plasticity.

    PubMed

    Blais, Mélody; Martin, Elodie; Albaret, Jean-Michel; Tallet, Jessica

    2014-12-15

    Despite the apparent age-related decline in perceptual-motor performance, recent studies suggest that the elderly people can improve their reaction time when relevant sensory information are available. However, little is known about which sensory information may improve motor behaviour itself. Using a synchronization task, the present study investigates how visual and/or auditory stimulations could increase accuracy and stability of three bimanual coordination modes produced by elderly and young adults. Neurophysiological activations are recorded with ElectroEncephaloGraphy (EEG) to explore neural mechanisms underlying behavioural effects. Results reveal that the elderly stabilize all coordination modes when auditory or audio-visual stimulations are available, compared to visual stimulation alone. This suggests that auditory stimulations are sufficient to improve temporal stability of rhythmic coordination, even more in the elderly. This behavioural effect is primarily associated with increased attentional and sensorimotor-related neural activations in the elderly but similar perceptual-related activations in elderly and young adults. This suggests that, despite a degradation of attentional and sensorimotor neural processes, perceptual integration of auditory stimulations is preserved in the elderly. These results suggest that perceptual-related brain plasticity is, at least partially, conserved in normal aging. PMID:25192640

  8. Ben's Plastic Brain

    ERIC Educational Resources Information Center

    Kaplan, Susan L.

    2010-01-01

    This article shares a story of Ben who as a result of his premature birth, suffered a brain hemorrhage resulting in cerebral palsy, which affected his left side (left hemiparesis) and caused learning disabilities. Despite these challenges, he graduated from college and currently works doing information management for a local biotech start-up…

  9. [Brain development and plasticity].

    PubMed

    Martinez-Morga, M; Martinez, S

    2016-01-01

    Neurodevelopmental disorders are associated to functional anomalies of the brain that become manifest early on in life. Traditionally, they have been related almost exclusively to the appearance of intellectual disability and delayed psychomotor development. The causes of these disorders have been partially described, and include anomalies due to genetic causes (Down syndrome, fragile X syndrome, etc.), exposure to toxic factors during pregnancy (foetal alcohol syndrome), infections (cytomegalovirus, toxoplasmosis, etc.) or other alterations, including a status of great immaturity at birth (very preterm). Epidemiological data based on a better knowledge of the diseases affecting the central nervous system suggest that some mental disorders, which appear in adolescence or early adulthood, also have their origin in anomalies in brain development. This review aims to offer an overview of brain development. Some of the cellular and molecular processes that may account for the similarities and differences in the phenotypes that generate alterations affecting normal development are also analysed. The study is conducted with a view to clearly identifying processes that are susceptible to modification by means of therapeutic intervention consisting in an early care programme. PMID:26922956

  10. Brain plasticity-based therapeutics

    PubMed Central

    Merzenich, Michael M.; Van Vleet, Thomas M.; Nahum, Mor

    2014-01-01

    The primary objective of this review article is to summarize how the neuroscience of brain plasticity, exploiting new findings in fundamental, integrative and cognitive neuroscience, is changing the therapeutic landscape for professional communities addressing brain-based disorders and disease. After considering the neurological bases of training-driven neuroplasticity, we shall describe how this neuroscience-guided perspective distinguishes this new approach from (a) the more-behavioral, traditional clinical strategies of professional therapy practitioners, and (b) an even more widely applied pharmaceutical treatment model for neurological and psychiatric treatment domains. With that background, we shall argue that neuroplasticity-based treatments will be an important part of future best-treatment practices in neurological and psychiatric medicine. PMID:25018719

  11. Brain plasticity-based therapeutics.

    PubMed

    Merzenich, Michael M; Van Vleet, Thomas M; Nahum, Mor

    2014-01-01

    The primary objective of this review article is to summarize how the neuroscience of brain plasticity, exploiting new findings in fundamental, integrative and cognitive neuroscience, is changing the therapeutic landscape for professional communities addressing brain-based disorders and disease. After considering the neurological bases of training-driven neuroplasticity, we shall describe how this neuroscience-guided perspective distinguishes this new approach from (a) the more-behavioral, traditional clinical strategies of professional therapy practitioners, and (b) an even more widely applied pharmaceutical treatment model for neurological and psychiatric treatment domains. With that background, we shall argue that neuroplasticity-based treatments will be an important part of future best-treatment practices in neurological and psychiatric medicine. PMID:25018719

  12. Brain Plasticity and Behaviour in the Developing Brain

    PubMed Central

    Kolb, Bryan; Gibb, Robbin

    2011-01-01

    Objective: To review general principles of brain development, identify basic principles of brain plasticity, and discuss factors that influence brain development and plasticity. Method: A literature review of relevant English-language manuscripts on brain development and plasticity was conducted. Results: Brain development progresses through a series of stages beginning with neurogenesis and progressing to neural migration, maturation, synaptogenesis, pruning, and myelin formation. Eight basic principles of brain plasticity are identified. Evidence that brain development and function is influenced by different environmental events such as sensory stimuli, psychoactive drugs, gonadal hormones, parental-child relationships, peer relationships, early stress, intestinal flora, and diet. Conclusions: The development of the brain reflects more than the simple unfolding of a genetic blueprint but rather reflects a complex dance of genetic and experiential factors that shape the emerging brain. Understanding the dance provides insight into both normal and abnormal development. PMID:22114608

  13. Evolutionary Perspectives on Language and Brain Plasticity.

    ERIC Educational Resources Information Center

    Deacon, Terrence W.

    2000-01-01

    This review discusses how general principles of brain development have contributed to both human brain plasticity and the acquisition of the human capacity for speech. Specifically, the role played by plastic developmental processes in the evolution and development of articulate control over vocalization in speech is examined. (Contains…

  14. Augmentation-related brain plasticity.

    PubMed

    Di Pino, Giovanni; Maravita, Angelo; Zollo, Loredana; Guglielmelli, Eugenio; Di Lazzaro, Vincenzo

    2014-01-01

    Today, the anthropomorphism of the tools and the development of neural interfaces require reconsidering the concept of human-tools interaction in the framework of human augmentation. This review analyses the plastic process that the brain undergoes when it comes into contact with augmenting artificial sensors and effectors and, on the other hand, the changes that the use of external augmenting devices produces in the brain. Hitherto, few studies investigated the neural correlates of augmentation, but clues on it can be borrowed from logically-related paradigms: sensorimotor training, cognitive enhancement, cross-modal plasticity, sensorimotor functional substitution, use and embodiment of tools. Augmentation modifies function and structure of a number of areas, i.e., primary sensory cortices shape their receptive fields to become sensitive to novel inputs. Motor areas adapt the neuroprosthesis representation firing-rate to refine kinematics. As for normal motor outputs, the learning process recruits motor and premotor cortices and the acquisition of proficiency decreases attentional recruitment, focuses the activity on sensorimotor areas and increases the basal ganglia drive on the cortex. Augmentation deeply relies on the frontoparietal network. In particular, premotor cortex is involved in learning the control of an external effector and owns the tool motor representation, while the intraparietal sulcus extracts its visual features. In these areas, multisensory integration neurons enlarge their receptive fields to embody supernumerary limbs. For operating an anthropomorphic neuroprosthesis, the mirror system is required to understand the meaning of the action, the cerebellum for the formation of its internal model and the insula for its interoception. In conclusion, anthropomorphic sensorized devices can provide the critical sensory afferences to evolve the exploitation of tools through their embodiment, reshaping the body representation and the sense of the self

  15. Augmentation-related brain plasticity

    PubMed Central

    Di Pino, Giovanni; Maravita, Angelo; Zollo, Loredana; Guglielmelli, Eugenio; Di Lazzaro, Vincenzo

    2014-01-01

    Today, the anthropomorphism of the tools and the development of neural interfaces require reconsidering the concept of human-tools interaction in the framework of human augmentation. This review analyses the plastic process that the brain undergoes when it comes into contact with augmenting artificial sensors and effectors and, on the other hand, the changes that the use of external augmenting devices produces in the brain. Hitherto, few studies investigated the neural correlates of augmentation, but clues on it can be borrowed from logically-related paradigms: sensorimotor training, cognitive enhancement, cross-modal plasticity, sensorimotor functional substitution, use and embodiment of tools. Augmentation modifies function and structure of a number of areas, i.e., primary sensory cortices shape their receptive fields to become sensitive to novel inputs. Motor areas adapt the neuroprosthesis representation firing-rate to refine kinematics. As for normal motor outputs, the learning process recruits motor and premotor cortices and the acquisition of proficiency decreases attentional recruitment, focuses the activity on sensorimotor areas and increases the basal ganglia drive on the cortex. Augmentation deeply relies on the frontoparietal network. In particular, premotor cortex is involved in learning the control of an external effector and owns the tool motor representation, while the intraparietal sulcus extracts its visual features. In these areas, multisensory integration neurons enlarge their receptive fields to embody supernumerary limbs. For operating an anthropomorphic neuroprosthesis, the mirror system is required to understand the meaning of the action, the cerebellum for the formation of its internal model and the insula for its interoception. In conclusion, anthropomorphic sensorized devices can provide the critical sensory afferences to evolve the exploitation of tools through their embodiment, reshaping the body representation and the sense of the self

  16. Neural prostheses and brain plasticity

    NASA Astrophysics Data System (ADS)

    Fallon, James B.; Irvine, Dexter R. F.; Shepherd, Robert K.

    2009-12-01

    The success of modern neural prostheses is dependent on a complex interplay between the devices' hardware and software and the dynamic environment in which the devices operate: the patient's body or 'wetware'. Over 120 000 severe/profoundly deaf individuals presently receive information enabling auditory awareness and speech perception from cochlear implants. The cochlear implant therefore provides a useful case study for a review of the complex interactions between hardware, software and wetware, and of the important role of the dynamic nature of wetware. In the case of neural prostheses, the most critical component of that wetware is the central nervous system. This paper will examine the evidence of changes in the central auditory system that contribute to changes in performance with a cochlear implant, and discuss how these changes relate to electrophysiological and functional imaging studies in humans. The relationship between the human data and evidence from animals of the remarkable capacity for plastic change of the central auditory system, even into adulthood, will then be examined. Finally, we will discuss the role of brain plasticity in neural prostheses in general.

  17. Stress- and Allostasis-Induced Brain Plasticity

    PubMed Central

    McEwen, Bruce S.; Gianaros, Peter J.

    2014-01-01

    The brain is the key organ of stress processes. It determines what individuals will experience as stressful, it orchestrates how individuals will cope with stressful experiences, and it changes both functionally and structurally as a result of stressful experiences. Within the brain, a distributed, dynamic, and plastic neural circuitry coordinates, monitors, and calibrates behavioral and physiological stress response systems to meet the demands imposed by particular stressors. These allodynamic processes can be adaptive in the short term (allostasis) and maladaptive in the long term (allostatic load). Critically, these processes involve bidirectional signaling between the brain and body. Consequently, allostasis and allostatic load can jointly affect vulnerability to brain-dependent and stress-related mental and physical health conditions. This review focuses on the role of brain plasticity in adaptation to, and pathophysiology resulting from, stressful experiences. It also considers interventions to prevent and treat chronic and prevalent health conditions via allodynamic brain mechanisms. PMID:20707675

  18. Premises of plasticity - And the loneliness of the medial temporal lobe.

    PubMed

    Walhovd, Kristine B; Westerhausen, René; de Lange, Ann-Marie Glasø; Bråthen, Anne Cecilie Sjøli; Grydeland, Håkon; Engvig, Andreas; Fjell, Anders M

    2016-05-01

    In this perspective paper, we examine possible premises of plasticity in the neural substrates underlying cognitive change. We take the special role of the medial temporal lobe as an anchoring point, but also investigate characteristics throughout the cortex. Specifically, we examine the dimensions of evolutionary expansion, heritability, variability of morphometric change, and inter-individual variance in myelination with respect to the plastic potential of different brain regions. We argue that areas showing less evolutionary expansion, lower heritability, greater variability of cortical thickness change through the lifespan, and greater inter-individual differences in intracortical myelin content have a great extent of plasticity. While different regions of the brain show these features to varying extent, analyses converge on the medial temporal lobe including the hippocampi as the target of all these premises. We discuss implications for effects of training on brain structures, and conditions under which plasticity may be evoked. PMID:26505299

  19. Temporal Map Formation in the Barn Owl's Brain

    NASA Astrophysics Data System (ADS)

    Leibold, Christian; Kempter, Richard; van Hemmen, J. Leo

    2001-12-01

    Barn owls provide an experimentally well-specified example of a temporal map, a neuronal representation of the outside world in the brain by means of time. Their laminar nucleus exhibits a place code of interaural time differences, a cue which is used to determine the azimuthal location of a sound stimulus, e.g., prey. We analyze a model of synaptic plasticity that explains the formation of such a representation in the young bird and show how in a large parameter regime a combination of local and nonlocal synaptic plasticity yields the temporal map as found experimentally. Our analysis includes the effect of nonlinearities as well as the influence of neuronal noise.

  20. Human Maternal Brain Plasticity: Adaptation to Parenting.

    PubMed

    Kim, Pilyoung

    2016-09-01

    New mothers undergo dynamic neural changes that support positive adaptation to parenting and the development of mother-infant relationships. In this article, I review important psychological adaptations that mothers experience during pregnancy and the early postpartum period. I then review evidence of structural and functional plasticity in human mothers' brains, and explore how such plasticity supports mothers' psychological adaptation to parenting and sensitive maternal behaviors. Last, I discuss pregnancy and the early postpartum period as a window of vulnerabilities and opportunities when the human maternal brain is influenced by stress and psychopathology, but also receptive to interventions. PMID:27589497

  1. Neuronal avalanches and brain plasticity

    NASA Astrophysics Data System (ADS)

    de Arcangelis, L.; Herrmann, H. J.; Perrone-Capano, C.

    2007-12-01

    Networks of living neurons exhibit an avalanche mode of activity, experimentally found in organotypic cultures. Moreover, experimental studies of morphology indicate that neurons develop a network of small-world-like connections, with the possibility of a very high connectivity degree. Here we discuss a recent model based on self-organized criticality, which consists of an electrical network with threshold firing and activity-dependent synapse strengths. The model is implemented on regular and small world lattices and on a scale-free network, the Apollonian network. The system exhibits an avalanche activity with a power law distribution of sizes and durations. The analysis of the power spectra of the electrical signal reproduces very robustly the power law behaviour with the exponent 0.8, experimentally measured in electroencephalogram (EEG) spectra. The exponents are found to be quite stable with respect to initial configurations and strength of plastic remodelling, indicating that universality holds for a wide class of neural network models.

  2. Analysis of brain patterns using temporal measures

    DOEpatents

    Georgopoulos, Apostolos

    2015-08-11

    A set of brain data representing a time series of neurophysiologic activity acquired by spatially distributed sensors arranged to detect neural signaling of a brain (such as by the use of magnetoencephalography) is obtained. The set of brain data is processed to obtain a dynamic brain model based on a set of statistically-independent temporal measures, such as partial cross correlations, among groupings of different time series within the set of brain data. The dynamic brain model represents interactions between neural populations of the brain occurring close in time, such as with zero lag, for example. The dynamic brain model can be analyzed to obtain the neurophysiologic assessment of the brain. Data processing techniques may be used to assess structural or neurochemical brain pathologies.

  3. Brain plasticity and hand surgery: an overview.

    PubMed

    Lundborg, G

    2000-06-01

    The hand is an extension of the brain, and the hand is projected and represented in large areas of the motor and sensory cortex. The brain is a complicated neural network which continuously remodels itself as a result of changes in sensory input. Such synaptic reorganizational changes may be activity-dependent, based on alterations in hand activity and tactile experience, or a result of deafferentiation such as nerve injury or amputation. Inferior recovery of functional sensibility following nerve repair, as well as phantom experiences in virtual, amputated limbs are phenomena reflecting profound cortical reorganizational changes. Surgical procedures on the hand are always accompanied by synaptic reorganizational changes in the brain cortex, and the outcome from many hand surgical procedures is to a large extent dependent on brain plasticity. PMID:10961548

  4. Strengthening connections: functional connectivity and brain plasticity

    PubMed Central

    Kelly, Clare; Castellanos, F. Xavier

    2014-01-01

    The ascendancy of functional neuroimaging has facilitated the addition of network-based approaches to the neuropsychologist’s toolbox for evaluating the sequelae of brain insult. In particular, intrinsic functional connectivity (iFC) mapping of resting state fMRI (R-fMRI) data constitutes an ideal approach to measuring macro-scale networks in the human brain. Beyond the value of iFC mapping for charting how the functional topography of the brain is altered by insult and injury, iFC analyses can provide insights into effects of experience-dependent plasticity at the macro level of large-scale functional networks. Such insights are foundational to the design of training and remediation interventions that will best facilitate recovery of function. In this review, we consider what is currently known about the origin and function of iFC in the brain, and how this knowledge is informative in neuropsychological settings. We then summarize studies that have examined experience-driven plasticity of iFC in healthy control participants, and frame these findings in terms of a schema that may aid in the interpretation of results and the generation of hypothesis for rehabilitative studies. Finally, we outline some caveats to the R-fMRI approach, as well as some current developments that are likely to bolster the utility of the iFC paradigm for neuropsychology. PMID:24496903

  5. Plasticity in the developing brain: implications for rehabilitation.

    PubMed

    Johnston, Michael V

    2009-01-01

    Neuronal plasticity allows the central nervous system to learn skills and remember information, to reorganize neuronal networks in response to environmental stimulation, and to recover from brain and spinal cord injuries. Neuronal plasticity is enhanced in the developing brain and it is usually adaptive and beneficial but can also be maladaptive and responsible for neurological disorders in some situations. Basic mechanisms that are involved in plasticity include neurogenesis, programmed cell death, and activity-dependent synaptic plasticity. Repetitive stimulation of synapses can cause long-term potentiation or long-term depression of neurotransmission. These changes are associated with physical changes in dendritic spines and neuronal circuits. Overproduction of synapses during postnatal development in children contributes to enhanced plasticity by providing an excess of synapses that are pruned during early adolescence. Clinical examples of adaptive neuronal plasticity include reorganization of cortical maps of the fingers in response to practice playing a stringed instrument and constraint-induced movement therapy to improve hemiparesis caused by stroke or cerebral palsy. These forms of plasticity are associated with structural and functional changes in the brain that can be detected with magnetic resonance imaging, positron emission tomography, or transcranial magnetic stimulation (TMS). TMS and other forms of brain stimulation are also being used experimentally to enhance brain plasticity and recovery of function. Plasticity is also influenced by genetic factors such as mutations in brain-derived neuronal growth factor. Understanding brain plasticity provides a basis for developing better therapies to improve outcome from acquired brain injuries. PMID:19489084

  6. Hearing colors: an example of brain plasticity.

    PubMed

    Alfaro, Arantxa; Bernabeu, Ángela; Agulló, Carlos; Parra, Jaime; Fernández, Eduardo

    2015-01-01

    Sensory substitution devices (SSDs) are providing new ways for improving or replacing sensory abilities that have been lost due to disease or injury, and at the same time offer unprecedented opportunities to address how the nervous system could lead to an augmentation of its capacities. In this work we have evaluated a color-blind subject using a new visual-to-auditory SSD device called "Eyeborg", that allows colors to be perceived as sounds. We used a combination of neuroimaging techniques including Functional Magnetic Resonance Imaging (fMRI), Diffusion Tensor Imaging (DTI) and proton Magnetic Resonance Spectroscopy ((1)H-MRS) to study potential brain plasticity in this subject. Our results suggest that after 8 years of continuous use of this device there could be significant adaptive and compensatory changes within the brain. In particular, we found changes in functional neural patterns, structural connectivity and cortical topography at the visual and auditive cortex of the Eyeborg user in comparison with a control population. Although at the moment we cannot claim that the continuous use of the Eyeborg is the only reason for these findings, our results may shed further light on potential brain changes associated with the use of other SSDs. This could help to better understand how the brain adapts to several pathologies and uncover adaptive resources such as cross-modal representations. We expect that the precise understanding of these changes will have clear implications for rehabilitative training, device development and for more efficient programs for people with disabilities. PMID:25926778

  7. Plastic brains and the dialectics of dialectics

    NASA Astrophysics Data System (ADS)

    Loxley, Andrew; Murphy, Colette; Seery, Aidan

    2014-09-01

    This article advances the thinking of Lima, Ostermann and Rezende's "Marxism in Vygotskian approaches to cultural studies of science education" and Mark Zuss' response to their paper. Firstly, it introduces Catherine Malabou's concept of plasticity, from which Hegel's dialectic can be re-read as historical materialist self-determination in a way that embraces science but non-reductively, and which leads to the possibility of challenging theoretical rigidity as a form of transformative action. Secondly, this response article provides political analysis of scientific concepts as they reproduce and reinforce particular interests and are expropriated by policy makers and unaware teacher educators whose understanding lies within a technical-instrumentalism and diluted humanism framework. Both arguments feature the human brain as an object of research in science education. From Malabou, the emancipatory conceptualisation of the brain as material, historical and sociocultural; whilst `Brain Gym' exemplifies a non-science and nonsensical misappropriation of scientific concepts for commercial gain via a para-educational intervention.

  8. Age, Plasticity, and Homeostasis In Childhood Brain Disorders

    PubMed Central

    Dennis, Maureen; Spiegler, Brenda J.; Juranek, Jenifer J.; Bigler, Erin D.; Snead, O. Carter; Fletcher, Jack M.

    2013-01-01

    It has been widely accepted that the younger the age and/or immaturity of the organism, the greater the brain plasticity, the young age plasticity privilege. This paper examines the relation of a young age to plasticity, reviewing human pediatric brain disorders, as well as selected animal models, human developmental and adult brain disorder studies. As well, we review developmental and childhood acquired disorders that involve a failure of regulatory homeostasis. Our core arguments are: Plasticity is neutral with respect to outcome. Although the effects of plasticity are often beneficial, the outcome of plasticity may be adaptive or maladaptive.The young age plasticity privilege has been overstated.Plastic change operates in concert with homeostatic mechanisms regulating change at every point in the lifespan.The same mechanisms that propel developmental change expose the immature brain to adverse events, making it more difficult for the immature than for the mature brain to sustain equilibrium between plasticity and homeostasis.Poor outcome in many neurodevelopmental disorders and childhood acquired brain insults is related to disequilibrium between plasticity and homeostasis. PMID:24096190

  9. Plasticity in the Developing Brain: Implications for Rehabilitation

    ERIC Educational Resources Information Center

    Johnston, Michael V.

    2009-01-01

    Neuronal plasticity allows the central nervous system to learn skills and remember information, to reorganize neuronal networks in response to environmental stimulation, and to recover from brain and spinal cord injuries. Neuronal plasticity is enhanced in the developing brain and it is usually adaptive and beneficial but can also be maladaptive…

  10. Plasticity of Nonneuronal Brain Tissue: Roles in Developmental Disorders

    ERIC Educational Resources Information Center

    Dong, Willie K.; Greenough, William T.

    2004-01-01

    Neuronal and nonneuronal plasticity are both affected by environmental and experiential factors. Remodeling of existing neurons induced by such factors has been observed throughout the brain, and includes alterations in dendritic field dimensions, synaptogenesis, and synaptic morphology. The brain loci affected by these plastic neuronal changes…

  11. Hearing colors: an example of brain plasticity

    PubMed Central

    Alfaro, Arantxa; Bernabeu, Ángela; Agulló, Carlos; Parra, Jaime; Fernández, Eduardo

    2015-01-01

    Sensory substitution devices (SSDs) are providing new ways for improving or replacing sensory abilities that have been lost due to disease or injury, and at the same time offer unprecedented opportunities to address how the nervous system could lead to an augmentation of its capacities. In this work we have evaluated a color-blind subject using a new visual-to-auditory SSD device called “Eyeborg”, that allows colors to be perceived as sounds. We used a combination of neuroimaging techniques including Functional Magnetic Resonance Imaging (fMRI), Diffusion Tensor Imaging (DTI) and proton Magnetic Resonance Spectroscopy (1H-MRS) to study potential brain plasticity in this subject. Our results suggest that after 8 years of continuous use of this device there could be significant adaptive and compensatory changes within the brain. In particular, we found changes in functional neural patterns, structural connectivity and cortical topography at the visual and auditive cortex of the Eyeborg user in comparison with a control population. Although at the moment we cannot claim that the continuous use of the Eyeborg is the only reason for these findings, our results may shed further light on potential brain changes associated with the use of other SSDs. This could help to better understand how the brain adapts to several pathologies and uncover adaptive resources such as cross-modal representations. We expect that the precise understanding of these changes will have clear implications for rehabilitative training, device development and for more efficient programs for people with disabilities. PMID:25926778

  12. Plasticity of brain wave network interactions and evolution across physiologic states

    PubMed Central

    Liu, Kang K. L.; Bartsch, Ronny P.; Lin, Aijing; Mantegna, Rosario N.; Ivanov, Plamen Ch.

    2015-01-01

    Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other across brain areas to generate physiologic states and functions remains not understood. Here we perform an empirical exploration of neural plasticity at the level of brain wave network interactions representing dynamical communications within and between different brain areas in the frequency domain. We introduce the concept of time delay stability (TDS) to quantify coordinated bursts in the activity of brain waves, and we employ a system-wide Network Physiology integrative approach to probe the network of coordinated brain wave activations and its evolution across physiologic states. We find an association between network structure and physiologic states. We uncover a hierarchical reorganization in the brain wave networks in response to changes in physiologic state, indicating new aspects of neural plasticity at the integrated level. Globally, we find that the entire brain network undergoes a pronounced transition from low connectivity in Deep Sleep and REM to high connectivity in Light Sleep and Wake. In contrast, we find that locally, different brain areas exhibit different network dynamics of brain wave interactions to achieve differentiation in function during different sleep stages. Moreover, our analyses indicate that plasticity also emerges in frequency-specific networks, which represent interactions across brain locations mediated through a specific frequency band. Comparing frequency-specific networks within the same physiologic state we find very different degree of

  13. Plasticity of brain wave network interactions and evolution across physiologic states.

    PubMed

    Liu, Kang K L; Bartsch, Ronny P; Lin, Aijing; Mantegna, Rosario N; Ivanov, Plamen Ch

    2015-01-01

    Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other across brain areas to generate physiologic states and functions remains not understood. Here we perform an empirical exploration of neural plasticity at the level of brain wave network interactions representing dynamical communications within and between different brain areas in the frequency domain. We introduce the concept of time delay stability (TDS) to quantify coordinated bursts in the activity of brain waves, and we employ a system-wide Network Physiology integrative approach to probe the network of coordinated brain wave activations and its evolution across physiologic states. We find an association between network structure and physiologic states. We uncover a hierarchical reorganization in the brain wave networks in response to changes in physiologic state, indicating new aspects of neural plasticity at the integrated level. Globally, we find that the entire brain network undergoes a pronounced transition from low connectivity in Deep Sleep and REM to high connectivity in Light Sleep and Wake. In contrast, we find that locally, different brain areas exhibit different network dynamics of brain wave interactions to achieve differentiation in function during different sleep stages. Moreover, our analyses indicate that plasticity also emerges in frequency-specific networks, which represent interactions across brain locations mediated through a specific frequency band. Comparing frequency-specific networks within the same physiologic state we find very different degree of

  14. Temporal Hebbian plasticity designed for efficient competitive learning

    NASA Astrophysics Data System (ADS)

    Cho, Myoung Won

    2014-04-01

    Understanding the functional roles of temporal Hebbian plasticity has been of growing interest since several experiments revealed that the change in synaptic efficacy was determined by the precise temporal relation between post- and presynaptic spikes. We here investigate the learning properties of the typical synaptic modification forms. We explain how the peculiar characteristics in synaptic modification, such as asymmetry, decay rate, and oscillatory behavior, exert effects on the direction and the performance of network formation. Also, we argue that the aforementioned characteristics help to achieve proper network adaptation, such as activity-dependent columnar organization, through an efficient competitive learning process.

  15. Local inhibitory plasticity tunes macroscopic brain dynamics and allows the emergence of functional brain networks.

    PubMed

    Hellyer, Peter J; Jachs, Barbara; Clopath, Claudia; Leech, Robert

    2016-01-01

    Rich, spontaneous brain activity has been observed across a range of different temporal and spatial scales. These dynamics are thought to be important for efficient neural functioning. A range of experimental evidence suggests that these neural dynamics are maintained across a variety of different cognitive states, in response to alterations of the environment and to changes in brain configuration (e.g., across individuals, development and in many neurological disorders). This suggests that the brain has evolved mechanisms to maintain rich dynamics across a broad range of situations. Several mechanisms based around homeostatic plasticity have been proposed to explain how these dynamics emerge from networks of neurons at the microscopic scale. Here we explore how a homeostatic mechanism may operate at the macroscopic scale: in particular, focusing on how it interacts with the underlying structural network topology and how it gives rise to well-described functional connectivity networks. We use a simple mean-field model of the brain, constrained by empirical white matter structural connectivity where each region of the brain is simulated using a pool of excitatory and inhibitory neurons. We show, as with the microscopic work, that homeostatic plasticity regulates network activity and allows for the emergence of rich, spontaneous dynamics across a range of brain configurations, which otherwise show a very limited range of dynamic regimes. In addition, the simulated functional connectivity of the homeostatic model better resembles empirical functional connectivity network. To accomplish this, we show how the inhibitory weights adapt over time to capture important graph theoretic properties of the underlying structural network. Therefore, this work presents suggests how inhibitory homeostatic mechanisms facilitate stable macroscopic dynamics to emerge in the brain, aiding the formation of functional connectivity networks. PMID:26348562

  16. Neural Plasticity and Neurorehabilitation: Teaching the New Brain Old Tricks

    ERIC Educational Resources Information Center

    Kleim, Jeffrey A.

    2011-01-01

    Following brain injury or disease there are widespread biochemical, anatomical and physiological changes that result in what might be considered a new, very different brain. This adapted brain is forced to reacquire behaviors lost as a result of the injury or disease and relies on neural plasticity within the residual neural circuits. The same…

  17. Measuring and Inducing Brain Plasticity in Chronic Aphasia

    ERIC Educational Resources Information Center

    Fridriksson, Julius

    2011-01-01

    Brain plasticity associated with anomia recovery in aphasia is poorly understood. Here, I review four recent studies from my lab that focused on brain modulation associated with long-term anomia outcome, its behavioral treatment, and the use of transcranial brain stimulation to enhance anomia treatment success in individuals with chronic aphasia…

  18. Plasticity-related genes in brain development and amygdala-dependent learning.

    PubMed

    Ehrlich, D E; Josselyn, S A

    2016-01-01

    Learning about motivationally important stimuli involves plasticity in the amygdala, a temporal lobe structure. Amygdala-dependent learning involves a growing number of plasticity-related signaling pathways also implicated in brain development, suggesting that learning-related signaling in juveniles may simultaneously influence development. Here, we review the pleiotropic functions in nervous system development and amygdala-dependent learning of a signaling pathway that includes brain-derived neurotrophic factor (BDNF), extracellular signaling-related kinases (ERKs) and cyclic AMP-response element binding protein (CREB). Using these canonical, plasticity-related genes as an example, we discuss the intersection of learning-related and developmental plasticity in the immature amygdala, when aversive and appetitive learning may influence the developmental trajectory of amygdala function. We propose that learning-dependent activation of BDNF, ERK and CREB signaling in the immature amygdala exaggerates and accelerates neural development, promoting amygdala excitability and environmental sensitivity later in life. PMID:26419764

  19. Spatiotemporal Computations of an Excitable and Plastic Brain: Neuronal Plasticity Leads to Noise-Robust and Noise-Constructive Computations

    PubMed Central

    Toutounji, Hazem; Pipa, Gordon

    2014-01-01

    It is a long-established fact that neuronal plasticity occupies the central role in generating neural function and computation. Nevertheless, no unifying account exists of how neurons in a recurrent cortical network learn to compute on temporally and spatially extended stimuli. However, these stimuli constitute the norm, rather than the exception, of the brain's input. Here, we introduce a geometric theory of learning spatiotemporal computations through neuronal plasticity. To that end, we rigorously formulate the problem of neural representations as a relation in space between stimulus-induced neural activity and the asymptotic dynamics of excitable cortical networks. Backed up by computer simulations and numerical analysis, we show that two canonical and widely spread forms of neuronal plasticity, that is, spike-timing-dependent synaptic plasticity and intrinsic plasticity, are both necessary for creating neural representations, such that these computations become realizable. Interestingly, the effects of these forms of plasticity on the emerging neural code relate to properties necessary for both combating and utilizing noise. The neural dynamics also exhibits features of the most likely stimulus in the network's spontaneous activity. These properties of the spatiotemporal neural code resulting from plasticity, having their grounding in nature, further consolidate the biological relevance of our findings. PMID:24651447

  20. Computational anatomy for studying use-dependant brain plasticity

    PubMed Central

    Draganski, Bogdan; Kherif, Ferath; Lutti, Antoine

    2014-01-01

    In this article we provide a comprehensive literature review on the in vivo assessment of use-dependant brain structure changes in humans using magnetic resonance imaging (MRI) and computational anatomy. We highlight the recent findings in this field that allow the uncovering of the basic principles behind brain plasticity in light of the existing theoretical models at various scales of observation. Given the current lack of in-depth understanding of the neurobiological basis of brain structure changes we emphasize the necessity of a paradigm shift in the investigation and interpretation of use-dependent brain plasticity. Novel quantitative MRI acquisition techniques provide access to brain tissue microstructural properties (e.g., myelin, iron, and water content) in-vivo, thereby allowing unprecedented specific insights into the mechanisms underlying brain plasticity. These quantitative MRI techniques require novel methods for image processing and analysis of longitudinal data allowing for straightforward interpretation and causality inferences. PMID:25018716

  1. Temporal Organization of the Brain: Neurocognitive Mechanisms and Clinical Implications

    ERIC Educational Resources Information Center

    Dawson, Kim A.

