Sample records for plastic wall sheeting

  1. Ice sheets on plastically-yielding beds

    NASA Astrophysics Data System (ADS)

    Hewitt, Ian

    2016-11-01

    Many fast flowing regions of ice sheets are underlain by a layer of water-saturated sediments, or till. The rheology of the till has been the subject of some controversy, with laboratory tests suggesting almost perfectly plastic behaviour (stress independent of strain rate), but many models adopting a pseudo-viscous description. In this work, we consider the behaviour of glaciers underlain by a plastic bed. The ice is treated as a viscous gravity current, on a bed that allows unconstrained slip above a critical yield stress. This simplified description allows rapid sliding, and aims to investigate 'worst-case' scenarios of possible ice-sheet disintegration. The plastic bed results in an approximate ice-sheet geometry that is primarily controlled by force balance, whilst ice velocity is determined from mass conservation (rather than the other way around, as standard models would hold). The stability of various states is considered, and particular attention is given to the pace at which transitions between unstable states can occur. Finally, we observe that the strength of basal tills depends strongly on pore pressure, and combine the model with a description of subglacial hydrology. Implications for the present-day ice sheets in Greenland and Antarctica will be discussed. Funding: ERC Marie Curie FP7 Career Integration Grant.

  2. Method of coextruding plastics to form a composite sheet

    DOEpatents

    Tsien, Hsue C.

    1985-06-04

    This invention pertains to a method of producing a composite sheet of plastic materials by means of coextrusion. Two plastic materials are matched with respect to their melt indices. These matched plastic materials are then coextruded in a side-by-side orientation while hot and soft to form a composite sheet having a substantially uniform demarkation therebetween. The plastic materials are fed at a substantially equal extrusion velocity and generally have substantially equal viscosities. The coextruded plastics can be worked after coextrusion while they are still hot and soft.

  3. Automatic Inspection Of Heat Seals Between Plastic Sheets

    NASA Technical Reports Server (NTRS)

    Rai, Kula R.; Lew, Thomas M.; Sinclair, Robert B.

    1995-01-01

    Automatic inspection apparatus detects flaws in heat seals between films of polyethylene or other thermoplastic material. Heat-sealed strip in multilayer plastic sheet continuously moved lengthwise over illuminators. Variations in light transmitted through sheet interpreted to find flaws in heat seal. Site of flaw marked to facilitate subsequent manual inspection. Heat sealing used to join plastic films in manufacturing of variety of products, including inflatable toys and balloons carrying scientific instruments to high altitudes.

  4. Optimal Design of Sheet Pile Wall Embedded in Clay

    NASA Astrophysics Data System (ADS)

    Das, Manas Ranjan; Das, Sarat Kumar

    2015-09-01

    Sheet pile wall is a type of flexible earth retaining structure used in waterfront offshore structures, river protection work and temporary supports in foundations and excavations. Economy is an essential part of a good engineering design and needs to be considered explicitly in obtaining an optimum section. By considering appropriate embedment depth and sheet pile section it may be possible to achieve better economy. This paper describes optimum design of both cantilever and anchored sheet pile wall penetrating clay using a simple optimization tool Microsoft Excel ® Solver. The detail methodology and its application with examples are presented for cantilever and anchored sheet piles. The effects of soil properties, depth of penetration and variation of ground water table on the optimum design are also discussed. Such a study will help professional while designing the sheet pile wall penetrating clay.

  5. Raman and AFM study of gamma irradiated plastic bottle sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Yasir; Kumar, Vijay; Dhaliwal, A. S.

    2013-02-05

    In this investigation, the effects of gamma irradiation on the structural properties of plastic bottle sheet are studied. The Plastic sheets were exposed with 1.25MeV {sup 60}Co gamma rays source at various dose levels within the range from 0-670 kGy. The induced modifications were followed by micro-Raman and atomic force microscopy (AFM). The Raman spectrum shows the decrease in Raman intensity and formation of unsaturated bonds with an increase in the gamma dose. AFM image displays rough surface morphology after irradiation. The detailed Raman analysis of plastic bottle sheets is presented here, and the results are correlated with the AFMmore » observations.« less

  6. Spring back of infinite honeycomb sheets beyond plastic deformation

    NASA Astrophysics Data System (ADS)

    Bonfanti, A.; Bhaskar, A.

    2015-02-01

    Cellular structures are promising for applications where high stiffness and strength are required with the minimal use of material. They are often used in applications where the plastic deformation plays an important role, such as those involving crashworthiness, energy absorption, and stents. The elastic analysis of a honeycomb sheet has been carried out in the past [1]. The present analysis extends this classical work in the elasto-plastic regime. Recoil analysis due to elastic recovery is absent from the published literature. This work aims to develop an analytical model to calculate the spring back for a simplified case, that of an infinite honeycomb sheet. An elastic-perfectly plastic material model is assumed. The recoil for a clamped beam with a load and moment applied at the free edge is analytically calculated first. This is carried out by relating the stress distribution of the cross section to the final deformed shape. The part corresponding to the elastic contribution is subsequently subtracted in order to obtain the final configuration after the external load is removed. This simple elasto-plastic analysis is then incorporated into the analysis of an infinite sheet made of uniform hexagonal cells. The translational symmetry of the lattice is exploited along with the analysis of a beam under tip loading through to plastic stage and recoil. The final shape of the struts upon the removal of the remote stress is completely determined by the plastic deformation which cannot be recovered. The expression for the beam thus obtained is then used to build an analytical model for an infinite honeycomb sheet loaded in both directions.

  7. Safety of silastic sheet for orbital wall reconstruction.

    PubMed

    Moon, Seong June; Suh, Hyun Suk; Park, Bo Young; Kang, So Ra

    2014-07-01

    Many implants are being used for the reconstruction of orbital wall fractures. The effect of the choice of implant for the reconstruction of an orbital wall fracture on the surgical outcome is under debate. The purpose of this article is to compare the outcomes of orbital wall reconstruction of small orbital wall fractures on the basis of the implants used. The authors conducted a retrospective study using electronic databases. Between March 2001 and December 2012, 461 patients with orbital wall fractures were included in this study. Among them, 431 patients in whom the fracture size was less than 300 mm(2) were analyzed. The fracture size was calculated using computed tomography scans of the orbit in the sagittal and coronal images. Cases in which the fracture size was less than 300 mm(2) were included in this study. One hundred and twenty-nine patients were treated with silastic sheets; 238 patients were treated with titanium meshes; and absorbable meshes were used in the case of 64 patients. Overall, 13 patients required revision, and the revision rate was 3.0%. The revision rate of the silastic sheet group was 5.4%. In the multivariable analysis, the revision rate of the group reconstructed with silastic sheets was highly statistically significant (P=0.043, odds ratio=3.65). However, other factors such as age, sex, fracture type, and fracture size were not significant. Reconstruction of orbital wall fractures with silastic sheets may cause more complications than that with other materials such as titanium meshes and absorbable meshes.

  8. Development of a highly transparent superamphiphobic plastic sheet by nanoparticle and chemical coating.

    PubMed

    Wong, Ten It; Wang, Hao; Wang, Fuke; Sin, Sau Leng; Quan, Cheng Gen; Wang, Shi Jie; Zhou, Xiaodong

    2016-04-01

    A highly transparent superamphiphobic plastic sheet was developed. The plastic sheet polymethyl methacrylate (PMMA) was spin-coated on a glass substrate. Synthesized silica nanoparticles were sprayed on PMMA, followed by fluorosilane drop-coating. The results of contact angle measurements show that the developed PMMA sheet has superamphiphobic properties with high advancing contact angles for water (154°), toluene (139°), and silicone oil (132.9°). The amphiphobicity of the plastic sheet can be tuned by the surface coverage of the silica nanoparticles distributed on the PMMA surface. The surface coverage of the nanoparticles on our PMMA sheet is about 20%, and it agrees with our contact angle calculations for the sheet with and without nanoparticles. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Preforming of polydioxanone sheets for orbital wall fractures - A technical note.

    PubMed

    Kruber, Daniel; Hierl, Thomas; Doerfler, Hans-Martin; Huempfner-Hierl, Heike; Krause, Matthias

    2018-07-01

    Polydioxanone (PDS) sheets are commonly used in the treatment of orbital wall fractures. A potential drawback of PDS is that it may be difficult to adapt to the anatomy of the orbital walls. Therefore a study was conceived to test the feasibility of preforming PDS sheets. PDS sheet material was water-heated and preformed using a template based on a statistical anatomical model. Then the deformed sheet was cooled, stored and compared to the original model to investigate post-deformation changes. PDS sheet material could easily be deformed using a mould. No significant post-cooling shape changes were noticed. PDS sheet material can be preformed into complex geometric shapes. This could be a benefit in the treatment of orbital wall fractures. Copyright © 2018 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  10. Physical properties of polyurethane plastic sheets produced from polyols from canola oil.

    PubMed

    Kong, Xiaohua; Narine, Suresh S

    2007-07-01

    Polyurethane (PUR) plastic sheets were prepared by reacting polyols synthesized from canola oil with aromatic diphenylmethane diisocyanate. The properties of the material were measured by dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) as well as tensile properties measurements. The effect of stoichiometric balance (i.e., OH/NCO molar ratio) on the final properties was evaluated. The concentration of elastically active network chains (EANCs), nue, of the polymer networks was calculated using rubber elasticity theory. The glass transition temperatures (Tg) for the plastic sheets with OH/NCO molar ratios of 1.0/1.0, 1.0/1.1, and 1.0/1.2 were found to be 23, 41, and 43 degrees C, respectively. The kinetic studies of the degradation process of the PUR plastics showed three well-defined steps of degradation. The PUR plastic sheets with OH/NCO molar ratio 1.0/1.1 had the highest nue, lowest number-average molecule weight between cross-links, MC, and excellent mechanical properties, indicating that this is the optimum ratio in the PUR formulations.

  11. Polycrystal-Plasticity Simulation of Roping in AA 6xxx Automotive Sheet Alloys

    NASA Astrophysics Data System (ADS)

    Engler, O.; Schäfer, C.; Brinkman, H.-J.

    The occurrence of roping in AA 6xxx series sheet for car body applications is caused by the collective deformation of band-like clusters of grains with similar crystallographic orientation. In this study large-scale orientation maps obtained by electron back-scattered diffraction (EBSD) are input into a visco-plastic self-consistent polycrystal-plasticity model to analyze the strain anisotropy caused by the topographic arrangement of the recrystallization texture orientations and, in turn, the occurrence of roping. At variance to earlier studies, the measurements were carried out in the short transverse section of the sheets so as to get information on distribution and morphology of orientation clusters through the sheet thickness. Then, narrow bands in the EBSD maps aligned parallel to the ridges on the sheet surface are considered, and the variation in macroscopic strain response from band to band is determined. For a given deformation of the sample these simulations yield quantitative information on the level of roping of Al-alloy sheet for car body applications.

  12. Novel modified surgical treatment of auricular pseudocyst using plastic sheet compression.

    PubMed

    Shan, Yamin; Xu, Jing; Cai, Changping; Wang, Shili; Zhang, Hao

    2014-12-01

    To introduce a novel modified surgical procedure of excision of anterior cartilage of the pseudocyst along with plastic sheet compression for the treatment of auricular pseudocyst and ascertain the effect of the surgical modality of this disease. A retrospective study. Medical college hospital. Eighty-seven auricular pseudocyst patients were subjected to excision of the anterior cartilage of the pseudocyst followed by plastic sheet compression from July 2006 to September 2013. The effects of the operation were evaluated. Eighty patients were males and 7 were females. The median age was 52 years old. The lesions of 86 patients were unilateral and only 1 was bilateral. The clinical features presented a hemispheric painless swelling, which was seen on the ventral side of the auricle, usually the scaphoid and triangular fossa. The average major axis of the pseudocyst was 1.7 ± 0.6 cm. The patients underwent excision of anterior cartilage of the pseudocyst along with plastic sheet compression. The average follow-up period was 51.9 ± 19.1 months. No recurrence was observed with this technique, and the appearance of the auricle was cosmetically acceptable. Our novel modified surgical procedure of excision of anterior cartilage of pseudocyst along with plastic sheet compression is an effective surgical management for the auricular pseudocyst. The advantages of a simple technique, a short-term therapeutic period, and no recurrence made the surgical procedure worth recommending as the definitive treatment of auricular pseudocysts. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  13. Field evaluation of ZeroFly--an insecticide incorporated plastic sheeting against malaria vectors & its impact on malaria transmission in tribal area of northern Orissa.

    PubMed

    Sharma, S K; Upadhyay, A K; Haque, M A; Tyagi, P K; Mohanty, S S; Mittal, P K; Dash, A P

    2009-10-01

    Insecticide incorporated plastic sheeting is a new technology to control mosquitoes in emergency shelter places and also temporary habitations in different locations. Therefore, field studies were conducted to assess the efficacy of ZeroFly plastic sheeting treated with deltamethrin on prevailing disease vectors Anopheles culicifacies and An. fluviatilis and its impact on malaria transmission in one of the highly endemic areas of Orissa. The study was conducted in Birkera block of Sundargarh district, Orissa state. The study area comprised 3 villages, which were randomized as ZeroFly plastic sheet, untreated plastic sheet and no sheet area. ZeroFly plastic sheets and untreated plastic sheets were fixed in study and control villages respectively covering all the rooms in each household. Longitudinal studies were conducted on the bioefficacy with the help of cone bioassays, monitoring of the mosquito density through hand catch, floor sheet and exit trap collections and fortnightly domiciliary active surveillance in all the study villages. In ZeroFly plastic sheeting area, there was a significant reduction of 84.7 per cent in the entry rate of total mosquitoes in comparison to pre-intervention phase. There was 56.2 per cent immediate mortality in total mosquitoes in houses with ZeroFly sheeting. The overall feeding success rate of mosquitoes in the trial village was only 12.5 per cent in comparison to 49.7 and 51.1 per cent in villages with untreated plastic sheet and no sheet respectively. There was a significant reduction of 65.0 and 70.5 per cent in malaria incidence in ZeroFly plastic sheeting area as compared to untreated plastic sheet and no sheet area respectively. Our study showed that introduction of ZeroFly plastic sheets in a community-based intervention programme is operationally feasible to contain malaria especially in the high transmission difficult areas.

  14. Chest wall abscesses due to continuous application of silicone gel sheets for keloid management

    PubMed Central

    Tang, Hon-Lok; Lau, Keith K; Sam, Ramin; Ing, Todd S

    2015-01-01

    A patient with three episodes of chest wall abscesses as a result of 6 years of round-the-clock, uninterrupted (except during bathing) application of silicone gel sheets to a chest wall keloid is described. Two of the episodes occurred during hot weather. It is suggested that, in the space beneath the silicone sheet, the higher humidity and temperature, both generated as a result of prolonged sheeting, especially during hot weather, might have caused the keloid and its neighbouring skin to become soggy. This sogginess might have facilitated bacterial invasion. It is suggested that some sheeting-free time during a 24 h period might be indicated so that a keloid and its adjacent skin have the time to recover from their sheeting-induced sogginess. A sheeting-free period might especially be needed in the face of sweat accumulation beneath the silicone sheet. PMID:25920733

  15. Chest wall abscesses due to continuous application of silicone gel sheets for keloid management.

    PubMed

    Tang, Hon-Lok; Lau, Keith K; Sam, Ramin; Ing, Todd S

    2015-04-28

    A patient with three episodes of chest wall abscesses as a result of 6 years of round-the-clock, uninterrupted (except during bathing) application of silicone gel sheets to a chest wall keloid is described. Two of the episodes occurred during hot weather. It is suggested that, in the space beneath the silicone sheet, the higher humidity and temperature, both generated as a result of prolonged sheeting, especially during hot weather, might have caused the keloid and its neighbouring skin to become soggy. This sogginess might have facilitated bacterial invasion. It is suggested that some sheeting-free time during a 24 h period might be indicated so that a keloid and its adjacent skin have the time to recover from their sheeting-induced sogginess. A sheeting-free period might especially be needed in the face of sweat accumulation beneath the silicone sheet. 2015 BMJ Publishing Group Ltd.

  16. The Effects of Plastic Anisotropy in Warm and Hot Forming of Magnesium Sheet Materials

    NASA Astrophysics Data System (ADS)

    Taleff, Eric M.; Antoniswamy, Aravindha R.; Carpenter, Alexander J.; Yavuz, Emre

    Mg alloy sheet materials often exhibit plastic anisotropy at room temperature as a result of the limited slip systems available in the HCP lattice combined with a commonly strong basal texture. Less well studied is plastic anisotropy developed at the elevated temperatures associated with warm and hot forming. At these elevated temperatures, particularly above 200°C, the activation of additional slip systems significantly increases ductility. However, plastic anisotropy is also induced at elevated temperatures by a strong crystallographic texture, and it can require an accounting in material constitutive models to achieve accurate forming simulations. The type and degree of anisotropy under these conditions depend on both texture and deformation mechanism. The current understanding of plastic anisotropy in Mg AZ31B and ZEK100 sheet materials at elevated temperatures is reviewed in this article. The recent construction of material forming cases is also reviewed with strategies to account for plastic anisotropy in forming simulations.

  17. Aluminizing a Ni sheet through severe plastic deformation induced by ball collisions

    NASA Astrophysics Data System (ADS)

    Romankov, S.; Shchetinin, I. V.; Park, Y. C.

    2015-07-01

    Aluminizing a Ni sheet was performed through severe plastic deformation induced by ball collisions. The Ni sheet was fixed in the center of a mechanically vibrated vial between two connected parts. The balls were loaded into the vial on both sides of the Ni disk. Al disks, which were fixed on the top and the bottom of the vial, served as the sources of Al contamination. During processing, the Ni sheet was subject to intense ball collisions. The Al fragments were transferred and alloyed to the surface of the Ni sheet by these collisions. The combined effects of deformation-induced plastic flow, mechanical intermixing, and grain refinement resulted in the formation of a dense, continuous nanostructured Al layer on the Ni surface on both sides of the sheet. The Al layer consisted of Al grains with an average size of about 40 nm. The Al layer was reinforced with nano-sized Ni flakes that were introduced from the Ni surface during processing. The local amorphization at the Ni/Al interface revealed that the bonding between Ni and Al was formed by mechanical intermixing of atomic layers at the interface. The hardness of the fabricated Al layer was 10 times that of the initial Al plate. The ball collisions destroyed the initial rolling texture of the Ni sheet and induced the formation of the mixed [1 0 0] + [1 1 1] fiber texture. The laminar rolling structure of the Ni was transformed into an ultrafine grain structure.

  18. 16. Power plant roof plan and wall sections, sheet 65 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Power plant roof plan and wall sections, sheet 65 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  19. Highly Conductive Flexible Multi-Walled Carbon Nanotube Sheet Films for Transparent Touch Screen

    NASA Astrophysics Data System (ADS)

    Jung, Daewoong; Lee, Kyung Hwan; Kim, Donghyun; Burk, Dorothea; Overzet, Lawrence J.; Lee, Gil Sik

    2013-03-01

    Highly conductive and transparent thin films were prepared using highly purified multi-walled carbon nanotube (MWCNT) sheets. The electrical properties of the MWCNT sheet were remarkably improved by an acid treatment, resulting in densely packed MWCNTs. The morphology of the sheets reveals that continuous electrical pathways were formed by the acid treatment, greatly improving the sheet resistance all the while maintaining an excellent optical transmittance. These results encourage the use of these MWCNT sheets with low sheet resistance (450 Ω/sq) and high optical transmittance (90%) as a potential candidate for flexible display applications.

  20. A large-area wireless power-transmission sheet using printed organic transistors and plastic MEMS switches.

    PubMed

    Sekitani, Tsuyoshi; Takamiya, Makoto; Noguchi, Yoshiaki; Nakano, Shintaro; Kato, Yusaku; Sakurai, Takayasu; Someya, Takao

    2007-06-01

    The electronics fields face serious problems associated with electric power; these include the development of ecologically friendly power-generation systems and ultralow-power-consuming circuits. Moreover, there is a demand for developing new power-transmission methods in the imminent era of ambient electronics, in which a multitude of electronic devices such as sensor networks will be used in our daily life to enhance security, safety and convenience. We constructed a sheet-type wireless power-transmission system by using state-of-the-art printing technologies using advanced electronic functional inks. This became possible owing to recent progress in organic semiconductor technologies; the diversity of chemical syntheses and processes on organic materials has led to a new class of organic semiconductors, dielectric layers and metals with excellent electronic functionalities. The new system directly drives electronic devices by transmitting power of the order of tens of watts without connectors, thereby providing an easy-to-use and reliable power source. As all of the components are manufactured on plastic films, it is easy to place the wireless power-transmission sheet over desks, floors, walls and any other location imaginable.

  1. Optimization of Surface Roughness and Wall Thickness in Dieless Incremental Forming Of Aluminum Sheet Using Taguchi

    NASA Astrophysics Data System (ADS)

    Hamedon, Zamzuri; Kuang, Shea Cheng; Jaafar, Hasnulhadi; Azhari, Azmir

    2018-03-01

    Incremental sheet forming is a versatile sheet metal forming process where a sheet metal is formed into its final shape by a series of localized deformation without a specialised die. However, it still has many shortcomings that need to be overcome such as geometric accuracy, surface roughness, formability, forming speed, and so on. This project focus on minimising the surface roughness of aluminium sheet and improving its thickness uniformity in incremental sheet forming via optimisation of wall angle, feed rate, and step size. Besides, the effect of wall angle, feed rate, and step size to the surface roughness and thickness uniformity of aluminium sheet was investigated in this project. From the results, it was observed that surface roughness and thickness uniformity were inversely varied due to the formation of surface waviness. Increase in feed rate and decrease in step size will produce a lower surface roughness, while uniform thickness reduction was obtained by reducing the wall angle and step size. By using Taguchi analysis, the optimum parameters for minimum surface roughness and uniform thickness reduction of aluminium sheet were determined. The finding of this project helps to reduce the time in optimising the surface roughness and thickness uniformity in incremental sheet forming.

  2. Implementation of poly(ε-caprolactone) sheet-based shape-memory polymer microvalves into plastic-based microfluidic devices

    NASA Astrophysics Data System (ADS)

    Jiang, Chenyang; Uto, Koichiro; Ebara, Mitsuhiro; Aoyagi, Takao; Ichiki, Takanori

    2015-06-01

    Implementation of shape-memory polymer (SMP) sheet-based microvalves into plastic-based microfluidic devices has been studied toward the use in disposable and mass producible micro total analysis devices. Poly(ε-caprolactone) (PCL) and poly(methyl methacrylate-co-styrene) (MS) were used as SMP and main substrate materials, respectively. Bonding between PCL sheets and MS plates was the critical issue in the practical implementation. We found the pristine PCL sheet has relatively rough surface with Ra of 85.14 nm, which is the cause of poor bonding. Hence, by introducing the post-anneal treatment with sandwiched between two flat glass plates, the PCL surface could be smoothed to Ra of 12.50 nm, and tight bonding could be obtained. Consequently, microfluidic devices consisting of plastic/PCL/plastic layers were successfully fabricated and therein the actuation of SMP valves without any leakage was demonstrated. The present technology is expected to be applicable to disposable microfluidic devices as required for point-of-care testing.

  3. Methods for elimination of dampness in Building walls

    NASA Astrophysics Data System (ADS)

    Campian, Cristina; Pop, Maria

    2016-06-01

    Dampness elimination in building walls is a very sensitive problem, with high costs. Many methods are used, as: chemical method, electro osmotic method or physical method. The RECON method is a representative and a sustainable method in Romania. Italy has the most radical method from all methods. The technology consists in cutting the brick walls, insertion of a special plastic sheeting and injection of a pre-mixed anti-shrinking mortar.

  4. Repair, Evaluation, Maintenance, and Rehabilitation Research Program: Plastic Concrete Cutoff Walls for Earth Dams

    DTIC Science & Technology

    1991-03-01

    Vicksburg, MS 39180-6199 REMR-GT-15 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10 . SPONSORINGIMONITORING AGENCY REPORT NUMBER US Army Corps...6 PART II: LITERATURE REVIEW ............................................. 10 General Observations of Recent...Plastic Concrete Research ......... 10 Major Plastic Concrete Research Programs ............................ 13 Plastic Concrete Cutoff Wall Field Case

  5. Evaluation of cell sheet application on one wall bone defect in Macaca nemestrina through periostin expression

    NASA Astrophysics Data System (ADS)

    Tamin, R. Y.; Soeroso, Y.; Amir, L.; Idrus, E.

    2017-08-01

    Chronic periodontitis is an oral disease in which the destruction of periodontal tissue leads to tooth loss. Regenerative therapy for attachment cannot be applied to one wall bone defects owing to the minimal existing healthy bone. Tissue engineering in the form of cell sheets has been developed to overcome this limitation. In a previous study, cell sheet application to a one wall bone defect in Macaca nemestrina showed good clinical results. To evaluate the effectiveness of cell sheet application histologically, the level of periostin expression in the gingival crevicular fluid (GCF) of M. nemestrina was determined. Periostin is a 90-kDa protein that regulates coordination and interaction for regeneration and tissue repair. A laboratory observation study was performed to see the differences in periostin levels in samples collected from M. nemestrina’s GCF, where a cell sheet was applied to the bone defect. Gel electrophoresis with SDS-PAGE was performed to detect periostin expression based on its molecular weight and to compare the expression band between the cell sheet and the control at 1, 2, and 3 weeks after treatment. The gel electrophoresis result shows different thicknesses of the protein band around the molecular weight of periostin between the cell sheet groups.

  6. Plastic wall materials in the home and respiratory health in young children.

    PubMed Central

    Jaakkola, J J; Verkasalo, P K; Jaakkola, N

    2000-01-01

    OBJECTIVES: The relation between the presence of plastic wall materials in the home and respiratory health in children was assessed. METHODS: This population-based cross-sectional study involved 2568 Finnish children aged 1 to 7 years. RESULTS: In logistic regression models, lower respiratory tract symptoms--persistent wheezing (adjusted odds ratio [OR] = 3.42, 95% confidence interval [CI] = 1.13, 10.36), cough (OR = 2.41, 95% CI = 1.04, 5.63), and phlegm (OR = 2.76, 95% CI = 1.03, 7.41)--were strongly related to the presence of plastic wall materials, whereas upper respiratory symptoms were not. The risk of asthma (OR = 1.52, 95% CI = 0.35, 6.71) and pneumonia (OR = 1.81, 95% CI = 0.62, 5.29) was also increased in children exposed to such materials. CONCLUSIONS: Emissions from plastic materials indoors may have adverse effects on the lower respiratory tracts of small children. PMID:10800434

  7. Temporary closure of the abdominal wall by use of silicone rubber sheets after operative repair of ruptured abdominal aortic aneurysms.

    PubMed

    Akers, D L; Fowl, R J; Kempczinski, R F; Davis, K; Hurst, J M; Uhl, S

    1991-07-01

    Management of patients after operative repair of abdominal aortic aneurysms can be further complicated if primary closure of the abdominal wall cannot be technically accomplished or is associated with profound increases in intraabdominal and peak inspiratory pressures. We recently treated five patients with ruptured abdominal aortic aneurysms and one patient with a ruptured thoracoabdominal aneurysm whose abdominal incisions had to be closed with a Dacron reinforced, silicone sheet. All patients were hemodynamically unstable either at admission to the hospital or became so during operation. Four patients required the insertion of a silicone rubber sheet at the primary operation because of massive retroperitoneal hematoma or edema of the bowel wall or both. Incisions in two patients were closed primarily, but the patients required reexploration and secondary closure with silicone rubber sheets because of the development of marked increases in peak inspiratory pressures, intraabdominal pressures, and decreased urinary output. Four of the six patients subsequently underwent successful removal of the silicone rubber sheets with delayed primary closure of the abdominal wall, and two others died before removal. The patient with the ruptured thoracoabdominal aneurysm died on postoperative day 20 because of pulmonary sepsis but had a healed abdominal incision. The three surviving patients have been discharged. A silicone rubber sheet may be necessary for closure of the abdominal wall after repair of ruptured abdominal aortic aneurysm in patients where primary abdominal wall closure is impossible or where it results in compromise in respiratory or renal function.

  8. Creep behavior of soil nail walls in high plasticity index (PI) soils : technical report.

    DOT National Transportation Integrated Search

    2017-04-01

    An aspect of particular concern in the Geotechnical Engineering Circular No. 7: Soil Nail Walls (i.e., the soil : nail wall manual and construction guidelines) is the creep behavior of soil nail systems in high-plasticity : clays. This research proje...

  9. Thermal conductivity of freestanding single wall carbon nanotube sheet by Raman spectroscopy.

    PubMed

    Sahoo, Satyaprakash; Chitturi, Venkateswara Rao; Agarwal, Radhe; Jiang, Jin-Wu; Katiyar, Ram S

    2014-11-26

    Thermal properties of single wall carbon nanotube sheets (SWCNT-sheets) are of significant importance in the area of thermal management, as an isolated SWCNT possesses high thermal conductivity of the value about 3000 W m(-1) K(-1). Here we report an indirect method of estimating the thermal conductivity of a nanometer thick suspended SWCNT-sheet by employing the Raman scattering technique. Tube diameter size is examined by the transmissions electron microscopy study. The Raman analysis of the radial breathing modes predicts narrow diameter size distribution with achiral (armchair) symmetry of the constituent SWCNTs. From the first order temperature coefficient of the A1g mode of the G band along with the laser power dependent frequency shifting of this mode, the thermal conductivity of the suspended SWCNT-sheet is estimated to be about ∼18.3 W m(-1) K(-1). Our theoretical study shows that the thermal conductivity of the SWCNT-sheet has contributions simultaneously from the intratube and intertube thermal transport. The intertube thermal conductivity (with contributions from the van der Waals interaction) is merely around 0.7 W m(-1) K(-1), which is three orders smaller than the intratube thermal conductivity, leading to an abrupt decrease in the thermal conductivity of the SWCNT-sheet as compared to the reported value for isolated SWCNT.

  10. Final Rule to Reduce Toxic Air Pollutants from Surface Coating of Plastic Parts and Products Fact Sheet

    EPA Pesticide Factsheets

    This page contains an August 2004 fact sheet with information regarding the final NESHAP for Surface Coating of Plastic Parts and Products. This document provides a summary of the information for the information for this regulation.

  11. Numerical modelling in friction lap joining of aluminium alloy and carbon-fiber-reinforced-plastic sheets

    NASA Astrophysics Data System (ADS)

    Das, A.; Bang, H. S.; Bang, H. S.

    2018-05-01

    Multi-material combinations of aluminium alloy and carbon-fiber-reinforced-plastics (CFRP) have gained attention in automotive and aerospace industries to enhance fuel efficiency and strength-to-weight ratio of components. Various limitations of laser beam welding, adhesive bonding and mechanical fasteners make these processes inefficient to join metal and CFRP sheets. Friction lap joining is an alternative choice for the same. Comprehensive studies in friction lap joining of aluminium to CFRP sheets are essential and scare in the literature. The present work reports a combined theoretical and experimental study in joining of AA5052 and CFRP sheets using friction lap joining process. A three-dimensional finite element based heat transfer model is developed to compute the temperature fields and thermal cycles. The computed results are validated extensively with the corresponding experimentally measured results.

  12. Study of the plastic zone around the ligament of thin sheet D.E.N.T specimen subjected to tensile

    NASA Astrophysics Data System (ADS)

    Djebali, S.; Larbi, S.; Bilek, A.

    2015-03-01

    One of the assumptions of Cotterell and Reddel's method of the essential work of fracture determination is the existence of a fracture process zone surrounded by an outer plastic zone extending to the whole ligament before crack initiation. To verify this hypothesis we developed a method based on micro hardness. The hardness values measured in the domain surrounding the tensile fracture area of ST-37-2 steel sheet D.E.N.T specimens confirm the existence of the two plastic zones. The extension of the plastic deformations to the whole ligament before the crack initiation and the circular shape of the outer plastic zone are revealed by the brittle coating method.

  13. Wall Street's assessment of plastic surgery--related technology: a clinical and financial analysis.

    PubMed

    Krieger, L M; Shaw, W W

    2000-02-01

    Many plastic surgeons develop technologies that are manufactured by Wall Street-financed companies. Others participate in the stock market as investors. This study examines the bioengineered skin industry to determine whether it integrates clinical and financial information as Wall Street tenets would predict, and to see whether the financial performance of these companies provides any lessons for practicing plastic surgeons. In efficient markets, the assumptions on which independent financial analysts base their company sales and earnings projections are clinically reasonable, the volatility of a company's stock price does not irrationally differ from that of its industry sector, and the buy/sell recommendations of analysts are roughly congruent. For the companies in this study, these key financial parameters were compared with a benchmark index of 69 biotech companies of similar age and annual revenues (Student's t test). Five bioengineered skin companies were included in the study. Analysts estimated that each company would sell its product to between 24 and 45 percent of its target clinical population. The average stock price volatility was significantly higher for study companies than for those in the benchmark index (p < 0.05). Similarly, buy/sell recommendations of analysts for the study companies were significantly less congruent than those for the benchmark companies (p < 0.05). These results indicate clinically unrealistic projections for market penetration, significantly high price volatility, and significantly high discordance among professional analysts. In all cases, the market is inefficient-an unusual finding on Wall Street. A likely explanation for this market failure is a cycle of poor clinical correlation when assigning sales projections, which in turn leads to price volatility and discordance of buy/sell recommendations. This study's findings have implications for plastic surgeons who develop new technology or who participate in the equities

  14. Experimental Investigation on the Joining of Aluminum Alloy Sheets Using Improved Clinching Process

    PubMed Central

    Chen, Chao; Zhao, Shengdun; Han, Xiaolan; Zhao, Xuzhe; Ishida, Tohru

    2017-01-01

    Aluminum alloy sheets have been widely used to build the thin-walled structures by mechanical clinching technology in recent years. However, there is an exterior protrusion located on the lower sheet and a pit on the upper sheet, which may restrict the application of the clinching technology in visible areas. In the present study, an improved clinched joint used to join aluminum alloy sheets was investigated by experimental method. The improved clinching process used for joining aluminum alloy evolves through four phases: (a) localized deformation; (b) drawing; (c) backward extrusion; and (d) mechanical interlock forming. A flat surface can be produced using the improved clinching process. Shearing strength, tensile strength, material flow, main geometrical parameters, and failure mode of the improved clinched joint were investigated. The sheet material was compressed to flow radially and upward using a punch, which generated a mechanical interlock by producing severe localized plastic deformation. The neck thickness and interlock of the improved clinched joint were increased by increasing the forming force, which also contributed to increase the strength of the clinched joint. The improved clinched joint can get high shearing strength and tensile strength. Three main failure modes were observed in the failure process, which were neck fracture mode, button separation mode, and mixed failure mode. The improved clinched joint has better joining quality to join aluminum alloy sheets on the thin-walled structures. PMID:28763027

  15. Experimental Investigation on the Joining of Aluminum Alloy Sheets Using Improved Clinching Process.

    PubMed

    Chen, Chao; Zhao, Shengdun; Han, Xiaolan; Zhao, Xuzhe; Ishida, Tohru

    2017-08-01

    Aluminum alloy sheets have been widely used to build the thin-walled structures by mechanical clinching technology in recent years. However, there is an exterior protrusion located on the lower sheet and a pit on the upper sheet, which may restrict the application of the clinching technology in visible areas. In the present study, an improved clinched joint used to join aluminum alloy sheets was investigated by experimental method. The improved clinching process used for joining aluminum alloy evolves through four phases: (a) localized deformation; (b) drawing; (c) backward extrusion; and (d) mechanical interlock forming. A flat surface can be produced using the improved clinching process. Shearing strength, tensile strength, material flow, main geometrical parameters, and failure mode of the improved clinched joint were investigated. The sheet material was compressed to flow radially and upward using a punch, which generated a mechanical interlock by producing severe localized plastic deformation. The neck thickness and interlock of the improved clinched joint were increased by increasing the forming force, which also contributed to increase the strength of the clinched joint. The improved clinched joint can get high shearing strength and tensile strength. Three main failure modes were observed in the failure process, which were neck fracture mode, button separation mode, and mixed failure mode. The improved clinched joint has better joining quality to join aluminum alloy sheets on the thin-walled structures.

  16. Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks

    PubMed Central

    Rogers, John A.; Bao, Zhenan; Baldwin, Kirk; Dodabalapur, Ananth; Crone, Brian; Raju, V. R.; Kuck, Valerie; Katz, Howard; Amundson, Karl; Ewing, Jay; Drzaic, Paul

    2001-01-01

    Electronic systems that use rugged lightweight plastics potentially offer attractive characteristics (low-cost processing, mechanical flexibility, large area coverage, etc.) that are not easily achieved with established silicon technologies. This paper summarizes work that demonstrates many of these characteristics in a realistic system: organic active matrix backplane circuits (256 transistors) for large (≈5 × 5-inch) mechanically flexible sheets of electronic paper, an emerging type of display. The success of this effort relies on new or improved processing techniques and materials for plastic electronics, including methods for (i) rubber stamping (microcontact printing) high-resolution (≈1 μm) circuits with low levels of defects and good registration over large areas, (ii) achieving low leakage with thin dielectrics deposited onto surfaces with relief, (iii) constructing high-performance organic transistors with bottom contact geometries, (iv) encapsulating these transistors, (v) depositing, in a repeatable way, organic semiconductors with uniform electrical characteristics over large areas, and (vi) low-temperature (≈100°C) annealing to increase the on/off ratios of the transistors and to improve the uniformity of their characteristics. The sophistication and flexibility of the patterning procedures, high level of integration on plastic substrates, large area coverage, and good performance of the transistors are all important features of this work. We successfully integrate these circuits with microencapsulated electrophoretic “inks” to form sheets of electronic paper. PMID:11320233

  17. Progressive failure of sheeted rock slopes: the 2009–2010 Rhombus Wall rock falls in Yosemite Valley, California, USA

    USGS Publications Warehouse

    Stock, Greg M.; Martel, Stephen J.; Collins, Brian D.; Harp, Edwin L.

    2012-01-01

    Progressive rock-fall failures in natural rock slopes are common in many environments, but often elude detailed quantitative documentation and analysis. Here we present high-resolution photography, video, and laser scanning data that document spatial and temporal patterns of a 15-month-long sequence of at least 14 rock falls from the Rhombus Wall, a sheeted granitic cliff in Yosemite Valley, California. The rock-fall sequence began on 26 August 2009 with a small failure at the tip of an overhanging rock slab. Several hours later, a series of five rock falls totaling 736 m3progressed upward along a sheeting joint behind the overhanging slab. Over the next 3 weeks, audible cracking occurred on the Rhombus Wall, suggesting crack propagation, while visual monitoring revealed opening of a sheeting joint adjacent to the previous failure surface. On 14 September 2009 a 110 m3 slab detached along this sheeting joint. Additional rock falls between 30 August and 20 November 2010, totaling 187 m3, radiated outward from the initial failure area along cliff (sub)parallel sheeting joints. We suggest that these progressive failures might have been related to stress redistributions accompanying propagation of sheeting joints behind the cliff face. Mechanical analyses indicate that tensile stresses should occur perpendicular to the cliff face and open sheeting joints, and that sheeting joints should propagate parallel to a cliff face from areas of stress concentrations. The analyses also account for how sheeting joints can propagate to lengths many times greater than their depths behind cliff faces. We posit that as a region of failure spreads across a cliff face, stress concentrations along its margin will spread with it, promoting further crack propagation and rock falls.

  18. Field efficacy of pyrethroid treated plastic sheeting (durable lining) in combination with long lasting insecticidal nets against malaria vectors

    PubMed Central

    2010-01-01

    Background Insecticide treated plastic sheeting (ITPS), sometimes known as durable lining, has potential as a long-lasting insecticidal surface for malaria vector control when used as lining for interior walls and ceilings inside the home. Against a backdrop of increasing long lasting net (LN) coverage, we examined the effect of combining permethrin-treated plastic sheeting (ITPS) with LNs in Burkina Faso. Methods A verandah trap experimental hut trial of ITPS with or without Olyset LN was conducted in the Vallée du Kou near Bobo-Dioulasso, where the two molecular forms of Anopheles gambiae s.s., S (frequency 65%) and M (frequency 35%), occur. The S form is mostly pyrethroid resistant (Fkdr = 92%) owing to the kdr mechanism, and the M form is mostly kdr susceptible (Fkdr = 7%). The treatment arms included ITPS, Olyset, ITPS plus Olyset, ITPS plus untreated net (with or without holes), and untreated control. Results ITPS was significantly inferior to Olyset LN in terms of mortality (37% vs 63%), blood feeding inhibition (20% vs 81%) and deterrence (0 vs 42%) effects, and hence altogether inferior as a means of personal protection (16% vs 89%). The addition of ITPS to Olyset did not improve mortality (62%), blood feeding inhibition (75%), deterrence (50%) or personal protection (88%) over that of Olyset used alone. Use of untreated nets - both holed and intact - with ITPS provided greater protection from blood-feeding. The intact net/ITPS combination killed more mosquitoes than ITPS on its own. Conclusions Although ITPS has a potential role for community control of malaria, at low coverage it is unlikely to be as good as Olyset LNs for household protection. The combination of pyrethroid IRS and pyrethroid LN - as practiced in some countries - is unlikely to be additive except, perhaps, at high levels of IRS coverage. A combination of LN and ITPS treated with an alternative insecticide is likely to be more effective, particularly in areas of pyrethroid resistance

  19. Field efficacy of pyrethroid treated plastic sheeting (durable lining) in combination with long lasting insecticidal nets against malaria vectors.

    PubMed

    Chandre, Fabrice; Dabire, Roch K; Hougard, Jean-Marc; Djogbenou, Luc S; Irish, Seth R; Rowland, Mark; N'guessan, Raphael

    2010-08-03

    Insecticide treated plastic sheeting (ITPS), sometimes known as durable lining, has potential as a long-lasting insecticidal surface for malaria vector control when used as lining for interior walls and ceilings inside the home. Against a backdrop of increasing long lasting net (LN) coverage, we examined the effect of combining permethrin-treated plastic sheeting (ITPS) with LNs in Burkina Faso. A verandah trap experimental hut trial of ITPS with or without Olyset LN was conducted in the Vallée du Kou near Bobo-Dioulasso, where the two molecular forms of Anopheles gambiae s.s., S (frequency 65%) and M (frequency 35%), occur. The S form is mostly pyrethroid resistant (Fkdr = 92%) owing to the kdr mechanism, and the M form is mostly kdr susceptible (Fkdr = 7%). The treatment arms included ITPS, Olyset, ITPS plus Olyset, ITPS plus untreated net (with or without holes), and untreated control. ITPS was significantly inferior to Olyset LN in terms of mortality (37% vs 63%), blood feeding inhibition (20% vs 81%) and deterrence (0 vs 42%) effects, and hence altogether inferior as a means of personal protection (16% vs 89%). The addition of ITPS to Olyset did not improve mortality (62%), blood feeding inhibition (75%), deterrence (50%) or personal protection (88%) over that of Olyset used alone. Use of untreated nets - both holed and intact - with ITPS provided greater protection from blood-feeding. The intact net/ITPS combination killed more mosquitoes than ITPS on its own. Although ITPS has a potential role for community control of malaria, at low coverage it is unlikely to be as good as Olyset LNs for household protection. The combination of pyrethroid IRS and pyrethroid LN - as practiced in some countries - is unlikely to be additive except, perhaps, at high levels of IRS coverage. A combination of LN and ITPS treated with an alternative insecticide is likely to be more effective, particularly in areas of pyrethroid resistance.

  20. Transporter for Treated Sheet Materials

    NASA Technical Reports Server (NTRS)

    Pollack, M., H.

    1983-01-01

    Plastic spacers keep parts separated during transport or storage. Cart with rods and spacers holds sheets with delicate finishes for storage or transport. Sheets supported vertically by rods, or horizontally. Spacers keep sheets separated. Designed to eliminate time and expense of tapping, wrapping, and sometimes refinishing aluminum sheets with delicate anodized finished.

  1. Flow-induced flutter in a wall-bounded elastic sheet

    NASA Astrophysics Data System (ADS)

    Weidman, M. S.; Argentina, M.; Hosoi, A. E.; Mahadevan, L.

    2004-11-01

    Inspired by voice production in natural and artificial systems, we consider the flow between a long but finite flexible elastic sheet and a rigid wall close to it. We derive evolution equations for the coupled dynamics of the fluid and solid in two limits corresponding to the viscously dominated and inertially dominated regimes of the flow. In both situations, the inertia of the solid remains important. We show that a long wavelength instability via a 1:1 resonance mechanism arises in both situations when the flow rate is increased beyond a critical threshold. We also compare the results of our analytical, numerical and scaling calculations with those of simple experiments. Finally we comment on the rich nonlinear dynamics of these systems which suggest that at least some aspects of voice and song production may be more a manifestation of physics rather than neurophysiology.

  2. Chemisorption and Diffusion of H on a Graphene Sheet and Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Dzegilenko, Fedor; Menon, Madhu

    2000-01-01

    Recent experiments on hydrogen storage in single wall nanotubes and nanotube bundles have reported large fractional weight of stored molecular hydrogen which are not in agreement with theoretical estimates based of simulation of hydrogen storage by physisorption mechanisms. Hydrogen storage in catalytically doped nanotube bundles indicate that atomic H might undergo chemisorption changing the basic nature of the storage mechanism under investigation by many groups. Using a generalized tight-binding molecular dynamics (GTBMD) method for reactive C-H dynamics, we investigate chemisorption and diffusion of atomic H on graphene sheet and C nanotubes. Effective potential energy surfaces (EPS) for chemisorption and diffusion are calculated for graphene sheet and nanotubes of different curvatures. Analysis of the activation barriers and quantum rate constants, computed via wave-packet dynamics method, will be discussed in this presentation.

  3. Emplacement history of a thrust sheet based on analysis of pressure solution cleavage and deformed fossils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Protzman, G.M.; Mitra, G.

    The emplacement history of a thrust sheet is recorded by the strain accumulated in its hanging wall and footwall. Detailed studies of second order structures and analysis of strain due to pressure solution and plastic deformation allow the authors to determine the deformation history of the Meade thrust in the Idaho - Wyoming thrust belt. Emplacement of the Meade thrust was accompanied by the formation of a series of second order in echelon folds in the footwall. Temporal relations based on detailed structural studies show that these folds, which are confined to the Jurassic Twin Creek Formation, formed progressively inmore » front of the advancing Meade thrust and were successively truncated and overridden by footwall imbricates of the Meade thrust. The Twin Creek Formation in both the hanging wall and footwall of the Meade thrust is penetratively deformed, with a well developed pressure solution cleavage. In addition, plastic strain is recorded by deformed Pentacrinus within fossil hash layers in the Twin Creek. Much of this penetrative deformation took place early in the history of the thrust sheet as layer parallel shortening, and the cleavage and deformed fossils behaved passively during subsequent folding and faulting. The later stages of deformation may be sequentially removed through balancing techniques to track successive steps in the deformation. This strain history, which is typical of an internal thrust sheet, is partly controlled by the lithologies involved, timing between successive thrusts, and the amount of interaction between major faults.« less

  4. COMPARISON STUDY OF VARIOUS PLASTICS AS THE WALL MATERIAL OF THGEM-BASED MICRODOSEMETERS FOR FAST NEUTRON MEASUREMENTS.

    PubMed

    Moslehi, A; Raisali, G; Lamehi, M

    2017-04-15

    To find appropriate substitutions for the expensive plastics of A-150 and rexolite used in the construction of thick gas electron multiplier (THGEM)-based tissue-equivalent proportional counters, in the present work, the responses of a THGEM-based microdosimetric detector made of A-150 and rexolite and three others composed of plexiglas (PMMA), polyethylene and polystyrene plastics as the wall materials have been compared. Lineal energy distribution, frequency-averaged lineal energy, dose-averaged lineal energy, mean quality factor and dose-equivalent for 0.1, 1 and 10 MeV neutrons and also for 241Am-Be neutrons are calculated using Geant4 simulation toolkit. Frequency-averaged lineal energy, dose-averaged lineal energy, mean quality factor and dose-equivalent values for all plastics are found similar. In addition, the response of an indigenously constructed microdosemeter with PMMA walls is also measured for 241Am-Be neutrons. The experimental results are in good agreement with the simulation predictions. Conclusively, it was found that the three considered plastics can be used as good candidates instead of A-150 and rexolite plastics in fast neutron microdosimetry. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. The Vascular Wall: a Plastic Hub of Activity in Cardiovascular Homeostasis and Disease.

    PubMed

    Awgulewitsch, Cassandra P; Trinh, Linh T; Hatzopoulos, Antonis K

    2017-06-01

    This review aims to summarize recent findings regarding the plasticity and fate switching among somatic and progenitor cells residing in the vascular wall of blood vessels in health and disease. Cell lineage tracing methods have identified multiple origins of stem cells, macrophages, and matrix-producing cells that become mobilized after acute or chronic injury of cardiovascular tissues. These studies also revealed that in the disease environment, resident somatic cells become plastic, thereby changing their stereotypical identities to adopt proinflammatory and profibrotic phenotypes. Currently, the functional significance of this heterogeneity among reparative cells is unknown. Furthermore, mechanisms that control cellular plasticity and fate decisions in the disease environment are poorly understood. Cardiovascular diseases are responsible for the majority of deaths worldwide. From a therapeutic perspective, these novel discoveries may identify new targets to improve the repair and regeneration of the cardiovascular system.

  6. Change and anisotropy of elastic modulus in sheet metals due to plastic deformation

    NASA Astrophysics Data System (ADS)

    Ishitsuka, Yuki; Arikawa, Shuichi; Yoneyama, Satoru

    2015-03-01

    In this study, the effect of the plastic deformation on the microscopic structure and the anisotropy of the elastic modulus in the cold-rolled steel sheet (SPCC) is investigated. Various uniaxial plastic strains (0%, 2.5%, 5%, 7.5%, and 10%) are applied to the annealed SPCC plates, then, the specimens for the tensile tests are cut out from them. The elastic moduli in the longitudinal direction and the transverse direction to the direction that are pre-strained are measured by the tensile tests. Cyclic tests are performed to investigate the effects of the internal friction caused by the movable dislocations in the elastic deformation. Also, the movable dislocations are quantified by the boundary tracking for TEM micrographs. In addition, the behaviors of the change of the elastic modulus in the solutionized and thermal aged aluminum alloy (A5052) are measured to investigate the effect on the movable dislocations with the amount of the depositions. As a result in SPCC, the elastic moduli of the 0° and 90° directions decrease more than 10% as 10% prestrain applied. On the other hand, the elastic modulus shows the recovery behavior after the strain aging and the annealing. The movable dislocation and the internal friction show a tendency to increase as the plastic strain increases. The marked anisotropy is not observed in the elastic modulus and the internal friction. The elastic modulus in A5052 with many and few depositions decreases similarly by the plastic deformation. From the above, the movable dislocations affect the elastic modulus strongly without depending on the deposition amount. Moreover, the elastic modulus recovers after the plastic deformation by reducing the effects of them with the strain aging and the heat treatment.

  7. A Demo opto-electronic power source based on single-walled carbon nanotube sheets.

    PubMed

    Hu, Chunhua; Liu, Changhong; Chen, Luzhuo; Meng, Chuizhou; Fan, Shoushan

    2010-08-24

    It is known that single-walled carbon nanotubes (SWNTs) strongly absorb light, especially in the near-infrared (NIR) region, and convert it into heat. In fact, SWNTs also have considerable ability to convert heat into electricity. In this work, we show that SWNT sheets made from as-grown SWNT arrays display a large positive thermoelectric coefficient (p-type). We designed a simple SWNT device to convert illuminating NIR light directly into a notable voltage output, which was verified by experimental tests. Furthermore, by a simple functionalization step, the p- to n-type transition was conveniently achieved for the SWNT sheets. By integrating p- and n-type elements in series, we constructed a novel NIR opto-electronic power source, which outputs a large voltage that sums over the output of every single element. Additionally, the output of the demo device has shown a good linear relationship with NIR light power density, favorable for IR sensors.

  8. Terahertz inline wall thickness monitoring system for plastic pipe extrusion

    NASA Astrophysics Data System (ADS)

    Hauck, J.; Stich, D.; Heidemeyer, P.; Bastian, M.; Hochrein, T.

    2014-05-01

    Conventional and commercially available inline wall thickness monitoring systems for pipe extrusion are usually based on ultrasonic or x-ray technology. Disadvantages of ultrasonic systems are the usual need of water as a coupling media and the high damping in thick walled or foamed pipes. For x-ray systems special safety requirements have to be taken into account because of the ionizing radiation. The terahertz (THz) technology offers a novel approach to solve these problems. THz waves have many properties which are suitable for the non-destructive testing of plastics. The absorption of electrical isolators is typically very low and the radiation is non-ionizing in comparison to x-rays. Through the electromagnetic origin of the THz waves they can be used for contact free measurements. Foams show a much lower absorption in contrast to acoustic waves. The developed system uses THz pulses which are generated by stimulating photoconductive switches with femtosecond laser pulses. The time of flight of THz pulses can be determined with a resolution in the magnitude of several ten femtoseconds. Hence the thickness of an object like plastic pipes can be determined with a high accuracy by measuring the time delay between two reflections on materials interfaces e.g. at the pipe's inner and outer surface, similar to the ultrasonic technique. Knowing the refractive index of the sample the absolute layer thickness from the transit time difference can be calculated easily. This method in principle also allows the measurement of multilayer systems and the characterization of foamed pipes.

  9. Manufacture of thin-walled clad tubes by pressure welding of roll bonded sheets

    NASA Astrophysics Data System (ADS)

    Schmidt, Hans Christian; Grydin, Olexandr; Stolbchenko, Mykhailo; Homberg, Werner; Schaper, Mirko

    2017-10-01

    Clad tubes are commonly manufactured by fusion welding of roll bonded metal sheets or, mechanically, by hydroforming. In this work, a new approach towards the manufacture of thin-walled tubes with an outer diameter to wall thickness ratio of about 12 is investigated, involving the pressure welding of hot roll bonded aluminium-steel strips. By preparing non-welded edges during the roll bonding process, the strips can be zip-folded and (cold) pressure welded together. This process routine could be used to manufacture clad tubes in a continuous process. In order to investigate the process, sample tube sections with a wall thickness of 2.1 mm were manufactured by U-and O-bending from hot roll bonded aluminium-stainless steel strips. The forming and welding were carried out in a temperature range between RT and 400°C. It was found that, with the given geometry, a pressure weld is established at temperatures starting above 100°C. The tensile tests yield a maximum bond strength at 340°C. Micrograph images show a consistent weld of the aluminium layer over the whole tube section.

  10. Perforating Thin Metal Sheets

    NASA Technical Reports Server (NTRS)

    Davidson, M. E.

    1985-01-01

    Sheets only few mils thick bonded together, punched, then debonded. Three-step process yields perforated sheets of metal. (1): Individual sheets bonded together to form laminate. (2): laminate perforated in desired geometric pattern. (3): After baking, laminate separates into individual sheets. Developed for fabricating conductive layer on blankets that collect and remove ions; however, perforated foils have other applications - as conductive surfaces on insulating materials; stiffeners and conductors in plastic laminates; reflectors in antenna dishes; supports for thermal blankets; lightweight grille cover materials; and material for mockup of components.

  11. Curved cap corrugated sheet

    NASA Technical Reports Server (NTRS)

    Davis, R. C.; Bales, T. T.; Royster, D. M.; Jackson, L. R. (Inventor)

    1984-01-01

    The report describes a structure for a strong, lightweight corrugated sheet. The sheet is planar or curved and includes a plurality of corrugation segments, each segment being comprised of a generally U-shaped corrugation with a part-cylindrical crown and cap strip, and straight side walls and with secondary corrugations oriented at right angles to said side walls. The cap strip is bonded to the crown and the longitudinal edge of said cap strip extends beyond edge at the intersection between said crown and said side walls. The high strength relative to weight of the structure makes it desirable for use in aircraft or spacecraft.

  12. Sectional Finite Element Analysis on Viscous Pressure Forming of Sheet Metal

    NASA Astrophysics Data System (ADS)

    Liu, Jianguang; Wang, Zhongjin; Liu, Yan

    2007-05-01

    Viscous pressure forming (VPF) is a recently developed sheet flexible-die forming process, which uses a kind of semi-solid, flowable and viscous material as pressure-carrying medium that typically applied on one side of the sheet metal or on both sides of sheet metal. Different from traditional sheet metal forming processes in which sheet metal is the unique deformation-body, VPF is a coupling process of visco-elastoplastic bulk deformation of viscous medium and elasto-plastic deformation of sheet metal. A sectional finite element model for the coupled deformation between visco-elastoplastic body and elasto-plastic sheet metal was proposed to analyze VPF. The resolution of the Updated Lagrangian formulation is based on a static approach. By using static-explicit time integration strategy, the deformation of elasto-plastic sheet metal and visco-elastoplastic body can keep stable. The frictional contact between sheet metal and visco-elastoplastic body is treated by penalty function method. Using the proposed algorithm, sheet metal viscous pressure bulging (VPB) process is analyzed and compared with experiments. A good agreement between numerical simulation results and experimental ones proved the efficiency and stability of this algorithm.

  13. Plastic covering on airfoil structure provides smooth uninterrupted surface

    NASA Technical Reports Server (NTRS)

    Kinzler, J. A.; Fehrenkamp, L. G.; Heffernam, J. T.; Lee, W. S.

    1975-01-01

    Primed surface is covered with adhesive. Sheet of plastic film is stretched over adhesive and mechanical holder is used to apply tension to ends of sheet to make it conform to surface of airfoil. After adhesive cures, plastic can be trimmed with sharp cutting tool.

  14. 21 CFR 878.4025 - Silicone sheeting.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Silicone sheeting. 878.4025 Section 878.4025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4025 Silicone sheeting. (a...

  15. 21 CFR 878.4025 - Silicone sheeting.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Silicone sheeting. 878.4025 Section 878.4025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4025 Silicone sheeting. (a...

  16. 21 CFR 878.4025 - Silicone sheeting.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Silicone sheeting. 878.4025 Section 878.4025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4025 Silicone sheeting. (a...

  17. 21 CFR 878.4025 - Silicone sheeting.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Silicone sheeting. 878.4025 Section 878.4025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4025 Silicone sheeting. (a...

  18. New method for obliterative treatment of an anterior wall aneurysm in the internal carotid artery: encircling silicone sheet clip procedure--technical case report.