    2004-01-01

    The synchrony between the individual brain and its environment is maintained by a system of internal clocks that together reflect the temporal organization of the organism. Extending the theoretical work of Edelman and others, the temporal organization of the brain is posited as functioning through "'re-entry" and "'temporal tagging"' and binds…

  2. Temporal profiles of synaptic plasticity-related signals in adult mouse hippocampus with methotrexate treatment.

    PubMed

    Yang, Miyoung; Kim, Juhwan; Kim, Sung-Ho; Kim, Joong-Sun; Shin, Taekyun; Moon, Changjong

    2012-07-25

    Methotrexate, which is used to treat many malignancies and autoimmune diseases, affects brain functions including hippocampal-dependent memory function. However, the precise mechanisms underlying methotrexate-induced hippocampal dysfunction are poorly understood. To evaluate temporal changes in synaptic plasticity-related signals, the expression and activity of N-methyl-D-aspartic acid receptor 1, calcium/calmodulin-dependent protein kinase II, extracellular signal-regulated kinase 1/2, cAMP responsive element-binding protein, glutamate receptor 1, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor were examined in the hippocampi of adult C57BL/6 mice after methotrexate (40 mg/kg) intraperitoneal injection. Western blot analysis showed biphasic changes in synaptic plasticity-related signals in adult hippocampi following methotrexate treatment. N-methyl-D-aspartic acid receptor 1, calcium/calmodulin-dependent protein kinase II, and glutamate receptor 1 were acutely activated during the early phase (1 day post-injection), while extracellular signal-regulated kinase 1/2 and cAMP responsive element-binding protein activation showed biphasic increases during the early (1 day post-injection) and late phases (7-14 days post-injection). Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor expression increased significantly during the late phase (7-14 days post-injection). Therefore, methotrexate treatment affects synaptic plasticity-related signals in the adult mouse hippocampus, suggesting that changes in synaptic plasticity-related signals may be associated with neuronal survival and plasticity-related cellular remodeling. PMID:25657706

  3. Physical activity and brain plasticity in late adulthood.

    PubMed

    Erickson, Kirk I; Gildengers, Ariel G; Butters, Meryl A

    2013-03-01

    The human brain shrinks with advancing age, but recent research suggests that it is also capable of remarkable plasticity, even in late life. In this review we summarize the research linking greater amounts of physical activity to less cortical atrophy, better brain function, and enhanced cognitive function, and argue that physical activity takes advantage of the brain's natural capacity for plasticity. Further, although the effects of physical activity on the brain are relatively widespread, there is also some specificity, such that prefrontal and hippocampal areas appear to be more influenced than other areas of the brain. The specificity of these effects, we argue, provides a biological basis for understanding the capacity for physical activity to influence neurocognitive and neuropsychiatric disorders such as depression. We conclude that physical activity is a promising intervention that can influence the endogenous pharmacology of the brain to enhance cognitive and emotional function in late adulthood. PMID:23576893

  4. Environment and brain plasticity: towards an endogenous pharmacotherapy.

    PubMed

    Sale, Alessandro; Berardi, Nicoletta; Maffei, Lamberto

    2014-01-01

    Brain plasticity refers to the remarkable property of cerebral neurons to change their structure and function in response to experience, a fundamental theoretical theme in the field of basic research and a major focus for neural rehabilitation following brain disease. While much of the early work on this topic was based on deprivation approaches relying on sensory experience reduction procedures, major advances have been recently obtained using the conceptually opposite paradigm of environmental enrichment, whereby an enhanced stimulation is provided at multiple cognitive, sensory, social, and motor levels. In this survey, we aim to review past and recent work concerning the influence exerted by the environment on brain plasticity processes, with special emphasis on the underlying cellular and molecular mechanisms and starting from experimental work on animal models to move to highly relevant work performed in humans. We will initiate introducing the concept of brain plasticity and describing classic paradigmatic examples to illustrate how changes at the level of neuronal properties can ultimately affect and direct key perceptual and behavioral outputs. Then, we describe the remarkable effects elicited by early stressful conditions, maternal care, and preweaning enrichment on central nervous system development, with a separate section focusing on neurodevelopmental disorders. A specific section is dedicated to the striking ability of environmental enrichment and physical exercise to empower adult brain plasticity. Finally, we analyze in the last section the ever-increasing available knowledge on the effects elicited by enriched living conditions on physiological and pathological aging brain processes. PMID:24382886

  5. Brain plasticity and motor practice in cognitive aging

    PubMed Central

    Cai, Liuyang; Chan, John S. Y.; Yan, Jin H.; Peng, Kaiping

    2014-01-01

    For more than two decades, there have been extensive studies of experience-based neural plasticity exploring effective applications of brain plasticity for cognitive and motor development. Research suggests that human brains continuously undergo structural reorganization and functional changes in response to stimulations or training. From a developmental point of view, the assumption of lifespan brain plasticity has been extended to older adults in terms of the benefits of cognitive training and physical therapy. To summarize recent developments, first, we introduce the concept of neural plasticity from a developmental perspective. Secondly, we note that motor learning often refers to deliberate practice and the resulting performance enhancement and adaptability. We discuss the close interplay between neural plasticity, motor learning and cognitive aging. Thirdly, we review research on motor skill acquisition in older adults with, and without, impairments relative to aging-related cognitive decline. Finally, to enhance future research and application, we highlight the implications of neural plasticity in skills learning and cognitive rehabilitation for the aging population. PMID:24653695

  6. Plastic Brains and the Dialectics of Dialectics

    ERIC Educational Resources Information Center

    Loxley, Andrew; Murphy, Colette; Seery, Aidan

    2014-01-01

    This article advances the thinking of Lima, Ostermann and Rezende's "Marxism in Vygotskian approaches to cultural studies of science education" and Mark Zuss' response to their paper. Firstly, it introduces Catherine Malabou's concept of plasticity, from which Hegel's dialectic can be re-read as historical materialist…

  7. Physical activity, brain plasticity, and Alzheimer's disease.

    PubMed

    Erickson, Kirk I; Weinstein, Andrea M; Lopez, Oscar L

    2012-11-01

    In this review we summarize the epidemiological, cross-sectional, and interventional studies examining the association between physical activity and brain volume, function, and risk for Alzheimer's disease. The epidemiological literature provides compelling evidence that greater amounts of physical activity are associated with a reduced risk of dementia in late life. In addition, randomized interventions using neuroimaging tools have reported that participation in physical activity increases the size of prefrontal and hippocampal brain areas, which may lead to a reduction in memory impairments. Consistent with these findings, longitudinal studies using neuroimaging tools also find that the volume of prefrontal and hippocampal brain areas are larger in individuals who engaged in more physical activity earlier in life. We conclude from this review that there is convincing evidence that physical activity has a consistent and robust association with brain regions implicated in age-related cognitive decline and Alzheimer's disease. In addition to summarizing this literature we provide recommendations for future research on physical activity and brain health. PMID:23085449

  8. Structural and Functional Plasticity in the Maternal Brain Circuitry.

    PubMed

    Pereira, Mariana

    2016-09-01

    Parenting recruits a distributed network of brain structures (and neuromodulators) that coordinates caregiving responses attuned to the young's affect, needs, and developmental stage. Many of these structures and connections undergo significant structural and functional plasticity, mediated by the interplay between maternal hormones and social experience while the reciprocal relationship between the mother and her infant forms and develops. These alterations account for the remarkable behavioral plasticity of mothers. This review will examine the molecular and neurobiological modulation and plasticity through which parenting develops and adjusts in new mothers, primarily discussing recent findings in nonhuman animals. A better understanding of how parenting impacts the brain at the molecular, cellular, systems/network, and behavioral levels is likely to significantly contribute to novel strategies for treating postpartum neuropsychiatric disorders in new mothers, and critical for both the mother's physiological and mental health and the development and well-being of her young. PMID:27589496

  9. Brain plasticity in Diptera and Hymenoptera

    PubMed Central

    Groh, Claudia; Meinertzhagen, Ian A.

    2010-01-01

    To mediate different types of behaviour, nervous systems must coordinate the proper operation of their neural circuits as well as short- and long-term alterations that occur within those circuits. The latter ultimately devolve upon specific changes in neuronal structures, membrane properties and synaptic connections that are all examples of plasticity. This reorganization of the adult nervous system is shaped by internal and external influences both during development and adult maturation. In adults, behavioural experience is a major driving force of neuronal plasticity studied particularly in sensory systems. The range of adaptation depends on features that are important to a particular species, so that learning is essential for foraging in honeybees, while regenerative capacities are important in hemimetabolous insects with long appendages. Experience is usually effective during a critical period in early adult life, when neural function becomes tuned to future conditions in an insect's life. Changes occur at all levels, in synaptic circuits, neuropile volumes, and behaviour. There are many examples, and this review incorporates only a select few, mainly those from Diptera and Hymenoptera. PMID:20036946

  10. Sleep and synaptic plasticity in the developing and adult brain.

    PubMed

    Frank, Marcos G

    2015-01-01

    Sleep is hypothesized to play an integral role in brain plasticity. This has traditionally been investigated using behavioral assays. In the last 10-15 years, studies combining sleep measurements with in vitro and in vivo models of synaptic plasticity have provided exciting new insights into how sleep alters synaptic strength. In addition, new theories have been proposed that integrate older ideas about sleep function and recent discoveries in the field of synaptic plasticity. There remain, however, important challenges and unanswered questions. For example, sleep does not appear to have a single effect on synaptic strength. An unbiased review of the literature indicates that the effects of sleep vary widely depending on ontogenetic stage, the type of waking experience (or stimulation protocols) that precede sleep and the type of neuronal synapse under examination. In this review, I discuss these key findings in the context of current theories that posit different roles for sleep in synaptic plasticity. PMID:24671703

  11. Successful brain aging: plasticity, environmental enrichment, and lifestyle

    PubMed Central

    Mora, Francisco

    2013-01-01

    Aging is a physiological process that can develop without the appearance of concurrent diseases. However, very frequently, older people suffer from memory loss and an accelerated cognitive decline. Studies of the neurobiology of aging are beginning to decipher the mechanisms underlying not only the physiology of aging of the brain but also the mechanisms that make people more vulnerable to cognitive dysfunction and neurodegenerative diseases. Today we know that the aging brain retains a considerable functional plasticity, and that this plasticity is positively promoted by genes activated by different lifestyle factors. In this article some of these lifestyle factors and their mechanisms of action are reviewed, including environmental enrichment and the importance of food intake and some nutrients. Aerobic physical exercise and reduction of chronic stress are also briefly reviewed. It is proposed that lifestyle factors are powerful instruments to promote healthy and successful aging of the brain and delay the appearance of age-related cognitive deficits in elderly people. PMID:23576888

  12. Brain plasticity and functionality explored by nonlinear optical microscopy

    NASA Astrophysics Data System (ADS)

    Sacconi, L.; Allegra, L.; Buffelli, M.; Cesare, P.; D'Angelo, E.; Gandolfi, D.; Grasselli, G.; Lotti, J.; Mapelli, J.; Strata, P.; Pavone, F. S.

    2010-02-01

    In combination with fluorescent protein (XFP) expression techniques, two-photon microscopy has become an indispensable tool to image cortical plasticity in living mice. In parallel to its application in imaging, multi-photon absorption has also been used as a tool for the dissection of single neurites with submicrometric precision without causing any visible collateral damage to the surrounding neuronal structures. In this work, multi-photon nanosurgery is applied to dissect single climbing fibers expressing GFP in the cerebellar cortex. The morphological consequences are then characterized with time lapse 3-dimensional two-photon imaging over a period of minutes to days after the procedure. Preliminary investigations show that the laser induced fiber dissection recalls a regenerative process in the fiber itself over a period of days. These results show the possibility of this innovative technique to investigate regenerative processes in adult brain. In parallel with imaging and manipulation technique, non-linear microscopy offers the opportunity to optically record electrical activity in intact neuronal networks. In this work, we combined the advantages of second-harmonic generation (SHG) with a random access (RA) excitation scheme to realize a new microscope (RASH) capable of optically recording fast membrane potential events occurring in a wide-field of view. The RASH microscope, in combination with bulk loading of tissue with FM4-64 dye, was used to simultaneously record electrical activity from clusters of Purkinje cells in acute cerebellar slices. Complex spikes, both synchronous and asynchronous, were optically recorded simultaneously across a given population of neurons. Spontaneous electrical activity was also monitored simultaneously in pairs of neurons, where action potentials were recorded without averaging across trials. These results show the strength of this technique in describing the temporal dynamics of neuronal assemblies, opening promising

  13. Coexistence of reactive plasticity and neurodegeneration in Alzheimer diseased brains.

    PubMed

    Guevara, J; Dilhuydy, H; Espinosa, B; Delacourte, A; Quirion, R; Mena, R; Joanette, Y; Zenteno, E; Robitaille, Y

    2004-10-01

    Alzheimer's disease (AD) is a pathological process characterized by neuron degeneration and, as recently suggested, brain plasticity. In this work, we compared the reactive plasticity in AD brains associated to O-glycosydically linked glycans, recognized by lectins from Amaranthus leucocarpus (ALL) and Macrobrachium rosenbergii (MRL), and the tau neuritic degeneration. The neuritic degenerative process was evaluated by the quantification of aggregated neuritic structures. Lesions were determined using antibodies against hyperphosphorylated-tau (AD2), amyloid-beta, and synaptophysin. In these conditions, we classified and quantified three pathological structures associated to the neuritic degenerative process: 1) Amyloid-beta deposits (AbetaDs), 2) Classic neuritic plaques (NPs), and 3) Dystrophic neurites clusters (DNCs) lacking amyloid-beta deposits. Reactive plasticity structures were constituted by meganeuritic clusters (MCs) and peri-neuronal sprouting in neurons of the CA4 region of the hippocampus, immunoreactive to synaptophysin (exclusively in AD brains) and GAP-43. Besides, MCs were associated to sialylated O-glycosydically linked glycans as determined by positive labeling with ALL and MRL. Considering that these lectins are specific for the synaptic sprouting process in AD, our results suggest the co-occurrence of of several areas of reactive plasticity and neuron degeneration in AD. PMID:15375749

  14. Plasticity in the Neonatal Brain following Hypoxic-Ischaemic Injury.

    PubMed

    Rocha-Ferreira, Eridan; Hristova, Mariya

    2016-01-01

    Hypoxic-ischaemic damage to the developing brain is a leading cause of child death, with high mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The developmental stage of the brain and the severity of the insult influence the selective regional vulnerability and the subsequent clinical manifestations. The increased susceptibility to hypoxia-ischaemia (HI) of periventricular white matter in preterm infants predisposes the immature brain to motor, cognitive, and sensory deficits, with cognitive impairment associated with earlier gestational age. In term infants HI causes selective damage to sensorimotor cortex, basal ganglia, thalamus, and brain stem. Even though the immature brain is more malleable to external stimuli compared to the adult one, a hypoxic-ischaemic event to the neonate interrupts the shaping of central motor pathways and can affect normal developmental plasticity through altering neurotransmission, changes in cellular signalling, neural connectivity and function, wrong targeted innervation, and interruption of developmental apoptosis. Models of neonatal HI demonstrate three morphologically different types of cell death, that is, apoptosis, necrosis, and autophagy, which crosstalk and can exist as a continuum in the same cell. In the present review we discuss the mechanisms of HI injury to the immature brain and the way they affect plasticity. PMID:27047695

  15. Plasticity in the Neonatal Brain following Hypoxic-Ischaemic Injury

    PubMed Central

    Rocha-Ferreira, Eridan

    2016-01-01

    Hypoxic-ischaemic damage to the developing brain is a leading cause of child death, with high mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The developmental stage of the brain and the severity of the insult influence the selective regional vulnerability and the subsequent clinical manifestations. The increased susceptibility to hypoxia-ischaemia (HI) of periventricular white matter in preterm infants predisposes the immature brain to motor, cognitive, and sensory deficits, with cognitive impairment associated with earlier gestational age. In term infants HI causes selective damage to sensorimotor cortex, basal ganglia, thalamus, and brain stem. Even though the immature brain is more malleable to external stimuli compared to the adult one, a hypoxic-ischaemic event to the neonate interrupts the shaping of central motor pathways and can affect normal developmental plasticity through altering neurotransmission, changes in cellular signalling, neural connectivity and function, wrong targeted innervation, and interruption of developmental apoptosis. Models of neonatal HI demonstrate three morphologically different types of cell death, that is, apoptosis, necrosis, and autophagy, which crosstalk and can exist as a continuum in the same cell. In the present review we discuss the mechanisms of HI injury to the immature brain and the way they affect plasticity. PMID:27047695

  16. In pursuit of resilience: stress, epigenetics, and brain plasticity.

    PubMed

    McEwen, Bruce S

    2016-06-01

    The brain is the central organ for adaptation to experiences, including stressors, which are capable of changing brain architecture as well as altering systemic function through neuroendocrine, autonomic, immune, and metabolic systems. Because the brain is the master regulator of these systems, as well as of behavior, alterations in brain function by chronic stress can have direct and indirect effects on cumulative allostatic overload, which refers to the cost of adaptation. There is much new knowledge on the neural control of systemic physiology and the feedback actions of physiologic mediators on brain regions regulating higher cognitive function, emotional regulation, and self-regulation. The healthy brain has a considerable capacity for resilience, based upon its ability to respond to interventions designed to open "windows of plasticity" and redirect its function toward better health. As a result, plasticity-facilitating treatments should be given within the framework of a positive behavioral intervention; negative experiences during this window may even make matters worse. Indeed, there are no magic bullets and drugs cannot substitute for targeted interventions that help an individual become resilient, of which mindfulness-based stress reduction and meditation are emerging as useful tools. PMID:26919273

  17. Plasticity of Brain Networks in a Randomized Intervention Trial of Exercise Training in Older Adults

    PubMed Central

    Voss, Michelle W.; Prakash, Ruchika S.; Erickson, Kirk I.; Basak, Chandramallika; Chaddock, Laura; Kim, Jennifer S.; Alves, Heloisa; Heo, Susie; Szabo, Amanda N.; White, Siobhan M.; Wójcicki, Thomas R.; Mailey, Emily L.; Gothe, Neha; Olson, Erin A.; McAuley, Edward; Kramer, Arthur F.

    2010-01-01

    Research has shown the human brain is organized into separable functional networks during rest and varied states of cognition, and that aging is associated with specific network dysfunctions. The present study used functional magnetic resonance imaging (fMRI) to examine low-frequency (0.008 < f < 0.08 Hz) coherence of cognitively relevant and sensory brain networks in older adults who participated in a 1-year intervention trial, comparing the effects of aerobic and non-aerobic fitness training on brain function and cognition. Results showed that aerobic training improved the aging brain's resting functional efficiency in higher-level cognitive networks. One year of walking increased functional connectivity between aspects of the frontal, posterior, and temporal cortices within the Default Mode Network and a Frontal Executive Network, two brain networks central to brain dysfunction in aging. Length of training was also an important factor. Effects in favor of the walking group were observed only after 12 months of training, compared to non-significant trends after 6 months. A non-aerobic stretching and toning group also showed increased functional connectivity in the DMN after 6 months and in a Frontal Parietal Network after 12 months, possibly reflecting experience-dependent plasticity. Finally, we found that changes in functional connectivity were behaviorally relevant. Increased functional connectivity was associated with greater improvement in executive function. Therefore the study provides the first evidence for exercise-induced functional plasticity in large-scale brain systems in the aging brain, using functional connectivity techniques, and offers new insight into the role of aerobic fitness in attenuating age-related brain dysfunction. PMID:20890449

  18. Infantile Autism and the Temporal Lobe of the Brain.

    ERIC Educational Resources Information Center

    Hetzler, Bruce E.; Griffin, Judith L.

    1981-01-01

    Studies are reviewed that support the hypothesis that infantile autism results from a neuropathology of the temporal lobes of the brain. It is concluded that the main autistic symptoms are most consistent with a neurological model involving bilateral dysfunction of the temporal lobes. (Author)

  19. Neighborhood matters: divergent patterns of stress-induced plasticity across the brain.

    PubMed

    Chattarji, Sumantra; Tomar, Anupratap; Suvrathan, Aparna; Ghosh, Supriya; Rahman, Mohammed Mostafizur

    2015-10-01

    The fact that exposure to severe stress leads to the development of psychiatric disorders serves as the basic rationale for animal models of stress disorders. Clinical and neuroimaging studies have shown that three brain areas involved in learning and memory--the hippocampus, amygdala and prefrontal cortex--undergo distinct structural and functional changes in individuals with stress disorders. These findings from patient studies pose several challenges for animal models of stress disorders. For instance, why does stress impair cognitive function, yet enhance fear and anxiety? Can the same stressful experience elicit contrasting patterns of plasticity in the hippocampus, amygdala and prefrontal cortex? How does even a brief exposure to traumatic stress lead to long-lasting behavioral abnormalities? Thus, animal models of stress disorders must not only capture the unique spatio-temporal features of structural and functional alterations in these brain areas, but must also provide insights into the underlying neuronal plasticity mechanisms. This Review will address some of these key questions by describing findings from animal models on how stress-induced plasticity varies across different brain regions and thereby gives rise to the debilitating emotional and cognitive symptoms of stress-related psychiatric disorders. PMID:26404711

  20. Modulating Hippocampal Plasticity with In Vivo Brain Stimulation

    PubMed Central

    Carhuatanta, Kim A.; McInturf, Shawn M.; Miklasevich, Molly K.; Jankord, Ryan

    2015-01-01

    Investigations into the use of transcranial direct current stimulation (tDCS) in relieving symptoms of neurological disorders and enhancing cognitive or motor performance have exhibited promising results. However, the mechanisms by which tDCS effects brain function remain under scrutiny. We have demonstrated that in vivo tDCS in rats produced a lasting effect on hippocampal synaptic plasticity, as measured using extracellular recordings. Ex vivo preparations of hippocampal slices from rats that have been subjected to tDCS of 0.10 or 0.25 mA for 30 min followed by 30 min of recovery time displayed a robust twofold enhancement in long-term potentiation (LTP) induction accompanied by a 30% increase in paired-pulse facilitation (PPF). The magnitude of the LTP effect was greater with 0.25 mA compared with 0.10 mA stimulations, suggesting a dose-dependent relationship between tDCS intensity and its effect on synaptic plasticity. To test the persistence of these observed effects, animals were stimulated in vivo for 30 min at 0.25 mA and then allowed to return to their home cage for 24 h. Observation of the enhanced LTP induction, but not the enhanced PPF, continued 24 h after completion of 0.25 mA of tDCS. Addition of the NMDA blocker AP-5 abolished LTP in both control and stimulated rats but maintained the PPF enhancement in stimulated rats. The observation of enhanced LTP and PPF after tDCS demonstrates that non-invasive electrical stimulation is capable of modifying synaptic plasticity. SIGNIFICANCE STATEMENT Researchers have used brain stimulation such as transcranial direct current stimulation on human subjects to alleviate symptoms of neurological disorders and enhance their performance. Here, using rats, we have investigated the potential mechanisms of how in vivo brain stimulation can produce such effect. We recorded directly on viable brain slices from rats after brain stimulation to detect lasting changes in pattern of neuronal activity. Our results showed that

  1. Increased morphological asymmetry, evolvability and plasticity in human brain evolution

    PubMed Central

    Gómez-Robles, Aida; Hopkins, William D.; Sherwood, Chet C.

    2013-01-01

    The study of hominin brain evolution relies mostly on evaluation of the endocranial morphology of fossil skulls. However, only some general features of external brain morphology are evident from endocasts, and many anatomical details can be difficult or impossible to examine. In this study, we use geometric morphometric techniques to evaluate inter- and intraspecific differences in cerebral morphology in a sample of in vivo magnetic resonance imaging scans of chimpanzees and humans, with special emphasis on the study of asymmetric variation. Our study reveals that chimpanzee–human differences in cerebral morphology are mainly symmetric; by contrast, there is continuity in asymmetric variation between species, with humans showing an increased range of variation. Moreover, asymmetric variation does not appear to be the result of allometric scaling at intraspecific levels, whereas symmetric changes exhibit very slight allometric effects within each species. Our results emphasize two key properties of brain evolution in the hominine clade: first, evolution of chimpanzee and human brains (and probably their last common ancestor and related species) is not strongly morphologically constrained, thus making their brains highly evolvable and responsive to selective pressures; second, chimpanzee and, especially, human brains show high levels of fluctuating asymmetry indicative of pronounced developmental plasticity. We infer that these two characteristics can have a role in human cognitive evolution. PMID:23615289

  2. The maternal brain under stress: Consequences for adaptive peripartum plasticity and its potential functional implications.

    PubMed

    Slattery, David A; Hillerer, Katharina M

    2016-04-01

    The peripartum period represents a time during which all mammalian species undergo substantial physiological and behavioural changes, which prepare the female for the demands of motherhood. In addition to behavioural and physiological alterations, numerous brain regions, such as the medial prefrontal cortex, olfactory bulb, medial amygdala and hippocampus are subject to substantial peripartum-associated neuronal, dendritic and synaptic plasticity. These changes, which are temporally- and spatially-distinct, are strongly influenced by gonadal and adrenal hormones, such as estrogen and cortisol/corticosterone, which undergo dramatic fluctuations across this period. In this review, we describe our current knowledge regarding these plasticity changes and describe how stress affects such normal adaptations. Finally, we discuss the mechanisms potentially underlying these neuronal, dendritic and synaptic changes and their functional relevance for the mother and her offspring. PMID:26828151

  3. Indestructible plastic: the neuroscience of the new aging brain.

    PubMed

    Holman, Constance; de Villers-Sidani, Etienne

    2014-01-01

    In recent years, research on experience-dependent plasticity has provided valuable insight on adaptation to environmental input across the lifespan, and advances in understanding the minute cellular changes underlying the brain's capacity for self-reorganization have opened exciting new possibilities for treating illness and injury. Ongoing work in this line of inquiry has also come to deeply influence another field: cognitive neuroscience of the normal aging. This complex process, once considered inevitable or beyond the reach of treatment, has been transformed into an arena of intense investigation and strategic intervention. However, important questions remain about this characterization of the aging brain, and the assumptions it makes about the social, cultural, and biological space occupied by cognition in the older individual and body. The following paper will provide a critical examination of the move from basic experiments on the neurophysiology of experience-dependent plasticity to the growing market for (and public conception of) cognitive aging as a medicalized space for intervention by neuroscience-backed technologies. Entangled with changing concepts of normality, pathology, and self-preservation, we will argue that this new understanding, led by personalized cognitive training strategies, is approaching a point where interdisciplinary research is crucial to provide a holistic and nuanced understanding of the aging process. This new outlook will allow us to move forward in a space where our knowledge, like our new conception of the brain, is never static. PMID:24782746

  4. Regeneration, Plasticity, and Induced Molecular Programs in Adult Zebrafish Brain

    PubMed Central

    Cosacak, Mehmet Ilyas; Papadimitriou, Christos; Kizil, Caghan

    2015-01-01

    Regenerative capacity of the brain is a variable trait within animals. Aquatic vertebrates such as zebrafish have widespread ability to renew their brains upon damage, while mammals have—if not none—very limited overall regenerative competence. Underlying cause of such a disparity is not fully evident; however, one of the reasons could be activation of peculiar molecular programs, which might have specific roles after injury or damage, by the organisms that regenerate. If this hypothesis is correct, then there must be genes and pathways that (a) are expressed only after injury or damage in tissues, (b) are biologically and functionally relevant to restoration of neural tissue, and (c) are not detected in regenerating organisms. Presence of such programs might circumvent the initial detrimental effects of the damage and subsequently set up the stage for tissue redevelopment to take place by modulating the plasticity of the neural stem/progenitor cells. Additionally, if transferable, those “molecular mechanisms of regeneration” could open up new avenues for regenerative therapies of humans in clinical settings. This review focuses on the recent studies addressing injury/damage-induced molecular programs in zebrafish brain, underscoring the possibility of the presence of genes that could be used as biomarkers of neural plasticity and regeneration. PMID:26417601

  5. Plasticity of the Maternal Brain Across the Lifespan.

    PubMed

    Champagne, Frances A; Curley, James P

    2016-09-01

    Maternal behavior is dynamic and highly sensitive to experiential and contextual factors. In this review, this plasticity will be explored, with a focus on how experiences of females occurring from the time of fetal development through to adulthood impact maternal behavior and the maternal brain. Variation in postpartum maternal behavior is dependent on estrogen sensitivity within the medial preoptic area of the hypothalamus and activation within mesolimbic dopamine neurons. This review will discuss how experiences across the lifespan alter the function of these systems and the multigenerational consequences of these neuroendocrine and behavioral changes. These studies, based primarily on the examination of maternal behavior in laboratory rodents and nonhuman primates, provide mechanistic insights relevant to our understanding of human maternal behavior and to the mechanisms of lifelong plasticity. PMID:27589495

  6. Review of Research: Neuroscience and the Impact of Brain Plasticity on Braille Reading

    ERIC Educational Resources Information Center

    Hannan, Cheryl Kamei

    2006-01-01

    In this systematic review of research, the author analyzes studies of neural cortical activation, brain plasticity, and braille reading. The conclusions regarding the brain's plasticity and ability to reorganize are encouraging for individuals with degenerative eye conditions or late-onset blindness because they indicate that the brain can make…

  7. The maternal brain and its plasticity in humans.

    PubMed

    Kim, Pilyoung; Strathearn, Lane; Swain, James E

    2016-01-01

    This article is part of a Special Issue "Parental Care". Early mother-infant relationships play important roles in infants' optimal development. New mothers undergo neurobiological changes that support developing mother-infant relationships regardless of great individual differences in those relationships. In this article, we review the neural plasticity in human mothers' brains based on functional magnetic resonance imaging (fMRI) studies. First, we review the neural circuits that are involved in establishing and maintaining mother-infant relationships. Second, we discuss early postpartum factors (e.g., birth and feeding methods, hormones, and parental sensitivity) that are associated with individual differences in maternal brain neuroplasticity. Third, we discuss abnormal changes in the maternal brain related to psychopathology (i.e., postpartum depression, posttraumatic stress disorder, substance abuse) and potential brain remodeling associated with interventions. Last, we highlight potentially important future research directions to better understand normative changes in the maternal brain and risks for abnormal changes that may disrupt early mother-infant relationships. PMID:26268151

  8. An Evolutionary Computation Approach to Examine Functional Brain Plasticity.

    PubMed

    Roy, Arnab; Campbell, Colin; Bernier, Rachel A; Hillary, Frank G

    2016-01-01

    One common research goal in systems neurosciences is to understand how the functional relationship between a pair of regions of interest (ROIs) evolves over time. Examining neural connectivity in this way is well-suited for the study of developmental processes, learning, and even in recovery or treatment designs in response to injury. For most fMRI based studies, the strength of the functional relationship between two ROIs is defined as the correlation between the average signal representing each region. The drawback to this approach is that much information is lost due to averaging heterogeneous voxels, and therefore, the functional relationship between a ROI-pair that evolve at a spatial scale much finer than the ROIs remain undetected. To address this shortcoming, we introduce a novel evolutionary computation (EC) based voxel-level procedure to examine functional plasticity between an investigator defined ROI-pair by simultaneously using subject-specific BOLD-fMRI data collected from two sessions seperated by finite duration of time. This data-driven procedure detects a sub-region composed of spatially connected voxels from each ROI (a so-called sub-regional-pair) such that the pair shows a significant gain/loss of functional relationship strength across the two time points. The procedure is recursive and iteratively finds all statistically significant sub-regional-pairs within the ROIs. Using this approach, we examine functional plasticity between the default mode network (DMN) and the executive control network (ECN) during recovery from traumatic brain injury (TBI); the study includes 14 TBI and 12 healthy control subjects. We demonstrate that the EC based procedure is able to detect functional plasticity where a traditional averaging based approach fails. The subject-specific plasticity estimates obtained using the EC-procedure are highly consistent across multiple runs. Group-level analyses using these plasticity estimates showed an increase in the strength

  9. An Evolutionary Computation Approach to Examine Functional Brain Plasticity

    PubMed Central

    Roy, Arnab; Campbell, Colin; Bernier, Rachel A.; Hillary, Frank G.

    2016-01-01

    One common research goal in systems neurosciences is to understand how the functional relationship between a pair of regions of interest (ROIs) evolves over time. Examining neural connectivity in this way is well-suited for the study of developmental processes, learning, and even in recovery or treatment designs in response to injury. For most fMRI based studies, the strength of the functional relationship between two ROIs is defined as the correlation between the average signal representing each region. The drawback to this approach is that much information is lost due to averaging heterogeneous voxels, and therefore, the functional relationship between a ROI-pair that evolve at a spatial scale much finer than the ROIs remain undetected. To address this shortcoming, we introduce a novel evolutionary computation (EC) based voxel-level procedure to examine functional plasticity between an investigator defined ROI-pair by simultaneously using subject-specific BOLD-fMRI data collected from two sessions seperated by finite duration of time. This data-driven procedure detects a sub-region composed of spatially connected voxels from each ROI (a so-called sub-regional-pair) such that the pair shows a significant gain/loss of functional relationship strength across the two time points. The procedure is recursive and iteratively finds all statistically significant sub-regional-pairs within the ROIs. Using this approach, we examine functional plasticity between the default mode network (DMN) and the executive control network (ECN) during recovery from traumatic brain injury (TBI); the study includes 14 TBI and 12 healthy control subjects. We demonstrate that the EC based procedure is able to detect functional plasticity where a traditional averaging based approach fails. The subject-specific plasticity estimates obtained using the EC-procedure are highly consistent across multiple runs. Group-level analyses using these plasticity estimates showed an increase in the strength

  10. Self-Organized Criticality Model for Brain Plasticity

    NASA Astrophysics Data System (ADS)

    de Arcangelis, Lucilla; Perrone-Capano, Carla; Herrmann, Hans J.

    2006-01-01

    Networks of living neurons exhibit an avalanche mode of activity, experimentally found in organotypic cultures. Here we present a model that is based on self-organized criticality and takes into account brain plasticity, which is able to reproduce the spectrum of electroencephalograms (EEG). The model consists of an electrical network with threshold firing and activity-dependent synapse strengths. The system exhibits an avalanche activity in a power-law distribution. The analysis of the power spectra of the electrical signal reproduces very robustly the power-law behavior with the exponent 0.8, experimentally measured in EEG spectra. The same value of the exponent is found on small-world lattices and for leaky neurons, indicating that universality holds for a wide class of brain models.

  11. Investigating brain functional evolution and plasticity using microelectrode array technology.

    PubMed

    Napoli, Alessandro; Obeid, Iyad

    2015-10-01

    The aim of this work was to investigate long and short-term plasticity responsible for memory formation in dissociated neuronal networks. In order to address this issue, a set of experiments was designed and implemented in which the microelectrode array electrode grid was divided into four quadrants, two of which were chronically stimulated, every two days for one hour with a stimulation paradigm that varied over time. Overall network and quadrant responses were then analyzed to quantify what level of plasticity took place in the network and how this was due to the stimulation interruption. The results demonstrate that there were no spatial differences in the stimulus-evoked activity within quadrants. Furthermore, the implemented stimulation protocol induced depression effects in the neuronal networks as demonstrated by the consistently lower network activity following stimulation sessions. Finally, the analysis demonstrated that the inhibitory effects of the stimulation decreased over time, thus suggesting a habituation phenomenon. These findings are sufficient to conclude that electrical stimulation is an important tool to interact with dissociated neuronal cultures, but localized stimuli are not enough to drive spatial synaptic potentiation or depression. On the contrary, the ability to modulate synaptic temporal plasticity was a feasible task to achieve by chronic network stimulation. PMID:26476356

  12. Interactions between environmental changes and brain plasticity in birds.

    PubMed

    Barnea, Anat

    2009-09-01

    Neurogenesis and neuronal recruitment occur in many vertebrates, including humans. Most of the new neurons die before reaching their destination. Those which survive migrate to various brain regions, replace older ones and connect to existing circuits. Evidence suggests that this replacement is related to acquisition of new information. Therefore, neuronal replacement can be seen as a form of brain plasticity that enables organisms to adjust to environmental changes. However, direct evidence of a causal link between replacement and learning remains elusive. Our hypothesis is that increased neuronal recruitment is associated with increase in memory load. Moreover, since neuronal recruitment is part of a turnover process, we assume that the same conditions that favor survival of some neurons induce the death of others. I present studies that investigated the effect of various behaviors and environmental conditions (food-hoarding, social change, reproductive cycle) on neuronal recruitment and survival in adult avian brains, and discuss how these phenomena relate to the life of animals. I offer a frame and rationale for comparing neuronal replacement in the adult brain, in order to uncover the pressures, rules, and mechanisms that govern its constant rejuvenation. The review emphasizes the importance of using various approaches (behavioral, anatomical, cellular and hormonal) in neuroethological research, and the need to study natural populations, in order to fully understand how neurogenesis and neuronal replacement contribute to life of animals. Finally, the review indicates to future directions and ends with the hope that a better understanding of adult neuronal replacement will lead to medical applications. PMID:19361509

  13. The Maternal Brain: An Organ with Peripartal Plasticity

    PubMed Central

    Hillerer, Katharina Maria; Jacobs, Volker Rudolf; Fischer, Thorsten; Aigner, Ludwig

    2014-01-01

    The time of pregnancy, birth, and lactation, is characterized by numerous specific alterations in several systems of the maternal body. Peripartum-associated changes in physiology and behavior, as well as their underlying molecular mechanisms, have been the focus of research since decades, but are still far from being entirely understood. Also, there is growing evidence that pregnancy and lactation are associated with a variety of alterations in neural plasticity, including adult neurogenesis, functional and structural synaptic plasticity, and dendritic remodeling in different brain regions. All of the mentioned changes are not only believed to be a prerequisite for the proper fetal and neonatal development, but moreover to be crucial for the physiological and mental health of the mother. The underlying mechanisms apparently need to be under tight control, since in cases of dysregulation, a certain percentage of women develop disorders like preeclampsia or postpartum mood and anxiety disorders during the course of pregnancy and lactation. This review describes common peripartum adaptations in physiology and behavior. Moreover, it concentrates on different forms of peripartum-associated plasticity including changes in neurogenesis and their possible underlying molecular mechanisms. Finally, consequences of malfunction in those systems are discussed. PMID:24883213

  14. Neural Plastic Effects of Cognitive Training on Aging Brain

    PubMed Central

    Leung, Natalie T. Y.; Tam, Helena M. K.; Chu, Leung W.; Kwok, Timothy C. Y.; Chan, Felix; Lam, Linda C. W.; Woo, Jean; Lee, Tatia M. C.

    2015-01-01

    Increasing research has evidenced that our brain retains a capacity to change in response to experience until late adulthood. This implies that cognitive training can possibly ameliorate age-associated cognitive decline by inducing training-specific neural plastic changes at both neural and behavioral levels. This longitudinal study examined the behavioral effects of a systematic thirteen-week cognitive training program on attention and working memory of older adults who were at risk of cognitive decline. These older adults were randomly assigned to the Cognitive Training Group (n = 109) and the Active Control Group (n = 100). Findings clearly indicated that training induced improvement in auditory and visual-spatial attention and working memory. The training effect was specific to the experience provided because no significant difference in verbal and visual-spatial memory between the two groups was observed. This pattern of findings is consistent with the prediction and the principle of experience-dependent neuroplasticity. Findings of our study provided further support to the notion that the neural plastic potential continues until older age. The baseline cognitive status did not correlate with pre- versus posttraining changes to any cognitive variables studied, suggesting that the initial cognitive status may not limit the neuroplastic potential of the brain at an old age. PMID:26417460

  15. Indestructible plastic: the neuroscience of the new aging brain

    PubMed Central

    Holman, Constance; de Villers-Sidani, Etienne

    2014-01-01

    In recent years, research on experience-dependent plasticity has provided valuable insight on adaptation to environmental input across the lifespan, and advances in understanding the minute cellular changes underlying the brain’s capacity for self-reorganization have opened exciting new possibilities for treating illness and injury. Ongoing work in this line of inquiry has also come to deeply influence another field: cognitive neuroscience of the normal aging. This complex process, once considered inevitable or beyond the reach of treatment, has been transformed into an arena of intense investigation and strategic intervention. However, important questions remain about this characterization of the aging brain, and the assumptions it makes about the social, cultural, and biological space occupied by cognition in the older individual and body. The following paper will provide a critical examination of the move from basic experiments on the neurophysiology of experience-dependent plasticity to the growing market for (and public conception of) cognitive aging as a medicalized space for intervention by neuroscience-backed technologies. Entangled with changing concepts of normality, pathology, and self-preservation, we will argue that this new understanding, led by personalized cognitive training strategies, is approaching a point where interdisciplinary research is crucial to provide a holistic and nuanced understanding of the aging process. This new outlook will allow us to move forward in a space where our knowledge, like our new conception of the brain, is never static. PMID:24782746

  16. Temporal sequence learning in winner-take-all networks of spiking neurons demonstrated in a brain-based device

    PubMed Central

    McKinstry, Jeffrey L.; Edelman, Gerald M.

    2013-01-01

    Animal behavior often involves a temporally ordered sequence of actions learned from experience. Here we describe simulations of interconnected networks of spiking neurons that learn to generate patterns of activity in correct temporal order. The simulation consists of large-scale networks of thousands of excitatory and inhibitory neurons that exhibit short-term synaptic plasticity and spike-timing dependent synaptic plasticity. The neural architecture within each area is arranged to evoke winner-take-all (WTA) patterns of neural activity that persist for tens of milliseconds. In order to generate and switch between consecutive firing patterns in correct temporal order, a reentrant exchange of signals between these areas was necessary. To demonstrate the capacity of this arrangement, we used the simulation to train a brain-based device responding to visual input by autonomously generating temporal sequences of motor actions. PMID:23760804

  17. Brain Regions Underlying Word Finding Difficulties in Temporal Lobe Epilepsy

    ERIC Educational Resources Information Center

    Trebuchon-Da Fonseca, Agnes; Guedj, Eric; Alario, F-Xavier; Laguitton, Virginie; Mundler, Olivier; Chauvel, Patrick; Liegeois-Chauvel, Catherine

    2009-01-01

    Word finding difficulties are often reported by epileptic patients with seizures originating from the language dominant cerebral hemisphere, for example, in temporal lobe epilepsy. Evidence regarding the brain regions underlying this deficit comes from studies of peri-operative electro-cortical stimulation, as well as post-surgical performance.…

  18. Spectral properties of the temporal evolution of brain network structure

    NASA Astrophysics Data System (ADS)

    Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying

    2015-12-01

    The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.

  19. Spectral properties of the temporal evolution of brain network structure.

    PubMed

    Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying

    2015-12-01

    The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems. PMID:26723151

  20. Disturbed temporal dynamics of brain synchronization in vision loss.

    PubMed

    Bola, Michał; Gall, Carolin; Sabel, Bernhard A

    2015-06-01

    Damage along the visual pathway prevents bottom-up visual input from reaching further processing stages and consequently leads to loss of vision. But perception is not a simple bottom-up process - rather it emerges from activity of widespread cortical networks which coordinate visual processing in space and time. Here we set out to study how vision loss affects activity of brain visual networks and how networks' activity is related to perception. Specifically, we focused on studying temporal patterns of brain activity. To this end, resting-state eyes-closed EEG was recorded from partially blind patients suffering from chronic retina and/or optic-nerve damage (n = 19) and healthy controls (n = 13). Amplitude (power) of oscillatory activity and phase locking value (PLV) were used as measures of local and distant synchronization, respectively. Synchronization time series were created for the low- (7-9 Hz) and high-alpha band (11-13 Hz) and analyzed with three measures of temporal patterns: (i) length of synchronized-/desynchronized-periods, (ii) Higuchi Fractal Dimension (HFD), and (iii) Detrended Fluctuation Analysis (DFA). We revealed that patients exhibit less complex, more random and noise-like temporal dynamics of high-alpha band activity. More random temporal patterns were associated with worse performance in static (r = -.54, p = .017) and kinetic perimetry (r = .47, p = .041). We conclude that disturbed temporal patterns of neural synchronization in vision loss patients indicate disrupted communication within brain visual networks caused by prolonged deafferentation. We propose that because the state of brain networks is essential for normal perception, impaired brain synchronization in patients with vision loss might aggravate the functional consequences of reduced visual input. PMID:25956453

  1. Contrasting Acute and Slow-Growing Lesions: A New Door to Brain Plasticity

    ERIC Educational Resources Information Center

    Desmurget, Michel; Bonnetblanc, FranCois; Duffau, Hugues

    2007-01-01

    The concept of plasticity describes the mechanisms that rearrange cerebral organization following a brain injury. During the last century, plasticity has been mainly investigated in humans with acute strokes. It was then shown: (i) that the brain is organized into highly specialized functional areas, often designated "eloquent" areas and (ii) that…

  2. Searching for Factors Underlying Cerebral Plasticity in the Normal and Injured Brain

    ERIC Educational Resources Information Center

    Kolb, Bryan; Muhammad, Arif; Gibb, Robbin

    2011-01-01

    Brain plasticity refers to the capacity of the nervous system to change its structure and ultimately its function over a lifetime. There have been major advances in our understanding of the principles of brain plasticity and behavior in laboratory animals and humans. Over the past decade there have been advances in the application of these…

  3. Chronic pain: The role of learning and brain plasticity

    PubMed Central

    Mansour, A.R.; Farmer, M.A.; Baliki, M.N.; Apkarian, A. Vania

    2016-01-01

    Based on theoretical considerations and recent observations, we argue that continued suffering of chronic pain is critically dependent on the state of motivational and emotional mesolimbic-prefrontal circuitry of the brain. The plastic changes that occur within this circuitry in relation to nociceptive inputs dictate the transition to chronic pain, rendering the pain less somatic and more affective in nature. This theoretical construct is a strong departure from the traditional scientific view of pain, which has focused on encoding and representation of nociceptive signals. We argue that the definition of chronic pain can be recast, within the associative learning and valuation concept, as an inability to extinguish the associated memory trace, implying that supraspinal/cortical manipulations may be a more fruitful venue for adequately modulating suffering and related behavior for chronic pain. We briefly review the evidence generated to date for the proposed model and emphasize that the details of underlying mechanisms remain to be expounded. PMID:23603439

  4. A spatio-temporal filter approach to synchronous brain activities.

    PubMed

    Nakagawa, T; Ohashi, A

    1980-01-01

    This paper presents a mathematical mechanism for neuronal synchronization in oscillatory brain activities on the basis of the layer structures with recurrent inhibition. To begin with, a linear theory reveals that the recurrent inhibition tends to cause a synchronous uniform oscillation if the loop delay increases, and that an oscillating neuron recruits neighboring neurons by delivering synchronous inputs through the recurrent inhibition loop if the frequency is that of the selfexcitatory oscillation. Then, a quasilinearized dual wave model (DWM), employing the two-sinusoids plus bias input describing functions (TSBDF), shows the competitive relationship between the synchronous oscillation and a spatial wave that is introduced to represent normal brain activity patterns. Results of computer simulations conform well to the predictions of the DWM. Thus, synchronous brain activities are suggested to be the result of the spatio-temporal filter characteristics of the brain layer structures, modified by the neural nonlinearity. PMID:7353063

  5. Brain Plasticity in Blind Subjects Centralizes Beyond the Modal Cortices

    PubMed Central

    Ortiz-Terán, Laura; Ortiz, Tomás; Perez, David L.; Aragón, Jose Ignacio; Diez, Ibai; Pascual-Leone, Alvaro; Sepulcre, Jorge

    2016-01-01

    It is well established that the human brain reorganizes following sensory deprivations. In blind individuals, visual processing regions including the lateral occipital cortex (LOC) are activated by auditory and tactile stimuli as demonstrated by neurophysiological and neuroimaging investigations. The mechanisms for such plasticity remain unclear, but shifts in connectivity across existing neural networks appear to play a critical role. The majority of research efforts to date have focused on neuroplastic changes within visual unimodal regions, however we hypothesized that neuroplastic alterations may also occur in brain networks beyond the visual cortices including involvement of multimodal integration regions and heteromodal cortices. In this study, two recently developed graph-theory based functional connectivity analyses, interconnector analyses and local and distant connectivity, were applied to investigate functional reorganization in regional and distributed neural-systems in late-onset blind (LB) and congenitally blind (CB) cohorts each compared to their own group of sighted controls. While functional network alterations as measured by the degree of differential links (DDL) occurred in sensory cortices, neuroplastic changes were most prominent within multimodal and association cortices. Subjects with LB showed enhanced multimodal integration connections in the parieto-opercular, temporoparietal junction (TPJ) and ventral premotor (vPM) regions, while CB individuals exhibited increased superior parietal cortex (SPC) connections. This study reveals the critical role of recipient multi-sensory integration areas in network reorganization and cross-modal plasticity in blind individuals. These findings suggest that aspects of cross-modal neuroplasticity and adaptive sensory-motor and auditory functions may potentially occur through reorganization in multimodal integration regions. PMID:27458350

  6. Brain Plasticity in Blind Subjects Centralizes Beyond the Modal Cortices.

    PubMed

    Ortiz-Terán, Laura; Ortiz, Tomás; Perez, David L; Aragón, Jose Ignacio; Diez, Ibai; Pascual-Leone, Alvaro; Sepulcre, Jorge

    2016-01-01

    It is well established that the human brain reorganizes following sensory deprivations. In blind individuals, visual processing regions including the lateral occipital cortex (LOC) are activated by auditory and tactile stimuli as demonstrated by neurophysiological and neuroimaging investigations. The mechanisms for such plasticity remain unclear, but shifts in connectivity across existing neural networks appear to play a critical role. The majority of research efforts to date have focused on neuroplastic changes within visual unimodal regions, however we hypothesized that neuroplastic alterations may also occur in brain networks beyond the visual cortices including involvement of multimodal integration regions and heteromodal cortices. In this study, two recently developed graph-theory based functional connectivity analyses, interconnector analyses and local and distant connectivity, were applied to investigate functional reorganization in regional and distributed neural-systems in late-onset blind (LB) and congenitally blind (CB) cohorts each compared to their own group of sighted controls. While functional network alterations as measured by the degree of differential links (DDL) occurred in sensory cortices, neuroplastic changes were most prominent within multimodal and association cortices. Subjects with LB showed enhanced multimodal integration connections in the parieto-opercular, temporoparietal junction (TPJ) and ventral premotor (vPM) regions, while CB individuals exhibited increased superior parietal cortex (SPC) connections. This study reveals the critical role of recipient multi-sensory integration areas in network reorganization and cross-modal plasticity in blind individuals. These findings suggest that aspects of cross-modal neuroplasticity and adaptive sensory-motor and auditory functions may potentially occur through reorganization in multimodal integration regions. PMID:27458350

  7. The Role of Short Term Synaptic Plasticity in Temporal Coding of Neuronal Networks

    ERIC Educational Resources Information Center

    Chandrasekaran, Lakshmi

    2008-01-01

    Short term synaptic plasticity is a phenomenon which is commonly found in the central nervous system. It could contribute to functions of signal processing namely, temporal integration and coincidence detection by modulating the input synaptic strength. This dissertation has two parts. First, we study the effects of short term synaptic plasticity…

  8. Training-induced behavioral and brain plasticity in inhibitory control

    PubMed Central

    Spierer, Lucas; Chavan, Camille F.; Manuel, Aurelie L.

    2013-01-01

    Deficits in inhibitory control, the ability to suppress ongoing or planned motor or cognitive processes, contribute to many psychiatric and neurological disorders. The rehabilitation of inhibition-related disorders may therefore benefit from neuroplasticity-based training protocols aiming at normalizing inhibitory control proficiency and the underlying brain networks. Current literature on training-induced behavioral and brain plasticity in inhibitory control suggests that improvements may follow either from the development of automatic forms of inhibition or from the strengthening of top-down, controlled inhibition. Automatic inhibition develops in conditions of consistent and repeated associations between inhibition-triggering stimuli and stopping goals. Once established, the stop signals directly elicit inhibition, thereby bypassing slow, top-down executive control and accelerating stopping processes. In contrast, training regimens involving varying stimulus-response associations or frequent inhibition failures prevent the development of automatic inhibition and thus strengthen top-down inhibitory processes rather than bottom-up ones. We discuss these findings in terms of developing optimal inhibitory control training regimens for rehabilitation purposes. PMID:23914169

  9. Evidence for Impaired Plasticity after Traumatic Brain Injury in the Developing Brain

    PubMed Central

    Li, Nan; Yang, Ya; Glover, David P.; Zhang, Jiangyang; Saraswati, Manda; Robertson, Courtney

    2014-01-01

    Abstract The robustness of plasticity mechanisms during brain development is essential for synaptic formation and has a beneficial outcome after sensory deprivation. However, the role of plasticity in recovery after acute brain injury in children has not been well defined. Traumatic brain injury (TBI) is the leading cause of death and disability among children, and long-term disability from pediatric TBI can be particularly devastating. We investigated the altered cortical plasticity 2–3 weeks after injury in a pediatric rat model of TBI. Significant decreases in neurophysiological responses across the depth of the noninjured, primary somatosensory cortex (S1) in TBI rats, compared to age-matched controls, were detected with electrophysiological measurements of multi-unit activity (86.4% decrease), local field potential (75.3% decrease), and functional magnetic resonance imaging (77.6% decrease). Because the corpus callosum is a clinically important white matter tract that was shown to be consistently involved in post-traumatic axonal injury, we investigated its anatomical and functional characteristics after TBI. Indeed, corpus callosum abnormalities in TBI rats were detected with diffusion tensor imaging (9.3% decrease in fractional anisotropy) and histopathological analysis (14% myelination volume decreases). Whole-cell patch clamp recordings further revealed that TBI results in significant decreases in spontaneous firing rate (57% decrease) and the potential to induce long-term potentiation in neurons located in layer V of the noninjured S1 by stimulation of the corpus callosum (82% decrease). The results suggest that post-TBI plasticity can translate into inappropriate neuronal connections and dramatic changes in the function of neuronal networks. PMID:24050267

  10. Music mnemonics aid Verbal Memory and Induce Learning – Related Brain Plasticity in Multiple Sclerosis

    PubMed Central

    Thaut, Michael H.; Peterson, David A.; McIntosh, Gerald C.; Hoemberg, Volker

    2014-01-01

    Recent research on music and brain function has suggested that the temporal pattern structure in music and rhythm can enhance cognitive functions. To further elucidate this question specifically for memory, we investigated if a musical template can enhance verbal learning in patients with multiple sclerosis (MS) and if music-assisted learning will also influence short-term, system-level brain plasticity. We measured systems-level brain activity with oscillatory network synchronization during music-assisted learning. Specifically, we measured the spectral power of 128-channel electroencephalogram (EEG) in alpha and beta frequency bands in 54 patients with MS. The study sample was randomly divided into two groups, either hearing a spoken or a musical (sung) presentation of Rey’s auditory verbal learning test. We defined the “learning-related synchronization” (LRS) as the percent change in EEG spectral power from the first time the word was presented to the average of the subsequent word encoding trials. LRS differed significantly between the music and the spoken conditions in low alpha and upper beta bands. Patients in the music condition showed overall better word memory and better word order memory and stronger bilateral frontal alpha LRS than patients in the spoken condition. The evidence suggests that a musical mnemonic recruits stronger oscillatory network synchronization in prefrontal areas in MS patients during word learning. It is suggested that the temporal structure implicit in musical stimuli enhances “deep encoding” during verbal learning and sharpens the timing of neural dynamics in brain networks degraded by demyelination in MS. PMID:24982626

  11. Music mnemonics aid Verbal Memory and Induce Learning - Related Brain Plasticity in Multiple Sclerosis.

    PubMed

    Thaut, Michael H; Peterson, David A; McIntosh, Gerald C; Hoemberg, Volker

    2014-01-01

    Recent research on music and brain function has suggested that the temporal pattern structure in music and rhythm can enhance cognitive functions. To further elucidate this question specifically for memory, we investigated if a musical template can enhance verbal learning in patients with multiple sclerosis (MS) and if music-assisted learning will also influence short-term, system-level brain plasticity. We measured systems-level brain activity with oscillatory network synchronization during music-assisted learning. Specifically, we measured the spectral power of 128-channel electroencephalogram (EEG) in alpha and beta frequency bands in 54 patients with MS. The study sample was randomly divided into two groups, either hearing a spoken or a musical (sung) presentation of Rey's auditory verbal learning test. We defined the "learning-related synchronization" (LRS) as the percent change in EEG spectral power from the first time the word was presented to the average of the subsequent word encoding trials. LRS differed significantly between the music and the spoken conditions in low alpha and upper beta bands. Patients in the music condition showed overall better word memory and better word order memory and stronger bilateral frontal alpha LRS than patients in the spoken condition. The evidence suggests that a musical mnemonic recruits stronger oscillatory network synchronization in prefrontal areas in MS patients during word learning. It is suggested that the temporal structure implicit in musical stimuli enhances "deep encoding" during verbal learning and sharpens the timing of neural dynamics in brain networks degraded by demyelination in MS. PMID:24982626

  12. Exploiting temporal information in functional magnetic resonance imaging brain data.

    PubMed

    Zhang, Lei; Samaras, Dimitris; Tomasi, Dardo; Alia-Klein, Nelly; Cottone, Lisa; Leskovjan, Andreana; Volkow, Nora; Goldstein, Rita

    2005-01-01

    Functional Magnetic Resonance Imaging(fMRI) has enabled scientists to look into the active human brain, leading to a flood of new data, thus encouraging the development of new data analysis methods. In this paper, we contribute a comprehensive framework for spatial and temporal exploration of fMRI data, and apply it to a challenging case study: separating drug addicted subjects from healthy non-drug-using controls. To our knowledge, this is the first time that learning on fMRI data is performed explicitly on temporal information for classification in such applications. Experimental results demonstrate that, by selecting discriminative features, group classification can be successfully performed on our case study although training data are exceptionally high dimensional, sparse and noisy fMRI sequences. The classification performance can be significantly improved by incorporating temporal information into machine learning. Both statistical and neuroscientific validation of the method's generalization ability are provided. We demonstrate that incorporation of computer science principles into functional neuroimaging clinical studies, facilitates deduction about the behavioral probes from the brain activation data, thus providing a valid tool that incorporates objective brain imaging data into clinical classification of psychopathologies and identification of genetic vulnerabilities. PMID:16685905

  13. Bidirectional Plasticity of Purkinje Cells Matches Temporal Features of Learning

    PubMed Central

    Wetmore, Daniel Z.; Jirenhed, Dan-Anders; Rasmussen, Anders; Johansson, Fredrik; Schnitzer, Mark J.

    2014-01-01

    Many forms of learning require temporally ordered stimuli. In Pavlovian eyeblink conditioning, a conditioned stimulus (CS) must precede the unconditioned stimulus (US) by at least about 100 ms for learning to occur. Conditioned responses are learned and generated by the cerebellum. Recordings from the cerebellar cortex during conditioning have revealed CS-triggered pauses in the firing of Purkinje cells that likely drive the conditioned blinks. The predominant view of the learning mechanism in conditioning is that long-term depression (LTD) at parallel fiber (PF)–Purkinje cell synapses underlies the Purkinje cell pauses. This raises a serious conceptual challenge because LTD is most effectively induced at short CS–US intervals, which do not support acquisition of eyeblinks. To resolve this discrepancy, we recorded Purkinje cells during conditioning with short or long CS–US intervals. Decerebrated ferrets trained with CS–US intervals ≥150 ms reliably developed Purkinje cell pauses, but training with an interval of 50 ms unexpectedly induced increases in CS-evoked spiking. This bidirectional modulation of Purkinje cell activity offers a basis for the requirement of a minimum CS–US interval for conditioning, but we argue that it cannot be fully explained by LTD, even when previous in vitro studies of stimulus-timing-dependent LTD are taken into account. PMID:24478355

  14. Temporal Lobe Cortical Thickness Correlations Differentiate the Migraine Brain from the Healthy Brain

    PubMed Central

    Schwedt, Todd J.; Berisha, Visar; Chong, Catherine D.

    2015-01-01

    Background Interregional cortical thickness correlations reflect underlying brain structural connectivity and functional connectivity. A few prior studies have shown that migraine is associated with atypical cortical brain structure and atypical functional connectivity amongst cortical regions that participate in sensory processing. However, the specific brain regions that most accurately differentiate the migraine brain from the healthy brain have yet to be determined. The aim of this study was to identify the brain regions that comprised interregional cortical thickness correlations that most differed between migraineurs and healthy controls. Methods This was a cross-sectional brain magnetic resonance imaging (MRI) investigation of 64 adults with migraine and 39 healthy control subjects recruited from tertiary-care medical centers and their surrounding communities. All subjects underwent structural brain MRI imaging on a 3T scanner. Cortical thickness was determined for 70 brain regions that cover the cerebral cortex and cortical thickness correlations amongst these regions were calculated. Cortical thickness correlations that best differentiated groups of six migraineurs from controls and vice versa were identified. Results A model containing 15 interregional cortical thickness correlations differentiated groups of migraineurs from healthy controls with high accuracy. The right temporal pole was involved in 13 of the 15 interregional correlations while the right middle temporal cortex was involved in the other two. Conclusions A model consisting of 15 interregional cortical thickness correlations accurately differentiates the brains of small groups of migraineurs from those of healthy controls. Correlations with the right temporal pole were highly represented in this classifier, suggesting that this region plays an important role in migraine pathophysiology. PMID:25679805

  15. The brain as a complex system: plasticity at multiple scales and criticality

    NASA Astrophysics Data System (ADS)

    Ng, Tony; Miller, Paul

    2015-03-01

    As a complex system, a successful organism is one that can react effectively to environmental fluctuations. Not only should its response repertoire be commensurate with the number of independent conditions that it encounters, behavioral and environmental variations need to be matched at the appropriate scales. In the cortex, neuronal clusters, not individual cells, operate at the proper scale that is necessary to generate appropriate responses to external states of the world. Single neurons, however, serve on a finer scale to mediate interactions between neuronal assemblies. The distinction of scales is significant, as plasticity mechanisms can operate on various spatial and temporal scales. The brain has apparently evolved complex-system strategies to calibrate its own dynamics at multiple scales. This makes the joint study of local balance and global homeostasis fundamentally important, where criticality emerges as a signature of a computationally powerful system. We show via simulations how plasticity mechanisms at multiple scales are inextricably tied to spike-based neuronal avalanches, which are microscopic in origin and poorly predictive of animal behavior, and cluster-based avalanches, which are manifest macroscopically and are relevant to cognition and behavior.

  16. Short-term synaptic plasticity contributes to the temporal filtering of electrosensory information.

    PubMed

    Fortune, E S; Rose, G J

    2000-09-15

    Short-term synaptic depression and facilitation often are elicited by different temporal patterns of activity. Short-term plasticity may contribute, therefore, to temporal filtering by impeding synaptic transmission for some temporal patterns of activity and facilitating transmission for other patterns. We examined this hypothesis by investigating whether short-term plasticity contributes to the temporal filtering properties of midbrain electrosensory neurons. Postsynaptic potentials were recorded in response to sensory stimuli and to direct stimulation of afferents, in vivo. Stimulating afferents with pairs of pulses at a rate of 20 pairs/sec ["tetanus (20 Hz)"] induced PSP depression. This PSP depression was similar to that observed for electrosensory stimuli of the same temporal frequency. Analysis of PSPs elicited by a pair of pulses that preceded versus followed the tetanus revealed that PSP depression was caused by synaptic depression, not by a loss of facilitation. Behavioral studies indicate that fish can detect slow changes in signal amplitude (slow AM) in backgrounds of fast fluctuations. Correspondingly, midbrain neurons respond well to slow AM even in the presence of fast AM. In many neurons, facilitation enhanced responses to trains (8-10 pulses; 100 Hz) that represented activity patterns elicited by slow AM, despite induction of synaptic depression by a tetanus (20 Hz). The interplay between synaptic depression and facilitation, therefore, can act as a filter of temporal information. Some neurons that showed little facilitation nonetheless responded to low temporal-frequency information after induction of depression by fast information; this likely results from the convergence of inputs with different temporal filtering properties. PMID:10995860

  17. Dynamic DNA methylation in the brain: a new epigenetic mark for experience-dependent plasticity

    PubMed Central

    Tognini, Paola; Napoli, Debora; Pizzorusso, Tommaso

    2015-01-01

    Experience-dependent plasticity is the ability of brain circuits to undergo molecular, structural and functional changes as a function of neural activity. Neural activity continuously shapes our brain during all the stages of our life, from infancy through adulthood and beyond. Epigenetic modifications of histone proteins and DNA seem to be a leading molecular mechanism to modulate the transcriptional changes underlying the fine-tuning of synaptic connections and circuitry rewiring during activity-dependent plasticity. The recent discovery that cytosine methylation is an epigenetic mark particularly dynamic in brain cells has strongly increased the interest of neuroscientists in understanding the role of covalent modifications of DNA in activity-induced remodeling of neuronal circuits. Here, we provide an overview of the role of DNA methylation and hydroxylmethylation in brain plasticity both during adulthood, with emphasis on learning and memory related processes, and during postnatal development, focusing specifically on experience-dependent plasticity in the visual cortex. PMID:26379502

  18. Water diffusion reveals networks that modulate multiregional morphological plasticity after repetitive brain stimulation

    PubMed Central

    Abe, Mitsunari; Fukuyama, Hidenao; Mima, Tatsuya

    2014-01-01

    Repetitive brain stimulation protocols induce plasticity in the stimulated site in brain slice models. Recent evidence from network models has indicated that additional plasticity-related changes occur in nonstimulated remote regions. Despite increasing use of brain stimulation protocols in experimental and clinical settings, the neural substrates underlying the additional effects in remote regions are unknown. Diffusion-weighted MRI (DWI) probes water diffusion and can be used to estimate morphological changes in cortical tissue that occur with the induction of plasticity. Using DWI techniques, we estimated morphological changes induced by application of repetitive transcranial magnetic stimulation (rTMS) over the left primary motor cortex (M1). We found that rTMS altered water diffusion in multiple regions including the left M1. Notably, the change in water diffusion was retained longest in the left M1 and remote regions that had a correlation of baseline fluctuations in water diffusion before rTMS. We conclude that synchronization of water diffusion at rest between stimulated and remote regions ensures retention of rTMS-induced changes in water diffusion in remote regions. Synchronized fluctuations in the morphology of cortical microstructures between stimulated and remote regions might identify networks that allow retention of plasticity-related morphological changes in multiple regions after brain stimulation protocols. These results increase our understanding of the effects of brain stimulation-induced plasticity on multiregional brain networks. DWI techniques could provide a tool to evaluate treatment effects of brain stimulation protocols in patients with brain disorders. PMID:24619090

  19. Non-invasive Brain Stimulation, a Tool to Revert Maladaptive Plasticity in Neuropathic Pain

    PubMed Central

    Naro, Antonino; Milardi, Demetrio; Russo, Margherita; Terranova, Carmen; Rizzo, Vincenzo; Cacciola, Alberto; Marino, Silvia; Calabro, Rocco S.; Quartarone, Angelo

    2016-01-01

    Neuromodulatory effects of non-invasive brain stimulation (NIBS) have been extensively studied in chronic pain. A hypothetic mechanism of action would be to prevent or revert the ongoing maladaptive plasticity within the pain matrix. In this review, the authors discuss the mechanisms underlying the development of maladaptive plasticity in patients with chronic pain and the putative mechanisms of NIBS in modulating synaptic plasticity in neuropathic pain conditions. PMID:27512368

  20. Non-invasive Brain Stimulation, a Tool to Revert Maladaptive Plasticity in Neuropathic Pain.

    PubMed

    Naro, Antonino; Milardi, Demetrio; Russo, Margherita; Terranova, Carmen; Rizzo, Vincenzo; Cacciola, Alberto; Marino, Silvia; Calabro, Rocco S; Quartarone, Angelo

    2016-01-01

    Neuromodulatory effects of non-invasive brain stimulation (NIBS) have been extensively studied in chronic pain. A hypothetic mechanism of action would be to prevent or revert the ongoing maladaptive plasticity within the pain matrix. In this review, the authors discuss the mechanisms underlying the development of maladaptive plasticity in patients with chronic pain and the putative mechanisms of NIBS in modulating synaptic plasticity in neuropathic pain conditions. PMID:27512368

  1. Changes in motor cortex excitability associated with temporal repetitive transcranial magnetic stimulation in tinnitus: hints for cross-modal plasticity?

    PubMed Central

    2014-01-01

    Background Motor cortex excitability was found to be changed after repetitive transcranial magnetic stimulation (rTMS) of the temporal cortex highlighting the occurrence of cross-modal plasticity in non-invasive brain stimulation. Here, we investigated the effects of temporal low-frequency rTMS on motor cortex plasticity in a large sample of tinnitus patients. In 116 patients with chronic tinnitus different parameters of cortical excitability were assessed before and after ten rTMS treatment sessions. Patients received one of three different protocols all including 1 Hz rTMS over the left temporal cortex. Treatment response was defined as improvement by at least five points in the tinnitus questionnaire (TQ). Variables of interest were resting motor threshold (RMT), short-interval intra-cortical inhibition (SICI), intracortical facilitation (ICF), and cortical silent period (CSP). Results After rTMS treatment RMT was decreased by about 1% of stimulator output near-significantly in the whole group of patients. SICI was associated with significant changes with respect to treatment response. The group of treatment responders showed a decrease of SICI over the course of treatment, the group of non-responders the reverse pattern. Conclusions Minor RMT changes during rTMS treatment do not necessarily suggest the need for systematic re-examination of the RMT for safety and efficacy issues. Treatment response to rTMS was shown to be related to changes in SICI that might reflect modulation of GABAergic mechanisms directly or indirectly related to rTMS treatment effects. PMID:24898574

  2. Narrative Skill in Children with Early Unilateral Brain Injury: A Possible Limit to Functional Plasticity

    ERIC Educational Resources Information Center

    Demir, Ozlem Ece; Levine, Susan C.; Goldin-Meadow, Susan

    2010-01-01

    Children with pre- or perinatal brain injury (PL) exhibit marked plasticity for language learning. Previous work has focused mostly on the emergence of earlier-developing skills, such as vocabulary and syntax. Here we ask whether this plasticity for earlier-developing aspects of language extends to more complex, later-developing language functions…

  3. Learning-stage-dependent plasticity of temporal coherence in the auditory cortex of rats.

    PubMed

    Yokota, Ryo; Aihara, Kazuyuki; Kanzaki, Ryohei; Takahashi, Hirokazu

    2015-05-01

    Temporal coherence among neural populations may contribute importantly to signal encoding, specifically by providing an optimal tradeoff between encoding reliability and efficiency. Here, we considered the possibility that learning modulates the temporal coherence among neural populations in association with well-characterized map plasticity. We previously demonstrated that, in appetitive operant conditioning tasks, the tone-responsive area globally expanded during the early stage of learning, but shrank during the late stage. The present study further showed that phase locking of the first spike to band-specific oscillations of local field potentials (LFPs) significantly increased during the early stage of learning but decreased during the late stage, suggesting that neurons in A1 were more synchronously activated during early learning, whereas they were more asynchronously activated once learning was completed. Furthermore, LFP amplitudes increased during early learning but decreased during later learning. These results suggest that, compared to naïve encoding, early-stage encoding is more reliable but energy-consumptive, whereas late-stage encoding is more energetically efficient. Such a learning-stage-dependent encoding strategy may underlie learning-induced, non-monotonic map plasticity. Accumulating evidence indicates that the cholinergic system is likely to be a shared neural substrate of the processes for perceptual learning and attention, both of which modulate neural encoding in an adaptive manner. Thus, a better understanding of the links between map plasticity and modulation of temporal coherence will likely lead to a more integrated view of learning and attention. PMID:24615394

  4. Plasticity in Unimodal and Multimodal Brain Areas Reflects Multisensory Changes in Self-Face Identification

    PubMed Central

    Apps, Matthew A. J.; Tajadura-Jiménez, Ana; Sereno, Marty; Blanke, Olaf; Tsakiris, Manos

    2015-01-01

    Nothing provides as strong a sense of self as seeing one's face. Nevertheless, it remains unknown how the brain processes the sense of self during the multisensory experience of looking at one's face in a mirror. Synchronized visuo-tactile stimulation on one's own and another's face, an experience that is akin to looking in the mirror but seeing another's face, causes the illusory experience of ownership over the other person's face and changes in self-recognition. Here, we investigate the neural correlates of this enfacement illusion using fMRI. We examine activity in the human brain as participants experience tactile stimulation delivered to their face, while observing either temporally synchronous or asynchronous tactile stimulation delivered to another's face on either a specularly congruent or incongruent location. Activity in the multisensory right temporo-parietal junction, intraparietal sulcus, and the unimodal inferior occipital gyrus showed an interaction between the synchronicity and the congruency of the stimulation and varied with the self-reported strength of the illusory experience, which was recorded after each stimulation block. Our results highlight the important interplay between unimodal and multimodal information processing for self-face recognition, and elucidate the neurobiological basis for the plasticity required for identifying with our continuously changing visual appearance. PMID:23964067

  5. Dietary fructose aggravates the pathobiology of traumatic brain injury by influencing energy homeostasis and plasticity.