    PubMed

    Kurokawa, Y; Wanibuchi, M; Ishiguro, M; Inaba, K

    2001-08-01

    Aneurysms on the anterior surface of the internal carotid artery (ICA) have been shown to be somewhat different from ordinary berry aneurysms because they are rather small, grow rapidly in a short time, and easily lead to rupture, especially during surgery. The most difficult problem is that this type of aneurysm cannot be eliminated easily by an ordinary clipping procedure without causing apparent arterial stenosis or occlusion. A 52-year-old man experienced a subarachnoid hemorrhage because of a ruptured aneurysm located on the anterior surface of the ICA. The tiny aneurysmal body, which was covered with a layer of brain tissue, was successfully exposed. The ICA seemed to be atherosclerotic, and the aneurysmal portion was solitary and had a reddish color. A large silicone sheet encircling clip (Vascwrap; Mizuho Ikakogyo Co., Ltd., Tokyo, Japan) was selected for this patient. The proximal margin of the silicone sheet was incised with a V-shaped cut, and the middle part of the sheet, which covered the diagonal part of the ICA, was trimmed to make it shorter. The blade of the fenestrated clip was applied to obliterate the aneurysm and was attached to the normal arterial wall together with this modified Vascwrap sheet to create a small space between the normal arterial wall and the surrounding Vascwrap sheet. Then tiny pieces of Teflon fiber (E.I. duPont de Nemours and Co., Wilmington, DE) was inserted from both margins, and the whole Vascwrap sheet was sealed with fibrin glue to ensure good adhesion. This method seemed adequate in treating this difficult aneurysm without causing postoperative regrowth or occlusion of the patient's ICA.

  19. Predicting Hot Deformation of AA5182 Sheet

    NASA Astrophysics Data System (ADS)

    Lee, John T.; Carpenter, Alexander J.; Jodlowski, Jakub P.; Taleff, Eric M.

    Aluminum 5000-series alloy sheet materials exhibit substantial ductilities at hot and warm temperatures, even when grain size is not particularly fine. The relatively high strain-rate sensitivity exhibited by these non-superplastic materials, when deforming under solute-drag creep, is a primary contributor to large tensile ductilities. This active deformation mechanism influences both plastic flow and microstructure evolution across conditions of interest for hot- and warm-forming. Data are presented from uniaxial tensile and biaxial bulge tests of AA5182 sheet material at elevated temperatures. These data are used to construct a material constitutive model for plastic flow, which is applied in finite-element-method (FEM) simulations of plastic deformation under multiaxial stress states. Simulation results are directly compared against experimental data to explore the usefulness of this constitutive model. The effects of temperature and stress state on plastic response and microstructure evolution are discussed.

  20. The electrostatic properties of Fiber-Reinforced-Plastics double wall underground storage gasoline tanks

    NASA Astrophysics Data System (ADS)

    Li, Yipeng; Liu, Quanzhen; Meng, He; Sun, Lifu; Zhang, Yunpeng

    2013-03-01

    At present Fiber Reinforced Plastics (FRP) double wall underground storage gasoline tanks are wildly used. An FRP product with a resistance of more than 1011 Ω is a static non-conductor, so it is difficult for the static electricity in the FRP product to decay into the earth. In this paper an experimental system was built to simulate an automobile gasoline filling station. Some electrostatic parameters of the gasoline, including volume charge density, were tested when gasoline was unloaded into a FRP double wall underground storage tank. Measurements were taken to make sure the volume charge density in the oil-outlet was similar to the volume charge density in the tank. In most cases the volume charge density of the gasoline was more than 22.7 μC m-3, which is likely to cause electrostatic discharge in FRP double wall underground storage gasoline tanks. On the other hand, it would be hard to ignite the vapor by electrostatic discharge since the vapor pressure in the tanks is over the explosion limit. But when the tank is repaired or re-used, the operators must pay attention to the static electricity and some measurements should be taken to avoid electrostatic accident. Besides the relaxation time of charge in the FRP double wall gasoline storage tanks should be longer.

  1. Enhancement of Strength and Ductility of Mg96Zn2Y2 Rolled Sheet by Controlling Structure and Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Noda, Masafumi; Kawamura, Yoshihito; Sakurai, Hiroshi; Funami, Kunio

    Mg-Zn-Y alloys are well known to possess greatly enhanced strength during plastic deformation because of the presence of kink bands in the LPSO phase and refinement of the grains of the alpha Mg phase. On the other hand, Mg-rare earth (RE) and Mg-Zn-RE alloys with a long period stacking order (LPSO) phase show a high tensile yield strength when subjected to an extrusion process but it is not known whether the LPSO and alpha Mg phases develop during plastic deformation. We examined the effect of the finely dispersed LPSO phase and the alpha Mg phase on the development of high strength in sheets of Mg96Zn2Y2 subjected to a few passes of rolling. The mechanical properties and thermal stability of the alloy were also investigated. The tensile yield strength of rolled sheets of Mg96Zn2Y2 was 360 MPa and its elongation was 5% when the material was subjected to thermomechanically controlled processing at 673 K with a four-pass rolling schedule. However, the tensile yield strength decreased and the elongation increased at annealing temperature of 623 K or above, because of the presence of grain growth in the alpha Mg phase and the restoration of kink bands in the LPSO phase.

  2. Electromagnetic augmentation for casting of thin metal sheets

    DOEpatents

    Hull, J.R.

    1987-10-28

    Thin metal sheets are cast by magnetically levitating molten metal deposited in a model within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. 8 figs.

  3. Effect of r-value and texture on plastic deformation and necking behavior in interstitial-free steel sheets

    NASA Astrophysics Data System (ADS)

    Oh, Gyu-Jin; Lee, Kye-Man; Huh, Moo-Young; Park, Jin Eon; Park, Soo Ho; Engler, Olaf

    2017-01-01

    Three initial tensile specimens having different textures and, in consequence, different r-values were cut from a sheet of an interstitial-free steel. Using these specimens, the effect of r-value and texture on plastic deformation and the necking behavior were studied by tackling the strain state and texture during tensile tests. A reduced decrease in work hardening rate of tensile specimens with higher r-values led to a slower onset of diffuse necking which offers an increased uniform elongation. A slower reduction in thickness of specimens with a higher r-value provided a favorable resistance against onset of failure by localized necking.

  4. Estimation Model for Magnetic Properties of Stamped Electrical Steel Sheet

    NASA Astrophysics Data System (ADS)

    Kashiwara, Yoshiyuki; Fujimura, Hiroshi; Okamura, Kazuo; Imanishi, Kenji; Yashiki, Hiroyoshi

    Less deterioration in magnetic properties of electrical steel sheets in the process of stamping out iron-core are necessary in order to maintain its performance. First, the influence of plastic strain and stress on magnetic properties was studied by test pieces, in which plastic strain was added uniformly and residual stress was not induced. Because the influence of plastic strain was expressed by equivalent plastic strain, at each equivalent plastic strain state the influence of load stress was investigated. Secondly, elastic limit was determined about 60% of macroscopic yield point (MYP), and it was found to agree with stress limit inducing irreversible deterioration in magnetic properties. Therefore simulation models, where beyond elastic limit plastic deformation begins and magnetic properties are deteriorated steeply, are proposed. Besides considered points in the deformation analysis are strain-rate sensitivity of flow stress, anisotropy under deformation, and influence of stress triaxiality on fracture. Finally, proposed models have been shown to be valid, because magnetic properties of 5mm width rectangular sheets stamped out from non-oriented electrical steel sheet (35A250 JIS grade) can be estimated with good accuracy. It is concluded that the elastic limit must be taken into account in both stamping process simulation and magnetic field calculation.

  5. Electro-thermo-mechanical coupling analysis of deep drawing with resistance heating for aluminum matrix composites sheet

    NASA Astrophysics Data System (ADS)

    Zhang, Kaifeng; Zhang, Tuoda; Wang, Bo

    2013-05-01

    Recently, electro-plastic forming to be a focus of attention in materials hot processing research area, because it is a sort of energy-saving, high efficient and green manufacturing technology. An electro-thermo-mechanical model can be adopted to carry out the sequence simulation of aluminum matrix composites sheet deep drawing via electro-thermal coupling and thermal-mechanical coupling method. The first step of process is resistance heating of sheet, then turn off the power, and the second step is deep drawing. Temperature distribution of SiCp/2024Al composite sheet by resistance heating and sheet deep drawing deformation were analyzed. During the simulation, effect of contact resistances, temperature coefficient of resistance for electrode material and SiCp/2024Al composite on temperature distribution were integrally considered. The simulation results demonstrate that Sicp/2024Al composite sheet can be rapidly heated to 400° in 30s using resistances heating and the sheet temperature can be controlled by adjusting the current density. Physical properties of the electrode materials can significantly affect the composite sheet temperature distribution. The temperature difference between the center and the side of the sheet is proportional to the thermal conductivity of the electrode, the principal cause of which is that the heat transfers from the sheet to the electrode. SiCp/2024Al thin-wall part can be intactly manufactured at strain rate of 0.08s-1 and the sheet thickness thinning rate is limited within 20%, which corresponds well to the experimental result.

  6. DEVELOPING SUSTAINABLE ALTERNATIVES TO PLASTIC MULCH

    EPA Science Inventory

    We propose a project to raise awareness of pollution associated with the production, use and disposal of plastic films/ sheeting used as mulch, and to work with farmers and industry partners to develop a biodegradable, sustainable alternative to plastic mulch.

  7. Moisture Management of High-R Walls (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2013-12-01

    The following report explains the moisture-related concerns for High R-value wall assemblies and discusses past Building America research work that informs this study. Hygrothermal simulations were prepared for several common approaches to High R-value wall construction in six cities (Houston, Atlanta, Seattle, St. Louis, Chicago, and International Falls) representing a range of climate zones (2, 3, 4C, 4, 5A, and 7, respectively). The simulations are informed by experience gained from past research in this area and validated by field measurement and forensic experience. The modeling program was developed to assess the moisture durability of the wall assemblies based on threemore » primary sources of moisture: construction moisture, air leakage condensation, and bulk water leakage. The peak annual moisture content of the wood based exterior sheathing was used to comparatively analyze the response to the moisture loads for each of the walls in each given city. Walls which experienced sheathing moisture contents between 20% and 28% were identified as risky, whereas those exceeding 28% were identified as very high risk. All of the wall assemblies perform well under idealized conditions. However, only the walls with exterior insulation, or cavity insulation which provides a hygrothermal function similar to exterior insulation, perform adequately when exposed to moisture loads. Walls with only cavity insulation are particularly susceptible to air leakage condensation. None of the walls performed well when a precipitation based bulk water leak was introduced to the backside of the sheathing, emphasizing the importance of proper flashing details.« less

  8. [Plastic surgery of the thoracic wall as a method of thoracic wall reconstruction after complete surgical wound disintegration after sternotomy].

    PubMed

    Hájek, T; Jirásek, K; Urban, M; Straka, Z

    1998-12-01

    During the period between January 1996 and July 1998 in our department 1920 patients were operated on account of heart disease from median sternotomy. In 17 patients, i.e. in 0.9% during the early postoperative period the surgical wound disintegrated incl. dehiscence of the sternum and the development of postoperative mediastinitis. In 14 of these patients the authors reconstructed the defect of the thoracic wall by their own modification of Jurkiewicz plastic operation using the pectoral muscles. One patient from this group died, in the remaining 13 patients the wound healed without deformity of the chest and without signs of instability, without restriction of movement and function.

  9. Validation and Design of Sheet Retrofits

    DTIC Science & Technology

    2010-10-31

    enough to allow for rotation of the top of the wall without development of an axial force. Obviously, these walls are not load bearing . This type...structures are commonly constructed using CMU blocks to infill non- load bearing walls (Hammons, 1999). Many of these structures were built in a... axial loads within the sheet. 3 Figure 1. Infill Masonry Wall Retrofit Concept 2.1. Objective The objective of the research documented in

  10. Electromagnetic augmentation for casting of thin metal sheets

    DOEpatents

    Hull, John R.

    1989-01-01

    Thin metal sheets are cast by magnetically levitating molten metal deposited in a mold within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. The magnetic fields associated with the currents in the aforementioned coils levitate the molten metal sheet while the mold provides for its lateral and vertical confinement. A leader sheet having electromagnetic characteristics similar to those of the molten metal sheet is used to start the casing process and precedes the molten metal sheet through the yoke/coil arrangement and mold and forms a continuous sheet therewith. The yoke/coil arrangement may be either U-shaped with a single racetrack coil or may be rectangular with a pair of spaced, facing bedstead coils.

  11. Role of Hydrophobic/Aromatic Residues on the Stability of Double-Wall β-Sheet Structures Formed by a Triblock Peptide.

    PubMed

    Ozgur, Beytullah; Sayar, Mehmet

    2017-04-27

    Bioinspired self-assembling peptides serve as powerful building blocks in the manufacturing of nanomaterials with tailored features. Because of their ease of synthesis, biocompatibility, and tunable activity, this emerging branch of biomolecules has become very popular. The triblock peptide architecture designed by the Hartgerink group is a versatile system that allows control over its assembly and has been shown to demonstrate tunable bioactivity. Three main forces, Coulomb repulsion, hydrogen bonding and hydrophobicity act together to guide the triblock peptides' assembly into one-dimensional objects and hydrogels. It was shown previously that both the nanofiber morphology (e.g., intersheet spacing, formation of antiparallel/parallel β-sheets) and hydrogel rheology strictly depend on the choice of the core residue where the triblock peptide fibers with aromatic cores in general form shorter fibers and yield poor hydrogels with respect to the ones with aliphatic cores. However, an elaborate understanding of the molecular reasons behind these changes remained unclear. In this study, by using carefully designed computer based free energy calculations, we analyzed the influence of the core residue on the formation of double-wall fibers and single-wall β-sheets. Our results demonstrate that the aromatic substitution impairs the fiber cores and this impairment is mainly associated with a reduced hydrophobic character of the aromatic side chains. Such weakening is most obvious in tryptophan containing peptides where the fiber core absorbs a significant amount of water. We also show that the ability of tyrosine to form side chain hydrogen bonds plays an indispensable role in the fiber stability. As opposed to the impairment of the fiber cores, single-wall β-sheets with aromatic faces become more stable compared to the ones with aliphatic faces suggesting that the choice of the core residue can also affect the underlying assembly mechanism. We also provide an in

  12. The practicality of defensive ice walls: How would the great ice wall in Game of Thrones hold up?

    NASA Astrophysics Data System (ADS)

    Truffer, M.

    2017-12-01

    The Game of Thrones great ice wall is a colossal feature stretching several hundred miles and over 200 m high. Its purpose is to defend the realm from the wildlings. It is generally pictured as a near vertical wall. An ice wall of these proportions poses interesting challenges, mainly because ice acts as a non-linear shear-thinning fluid. A 200 m high vertical wall would create a large effective stress near its base of almost 1.8 MPa. Typical stresses responsible for ice flow in glaciers and ice sheets are more than a magnitude lower (0.1 MPa). Extrapolating a commonly used flow law for temperate ice to such high stresses would lead to strain rates at the bottom of the wall in excess of 1/day, meaning the wall would rapidly collapse and spread laterally under its own weight. To keep the wall stable, it would help to cool it significantly, as the flow of ice is also very temperature dependent. Cooling to a chilly -40 C would reduce strain rates by two orders of magnitude, but this still leads to significant slumping of the wall within just a few weeks. A time-dependent similarity solution for simplified ice flow equations that describe the evolving shape of the ice wall was provided by Halfar (1981), and demonstrates the rapid decay of the wall. A simple estimate can be derived by assuming that ice is a perfectly plastic fluid, able to maintain a basal shear stress of about 0.1 MPa. A stable ice wall would then spread laterally to about 4 km width. The resulting slope would only be steep at the very margin and the ice wall would loose much of its defensive capabilities. I conclude that the ice wall as proposed would not be a practicable defense under typical Earth conditions, and special magical powers would be necessary to maintain its shape, even for just a few days.

  13. New Modelling of Localized Necking in Sheet Metal Stretching

    NASA Astrophysics Data System (ADS)

    Bressan, José Divo

    2011-01-01

    Present work examines a new mathematical model to predict the onset of localized necking in the industrial processes of sheet metal forming such as biaxial stretching. Sheet metal formability is usually assessed experimentally by testing such as the Nakajima test to obtain the Forming Limit Curve, FLC, which is an essential material parameter necessary to numerical simulations by FEM. The Forming Limit Diagram or "Forming Principal Strain Map" shows the experimental FLC which is the plot of principal true strains in the sheet metal surface, ɛ1 and ɛ2, occurring at critical points obtained in laboratory formability tests or in the fabrication process. Two types of undesirable rupture mechanisms can occur in sheet metal forming products: localized necking and shear induced fracture. Therefore, two kinds of limit strain curves can be plotted: the local necking limit curve FLC-N and the shear fracture limit curve FLC-S. Localized necking is theoretically anticipated to initiate at a thickness defect ƒin = hib/hia inside the grooved sheet thickness hia, but only at the instability point of maximum load. The inception of grooving on the sheet surface evolves from instability point to localized necking and final rupture, during further sheet metal straining. Work hardening law is defined for a strain and strain rate material by the effective stress σ¯ = σo(1+βɛ¯)n???ɛM. The average experimental hardening law curve for tensile tests at 0°, 45° and 90°, assuming isotropic plasticity, was used to analyze the plasticity behavior during the biaxial stretching of sheet metals. Theoretical predicted curves of local necking limits are plotted in the positive quadrant of FPSM for different defect values ƒin and plasticity parameters. Limit strains are obtained from a software developed by the author. Some experimental results of forming limit curve obtained from experiments for IF steel sheets are compared with the theoretical predicted curves: the correlation is

  14. A study on plastic wrinkling in thin-walled tube bending via an energy-based wrinkling prediction model

    NASA Astrophysics Data System (ADS)

    Li, H; Yang, H; Zhan, M

    2009-04-01

    Thin-walled tube bending is an advanced technology for producing precision bent tube parts in aerospace, aviation and automobiles, etc. With increasing demands of bending tubes with a larger tube diameter and a smaller bending radius, wrinkling instability is a critical issue to be solved urgently for improving the bending limit and forming quality in this process. In this study, by using the energy principle, combined with analytical and finite element (FE) numerical methods, an energy-based wrinkling prediction model for thin-walled tube bending is developed. A segment shell model is proposed to consider the critical wrinkling region, which captures the deformation features of the tube bending process. The dissipation energy created by the reaction forces at the tube-dies interface for restraining the compressive instability is also included in the prediction model, which can be numerically calculated via FE simulation. The validation of the model is performed and its physical significance is evaluated from various aspects. Then the plastic wrinkling behaviors in thin-walled tube bending are addressed. From the energy viewpoint, the effect of the basic parameters including the geometrical and material parameters on the onset of wrinkling is identified. In particular, the influence of multi-tools constraints such as clearance and friction at various interfaces on the wrinkling instability is obtained. The study provides instructive understanding of the plastic wrinkling instability and the model may be suitable for the wrinkling prediction of a doubly-curved shell in the complex forming process with contact conditions.

  15. Desorption modeling of hydrophobic organic chemicals from plastic sheets using experimentally determined diffusion coefficients in plastics.

    PubMed

    Lee, Hwang; Byun, Da-Eun; Kim, Ju Min; Kwon, Jung-Hwan

    2018-01-01

    To evaluate rate of migration from plastic debris, desorption of model hydrophobic organic chemicals (HOCs) from polyethylene (PE)/polypropylene (PP) films to water was measured using PE/PP films homogeneously loaded with the HOCs. The HOCs fractions remaining in the PE/PP films were compared with those predicted using a model characterized by the mass transfer Biot number. The experimental data agreed with the model simulation, indicating that HOCs desorption from plastic particles can generally be described by the model. For hexachlorocyclohexanes with lower plastic-water partition coefficients, desorption was dominated by diffusion in the plastic film, whereas desorption of chlorinated benzenes with higher partition coefficients was determined by diffusion in the aqueous boundary layer. Evaluation of the fraction of HOCs remaining in plastic films with respect to film thickness and desorption time showed that the partition coefficient between plastic and water is the most important parameter influencing the desorption half-life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. SU-F-T-550: Radiochromic Plastic Thin Sheet Dosimeter: Initial Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, K; Adamovics, J

    Purpose: Thin sheets, of a high sensitivity formulation of radiochromic dosimeter, Presage were prepared and evaluated for optical readout. Methods: Sheets of radiochromic polyurethane, 12 cm long, 10 cm wide and 0.2 cm thick were prepared with leuco crystal violet as the reporter molecule. Sample transmission was evaluated at a wavelength of 590 nm with in-house constructed instruments: optical cone beam laser CT scanner, fixed and scanning spot densitometers. Sample sequential irradiations to a total dose of 40 Gy were conducted with a modified, Theratron 60, cobalt radiotherapy machine at dose rates of 1 or 0.25 Gy per minute. Exposuremore » to ambient and readout light was minimized to limit background photochromic signals. Samples were stored at 4°C. Optical activity was assessed from linearly polarized transmission images. Comparison sensitivity measurements with EBT3 film were conducted. Results: Samples were transparent, smooth and pale purple before irradiation. Radiochromic reaction was completed in less than 5 minutes. A linear dose response with a sensitivity of 0.5 cm-1Gy-1 was observed. Micrometer measurements found sheet thickness variations up to 20%. Uniform dose, 2 Gy attenuation images, correlated with local sheet thicknesses. Comparable measurements with EBT3 film were 3 times more sensitive at 1 Gy but above 15 Gy, EBT3 film had lower sensitivity than 0.2 cm thick Presage sheet dosimeter due to its non-linear response. Conclusion: Dose sensitivity provided a 10% decrease in transmission for a 1 Gy dose. Improvements in mold design are expected to allow production of sheets with less than 5% variation in thickness. Above, 10 Gy, Presage sheet dosimeter performance expected to exceed EBT3 film based on linearity, sensitivity, transparency and smoothness of samples. J Adamovics is owner of Heuris Inc.« less

  17. Analysis of Flexible Anchored Hollow WPC Quay Walls of the New Berth in Tur, Egypt

    NASA Astrophysics Data System (ADS)

    Elsayed, Ayman

    2017-10-01

    A seawall, also known as a bulkhead or retaining wall, is a structure built to reduce the effects of strong waves and to defend costal land from erosion. Traditionally, seawalls are made of steel, timber or concrete construction. Composite materials, however, have been recently introduced for their ease of installation/maintenance in dry processing, low cost, and environmentally friendly materials. A wood plastic composite (WPC) seawall system has been developed and patented for its unique hollow structure that can give greater stiffness and stability under various external stresses. This paper describes the development of design method used in the analysis of the WPC walls. The main challenge during the physical excavation works is to limit the deformations involved in order to minimize damage on adjacent structures. The deformations depend largely on the excavation and strutting procedures, but also on the properties of the structural elements like the soil, the sheet pile and strutting members. The detailed design procedure involves numerical analyses, national regulations and common practice considerations. The contribution of finite element method in this field was used herein to determine the lateral movements, the bending moments of the wall, the passive earth pressure of the soil and the tensile force exerted by the anchor rods. The overall objectives of this research can be divided into two categories, First calibration of the finite element model for the new Tur quay walls (the case study) and reviewing the results of the steel cross section that chosen and the suggested one. Second, analysis and comparing the results of WPC cross-sections with the designed Steel sheet pile wall (SPW).

  18. Calculation of Centrally Loaded Thin-Walled Columns Above the Buckling Limit

    NASA Technical Reports Server (NTRS)

    Reinitzhuber, F.

    1945-01-01

    When thin-walled columns formed from flanged sheet, such as used in airplane construction, are subjected to axial load, their behavior at failure varies according to the slenderness ratio. On long columns the axis deflects laterally while the cross section form is maintained; buckling results. The respective breaking load in the elastic range is computed by Euler's formula and for the plastic range by the Engesser- Karman formula. Its magnitude is essentially dependent upon the length. On intermediate length columns, especially where open sections are concerned, the cross section is distorted while the cross section form is preserved; twisting failure results. The buckling load in twisting is calculated according to Wagner and Kappus. On short columns the straight walls of low-bending resistance that form the column are deflected at the same time that the cross section form changes - buckling occurs without immediate failure. Then the buckling load of the total section computable from the buckling loads of the section walls is not the ultimate load; quite often, especially on thin-walled sections, it lies considerably higher and is secured by tests. Both loads, the buckling and the ultimate load are only in a small measure dependent upon length. The present report is an attempt to theoretically investigate the behavior of such short, thin-walled columns above the buckling load with the conventional calculating methods.

  19. Influence of cantilevered sheet pile deflection on adjacent roadways.

    DOT National Transportation Integrated Search

    2009-06-01

    Cantilevered sheet pile walls are often used adjacent roadways as temporary support during construction. Excess movement of these walls has led to excessive roadway distress causing additional repairs to be necessary. This study assessed the effects ...

  20. Effects of transverse temperature field nonuniformity on stress in silicon sheet growth

    NASA Technical Reports Server (NTRS)

    Mataga, P. A.; Hutchinson, J. W.; Chalmers, B.; Bell, R. O.; Kalejs, J. P.

    1987-01-01

    Stress and strain rate distributions are calculated using finite element analysis for steady-state growth of thin silicon sheet temperature nonuniformities imposed in the transverse (sheet width) dimension. Significant reductions in residual stress are predicted to occur for the case where the sheet edge is cooled relative to its center provided plastic deformation with high creep rates is present.

  1. Synthesis of Multi-Walled Carbon Nanotubes from Plastic Waste Using a Stainless-Steel CVD Reactor as Catalyst.

    PubMed

    Tripathi, Pranav K; Durbach, Shane; Coville, Neil J

    2017-09-22

    The disposal of non-biodegradable plastic waste without further upgrading/downgrading is not environmentally acceptable and many methods to overcome the problem have been proposed. Herein we indicate a simple method to make high-value nanomaterials from plastic waste as a partial solution to the environmental problem. Laboratory-based waste centrifuge tubes made of polypropylene were chosen as a carbon source to show the process principle. In the process, multi-walled carbon nanotubes (MWCNTs) were synthesized from plastic waste in a two-stage stainless steel 316 (SS 316) metal tube that acted as both reactor vessel and catalyst. The steel reactor contains Fe (and Ni, and various alloys), which act as the catalyst for the carbon conversion process. The reaction and products were studied using electron probe microanalysis, thermogravimetric analysis, Raman spectroscopy and transmission electron microscopy and scanning electron microscopy. Optimization studies to determine the effect of different parameters on the process showed that the highest yield and most graphitized MWCNTs were formed at 900 °C under the reaction conditions used (yield 42%; Raman I D / I G ratio = 0.48). The high quality and high yield of the MWCNTs that were produced in a flow reactor from plastic waste using a two stage SS 316 chemical vapor deposition (CVD) furnace did not require the use of an added catalyst.

  2. Synthesis of Multi-Walled Carbon Nanotubes from Plastic Waste Using a Stainless-Steel CVD Reactor as Catalyst

    PubMed Central

    Durbach, Shane

    2017-01-01

    The disposal of non-biodegradable plastic waste without further upgrading/downgrading is not environmentally acceptable and many methods to overcome the problem have been proposed. Herein we indicate a simple method to make high-value nanomaterials from plastic waste as a partial solution to the environmental problem. Laboratory-based waste centrifuge tubes made of polypropylene were chosen as a carbon source to show the process principle. In the process, multi-walled carbon nanotubes (MWCNTs) were synthesized from plastic waste in a two-stage stainless steel 316 (SS 316) metal tube that acted as both reactor vessel and catalyst. The steel reactor contains Fe (and Ni, and various alloys), which act as the catalyst for the carbon conversion process. The reaction and products were studied using electron probe microanalysis, thermogravimetric analysis, Raman spectroscopy and transmission electron microscopy and scanning electron microscopy. Optimization studies to determine the effect of different parameters on the process showed that the highest yield and most graphitized MWCNTs were formed at 900 °C under the reaction conditions used (yield 42%; Raman ID/IG ratio = 0.48). The high quality and high yield of the MWCNTs that were produced in a flow reactor from plastic waste using a two stage SS 316 chemical vapor deposition (CVD) furnace did not require the use of an added catalyst. PMID:28937596

  3. 27. "TEST STAND; STRUCTURAL; SIDEWALL, NORTH WALL AND SOUTH WALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. "TEST STAND; STRUCTURAL; SIDEWALL, NORTH WALL AND SOUTH WALL FRAMING ELEVATIONS." Specifications No. ENG-04353-55-72; Drawing No. 60-09-12; sheet 27 of 148; file no. 1320/78. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, Rev. B; date: 15 April 1957. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  4. Self-Pierce Riveting of Three Aluminium Alloy and Mild Steel Sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, K.; Abe, Y.; Sakai, S.

    2010-06-15

    Three aluminium alloy and steel sheets were joined with a self-piercing rivet. Self-pierce riveting has the function of joining steel and aluminium alloys having very different melting points due to plastic joining. The requisites for joining the three sheets are the driving of the rivet leg through the middle sheet, the flaring of the rivet leg in the lower sheet and the prevention of the fracture of the lower sheet. The joinability for various combinations of the three sheets was determined. When the rivet leg is small, no driving through the middle sheet occurs, the lower sheet ruptures for amore » large rivet leg. In addition, 980 MPa high strength steel, mild steel and aluminium alloy sheets were joined by the self-pierce riveting.« less

  5. Extrusion and characterization of thermoplastic starch sheets from "macho" banana.

    PubMed

    Alanís-López, P; Pérez-González, J; Rendón-Villalobos, R; Jiménez-Pérez, A; Solorza-Feria, J

    2011-08-01

    Starch isolated from macho banana was oxidized by using 2.5% and 3.5% (w/w) of sodium hypochlorite. Native and oxidized starches with glycerol were processed using a conical twin screw extruder to obtain thermoplastic laminates or sheets, which were partially characterized. Oxidized banana starches presented higher moisture and total starch but lower ash, protein, lipids, and apparent amylose content than the native starch. Micrographs of sheets from oxidized starches showed wrinkles and cavities presumably caused by the plasticizer, but with less free glycerol and unplasticized starch granules than those from native starch. Sheets from oxidized starch showed a notorious increase in all thermal parameters (To, Tp, and ΔH), mechanical properties (tensile strength, elongation at break, and elasticity), and solubility. Banana starch X-ray diffraction patterns corresponded to a mixture of the A- and B-type polymorphs, with apparently slightly higher crystallinity in oxidized specimens than in native starch. A similar trend was observed in the corresponding sheets. Due to the pollution problem caused by the conventional plastics, there has been a renewed interest in biodegradable sheets, because they may have the potential to replace conventional packaging materials. Banana starch might be an interesting raw material to be used as edible sheet, coating or in food packaging, and preservation, because it is biodegradable, cheap, innocuous, and abundant. © 2011 Institute of Food Technologists®

  6. Dual-phase steel sheets under cyclic tension-compression to large strains: Experiments and crystal plasticity modeling

    NASA Astrophysics Data System (ADS)

    Zecevic, Milovan; Korkolis, Yannis P.; Kuwabara, Toshihiko; Knezevic, Marko

    2016-11-01

    In this work, we develop a physically-based crystal plasticity model for the prediction of cyclic tension-compression deformation of multi-phase materials, specifically dual-phase (DP) steels. The model is elasto-plastic in nature and integrates a hardening law based on statistically stored dislocation density, localized hardening due to geometrically necessary dislocations (GNDs), slip-system-level kinematic backstresses, and annihilation of dislocations. The model further features a two level homogenization scheme where the first level is the overall response of a two-phase polycrystalline aggregate and the second level is the homogenized response of the martensite polycrystalline regions. The model is applied to simulate a cyclic tension-compression-tension deformation behavior of DP590 steel sheets. From experiments, we observe that the material exhibits a typical decreasing hardening rate during forward loading, followed by a linear and then a non-linear unloading upon the load reversal, the Bauschinger effect, and changes in hardening rate during strain reversals. To predict these effects, we identify the model parameters using a portion of the measured data and validate and verify them using the remaining data. The developed model is capable of predicting all the particular features of the cyclic deformation of DP590 steel, with great accuracy. From the predictions, we infer and discuss the effects of GNDs, the backstresses, dislocation annihilation, and the two-level homogenization scheme on capturing the cyclic deformation behavior of the material.

  7. Plasticity, elasticity, and adhesion energy of plant cell walls: nanometrology of lignin loss using atomic force microscopy

    DOE PAGES

    Farahi, R. H.; Charrier, Anne M.; Tolbert, Allison K.; ...

    2017-03-10

    The complex organic polymer, lignin, abundant in plants, prevents the efficient extraction of sugars from the cell walls that is required for large scale biofuel production. Because lignin removal is crucial in overcoming this challenge, the question of how the nanoscale properties of the plant cell ultrastructure correlate with delignification processes is important. Here, we report how distinct molecular domains can be identified and how physical quantities of adhesion energy, elasticity, and plasticity undergo changes, and whether such quantitative observations can be used to characterize delignification. By chemically processing biomass, and employing nanometrology, the various stages of lignin removal aremore » shown to be distinguished through the observed morphochemical and nanomechanical variations. Such spatially resolved correlations between chemistry and nanomechanics during deconstruction not only provide a better understanding of the cell wall architecture but also is vital for devising optimum chemical treatments.« less

  8. Effect of coal filler on the properties of soy protein plastics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G.H.; Zhou, A.N.; Hu, M.B.

    2006-11-15

    The influence of ultrafine coal filler (UFC) content on tensile properties, water absorption, and biodegradability of soy protein plastics were investigated. The addition of UFC in the soy protein plastics, with different content of glycerol as a plasticizer, was at different ratio varying from 10:0 to 6:4. Blend sheets of the soy protein composites were prepared by the compression molding processing. The results show that, with 23.08 wt % glycerol, the tensile strength and elongation at break for the soy protein sheet with coal filler (range from 5 to 30 parts) can be enhanced as compared with nonfilled soy proteinmore » plastics. Water resistance of the soy protein plastics improves with the increase in UFC content. The derivative thermogravimetry (DTG) curves indicate a double-stage degradation process for defatted soy flour (SPF), while three-stage degradation process for soy plastics and the soy protein composites. FT-IR, XPS, and SEM were applied to study the interfacial interaction between coal macromolecules and soy protein molecules in UFC filled soy protein plastics. The results demonstrated that there is strong interfacial interaction in the soy protein plastics caused by the compression molding processing.« less

  9. Effect of the material properties on the crumpling of a thin sheet.

    PubMed

    Habibi, Mehdi; Adda-Bedia, Mokhtar; Bonn, Daniel

    2017-06-07

    While simple at first glance, the dense packing of sheets is a complex phenomenon that depends on material parameters and the packing protocol. We study the effect of plasticity on the crumpling of sheets of different materials by performing isotropic compaction experiments on sheets of different sizes and elasto-plastic properties. First, we quantify the material properties using a dimensionless foldability index. Then, the compaction force required to crumple a sheet into a ball as well as the average number of layers inside the ball are measured. For each material, both quantities exhibit a power-law dependence on the diameter of the crumpled ball. We experimentally establish the power-law exponents and find that both depend nonlinearly on the foldability index. However the exponents that characterize the mechanical response and morphology of the crumpled materials are related linearly. A simple scaling argument explains this in terms of the buckling of the sheets, and recovers the relation between the crumpling force and the morphology of the crumpled structure. Our results suggest a new approach to tailor the mechanical response of the crumpled objects by carefully selecting their material properties.

  10. Optimisation of tool path for improved formability of commercial pure aluminium sheets during the incremental forming process

    NASA Astrophysics Data System (ADS)

    Prasad, Moyye Devi; Nagarajan, D.

    2018-05-01

    An axisymmetric dome of 70 mm in diameter and 35 mm in depth was formed using the ISF process using varying proportions (25, 50 and 75%) of spiral (S) and helical (H) tool path combinations as a single tool path strategy, on a 2 mm thickness commercially pure aluminium sheets. A maximum forming depth of ˜30 mm was observed on all the components, irrespective of the different tool path combinations employed. None of the components were fractured for the different tool path combinations used. The springback was also same and uniform for all the tool path combinations employed, except for the 75S25H which showed slightly larger springback. The wall thickness reduced drastically up to a certain forming depth and increased with the increase in forming depth for all the tool path combinations. The maximum thinning occurred near the maximum wall angle region for all the components. The wall thickness improved significantly (around 10-15%) near the maximum wall angle region for the 25S75H combination than that of the complete spiral and other tool path strategies. It is speculated that this improvement in wall thickness may be mainly due to the combined contribution of the simple shear and uniaxial dilatation deformation modes of the helical tool path strategy in the 25S75H combination. This increase in wall thickness will greatly help in reducing the plastic instability and postpone the early failure of the component.

  11. Thin plastic sheet eliminates need for expensive plating

    NASA Technical Reports Server (NTRS)

    Stremel, R. L.

    1967-01-01

    Gasket of a commercially available plastic material is interposed between the mating surfaces in axial joints where a hard and a soft metal are in intimate contact under stress conditions. This eliminates the fretting problem and is quicker and less expensive than the plating process.

  12. Study of radial die-wall pressure changes during pharmaceutical powder compaction.

    PubMed

    Abdel-Hamid, Sameh; Betz, Gabriele

    2011-04-01

    In tablet manufacturing, less attention is paid to the measurement of die-wall pressure than to force-displacement diagrams. Therefore, the aim of this study was to investigate radial stress change during pharmaceutical compaction. The Presster(TM), a tablet-press replicator, was used to characterize compaction behavior of microcrystalline cellulose (viscoelastic), calcium hydrogen phosphate dihydrate (brittle), direct compressible mannitol (plastic), pre-gelatinized starch (plastic/elastic), and spray dried lactose monohydrate (plastic/brittle) by measuring radial die-wall pressure; therefore powders were compacted at different (pre) compaction pressures as well as different speeds. Residual die-wall pressure (RDP) and maximum die-wall pressure (MDP) were measured. Various tablet physical properties were correlated to radial die-wall pressure. With increasing compaction pressure, RDP and MDP (P < 0.0001) increased for all materials, with increasing precompaction RDP decreased for plastic materials (P < 0.05), whereas with increasing speed MDP decreased for all materials (P < 0.05). During decompression, microcrystalline cellulose and pre-gelatinized starch showed higher axial relaxation, whereas mannitol and lactose showed higher radial relaxation, calcium hydrogen phosphate showed high axial and radial relaxations. Plastic and brittle materials showed increased tendencies for friction because of high radial relaxation. Die-wall monitoring is suggested as a valuable tool for characterizing compaction behavior of materials and detecting friction phenomena in the early stage of development.

  13. Modelling cell wall growth using a fibre-reinforced hyperelastic-viscoplastic constitutive law

    NASA Astrophysics Data System (ADS)

    Huang, R.; Becker, A. A.; Jones, I. A.

    2012-04-01

    A fibre-reinforced hyperelastic-viscoplastic model using a finite strain Finite Element (FE) analysis is presented to study the expansive growth of cell walls. Based on the connections between biological concepts and plasticity theory, e.g. wall-loosening and plastic yield, wall-stiffening and plastic hardening, the modelling of cell wall growth is established within a framework of anisotropic viscoplasticity aiming to represent the corresponding biology-controlled behaviour of a cell wall. In order to model in vivo growth, special attention is paid to the differences between a living cell and an isolated wall. The proposed hyperelastic-viscoplastic theory provides a unique framework to clarify the interplay between cellulose microfibrils and cell wall matrix and how this interplay regulates sustainable growth in a particular direction while maintaining the mechanical strength of the cell walls by new material deposition. Moreover, the effect of temperature is taken into account. A numerical scheme is suggested and FE case studies are presented and compared with experimental data.

  14. Phenotypic plasticity in cell walls of maize brown midrib mutants is limited by lignin composition

    PubMed Central

    Vermerris, Wilfred; Sherman, Debra M.; McIntyre, Lauren M.

    2010-01-01

    The hydrophobic cell wall polymer lignin is deposited in specialized cells to make them impermeable to water and prevent cell collapse as negative pressure or gravitational force is exerted. The variation in lignin subunit composition that exists among different species, and among different tissues within the same species suggests that lignin subunit composition varies depending on its precise function. In order to gain a better understanding of the relationship between lignin subunit composition and the physico-chemical properties of lignified tissues, detailed analyses were performed of near-isogenic brown midrib2 (bm2), bm4, bm2-bm4, and bm1-bm2-bm4 mutants of maize. This investigation was motivated by the fact that the bm2-bm4 double mutant is substantially shorter, displays drought symptoms even when well watered, and will often not develop reproductive organs, whereas the phenotypes of the individual bm single mutants and double mutant combinations other than bm2-bm4 are only subtly different from the wild-type control. Detailed cell wall compositional analyses revealed midrib-specific reductions in Klason lignin content in the bm2, bm4, and bm2-bm4 mutants relative to the wild-type control, with reductions in both guaiacyl (G)- and syringyl (S)-residues. The cellulose content was not different, but the reduction in lignin content was compensated by an increase in hemicellulosic polysaccharides. Linear discriminant analysis performed on the compositional data indicated that the bm2 and bm4 mutations act independently of each other on common cell wall biosynthetic steps. After quantitative analysis of scanning electron micrographs of midrib sections, the variation in chemical composition of the cell walls was shown to be correlated with the thickness of the sclerenchyma cell walls, but not with xylem vessel surface area. The bm2-bm4 double mutant represents the limit of phenotypic plasticity in cell wall composition, as the bm1-bm2-bm4 and bm2-bm3-bm4 mutants

  15. Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution

    DOE PAGES

    Meddens, Marjolein B. M.; Liu, Sheng; Finnegan, Patrick S.; ...

    2016-01-01

    Here, we have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single moleculemore » super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet.« less

  16. Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution

    PubMed Central

    Meddens, Marjolein B. M.; Liu, Sheng; Finnegan, Patrick S.; Edwards, Thayne L.; James, Conrad D.; Lidke, Keith A.

    2016-01-01

    We have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single molecule super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet. PMID:27375939

  17. Method for producing thin sheets of proton-sensitive CR-39 plastic track detectors

    NASA Technical Reports Server (NTRS)

    Kinoshita, K.

    1980-01-01

    Procedures for fabricating large sheets of CR-39 with uniform chemical reactivity and sensitivity and which retain a clear, smooth surface after prolonged etching were investigated. Very thin sheets for certain Spacelab applications were fabricated.

  18. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates.

    PubMed

    Cao, Qing; Kim, Hoon-sik; Pimparkar, Ninad; Kulkarni, Jaydeep P; Wang, Congjun; Shim, Moonsub; Roy, Kaushik; Alam, Muhammad A; Rogers, John A

    2008-07-24

    The ability to form integrated circuits on flexible sheets of plastic enables attributes (for example conformal and flexible formats and lightweight and shock resistant construction) in electronic devices that are difficult or impossible to achieve with technologies that use semiconductor wafers or glass plates as substrates. Organic small-molecule and polymer-based materials represent the most widely explored types of semiconductors for such flexible circuitry. Although these materials and those that use films or nanostructures of inorganics have promise for certain applications, existing demonstrations of them in circuits on plastic indicate modest performance characteristics that might restrict the application possibilities. Here we report implementations of a comparatively high-performance carbon-based semiconductor consisting of sub-monolayer, random networks of single-walled carbon nanotubes to yield small- to medium-scale integrated digital circuits, composed of up to nearly 100 transistors on plastic substrates. Transistors in these integrated circuits have excellent properties: mobilities as high as 80 cm(2) V(-1) s(-1), subthreshold slopes as low as 140 m V dec(-1), operating voltages less than 5 V together with deterministic control over the threshold voltages, on/off ratios as high as 10(5), switching speeds in the kilohertz range even for coarse (approximately 100-microm) device geometries, and good mechanical flexibility-all with levels of uniformity and reproducibility that enable high-yield fabrication of integrated circuits. Theoretical calculations, in contexts ranging from heterogeneous percolative transport through the networks to compact models for the transistors to circuit level simulations, provide quantitative and predictive understanding of these systems. Taken together, these results suggest that sub-monolayer films of single-walled carbon nanotubes are attractive materials for flexible integrated circuits, with many potential areas of

  19. Process for remediation of plastic waste

    DOEpatents

    Pol, Vilas G [Westmont, IL; Thiyagarajan, Pappannan [Germantown, MD

    2012-04-10

    A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically egg-shaped and spherical-shaped solid carbons. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

  20. 78 FR 50029 - Polyethylene Terephthalate Film, Sheet and Strip From Brazil: Preliminary Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... Film, Sheet and Strip From Brazil: Preliminary Results of Antidumping Duty Administrative Review; 2011...Pont Teijin Films, Mitsubishi Polyester Film, Inc., SKC, Inc., and Toray Plastics (America), Inc... the antidumping duty order on polyethylene terephthalate film, sheet and strip (PET film) from Brazil...

  1. 75 FR 49893 - Polyethylene Terephthalate Film, Sheet, and Strip From the People's Republic of China...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... Film, Sheet, and Strip From the People's Republic of China: Preliminary Results and Preliminary... antidumping duty order on polyethylene terephthalate film, sheet, and strip (``PET film'') from the People's... Teijin Films, Mitsubishi Polyester Film, Inc., SKC, Inc., and Toray Plastics (America), Inc...

  2. Endoscopic ultrasound-guided placement of plastic vs. biflanged metal stents for therapy of walled-off necrosis: a retrospective single-center series.

    PubMed

    Mukai, Shuntaro; Itoi, Takao; Baron, Todd H; Sofuni, Atsushi; Itokawa, Fumihide; Kurihara, Toshio; Tsuchiya, Takayoshi; Ishii, Kentaro; Tsuji, Shujiro; Ikeuchi, Nobuhito; Tanaka, Reina; Umeda, Junko; Tonozuka, Ryosuke; Honjo, Mitsuyoshi; Gotoda, Takuji; Moriyasu, Fuminori; Yasuda, Ichiro

    2015-01-01

    Recently, a novel fully covered and biflanged metal stent (BFMS)dedicated to the drainage of walled-off necrosis(WON) was developed. The aim of this study was to retrospectively evaluate the safety, efficacy, and cost performance of drainage of WON using the novel BFMS compared with a traditional plastic stent. A total of 70 patients with symptomatic WON were treated under endoscopic ultrasound (EUS) guidance. Initial drainage was conducted using the single gateway technique with placement of one or more plastic stents or a single BFMS.If drainage was unsuccessful,direct endoscopic necrosectomy (DEN)was performed. There were no statistically significant differences in rates of technical success, clinical success,and adverse events between plastics stents and BFMS, despite the size of WON in the BFMS group being significantly larger than that in the plastic stent group (105.6 vs. 77.1 mm; P=0.003).The mean procedure times for the first EUS-guided drainage and for re-intervention were significantly shorter in the BFMS group than in the plastic stent group (28.8±7.1 vs. 42.6±14.2, respectively,for drainage, P<0.001; and 34.9±8.5 vs.41.8±7.6, respectively, for re-intervention, P<0.001). There was no statistically significant difference in the total cost between plastic stent and BFMS use in the treatment of WON ($5352vs. $6274; P=0.25). Plastic stents and BFMS were safe and effective for the treatment of WON. In particular,BFMS placement appeared to be preferable for initial EUS-guided drainage and additional reintervention(e.g. DEN) as it reduced the procedure time. Prospective randomized controlled trials are warranted.

  3. 76 FR 47540 - Polyethylene Terephthalate Film, Sheet, and Strip From Taiwan: Preliminary Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ... Film, Sheet, and Strip From Taiwan: Preliminary Results of Antidumping Duty Administrative Review... on polyethylene terephthalate film, sheet, and strip (PET Film) from Taiwan. The [[Page 47541..., Shinkong), and Nan Ya Plastics Corporation, Ltd. (Nan Ya), producers and exporters of PET Film from Taiwan...

  4. 75 FR 81570 - Polyethylene Terephthalate Film, Sheet, and Strip From India: Preliminary Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... Film, Sheet, and Strip From India: Preliminary Results of Antidumping Duty New Shipper Review AGENCY... antidumping duty order on polyethylene terephthalate film, sheet, and strip (PET film) from India in response... Teijin Films, Mitsubishi Polyester Film, Inc., SKC, Inc. and Toray Plastics (America), Inc. (petitioners...

  5. Sacrificial plastic mold with electroplatable base

    DOEpatents

    Domeier, Linda A.; Hruby, Jill M.; Morales, Alfredo M.

    2002-01-01

    A sacrificial plastic mold having an electroplatable backing is provided. One embodiment consists of the infusion of a softened or molten thermoplastic through a porous metal substrate (sheet, screen, mesh or foam) and into the features of a micro-scale molding tool contacting the porous metal substrate. Upon demolding, the porous metal substrate will be embedded within the thermoplastic and will project a plastic structure with features determined by the mold tool. This plastic structure, in turn, provides a sacrificial plastic mold mechanically bonded to the porous metal substrate which provides a conducting support suitable for electroplating either contiguous or non-contiguous metal replicates. After electroplating and lapping, the sacrificial plastic can be dissolved to leave the desired metal structure bonded to the porous metal substrate. Optionally, the electroplated structures may be debonded from the porous substrate by selective dissolution of the porous substrate or a coating thereon.

  6. Castable plastic mold with electroplatable base

    DOEpatents

    Domeier, Linda A.; Morales, Alfredo M.; Gonzales, Marcela G.; Keifer, Patrick M.

    2004-01-20

    A sacrificial plastic mold having an electroplatable backing is provided as are methods of making such a mold via the infusion of a castable liquid formulation through a porous metal substrate (sheet, screen, mesh or foam) and into the features of a micro-scale master mold. Upon casting and demolding, the porous metal substrate is embedded within the cast formulation and projects a plastic structure with features determined by the mold tool. The plastic structure provides a sacrificial plastic mold mechanically bonded to the porous metal substrate, which provides a conducting support suitable for electroplating either contiguous or non-contiguous metal replicates. After electroplating and lapping, the sacrificial plastic can be dissolved, leaving the desired metal structure bonded to the porous metal substrate. Optionally, the electroplated structures may be debonded from the porous substrate by selective dissolution of the porous substrate or a coating thereon.

  7. Sacrificial Plastic Mold With Electroplatable Base

    DOEpatents

    Domeier, Linda A.; Hruby, Jill M.; Morales, Alfredo M.

    2005-08-16

    A sacrificial plastic mold having an electroplatable backing is provided. One embodiment consists of the infusion of a softened or molten thermoplastic through a porous metal substrate (sheet, screen, mesh or foam) and into the features of a micro-scale molding tool contacting the porous metal substrate. Upon demolding, the porous metal substrate will be embedded within the thermoplastic and will project a plastic structure with features determined by the mold tool. This plastic structure, in turn, provides a sacrificial plastic mold mechanically bonded to the porous metal substrate which provides a conducting support suitable for electroplating either contiguous or non-contiguous metal replicates. After electroplating and lapping, the sacrificial plastic can be dissolved to leave the desired metal structure bonded to the porous metal substrate. Optionally, the electroplated structures may be debonded from the porous substrate by selective dissolution of the porous substrate or a coating thereon.

  8. Process for remediation of plastic waste

    DOEpatents

    Pol, Vilas G; Thiyagarajan, Pappannan

    2013-11-12

    A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of about 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically carbon nanotubes having a partially filled core (encapsulated) adjacent to one end of the nanotube. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

  9. 45. WEST TO CIRCA 1900 SHEET METAL SHEAR, THE MACHINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. WEST TO CIRCA 1900 SHEET METAL SHEAR, THE MACHINE USED TO CUT SHEET METAL USED IN WINDMILLS AND WATER TANKS. IN THE BACKGROUND IS THE INTERIOR WEST WALL OF THE FACTORY, ITS SHELVES BEARING WATER PUMPS, PARTS FOR PUMPS AND WATER SUPPLY EQUIPMENT, AND NEW OLD STOCK MERCHANDISE. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE

  10. Effect of the determination method of the material parameters on the accuracy of the hole expansion simulation for cold rolled steel sheet

    NASA Astrophysics Data System (ADS)

    Nakano, Hayato; Hakoyama, Tomoyuki; Kuwabara, Toshihiko

    2017-10-01

    Hole expansion forming of a cold rolled steel sheet is investigated both experimentally and analytically to clarify the effects of material models on the predictive accuracy of finite element analyses (FEA). The multiaxial plastic deformation behavior of a cold rolled steel sheet with a thickness of 1.2 mm was measured using a servo-controlled multiaxial tube expansion testing machine for the range of strain from initial yield to fracture. Tubular specimens were fabricated from the sheet sample by roller bending and laser welding. Many linear stress paths in the first quadrant of stress space were applied to the tubular specimens to measure the contours of plastic work in stress space up to a reference plastic strain of 0.24 along with the directions of plastic strain rates. The anisotropic parameters and exponent of the Yld2000-2d yield function (Barlat et al., 2003) were optimized to approximate the contours of plastic work and the directions of plastic strain rates. The hole expansion forming simulations were performed using the different model identifications based on the Yld2000-2d yield function. It is concluded that the yield function best capturing both the plastic work contours and the directions of plastic strain rates leads to the most accurate predicted FEA.

  11. Chronological framework for the deglaciation of the Lake Michigan lobe of the Laurentide ice sheet from ice-walled lake deposits

    USGS Publications Warehouse

    Curry, B.; Petras, J.

    2011-01-01

    A revised chronological framework for the deglaciation of the Lake Michigan lobe of the south-central Laurentide Ice Sheet is presented based on radiocarbon ages of plant macrofossils archived in the sediments of low-relief ice-walled lakes. We analyze the precision and accuracy of 15 AMS 14C ages of plant macrofossils obtained from a single ice-walled lake deposit. The semi-circular basin is about 0.72km wide and formed of a 4- to 16-m-thick succession of loess and lacustrine sediment inset into till. The assayed material was leaves, buds and stems of Salix herbacea (snowbed willow). The pooled mean of three ages from the basal lag facies was 18 270??50 14C a BP (21 810cal. a BP), an age that approximates the switch from active ice to stagnating conditions. The pooled mean of four ages for the youngest fossil-bearing horizon was 17 770??40 14C a BP (21 180cal. a BP). Material yielding the oldest and youngest ages may be obtained from sediment cores located at any place within the landform. Based on the estimated settling times of overlying barren, rhythmically bedded sand and silt, the lacustrine environment persisted for about 50 more years. At a 67% confidence level, the dated part of the ice-walled lake succession persisted for between 210 and 860cal. a (modal value: 610cal. a). The deglacial age of five moraines or morainal complexes formed by the fluctuating margin of the Lake Michigan lobe have been assessed using this method. There is no overlap of time intervals documenting when ice-walled lakes persisted on these landforms. The rapid readvances of the lobe during deglaciation after the last glacial maximum probably occurred at some point between the periods of ice-walled lake sedimentation. ?? 2011 John Wiley & Sons, Ltd.

  12. Three-dimensional rotating flow of MHD single wall carbon nanotubes over a stretching sheet in presence of thermal radiation

    NASA Astrophysics Data System (ADS)

    Nasir, Saleem; Islam, Saeed; Gul, Taza; Shah, Zahir; Khan, Muhammad Altaf; Khan, Waris; Khan, Aurang Zeb; Khan, Saima

    2018-05-01

    In this article the modeling and computations are exposed to introduce the new idea of MHD three-dimensional rotating flow of nanofluid through a stretching sheet. Single wall carbon nanotubes (SWCNTs) are utilized as a nano-sized materials while water is used as a base liquid. Single-wall carbon nanotubes (SWNTs) parade sole assets due to their rare structure. Such structure has significant optical and electronics features, wonderful strength and elasticity, and high thermal and chemical permanence. The heat exchange phenomena are deliberated subject to thermal radiation and moreover the impact of nanoparticles Brownian motion and thermophoresis are involved in the present investigation. For the nanofluid transport mechanism, we implemented the Xue model (Xue, Phys B Condens Matter 368:302-307, 2005). The governing nonlinear formulation based upon the law of conservation of mass, quantity of motion, thermal field and nanoparticles concentrations is first modeled and then solved by homotopy analysis method (HAM). Moreover, the graphical result has been exposed to investigate that in what manner the velocities, heat and nanomaterial concentration distributions effected through influential parameters. The mathematical facts of skin friction, Nusselt number and Sherwood number are presented through numerical data for SWCNTs.

  13. Morphological plasticity of bacteria—Open questions

    PubMed Central

    Shen, Jie-Pan

    2016-01-01

    Morphological plasticity of bacteria is a cryptic phenomenon, by which bacteria acquire adaptive benefits for coping with changing environments. Some environmental cues were identified to induce morphological plasticity, but the underlying molecular mechanisms remain largely unknown. Physical and chemical factors causing morphological changes in bacteria have been investigated and mostly associated with potential pathways linked to the cell wall synthetic machinery. These include starvation, oxidative stresses, predation effectors, antimicrobial agents, temperature stresses, osmotic shock, and mechanical constraints. In an extreme scenario of morphological plasticity, bacteria can be induced to be shapeshifters when the cell walls are defective or deficient. They follow distinct developmental pathways and transform into assorted morphological variants, and most of them would eventually revert to typical cell morphology. It is suggested that phenotypic heterogeneity might play a functional role in the development of morphological diversity and/or plasticity within an isogenic population. Accordingly, phenotypic heterogeneity and inherited morphological plasticity are found to be survival strategies adopted by bacteria in response to environmental stresses. Here, microfluidic and nanofabrication technology is considered to provide versatile solutions to induce morphological plasticity, sort and isolate morphological variants, and perform single-cell analysis including transcriptional and epigenetic profiling. Questions such as how morphogenesis network is modulated or rewired (if epigenetic controls of cell morphogenesis apply) to induce bacterial morphological plasticity could be resolved with the aid of micro-nanofluidic platforms and optimization algorithms, such as feedback system control. PMID:27375812

  14. Mechanical recycling of continuous fiber-reinforced thermoplastic sheets

    NASA Astrophysics Data System (ADS)

    Moritzer, Elmar; Heiderich, Gilmar

    2016-03-01

    This contribution examines possible material recycling of offcuts generated during the production of continuous-fiber-reinforced composite sheets. These sheets consist of a polyamide 6 matrix and glass fiber fabric. In the initial step, the offcut is shredded to obtain particles; following that, the particles are processed in a twin-screw process to produce fiber-reinforced plastic pellets with varying fiber contents. These pellets are intended for use in injection molding processes as a substitution for new raw materials. This investigation centers on the mechanical properties which can be achieved with the recycled material after both the twin-screw process and injection molding.

  15. Two distinct β-sheet structures in Italian-mutant amyloid-beta fibrils: a potential link to different clinical phenotypes.

    PubMed

    Hubin, Ellen; Deroo, Stéphanie; Schierle, Gabriele Kaminksi; Kaminski, Clemens; Serpell, Louise; Subramaniam, Vinod; van Nuland, Nico; Broersen, Kerensa; Raussens, Vincent; Sarroukh, Rabia

    2015-12-01

    Most Alzheimer's disease (AD) cases are late-onset and characterized by the aggregation and deposition of the amyloid-beta (Aβ) peptide in extracellular plaques in the brain. However, a few rare and hereditary Aβ mutations, such as the Italian Glu22-to-Lys (E22K) mutation, guarantee the development of early-onset familial AD. This type of AD is associated with a younger age at disease onset, increased β-amyloid accumulation, and Aβ deposition in cerebral blood vessel walls, giving rise to cerebral amyloid angiopathy (CAA). It remains largely unknown how the Italian mutation results in the clinical phenotype that is characteristic of CAA. We therefore investigated how this single point mutation may affect the aggregation of Aβ1-42 in vitro and structurally characterized the resulting fibrils using a biophysical approach. This paper reports that wild-type and Italian-mutant Aβ both form fibrils characterized by the cross-β architecture, but with distinct β-sheet organizations, resulting in differences in thioflavin T fluorescence and solvent accessibility. E22K Aβ1-42 oligomers and fibrils both display an antiparallel β-sheet structure, in comparison with the parallel β-sheet structure of wild-type fibrils, characteristic of most amyloid fibrils described in the literature. Moreover, we demonstrate structural plasticity for Italian-mutant Aβ fibrils in a pH-dependent manner, in terms of their underlying β-sheet arrangement. These findings are of interest in the ongoing debate that (1) antiparallel β-sheet structure might represent a signature for toxicity, which could explain the higher toxicity reported for the Italian mutant, and that (2) fibril polymorphism might underlie differences in disease pathology and clinical manifestation.