    PubMed

    Agrawal, Rahul; Noble, Emily; Vergnes, Laurent; Ying, Zhe; Reue, Karen; Gomez-Pinilla, Fernando

    2016-05-01

    Fructose consumption has been on the rise for the last two decades and is starting to be recognized as being responsible for metabolic diseases. Metabolic disorders pose a particular threat for brain conditions characterized by energy dysfunction, such as traumatic brain injury. Traumatic brain injury patients experience sudden abnormalities in the control of brain metabolism and cognitive function, which may worsen the prospect of brain plasticity and function. The mechanisms involved are poorly understood. Here we report that fructose consumption disrupts hippocampal energy homeostasis as evidenced by a decline in functional mitochondria bioenergetics (oxygen consumption rate and cytochrome C oxidase activity) and an aggravation of the effects of traumatic brain injury on molecular systems engaged in cell energy homeostasis (sirtuin 1, peroxisome proliferator-activated receptor gamma coactivator-1alpha) and synaptic plasticity (brain-derived neurotrophic factor, tropomyosin receptor kinase B, cyclic adenosine monophosphate response element binding, synaptophysin signaling). Fructose also worsened the effects of traumatic brain injury on spatial memory, which disruption was associated with a decrease in hippocampal insulin receptor signaling. Additionally, fructose consumption and traumatic brain injury promoted plasma membrane lipid peroxidation, measured by elevated protein and phenotypic expression of 4-hydroxynonenal. These data imply that high fructose consumption exacerbates the pathology of brain trauma by further disrupting energy metabolism and brain plasticity, highlighting the impact of diet on the resilience to neurological disorders. PMID:26661172

  6. The role of sleep in memory consolidation and brain plasticity: dream or reality?

    PubMed

    Frank, Marcos G; Benington, Joel H

    2006-12-01

    The notion that a good night of sleep improves memory is widely accepted by the general public. Among sleep scientists, however, the idea has been hotly debated for decades. In this review, the authors consider current evidence for and against the hypothesis that sleep facilitates memory consolidation and promotes plastic changes in the brain. They find that despite a steady accumulation of positive findings over the past decade, the precise role of sleep in memory and brain plasticity remains elusive. This impasse may be resolved by more integrated approaches that combine behavioral and neurophysiological measurements in well-described in vivo models of synaptic plasticity. PMID:17079514

  7. Brain lateralization and neural plasticity for musical and cognitive abilities in an epileptic musician.

    PubMed

    Trujillo-Pozo, Isabel; Martín-Monzón, Isabel; Rodríguez-Romero, Rafael

    2013-01-01

    The use of intracarotid propofol procedure (IPP) when assessing musical lateralization has not been reported in literature up to now. This procedure (similar to Wada Test) has provided the opportunity to investigate not only lateralization of language and memory functions on epileptic patients but also offers a functional mapping approach with superior spatial and temporal resolution to analyze the lateralization of musical abilities. Findings in literature suggest that musical training modifies functional and structural brain organization. We studied hemispheric lateralization in a professional musician, a 33 years old woman with refractory left medial temporal lobe (MTL) epilepsy (TLE). A longitudinal neuropsychological study was performed over a period of 21 months. Before epilepsy surgery, musical abilities, language and memory were tested during IPP by means of a novel and exhaustive neuropsychological battery focusing on the processing of music. We used a selection of stimuli to analyze listening, score reading, and tempo discrimination. Our results suggested that IPP is an excellent method to determine not only language, semantic, and episodic memory, but also musical dominance in a professional musician who may be candidate for epilepsy surgery. Neuropsychological testing revealed that right hemisphere's patient is involved in semantic and episodic musical memory processes, whereas her score reading and tempo processing require contribution from both hemispheres. At one-year follow-up, outcome was excellent with respect to seizures and professional skills, meanwhile cognitive abilities improved. These findings indicate that IPP helps to predict who might be at risk for postoperative musical, language, and memory deficits after epilepsy surgery. Our research suggests that musical expertise and epilepsy critically modifies long-term memory processes and induces brain structural and functional plasticity. PMID:24367312

  8. Brain lateralization and neural plasticity for musical and cognitive abilities in an epileptic musician

    PubMed Central

    Trujillo-Pozo, Isabel; Martín-Monzón, Isabel; Rodríguez-Romero, Rafael

    2013-01-01

    The use of intracarotid propofol procedure (IPP) when assessing musical lateralization has not been reported in literature up to now. This procedure (similar to Wada Test) has provided the opportunity to investigate not only lateralization of language and memory functions on epileptic patients but also offers a functional mapping approach with superior spatial and temporal resolution to analyze the lateralization of musical abilities. Findings in literature suggest that musical training modifies functional and structural brain organization. We studied hemispheric lateralization in a professional musician, a 33 years old woman with refractory left medial temporal lobe (MTL) epilepsy (TLE). A longitudinal neuropsychological study was performed over a period of 21 months. Before epilepsy surgery, musical abilities, language and memory were tested during IPP by means of a novel and exhaustive neuropsychological battery focusing on the processing of music. We used a selection of stimuli to analyze listening, score reading, and tempo discrimination. Our results suggested that IPP is an excellent method to determine not only language, semantic, and episodic memory, but also musical dominance in a professional musician who may be candidate for epilepsy surgery. Neuropsychological testing revealed that right hemisphere's patient is involved in semantic and episodic musical memory processes, whereas her score reading and tempo processing require contribution from both hemispheres. At one-year follow-up, outcome was excellent with respect to seizures and professional skills, meanwhile cognitive abilities improved. These findings indicate that IPP helps to predict who might be at risk for postoperative musical, language, and memory deficits after epilepsy surgery. Our research suggests that musical expertise and epilepsy critically modifies long-term memory processes and induces brain structural and functional plasticity. PMID:24367312

  9. The Current Status of Somatostatin-Interneurons in Inhibitory Control of Brain Function and Plasticity

    PubMed Central

    2016-01-01

    The mammalian neocortex contains many distinct inhibitory neuronal populations to balance excitatory neurotransmission. A correct excitation/inhibition equilibrium is crucial for normal brain development, functioning, and controlling lifelong cortical plasticity. Knowledge about how the inhibitory network contributes to brain plasticity however remains incomplete. Somatostatin- (SST-) interneurons constitute a large neocortical subpopulation of interneurons, next to parvalbumin- (PV-) and vasoactive intestinal peptide- (VIP-) interneurons. Unlike the extensively studied PV-interneurons, acknowledged as key components in guiding ocular dominance plasticity, the contribution of SST-interneurons is less understood. Nevertheless, SST-interneurons are ideally situated within cortical networks to integrate unimodal or cross-modal sensory information processing and therefore likely to be important mediators of experience-dependent plasticity. The lack of knowledge on SST-interneurons partially relates to the wide variety of distinct subpopulations present in the sensory neocortex. This review informs on those SST-subpopulations hitherto described based on anatomical, molecular, or electrophysiological characteristics and whose functional roles can be attributed based on specific cortical wiring patterns. A possible role for these subpopulations in experience-dependent plasticity will be discussed, emphasizing on learning-induced plasticity and on unimodal and cross-modal plasticity upon sensory loss. This knowledge will ultimately contribute to guide brain plasticity into well-defined directions to restore sensory function and promote lifelong learning. PMID:27403348

  10. The Current Status of Somatostatin-Interneurons in Inhibitory Control of Brain Function and Plasticity.

    PubMed

    Scheyltjens, Isabelle; Arckens, Lutgarde

    2016-01-01

    The mammalian neocortex contains many distinct inhibitory neuronal populations to balance excitatory neurotransmission. A correct excitation/inhibition equilibrium is crucial for normal brain development, functioning, and controlling lifelong cortical plasticity. Knowledge about how the inhibitory network contributes to brain plasticity however remains incomplete. Somatostatin- (SST-) interneurons constitute a large neocortical subpopulation of interneurons, next to parvalbumin- (PV-) and vasoactive intestinal peptide- (VIP-) interneurons. Unlike the extensively studied PV-interneurons, acknowledged as key components in guiding ocular dominance plasticity, the contribution of SST-interneurons is less understood. Nevertheless, SST-interneurons are ideally situated within cortical networks to integrate unimodal or cross-modal sensory information processing and therefore likely to be important mediators of experience-dependent plasticity. The lack of knowledge on SST-interneurons partially relates to the wide variety of distinct subpopulations present in the sensory neocortex. This review informs on those SST-subpopulations hitherto described based on anatomical, molecular, or electrophysiological characteristics and whose functional roles can be attributed based on specific cortical wiring patterns. A possible role for these subpopulations in experience-dependent plasticity will be discussed, emphasizing on learning-induced plasticity and on unimodal and cross-modal plasticity upon sensory loss. This knowledge will ultimately contribute to guide brain plasticity into well-defined directions to restore sensory function and promote lifelong learning. PMID:27403348

  11. Spatio-temporal pattern recognizers using spiking neurons and spike-timing-dependent plasticity.

    PubMed

    Humble, James; Denham, Susan; Wennekers, Thomas

    2012-01-01

    It has previously been shown that by using spike-timing-dependent plasticity (STDP), neurons can adapt to the beginning of a repeating spatio-temporal firing pattern in their input. In the present work, we demonstrate that this mechanism can be extended to train recognizers for longer spatio-temporal input signals. Using a number of neurons that are mutually connected by plastic synapses and subject to a global winner-takes-all mechanism, chains of neurons can form where each neuron is selective to a different segment of a repeating input pattern, and the neurons are feed-forwardly connected in such a way that both the correct input segment and the firing of the previous neurons are required in order to activate the next neuron in the chain. This is akin to a simple class of finite state automata. We show that nearest-neighbor STDP (where only the pre-synaptic spike most recent to a post-synaptic one is considered) leads to "nearest-neighbor" chains where connections only form between subsequent states in a chain (similar to classic "synfire chains"). In contrast, "all-to-all spike-timing-dependent plasticity" (where all pre- and post-synaptic spike pairs matter) leads to multiple connections that can span several temporal stages in the chain; these connections respect the temporal order of the neurons. It is also demonstrated that previously learnt individual chains can be "stitched together" by repeatedly presenting them in a fixed order. This way longer sequence recognizers can be formed, and potentially also nested structures. Robustness of recognition with respect to speed variations in the input patterns is shown to depend on rise-times of post-synaptic potentials and the membrane noise. It is argued that the memory capacity of the model is high, but could theoretically be increased using sparse codes. PMID:23087641

  12. Relationship between structural brainstem and brain plasticity and lower-limb training in spinal cord injury: a longitudinal pilot study.

    PubMed

    Villiger, Michael; Grabher, Patrick; Hepp-Reymond, Marie-Claude; Kiper, Daniel; Curt, Armin; Bolliger, Marc; Hotz-Boendermaker, Sabina; Kollias, Spyros; Eng, Kynan; Freund, Patrick

    2015-01-01

    Rehabilitative training has shown to improve significantly motor outcomes and functional walking capacity in patients with incomplete spinal cord injury (iSCI). However, whether performance improvements during rehabilitation relate to brain plasticity or whether it is based on functional adaptation of movement strategies remain uncertain. This study assessed training improvement-induced structural brain plasticity in chronic iSCI patients using longitudinal MRI. We used tensor-based morphometry (TBM) to analyze longitudinal brain volume changes associated with intensive virtual reality (VR)-augmented lower limb training in nine traumatic iSCI patients. The MRI data was acquired before and after a 4-week training period (16-20 training sessions). Before training, voxel-based morphometry (VBM) and voxel-based cortical thickness (VBCT) assessed baseline morphometric differences in nine iSCI patients compared to 14 healthy controls. The intense VR-augmented training of limb control improved significantly balance, walking speed, ambulation, and muscle strength in patients. Retention of clinical improvements was confirmed by the 3-4 months follow-up. In patients relative to controls, VBM revealed reductions of white matter volume within the brainstem and cerebellum and VBCT showed cortical thinning in the primary motor cortex. Over time, TBM revealed significant improvement-induced volume increases in the left middle temporal and occipital gyrus, left temporal pole and fusiform gyrus, both hippocampi, cerebellum, corpus callosum, and brainstem in iSCI patients. This study demonstrates structural plasticity at the cortical and brainstem level as a consequence of VR-augmented training in iSCI patients. These structural changes may serve as neuroimaging biomarkers of VR-augmented lower limb neurorehabilitation in addition to performance measures to detect improvements in rehabilitative training. PMID:25999842

  13. Relationship between structural brainstem and brain plasticity and lower-limb training in spinal cord injury: a longitudinal pilot study

    PubMed Central

    Villiger, Michael; Grabher, Patrick; Hepp-Reymond, Marie-Claude; Kiper, Daniel; Curt, Armin; Bolliger, Marc; Hotz-Boendermaker, Sabina; Kollias, Spyros; Eng, Kynan; Freund, Patrick

    2015-01-01

    Rehabilitative training has shown to improve significantly motor outcomes and functional walking capacity in patients with incomplete spinal cord injury (iSCI). However, whether performance improvements during rehabilitation relate to brain plasticity or whether it is based on functional adaptation of movement strategies remain uncertain. This study assessed training improvement-induced structural brain plasticity in chronic iSCI patients using longitudinal MRI. We used tensor-based morphometry (TBM) to analyze longitudinal brain volume changes associated with intensive virtual reality (VR)-augmented lower limb training in nine traumatic iSCI patients. The MRI data was acquired before and after a 4-week training period (16–20 training sessions). Before training, voxel-based morphometry (VBM) and voxel-based cortical thickness (VBCT) assessed baseline morphometric differences in nine iSCI patients compared to 14 healthy controls. The intense VR-augmented training of limb control improved significantly balance, walking speed, ambulation, and muscle strength in patients. Retention of clinical improvements was confirmed by the 3–4 months follow-up. In patients relative to controls, VBM revealed reductions of white matter volume within the brainstem and cerebellum and VBCT showed cortical thinning in the primary motor cortex. Over time, TBM revealed significant improvement-induced volume increases in the left middle temporal and occipital gyrus, left temporal pole and fusiform gyrus, both hippocampi, cerebellum, corpus callosum, and brainstem in iSCI patients. This study demonstrates structural plasticity at the cortical and brainstem level as a consequence of VR-augmented training in iSCI patients. These structural changes may serve as neuroimaging biomarkers of VR-augmented lower limb neurorehabilitation in addition to performance measures to detect improvements in rehabilitative training. PMID:25999842

  14. Experience-Dependent Neural Plasticity in the Adult Damaged Brain

    ERIC Educational Resources Information Center

    Kerr, Abigail L.; Cheng, Shao-Ying; Jones, Theresa A.

    2011-01-01

    Behavioral experience is at work modifying the structure and function of the brain throughout the lifespan, but it has a particularly dramatic influence after brain injury. This review summarizes recent findings on the role of experience in reorganizing the adult damaged brain, with a focus on findings from rodent stroke models of chronic upper…

  15. Heritability, evolvability, phenotypic plasticity and temporal variation in sperm-competition success of Drosophila melanogaster.

    PubMed

    Dobler, R; Reinhardt, K

    2016-05-01

    Sperm-competition success (SCS) is seen as centrally important for evolutionary change: superior fathers sire superior sons and thereby inherit the traits that make them superior. Additional hypotheses, that phenotypic plasticity in SCS and sperm ageing explain variation in paternity, are less considered. Even though various alleles have individually been shown to be correlated with variation in SCS, few studies have addressed the heritability, or evolvability, of overall SCS. Those studies that have addressed found low or no heritability and have not examined evolvability. They have further not excluded phenotypic plasticity, and temporal effects on SCS, despite their known dramatic effects on sperm function. In Drosophila melanogaster, we found that both standard components of sperm competition, sperm defence and sperm offence, showed nonsignificant heritability across several offspring cohorts. Instead, our analysis revealed, for the first time, the existence of phenotypic plasticity in SCS across an extreme environment (5% CO2 ), and an influence of sperm ageing. Evolvability of SCS was substantial for sperm defence but weak for sperm offence. Our results suggest that the paradigm of explaining evolution by sperm competition is more complex and will benefit from further experimental work on the heritability or evolvability of SCS, measuring phenotypic plasticity, and separating the effects of sperm competition and sperm ageing. PMID:26990919

  16. Neurophysiological markers of plastic brain reorganization following central and peripheral lesions.

    PubMed

    Ferreri, Florinda; Guerra, Andrea; Rossini, Paolo Maria

    2014-12-01

    There is increasing evidence supporting the concept that adult brain has the remarkable ability to plastically reorganize itself. Brain plasticity involves distinct functional and structural components and plays a crucial role in reorganizing central nervous system's networks after central and peripheral lesions in order to partly or totally restore lost and/or compromised functions. This plastic rearrangement occurs in fact not only after a central nervous system injury but also following a peripheral lesion. Interestingly, the existence of a certain type of maladaptive plasticity was clearly recognized in the last decade, which gives reason for example to poor out- come performances or aberrant phenomena. In this review we analyze stroke and amputees studies, as illustrative conditions of central and peripheral nervous system damage, and discuss the adaptive as well maladaptive plastic brain changes following these lesions. The emerging possibility, through neuro-imaging and neurophysiological advanced techniques, to clarify some crucial issues underlying brain plasticity will give the chance to modulate these mechanisms in a highly personalized therapy. This approach may have a tremendous impact in a variety of neuropsychiatric disorders opening a new era of restorative medicine. PMID:25987182

  17. The effect of inflammation and its reduction on brain plasticity in multiple sclerosis: MRI evidence.

    PubMed

    Tomassini, Valentina; d'Ambrosio, Alessandro; Petsas, Nikolaos; Wise, Richard G; Sbardella, Emilia; Allen, Marek; Tona, Francesca; Fanelli, Fulvia; Foster, Catherine; Carnì, Marco; Gallo, Antonio; Pantano, Patrizia; Pozzilli, Carlo

    2016-07-01

    Brain plasticity is the basis for systems-level functional reorganization that promotes recovery in multiple sclerosis (MS). As inflammation interferes with plasticity, its pharmacological modulation may restore plasticity by promoting desired patterns of functional reorganization. Here, we tested the hypothesis that brain plasticity probed by a visuomotor adaptation task is impaired with MS inflammation and that pharmacological reduction of inflammation facilitates its restoration. MS patients were assessed twice before (sessions 1 and 2) and once after (session 3) the beginning of Interferon beta (IFN beta), using behavioural and structural MRI measures. During each session, 2 functional MRI runs of a visuomotor task, separated by 25-minutes of task practice, were performed. Within-session between-run change in task-related functional signal was our imaging marker of plasticity. During session 1, patients were compared with healthy controls. Comparison of patients' sessions 2 and 3 tested the effect of reduced inflammation on our imaging marker of plasticity. The proportion of patients with gadolinium-enhancing lesions reduced significantly during IFN beta. In session 1, patients demonstrated a greater between-run difference in functional MRI activity of secondary visual areas and cerebellum than controls. This abnormally large practice-induced signal change in visual areas, and in functionally connected posterior parietal and motor cortices, was reduced in patients in session 3 compared with 2. Our results suggest that MS inflammation alters short-term plasticity underlying motor practice. Reduction of inflammation with IFN beta is associated with a restoration of this plasticity, suggesting that modulation of inflammation may enhance recovery-oriented strategies that rely on patients' brain plasticity. Hum Brain Mapp 37:2431-2445, 2016. © 2016 Wiley Periodicals, Inc. PMID:26991559

  18. Removing brakes on adult brain plasticity: from molecular to behavioral interventions

    PubMed Central

    Bavelier, D.; Levi, D.M.; Li, R.W.; Dan, Y.; Hensch, T.K.

    2010-01-01

    Adult brain plasticity, although possible, remains more restricted in scope than during development. Here, we address conditions under which circuit rewiring may be facilitated in the mature brain. At a cellular and molecular level, adult plasticity is actively limited. Some of these “brakes” are structural, such as peri-neuronal nets or myelin, which inhibit neurite outgrowth. Others are functional, acting directly upon excitatory-inhibitory balance within local circuits. Plasticity in adulthood can be induced either by lifting these brakes through invasive interventions or by exploiting endogenous permissive factors, such as neuromodulators. Using the amblyopic visual system as a model, we discuss genetic, pharmacological, and environmental removal of brakes to enable recovery of vision in adult rodents. Although these mechanisms remain largely uncharted in the human, we consider how they may provide a biological foundation for the remarkable increase in plasticity after action video game play by amblyopic subjects. PMID:21068299

  19. Rapid eye movement sleep promotes cortical plasticity in the developing brain

    PubMed Central

    Dumoulin Bridi, Michelle C.; Aton, Sara J.; Seibt, Julie; Renouard, Leslie; Coleman, Tammi; Frank, Marcos G.

    2015-01-01

    Rapid eye movement sleep is maximal during early life, but its function in the developing brain is unknown. We investigated the role of rapid eye movement sleep in a canonical model of developmental plasticity in vivo (ocular dominance plasticity in the cat) induced by monocular deprivation. Preventing rapid eye movement sleep after monocular deprivation reduced ocular dominance plasticity and inhibited activation of a kinase critical for this plasticity (extracellular signal–regulated kinase). Chronic single-neuron recording in freely behaving cats further revealed that cortical activity during rapid eye movement sleep resembled activity present during monocular deprivation. This corresponded to times of maximal extracellular signal–regulated kinase activation. These findings indicate that rapid eye movement sleep promotes molecular and network adaptations that consolidate waking experience in the developing brain. PMID:26601213

  20. Brain-machine interfaces can accelerate clarification of the principal mysteries and real plasticity of the brain

    PubMed Central

    Sakurai, Yoshio

    2014-01-01

    This perspective emphasizes that the brain-machine interface (BMI) research has the potential to clarify major mysteries of the brain and that such clarification of the mysteries by neuroscience is needed to develop BMIs. I enumerate five principal mysteries. The first is “how is information encoded in the brain?” This is the fundamental question for understanding what our minds are and is related to the verification of Hebb’s cell assembly theory. The second is “how is information distributed in the brain?” This is also a reconsideration of the functional localization of the brain. The third is “what is the function of the ongoing activity of the brain?” This is the problem of how the brain is active during no-task periods and what meaning such spontaneous activity has. The fourth is “how does the bodily behavior affect the brain function?” This is the problem of brain-body interaction, and obtaining a new “body” by a BMI leads to a possibility of changes in the owner’s brain. The last is “to what extent can the brain induce plasticity?” Most BMIs require changes in the brain’s neuronal activity to realize higher performance, and the neuronal operant conditioning inherent in the BMIs further enhances changes in the activity. PMID:24904323

  1. Central Role of Maladapted Astrocytic Plasticity in Ischemic Brain Edema Formation.

    PubMed

    Wang, Yu-Feng; Parpura, Vladimir

    2016-01-01

    Brain edema formation and the ensuing brain damages are the major cause of high mortality and long term disability following the occurrence of ischemic stroke. In this process, oxygen and glucose deprivation and the resulting reperfusion injury play primary roles. In response to the ischemic insult, the neurovascular unit experiences both intracellular and extracellular edemas, associated with maladapted astrocytic plasticity. The astrocytic plasticity includes both morphological and functional plasticity. The former involves a reactive gliosis and the subsequent glial retraction. It relates to the capacity of astrocytes to buffer changes in extracellular chemical levels, particularly K(+) and glutamate, as well as the integrity of the blood-brain barrier (BBB). The latter involves the expression and activity of a series of ion and water transport proteins. These molecules are grouped together around glial fibrillary acidic protein (GFAP) and water channel protein aquaporin 4 (AQP4) to form functional networks, regulate hydromineral balance across cell membranes and maintain the integrity of the BBB. Intense ischemic challenges can disrupt these capacities of astrocytes and result in their maladaptation. The maladapted astrocytic plasticity in ischemic stroke cannot only disrupt the hydromineral homeostasis across astrocyte membrane and the BBB, but also leads to disorders of the whole neurovascular unit. This review focuses on how the maladapted astrocytic plasticity in ischemic stroke plays the central role in the brain edema formation. PMID:27242440

  2. Central Role of Maladapted Astrocytic Plasticity in Ischemic Brain Edema Formation

    PubMed Central

    Wang, Yu-Feng; Parpura, Vladimir

    2016-01-01

    Brain edema formation and the ensuing brain damages are the major cause of high mortality and long term disability following the occurrence of ischemic stroke. In this process, oxygen and glucose deprivation and the resulting reperfusion injury play primary roles. In response to the ischemic insult, the neurovascular unit experiences both intracellular and extracellular edemas, associated with maladapted astrocytic plasticity. The astrocytic plasticity includes both morphological and functional plasticity. The former involves a reactive gliosis and the subsequent glial retraction. It relates to the capacity of astrocytes to buffer changes in extracellular chemical levels, particularly K+ and glutamate, as well as the integrity of the blood-brain barrier (BBB). The latter involves the expression and activity of a series of ion and water transport proteins. These molecules are grouped together around glial fibrillary acidic protein (GFAP) and water channel protein aquaporin 4 (AQP4) to form functional networks, regulate hydromineral balance across cell membranes and maintain the integrity of the BBB. Intense ischemic challenges can disrupt these capacities of astrocytes and result in their maladaptation. The maladapted astrocytic plasticity in ischemic stroke cannot only disrupt the hydromineral homeostasis across astrocyte membrane and the BBB, but also leads to disorders of the whole neurovascular unit. This review focuses on how the maladapted astrocytic plasticity in ischemic stroke plays the central role in the brain edema formation. PMID:27242440

  3. Nociception-induced spatial and temporal plasticity of synaptic connection and function in the hippocampal formation of rats: a multi-electrode array recording

    PubMed Central

    Zhao, Xiao-Yan; Liu, Ming-Gang; Yuan, Dong-Liang; Wang, Yan; He, Ying; Wang, Dan-Dan; Chen, Xue-Feng; Zhang, Fu-Kang; Li, Hua; He, Xiao-Sheng; Chen, Jun

    2009-01-01

    Background Pain is known to be processed by a complex neural network (neuromatrix) in the brain. It is hypothesized that under pathological state, persistent or chronic pain can affect various higher brain functions through ascending pathways, leading to co-morbidities or mental disability of pain. However, so far the influences of pathological pain on the higher brain functions are less clear and this may hinder the advances in pain therapy. In the current study, we studied spatiotemporal plasticity of synaptic connection and function in the hippocampal formation (HF) in response to persistent nociception. Results On the hippocampal slices of rats which had suffered from persistent nociception for 2 h by receiving subcutaneous bee venom (BV) or formalin injection into one hand paw, multisite recordings were performed by an 8 × 8 multi-electrode array probe. The waveform of the field excitatory postsynaptic potential (fEPSP), induced by perforant path electrical stimulation and pharmacologically identified as being activity-dependent and mediated by ionotropic glutamate receptors, was consistently positive-going in the dentate gyrus (DG), while that in the CA1 was negative-going in shape in naïve and saline control groups. For the spatial characteristics of synaptic plasticity, BV- or formalin-induced persistent pain significantly increased the number of detectable fEPSP in both DG and CA1 area, implicating enlargement of the synaptic connection size by the injury or acute inflammation. Moreover, the input-output function of synaptic efficacy was shown to be distinctly enhanced by the injury with the stimulus-response curve being moved leftward compared to the control. For the temporal plasticity, long-term potentiation produced by theta burst stimulation (TBS) conditioning was also remarkably enhanced by pain. Moreover, it is strikingly noted that the shape of fEPSP waveform was drastically deformed or split by a TBS conditioning under the condition of

  4. Cortical Plasticity in the Setting of Brain Tumors.

    PubMed

    Fisicaro, Ryan A; Jost, Ethan; Shaw, Katharina; Brennan, Nicole Petrovich; Peck, Kyung K; Holodny, Andrei I

    2016-02-01

    Cortical reorganization of function due to the growth of an adjacent brain tumor has clearly been demonstrated in a number of surgically proven cases. Such cases demonstrate the unmistakable implications for the neurosurgical treatment of brain tumors, as the cortical function may not reside where one may initially suspect based solely on the anatomical magnetic resonance imaging (MRI). Consequently, preoperative localization of eloquent areas adjacent to a brain tumor is necessary, as this may demonstrate unexpected organization, which may affect the neurosurgical approach to the lesion. However, in interpreting functional MRI studies, the interpreting physician must be cognizant of artifacts, which may limit the accuracy of functional MRI in the setting of brain tumors. PMID:26848558

  5. Effects of Diet on Brain Plasticity in Animal and Human Studies: Mind the Gap

    PubMed Central

    Dias, Gisele Pereira

    2014-01-01

    Dietary interventions have emerged as effective environmental inducers of brain plasticity. Among these dietary interventions, we here highlight the impact of caloric restriction (CR: a consistent reduction of total daily food intake), intermittent fasting (IF, every-other-day feeding), and diet supplementation with polyphenols and polyunsaturated fatty acids (PUFAs) on markers of brain plasticity in animal studies. Moreover, we also discuss epidemiological and intervention studies reporting the effects of CR, IF and dietary polyphenols and PUFAs on learning, memory, and mood. In particular, we evaluate the gap in mechanistic understanding between recent findings from animal studies and those human studies reporting that these dietary factors can benefit cognition, mood, and anxiety, aging, and Alzheimer's disease—with focus on the enhancement of structural and functional plasticity markers in the hippocampus, such as increased expression of neurotrophic factors, synaptic function and adult neurogenesis. Lastly, we discuss some of the obstacles to harnessing the promising effects of diet on brain plasticity in animal studies into effective recommendations and interventions to promote healthy brain function in humans. Together, these data reinforce the important translational concept that diet, a modifiable lifestyle factor, holds the ability to modulate brain health and function. PMID:24900924

  6. Effects of diet on brain plasticity in animal and human studies: mind the gap.

    PubMed

    Murphy, Tytus; Dias, Gisele Pereira; Thuret, Sandrine

    2014-01-01

    Dietary interventions have emerged as effective environmental inducers of brain plasticity. Among these dietary interventions, we here highlight the impact of caloric restriction (CR: a consistent reduction of total daily food intake), intermittent fasting (IF, every-other-day feeding), and diet supplementation with polyphenols and polyunsaturated fatty acids (PUFAs) on markers of brain plasticity in animal studies. Moreover, we also discuss epidemiological and intervention studies reporting the effects of CR, IF and dietary polyphenols and PUFAs on learning, memory, and mood. In particular, we evaluate the gap in mechanistic understanding between recent findings from animal studies and those human studies reporting that these dietary factors can benefit cognition, mood, and anxiety, aging, and Alzheimer's disease-with focus on the enhancement of structural and functional plasticity markers in the hippocampus, such as increased expression of neurotrophic factors, synaptic function and adult neurogenesis. Lastly, we discuss some of the obstacles to harnessing the promising effects of diet on brain plasticity in animal studies into effective recommendations and interventions to promote healthy brain function in humans. Together, these data reinforce the important translational concept that diet, a modifiable lifestyle factor, holds the ability to modulate brain health and function. PMID:24900924

  7. Plastic neuroscience: studying what the brain cares about

    PubMed Central

    Dumit, Joseph

    2014-01-01

    Drawing on Allan Newell's “You can't play 20 questions with nature and win,” this article proposes that neuroscience needs to go beyond binary hypothesis testing and design experiments that follow what neurons care about. Examples from Lettvin et. al. are used to demonstrate that one can experimentally play with neurons and generate surprising results. In this manner, brains are not confused with persons, rather, persons are understood to do things with their brains. PMID:24795589

  8. Plasticity following early-life brain injury: Insights from quantitative MRI.

    PubMed

    Fiori, Simona; Guzzetta, Andrea

    2015-03-01

    Over the last decade, the application of novel advanced neuroimaging techniques to study congenital brain damage has provided invaluable insights into the mechanisms underlying early neuroplasticity. The concept that is clearly emerging, both from human and nun-human studies, is that functional reorganization in the immature brain is substantially different from that of the more mature, developed brain. This applies to the reorganization of language, the sensorimotor system, and the visual system. The rapid implementation and development of higher order imaging methods will offer increased, currently unavailable knowledge about the specific mechanisms of cerebral plasticity in infancy, which is essential to support the development of early therapeutic interventions aimed at supporting and enhancing functional reorganization during a time of greatest potential brain plasticity. PMID:25813668

  9. Brain plasticity and recovery from early cortical injury.

    PubMed

    Kolb, Bryan; Mychasiuk, Richelle; Williams, Preston; Gibb, Robbin

    2011-09-01

    Neocortical development represents more than a simple unfolding of a genetic blueprint: rather, it represents a complex dance of genetic and environmental events that interact to adapt the brain to fit a particular environmental context. Most cortical regions are sensitive to a wide range of experiential factors during development and later in life, but the injured cortex appears to be unusually sensitive to perinatal experiences. This paper reviews the factors that influence how normal and injured brains (both focal and ischemic injuries) develop and adapt into adulthood. Such factors include prenatal experiences in utero as well as postnatal experiences throughout life. Examples include the effects of sensory and motor stimulation, psychoactive drugs (including illicit and prescription drugs), maternal and postnatal stress, neurotrophic factors, and pre- and postnatal diet. All these factors influence cerebral development and influence recovery from brain injury during development. PMID:21950386

  10. Activity-dependent synaptic plasticity modulates the critical phase of brain development.

    PubMed

    Chaudhury, Sraboni; Sharma, Vikram; Kumar, Vivek; Nag, Tapas C; Wadhwa, Shashi

    2016-04-01

    Plasticity or neuronal plasticity is a unique and adaptive feature of nervous system which allows neurons to reorganize their interactions in response to an intrinsic or extrinsic stimulation and shapes the formation and maintenance of a functional neuronal circuit. Synaptic plasticity is the most important form of neural plasticity and plays critical role during the development allowing the formation of precise neural connectivity via the process of pruning. In the sensory systems-auditory and visual, this process is heavily dependent on the external cues perceived during the development. Environmental enrichment paradigms in an activity-dependent manner result in early maturation of the synapses and more efficient trans-synaptic signaling or communication flow. This has been extensively observed in the avian auditory system. On the other hand, stimuli results in negative effect can cause alterations in the synaptic connectivity and strength resulting in various developmental brain disorders including autism, fragile X syndrome and rett syndrome. In this review we discuss the role of different forms of activity (spontaneous or environmental) during the development of the nervous system in modifying synaptic plasticity necessary for shaping the adult brain. Also, we try to explore various factors (molecular, genetic and epigenetic) involved in altering the synaptic plasticity in positive and negative way. PMID:26515724

  11. Plasticity in the Developing Brain: Intellectual, Language and Academic Functions in Children with Ischaemic Perinatal Stroke

    ERIC Educational Resources Information Center

    Ballantyne, Angela O.; Spilkin, Amy M.; Hesselink, John; Trauner, Doris A.

    2008-01-01

    The developing brain has the capacity for a great deal of plasticity. A number of investigators have demonstrated that intellectual and language skills may be in the normal range in children following unilateral perinatal stroke. Questions have been raised, however, about whether these skills can be maintained at the same level as the brain…

  12. Principles of Experience-Dependent Neural Plasticity: Implications for Rehabilitation after Brain Damage

    ERIC Educational Resources Information Center

    Kleim, Jeffrey A.; Jones, Theresa A.

    2008-01-01

    Purpose: This paper reviews 10 principles of experience-dependent neural plasticity and considerations in applying them to the damaged brain. Method: Neuroscience research using a variety of models of learning, neurological disease, and trauma are reviewed from the perspective of basic neuroscientists but in a manner intended to be useful for the…

  13. Brain Plasticity and the Art of Teaching to Learn

    ERIC Educational Resources Information Center

    Martinez, Margaret

    2005-01-01

    "Everyone thinks of changing the world, but no one thinks of changing himself, "wrote Leo Tolstoy. Have you ever thought about how learning changes your brain? If yes, this paper may help you explore the research that will change our learning landscape in the next few years! Recent developers in the neurosciences and education research…

  14. PET-imaging of brain plasticity after cochlear implantation.

    PubMed

    Strelnikov, K; Marx, M; Lagleyre, S; Fraysse, B; Deguine, O; Barone, P

    2015-04-01

    In this article, we review the PET neuroimaging literature, which indicates peculiarities of brain networks involved in speech restoration after cochlear implantation. We consider data on implanted patients during stimulation as well as during resting state, which indicates basic long-term reorganisation of brain functional architecture. On the basis of our analysis of neuroimaging literature and considering our own studies, we indicate that auditory recovery in deaf patients after cochlear implantation partly relies on visual cues. The brain develops mechanisms of audio-visual integration as a strategy to achieve high levels of speech recognition. It turns out that this neuroimaging evidence is in line with behavioural findings of better audiovisual integration in these patients. Thus, strong visually and audio-visually based rehabilitation during the first months after cochlear implantation would significantly improve and fasten the functional recovery of speech intelligibility and other auditory functions in these patients. We provide perspectives for further neuroimaging studies in cochlear implanted patients, which would help understand brain organisation to restore auditory cognitive processing in the implanted patients and would potentially suggest novel approaches for their rehabilitation. This article is part of a Special Issue entitled . PMID:25448166

  15. Brain plasticity and functional losses in the aged: scientific bases for a novel intervention.

    PubMed

    Mahncke, Henry W; Bronstone, Amy; Merzenich, Michael M

    2006-01-01

    Aging is associated with progressive losses in function across multiple systems, including sensation, cognition, memory, motor control, and affect. The traditional view has been that functional decline in aging is unavoidable because it is a direct consequence of brain machinery wearing down over time. In recent years, an alternative perspective has emerged, which elaborates on this traditional view of age-related functional decline. This new viewpoint--based upon decades of research in neuroscience, experimental psychology, and other related fields--argues that as people age, brain plasticity processes with negative consequences begin to dominate brain functioning. Four core factors--reduced schedules of brain activity, noisy processing, weakened neuromodulatory control, and negative learning--interact to create a self-reinforcing downward spiral of degraded brain function in older adults. This downward spiral might begin from reduced brain activity due to behavioral change, from a loss in brain function driven by aging brain machinery, or more likely from both. In aggregate, these interrelated factors promote plastic changes in the brain that result in age-related functional decline. This new viewpoint on the root causes of functional decline immediately suggests a remedial approach. Studies of adult brain plasticity have shown that substantial improvement in function and/or recovery from losses in sensation, cognition, memory, motor control, and affect should be possible, using appropriately designed behavioral training paradigms. Driving brain plasticity with positive outcomes requires engaging older adults in demanding sensory, cognitive, and motor activities on an intensive basis, in a behavioral context designed to re-engage and strengthen the neuromodulatory systems that control learning in adults, with the goal of increasing the fidelity, reliability, and power of cortical representations. Such a training program would serve a substantial unmet need in

  16. On-line optical imaging of the human brain with 160-ms temporal resolution

    NASA Astrophysics Data System (ADS)

    Franceschini, Maria Angela; Toronov, Vladislav; Filiaci, M.; Gratton, Enrico; Fantini, Sergio

    2000-01-01

    We have developed an instrument for non-invasive optical imaging of the human brain that produces on-line images with a temporal resolution of 160 ms. The imaged quantities are the temporal changes in cerebral oxy-hemoglobin and deoxy-hemoglobin concentrations. We report real-time videos of the arterial pulsation and motor activation recorded on a 4 x 9 cm 2 area of the cerebral cortex in a healthy human subject. This approach to optical brain imaging is a powerful tool for the investigation of the spatial and temporal features of the optical signals collected on the brain.

  17. Reorganization and plastic changes of the human brain associated with skill learning and expertise

    PubMed Central

    Chang, Yongmin

    2014-01-01

    Novel experience and learning new skills are known as modulators of brain function. Advances in non-invasive brain imaging have provided new insight into structural and functional reorganization associated with skill learning and expertise. Especially, significant imaging evidences come from the domains of sports and music. Data from in vivo imaging studies in sports and music have provided vital information on plausible neural substrates contributing to brain reorganization underlying skill acquisition in humans. This mini review will attempt to take a narrow snapshot of imaging findings demonstrating functional and structural plasticity that mediate skill learning and expertise while identifying converging areas of interest and possible avenues for future research. PMID:24550812

  18. Plasticity of Hippocampal Excitatory-Inhibitory Balance: Missing the Synaptic Control in the Epileptic Brain.

    PubMed

    Bonansco, Christian; Fuenzalida, Marco

    2016-01-01

    Synaptic plasticity is the capacity generated by experience to modify the neural function and, thereby, adapt our behaviour. Long-term plasticity of glutamatergic and GABAergic transmission occurs in a concerted manner, finely adjusting the excitatory-inhibitory (E/I) balance. Imbalances of E/I function are related to several neurological diseases including epilepsy. Several evidences have demonstrated that astrocytes are able to control the synaptic plasticity, with astrocytes being active partners in synaptic physiology and E/I balance. Here, we revise molecular evidences showing the epileptic stage as an abnormal form of long-term brain plasticity and propose the possible participation of astrocytes to the abnormal increase of glutamatergic and decrease of GABAergic neurotransmission in epileptic networks. PMID:27006834

  19. Plasticity of Hippocampal Excitatory-Inhibitory Balance: Missing the Synaptic Control in the Epileptic Brain

    PubMed Central

    Bonansco, Christian; Fuenzalida, Marco

    2016-01-01

    Synaptic plasticity is the capacity generated by experience to modify the neural function and, thereby, adapt our behaviour. Long-term plasticity of glutamatergic and GABAergic transmission occurs in a concerted manner, finely adjusting the excitatory-inhibitory (E/I) balance. Imbalances of E/I function are related to several neurological diseases including epilepsy. Several evidences have demonstrated that astrocytes are able to control the synaptic plasticity, with astrocytes being active partners in synaptic physiology and E/I balance. Here, we revise molecular evidences showing the epileptic stage as an abnormal form of long-term brain plasticity and propose the possible participation of astrocytes to the abnormal increase of glutamatergic and decrease of GABAergic neurotransmission in epileptic networks. PMID:27006834

  20. Spatio-Temporal Plasticity in Chromatin Organization in Mouse Cell Differentiation and during Drosophila Embryogenesis

    PubMed Central

    Bhattacharya, Dipanjan; Talwar, Shefali; Mazumder, Aprotim; Shivashankar, G.V.