  16. Applications of Computer Simulation Methods in Plastic Forming Technologies for Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, S. H.; Zheng, W. T.; Shang, Y. L.; Wu, X.; Palumbo, G.; Tricarico, L.

    2007-05-01

    Applications of computer simulation methods in plastic forming of magnesium alloy parts are discussed. As magnesium alloys possess very poor plastic formability at room temperature, various methods have been tried to improve the formability, for example, suitable rolling process and annealing procedures should be found to produce qualified magnesium alloy sheets, which have the reduced anisotropy and improved formability. The blank can be heated to a warm temperature or a hot temperature; a suitable temperature field is designed, tools should be heated or the punch should be cooled; suitable deformation speed should be found to ensure suitable strain rate range. Damage theory considering non-isothermal forming is established. Various modeling methods have been tried to consider above situations. The following situations for modeling the forming process of magnesium alloy sheets and tubes are dealt with: (1) modeling for predicting wrinkling and anisotropy of sheet warm forming; (2) damage theory used for predicting ruptures in sheet warm forming; (3) modeling for optimizing of blank shape and dimensions for sheet warm forming; (4) modeling in non-steady-state creep in hot metal gas forming of AZ31 tubes.

  17. 49 CFR 192.123 - Design limitations for plastic pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... formula under § 192.121 is determined. (ii) For reinforced thermosetting plastic pipe, 150 °F (66 °C). (c...) The wall thickness for reinforced thermosetting plastic pipe may not be less than that listed in the...

  18. Stamping of Thin-Walled Structural Components with Magnesium Alloy AZ31 Sheets

    NASA Astrophysics Data System (ADS)

    Chen, Fuh-Kuo; Chang, Chih-Kun

    2005-08-01

    In the present study, the stamping process for manufacturing cell phone cases with magnesium alloy AZ31 sheets was studied using both the experimental approach and the finite element analysis. In order to determine the proper forming temperature and set up a fracture criterion, tensile tests and forming limit tests were first conducted to obtain the mechanical behaviors of AZ31 sheets at various elevated temperatures. The mechanical properties of Z31 sheets obtained from the experiments were then adopted in the finite element analysis to investigate the effects of the process parameters on the formability of the stamping process of cell phone cases. The finite element simulation results revealed that both the fracture and wrinkle defects could not be eliminated at the same time by adjusting blank-holder force or blank size. A drawbead design was then performed using the finite element simulations to determine the size and the location of drawbead required to suppress the wrinkle defect. An optimum stamping process, including die geometry, forming temperature, and blank dimension, was then determined for manufacturing the cell phone cases. The finite element analysis was validated by the good agreement between the simulation results and the experimental data. It confirms that the cell phone cases can be produced with magnesium alloy AZ31 sheet by the stamping process at elevated temperatures.

  19. Altered Cell Wall Plasticity Can Restrict Plant Growth under Ammonium Nutrition.

    PubMed

    Podgórska, Anna; Burian, Maria; Gieczewska, Katarzyna; Ostaszewska-Bugajska, Monika; Zebrowski, Jacek; Solecka, Danuta; Szal, Bożena

    2017-01-01

    Plants mainly utilize inorganic forms of nitrogen (N), such as nitrate (NO 3 - ) and ammonium (NH 4 + ). However, the composition of the N source is important, because excess of NH 4 + promotes morphological disorders. Plants cultured on NH 4 + as the sole N source exhibit serious growth inhibition, commonly referred to as "ammonium toxicity syndrome." NH 4 + -mediated suppression of growth may be attributable to both repression of cell elongation and reduction of cell division. The precondition for cell enlargement is the expansion of the cell wall, which requires the loosening of the cell wall polymers. Therefore, to understand how NH 4 + nutrition may trigger growth retardation in plants, properties of their cell walls were analyzed. We found that Arabidopsis thaliana using NH 4 + as the sole N source has smaller cells with relatively thicker cell walls. Moreover, cellulose, which is the main load-bearing polysaccharide revealed a denser assembly of microfibrils. Consequently, the leaf blade tissue showed elevated tensile strength and indicated higher cell wall stiffness. These changes might be related to changes in polysaccharide and ion content of cell walls. Further, NH 4 + toxicity was associated with altered activities of cell wall modifying proteins. The lower activity and/or expression of pectin hydrolyzing enzymes and expansins might limit cell wall expansion. Additionally, the higher activity of cell wall peroxidases can lead to higher cross-linking of cell wall polymers. Overall, the NH 4 + -mediated inhibition of growth is related to a more rigid cell wall structure, which limits expansion of cells. The changes in cell wall composition were also indicated by decreased expression of Feronia , a receptor-like kinase involved in the control of cell wall extension.

  20. Behavior of Steel-Sheathed Shear Walls Subjected to Seismic and Fire Loads.

    PubMed

    Hoehler, Matthew S; Smith, Christopher M; Hutchinson, Tara C; Wang, Xiang; Meacham, Brian J; Kamath, Praveen

    2017-07-01

    A series of tests was conducted on six 2.7 m × 3.7 m shear wall specimens consisting of cold-formed steel framing sheathed on one side with sheet steel adhered to gypsum board and on the opposite side with plain gypsum board. The specimens were subjected to various sequences of simulated seismic shear deformation and fire exposure to study the influence of multi-hazard interactions on the lateral load resistance of the walls. The test program was designed to complement a parallel effort at the University of California, San Diego to investigate a six-story building subjected to earthquakes and fires. The test results reported here indicate that the fire exposure caused a shift in the failure mode of the walls from local buckling of the sheet steel in cases without fire exposure, to global buckling of the sheet steel with an accompanying 35 % reduction in lateral load capacity after the wall had been exposed to fire. This behavior appears to be predictable, which is encouraging from the standpoint of residual lateral load capacity under these severe multi-hazard actions.

  1. PRODUCTION OF SHEET FROM PARTICULATE MATERIAL

    DOEpatents

    Blainey, A.

    1959-05-12

    A process is presented for forming coherent sheet material from particulate material such as granular or powdered metal, granular or powdered oxide, slurries, pastes, and plastic mixes which cohere under pressure. The primary object is to avoid the use of expensive and/ or short lived pressing tools, that is, dies and specially profiled rolls, and so to reduce the cost of the product and to prcvide in a simple manner for the making of the product in a variety of shapes or sizes. The sheet material is formed when the particulate material is laterally confined in a boundary material deformable in all lateral directions under axial pressure and then axially compressing the layer of particulate material together with the boundary material.

  2. Altered Cell Wall Plasticity Can Restrict Plant Growth under Ammonium Nutrition

    PubMed Central

    Podgórska, Anna; Burian, Maria; Gieczewska, Katarzyna; Ostaszewska-Bugajska, Monika; Zebrowski, Jacek; Solecka, Danuta; Szal, Bożena

    2017-01-01

    Plants mainly utilize inorganic forms of nitrogen (N), such as nitrate (NO3–) and ammonium (NH4+). However, the composition of the N source is important, because excess of NH4+ promotes morphological disorders. Plants cultured on NH4+ as the sole N source exhibit serious growth inhibition, commonly referred to as “ammonium toxicity syndrome.” NH4+-mediated suppression of growth may be attributable to both repression of cell elongation and reduction of cell division. The precondition for cell enlargement is the expansion of the cell wall, which requires the loosening of the cell wall polymers. Therefore, to understand how NH4+ nutrition may trigger growth retardation in plants, properties of their cell walls were analyzed. We found that Arabidopsis thaliana using NH4+ as the sole N source has smaller cells with relatively thicker cell walls. Moreover, cellulose, which is the main load-bearing polysaccharide revealed a denser assembly of microfibrils. Consequently, the leaf blade tissue showed elevated tensile strength and indicated higher cell wall stiffness. These changes might be related to changes in polysaccharide and ion content of cell walls. Further, NH4+ toxicity was associated with altered activities of cell wall modifying proteins. The lower activity and/or expression of pectin hydrolyzing enzymes and expansins might limit cell wall expansion. Additionally, the higher activity of cell wall peroxidases can lead to higher cross-linking of cell wall polymers. Overall, the NH4+-mediated inhibition of growth is related to a more rigid cell wall structure, which limits expansion of cells. The changes in cell wall composition were also indicated by decreased expression of Feronia, a receptor-like kinase involved in the control of cell wall extension. PMID:28848567

  3. Functionalized graphene sheets for polymer nanocomposites.

    PubMed

    Ramanathan, T; Abdala, A A; Stankovich, S; Dikin, D A; Herrera-Alonso, M; Piner, R D; Adamson, D H; Schniepp, H C; Chen, X; Ruoff, R S; Nguyen, S T; Aksay, I A; Prud'Homme, R K; Brinson, L C

    2008-06-01

    Polymer-based composites were heralded in the 1960s as a new paradigm for materials. By dispersing strong, highly stiff fibres in a polymer matrix, high-performance lightweight composites could be developed and tailored to individual applications. Today we stand at a similar threshold in the realm of polymer nanocomposites with the promise of strong, durable, multifunctional materials with low nanofiller content. However, the cost of nanoparticles, their availability and the challenges that remain to achieve good dispersion pose significant obstacles to these goals. Here, we report the creation of polymer nanocomposites with functionalized graphene sheets, which overcome these obstacles and provide superb polymer-particle interactions. An unprecedented shift in glass transition temperature of over 40 degrees C is obtained for poly(acrylonitrile) at 1 wt% functionalized graphene sheet, and with only 0.05 wt% functionalized graphene sheet in poly(methyl methacrylate) there is an improvement of nearly 30 degrees C. Modulus, ultimate strength and thermal stability follow a similar trend, with values for functionalized graphene sheet- poly(methyl methacrylate) rivaling those for single-walled carbon nanotube-poly(methyl methacrylate) composites.

  4. Synthesis of biodegradable plastic from tapioca with N-Isopropylacrylamid and chitosan using glycerol as plasticizer

    NASA Astrophysics Data System (ADS)

    Syaubari; Safwani, S.; Riza, M.

    2018-04-01

    One of natural polymers that can be used as raw material in the manufacture of biodegradable plastic is tapioca and chitosan. The addition of other compounds such as glycerol as plasticizer is to improve the characteristics of the plastic that already produced. N- Isopropylacrylamid (NIPAm) is an organic compound that can be synthesized into a polymer or polymer grafting which also biodegradable too. This research aims tostudy the synthesis of biodegradable plastics from tapioca with the addition of chitosan, NIPAm, poly(NIPAm) and analyze the characteristics of biodegradable plastics that already produced. This research was done in three stages, there are (1) polymerization NIPAm, (2) the grafting of chitosan-poly NIPAm and (3) the synthesis of biodegradable plastics from starch mixture with variation of addition chitosan, NIPAm, poly(NIPAm), chitosan-graft-poly(NIPAm) and also variations of glycerol as plasticizer. The results of this research is a thin sheet of plastic which is will get analyzed for the characteristics of functional groups, mechanical, morphological and its biodegradability. FTIR spectra showed the grafting process with the new group formation of CO single-bond at 850 cm-1. Plastic with the addition of NIPAm and 1 ml glycerol has the highest tensile strength value about 31.1 MPa. Plastic with poly(NIPAm) and 4 ml glycerol produces the highest elongation value about 153.72%. Plastic with Chitosan-graft-poly(NIPAm) with 1 ml glycerol has the longest biodegradation because of the small mass-loss for six weeks which is about 6.6%.

  5. Development of a new surgical sheet containing both silk fibroin and thermoplastic polyurethane for cardiovascular surgery.

    PubMed

    Shimada, Ryo; Konishi, Hayato; Ozawa, Hideki; Katsumata, Takahiro; Tanaka, Ryou; Nakazawa, Yasumoto; Nemoto, Shintaro

    2018-05-01

    The surgical sheets that are currently used for congenital cardiovascular surgery have several drawbacks, including material deterioration, calcification, and pseudo-intimal proliferation resulting in hemodynamic disturbance. The aim of this study was to evaluate a newly developed sheet made from a combination of silk fibroin (SF) and a synthetic polymer, thermoplastic polyurethane (TPU), for surgical use. The hybrid SF/TPU sheet was a non-woven fabric with nanofibers that was made using the electrospinning method. The mechanical properties of the SF/TPU sheet were characterized. To determine its biocompatibility, part of the wall of the canine descending aorta was replaced with a SF/TPU sheet as a patch. The patches were removed after 3 months and a histological examination was performed. The flexibility, water permeability, and suture retention strength of the SF/TPU sheet were excellent and equivalent to those of existing sheets. The SF/TPU sheet had excellent handling properties and fit well into the vascular wall without needle hole bleeding. The histological examination revealed that the intimal tissue was restored well over the intraluminal surface of the explanted SF/TPU sheet, the absence of calcium deposition, and minimal inflammatory reaction, without signs of degradation. The SF/TPU sheet had excellent mechanical properties and tissue biocompatibility. These favorable features and possible biodegradability of the SF portion warrant a long-term follow-up study.

  6. Correlating elastic and plastic deformation with magnetic permeability values

    NASA Astrophysics Data System (ADS)

    Papadopoulou, S.

    2017-12-01

    This paper investigates the utilization of magnetic permeability method in determining elastic and plastic deformation state of ferromagnetic steels. The results have shown a strong degradation of the magnetic values on plastically region due to the irreversible movements of the magnetic domain walls.

  7. 30. HISTORIC PHOTOGRAPH SHOWING WALL STREET GOLD MILL FROM WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. HISTORIC PHOTOGRAPH SHOWING WALL STREET GOLD MILL FROM WEST TO EAST, PRIOR TO BEING COVERED WITH SHEET METAL IN 1966. PHOTOCOPY FROM A COLOR PRINT, JOSHUA TREE NATIONAL MONUMENT COLLECTION, "FACT FILE, PHOTOGRAPH FILE." - Wall Street Gold Mill, Twentynine Palms, San Bernardino County, CA

  8. Core Characteristics Deterioration due to Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Kaido, Chikara; Arai, Satoshi

    This paper discusses the effect of plastic deformation at core manufacturing on the characteristics of cores where non-oriented electrical steel sheets are used as core material. Exciting field and iron loss increase proportionally to plastic deformation in the case of rP<10, where rP is a ratio of plastic deformation to that at yield point. In this region, anomalous eddy currents increase because plastic deformations of crystalline grains are distributed and then the flux distribution is induced. In the case of rP>20, the deterioration tend to saturate, and the increases in magnetic field and iron loss are 1000 to 1500A/m and 2 to 4W/kg. They are related to grain size, and high grade with larger grain may have lager field increase and smaller iron loss increase. Anomalous eddy current losses scarcely increase in this region. In actual motors, the plastic deformation affects iron loss increase although exciting current increases a little.

  9. Laser Indirect Shock Welding of Fine Wire to Metal Sheet

    PubMed Central

    Wang, Xiao; Huang, Tao; Luo, Yapeng; Liu, Huixia

    2017-01-01

    The purpose of this paper is to present an advanced method for welding fine wire to metal sheet, namely laser indirect shock welding (LISW). This process uses silica gel as driver sheet to accelerate the metal sheet toward the wire to obtain metallurgical bonding. A series of experiments were implemented to validate the welding ability of Al sheet/Cu wire and Al sheet/Ag wire. It was found that the use of a driver sheet can maintain high surface quality of the metal sheet. With the increase of laser pulse energy, the bonding area of the sheet/wire increased and the welding interfaces were nearly flat. Energy dispersive spectroscopy (EDS) results show that the intermetallic phases were absent and a short element diffusion layer which would limit the formation of the intermetallic phases emerging at the welding interface. A tensile shear test was used to measure the mechanical strength of the welding joints. The influence of laser pulse energy on the tensile failure modes was investigated, and two failure modes, including interfacial failure and failure through the wire, were observed. The nanoindentation test results indicate that as the distance to the welding interface decreased, the microhardness increased due to the plastic deformation becoming more violent. PMID:28895900

  10. Laser Indirect Shock Welding of Fine Wire to Metal Sheet.

    PubMed

    Wang, Xiao; Huang, Tao; Luo, Yapeng; Liu, Huixia

    2017-09-12

    The purpose of this paper is to present an advanced method for welding fine wire to metal sheet, namely laser indirect shock welding (LISW). This process uses silica gel as driver sheet to accelerate the metal sheet toward the wire to obtain metallurgical bonding. A series of experiments were implemented to validate the welding ability of Al sheet/Cu wire and Al sheet/Ag wire. It was found that the use of a driver sheet can maintain high surface quality of the metal sheet. With the increase of laser pulse energy, the bonding area of the sheet/wire increased and the welding interfaces were nearly flat. Energy dispersive spectroscopy (EDS) results show that the intermetallic phases were absent and a short element diffusion layer which would limit the formation of the intermetallic phases emerging at the welding interface. A tensile shear test was used to measure the mechanical strength of the welding joints. The influence of laser pulse energy on the tensile failure modes was investigated, and two failure modes, including interfacial failure and failure through the wire, were observed. The nanoindentation test results indicate that as the distance to the welding interface decreased, the microhardness increased due to the plastic deformation becoming more violent.

  11. Building under Cold Climates and on Permafrost. Collection of Papers from a US-Soviet Joint Seminar, Leningrad USSR.

    DTIC Science & Technology

    1980-12-01

    The panels are insulated with PSBS polyurethane foam, FRP-I. and mineral wool . In recent years, several dozen such buildings have been constructed in...vulnerable points in the walls. 37 Different plastic foams and also mineral wool sheets with synthetic binding are used in the USSR for insulating the...middle layer of the panels. Mineral wool sheets are used in the wall panels of buildings having high fire safety requirements (children’s and medical

  12. Emittance Measurements for a Thin Liquid Sheet Flow

    NASA Technical Reports Server (NTRS)

    Englehart, Amy N.; McConley, Marc W.; Chubb, Donald L.

    1996-01-01

    The Liquid Sheet Radiator (LSR) is an external flow radiator that uses a triangular-shaped flowing liquid sheet as the radiating surface. It has potentially much lower mass than solid wall radiators such as pumped loop and heat pipe radiators, along with being nearly immune to micrometeoroid penetration. The LSR has an added advantage of simplicity. Surface tension causes a thin (100-300 microns) liquid sheet to coalesce to a point, causing the sheet flow to have a triangular shape. Such a triangular sheet is desirable since it allows for simple collection of the flow at a single point. A major problem for all external flow radiators is the requirement that the working fluid be of very low (approx. 10(sup -8) torr) vapor pressure to keep evaporative losses low. As a result, working fluids are limited to certain oils (such as used in diffusion pumps) for low temperatures (300-400 K) and liquid metals for higher temperatures. Previous research on the LSR has been directed at understanding the fluid mechanics of thin sheet flows and assessing the stability of such flows, especially with regard to the formation of holes in the sheet. Taylor studied extensively the stability of thin liquid sheets both theoretically and experimentally. He showed that thin sheets in a vacuum are stable. The latest research has been directed at determining the emittance of thin sheet flows. The emittance was calculated from spectral transmittance data for the Dow Corning 705 silicone oil. By experimentally setting up a sheet flow, the emittance was also determined as a function of measurable quantities, most importantly, the temperature drop between the top of the sheet and the temperature at the coalescence point of the sheet. Temperature fluctuations upstream of the liquid sheet were a potential problem in the analysis and were investigated.

  13. Key technologies for manufacturing and processing sheet materials: A global perspective

    NASA Astrophysics Data System (ADS)

    Demeri, Mahmoud Y.

    2001-02-01

    Modern industrial technologies continue to seek new materials and processes to produce products that meet design and functional requirements. Sheet materials made from ferrous and non-ferrous metals, laminates, composites, and reinforced plastics constitute a large percentage of today’s products, components, and systems. Major manufacturers of sheet products include automotive, aerospace, appliance, and food-packaging industries. The Second Global Symposium on Innovations in Materials Processing & Manufacturing: Sheet Materials is organized to provide a forum for presenting advances in sheet processing and manufacturing by worldwide researchers and engineers from industrial, research, and academic centers. The symposium, sponsored by the TMS Materials Processing & Manufacturing Division (MPMD), was planned for the 2001 TMS Annual Meeting, New Orleans, Louisiana, February 11 15, 2001. This article is a review of key papers submitted for publication in the concurrent volume. The selected papers present significant developments in the rapidly expanding areas of advanced sheet materials, innovative forming methods, industrial applications, primary and secondary processing, composite processing, and numerical modeling of manufacturing processes.

  14. A Collaborative Design Curriculum for Reviving Sheet Metal Handicraft

    ERIC Educational Resources Information Center

    Chan, Patrick K. C.

    2015-01-01

    Galvanised sheet metal was a popular and important material for producing handmade home utensils in Hong Kong from the 1930s onwards. It was gradually replaced by new materials like stainless steel and plastic because similar goods made with these are cheaper, more standardised, more durable and of much better quality. The handicrafts behind sheet…

  15. Real-time in vivo rectal wall dosimetry using plastic scintillation detectors for patients with prostate cancer

    PubMed Central

    Wootton, Landon; Kudchadker, Rajat; Lee, Andrew; Beddar, Sam

    2014-01-01

    We designed and constructed an in vivo dosimetry system using plastic scintillation detectors (PSDs) to monitor dose to the rectal wall in patients undergoing intensity-modulated radiation therapy for prostate cancer. Five patients were enrolled in an Institutional Review Board–approved protocol for twice weekly in vivo dose monitoring with our system, resulting in a total of 142 in vivo dose measurements. PSDs were attached to the surface of endorectal balloons used for prostate immobilization to place the PSDs in contact with the rectal wall. Absorbed dose was measured in real time and the total measured dose was compared with the dose calculated by the treatment planning system on the daily CT image dataset. The mean difference between measured and calculated doses for the entire patient population was −0.4% (standard deviation 2.8%). The mean difference between daily measured and calculated doses for each patient ranged from −3.3% to 3.3% (standard deviation ranged from 5.6% to 7.1% for 4 patients and was 14.0% for the last, for whom optimal positioning of the detector was difficult owing to the patient’s large size). Patients tolerated the detectors well and the treatment workflow was not compromised. Overall, PSDs performed well as in vivo dosimeters, providing excellent accuracy, real-time measurement, and reusability. PMID:24434775

  16. Real-time in vivo rectal wall dosimetry using plastic scintillation detectors for patients with prostate cancer

    NASA Astrophysics Data System (ADS)

    Wootton, Landon; Kudchadker, Rajat; Lee, Andrew; Beddar, Sam

    2014-02-01

    We designed and constructed an in vivo dosimetry system using plastic scintillation detectors (PSDs) to monitor dose to the rectal wall in patients undergoing intensity-modulated radiation therapy for prostate cancer. Five patients were enrolled in an Institutional Review Board-approved protocol for twice weekly in vivo dose monitoring with our system, resulting in a total of 142 in vivo dose measurements. PSDs were attached to the surface of endorectal balloons used for prostate immobilization to place the PSDs in contact with the rectal wall. Absorbed dose was measured in real time and the total measured dose was compared with the dose calculated by the treatment planning system on the daily computed tomographic image dataset. The mean difference between measured and calculated doses for the entire patient population was -0.4% (standard deviation 2.8%). The mean difference between daily measured and calculated doses for each patient ranged from -3.3% to 3.3% (standard deviation ranged from 5.6% to 7.1% for four patients and was 14.0% for the last, for whom optimal positioning of the detector was difficult owing to the patient's large size). Patients tolerated the detectors well and the treatment workflow was not compromised. Overall, PSDs performed well as in vivo dosimeters, providing excellent accuracy, real-time measurement and reusability.

  17. Microstructural investigations of the trimmed edge of DP980 steel sheets

    NASA Astrophysics Data System (ADS)

    Bhattacharya, S.; Green, D. E.; Sohmshetty, R.; Alpas, A. T.

    2017-10-01

    In order to reduce vehicle weight while maintaining crashworthiness, advanced high strength steels (AHSSs), such as DP980, are extensively used for manufacturing automotive body components. During trimming operations, the high tensile strength of DP980 sheets tends to cause damage of the trim edge of D2 die inserts, which result in deterioration of the edge quality. The objective of this work is to study the damage microstructures at the trimmed edge of DP980 steel sheets as a function of the number of trimming cycles. A mechanical press equipped with AISI D2 tool steel inserts was used to continuously trim 1.4 mm thick sheets of DP980 at a rate of 30 strokes/min. Cross-sectional SEM images of the trimmed edges revealed that the sheared edge quality of the DP980 sheets decreased, indicated by an increase in the burr width, with an increase in the number of trims from 40,000 to 70,000. Plastic strains were estimated using the displacements of the martensite plates within plastic flow fields of ferrite. Site-specific cross-sectional TEM samples, excised from the trimmed edge using the in-situ `lift-out' technique by focused ion-beam (FIB)-milling, revealed cracking at the ferrite/martensite interfaces after 70,000 cycles indicating an increase in the depth of deformation zone possibly due to trimming with a chipped and blunted die edge.

  18. 14. VIEW OF WEST WALL OF CLEAN ROOM (102) SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF WEST WALL OF CLEAN ROOM (102) SHOWING VIEWING WINDOWS IN WEST FALSE PARTION WALL, WEST WALL OF CLEAN ROOM (102), AND ROLLS OF PLASTIC WRAP FOR COVERING CLEANED FAIRING ASSEMBLY - Vandenberg Air Force Base, Space Launch Complex 3, Vehicle Support Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  19. Vacuum forming of thermoplastic sheet results in low-cost investment casting patterns

    NASA Technical Reports Server (NTRS)

    Clarke, A. E., Jr.

    1964-01-01

    Vacuum forming of a sheet of thermoplastic material around a mandrel conforming to the shape of the finished object provides a pattern for an investment mold. The thickness of the metal part is determined by the thickness of the plastic pattern.

  20. Inert-gas welding and brazing enclosure fabricated from sheet plastic

    NASA Technical Reports Server (NTRS)

    Wisner, J. P.

    1965-01-01

    Custom-fabricated plastic bag maintains an inert-gas atmosphere for welding and brazing certain metals. The bag fits over part of the workpieces and the welding and brazing tools. It is also used for metal brazing and fusion plating which require an inert-gas atmosphere.

  1. An Approximate Solution to the Plastic Indentation of Circular Sandwich Panels

    NASA Astrophysics Data System (ADS)

    Xie, Z.

    2018-05-01

    The plastic indentation response of circular sandwich panels loaded by the flat end of a cylinder is investigated employing a velocity field model. Using the principles of virtual velocities and minimum work, an expression for the indenter load in relation to the indenter displacement and displacement field of the deformed face sheet is derived. The analytical solutions obtained are in good agreement with those found by simulations using the ABAQUS code. The radial tensile strain of the deformed face sheet and the ratio of energy absorption rate of the core to that of the face sheet are discussed.

  2. Crystal plasticity modelling of shear band deformation and its effect on the formability of Mg-3Al-1Zn sheets

    NASA Astrophysics Data System (ADS)

    Chen, Shuai-Feng; Song, Hong-Wu; Zhang, Shi-Hong

    2017-09-01

    Shear bands is a kind of typical microstructure in magnesium alloy which has drawn much attention during recent years. The formation of shear bands during the isothermal differential speed rolling of Mg-3Al-1Zn sheets is analysed by experimental methods. In addition, results of Erichsen and tensile tests indicate that the shear bands have an obvious effect on the anisotropic fracture behaviour and formability of magnesium alloy. A represent volume element (RVE) method combined with crystal plasticity model is established to investigate the effect of shear bands on the anisotropic fracture behaviours systematically by considering the grain size, texture, width, and tilted angle. The simulation results disclose the above factors can induce discontinuous strain and stress between the shear band regions (SBRs) and non-shear band regions (NSBRs), but the grain size and tilted angle have much bigger effect than that of texture and width, leading to the fracture at the interface SBR and NSBR.

  3. The rarity of Dark Matter Halos in medium-sized walls of the cosmic web

    NASA Astrophysics Data System (ADS)

    Goh, Tze; Primack, Joel R.; Lee, Christoph; Aragon-Calvo, Miguel A.; Behroozi, Peter

    2017-01-01

    In 2014, Marshall McCall mapped out our Local Sheet, the cosmic wall containing the Milk Way and Andromeda galaxies. We use the large new Bolshoi-Planck cosmological simulation to investigate how rare our type of Local Sheet is, with 2 nearby halos like those of Milky Way and Andromeda. The conclusion of our investigation is that the occurrence of a pair of galaxies the size of Milky Way and Andromeda near the center of a wall 8 mpc in diameter, with the pair of galaxies within 0.7 mpc/h of each other, is very rare : it makes up only 0.05% of all walls in the simulation.

  4. A new solid-phase extraction disk based on a sheet of single-walled carbon nanotubes.

    PubMed

    Niu, Hong Yun; Cai, Ya Qi; Shi, Ya Li; Wei, Fu Sheng; Liu, Jie Min; Jiang, Gui Bin

    2008-11-01

    A new kind of solid-phase extraction disk based on a sheet of single-walled carbon nanotubes (SWCNTs) is developed in this study. The properties of such disks are tested, and different disks showed satisfactory reproducibility. One liter of aqueous solution can pass through the disk within 10-100 min while still allowing good recoveries. Two disks (DD-disk) can be stacked to enrich phthalate esters, bisphenol A (BPA), 4-n-nonylphenol (4-NP), 4-tert-octylphenol (4-OP) and chlorophenols from various volumes of solution. The results show that SWCNT disks have high extraction ability for all analytes. The SWCNT disk can extract polar chlorophenols more efficiently than a C(18) disk from water solution. Unlike the activated carbon disk, analytes adsorbed by the new disks can be eluted completely with 8-15 mL of methanol or acetonitrile. Finally, the DD-disk system is used to pretreat 1000-mL real-world water samples spiked with BPA, 4-OP and 4-NP. Detection limits of 7, 25, and 38 ng L(-1) for BPA, 4-OP, and 4-NP, respectively, were achieved under optimized conditions. The advantages of this new disk include its strong adsorption ability, its high flow rate and its easy preparation.

  5. Porous honeycomb structures formed from interconnected MnO2 sheets on CNT-coated substrates for flexible all-solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Ko, Wen-Yin; Chen, You-Feng; Lu, Ke-Ming; Lin, Kuan-Jiuh

    2016-01-01

    The use of lightweight and easily-fabricated MnO2/carbon nanotube (CNT)-based flexible networks as binder-free electrodes and a polyvinyl alcohol/H2SO4 electrolyte for the formation of stretchable solid-state supercapacitors was examined. The active electrodes were fabricated from 3D honeycomb porous MnO2 assembled from cross-walled and interconnected sheet-architectural MnO2 on CNT-based plastic substrates (denoted as honeycomb MnO2/CNT textiles).These substrates were fabricated through a simple two-step procedure involving the coating of multi-walled carbon nanotubes (MWCNTs) onto commercial textiles by a dipping-drying process and subsequent electrodeposition of the interconnected MnO2 sheets onto the MWCNT-coated textile. With such unique MnO2 architectures integrated onto CNT flexible films, good performance was achieved with a specific capacitance of 324 F/g at 0.5 A/g. A maximum energy density of 7.2 Wh/kg and a power density as high as 3.3 kW/kg were exhibited by the honeycomb MnO2/CNT network device, which is comparable to the performance of other carbon-based and metal oxide/carbon-based solid-state supercapacitor devices. Specifically, the long-term cycling stability of this material is excellent, with almost no loss of its initial capacitance and good Coulombic efficiency of 82% after 5000 cycles. These impressive results identify these materials as a promising candidate for use in environmentally friendly, low-cost, and high-performance flexible energy-storage devices.

  6. Porous honeycomb structures formed from interconnected MnO2 sheets on CNT-coated substrates for flexible all-solid-state supercapacitors

    PubMed Central

    Ko, Wen-Yin; Chen, You-Feng; Lu, Ke-Ming; Lin, Kuan-Jiuh

    2016-01-01

    The use of lightweight and easily-fabricated MnO2/carbon nanotube (CNT)-based flexible networks as binder-free electrodes and a polyvinyl alcohol/H2SO4 electrolyte for the formation of stretchable solid-state supercapacitors was examined. The active electrodes were fabricated from 3D honeycomb porous MnO2 assembled from cross-walled and interconnected sheet-architectural MnO2 on CNT-based plastic substrates (denoted as honeycomb MnO2/CNT textiles).These substrates were fabricated through a simple two-step procedure involving the coating of multi-walled carbon nanotubes (MWCNTs) onto commercial textiles by a dipping-drying process and subsequent electrodeposition of the interconnected MnO2 sheets onto the MWCNT-coated textile. With such unique MnO2 architectures integrated onto CNT flexible films, good performance was achieved with a specific capacitance of 324 F/g at 0.5 A/g. A maximum energy density of 7.2 Wh/kg and a power density as high as 3.3 kW/kg were exhibited by the honeycomb MnO2/CNT network device, which is comparable to the performance of other carbon-based and metal oxide/carbon-based solid-state supercapacitor devices. Specifically, the long-term cycling stability of this material is excellent, with almost no loss of its initial capacitance and good Coulombic efficiency of 82% after 5000 cycles. These impressive results identify these materials as a promising candidate for use in environmentally friendly, low-cost, and high-performance flexible energy-storage devices. PMID:26726724

  7. Effect of Gibberellic Acid on the Plasticity and Elasticity of Avena Stem Segments 1

    PubMed Central

    Adams, Paul A.; Montague, Michael J.; Tepfer, Mark; Rayle, David L.; Ikuma, Hiroshi; Kaufman, Peter B.

    1975-01-01

    Extensibility characteristics of Avena stem segments treated with gibberellic acid (GA) were investigated in living internodes using a microgrowth method and in partially extracted cell walls subjected to Instron extensometer analysis. Both techniques showed that treatment with GA greatly increases internodal plasticity, but has virtually no effect on internodal elasticity. The increase in plasticity occurred 1 to 2 hours after the initiation of hormone treatment, which is similar to the time of onset of GA-enhanced growth and cell wall synthesis. Cycloheximide was shown to inhibit the effect of GA on plasticity. PMID:16659388

  8. Magneto-hydrodynamics of coupled fluid-sheet interface with mass suction and blowing

    NASA Astrophysics Data System (ADS)

    Ahmad, R.

    2016-01-01

    There are large number of studies which prescribe the kinematics of the sheet and ignore the sheet's mechanics. However, the current boundary layer analysis investigates the mechanics of both the electrically conducting fluid and a permeable sheet, which makes it distinct from the other studies in the literature. One of the objectives of the current study is to (i) examine the behaviour of magnetic field effect for both the surface and the electrically conducting fluid (ii) investigate the heat and mass transfer between a permeable sheet and the surrounding electrically conducting fluid across the hydro, thermal and mass boundary layers. Self-similar solutions are obtained by considering the RK45 technique. Analytical solution is also found for the stretching sheet case. The skin friction dual solutions are presented for various types of sheet. The influence of pertinent parameters on the dimensionless velocity, shear stress, temperature, mass concentration, heat and mass transfer rates on the fluid-sheet interface is presented graphically as well as numerically. The obtained results are of potential benefit for studying the electrically conducting flow over various soft surfaces such as synthetic plastics, soft silicone sheet and soft synthetic rubber sheet. These surfaces are easily deformed by thermal fluctuations or thermal stresses.

  9. Method of fabricating an article with cavities. [with thin bottom walls

    NASA Technical Reports Server (NTRS)

    Dale, W. J.; Jurscaga, G. M. (Inventor)

    1974-01-01

    An article having a cavity with a thin bottom wall is provided by assembling a thin sheet, for example, a metal sheet, adjacent to the surface of a member having one or more apertures. A bonding adhesive is interposed between the thin sheet and the subadjacent member, and the thin sheet is subjected to a high fluid pressure. In order to prevent the differential pressure from being exerted against the thin sheet, the aperture is filled with a plug of solid material having a linear coefficient of thermal expansion higher than that of the member. When the assembly is subjected to pressure, the material is heated to a temperature such that its expansion exerts a pressure against the thin sheet thus reducing the differential pressure.

  10. Single point incremental forming: Formability of PC sheets

    NASA Astrophysics Data System (ADS)

    Formisano, A.; Boccarusso, L.; Carrino, L.; Lambiase, F.; Minutolo, F. Memola Capece

    2018-05-01

    Recent research on Single Point Incremental Forming of polymers has slightly covered the possibility of expanding the materials capability window of this flexible forming process beyond metals, by demonstrating the workability of thermoplastic polymers at room temperature. Given the different behaviour of polymers compared to metals, different aspects need to be deepened to better understand the behaviour of these materials when incrementally formed. Thus, the aim of the work is to investigate the formability of incrementally formed polycarbonate thin sheets. To this end, an experimental investigation at room temperature was conducted involving formability tests; varying wall angle cone and pyramid frusta were manufactured by processing polycarbonate sheets with different thicknesses and using tools with different diameters, in order to draw conclusions on the formability of polymer sheets through the evaluation of the forming angles and the observation of the failure mechanisms.

  11. Enhancing workability in sheet production of high silicon content electrical steel through large shear deformation

    DOE PAGES

    Kustas, Andrew B.; Johnson, David R.; Trumble, Kevin P.; ...

    2018-07-01

    Enhanced workability, as characterized by the magnitude and heterogeneity of accommodated plastic strains during sheet processing, is demonstrated in high Si content Fe-Si alloys containing 4 and 6.5 wt% Si using two single-step, simple-shear deformation techniques – peeling and large strain extrusion machining (LSEM). The model Fe-Si material system was selected for its intrinsically poor material workability, and well-known applications potential in next-generation electric machines. In a comparative study of the deformation characteristics of the shear processes with conventional rolling, two distinct manifestations of workability are observed. For rolling, the relatively diffuse and unconfined deformation zone geometry leads to crackingmore » at low strains, with sheet structures characterized by extensive deformation twinning and banding. Workpiece pre-heating is required to improve the workability in rolling. In contrast, peeling and LSEM produce continuous sheet at large plastic strains without cracking, the result of more confined deformation geometries that enhances the workability. Peeling, however, results in heterogeneous, shear-banded microstructures, pointing to a second type of workability issue – flow localization – that limits sheet processing. This shear banding is to a large extent facilitated by unrestricted flow at the sheet surface, unavoidable in peeling. With additional confinement of this free surface deformation and appropriately designed deformation zone geometry, LSEM is shown to suppress shear banding, resulting in continuous sheet with homogeneous microstructure. Thus LSEM is shown to produce the greatest enhancement in process workability for producing sheet. In conclusion, these workability findings are explained and discussed based on differences in process mechanics and deformation zone geometry.« less

  12. Enhancing workability in sheet production of high silicon content electrical steel through large shear deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kustas, Andrew B.; Johnson, David R.; Trumble, Kevin P.

    Enhanced workability, as characterized by the magnitude and heterogeneity of accommodated plastic strains during sheet processing, is demonstrated in high Si content Fe-Si alloys containing 4 and 6.5 wt% Si using two single-step, simple-shear deformation techniques – peeling and large strain extrusion machining (LSEM). The model Fe-Si material system was selected for its intrinsically poor material workability, and well-known applications potential in next-generation electric machines. In a comparative study of the deformation characteristics of the shear processes with conventional rolling, two distinct manifestations of workability are observed. For rolling, the relatively diffuse and unconfined deformation zone geometry leads to crackingmore » at low strains, with sheet structures characterized by extensive deformation twinning and banding. Workpiece pre-heating is required to improve the workability in rolling. In contrast, peeling and LSEM produce continuous sheet at large plastic strains without cracking, the result of more confined deformation geometries that enhances the workability. Peeling, however, results in heterogeneous, shear-banded microstructures, pointing to a second type of workability issue – flow localization – that limits sheet processing. This shear banding is to a large extent facilitated by unrestricted flow at the sheet surface, unavoidable in peeling. With additional confinement of this free surface deformation and appropriately designed deformation zone geometry, LSEM is shown to suppress shear banding, resulting in continuous sheet with homogeneous microstructure. Thus LSEM is shown to produce the greatest enhancement in process workability for producing sheet. In conclusion, these workability findings are explained and discussed based on differences in process mechanics and deformation zone geometry.« less

  13. The influence of heat treatment on properties of cold rolled alloyed steel and nickel superalloys sheets used in aircraft industry

    NASA Astrophysics Data System (ADS)

    Zaba, K.; Dul, I.; Puchlerska, S.

    2017-02-01

    Superalloys based on nickel and selected steels are widely used in the aerospace industry, because of their excellent mechanical properties, heat resistance and creep resistance. Metal sheets of these materials are plastically deformed and applied, inter alia, to critical components of aircraft engines. Due to their chemical composition these materials are hardly deformable. There are various methods to improve the formability of these materials, including plastic deformation at an elevated or high temperature, or a suitable heat treatment before forming process. The paper presents results of the metal sheets testing after heat treatment. For the research, sheets of two types of nickel superalloys type Inconel and of three types of steel were chosen. The materials were subjected to multivariate heat treatment at different temperature range and time. After this step, mechanical properties were examined according to the metal sheet rolling direction. The results were compared and the optimal type of pre-trial softening heat treatment for each of the materials was determined.

  14. Numerical assessment of residual formability in sheet metal products: towards design for sustainability

    NASA Astrophysics Data System (ADS)

    Falsafi, Javad; Demirci, Emrah; Silberschmidt, Vadim. V.

    2016-08-01

    A new computational scheme is presented to addresses cold recyclability of sheet- metal products. Cold recycling or re-manufacturing is an emerging area studied mostly empirically; in its current form, it lacks theoretical foundation especially in the area of sheet metals. In this study, a re-formability index was introduced based on post-manufacture residual formability in sheet metal products. This index accounts for possible levels of deformation along different strain paths based on Polar Effective Plastic Strain (PEPS) technique. PEPS is strain-path independent, hence provides a foundation for residual formability analysis. A user- friendly code was developed to implement this assessment in conjunction with advanced finite- element (FE) analysis. The significance of this approach is the advancement towards recycling of sheet metal products without melting them.

  15. Candida glabrata's Genome Plasticity Confers a Unique Pattern of Expressed Cell Wall Proteins.

    PubMed

    López-Fuentes, Eunice; Gutiérrez-Escobedo, Guadalupe; Timmermans, Bea; Van Dijck, Patrick; De Las Peñas, Alejandro; Castaño, Irene

    2018-06-05

    Candida glabrata is the second most common cause of candidemia, and its ability to adhere to different host cell types, to microorganisms, and to medical devices are important virulence factors. Here, we consider three characteristics that confer extraordinary advantages to C. glabrata within the host. (1) C. glabrata has a large number of genes encoding for adhesins most of which are localized at subtelomeric regions. The number and sequence of these genes varies substantially depending on the strain, indicating that C. glabrata can tolerate high genomic plasticity; (2) The largest family of CWPs (cell wall proteins) is the EPA (epithelial adhesin) family of adhesins. Epa1 is the major adhesin and mediates adherence to epithelial, endothelial and immune cells. Several layers of regulation like subtelomeric silencing, cis- acting regulatory regions, activators, nutritional signaling, and stress conditions tightly regulate the expression of many adhesin-encoding genes in C. glabrata , while many others are not expressed. Importantly, there is a connection between acquired resistance to xenobiotics and increased adherence; (3) Other subfamilies of adhesins mediate adherence to Candida albicans , allowing C. glabrata to efficiently invade the oral epithelium and form robust biofilms. It is noteworthy that every C. glabrata strain analyzed presents a unique pattern of CWPs at the cell surface.

  16. The formation and evolution of domain walls

    NASA Technical Reports Server (NTRS)

    Press, William H.; Ryden, Barbara S.; Spergel, David N.

    1991-01-01

    Domain walls are sheet-like defects produced when the low energy vacuum has isolated degenerate minima. The researchers' computer code follows the evolution of a scalar field, whose dynamics are determined by its Lagrangian density. The topology of the scalar field determines the evolution of the domain walls. This approach treats both wall dynamics and reconnection. The researchers investigated not only potentials that produce single domain walls, but also potentials that produce a network of walls and strings. These networks arise in axion models where the U(1) Peccei-Quinn symmetry is broken into Z sub N discrete symmetries. If N equals 1, the walls are bounded by strings and the network quickly disappears. For N greater than 1, the network of walls and strings behaved qualitatively just as the wall network shown in the figures given here. This both confirms the researchers' pessimistic view that domain walls cannot play an important role in the formation of large scale structure and implies that axion models with multiple minimum can be cosmologically disastrous.

  17. Study on thickness distribution of thermoformed medical PVC blister

    NASA Astrophysics Data System (ADS)

    Li, Yiping

    2017-08-01

    Vacuum forming has many advantages over other plastic forming processes due to its cost effectiveness, time efficiency, higher product precision, and more design flexibility. Nevertheless, when pressures greater than the atmospheric value are required to force the thermo-plastic into more intimate contact with the mold surface, pressure forming is a better choice. This paper studies the process of air-pressure thermoforming of plastic sheet, and focuses on medical blister PVC products. ANSYS POLYFLOW tool is used to simulate the process and analyze the wall thickness distribution of the blister. The influence of mold parameters on the wall thickness distribution of thermoformed part is thus obtained through simulation. Increasing radius between mold and side wall at the bottom of blister and draft prove to improve the wall thickness distribution.

  18. METHOD FOR MANUFACTURING LAMINATED SHEETS FOR PROTECTION AGAINST RADIOACTIVE WASTES, AND PROTECTING AND PACKAGING MEANS MANUFACTURED WITH THESE SHEETS; Papierfabrik Wilhemstal Wilhelm Ernst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1959-07-15

    A description is given of laminated sheet, consisting of a first layer of absorbing and preferably fibrous material (e.g., filter or blotting paper, or felt), a second layer of adhesive, impermeable, and hydrophobic material (e.g., wax, bitumen, a polyvinyl or polyacrylic compound, or a polyhydrocarbon), and a third (and fourth) layer of rigid material more or less impermeable to liquids (e.g., metal (aluminum), polyvinyl chloride, polyethylene, or cardboard). These sheets can be used for covering laboratory tables and walls, for radiation protection (manufacture of clothes, etc.), or for packaging radioactive waste (manufacture of boxes, bags, etc.). (NPO)

  19. Separation of polyethylene terephthalate from municipal waste plastics by froth flotation for recycling industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chong-Qing; Wang, Hui, E-mail: huiwang1968@163.com; Liu, You-Nian

    Highlights: • Factors of NaOH treatment were studied by orthogonal and single factor experiments. • Mechanism of alkaline treatment for facilitating flotation was manifested. • Flotation separation of PET was achieved with high purity and efficiency. • A flow sheet of purification PET from MWP was designed. - Abstract: Recycling is an effective way to manage plastic wastes and receives considerable attention. Since plastic mixtures are difficult to recycle because of their intrinsic characteristics, separation of mixed plastics is the key problem for recycling. Separation of polyethylene terephthalate (PET) from municipal waste plastics (MWP) by froth flotation combined with alkalinemore » pretreatment was investigated for recycling industry. The effect of process variables was estimated by L{sub 9} (3{sup 4}) orthogonal array of experiments and single factor experiments. The optimum conditions of alkaline pretreatment are 10 wt% sodium hydroxide, 20 min and 70 °C. After alkaline pretreatment under optimum conditions, flotation separation PET from acrylonitrile–butadiene–styrene, polystyrene, polycarbonate or polyvinyl chloride was achieved with high purity and efficiency. The purity of PET is up to 98.46% and the recovery is above 92.47%. A flow sheet of separation PET from MWP by a combination of froth flotation and sink float separation was designed. This study facilitates industrial application of plastics flotation and provides technical insights into recycling of waste plastics.« less

  20. Embedded Heaters for Joining or Separating Plastic Parts

    NASA Technical Reports Server (NTRS)

    Bryant, Melvin A., III

    2004-01-01

    A proposed thermal-bonding technique would make it possible to join or separate thermoplastic parts quickly and efficiently. The technique would eliminate the need for conventional welding or for such conventional fastening components as bolted flanges or interlocking hooks. The technique could be particularly useful in the sign industry (in which large quantities of thermoplastics are used) or could be used to join plastic pipes. A thin sheet of a suitable electrically conductive material would be formed to fit between two thermoplastic parts to be joined (see figure). The electrically conductive sheet and the two parts would be put together tightly, then an electrical current would be sent through the conductor to heat the thermoplastic locally. The magnitude of the current and the heating time would be chosen to generate just enough heat to cause the thermoplastic to adhere to both sides of the electrically conductive sheet. Optionally, the electrically conductive sheet could contain many small holes to provide purchase or to increase electrical resistance to facilitate the generation of heat. After thermal bonding, the electrically conductive sheet remains as an integral part of the structure. If necessary, the electrically conductive sheet can be reheated later to separate the joined thermoplastic parts.

  1. Prediction Of Formability In Sheet Metal Forming Processes Using A Local Damage Model

    NASA Astrophysics Data System (ADS)

    Teixeira, P.; Santos, Abel; César Sá, J.; Andrade Pires, F.; Barata da Rocha, A.

    2007-05-01

    The formability in sheet metal forming processes is mainly conditioned by ductile fracture resulting from geometric instabilities due to necking and strain localization. The macroscopic collapse associated with ductile failure is a result of internal degradation described throughout metallographic observations by the nucleation, growth and coalescence of voids and micro-cracks. Damage influences and is influenced by plastic deformation and therefore these two dissipative phenomena should be coupled at the constitutive level. In this contribution, Lemaitre's ductile damage model is coupled with Hill's orthotropic plasticity criterion. The coupling between damaging and material behavior is accounted for within the framework of Continuum Damage Mechanics (CDM). The resulting constitutive equations are implemented in the Abaqus/Explicit code, for the prediction of fracture onset in sheet metal forming processes. The damage evolution law takes into account the important effect of micro-crack closure, which dramatically decreases the rate of damage growth under compressive paths.

  2. Alternative plasticizer, 4-cyclohexene-1,2-dicarboxylic acid dinonyl ester, for blood containers with protective effects on red blood cells and improved cold resistance.

    PubMed

    Morishita, Yuki; Nomura, Yusuke; Fukui, Chie; Fujisawa, Ayano; Watanabe, Kayo; Fujimaki, Hideo; Kumada, Hidefumi; Inoue, Kaoru; Morikawa, Tomomi; Takahashi, Miwa; Kawakami, Tsuyoshi; Sakoda, Hideyuki; Mukai, Tomokazu; Yuba, Toshiyasu; Inamura, Ken-Ichi; Tanoue, Akito; Miyazaki, Ken-Ichi; Chung, Ung-Il; Ogawa, Kumiko; Yoshida, Midori; Haishima, Yuji

    2018-04-01

    Di (2-ethylhexyl) phthalate (DEHP), a typical plasticizer used for polyvinyl chloride (PVC), is eluted from PVC-made blood containers and protects against red blood cell (RBC) hemolysis. However, concerns have arisen regarding the reproductive and developmental risks of DEHP in humans, and the use of alternative plasticizers for medical devices has been recommended worldwide. In this study, we propose that the use of a novel plasticizer, 4-cyclohexene-1,2-dicarboxylic acid dinonyl ester (DL9TH), could help produce more useful and safe blood containers. PVC sheet containing DL9TH and di (2-ethylhexyl) 4-cyclohexene-1,2-dicarboxylate (DOTH) provides comparable or superior protective effects to RBCs relative to PVC sheet containing DEHP or di-isononyl-cyclohexane-1,2-dicarboxylate (DINCH ® , an alternative plasticizer that has been used in PVC sheets for blood containers). The total amount of plasticizer eluted from DOTH/DL9TH-PVC sheets is nearly the same as that eluted from DEHP-PVC sheets. In addition, DOTH/DL9TH-PVC has better cold resistance than DEHP- and DINCH ® -PVC sheets. In vitro and in vivo tests for biological safety based on International Organization for Standardization guidelines (10993 series) suggest that the DOTH/DL9TH-PVC sheet can be used safely. Subchronic toxicity testing of DL9TH in male rats in accordance with the principles of Organisation for Economic Co-operation and Development Test Guideline 408 showed that DL9TH did not induce adverse effects up to the highest dose level tested (717 mg/kg body weight/day). There were no effects on testicular histopathology and sperm counts, and no indications of endocrine effects: testosterone, thyroid-stimulating hormone, follicle-stimulating hormone, and 17β-estradiol were unchanged by the treatment, compared with the control group. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1052-1063, 2018. © 2017 Wiley Periodicals, Inc.

  3. Self-rolling of an aluminosilicate sheet into a single walled imogolite nanotube: The role of the hydroxyl arrangement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    González, R. I.; Rogan, J.; Valdivia, J. A.

    2015-12-31

    Imogolite is an inorganic nanotube, that forms naturally in weathered volcanic ashes, and it can be synthesized in nearly monodisperse diameters. However, long after its successful synthesis, the details of the way it is achieved are not fully understood. Here we elaborate on a model of its synthesis, which starts with a planar aluminosilicate sheet that is allowed to evolve freely, by means of classical molecular dynamics, until it achieves its minimum energy configuration. The minimal structures that the system thus adopts are tubular, scrolled, and more complex conformations, depending mainly on temperature as a driving force. Here we focusmore » on the effect that the arrangement of the hydroxyl groups in the inner wall of the nanotube have on the minimal nanotubular configurations that we obtain are monodispersed in diameter, and quite similar to both from the those of weathered natural volcanic ashes, and to the ones that are synthesized in the laboratory. In this contribution we expand on the atomic mechanisms behind those behaviors.« less

  4. Experimental Characterization and Material Modelling of an AZ31 Magnesium Sheet Alloy at Elevated Temperatures under Consideration of the Tension-Compression Asymmetry

    NASA Astrophysics Data System (ADS)

    Behrens, B.-A.; Bouguecha, A.; Bonk, C.; Dykiert, M.

    2017-09-01

    Magnesium sheet alloys have a great potential as a construction material in the aerospace and automotive industry. However, the current state of research regarding temperature dependent material parameters for the description of the plastic behaviour of magnesium sheet alloys is scarce in literature and accurate statements concerning yield criteria and appropriate characterization tests to describe the plastic behaviour of a magnesium sheet alloy at elevated temperatures in deep drawing processes are to define. Hence, in this paper the plastic behaviour of the well-established magnesium sheet alloy AZ31 has been characterized by means of convenient mechanical tests (e. g. tension, compression and biaxial tests) at temperatures between 180 and 230 °C. In this manner, anisotropic and hardening behaviour as well as differences between the tension-compression asymmetry of the yield locus have been estimated. Furthermore, using the evaluated data from the above mentioned tests, two different yield criteria have been parametrized; the commonly used Hill’48 and an orthotropic yield criterion, CPB2006, which was developed especially for materials with hexagonal close packed lattice structure and is able to describe an asymmetrical yielding behaviour regarding tensile and compressive stress states. Numerical simulations have been finally carried out with both yield functions in order to assess the accuracy of the material models.

  5. Effective description of domain wall strings

    NASA Astrophysics Data System (ADS)

    Rodrigues, Davi R.; Abanov, Ar.; Sinova, J.; Everschor-Sitte, K.

    2018-04-01

    The analysis of domain wall dynamics is often simplified to one-dimensional physics. For domain walls in thin films, more realistic approaches require the description as two-dimensional objects. This includes the study of vortices and curvatures along the domain walls as well as the influence of boundary effects. Here we provide a theory in terms of soft modes that allows us to analytically study the physics of extended domain walls and their stability. By considering irregularly shaped skyrmions as closed domain walls, we analyze their plasticity and compare their dynamics with those of circular skyrmions. Our theory directly provides an analytical description of the excitation modes of magnetic skyrmions, previously accessible only through sophisticated micromagnetic numerical calculations and spectral analysis. These analytical expressions provide the scaling behavior of the different physics on parameters that experiments can test.

  6. Regulation of Cell Wall Plasticity by Nucleotide Metabolism in Lactococcus lactis*

    PubMed Central

    Solopova, Ana; Formosa-Dague, Cécile; Courtin, Pascal; Furlan, Sylviane; Veiga, Patrick; Péchoux, Christine; Armalyte, Julija; Sadauskas, Mikas; Kok, Jan; Hols, Pascal; Dufrêne, Yves F.; Kuipers, Oscar P.; Chapot-Chartier, Marie-Pierre; Kulakauskas, Saulius

    2016-01-01

    To ensure optimal cell growth and separation and to adapt to environmental parameters, bacteria have to maintain a balance between cell wall (CW) rigidity and flexibility. This can be achieved by a concerted action of peptidoglycan (PG) hydrolases and PG-synthesizing/modifying enzymes. In a search for new regulatory mechanisms responsible for the maintenance of this equilibrium in Lactococcus lactis, we isolated mutants that are resistant to the PG hydrolase lysozyme. We found that 14% of the causative mutations were mapped in the guaA gene, the product of which is involved in purine metabolism. Genetic and transcriptional analyses combined with PG structure determination of the guaA mutant enabled us to reveal the pivotal role of the pyrB gene in the regulation of CW rigidity. Our results indicate that conversion of l-aspartate (l-Asp) to N-carbamoyl-l-aspartate by PyrB may reduce the amount of l-Asp available for PG synthesis and thus cause the appearance of Asp/Asn-less stem peptides in PG. Such stem peptides do not form PG cross-bridges, resulting in a decrease in PG cross-linking and, consequently, reduced PG thickness and rigidity. We hypothesize that the concurrent utilization of l-Asp for pyrimidine and PG synthesis may be part of the regulatory scheme, ensuring CW flexibility during exponential growth and rigidity in stationary phase. The fact that l-Asp availability is dependent on nucleotide metabolism, which is tightly regulated in accordance with the growth rate, provides L. lactis cells the means to ensure optimal CW plasticity without the need to control the expression of PG synthesis genes. PMID:27022026

  7. Strength and Formability Improvement of Al-Cu-Mn Aluminum Alloy Complex Parts by Thermomechanical Treatment with Sheet Hydroforming

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Zhe; Liu, Wei; Yuan, Shi-Jian

    2015-05-01

    Normally, the strength and formability of aluminum alloys can be increased largely by severe plastic deformation and heat treatment. However, many plastic deformation processes are more suitable for making raw material, not for formed parts. In this article, an experimental study of the thermomechanical treatment by using the sheet hydroforming process was developed to improve both mechanical strength and formability for aluminum alloys in forming complex parts. The limiting drawing ratio, thickness, and strain distribution of complex parts formed by sheet hydroforming were investigated to study the formability and sheet-deformation behavior. Based on the optimal formed parts, the tensile strength, microhardness, grain structure, and strengthening precipitates were analyzed to identify the strengthening effect of thermomechanical treatment. The results show that in the solution state, the limiting drawing ratio of cylindrical parts could be increased for 10.9% compared with traditional deep drawing process. The peak values of tensile stress and microhardness of formed parts are 18.0% and 12.5% higher than that in T6 state. This investigation shows that the thermomechanical treatment by sheet hydroforming is a potential method for the products manufacturing of aluminum alloy with high strength and good formability.

  8. Effect of a large-sized silicone sheet upon recovery of mastoid aeration after mastoidectomy.

    PubMed

    Kazama, Kyosuke; Takahashi, Haruo; Kaieda, Satoru; Iwanaga, Tetsu; Yamamoto-Fukuda, Tomomi; Yoshida, Haruo; Kumagami, Hidetaka; Takasaki, Kenji

    2008-06-01

    To evaluate the effect of our large-sized silicone sheet upon postoperative recovery of mastoid aeration in ears after surgery including mastoidectomy and soft-wall reconstruction (SWR). Retrospective chart review in a tertiary care center. Recovery of mastoid aeration was assessed by CT 4 to 12 months after surgery on 72 ears (69 patients), in which the silicone sheet covering from the eustachian tube (ET) to the mastoid was placed after SWR procedure with mastoidectomy were done for their chronic otitis media. Results were compared with those with a small silicone sheet. Recovery of mastoid aeration was significantly better in the large-silicone-sheet group than in the small-silicone-sheet group (chi(2) value = 11.7146, P = 0.0006). This preliminary study suggested that our large-sized silicone sheet may be effective for postoperative recovery of mastoid aeration even in ears operated with SWR procedure.

  9. 36. FLOAT WELL AND PIPE ENCASEMENT EAST CUTOFF WALL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. FLOAT WELL AND PIPE ENCASEMENT - EAST CUTOFF WALL, REINFORCEMENT DETAILS. Sheet A-17, October, 1940. File no. SA 342/2. - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  10. Elastic-Plastic Thermal Stress Analysis of a High-Pressure Cryogenic Storage Tank

    NASA Technical Reports Server (NTRS)

    Barker, J. Mark; Field, Robert E. (Technical Monitor)

    2003-01-01

    The thermal stresses on a cryogenic storage tank contribute strongly to the state of stress of the tank material and its ability to withstand operational stresses. These thermal stresses also affect the growth of any surface damage that might occur in the tank walls. These stresses are particularly of concern during the initial cooldown period for a new tank placed into service, and during any subsequent thermal cycles. A previous preliminary elastic analysis showed that the thermal stress on the inner wall would reach approximately 1,000MPa (145,000 psi). This stress far exceeds the ASTM specified room temperature values for both yield (170MPa) and ultimate (485 MPa) strength for 304L stainless steel. The present analysis determines the thermal stresses using an elastic-plastic model. The commercial software application ANSYS was used to determine the transient spatial temperature profile and the associated spatial thermal stress profiles in a segment of a thick-walled vessel during a typical cooldown process. A strictly elastic analysis using standard material properties for 304L stainless steel showed that the maximum thermal stress on the inner and outer walls was approximately 960 MPa (tensile) and - 270 MPa (compressive) respectively. These values occurred early in the cooldown process, but at different times, An elastic-plastic analysis showed significantly reducing stress, as expected due to the plastic deformation of the material. The maximum stress for the inner wall was approximately 225 MPa (tensile), while the maximum stress for the outer wall was approximately - 130 MPa (compressive).

  11. Study of Microstructure and Mechanical Properties Effects on Workpiece Quality in Sheet Metal Extrusion Process

    PubMed Central

    Suriyapha, Chatkaew; Bubphachot, Bopit; Rittidech, Sampan

    2015-01-01

    Sheet metal extrusion is a metal forming process in which the movement of a punch penetrates a sheet metal surface and it flows through a die orifice; the extruded parts can be deflected to have an extrusion cavity and protrusion on the opposite side. Therefore, this process results in a narrow region of highly localized plastic deformation due to the formation and microstructure effect on the work piece. This research investigated the characteristics of the material-flow behavior during the formation and its effect on the microstructure of the extruded sheet metal using the finite element method (FEM). The actual parts and FEM simulation model were developed using a blank material made from AISI-1045 steel with a thickness of 5 mm; the material's behavior was determined subject to the punch penetration depths of 20%, 40%, 60%, and 80% of the sheet thickness. The results indicated the formation and microstructure effects on the sheet metal extrusion parts and defects. Namely, when increasing penetration, narrowing the die orifice the material flows through, the material was formed by extruding, and defects were visibility, and the microstructure of the material's grains' size was flat and very fine. Extrusion defects were not found in the control material flow. The region of highly localized plastic deformation affected the material gain and mechanical properties. The FEM simulation results agreed with the experimental results. Moreover, FEM could be investigated as a tool to decrease the cost and time in trial and error procedures. PMID:26229979

  12. Immobile defects in ferroelastic walls: Wall nucleation at defect sites

    NASA Astrophysics Data System (ADS)

    He, X.; Salje, E. K. H.; Ding, X.; Sun, J.

    2018-02-01

    Randomly distributed, static defects are enriched in ferroelastic domain walls. The relative concentration of defects in walls, Nd, follows a power law distribution as a function of the total defect concentration C: N d ˜ C α with α = 0.4 . The enrichment Nd/C ranges from ˜50 times when C = 10 ppm to ˜3 times when C = 1000 ppm. The resulting enrichment is due to nucleation at defect sites as observed in large scale MD simulations. The dynamics of domain nucleation and switching is dependent on the defect concentration. Their energy distribution follows the power law with exponents during yield between ɛ ˜ 1.82 and 2.0 when the defect concentration increases. The power law exponent is ɛ ≈ 2.7 in the plastic regime, independent of the defect concentration.

  13. Damage Tolerance of Sandwich Plates With Debonded Face Sheets

    NASA Technical Reports Server (NTRS)

    Sankar, Bhavani V.

    2001-01-01

    A nonlinear finite element analysis was performed to simulate axial compression of sandwich beams with debonded face sheets. The load - end-shortening diagrams were generated for a variety of specimens used in a previous experimental study. The energy release rate at the crack tip was computed using the J-integral, and plotted as a function of the load. A detailed stress analysis was performed and the critical stresses in the face sheet and the core were computed. The core was also modeled as an isotropic elastic-perfectly plastic material and a nonlinear post buckling analysis was performed. A Graeco-Latin factorial plan was used to study the effects of debond length, face sheet and core thicknesses, and core density on the load carrying capacity of the sandwich composite. It has been found that a linear buckling analysis is inadequate in determining the maximum load a debonded sandwich beam can carry. A nonlinear post-buckling analysis combined with an elastoplastic model of the core is required to predict the compression behavior of debonded sandwich beams.

  14. 31. SPILLWAY CHANNEL WALLS REINF DETAILS; MONOLITHS E21 AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. SPILLWAY CHANNEL WALLS REINF - DETAILS; MONOLITHS E-21 AND W-21. Sheet S-45, May, 1940. File no. 342/58. - Prado Dam, Spillway, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  15. Replacing fossil based plastic performance products by bio-based plastic products-Technical feasibility.

    PubMed

    van den Oever, Martien; Molenveld, Karin

    2017-07-25

    Larger scale market introduction of new bio-based products requires a clear advantage regarding sustainability, as well as an adequate techno-economic positioning relative to fossil based products. In a previous paper [Broeren et al., 2016], LCA results per kg and per functionality equivalent of bio-based plastics were presented, together with economic considerations. The present paper discusses the mechanical and thermal properties of a range of commercially available bio-based plastics based on polylactic acid (PLA), cellulose esters, starch and polyamides, and the feasibility of replacing fossil-based counterparts based on performance. The evaluation is approached from an end user perspective. First, potentially suitable bio-based plastics are selected based on manufacturers' specifications in technical data sheets, then a first experimental evaluation is performed on injection moulded ISO specimens, and finally a further selection of plastics is tested on large 50×70cm panels. This technical feasibility study indicates that so far bio-based plastics do not completely match the properties of high performance materials like flame retardant V-0 PC/ABS blends used in electronic devices. The performance gap is being decreased by the development of stereocomplex PLA and hybrid PLA blends with polycarbonate, which offer clearly improved properties with respect to maximum usage temperature and toughness. In addition, several materials meet the V-0 flammability requirements needed in specific durable applications. On the other hand, improving these properties so far has negative consequences for the bio-based content. This study also shows that replacement of bulk polymers like PS is feasible using PLA compounds with a bio-based content as high as 85%. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Fire coral clones demonstrate phenotypic plasticity among reef habitats.

    PubMed

    Dubé, Caroline E; Boissin, Emilie; Maynard, Jeffrey A; Planes, Serge

    2017-08-01

    Clonal populations are often characterized by reduced levels of genotypic diversity, which can translate into lower numbers of functional phenotypes, both of which impede adaptation. Study of partially clonal animals enables examination of the environmental settings under which clonal reproduction is favoured. Here, we gathered genotypic and phenotypic information from 3,651 georeferenced colonies of the fire coral Millepora platyphylla in five habitats with different hydrodynamic regimes in Moorea, French Polynesia. In the upper slope where waves break, most colonies grew as vertical sheets ("sheet tree") making them more vulnerable to fragmentation. Nearly all fire corals in the other habitats are encrusting or massive. The M. platyphylla population is highly clonal (80% of the colonies are clones), while characterized by the highest genotype diversity ever documented for terrestrial or marine populations (1,064 genotypes). The proportion of clones varies greatly among habitats (≥58%-97%) and clones (328 clonal lineages) are distributed perpendicularly from the reef crest, perfectly aligned with wave energy. There are six clonal lineages with clones dispersed in at least two adjacent habitats that strongly demonstrate phenotypic plasticity. Eighty per cent of the colonies in these lineages are "sheet tree" on the upper slope, while 80%-100% are encrusting or massive on the mid slope and back reef. This is a unique example of phenotypic plasticity among reef-building coral clones as corals typically have wave-tolerant growth forms in high-energy reef areas. © 2017 John Wiley & Sons Ltd.

  17. Compact assembly generates plastic foam, inflates flotation bag

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Device for generating plastic foam consists of an elastomeric bag and two containers with liquid resin and a liquid catalyst. When the walls of the containers are ruptured the liquids come into contact producing foam which inflates the elastomeric bag.

  18. Recovery of PET from packaging plastics mixtures by wet shaking table.

    PubMed

    Carvalho, M T; Agante, E; Durão, F

    2007-01-01

    Recycling requires the separation of materials appearing in a mass of wastes of heterogeneous composition and characteristics, into single, almost pure, component/material flows. The separation of materials (e.g., some types of plastics) with similar physical properties (e.g., specific gravity) is often accomplished by human sorting. This is the case of the separation of packaging plastics in municipal solid wastes (MSW). The low cost of virgin plastics and low value of recycled plastics necessitate the utilization of low cost techniques and processes in the recycling of packaging plastics. An experimental study was conducted to evaluate the feasibility of production of a PET product, cleaned from PVC and PS, using a wet shaking table. The wet shaking table is an environmentally friendly process, widely used to separate minerals, which has low capital and operational costs. Some operational variables of the equipment, as well as different feed characteristics, were considered. The results show that the separation of these plastics is feasible although, similarly to the mineral field, in somewhat complex flow sheets.

  19. A new look at the near-wall turbulence structure

    NASA Astrophysics Data System (ADS)

    Choi, Kwing-So

    An experiment was carried out in the BMT environmental wind tunnel (4.8 m x 2.4 m x 15 m) in order to study the near-wall structure of the turbulent boundary layer, particular attention being given to the dynamics of the 'near-wall bursts'. Conditional sampling of the wall-shear stress fluctuations was extensively used along with a simultaneous application of flow visualization using a streak-smoke wire and a sheet of laser light. The results suggested that a 'near-wall burst' was taking place between a pair of smoke tubes, which was interpreted as a pair of stretched legs of neighboring hairpin loops. The spanwise spacing of the 'near-wall bursts' determined from a conditional space correlation of skin-friction signals was found to be a function of the threshold value used in burst detection.

  20. Using Frozen Barriers for Containment of Contaminants

    DTIC Science & Technology

    2017-09-21

    barriers are constructed of grout slurry and plastic or steel sheet pilings. Circumferential barriers can be used to completely enclose a source of...2.1.1 Slurry walls A soil-bentonite slurry trench cutoff wall (slurry wall) is excavated and backfilled with grout, cement , or soil-bentonite...installation requires a mixing area, and there is a substantial amount of excavation and the need to dispose of spoil. The advantages of cement -based

  1. 26. SPILLWAY CHANNEL WALLS REINF. DETAILS; MONOLITHS W1 TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. SPILLWAY CHANNEL WALLS - REINF. DETAILS; MONOLITHS W-1 TO W-4 INCL. Sheet S-26, July, 1939. File no. SA 342/34. - Prado Dam, Spillway, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  2. Lining bunker walls with oxygen barrier film reduces nutrient losses in corn silages.

    PubMed

    Lima, L M; Dos Santos, J P; Casagrande, D R; Ávila, C L S; Lara, M S; Bernardes, T F

    2017-06-01

    The objective of this study was to evaluate 2 systems for covering corn silage in bunker silos. The first system consisted of a sheet of 45-μm-thick oxygen barrier film (OB, polyethylene + ethylene-vinyl alcohol) placed along the length of the sidewall before filling. After filling, the excess film was pulled over the wall on top of the silage, and a sheet of polyethylene was placed on top. The second system involved using a standard sheet (ST) of 180-μm-thick polyethylene film. Eight commercial bunker silos were divided into 2 parts lengthwise so that one-half of the silo was covered with OB and the other half with a ST system. During the filling, 3 net bags with chopped corn were buried in the central part (halfway between the top and bottom of the silo) of the bunkers (CCOR) in 3 sections 10 m apart. After filling, 18 net bags (9 per covering system) were buried 40 cm below the top surface of the 3 sections. These bags were placed at 3 distances from the bunker walls (0 to 50 cm, 51 to 100 cm, and 101 to 150 cm). During unloading, the bags were removed from the silos to determine the dry matter (DM) losses, fermentation end products, and nutritive value. The Milk2006 spreadsheet was used to estimate milk per tonne of DM. The model included the fixed effect of treatment (7 different locations in the bunker) and the random effect of the silo. Two contrasts were tested to compare silages in the top laterals (shoulders) with that in the CCOR (CCOR vs. OB and CCOR vs. ST). Three contrasts compared the corresponding distances of the silage covered by the 2 systems (OB50 vs. ST50, OB100 vs. ST100 and OB150 vs. ST150). Variables were analyzed with the PROC MIXED procedure of the SAS at the 5% level. The OB method produced well-fermented silages, which were similar to CCOR, whereas the OB system showed less lactic acid and greater pH and mold counts compared with CCOR. The ST method had 116.2 kg of milk/t less than the CCOR, as the OB system and the CCOR were similar

  3. 6. Photocopy of Location, Site & Wall Sections drawing (from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photocopy of Location, Site & Wall Sections drawing (from the Bonneville Power Administration Engineering Vault, Portland, Oregon, Drawing C13-J2-342-D1, Sheet 1, 13 March 1939) - Bonneville Power Administration South Bank Substation, I-84, South of Bonneville Dam Powerhouse, Bonneville, Multnomah County, OR

  4. A fracture criterion for widespread cracking in thin-sheet aluminum alloys

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Dawicke, D. S.; Sutton, M. A.; Bigelow, C. A.

    1993-01-01

    An elastic-plastic finite-element analysis was used with a critical crack-tip-opening angle (CTOA) fracture criterion to model stable crack growth in thin-sheet 2024-T3 aluminum alloy panels with single and multiple-site damage (MSD) cracks. Comparisons were made between critical angles determined from the analyses and those measured with photographic methods. Calculated load against crack extension and load against crack-tip displacement on single crack specimens agreed well with test data even for large-scale plastic deformations. The analyses were also able to predict the stable tearing behavior of large lead cracks in the presence of stably tearing MSD cracks. Small MSD cracks significantly reduced the residual strength for large lead cracks.

  5. Multi response optimization of sheet forming of Kenaf-Polypropylene composites using grey based fuzzy algorithm

    NASA Astrophysics Data System (ADS)

    Oktariani, Erfina; Istikowati, Rita; Tomo, Hendro Sat Setijo; Rizal, Rafliansyah; Pratama, Yosea

    2018-02-01

    Composites from natural fiber reinforcement are developed as the alternative sheet materials of plastic composite for small-size bodywork parts in automotive industries. Kenaf fiber is selected as the reinforcement of plastic composite. Press forming of Kenaf-Polypropylene is experimentally produced in this study. The aim of this study is to obtain the optimal factor of the process of sheet forming of Kenaf-Polypropylene. The Kenaf delignified is cut into 5 cm lengths and distributed on the surface of Polypropylene sheet for 3 and 5 ply layers. The layers of Kenaf-Polypropylene then pressed by hot press at 190 and 210°C, 40 and 50 bar, for 3 and 5 minutes. However, there are limitations in handling multi responses in design of experiments. The application of the fuzzy logic theory to the grey relational analysis may further develop its performance in solving multi-response problems for process parameter optimization. The layer of Kenaf and Polypropylene, temperature, the duration of hot press and pressure are factors that affect the process. The result of experimental investigation and as well as analysis, shows that the best combination values were 3 ply layer, 210°C, 5 minutes of hot press and 50 bar.

  6. 24. SPILLWAY CHANNEL WALLS REINFORCEMENT DETAILS; MONOLITHS E1 TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. SPILLWAY CHANNEL WALLS - REINFORCEMENT DETAILS; MONOLITHS E-1 TO F-4 INCL. & NO. 34. Sheet S-11, June, 1939. File no. SA 342/24(?). - Prado Dam, Spillway, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  7. Dimensionless number is central to stress relaxation and expansive growth of the cell wall.

    PubMed

    Ortega, Joseph K E

    2017-06-07

    Experiments demonstrate that both plastic and elastic deformation of the cell wall are necessary for wall stress relaxation and expansive growth of walled cells. A biophysical equation (Augmented Growth Equation) was previously shown to accurately model the experimentally observed wall stress relaxation and expansive growth rate. Here, dimensional analysis is used to obtain a dimensionless Augmented Growth Equation with dimensionless coefficients (groups of variables, or Π parameters). It is shown that a single Π parameter controls the wall stress relaxation rate. The Π parameter represents the ratio of plastic and elastic deformation rates, and provides an explicit relationship between expansive growth rate and the wall's mechanical properties. Values for Π are calculated for plant, algal, and fungal cells from previously reported experimental results. It is found that the Π values for each cell species are large and very different from each other. Expansive growth rates are calculated using the calculated Π values and are compared to those measured for plant and fungal cells during different growth conditions, after treatment with IAA, and in different developmental stages. The comparison shows good agreement and supports the claim that the Π parameter is central to expansive growth rate of walled cells.

  8. The rollup of a vortex layer near a wall

    NASA Technical Reports Server (NTRS)

    Jimenez, Javier; Orlandi, Paolo

    1993-01-01

    The behavior of an inviscid vortex layer of non-zero thickness near a wall is studied, both through direct numerical simulation of the two-dimensional vorticity equation at high Reynolds numbers, and using an approximate ordinary nonlinear integro-differential equation which is satisfied in the limit of a thin layer under long-wavelength perturbations. For appropriate initial conditions the layer rolls up and breaks into compact vortices which move along the wall at constant speed. Because of the effect of the wall, they correspond to equilibrium counter-rotating vortex dipoles. This breakup can be related to the disintegration of the initial conditions of the approximate nonlinear dispersive equation into solitary waves. The study is motivated by the formation of longitudinal vortices from vortex sheets in the wall region of a turbulent channel.

  9. Behaviour of thin-walled cold-formed steel members in eccentric compression

    NASA Astrophysics Data System (ADS)

    Ungureanu, Viorel; Kotełko, Maria; Borkowski, Łukasz; Grudziecki, Jan

    2018-01-01

    Thin-walled cold-formed steel structures are usually made of members of class 4 cross-sections. Since these sections are prematurely prone to local or distortional buckling and due to the fact they do not have a real post-elastic capacity, the failure at ultimate stage of those members, either in compression or bending, always occurs by forming a local plastic mechanism. The present paper investigates the evolution of the plastic mechanisms and the possibility to use them to characterise the ultimate strength of short thin-walled cold-formed steel members subjected to eccentric compression about minor axis, particularly for members with lipped channel cross-section. Five different types of plastic mechanisms for members in compression with different eccentricities are identified and examined on the basis of FE numerical simulations. Preliminary results of experimental validation of numerical results are presented. The research is based on previous studies and some new investigations of the authors.

  10. Locomotion in a liquid crystal near a wall

    NASA Astrophysics Data System (ADS)

    Powers, Thomas; Krieger, Madison; Spagnolie, Saverio

    2015-11-01

    Recent observations of bacteria swimming in nematic liquid crystal solution motivate the theoretical study of how swimming speed depends on liquid crystal properties. We consider the Taylor sheet near a wall, in which propulsion is achieved by the propagation of traveling waves along the length of the swimmer. Using the lubrication approximation, we determine how swimming speed depends on the Ericksen number, which is the ratio of elastic to viscous stresses. We also study the effect of anchoring strength, at the surface of the swimmer and the surface of the wall. Supported by NSF-CBET 1437195.

  11. Experimental study of fiber-glass plastic work pieces contour milling

    NASA Astrophysics Data System (ADS)

    Trushin, N. N.; Lisitsin, V. N.

    2018-03-01

    The article represents the results of study of cut and feed speed influence on wear of monolithic hard alloy end milling cutter during cutting of foiled fiber-glass plastic sheets, used for printed-circuit boards’ production. The peculiarities and problems of cutting layered materials are described. The most effective feed and cut speed values are determined by cutter wear analysis.

  12. Feasibility and acceptability of insecticide-treated plastic sheeting (ITPS) for vector control in Papua New Guinea

    PubMed Central

    2012-01-01

    Background This study assessed the feasibility and acceptability of utilizing insecticide-treated plastic sheeting (ITPS) as a malaria control intervention in Papua New Guinea (PNG). Methods ZeroVector® ITPS was installed in 40 homes across four study sites representing a cross section of malaria transmission risk and housing style. Structured questionnaires were completed at the time of ITPS installation (n=40) and at four weeks post installation (n=40) with the household head. Similarly, group interviews with the male and/or female household heads were completed at installation (n=5) and four-week follow-up (n=4). Results ZeroVector® ITPS was successfully installed in a range of homes employing traditional and/or modern building materials in PNG. The ITPS installations remained intact over the course of the four-week trial period and were highly acceptable to both male and female household heads. No dissatisfaction with the ITPS product was reported at four-week follow-up; however, the installation process was time consuming, participants reported a reduction in mosquito net use following ITPS installation and many participants expressed concern about the longevity of ITPS over the longer term. Conclusion ZeroVector® ITPS installation is feasible and highly acceptable in a diverse range of PNG contexts and is likely to be favourably received as a vector control intervention if accessible en masse. A longer-term evaluation is required before firm policy or public health decisions can be made regarding the potential application of ITPS in the national malaria control programme. The positive study findings suggest a longer-term evaluation of this promising malaria control intervention warrants consideration. PMID:23046535

  13. Feasibility and acceptability of insecticide-treated plastic sheeting (ITPS) for vector control in Papua New Guinea.

    PubMed

    Pulford, Justin; Tandrapah, Anthony; Atkinson, Jo-An; Kaupa, Brown; Russell, Tanya; Hetzel, Manuel W

    2012-10-09

    This study assessed the feasibility and acceptability of utilizing insecticide-treated plastic sheeting (ITPS) as a malaria control intervention in Papua New Guinea (PNG). ZeroVector® ITPS was installed in 40 homes across four study sites representing a cross section of malaria transmission risk and housing style. Structured questionnaires were completed at the time of ITPS installation (n=40) and at four weeks post installation (n=40) with the household head. Similarly, group interviews with the male and/or female household heads were completed at installation (n=5) and four-week follow-up (n=4). ZeroVector® ITPS was successfully installed in a range of homes employing traditional and/or modern building materials in PNG. The ITPS installations remained intact over the course of the four-week trial period and were highly acceptable to both male and female household heads. No dissatisfaction with the ITPS product was reported at four-week follow-up; however, the installation process was time consuming, participants reported a reduction in mosquito net use following ITPS installation and many participants expressed concern about the longevity of ITPS over the longer term. ZeroVector® ITPS installation is feasible and highly acceptable in a diverse range of PNG contexts and is likely to be favourably received as a vector control intervention if accessible en masse. A longer-term evaluation is required before firm policy or public health decisions can be made regarding the potential application of ITPS in the national malaria control programme. The positive study findings suggest a longer-term evaluation of this promising malaria control intervention warrants consideration.

  14. Extensive regeneration of the stomach using bioabsorbable polymer sheets.

    PubMed

    Miyazawa, Mitsuo; Aikawa, Masayasu; Watanabe, Yukihiro; Takase, Ken-ichiro; Okamoto, Kojun; Shrestha, Santosh; Okada, Katsuya; Koyama, Isamu; Ikada, Yoshito

    2015-11-01

    The growing prevalence of endoscopic surgery in recent years has led to the minimization of postoperative scarring. However, this procedure does not allow for the regeneration of the resected digestive tract, which compromises the postoperative maintenance of digestive function. In this preliminary study, we developed an artificial gastric wall (AGW) using bioabsorbable polymer (BAP), and evaluated the ability of this BAP patch to repair and regenerate a widely defective gastric wall in an animal model. Pigs were laparotomized under general anesthesia. An 8 × 8-cm, round portion of the anterior gastric wall was excised and replaced by an AGW. The AGW was composed of a copolymer comprising 50% lactic acid and 50% caprolactone. The animals were relaparotomized 4, 8, or 12 weeks after implantation, after which they underwent resection of the entire stomach for gross and histologic evaluation of the graft sites. All recipient pigs survived until killing. By 4-8 weeks, the graft site revealed progressively fewer mucosal defect after each day. Moreover, the grafted area was indistinguishable from the native stomach 12 weeks after AGW implantation. The structures of the regenerated mucous membrane and muscle layers were identical to those of the native stomach. Furthermore, proton pumps were found in the regenerated tissue. The BAP sheets helped to restore extensive gastric defects without causing any deformation. The use of BAP sheets may become a new therapeutic method that prevents alterations of gastric volume after extensive gastrectomy for stomach cancer and other diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Curvature-induced stiffness and the spatial variation of wavelength in wrinkled sheets

    PubMed Central

    Hohlfeld, Evan; King, Hunter; Huang, Jiangshui; Qiu, Zhanlong; Russell, Thomas P.; Menon, Narayanan; Vella, Dominic; Davidovitch, Benny

    2016-01-01

    Wrinkle patterns in compressed thin sheets are ubiquitous in nature and technology, from the furrows on our foreheads to crinkly plant leaves, from ripples on plastic-wrapped objects to the protein film on milk. The current understanding of an elementary descriptor of wrinkles—their wavelength—is restricted to deformations that are parallel, spatially uniform, and nearly planar. However, most naturally occurring wrinkles do not satisfy these stipulations. Here we present a scheme that quantitatively explains the wrinkle wavelength beyond such idealized situations. We propose a local law that incorporates both mechanical and geometrical effects on the spatial variation of wrinkle wavelength. Our experiments on thin polymer films provide strong evidence for its validity. Understanding how wavelength depends on the properties of the sheet and the underlying liquid or elastic subphase is crucial for applications where wrinkles are used to sculpt surface topography, to measure properties of the sheet, or to infer forces applied to a film. PMID:26787902

  16. Triassic salt sheets of Mezzouna, Central Tunisia: New comments on Late Cretaceous halokinesis and geodynamic evolution of the northern African margin

    NASA Astrophysics Data System (ADS)

    Dhahri, Ferid; Boukadi, Noureddine

    2017-05-01

    Two discrete Triassic salt sheets have been discovered within the Coniacian-Santonian series near the salt wall of Mezzouna, central Tunisia. The structure and the lithology of these sheets suggest two halokinetic episodes giving respectively 1) Triassic evaporitic rocks flows over a sloped basin floor resulting in probable salt glacier, and 2) redeposition of erosional debris from the nearby salt wall of Mezzouna, transported and then deposited next to the wall. This finding is used to precise the halokinetic events and the geodynamic evolution of the northern African margin near the Pelagian block between southeastern Tunisia and Tripolitania during Late Cretaceous. A discussion of the halokinesis-related structures is also attempted with emphasize of their genetic mechanisms and temporal development as inferred from geological mapping and new field data.

  17. Preventing lateral synechia formation after endoscopic sinus surgery with a silastic sheet.

    PubMed

    Lee, Jae Yong; Lee, Seung Won

    2007-08-01

    To investigate whether the insertion of a Silastic sheet between the middle turbinate and lateral nasal wall can prevent lateral synechia formation when an unstable, floppy middle turbinate results from endoscopic sinus surgery (ESS). Prospective study. University hospital. Thirty patients who developed an unstable, floppy middle turbinate during ESS were allocated in order of occurrence as follows: group 1, 15 patients, 17 sides including 2 bilateral cases; group 2, 15 patients, 18 sides including 3 bilateral cases. In group 1, a fan-shaped Silastic sheet was inserted between the middle turbinate and lateral nasal wall and secured to the caudal septum. In group 2, no specific procedure was performed except for meticulous postoperative care to prevent lateralization of the middle turbinate. We observed the patients for 5 months and compared the occurrence rate of synechia formation between the 2 groups. Synechiae developed in 1 of 17 sides (6%) in group 1 and 8 of 18 sides (44%) in group 2, for success rates of 94% and 56%, respectively. The success rates differed significantly. The middle turbinate was preserved in all patients in group 1. The results of this study suggest that the insertion of a Silastic sheet in the middle meatus is a useful method for preventing lateral synechia formation and for preserving the middle turbinate.

  18. The effects of strain and stress state in hot forming of mg AZ31 sheet

    NASA Astrophysics Data System (ADS)

    Sherek, Paul A.; Carpenter, Alexander J.; Hector, Louis G.; Krajewski, Paul E.; Carter, Jon T.; Lasceski, Joshua; Taleff, Eric M.

    Wrought magnesium alloys, such as AZ31 sheet, are of considerable interest for light-weighting of vehicle structural components. The poor room-temperature ductility of AZ31 sheet has been a hindrance to forming the complex part shapes necessary for practical applications. However, the outstanding formability of AZ31 sheet at elevated temperature provides an opportunity to overcome that problem. Complex demonstration components have already been produced at 450°C using gas-pressure forming. Accurate simulations of such hot, gas-pressure forming will be required for the design and optimization exercises necessary if this technology is to be implemented commercially. We report on experiments and simulations used to construct the accurate material constitutive models necessary for finite-element-method simulations. In particular, the effects of strain and stress state on plastic deformation of AZ31 sheet at 450°C are considered in material constitutive model development. Material models are validated against data from simple forming experiments.

  19. A modular tooling set-up for incremental sheet forming (ISF) with subsequent stress-relief annealing under partial constraints

    NASA Astrophysics Data System (ADS)

    Maqbool, Fawad; Bambach, Markus

    2017-10-01

    Incremental sheet forming (ISF) is a manufacturing process most suitable for small-batch production of sheet metal parts. In ISF, a CNC-controlled tool moves over the sheet metal, following a specified contour to form a part of the desired geometry. This study focuses on one of the dominant process limitations associated with the ISF, i.e., the limited geometrical accuracy. In this regard, a case study is performed which shows that increased geometrical accuracy of the formed part can be achieved by a using stress-relief annealing before unclamping. To keep the tooling costs low, a modular die design consisting of a stiff metal frame and inserts made from inexpensive plastics (Sika®) were devised. After forming, the plastics inserts are removed. The metal frame supports the part during stress-relief annealing. Finite Element (FE) simulations of the manufacturing process are performed. Due to the residual stresses induced during the forming, the geometry of the formed part, from FE simulation and the actual manufacturing process, shows severe distortion upon unclamping the part. Stress relief annealing of the formed part under partial constraints exerted by the tool frame shows that a part with high geometrical accuracy can be obtained.

  20. Influence of silicone sheets on microvascular anastomosis.

    PubMed

    Hoang Nguyen, The; Kloeppel, Marcus; Hoehnke, Christoph; Staudenmaier, Rainer

    2008-12-01

    The use of silicone products combined with free flap transfer is well established in reconstructive surgery. We determined the risk of thrombosis as a result of direct contact between the silicone sheet and the point of microanastomosis. We performed microvascular surgery in 24 female Chinchilla Bastard rabbits weighing 3500 to 4000 g using two groups: Group 1 (n = 12), microanastomosis directly in contact with silicone sheets; and Group 2 (n = 12), microanastomosis protected by a 2 x 3 x 1-cm muscle cuff before being placed in contact with the silicone. We assessed flow-through of the microanastomosis by selective microangiography and histology at 1 and 3 weeks. All microanastomoses in Group 1 were occluded by postoperative thromboses, whereas all microanastomoses in Group 2 had adequate flow-through. Histologic analysis revealed thromboses in Group 1 formed from collagenous bundles of fiber securely attached to the intraluminal wall of the vessel. Three weeks after the procedure, these thromboses were canalized by varying small vessels. In Group 2, a slight luminal stenosis with evidence of infiltration of inflammatory cells at the microanastomosis line was observed histologically in all cases. Prefabricated flaps using silicone sheets and muscular cuffs placed around the anastomoses appear to reduce the risk of thrombosis and enhance neovascularization.

  1. The Potential of Lignolytic Trichoderma Isolates in LDPE (Low Density Polyethylene) Plastic Biodegradation

    NASA Astrophysics Data System (ADS)

    Hikmah, M.; Setyaningsih, R.; Pangastuti, A.

    2018-03-01

    Plastic is experiencing buildup in the environment. Biodegradation process can be used as an alternative for LDPE plastic degradation because the process is environmentally friendly. Some fungi of the genus Trichoderma are known to have a role in plastic biodegradation. This study aims to find out how the potential of that lignolytic Trichoderma spp. isolates in LDPE biodegradation. Five isolates were screened by growing on MSMB (mineral salt medium broth) emulsified LDPE powder, with 35 days incubation at 30°C and shaking at 80 rpm. TL1, TL4, and TL5 are the three most potential isolates, indicated by the growth marked by increasing colony size on screening media. They were then tested for biodegradability by growing the isolates in MSMA (mineral salt medium agar) which then inoculated by 4 sheets of sterile LDPE 1x3 cm2 above the colony surface, incubated for 5, 15, 25 and 35 days. The degredability assessment is done by measuring the weight loss of LDPE sheets after biodegradation treatment. The obtained degradability percentage of TL1, TL4, and TL5 are 4.87%, 7.12%, and 7,51% respectively. The visual micrograph of LDPE film by SEM showed the appearance of damage and unevenness on the surface of the post-degradation film.

  2. Parameter optimization and stretch enhancement of AISI 316 sheet using rapid prototyping technique

    NASA Astrophysics Data System (ADS)

    Moayedfar, M.; Rani, A. M.; Hanaei, H.; Ahmad, A.; Tale, A.

    2017-10-01

    Incremental sheet forming is a flexible manufacturing process which uses the indenter point-to-point force to shape the sheet metal workpiece into manufactured parts in batch production series. However, the problem sometimes arising from this process is the low plastic point in the stress-strain diagram of the material which leads the low stretching amount before ultra-tensile strain point. Hence, a set of experiments is designed to find the optimum forming parameters in this process for optimum sheet thickness distribution while both sides of the sheet are considered for the surface quality improvement. A five-axis high-speed CNC milling machine is employed to deliver the proper motion based on the programming system while the clamping system for holding the sheet metal was a blank mould. Finally, an electron microscope and roughness machine are utilized to evaluate the surface structure of final parts, illustrate any defect may cause during the forming process and examine the roughness of the final part surface accordingly. The best interaction between parameters is obtained with the optimum values which lead the maximum sheet thickness distribution of 4.211e-01 logarithmic elongation when the depth was 24mm with respect to the design. This study demonstrates that this rapid forming method offers an alternative solution for surface quality improvement of 65% avoiding the low probability of cracks and low probability of crystal structure changes.

  3. Temporal Dynamics of Bacterial and Fungal Colonization on Plastic Debris in the North Sea.

    PubMed

    De Tender, Caroline; Devriese, Lisa I; Haegeman, Annelies; Maes, Sara; Vangeyte, Jürgen; Cattrijsse, André; Dawyndt, Peter; Ruttink, Tom

    2017-07-05

    Despite growing evidence that biofilm formation on plastic debris in the marine environment may be essential for its biodegradation, the underlying processes have yet to be fully understood. Thus, far, bacterial biofilm formation had only been studied after short-term exposure or on floating plastic, yet a prominent share of plastic litter accumulates on the seafloor. In this study, we explored the taxonomic composition of bacterial and fungal communities on polyethylene plastic sheets and dolly ropes during long-term exposure on the seafloor, both at a harbor and an offshore location in the Belgian part of the North Sea. We reconstructed the sequence of events during biofilm formation on plastic in the harbor environment and identified a core bacteriome and subsets of bacterial indicator species for early, intermediate, and late stages of biofilm formation. Additionally, by implementing ITS2 metabarcoding on plastic debris, we identified and characterized for the first time fungal genera on plastic debris. Surprisingly, none of the plastics exposed to offshore conditions displayed the typical signature of a late stage biofilm, suggesting that biofilm formation is severely hampered in the natural environment where most plastic debris accumulates.

  4. Application of sintered titanium alloys to metal denture bases: a study of titanium powder sheets for complete denture base.

    PubMed

    Doi, H; Harrori, M; Hasegawa, K; Yoshinari, M; Kawada, E; Oda, Y

    2001-02-01

    The purpose of this study was the fabrication of titanium powder sheets to enable the application of sintered titanium alloys as metal denture bases. The effects of titanium particle shape and size, binder content, and plasticizer content on the surface smoothness, tensile strength and elongation of titanium powder sheets was investigated. To select a suitable ratio of powdered metal contents for application as a metal denture base, the effects of aluminum content in Ti sheets and various other powder metal contents in Ti-Al sheets on the density, sintering shrinkage, and bending strength were evaluated. Based on the results of the above experiments, we developed a mixed powder sheet composed of 83Ti-7Al-10Cr with TA45 titanium powder (atomized, -45 microm), and 8 mass% binder content. This titanium alloy sheet had good formability and ductility. Its sintered titanium alloy had a density of 3.2 g/cm3, sintering shrinkage of 3.8%, and bending strength of 403 MPa. The titanium alloy sheet is clinically acceptable for fabricating denture bases.

  5. Rollable nano-etched diffractive low-concentration PV sheets for small satelites

    NASA Astrophysics Data System (ADS)

    Brac-de-la-Perriere, Vincent; Kress, Bernard; Ben-Menahem, Shahar; Ishihara, Abraham K.; Dorais, Greg

    2014-09-01

    This paper discuses a novel, rollable, mass fabricable, low-concentration photovoltaic sheets for Cubesats providing them with efficient photoelectric conversion of sunlight and secondary diffuse light. The wrap consists of three thin (of order a millimeter or less), cheap plastic-sheet layers, which can be rolled together in a spiral wrapping configuration when stowed. Preliminary simulation based on the above modeling approaches show that the designs achieve comparable photovoltaic power (area for area) and (b) result in a at angular response curve which remains at from normal incidence of over 35 degrees to the normal. The simulation were performed using a ray tracing simulator built in Matlab. In addition, we have constructed a demonstrator using quartz wafers based on the optimized design to show the technology. Details of its fabrication are also provided.

  6. Effect of Punch Stroke on Deformation During Sheet Forming Through Finite Element

    NASA Astrophysics Data System (ADS)

    Akinlabi, Stephen; Akinlabi, Esther

    2017-08-01

    Forming is one of the traditional methods of making shapes, bends and curvature in metallic components during a fabrication process. Mechanical forming, in particular, employs the use of a punch, which is pressed against the sheet material to be deformed into a die by the application of an external force. This study reports on the finite element analysis of the effects of punch stroke on the resulting sheet deformation, which is directly a function of the structural integrity of the formed components for possible application in the automotive industry. The results show that punch stroke is directly proportional to the resulting bend angle of the formed components. It was further revealed that the developed plastic strain increases as the punch stroke increases.

  7. Influence of Accumulative Roll Bonding on the Texture and Tensile Properties of an AZ31 Magnesium Alloy Sheets

    PubMed Central

    Džugan, Ján; Németh, Gergely; Lukáč, Pavel; Bohlen, Jan

    2018-01-01

    Deformation behaviour of rolled AZ31 sheets that were subjected to the accumulative roll bonding was investigated. Substantially refined microstructure of samples was achieved after the first and second pass through the rolling mill. Sheets texture was investigated using an X-ray diffractometer. Samples for tensile tests were cut either parallel or perpendicular to the rolling direction. Tensile tests were performed at temperatures ranging from room temperature up to 300 °C. Tensile plastic anisotropy, different from the anisotropy observed in AZ31 sheets by other authors, was observed. This anisotropy decreases with an increasing number of rolling passes and increasing deformation temperature. Grain refinement and texture are the crucial factors influencing the deformation behaviour. PMID:29303975

  8. Environmental Detection of Single-Walled Carbon Nanotubes Utilizing Near-Infrared Fluorescence

    EPA Science Inventory

    There are a growing number of applications for carbon nanotubes (CNT) in modern technologies and, subsequently, growth in production of CNT has expanded rapidly. Single-walled CNT (SWCNT) consist of a graphene sheet rolled up into a tube. With growing manufacture and use, the ...

  9. Microfluidics with fluid walls.

    PubMed

    Walsh, Edmond J; Feuerborn, Alexander; Wheeler, James H R; Tan, Ann Na; Durham, William M; Foster, Kevin R; Cook, Peter R

    2017-10-10

    Microfluidics has great potential, but the complexity of fabricating and operating devices has limited its use. Here we describe a method - Freestyle Fluidics - that overcomes many key limitations. In this method, liquids are confined by fluid (not solid) walls. Aqueous circuits with any 2D shape are printed in seconds on plastic or glass Petri dishes; then, interfacial forces pin liquids to substrates, and overlaying an immiscible liquid prevents evaporation. Confining fluid walls are pliant and resilient; they self-heal when liquids are pipetted through them. We drive flow through a wide range of circuits passively by manipulating surface tension and hydrostatic pressure, and actively using external pumps. Finally, we validate the technology with two challenging applications - triggering an inflammatory response in human cells and chemotaxis in bacterial biofilms. This approach provides a powerful and versatile alternative to traditional microfluidics.The complexity of fabricating and operating microfluidic devices limits their use. Walsh et al. describe a method in which circuits are printed as quickly and simply as writing with a pen, and liquids in them are confined by fluid instead of solid walls.

  10. HOT CELL BUILDING, TRA632. WHILE STEEL BEAMS DEFINE FUTURE WALLS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HOT CELL BUILDING, TRA-632. WHILE STEEL BEAMS DEFINE FUTURE WALLS OF THE BUILDING, SHEET STEEL DEFINES THE HOT CELL "BOX" ITSELF. THREE OPERATING WINDOWS ON LEFT; ONE VIEWING WINDOW ON RIGHT. TUBES WILL CONTAIN SERVICE AND CONTROL LEADS. SPACE BETWEEN INNER AND OUTER BOX WALLS WILL BE FILLED WITH SHIELDED WINDOWS AND BARETES CONCRETE. CAMERA FACES SOUTHEAST. INL NEGATIVE NO. 7933. Unknown Photographer, ca. 5/1953 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  11. Light scattering apparatus and method for determining radiation exposure to plastic detectors

    DOEpatents

    Hermes, Robert E.

    2002-01-01

    An improved system and method of analyzing cumulative radiation exposure registered as pits on track etch foils of radiation dosimeters. The light scattering apparatus and method of the present invention increases the speed of analysis while it also provides the ability to analyze exposure levels beyond that which may be properly measured with conventional techniques. Dosimeters often contain small plastic sheets that register accumulated damage when exposed to a radiation source. When the plastic sheet from the dosimeter is chemically etched, a track etch foil is produced wherein pits or holes are created in the plastic. The number of these pits, or holes, per unit of area (pit density) correspond to the amount of cumulative radiation exposure which is being optically measured by the apparatus. To measure the cumulative radiation exposure of a track etch foil a high intensity collimated beam is passed through foil such that the pits and holes within the track etch foil cause a portion of the impinging light beam to become scattered upon exit. The scattered light is focused with a lens, while the primary collimated light beam (unscattered light) is blocked. The scattered light is focused by the lens onto an optical detector capable of registering the optical power of the scattered light which corresponds to the cumulative radiation to which the track etch foil has been exposed.

  12. Experimental Study on Tensile Properties of a Novel Porous Metal Fiber/Powder Sintered Composite Sheet

    PubMed Central

    Zou, Shuiping; Wan, Zhenping; Lu, Longsheng; Tang, Yong

    2016-01-01

    A novel porous metal fiber/powder sintered composite sheet (PMFPSCS) is developed by sintering a mixture of a porous metal fiber sintered sheet (PMFSS) and copper powders with particles of a spherical shape. The characteristics of the PMFPSCS including its microstructure, sintering density and porosity are investigated. A uniaxial tensile test is carried out to study the tensile behaviors of the PMFPSCS. The deformation and failure mechanisms of the PMFSCS are discussed. Experimental results show that the PMFPSCS successively experiences an elastic stage, hardening stage, and fracture stage under tension. The tensile strength of the PMFPSCS is determined by a reticulated skeleton of fibers and reinforcement of copper powders. With the porosity of the PMFSS increasing, the tensile strength of the PMFPSCS decreases, whereas the reinforcement of copper powders increases. At the elastic stage, the structural elastic deformation is dominant, and at the hardening stage, the plastic deformation is composed of the structural deformation and the copper fibers’ plastic deformation. The fracture of the PMFPSCS is mainly caused by the breaking of sintering joints. PMID:28773833

  13. Ductile Fracture Initiation of Anisotropic Metal Sheets

    NASA Astrophysics Data System (ADS)

    Dong, Liang; Li, Shuhui; He, Ji

    2017-07-01

    The objective of this research is to investigate the influence of material plastic anisotropy on ductile fracture in the strain space under the assumption of plane stress state for sheet metals. For convenient application, a simple expression is formulated by the method of total strain theory under the assumption of proportional loading. The Hill 1948 quadratic anisotropic yield model and isotropic hardening flow rule are adopted to describe the plastic response of the material. The Mohr-Coulomb model is revisited to describe the ductile fracture in the stress space. Besides, the fracture locus for DP590 in different loading directions is obtained by experiments. Four different types of tensile test specimens, including classical dog bone, flat with cutouts, flat with center holes and pure shear, are performed to fracture. All these specimens are prepared with their longitudinal axis inclined with the angle of 0°, 45°, and 90° to the rolling direction, respectively. A 3D digital image correlation system is used in this study to measure the anisotropy parameter r 0, r 45, r 90 and the equivalent strains to fracture for all the tests. The results show that the material plastic anisotropy has a remarkable influence on the fracture locus in the strain space and can be predicted accurately by the simple expression proposed in this study.

  14. Studies in Cup Drawing Behavior of Polymer Laminated Sheet Metal

    NASA Astrophysics Data System (ADS)

    Elnagmi, M.; Jain, M.; Bruhis, M.; Nielsen, K.

    2011-08-01

    Axisymmetric deep drawing behavior of a polymer laminated sheet metal (PLSM) is investigated using an axisymmetric cup drawing test. PLSMs are of interest as a replacement for painted finishes for automotive applications as they have the potential to achieve good quality long lasting and aesthetically appealing surfaces on stamped parts. However, there is limited understanding of PLSMs in automotive deep drawing situations to produce complex 3-D parts. The tests are carried out using well-controlled, laboratory-based, dual-action, servo-hydraulic forming presses under blank-holder force and punch displacement control conditions. An optical strain mapping system is used to measure the surface strains (and to construct 3D strain maps) from the film side of the deformed samples for a range of forming conditions. Deep drawing characteristics such as punch load versus punch displacement traces, strain distribution along the cup profile, flange wrinkling and fracture characteristics are experimentally assessed for stainless steel-plastic film laminated sheet materials. Also the effect of lamination pressure on wrinkling and delamination is investigated for a decorative pressure sensitive adhesive film affixed to the stainless steel sheet.

  15. "Quasi-freestanding" graphene-on-single walled carbon nanotube electrode for applications in organic light-emitting diode.

    PubMed

    Liu, Yanpeng; Jung, Eun; Wang, Yu; Zheng, Yi; Park, Eun Ji; Cho, Sung Min; Loh, Kian Ping

    2014-03-12

    An air-stable transparent conductive film with "quasi-freestanding" graphene supported on horizontal single walled carbon nanotubes (SWCNTs) arrays is fabricated. The sheet resistance of graphene films stacked via layer-by-layer transfer (LBL) on quartz, and modified by 1-Pyrenebutyric acid N-hydroxysuccinimide ester (PBASE), is reduced from 273 Ω/sq to about 76 Ω/sq. The electrical properties are stable to heat treatment (up to 200 ºC) and ambient exposure. Organic light-emitting diodes (OLEDs) constructed of this carbon anode (T ≈ 89.13% at 550 nm) exhibit ≈88% power efficiency of OLEDs fabricated on an ITO anode (low turn on voltage ≈3.1 eV, high luminance up to ≈29 490 cd/m(2) , current efficiency ≈14.7 cd/A). Most importantly, the entire graphene-on-SWCNT hybrid electrodes can be transferred onto plastic (PET) forming a highly-flexible OLED device, which continues to function without degradation in performance at bending angles >60°. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Behaviour of Masonry Walls under Horizontal Shear in Mining Areas

    NASA Astrophysics Data System (ADS)

    Kadela, Marta; Bartoszek, Marek; Fedorowicz, Jan

    2017-12-01

    The paper discusses behaviour of masonry walls constructed with small-sized elements under the effects of mining activity. It presents some mechanisms of damage occurring in such structures, its forms in real life and the behaviour of large fragments of masonry walls subjected to specific loads in FEM computational models. It offers a constitutive material model, which enables numerical analyses and monitoring of the behaviour of numerical models as regards elastic-plastic performance of the material, with consideration of its degradation. Results from the numerical analyses are discussed for isolated fragments of the wall subjected to horizontal shear, with consideration of degradation, impact of imposed vertical load as well as the effect of weakening of the wall, which was achieved by introducing openings in it, on the performance and deformation of the wall.

  17. Forced convective heat transfer in boundary layer flow of Sisko fluid over a nonlinear stretching sheet.

    PubMed

    Munir, Asif; Shahzad, Azeem; Khan, Masood

    2014-01-01

    The major focus of this article is to analyze the forced convective heat transfer in a steady boundary layer flow of Sisko fluid over a nonlinear stretching sheet. Two cases are studied, namely (i) the sheet with variable temperature (PST case) and (ii) the sheet with variable heat flux (PHF case). The heat transfer aspects are investigated for both integer and non-integer values of the power-law index. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations using appropriate similarity variables and solved numerically. The numerical results are obtained by the shooting method using adaptive Runge Kutta method with Broyden's method in the domain[Formula: see text]. The numerical results for the temperature field are found to be strongly dependent upon the power-law index, stretching parameter, wall temperature parameter, material parameter of the Sisko fluid and Prandtl number. In addition, the local Nusselt number versus wall temperature parameter is also graphed and tabulated for different values of pertaining parameters. Further, numerical results are validated by comparison with exact solutions as well as previously published results in the literature.

  18. Sequential shrink photolithography for plastic microlens arrays

    NASA Astrophysics Data System (ADS)

    Dyer, David; Shreim, Samir; Jayadev, Shreshta; Lew, Valerie; Botvinick, Elliot; Khine, Michelle

    2011-07-01

    Endeavoring to push the boundaries of microfabrication with shrinkable polymers, we have developed a sequential shrink photolithography process. We demonstrate the utility of this approach by rapidly fabricating plastic microlens arrays. First, we create a mask out of the children's toy Shrinky Dinks by simply printing dots using a standard desktop printer. Upon retraction of this pre-stressed thermoplastic sheet, the dots shrink to a fraction of their original size, which we then lithographically transfer onto photoresist-coated commodity shrink wrap film. This shrink film reduces in area by 95% when briefly heated, creating smooth convex photoresist bumps down to 30 µm. Taken together, this sequential shrink process provides a complete process to create microlenses, with an almost 99% reduction in area from the original pattern size. Finally, with a lithography molding step, we emboss these bumps into optical grade plastics such as cyclic olefin copolymer for functional microlens arrays.

  19. Sequential shrink photolithography for plastic microlens arrays.

    PubMed

    Dyer, David; Shreim, Samir; Jayadev, Shreshta; Lew, Valerie; Botvinick, Elliot; Khine, Michelle

    2011-07-18

    Endeavoring to push the boundaries of microfabrication with shrinkable polymers, we have developed a sequential shrink photolithography process. We demonstrate the utility of this approach by rapidly fabricating plastic microlens arrays. First, we create a mask out of the children's toy Shrinky Dinks by simply printing dots using a standard desktop printer. Upon retraction of this pre-stressed thermoplastic sheet, the dots shrink to a fraction of their original size, which we then lithographically transfer onto photoresist-coated commodity shrink wrap film. This shrink film reduces in area by 95% when briefly heated, creating smooth convex photoresist bumps down to 30 µm. Taken together, this sequential shrink process provides a complete process to create microlenses, with an almost 99% reduction in area from the original pattern size. Finally, with a lithography molding step, we emboss these bumps into optical grade plastics such as cyclic olefin copolymer for functional microlens arrays.

  20. Microwave conductance properties of aligned multiwall carbon nanotube textile sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Brian L.; Martinez, Patricia; Zakhidov, Anvar A.

    2015-07-06

    Understanding the conductance properties of multi-walled carbon nanotube (MWNT) textile sheets in the microwave regime is essential for their potential use in high-speed and high-frequency applications. To expand current knowledge, complex high-frequency conductance measurements from 0.01 to 50 GHz and across temperatures from 4.2 K to 300 K and magnetic fields up to 2 T were made on textile sheets of highly aligned MWNTs with strand alignment oriented both parallel and perpendicular to the microwave electric field polarization. Sheets were drawn from 329 and 520 μm high MWNT forests that resulted in different DC resistance anisotropy. For all samples, themore » microwave conductance can be modeled approximately by a shunt capacitance in parallel with a frequency-independent conductance, but with no inductive contribution. Finally, this is consistent with diffusive Drude conduction as the primary transport mechanism up to 50 GHz. Further, it is found that the microwave conductance is essentially independent of both temperature and magnetic field.« less

  1. Separation of polyethylene terephthalate from municipal waste plastics by froth flotation for recycling industry.

    PubMed

    Wang, Chong-Qing; Wang, Hui; Liu, You-Nian

    2015-01-01

    Recycling is an effective way to manage plastic wastes and receives considerable attention. Since plastic mixtures are difficult to recycle because of their intrinsic characteristics, separation of mixed plastics is the key problem for recycling. Separation of polyethylene terephthalate (PET) from municipal waste plastics (MWP) by froth flotation combined with alkaline pretreatment was investigated for recycling industry. The effect of process variables was estimated by L9 (3(4)) orthogonal array of experiments and single factor experiments. The optimum conditions of alkaline pretreatment are 10 wt% sodium hydroxide, 20 min and 70°C. After alkaline pretreatment under optimum conditions, flotation separation PET from acrylonitrile-butadiene-styrene, polystyrene, polycarbonate or polyvinyl chloride was achieved with high purity and efficiency. The purity of PET is up to 98.46% and the recovery is above 92.47%. A flow sheet of separation PET from MWP by a combination of froth flotation and sink float separation was designed. This study facilitates industrial application of plastics flotation and provides technical insights into recycling of waste plastics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Assessment of Industry Attitudes on Collaborating with the U.S. Department of Defense in Research and Development and Technology Sharing

    DTIC Science & Technology

    2004-01-01

    8 47 1 1 Security 1 1 Solar Control 1 Simulation Software 1 Structural Design 2 9 1 1 Thermal Design 3 11 1 3 APPENDIX III...e.g. diapers , trash bags) 3259 Plastic color concentrates and compounds 3261 ESD control flooring, wall base. Extruded thermoplastic sheet for

  3. Influence of Silicone Sheets on Microvascular Anastomosis

    PubMed Central

    Kloeppel, Marcus; Hoehnke, Christoph; Staudenmaier, Rainer

    2008-01-01

    The use of silicone products combined with free flap transfer is well established in reconstructive surgery. We determined the risk of thrombosis as a result of direct contact between the silicone sheet and the point of microanastomosis. We performed microvascular surgery in 24 female Chinchilla Bastard rabbits weighing 3500 to 4000 g using two groups: Group 1 (n = 12), microanastomosis directly in contact with silicone sheets; and Group 2 (n = 12), microanastomosis protected by a 2 × 3 × 1-cm muscle cuff before being placed in contact with the silicone. We assessed flow-through of the microanastomosis by selective microangiography and histology at 1 and 3 weeks. All microanastomoses in Group 1 were occluded by postoperative thromboses, whereas all microanastomoses in Group 2 had adequate flow-through. Histologic analysis revealed thromboses in Group 1 formed from collagenous bundles of fiber securely attached to the intraluminal wall of the vessel. Three weeks after the procedure, these thromboses were canalized by varying small vessels. In Group 2, a slight luminal stenosis with evidence of infiltration of inflammatory cells at the microanastomosis line was observed histologically in all cases. Prefabricated flaps using silicone sheets and muscular cuffs placed around the anastomoses appear to reduce the risk of thrombosis and enhance neovascularization. PMID:18636304

  4. High pressure, energy, and impulse loading of the wall in a 1-GJ Laboratory Microfusion Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrach, R.J.

    1989-07-24

    A proposed Laboratory Microfusion Facility (LMF) must be able to withstand repeated, low-repetition-rate fusion explosions at the 1-GJ (one-quarter ton) yield level. The energy release will occur at the center of a chamber only a few meters in radius, subjecting the interior or first wall to severe levels of temperature, pressure, and impulse. We show by theory and computation that the wall loading can be ameliorated by interposing a spherical shell of low-Z material between the fuel and the wall. This sacrificial shield converts the source energy components that are most damaging to the wall (soft x-rays and fast ions)more » to more benign plasma kinetic energy from the vaporized shield, and stretches the time duration over which this energy is delivered to the wall from nanoseconds to microseconds. Numerical calculations emphasize thin, volleyball-sized plastic shields, and much thicker ones of frozen nitrogen. Wall shielding criteria of small (or no) amount of surface ablation, low impulse and pressure loading, minimal shrapnel danger, small expense, and convenience in handling all favor the thin plastic shields. 7 refs., 4 figs.« less

  5. The development of insecticide-treated durable wall lining for malaria control: insights from rural and urban populations in Angola and Nigeria

    PubMed Central

    2012-01-01

    Background Durable lining (DL) is a deltamethrin-impregnated polyethylene material, which is designed to cover domestic walls that would normally be sprayed with residual insecticide. The operational success of DL as a long-lasting insecticidal substrate will be dependent on a high level of user acceptability as households must maintain correctly installed linings on their walls for several years. Preliminary trials were undertaken to identify a material to develop into a marketable wall lining and to assess its level of acceptability among rural and urban populations. Methods In Angola (n=60), prototype DL and insecticide-treated plastic sheeting (ITPS) were installed on urban house walls and ceilings, respectively, and acceptability was compared to indoor residual spraying (IRS) (n=20) using a knowledge, attitude and practice (KAP) questionnaire. In Nigeria (n=178), three materials (prototype DL, ITPS and insecticide-treated wall netting) were distributed among rural and urban households. User opinions were gathered from focus group discussions, in-depth interviews and KAP questionnaires. Results In Angola, after two weeks, the majority of participants (98%) expressed satisfaction with the products and identified the killing of insects as the materials’ principal benefits (73%). After one year, despite a loss of almost 50% of households to refugee repatriation, all 32 remaining households still asserted that they had liked the DL/ITPS in their homes and given the choice of intervention preferred DL/ITPS to IRS (94%) or insecticide-treated nets (78%). In Nigeria, a dichotomy between rural and urban respondents emerged. Rural participants favoured wall adornments and accepted wall linings because of their perceived decorative value and entomological efficacy. By contrast, urban households preferred minimal wall decoration and rejected the materials based upon objections to their aesthetics and installation feasibility. Conclusions The high level of acceptability

  6. Properties of hot-rolled sheets from ferritic steel with increased strength

    NASA Astrophysics Data System (ADS)

    Perlovich, Yu.; Isaenkova, M.; Dobrokhotov, P.; Stolbov, S.; Bannykh, O.; Bannykh, I.; Antsyferova, M.