    2009-01-01

    Cellular differentiation and developmental programs require changing patterns of gene expression. Recent experiments have revealed that chromatin organization is highly dynamic within living cells, suggesting possible mechanisms to alter gene expression programs, yet the physical basis of this organization is unclear. In this article, we contrast the differences in the dynamic organization of nuclear architecture between undifferentiated mouse embryonic stem cells and terminally differentiated primary mouse embryonic fibroblasts. Live-cell confocal tracking of nuclear lamina evidences highly flexible nuclear architecture within embryonic stem cells as compared to primary mouse embryonic fibroblasts. These cells also exhibit significant changes in histone and heterochromatin binding proteins correlated with their distinct epigenetic signatures as quantified by immunofluorescence analysis. Further, we follow histone dynamics during the development of the Drosophila melanogaster embryo, which gives an insight into spatio-temporal evolution of chromatin plasticity in an organismal context. Core histone dynamics visualized by fluorescence recovery after photobleaching, fluorescence correlation spectroscopy, and fluorescence anisotropy within the developing embryo, revealed an intriguing transition from plastic to frozen chromatin assembly synchronous with cellular differentiation. In the embryo, core histone proteins are highly mobile before cellularization, actively exchanging with the pool in the yolk. This hyperdynamic mobility decreases as cellularization and differentiation programs set in. These findings reveal a direct correlation between the dynamic transitions in chromatin assembly with the onset of cellular differentiation and developmental programs. PMID:19413989

  1. Functional Plasticity in Childhood Brain Disorders: When, What, How, and Whom to Assess

    PubMed Central

    Dennis, Maureen; Spiegler, Brenda J.; Simic, Nevena; Sinopoli, Katia J.; Wilkinson, Amy; Yeates, Keith Owen; Taylor, H. Gerry; Bigler, Erin D.; Fletcher, Jack M.

    2014-01-01

    At every point in the lifespan, the brain balances malleable processes representing neural plasticity that promote change with homeostatic processes that promote stability. Whether a child develops typically or with brain injury, his or her neural and behavioral outcome is constructed through transactions between plastic and homeostatic processes and the environment. In clinical research with children in whom the developing brain has been malformed or injured, behavioral outcomes provide an index of the result of plasticity, homeostasis, and environmental transactions. When should we assess outcome in relation to age at brain insult, time since brain insult, and age of the child at testing? What should we measure? Functions involving reacting to the past and predicting the future, as well as social-affective skills, are important. How should we assess outcome? Information from performance variability, direct measures and informants, overt and covert measures, and laboratory and ecological measures should be considered. In whom are we assessing outcome? Assessment should be cognizant of individual differences in gene, socio-economic status (SES), parenting, nutrition, and interpersonal supports, which are moderators that interact with other factors influencing functional outcome. PMID:24821533

  2. Chronic deep brain stimulation in mesial temporal lobe epilepsy.

    PubMed

    Boëx, Colette; Seeck, Margitta; Vulliémoz, Serge; Rossetti, Andrea O; Staedler, Claudio; Spinelli, Laurent; Pegna, Alan J; Pralong, Etienne; Villemure, Jean-Guy; Foletti, Giovanni; Pollo, Claudio

    2011-07-01

    The objective of this study was to evaluate the efficiency and the effects of changes in parameters of chronic amygdala-hippocampal deep brain stimulation (AH-DBS) in mesial temporal lobe epilepsy (TLE). Eight pharmacoresistant patients, not candidates for ablative surgery, received chronic AH-DBS (130 Hz, follow-up 12-24 months): two patients with hippocampal sclerosis (HS) and six patients with non-lesional mesial TLE (NLES). The effects of stepwise increases in intensity (0-Off to 2 V) and stimulation configuration (quadripolar and bipolar), on seizure frequency and neuropsychological performance were studied. The two HS patients obtained a significant decrease (65-75%) in seizure frequency with high voltage bipolar DBS (≥1 V) or with quadripolar stimulation. Two out of six NLES patients became seizure-free, one of them without stimulation, suggesting a microlesional effect. Two NLES patients experienced reductions of seizure frequency (65-70%), whereas the remaining two showed no significant seizure reduction. Neuropsychological evaluations showed reversible memory impairments in two patients under strong stimulation only. AH-DBS showed long-term efficiency in most of the TLE patients. It is a valuable treatment option for patients who suffer from drug resistant epilepsy and who are not candidates for resective surgery. The effects of changes in the stimulation parameters suggest that a large zone of stimulation would be required in HS patients, while a limited zone of stimulation or even a microlesional effect could be sufficient in NLES patients, for whom the importance of the proximity of the electrode to the epileptogenic zone remains to be studied. Further studies are required to ascertain these latter observations. PMID:21489828

  3. Studying synaptic plasticity in the human brain and opportunities for drug discovery.

    PubMed

    Nathan, Pradeep J; Cobb, Stuart R; Lu, Bai; Bullmore, Edward T; Davies, Ceri H

    2011-10-01

    Synaptic plasticity is the ability of synaptic connections between neurons to be strengthened or weakened; a process that is central to the information processing within the brain and which plays a particularly important role in enabling higher cognitive processes [1,2]. Its role in disease is becoming increasingly clear across a wide spectrum of CNS disorders. Thus, for example, dysfunctional synaptic plasticity has been reported in neurodegenerative disorders such as Alzheimer's Disease (AD) as well as in schizophrenia and in a range of disorders associated with learning disabilities [3]. Moreover, maladaptive plasticity processes in response to specific external challenges are believed to underlie disorders such as addiction and post-traumatic stress disorder (PTSD). The molecular basis of normal and disease plasticity is rapidly being unravelled such that synaptic plasticity now provides a unique platform from which to launch the hunt for highly innovative drugs to treat CNS disease by either, firstly, rectifying identifiable abnormalities in these processes, or secondly, utilizing these processes as a vehicle to rectify, or bypass, other mechanisms underlying disease. In this respect, recent advances have been made in studying synaptic plasticity in humans at the molecular through to clinical level and these approaches now provide a real opportunity to test synaptic plasticity as a treatment paradigm for a wide variety of CNS disorders. PMID:21737346

  4. Brain plasticity as a basis for recovery of function in humans.

    PubMed

    Bach-y-Rita, P

    1990-01-01

    One of the factors leading to the virtual neglect of the long-term potential for functional recovery following brain damage was the eclipse of plasticity concepts during the 100 years following Broca's 1861 publication on location of function. However, in the last 30 years evidence has been accumulating that demonstrates the plasticity of the brain and thus recovery potential is a subject of practical as well as theoretical interest. "Unmasking" of relatively inactive pathways, the taking over of functional representation by undamaged brain tissue, and neuronal group selection are among the mechanisms that are being explored. Human models of recovery of function include hemispherectomy patients that have regained bilateral function, facial paralysis patients who recover function (with appropriate rehabilitation) after VII-XII cranial nerve anastomosis, and patients with muscle transpositions to re-establish lost motor functions. The role of early and late rehabilitation, with attention to psychosocial and environmental factors, appears to be critical for recovery. PMID:2395525

  5. Sex Hormones Regulate Cytoskeletal Proteins Involved in Brain Plasticity

    PubMed Central

    Hansberg-Pastor, Valeria; González-Arenas, Aliesha; Piña-Medina, Ana Gabriela; Camacho-Arroyo, Ignacio

    2015-01-01

    In the brain of female mammals, including humans, a number of physiological and behavioral changes occur as a result of sex hormone exposure. Estradiol and progesterone regulate several brain functions, including learning and memory. Sex hormones contribute to shape the central nervous system by modulating the formation and turnover of the interconnections between neurons as well as controlling the function of glial cells. The dynamics of neuron and glial cells morphology depends on the cytoskeleton and its associated proteins. Cytoskeletal proteins are necessary to form neuronal dendrites and dendritic spines, as well as to regulate the diverse functions in astrocytes. The expression pattern of proteins, such as actin, microtubule-associated protein 2, Tau, and glial fibrillary acidic protein, changes in a tissue-specific manner in the brain, particularly when variations in sex hormone levels occur during the estrous or menstrual cycles or pregnancy. Here, we review the changes in structure and organization of neurons and glial cells that require the participation of cytoskeletal proteins whose expression and activity are regulated by estradiol and progesterone. PMID:26635640

  6. Sex Hormones Regulate Cytoskeletal Proteins Involved in Brain Plasticity.

    PubMed

    Hansberg-Pastor, Valeria; González-Arenas, Aliesha; Piña-Medina, Ana Gabriela; Camacho-Arroyo, Ignacio

    2015-01-01

    In the brain of female mammals, including humans, a number of physiological and behavioral changes occur as a result of sex hormone exposure. Estradiol and progesterone regulate several brain functions, including learning and memory. Sex hormones contribute to shape the central nervous system by modulating the formation and turnover of the interconnections between neurons as well as controlling the function of glial cells. The dynamics of neuron and glial cells morphology depends on the cytoskeleton and its associated proteins. Cytoskeletal proteins are necessary to form neuronal dendrites and dendritic spines, as well as to regulate the diverse functions in astrocytes. The expression pattern of proteins, such as actin, microtubule-associated protein 2, Tau, and glial fibrillary acidic protein, changes in a tissue-specific manner in the brain, particularly when variations in sex hormone levels occur during the estrous or menstrual cycles or pregnancy. Here, we review the changes in structure and organization of neurons and glial cells that require the participation of cytoskeletal proteins whose expression and activity are regulated by estradiol and progesterone. PMID:26635640

  7. Astrocytes: Orchestrating synaptic plasticity?

    PubMed

    De Pittà, M; Brunel, N; Volterra, A

    2016-05-26

    Synaptic plasticity is the capacity of a preexisting connection between two neurons to change in strength as a function of neural activity. Because synaptic plasticity is the major candidate mechanism for learning and memory, the elucidation of its constituting mechanisms is of crucial importance in many aspects of normal and pathological brain function. In particular, a prominent aspect that remains debated is how the plasticity mechanisms, that encompass a broad spectrum of temporal and spatial scales, come to play together in a concerted fashion. Here we review and discuss evidence that pinpoints to a possible non-neuronal, glial candidate for such orchestration: the regulation of synaptic plasticity by astrocytes. PMID:25862587

  8. Differential Pharmacological Effects on Brain Reactivity and Plasticity in Alzheimer’s Disease

    PubMed Central

    Brem, Anna-Katharine; Atkinson, Natasha J.; Seligson, Erica E.; Pascual-Leone, Alvaro

    2013-01-01

    Acetylcholinesterase inhibitors (AChEIs) are the most commonly prescribed monotherapeutic medications for Alzheimer’s disease (AD). However, their underlying neurophysiological effects remain largely unknown. We investigated the effects of monotherapy (AChEI) and combination therapy (AChEI and memantine) on brain reactivity and plasticity. Patients treated with monotherapy (AChEI) (N = 7) were compared to patients receiving combination therapy (COM) (N = 9) and a group of age-matched, healthy controls (HCs) (N = 13). Cortical reactivity and plasticity of the motor cortex were examined using transcranial magnetic stimulation. Cognitive functions were assessed with the cognitive subscale of the Alzheimer Disease Assessment Scale-Cognitive Subscale (ADAS-Cog), activities of daily living (ADLs) with the ADCS-ADL. In addition we assessed the degree of brain atrophy by measuring brain-scalp distances in seven different brain areas. Patient groups differed in resting motor threshold and brain atrophy, with COM showing a lower motor threshold but less atrophy than AChEI. COM showed similar plasticity effects as the HC group, while plasticity was reduced in AChEI. Long-interval intracortical inhibition (LICI) was impaired in both patient groups when compared to HC. ADAS-Cog scores were positively correlated with LICI measures and with brain atrophy, specifically in the left inferior parietal cortex. AD patients treated with mono- or combination-therapy show distinct neurophysiological patterns. Further studies should investigate whether these measures might serve as biomarkers of treatment response and whether they could guide other therapeutic interventions. PMID:24109459

  9. Prismatic Adaptation Induces Plastic Changes onto Spatial and Temporal Domains in Near and Far Space

    PubMed Central

    Patané, Ivan; Farnè, Alessandro; Frassinetti, Francesca

    2016-01-01

    A large literature has documented interactions between space and time suggesting that the two experiential domains may share a common format in a generalized magnitude system (ATOM theory). To further explore this hypothesis, here we measured the extent to which time and space are sensitive to the same sensorimotor plasticity processes, as induced by classical prismatic adaptation procedures (PA). We also exanimated whether spatial-attention shifts on time and space processing, produced through PA, extend to stimuli presented beyond the immediate near space. Results indicated that PA affected both temporal and spatial representations not only in the near space (i.e., the region within which the adaptation occurred), but also in the far space. In addition, both rightward and leftward PA directions caused opposite and symmetrical modulations on time processing, whereas only leftward PA biased space processing rightward. We discuss these findings within the ATOM framework and models that account for PA effects on space and time processing. We propose that the differential and asymmetrical effects following PA may suggest that temporal and spatial representations are not perfectly aligned. PMID:26981286

  10. Temporal and Spatial Variations of Pickup Ions seen on STEREO/PLASTIC

    NASA Astrophysics Data System (ADS)

    Kucharek, H.; Klecker, B.; Simunac, K.; Russell, C.; Moebius, E.; Popecki, M.; Galvin, A.; Kistler, L.; Ellis, L.; Gustafson, A.; Barry, J.; Singer, K.; Farrugia, C.; Lee, M.; Blush, L.; Karrer, R.; Bochsler, P.; Wurz, P.; Wimmer-Schweingruber, R.; Thompson, B.; Luhmann, J.

    2008-12-01

    Pickup ions seem to be a perfect tracer of interplanetary discontinuities in the heliosphere and they provide important information on acceleration processes at these structures and in the turbulent solar wind (i.e. suprathermal tails). Studies of pickup ions using AMPTE, Ulysses, SOHO, Wind and ACE demonstrated that pickup ion fluxes and the shape of their distributions can vary substantially on time scales from less than one hour to many days. These variations have been attributed to changes in the interplanetary magnetic field (IMF) direction and strength in the sense of incomplete pickup and/or density compressions and decompressions. For instance, at CIRs one observes the most intense and most prolonged enhancements of energetic helium pickup ions. At present, the vast majority of the observed temporal variations remain unexplained. Furthermore, spatial variations of pickup ion distributions could not be studied with single spacecraft observation. Simultaneous observations of pickup ion distributions with the PLASTIC instrument on STEREO A and B now provide the opportunity to follow pickup ion variations on spatial scales from a few 106 km to 108 km. In the early mission phase STEREO A and B were often along the same magnetic field flux tubes. This allows us to study temporal effects. With increasing spacecraft separation spatial effects can be studied. In this presentation we will show STEREO observations of helium pickup ion spectra and fluxes for 2007/8 in their dependence on solar wind density, speed and flux as well IMF direction and strength on both spacecraft. We then determined whether the observed variations are mainly correlated features that are associated with spatial structures passing the STEREO spacecraft at different times (such as CIRs or the focusing cone), or whether they have a substantial uncorrelated component indicative of temporal variations.

  11. Temporal plasticity involved in recovery from manual dexterity deficit after motor cortex lesion in macaque monkeys.

    PubMed

    Murata, Yumi; Higo, Noriyuki; Hayashi, Takuya; Nishimura, Yukio; Sugiyama, Yoko; Oishi, Takao; Tsukada, Hideo; Isa, Tadashi; Onoe, Hirotaka

    2015-01-01

    The question of how intensive motor training restores motor function after brain damage or stroke remains unresolved. Here we show that the ipsilesional ventral premotor cortex (PMv) and perilesional primary motor cortex (M1) of rhesus macaque monkeys are involved in the recovery of manual dexterity after a lesion of M1. A focal lesion of the hand digit area in M1 was made by means of ibotenic acid injection. This lesion initially caused flaccid paralysis in the contralateral hand but was followed by functional recovery of hand movements, including precision grip, during the course of daily postlesion motor training. Brain imaging of regional cerebral blood flow by means of H2 (15)O-positron emission tomography revealed enhanced activity of the PMv during the early postrecovery period and increased functional connectivity within M1 during the late postrecovery period. The causal role of these areas in motor recovery was confirmed by means of pharmacological inactivation by muscimol during the different recovery periods. These findings indicate that, in both the remaining primary motor and premotor cortical areas, time-dependent plastic changes in neural activity and connectivity are involved in functional recovery from the motor deficit caused by the M1 lesion. Therefore, it is likely that the PMv, an area distant from the core of the lesion, plays an important role during the early postrecovery period, whereas the perilesional M1 contributes to functional recovery especially during the late postrecovery period. PMID:25568105

  12. Motor Skill Acquisition Promotes Human Brain Myelin Plasticity.

    PubMed

    Lakhani, Bimal; Borich, Michael R; Jackson, Jacob N; Wadden, Katie P; Peters, Sue; Villamayor, Anica; MacKay, Alex L; Vavasour, Irene M; Rauscher, Alexander; Boyd, Lara A

    2016-01-01

    Experience-dependent structural changes are widely evident in gray matter. Using diffusion weighted imaging (DWI), the neuroplastic effect of motor training on white matter in the brain has been demonstrated. However, in humans it is not known whether specific features of white matter relate to motor skill acquisition or if these structural changes are associated to functional network connectivity. Myelin can be objectively quantified in vivo and used to index specific experience-dependent change. In the current study, seventeen healthy young adults completed ten sessions of visuomotor skill training (10,000 total movements) using the right arm. Multicomponent relaxation imaging was performed before and after training. Significant increases in myelin water fraction, a quantitative measure of myelin, were observed in task dependent brain regions (left intraparietal sulcus [IPS] and left parieto-occipital sulcus). In addition, the rate of motor skill acquisition and overall change in myelin water fraction in the left IPS were negatively related, suggesting that a slower rate of learning resulted in greater neuroplastic change. This study provides the first evidence for experience-dependent changes in myelin that are associated with changes in skilled movements in healthy young adults. PMID:27293906

  13. Motor Skill Acquisition Promotes Human Brain Myelin Plasticity

    PubMed Central

    Lakhani, Bimal; Borich, Michael R.; Jackson, Jacob N.; Wadden, Katie P.; Peters, Sue; Villamayor, Anica; MacKay, Alex L.; Vavasour, Irene M.; Rauscher, Alexander; Boyd, Lara A.

    2016-01-01

    Experience-dependent structural changes are widely evident in gray matter. Using diffusion weighted imaging (DWI), the neuroplastic effect of motor training on white matter in the brain has been demonstrated. However, in humans it is not known whether specific features of white matter relate to motor skill acquisition or if these structural changes are associated to functional network connectivity. Myelin can be objectively quantified in vivo and used to index specific experience-dependent change. In the current study, seventeen healthy young adults completed ten sessions of visuomotor skill training (10,000 total movements) using the right arm. Multicomponent relaxation imaging was performed before and after training. Significant increases in myelin water fraction, a quantitative measure of myelin, were observed in task dependent brain regions (left intraparietal sulcus [IPS] and left parieto-occipital sulcus). In addition, the rate of motor skill acquisition and overall change in myelin water fraction in the left IPS were negatively related, suggesting that a slower rate of learning resulted in greater neuroplastic change. This study provides the first evidence for experience-dependent changes in myelin that are associated with changes in skilled movements in healthy young adults. PMID:27293906

  14. Wnts in adult brain: from synaptic plasticity to cognitive deficiencies

    PubMed Central

    Oliva, Carolina A.; Vargas, Jessica Y.; Inestrosa, Nibaldo C.

    2013-01-01

    During development of the central nervous system the Wnt signaling pathway has been implicated in a wide spectrum of physiological processes, including neuronal connectivity and synapse formation. Wnt proteins and components of the Wnt pathway are expressed in the brain since early development to the adult life, however, little is known about its role in mature synapses. Here, we review evidences indicating that Wnt proteins participate in the remodeling of pre- and post-synaptic regions, thus modulating synaptic function. We include the most recent data in the literature showing that Wnts are constantly released in the brain to maintain the basal neural activity. Also, we review the evidences that involve components of the Wnt pathway in the development of neurological and mental disorders, including a special emphasis on in vivo studies that relate behavioral abnormalities to deficiencies in Wnt signaling. Finally, we include the evidences that support a neuroprotective role of Wnt proteins in Alzheimer’s disease. We postulate that deregulation in Wnt signaling might have a fundamental role in the origin of neurological diseases, by altering the synaptic function at stages where the phenotype is not yet established but when the cognitive decline starts. PMID:24348327

  15. Using brain-computer interfaces to induce neural plasticity and restore function

    NASA Astrophysics Data System (ADS)

    Grosse-Wentrup, Moritz; Mattia, Donatella; Oweiss, Karim

    2011-04-01

    Analyzing neural signals and providing feedback in realtime is one of the core characteristics of a brain-computer interface (BCI). As this feature may be employed to induce neural plasticity, utilizing BCI technology for therapeutic purposes is increasingly gaining popularity in the BCI community. In this paper, we discuss the state-of-the-art of research on this topic, address the principles of and challenges in inducing neural plasticity by means of a BCI, and delineate the problems of study design and outcome evaluation arising in this context. We conclude with a list of open questions and recommendations for future research in this field.

  16. Traumatic Brain Injury Results in Disparate Regions of Chondroitin Sulfate Proteoglycan Expression That Are Temporally Limited

    PubMed Central

    Harris, N.G.; Carmichael, S.T.; Hovda, D.A.; Sutton, R.L.

    2010-01-01

    Axonal injury is a major hallmark of traumatic brain injury (TBI), and it seems likely that therapies directed toward enhancing axon repair could potentially improve functional outcomes. One potential target is chondroitin sulfate proteoglycans (CSPGs), which are major axon growth inhibitory molecules that are generally, but not always, up-regulated after central nervous system injury. The current study was designed to determine temporal changes in cerebral cortical mRNA or protein expression levels of CSPGs and to determine their regional localization and cellular association by using immunohistochemistry in a controlled cortical impact model of TBI. The results showed significant increases in versican mRNA at 4 and 14 days after TBI but no change in neurocan, aggrecan, or phosphacan. Semiquantitative Western blot (WB) analysis of cortical CSPG protein expression revealed a significant ipsilateral decrease of all CSPGs at 1 day after TBI. Lower CSPG protein levels were sustained until at least 14 days, after which the levels began to normalize. Immunohistochemistry data confirm previous reports of regional increases in CSPG proteins after CNS injury, seen primarily within the developing glial scar after TBI, but also corroborate the WB data by revealing wide areas of pericontusional tissue that are deficient in both extracellular and perineuronal net-associated CSPGs. Given the evidence that CSPGs are largely inhibitory to axonal growth, we interpret these data to indicate a potential for regional spontaneous plasticity after TBI. If this were the case, the gradual normalization of CSPG proteins over time postinjury would suggest that this may be temporally as well as regionally limited. PMID:19437549

  17. Evolution, development, and plasticity of the human brain: from molecules to bones.

    PubMed

    Hrvoj-Mihic, Branka; Bienvenu, Thibault; Stefanacci, Lisa; Muotri, Alysson R; Semendeferi, Katerina

    2013-01-01

    Neuroanatomical, molecular, and paleontological evidence is examined in light of human brain evolution. The brain of extant humans differs from the brains of other primates in its overall size and organization, and differences in size and organization of specific cortical areas and subcortical structures implicated into complex cognition and social and emotional processing. The human brain is also characterized by functional lateralizations, reflecting specializations of the cerebral hemispheres in humans for different types of processing, facilitating fast and reliable communication between neural cells in an enlarged brain. The features observed in the adult brain reflect human-specific patterns of brain development. Compared to the brains of other primates, the human brain takes longer to mature, promoting an extended period for establishing cortical microcircuitry and its modifications. Together, these features may underlie the prolonged period of learning and acquisition of technical and social skills necessary for survival, creating a unique cognitive and behavioral niche typical of our species. The neuroanatomical findings are in concordance with molecular analyses, which suggest a trend toward heterochrony in the expression of genes implicated in different functions. These include synaptogenesis, neuronal maturation, and plasticity in humans, mutations in genes implicated in neurite outgrowth and plasticity, and an increased role of regulatory mechanisms, potentially promoting fast modification of neuronal morphologies in response to new computational demands. At the same time, endocranial casts of fossil hominins provide an insight into the timing of the emergence of uniquely human features in the course of evolution. We conclude by proposing several ways of combining comparative neuroanatomy, molecular biology and insights gained from fossil endocasts in future research. PMID:24194709

  18. Evolution, development, and plasticity of the human brain: from molecules to bones

    PubMed Central

    Hrvoj-Mihic, Branka; Bienvenu, Thibault; Stefanacci, Lisa; Muotri, Alysson R.; Semendeferi, Katerina

    2013-01-01

    Neuroanatomical, molecular, and paleontological evidence is examined in light of human brain evolution. The brain of extant humans differs from the brains of other primates in its overall size and organization, and differences in size and organization of specific cortical areas and subcortical structures implicated into complex cognition and social and emotional processing. The human brain is also characterized by functional lateralizations, reflecting specializations of the cerebral hemispheres in humans for different types of processing, facilitating fast and reliable communication between neural cells in an enlarged brain. The features observed in the adult brain reflect human-specific patterns of brain development. Compared to the brains of other primates, the human brain takes longer to mature, promoting an extended period for establishing cortical microcircuitry and its modifications. Together, these features may underlie the prolonged period of learning and acquisition of technical and social skills necessary for survival, creating a unique cognitive and behavioral niche typical of our species. The neuroanatomical findings are in concordance with molecular analyses, which suggest a trend toward heterochrony in the expression of genes implicated in different functions. These include synaptogenesis, neuronal maturation, and plasticity in humans, mutations in genes implicated in neurite outgrowth and plasticity, and an increased role of regulatory mechanisms, potentially promoting fast modification of neuronal morphologies in response to new computational demands. At the same time, endocranial casts of fossil hominins provide an insight into the timing of the emergence of uniquely human features in the course of evolution. We conclude by proposing several ways of combining comparative neuroanatomy, molecular biology and insights gained from fossil endocasts in future research. PMID:24194709

  19. Factors affecting bilateral temporal lobe hypometabolism on 18F-FDG PET brain scan in unilateral medial temporal lobe epilepsy.

    PubMed

    Tepmongkol, Supatporn; Srikijvilaikul, Teeradej; Vasavid, Pataramon

    2013-11-01

    Bilateral temporal lobe hypometabolism (BTH) on (18)F-FDG PET brain scan is frequently seen in unilateral medial temporal lobe epilepsy (mTLE). This study aimed to identify the factors that influence BTH in patients with mTLE in order to minimize the significant factor(s) prior to performing a FDG-PET brain scan. Forty patients with unilateral mTLE who underwent (18)F-FDG PET scan for presurgical epilepsy workup were included. Bilateral temporal lobe hypometabolism of the anterior and medial parts of the temporal lobe was identified by a semiquantitative visual scale. Lateralization of TLE was identified by either intracranial EEG (22/40 cases) and/or improvement of seizure 2 years after temporal lobectomy (37/40 cases). The factors analyzed included basic demographic characteristics (age, sex, occupation, years of education, and handedness), history related to seizure (age at epilepsy onset and epilepsy duration, history of febrile seizure and head injury, frequency of seizure with impaired cognition in the last 3 months, presence of secondarily generalized tonic-clonic seizure, automatism side, presence of postictal confusion, and side of MRI temporal abnormality), information during video-EEG monitoring (clinical lateralization, interictal scalp EEG lateralization (interictal epileptiform discharge), and ictal scalp EEG lateralization), and information during the FDG-PET study (duration from the last seizure (≤2 days or >2 days), last seizure type, and the presence of slow waves or sharp waves during the FDG uptake period). Significant factors related to BTH were analyzed using multivariate analysis. Only the ≤2-day duration from the last seizure to the PET scan shows a significant effect (p=0.021) on BTH finding with 15 times greater incidence compared to a duration >2 days. Bilateral temporal lobe hypometabolism, which causes conflict in lateralizing the epileptogenic zone in temporal lobe epilepsy, can be avoided by performing PET scan more than 2 days

  20. Applications of manganese-enhanced magnetic resonance imaging (MEMRI) to image brain plasticity in song birds.

    PubMed

    Van der Linden, Annemie; Van Meir, Vincent; Tindemans, Ilse; Verhoye, Marleen; Balthazart, Jacques

    2004-12-01

    The song control system of song birds is an excellent model for studying brain plasticity and has thus far been extensively analyzed by histological and electrophysiological methods. However, these approaches do not provide a global view of the brain and/or do not allow repeated measures, which are necessary to establish correlations between alterations in neural substrate and behavior. Application of in vivo manganese-enhanced MRI enabled us for the first time to visualize the song control system repeatedly in the same bird, making it possible to quantify dynamically the volume changes in this circuit as a function of seasonal and hormonal influences. In this review, we introduce and explore the song control system of song birds as a natural model for brain plasticity to validate a new cutting edge technique, which we called 'repeated dynamic manganese enhanced MRI' or D-MEMRI. This technique is based on the use of implanted permanent cannulae--for accurate repeated manganese injections in a defined target area--and the subsequent MRI acquisition of the dynamics of the accumulation of manganese in projection brain targets. A compilation of the D-MEMRI data obtained thus far in this system demonstrates the usefulness of this new method for studying brain plasticity. In particular it is shown to be a perfect tool for long-term studies of morphological and functional responses of specific brain circuits to changes in endocrine conditions. The method was also successfully applied to obtain quantitative measures of changes in activity as a function of auditory stimuli in different neuronal populations of a same nucleus that project to different targets. D-MEMRI, combined with other MRI techniques, clearly harbors potential for unraveling seasonal, hormonal, pharmacological or even genetically driven changes in a neuronal circuit, by simultaneously measuring changes in morphology, activity and connectivity. PMID:15761949

  1. Changes of the directional brain networks related with brain plasticity in patients with long-term unilateral sensorineural hearing loss.

    PubMed

    Zhang, G-Y; Yang, M; Liu, B; Huang, Z-C; Li, J; Chen, J-Y; Chen, H; Zhang, P-P; Liu, L-J; Wang, J; Teng, G-J

    2016-01-28

    Previous studies often report that early auditory deprivation or congenital deafness contributes to cross-modal reorganization in the auditory-deprived cortex, and this cross-modal reorganization limits clinical benefit from cochlear prosthetics. However, there are inconsistencies among study results on cortical reorganization in those subjects with long-term unilateral sensorineural hearing loss (USNHL). It is also unclear whether there exists a similar cross-modal plasticity of the auditory cortex for acquired monaural deafness and early or congenital deafness. To address this issue, we constructed the directional brain functional networks based on entropy connectivity of resting-state functional MRI and researched changes of the networks. Thirty-four long-term USNHL individuals and seventeen normally hearing individuals participated in the test, and all USNHL patients had acquired deafness. We found that certain brain regions of the sensorimotor and visual networks presented enhanced synchronous output entropy connectivity with the left primary auditory cortex in the left long-term USNHL individuals as compared with normally hearing individuals. Especially, the left USNHL showed more significant changes of entropy connectivity than the right USNHL. No significant plastic changes were observed in the right USNHL. Our results indicate that the left primary auditory cortex (non-auditory-deprived cortex) in patients with left USNHL has been reorganized by visual and sensorimotor modalities through cross-modal plasticity. Furthermore, the cross-modal reorganization also alters the directional brain functional networks. The auditory deprivation from the left or right side generates different influences on the human brain. PMID:26621123

  2. Brain-Controlled Neuromuscular Stimulation to Drive Neural Plasticity and Functional Recovery

    PubMed Central

    Ethier, C.; Gallego, J.A.; Miller, L.E.

    2015-01-01

    There is mounting evidence that appropriately timed neuromuscular stimulation can induce neural plasticity and generate functional recovery from motor disorders. This review addresses the idea that coordinating stimulation with a patient’s voluntary effort might further enhance neurorehabilitation. Studies in cell cultures and behaving animals have delineated the rules underlying neural plasticity when single neurons are used as triggers. However, the rules governing more complex stimuli and larger networks are less well understood. We argue that functional recovery might be optimized if stimulation were modulated by a brain machine interface, to matched the details of the patient’s voluntary intent. The potential of this novel approach highlights the need for a better understanding of the complex rules underlying this form of plasticity. PMID:25827275

  3. Brain-controlled neuromuscular stimulation to drive neural plasticity and functional recovery.

    PubMed

    Ethier, C; Gallego, J A; Miller, L E

    2015-08-01

    There is mounting evidence that appropriately timed neuromuscular stimulation can induce neural plasticity and generate functional recovery from motor disorders. This review addresses the idea that coordinating stimulation with a patient's voluntary effort might further enhance neurorehabilitation. Studies in cell cultures and behaving animals have delineated the rules underlying neural plasticity when single neurons are used as triggers. However, the rules governing more complex stimuli and larger networks are less well understood. We argue that functional recovery might be optimized if stimulation were modulated by a brain machine interface, to match the details of the patient's voluntary intent. The potential of this novel approach highlights the need for a better understanding of the complex rules underlying this form of plasticity. PMID:25827275

  4. Brain composition in Heliconius butterflies, posteclosion growth and experience-dependent neuropil plasticity.

    PubMed

    Montgomery, Stephen H; Merrill, Richard M; Ott, Swidbert R

    2016-06-15

    Behavioral and sensory adaptations are often reflected in the differential expansion of brain components. These volumetric differences represent changes in cell number, size, and/or connectivity, which may denote changes in the functional and evolutionary relationships between different brain regions, and between brain composition and behavioral ecology. Here we describe the brain composition of two species of Heliconius butterflies, a long-standing study system for investigating ecological adaptation and speciation. We confirm a previous report of a striking volumetric expansion of the mushroom body, and explore patterns of differential posteclosion and experience-dependent plasticity between different brain regions. This analysis uncovers age- and experience-dependent posteclosion mushroom body growth comparable to that in foraging Hymenoptera, but also identifies plasticity in several other neuropils. An interspecific analysis indicates that Heliconius display a remarkably large investment in mushroom bodies for a lepidopteran, and indeed rank highly compared to other insects. Our analyses lay the foundation for future comparative and experimental analyses that will establish Heliconius as a valuable case study in evolutionary neurobiology. PMID:26918905

  5. [Brain stem infarction, temporal headache, and elevated inflammatory parameters in a 74-year-old man].