    2017-10-01

    Sheets from ferritic steel 3 mm thick with increased strength after thermal hardening were studied by use of various X-ray methods and mechanical testing. Rolling of steel was carried out at 1100°C with rather great reductions per pass, so that plastic deformation of metal spread by the significant distance from the surface. The texture of sheet proved to have two sharply different layers: the inner layer of ˜40% thick with the usual rolling texture of BCC metals and the external layer with the rolling texture of FCC metals. At that, within the intermediate layer the texture is weakened. Texture formation within the external layer is conditioned by the process of dynamical deformation ageing: interstitial impurities from atmosphere block dislocations, prevent from their slip and at increased temperatures promote their collective climb. As a result, the direction of lattice rotation as well as the final rolling texture change. Due to texture layering, by impact testing of the sheet the plane of crack propagation must be changed when this crack reaches the inner layer, and then an additional energy for its further movement is required. Thermal hardening of the sheet retains the type of rolling texture, though results in some its scattering, but at the same time the breaking point of steel grows twice owing to formation of intermetallic particles.

  7. The Work Softening by Deformation-Induced Disordering and Cold Rolling of 6.5 wt pct Si Steel Thin Sheets

    NASA Astrophysics Data System (ADS)

    Wang, Xianglong; Li, Haoze; Zhang, Weina; Liu, Zhenyu; Wang, Guodong; Luo, Zhonghan; Zhang, Fengquan

    2016-09-01

    As-cast strip of 6.5 wt pct Si steel was fabricated by twin-roll strip casting. After hot rolling at 1323 K (1050 °C), thin sheets with the thickness of 0.35 mm were produced by warm rolling at 373 K (100 °C) with rolling reductions of 15, 25, 35, 45, 55, and 65 pct. Influence of warm rolling reduction on ductility was investigated by room temperature bending test. The measurement of macro-hardness showed that "work softening" could begin when the warm rolling reduction exceeded 35 pct. The room temperature ductility of the thin sheets gradually increased with the increase of warm rolling reductions, and the plastic deformation during bending began to form when the warm rolling reduction was greater than 45 pct, the 65 pct rolled thin sheet exhibited the maximum plastic deformation of about 0.6 pct during bending at room temperature, with a few small dimples having been observed on the fracture surfaces. B2-ordered domains were formed in the 15, 25, 35, 45, and 55 pct rolled specimens, and their average size decreased with the increase of warm rolling reductions. By contrast, no B2-ordered domain could be found in the 65 pct rolled specimen. It had been observed that large-ordered domains could be split into several small parts by the slip of partial super-dislocations during warm rolling, which led to significant decrease of the order degree to cause the phenomenon of deformation-induced disordering. On the basis of these results, cold rolling schedule was developed to successfully fabricate 0.25-mm-thick sheets with good surface qualities and magnetic properties from warm rolled sheets.

  8. Fabrication of water-dispersible single-walled carbon nanotube powder using N-methylmorpholine N-oxide

    NASA Astrophysics Data System (ADS)

    Choi, Hyejun; Woo, Jong Seok; Tark Han, Joong; Park, Soo-Young

    2017-11-01

    Dispersion of nanocarbon materials in liquid media, via solution processing such as spraying, printing, spinning, etc. is one of the prerequisites for practical applications. Here we report that water-dispersible single-walled carbon nanotubes (SWCNTs) were prepared through successive treatments with chlorosulfuric acid (CSA)/H2O2 and N-methylmorpholine N-oxide (NMO) monohydrate. The powder of the CSA/H2O2- and NMO-treated SWCNTs (N-SWCNTs) could be readily redispersed in water in concentrations as high as 1 g l-1 without requiring a dispersant. The mechanism responsible for the high dispersity of the N-SWCNT powder in polar solvents, including water, was elucidated based on the high polarity of the NMO molecule. In order to highlight the wide applicability of the N-SWCNTs, they were used successfully to prepare conducting thin films by spray-coating plastic substrates with an aqueous hybrid solution containing the N-SWCNTs and Ag nanowires (NWs). In addition, a flexible, large-area thin-film heater was prepared based on the N-SWCNT/AgNW hybrid film with a transmittance of 93% and sheet resistance of 30 Ω sq-1.

  9. Comparison of mechanical properties of multi-walled carbon nanotube and graphene nanosheet/polyethylene oxide composites plasticized with lithium triflate

    NASA Astrophysics Data System (ADS)

    Jurkane, A.; Gaidukov, S.

    2017-10-01

    A strong engineering interest in nanostructured conducting polymers and its composite materials have been widely used to build various sensor devices, electronic interconnect devices, fuel cells and batteries. Preparation of polymeric nano-composites with finely controlled structure, especially, at nano-scale, is still one of the most perspective modification ways of the properties of polymeric composites. Multi-walled carbon nanotube (MWCNT)/polyethylene oxide (PEO) and graphene nanosheets (GR)/PEO composites and composite of MWCNT/GR/PEO were prepared by solution casting and hot-pressing method. Composites were plasticized by 5% of Lithium triflate (LiTrifl), which play role of additional ion source in conducting polymer composite. Mechanical tensile tests were performed to evaluate nanoparticles influence on the mechanical strength of the conductive polymer composite materials. Difference of tensile tests of prepared composition can be seen from tensile tests data curves. The results of tensile tests indicated that the nanoparticles can provide PEO/5%LiTrifl composite with stiffening effects at rather low filler content (at least 0.05% by volume).

  10. Growth of Walled Cells: From Shells to Vesicles

    NASA Astrophysics Data System (ADS)

    Boudaoud, Arezki

    2003-07-01

    The growth of isolated walled cells is investigated. Examples of such cells range from bacteria to giant algae, and include cochlear hair, plant root hair, fungi, and yeast cells. They are modeled as elastic shells containing a liquid. Cell growth is driven by fluid pressure and is is similar to a plastic deformation of the wall. The requirement of mechanical equilibrium leads to two new scaling laws for cell size that are in quantitative agreement with the compiled biological data. Given these results, possible shapes for growing cells are computed by analogy with those of vesicle membranes.

  11. Impact of the Parameter Identification of Plastic Potentials on the Finite Element Simulation of Sheet Metal Forming

    NASA Astrophysics Data System (ADS)

    Rabahallah, M.; Bouvier, S.; Balan, T.; Bacroix, B.; Teodosiu, C.

    2007-04-01

    In this work, an implicit, backward Euler time integration scheme is developed for an anisotropic, elastic-plastic model based on strain-rate potentials. The constitutive algorithm includes a sub-stepping procedure to deal with the strong nonlinearity of the plastic potentials when applied to FCC materials. The algorithm is implemented in the static implicit version of the Abaqus finite element code. Several recent plastic potentials have been implemented in this framework. The most accurate potentials require the identification of about twenty material parameters. Both mechanical tests and micromechanical simulations have been used for their identification, for a number of BCC and FCC materials. The impact of the identification procedure on the prediction of ears in cup drawing is investigated.

  12. Designer lignins: harnessing the plasticity of lignification

    DOE PAGES

    Mottiar, Yaseen; Vanholme, Ruben; Boerjan, Wout; ...

    2016-01-15

    Lignin is a complex polyphenolic constituent of plant secondary cell walls. Inspired largely by the recalcitrance of lignin to biomass processing, plant engineering efforts have routinely sought to alter lignin quantity, composition, and structure by exploiting the inherent plasticity of lignin biosynthesis. More recently, researchers are attempting to strategically design plants for increased degradability by incorporating monomers that lead to a lower degree of polymerisation, reduced hydrophobicity, fewer bonds to other cell wall constituents, or novel chemically labile linkages in the polymer backbone. In addition, the incorporation of value-added structures could help valorise lignin. Designer lignins may satisfy the biologicalmore » requirement for lignification in plants while improving the overall efficiency of biomass utilisation.« less

  13. Designer lignins: harnessing the plasticity of lignification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mottiar, Yaseen; Vanholme, Ruben; Boerjan, Wout

    Lignin is a complex polyphenolic constituent of plant secondary cell walls. Inspired largely by the recalcitrance of lignin to biomass processing, plant engineering efforts have routinely sought to alter lignin quantity, composition, and structure by exploiting the inherent plasticity of lignin biosynthesis. More recently, researchers are attempting to strategically design plants for increased degradability by incorporating monomers that lead to a lower degree of polymerisation, reduced hydrophobicity, fewer bonds to other cell wall constituents, or novel chemically labile linkages in the polymer backbone. In addition, the incorporation of value-added structures could help valorise lignin. Designer lignins may satisfy the biologicalmore » requirement for lignification in plants while improving the overall efficiency of biomass utilisation.« less

  14. 32. SPILLWAY CHANNEL WALLS REINF. DETAILS; MONOLITHS E22, E23, W22, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. SPILLWAY CHANNEL WALLS REINF. DETAILS; MONOLITHS E-22, E-23, W-22, AND W-23. Sheet S-46, May, 1940. File no. 342/59. - Prado Dam, Spillway, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  15. A study of elastic and plastic stress concentration factors due to notches and fillets in flat plates

    NASA Technical Reports Server (NTRS)

    Hardrath, Herbert F; Ohman, Lachlan

    1953-01-01

    Six large 24s-t3 aluminum-alloy-sheet specimens containing various notches or fillets were tested in tension to determine their stress concentration factors in both the elastic and plastic ranges. The elastic stress concentration factors were found to be slightly higher than those calculated by Neuber's method and those obtained photoelastically by Frocht. The results showed further that the stress concentration factor decreases as strains at the discontinuity enter the plastic range. A generalization of Stowell's relation for the plastic stress concentration factor at a circular hole in an infinite plate was applied to the specimen shapes tested and gave good agreement with test results.

  16. Sequential shrink photolithography for plastic microlens arrays

    PubMed Central

    Dyer, David; Shreim, Samir; Jayadev, Shreshta; Lew, Valerie; Botvinick, Elliot; Khine, Michelle

    2011-01-01

    Endeavoring to push the boundaries of microfabrication with shrinkable polymers, we have developed a sequential shrink photolithography process. We demonstrate the utility of this approach by rapidly fabricating plastic microlens arrays. First, we create a mask out of the children’s toy Shrinky Dinks by simply printing dots using a standard desktop printer. Upon retraction of this pre-stressed thermoplastic sheet, the dots shrink to a fraction of their original size, which we then lithographically transfer onto photoresist-coated commodity shrink wrap film. This shrink film reduces in area by 95% when briefly heated, creating smooth convex photoresist bumps down to 30 µm. Taken together, this sequential shrink process provides a complete process to create microlenses, with an almost 99% reduction in area from the original pattern size. Finally, with a lithography molding step, we emboss these bumps into optical grade plastics such as cyclic olefin copolymer for functional microlens arrays. PMID:21863126

  17. Parametric analysis of plastic strain and force distribution in single pass metal spinning

    NASA Astrophysics Data System (ADS)

    Choudhary, Shashank; Tejesh, Chiruvolu Mohan; Regalla, Srinivasa Prakash; Suresh, Kurra

    2013-12-01

    Metal spinning also known as spin forming is one of the sheet metal working processes by which an axis-symmetric part can be formed from a flat sheet metal blank. Parts are produced by pressing a blunt edged tool or roller on to the blank which in turn is mounted on a rotating mandrel. This paper discusses about the setting up a 3-D finite element simulation of single pass metal spinning in LS-Dyna. Four parameters were considered namely blank thickness, roller nose radius, feed ratio and mandrel speed and the variation in forces and plastic strain were analysed using the full-factorial design of experiments (DOE) method of simulation experiments. For some of these DOE runs, physical experiments on extra deep drawing (EDD) sheet metal were carried out using En31 tool on a lathe machine. Simulation results are able to predict the zone of unsafe thinning in the sheet and high forming forces that are hint to the necessity for less-expensive and semi-automated machine tools to help the household and small scale spinning workers widely prevalent in India.

  18. Wall extensibility: its nature, measurement and relationship to plant cell growth

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1993-01-01

    Expansive growth of plant cells is controlled principally by processes that loosen the wall and enable it to expand irreversibly. The central role of wall relaxation for cell expansion is reviewed. The most common methods for assessing the extension properties of plant cell walls ( wall extensibility') are described, categorized and assessed critically. What emerges are three fundamentally different approaches which test growing cells for their ability (a) to enlarge at different values of turgor, (b) to induce wall relaxation, and (c) to deform elastically or plastically in response to an applied tensile force. Analogous methods with isolated walls are similarly reviewed. The results of these different assays are related to the nature of plant cell growth and pertinent biophysical theory. I argue that the extensibilities' measured by these assays are fundamentally different from one another and that some are more pertinent to growth than others.

  19. An elastoplastic analysis of a uniaxially loaded sheet with an interference-fit bolt. [using the finite element method

    NASA Technical Reports Server (NTRS)

    Crews, J. H., Jr.

    1974-01-01

    The stresses and strains in a uniaxially loaded sheet with an unloaded interference-fit bolt were calculated by an elastoplastic finite-element analysis. The material properties represented a 7075-T6 aluminum alloy sheet and a steel bolt. The analysis considered the two ideal cases of no slip and no friction at the bolt-sheet interface for a single combination of bolt diameter, interference level, and cyclic loading. When the bolt was inserted, the sheet deformed plastically near the hole; the first tensile load cycle produced additional yielding, but subsequent cycles to the same level caused only elastic cyclic stresses. These stresses together with fatigue data for unnotched specimens were used to estimate crack initiation periods and initiation sites. The cases analyzed with interference-fit bolts were predicted to have crack initiation periods which were about 50 times that for a clearance-fit bolt. Crack initiation was predicted to occur on the transverse axis at a distance of about one radius from the hole.

  20. Dense-body aggregates as plastic structures supporting tension in smooth muscle cells.

    PubMed

    Zhang, Jie; Herrera, Ana M; Paré, Peter D; Seow, Chun Y

    2010-11-01

    The wall of hollow organs of vertebrates is a unique structure able to generate active tension and maintain a nearly constant passive stiffness over a large volume range. These properties are predominantly attributable to the smooth muscle cells that line the organ wall. Although smooth muscle is known to possess plasticity (i.e., the ability to adapt to large changes in cell length through structural remodeling of contractile apparatus and cytoskeleton), the detailed structural basis for the plasticity is largely unknown. Dense bodies, one of the most prominent structures in smooth muscle cells, have been regarded as the anchoring sites for actin filaments, similar to the Z-disks in striated muscle. Here, we show that the dense bodies and intermediate filaments formed cable-like structures inside airway smooth muscle cells and were able to adjust the cable length according to cell length and tension. Stretching the muscle cell bundle in the relaxed state caused the cables to straighten, indicating that these intracellular structures were connected to the extracellular matrix and could support passive tension. These plastic structures may be responsible for the ability of smooth muscle to maintain a nearly constant tensile stiffness over a large length range. The finding suggests that the structural plasticity of hollow organs may originate from the dense-body cables within the smooth muscle cells.

  1. Deep drawing of 304 L Steel Sheet using Vegetable oils as Forming Lubricants

    NASA Astrophysics Data System (ADS)

    Shashidhara, Y. M.; Jayaram, S. R.

    2012-12-01

    The study involves the evaluation of deep drawing process using two non edible oils, Pongam (Pongammia pinnata) and Jatropha (Jatropha carcass) as metal forming lubricants. Experiments are conducted on 304L steel sheets under the raw and modified oils with suitable punch and die on a hydraulic press of 200 ton capacity. The punch load, draw-in-length and wall thickness distribution for deep drawn cups are observed. The drawn cups are scanned using laser scanning technique and 3D models are generated using modeling package. The wall thickness profiles of cups at different sections (or height) are measured using CAD package. Among the two raw oils, the drawn cups under Jatropha oil, have uniform wall thickness profile compared to Pongam oil. Uneven flow of material and cup rupturing is observed under methyl esters of Pongam and Jatropha oil lubricated conditions. However, the results are observed under epoxidised Jatropha oil with uniform metal flow and wall thicknesses compared to mineral and other versions of vegetable oils.

  2. [Some similarities between the work of M.C. Escher and plastic surgery].

    PubMed

    Marck, K W

    2002-12-21

    At first sight there would appear to be no similarities between the work of the Dutch graphic artist M.C. Escher and plastic surgery. M.C. Escher was a gifted graphic artist who produced a large collection of work. Most of his fame is due to the works that play with symmetry, space and infinity and leave the viewer astounded. However, how Escher came to produce these works is less well known. A theory which he developed himself formed the basis of the regular plane division. It later became apparent that this theory almost completely agreed with the mathematics of plane division. Two movements (isometries) defined in mathematics, translation and rotation, are equivalent to two techniques for transferring local skin in plastic surgery, namely, advancement and transposition. Escher's performance on the plane of a sheet of paper and a plastic surgeon's performance on the plane of the skin, therefore have a similar mathematical background. Escher has visualised these mathematical rules in an unusual and artistic manner, whereas plastic surgeons apply these rules in the grace of an elastic and healing nature.

  3. In-Line Ultrasonic Monitoring for Sediments Stuck on Inner Wall of a Polyvinyl Chloride Pipe

    PubMed Central

    2014-01-01

    This research verified the applicability and effectiveness of the ultrasonic monitoring of sediments stuck on the inner wall of polyvinyl chloride (PVC) pipes. For identifying the transmittance of acoustic energy and the speed of sound in the PVC material, the pulse-echo ultrasonic testing was conducted for PVC sheets of different thicknesses. To simulate the solidified sediment, the hot melt adhesive (HMA) was covered on the inner wall of the PVC pipe in different heights. From the experiment, the speeds of sound in the PVC and the HMA materials were obtained as about 2258 and 2000 m/s, respectively. The thickness of the materials was calculated through the signal processing such as taking the absolute value and low pass filtering, the echo detection, and the measurement of the time of flight. The errors between actual and measured thicknesses of PVC sheets were below 5%. In the case of the substance stuck on the inner wall, the errors were below 2.5%. Since the pulse-echo ultrasonic inspection is available on the outer surface and its measurement accuracy was over 95%, it can be an efficient and effective in-service structural health monitoring for the sediment on the wall of PVC pipes. PMID:25243223

  4. Deformation and failure mechanism of secondary cell wall in Spruce late wood

    NASA Astrophysics Data System (ADS)

    Adusumalli, Ramesh-Babu; Raghavan, Rejin; Ghisleni, Rudy; Zimmermann, Tanja; Michler, Johann

    2010-08-01

    The deformation and failure of the secondary cell wall of Spruce wood was studied by in-situ SEM compression of micropillars machined by the focused ion beam technique. The cell wall exhibited yield strength values of approximately 160 MPa and large scale plasticity. High resolution SEM imaging post compression revealed bulging of the pillars followed by shear failure. With additional aid of cross-sectional analysis of the micropillars post compression, a model for deformation and failure mechanism of the cell wall has been proposed. The cell wall consists of oriented cellulose microfibrils with high aspect ratio embedded in a hemicellulose-lignin matrix. The deformation of the secondary wall occurs by asymmetric out of plane bulging because of buckling of the microfibrils. Failure of the cell wall following the deformation occurs by the formation of a shear or kink band.

  5. Self-Pierce Riveting Through 3 Sheet Metal Combinations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, Roger; Jonason, Paul; Pettersson, Tommy

    2011-05-04

    One way to reduce the CO{sub 2} emissions in automotives is to reduce the weight of the Body-In-White. One easy to achieve the weight reduction is to replace steel sheet materials with Al alloys, which is 3 times lighter. One issue is the joining process, especially with combinations between steel grades and AL alloys. Example of combination of mixed material combinations (Al-steel) might be found in the door structure. The reason is because of the AL alloys worthier crash performance so the automotive manufacturer might want to use crash impact beams made by high strength steels in a AL intensivemore » door structure. The joining process between aluminum and steel are problematic due it's not possible to use traditional spot-welding technologies due to the materials total difference in microstructure characteristics as well thermal properties. To overcome this issue then mechanical as well adhesion joining are frequently used. This paper describes a development process and subsequently analysis of a self-pierce rivet (SPR) process between 3 sheet metal combinations. The multi-material combinations in this study were a combination of ultra high strength steels sheets (DP1000) and a Al-alloy (AA 6014). The analysis of the SPR process, in sense of mechanical strengths, has been done by peel- and shear tests. To reduce the amount of future physical tests a virtual FE-model has been developed for the process. This FE model of the process has been subsequently used to analyze the mechanical strength during plastic deformation. By using inverse analysis a correct contact algorithm has been evaluated that would predict the binding force between the rivet and sheet under a deformation process. With this new virtual model it will not only possible to analyze and develop the SPR process but also to achieve the final strength of the joint.« less

  6. 15. DETAIL OF HEATSEALING DEVICE USED TO SEAL PLASTIC WRAPPING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. DETAIL OF HEAT-SEALING DEVICE USED TO SEAL PLASTIC WRAPPING APPLIED TO CLEANED FAIRING ASSEMBLY. DEVICE LOCATED ON THE NORTH WALL OF CLEAN ROOM (102) NEAR DOOR TO ASSEMBLY ROOM (101). - Vandenberg Air Force Base, Space Launch Complex 3, Vehicle Support Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  7. Calculation of Dental Exam Room X-Ray Shielding in Walls and Entrances

    DTIC Science & Technology

    2012-08-24

    currently uses 5/16 in drywall on all walls. No specialty shielding products (e.g., lead) are currently being used on any walls. f. The window and...needed for Q (Eq. 2). This calculation assumes the use of a 100-kVp beam. (3) With the use of 5/16 in drywall , no radiation shielding properties are...the doonl’ilay entry t o the room. Both sides of the room contain offices1 single sheet of 5/15n drywall on each side of each \\!Vall to combine

  8. Antifibrotic effect of dexamethasone/alginate-coated silicone sheet in the abraded middle ear mucosa.

    PubMed

    Jang, Chul Ho; Ahn, Seung Hyun; Kim, Geun Hyung

    2016-12-01

    Silicone sheet is a material which is commonly used in middle ear surgery to prevent the formation of adhesions between the tympanic membrane and the medial bony wall of the middle ear cavity. However, silicone sheet can induce a tight and hard fibrous capsule in the region of the stapes, and this is particularly common in cases of eustachian tube dysfunction. As a result of the fibrous encapsulation around the silicone sheet, postoperative aeration of the stapes can be interrupted causing poor hearing gain. In this study, we performed an in vitro and in vivo evaluation of the antifibrotic effects of a dexamethasone and alginate (Dx/alginate) coating on silicone sheet. The Dx/alginate-coated silicone sheets were fabricated using a plasma-treatment and coating method. The Dx/alginate-coated silicone sheets effectively limited in vitro fibroblast attachment and proliferation due to the controlled release of Dx, which can be modified by manipulation of the alginate coating. For the in-vivo evaluation, guinea pigs (albino, male, weighing 250g) were divided into two groups, with the control group (n=5) implanted with silicone sheet and the test group (n=5) receiving Dx/alginate-coated silicone sheet. Animals were sacrificed 3 weeks after implantation, and histological analysis was performed using hematoxylin and eosin (H&E) and immunohistochemical staining techniques. Dx/alginate-coated silicone sheets showed marked inhibition of fibrosis in both the in vitro and in vivo studies. Silicone sheet that incorporates a Dx/alginate coating can release Dx and inhibit fibrosis in the middle ear. This material could be utilized in middle ear surgery as a means of preserving proper aeration and hearing gain following ossiculoplasty. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Theoretical analysis of sheet metal formability

    NASA Astrophysics Data System (ADS)

    Zhu, Xinhai

    Sheet metal forming processes are among the most important metal-working operations. These processes account for a sizable proportion of manufactured goods made in industrialized countries each year. Furthermore, to reduce the cost and increase the performance of manufactured products, in addition to the environmental concern, more and more light weight and high strength materials have been used as a substitute to the conventional steel. These materials usually have limited formability, thus, a thorough understanding of the deformation processes and the factors limiting the forming of sound parts is important, not only from a scientific or engineering viewpoint, but also from an economic point of view. An extensive review of previous studies pertaining to theoretical analyses of Forming Limit Diagrams (FLDs) is contained in Chapter I. A numerical model to analyze the neck evolution process is outlined in Chapter II. With the use of strain gradient theory, the effect of initial defect profile on the necking process is analyzed. In the third chapter, the method proposed by Storen and Rice is adopted to analyze the initiation of localized neck and predict the corresponding FLDs. In view of the fact that the width of the localized neck is narrow, the deformation inside the neck region is constrained by the material in the neighboring homogeneous region. The relative rotation effect may then be assumed to be small and is thus neglected. In Chapter IV, Hill's 1948 yield criterion and strain gradient theory are employed to obtain FLDs, for planar anisotropic sheet materials by using bifurcation analysis. The effects of the strain gradient coefficient c and the material anisotropic parameters R's on the orientation of the neck and FLDs are analyzed in a systematic manner and compared with experiments. In Chapter V, Hill's 79 non-quadratic yield criterion with a deformation theory of plasticity is used along with bifurcation analyses to derive a general analytical

  10. Development of anti-adhesive spongy sheet composed of hyaluronic acid and collagen containing epidermal growth factor.

    PubMed

    Kuroyanagi, Misato; Yamamoto, Akiko; Shimizu, Nahoko; Toi, Ayako; Inomata, Tomonori; Takeda, Akira; Kuroyanagi, Yoshimitsu

    2014-01-01

    Anti-adhesive products need to be designed while considering the concept of wound healing. Two main events must proceed simultaneously: facilitating wound healing in surgically excised tissue, as well as preventing injured tissue from adhering to the surrounding tissue. The present study aimed to develop an anti-adhesive spongy sheet composed of hyaluronic acid and collagen (Col) containing epidermal growth factor, and to investigate the potential of this spongy sheet using an in vitro wound surface model (placing a spongy sheet on a fibroblast-incorporating Col gel sheet) and an in vitro inter-tissue model (placing a spongy sheet between two fibroblast-incorporating Col gel sheets). These in vitro experiments demonstrated that this spongy sheet effectively stimulates fibroblasts to release an increased amount of vascular endothelial growth factor and hepatocyte growth factor, which are essential for wound healing to proceed succesfully. In addition, anti-adhesive performance of this spongy sheet was evaluated in animal experiments using Sprague Dawley rats. Under anesthesia, a 1 cm × 2 cm segment of peritoneum was superficially excised from walls, and the cecum was then abraded by scraping with a scalpel blade over a 1 cm × 2 cm area. A piece of spongy sheet was placed on the peritoneal defect. Both defects were placed in contact, and the incision was closed by suturing. Peritoneal condition was evaluated after one week. This spongy sheet was capable of facilitating the wound healing of surgically excised tissue and preventing surgically excised tissue from adhering to surrounding tissues.

  11. Molecular deformation mechanisms of the wood cell wall material.

    PubMed

    Jin, Kai; Qin, Zhao; Buehler, Markus J

    2015-02-01

    Wood is a biological material with outstanding mechanical properties resulting from its hierarchical structure across different scales. Although earlier work has shown that the cellular structure of wood is a key factor that renders it excellent mechanical properties at light weight, the mechanical properties of the wood cell wall material itself still needs to be understood comprehensively. The wood cell wall material features a fiber reinforced composite structure, where cellulose fibrils act as stiff fibers, and hemicellulose and lignin molecules act as soft matrix. The angle between the fiber direction and the loading direction has been found to be the key factor controlling the mechanical properties. However, how the interactions between theses constitutive molecules contribute to the overall properties is still unclear, although the shearing between fibers has been proposed as a primary deformation mechanism. Here we report a molecular model of the wood cell wall material with atomistic resolution, used to assess the mechanical behavior under shear loading in order to understand the deformation mechanisms at the molecular level. The model includes an explicit description of cellulose crystals, hemicellulose, as well as lignin molecules arranged in a layered nanocomposite. The results obtained using this model show that the wood cell wall material under shear loading deforms in an elastic and then plastic manner. The plastic regime can be divided into two parts according to the different deformation mechanisms: yielding of the matrix and sliding of matrix along the cellulose surface. Our molecular dynamics study provides insights of the mechanical behavior of wood cell wall material at the molecular level, and paves a way for the multi-scale understanding of the mechanical properties of wood. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Micro hot embossing for high-aspect-ratio structure with materials flow enhancement by polymer sheet

    NASA Astrophysics Data System (ADS)

    Murakoshi, Yoichi; Shan, Xue-Chuan; Sano, Toshio; Takahashi, Masaharu; Maeda, Ryutaro

    2004-04-01

    Nano imprinting or Nano embossing process have been introduced to fabricate semiconductor, optical device and Micro Electro Mechanical Systems (MEMS) and the Nano Electro Mechanical Systems (NEMS) to reduce the fabrication cost. In our previous paper, micro hot embossing of Polycarbonate (PC) and Polyetheretherketone (PEEK) for optical switch with 8x8 mirrors was reported. The PC and PEEK sheets were embossed at elevated temperature with an embossing machine designed for the MEMS. In the application, the mirrors on the optical switch had some defects, such as slump, sticking and step at side of the mirror, due to embossing process and process conditions. These defects are attributed to the poor materials flow of plastics into the e Ni mold cavity of complicate shape with different aspect ratio. Therefore, the micro hot embossing is optimized in this paper with PTFE sheet to enhance the materials flow. In this paper, the PC and the PEEK sheets, thickness of 300um, are embossed at elevated temperature with the hot embossing machine with a Nickel mold. To control material flow of the PC or the PEEK sheets, Polytetrafluoroethylene (PTFE) sheet, the thickness of 100um, is placed on the PC or the PEEK sheets at elevated temperature. Mirror shape was transferred with better fidelity on the PC and PEEK sheet, and the thickness of cantilever became thinner than previous embossed structure without the PTFE. Especially, the mirror height and the thickness of cantilever on the PC have been improved at lower embossing temperature.

  13. On the interpretation of combined torsion and tension tests of thin-wall tubes

    NASA Technical Reports Server (NTRS)

    Prager, W

    1948-01-01

    General ways of testing thin-wall tubes under combined tension and torsion as a means of checking the various theories of plasticity are discussed. Suggestions also are given for the interpretation of the tests.

  14. Development and characterization of hybrid tubular structure of PLCL porous scaffold with hMSCs/ECs cell sheet.

    PubMed

    Pangesty, Azizah Intan; Arahira, Takaaki; Todo, Mitsugu

    2017-09-15

    Tissue engineering offers an alternate approach to providing vascular graft with potential to grow similar with native tissue by seeding autologous cells into biodegradable scaffold. In this study, we developed a combining technique by layering a sheet of cells onto a porous tubular scaffold. The cell sheet prepared from co-culturing human mesenchymal stem cells (hMSCs) and endothelial cells (ECs) were able to infiltrate through porous structure of the tubular poly (lactide-co-caprolactone) (PLCL) scaffold and further proliferated on luminal wall within a week of culture. Moreover, the co-culture cell sheet within the tubular scaffold has demonstrated a faster proliferation rate than the monoculture cell sheet composed of MSCs only. We also found that the co-culture cell sheet expressed a strong angiogenic marker, including vascular endothelial growth factor (VEGF) and its receptor (VEGFR), as compared with the monoculture cell sheet within 2 weeks of culture, indicating that the co-culture system could induce differentiation into endothelial cell lineage. This combined technique would provide cellularization and maturation of vascular construct in relatively short period with a strong expression of angiogenic properties.

  15. Influence of the tempering temperature on the mechanical properties and the phase composition of thin sheet TRIP steel

    NASA Astrophysics Data System (ADS)

    Terent'ev, V. F.; Eliseev, E. A.; Matyunin, V. M.; Slizov, A. K.; Marchenkov, A. Yu.; Sirotinkin, V. P.; Baikin, A. S.; Seval'nev, G. S.

    2017-10-01

    The strength and the plasticity properties of sheet high-strength austenitic-martensitic VNS9-Sh TRIP steel (23Kh15N5AM3-Sh) are studied as functions of the tempering temperature in the range 125-600°C. A nonmonotonic decease in the strength and the plasticity properties of the steel has been detected when the tempering temperature increases, and they increase in the range 300-450°C. The influence of aging processes, the precipitation of carbide, and the phase transformations in tempering on the mechanical properties of austenitic-martensitic corrosion-resistant steel is discussed.

  16. Isometric immersions, energy minimization and self-similar buckling in non-Euclidean elastic sheets

    NASA Astrophysics Data System (ADS)

    Gemmer, John; Sharon, Eran; Shearman, Toby; Venkataramani, Shankar C.

    2016-04-01

    The edges of torn plastic sheets and growing leaves often display hierarchical buckling patterns. We show that this complex morphology i) emerges even in zero strain configurations, and ii) is driven by a competition between the two principal curvatures, rather than between bending and stretching. We identify the key role of branch point (or “monkey saddle”) singularities in generating complex wrinkling patterns in isometric immersions, and show how they arise naturally from minimizing the elastic energy.

  17. Adsorption of Cationic Peptides to Solid Surfaces of Glass and Plastic

    PubMed Central

    Kristensen, Kasper; Henriksen, Jonas R.; Andresen, Thomas L.

    2015-01-01

    Cationic membrane-active peptides have been studied for years in the hope of developing them into novel types of therapeutics. In this article, we investigate an effect that might have significant experimental implications for investigators who wish to study these peptides, namely, that the peptides adsorb to solid surfaces of glass and plastic. Specifically, we use analytical HPLC to systematically quantify the adsorption of the three cationic membrane-active peptides mastoparan X, melittin, and magainin 2 to the walls of commonly used glass and plastic sample containers. Our results show that, at typical experimental peptide concentrations, 90% or more of the peptides might be lost from solution due to rapid adsorption to the walls of the sample containers. Thus, our results emphasize that investigators should always keep these adsorption effects in mind when designing and interpreting experiments on cationic membrane-active peptides. We conclude the article by discussing different strategies for reducing the experimental impact of these adsorption effects. PMID:25932639

  18. Experimental and numerical investigations of higher mode effects on seismic inelastic response of reinforced concrete shear walls

    NASA Astrophysics Data System (ADS)

    Ghorbanirenani, Iman

    This thesis presents two experimental programs together with companion numerical studies that were carried out on reinforced concrete shear walls: static tests and dynamic (shake table) tests. The first series of experiments were monotonic and cyclic quasi-static testing on ductile reinforced concrete shear wall specimens designed and detailed according to the seismic provisions of NBCC 2005 and CSA-A23.3-04 standard. The tests were carried out on full-scale and 1:2.37 reduced scale wall specimens to evaluate the seismic design provisions and similitude law and determine the appropriate scaling factor that could be applied for further studies such as dynamic tests. The second series of experiments were shake table tests conducted on two identical 1:2.33 scaled, 8-storey moderately ductile reinforced concrete shear wall specimens to investigate the effects of higher modes on the inelastic response of slender walls under high frequency ground motions expected in Eastern North America. The walls were designed and detailed according to the seismic provisions of NBCC 2005 and CSA-A23.3-04 standard. The objectives were to validate and understand the inelastic response and interaction of shear, flexure and axial loads in plastic hinge zones of the walls considering the higher mode effects and to investigate the formation of second hinge in upper part of the wall due to higher mode responses. Second mode response significantly affected the response of the walls. This caused inelastic flexural response to develop at the 6th level with approximately the same rotation ductility compared to that observed at the base. Dynamic amplification of the base shear forces was also observed in both walls. Numerical modeling of these two shake table tests was performed to evaluate the test results and validate current modeling approaches. Nonlinear time history analyses were carried out by the reinforced concrete fibre element (OpenSees program) and finite element (VecTor2 program

  19. Effects of silicone gel sheet on the stratum corneum hydration.

    PubMed

    Suetak, T; Sasai, S; Zhen, Y X; Tagami, H

    2000-09-01

    Various groups have reported the efficacy of treatment with topical silicone gel sheet (SGS) for keloids and hypertrophic scars. Because its hydrating effect on the stratum corneum (SC) has been suggested as a mechanism underlying its therapeutic effectiveness, we evaluated it by comparing it with simple plastic film occlusion. With biophysical instruments we assessed the water content of the skin surface as well as its water evaporation on the flexor aspects of bilateral forearms of 10 healthy volunteers for 30min after removal of dressings of SGS or a plastic film that were applied either for 1 day or for 7 days. Occlusion with SGS or plastic film induced hydration of the skin surface, which was followed by an initial quick and later slow process of dehydration when the skin was exposed to the ambient atmosphere. The magnitude of the increase in hydration induced by SGS was always smaller than that of the plastic film occlusion and, unlike the latter treatment, hydration became less with repetition of SGS treatment. On day 7, the SC hydration quickly reduced to the level of non-treated control skin after removal of the dressings. An in vivo test demonstrated that the water-holding capacity of the SC normalised after 7 days of SGS treatment. SGS probably produces a favourable condition for the skin by protecting it from various environmental stimuli, while keeping the SC in an adequately but not over-hydrated condition.

  20. Mobile metallic domain walls in an all-in-all-out magnetic insulator

    DOE PAGES

    Ma, Eric Yue; Cui, Yong -Tao; Ueda, Kentaro; ...

    2015-10-30

    Magnetic domain walls are boundaries between regions with different configurations of the same magnetic order. In a magnetic insulator, where the magnetic order is tied to its bulk insulating property, it has been postulated that electrical properties are drastically different along the domain walls, where the order is inevitably disturbed. Here we report the discovery of highly conductive magnetic domain walls in a magnetic insulator, Nd 2Ir 2O 7, that has an unusual all-in-all-out magnetic order, via transport and spatially resolved microwave impedance microscopy. The domain walls have a virtually temperature-independent sheet resistance of ~1 kilohm per square, show smoothmore » morphology with no preferred orientation, are free from pinning by disorders, and have strong thermal and magnetic field responses that agree with expectations for all-in-all-out magnetic order.« less

  1. Wall extensibility and cell hydraulic conductivity decrease in enlarging stem tissues at low water potentials.

    PubMed

    Nonami, H; Boyer, J S

    1990-08-01

    Measurements with a guillotine psychrometer (H Nonami, JS Boyer [1990] Plant Physiol 94: 1601-1609) indicate that the inhibition of stem growth at low water potentials (low psi(w)) is accompanied by decreases in cell wall extensibility and tissue hydraulic conductance to water that eventually limit growth rate in soybean (Glycine max L. Merr.). To check this conclusion, we measured cell wall properties and cell hydraulic conductivities with independent techniques in soybean seedlings grown and treated the same way, i.e. grown in the dark and exposed to low psi(w) by transplanting dark grown seedlings to vermiculite of low water content. Wall properties were measured with an extensiometer modified for intact plants, and conductances were measured with a cell pressure probe in intact plants. Theory was developed to relate the wall measurements to those with the psychrometer. In the elongation zone, the plastic deformability of the walls decreased when measured with the extensiometer while growth was inhibited at low psi(w). It increased during a modest growth recovery. This behavior was the same as that for the wall extensibility observed previously with the psychrometer. Tissue that was killed before measurement with the extensiometer also showed a similar response, indicating that changes in wall extensibility represented changes in wall physical properties and not rates of wall biosynthesis. The elastic compliance (reciprocal of bulk elastic modulus) did not change in the elongating or mature tissue. The hydraulic conductivity of cortical cells decreased in the elongating tissue and increased slightly during growth recovery in a response similar to that observed with the psychrometer. We conclude that the plastic properties of the cell walls and the conductance of the cells to water were decreased at low psi(w) but that the elastic properties of the walls were of little consequence in this response.

  2. Silostop Bunker Covers

    USDA-ARS?s Scientific Manuscript database

    The quality of the seal provided by the plastic cover is a key issue for minimizing losses in bunker and pile silos. Most bunker covers are 6 to 8 mil polyethylene sheets held in place by tires or tire sidewalls. Frequently there are problems with spoilage at the shoulders (i.e., against the walls),...

  3. Multidisciplinary approach to chest wall resection and reconstruction for chest wall tumors, a single center experience

    PubMed Central

    Liparulo, Valeria; Pica, Alessandra; Guarro, Giuseppe; Alfano, Carmine; Puma, Francesco

    2017-01-01

    Background Chest wall resection and reconstruction (CWRR) is quite challenging in surgery, due to evolution in techniques. Neoplasms of the chest wall, primary or secondary, have been considered inoperable for a long time. Thanks to evolving surgical techniques, reconstruction after extensive chest wall resection is possible with good functional and aesthetic results. Methods In our single-center experience, seven cases of extensive CWRR for tumors were performed with a multidisciplinary approach by both thoracic and plastic surgeons. Patients have been retrospective analyzed. Results Acceptable clinical and aesthetical results have been recorded, with a smooth post-operative course and a low rate of post-surgical complications. Two early complications and one late complication (asymptomatic bone allograft fracture on the site of the bar implant) were recorded. Neither postoperative deaths nor local recurrences were registered after a median follow-up period of 13 months. Conclusions Surgical planning is most effective when it is tailored to the patient. Specifically, in the treatment of selected chest wall tumors, the multidisciplinary approach is considered mandatory when an extensive demolition is required. Indeed, here, the radical wide en-bloc resection can lead to good results provided that the extent of resection is not influenced by any anticipated problem in reconstruction. PMID:29312715

  4. Evaluation of bolted connections in wood-plastic composites

    NASA Astrophysics Data System (ADS)

    Arnandha, Yudhi; Satyarno, Iman; Awaludin, Ali; Irawati, Inggar Septia; Ihsan, Muhamad; Wijanarko, Felyx Biondy; William, Mahdinur, Fardhani, Arfiati

    2017-03-01

    Wood-plastic composite (WPC) is a relatively new material that consists of sawdust and plastic polymer using the extrusion process. Due to its attributes such as low water content, low maintenance, UV durability and being fungi and termite resistant. Nowadays, WPC has already been produced in Indonesia using sawdust from local wood such as Albizia (Paraserianthes falcataria) and Teak (Tectona grandis). Moreover preliminary studies about the physical and mechanical WPC board from Albizia sawdust and HDPE plastic have been carried out. Based on these studies, WPC has a high shear strength around 25-30 MPa higher than its original wood shear strength. This paper was a part of the research in evaluating WPC as potential sheathing in a shear wall system. Since still little is known about connection behavior in WPC using Indonesian local wood, this study evaluated the connection for both of these two types of wood-plastic composite. WPC board from Albizia sawdust will be projected as shear wall sheathing and WPC stud from Teak sawdust projected to be shear wall frame. For this study, the embedding strength for both WPC was determined according to ASTM D 5764 standard, using two types of bolts (stainless bolt and standard bolt) with several diameters as variation (6 mm, 8 mm, 10 and 12 mm). Hence, dowel-bearing test under fastened condition conducted accordance to ASTM D5652, hereby the yield strength then compared with the prediction yield strength from European Yield Model (EYM). According to both single and double shear connection, it can be concluded that yield strength from the EYM method tended to under-predict the 5% diameter offset yield than the actual yield strength from the test. The yield strength itself increase with the increase of bolt diameter. For single shear connection, the highest yield strength was 12 mm standard bolt around 9732 N, slightly higher than stainless bolt around 9393 N. Whereby for double shear connection, the highest yield strength was

  5. Detection of defects in formed sheet metal using medial axis transformation

    NASA Astrophysics Data System (ADS)

    Murmu, Naresh C.; Velgan, Roman

    2003-05-01

    In the metal forming processes, the sheet metals are often prone to various defects such as thinning, dents, wrinkles etc. In the present manufacturing environments with ever increasing demand of higher quality, detecting the defects of formed sheet metal using an effective and objective inspection system is the foremost norm to remain competitive in market. The defect detection using optical techniques aspire to satisfy its needs to be non-contact and fast. However, the main difficulties to achieve this goal remain essentially on the development of efficient evaluation technique and accurate interpretation of extracted data. The defect like thinning is detected by evaluating the deviations of the thickness in the formed sheet metal against its nominal value. The present evaluation procedure for determination of thickness applied on the measurements data is not without deficiency. To improve this procedure, a new evaluation approach based on medial axis transformation is proposed here. The formed sheet metals are digitized using fringe projection systems in different orientations, and afterwards registered into one coordinate frame. The medial axis transformation (MAT) is applied on the point clouds, generating the point clouds of MAT. This data is further processed and medial surface is determined. The thinning defect is detected by evaluating local wall thickness and other defects like wrinkles are determined using the shape recognition on the medial surface. The applied algorithm is simple, fast and robust.

  6. Paying and playing with plastic. The meaning of plastics, plasticity, and plastic surgery.

    PubMed

    Williams, D

    1996-11-01

    Plastics are not only the proverbial everyday commodity, but they also permeate almost every aspect of medical devices, from technology to clinical application. This article addresses some of the confusing features of plasticity as they relate to the materials called plastics, to the phenomena of material plasticity, and to the clinical and biological usage of the word.

  7. Investigation on Wall Panel Sandwiched With Lightweight Concrete

    NASA Astrophysics Data System (ADS)

    Lakshmikandhan, K. N.; Harshavardhan, B. S.; Prabakar, J.; Saibabu, S.

    2017-08-01

    The rapid population growth and urbanization have made a massive demand for the shelter and construction materials. Masonry walls are the major component in the housing sector and it has brittle characteristics and exhibit poor performance against the uncertain loads. Further, the structure requires heavier sections for carrying the dead weight of masonry walls. The present investigations are carried out to develop a simple, lightweight and cost effective technology for replacing the existing wall systems. The lightweight concrete is developed for the construction of sandwich wall panel. The EPS (Expanded Polystyrene) beads of 3 mm diameter size are mixed with concrete and developed a lightweight concrete with a density 9 kN/m3. The lightweight sandwich panel is cast with a lightweight concrete inner core and ferrocement outer skins. This lightweight wall panel is tested for in-plane compression loading. A nonlinear finite element analysis with damaged plasticity model is carried out with both material and geometrical nonlinearities. The experimental and analytical results were compared. The finite element study predicted the ultimate load carrying capacity of the sandwich panel with reasonable accuracy. The present study showed that the lightweight concrete is well suitable for the lightweight sandwich wall panels.

  8. Failure Analysis of a Sheet Metal Blanking Process Based on Damage Coupling Model

    NASA Astrophysics Data System (ADS)

    Wen, Y.; Chen, Z. H.; Zang, Y.

    2013-11-01

    In this paper, a blanking process of sheet metal is studied by the methods of numerical simulation and experimental observation. The effects of varying technological parameters related to the quality of products are investigated. An elastoplastic constitutive equation accounting for isotropic ductile damage is implemented into the finite element code ABAQUS with a user-defined material subroutine UMAT. The simulations of the damage evolution and ductile fracture in a sheet metal blanking process have been carried out by the FEM. In order to guarantee computation accuracy and avoid numerical divergence during large plastic deformation, a specified remeshing technique is successively applied when severe element distortion occurs. In the simulation, the evolutions of damage at different stage of the blanking process have been evaluated and the distributions of damage obtained from simulation are in proper agreement with the experimental results.

  9. Cell Wall Metabolism in Response to Abiotic Stress

    PubMed Central

    Gall, Hyacinthe Le; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  10. The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption.

    PubMed

    Nolte, Tom M; Hartmann, Nanna B; Kleijn, J Mieke; Garnæs, Jørgen; van de Meent, Dik; Jan Hendriks, A; Baun, Anders

    2017-02-01

    To investigate processes possibly underlying accumulation and ecological effects of plastic nano-particles we have characterized their interaction with the cell wall of green algae. More specifically, we have investigated the influence of particle surface functionality and water hardness (Ca 2+ concentration) on particle adsorption to algae cell walls. Polystyrene nanoparticles with different functional groups (non-functionalized, -COOH and -NH 2 ) as well as coated (starch and PEG) gold nanoparticles were applied in these studies. Depletion measurements and atomic force microscopy (AFM) showed that adsorption of neutral and positively charged plastic nanoparticles onto the cell wall of P. subcapitata was stronger than that of negatively charged plastic particles. Results indicated that binding affinity is a function of both inter-particle and particle-cell wall interactions which are in turn influenced by the medium hardness and particle concentration. Physicochemical modelling using DLVO theory was used to interpret the experimental data, using also values for interfacial surface free energies. Our study shows that material properties and medium conditions play a crucial role in the rate and state of nanoparticle bio-adsorption for green algae. The results show that the toxicity of nanoparticles can be better described and assessed by using appropriate dose metrics including material properties, complexation/agglomeration behavior and cellular attachment and adsorption. The applied methodology provides an efficient and feasible approach for evaluating potential accumulation and hazardous effects of nanoparticles to algae caused by particle interactions with the algae cell walls. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Fracture Test Methods for Plastically Responding COPV Liners

    NASA Technical Reports Server (NTRS)

    Dawicke, David S.; Lewis, Joseph C.

    2009-01-01

    An experimental procedure for evaluating the validity of using uniaxial tests to provide a conservative bound on the fatigue crack growth rate behavior small cracks in bi-axially loaded Composite Overwrapped Pressure Vessel (COPV) liners is described. The experimental procedure included the use of a laser notch to quickly generate small surface fatigue cracks with the desired size and aspect ratios. An out-of-plane constraint system was designed to allow fully reversed, fully plastic testing of thin sheet uniaxial coupons. Finally, a method was developed to determine to initiate small cracks in the liner of COPVs.

  12. Mobile metallic domain walls in an all-in-all-out magnetic insulator.

    PubMed

    Ma, Eric Yue; Cui, Yong-Tao; Ueda, Kentaro; Tang, Shujie; Chen, Kai; Tamura, Nobumichi; Wu, Phillip M; Fujioka, Jun; Tokura, Yoshinori; Shen, Zhi-Xun

    2015-10-30

    Magnetic domain walls are boundaries between regions with different configurations of the same magnetic order. In a magnetic insulator, where the magnetic order is tied to its bulk insulating property, it has been postulated that electrical properties are drastically different along the domain walls, where the order is inevitably disturbed. Here we report the discovery of highly conductive magnetic domain walls in a magnetic insulator, Nd2Ir2O7, that has an unusual all-in-all-out magnetic order, via transport and spatially resolved microwave impedance microscopy. The domain walls have a virtually temperature-independent sheet resistance of ~1 kilohm per square, show smooth morphology with no preferred orientation, are free from pinning by disorders, and have strong thermal and magnetic field responses that agree with expectations for all-in-all-out magnetic order. Copyright © 2015, American Association for the Advancement of Science.

  13. Wall Extensibility and Cell Hydraulic Conductivity Decrease in Enlarging Stem Tissues at Low Water Potentials 1

    PubMed Central

    Nonami, Hiroshi; Boyer, John S.

    1990-01-01

    Measurements with a guillotine psychrometer (H Nonami, JS Boyer [1990] Plant Physiol 94: 1601-1609) indicate that the inhibition of stem growth at low water potentials (low ψw) is accompanied by decreases in cell wall extensibility and tissue hydraulic conductance to water that eventually limit growth rate in soybean (Glycine max L. Merr.). To check this conclusion, we measured cell wall properties and cell hydraulic conductivities with independent techniques in soybean seedlings grown and treated the same way, i.e. grown in the dark and exposed to low ψw by transplanting dark grown seedlings to vermiculite of low water content. Wall properties were measured with an extensiometer modified for intact plants, and conductances were measured with a cell pressure probe in intact plants. Theory was developed to relate the wall measurements to those with the psychrometer. In the elongation zone, the plastic deformability of the walls decreased when measured with the extensiometer while growth was inhibited at low ψw. It increased during a modest growth recovery. This behavior was the same as that for the wall extensibility observed previously with the psychrometer. Tissue that was killed before measurement with the extensiometer also showed a similar response, indicating that changes in wall extensibility represented changes in wall physical properties and not rates of wall biosynthesis. The elastic compliance (reciprocal of bulk elastic modulus) did not change in the elongating or mature tissue. The hydraulic conductivity of cortical cells decreased in the elongating tissue and increased slightly during growth recovery in a response similar to that observed with the psychrometer. We conclude that the plastic properties of the cell walls and the conductance of the cells to water were decreased at low ψw but that the elastic properties of the walls were of little consequence in this response. PMID:16667664

  14. Inside-the-wall detection of objects with low metal content using the GPR sensor: effects of different wall structures on the detection performance

    NASA Astrophysics Data System (ADS)

    Dogan, Mesut; Yesilyurt, Omer; Turhan-Sayan, Gonul

    2018-04-01

    Ground penetrating radar (GPR) is an ultra-wideband electromagnetic sensor used not only for subsurface sensing but also for the detection of objects which may be hidden behind a wall or inserted within the wall. Such applications of the GPR technology are used in both military and civilian operations such as mine or IED (improvised explosive device) detection, rescue missions after earthquakes and investigation of archeological sites. Detection of concealed objects with low metal content is known to be a challenging problem in general. Use of A-scan, B-scan and C-scan GPR data in combination provides valuable information for target recognition in such applications. In this paper, we study the problem of target detection for potentially explosive objects embedded inside a wall. GPR data is numerically simulated by using an FDTD-based numerical computation tool when dielectric targets and targets with low metal content are inserted into different types of walls. A small size plastic bottle filled with trinitrotoluene (TNT) is used as the target with and without a metal fuse in it. The targets are buried into two different types of wall; a homogeneous brick wall and an inhomogeneous wall constructed by bricks having periodically located air holes in it. Effects of using an inhomogeneous wall structure with internal boundaries are investigated as a challenging scenario, paying special attention to preprocessing.

  15. On the growth of walled cells: From shells to vesicles.

    NASA Astrophysics Data System (ADS)

    Boudaoud, Arezki

    2003-03-01

    The growth of isolated walled cells is investigated. Examples of such cells range from bacteria to giant algae, and include cochlear hair, plant root hair, fungi and yeast cells. They are modeled as elastic shells inflated by a liquid. Cell growth is driven by fluid pressure and is similar to a plastic deformation of the wall. The requirement of mechanical equilibrium leads to two new scaling laws for cell size that are in quantitative agreement with the compiled biological data. Given these results, possible shapes for growing cells are computed by analogy with those of vesicle membranes.

  16. The use of potassium hydroxide (KOH) solution as a suitable approach to isolate plastics ingested by marine organisms.

    PubMed

    Kühn, Susanne; van Werven, Bernike; van Oyen, Albert; Meijboom, André; Bravo Rebolledo, Elisa L; van Franeker, Jan A

    2017-02-15

    In studies of plastic ingestion by marine wildlife, visual separation of plastic particles from gastrointestinal tracts or their dietary content can be challenging. Earlier studies have used solutions to dissolve organic materials leaving synthetic particles unaffected. However, insufficient tests have been conducted to ensure that different categories of consumer products partly degraded in the environment and/or in gastrointestinal tracts were not affected. In this study 63 synthetic materials and 11 other dietary items and non-plastic marine debris were tested. Irrespective of shape or preceding environmental history, most polymers resisted potassium hydroxide (KOH) solution, with the exceptions of cellulose acetate from cigarette filters, some biodegradable plastics and a single polyethylene sheet. Exposure of hard diet components and other marine debris showed variable results. In conclusion, the results confirm that usage of KOH solutions can be a useful approach in general quantitative studies of plastic ingestion by marine wildlife. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Scaling Symmetries in Elastic-Plastic Dynamic Cavity Expansion Equations Using the Isovector Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albright, Eric Jason; Ramsey, Scott D.; Schmidt, Joseph H.

    Cavity-expansion approximations are widely-used in the study of penetration mechanics and indentation phenomena. We apply the isovector method to a well-established model in the literature for elastic-plastic cavity-expansion to systematically demonstrate the existence of Lie symmetries corresponding to scale-invariant solutions. Here we use the symmetries obtained from the equations of motion to determine compatible auxiliary conditions describing the cavity wall trajectory and the elastic-plastic material interface. The admissible conditions are then compared with specific similarity solutions in the literature.

  18. Scaling Symmetries in Elastic-Plastic Dynamic Cavity Expansion Equations Using the Isovector Method

    DOE PAGES

    Albright, Eric Jason; Ramsey, Scott D.; Schmidt, Joseph H.; ...

    2017-09-16

    Cavity-expansion approximations are widely-used in the study of penetration mechanics and indentation phenomena. We apply the isovector method to a well-established model in the literature for elastic-plastic cavity-expansion to systematically demonstrate the existence of Lie symmetries corresponding to scale-invariant solutions. Here we use the symmetries obtained from the equations of motion to determine compatible auxiliary conditions describing the cavity wall trajectory and the elastic-plastic material interface. The admissible conditions are then compared with specific similarity solutions in the literature.

  19. A comprehensive study of the electrically conducting water based CuO and Al2O3 nanoparticles over coupled nanofluid-sheet interface

    NASA Astrophysics Data System (ADS)

    Ahmad, R.

    2016-02-01

    Many studies on nanofluid flow over a permeable/impermeable sheet prescribe the kinematics of the sheet and disregard the sheet’s mechanics. However, the current study is one of the infrequent contributions that anticipate the mechanics of both the electrically conducting nanofluid (a homogeneous mixture of nanoparticles and base fluid) and the sheet. Two types of nanoparticles, alumina and copper, with water as a base fluid over the sheet are considered. With the help of the similarity transformations, the corresponding partial differential equations for the coupled nanofluid-sheet interface are transformed into a system of ordinary differential equations. The simulations are done by using the experimentally verified results from the previous studies for viscosity and thermal conductivity. Self-similar solutions are attained by considering both analytical and numerical techniques. Dual skin friction coefficients are attained with different copper and alumina nanoparticles over both the stretching and viscous sheets. The influence of the Eckert number, magnetic and mass suction/blowing parameters on the dimensionless velocity, temperature, skin friction and heat transfer rates over the nanofluid-sheet interface are presented graphically as well as numerically. The obtained results are of potential benefit for studying nanofluid flow over various soft surfaces such as synthetic plastics, soft silicone sheet and soft synthetic rubber sheet. These surfaces are easily deformed by thermal fluctuations.

  20. Periodontal regeneration with multi-layered periodontal ligament-derived cell sheets in a canine model.

    PubMed

    Iwata, Takanori; Yamato, Masayuki; Tsuchioka, Hiroaki; Takagi, Ryo; Mukobata, Shigeki; Washio, Kaoru; Okano, Teruo; Ishikawa, Isao

    2009-05-01

    Periodontal regeneration has been challenged with chemical reagents and/or biological approaches, however, there is still no sufficient technique that can regenerate complete periodontium, including alveolar bone, cementum, and well-oriented collagen fibers. The purpose of this study was to examine multi-layered sheets of periodontal ligament (PDL)-derived cells for periodontal regeneration. Canine PDL cells were isolated enzymatically and expanded in vitro. The cell population contained cells capable of making single cell-derived colonies at an approximately 20% frequency. Expression of mRNA of periodontal marker genes, S100 calcium binding protein A4 and periostin, was observed. Alkaline phosphatase activity and gene expression of both osteoblastic/cementoblastic and periodontal markers were upregulated by osteoinductive medium. Then, three-layered PDL cell sheets supported with woven polyglycolic acid were transplanted to dental root surfaces having three-wall periodontal defects in an autologous manner, and bone defects were filled with porous beta-tricalcium phosphate. Cell sheet transplantation regenerated both new bone and cementum connecting with well-oriented collagen fibers, while only limited bone regeneration was observed in control group where cell sheet transplantation was eliminated. These results suggest that PDL cells have multiple differentiation properties to regenerate periodontal tissues comprising hard and soft tissues. PDL cell sheet transplantation should prove useful for periodontal regeneration in clinical settings.

  1. In-Situ Subsurface Coating of Corroded Steel Sheet Pile Structures: Final Report on Project F08-AR06

    DTIC Science & Technology

    2017-09-01

    scraped the sheet pile wall with an excavator. After scraping the out-pans with a flat edge bucket, the contractor welded a blade on the bucket...unusual striations were parallel grooves running at 30 – 45 degrees from the vertical. Some patterns cross each other symmetrically. The stria- tions

  2. Community-wide patterns of plastic ingestion in seabirds breeding at French Frigate Shoals, Northwestern Hawaiian Islands.

    PubMed

    Rapp, Dan C; Youngren, Sarah M; Hartzell, Paula; David Hyrenbach, K

    2017-10-15

    Between 2006 and 2013, we salvaged and necropsied 362 seabird specimens from Tern Island, French Frigate Shoals, Northwestern Hawaiian Islands. Plastic ingestion occurred in 11 of the 16 species sampled (68.75%), representing four orders, seven families, and five foraging guilds: four plunge-divers, two albatrosses, two nocturnal-foraging petrels, two tuna-birds, and one frigatebird. Moreover, we documented the first instance of ingestion in a previously unstudied species: the Brown Booby. Plastic prevalence (percent occurrence) ranged from 0% to 100%, with no significant differences across foraging guilds. However, occurrence was significantly higher in chicks versus adult conspecifics in the Black-footed Albatross, one of the three species where multiple age classes were sampled. While seabirds ingested a variety of plastic (foam, line, sheets), fragments were the most common and numerous type. In albatrosses and storm-petrels, the plastic occurrence in the two stomach chambers (the proventriculus and the ventriculus) was not significantly different. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Building America Case Study: Monitoring of Double Stud Wall Moisture Conditions in the Northeast, Devens, Massachusetts (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2015-03-01

    Double-stud walls insulated with cellulose or low-density spray foam can have R-values of 40 or higher. However, double stud walls have a higher risk of interior-sourced condensation moisture damage, when compared with high-R approaches using exterior insulating sheathing. Moisture conditions in double stud walls were monitored in Zone 5A (Massachusetts); three double stud assemblies were compared.

  4. Elastic Plastic Fracture Analysis of an Aluminum COPV Liner

    NASA Technical Reports Server (NTRS)

    Forth, Scott; Gregg, Bradley; Bailey, Nathaniel

    2012-01-01

    Onboard any space-launch vehicle, composite over-wrapped pressure vessels (COPVs) may be utilized by propulsion or environmental control systems. The failure of a COPV has the potential to be catastrophic, resulting in the loss of vehicle, crew or mission. The latest COPV designs have reduced the wall-thickness of the metallic liner to the point where the material strains plastically during operation. At this time, the only method to determine the damage tolerance lifetime (safe-life) of a plastically responding metallic liner is through full-scale COPV testing. Conducting tests costs substantially more and can be far more time consuming than performing an analysis. As a result of this cost, there is a need to establish a qualifying process through the use of a crack growth analysis tool. This paper will discuss fracture analyses of plastically responding metallic liners in COPVs. Uni-axial strain tests have been completed on laboratory specimens to collect elastic-plastic crack growth data. This data has been modeled with the crack growth analysis tool, NASGRO 6.20 to predict the response of laboratory specimens and subsequently the complexity of a COPV.

  5. Multi-functionality and plasticity characterize epithelial cells in Hydra

    PubMed Central

    Buzgariu, W; Al Haddad, S; Tomczyk, S; Wenger, Y; Galliot, B

    2015-01-01

    Epithelial sheets, a synapomorphy of all metazoans but porifers, are present as 2 layers in cnidarians, ectoderm and endoderm, joined at their basal side by an extra-cellular matrix named mesoglea. In the Hydra polyp, epithelial cells of the body column are unipotent stem cells that continuously self-renew and concomitantly express their epitheliomuscular features. These multifunctional contractile cells maintain homeostasis by providing a protective physical barrier, by digesting nutrients, by selecting a stable microbiota, and by rapidly closing wounds. In addition, epithelial cells are highly plastic, supporting the adaptation of Hydra to physiological and environmental changes, such as long starvation periods where survival relies on a highly dynamic autophagy flux. Epithelial cells also play key roles in developmental processes as evidenced by the organizer activity they develop to promote budding and regeneration. We propose here an integrative view of the homeostatic and developmental aspects of epithelial plasticity in Hydra. PMID:26716072

  6. Resistance spot welding of ultra-fine grained steel sheets produced by constrained groove pressing: Optimization and characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khodabakhshi, F.; Kazeminezhad, M., E-mail: mkazemi@sharif.edu; Kokabi, A.H.

    2012-07-15

    Constrained groove pressing as a severe plastic deformation method is utilized to produce ultra-fine grained low carbon steel sheets. The ultra-fine grained sheets are joined via resistance spot welding process and the characteristics of spot welds are investigated. Resistance spot welding process is optimized for welding of the sheets with different severe deformations and their results are compared with those of as-received samples. The effects of failure mode and expulsion on the performance of ultra-fine grained sheet spot welds have been investigated in the present paper and the welding current and time of resistance spot welding process according to thesemore » subjects are optimized. Failure mode and failure load obtained in tensile-shear test, microhardness, X-ray diffraction, transmission electron microscope and scanning electron microscope images have been used to describe the performance of spot welds. The region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. The results show that optimum welding parameters (welding current and welding time) for ultra-fine grained sheets are shifted to lower values with respect to those for as-received specimens. In ultra-fine grained sheets, one new region is formed named recrystallized zone in addition to fusion zone, heat affected zone and base metal. It is shown that microstructures of different zones in ultra-fine grained sheets are finer than those of as-received sheets. - Highlights: Black-Right-Pointing-Pointer Resistance spot welding process is optimized for joining of UFG steel sheets. Black-Right-Pointing-Pointer Optimum welding current and time are decreased with increasing the CGP pass number. Black-Right-Pointing-Pointer Microhardness at BM, HAZ, FZ and recrystallized zone is enhanced due to CGP.« less

  7. Rupture model based on non-associated plasticity

    NASA Astrophysics Data System (ADS)

    Pradeau, Adrien; Yoon, Jeong Whan; Thuillier, Sandrine; Lou, Yanshan; Zhang, Shunying

    2018-05-01

    This research work is about modeling the mechanical behavior of metallic sheets of AA6016 up to rupture using non-associated flow rule. Experiments were performed at room temperature in uniaxial tension and simple shear in different directions according to the rolling direction and an additional hydraulic bulge test. The anisotropy of the material is described by a Yld2000-2d yield surface [1], calibrated by stress ratios, and a plastic potential represented by Hill1948 [2], calibrated using Lankford coefficients. That way, the former is able to reproduce the yield stresses in different directions and the latter is able to reproduce the deformations in different directions as well [3], [4]. Indeed, the non-associated flow rule allows for the direction of the plastic flow not to be necessarily normal to the yield surface. Concerning the rupture, the macroscopic ductile fracture criterion DF2014 was used [5]. It indirectly uses the three invariants of the stress tensor by using the three following parameters: the stress triaxiality η, the Lode parameter L and the equivalent plastic strain to fracture ∈f-p . In order to be consistent with the plastic model and to add more flexibility to the p criterion, the equivalent stress σ ¯ and the equivalent strain to fracture ∈f-p have been substituted respectively as Yld2000-2d and Hill1948 in the DF2014 fracture criterion. The parameters for the fracture criterion were obtained by optimization and the fracture locus can be plotted in the (η ,L ,∈-p) space. The damage indicator D is then numerically predicted with respect of average strain values. A good correlation with the experimental results is obtained.

  8. The use of silicone sheet to improve buccal fat pad healing in palatal reconstruction.

    PubMed

    Robiony, Massimo

    2010-10-01

    The author presents a new method involving the use of a silicone sheet to achieve an improved, faster healing of pedicled buccal fat pad flaps used in palatal reconstructions. This method was applied in 3 patients with excellent final results. The procedure is quick and easy to implement, and it efficiently improves the healing of buccal fat pad used in palatal reconstruction surgery. Copyright 2010 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  9. Fourier transform mid infrared spectroscopy applications for monitoring the structural plasticity of plant cell walls

    PubMed Central

    Largo-Gosens, Asier; Hernández-Altamirano, Mabel; García-Calvo, Laura; Alonso-Simón, Ana; Álvarez, Jesús; Acebes, José L.

    2014-01-01

    Fourier transform mid-infrared (FT-MIR) spectroscopy has been extensively used as a potent, fast and non-destructive procedure for analyzing cell wall architectures, with the capacity to provide abundant information about their polymers, functional groups, and in muro entanglement. In conjunction with multivariate analyses, this method has proved to be a valuable tool for tracking alterations in cell walls. The present review examines recent progress in the use of FT-MIR spectroscopy to monitor cell wall changes occurring in muro as a result of various factors, such as growth and development processes, genetic modifications, exposition or habituation to cellulose biosynthesis inhibitors and responses to other abiotic or biotic stresses, as well as its biotechnological applications. PMID:25071791

  10. Biodegradation of Poly(3-hydroxybutyrate- co-3-hydroxyhexanoate) Plastic under Anaerobic Sludge and Aerobic Seawater Conditions: Gas Evolution and Microbial Diversity.

    PubMed

    Wang, Shunli; Lydon, Keri A; White, Evan M; Grubbs, Joe B; Lipp, Erin K; Locklin, Jason; Jambeck, Jenna R

    2018-05-15

    Poly(3-hydroxybutyrate- co-3-hydroxyhexanoate) (poly(3HB- co-3HHx)) thermoplastics are a promising biodegradable alternative to traditional plastics for many consumer applications. Biodegradation measured by gaseous carbon loss of several types of poly(3HB- co-3HHx) plastic was investigated under anaerobic conditions and aerobic seawater environments. Under anaerobic conditions, the biodegradation levels of a manufactured sheet of poly(3HB- co-3HHx) and cellulose powder were not significantly different from one another over 85 days with 77.1 ± 6.1 and 62.9 ± 19.7% of the carbon converted to gas, respectively. However, the sheet of poly(3HB- co-3HHx) had significantly higher methane yield ( p ≤ 0.05), 483.8 ± 35.2 mL·g -1 volatile solid (VS), compared to cellulose controls, 290.1 ± 92.7 mL·g -1 VS, which is attributed to a greater total carbon content. Under aerobic seawater conditions (148-195 days at room temperature), poly(3HB- co-3HHx) sheets were statistically similar to cellulose for biodegradation as gaseous carbon loss (up to 83% loss in about 6 months), although the degradation rate was lower than that for cellulose. The microbial diversity was investigated in both experiments to explore the dominant bacteria associated with biodegradation of poly(3HB- co-3HHx) plastic. For poly(3HB- co-3HHx) treatments, Cloacamonales and Thermotogales were enriched under anaerobic sludge conditions, while Clostridiales, Gemmatales, Phycisphaerales, and Chlamydiales were the most enriched under aerobic seawater conditions.

  11. Evacuated, displacement compression mold. [of tubular bodies from thermosetting plastics

    NASA Technical Reports Server (NTRS)

    Heier, W. C. (Inventor)

    1974-01-01

    A process of molding long thin-wall tubular bodies from thermosetting plastic molding compounds is described wherein the tubular body lengths may be several times the diameters. The process is accomplished by loading a predetermined quantity of molding compound into a female mold cavity closed at one end by a force mandrel. After closing the other end of the female mold with a balance mandrel, the loaded cavity is evacuated by applying a vacuum of from one-to-five mm pressure for a period of fifteen-to-thirty minutes. The mold temperature is raised to the minimum temperature at which the resin constituent of the compound will soften or plasticize and a pressure of 2500 psi is applied.

  12. Effect of gamma irradiation on the structural, mechanical and optical properties of polytetrafluoroethylene sheet

    NASA Astrophysics Data System (ADS)

    Mohammadian-Kohol, M.; Asgari, M.; Shakur, H. R.

    2018-04-01

    In this study, the effects of gamma radiation on the chemical structure, mechanical and optical properties of polytetrafluoroethylene (PTFE) sheet were investigated with various doses up to 12 kGy. The chemical changes in the structure were studied by FTIR spectroscopy. Also, effects of radiation on the different mechanical parameters such as Young's modulus, toughness, strain, and stress were studied at the maximum tolerable force and the fracture points. Furthermore, changing the various optical parameters such as absorption coefficient, Urbach energy, optical band gaps, refractive index, optical dispersion parameters and plasma resonance frequency were studied by UV-visible spectroscopy. Formation of a band at 1594 cm-1, which was belonged to double carbon bonds, indicated that chain-scission was occurred at 12 kGy gamma irradiation dose. As well, the mechanical results showed an increase in the elastic behavior of PTFE sheets and a decrease in the plastic behavior of it with absorbed dose increasing. Moreover, the results showed that gamma irradiation can effectively change the various optical properties of PTFE sheets due to different phenomena such as degradation of the main chains, occurring chain-scission, formation of free radicals and cross-linking in the polymer structure.

  13. Friction stir lap joining of automotive aluminium alloy and carbon-fiber-reinforced plastic

    NASA Astrophysics Data System (ADS)

    Bang, H. S.; Das, A.; Lee, S.; Bang, H. S.

    2018-05-01

    Multi-material combination such as aluminium alloys and carbon-fiber-reinforced plastics (CFRP) are increasingly used in the aircraft and automobile industries to enhance strength-to-weight ratio of the respective parts and components. Various processes such as adhesive bonding, mechanical fasteners and laser beam joining were employed to join metal alloy and CFRP sheets. However, long processing time of adhesive bonding, extra weight induced by mechanical fasteners and high operating cost of the laser is major limitations of these processes. Therefore, friction stir welding is an alternative choice to overcome those limitations in joining of CFRP and aluminium alloys. In the present work, an attempt is undertaken to join AA5052 alloy and polyamide 66 CFRP sheets by friction stir lap joining technique using pinned and pin-less tools. The joint qualities are investigated extensively at different joining conditions using two different types of tools and surface ground aluminium sheets. The results show that pin-less tool and surface ground aluminium alloy can provide the suitable joint with maximum joint strength around 8 MPa.

  14. 6. "TEST STAND NO. 13, RETAINING WALLS & APRON, SECTIONS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. "TEST STAND NO. 1-3, RETAINING WALLS & APRON, SECTIONS & ELEVATIONS." Specifications No. OC11-50-10; Drawing No. 60-09-06; no sheet number within title block. D.O. SERIES 1109/20, Rev. B. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04-353 Eng. 177, Rev. B; Date: 26 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-3, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  15. Steel Sheet Piles - Applications and Elementary Design Issues

    NASA Astrophysics Data System (ADS)

    Sobala, Dariusz; Rybak, Jarosław

    2017-10-01

    High-intensity housing having been carried out in town’s centres causes that many complex issues related to earthworks and foundations must be resolved. Project owners are required to ensure respective number of parking bays, which in turn demands 2-3 storeys of underground car parks. It is especially difficult to fulfil in dense buildings of old town areas where apart from engineering problems, very stringent requirements of heritage conservator supervision are also raised. The problems with ensuring stability of excavation sidewalls need to be, at the same time, dealt with analysis of foundations of neighbouring structures, and possible strengthening them at the stages of installing the excavation protection walls, progressing the excavations and constructing basement storeys. A separate problem refers to necessity of constructing underground storeys below the level of local groundwater. This requires long-term lowering of water table inside excavation while at possibly limited intervention in hydrological regime beyond the project in progress. In river valleys such “hoarding off” the excavation and cutting off groundwater leads to temporary or permanent disturbances of groundwater run-off and local swellings. Traditional way to protect vertical fault and simultaneously to cut-off groundwater inflow consists in application of steel sheet pilings. They enable to construct monolithic reinforced concrete structures of underground storeys thus ensuring both their tightness and high rigidity of foundation. Depending on situation, steel sheet pilings can be in retrieving or staying-in-place versions. This study deals with some selected aspects of engineering design and fabrication of sheet piling for deep excavations and underground parts of buildings.

  16. Ice stream activity scaled to ice sheet volume during Laurentide Ice Sheet deglaciation.

    PubMed

    Stokes, C R; Margold, M; Clark, C D; Tarasov, L

    2016-02-18

    The contribution of the Greenland and West Antarctic ice sheets to sea level has increased in recent decades, largely owing to the thinning and retreat of outlet glaciers and ice streams. This dynamic loss is a serious concern, with some modelling studies suggesting that the collapse of a major ice sheet could be imminent or potentially underway in West Antarctica, but others predicting a more limited response. A major problem is that observations used to initialize and calibrate models typically span only a few decades, and, at the ice-sheet scale, it is unclear how the entire drainage network of ice streams evolves over longer timescales. This represents one of the largest sources of uncertainty when predicting the contributions of ice sheets to sea-level rise. A key question is whether ice streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. Here we reconstruct the activity of 117 ice streams that operated at various times during deglaciation of the Laurentide Ice Sheet (from about 22,000 to 7,000 years ago) and show that as they activated and deactivated in different locations, their overall number decreased, they occupied a progressively smaller percentage of the ice sheet perimeter and their total discharge decreased. The underlying geology and topography clearly influenced ice stream activity, but--at the ice-sheet scale--their drainage network adjusted and was linked to changes in ice sheet volume. It is unclear whether these findings can be directly translated to modern ice sheets. However, contrary to the view that sees ice streams as unstable entities that can accelerate ice-sheet deglaciation, we conclude that ice streams exerted progressively less influence on ice sheet mass balance during the retreat of the Laurentide Ice Sheet.

  17. Size effects on plasticity and fatigue microstructure evolution in FCC single crystals

    NASA Astrophysics Data System (ADS)

    El-Awady, Jaafar Abbas

    with and without the activation of cross-slip are compared. Discontinuous hardening is observed when cross-slip is included. Experimentally-observed size effects on plastic flow and work- hardening are consistent with a "weakest-link activation mechanism". In addition, the variations and periodicity of dislocation activation are analyzed using the Fast Fourier Transform (FFT). We then present models of localized plastic deformation inside Persistent Slip Band channels. We investigate the interaction between screw dislocations as they pass one another inside channel walls in copper. The model shows the mechanisms of dislocation bowing, dipole formation and binding, and dipole destruction as screw dislocations pass one another. The mechanism of (dipole passing) is assessed and interpreted in terms of the fatigue saturation stress. We also present results for the effects of the wall dipole structure on the dipole passing mechanism. The edge dislocation dipolar walls is seen to have an effect on the passing stress as well. It is shown that the passing stress in the middle of the channel is reduced by 11 to 23% depending on the initial configuration of the screw dislocations with respect to one another. Finally, from large scale simulations of the expansion process of the edge dipoles from the walls in the channel the screw dislocations in the PSB channels may not meet "symmetrically", i.e. precisely in the center of the channel but preferably a little on one or the other side. For this configuration the passing stress will be lowered which is in agreement to experimental observations.

  18. Triggering of explosive reconnection in a thick current sheet via current sheet compression: Less current sheet thinning, more temperature anisotropy

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; Shinohara, I.; Fujimoto, M.

    2016-12-01

    Two-dimensional kinetic simulations of compression of thick current sheets are performed to see how it can lead to triggering of explosive magnetic reconnection. The current sheet under study is simply in a Harris-like anti-paralell and symmetric geometry. A one-dimensional pre-study shows that the compression is more effective to make the plasma anisotropy than to thin the current sheet width. When the lobe magnetic field is amplified by a factor of 2, the plasma temperature anisotropy inside the current sheet reaches 2 but the current sheet thickness is reduced only by 1/sqrt(2). If a current sheet thickness needs to be comparable to the ion inertial scale for reconnection triggering take place, as is widely and frequently mentioned in the research community, the initial thickness cannot be more than a few ion scale for reconnection to set-in. On the other hand, the temperature anisotropy of 2 can be significant for the triggering problem. Two-dimensional simulations show explosive magnetic reconnection to take place even when the initial current sheet thickness more than an order of magnitude thicker than the ion scale, indicating the resilient triggering drive supplied by the temperature anisotropy. We also discuss how the reconnection triggering capability of the temperature anisotropy boosted tearing mode for thick current sheets compares with the instabilities in the plane orthogonal to the reconnecting field.

  19. Beyond Slurry-Cast Supercapacitor Electrodes: PAN/MWNT Heteromat-Mediated Ultrahigh Capacitance Electrode Sheets.

    PubMed

    Lee, Jung Han; Kim, Jeong A; Kim, Ju-Myung; Lee, Sun-Young; Yeon, Sun-Hwa; Lee, Sang-Young

    2017-01-31

    Supercapacitors (SCs) have garnered considerable attention as an appealing power source for forthcoming smart energy era. An ultimate challenge facing the SCs is the acquisition of higher energy density without impairing their other electrochemical properties. Herein, we demonstrate a new class of polyacrylonitrile (PAN)/multi-walled carbon tube (MWNT) heteromat-mediated ultrahigh capacitance electrode sheets as an unusual electrode architecture strategy to address the aforementioned issue. Vanadium pentoxide (V 2 O 5 ) is chosen as a model electrode material to explore the feasibility of the suggested concept. The heteromat V 2 O 5 electrode sheets are produced through one-pot fabrication based on concurrent electrospraying (for V 2 O 5 precursor/MWNT) and electrospinning (for PAN nanofiber) followed by calcination, leading to compact packing of V 2 O 5 materials in intimate contact with MWNTs and PAN nanofibers. As a consequence, the heteromat V 2 O 5 electrode sheets offer three-dimensionally bicontinuous electron (arising from MWNT networks)/ion (from spatially reticulated interstitial voids to be filled with liquid electrolytes) conduction pathways, thereby facilitating redox reaction kinetics of V 2 O 5 materials. In addition, elimination of heavy metallic foil current collectors, in combination with the dense packing of V 2 O 5 materials, significantly increases (electrode sheet-based) specific capacitances far beyond those accessible with conventional slurry-cast electrodes.

  20. Beyond Slurry-Cast Supercapacitor Electrodes: PAN/MWNT Heteromat-Mediated Ultrahigh Capacitance Electrode Sheets

    NASA Astrophysics Data System (ADS)

    Lee, Jung Han; Kim, Jeong A.; Kim, Ju-Myung; Lee, Sun-Young; Yeon, Sun-Hwa; Lee, Sang-Young

    2017-01-01

    Supercapacitors (SCs) have garnered considerable attention as an appealing power source for forthcoming smart energy era. An ultimate challenge facing the SCs is the acquisition of higher energy density without impairing their other electrochemical properties. Herein, we demonstrate a new class of polyacrylonitrile (PAN)/multi-walled carbon tube (MWNT) heteromat-mediated ultrahigh capacitance electrode sheets as an unusual electrode architecture strategy to address the aforementioned issue. Vanadium pentoxide (V2O5) is chosen as a model electrode material to explore the feasibility of the suggested concept. The heteromat V2O5 electrode sheets are produced through one-pot fabrication based on concurrent electrospraying (for V2O5 precursor/MWNT) and electrospinning (for PAN nanofiber) followed by calcination, leading to compact packing of V2O5 materials in intimate contact with MWNTs and PAN nanofibers. As a consequence, the heteromat V2O5 electrode sheets offer three-dimensionally bicontinuous electron (arising from MWNT networks)/ion (from spatially reticulated interstitial voids to be filled with liquid electrolytes) conduction pathways, thereby facilitating redox reaction kinetics of V2O5 materials. In addition, elimination of heavy metallic foil current collectors, in combination with the dense packing of V2O5 materials, significantly increases (electrode sheet-based) specific capacitances far beyond those accessible with conventional slurry-cast electrodes.

  1. Beyond Slurry-Cast Supercapacitor Electrodes: PAN/MWNT Heteromat-Mediated Ultrahigh Capacitance Electrode Sheets

    PubMed Central

    Lee, Jung Han; Kim, Jeong A; Kim, Ju-Myung; Lee, Sun-Young; Yeon, Sun-Hwa; Lee, Sang-Young

    2017-01-01

    Supercapacitors (SCs) have garnered considerable attention as an appealing power source for forthcoming smart energy era. An ultimate challenge facing the SCs is the acquisition of higher energy density without impairing their other electrochemical properties. Herein, we demonstrate a new class of polyacrylonitrile (PAN)/multi-walled carbon tube (MWNT) heteromat-mediated ultrahigh capacitance electrode sheets as an unusual electrode architecture strategy to address the aforementioned issue. Vanadium pentoxide (V2O5) is chosen as a model electrode material to explore the feasibility of the suggested concept. The heteromat V2O5 electrode sheets are produced through one-pot fabrication based on concurrent electrospraying (for V2O5 precursor/MWNT) and electrospinning (for PAN nanofiber) followed by calcination, leading to compact packing of V2O5 materials in intimate contact with MWNTs and PAN nanofibers. As a consequence, the heteromat V2O5 electrode sheets offer three-dimensionally bicontinuous electron (arising from MWNT networks)/ion (from spatially reticulated interstitial voids to be filled with liquid electrolytes) conduction pathways, thereby facilitating redox reaction kinetics of V2O5 materials. In addition, elimination of heavy metallic foil current collectors, in combination with the dense packing of V2O5 materials, significantly increases (electrode sheet-based) specific capacitances far beyond those accessible with conventional slurry-cast electrodes. PMID:28139765

  2. Clinical prototype of a plastic water-equivalent scintillating fiber dosimeter array for QA applications.

    PubMed

    Lacroix, Fréderic; Archambault, Louis; Gingras, Luc; Guillot, Mathieu; Beddar, A Sam; Beaulieu, Luc

    2008-08-01

    A clinical prototype of a scintillating fiber dosimeter array for quality assurance applications is presented. The array consists of a linear array of 29 plastic scintillation detectors embedded in a water-equivalent plastic sheet coupled to optical fibers used to guide optical photons to a charge coupled device (CCD) camera. The CCD is packaged in a light-tight, radiation-shielded housing designed for convenient transport. A custom designed connector is used to ensure reproducible mechanical positioning of the optical fibers relative to the CCD. Profile and depth dose characterization measurements are presented and show that the prototype provides excellent dose measurement reproducibility (+/-0.8%) in-field and good accuracy (+/-1.6% maximum deviation) relative to the dose measured with an IC10 ionization chamber.

  3. 71. PALMDALE WATER COMPANY, EASTWOOD MULTIPLEARCHED DAM: STRESS SHEET, SHEET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. PALMDALE WATER COMPANY, EASTWOOD MULTIPLE-ARCHED DAM: STRESS SHEET, SHEET 3; DECEMBER 20, 1918. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  4. Optically transparent frequency selective surfaces on flexible thin plastic substrates

    NASA Astrophysics Data System (ADS)

    Dewani, Aliya A.; O'Keefe, Steven G.; Thiel, David V.; Galehdar, Amir

    2015-02-01

    A novel 2D simple low cost frequency selective surface was screen printed on thin (0.21 mm), flexible transparent plastic substrate (relative permittivity 3.2). It was designed, fabricated and tested in the frequency range 10-20 GHz. The plane wave transmission and reflection coefficients agreed with numerical modelling. The effective permittivity and thickness of the backing sheet has a significant effect on the frequency characteristics. The stop band frequency reduced from 15GHz (no backing) to 12.5GHz with polycarbonate. The plastic substrate thickness beyond 1.8mm has minimal effect on the resonant frequency. While the inner element spacing controls the stop-band frequency, the substrate thickness controls the bandwidth. The screen printing technique provided a simple, low cost FSS fabrication method to produce flexible, conformal, optically transparent and bio-degradable FSS structures which can find their use in electromagnetic shielding and filtering applications in radomes, reflector antennas, beam splitters and polarizers.

  5. Grafted c-kit+/SSEA1- eye-wall progenitor cells delay retinal degeneration in mice by regulating neural plasticity and forming new graft-to-host synapses.

    PubMed

    Chen, Xi; Chen, Zehua; Li, Zhengya; Zhao, Chen; Zeng, Yuxiao; Zou, Ting; Fu, Caiyun; Liu, Xiaoli; Xu, Haiwei; Yin, Zheng Qin

    2016-12-30

    Despite diverse pathogenesis, the common pathological change observed in age-related macular degeneration and in most hereditary retinal degeneration (RD) diseases is photoreceptor loss. Photoreceptor replacement by cell transplantation may be a feasible treatment for RD. The major obstacles to clinical translation of stem cell-based cell therapy in RD remain the difficulty of obtaining sufficient quantities of appropriate and safe donor cells and the poor integration of grafted stem cell-derived photoreceptors into the remaining retinal circuitry. Eye-wall c-kit + /stage-specific embryonic antigen 1 (SSEA1) - cells were isolated via fluorescence-activated cell sorting, and their self-renewal and differentiation potential were detected by immunochemistry and flow cytometry in vitro. After labeling with quantum nanocrystal dots and transplantation into the subretinal space of rd1 RD mice, differentiation and synapse formation by daughter cells of the eye-wall c-kit + /SSEA1 - cells were evaluated by immunochemistry and western blotting. Morphological changes of the inner retina of rd1 mice after cell transplantation were demonstrated by immunochemistry. Retinal function of rd1 mice that received cell grafts was tested via flash electroretinograms and the light/dark transition test. Eye-wall c-kit + /SSEA1 - cells were self-renewing and clonogenic, and they retained their proliferative potential through more than 20 passages. Additionally, eye-wall c-kit + /SSEA1 - cells were capable of differentiating into multiple retinal cell types including photoreceptors, bipolar cells, horizontal cells, amacrine cells, Müller cells, and retinal pigment epithelium cells and of transdifferentiating into smooth muscle cells and endothelial cells in vitro. The levels of synaptophysin and postsynaptic density-95 in the retinas of eye-wall c-kit + /SSEA1 - cell-transplanted rd1 mice were significantly increased at 4 weeks post transplantation. The c-kit + /SSEA1 - cells were

  6. Sheet flow measurements on a surf-zone sandbar under shoaling and breaking waves

    NASA Astrophysics Data System (ADS)

    Mieras, R.; Puleo, J. A.; Cox, D. T.; Anderson, D. L.; Kim, Y.; Hsu, T. J.

    2016-02-01

    A large-scale experiment to quantify sheet flow processes over a sandbar under varying levels of wave steepness was conducted in the wave flume at Oregon State University's O.H. Hinsdale Wave Research Laboratory. A fixed profile was constructed with concrete slabs anchored to the flume side walls, with the exception of the sandbar crest, where a steel pit was installed and filled with well-sorted sediment (d50 0.17 mm). This hybrid approach allowed for the isolation of small-scale bed response to large-scale wave forcing over the sandbar, where an array of sensors was positioned to measure hydrodynamic forcing and sediment response. Near-bed (< 3 cm above the bed) velocities were estimated using Nortek Vectrino-II profiling velocimeters, while sheet layer sediment concentration profiles (volumetric concentrations > 0.08 m3/m3) were approximated using Conductivity Concentration Profilers. Test conditions consisted of a regular wave train with incident wave heights for individual runs ranging from 0.4 m to 0.6 m and incident wave periods from 5 s to 9 s, encompassing a variety of skewed and asymmetric wave shapes across the shoaling and breaking regimes. Ensemble-averaged sediment concentration profiles exhibit considerable variation across the different conditions. The largest variation in sheet layer thickness occurs beneath the wave crest, ranging from 30 grain diameters for 5 sec, 0.4 m waves, up to 80 grain diameters for 7 sec, 0.6 m waves. Furthermore, the initiation and duration of sheet flow relative to the wave period differs for each condition set. It is likely that more than one mechanism plays a role in determining the aforementioned sheet layer characteristics. In the present work, we focus on the relative magnitude and phase of the near-bed flow acceleration and shear stress in determining the characteristics of the sheet layer.

  7. Ice sheet altimetry

    NASA Technical Reports Server (NTRS)

    Brooks, R. L.

    1981-01-01

    Generalized surface slopes were computed for the Antarctic and Greenland ice sheets by differencing plotted contour levels and dividing them by the distance between the contours. It was observed that more than 90% of the ice sheets have surface slopes less than 1%. Seasat test mode-1 Seasat altimeter measurements over Greenland were analyzed by comparisons with collinear and intersecting normal mode Seasat altimeter passes. Over the ice sheet, the computed surface elevations from test mode-1 measurements were consistently lower by about 45 m and the AGC levels were down by approximately 6 dB. No test mode-1 data were acquired over Antarctica. It is concluded that analysis of the existing altimeter data base over the two ice sheets is crucial in designing a future improved altimeter tracking capability. It is recommended that additional waveform retracking be performed to characterize ice sheet topography as a function of geographic area and elevation.

  8. Stabilization of the Chest Wall: Autologous and Alloplastic Reconstructions

    PubMed Central

    Mahabir, Raman Chaos; Butler, Charles E.

    2011-01-01

    The goals of chest wall stabilization include maintenance of a rigid airtight cavity, protection of the thoracic and abdominal contents, optimization of respiration, and, whenever possible, an aesthetic reconstruction. Evidence suggests that bony fixation results in reduced ventilator dependence, a shorter overall hospital stay, and improved upper extremity function. We prefer to accomplish this with autologous tissue alone (such as the pectoralis major, latissimus dorsi, or rectus abdominus muscle flaps) for small to moderate defects. En bloc resection of defects larger than 5 cm or containing four or more ribs will likely benefit from chest wall stabilization. For patients previously treated with radiation, even larger defects may be tolerated owing to fibrosis. For these larger defects, methyl methacrylate composite meshes are used and covered with vascularized tissue. Contaminated wounds are generally reconstructed with bioprosthetic mesh rather than synthetic mesh. Using these principles, the reconstructive plastic surgeon can devise a comprehensive and safe plan to repair tremendous defects of the chest wall. PMID:22294941

  9. Methods for minimizing plastic flow of oil shale during in situ retorting

    DOEpatents

    Lewis, Arthur E.; Mallon, Richard G.

    1978-01-01

    In an in situ oil shale retorting process, plastic flow of hot rubblized oil shale is minimized by injecting carbon dioxide and water into spent shale above the retorting zone. These gases react chemically with the mineral constituents of the spent shale to form a cement-like material which binds the individual shale particles together and bonds the consolidated mass to the wall of the retort. This relieves the weight burden borne by the hot shale below the retorting zone and thereby minimizes plastic flow in the hot shale. At least a portion of the required carbon dioxide and water can be supplied by recycled product gases.

  10. Airborne emissions of carcinogens and respiratory sensitizers during thermal processing of plastics.

    PubMed

    Unwin, John; Coldwell, Matthew R; Keen, Chris; McAlinden, John J

    2013-04-01

    Thermoplastics may contain a wide range of additives and free monomers, which themselves may be hazardous substances. Laboratory studies have shown that the thermal decomposition products of common plastics can include a number of carcinogens and respiratory sensitizers, but very little information exists on the airborne contaminants generated during actual industrial processing. The aim of this work was to identify airborne emissions during thermal processing of plastics in real-life, practical applications. Static air sampling was conducted at 10 industrial premises carrying out compounding or a range of processes such as extrusion, blown film manufacture, vacuum thermoforming, injection moulding, blow moulding, and hot wire cutting. Plastics being processed included polyvinyl chloride, polythene, polypropylene, polyethylene terephthalate, and acrylonitrile-butadiene-styrene. At each site, static sampling for a wide range of contaminants was carried out at locations immediately adjacent to the prominent fume-generating processes. The monitoring data indicated the presence of few carcinogens at extremely low concentrations, all less than 1% of their respective WEL (Workplace Exposure Limit). No respiratory sensitizers were detected at any sites. The low levels of process-related fume detected show that the control strategies, which employed mainly forced mechanical general ventilation and good process temperature control, were adequate to control the risks associated with exposure to process-related fume. This substantiates the advice given in the Health and Safety Executive's information sheet No 13, 'Controlling Fume During Plastics Processing', and its broad applicability in plastics processing in general.

  11. 5. Historic American Buildings Survey Taken from drawing sheet, SHEET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Historic American Buildings Survey Taken from drawing sheet, SHEET #21, Showing the house as restored since Survey. (Dormer windows omitted as not authentic) - Samuel des Marest House, River Road, New Milford, Bergen County, NJ

  12. [Wrapping of X-ray Cassette by a Plastic Bag in Portable Radiography: For Infection Prevention and Alleviation of Patient's Discomfort].

    PubMed

    Nakano, Tsutomu

    Portable radiography is available for the patient who is postoperative, severe condition and old. As they have weak immunity, it is important to prevent from hospital infection. Wrapping of 14×14 inch or 14×17 inch X-ray cassette by a plastic (polyethylene) bag a little bit bigger than the cassette was proposed for infection prevention in portable radiography. How to wrap the cassette easily was devised using the sheath of a polyester bag cutting at the bottom. In radiography with the grid, the plastic bag fastens the X-ray grid to the cassette substantially without any other means. In addition, the wrapped cassette, or the cassette with grid covered by the foamed plastic sheet alleviates patient's discomfort.

  13. Scale-free avalanche dynamics in crystal plasticity

    NASA Astrophysics Data System (ADS)

    Ispanovity, Pater Dusan; Laurson, Lasse; Zaiser, Michael; Zapperi, Stefano; Groma, Istvan; Alava, Mikko

    2015-03-01

    We investigate the properties of strain bursts (dislocation avalanches) occurring during plastic deformation of crystalline matter using two dimensional discrete dislocation dynamics (DDD). We perform quasistatic stress-controlled simulations with three DDD models differing in the spatiotemporal discretization and the mobility law assumed for individual dislocations. We find that each model exhibits identical avalanche dynamics with the following properties: (i) strain burst sizes follow a power law distribution characterized by an exponent τ ~ 1 . 0 and (ii) the distribution in truncated at a cutoff that diverges with increasing system size at any applied stress level. It has been proposed earlier that plastic yielding can be described in terms of a continuous phase transition of depinning type and its critical point is at the yield stress. We will demonstrate, however, that our results are inconsistent with cutoff scaling in depinning systems (like magnetic domain walls or earthquakes) and that the system behaves as critical at every stress level. We, therefore, conclude that in the models studied plastic yielding cannot be associated with a continuous phase transition. Financial supports of the Hungarian Scientific Research Fund (OTKA) under Contract Numbers PD-105256 and K-105335 and of the European Commission under Grant Agreement No. CIG-321842 are acknowledged.

  14. Study with a multi-threshold HZE-particle dosimeter using plastic detectors.

    PubMed

    Beaujean, R; Enge, W; Herrmann, W; Bartholoma, K P

    1976-01-01

    During the Apollo 16 and 17 missions two units of the Biostack experiment were exposed to cosmic radiation. In this experiment plastic detector sheets were used for recording and tracing the heavy ions. In some of these sheets the integral energy loss spectrum was measured. The measurements were performed in two different cellulose nitrate materials and in Lexan polycarbonate under 4 g cm-2 and 20 g cm-2 absorber thickness. The individual materials have different energy loss thresholds for the registration of heavy ions. The measured number of particles per cm2 with an restricted energy loss REL greater than REL0, follows a power law a REL(b) with b= -2.18 +/- 0.1 while the value of a depends on the exposure time and the absorber thickness. Calculations show that more than 70% of the fluence in the measured REL region is coming from particles with Z> or =20.

  15. Gradients in Wall Mechanics and Polysaccharides along Growing Inflorescence Stems.

    PubMed

    Phyo, Pyae; Wang, Tuo; Kiemle, Sarah N; O'Neill, Hugh; Pingali, Sai Venkatesh; Hong, Mei; Cosgrove, Daniel J

    2017-12-01

    At early stages of Arabidopsis ( Arabidopsis thaliana ) flowering, the inflorescence stem undergoes rapid growth, with elongation occurring predominantly in the apical ∼4 cm of the stem. We measured the spatial gradients for elongation rate, osmotic pressure, cell wall thickness, and wall mechanical compliances and coupled these macroscopic measurements with molecular-level characterization of the polysaccharide composition, mobility, hydration, and intermolecular interactions of the inflorescence cell wall using solid-state nuclear magnetic resonance spectroscopy and small-angle neutron scattering. Force-extension curves revealed a gradient, from high to low, in the plastic and elastic compliances of cell walls along the elongation zone, but plots of growth rate versus wall compliances were strikingly nonlinear. Neutron-scattering curves showed only subtle changes in wall structure, including a slight increase in cellulose microfibril alignment along the growing stem. In contrast, solid-state nuclear magnetic resonance spectra showed substantial decreases in pectin amount, esterification, branching, hydration, and mobility in an apical-to-basal pattern, while the cellulose content increased modestly. These results suggest that pectin structural changes are connected with increases in pectin-cellulose interaction and reductions in wall compliances along the apical-to-basal gradient in growth rate. These pectin structural changes may lessen the ability of the cell wall to undergo stress relaxation and irreversible expansion (e.g. induced by expansins), thus contributing to the growth kinematics of the growing stem. © 2017 American Society of Plant Biologists. All Rights Reserved.

  16. Experimental Investigation of Compressed Thin-Walled Steel Members

    NASA Astrophysics Data System (ADS)

    Juhás, Pavol; Juhásová Šenitková, Ingrid

    2017-10-01

    The paper presents fundamental information about realized experimental-theoretical research to determinate the load-carrying capacities for thin-walled compressed steel members with quasi-homogenous and hybrid cross-sections. The webs of such members are stressed in the elastic-plastic region. This continuous research joins on previous research of the first author of the paper. The aim of this research is to investigate and analyse the elastic-plastic post-critical behaviour of thin web and its interaction with flanges. The experimental program, test members and their geometrical parameters and material properties are evident from table 1 and table 2 as well as from figure 1 and figure 2. The test arrangement and failures of the test members are illustrated on Figures 3, 4 and 5. Some partial results are presented in Table 3 of the paper, too.

  17. Numerical studies of cavitation erosion on an elastic-plastic material caused by shock-induced bubble collapse

    NASA Astrophysics Data System (ADS)

    Turangan, C. K.; Ball, G. J.; Jamaluddin, A. R.; Leighton, T. G.

    2017-09-01

    We present a study of shock-induced collapse of single bubbles near/attached to an elastic-plastic solid using the free-Lagrange method, which forms the latest part of our shock-induced collapse studies. We simulated the collapse of 40 μm radius single bubbles near/attached to rigid and aluminium walls by a 60 MPa lithotripter shock for various scenarios based on bubble-wall separations, and the collapse of a 255 μm radius bubble attached to aluminium foil with a 65 MPa lithotripter shock. The coupling of the multi-phases, compressibility, axisymmetric geometry and elastic-plastic material model within a single solver has enabled us to examine the impingement of high-speed liquid jets from the shock-induced collapsing bubbles, which imposes an extreme compression in the aluminium that leads to pitting and plastic deformation. For certain scenarios, instead of the high-speed jet, a radially inwards flow along the aluminium surface contracts the bubble to produce a `mushroom shape'. This work provides methods for quantifying which parameters (e.g. bubble sizes and separations from the solid) might promote or inhibit erosion on solid surfaces.

  18. Measurement of tritium with plastic scintillator surface improvement with plasma treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshihara, Y.; Furuta, E.; Ohyama, R.I.

    2015-03-15

    Tritium is usually measured by using a liquid scintillation counter. However, liquid scintillator used for measurement will become radioactive waste fluid. To solve this issue, we have developed a method of measuring tritium samples with plasma-treated plastic scintillator (PS)sheets (Plasma method). The radioactive sample is held between 2 PS sheets and the whole is enclosed in a a low-potassium glass vial. With the Plasma method of 2-min plasma treatment, we have obtained measurement efficiency of 48 ± 2 % for 2 min measurement of tritium except for tritiated water. The plasma treatment makes the PS surface rough and hydrophilic whichmore » contributes to improve the contact between tritium and PS. On the other hand, it needed almost 6 hours to obtain constant measurement efficiency. The reason was that the dry-up handling in the vial needed longer time to vaporize H{sub 2}O molecules than in the air. We tried putting silica gel beads into vials to remove H{sub 2}O molecules from PS sheet surface quickly. The silica gel beads worked well and we got constant measurement efficiency within 1-3 hours. Also, we tried using other kinds of PS treated with plasma to obtain higher measurement efficiencies of tritium samples.« less

  19. Cell Wall Remodeling by a Synthetic Analog Reveals Metabolic Adaptation in Vancomycin Resistant Enterococci.

    PubMed

    Pidgeon, Sean E; Pires, Marcos M

    2017-07-21

    Drug-resistant bacterial infections threaten to overburden our healthcare system and disrupt modern medicine. A large class of potent antibiotics, including vancomycin, operate by interfering with bacterial cell wall biosynthesis. Vancomycin-resistant enterococci (VRE) evade the blockage of cell wall biosynthesis by altering cell wall precursors, rendering them drug insensitive. Herein, we reveal the phenotypic plasticity and cell wall remodeling of VRE in response to vancomycin in live bacterial cells via a metabolic probe. A synthetic cell wall analog was designed and constructed to monitor cell wall structural alterations. Our results demonstrate that the biosynthetic pathway for vancomycin-resistant precursors can be hijacked by synthetic analogs to track the kinetics of phenotype induction. In addition, we leveraged this probe to interrogate the response of VRE cells to vancomycin analogs and a series of cell wall-targeted antibiotics. Finally, we describe a proof-of-principle strategy to visually inspect drug resistance induction. Based on our findings, we anticipate that our metabolic probe will play an important role in further elucidating the interplay among the enzymes involved in the VRE biosynthetic rewiring.

  20. Tectonic triggering of slump sheets in the Upper Cretaceous carbonate succession of the Porto Selvaggio area (Salento peninsula, southern Italy): Synsedimentary tectonics in the Apulian Carbonate Platform

    NASA Astrophysics Data System (ADS)

    Mastrogiacomo, G.; Moretti, M.; Owen, G.; Spalluto, L.

    2012-08-01

    Soft-sediment deformation structures crop out in the Upper Cretaceous carbonate succession in Porto Selvaggio cove in the western Salento peninsula, Apulian foreland, southern Italy. The deformed interval is about 13 m thick and occurs between shallow-water limestones and dolostones formed in peritidal and shallow subtidal environments. It comprises well-bedded grey mudstones interlayered with dark grey laminated microbioclastic wackestones characterized by couplets of closely spaced dark and bright laminae marked by the parallel orientation of calcareous microbioclasts and thin-shelled bivalves. The low biological diversity, scarcity of burrowing biota, and presence of a well preserved fish fauna provide evidence of anoxic conditions occurring in morphological depressions within the platform, and a stagnant, stratified water body affected by weak bottom currents, indicating the sudden development of a localised and short-lived intraplatform basin. Two soft-sediment deformation horizons (slump sheets) separated by undeformed limestones with similar facies occur in this part of the succession. The lower, thicker slump sheet (1.0-1.3 m thick) contains asymmetric and box folds. Well-developed décollement surfaces (locally containing thick brecciated zones) cut the folds, forming small-scale thrust-sheets and indicating mixed plastic to brittle behaviour. The upper, thinner slump sheet (0.25-0.35 m thick) contains only asymmetric folds, indicating plastic behaviour only. The differences in deformation style are attributed to differences in facies. Measurements of fold-axis orientations in the slump sheets show that they moved in similar directions, recording the development of a local, gently dipping palaeoslope. Autogenic (internal) trigger mechanisms are ruled out by a detailed consideration of facies. The slump sheets were triggered by allogenic, tectonic effects, either the weakening of sediment by seismic activity or the tectonically induced steepening of slopes

  1. Silicone-covered biodegradable magnesium-stent insertion in the esophagus: a comparison with plastic stents.

    PubMed

    Zhu, Yue-Qi; Yang, Kai; Edmonds, Laura; Wei, Li-Ming; Zheng, Reila; Cheng, Ruo-Yu; Cui, Wen-Guo; Cheng, Ying-Sheng

    2017-01-01

    We determined the feasibility of, and tissue response to silicone-covered biodegradable magnesium- and plastic-stent insertion into the esophagus in rabbits. The mechanical compression-recovery characteristics and degradation behaviors of the magnesium stent were investigated in vitro . A total of 45 rabbits were randomly divided into a magnesium- ( n = 15) and a plastic- ( n = 15) stent group, and underwent stent insertion into the lower third of the esophagus under fluoroscopic guidance; a control group ( n = 15) did not undergo the intervention. Esophagography was performed at 1, 2, and 4 weeks. Five rabbits in each group were euthanized at each time point for histological examination. Silicone-covered magnesium stents showed similar radial force to plastic stents ( p > 0.05). The magnesium stents degraded rapidly in an acidic solution, but 90.2% ± 3.1% of the residual mass was maintained after a 2-week degradation in a solution with a pH of 4.0. All stent insertions were well tolerated. Magnesium stents migrated in six rabbits (one at 1 week, one at 2 weeks and four at 4 weeks), and plastic stents migrated in three rabbits (one at 2 weeks and two at 4 weeks; p > 0.05). Esophageal wall remodeling (thinner epithelial and smooth muscle layers) was similar in both stented groups ( p > 0.05), and the esophagus wall was found to be significantly thinner in the stented groups than in the control group ( p < 0.05). Esophageal injury and collagen deposition following stent insertion were similar and did not differ from the control group ( p > 0.05). Esophageal silicone-covered magnesium stents provided reliable support for at least 2 weeks, with acceptable migration rates and without causing severe injury or tissue reaction compared with plastic stents.

  2. Silicone-covered biodegradable magnesium-stent insertion in the esophagus: a comparison with plastic stents

    PubMed Central

    Zhu, Yue-Qi; Yang, Kai; Edmonds, Laura; Wei, Li-Ming; Zheng, Reila; Cheng, Ruo-Yu; Cui, Wen-Guo; Cheng, Ying-Sheng

    2016-01-01

    Background: We determined the feasibility of, and tissue response to silicone-covered biodegradable magnesium- and plastic-stent insertion into the esophagus in rabbits. Methods: The mechanical compression–recovery characteristics and degradation behaviors of the magnesium stent were investigated in vitro. A total of 45 rabbits were randomly divided into a magnesium- (n = 15) and a plastic- (n = 15) stent group, and underwent stent insertion into the lower third of the esophagus under fluoroscopic guidance; a control group (n = 15) did not undergo the intervention. Esophagography was performed at 1, 2, and 4 weeks. Five rabbits in each group were euthanized at each time point for histological examination. Results: Silicone-covered magnesium stents showed similar radial force to plastic stents (p > 0.05). The magnesium stents degraded rapidly in an acidic solution, but 90.2% ± 3.1% of the residual mass was maintained after a 2-week degradation in a solution with a pH of 4.0. All stent insertions were well tolerated. Magnesium stents migrated in six rabbits (one at 1 week, one at 2 weeks and four at 4 weeks), and plastic stents migrated in three rabbits (one at 2 weeks and two at 4 weeks; p > 0.05). Esophageal wall remodeling (thinner epithelial and smooth muscle layers) was similar in both stented groups (p > 0.05), and the esophagus wall was found to be significantly thinner in the stented groups than in the control group (p < 0.05). Esophageal injury and collagen deposition following stent insertion were similar and did not differ from the control group (p > 0.05). Conclusions: Esophageal silicone-covered magnesium stents provided reliable support for at least 2 weeks, with acceptable migration rates and without causing severe injury or tissue reaction compared with plastic stents. PMID:28286555

  3. Dual-mode nonlinear instability analysis of a confined planar liquid sheet sandwiched between two gas streams of unequal velocities and prediction of droplet size and velocity distribution using maximum entropy formulation

    NASA Astrophysics Data System (ADS)

    Dasgupta, Debayan; Nath, Sujit; Bhanja, Dipankar

    2018-04-01

    Twin fluid atomizers utilize the kinetic energy of high speed gases to disintegrate a liquid sheet into fine uniform droplets. Quite often, the gas streams are injected at unequal velocities to enhance the aerodynamic interaction between the liquid sheet and surrounding atmosphere. In order to improve the mixing characteristics, practical atomizers confine the gas flows within ducts. Though the liquid sheet coming out of an injector is usually annular in shape, it can be considered to be planar as the mean radius of curvature is much larger than the sheet thickness. There are numerous studies on breakup of the planar liquid sheet, but none of them considered the simultaneous effects of confinement and unequal gas velocities on the spray characteristics. The present study performs a nonlinear temporal analysis of instabilities in the planar liquid sheet, produced by two co-flowing gas streams moving with unequal velocities within two solid walls. The results show that the para-sinuous mode dominates the breakup process at all flow conditions over the para-varicose mode of breakup. The sheet pattern is strongly influenced by gas velocities, particularly for the para-varicose mode. Spray characteristics are influenced by both gas velocity and proximity to the confining wall, but the former has a much more pronounced effect on droplet size. An increase in the difference between gas velocities at two interfaces drastically shifts the droplet size distribution toward finer droplets. Moreover, asymmetry in gas phase velocities affects the droplet velocity distribution more, only at low liquid Weber numbers for the input conditions chosen in the present study.

  4. Function and Biosynthesis of Cell Wall α-1,3-Glucan in Fungi.

    PubMed

    Yoshimi, Akira; Miyazawa, Ken; Abe, Keietsu

    2017-11-18

    Although α-1,3-glucan is a major cell wall polysaccharide in filamentous fungi, its biological functions remain unclear, except that it acts as a virulence factor in animal and plant pathogenic fungi: it conceals cell wall β-glucan on the fungal cell surface to circumvent recognition by hosts. However, cell wall α-1,3-glucan is also present in many of non-pathogenic fungi. Recently, the universal function of α-1,3-glucan as an aggregation factor has been demonstrated. Applications of fungi with modified cell wall α-1,3-glucan in the fermentation industry and of in vitro enzymatically-synthesized α-1,3-glucan in bio-plastics have been developed. This review focuses on the recent progress in our understanding of the biological functions and biosynthetic mechanism of cell wall α-1,3-glucan in fungi. We briefly consider the history of studies on α-1,3-glucan, overview its biological functions and biosynthesis, and finally consider the industrial applications of fungi deficient in α-1,3-glucan.

  5. Function and Biosynthesis of Cell Wall α-1,3-Glucan in Fungi

    PubMed Central

    Yoshimi, Akira; Miyazawa, Ken; Abe, Keietsu

    2017-01-01

    Although α-1,3-glucan is a major cell wall polysaccharide in filamentous fungi, its biological functions remain unclear, except that it acts as a virulence factor in animal and plant pathogenic fungi: it conceals cell wall β-glucan on the fungal cell surface to circumvent recognition by hosts. However, cell wall α-1,3-glucan is also present in many of non-pathogenic fungi. Recently, the universal function of α-1,3-glucan as an aggregation factor has been demonstrated. Applications of fungi with modified cell wall α-1,3-glucan in the fermentation industry and of in vitro enzymatically-synthesized α-1,3-glucan in bio-plastics have been developed. This review focuses on the recent progress in our understanding of the biological functions and biosynthetic mechanism of cell wall α-1,3-glucan in fungi. We briefly consider the history of studies on α-1,3-glucan, overview its biological functions and biosynthesis, and finally consider the industrial applications of fungi deficient in α-1,3-glucan. PMID:29371579

  6. Effect of plastic viscosity and yield value on spray characteristics of magnesium-slurry fuel

    NASA Technical Reports Server (NTRS)

    Prok, George M

    1957-01-01

    Magnesium slurries were sprayed onto a sheet of paper from an air-atomizing injector. Drop sizes and distributions were then determined from photomicrographs. Four different surface-active additives were used in preparing the slurries to give plastic viscosities between 0.22 and 0.51 poise and yield values between 150 and 810 dynes-cm(exp 2). It was found that there was no significant variation in the spray characteristics of these slurries when tested under the same conditions.

  7. Insecticide-treated durable wall lining (ITWL): future prospects for control of malaria and other vector-borne diseases.

    PubMed

    Messenger, Louisa A; Rowland, Mark

    2017-05-22

    While long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are the cornerstones of malaria vector control throughout sub-Saharan Africa, there is an urgent need for the development of novel insecticide delivery mechanisms to sustain and consolidate gains in disease reduction and to transition towards malaria elimination and eradication. Insecticide-treated durable wall lining (ITWL) may represent a new paradigm for malaria control as a potential complementary or alternate longer-lasting intervention to IRS. ITWL can be attached to inner house walls, remain efficacious over multiple years and overcome some of the operational constraints of first-line control strategies, specifically nightly behavioural compliance required of LLINs and re-current costs and user fatigue associated with IRS campaigns. Initial experimental hut trials of insecticide-treated plastic sheeting reported promising results, achieving high levels of vector mortality, deterrence and blood-feeding inhibition, particularly when combined with LLINs. Two generations of commercial ITWL have been manufactured to date containing either pyrethroid or non-pyrethroid formulations. While some Phase III trials of these products have demonstrated reductions in malaria incidence, further large-scale evidence is still required before operational implementation of ITWL can be considered either in a programmatic or more targeted community context. Qualitative studies of ITWL have identified aesthetic value and observable entomological efficacy as key determinants of household acceptability. However, concerns have been raised regarding installation feasibility and anticipated cost-effectiveness. This paper critically reviews ITWL as both a putative mechanism of house improvement or more conventional intervention and discusses its future prospects as a method for controlling malaria and other vector-borne diseases.