    PubMed

    Gehlen, M; Schwarz-Eywill, M; Schäfer, N; Pfeiffer, A; Bösenberg, H; Maier, A; Hinz, C

    2016-06-01

    We report the case of a 74 year old man with a brain stem infarction, temporal headache and elevated inflammatory parameters. Giant cell arteritis with involvement of the temporal and vertebral arteries was proven by histology, duplex sonography and MRI. Although intensive immunosuppressive therapy was started, the patient developed two brain infarcts within 6 months. Initially, C‑reactive protein and erythrocyte sedimentation rate were significantly elevated, but normalized over time. Involvement of the vertebral artery in giant cell arteritis is thought to be rare; steroid refractory courses are very rare. Brain stem infarction might be the consequence. PMID:27055655

  6. Low-frequency transcranial magnetic stimulation is beneficial for enhancing synaptic plasticity in the aging brain

    PubMed Central

    Zhang, Zhan-chi; Luan, Feng; Xie, Chun-yan; Geng, Dan-dan; Wang, Yan-yong; Ma, Jun

    2015-01-01

    In the aging brain, cognitive function gradually declines and causes a progressive reduction in the structural and functional plasticity of the hippocampus. Transcranial magnetic stimulation is an emerging and novel neurological and psychiatric tool used to investigate the neurobiology of cognitive function. Recent studies have demonstrated that low-frequency transcranial magnetic stimulation (≤1 Hz) ameliorates synaptic plasticity and spatial cognitive deficits in learning-impaired mice. However, the mechanisms by which this treatment improves these deficits during normal aging are still unknown. Therefore, the current study investigated the effects of transcranial magnetic stimulation on the brain-derived neurotrophic factor signal pathway, synaptic protein markers, and spatial memory behavior in the hippocampus of normal aged mice. The study also investigated the downstream regulator, Fyn kinase, and the downstream effectors, synaptophysin and growth-associated protein 43 (both synaptic markers), to determine the possible mechanisms by which transcranial magnetic stimulation regulates cognitive capacity. Transcranial magnetic stimulation with low intensity (110% average resting motor threshold intensity, 1 Hz) increased mRNA and protein levels of brain-derived neurotrophic factor, tropomyosin receptor kinase B, and Fyn in the hippocampus of aged mice. The treatment also upregulated the mRNA and protein expression of synaptophysin and growth-associated protein 43 in the hippocampus of these mice. In conclusion, brain-derived neurotrophic factor signaling may play an important role in sustaining and regulating structural synaptic plasticity induced by transcranial magnetic stimulation in the hippocampus of aging mice, and Fyn may be critical during this regulation. These responses may change the structural plasticity of the aging hippocampus, thereby improving cognitive function. PMID:26199608

  7. Length of Acupuncture Training and Structural Plastic Brain Changes in Professional Acupuncturists

    PubMed Central

    Dong, Minghao; Zhao, Ling; Yuan, Kai; Zeng, Fang; Sun, Jinbo; Liu, Jixin; Yu, Dahua; von Deneen, Karen M.; Liang, Fanrong; Qin, Wei; Tian, Jie

    2013-01-01

    Background The research on brain plasticity has fascinated researchers for decades. Use/training serves as an instrumental factor to influence brain neuroplasticity. Parallel to acquisition of behavioral expertise, extensive use/training is concomitant with substantial changes of cortical structure. Acupuncturists, serving as a model par excellence to study tactile-motor and emotional regulation plasticity, receive intensive training in national medical schools following standardized training protocol. Moreover, their behavioral expertise is corroborated during long-term clinical practice. Although our previous study reported functional plastic brain changes in the acupuncturists, whether or not structural plastic changes occurred in acupuncturists is yet elusive. Methodology/Principal Findings Cohorts of acupuncturists (N = 22) and non-acupuncturists (N = 22) were recruited. Behavioral tests were delivered to assess the acupuncturists’ behavioral expertise. The results confirmed acupuncturists’ tactile-motor skills and emotion regulation proficiency compared to non-acupuncturists. Using the voxel-based morphometry technique, we revealed larger grey matter volumes in acupuncturists in the hand representation of the contralateral primary somatosensory cortex (SI), the right lobule V/VI and the bilateral ventral anterior cingulate cortex/ventral medial prefrontal cortex. Grey matter volumes of the SI and Lobule V/VI positively correlated with the duration of acupuncture practice. Conclusions To our best knowledge, this study provides first evidence for the anatomical alterations in acupuncturists, which would possibly be the neural correlates underlying acupuncturists’ exceptional skills. On one hand, we suggest our findings may have ramifications for tactile-motor rehabilitation. On the other hand, our results in emotion regulation domain may serve as a target for our future studies, from which we can understand how modulations of aversive emotions

  8. Why and How Physical Activity Promotes Experience-Induced Brain Plasticity

    PubMed Central

    Kempermann, Gerd; Fabel, Klaus; Ehninger, Dan; Babu, Harish; Leal-Galicia, Perla; Garthe, Alexander; Wolf, Susanne A.

    2010-01-01

    Adult hippocampal neurogenesis is an unusual case of brain plasticity, since new neurons (and not just neurites and synapses) are added to the network in an activity-dependent way. At the behavioral level the plasticity-inducing stimuli include both physical and cognitive activity. In reductionistic animal studies these types of activity can be studied separately in paradigms like voluntary wheel running and environmental enrichment. In both of these, adult neurogenesis is increased but the net effect is primarily due to different mechanisms at the cellular level. Locomotion appears to stimulate the precursor cells, from which adult neurogenesis originates, to increased proliferation and maintenance over time, whereas environmental enrichment, as well as learning, predominantly promotes survival of immature neurons, that is the progeny of the proliferating precursor cells. Surprisingly, these effects are additive: boosting the potential for adult neurogenesis by physical activity increases the recruitment of cells following cognitive stimulation in an enriched environment. Why is that? We argue that locomotion actually serves as an intrinsic feedback mechanism, signaling to the brain, including its neural precursor cells, increasing the likelihood of cognitive challenges. In the wild (other than in front of a TV), no separation of physical and cognitive activity occurs. Physical activity might thus be much more than a generally healthy garnish to leading “an active life” but an evolutionarily fundamental aspect of “activity,” which is needed to provide the brain and its systems of plastic adaptation with the appropriate regulatory input and feedback. PMID:21151782

  9. Sleep, Plasticity and Memory from Molecules to Whole-Brain Networks

    PubMed Central

    Abel, Ted; Havekes, Robbert; Saletin, Jared M.; Walker, Matthew P.

    2014-01-01

    Despite the ubiquity of sleep across phylogeny, its function remains elusive. In this review, we consider one compelling candidate: brain plasticity associated with memory processing. Focusing largely on hippocampus-dependent memory in rodents and humans, we describe molecular, cellular, network, whole-brain and behavioral evidence establishing a role for sleep both in preparation for initial memory encoding, and in the subsequent offline consolidation ofmemory. Sleep and sleep deprivation bidirectionally alter molecular signaling pathways that regulate synaptic strength and control plasticity-related gene transcription and protein translation. At the cellular level, sleep deprivation impairs cellular excitability necessary for inducing synaptic potentiation and accelerates the decay of long-lasting forms of synaptic plasticity. In contrast, NREM and REM sleep enhance previously induced synaptic potentiation, although synaptic de-potentiation during sleep has also been observed. Beyond single cell dynamics, large-scale cell ensembles express coordinated replay of prior learning-related firing patterns during subsequent sleep. This occurs in the hippocampus, in the cortex, and between the hippocampus and cortex, commonly in association with specific NREM sleep oscillations. At the whole-brain level, somewhat analogous learning-associated hippocampal (re)activation during NREM sleep has been reported in humans. Moreover, the same cortical NREM oscillations associated with replay in rodents also promote human hippocampal memory consolidation, and this process can be manipulated using exogenous reactivation cues during sleep. Mirroring molecular findings in rodents, specific NREM sleep oscillations before encoding refresh human hippocampal learning capacity, while deprivation of sleep conversely impairs subsequent hippocampal activity and associated encoding. Together, these cross-descriptive level findings demonstrate that the unique neurobiology of sleep exert

  10. Differential pattern of functional brain plasticity after compassion and empathy training.

    PubMed

    Klimecki, Olga M; Leiberg, Susanne; Ricard, Matthieu; Singer, Tania

    2014-06-01

    Although empathy is crucial for successful social interactions, excessive sharing of others' negative emotions may be maladaptive and constitute a source of burnout. To investigate functional neural plasticity underlying the augmentation of empathy and to test the counteracting potential of compassion, one group of participants was first trained in empathic resonance and subsequently in compassion. In response to videos depicting human suffering, empathy training, but not memory training (control group), increased negative affect and brain activations in anterior insula and anterior midcingulate cortex-brain regions previously associated with empathy for pain. In contrast, subsequent compassion training could reverse the increase in negative effect and, in contrast, augment self-reports of positive affect. In addition, compassion training increased activations in a non-overlapping brain network spanning ventral striatum, pregenual anterior cingulate cortex and medial orbitofrontal cortex. We conclude that training compassion may reflect a new coping strategy to overcome empathic distress and strengthen resilience. PMID:23576808

  11. Bridging animal and human models of exercise-induced brain plasticity

    PubMed Central

    Voss, Michelle W.; Vivar, Carmen; Kramer, Arthur F.; van Praag, Henriette

    2015-01-01

    Significant progress has been made in understanding the neurobiological mechanisms through which exercise protects and restores the brain. In this feature review, we integrate animal and human research, examining physical activity effects across multiple levels of description (neurons up to inter-regional pathways). We evaluate the influence of exercise on hippocampal structure and function, addressing common themes such as spatial memory and pattern separation, brain structure and plasticity, neurotrophic factors, and vasculature. Areas of research focused more within species, such as hippocampal neurogenesis in rodents, also provide crucial insight into the protective role of physical activity. Overall, converging evidence suggests exercise benefits brain function and cognition across the mammalian lifespan, which may translate into reduced risk for Alzheimer’s disease (AD) in humans. PMID:24029446

  12. Analysis of spatial-temporal gene expression patterns reveals dynamics and regionalization in developing mouse brain

    PubMed Central

    Chou, Shen-Ju; Wang, Chindi; Sintupisut, Nardnisa; Niou, Zhen-Xian; Lin, Chih-Hsu; Li, Ker-Chau; Yeang, Chen-Hsiang

    2016-01-01

    Allen Brain Atlas (ABA) provides a valuable resource of spatial/temporal gene expressions in mammalian brains. Despite rich information extracted from this database, current analyses suffer from several limitations. First, most studies are either gene-centric or region-centric, thus are inadequate to capture the superposition of multiple spatial-temporal patterns. Second, standard tools of expression analysis such as matrix factorization can capture those patterns but do not explicitly incorporate spatial dependency. To overcome those limitations, we proposed a computational method to detect recurrent patterns in the spatial-temporal gene expression data of developing mouse brains. We demonstrated that regional distinction in brain development could be revealed by localized gene expression patterns. The patterns expressed in the forebrain, medullary and pontomedullary, and basal ganglia are enriched with genes involved in forebrain development, locomotory behavior, and dopamine metabolism respectively. In addition, the timing of global gene expression patterns reflects the general trends of molecular events in mouse brain development. Furthermore, we validated functional implications of the inferred patterns by showing genes sharing similar spatial-temporal expression patterns with Lhx2 exhibited differential expression in the embryonic forebrains of Lhx2 mutant mice. These analysis outcomes confirm the utility of recurrent expression patterns in studying brain development. PMID:26786896

  13. Building a brain under nutritional restriction: insights on sparing and plasticity from Drosophila studies

    PubMed Central

    Lanet, Elodie; Maurange, Cédric

    2014-01-01

    While the growth of the developing brain is known to be well-protected compared to other organs in the face of nutrient restriction (NR), careful analysis has revealed a range of structural alterations and long-term neurological defects. Yet, despite intensive studies, little is known about the basic principles that govern brain development under nutrient deprivation. For over 20 years, Drosophila has proved to be a useful model for investigating how a functional nervous system develops from a restricted number of neural stem cells (NSCs). Recently, a few studies have started to uncover molecular mechanisms as well as region-specific adaptive strategies that preserve brain functionality and neuronal repertoire under NR, while modulating neuron numbers. Here, we review the developmental constraints that condition the response of the developing brain to NR. We then analyze the recent Drosophila work to highlight key principles that drive sparing and plasticity in different regions of the central nervous system (CNS). As simple animal models start to build a more integrated picture, understanding how the developing brain copes with NR could help in defining strategies to limit damage and improve brain recovery after birth. PMID:24723892

  14. Promoting social plasticity in developmental disorders with non-invasive brain stimulation techniques

    PubMed Central

    Boggio, Paulo S.; Asthana, Manish K.; Costa, Thiago L.; Valasek, Cláudia A.; Osório, Ana A. C.

    2015-01-01

    Being socially connected directly impacts our basic needs and survival. People with deficits in social cognition might exhibit abnormal behaviors and face many challenges in our highly social-dependent world. These challenges and limitations are associated with a substantial economical and subjective impact. As many conditions where social cognition is affected are highly prevalent, more treatments have to be developed. Based on recent research, we review studies where non-invasive neuromodulatory techniques have been used to promote Social Plasticity in developmental disorders. We focused on three populations where non-invasive brain stimulation seems to be a promising approach in inducing social plasticity: Schizophrenia, Autism Spectrum Disorder (ASD) and Williams Syndrome (WS). There are still very few studies directly evaluating the effects of transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS) in the social cognition of these populations. However, when considering the promising preliminary evidences presented in this review and the limited amount of clinical interventions available for treating social cognition deficits in these populations today, it is clear that the social neuroscientist arsenal may profit from non-invasive brain stimulation techniques for rehabilitation and promotion of social plasticity. PMID:26388712

  15. Maladaptive Plasticity in Aphasia: Brain Activation Maps Underlying Verb Retrieval Errors

    PubMed Central

    Durand, Edith; Marcotte, Karine; Ansaldo, Ana Inés

    2016-01-01

    Anomia, or impaired word retrieval, is the most widespread symptom of aphasia, an acquired language impairment secondary to brain damage. In the last decades, functional neuroimaging techniques have enabled studying the neural basis underlying anomia and its recovery. The present study aimed to explore maladaptive plasticity in persistent verb anomia, in three male participants with chronic nonfluent aphasia. Brain activation maps associated with semantic verb paraphasia occurring within an oral picture-naming task were identified with an event-related fMRI paradigm. These maps were compared with those obtained in our previous study examining adaptive plasticity (i.e., successful verb naming) in the same participants. The results show that activation patterns related to semantic verb paraphasia and successful verb naming comprise a number of common areas, contributing to both maladaptive and adaptive neuroplasticity mechanisms. This finding suggests that the segregation of brain areas provides only a partial view of the neural basis of verb anomia and successful verb naming. Therefore, it indicates the importance of network approaches which may better capture the complexity of maladaptive and adaptive neuroplasticity mechanisms in anomia recovery. PMID:27429808

  16. Functional and Structural Brain Plasticity Enhanced by Motor and Cognitive Rehabilitation in Multiple Sclerosis.

    PubMed

    Prosperini, Luca; Piattella, Maria Cristina; Giannì, Costanza; Pantano, Patrizia

    2015-01-01

    Rehabilitation is recognized to be important in ameliorating motor and cognitive functions, reducing disease burden, and improving quality of life in patients with multiple sclerosis (MS). In this systematic review, we summarize the existing evidences that motor and cognitive rehabilitation may enhance functional and structural brain plasticity in patients with MS, as assessed by means of the most advanced neuroimaging techniques, including diffusion tensor imaging and task-related and resting-state functional magnetic resonance imaging (MRI). In most cases, the rehabilitation program was based on computer-assisted/video game exercises performed in either an outpatient or home setting. Despite their heterogeneity, all the included studies describe changes in white matter microarchitecture, in task-related activation, and/or in functional connectivity following both task-oriented and selective training. When explored, relevant correlation between improved function and MRI-detected brain changes was often found, supporting the hypothesis that training-induced brain plasticity is specifically linked to the trained domain. Small sample sizes, lack of randomization and/or an active control group, as well as missed relationship between MRI-detected changes and clinical performance, are the major drawbacks of the selected studies. Knowledge gaps in this field of research are also discussed to provide a framework for future investigations. PMID:26064692

  17. Maladaptive Plasticity in Aphasia: Brain Activation Maps Underlying Verb Retrieval Errors.

    PubMed

    Spielmann, Kerstin; Durand, Edith; Marcotte, Karine; Ansaldo, Ana Inés

    2016-01-01

    Anomia, or impaired word retrieval, is the most widespread symptom of aphasia, an acquired language impairment secondary to brain damage. In the last decades, functional neuroimaging techniques have enabled studying the neural basis underlying anomia and its recovery. The present study aimed to explore maladaptive plasticity in persistent verb anomia, in three male participants with chronic nonfluent aphasia. Brain activation maps associated with semantic verb paraphasia occurring within an oral picture-naming task were identified with an event-related fMRI paradigm. These maps were compared with those obtained in our previous study examining adaptive plasticity (i.e., successful verb naming) in the same participants. The results show that activation patterns related to semantic verb paraphasia and successful verb naming comprise a number of common areas, contributing to both maladaptive and adaptive neuroplasticity mechanisms. This finding suggests that the segregation of brain areas provides only a partial view of the neural basis of verb anomia and successful verb naming. Therefore, it indicates the importance of network approaches which may better capture the complexity of maladaptive and adaptive neuroplasticity mechanisms in anomia recovery. PMID:27429808

  18. Functional and Structural Brain Plasticity Enhanced by Motor and Cognitive Rehabilitation in Multiple Sclerosis

    PubMed Central

    Prosperini, Luca; Piattella, Maria Cristina

    2015-01-01

    Rehabilitation is recognized to be important in ameliorating motor and cognitive functions, reducing disease burden, and improving quality of life in patients with multiple sclerosis (MS). In this systematic review, we summarize the existing evidences that motor and cognitive rehabilitation may enhance functional and structural brain plasticity in patients with MS, as assessed by means of the most advanced neuroimaging techniques, including diffusion tensor imaging and task-related and resting-state functional magnetic resonance imaging (MRI). In most cases, the rehabilitation program was based on computer-assisted/video game exercises performed in either an outpatient or home setting. Despite their heterogeneity, all the included studies describe changes in white matter microarchitecture, in task-related activation, and/or in functional connectivity following both task-oriented and selective training. When explored, relevant correlation between improved function and MRI-detected brain changes was often found, supporting the hypothesis that training-induced brain plasticity is specifically linked to the trained domain. Small sample sizes, lack of randomization and/or an active control group, as well as missed relationship between MRI-detected changes and clinical performance, are the major drawbacks of the selected studies. Knowledge gaps in this field of research are also discussed to provide a framework for future investigations. PMID:26064692

  19. Transsynaptic trophic effects of steroid hormones in an avian model of adult brain plasticity

    PubMed Central

    Brenowitz, Eliot A.

    2014-01-01

    The avian song control system provides an excellent model for studying transsynaptic trophic effects of steroid sex hormones. Seasonal changes in systemic testosterone (T) and its metabolites regulate plasticity of this system. Steroids interact with the neurotrophin brain-derived neurotrophic factor (BDNF) to influence cellular processes of plasticity in nucleus HVC of adult birds, including the addition of newborn neurons. This interaction may also occur transsynpatically; T increases the synthesis of BDNF in HVC, and BDNF protein is then released by HVC neurons on to postsynaptic cells in nucleus RA where it has trophic effects on activity and morphology. Androgen action on RA neurons increases their activity and this has a retrograde trophic effect on the addition of new neurons to HVC. The functional linkage of sex steroids to BDNF may be of adaptive value in regulating the trophic effects of the neurotrophin and coordinating circuit function in reproductively relevant contexts. PMID:25285401

  20. Temporal filtering of longitudinal brain magnetic resonance images for consistent segmentation

    PubMed Central

    Roy, Snehashis; Carass, Aaron; Pacheco, Jennifer; Bilgel, Murat; Resnick, Susan M.; Prince, Jerry L.; Pham, Dzung L.

    2016-01-01

    Longitudinal analysis of magnetic resonance images of the human brain provides knowledge of brain changes during both normal aging as well as the progression of many diseases. Previous longitudinal segmentation methods have either ignored temporal information or have incorporated temporal consistency constraints within the algorithm. In this work, we assume that some anatomical brain changes can be explained by temporal transitions in image intensities. Once the images are aligned in the same space, the intensities of each scan at the same voxel constitute a temporal (or 4D) intensity trend at that voxel. Temporal intensity variations due to noise or other artifacts are corrected by a 4D intensity-based filter that smooths the intensity values where appropriate, while preserving real anatomical changes such as atrophy. Here smoothing refers to removal of sudden changes or discontinuities in intensities. Images processed with the 4D filter can be used as a pre-processing step to any segmentation method. We show that such a longitudinal pre-processing step produces robust and consistent longitudinal segmentation results, even when applying 3D segmentation algorithms. We compare with state-of-the-art 4D segmentation algorithms. Specifically, we experimented on three longitudinal datasets containing 4–12 time-points, and showed that the 4D temporal filter is more robust and has more power in distinguishing between healthy subjects and those with dementia, mild cognitive impairment, as well as different phenotypes of multiple sclerosis. PMID:26958465

  1. Musical training influences linguistic abilities in 8-year-old children: more evidence for brain plasticity.

    PubMed

    Moreno, Sylvain; Marques, Carlos; Santos, Andreia; Santos, Manuela; Castro, São Luís; Besson, Mireille

    2009-03-01

    We conducted a longitudinal study with 32 nonmusician children over 9 months to determine 1) whether functional differences between musician and nonmusician children reflect specific predispositions for music or result from musical training and 2) whether musical training improves nonmusical brain functions such as reading and linguistic pitch processing. Event-related brain potentials were recorded while 8-year-old children performed tasks designed to test the hypothesis that musical training improves pitch processing not only in music but also in speech. Following the first testing sessions nonmusician children were pseudorandomly assigned to music or to painting training for 6 months and were tested again after training using the same tests. After musical (but not painting) training, children showed enhanced reading and pitch discrimination abilities in speech. Remarkably, 6 months of musical training thus suffices to significantly improve behavior and to influence the development of neural processes as reflected in specific pattern of brain waves. These results reveal positive transfer from music to speech and highlight the influence of musical training. Finally, they demonstrate brain plasticity in showing that relatively short periods of training have strong consequences on the functional organization of the children's brain. PMID:18832336

  2. The Critical Role of Golgi Cells in Regulating Spatio-Temporal Integration and Plasticity at the Cerebellum Input Stage

    PubMed Central

    D'Angelo, Egidio

    2008-01-01

    The discovery of the Golgi cell is bound to the foundation of the Neuron Doctrine. Recently, the excitable mechanisms of this inhibitory interneuron have been investigated with modern experimental and computational techniques raising renewed interest for the implications it might have for cerebellar circuit functions. Golgi cells are pacemakers with preferential response frequency and phase-reset in the theta-frequency band and can therefore impose specific temporal dynamics to granule cell responses. Moreover, through their connectivity, Golgi cells determine the spatio-temporal organization of cerebellar activity. Finally, Golgi cells, by controlling granule cell depolarization and NMDA channel unblock, regulate the induction of long-term synaptic plasticity at the mossy fiber – granule cell synapse. Thus, the Golgi cells can exert an extensive control on spatio-temporal signal organization and information storage in the granular layer playing a critical role for cerebellar computation. PMID:18982105

  3. Temporal and Spatial Variation of the Solar Wind Bulk Properties from STEREO SWEA/PLASTIC by Multi-Spacecraft Analysis

    NASA Astrophysics Data System (ADS)

    Opitz, A.; Sauvaud, J.; Wurz, P.; Karrer, R.; Lavraud, B.; Luhmann, J. G.; Galvin, A. B.; Curtis, D. W.; Fedorov, A.; Kellogg, P. J.; Larson, D. E.; Penou, E.; Schroeder, P.; Bochsler, P.; Farrugia, C. J.; Klecker, B.; Kucharek, H.; Moebius, E. S.; Russell, C. T.

    2008-12-01

    The two STEREO spacecraft with nearly identical instrumentation were launched near solar activity minimum and they separate by about 45 degrees per year providing a unique tool to study the temporal and spatial evolution of the solar wind. We analyzed the solar wind bulk properties measured by the SWEA electron and the PLASTIC ion plasma instruments on board. We calculate the timelag between the STEREO A and B spacecraft considering their radial and longitudinal separation and time-shift the B measurements in order to forecast the A measurements. We show that the correlation between the forecasted and the real A datasets is very good. It decreases slightly as their timelag increases, which is due to the temporal evolution of the solar wind. We also find that this correlation clearly decreases when we compare structures of smaller spatial scales. As a result, the characteristic temporal and spatial changes in the solar wind bulk properties can be quantitatively determined.

  4. Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease

    PubMed Central

    Qureshi, Irfan A.; Mehler, Mark F.

    2012-01-01

    Novel classes of small and long non-coding RNAs (ncRNAs) are being characterized at a rapid pace, driven by recent paradigm shifts in our understanding of genomic architecture, regulation and transcriptional output, as well as by innovations in sequencing technologies and computational and systems biology. These ncRNAs can interact with DNA, RNA and protein molecules; engage in diverse structural, functional and regulatory activities; and have roles in nuclear organization and transcriptional, post-transcriptional and epigenetic processes. This expanding inventory of ncRNAs is implicated in mediating a broad spectrum of processes including brain evolution, development, synaptic plasticity and disease pathogenesis. PMID:22814587

  5. Temporal dynamics and determinants of whole brain tissue volume changes during recovery from alcohol dependence.

    PubMed

    Gazdzinski, Stefan; Durazzo, Timothy C; Meyerhoff, Dieter J

    2005-06-01

    Brain shrinkage and its partial reversibility with abstinence is a common neuroimaging finding in alcohol dependent individuals. We used an automated three-dimensional whole brain magnetic resonance imaging method (boundary shift integral) in 23 alcohol dependent individuals to measure the temporal dynamics of cerebral tissue and spinal fluid volume changes over a 12-month interval and to examine the major determinants of brain tissue change rates during abstinence and non-abstinence. We found more rapid brain tissue gain during the first month of sobriety than in the following months. The most rapid volume recovery was observed in abstinent individuals with the greatest baseline brain shrinkage and drinking severity. The rapid reversal of brain volume gains in non-abstinent individuals and tissue volume changes are modulated by duration of abstinence and non-abstinence periods, as well as recency of non-abstinence. Age, family history density of alcoholism, relapse severity, and duration or age of onset of heavy drinking were not major determinants of brain shrinkage and brain volume recovery rates. Treatment providers may use this tangible information to reinforce the biomedical benefits of sobriety. Previous quantitative measurements of brain volumes in alcohol dependent individuals performed after several weeks of abstinence likely underestimated the full extent of chronic alcohol-associated brain shrinkage. PMID:15893157

  6. Physical exercise in overweight to obese individuals induces metabolic- and neurotrophic-related structural brain plasticity

    PubMed Central

    Mueller, Karsten; Möller, Harald E.; Horstmann, Annette; Busse, Franziska; Lepsien, Jöran; Blüher, Matthias; Stumvoll, Michael; Villringer, Arno; Pleger, Burkhard

    2015-01-01

    Previous cross-sectional studies on body-weight-related alterations in brain structure revealed profound changes in the gray matter (GM) and white matter (WM) that resemble findings obtained from individuals with advancing age. This suggests that obesity may lead to structural brain changes that are comparable with brain aging. Here, we asked whether weight-loss-dependent improved metabolic and neurotrophic functioning parallels the reversal of obesity-related alterations in brain structure. To this end we applied magnetic resonance imaging (MRI) together with voxel-based morphometry and diffusion-tensor imaging in overweight to obese individuals who participated in a fitness course with intensive physical training twice a week over a period of 3 months. After the fitness course, participants presented, with inter-individual heterogeneity, a reduced body mass index (BMI), reduced serum leptin concentrations, elevated high-density lipoprotein-cholesterol (HDL-C), and alterations of serum brain-derived neurotrophic factor (BDNF) concentrations suggesting changes of metabolic and neurotrophic function. Exercise-dependent changes in BMI and serum concentration of BDNF, leptin, and HDL-C were related to an increase in GM density in the left hippocampus, the insular cortex, and the left cerebellar lobule. We also observed exercise-dependent changes of diffusivity parameters in surrounding WM structures as well as in the corpus callosum. These findings suggest that weight-loss due to physical exercise in overweight to obese participants induces profound structural brain plasticity, not primarily of sensorimotor brain regions involved in physical exercise, but of regions previously reported to be structurally affected by an increased body weight and functionally implemented in gustation and cognitive processing. PMID:26190989

  7. The Structural Plasticity of White Matter Networks Following Anterior Temporal Lobe Resection

    ERIC Educational Resources Information Center

    Yogarajah, Mahinda; Focke, Niels K.; Bonelli, Silvia B.; Thompson, Pamela; Vollmar, Christian; McEvoy, Andrew W.; Alexander, Daniel C.; Symms, Mark R.; Koepp, Matthias J.; Duncan, John S.

    2010-01-01

    Anterior temporal lobe resection is an effective treatment for refractory temporal lobe epilepsy. The structural consequences of such surgery in the white matter, and how these relate to language function after surgery remain unknown. We carried out a longitudinal study with diffusion tensor imaging in 26 left and 20 right temporal lobe epilepsy…

  8. Fractality of sensations and the brain health: the theory linking neurodegenerative disorder with distortion of spatial and temporal scale-invariance and fractal complexity of the visible world.

    PubMed

    Zueva, Marina V

    2015-01-01

    The theory that ties normal functioning and pathology of the brain and visual system with the spatial-temporal structure of the visual and other sensory stimuli is described for the first time in the present study. The deficit of fractal complexity of environmental influences can lead to the distortion of fractal complexity in the visual pathways of the brain and abnormalities of development or aging. The use of fractal light stimuli and fractal stimuli of other modalities can help to restore the functions of the brain, particularly in the elderly and in patients with neurodegenerative disorders or amblyopia. Non-linear dynamics of these physiological processes have a strong base of evidence, which is seen in the impaired fractal regulation of rhythmic activity in aged and diseased brains. From birth to old age, we live in a non-linear world, in which objects and processes with the properties of fractality and non-linearity surround us. Against this background, the evolution of man took place and all periods of life unfolded. Works of art created by man may also have fractal properties. The positive influence of music on cognitive functions is well-known. Insufficiency of sensory experience is believed to play a crucial role in the pathogenesis of amblyopia and age-dependent diseases. The brain is very plastic in its early development, and the plasticity decreases throughout life. However, several studies showed the possibility to reactivate the adult's neuroplasticity in a variety of ways. We propose that a non-linear structure of sensory information on many spatial and temporal scales is crucial to the brain health and fractal regulation of physiological rhythms. Theoretical substantiation of the author's theory is presented. Possible applications and the future research that can experimentally confirm or refute the theoretical concept are considered. PMID:26236232

  9. Fractality of sensations and the brain health: the theory linking neurodegenerative disorder with distortion of spatial and temporal scale-invariance and fractal complexity of the visible world

    PubMed Central

    Zueva, Marina V.

    2015-01-01

    The theory that ties normal functioning and pathology of the brain and visual system with the spatial–temporal structure of the visual and other sensory stimuli is described for the first time in the present study. The deficit of fractal complexity of environmental influences can lead to the distortion of fractal complexity in the visual pathways of the brain and abnormalities of development or aging. The use of fractal light stimuli and fractal stimuli of other modalities can help to restore the functions of the brain, particularly in the elderly and in patients with neurodegenerative disorders or amblyopia. Non-linear dynamics of these physiological processes have a strong base of evidence, which is seen in the impaired fractal regulation of rhythmic activity in aged and diseased brains. From birth to old age, we live in a non-linear world, in which objects and processes with the properties of fractality and non-linearity surround us. Against this background, the evolution of man took place and all periods of life unfolded. Works of art created by man may also have fractal properties. The positive influence of music on cognitive functions is well-known. Insufficiency of sensory experience is believed to play a crucial role in the pathogenesis of amblyopia and age-dependent diseases. The brain is very plastic in its early development, and the plasticity decreases throughout life. However, several studies showed the possibility to reactivate the adult’s neuroplasticity in a variety of ways. We propose that a non-linear structure of sensory information on many spatial and temporal scales is crucial to the brain health and fractal regulation of physiological rhythms. Theoretical substantiation of the author’s theory is presented. Possible applications and the future research that can experimentally confirm or refute the theoretical concept are considered. PMID:26236232

  10. Computational Methods for Unraveling Temporal Brain Connectivity Data

    PubMed Central

    Ray, Bisakha; Statnikov, Alexander; Aliferis, Constantin

    2015-01-01

    Brain science is a frontier research area with great promise for understanding, preventing, and treating multiple diseases affecting millions of patients. Its key task of reconstructing neuronal brain connectivity poses unique Big Data Analysis challenges distinct from those in clinical or “-omics” domains. Our goal is to understand the strengths and limitations of reconstruction algorithms, measure performance and its determinants, and ultimately enhance performance and applicability. We devised a set of experiments in a well-controlled setting using an established gold-standard based on calcium fluorescence time series recordings of thousands of neurons sampled from a previously validated neuronal model of complex time-varying causal neuronal connections. Following empirical testing of several state-of-the-art reconstruction algorithms, and using the best-performing algorithms, we constructed features of a classifier and predicted the presence or absence of connections using meta-learning. This approach combines information-theoretic, feature construction, and pattern recognition meta-learning methods to considerably improve the Area under ROC curve performance. Our data are very promising toward the feasibility of reliably reconstructing complex neuronal connectivity. PMID:26958304

  11. Scanning Laser Optical Tomography Resolves Structural Plasticity during Regeneration in an Insect Brain

    PubMed Central

    Eickhoff, René; Lorbeer, Raoul-Amadeus; Scheiblich, Hannah; Heisterkamp, Alexander; Meyer, Heiko; Stern, Michael; Bicker, Gerd

    2012-01-01

    Background Optical Projection Tomography (OPT) is a microscopic technique that generates three dimensional images from whole mount samples the size of which exceeds the maximum focal depth of confocal laser scanning microscopes. As an advancement of conventional emission-OPT, Scanning Laser Optical Tomography (SLOTy) allows simultaneous detection of fluorescence and absorbance with high sensitivity. In the present study, we employ SLOTy in a paradigm of brain plasticity in an insect model system. Methodology We visualize and quantify volumetric changes in sensory information procession centers in the adult locust, Locusta migratoria. Olfactory receptor neurons, which project from the antenna into the brain, are axotomized by crushing the antennal nerve or ablating the entire antenna. We follow the resulting degeneration and regeneration in the olfactory centers (antennal lobes and mushroom bodies) by measuring their size in reconstructed SLOTy images with respect to the untreated control side. Within three weeks post treatment antennal lobes with ablated antennae lose as much as 60% of their initial volume. In contrast, antennal lobes with crushed antennal nerves initially shrink as well, but regain size back to normal within three weeks. The combined application of transmission-and fluorescence projections of Neurobiotin labeled axotomized fibers confirms that recovery of normal size is restored by regenerated afferents. Remarkably, SLOTy images reveal that degeneration of olfactory receptor axons has a trans-synaptic effect on second order brain centers and leads to size reduction of the mushroom body calyx. Conclusions This study demonstrates that SLOTy is a suitable method for rapid screening of volumetric plasticity in insect brains and suggests its application also to vertebrate preparations. PMID:22829931

  12. Frontolimbic Brain Networks Predict Depressive Symptoms in Temporal Lobe Epilepsy

    PubMed Central

    Kemmotsu, Nobuko; Kucukboyaci, N. Erkut; Leyden, Kelly M.; Cheng, Christopher E.; Girard, Holly M.; Iragui, Vicente J.; Tecoma, Evelyn S.; McDonald, Carrie R.

    2014-01-01

    Psychiatric co-morbidities in epilepsy are of great concern. The current study investigated the relative contribution of structural and functional connectivity (FC) between medial temporal (MT) and prefrontal regions in predicting levels of depressive symptoms in patients with temporal lobe epilepsy (TLE). Twenty-one patients with TLE [11 left TLE (LTLE); 10 right TLE (RTLE)] and 20 controls participated. Diffusion tensor imaging was performed to obtain fractional anisotropy (FA) of the uncinate fasciculus (UF), and mean diffusivity (MD) of the amygdala (AM) and hippocampus (HC). Functional MRI was performed to obtain FC strengths between the AM and HC and prefrontal regions of interest including anterior prefrontal (APF), orbitofrontal, and inferior frontal regions. Participants self-reported depression symptoms on the Beck Depression Inventory-II. Greater depressive symptoms were associated with stronger FC of ipsilateral HC-APF, lower FA of the bilateral UF, and higher MD of the ipsilateral HC in LTLE, and with lower FA of the contralateral UF in RTLE. Regression analyses indicated that FC of the ipsilateral HC-APF was the strongest contributor to depression in LTLE, explaining 68.7 % of the variance in depression scores. Both functional and microstructural measures of frontolimbic dysfunction were associated with depressive symptoms. These connectivity variables may be moderating which patients present with depression symptoms. In particular, FC MRI may provide a more sensitive measure of depression-related dysfunction, at least in patients with LTLE. Employing sensitive measures of frontolimbic network dysfunction in TLE may help provide new insight into mood disorders in epilepsy that could eventually guide treatment planning. PMID:25223729

  13. Event-Related Brain Potentials Reveal Anomalies in Temporal Processing of Faces in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    McPartland, James; Dawson, Geraldine; Webb, Sara J.; Panagiotides, Heracles; Carver, Leslie J.

    2004-01-01

    Background: Individuals with autism exhibit impairments in face recognition, and neuroimaging studies have shown that individuals with autism exhibit abnormal patterns of brain activity during face processing. The current study examined the temporal characteristics of face processing in autism and their relation to behavior. Method: High-density…

  14. Contrasting Effects of Vocabulary Knowledge on Temporal and Parietal Brain Structure across Lifespan

    ERIC Educational Resources Information Center

    Richardson, Fiona M.; Thomas, Michael S. C.; Filippi, Roberto; Harth, Helen; Price, Cathy J.

    2010-01-01

    Using behavioral, structural, and functional imaging techniques, we demonstrate contrasting effects of vocabulary knowledge on temporal and parietal brain structure in 47 healthy volunteers who ranged in age from 7 to 73 years. In the left posterior supramarginal gyrus, vocabulary knowledge was positively correlated with gray matter density in…

  15. Effects of non-pharmacological or pharmacological interventions on cognition and brain plasticity of aging individuals.