  8. SU-F-T-09: In Phantom Full-Implant Validation of Plastic Scintillation Detectors for in Vivo Dosimetry During Low Dose Rate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Therriault-Proulx, F; Bruno, T; Beddar, S

    Purpose: To validate in a water phantom the use of plastic scintillation detectors to measure dose to the urethra and the rectal wall during a clinically realistic low dose rate (LDR) brachytherapy implant. Methods: A template was designed to replicate a clinically realistic LDR brachytherapy prostate implant inside a water phantom. Twenty-two catheters were inserted, including one mimicking the urethra and another the rectal wall. The needles inserted in the remaining 20 catheters were composed of thin-walled nylon tubes in which I-125 radioactive seeds (Air Kerma Strengths of (0.328±0.020)U) were abutted together with plastic spacers to replicate a typical loading.more » A plastic scintillation detector (PSD) with a 5-mm long × 1-mm diameter sensitive element was first placed inside the urethra and 1-second measurements were performed for 60s after each needle implant. Measurements were also performed at multiple positions along the urethra once all the needles were inserted. The procedure was then repeated with the PSD placed at the rectal wall. Results: Individual dose-rates ranging from 0.07µGy/s to 1.5µGy/s were measured after each needle implant. The average absolute relative differences were (6.2±3.6)% and (6.9±6.5)% to the values calculated with the TG-43 formalism, for the urethra and rectal wall respectively. These results are within expectations from the error uncertainty budget once accounting for uncertainties in seeds’ strength and positioning. Interestingly, the PSD allowed for unplanned error detection as the study was performed. Finally, the measured dose after the full implant at different positions along the mimicked organs at risk were in agreement with TG-43 values for all of the positions tested. Conclusion: Plastic scintillation detectors could be used as in vivo detectors for LDR brachytherapy as they would provide accurate dose information after each needle implant as well as along the organs at risk at the end of the implant.« less

  9. Investigation of thermodynamic parameters in the thermal decomposition of plastic waste-waste lube oil compounds.

    PubMed

    Kim, Yong Sang; Kim, Young Seok; Kim, Sung Hyun

    2010-07-01

    Thermal decomposition properties of plastic waste-waste lube oil compounds were investigated under nonisothermal conditions. Polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET) were selected as representative household plastic wastes. A plastic waste mixture (PWM) and waste lube oil (WLO) were mixed with mixing ratios of 33, 50, and 67 (w/w) % on a PWM weight basis, and thermogravimetric (TG) experiments were performed from 25 to 600 degrees C. The Flynn-Wall method and the Ozawa-Flynn-Wall method were used for analyses of thermodynamic parameters. In this study, activation energies of PWM/WLO compounds ranged from 73.4 to 229.6 kJ/mol between 0.2 and 0.8 of normalized mass conversions, and the 50% PWM/WLO compound had lower activation energies and enthalpies among the PWM/WLO samples at each mass conversion. At the point of maximum differential mass conversion, the analyzed activation energies, enthalpies, entropies, and Gibbs free energies indicated that mixing PWM and WLO has advantages in reducing energy to decrease the degree of disorder. However, no difference in overall energy that would require overcoming both thermal decomposition reactions and degree of disorder was observed among PWM/WLO compounds under these experimental conditions.

  10. Mapping Viscoelastic and Plastic Properties of Polymers and Polymer-Nanotube Composites using Instrumented Indentation

    PubMed Central

    Gayle, Andrew J.; Cook, Robert F.

    2016-01-01

    An instrumented indentation method is developed for generating maps of time-dependent viscoelastic and time-independent plastic properties of polymeric materials. The method is based on a pyramidal indentation model consisting of two quadratic viscoelastic Kelvin-like elements and a quadratic plastic element in series. Closed-form solutions for indentation displacement under constant load and constant loading-rate are developed and used to determine and validate material properties. Model parameters are determined by point measurements on common monolithic polymers. Mapping is demonstrated on an epoxy-ceramic interface and on two composite materials consisting of epoxy matrices containing multi-wall carbon nanotubes. A fast viscoelastic deformation process in the epoxy was unaffected by the inclusion of the nanotubes, whereas a slow viscoelastic process was significantly impeded, as was the plastic deformation. Mapping revealed considerable spatial heterogeneity in the slow viscoelastic and plastic responses in the composites, particularly in the material with a greater fraction of nanotubes. PMID:27563168

  11. Anisotropy influence on the failure of Ti6Al4V sheets deformed at room and elevated temperature

    NASA Astrophysics Data System (ADS)

    Wang, Q. L.; Ghiotti, A.; Bruschi, S.

    2018-05-01

    Ti6Al4V sheets are usually difficult-to-form at room temperature as a consequence of their strong basal texture and hcp crystal lattice. The heating of the alloy below the beta transus temperature is recognized to enhance its formability, reducing the flow stress and increasing the ductility. However, the influence of the sheet anisotropy on the material failure hasn't been studied yet. To this aim, the paper presents the anisotropy influence on the failure characteristics of Ti6Al4V titanium alloy sheets making use of tensile tests carried out at room temperature and 600°C on smooth, notched and shear samples in order to have various stress states. The fracture strain is measured and the effect of the sample orientation and stress state is identified. To determine the actual stress state for each sample geometry, a numerical model is set up and calibrated using elasto-plastic data from uni-axial tensile tests on smooth samples. Finally, the fracture surfaces are observed through SEM analysis to explain the failure characteristics.

  12. An advanced constitutive model in the sheet metal forming simulation: the Teodosiu microstructural model and the Cazacu Barlat yield criterion

    NASA Astrophysics Data System (ADS)

    Alves, J. L.; Oliveira, M. C.; Menezes, L. F.

    2004-06-01

    Two constitutive models used to describe the plastic behavior of sheet metals in the numerical simulation of sheet metal forming process are studied: a recently proposed advanced constitutive model based on the Teodosiu microstructural model and the Cazacu Barlat yield criterion is compared with a more classical one, based on the Swift law and the Hill 1948 yield criterion. These constitutive models are implemented into DD3IMP, a finite element home code specifically developed to simulate sheet metal forming processes, which generically is a 3-D elastoplastic finite element code with an updated Lagrangian formulation, following a fully implicit time integration scheme, large elastoplastic strains and rotations. Solid finite elements and parametric surfaces are used to model the blank sheet and tool surfaces, respectively. Some details of the numerical implementation of the constitutive models are given. Finally, the theory is illustrated with the numerical simulation of the deep drawing of a cylindrical cup. The results show that the proposed advanced constitutive model predicts with more exactness the final shape (medium height and ears profile) of the formed part, as one can conclude from the comparison with the experimental results.

  13. Vibration characteristics of walls and a plate glass window representative of those of a wood-frame house

    NASA Technical Reports Server (NTRS)

    Carden, H. D.

    1979-01-01

    Mechanical excitation was used, and measurements of acceleration response, natural frequencies, and nodal patterns were performed. Results indicate that the wall sections and the complete wall did not act as a unit in responding to sinusoidal vibration inputs. Calculated frequencies of the components that account for this independent behavior of the studs and face sheets agreed resonably well with experimental frequencies. Experimental vibrations of the plate glass window agreed with the calculated behavior, and responses of the window exposed to airplane flyover noise were readily correlated with the test results.

  14. An ice sheet model validation framework for the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.; Howat, Ian M.; Neumann, Thomas; Saba, Jack; Tezaur, Irina; Guerber, Jeffrey; Chambers, Don P.; Evans, Katherine J.; Kennedy, Joseph H.; Lenaerts, Jan; Lipscomb, William H.; Perego, Mauro; Salinger, Andrew G.; Tuminaro, Raymond S.; van den Broeke, Michiel R.; Nowicki, Sophie M. J.

    2017-01-01

    We propose a new ice sheet model validation framework - the Cryospheric Model Comparison Tool (CmCt) - that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013, using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quantitative metrics for use in evaluating the different model simulations against the observations. We find that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin-scale and whole-ice-sheet-scale metrics, we find that simulations using both idealized conceptual models and dynamic, numerical models provide an equally reasonable representation of the ice sheet surface (mean elevation differences of < 1 m). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CmCt, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate a predictive skill with respect to observed dynamic changes that have occurred on

  15. An ice sheet model validation framework for the Greenland ice sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.

    We propose a new ice sheet model validation framework the Cryospheric Model Comparison Tool (CMCT) that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013 using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quanti- tative metricsmore » for use in evaluating the different model simulations against the observations. We find 10 that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin- and whole-ice-sheet scale metrics, the model initial condition as well as output from idealized and dynamic models all provide an equally reasonable representation of the ice sheet surface (mean elevation differences of <1 m). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CMCT, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate predictive skill with respect to observed dynamic changes occurring on Greenland over the past few

  16. An ice sheet model validation framework for the Greenland ice sheet

    PubMed Central

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.; Howat, Ian M.; Neumann, Thomas; Saba, Jack; Tezaur, Irina; Guerber, Jeffrey; Chambers, Don P.; Evans, Katherine J.; Kennedy, Joseph H.; Lenaerts, Jan; Lipscomb, William H.; Perego, Mauro; Salinger, Andrew G.; Tuminaro, Raymond S.; van den Broeke, Michiel R.; Nowicki, Sophie M. J.

    2018-01-01

    We propose a new ice sheet model validation framework – the Cryospheric Model Comparison Tool (CmCt) – that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013 using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quantitative metrics for use in evaluating the different model simulations against the observations. We find that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin- and whole-ice-sheet scale metrics, we find that simulations using both idealized conceptual models and dynamic, numerical models provide an equally reasonable representation of the ice sheet surface (mean elevation differences of <1 m). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CmCt, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate predictive skill with respect to observed dynamic changes occurring on Greenland over the

  17. An ice sheet model validation framework for the Greenland ice sheet.

    PubMed

    Price, Stephen F; Hoffman, Matthew J; Bonin, Jennifer A; Howat, Ian M; Neumann, Thomas; Saba, Jack; Tezaur, Irina; Guerber, Jeffrey; Chambers, Don P; Evans, Katherine J; Kennedy, Joseph H; Lenaerts, Jan; Lipscomb, William H; Perego, Mauro; Salinger, Andrew G; Tuminaro, Raymond S; van den Broeke, Michiel R; Nowicki, Sophie M J

    2017-01-01

    We propose a new ice sheet model validation framework - the Cryospheric Model Comparison Tool (CmCt) - that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013 using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quantitative metrics for use in evaluating the different model simulations against the observations. We find that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin- and whole-ice-sheet scale metrics, we find that simulations using both idealized conceptual models and dynamic, numerical models provide an equally reasonable representation of the ice sheet surface (mean elevation differences of <1 m). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CmCt, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate predictive skill with respect to observed dynamic changes occurring on Greenland over the past

  18. An ice sheet model validation framework for the Greenland ice sheet

    DOE PAGES

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.; ...

    2017-01-17

    We propose a new ice sheet model validation framework the Cryospheric Model Comparison Tool (CMCT) that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013 using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quanti- tative metricsmore » for use in evaluating the different model simulations against the observations. We find 10 that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin- and whole-ice-sheet scale metrics, the model initial condition as well as output from idealized and dynamic models all provide an equally reasonable representation of the ice sheet surface (mean elevation differences of <1 m). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CMCT, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate predictive skill with respect to observed dynamic changes occurring on Greenland over the past few

  19. An Ice Sheet Model Validation Framework for the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.; Howat, Ian M.; Neumann, Thomas A.; Saba, Jack; Tezaur, Irina; Guerber, Jeffrey R.; Chambers, Don P.; Evans, Katherine J.; hide

    2017-01-01

    We propose a new ice sheet model validation framework - the Cryospheric Model Comparison Tool (CmCt) - that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013, using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quantitative metrics for use in evaluating the different model simulations against the observations. We find that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin-scale and whole-ice-sheet-scale metrics, we find that simulations using both idealized conceptual models and dynamic, numerical models provide an equally reasonable representation of the ice sheet surface (mean elevation differences of less than 1 meter). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CmCt, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate a predictive skill with respect to observed dynamic changes that have occurred

  20. Crack growth through the thickness of thin-sheet Hydrided Zircaloy-4

    NASA Astrophysics Data System (ADS)

    Raynaud, Patrick A. C.

    In recent years, the limits on fuel burnup have been increased to allow an increase in the amount of energy produced by a nuclear fuel assembly thus reducing waste volume and allowing greater capacity factors. As a result, it is paramount to ensure safety after longer reactor exposure times in the case of design-basis accidents, such as reactivity-initiated accidents (RIA). Previously proposed failure criteria do not directly address the particular cladding failure mechanism during a RIA, in which crack initiation in brittle outer-layers is immediately followed by crack growth through the thickness of the thin-wall tubing. In such a case, the fracture toughness of hydrided thin-wall cladding material must be known for the conditions of through-thickness crack growth in order to predict the failure of high-burnup cladding. The fracture toughness of hydrided Zircaloy-4 in the form of thin-sheet has been examined for the condition of through-thickness crack growth as a function of hydride content and distribution at 25°C, 300°C, and 375°C. To achieve this goal, an experimental procedure was developed in which a linear hydride blister formed across the width of a four-point bend specimen was used to inject a sharp crack that was subsequently extended by fatigue pre-cracking. The electrical potential drop method was used to monitor the crack length during fracture toughness testing, thus allowing for correlation of the load-displacement record with the crack length. Elastic-plastic fracture mechanics were used to interpret the experimental test results in terms of fracture toughness, and J-R crack growth resistance curves were generated. Finite element modeling was performed to adapt the classic theories of fracture mechanics applicable to thick-plate specimens to the case of through-thickness crack growth in thin-sheet materials, and to account for non-uniform crack fronts. Finally, the hydride microstructure was characterized in the vicinity of the crack tip by

  1. 17. INTAKE PIER, BRIDGE STRESS SHEET, SHEET 8 OF 117, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. INTAKE PIER, BRIDGE STRESS SHEET, SHEET 8 OF 117, 1920. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  2. Interfacial interactions between plastic particles in plastics flotation.

    PubMed

    Wang, Chong-qing; Wang, Hui; Gu, Guo-hua; Fu, Jian-gang; Lin, Qing-quan; Liu, You-nian

    2015-12-01

    Plastics flotation used for recycling of plastic wastes receives increasing attention for its industrial application. In order to study the mechanism of plastics flotation, the interfacial interactions between plastic particles in flotation system were investigated through calculation of Lifshitz-van der Waals (LW) function, Lewis acid-base (AB) Gibbs function, and the extended Derjaguin-Landau-Verwey-Overbeek potential energy profiles. The results showed that van der Waals force between plastic particles is attraction force in flotation system. The large hydrophobic attraction, caused by the AB Gibbs function, is the dominant interparticle force. Wetting agents present significant effects on the interfacial interactions between plastic particles. It is found that adsorption of wetting agents promotes dispersion of plastic particles and decreases the floatability. Pneumatic flotation may improve the recovery and purity of separated plastics through selective adsorption of wetting agents on plastic surface. The relationships between hydrophobic attraction and surface properties were also examined. It is revealed that there exists a three-order polynomial relationship between the AB Gibbs function and Lewis base component. Our finding provides some insights into mechanism of plastics flotation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. FDTD modeling of thin impedance sheets

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond; Kunz, Karl

    1991-01-01

    Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. It is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods. These sheets are characterized by a discontinuity in the tangential magnetic field on either side of the sheet but no discontinuity in tangential electric field. This continuity, or single valued behavior of the electric field, allows the sheet current to be expressed in terms of an impedance multiplying this electric field.

  4. Method for heating a glass sheet

    DOEpatents

    Boaz, Premakaran Tucker

    1998-01-01

    A method for heating a glass sheet includes the steps of heating a glass sheet to a first predetermined temperature and applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature to allow the glass sheet to be formed.

  5. Clinching for sheet materials

    PubMed Central

    He, Xiaocong

    2017-01-01

    Abstract Latest developments in the clinching of sheet materials are reviewed in this article. Important issues are discussed, such as tool design, process parameters and joinability of some new lightweight sheet materials. Hybrid and modified clinching processes are introduced to a general reader. Several unaddressed issues in the clinching of sheet materials are identified. PMID:28656065

  6. Liquid sheet radiator

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; White, K. Alan, III

    1987-01-01

    A new external flow radiator concept, the liquid sheet radiator (LSR), is introduced. The LSR sheet flow is described and an expression for the length/width (l/w), ratio is presented. A linear dependence of l/w on velocity is predicted that agrees with experimental results. Specific power for the LSR is calculated and is found to be nearly the same as the specific power of a liquid droplet radiator, (LDR). Several sheet thicknesses and widths were experimentally investigated. In no case was the flow found to be unstable.

  7. Hydroxycinnamate conjugates as potential monolignol replacements: In vitro lignification and cell wall studies with rosmarinic acid

    USDA-ARS?s Scientific Manuscript database

    The plasticity of lignin biosynthesis should permit the inclusion of new compatible phenolic monomers such as rosmarinic acid (RA) and analogous catechol derivatives to create cell wall lignins that are less recalcitrant to biomass processing. In vitro lignin polymerization experiments revealed that...

  8. Method for heating a glass sheet

    DOEpatents

    Boaz, P.T.

    1998-07-21

    A method for heating a glass sheet includes the steps of heating a glass sheet to a first predetermined temperature and applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature to allow the glass sheet to be formed. 5 figs.

  9. An investigation of the plastic fracture of AISI 4340 and 18 nickel - 200 grade maraging steels

    NASA Technical Reports Server (NTRS)

    Cox, T. B.; Low, J. R., Jr.

    1974-01-01

    The mechanisms of plastic fracture (dimpled rupture) in high-purity and commercial 18 Ni, 200 grade maraging steels and quenched and tempered AISI 4340 steels have been studied. Plastic fracture takes place in the maraging alloys through void initiation by fracture of titanium carbo-nitride inclusions and the growth of these voids until impingement results in coalescence and final fracture. The fracture of AISI 4340 steel at a yield strength of 200 ksi occurs by nucleation and subsequent growth of voids formed by fracture of the interface between manganese sulfide inclusions and the matrix. The growth of these inclusion-nucleated voids is interrupted long before coalescence by impingement, by the formation of void sheets which connect neighboring sulfide-nucleated voids.

  10. Geometry of thin liquid sheet flows

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Calfo, Frederick D.; Mcconley, Marc W.; Mcmaster, Matthew S.; Afjeh, Abdollah A.

    1994-01-01

    Incompresible, thin sheet flows have been of research interest for many years. Those studies were mainly concerned with the stability of the flow in a surrounding gas. Squire was the first to carry out a linear, invicid stability analysis of sheet flow in air and compare the results with experiment. Dombrowski and Fraser did an experimental study of the disintegration of sheet flows using several viscous liquids. They also detected the formulation of holes in their sheet flows. Hagerty and Shea carried out an inviscid stability analysis and calculated growth rates with experimental values. They compared their calculated growth rates with experimental values. Taylor studied extensively the stability of thin liquid sheets both theoretically and experimentally. He showed that thin sheets in a vacuum are stable. Brown experimentally investigated thin liquid sheet flows as a method of application of thin films. Clark and Dumbrowski carried out second-order stability analysis for invicid sheet flows. Lin introduced viscosity into the linear stability analysis of thin sheet flows in a vacuum. Mansour and Chigier conducted an experimental study of the breakup of a sheet flow surrounded by high-speed air. Lin et al. did a linear stability analysis that included viscosity and a surrounding gas. Rangel and Sirignano carried out both a linear and nonlinear invisid stability analysis that applies for any density ratio between the sheet liquid and the surrounding gas. Now there is renewed interest in sheet flows because of their possible application as low mass radiating surfaces. The objective of this study is to investigate the fluid dynamics of sheet flows that are of interest for a space radiator system. Analytical expressions that govern the sheet geometry are compared with experimental results. Since a space radiator will operate in a vacuum, the analysis does not include any drag force on the sheet flow.

  11. 77 FR 54930 - Carlyle Plastics and Resins, Formerly Known as Fortis Plastics, A Subsidiary of Plastics...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-81,655] Carlyle Plastics and Resins, Formerly Known as Fortis Plastics, A Subsidiary of Plastics Acquisitions Inc., Including On-Site... to workers and former workers of workers of Fortis Plastics, a subsidiary of Plastics Acquisitions...

  12. The Role of Evolutive Elastic Properties in the Performance of a Sheet Formed Spring Applied in Multimedia Car Industry

    NASA Astrophysics Data System (ADS)

    Faria, J.; Silva, J.; Bernardo, P.; Araújo, M.; Alves, J. L.

    2016-08-01

    The manufacturing process and the behaviour of a spring manufactured from an aluminium sheet is described and investigated in this work considering the specifications for the in-service conditions. The spring is intended to be applied in car multimedia industry to replace bolted connections. Among others, are investigated the roles of the constitutive parameters and the hypothesis of evolutive elastic properties with the plastic work in the multistep forming process and in working conditions.

  13. 37 CFR 1.76 - Application data sheet.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2012-07-01 2012-07-01 false Application data sheet. 1.76... Application data sheet. (a) Application data sheet. An application data sheet is a sheet or sheets, that may... bibliographic data, arranged in a format specified by the Office. An application data sheet must be titled...

  14. Communication Fact Sheet.

    ERIC Educational Resources Information Center

    American Speech-Language-Hearing Association, Rockville, MD.

    This brief fact sheet examines key aspects of communication, communication disabilities, and intervention. The fact sheet addresses the following questions: the nature of communication; communication disabilities (definitions of hearing impairments and speech and language impairments are given); effects of communication disabilities (factors…

  15. Rapid induction bonding of composites, plastics, and metals

    NASA Technical Reports Server (NTRS)

    Buckley, John D.; Fox, Robert L.

    1991-01-01

    The Toroid Bonding Gun is and induction heating device. It is a self contained, portable, low powered induction welding system developed for bonding or joining plastic, ceramic, or metallic parts. Structures can be bonded in a factory or in a the field. This type of equipment allows for applying heat directly to the bond lines and/or to the adhesives without heating the entire structure, supports, and fixtures of a bonding assembly. The induction heating gun originally developed for use in the fabrication of space Gangs of bonders are now used to rapidly join composite sheet and structural components. Other NASA-developed applications of this bonding technique include the joining of thermoplastic composites, thermosetting composites, metals, and combinations of these materials.

  16. Geometric charges in theories of elasticity and plasticity

    NASA Astrophysics Data System (ADS)

    Moshe, Michael

    The mechanics of many natural systems is governed by localized sources of stresses. Examples include ''plastic events'' that occur in amorphous solids under external stress, defects formation in crystalline material, and force-dipoles applied by cells adhered to an elastic substrate. Recent developments in a geometric formulation of elasticity theory paved the way for a unifying mathematical description of such singular sources of stress, as ''elastic charges''. In this talk I will review basic results in this emerging field, focusing on the geometry and mechanics of elastic charges in two-dimensional solid bodies. I will demonstrate the applicability of this new approach in three different problems: failure of an amorphous solid under load, mechanics of Kirigami, and wrinkle patterns in geometrically-incompatible elastic sheets.

  17. Reconciling species-level vs plastic responses of evergreen leaf structure to light gradients: shade leaves punch above their weight.

    PubMed

    Lusk, Christopher H; Onoda, Yusuke; Kooyman, Robert; Gutiérrez-Girón, Alba

    2010-04-01

    *When grown in a common light environment, the leaves of shade-tolerant evergreen trees have a larger leaf mass per unit area (LMA) than their light-demanding counterparts, associated with differences in lifespan. Yet plastic responses of LMA run counter to this pattern: shade leaves have smaller LMA than sun leaves, despite often living longer. *We measured LMA and cell wall content, and conducted punch and shear tests, on sun and shade leaves of 13 rainforest evergreens of differing shade tolerance, in order to understand adaptation vs plastic responses of leaf structure and biomechanics to shade. *Species shade tolerance and leaf mechanical properties correlated better with cell wall mass per unit area than with LMA. Growth light environment had less effect on leaf mechanics than on LMA: shade leaves had, on average, 40% lower LMA than sun leaves, but differences in work-to-shear, and especially force-to-punch, were smaller. This was associated with a slightly larger cell wall fraction in shade leaves. *The persistence of shade leaves might reflect unattractiveness to herbivores because they yield smaller benefits (cell contents per area) per unit fracture force than sun leaves. In forest trees, cell wall fraction and force-to-punch are more robust correlates of species light requirements than LMA.

  18. Sensitivities of Greenland ice sheet volume inferred from an ice sheet adjoint model

    NASA Astrophysics Data System (ADS)

    Heimbach, P.; Bugnion, V.

    2009-04-01

    We present a new and original approach to understanding the sensitivity of the Greenland ice sheet to key model parameters and environmental conditions. At the heart of this approach is the use of an adjoint ice sheet model. Since its introduction by MacAyeal (1992), the adjoint method has become widespread to fit ice stream models to the increasing number and diversity of satellite observations, and to estimate uncertain model parameters such as basal conditions. However, no attempt has been made to extend this method to comprehensive ice sheet models. As a first step toward the use of adjoints of comprehensive three-dimensional ice sheet models we have generated an adjoint of the ice sheet model SICOPOLIS of Greve (1997). The adjoint was generated by means of the automatic differentiation (AD) tool TAF. The AD tool generates exact source code representing the tangent linear and adjoint model of the nonlinear parent model provided. Model sensitivities are given by the partial derivatives of a scalar-valued model diagnostic with respect to the controls, and can be efficiently calculated via the adjoint. By way of example, we determine the sensitivity of the total Greenland ice volume to various control variables, such as spatial fields of basal flow parameters, surface and basal forcings, and initial conditions. Reliability of the adjoint was tested through finite-difference perturbation calculations for various control variables and perturbation regions. Besides confirming qualitative aspects of ice sheet sensitivities, such as expected regional variations, we detect regions where model sensitivities are seemingly unexpected or counter-intuitive, albeit ``real'' in the sense of actual model behavior. An example is inferred regions where sensitivities of ice sheet volume to basal sliding coefficient are positive, i.e. where a local increase in basal sliding parameter increases the ice sheet volume. Similarly, positive ice temperature sensitivities in certain parts

  19. Microcomponent sheet architecture

    DOEpatents

    Wegeng, R.S.; Drost, M.K..; McDonald, C.E.

    1997-03-18

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation. 14 figs.

  20. Microcomponent sheet architecture

    DOEpatents

    Wegeng, Robert S.; Drost, M. Kevin; McDonald, Carolyn E.

    1997-01-01

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation.

  1. Plasticity and Kinky Chemistry of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Dzegilenko, Fedor

    2000-01-01

    Since their discovery in 1991, carbon nanotubes have been the subject of intense research interest based on early predictions of their unique mechanical, electronic, and chemical properties. Materials with the predicted unique properties of carbon nanotubes are of great interest for use in future generations of aerospace vehicles. For their structural properties, carbon nanotubes could be used as reinforcing fibers in ultralight multifunctional composites. For their electronic properties, carbon nanotubes offer the potential of very high-speed, low-power computing elements, high-density data storage, and unique sensors. In a continuing effort to model and predict the properties of carbon nanotubes, Ames accomplished three significant results during FY99. First, accurate values of the nanomechanics and plasticity of carbon nanotubes based on quantum molecular dynamics simulations were computed. Second, the concept of mechanical deformation catalyzed-kinky-chemistry as a means to control local chemistry of nanotubes was discovered. Third, the ease of nano-indentation of silicon surfaces with carbon nanotubes was established. The elastic response and plastic failure mechanisms of single-wall nanotubes were investigated by means of quantum molecular dynamics simulations.

  2. Aircraft Sheet Metal Practices; Sheet Metal Work 2: 9855.01.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The course outline will serve as a guide to the 11th grade student interested in sheet metal occupations. Requiring 135 clock hours, the basic course covers orientation and techniques in aircraft sheet metal. Emphasis will be placed on the proper use of tools and machines, safety, fabrication methods, aircraft materials, basic layout, and special…

  3. Determination of the Specific Heat Ratio of a Gas in a Plastic Syringe

    ERIC Educational Resources Information Center

    Chamberlain, Jeff

    2010-01-01

    The rapid compression or expansion of a gas in a plastic syringe is a poor approximation of an adiabatic process. Heat exchange with the walls of the syringe brings the gas to equilibrium in an amount of time that is not significantly greater than the length of the compression or expansion itself. Despite this limitation, it is still possible to…

  4. International policies to reduce plastic marine pollution from single-use plastics (plastic bags and microbeads): A review.

    PubMed

    Xanthos, Dirk; Walker, Tony R

    2017-05-15

    Marine plastic pollution has been a growing concern for decades. Single-use plastics (plastic bags and microbeads) are a significant source of this pollution. Although research outlining environmental, social, and economic impacts of marine plastic pollution is growing, few studies have examined policy and legislative tools to reduce plastic pollution, particularly single-use plastics (plastic bags and microbeads). This paper reviews current international market-based strategies and policies to reduce plastic bags and microbeads. While policies to reduce microbeads began in 2014, interventions for plastic bags began much earlier in 1991. However, few studies have documented or measured the effectiveness of these reduction strategies. Recommendations to further reduce single-use plastic marine pollution include: (i) research to evaluate effectiveness of bans and levies to ensure policies are having positive impacts on marine environments; and (ii) education and outreach to reduce consumption of plastic bags and microbeads at source. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Comparison of acid-induced cell wall loosening in Valonia ventricosa and in oat coleoptiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tepfer, M.; Cleland, R.E.

    The acid-induced loosening of cell walls of Valonia ventricosa has been compared to that of frozen-thawed oat coleoptiles. The two acid extension responses are similar in regard to the shape of the pH response curve and the increase in plastic compliance induced by acid treatment. In both systems the acid response can be inhibited by Ca/sup 2 +/ and in both the removal of the protons leads to a rapid termination of wall loosening. The two responses differ in several significant ways, however. The acid-induced extension of Valonia walls is more rapid than that of coleoptile walls, but of smallermore » total magnitude. Acid-induced loosening can occur in Valonia without the wall being under tension, but not in coleoptiles. The acid-induced extension of Valonia walls is not inhibited by 8 molar urea, whereas the response in oat coleoptiles is completely inhibited by this treatment. Ethylenediaminetetraacetate (EDTA) can cause wall loosening in Valonia comparable to that produced by low pH, whereas in coleoptiles EDTA causes a much smaller response. These results with Valonia are consistent with a mechanism of acid-induced wall loosening in which a central role is played by the displacement of Ca/sup 2 +/ from the wall, while the larger part of acid-induced wall loosening in oat coleoptiles appears to be via a different mechanism.« less

  6. 13. Photograph of sheet 1 (index and title sheet) of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Photograph of sheet 1 (index and title sheet) of the Indiana State Highway Commission repair plans of 1969 for the Cicott Street Bridge. Photograph of a 24' by 36' print made from microfilm in the archives of the Indiana Department of Transportation in Indianapolis. - Cicott Street Bridge, Spanning Wabash River at State Road 25, Logansport, Cass County, IN

  7. Nonlinear distortion of thin liquid sheets

    NASA Astrophysics Data System (ADS)

    Mehring, Carsten Ralf

    Thin planar, annular and conical liquid sheets or films are analyzed, in a unified manner, by means of a reduced- dimension approach providing governing equations for the nonlinear motion of planar and swirling annular thin inviscid and incompressible liquid sheets in zero gravity and with axial disturbances only. Temporal analyses of periodically disturbed infinite sheets are considered, as well as spatial analyses of semi-infinite sheets modulated at the nozzle exit. Results on planar and swirling annular or conical sheets are presented for a zero density ambient gas. Here, conical sheets are obtained in the nearfield of the nozzle exit by considering sheets or films with swirl in excess of that needed to stabilize the discharging stream in its annular configuration. For nonswirling annular sheets a spatially and/or temporally constant gas-core pressure is assumed. A model extension considering the influence of aerodynamic effects on planar sheets is proposed. For planar and annular sheets, linear analyses of the pure initial- and pure boundary-value problem provide insight into the propagation characteristics of dilational and sinuous waves, the (linear) coupling between both wave modes, the stability limits for the annular configuration, as well as the appearance of particular waves on semi-infinite modulated sheets downstream from the nozzle exit. Nonlinear steady-state solutions for the conical configuration (without modulation) are illustrated. Comparison between nonlinear and linear numerical and linear analytical solutions for temporally or spatially developing sheets provides detailed information on the nonlinear distortion characteristics including nonlinear wave propagation and mode-coupling for all the considered geometric configurations and for a variety of parameter configurations. Sensitivity studies on the influence of Weber number, modulation frequency, annular radius, forcing amplitude and sheet divergence on breakup or collapse length and times

  8. Phyllotactic transformations as plastic deformations of tubular crystals with defects

    NASA Astrophysics Data System (ADS)

    Beller, Daniel; Nelson, David

    Tubular crystals are 2D lattices in cylindrical topologies, which could be realized as assemblies of colloidal particles, and occur naturally in biological microtubules and in single-walled carbon nanotubes. Their geometry can be understood in the language of phyllotaxis borrowed from botany. We study the mechanics of plastic deformations in tubular crystals in response to tensile stress, as mediated by the formation and separation of dislocation pairs in a triangular lattice. Dislocation motion allows the growth of one phyllotactic arrangement at the expense of another, offering a low-energy, stepwise mode of plastic deformation in response to external stresses. Through theory and simulation, we examine how the tube's radius and helicity affects, and is in turn altered by, dislocation glide. The crystal's bending modulus is found to produce simple but important corrections to the tube's deformation mechanics.

  9. Optimization of an asymmetric thin-walled tube in rotary draw bending process

    NASA Astrophysics Data System (ADS)

    Xue, Xin; Liao, Juan; Vincze, Gabriela; Gracio, Jose J.

    2013-12-01

    The rotary draw bending is one of the advanced thin-walled tube forming processes with high efficiency, low consumption and good flexibility in several industries such as automotive, aerospace and shipping. However it may cause undesirable deformations such as over-thinning and ovalization, which bring the weakening of the strength and difficulties in the assembly process respectively. Accurate modeling and effective optimization design to eliminate or reduce undesirable deformations in tube bending process have been a challenging topic. In this paper, in order to study the deformation behaviors of an asymmetric thin-walled tube in rotary draw bending process, a 3D elastic-plastic finite element model has been built under the ABAQUS environment, and the reliability of the model is validated by comparison with experiment. Then, the deformation mechanism of thin-walled tube in bending process was briefly analysis and the effects of wall thickness ratio, section height width ratio and mandrel extension on wall thinning and ovalization in bending process were investigated by using Response Surface Methodology. Finally, multi-objective optimization method was used to obtain an optimum solution of design variables based on simulation results.

  10. Creep behavior of soil nail walls in high plasticity index (PI) soils : project summary.

    DOT National Transportation Integrated Search

    2015-08-31

    Soil nailing is a convenient and economic : stabilization method for the reinforcement of existing : excavations by installing threaded steel bars into cuts : or slopes as wall construction progresses from top : down (Figure 1). An aspect of particul...

  11. From cyclic ice streaming to Heinrich-like events: the grow-and-surge instability in the Parallel Ice Sheet Model

    NASA Astrophysics Data System (ADS)

    Feldmann, Johannes; Levermann, Anders

    2017-08-01

    Here we report on a cyclic, physical ice-discharge instability in the Parallel Ice Sheet Model, simulating the flow of a three-dimensional, inherently buttressed ice-sheet-shelf system which periodically surges on a millennial timescale. The thermomechanically coupled model on 1 km horizontal resolution includes an enthalpy-based formulation of the thermodynamics, a nonlinear stress-balance-based sliding law and a very simple subglacial hydrology. The simulated unforced surging is characterized by rapid ice streaming through a bed trough, resulting in abrupt discharge of ice across the grounding line which is eventually calved into the ocean. We visualize the central feedbacks that dominate the subsequent phases of ice buildup, surge and stabilization which emerge from the interaction between ice dynamics, thermodynamics and the subglacial till layer. Results from the variation of surface mass balance and basal roughness suggest that ice sheets of medium thickness may be more susceptible to surging than relatively thin or thick ones for which the surge feedback loop is damped. We also investigate the influence of different basal sliding laws (ranging from purely plastic to nonlinear to linear) on possible surging. The presented mechanisms underlying our simulations of self-maintained, periodic ice growth and destabilization may play a role in large-scale ice-sheet surging, such as the surging of the Laurentide Ice Sheet, which is associated with Heinrich events, and ice-stream shutdown and reactivation, such as observed in the Siple Coast region of West Antarctica.

  12. Outside-in control -Does plant cell wall integrity regulate cell cycle progression?

    PubMed

    Gigli-Bisceglia, Nora; Hamann, Thorsten

    2018-04-13

    During recent years it has become accepted that plant cell walls are not inert objects surrounding all plant cells but are instead highly dynamic, plastic structures. They are involved in a large number of cell biological processes and contribute actively to plant growth, development and interaction with environment. Therefore, it is not surprising that cellular processes can control plant cell wall integrity while, simultaneously, cell wall integrity can influence cellular processes. In yeast and animal cells such a bi-directional relationship also exists between the yeast/animal extra-cellular matrices and the cell cycle. In yeast, the cell wall integrity maintenance mechanism and a dedicated plasmamembrane integrity checkpoint are mediating this relationship. Recent research has yielded insights into the mechanism controlling plant cell wall metabolism during cytokinesis. However, knowledge regarding putative regulatory pathways controlling adaptive modifications in plant cell cycle activity in response to changes in the state of the plant cell wall are not yet identified. In this review, we summarize similarities and differences in regulatory mechanisms coordinating extra cellular matrices and cell cycle activity in animal and yeast cells, discuss the available evidence supporting the existence of such a mechanism in plants and suggest that the plant cell wall integrity maintenance mechanism might also control cell cycle activity in plant cells. This article is protected by copyright. All rights reserved.

  13. The performance of fast-moving low-voltage electromechanical actuators based on single-walled carbon nanotubes and ionic liquids

    NASA Astrophysics Data System (ADS)

    Mukai, Ken; Asaka, Kinji; Hata, Kenji; Oike, Hideaki

    2011-12-01

    In this paper, we study the details of the mechanical and electrical properties of polymer-free single-walled carbon nanotube (SWNT) sheets containing different contents of ionic liquids (ILs). The polymer-free SWNT sheets were prepared by a previously reported finding that millimeter-long 'super-growth' carbon nanotubes (SG-SWNTs), produced by a water-assisted modified chemical vapor deposition (CVD) method, associate together tightly with ILs, affording a free-standing sheet with a superb conductivity. The Young's modulus, breaking strength and the electrical conductivity of the SG-SWNT sheet with 67 wt% 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMITFSI) showed large values, 0.63 GPa, 20 MPa, and 147 S cm-1, respectively, although it has large amounts of ILs. We also measure the frequency dependence of the displacement of the actuator composed of SG-SWNT sheets sandwiching an ionic-gel electrolyte layer (SG-SWNT actuator). At more than 50 wt% of EMITFSI content, the frequency response of the actuation of the SG-SWNT actuator is flat up to around 100 Hz. The results of the displacement measurements are discussed in relation to the mechanical and electrical properties of the SG-SWNT actuators.

  14. Re-design and fabrication of titanium multi-wall Thermal Protection System (TPS) test panels

    NASA Technical Reports Server (NTRS)

    Blair, W.; Meaney, J. E., Jr.; Rosenthal, H. A.

    1984-01-01

    The Titanium Multi-wall Thermal Protection System (TIPS) panel was re-designed to incorporate Ti-6-2-4-2 outer sheets for the hot surface, ninety degree side closures for ease of construction and through panel fastness for ease of panel removal. Thermal and structural tests were performed to verify the design. Twenty-five panels were fabricated and delivered to NASA for evaluation at Langley Research Center and Johnson Space Center.

  15. 9. Photograph of sheet 1 (index and title sheet) of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photograph of sheet 1 (index and title sheet) of the State Highway Department of Indiana repair plans of 1957 for the Cicott Street Bridge. Photograph of a 24' by 36' print made from microfilm in the archives of the Indiana Department of Transportation in Indianapolis. - Cicott Street Bridge, Spanning Wabash River at State Road 25, Logansport, Cass County, IN

  16. FDTD modeling of thin impedance sheets

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. In this paper it is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods.

  17. Bearing capacity and rigidity of short plastic-concrete-tubal vertical columns under transverse load

    NASA Astrophysics Data System (ADS)

    Dolzhenko, A. V.; Naumov, A. E.; Shevchenko, A. E.

    2018-03-01

    The results of mathematical modeling in determining strain-stress distribution parameters of a short plastic-concrete-tubal vertical column under horizontal load as those in vertical constructions are described. Quantitative parameters of strain-stress distribution during vertical and horizontal loads and horizontal stiffness were determined by finite element modeling. The internal stress in the concrete column core was analyzed according to equivalent stress in Mohr theory of failure. It was determined that the bearing capacity of a short plastic- concrete-tubal vertical column is 25% higher in resistibility and 15% higher in rigidness than those of the caseless concrete columns equal in size. Cracks formation in the core of a short plastic-concrete-tubal vertical column happens under significantly bigger horizontal loads with less amount of concrete spent than that in caseless concrete columns. The significant increase of bearing capacity and cracking resistance of a short plastic-concrete-tubal vertical column under vertical and horizontal loads allows recommending them as highly effective and highly reliable structural wall elements in civil engineering.

  18. Coupled THM processes in EDZ of crystalline rocks using an elasto-plastic cellular automaton

    NASA Astrophysics Data System (ADS)

    Pan, Peng-Zhi; Feng, Xia-Ting; Huang, Xiao-Hua; Cui, Qiang; Zhou, Hui

    2009-05-01

    This paper aims at a numerical study of coupled thermal, hydrological and mechanical processes in the excavation disturbed zones (EDZ) around nuclear waste emplacement drifts in fractured crystalline rocks. The study was conducted for two model domains close to an emplacement tunnel; (1) a near-field domain and (2) a smaller wall-block domain. Goodman element and weak element were used to represent the fractures in the rock mass and the rock matrix was represented as elasto-visco-plastic material. Mohr-Coulomb criterion and a non-associated plastic flow rule were adopted to consider the viscoplastic deformation in the EDZ. A relation between volumetric strain and permeability was established. Using a self-developed EPCA2D code, the elastic, elasto-plastic and creep analyses to study the evolution of stress and deformations, as well as failure and permeability evolution in the EDZ were conducted. Results indicate a strong impact of fractures, plastic deformation and time effects on the behavior of EDZ especially the evolution of permeability around the drift.

  19. Modelling the thermomechanical behaviour of the tungsten first wall in HiPER laser fusion scenarios

    NASA Astrophysics Data System (ADS)

    Garoz, D.; Páramo, A. R.; Rivera, A.; Perlado, J. M.; González-Arrabal, R.

    2016-12-01

    The behaviour of a tungsten first wall is studied under the irradiation conditions predicted for the different operational scenarios of the European laser fusion project HiPER, which is based on direct drive targets and an evacuated dry wall chamber. The scenarios correspond to different stages in the development of a nuclear fusion reactor, from proof of principle (bunch mode facility) to economic feasibility (pre-commercial power plant). This work constitutes a quantitative study to evaluate first wall performance under realistic irradiation conditions in the different scenarios. We calculated the radiation fluxes assuming the geometrical configurations reported so far for HiPER. Then, we calculated the irradiation-induced evolution of first wall temperature and the thermomechanical response of the material. The results indicate that the first wall will plastically deform up to a few microns underneath the surface. Continuous operation in a power plant leads to fatigue failure with crack generation and growth. Finally, crack propagation and the minimum tungsten thickness required to fulfil the first wall protection role is studied. The response of tungsten as a first wall material as well as its main limitations will be discussed for the HiPER scenarios.

  20. Incremental electrohydraulic forming - A new approach for the manufacture of structured multifunctional sheet metal blanks

    NASA Astrophysics Data System (ADS)

    Djakow, Eugen; Springer, Robert; Homberg, Werner; Piper, Mark; Tran, Julian; Zibart, Alexander; Kenig, Eugeny

    2017-10-01

    Electrohydraulic Forming (EHF) processes permit the production of complex, sharp-edged geometries even when high-strength materials are used. Unfortunately, the forming zone is often limited as compared to other sheet metal forming processes. The use of a special industrial-robot-based tool setup and an incremental process strategy could provide a promising solution for this problem. This paper describes such an innovative approach using an electrohydraulic incremental forming machine, which can be employed to manufacture the large multifunctional and complex part geometries in steel, aluminium, magnesium and reinforced plastic that are employed in lightweight constructions or heating elements.

  1. Horizontal electromagnetic casting of thin metal sheets

    DOEpatents

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1987-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  2. Horizontal electromagnetic casting of thin metal sheets

    DOEpatents

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1988-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  3. Experimental and Numerical Study on the Deformation Mechanism in AZ31B Mg Alloy Sheets Under Pulsed Electric-Assisted Tensile and Compressive Tests

    NASA Astrophysics Data System (ADS)

    Lee, Jinwoo; Kim, Se-Jong; Lee, Myoung-Gyu; Song, Jung Han; Choi, Seogou; Han, Heung Nam; Kim, Daeyong

    2016-06-01

    The uniaxial tensile and compressive stress-strain responses of AZ31B magnesium alloy sheet under pulsed electric current are reported. Tension and compression tests with pulsed electric current showed that flow stresses dropped instantaneously when the electric pulses were applied. Thermo-mechanical-electrical finite element analyses were also performed to investigate the effects of Joule heating and electro-plasticity on the flow responses of AZ31B sheets under electric-pulsed tension and compression tests. The proposed finite element simulations could reproduce the measured uniaxial tensile and compressive stress-strain curves under pulsed electric currents, when the temperature-dependent flow stress hardening model and thermal properties of AZ31B sheet were properly described in the simulations. In particular, the simulation results that fit best with experimental results showed that almost 100 pct of the electric current was subject to transform into Joule heating during electrically assisted tensile and compressive tests.

  4. The use of COD and plastic instability in crack propagation and arrest in shells

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Ratwani, M.

    1974-01-01

    The initiation, growth, and possible arrest of fracture in cylindrical shells containing initial defects are dealt with. For those defects which may be approximated by a part-through semi-elliptic surface crack which is sufficiently shallow so that part of the net ligament in the plane of the crack is still elastic, the existing flat plate solution is modified to take into account the shell curvature effect as well as the effect of the thickness and the small scale plastic deformations. The problem of large defects is then considered under the assumptions that the defect may be approximated by a relatively deep meridional part-through surface crack and the net ligament through the shell wall is fully yielded. The results given are based on an 8th order bending theory of shallow shells using a conventional plastic strip model to account for the plastic deformations around the crack border.

  5. Method to Determine the Stress-Strain Response of As-Formed Thin-Walled Tubular Structures Using a Flaring Apparatus

    NASA Astrophysics Data System (ADS)

    Jurendic, S.; Anderson, D.

    2017-09-01

    Finite element simulations are used extensively to refine the forming steps of draw and wall iron (DWI) aluminum bottles; therefore, accurate material data is required Unfortunately, the material properties of the base sheet cannot presently be used for simulation of the later forming stages due to preceding significant deformation (ironing) and thermal treatments. Measuring the stress-strain response using traditional methods (e.g. tensile test) becomes increasingly difficult at later stages of the bottle forming process due to a significant diameter reduction of the bottle neck from successive die-necking stages. Moreover, failure during forming tends to occur in the final deformation stages when the bottle opening is rolled over, creating a brim roll, at which point brim roll splits may occur. Knowledge of the stress-strain response prior to the roll over may lead to improved product design, reduced waste, and an optimized product. Therefore, this work details a flaring apparatus and data analysis method to determine the stress-strain response in the die-necked region of thin-walled aluminum bottles fabricated from AA3104 sheet metal.

  6. Investigation of the magnetic properties of Si-gradient steel sheet by comparison with 6.5%Si steel sheet

    NASA Astrophysics Data System (ADS)

    Hiratani, T.; Zaizen, Y.; Oda, Y.; Yoshizaki, S.; Senda, K.

    2018-05-01

    In this study, we investigated the magnetic properties of Si-gradient steel sheet produced by CVD (chemical vapor deposition) siliconizing process, comparing with 6.5% Si steel sheet. The Si-gradient steel sheet having silicon concentration gradient in the thickness direction, has larger hysteresis loss and smaller eddy current loss than the 6.5% Si steel sheet. In such a loss configuration, the iron loss of the Si-gradient steel sheet becomes lower than that of the 6.5% Si steel sheet at high frequencies. The experiment suggests that tensile stress is formed at the surface layer and compressive stress is formed at the inner layer in the Si gradient steel sheet. The magnetic anisotropy is induced by the internal stress and it is considered to affect the magnetization behavior of the Si-gradient steel sheet. The small eddy current loss of Si-gradient steel sheet can be explained as an effect of magnetic flux concentration on the surface layer.

  7. A Transient Initialization Routine of the Community Ice Sheet Model for the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    van der Laan, Larissa; van den Broeke, Michiel; Noël, Brice; van de Wal, Roderik

    2017-04-01

    The Community Ice Sheet Model (CISM) is to be applied in future simulations of the Greenland Ice Sheet under a range of climate change scenarios, determining the sensitivity of the ice sheet to individual climatic forcings. In order to achieve reliable results regarding ice sheet stability and assess the probability of future occurrence of tipping points, a realistic initial ice sheet geometry is essential. The current work describes and evaluates the development of a transient initialization routine, using NGRIP 18O isotope data to create a temperature anomaly field. Based on the latter, surface mass balance components runoff and precipitation are perturbed for the past 125k years. The precipitation and runoff fields originate from a downscaled 1 km resolution version of the regional climate model RACMO2.3 for the period 1961-1990. The result of the initialization routine is a present-day ice sheet with a transient memory of the last glacial-interglacial cycle, which will serve as the future runs' initial condition.

  8. Wave-induced drift of large floating sheets

    NASA Astrophysics Data System (ADS)

    Christensen, K. H.; Weber, J. E.

    In this article we study the wave-induced drift of large, flexible shallow floating objects, referred to as sheets. When surface waves propagate through a sheet, they provide a mean stress on the sheet, resulting in a mean drift. In response, the sheet generates an Ekman current. The drift velocity of the sheet is determined by (i) the wave-induced stress, (ii) the viscous stress due to the Ekman current, and (iii) the Coriolis force. The sheet velocity and the current beneath the sheet are determined for constant and depth-varying eddy viscosities.

  9. Use of electron microscopy to classify canine perivascular wall tumors.

    PubMed

    Palmieri, C; Avallone, G; Cimini, M; Roccabianca, P; Stefanello, D; Della Salda, L

    2013-03-01

    The histologic classification of canine perivascular wall tumors (PWTs) is controversial. Many PWTs are still classified as hemangiopericytomas (HEPs), and the distinction from peripheral nerve sheath tumors (PNSTs) is still under debate. A recent histologic classification of canine soft tissue sarcomas included most histologic types of PWT but omitted those that were termed undifferentiated. Twelve cases of undifferentiated canine PWTs were evaluated by transmission electron microscopy. The ultrastructural findings supported a perivascular wall origin for all cases with 4 categories of differentiation: myopericytic (n = 4), myofibroblastic (n = 1), fibroblastic (n = 2), and undifferentiated (n = 5). A PNST was considered unlikely in each case based on immunohistochemical expression of desmin and/or the lack of typical ultrastructural features, such as basal lamina. Electron microscopy was pivotal for the subclassification of canine PWTs, and the results support the hypothesis that canine PWTs represent a continuum paralleling the phenotypic plasticity of vascular mural cells. The hypothesis that a subgroup of PWTs could arise from a pluripotent mesenchymal perivascular wall cell was also considered and may explain the diverse differentiation of canine PWTs.

  10. 46 CFR 232.4 - Balance sheet accounts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Balance sheet accounts. 232.4 Section 232.4 Shipping... ACTIVITIES UNIFORM FINANCIAL REPORTING REQUIREMENTS Balance Sheet § 232.4 Balance sheet accounts. (a.... (b) Purpose of balance sheet accounts. The balance sheet accounts are intended to disclose the...

  11. 46 CFR 232.4 - Balance sheet accounts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Balance sheet accounts. 232.4 Section 232.4 Shipping... ACTIVITIES UNIFORM FINANCIAL REPORTING REQUIREMENTS Balance Sheet § 232.4 Balance sheet accounts. (a.... (b) Purpose of balance sheet accounts. The balance sheet accounts are intended to disclose the...

  12. Skill Sheets for Agricultural Mechanics.

    ERIC Educational Resources Information Center

    Iowa State Univ. of Science and Technology, Ames. Dept. of Agricultural Education.

    This set of 33 skill sheets for agricultural mechanics was developed for use in high school and vocational school agricultural mechanics programs. Some sheets teach operational procedures while others are for simple projects. Each skill sheet covers a single topic and includes: (1) a diagram, (2) a step-by-step construction or operational…

  13. Measurement of tritium with high efficiency by using liquid scintillation counter with plastic scintillator.

    PubMed

    Furuta, Etsuko; Ohyama, Ryu-ichiro; Yokota, Shigeaki; Nakajo, Toshiya; Yamada, Yuka; Kawano, Takao; Uda, Tatsuhiko; Watanabe, Yasuo

    2014-11-01

    The detection efficiencies of tritium samples by using liquid scintillation counter with hydrophilic plastic scintillator (PS) was approximately 48% when the sample of 20 μL was held between 2 PS sheets treated by plasma. The activity and count rates showed a good relationship between 400 Bq to 410 KBq mL(-1). The calculated detection limit of 2 min measurement by the PS was 13 Bq mL(-1) when a confidence was 95%. The plasma method for PS produces no radioactive waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Sheet production apparatus for removing a crystalline sheet from the surface of a melt using gas jets located above and below the crystalline sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kellerman, Peter L.; Thronson, Gregory D.

    In one embodiment, a sheet production apparatus comprises a vessel configured to hold a melt of a material. A cooling plate is disposed proximate the melt and is configured to form a sheet of the material on the melt. A first gas jet is configured to direct a gas toward an edge of the vessel. A sheet of a material is translated horizontally on a surface of the melt and the sheet is removed from the melt. The first gas jet may be directed at the meniscus and may stabilize this meniscus or increase local pressure within the meniscus.

  15. Possible participation of transient sheets of 1. -->. 4-. beta. -glucans in the biosynthesis of cellulose I. [Acetobacter xylinum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colvin, J.R.

    1983-01-01

    It is suggested that a primary, essential stage in the biologic formation of a microfibril of cellulose I is an extracellular, lateral association of presynthesized (1..-->..4)-..beta..-D-glucans, by hydrogen bonding, to form long, thin sheets. These sheets then superimpose themselves nonenzymatically by London forces to form the nascent microfibril. The ends of the constituent glucans of the nascent microfibril may undergo extension or rearrangement of the type indicated by Maclachlan and colleagues. The formation of the metastable, native structure (cellulose I) may be deduced from the above suggestion as a natural consequence of closest packing of the sheets. The irreversibility ofmore » the change from cellulose I to cellulose II, either by mercerization or regeneration, also follows from the postulate. The suggestion also explains why cellulose microfibrils and chitin microfibrils may be formed contiguously in cell walls without interfering with each other. High-resolution electron micrographs of the tips of newly formed microfibrils of bacterial cellulose which had been very lightly negatively stained with sodium phosphotungstate are consistent with the suggestion. 33 references, 3 figures.« less

  16. Plastic Response of Tracheids in Pinus pinaster in a Water-Limited Environment: Adjusting Lumen Size instead of Wall Thickness

    PubMed Central

    Carvalho, Ana; Nabais, Cristina; Vieira, Joana; Rossi, Sergio; Campelo, Filipe

    2015-01-01

    The formation of wood results from cambial activity and its anatomical properties reflect the variability of environmental conditions during the growing season. Recently, it was found that wood density variations in conifers growing under cold-limited environment result from the adjustment of cell wall thickness (CWT) to temperature. Additionally, it is known that intra-annual density fluctuations (IADFs) are formed in response to precipitation after the summer drought. Although IADFs are frequent in Mediterranean conifers no study has yet been conducted to determine if these structures result from the adjustment of lumen diameter (LD) or CWT to soil water availability. Our main objective is to investigate the intra-ring variation of wood anatomical features (LD and CWT) in Pinus pinaster Ait. growing under a water-limited environment. We compared the tracheidograms of LD and CWT for the years 2010–2013 in P. pinaster growing in the west coast of Portugal. Our results suggest a close association between LD and soil moisture content along the growing season, reinforcing the role of water availability in determining tracheid size. Compared with CWT, LD showed a higher intra- and inter-annual variability suggesting its strong adjustment value to variations in water availability. The formation of a latewood IADF appears to be predisposed by higher rates of cell production in spring and triggered by early autumn precipitation. Our findings reinforce the crucial role of water availability on cambial activity and wood formation in Mediterranean conifers, and emphasize the high plasticity of wood anatomical features under Mediterranean climate. PMID:26305893

  17. Plastic Response of Tracheids in Pinus pinaster in a Water-Limited Environment: Adjusting Lumen Size instead of Wall Thickness.

    PubMed

    Carvalho, Ana; Nabais, Cristina; Vieira, Joana; Rossi, Sergio; Campelo, Filipe

    2015-01-01

    The formation of wood results from cambial activity and its anatomical properties reflect the variability of environmental conditions during the growing season. Recently, it was found that wood density variations in conifers growing under cold-limited environment result from the adjustment of cell wall thickness (CWT) to temperature. Additionally, it is known that intra-annual density fluctuations (IADFs) are formed in response to precipitation after the summer drought. Although IADFs are frequent in Mediterranean conifers no study has yet been conducted to determine if these structures result from the adjustment of lumen diameter (LD) or CWT to soil water availability. Our main objective is to investigate the intra-ring variation of wood anatomical features (LD and CWT) in Pinus pinaster Ait. growing under a water-limited environment. We compared the tracheidograms of LD and CWT for the years 2010-2013 in P. pinaster growing in the west coast of Portugal. Our results suggest a close association between LD and soil moisture content along the growing season, reinforcing the role of water availability in determining tracheid size. Compared with CWT, LD showed a higher intra- and inter-annual variability suggesting its strong adjustment value to variations in water availability. The formation of a latewood IADF appears to be predisposed by higher rates of cell production in spring and triggered by early autumn precipitation. Our findings reinforce the crucial role of water availability on cambial activity and wood formation in Mediterranean conifers, and emphasize the high plasticity of wood anatomical features under Mediterranean climate.

  18. Spaceflight Affects Postnatal Development of the Aortic Wall in Rats

    PubMed Central

    Yamasaki, Masao; Waki, Hidefumi; Miyake, Masao; Nagayama, Tadanori; Miyamoto, Yukako; Wago, Haruyuki; Okouchi, Toshiyasu; Shimizu, Tsuyoshi

    2014-01-01

    We investigated effect of microgravity environment during spaceflight on postnatal development of the rheological properties of the aorta in rats. The neonate rats were randomly divided at 7 days of age into the spaceflight, asynchronous ground control, and vivarium control groups (8 pups for one dam). The spaceflight group rats at 9 days of age were exposed to microgravity environment for 16 days. A longitudinal wall strip of the proximal descending thoracic aorta was subjected to stress-strain and stress-relaxation tests. Wall tensile force was significantly smaller in the spaceflight group than in the two control groups, whereas there were no significant differences in wall stress or incremental elastic modulus at each strain among the three groups. Wall thickness and number of smooth muscle fibers were significantly smaller in the spaceflight group than in the two control groups, but there were no significant differences in amounts of either the elastin or collagen fibers among the three groups. The decreased thickness was mainly caused by the decreased number of smooth muscle cells. Plastic deformation was observed only in the spaceflight group in the stress-strain test. A microgravity environment during spaceflight could affect postnatal development of the morphological and rheological properties of the aorta. PMID:25210713

  19. Towards a morphogenetic classification of eskers: Implications for modelling ice sheet hydrology

    NASA Astrophysics Data System (ADS)

    Perkins, Andrew J.; Brennand, Tracy A.; Burke, Matthew J.