    PubMed

    Pieramico, Valentina; Esposito, Roberto; Cesinaro, Stefano; Frazzini, Valerio; Sensi, Stefano L

    2014-01-01

    Brain aging and aging-related neurodegenerative disorders are major health challenges faced by modern societies. Brain aging is associated with cognitive and functional decline and represents the favourable background for the onset and development of dementia. Brain aging is associated with early and subtle anatomo-functional physiological changes that often precede the appearance of clinical signs of cognitive decline. Neuroimaging approaches unveiled the functional correlates of these alterations and helped in the identification of therapeutic targets that can be potentially useful in counteracting age-dependent cognitive decline. A growing body of evidence supports the notion that cognitive stimulation and aerobic training can preserve and enhance operational skills in elderly individuals as well as reduce the incidence of dementia. This review aims at providing an extensive and critical overview of the most recent data that support the efficacy of non-pharmacological and pharmacological interventions aimed at enhancing cognition and brain plasticity in healthy elderly individuals as well as delaying the cognitive decline associated with dementia. PMID:25228860

  16. Effects of non-pharmacological or pharmacological interventions on cognition and brain plasticity of aging individuals

    PubMed Central

    Pieramico, Valentina; Esposito, Roberto; Cesinaro, Stefano; Frazzini, Valerio; Sensi, Stefano L.

    2014-01-01

    Brain aging and aging-related neurodegenerative disorders are major health challenges faced by modern societies. Brain aging is associated with cognitive and functional decline and represents the favourable background for the onset and development of dementia. Brain aging is associated with early and subtle anatomo-functional physiological changes that often precede the appearance of clinical signs of cognitive decline. Neuroimaging approaches unveiled the functional correlates of these alterations and helped in the identification of therapeutic targets that can be potentially useful in counteracting age-dependent cognitive decline. A growing body of evidence supports the notion that cognitive stimulation and aerobic training can preserve and enhance operational skills in elderly individuals as well as reduce the incidence of dementia. This review aims at providing an extensive and critical overview of the most recent data that support the efficacy of non-pharmacological and pharmacological interventions aimed at enhancing cognition and brain plasticity in healthy elderly individuals as well as delaying the cognitive decline associated with dementia. PMID:25228860

  17. Temporal and Spatial Features of Single-Trial EEG for Brain-Computer Interface

    PubMed Central

    Zhao, Qibin; Zhang, Liqing

    2007-01-01

    Brain-computer interface (BCI) systems create a novel communication channel from the brain to an output device bypassing conventional motor output pathways of nerves and muscles. Modern BCI technology is essentially based on techniques for the classification of single-trial brain signals. With respect to the topographic patterns of brain rhythm modulations, the common spatial patterns (CSPs) algorithm has been proven to be very useful to produce subject-specific and discriminative spatial filters; but it didn't consider temporal structures of event-related potentials which may be very important for single-trial EEG classification. In this paper, we propose a new framework of feature extraction for classification of hand movement imagery EEG. Computer simulations on real experimental data indicate that independent residual analysis (IRA) method can provide efficient temporal features. Combining IRA features with the CSP method, we obtain the optimal spatial and temporal features with which we achieve the best classification rate. The high classification rate indicates that the proposed method is promising for an EEG-based brain-computer interface. PMID:18354735

  18. Enhancing the Temporal Complexity of Distributed Brain Networks with Patterned Cerebellar Stimulation

    PubMed Central

    Farzan, Faranak; Pascual-Leone, Alvaro; Schmahmann, Jeremy D.; Halko, Mark

    2016-01-01

    Growing evidence suggests that sensory, motor, cognitive and affective processes map onto specific, distributed neural networks. Cerebellar subregions are part of these networks, but how the cerebellum is involved in this wide range of brain functions remains poorly understood. It is postulated that the cerebellum contributes a basic role in brain functions, helping to shape the complexity of brain temporal dynamics. We therefore hypothesized that stimulating cerebellar nodes integrated in different networks should have the same impact on the temporal complexity of cortical signals. In healthy humans, we applied intermittent theta burst stimulation (iTBS) to the vermis lobule VII or right lateral cerebellar Crus I/II, subregions that prominently couple to the dorsal-attention/fronto-parietal and default-mode networks, respectively. Cerebellar iTBS increased the complexity of brain signals across multiple time scales in a network-specific manner identified through electroencephalography (EEG). We also demonstrated a region-specific shift in power of cortical oscillations towards higher frequencies consistent with the natural frequencies of targeted cortical areas. Our findings provide a novel mechanism and evidence by which the cerebellum contributes to multiple brain functions: specific cerebellar subregions control the temporal dynamics of the networks they are engaged in. PMID:27009405

  19. Enhancing the Temporal Complexity of Distributed Brain Networks with Patterned Cerebellar Stimulation.

    PubMed

    Farzan, Faranak; Pascual-Leone, Alvaro; Schmahmann, Jeremy D; Halko, Mark

    2016-01-01

    Growing evidence suggests that sensory, motor, cognitive and affective processes map onto specific, distributed neural networks. Cerebellar subregions are part of these networks, but how the cerebellum is involved in this wide range of brain functions remains poorly understood. It is postulated that the cerebellum contributes a basic role in brain functions, helping to shape the complexity of brain temporal dynamics. We therefore hypothesized that stimulating cerebellar nodes integrated in different networks should have the same impact on the temporal complexity of cortical signals. In healthy humans, we applied intermittent theta burst stimulation (iTBS) to the vermis lobule VII or right lateral cerebellar Crus I/II, subregions that prominently couple to the dorsal-attention/fronto-parietal and default-mode networks, respectively. Cerebellar iTBS increased the complexity of brain signals across multiple time scales in a network-specific manner identified through electroencephalography (EEG). We also demonstrated a region-specific shift in power of cortical oscillations towards higher frequencies consistent with the natural frequencies of targeted cortical areas. Our findings provide a novel mechanism and evidence by which the cerebellum contributes to multiple brain functions: specific cerebellar subregions control the temporal dynamics of the networks they are engaged in. PMID:27009405

  20. Low-grade inflammation disrupts structural plasticity in the human brain.

    PubMed

    Szabó, C; Kelemen, O; Kéri, S

    2014-09-01

    Increased low-grade inflammation is thought to be associated with several neuropsychiatric disorders characterized by decreased neuronal plasticity. The purpose of the present study was to investigate the relationship between structural changes in the human brain during cognitive training and the intensity of low-grade peripheral inflammation in healthy individuals (n=56). A two-month training (30 min/day) with a platformer video game resulted in a significantly increased volume of the right hippocampal formation. The number of stressful life events experienced during the past year was associated with less pronounced enlargement of the hippocampus. However, the main predictor of hippocampal volume expansion was the relative peripheral expression of Nuclear Factor-κB (NF-κB), a transcription factor playing a central role in the effect of pro-inflammatory cytokines. Interleukin-6 (IL-6) and C-reactive protein levels were not related to hippocampal plasticity when NF-κB was taken into consideration. These results suggest that more intensive peripheral inflammation is associated with weaker neuronal plasticity during cognitive training. PMID:24929068

  1. Narrative skill in children with early unilateral brain injury: a possible limit to functional plasticity.

    PubMed

    Demir, Ozlem Ece; Levine, Susan C; Goldin-Meadow, Susan

    2010-07-01

    Children with pre- or perinatal brain injury (PL) exhibit marked plasticity for language learning. Previous work has focused mostly on the emergence of earlier-developing skills, such as vocabulary and syntax. Here we ask whether this plasticity for earlier-developing aspects of language extends to more complex, later-developing language functions by examining the narrative production of children with PL. Using an elicitation technique that involves asking children to create stories de novo in response to a story stem, we collected narratives from 11 children with PL and 20 typically developing (TD) children. Narratives were analysed for length, diversity of the vocabulary used, use of complex syntax, complexity of the macro-level narrative structure and use of narrative evaluation. Children's language performance on vocabulary and syntax tasks outside the narrative context was also measured. Findings show that children with PL produced shorter stories, used less diverse vocabulary, produced structurally less complex stories at the macro-level, and made fewer inferences regarding the cognitive states of the story characters. These differences in the narrative task emerged even though children with PL did not differ from TD children on vocabulary and syntax tasks outside the narrative context. Thus, findings suggest that there may be limitations to the plasticity for language functions displayed by children with PL, and that these limitations may be most apparent in complex, decontextualized language tasks such as narrative production. PMID:20590727

  2. Temporally Coordinated Deep Brain Stimulation in the Dorsal and Ventral Striatum Synergistically Enhances Associative Learning

    PubMed Central

    Katnani, Husam A.; Patel, Shaun R.; Kwon, Churl-Su; Abdel-Aziz, Samer; Gale, John T.; Eskandar, Emad N.

    2016-01-01

    The primate brain has the remarkable ability of mapping sensory stimuli into motor behaviors that can lead to positive outcomes. We have previously shown that during the reinforcement of visual-motor behavior, activity in the caudate nucleus is correlated with the rate of learning. Moreover, phasic microstimulation in the caudate during the reinforcement period was shown to enhance associative learning, demonstrating the importance of temporal specificity to manipulate learning related changes. Here we present evidence that extends upon our previous finding by demonstrating that temporally coordinated phasic deep brain stimulation across both the nucleus accumbens and caudate can further enhance associative learning. Monkeys performed a visual-motor associative learning task and received stimulation at time points critical to learning related changes. Resulting performance revealed an enhancement in the rate, ceiling, and reaction times of learning. Stimulation of each brain region alone or at different time points did not generate the same effect. PMID:26725509

  3. Temporally Coordinated Deep Brain Stimulation in the Dorsal and Ventral Striatum Synergistically Enhances Associative Learning.

    PubMed

    Katnani, Husam A; Patel, Shaun R; Kwon, Churl-Su; Abdel-Aziz, Samer; Gale, John T; Eskandar, Emad N

    2016-01-01

    The primate brain has the remarkable ability of mapping sensory stimuli into motor behaviors that can lead to positive outcomes. We have previously shown that during the reinforcement of visual-motor behavior, activity in the caudate nucleus is correlated with the rate of learning. Moreover, phasic microstimulation in the caudate during the reinforcement period was shown to enhance associative learning, demonstrating the importance of temporal specificity to manipulate learning related changes. Here we present evidence that extends upon our previous finding by demonstrating that temporally coordinated phasic deep brain stimulation across both the nucleus accumbens and caudate can further enhance associative learning. Monkeys performed a visual-motor associative learning task and received stimulation at time points critical to learning related changes. Resulting performance revealed an enhancement in the rate, ceiling, and reaction times of learning. Stimulation of each brain region alone or at different time points did not generate the same effect. PMID:26725509

  4. Plasticity of Interhemispheric Temporal Lobe White Matter Pathways Due to Early Disruption of Corpus Callosum Development in Spina Bifida.

    PubMed

    Bradley, Kailyn A; Juranek, Jenifer; Romanowska-Pawliczek, Anna; Hannay, H Julia; Cirino, Paul T; Dennis, Maureen; Kramer, Larry A; Fletcher, Jack M

    2016-04-01

    Spina bifida myelomeningocele (SBM) is commonly associated with anomalous development of the corpus callosum (CC) because of congenital partial hypogenesis and hydrocephalus-related hypoplasia. It represents a model disorder to examine the effects of early disruption of CC neurodevelopment and the plasticity of interhemispheric white matter connections. Diffusion tensor imaging was acquired on 76 individuals with SBM and 27 typically developing individuals, aged 8-36 years. Probabilistic tractography was used to isolate the interhemispheric connections between the posterior superior temporal lobes, which typically traverse the posterior third of the CC. Early disruption of CC development resulted in restructuring of interhemispheric connections through alternate commissures, particularly the anterior commissure (AC). These rerouted fibers were present in people with SBM and both CC hypoplasia and hypogenesis. In addition, microstructural integrity was reduced in the interhemispheric temporal tract in people with SBM, indexed by lower fractional anisotropy, axial diffusivity, and higher radial diffusivity. Interhemispheric temporal tract volume was positively correlated with total volume of the CC, such that more severe underdevelopment of the CC was associated with fewer connections between the posterior temporal lobes. Therefore, both the macrostructure and microstructure of this interhemispheric tract were reduced, presumably as a result of more extensive CC malformation. The current findings suggest that early disruption in CC development reroutes interhemispheric temporal fibers through both the AC and more anterior sections of the CC in support of persistent hypotheses that the AC may serve a compensatory function in atypical CC development. PMID:26798959

  5. Theta burst stimulation to characterize changes in brain plasticity following mild traumatic brain injury: a proof-of-principle study

    PubMed Central

    Tremblay, Sara; Vernet, Marine; Bashir, Shahid; Pascual-Leone, Alvaro; Théoret, Hugo

    2016-01-01

    Purpose Recent studies investigating the acute effects of mild traumatic brain injury (mTBI) suggest the presence of unbalanced excitatory and inhibitory mechanisms within primary motor cortex (M1). Whether these abnormalities are associated with impaired synaptic plasticity remains unknown. Methods The effects of continuous theta burst stimulation (cTBS) on transcranial magnetic stimulation-induced motor evoked potentials (MEPs) were assessed on average two weeks and six weeks following mTBI in five individuals. Results The procedure was well-tolerated by all participants. Continuous TBS failed to induce a significant reduction of MEP amplitudes two weeks after the injury, but response to cTBS normalized six weeks following injury, as a majority of patients became asymptomatic. Conclusions These preliminary results suggest that cTBS can be used to assess M1 synaptic plasticity in the acute and sub-acute phases following mTBI and may provide insights into neurobiological substrates of symptoms and consequences of mTBI. PMID:25735241

  6. Temporal and spatial changes in persistent organic pollutants in Vietnamese coastal waters detected from plastic resin pellets.

    PubMed

    Le, Dung Quang; Takada, Hideshige; Yamashita, Rei; Mizukawa, Kaoruko; Hosoda, Junki; Tuyet, Dao Anh

    2016-08-15

    Plastic resin pellets collected at Minh Chau island and Ba Lat estuary between 2007 and 2014 in Vietnam were analyzed for dichloro-diphenyl-trichloroethanes (DDTs), polychlorinated biphenyls (PCBs) and hexachlorocyclohexanes (HCHs). The study was carried out as part of the International Pellet Watch program for monitoring the global distribution of persistent organic pollutants (POPs). Higher levels of DDTs compared to PCBs indicated agricultural inputs rather than industrial discharges in the region. Most POP concentrations on both beaches decreased over the period, with the exception of HCH isomers. Though the concentration of DDTs showed a drastic decline on both beaches between 2007/2008 and 2014, DDTs accounted for 60-80% of total DDTs, suggesting that there is still a fresh input of these chemicals in the region. This study strongly recommends further investigations to track temporal and spatial patterns of POP levels in the marine environment using plastic resin pellets. PMID:27262498

  7. Working memory network plasticity after anterior temporal lobe resection: a longitudinal functional magnetic resonance imaging study.

    PubMed

    Stretton, Jason; Sidhu, Meneka K; Winston, Gavin P; Bartlett, Philippa; McEvoy, Andrew W; Symms, Mark R; Koepp, Matthias J; Thompson, Pamela J; Duncan, John S

    2014-05-01

    Working memory is a crucial cognitive function that is disrupted in temporal lobe epilepsy. It is unclear whether this impairment is a consequence of temporal lobe involvement in working memory processes or due to seizure spread to extratemporal eloquent cortex. Anterior temporal lobe resection controls seizures in 50-80% of patients with drug-resistant temporal lobe epilepsy and the effect of surgery on working memory are poorly understood both at a behavioural and neural level. We investigated the impact of temporal lobe resection on the efficiency and functional anatomy of working memory networks. We studied 33 patients with unilateral medial temporal lobe epilepsy (16 left) before, 3 and 12 months after anterior temporal lobe resection. Fifteen healthy control subjects were also assessed in parallel. All subjects had neuropsychological testing and performed a visuospatial working memory functional magnetic resonance imaging paradigm on these three separate occasions. Changes in activation and deactivation patterns were modelled individually and compared between groups. Changes in task performance were included as regressors of interest to assess the efficiency of changes in the networks. Left and right temporal lobe epilepsy patients were impaired on preoperative measures of working memory compared to controls. Working memory performance did not decline following left or right temporal lobe resection, but improved at 3 and 12 months following left and, to a lesser extent, following right anterior temporal lobe resection. After left anterior temporal lobe resection, improved performance correlated with greater deactivation of the left hippocampal remnant and the contralateral right hippocampus. There was a failure of increased deactivation of the left hippocampal remnant at 3 months after left temporal lobe resection compared to control subjects, which had normalized 12 months after surgery. Following right anterior temporal lobe resection there was a

  8. Personality Influences Temporal Discounting Preferences: Behavioral and Brain Evidence

    PubMed Central

    Manning, Joshua; Hedden, Trey; Wickens, Nina; Whitfield-Gabrieli, Susan; Prelec, Drazen; Gabrieli, John D. E.

    2014-01-01

    Personality traits are stable predictors of many life outcomes that are associated with important decisions that involve tradeoffs over time. Therefore, a fundamental question is how tradeoffs over time vary from person to person in relation to stable personality traits. We investigated the influence of personality, as measured by the Five-Factor Model, on time preferences and on neural activity engaged by intertemporal choice. During functional magnetic resonance imaging (fMRI), participants made choices between smaller-sooner and larger-later monetary rewards. For each participant, we estimated a constant-sensitivity discount function that dissociates impatience (devaluation of future consequences) from time sensitivity (consistency with rational, exponential discounting). Overall, higher neuroticism was associated with a relatively greater preference for immediate rewards and higher conscientiousness with a relatively greater preference for delayed rewards. Specifically, higher conscientiousness correlated positively with lower short-term impatience and more exponential time preferences, whereas higher neuroticism (lower emotional stability) correlated positively with higher short-term impatience and less exponential time preferences. Cognitive-control and reward brain regions were more activated when higher conscientiousness participants selected a smaller-sooner reward and, conversely, when higher neuroticism participants selected a larger-later reward. Both cases involved choices that went against predispositions implied by personality. These findings reveal that stable personality traits fundamentally influence how rewards are chosen over time. PMID:24799134

  9. Temporal dynamics of spontaneous MEG activity in brain networks.

    PubMed

    de Pasquale, Francesco; Della Penna, Stefania; Snyder, Abraham Z; Lewis, Christopher; Mantini, Dante; Marzetti, Laura; Belardinelli, Paolo; Ciancetta, Luca; Pizzella, Vittorio; Romani, Gian Luca; Corbetta, Maurizio

    2010-03-30

    Functional MRI (fMRI) studies have shown that low-frequency (<0.1 Hz) spontaneous fluctuations of the blood oxygenation level dependent (BOLD) signal during restful wakefulness are coherent within distributed large-scale cortical and subcortical networks (resting state networks, RSNs). The neuronal mechanisms underlying RSNs remain poorly understood. Here, we describe magnetoencephalographic correspondents of two well-characterized RSNs: the dorsal attention and the default mode networks. Seed-based correlation mapping was performed using time-dependent MEG power reconstructed at each voxel within the brain. The topography of RSNs computed on the basis of extended (5 min) epochs was similar to that observed with fMRI but confined to the same hemisphere as the seed region. Analyses taking into account the nonstationarity of MEG activity showed transient formation of more complete RSNs, including nodes in the contralateral hemisphere. Spectral analysis indicated that RSNs manifest in MEG as synchronous modulation of band-limited power primarily within the theta, alpha, and beta bands-that is, in frequencies slower than those associated with the local electrophysiological correlates of event-related BOLD responses. PMID:20304792

  10. Optimal level activity of matrix metalloproteinases is critical for adult visual plasticity in the healthy and stroke-affected brain

    PubMed Central

    Pielecka-Fortuna, Justyna; Kalogeraki, Evgenia; Fortuna, Michal G; Löwel, Siegrid

    2015-01-01

    The ability of the adult brain to undergo plastic changes is of particular interest in medicine, especially regarding recovery from injuries or improving learning and cognition. Matrix metalloproteinases (MMPs) have been associated with juvenile experience-dependent primary visual cortex (V1) plasticity, yet little is known about their role in this process in the adult V1. Activation of MMPs is a crucial step facilitating structural changes in a healthy brain; however, upon brain injury, upregulated MMPs promote the spread of a lesion and impair recovery. To clarify these seemingly opposing outcomes of MMP-activation, we examined the effects of MMP-inhibition on experience-induced plasticity in healthy and stoke-affected adult mice. In healthy animals, 7-day application of MMP-inhibitor prevented visual plasticity. Additionally, treatment with MMP-inhibitor once but not twice following stroke rescued plasticity, normally lost under these conditions. Our data imply that an optimal level of MMP-activity is crucial for adult visual plasticity to occur. DOI: http://dx.doi.org/10.7554/eLife.11290.001 PMID:26609811

  11. Optimal level activity of matrix metalloproteinases is critical for adult visual plasticity in the healthy and stroke-affected brain.

    PubMed

    Pielecka-Fortuna, Justyna; Kalogeraki, Evgenia; Fortuna, Michal G; Löwel, Siegrid

    2016-01-01

    The ability of the adult brain to undergo plastic changes is of particular interest in medicine, especially regarding recovery from injuries or improving learning and cognition. Matrix metalloproteinases (MMPs) have been associated with juvenile experience-dependent primary visual cortex (V1) plasticity, yet little is known about their role in this process in the adult V1. Activation of MMPs is a crucial step facilitating structural changes in a healthy brain; however, upon brain injury, upregulated MMPs promote the spread of a lesion and impair recovery. To clarify these seemingly opposing outcomes of MMP-activation, we examined the effects of MMP-inhibition on experience-induced plasticity in healthy and stoke-affected adult mice. In healthy animals, 7-day application of MMP-inhibitor prevented visual plasticity. Additionally, treatment with MMP-inhibitor once but not twice following stroke rescued plasticity, normally lost under these conditions. Our data imply that an optimal level of MMP-activity is crucial for adult visual plasticity to occur. PMID:26609811

  12. Effects of chronic social isolation on Wistar rat behavior and brain plasticity markers.

    PubMed

    Djordjevic, Jelena; Djordjevic, Ana; Adzic, Miroslav; Radojcic, Marija B

    2012-01-01

    Chronic stress is a contributing risk factor in the development of psychiatric illnesses, including depressive disorders. The mechanisms of their psychopathology are multifaceted and include, besides others, alterations in the brain plasticity. Previously, we investigated the effects of chronic social stress in the limbic brain structures of Wistar rats (hippocampus, HIPPO, and prefrontal cortex, PFC) and found multiple characteristics that resembled alterations described in some clinical studies of depression. We extended our investigations and followed the behavior of stressed animals by the open field test (OFT) and forced swimming test (FST), and the expression and polysialylation of synaptic plasticity markers, neural cell adhesion molecule (NCAM) and L1, in the HIPPO and PFC. We also determined the adrenal gland mass and plasma corticosterone (CORT) as a terminal part of the hypothalamic-pituitary-adrenal axis activity. Our data indicated that stressed animals avoided the central zone in the OFT and displayed decreased swimming, but prolonged immobility in the FST. The animals exhibited marked hypertrophy of the adrenal gland cortex, in spite of decreased serum CORT. Simultaneously, the stressed animals exhibited an increase in NCAM mRNA expression in the HIPPO, but not in the PFC. The synaptosomal NCAM of the HIPPO was markedly polysialylated, while cortical PSA-NCAM was significantly decreased. The results showed that chronic social isolation of Wistar rats causes both anxiety-like and depression-like behavior. These alterations are parallel with molecular changes in the limbic brain, including diminished NCAM sialylation in the PFC. Together with our previous results, the current observations suggest that a chronic social isolation model may potentially be used to study molecular mechanisms that underlie depressive symptomatology. PMID:22814229

  13. Performance enhancement at the cost of potential brain plasticity: neural ramifications of nootropic drugs in the healthy developing brain

    PubMed Central

    Urban, Kimberly R.; Gao, Wen-Jun

    2014-01-01

    Cognitive enhancement is perhaps one of the most intriguing and controversial topics in neuroscience today. Currently, the main classes of drugs used as potential cognitive enhancers include psychostimulants (methylphenidate (MPH), amphetamine), but wakefulness-promoting agents (modafinil) and glutamate activators (ampakine) are also frequently used. Pharmacologically, substances that enhance the components of the memory/learning circuits—dopamine, glutamate (neuronal excitation), and/or norepinephrine—stand to improve brain function in healthy individuals beyond their baseline functioning. In particular, non-medical use of prescription stimulants such as MPH and illicit use of psychostimulants for cognitive enhancement have seen a recent rise among teens and young adults in schools and college campuses. However, this enhancement likely comes with a neuronal, as well as ethical, cost. Altering glutamate function via the use of psychostimulants may impair behavioral flexibility, leading to the development and/or potentiation of addictive behaviors. Furthermore, dopamine and norepinephrine do not display linear effects; instead, their modulation of cognitive and neuronal function maps on an inverted-U curve. Healthy individuals run the risk of pushing themselves beyond optimal levels into hyperdopaminergic and hypernoradrenergic states, thus vitiating the very behaviors they are striving to improve. Finally, recent studies have begun to highlight potential damaging effects of stimulant exposure in healthy juveniles. This review explains how the main classes of cognitive enhancing drugs affect the learning and memory circuits, and highlights the potential risks and concerns in healthy individuals, particularly juveniles and adolescents. We emphasize the performance enhancement at the potential cost of brain plasticity that is associated with the neural ramifications of nootropic drugs in the healthy developing brain. PMID:24860437

  14. Brain functional plasticity associated with the emergence of expertise in extreme language control.

    PubMed

    Hervais-Adelman, Alexis; Moser-Mercer, Barbara; Golestani, Narly

    2015-07-01

    We used functional magnetic resonance imaging (fMRI) to longitudinally examine brain plasticity arising from long-term, intensive simultaneous interpretation training. Simultaneous interpretation is a bilingual task with heavy executive control demands. We compared brain responses observed during simultaneous interpretation with those observed during simultaneous speech repetition (shadowing) in a group of trainee simultaneous interpreters, at the beginning and at the end of their professional training program. Age, sex and language-proficiency matched controls were scanned at similar intervals. Using multivariate pattern classification, we found distributed patterns of changes in functional responses from the first to second scan that distinguished the interpreters from the controls. We also found reduced recruitment of the right caudate nucleus during simultaneous interpretation as a result of training. Such practice-related change is consistent with decreased demands on multilingual language control as the task becomes more automatized with practice. These results demonstrate the impact of simultaneous interpretation training on the brain functional response in a cerebral structure that is not specifically linguistic, but that is known to be involved in learning, in motor control, and in a variety of domain-general executive functions. Along with results of recent studies showing functional and structural adaptations in the caudate nuclei of experts in a broad range of domains, our results underline the importance of this structure as a central node in expertise-related networks. PMID:25869858

  15. Task decomposition: a framework for comparing diverse training models in human brain plasticity studies.

    PubMed

    Coffey, Emily B J; Herholz, Sibylle C

    2013-01-01

    Training studies, in which the structural or functional neurophysiology is compared before and after expertise is acquired, are increasingly being used as models for understanding the human brain's potential for reorganization. It is proving difficult to use these results to answer basic and important questions like how task training leads to both specific and general changes in behavior and how these changes correspond with modifications in the brain. The main culprit is the diversity of paradigms used as complex task models. An assortment of activities ranging from juggling to deciphering Morse code has been reported. Even when working in the same general domain, few researchers use similar training models. New ways to meaningfully compare complex tasks are needed. We propose a method for characterizing and deconstructing the task requirements of complex training paradigms, which is suitable for application to both structural and functional neuroimaging studies. We believe this approach will aid brain plasticity research by making it easier to compare training paradigms, identify "missing puzzle pieces," and encourage researchers to design training protocols to bridge these gaps. PMID:24115927

  16. Gut Microbiota: A Modulator of Brain Plasticity and Cognitive Function in Ageing

    PubMed Central

    Leung, Katherine; Thuret, Sandrine

    2015-01-01

    Gut microbiota have recently been a topic of great interest in the field of microbiology, particularly their role in normal physiology and its influence on human health in disease. A large body of research has supported the presence of a pathway of communication between the gut and the brain, modulated by gut microbiota, giving rise to the term “microbiota-gut-brain” axis. It is now thought that, through this pathway, microbiota can affect behaviour and modulate brain plasticity and cognitive function in ageing. This review summarizes the evidence supporting the existence of such a connection and possible mechanisms of action whereby microbiota can influence the function of the central nervous system. Since normalisation of gut flora has been shown to prevent changes in behaviour, we further postulate on possible therapeutic targets to intervene with cognitive decline in ageing. The research poses various limitations, for example uncertainty about how this data translates to broad human populations. Nonetheless, the microbiota-gut-brain axis is an exciting field worthy of further investigation, particularly with regards to its implications on the ageing population. PMID:27417803

  17. Functional and anatomical basis for brain plasticity in facial palsy rehabilitation using the masseteric nerve.

    PubMed

    Buendia, Javier; Loayza, Francis R; Luis, Elkin O; Celorrio, Marta; Pastor, Maria A; Hontanilla, Bernardo

    2016-03-01

    Several techniques have been described for smile restoration after facial nerve paralysis. When a nerve other than the contralateral facial nerve is used to restore the smile, some controversy appears because of the nonphysiological mechanism of smile recovering. Different authors have reported natural results with the masseter nerve. The physiological pathways which determine whether this is achieved continue to remain unclear. Using functional magnetic resonance imaging, brain activation pattern measuring blood-oxygen-level-dependent (BOLD) signal during smiling and jaw clenching was recorded in a group of 24 healthy subjects (11 females). Effective connectivity of premotor regions was also compared in both tasks. The brain activation pattern was similar for smile and jaw-clenching tasks. Smile activations showed topographic overlap though more extended for smile than clenching. Gender comparisons during facial movements, according to kinematics and BOLD signal, did not reveal significant differences. Effective connectivity results of psychophysiological interaction (PPI) from the same seeds located in bilateral facial premotor regions showed significant task and gender differences (p < 0.001). The hypothesis of brain plasticity between the facial nerve and masseter nerve areas is supported by the broad cortical overlap in the representation of facial and masseter muscles. PMID:26683008

  18. The concept of brain plasticity--Paillard's systemic analysis and emphasis on structure and function (followed by the translation of a seminal paper by Paillard on plasticity).

    PubMed

    Will, Bruno; Dalrymple-Alford, John; Wolff, Mathieu; Cassel, Jean-Christophe

    2008-09-01

    Although rejected for the most part of the 20th Century, the idea of brain plasticity began to receive wide acceptance from the 1970s. Yet there has been relatively little theoretical comment on the definition and use of "plasticity" in the field of neurobiology. An early exception to this lack of critical reflection on neural plasticity was provided by Jacques Paillard in a seminal paper that he published in 1976 [Paillard J. Réflexions sur l'usage du concept de plasticité en neurobiology. J Psychol 1976;1:33-47]. As this valuable contribution was published in French, the present authors provide an English adaptation to help convey his ideas to an international audience, together with a contemporary commentary on this paper. Paillard's definition of the term "plasticity" is probably as pertinent today as it was 30 years ago, especially in terms of its relevance to multiple levels of analysis of brain function (molecular, cellular, systemic). Sadly, Jacques Paillard died in 2006; our comments therefore also include a brief biographical tribute to this outstanding neuroscientist. PMID:18222008

  19. Habitat Choice and Temporal Variation Alter the Balance between Adaptation by Genetic Differentiation, a Jack-of-All-Trades Strategy, and Phenotypic Plasticity.

    PubMed

    Scheiner, Samuel M

    2016-05-01

    Confronted with variable environments, species adapt in several ways, including genetic differentiation, a jack-of-all-trades strategy, or phenotypic plasticity. Adaptive habitat choice favors genetic differentiation and local adaptation over a generalist, jack-of-all-trades strategy. Models predict that, absent plasticity costs, variable environments generally favor phenotypic plasticity over genetic differentiation and being a jack-of-all-trades generalist. It is unknown how habitat choice might affect the evolution of plasticity. Using an individual-based simulation model, I explored the interaction of choice and plasticity. With only spatial variation, habitat choice promotes genetic differentiation over a jack-of-all-trades strategy or phenotypic plasticity. In the absence of plasticity, temporal variation favors a jack-of-all-trades strategy over choice-mediated genetic differentiation; when plasticity is an option, it is favored. This occurs because habitat choice creates a feedback between genetic differentiation and dispersal rates. As demes become better adapted to their local environments, the effective dispersal rate decreases, because more individuals have very high fitness and so choose not to disperse, reinforcing local stabilizing selection and negating selection for plasticity. Temporal variation breaks that feedback. These results point to a potential data paradox: systems with habitat choice may have the lowest actual movement rates. The potential for adaptive habitat choice may be very common, but its existence may reduce observed dispersal rates enough that we do not recognize systems where it may be present, warranting further exploration of likely systems. PMID:27104995

  20. Phase Response of Brain Alpha Wave to Temporally Alternating Red/Blue Light Emitting Diode Stimuli

    NASA Astrophysics Data System (ADS)

    Nishifuji, Seiji; Tanaka, Shogo

    2003-09-01

    Spatial phase response of the alpha wave is investigated under the condition that red and blue flicker stimuli are temporally alternately applied. The alternating stimuli lead to two distinct phase distributions depending on the subjects: 1) a phase reversal, in which the phases of the alpha waves are antilocked between the occipital and frontal regions, and 2) a quasi-phase-locking, in which the phase difference distribution includes the temporal alternation of a phase locking over the entire scalp and the phase reversal between the occiput and front. The result suggests possibilities for the underlying mechanism of the hyper-synchronization of the brain waves seen in photosensitive epilepsy.

  1. Modeling learning in brain stem and cerebellar sites responsible for VOR plasticity.

    PubMed

    Quinn, K J; Didier, A J; Baker, J F; Peterson, B W

    1998-07-01

    A simple model of vestibuloocular reflex (VOR) function was used to analyze several hypotheses currently held concerning the characteristics of VOR plasticity. The network included a direct vestibular pathway and an indirect path via the cerebellum. An optimization analysis of this model suggests that regulation of brain stem sites is critical for the proper modification of VOR gain. A more physiologically plausible learning rule was also applied to this network. Analysis of these simulation results suggests that the preferred error correction signal controlling gain modification of the VOR is the direct output of the accessory optic system (AOS) to the vestibular nuclei vs. a signal relayed through the cerebellum via floccular Purkinje cells. The potential anatomical and physiological basis for this conclusion is discussed, in relation to our current understanding of the latency of the adapted VOR response. PMID:9671263

  2. Modeling learning in brain stem and cerebellar sites responsible for VOR plasticity

    NASA Technical Reports Server (NTRS)

    Quinn, K. J.; Didier, A. J.; Baker, J. F.; Peterson, B. W.

    1998-01-01

    A simple model of vestibuloocular reflex (VOR) function was used to analyze several hypotheses currently held concerning the characteristics of VOR plasticity. The network included a direct vestibular pathway and an indirect path via the cerebellum. An optimization analysis of this model suggests that regulation of brain stem sites is critical for the proper modification of VOR gain. A more physiologically plausible learning rule was also applied to this network. Analysis of these simulation results suggests that the preferred error correction signal controlling gain modification of the VOR is the direct output of the accessory optic system (AOS) to the vestibular nuclei vs. a signal relayed through the cerebellum via floccular Purkinje cells. The potential anatomical and physiological basis for this conclusion is discussed, in relation to our current understanding of the latency of the adapted VOR response.

  3. Musicians and music making as a model for the study of brain plasticity

    PubMed Central

    Schlaug, Gottfried

    2015-01-01

    Playing a musical instrument is an intense, multisensory, and motor experience that usually commences at an early age and requires the acquisition and maintenance of a range of sensory and motor skills over the course of a musician’s lifetime. Thus, musicians offer an excellent human model for studying behavioral-cognitive as well as brain effects of acquiring, practicing, and maintaining these specialized skills. Research has shown that repeatedly practicing the association of motor actions with specific sound and visual patterns (musical notation), while receiving continuous multisensory feedback will strengthen connections between auditory and motor regions (e.g., arcuate fasciculus) as well as multimodal integration regions. Plasticity in this network may explain some of the sensorimotor and cognitive enhancements that have been associated with music training. Furthermore, the plasticity of this system as a result of long term and intense interventions suggest the potential for music making activities (e.g., forms of singing) as an intervention for neurological and developmental disorders to learn and relearn associations between auditory and motor functions such as vocal motor functions. PMID:25725909

  4. Musicians and music making as a model for the study of brain plasticity.

    PubMed

    Schlaug, Gottfried

    2015-01-01

    Playing a musical instrument is an intense, multisensory, and motor experience that usually commences at an early age and requires the acquisition and maintenance of a range of sensory and motor skills over the course of a musician's lifetime. Thus, musicians offer an excellent human model for studying behavioral-cognitive as well as brain effects of acquiring, practicing, and maintaining these specialized skills. Research has shown that repeatedly practicing the association of motor actions with specific sound and visual patterns (musical notation), while receiving continuous multisensory feedback will strengthen connections between auditory and motor regions (e.g., arcuate fasciculus) as well as multimodal integration regions. Plasticity in this network may explain some of the sensorimotor and cognitive enhancements that have been associated with music training. Furthermore, the plasticity of this system as a result of long term and intense interventions suggest the potential for music making activities (e.g., forms of singing) as an intervention for neurological and developmental disorders to learn and relearn associations between auditory and motor functions such as vocal motor functions. PMID:25725909

  5. Development and modulation of intrinsic membrane properties control the temporal precision of auditory brain stem neurons.

    PubMed

    Franzen, Delwen L; Gleiss, Sarah A; Berger, Christina; Kümpfbeck, Franziska S; Ammer, Julian J; Felmy, Felix

    2015-01-15

    Passive and active membrane properties determine the voltage responses of neurons. Within the auditory brain stem, refinements in these intrinsic properties during late postnatal development usually generate short integration times and precise action-potential generation. This developmentally acquired temporal precision is crucial for auditory signal processing. How the interactions of these intrinsic properties develop in concert to enable auditory neurons to transfer information with high temporal precision has not yet been elucidated in detail. Here, we show how the developmental interaction of intrinsic membrane parameters generates high firing precision. We performed in vitro recordings from neurons of postnatal days 9-28 in the ventral nucleus of the lateral lemniscus of Mongolian gerbils, an auditory brain stem structure that converts excitatory to inhibitory information with high temporal precision. During this developmental period, the input resistance and capacitance decrease, and action potentials acquire faster kinetics and enhanced precision. Depending on the stimulation time course, the input resistance and capacitance contribute differentially to action-potential thresholds. The decrease in input resistance, however, is sufficient to explain the enhanced action-potential precision. Alterations in passive membrane properties also interact with a developmental change in potassium currents to generate the emergence of the mature firing pattern, characteristic of coincidence-detector neurons. Cholinergic receptor-mediated depolarizations further modulate this intrinsic excitability profile by eliciting changes in the threshold and firing pattern, irrespective of the developmental stage. Thus our findings reveal how intrinsic membrane properties interact developmentally to promote temporally precise information processing. PMID:25355963

  6. Temporal profile of improvement of tardive dystonia after globus pallidus deep brain stimulation

    PubMed Central

    Shaikh, Aasef G.; Mewes, Klaus; DeLong, Mahlon R.; Gross, Robert E.; Triche, Shirley D.; Jinnah, H.A.; Boulis, Nicholas; Willie, Jon T.; Freeman, Alan; Alexander, Garrett E.; Aia, Pratibha; Butefisch, Cathrine M.; Esper, Christine D.; Factor, Stewart A.

    2016-01-01

    Background Several case reports and small series have indicated that tardive dystonia is responsive to globus pallidus deep brain stimulation. Whether different subtypes or distributions of tardive dystonia are associated with different outcomes remains unknown. Methods We assessed the outcomes and temporal profile of improvement of eight tardive dystonia patients who underwent globus pallidus deep brain stimulation over the past six years through record review. Due to the retrospective nature of this study, it was not blinded or placebo controlled. Results: Consistent with previous studies, deep brain stimulation improved the overall the Burkee–Fahn–Marsden motor scores by 85.1 ± 13.5%. The distributions with best responses in descending order were upper face, lower face, larynx/pharynx, limbs, trunk, and neck. Patients with prominent cervical dystonia demonstrated improvement in the Toronto Western Spasmodic Torticollis Rating Scale but improvements took several months. In four patients the effects of deep brain stimulation on improvement in Burke Fahn Marsden score was rapid, while in four cases there was partial rapid response of neck and trunk dystonia followed by was gradual resolution of residual symptoms over 48 months. Conclusion Our retrospective analysis shows excellent resolution of tardive dystonia after globus pallidus deep brain stimulation. We found instantaneous response, except with neck and trunk dystonia where partial recovery was followed by further resolution at slower rate. Such outcome is encouraging for using deep brain stimulation in treatment of tardive dystonia. PMID:25465373

  7. Temporal expression analysis of angiogenesis-related genes in brain development

    PubMed Central

    2012-01-01

    Background The current knowledge on molecular pathogenesis of cerebral vascular malformations (CVM), which are believed to arise during development, is very limited. To unravel the molecular mechanisms involved in CVMs, a detailed understanding of the brain vascular development at molecular level is crucial. In this study, we aimed to explore the temporal and comparative expression profile of angiogenesis-related genes in the establishment of brain vasculature. Methods Expression of a total of 113 angiogenesis-related genes during murine brain development has been analyzed using low-density array systems designed for angiogenesis-related genes. Bai1 (brain specific angiogenesis inhibitor-1), a recently identified novel anti-angiogenic gene, has been selected for further characterization. Results We found that 62 out of 113 analyzed genes have expression in brain development at varying levels. Nineteen of these were differentially expressed between embryonic and postnatal stages (>1.5 fold). Bai1 is strongly expressed on growing blood vessels of cerebral cortex and hippocampus, partially expressed in the lateral regions of striatum, but mostly absent on the thalamus. Conclusion By showing the comparative expression analysis of angiogenesis-related genes throughout brain development, the data presented here will be a crucial addition to further functional studies on cerebrovascular research. PMID:23020941

  8. Genetic Mapping of Brain Plasticity Across Development in Williams Syndrome: ERP Markers of Face and Language Processing

    PubMed Central

    Mills, D. L.; Dai, L.; Fishman, I.; Yam, A.; Appelbaum, L. G.; Galaburda, A.; Bellugi, U.; Korenberg, J. R.

    2014-01-01

    In Williams Syndrome (WS), a known genetic deletion results in atypical brain function with strengths in face and language processing. We examined how genetic influences on brain activity change with development. In three studies, ERPs from large samples of children, adolescents, and adults with the full genetic deletion for WS were compared to typically developing controls, and two adults with partial deletions for WS. Studies 1 and 2 identified ERP markers of brain plasticity in WS across development. Study 3 suggested that in adults with partial deletions for WS, specific genes may be differentially implicated in face and language processing. PMID:24219698

  9. Clinical studies of photodynamic therapy for malignant brain tumors: facial nerve palsy after temporal fossa photoillumination

    NASA Astrophysics Data System (ADS)

    Muller, Paul J.; Wilson, Brian C.; Lilge, Lothar D.; Varma, Abhay; Bogaards, Arjen; Fullagar, Tim; Fenstermaker, Robert; Selker, Robert; Abrams, Judith

    2003-06-01

    In two randomized prospective studies of brain tumor PDT more than 180 patients have been accrued. At the Toronto site we recognized two patients who developed a lower motor neuron (LMN) facial paralysis in the week following the PDT treatment. In both cases a temporal lobectomy was undertaken and the residual tumor cavity was photo-illuminated. The surface illuminated included the temporal fossa floor, thus potentially exposing the facial nerve to the effect of PDT. The number of frontal, temporal, parietal, and occipital tumors in this cohort was 39, 24, 12 and 4, respectively. Of the 24 temporal tumors 18 were randomized to Photofrin-PDT. Of these 18 a temporal lobectomy was carried out exposing the middle fossa floor as part of the tumor resection. In two of the 10 patients where the lobectomy was carried out and the fossa floor was exposed to light there occurred a postoperative facial palsy. Both patients recovered facial nerve function in 6 and 12 weeks, respectively. 46 J/cm2 were used in the former and 130 J/cm2 in the latter. We did not encounter a single post-operative LMN facial plasy in the 101 phase 2 patients treated with Photofrin-PDT. Among 688 supratentorial brain tumor operations in the last decade involving all pathologies and all locations no case of early post-operative LMN facial palsy was identified in the absence of PDT. One further patient who had a with post-PDT facial palsy was identified at the Denver site. Although it is possible that these patients had incidental Bell's palsy, we now recommend shielding the temporal fossa floor during PDT.

  10. Seasonal regulation of structural plasticity and neurogenesis in the adult mammalian brain: focus on the sheep hypothalamus.

    PubMed

    Migaud, Martine; Butrille, Lucile; Batailler, Martine

    2015-04-01

    To cope with variations in the environment, most mammalian species exhibit seasonal cycles in physiology and behaviour. Seasonal plasticity during the lifetime contributes to seasonal physiology. Over the years, our ideas regarding adult brain plasticity and, more specifically, hypothalamic plasticity have greatly evolved. Along with the two main neurogenic regions, namely the hippocampal subgranular and lateral ventricle subventricular zones, the hypothalamus, which is the central homeostatic regulator of numerous physiological functions that comprise sexual behaviours, feeding and metabolism, also hosts neurogenic niches. Both endogenous and exogenous factors, including the photoperiod, modulate the hypothalamic neurogenic capacities. The present review describes the effects of season on adult morphological plasticity and neurogenesis in seasonal species, for which the photoperiod is a master environmental cue for the successful programming of seasonal functions. In addition, the potential functional significance of adult neurogenesis in the mediation of the seasonal control of reproduction and feeding is discussed. PMID:25462590

  11. Memory network plasticity after temporal lobe resection: a longitudinal functional imaging study

    PubMed Central

    Sidhu, Meneka K.; Stretton, Jason; Winston, Gavin P.; McEvoy, Andrew W.; Symms, Mark; Thompson, Pamela J.; Koepp, Matthias J.

    2016-01-01

    Anterior temporal lobe resection can control seizures in up to 80% of patients with temporal lobe epilepsy. Memory decrements are the main neurocognitive complication. Preoperative functional reorganization has been described in memory networks, but less is known of postoperative reorganization. We investigated reorganization of memory-encoding networks preoperatively and 3 and 12 months after surgery. We studied 36 patients with unilateral medial temporal lobe epilepsy (19 right) before and 3 and 12 months after anterior temporal lobe resection. Fifteen healthy control subjects were studied at three equivalent time points. All subjects had neuropsychological testing at each of the three time points. A functional magnetic resonance imaging memory-encoding paradigm of words and faces was performed with subsequent out-of-scanner recognition assessments. Changes in activations across the time points in each patient group were compared to changes in the control group in a single flexible factorial analysis. Postoperative change in memory across the time points was correlated with postoperative activations to investigate the efficiency of reorganized networks. Left temporal lobe epilepsy patients showed increased right anterior hippocampal and frontal activation at both 3 and 12 months after surgery relative to preoperatively, for word and face encoding, with a concomitant reduction in left frontal activation 12 months postoperatively. Right anterior hippocampal activation 12 months postoperatively correlated significantly with improved verbal learning in patients with left temporal lobe epilepsy from preoperatively to 12 months postoperatively. Preoperatively, there was significant left posterior hippocampal activation that was sustained 3 months postoperatively at word encoding, and increased at face encoding. For both word and face encoding this was significantly reduced from 3 to 12 months postoperatively. Patients with right temporal lobe epilepsy showed increased

  12. Memory network plasticity after temporal lobe resection: a longitudinal functional imaging study.

    PubMed

    Sidhu, Meneka K; Stretton, Jason; Winston, Gavin P; McEvoy, Andrew W; Symms, Mark; Thompson, Pamela J; Koepp, Matthias J; Duncan, John S

    2016-02-01

    Anterior temporal lobe resection can control seizures in up to 80% of patients with temporal lobe epilepsy. Memory decrements are the main neurocognitive complication. Preoperative functional reorganization has been described in memory networks, but less is known of postoperative reorganization. We investigated reorganization of memory-encoding networks preoperatively and 3 and 12 months after surgery. We studied 36 patients with unilateral medial temporal lobe epilepsy (19 right) before and 3 and 12 months after anterior temporal lobe resection. Fifteen healthy control subjects were studied at three equivalent time points. All subjects had neuropsychological testing at each of the three time points. A functional magnetic resonance imaging memory-encoding paradigm of words and faces was performed with subsequent out-of-scanner recognition assessments. Changes in activations across the time points in each patient group were compared to changes in the control group in a single flexible factorial analysis. Postoperative change in memory across the time points was correlated with postoperative activations to investigate the efficiency of reorganized networks. Left temporal lobe epilepsy patients showed increased right anterior hippocampal and frontal activation at both 3 and 12 months after surgery relative to preoperatively, for word and face encoding, with a concomitant reduction in left frontal activation 12 months postoperatively. Right anterior hippocampal activation 12 months postoperatively correlated significantly with improved verbal learning in patients with left temporal lobe epilepsy from preoperatively to 12 months postoperatively. Preoperatively, there was significant left posterior hippocampal activation that was sustained 3 months postoperatively at word encoding, and increased at face encoding. For both word and face encoding this was significantly reduced from 3 to 12 months postoperatively. Patients with right temporal lobe epilepsy showed increased

  13. Neurogenic plasticity of mesenchymal stem cell, an alluring cellular replacement for traumatic brain injury.

    PubMed

    Pati, Soumya; Muthuraju, Sangu; Hadi, Raisah Ab; Huat, Tee Jong; Singh, Shailja; Maletic-Savatic, Mirjana; Abdullah, Jafri Malin; Jaafar, Hasnan

    2016-01-01

    Traumatic brain injury (TBI) imposes horrendous neurophysiological alterations leading to most devastating forms of neuro-disability. Which includes impaired cognition, distorted locomotors activity and psychosomatic disability in both youths and adults. Emerging evidence from recent studies has identified mesenchymal stem cells (MSCs) as one of the promising category of stem cells having excellent neuroregenerative capability in TBI victims. Some of the clinical and animal studies reported that MSCs transplantation could cure neuronal damage as well as improve cognitive and locomotors behaviors in TBI. However, mechanism behind their broad spectrum neuroregenerative potential in TBI has not been reviewed yet. Therefore, in the present article, we present a comprehensive data on the important attributes of MSCs, such as neurotransdifferentiation, neuroprotection, axonal repair and plasticity, maintenance of blood-brain integrity, reduction of reactive oxygen species (ROS) and immunomodulation. We have reviewed in detail the crucial neurogenic capabilities of MSCs in vivo and provided consolidated knowledge regarding their cellular remodeling in TBI for future therapeutic implications. PMID:26763886

  14. Rehabilitative Interventions and Brain Plasticity in Autism Spectrum Disorders: Focus on MRI-Based Studies.

    PubMed

    Calderoni, Sara; Billeci, Lucia; Narzisi, Antonio; Brambilla, Paolo; Retico, Alessandra; Muratori, Filippo

    2016-01-01

    Clinical and research evidence supports the efficacy of rehabilitative intervention for improving targeted skills or global outcomes in individuals with autism spectrum disorder (ASD). However, putative mechanisms of structural and functional brain changes are poorly understood. This review aims to investigate the research literature on the neural circuit modifications after non-pharmacological intervention. For this purpose, longitudinal studies that used magnetic resonance imaging (MRI)-based techniques at the start and at the end of the trial to evaluate the neural effects of rehabilitative treatment in subjects with ASD were identified. The six included studies involved a limited number of patients in the active group (from 2 to 16), and differed by acquisition method (task-related and resting-state functional MRI) as well as by functional MRI tasks. Overall, the results produced by the selected investigations demonstrated brain plasticity during the treatment interval that results in an activation/functional connectivity more similar to those of subjects with typical development (TD). Repeated MRI evaluation may represent a promising tool for the detection of neural changes in response to treatment in patients with ASD. However, large-scale randomized controlled trials after standardized rehabilitative intervention are required before translating these preliminary results into clinical use. PMID:27065795

  15. Rehabilitative Interventions and Brain Plasticity in Autism Spectrum Disorders: Focus on MRI-Based Studies

    PubMed Central

    Calderoni, Sara; Billeci, Lucia; Narzisi, Antonio; Brambilla, Paolo; Retico, Alessandra; Muratori, Filippo

    2016-01-01

    Clinical and research evidence supports the efficacy of rehabilitative intervention for improving targeted skills or global outcomes in individuals with autism spectrum disorder (ASD). However, putative mechanisms of structural and functional brain changes are poorly understood. This review aims to investigate the research literature on the neural circuit modifications after non-pharmacological intervention. For this purpose, longitudinal studies that used magnetic resonance imaging (MRI)-based techniques at the start and at the end of the trial to evaluate the neural effects of rehabilitative treatment in subjects with ASD were identified. The six included studies involved a limited number of patients in the active group (from 2 to 16), and differed by acquisition method (task-related and resting-state functional MRI) as well as by functional MRI tasks. Overall, the results produced by the selected investigations demonstrated brain plasticity during the treatment interval that results in an activation/functional connectivity more similar to those of subjects with typical development (TD). Repeated MRI evaluation may represent a promising tool for the detection of neural changes in response to treatment in patients with ASD. However, large-scale randomized controlled trials after standardized rehabilitative intervention are required before translating these preliminary results into clinical use. PMID:27065795

  16. Task decomposition: a framework for comparing diverse training models in human brain plasticity studies

    PubMed Central

    Coffey, Emily B. J.; Herholz, Sibylle C.

    2013-01-01

    Training studies, in which the structural or functional neurophysiology is compared before and after expertise is acquired, are increasingly being used as models for understanding the human brain’s potential for reorganization. It is proving difficult to use these results to answer basic and important questions like how task training leads to both specific and general changes in behavior and how these changes correspond with modifications in the brain. The main culprit is the diversity of paradigms used as complex task models. An assortment of activities ranging from juggling to deciphering Morse code has been reported. Even when working in the same general domain, few researchers use similar training models. New ways to meaningfully compare complex tasks are needed. We propose a method for characterizing and deconstructing the task requirements of complex training paradigms, which is suitable for application to both structural and functional neuroimaging studies. We believe this approach will aid brain plasticity research by making it easier to compare training paradigms, identify “missing puzzle pieces,” and encourage researchers to design training protocols to bridge these gaps. PMID:24115927

  17. A voxelwise approach to determine consensus regions-of-interest for the study of brain network plasticity.

    PubMed

    Rajtmajer, Sarah M; Roy, Arnab; Albert, Reka; Molenaar, Peter C M; Hillary, Frank G

    2015-01-01

    Despite exciting advances in the functional imaging of the brain, it remains a challenge to define regions of interest (ROIs) that do not require investigator supervision and permit examination of change in networks over time (or plasticity). Plasticity is most readily examined by maintaining ROIs constant via seed-based and anatomical-atlas based techniques, but these approaches are not data-driven, requiring definition based on prior experience (e.g., choice of seed-region, anatomical landmarks). These approaches are limiting especially when functional connectivity may evolve over time in areas that are finer than known anatomical landmarks or in areas outside predetermined seeded regions. An ideal method would permit investigators to study network plasticity due to learning, maturation effects, or clinical recovery via multiple time point data that can be compared to one another in the same ROI while also preserving the voxel-level data in those ROIs at each time point. Data-driven approaches (e.g., whole-brain voxelwise approaches) ameliorate concerns regarding investigator bias, but the fundamental problem of comparing the results between distinct data sets remains. In this paper we propose an approach, aggregate-initialized label propagation (AILP), which allows for data at separate time points to be compared for examining developmental processes resulting in network change (plasticity). To do so, we use a whole-brain modularity approach to parcellate the brain into anatomically constrained functional modules at separate time points and then apply the AILP algorithm to form a consensus set of ROIs for examining change over time. To demonstrate its utility, we make use of a known dataset of individuals with traumatic brain injury sampled at two time points during the first year of recovery and show how the AILP procedure can be applied to select regions of interest to be used in a graph theoretical analysis of plasticity. PMID:26283928

  18. A voxelwise approach to determine consensus regions-of-interest for the study of brain network plasticity

    PubMed Central

    Rajtmajer, Sarah M.; Roy, Arnab; Albert, Reka; Molenaar, Peter C. M.; Hillary, Frank G.

    2015-01-01

    Despite exciting advances in the functional imaging of the brain, it remains a challenge to define regions of interest (ROIs) that do not require investigator supervision and permit examination of change in networks over time (or plasticity). Plasticity is most readily examined by maintaining ROIs constant via seed-based and anatomical-atlas based techniques, but these approaches are not data-driven, requiring definition based on prior experience (e.g., choice of seed-region, anatomical landmarks). These approaches are limiting especially when functional connectivity may evolve over time in areas that are finer than known anatomical landmarks or in areas outside predetermined seeded regions. An ideal method would permit investigators to study network plasticity due to learning, maturation effects, or clinical recovery via multiple time point data that can be compared to one another in the same ROI while also preserving the voxel-level data in those ROIs at each time point. Data-driven approaches (e.g., whole-brain voxelwise approaches) ameliorate concerns regarding investigator bias, but the fundamental problem of comparing the results between distinct data sets remains. In this paper we propose an approach, aggregate-initialized label propagation (AILP), which allows for data at separate time points to be compared for examining developmental processes resulting in network change (plasticity). To do so, we use a whole-brain modularity approach to parcellate the brain into anatomically constrained functional modules at separate time points and then apply the AILP algorithm to form a consensus set of ROIs for examining change over time. To demonstrate its utility, we make use of a known dataset of individuals with traumatic brain injury sampled at two time points during the first year of recovery and show how the AILP procedure can be applied to select regions of interest to be used in a graph theoretical analysis of plasticity. PMID:26283928

  19. Immune dysregulation and cognitive vulnerability in the aging brain: Interactions of microglia, IL-1β, BDNF and synaptic plasticity.

    PubMed

    Patterson, Susan L

    2015-09-01

    Older individuals often experience declines in cognitive function after events (e.g. infection, or injury) that trigger activation of the immune system. This occurs at least in part because aging sensitizes the response of microglia (the brain's resident immune cells) to signals triggered by an immune challenge. In the aging brain, microglia respond to these signals by producing more pro-inflammatory cytokines (e.g. interleukin-1beta or IL-1β) and producing them for longer than microglia in younger brains. This exaggerated inflammatory response can compromise processes critical for optimal cognitive functioning. Interleukin-1β is central to the inflammatory response and is a key mediator and modulator of an array of associated biological functions; thus its production and release is usually very tightly regulated. This review will focus on the impact of dysregulated production of IL-1β on hippocampus dependent-memory systems and associated synaptic plasticity processes. The neurotrophin brain-derived neurotrophic factor (BNDF) helps to protect neurons from damage caused by infection or injury, and it plays a critical role in many of the same memory and hippocampal plasticity processes compromised by dysregulated production of IL-1β. This suggests that an exaggerated brain inflammatory response, arising from aging and a secondary immune challenge, may erode the capacity to provide the BDNF needed for memory-related plasticity processes at hippocampal synapses. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'. PMID:25549562

  20. Neuropharmacokinetics of two investigational compounds in rats: divergent temporal profiles in the brain and cerebrospinal fluid.

    PubMed

    Tang, Cuyue; Chen, Ting; Kapadnis, Sudarshan; Hodgdon, Hilliary; Tao, Yi; Chen, Xing; Wen, Melody; Costa, Don; Murphy, Deirdre; Nolan, Scott; Flood, Dorothy G; Welty, Devin F; Koenig, Gerhard

    2014-10-15

    Two investigational compounds (FRM-1, (R)-7-fluoro-N-(quinuclidin-3-yl)benzo[b]thiophene-2-carboxamide and FRM-2, (R)-7-cyano-N-(quinuclidin-3-yl)benzo[b]thiophene-2-carboxamide) resided in rat brain longer than in systemic circulation. In Caco-2 directional transport studies, they both showed good intrinsic passive permeability but differed significantly in efflux susceptibility (efflux ratio of <2 and ∼7, respectively), largely attributed to P-glycoprotein (P-gp). Capitalizing on these interesting properties, we investigated how cerebrospinal fluid (CSF) concentration (CCSF) would be shaped by unbound plasma concentration (Cu,p) and unbound brain concentration (Cu,b) in disequilibrium conditions and at steady state. Following subcutaneous administration, FRM-1CCSF largely followed Cu,p initially and leveled between Cu,p and Cu,b. However, it gradually approached Cu,b and became lower than, but parallel to Cu,b at the terminal phase. In contrast, FRM-2CCSF temporal profile mostly paralleled the Cu,p but was at a much lower level. Upon intravenous infusion to steady state, FRM-1CCSF and Cu,b were similar, accounting for 61% and 69% of the Cu,p, indicating a case of largely passive diffusion-governed brain penetration where CCSF served as a good surrogate for Cu,b. On the contrary, FRM-2CCSF and Cu,b were remarkably lower than Cu,p (17% and 8% of Cu,p, respectively), suggesting that FRM-2 brain penetration was severely impaired by P-gp-mediated efflux and CCSF underestimated this impact. A semi-physiologically based pharmacokinetic (PBPK) model was constructed that adequately described the temporal profiles of the compounds in the plasma, brain and CSF. Our work provided some insight into the relative importance of blood-brain barrier (BBB) and blood-CSF barrier (BCSFB) in modulating CCSF. PMID:25091561

  1. 3D Standard Brain of the Red Flour Beetle Tribolium Castaneum: A Tool to Study Metamorphic Development and Adult Plasticity

    PubMed Central

    Dreyer, David; Vitt, Holger; Dippel, Stefan; Goetz, Brigitte; el Jundi, Basil; Kollmann, Martin; Huetteroth, Wolf; Schachtner, Joachim

    2009-01-01

    The red flour beetle Tribolium castaneum is emerging as a further standard insect model beside Drosophila. Its genome is fully sequenced and it is susceptible for genetic manipulations including RNA-interference. We use this beetle to study adult brain development and plasticity primarily with respect to the olfactory system. In the current study, we provide 3D standard brain atlases of freshly eclosed adult female and male beetles (A0). The atlases include eight paired and three unpaired neuropils including antennal lobes (ALs), optic lobe neuropils, mushroom body calyces and pedunculi, and central complex. For each of the two standard brains, we averaged brain areas of 20 individual brains. Additionally, we characterized eight selected olfactory glomeruli from 10 A0 female and male beetles respectively, which we could unequivocally recognize from individual to individual owing to their size and typical position in the ALs. In summary, comparison of the averaged neuropil volumes revealed no sexual dimorphism in any of the reconstructed neuropils in A0 Tribolium brains. Both, the female and male 3D standard brain are also used for interspecies comparisons, and, importantly, will serve as future volumetric references after genetical manipulation especially regarding metamorphic development and adult plasticity. PMID:20339482

  2. Taurine content in different brain structures during ageing: effect on hippocampal synaptic plasticity.

    PubMed

    Suárez, Luz M; Muñoz, María-Dolores; Martín Del Río, Rafael; Solís, José M

    2016-05-01

    A reduction in taurine content accompanies the ageing process in many tissues. In fact, the decline of brain taurine levels has been associated with cognitive deficits whereas chronic administration of taurine seems to ameliorate age-related deficits such as memory acquisition and retention. In the present study, using rats of three age groups (young, adult and aged) we determined whether the content of taurine and other amino acids (glutamate, serine, glutamine, glycine, alanine and GABA) was altered during ageing in different brain areas (cerebellum, cortex and hippocampus) as well non-brain tissues (heart, kidney, liver and plasma). Moreover, using hippocampal slices we tested whether ageing affects synaptic function and plasticity. These parameters were also determined in aged rats fed with either taurine-devoid or taurine-supplemented diets. With age, we found heterogeneous changes in amino acid content depending on the amino acid type and the tissue. In the case of taurine, its content was reduced in the cerebellum of adult and aged rats, but it remained unchanged in the hippocampus, cortex, heart and liver. The synaptic response amplitude decreased in aged rats, although the late phase of long-term synaptic potentiation (late-LTP), a taurine-dependent process, was not altered. Our study highlights the stability of taurine content in the hippocampus during ageing regardless of whether taurine was present in the diet, which is consistent with the lack of changes detected in late-LTP. These results indicate that the beneficial effects of taurine supplementation might be independent of the replenishment of taurine stores. PMID:26803657

  3. Keeping time in the brain: Autism spectrum disorder and audiovisual temporal processing.

    PubMed

    Stevenson, Ryan A; Segers, Magali; Ferber, Susanne; Barense, Morgan D; Camarata, Stephen; Wallace, Mark T

    2016-07-01

    A growing area of interest and relevance in the study of autism spectrum disorder (ASD) focuses on the relationship between multisensory temporal function and the behavioral, perceptual, and cognitive impairments observed in ASD. Atypical sensory processing is becoming increasingly recognized as a core component of autism, with evidence of atypical processing across a number of sensory modalities. These deviations from typical processing underscore the value of interpreting ASD within a multisensory framework. Furthermore, converging evidence illustrates that these differences in audiovisual processing may be specifically related to temporal processing. This review seeks to bridge the connection between temporal processing and audiovisual perception, and to elaborate on emerging data showing differences in audiovisual temporal function in autism. We also discuss the consequence of such changes, the specific impact on the processing of different classes of audiovisual stimuli (e.g. speech vs. nonspeech, etc.), and the presumptive brain processes and networks underlying audiovisual temporal integration. Finally, possible downstream behavioral implications, and possible remediation strategies are outlined. Autism Res 2016, 9: 720-738. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. PMID:26402725

  4. Synaptic plasticity in a cerebellum-like structure depends on temporal order

    NASA Astrophysics Data System (ADS)

    Bell, Curtis C.; Han, Victor Z.; Sugawara, Yoshiko; Grant, Kirsty

    1997-05-01

    Cerebellum-like structures in fish appear to act as adaptive sensory processors, in which learned predictions about sensory input are generated and subtracted from actual sensory input, allowing unpredicted inputs to stand out1-3. Pairing sensory input with centrally originating predictive signals, such as corollary discharge signals linked to motor commands, results in neural responses to the predictive signals alone that are Negative images' of the previously paired sensory responses. Adding these 'negative images' to actual sensory inputs minimizes the neural response to predictable sensory features. At the cellular level, sensory input is relayed to the basal region of Purkinje-like cells, whereas predictive signals are relayed by parallel fibres to the apical dendrites of the same cells4. The generation of negative images could be explained by plasticity at parallel fibre synapses5-7. We show here that such plasticity exists in the electrosensory lobe of mormyrid electric fish and that it has the necessary properties for such a model: it is reversible, anti-hebbian (excitatory postsynaptic potentials (EPSPs) are depressed after pairing with a postsynaptic spike) and tightly dependent on the sequence of pre- and postsynaptic events, with depression occurring only if the postsynaptic spike follows EPSP onset within 60 ms.

  5. A computational model of the temporal dynamics of plasticity in procedural learning: sensitivity to feedback timing

    PubMed Central

    Valentin, Vivian V.; Maddox, W. Todd; Ashby, F. Gregory

    2014-01-01

    The evidence is now good that different memory systems mediate the learning of different types of category structures. In particular, declarative memory dominates rule-based (RB) category learning and procedural memory dominates information-integration (II) category learning. For example, several studies have reported that feedback timing is critical for II category learning, but not for RB category learning—results that have broad support within the memory systems literature. Specifically, II category learning has been shown to be best with feedback delays of 500 ms compared to delays of 0 and 1000 ms, and highly impaired with delays of 2.5 s or longer. In contrast, RB learning is unaffected by any feedback delay up to 10 s. We propose a neurobiologically detailed theory of procedural learning that is sensitive to different feedback delays. The theory assumes that procedural learning is mediated by plasticity at cortical-striatal synapses that are modified by dopamine-mediated reinforcement learning. The model captures the time-course of the biochemical events in the striatum that cause synaptic plasticity, and thereby accounts for the empirical effects of various feedback delays on II category learning. PMID:25071629

  6. Possible contributions of a novel form of synaptic plasticity in Aplysia to reward, memory, and their dysfunctions in mammalian brain

    PubMed Central

    Hawkins, Robert D.

    2013-01-01

    Recent studies in Aplysia have identified a new variation of synaptic plasticity in which modulatory transmitters enhance spontaneous release of glutamate, which then acts on postsynaptic receptors to recruit mechanisms of intermediate- and long-term plasticity. In this review I suggest the hypothesis that similar plasticity occurs in mammals, where it may contribute to reward, memory, and their dysfunctions in several psychiatric disorders. In Aplysia, spontaneous release is enhanced by activation of presynaptic serotonin receptors, but presynaptic D1 dopamine receptors or nicotinic acetylcholine receptors could play a similar role in mammals. Those receptors enhance spontaneous release of glutamate in hippocampus, entorhinal cortex, prefrontal cortex, ventral tegmental area, and nucleus accumbens. In all of those brain areas, glutamate can activate postsynaptic receptors to elevate Ca2+ and engage mechanisms of early-phase long-term potentiation (LTP), including AMPA receptor insertion, and of late-phase LTP, including protein synthesis and growth. Thus, presynaptic receptors and spontaneous release may contribute to postsynaptic mechanisms of plasticity in brain regions involved in reward and memory, and could play roles in disorders that affect plasticity in those regions, including addiction, Alzheimer’s disease, schizophrenia, and attention deficit hyperactivity disorder (ADHD). PMID:24049187

  7. Mouse Social Network Dynamics and Community Structure are Associated with Plasticity-Related Brain Gene Expression

    PubMed Central

    Williamson, Cait M.; Franks, Becca; Curley, James P.

    2016-01-01

    Laboratory studies of social behavior have typically focused on dyadic interactions occurring within a limited spatiotemporal context. However, this strategy prevents analyses of the dynamics of group social behavior and constrains identification of the biological pathways mediating individual differences in behavior. In the current study, we aimed to identify the spatiotemporal dynamics and hierarchical organization of a large social network of male mice. We also sought to determine if standard assays of social and exploratory behavior are predictive of social behavior in this social network and whether individual network position was associated with the mRNA expression of two plasticity-related genes, DNA methyltransferase 1 and 3a. Mice were observed to form a hierarchically organized social network and self-organized into two separate social network communities. Members of both communities exhibited distinct patterns of socio-spatial organization within the vivaria that was not limited to only agonistic interactions. We further established that exploratory and social behaviors in standard behavioral assays conducted prior to placing the mice into the large group was predictive of initial network position and behavior but were not associated with final social network position. Finally, we determined that social network position is associated with variation in mRNA levels of two neural plasticity genes, DNMT1 and DNMT3a, in the hippocampus but not the mPOA. This work demonstrates the importance of understanding the role of social context and complex social dynamics in determining the relationship between individual differences in social behavior and brain gene expression. PMID:27540359

  8. Mouse Social Network Dynamics and Community Structure are Associated with Plasticity-Related Brain Gene Expression.

    PubMed

    Williamson, Cait M; Franks, Becca; Curley, James P

    2016-01-01

    Laboratory studies of social behavior have typically focused on dyadic interactions occurring within a limited spatiotemporal context. However, this strategy prevents analyses of the dynamics of group social behavior and constrains identification of the biological pathways mediating individual differences in behavior. In the current study, we aimed to identify the spatiotemporal dynamics and hierarchical organization of a large social network of male mice. We also sought to determine if standard assays of social and exploratory behavior are predictive of social behavior in this social network and whether individual network position was associated with the mRNA expression of two plasticity-related genes, DNA methyltransferase 1 and 3a. Mice were observed to form a hierarchically organized social network and self-organized into two separate social network communities. Members of both communities exhibited distinct patterns of socio-spatial organization within the vivaria that was not limited to only agonistic interactions. We further established that exploratory and social behaviors in standard behavioral assays conducted prior to placing the mice into the large group was predictive of initial network position and behavior but were not associated with final social network position. Finally, we determined that social network position is associated with variation in mRNA levels of two neural plasticity genes, DNMT1 and DNMT3a, in the hippocampus but not the mPOA. This work demonstrates the importance of understanding the role of social context and complex social dynamics in determining the relationship between individual differences in social behavior and brain gene expression. PMID:27540359

  9. Decoding brain cancer dynamics: a quantitative histogram-based approach using temporal MRI

    NASA Astrophysics Data System (ADS)

    Zhou, Mu; Hall, Lawrence O.; Goldgof, Dmitry B.; Russo, Robin; Gillies, Robert J.; Gatenby, Robert A.

    2015-03-01

    Brain tumor heterogeneity remains a challenge for probing brain cancer evolutionary dynamics. In light of evolution, it is a priority to inspect the cancer system from a time-domain perspective since it explicitly tracks the dynamics of cancer variations. In this paper, we study the problem of exploring brain tumor heterogeneity from temporal clinical magnetic resonance imaging (MRI) data. Our goal is to discover evidence-based knowledge from such temporal imaging data, where multiple clinical MRI scans from Glioblastoma multiforme (GBM) patients are generated during therapy. In particular, we propose a quantitative histogram-based approach that builds a prediction model to measure the difference in histograms obtained from pre- and post-treatment. The study could significantly assist radiologists by providing a metric to identify distinctive patterns within each tumor, which is crucial for the goal of providing patient-specific treatments. We examine the proposed approach for a practical application - clinical survival group prediction. Experimental results show that our approach achieved 90.91% accuracy.

  10. Temporal profile of brain response to alprazolam in patients with generalized anxiety disorder.

    PubMed

    Brown, Gregory G; Ostrowitzki, Susanne; Stein, Murray B; von Kienlin, Markus; Liu, Thomas T; Simmons, Alan; Wierenga, Christina; Stein, Orah Y; Bruns, Andreas; Bischoff-Grethe, Amanda; Paulus, Martin

    2015-09-30

    This study investigated the temporal pattern of brain response to emotional stimuli during 28 days of alprazolam treatment among patients with generalized anxiety disorder (GAD) randomized 2:1 to drug or placebo in a double-blind design. Functional magnetic resonance imaging scans obtained during an emotion face matching task (EFMT) and an affective stimulus expectancy task (STIMEX) were performed at baseline, one hour after initial drug administration and 28 days later. Alprazolam significantly reduced scores on the Hamilton Anxiety Scale and the Penn State Worry Questionnaire after one week and 28 days of treatment. Brain activation in the amygdala during the EFMT and in the insula during the STIMEX was reduced one hour after alprazolam administration but returned to baseline levels at Day 28. Exploratory analyses revealed significant treatment differences in brain activity during the STIMEX on Day 28 in frontal lobe, caudate nucleus, middle temporal gyrus, secondary visual cortex, and supramarginal gyrus. These results are consistent with the notion that the neural mechanisms supporting sustained treatment effects of benzodiazepines in GAD differ from those underlying their acute effects. PMID:26211623