    2016-02-01

    Validations of paleo-ice sheet hydrological models have used esker spacing as a proxy for ice tunnel density. Changes in crest type (cross-sectional shape) along esker ridges have typically been attributed to the effect of changing subglacial topography on hydro- and ice-dynamics and hence subglacial ice-tunnel shape. These claims assume that all eskers formed in subglacial ice tunnels and that all major subglacial ice tunnels produced a remnant esker. We identify differences in geomorphic context, sinuosity, cross-sectional shape, and sedimentary architecture by analysing eskers formed at or near the margins of the last Cordilleran Ice Sheet on British Columbia's southern Fraser Plateau, and propose a morphogenetic esker classification. Three morphogenetic types and 2 subtypes of eskers are classified based on differences in geomorphic context, ridge length, sinuosity, cross-sectional shape and sedimentary architecture using geophysical techniques and sedimentary exposures; they largely record seasonal meltwater flows and glacial lake outburst floods (GLOFs) through sub-, en- and supraglacial meltwater channels and ice-walled canyons. General principles extracted from these interpretations are: 1) esker ridge crest type and sinuosity strongly reflect meltwater channel type. Eskers formed in subglacial conduits are likely to be round-crested with low sinuosity (except where controlled by ice structure or modified by surging) and contain faults associated with flank collapse. Eskers formed near or at the ice surface are more likely to be sharp-crested, highly sinuous, and contain numerous faults both under ridge crest-lines and in areas of flank collapse. 2) Esker ridges containing numerous flat-crested reaches formed directly on the land-surface in ice-walled canyons (unroofed ice tunnels) or in ice tunnels at atmospheric pressure, and therefore likely record thin or dead ice. 3) Eskers containing macroforms exhibiting headward and downflow growth likely record

  20. Effect of Bottoming on Material Property during Sheet Forming Process through Finite Element Method

    NASA Astrophysics Data System (ADS)

    Akinlabi, Stephen A.; Fatoba, Olawale S.; Mashinini, Peter M.; Akinlabi, Esther T.

    2018-03-01

    Metal forming is one of the conventional manufacturing processes of immense relevance till date even though modern manufacturing processes have evolved over the years. It is a known fact that material tends to return or spring back to its original form during forming or bending. The phenomena have been well managed through its application in various manufacturing processes by compensating for the spring back through overbending and bottoming. Overbending is bending the material beyond the desired shape to allow the material to spring back to the expected shape. Bottoming, on the other hand, is a process of undergoing plastic deformation at the point of bending. This study reports on the finite element analysis of the effect of bottoming on the material property during the sheet forming process with the aim of optimising the process. The result of the analysis revealed that the generated plastic strains are in the order between 1.750e00-1 at the peak of the bending and 3.604e00-2, which was at the early stage of the bending.

  1. Solid-state Bonding of Superplastic Aluminum Alloy 7475 Sheet

    NASA Technical Reports Server (NTRS)

    Byun, T. D. S.; Vastava, R. B.

    1985-01-01

    Experimental works were carried out to study the feasibility of solid state bonding of superplastic aluminum 7475 sheet. Amount of deformation, bonding time, surface cleaning method and intermediate layer were the process parameters investigated. Other parameters, held constant by the superplastic forming condition which is required to obtain a concurrent solid state bonding, are bonding temperature, bonding pressure and atmosphere. Bond integrity was evaluated through metallographic examination, X-ray line scan analysis, SEM fractographic analysis and lap shear tests. The early results of the development program indicated that sound solid state bonding was accomplished for this high strength 7475 alloy with significant amounts of deformation. A thin intermediate layer of the soft 5052 aluminum alloy aided in achieving a solid state bonding by reducing the required amount of plastic deformation at the interface. Bond strength was substantially increased by a post bond heat treatment.

  2. A Comparison of graphene hydrogels modified with single-walled/multi-walled carbon nanotubes as electrode materials for capacitive deionization.

    PubMed

    Cao, Jianglin; Wang, Ying; Chen, Chunyang; Yu, Fei; Ma, Jie

    2018-05-15

    Capacitive deionization (CDI) is a technology used to remove salt from brackish water, and it is an energy-saving, low-cost method compared with other methods, such as reverse osmosis, multi-stage ash distillation and electrodialysis. In this paper, three-dimensional (3D) graphene hydrogels modified with single-walled carbon nanotubes (SWCNTs) or multi-walled carbon nanotubes (MWCNTs) were synthesized by a one-step water bath method to increase the conductivity of materials and reduce the aggregation of the graphene sheets. The CDI performance differences between the two materials were compared and discussed. The results suggested that SWCNTs/rGO had a higher electrosorption capacity (48.73 mg/g) than MWCNTs/rGO, and this was attributed to its high specific surface area (308.37 m 2 /g), specific capacity (36.35 F/g), and smaller charge transfer resistance compared with those of the MWCNTs/rGO electrode. The results indicate SWCNTs/rGO is a promising and suitable material for CDI technology and we provide basic guidance for further CNTs/graphene composite research. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. The Physics of Ice Sheets

    ERIC Educational Resources Information Center

    Bassis, J. N.

    2008-01-01

    The great ice sheets in Antarctica and Greenland are vast deposits of frozen freshwater that contain enough to raise sea level by approximately 70 m if they were to completely melt. Because of the potentially catastrophic impact that ice sheets can have, it is important that we understand how ice sheets have responded to past climate changes and…

  4. Selectively reflective transparent sheets

    NASA Astrophysics Data System (ADS)

    Waché, Rémi; Florescu, Marian; Sweeney, Stephen J.; Clowes, Steven K.

    2015-08-01

    We investigate the possibility to selectively reflect certain wavelengths while maintaining the optical properties on other spectral ranges. This is of particular interest for transparent materials, which for specific applications may require high reflectivity at pre-determined frequencies. Although there exist currently techniques such as coatings to produce selective reflection, this work focuses on new approaches for mass production of polyethylene sheets which incorporate either additives or surface patterning for selective reflection between 8 to 13 μ m. Typical additives used to produce a greenhouse effect in plastics include particles such as clays, silica or hydroxide materials. However, the absorption of thermal radiation is less efficient than the decrease of emissivity as it can be compared with the inclusion of Lambertian materials. Photonic band gap engineering by the periodic structuring of metamaterials is known in nature for producing the vivid bright colors in certain organisms via strong wavelength-selective reflection. Research to artificially engineer such structures has mainly focused on wavelengths in the visible and near infrared. However few studies to date have been carried out to investigate the properties of metastructures in the mid infrared range even though the patterning of microstructure is easier to achieve. We present preliminary results on the diffuse reflectivity using FDTD simulations and analyze the technical feasibility of these approaches.

  5. Stability of Thin Liquid Sheet Flows

    NASA Technical Reports Server (NTRS)

    McConley, Marc W.; Chubb, Donald L.; McMaster, Matthew S.; Afjeh, Abdollah A.

    1997-01-01

    A two-dimensional, linear stability analysis of a thin nonplanar liquid sheet flow in vacuum is carried out. A sheet flow created by a narrow slit of W and tau attains a nonplanar cross section as a consequence of cylinders forming on the sheet edge under the influence of surface tension forces. The region where these edge cylinders join the sheet is one of high curvature, and this is found to be the location where instability is most likely to occur. The sheet flow is found to be unstable, but with low growth rates for symmetric wave disturbances and high growth rates for antisymmetric disturbances. By combining the symmetric and antisymmetric disturbance modes, a wide range of stability characteristics is obtained. The product of unstable growth rate and flow time is proportional to the width-to-thickness ratio of the sift generating the sheet Three-dimensional effects can alter these results, particularly when the sheet length-to-width ratio is not much greater than unity.

  6. Takedown of enterocutaneous fistula and complex abdominal wall reconstruction.

    PubMed

    Slade, Dominic Alexander James; Carlson, Gordon Lawrence

    2013-10-01

    Key steps in managing patients with enterocutaneous fistulation and an abdominal wall defect include dealing effectively with abdominal sepsis and providing safe and effective nutritional support and skin care, then assessing intestinal and abdominal anatomy, before undertaking reconstructive surgery. The complexity, cost, and morbidity associated with such cases justifies creation of specialized centers in which gastroenterologic, hernia, and plastic surgical expertise, as well as experienced wound and stoma nursing and nutritional and psychological support, can be made available for patients with these challenging problems. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Plasma Sheet Circulation Pathways

    NASA Technical Reports Server (NTRS)

    Moore, Thomas E.; Delcourt, D. C.; Slinker, S. P.; Fedder, J. A.; Damiano, P.; Lotko, W.

    2008-01-01

    Global simulations of Earth's magnetosphere in the solar wind compute the pathways of plasma circulation through the plasma sheet. We address the pathways that supply and drain the plasma sheet, by coupling single fluid simulations with Global Ion Kinetic simulations of the outer magnetosphere and the Comprehensive Ring Current Model of the inner magnetosphere, including plasmaspheric plasmas. We find that the plasma sheet is supplied with solar wind plasmas via the magnetospheric flanks, and that this supply is most effective for northward IMF. For southward IMF, the innermost plasma sheet and ring current region are directly supplied from the flanks, with an asymmetry of single particle entry favoring the dawn flank. The central plasma sheet (near midnight) is supplied, as expected, from the lobes and polar cusps, but the near-Earth supply consists mainly of slowly moving ionospheric outflows for typical conditions. Work with the recently developed multi-fluid LFM simulation shows transport via plasma "fingers" extending Earthward from the flanks, suggestive of an interchange instability. We investigate this with solar wind ion trajectories, seeking to understand the fingering mechanisms and effects on transport rates.

  8. Demonstrating the Effects of Processing on the Structure and Physical Properties of Plastic Using Disposable PETE Cups

    ERIC Educational Resources Information Center

    Erk, Kendra A.; Rhein, Morgan; Krafcik, Matthew J.; Ydstie, Sophie

    2015-01-01

    An educational activity is described in which the structure and physical properties of disposable plastic cups were directly related to the method of processing. The mechanical properties of specimens cut from the walls of poly(ethylene terephthalate) (PETE) cups, oriented parallel and perpendicular to the thermoforming direction, were measured in…

  9. Damage and Failure Analysis of AZ31 Alloy Sheet in Warm Stamping Processes

    NASA Astrophysics Data System (ADS)

    Zhao, P. J.; Chen, Z. H.; Dong, C. F.

    2016-07-01

    In this study, a combined experimental-numerical investigation on the failure of AZ31 Mg alloy sheet in the warm stamping process was carried out based on modified GTN damage model which integrated Yld2000 anisotropic yield criterion. The constitutive equations of material were implemented into a VUMAT subroutine for solver ABAQUS/Explicit and applied to the formability analysis of mobile phone shell. The morphology near the crack area was observed using SEM, and the anisotropic damage evolution at various temperatures was simulated. The distributions of plastic strain, damage evolution, thickness, and fracture initiation obtained from FE simulation were analyzed. The corresponding forming limit diagrams were worked out, and the comparison with the experimental data showed a good agreement.

  10. Incremental Feeding High-Pressure Sliding for Grain Refinement of Large-Scale Sheets: Application to Inconel 718

    NASA Astrophysics Data System (ADS)

    Takizawa, Yoichi; Sumikawa, Kosei; Watanabe, Kyohei; Masuda, Takahiro; Yumoto, Manabu; Kanai, Yuta; Otagiri, Yoshiharu; Horita, Zenji

    2018-03-01

    This study updates a process of high-pressure sliding (HPS) recently developed as a severe plastic deformation process under high pressure for grain refinement of sheet samples. The updated version, which we call the incremental feeding HPS (IF-HPS), consists of sliding for SPD and feeding for upsizing the SPD-processed area so that, without increasing the capacity of processing facility, it is possible to cover a much larger area with an SPD-processed ultrafine-grained structure with a grain size of 120 nm. For the IF-HPS processing, anvils with flat surfaces but without grooves are used in an unconstrained condition, and the feeding distance is set equal to the deformed width. A Ni-based superalloy (Inconel 718) is processed by the IF-HPS under 4 GPa at room temperature, and it is possible to obtain an SPD-processed sheet with dimensions of approximately 100 × 100 × 1 mm3. Strain distribution and evolution were examined by hardness measurement and simulation using a finite element method. Tensile tests were conducted using tensile specimens extracted from the IF-HPS-processed sheet. Advent of high strain rate superplasticity with the total elongation of more than 400 pct was confirmed by pulling the tensile specimens with an initial strain rate of 2.0 × 10-2 s-1 at a temperature as low as 1073 K. The formability of the IF-HPS-processed sheet was confirmed by successful cup forming. It was also confirmed that the restoration after the superplastic deformation was feasible by subjecting to conventional heat treatment used for Inconel 718.

  11. Scaling results for the liquid sheet radiator

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Calfo, Frederick D.

    1989-01-01

    Surface tension forces at the edges of a thin liquid (approx 100 micrometers) sheet flow result in a triangularly shaped sheet. Such a geometry is ideal for an external flow radiator. The experimental investigation of such sheet flows was extended to large sheets (width = 23.5 cm, length = 3.5 m). Experimental L/W results are greater than the calculated results. However, more experimental results are necessary for a complete comparison. The calculated emissivity of a sheet of Dow-Corning 705 silicone oil, which is low temperature (300-400 K) candidate for a liquid sheet radiator (LSR), is greater than 0.8 for sheet thicknesses greater than 100 micrometers.

  12. Flexible Structural-Health-Monitoring Sheets

    NASA Technical Reports Server (NTRS)

    Qing, Xinlin; Kuo, Fuo

    2008-01-01

    A generic design for a type of flexible structural-health-monitoring sheet with multiple sensor/actuator types and a method of manufacturing such sheets has been developed. A sheet of this type contains an array of sensing and/or actuation elements, associated wires, and any other associated circuit elements incorporated into various flexible layers on a thin, flexible substrate. The sheet can be affixed to a structure so that the array of sensing and/or actuation elements can be used to analyze the structure in accordance with structural-health-monitoring techniques. Alternatively, the sheet can be designed to be incorporated into the body of the structure, especially if the structure is made of a composite material. Customarily, structural-health monitoring is accomplished by use of sensors and actuators arrayed at various locations on a structure. In contrast, a sheet of the present type can contain an entire sensor/actuator array, making it unnecessary to install each sensor and actuator individually on or in a structure. Sensors of different types such as piezoelectric and fiber-optic can be embedded in the sheet to form a hybrid sensor network. Similarly, the traces for electric communication can be deposited on one or two layers as required, and an entirely separate layer can be employed to shield the sensor elements and traces.

  13. Smooth- and rough-wall boundary layer structure from high spatial range particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Squire, D. T.; Morrill-Winter, C.; Hutchins, N.; Marusic, I.; Schultz, M. P.; Klewicki, J. C.

    2016-10-01

    Two particle image velocimetry arrangements are used to make true spatial comparisons between smooth- and rough-wall boundary layers at high Reynolds numbers across a very wide range of streamwise scales. Together, the arrangements resolve scales ranging from motions on the order of the Kolmogorov microscale to those longer than twice the boundary layer thickness. The rough-wall experiments were obtained above a continuous sandpaper sheet, identical to that used by Squire et al. [J. Fluid Mech. 795, 210 (2016), 10.1017/jfm.2016.196], and cover a range of friction and equivalent sand-grain roughness Reynolds numbers (12 000 ≲δ+≲ 18000, 62 ≲ks+≲104 ). The smooth-wall experiments comprise new and previously published data spanning 6500 ≲δ+≲17 000 . Flow statistics from all experiments show similar Reynolds number trends and behaviors to recent, well-resolved hot-wire anemometry measurements above the same rough surface. Comparisons, at matched δ+, between smooth- and rough-wall two-point correlation maps and two-point magnitude-squared coherence maps demonstrate that spatially the outer region of the boundary layer is the same between the two flows. This is apparently true even at wall-normal locations where the total (inner-normalized) energy differs between the smooth and rough wall. Generally, the present results provide strong support for Townsend's [The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, 1956), Vol. 1] wall-similarity hypothesis in high Reynolds number fully rough boundary layer flows.

  14. A panel method study of vortex sheets with special emphasis on sheets of axisymmetric geometry. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Sugioka, I.; Widnall, S. E.

    1985-01-01

    The self induced evolution of a vortex sheet was simulated by modeling the sheet using an integration of discrete elements of vorticity. Replacing small sections of a vortex sheet by flat panels of constant vorticity is found to reproduce more accurately the initial conditions for the Lagrangian simulation technique than replacement by point vortices. The flat panel method for the vortex sheet was then extended to model axisymmetric vortex sheets. The local and far field velocities induced by the axisymmetric panels were obtained using matched asymptotic analysis, and some of the uncertainties involved in other models of the axisymmetric vortex sheet have been eliminated. One important result of this analysis is the determination of the proper choice of core size for a circular vortex filament which may replace a section of an axisymmetric vortex sheet. Roll-up of both two dimensional and axisymmetric vortex sheets was computed using the panel methods developed in the report.

  15. Dynamics of Radially Expanding Liquid Sheets

    NASA Astrophysics Data System (ADS)

    Majumdar, Nayanika; Tirumkudulu, Mahesh S.

    2018-04-01

    The process of atomization often involves ejecting thin liquid sheets at high speeds from a nozzle that causes the sheet to flap violently and break up into fine droplets. The flapping of the liquid sheet has long been attributed to the sheet's interaction with the surrounding gas phase. Here, we present experimental evidence to the contrary and show that the flapping is caused by the thinning of the liquid sheet as it spreads out from the nozzle exit. The measured growth rates of the waves agree remarkably well with the predictions of a recent theory that accounts for the sheet's thinning but ignores aerodynamic interactions. We anticipate these results to not only lead to more accurate predictions of the final drop-size distribution but also enable more efficient designs of atomizers.

  16. No phenotypic plasticity in nest-site selection in response to extreme flooding events.

    PubMed

    Bailey, Liam D; Ens, Bruno J; Both, Christiaan; Heg, Dik; Oosterbeek, Kees; van de Pol, Martijn

    2017-06-19

    Phenotypic plasticity is a crucial mechanism for responding to changes in climatic means, yet we know little about its role in responding to extreme climatic events (ECEs). ECEs may lack the reliable cues necessary for phenotypic plasticity to evolve; however, this has not been empirically tested. We investigated whether behavioural plasticity in nest-site selection allows a long-lived shorebird ( Haematopus ostralegus ) to respond to flooding. We collected longitudinal nest elevation data on individuals over two decades, during which time flooding events have become increasingly frequent. We found no evidence that individuals learn from flooding experiences, showing nest elevation change consistent with random nest-site selection. There was also no evidence of phenotypic plasticity in response to potential environmental cues (lunar nodal cycle and water height). A small number of individuals, those nesting near an artificial sea wall, did show an increase in nest elevation over time; however, there is no conclusive evidence this occurred in response to ECEs. Our study population showed no behavioural plasticity in response to changing ECE patterns. More research is needed to determine whether this pattern is consistent across species and types of ECEs. If so, ECEs may pose a major challenge to the resilience of wild populations.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).

  17. Biodegradation of degradable plastic polyethylene by phanerochaete and streptomyces species.

    PubMed

    Lee, B; Pometto, A L; Fratzke, A; Bailey, T B

    1991-03-01

    The ability of lignin-degrading microorganisms to attack degradable plastics was investigated in pure shake flask culture studies. The degradable plastic used in this study was produced commercially by using the Archer-Daniels-Midland POLYCLEAN masterbatch and contained pro-oxidant and 6% starch. The known lignin-degrading bacteria Streptomyces viridosporus T7A, S. badius 252, and S. setonii 75Vi2 and fungus Phanerochaete chrysosporium were used. Pro-oxidant activity was accelerated by placing a sheet of plastic into a drying oven at 70 degrees C under atmospheric pressure and air for 0, 4, 8, 12, 16, or 20 days. The effect of 2-, 4-, and 8-week longwave UV irradiation at 365 nm on plastic biodegradability was also investigated. For shake flask cultures, plastics were chemically disinfected and incubated-shaken at 125 rpm at 37 degrees C in 0.6% yeast extract medium (pH 7.1) for Streptomyces spp. and at 30 degrees C for the fungus in 3% malt extract medium (pH 4.5) for 4 weeks along with an uninoculated control for each treatment. Weight loss data were inconclusive because of cell mass accumulation. For almost every 70 degrees C heat-treated film, the Streptomyces spp. demonstrated a further reduction in percent elongation and polyethylene molecular weight average when compared with the corresponding uninoculated control. Significant (P < 0.05) reductions were demonstrated for the 4- and 8-day heat-treated films by all three bacteria. Heat-treated films incubated with P. chrysosporium consistently demonstrated higher percent elongation and molecular weight average than the corresponding uninoculated controls, but were lower than the corresponding zero controls (heat-treated films without 4-week incubation). The 2- and 4-week UV-treated films showed the greatest biodegradation by all three bacteria. Virtually no degradation by the fungus was observed. To our knowledge, this is the first report demonstrating bacterial degradation of these oxidized polyethylenes in

  18. Transformation of localized necking of strain space into stress space for advanced high strength steel sheet

    NASA Astrophysics Data System (ADS)

    Nakwattanaset, Aeksuwat; Suranuntchai, Surasak

    2018-03-01

    Normally, Forming Limit Curves (FLCs) can’t explain for shear fracture better than Damage Curve, this article aims to show the experimental of Forming Limit Curve (FLC) for Advanced High Strength Steel (AHSS) sheets grade JAC780Y with the Nakazima forming test and tensile tests of different sample geometries. From these results, the Forming Limit Curve (strain space) was transformed to damage curve (stress space) between plastic strain and stress triaxiality. Therefore, Stress space transformed using by Hill-48 and von-Mises yield function. This article shows that two of these yield criterions can use in the transformation.

  19. Ultraviolet photodetectors based on ZnO sheets: The effect of sheet size on photoresponse properties

    NASA Astrophysics Data System (ADS)

    Ghasempour Ardakani, Abbas; Pazoki, Meysam; Mahdavi, Seyed Mohammad; Bahrampour, Ali Reza; Taghavinia, Nima

    2012-05-01

    In this work, ultraviolet photodetectors based on electrodeposited ZnO sheet thin films were fabricated on a glass substrate. Before electrodeposition, a thin buffer layer of ZnO was deposited on the glass by pulsed laser deposition method. This layer not only acted as a nucleation site for ZnO sheet growth, but also made it possible to use cheap glass substrate instead of conventional fluorine-doped tin oxide (FTO) substrate. Our results showed that photoresponse properties of the photodetectors strongly depend on the sheet sizes. The smaller sheets exhibited enhanced photosensitivity, shortened fall times and decreased gain compared to larger ones. We showed that photodetectors based on ZnO sheets have a faster response than ones based on polycrystalline films. It was also shown that even less response time could be obtained by using comb-like electrodes instead of two-electrode.

  20. Buckling and stretching of thin viscous sheets

    NASA Astrophysics Data System (ADS)

    O'Kiely, Doireann; Breward, Chris; Griffiths, Ian; Howell, Peter; Lange, Ulrich

    2016-11-01

    Thin glass sheets are used in smartphone, battery and semiconductor technology, and may be manufactured by producing a relatively thick glass slab and subsequently redrawing it to a required thickness. The resulting sheets commonly possess undesired centerline ripples and thick edges. We present a mathematical model in which a viscous sheet undergoes redraw in the direction of gravity, and show that, in a sufficiently strong gravitational field, buckling is driven by compression in a region near the bottom of the sheet, and limited by viscous resistance to stretching of the sheet. We use asymptotic analysis in the thin-sheet, low-Reynolds-number limit to determine the centerline profile and growth rate of such a viscous sheet.

  1. Structural styles of the Guess Creek fault block beneath the Great Smoky thrust sheet, Blount County, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, M.W.; Davidson, G.L.; Heller, J.A.

    1993-03-01

    A road cut along US 321 N, approximately 1 km NW of Walland, TN, exposes a previously unexposed complexly deformed section of Middle Ordovician clastic wedge [Chickamauga Group, Sevier Shale] sedimentary rocks. It provides an excellent opportunity to analyze both the lithologic assemblages and complex folding and faulting beneath the Great Smoky thrust sheet. Arkosic quartzite of the Lower Cambrian Cochran Conglomerate [Chilhowee Group], has been thrust over weaker Sevier Shale in the hanging wall of the Guess Creek fault. Regionally, the Great Smoky fault separates metamorphosed Precambrian to Lower Cambrian clastic shelf, slope, and rift facies rocks of themore » western Blue Ridge from Cambro-Ordovician carbonate shelf and orogenic wedge deposits of the foreland fold and thrust belt. West of the Great Smoky fault, the Guess Creek fault has been interpreted to floor duplexed Cambro-Ordovician rocks exposed in windows beneath the Great Smoky thrust sheet in the vicinity of the Great Smoky Mountains National Park. The Sevier Shale here consists of variably cleaved shale, siltstone, sandstone, and conglomerate. It exhibits a variety of fold styles throughout the exposure, ranging from predominantly noncylindrical tight folds to broad, open structures. A weak axial-planar pencil cleavage is developed in the Middle Ordovician shale and siltstone, along with a secondary cleavage that transects the axial surfaces of the folds. Minor thrust faults within the Sevier Shale appear to have formed by propagation through tightened fold hinges or bedding-parallel slip. The fold pattern observed in the roadcut appears to be partly the result of movement along a tear fault that broke both the hanging wall and footwall of the Great Smoky thrust sheet after emplacement. Slickenline orientations along minor thrust surfaces in the Cochran Conglomerate indicate eastward-directed, oblique-slip movement of the tear fault.« less

  2. Computer-Aided Light Sheet Flow Visualization

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1993-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.

  3. Ice sheet margins and ice shelves

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.

    1984-01-01

    The effect of climate warming on the size of ice sheet margins in polar regions is considered. Particular attention is given to the possibility of a rapid response to warming on the order of tens to hundreds of years. It is found that the early response of the polar regions to climate warming would be an increase in the area of summer melt on the ice sheets and ice shelves. For sufficiently large warming (5-10C) the delayed effects would include the breakup of the ice shelves by an increase in ice drainage rates, particularly from the ice sheets. On the basis of published data for periodic changes in the thickness and melting rates of the marine ice sheets and fjord glaciers in Greenland and Antarctica, it is shown that the rate of retreat (or advance) of an ice sheet is primarily determined by: bedrock topography; the basal conditions of the grounded ice sheet; and the ice shelf condition downstream of the grounding line. A program of satellite and ground measurements to monitor the state of ice sheet equilibrium is recommended.

  4. Computer-aided light sheet flow visualization

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1993-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.

  5. Measurement and Analysis of Ultra-Thin Austenitic Stainless Steel Sheet under Biaxial Tensile Loading and In-Plane Reverse Loading

    NASA Astrophysics Data System (ADS)

    Murakoso, Satoko; Kuwabara, Toshihiko

    Biaxial tensile tests of austenitic stainless steel sheet (SUS304) 0.2mm thick have been carried out using cruciform specimens. The specimens are loaded under linear stress paths in a servo-controlled biaxial tensile testing machine. Plastic orthotropy remained coaxial with the principal stresses throughout every experiment. The successive contours of plastic work in biaxial stress space changed their shapes progressively, exemplifying differential work hardening. The geometry of the entire family of the work contours and the directions of plastic strain rates have been precisely measured and compared with those calculated using conventional yield functions. Yld2000-2d [Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Lege, D.J., Pourboghrat, F., Choi, S.H. and Chu, E., International Journal of Plasticity, Vol. 19, (2003), pp. 1297-1319.] with an exponent of 6 was capable of reproducing the general trends of the work contours and the directions of plastic strain rates with good accuracy. Furthermore, in order to quantitatively evaluate the Bauschinger effect of the test material, in-plane tension/compression tests are conducted. It was found that the non-dimensional (σ /σu) - Δɛ /(σu/ E) curves measured during unloading almost fall on a single curve and are not affected by the amount of pre-strain, where σ is the current stress during unloading, σu is the stress immediately before unloading, Δɛ (< 0) is the total strain increment during unloading.

  6. Ohm's law for a current sheet

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.; Speiser, T. W.

    1985-01-01

    The paper derives an Ohm's law for single-particle motion in a current sheet, where the magnetic field reverses in direction across the sheet. The result is considerably different from the resistive Ohm's law often used in MHD studies of the geomagnetic tail. Single-particle analysis is extended to obtain a self-consistency relation for a current sheet which agrees with previous results. The results are applicable to the concept of reconnection in that the electric field parallel to the current is obtained for a one-dimensional current sheet with constant normal magnetic field. Dissipated energy goes directly into accelerating particles within the current sheet.

  7. Analysis of formability of Ca-added magnesium alloy sheets at low temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Se-Jong; Lee, Young-Seon; Kim, Daeyong, E-mail: daeyong@kims.re.kr

    The formability of sheets of the Ca-added magnesium alloy AZX311 was analyzed. The parameters affecting the sheet formability, such as the strain-hardening rate and the strain-rate sensitivity, did not seem to be higher in the alloy AZX311 at temperatures of room temperature (RT) and 200 °C. In addition, the critical stress for fracture at RT was lower in AZX311 than in AZ31. However, AZX311 exhibited higher stretchability and formability at low temperatures than AZ31. Electron back-scattered diffraction microscopy revealed that AZX311 had a weaker basal texture as well as broadened basal poles along the transverse direction. Polycrystal plasticity simulations confirmedmore » that this weaker basal texture increases the activity of basal slip over thickness strain, resulting in the higher formability of AZX311. - Highlights: • A weak basal texture with broadening basal poles along the TD in AZX311 • Lower critical stress for fracture at RT in AZX311 than in AZ31 • Lower strain-hardening rates at low temperatures in the AZX311 than in the AZ31 • Higher formability at low temperatures in AZX311 because of the weak basal texture.« less

  8. Experimental Study on the Seismic Performance of Recycled Concrete Brick Walls Embedded with Vertical Reinforcement.

    PubMed

    Cao, Wanlin; Zhang, Yongbo; Dong, Hongying; Zhou, Zhongyi; Qiao, Qiyun

    2014-08-19

    Recycled concrete brick (RCB) is manufactured by recycled aggregate processed from discarded concrete blocks arising from the demolishing of existing buildings. This paper presents research on the seismic performance of RCB masonry walls to assess the applicability of RCB for use in rural low-rise constructions. The seismic performance of a masonry wall is closely related to the vertical load applied to the wall. Thus, the compressive performance of RCB masonry was investigated firstly by constructing and testing eighteen RCB masonry compressive specimens with different mortar strengths. The load-bearing capacity, deformation and failure characteristic were analyzed, as well. Then, a quasi-static test was carried out to study the seismic behavior of RCB walls by eight RCB masonry walls subjected to an axial compressive load and a reversed cyclic lateral load. Based on the test results, equations for predicting the compressive strength of RCB masonry and the lateral ultimate strength of an RCB masonry wall were proposed. Experimental values were found to be in good agreement with the predicted values. Meanwhile, finite element analysis (FEA) and parametric analysis of the RCB walls were carried out using ABAQUS software. The elastic-plastic deformation characteristics and the lateral load-displacement relations were studied.

  9. Experimental Study on the Seismic Performance of Recycled Concrete Brick Walls Embedded with Vertical Reinforcement

    PubMed Central

    Cao, Wanlin; Zhang, Yongbo; Dong, Hongying; Zhou, Zhongyi; Qiao, Qiyun

    2014-01-01

    Recycled concrete brick (RCB) is manufactured by recycled aggregate processed from discarded concrete blocks arising from the demolishing of existing buildings. This paper presents research on the seismic performance of RCB masonry walls to assess the applicability of RCB for use in rural low-rise constructions. The seismic performance of a masonry wall is closely related to the vertical load applied to the wall. Thus, the compressive performance of RCB masonry was investigated firstly by constructing and testing eighteen RCB masonry compressive specimens with different mortar strengths. The load-bearing capacity, deformation and failure characteristic were analyzed, as well. Then, a quasi-static test was carried out to study the seismic behavior of RCB walls by eight RCB masonry walls subjected to an axial compressive load and a reversed cyclic lateral load. Based on the test results, equations for predicting the compressive strength of RCB masonry and the lateral ultimate strength of an RCB masonry wall were proposed. Experimental values were found to be in good agreement with the predicted values. Meanwhile, finite element analysis (FEA) and parametric analysis of the RCB walls were carried out using ABAQUS software. The elastic-plastic deformation characteristics and the lateral load-displacement relations were studied. PMID:28788170

  10. Split-Ring Springback Simulations with the Non-associated Flow Rule and Evolutionary Elastic-Plasticity Models

    NASA Astrophysics Data System (ADS)

    Lee, K. J.; Choi, Y.; Choi, H. J.; Lee, J. Y.; Lee, M. G.

    2018-03-01

    Finite element simulations and experiments for the split-ring test were conducted to investigate the effect of anisotropic constitutive models on the predictive capability of sheet springback. As an alternative to the commonly employed associated flow rule, a non-associated flow rule for Hill1948 yield function was implemented in the simulations. Moreover, the evolution of anisotropy with plastic deformation was efficiently modeled by identifying equivalent plastic strain-dependent anisotropic coefficients. Comparative study with different yield surfaces and elasticity models showed that the split-ring springback could be best predicted when the anisotropy in both the R value and yield stress, their evolution and variable apparent elastic modulus were taken into account in the simulations. Detailed analyses based on deformation paths superimposed on the anisotropic yield functions predicted by different constitutive models were provided to understand the complex springback response in the split-ring test.

  11. Split-Ring Springback Simulations with the Non-associated Flow Rule and Evolutionary Elastic-Plasticity Models

    NASA Astrophysics Data System (ADS)

    Lee, K. J.; Choi, Y.; Choi, H. J.; Lee, J. Y.; Lee, M. G.

    2018-06-01

    Finite element simulations and experiments for the split-ring test were conducted to investigate the effect of anisotropic constitutive models on the predictive capability of sheet springback. As an alternative to the commonly employed associated flow rule, a non-associated flow rule for Hill1948 yield function was implemented in the simulations. Moreover, the evolution of anisotropy with plastic deformation was efficiently modeled by identifying equivalent plastic strain-dependent anisotropic coefficients. Comparative study with different yield surfaces and elasticity models showed that the split-ring springback could be best predicted when the anisotropy in both the R value and yield stress, their evolution and variable apparent elastic modulus were taken into account in the simulations. Detailed analyses based on deformation paths superimposed on the anisotropic yield functions predicted by different constitutive models were provided to understand the complex springback response in the split-ring test.

  12. Catheter enterostomy and patch repair of the abdominal wall for gastroschisis with intestinal atresia: report of a case.

    PubMed

    Ohno, Koichi; Nakamura, Tetsuro; Azuma, Takashi; Yoshida, Tatsuyuki; Yamada, Hiroto; Hayashi, Hiroaki; Masahata, Kazunori

    2009-01-01

    A male infant, weighing 2177 g, was born with the entire intestine protruding through a defect on the right side of the navel. Intestinal atresia, approximately 70 cm from the Treitz ligament, was also confirmed. Primary anastomosis and abdominal wall repair were impossible because of the intestinal dilation and thick peel, as well as the small abdominal cavity. Thus, we initially performed catheter enterostomy with a 14-F balloon catheter and patch repair of the abdominal wall, to enable the baby to be fed. Secondary anastomosis and abdominal wall repair was safely performed when the baby was 106 days old. The combination of catheter enterostomy and patch repair of the abdominal wall does not require dissection of the intestine and it can be safely performed in low-birth-weight babies. It also enables feeding and weight gain, and the overlying skin prevents contamination of the artificial sheet. We recommend this combination for neonates with both gastroschisis and intestinal atresia.

  13. Geological-morphological description of the Ishtar Terra (photomap of the Venusian surface sheet B-5)

    NASA Technical Reports Server (NTRS)

    Sukhanov, A. L.; Pronin, A. A.; Tyuflin, Y. S.; Ostrovskiy, M. V.; Kotelnikov, V. A.; Rzhiga, O. N.; Petrov, G. I.; Sidorenko, A. I.; Aleksandrov, Y. N.; Zakharov, A. I.

    1986-01-01

    The main part of the Ishtar Terra east of the Maxwell Montes is covered with systems of areal dislocations of several directions, which are called Parquet. According to the structural patterns these may be divided into: (1) the central stable block; (2) the lesser peripheral blocks separated from the central one by gaps and grabens; (3) the zones of mobilized parquet, whose substance flowed downward at an incline in the directions away from the central block in the form of plastic flows; and (4) the partially parqueted lava sheets. The Maxwell Montes were formed as a result of the collision between the central parquet block and the Lakshmi Planum.

  14. Dual circuit embossed sheet heat transfer panel

    DOEpatents

    Morgan, G.D.

    1984-02-21

    A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed to form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet. 6 figs.

  15. Dual-circuit embossed-sheet heat-transfer panel

    DOEpatents

    Morgan, G.D.

    1982-08-23

    A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed for form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet.

  16. Dual circuit embossed sheet heat transfer panel

    DOEpatents

    Morgan, Grover D.

    1984-01-01

    A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed to form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet.

  17. How Plastics Work

    NASA Astrophysics Data System (ADS)

    Bloomfield, Louis

    2013-03-01

    We encounter plastics every day, but despite their widespread use, amazing range of properties, and basic scientific underpinnings, most physicists--like most people--know relatively little about plastics. In contrast to hard crystalline and amorphous solids (e.g., metals, salts, ceramics, and glasses), we take plastics for granted, select them carelessly, and examine them more closely only on a need-to-know basis. By ignoring plastics until we need them, however, we risk not knowing what we don't know and using the wrong ones. To repurpose a familiar advertisement, ``there's a plastic for that.'' This talk will review some of the basic physics and science of plastics. It will examine the roles of temperature, order, intermolecular forces, entanglements, and linkages in plastics, and how those issues affect the properties of a given plastic. We'll stop along the way to recognize a few of the more familiar plastics, natural and synthetic, and explain some of their mechanical, chemical, and optical properties. The talk will conclude by explaining the remarkable properties of a plastic that has been largely misunderstood since its discovery 70 years ago: Silly Putty.

  18. Collisionless current sheet equilibria

    NASA Astrophysics Data System (ADS)

    Neukirch, T.; Wilson, F.; Allanson, O.

    2018-01-01

    Current sheets are important for the structure and dynamics of many plasma systems. In space and astrophysical plasmas they play a crucial role in activity processes, for example by facilitating the release of magnetic energy via processes such as magnetic reconnection. In this contribution we will focus on collisionless plasma systems. A sensible first step in any investigation of physical processes involving current sheets is to find appropriate equilibrium solutions. The theory of collisionless plasma equilibria is well established, but over the past few years there has been a renewed interest in finding equilibrium distribution functions for collisionless current sheets with particular properties, for example for cases where the current density is parallel to the magnetic field (force-free current sheets). This interest is due to a combination of scientific curiosity and potential applications to space and astrophysical plasmas. In this paper we will give an overview of some of the recent developments, discuss their potential applications and address a number of open questions.

  19. Graphene: powder, flakes, ribbons, and sheets.

    PubMed

    James, Dustin K; Tour, James M

    2013-10-15

    Graphene's unique physical and electrical properties (high tensile strength, Young's modulus, electron mobility, and thermal conductivity) have led to its nickname of "super carbon." Graphene research involves the study of several different physical forms of the material: powders, flakes, ribbons, and sheets and others not yet named or imagined. Within those forms, graphene can include a single layer, two layers, or ≤10 sheets of sp² carbon atoms. The chemistry and applications available with graphene depend on both the physical form of the graphene and the number of layers in the material. Therefore the available permutations of graphene are numerous, and we will discuss a subset of this work, covering some of our research on the synthesis and use of many of the different physical and layered forms of graphene. Initially, we worked with commercially available graphite, with which we extended diazonium chemistry developed to functionalize single-walled carbon nanotubes to produce graphitic materials. These structures were soluble in common organic solvents and were better dispersed in composites. We developed an improved synthesis of graphene oxide (GO) and explored how the workup protocol for the synthesis of GO can change the electronic structure and chemical functionality of the GO product. We also developed a method to remove graphene layers one-by-one from flakes. These powders and sheets of GO can serve as fluid loss prevention additives in drilling fluids for the oil industry. Graphene nanoribbons (GNRs) combine small width with long length, producing valuable electronic and physical properties. We developed two complementary syntheses of GNRs from multiwalled carbon nanotubes: one simple oxidative method that produces GNRs with some defects and one reductive method that produces GNRs that are less defective and more electrically conductive. These GNRs can be used in low-loss, high permittivity composites, as conductive reinforcement coatings on Kevlar

  20. Monitoring Sand Sheets and Dunes

    NASA Image and Video Library

    2017-06-12

    NASA's Mars Reconnaissance Orbiter (MRO) captured this crater featuring sand dunes and sand sheets on its floor. What are sand sheets? Snow fall on Earth is a good example of sand sheets: when it snows, the ground gets blanketed with up to a few meters of snow. The snow mantles the ground and "mimics" the underlying topography. Sand sheets likewise mantle the ground as a relatively thin deposit. This kind of environment has been monitored by HiRISE since 2007 to look for movement in the ripples covering the dunes and sheets. This is how scientists who study wind-blown sand can track the amount of sand moving through the area and possibly where the sand came from. Using the present environment is crucial to understanding the past: sand dunes, sheets, and ripples sometimes become preserved as sandstone and contain clues as to how they were deposited The map is projected here at a scale of 25 centimeters (9.8 inches) per pixel. [The original image scale is 25 centimeters (9.8 inches) per pixel (with 1 x 1 binning); objects on the order of 75 centimeters (29.5 inches) across are resolved.] North is up. https://photojournal.jpl.nasa.gov/catalog/PIA21757

  1. Twin-Mirrored-Galvanometer Laser-Light-Sheet Generator

    NASA Technical Reports Server (NTRS)

    Rhodes, David B.; Franke, John M.; Jones, Stephen B.; Leighty, Bradley D.

    1991-01-01

    Multiple, rotating laser-light sheets generated to illuminate flows in wind tunnels. Designed and developed to provide flexibility and adaptability to wide range of applications. Design includes capability to control size and location of laser-light sheet in real time, to generate horizontal or vertical sheets, to sweep sheet repeatedly through volume, to generate multiple sheets with controllable separation, and to rotate single or multiple laser-light sheets. Includes electronic equipment and laser mounted on adjustable-height platform. Twin-mirrored galvanometer unit supported by tripod to reduce vibration. Other possible applications include use in construction industry to align beams of building. Artistic or display applications also possible.

  2. Direct liquefaction of plastics and coprocessing of coal with plastics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huffman, G.P.; Feng, Z.; Mahajan, V.

    1995-12-31

    The objectives of this work were to optimize reaction conditions for the direct liquefaction of waste plastics and the coprocessing of coal with waste plastics. In previous work, the direct liquefaction of medium and high density polyethylene (PE), polypropylene (PPE), poly(ethylene terephthalate) (PET), and a mixed plastic waste, and the coliquefaction of these plastics with coals of three different ranks was studied. The results established that a solid acid catalyst (HZSM-5 zeolite) was highly active for the liquefaction of the plastics alone, typically giving oil yields of 80-95% and total conversions of 90-100% at temperatures of 430-450 {degrees}C. In themore » coliquefaction experiments, 50:50 mixtures of plastic and coal were used with a tetralin solvent (tetralin:solid = 3:2). Using approximately 1% of the HZSM-5 catalyst and a nanoscale iron catalyst, oil yields of 50-70% and total conversion of 80-90% were typical. In the current year, further investigations were conducted of the liquefaction of PE, PPE, and a commingled waste plastic obtained from the American Plastics Council (APC), and the coprocessing of PE, PPE and the APC plastic with Black Thunder subbituminous coal. Several different catalysts were used in these studies.« less

  3. Ectopic lignification in primary cellulose-deficient cell walls of maize cell suspension cultures.

    PubMed

    Mélida, Hugo; Largo-Gosens, Asier; Novo-Uzal, Esther; Santiago, Rogelio; Pomar, Federico; García, Pedro; García-Angulo, Penélope; Acebes, José Luis; Álvarez, Jesús; Encina, Antonio

    2015-04-01

    Maize (Zea mays L.) suspension-cultured cells with up to 70% less cellulose were obtained by stepwise habituation to dichlobenil (DCB), a cellulose biosynthesis inhibitor. Cellulose deficiency was accompanied by marked changes in cell wall matrix polysaccharides and phenolics as revealed by Fourier transform infrared (FTIR) spectroscopy. Cell wall compositional analysis indicated that the cellulose-deficient cell walls showed an enhancement of highly branched and cross-linked arabinoxylans, as well as an increased content in ferulic acid, diferulates and p-coumaric acid, and the presence of a polymer that stained positive for phloroglucinol. In accordance with this, cellulose-deficient cell walls showed a fivefold increase in Klason-type lignin. Thioacidolysis/GC-MS analysis of cellulose-deficient cell walls indicated the presence of a lignin-like polymer with a Syringyl/Guaiacyl ratio of 1.45, which differed from the sensu stricto stress-related lignin that arose in response to short-term DCB-treatments. Gene expression analysis of these cells indicated an overexpression of genes specific for the biosynthesis of monolignol units of lignin. A study of stress signaling pathways revealed an overexpression of some of the jasmonate signaling pathway genes, which might trigger ectopic lignification in response to cell wall integrity disruptions. In summary, the structural plasticity of primary cell walls is proven, since a lignification process is possible in response to cellulose impoverishment. © 2015 Institute of Botany, Chinese Academy of Sciences.

  4. Keratinocyte cytoskeletal roles in cell sheet engineering

    PubMed Central

    2013-01-01

    Background There is an increasing need to understand cell-cell interactions for cell and tissue engineering purposes, such as optimizing cell sheet constructs, as well as for examining adhesion defect diseases. For cell-sheet engineering, one major obstacle to sheet function is that cell sheets in suspension are fragile and, over time, will contract. While the role of the cytoskeleton in maintaining the structure and adhesion of cells cultured on a rigid substrate is well-characterized, a systematic examination of the role played by different components of the cytoskeleton in regulating cell sheet contraction and cohesion in the absence of a substrate has been lacking. Results In this study, keratinocytes were cultured until confluent and cell sheets were generated using dispase to remove the influence of the substrate. The effects of disrupting actin, microtubules or intermediate filaments on cell-cell interactions were assessed by measuring cell sheet cohesion and contraction. Keratin intermediate filament disruption caused comparable effects on cell sheet cohesion and contraction, when compared to actin or microtubule disruption. Interfering with actomyosin contraction demonstrated that interfering with cell contraction can also diminish cell cohesion. Conclusions All components of the cytoskeleton are involved in maintaining cell sheet cohesion and contraction, although not to the same extent. These findings demonstrate that substrate-free cell sheet biomechanical properties are dependent on the integrity of the cytoskeleton network. PMID:23442760

  5. Ice_Sheets_CCI: Essential Climate Variables for the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Forsberg, R.; Sørensen, L. S.; Khan, A.; Aas, C.; Evansberget, D.; Adalsteinsdottir, G.; Mottram, R.; Andersen, S. B.; Ahlstrøm, A.; Dall, J.; Kusk, A.; Merryman, J.; Hvidberg, C.; Khvorostovsky, K.; Nagler, T.; Rott, H.; Scharrer, M.; Shepard, A.; Ticconi, F.; Engdahl, M.

    2012-04-01

    As part of the ESA Climate Change Initiative (www.esa-cci.org) a long-term project "ice_sheets_cci" started January 1, 2012, in addition to the existing 11 projects already generating Essential Climate Variables (ECV) for the Global Climate Observing System (GCOS). The "ice_sheets_cci" goal is to generate a consistent, long-term and timely set of key climate parameters for the Greenland ice sheet, to maximize the impact of European satellite data on climate research, from missions such as ERS, Envisat and the future Sentinel satellites. The climate parameters to be provided, at first in a research context, and in the longer perspective by a routine production system, would be grids of Greenland ice sheet elevation changes from radar altimetry, ice velocity from repeat-pass SAR data, as well as time series of marine-terminating glacier calving front locations and grounding lines for floating-front glaciers. The ice_sheets_cci project will involve a broad interaction of the relevant cryosphere and climate communities, first through user consultations and specifications, and later in 2012 optional participation in "best" algorithm selection activities, where prototype climate parameter variables for selected regions and time frames will be produced and validated using an objective set of criteria ("Round-Robin intercomparison"). This comparative algorithm selection activity will be completely open, and we invite all interested scientific groups with relevant experience to participate. The results of the "Round Robin" exercise will form the algorithmic basis for the future ECV production system. First prototype results will be generated and validated by early 2014. The poster will show the planned outline of the project and some early prototype results.

  6. Infused polymers for cell sheet release

    NASA Astrophysics Data System (ADS)

    Juthani, Nidhi; Howell, Caitlin; Ledoux, Haylea; Sotiri, Irini; Kelso, Susan; Kovalenko, Yevgen; Tajik, Amanda; Vu, Thy L.; Lin, Jennifer J.; Sutton, Amy; Aizenberg, Joanna

    2016-05-01

    Tissue engineering using whole, intact cell sheets has shown promise in many cell-based therapies. However, current systems for the growth and release of these sheets can be expensive to purchase or difficult to fabricate, hindering their widespread use. Here, we describe a new approach to cell sheet release surfaces based on silicone oil-infused polydimethylsiloxane. By coating the surfaces with a layer of fibronectin (FN), we were able to grow mesenchymal stem cells to densities comparable to those of tissue culture polystyrene controls (TCPS). Simple introduction of oil underneath an edge of the sheet caused it to separate from the substrate. Characterization of sheets post-transfer showed that they retain their FN layer and morphology, remain highly viable, and are able to grow and proliferate normally after transfer. We expect that this method of cell sheet growth and detachment may be useful for low-cost, flexible, and customizable production of cellular layers for tissue engineering.

  7. Infused polymers for cell sheet release

    PubMed Central

    Juthani, Nidhi; Howell, Caitlin; Ledoux, Haylea; Sotiri, Irini; Kelso, Susan; Kovalenko, Yevgen; Tajik, Amanda; Vu, Thy L.; Lin, Jennifer J.; Sutton, Amy; Aizenberg, Joanna

    2016-01-01

    Tissue engineering using whole, intact cell sheets has shown promise in many cell-based therapies. However, current systems for the growth and release of these sheets can be expensive to purchase or difficult to fabricate, hindering their widespread use. Here, we describe a new approach to cell sheet release surfaces based on silicone oil-infused polydimethylsiloxane. By coating the surfaces with a layer of fibronectin (FN), we were able to grow mesenchymal stem cells to densities comparable to those of tissue culture polystyrene controls (TCPS). Simple introduction of oil underneath an edge of the sheet caused it to separate from the substrate. Characterization of sheets post-transfer showed that they retain their FN layer and morphology, remain highly viable, and are able to grow and proliferate normally after transfer. We expect that this method of cell sheet growth and detachment may be useful for low-cost, flexible, and customizable production of cellular layers for tissue engineering. PMID:27189419

  8. Infused polymers for cell sheet release.

    PubMed

    Juthani, Nidhi; Howell, Caitlin; Ledoux, Haylea; Sotiri, Irini; Kelso, Susan; Kovalenko, Yevgen; Tajik, Amanda; Vu, Thy L; Lin, Jennifer J; Sutton, Amy; Aizenberg, Joanna

    2016-05-18

    Tissue engineering using whole, intact cell sheets has shown promise in many cell-based therapies. However, current systems for the growth and release of these sheets can be expensive to purchase or difficult to fabricate, hindering their widespread use. Here, we describe a new approach to cell sheet release surfaces based on silicone oil-infused polydimethylsiloxane. By coating the surfaces with a layer of fibronectin (FN), we were able to grow mesenchymal stem cells to densities comparable to those of tissue culture polystyrene controls (TCPS). Simple introduction of oil underneath an edge of the sheet caused it to separate from the substrate. Characterization of sheets post-transfer showed that they retain their FN layer and morphology, remain highly viable, and are able to grow and proliferate normally after transfer. We expect that this method of cell sheet growth and detachment may be useful for low-cost, flexible, and customizable production of cellular layers for tissue engineering.

  9. Hydroxycinnamate Conjugates as Potential Monolignol Replacements: In vitro Lignification and Cell Wall Studies with Rosmarinic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuki, Tobimatsu; Sasikumar, Elumalai; Grabber, John H.

    2012-04-01

    The plasticity of lignin biosynthesis should permit the inclusion of new compatible phenolic monomers, such as rosmarinic acid (RA) and analogous catechol derivatives, into cell-wall lignins that are consequently less recalcitrant to biomass processing. In vitro lignin polymerization experiments revealed that RA readily underwent peroxidase-catalyzed copolymerization with monolignols and lignin oligomers to form polymers with new benzodioxane inter-unit linkages. Incorporation of RA permitted extensive depolymerization of synthetic lignins by mild alkaline hydrolysis, presumably by cleavage of ester intra-unit linkages within RA. Copolymerization of RA with monolignols into maize cell walls by in situ peroxidases significantly enhanced alkaline lignin extractability andmore » promoted subsequent cell wall saccharification by fungal enzymes. Incorporating RA also improved cell wall saccharification by fungal enzymes and by rumen microflora even without alkaline pretreatments, possibly by modulating lignin hydrophobicity and/or limiting cell wall cross-linking. Consequently, we anticipate that bioengineering approaches for partial monolignol substitution with RA and analogous plant hydroxycinnamates would permit more efficient utilization of plant fiber for biofuels or livestock production.« less

  10. Coupled ice sheet-ocean modelling to investigate ocean driven melting of marine ice sheets in Antarctica

    NASA Astrophysics Data System (ADS)

    Jong, Lenneke; Gladstone, Rupert; Galton-Fenzi, Ben

    2017-04-01

    Ocean induced melting below the ice shelves of marine ice sheets is a major source of uncertainty for predictions of ice mass loss and Antarctica's resultant contribution to future sea level rise. The floating ice shelves provide a buttressing force against the flow of ice across the grounding line into the ocean. Thinning of these ice shelves due to an increase in melting reduces this force and can lead to an increase in the discharge of grounded ice. Fully coupled modelling of ice sheet-ocean interactions is key to improving understanding the influence of the Southern ocean on the evolution of the Antarctic ice sheet, and to predicting its future behaviour under changing climate conditions. Coupling of ocean and ice sheet models is needed to provide more realistic melt rates at the base of ice shelves and hence make better predictions of the behaviour of the grounding line and the shape of the ice-shelf cavity as the ice sheet evolves. The Framework for Ice Sheet - Ocean Coupling (FISOC) has been developed to provide a flexible platform for performing coupled ice sheet - ocean modelling experiments. We present preliminary results using FISOC to couple the Regional Ocean Modelling System (ROMS) with Elmer/Ice in idealised experiments Marine Ice Sheet-Ocean Model Intercomparison Project (MISOMIP). These experiments use an idealised geometry motivated by that of Pine Island glacier and the adjacent Amundsen Sea in West Antarctica, a region which has shown shown signs of thinning ice and grounding line retreat.

  11. Method for heating and forming a glass sheet

    DOEpatents

    Boaz, Premakaran Tucker

    1997-01-01

    A method for heating and forming a glass sheet includes the steps of heating a glass sheet to at least a first predetermined temperature, applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature, cooling an outer surface of the glass sheet to at least a third predetermined temperature and forming the glass sheet using forming rollers to a predetermined configuration.

  12. Effect of Temperature and Sheet Temper on Isothermal Solidification Kinetics in Clad Aluminum Brazing Sheet

    NASA Astrophysics Data System (ADS)

    Benoit, Michael J.; Whitney, Mark A.; Wells, Mary A.; Winkler, Sooky

    2016-09-01

    Isothermal solidification (IS) is a phenomenon observed in clad aluminum brazing sheets, wherein the amount of liquid clad metal is reduced by penetration of the liquid clad into the core. The objective of the current investigation is to quantify the rate of IS through the use of a previously derived parameter, the Interface Rate Constant (IRC). The effect of peak temperature and initial sheet temper on IS kinetics were investigated. The results demonstrated that IS is due to the diffusion of silicon (Si) from the liquid clad layer into the solid core. Reduced amounts of liquid clad at long liquid duration times, a roughened sheet surface, and differences in resolidified clad layer morphology between sheet tempers were observed. Increased IS kinetics were predicted at higher temperatures by an IRC model as well as by experimentally determined IRC values; however, the magnitudes of these values are not in good agreement due to deficiencies in the model when applied to alloys. IS kinetics were found to be higher for sheets in the fully annealed condition when compared with work-hardened sheets, due to the influence of core grain boundaries providing high diffusivity pathways for Si diffusion, resulting in more rapid liquid clad penetration.

  13. A Near-Wall Reynolds-Stress Closure Without Wall Normals

    NASA Technical Reports Server (NTRS)

    Yuan, S. P.; So, R. M. C.

    1997-01-01

    Turbulent wall-bounded complex flows are commonly encountered in engineering practice and are of considerable interest in a variety of industrial applications. The presence of a wall significantly affects turbulence characteristics. In addition to the wall effects, turbulent wall-bounded flows become more complicated by the presence of additional body forces (e.g. centrifugal force and Coriolis force) and complex geometry. Most near-wall Reynolds stress models are developed from a high-Reynolds-number model which assumes turbulence is homogenous (or quasi-homogenous). Near-wall modifications are proposed to include wall effects in near-wall regions. In this process, wall normals are introduced. Good predictions could be obtained by Reynolds stress models with wall normals. However, ambiguity arises when the models are applied in flows with multiple walls. Many models have been proposed to model turbulent flows. Among them, Reynolds stress models, in which turbulent stresses are obtained by solving the Reynolds stress transport equations, have been proved to be the most successful ones. To apply the Reynolds stress models to wall-bounded flows, near-wall corrections accounting for the wall effects are needed, and the resulting models are called near-wall Reynolds stress models. In most of the existing near-wall models, the near-wall corrections invoke wall normals. These wall-dependent near-wall models are difficult to implement for turbulent flows with complex geometry and may give inaccurate predictions due to the ambiguity of wall normals at corners connecting multiple walls. The objective of this study is to develop a more general and flexible near-wall Reynolds stress model without using any wall-dependent variable for wall-bounded turbulent flows. With the aid of near-wall asymptotic analysis and results of direct numerical simulation, a new near-wall Reynolds stress model (NNWRS) is formulated based on Speziale et al.'s high-Reynolds-stress model with wall

  14. Method for heating and forming a glass sheet

    DOEpatents

    Boaz, P.T.

    1997-08-12

    A method for heating and forming a glass sheet includes the steps of heating a glass sheet to at least a first predetermined temperature, applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature, cooling an outer surface of the glass sheet to at least a third predetermined temperature and forming the glass sheet using forming rollers to a predetermined configuration. 5 figs.

  15. Predicting pulsar scintillation from refractive plasma sheets

    NASA Astrophysics Data System (ADS)

    Simard, Dana; Pen, Ue-Li

    2018-07-01

    The dynamic and secondary spectra of many pulsars show evidence for long-lived, aligned images of the pulsar that are stationary on a thin scattering sheet. One explanation for this phenomenon considers the effects of wave crests along sheets in the ionized interstellar medium, such as those due to Alfvén waves propagating along current sheets. If these sheets are closely aligned to our line of sight to the pulsar, high bending angles arise at the wave crests and a selection effect causes alignment of images produced at different crests, similar to grazing reflection off of a lake. Using geometric optics, we develop a simple parametrized model of these corrugated sheets that can be constrained with a single observation and that makes observable predictions for variations in the scintillation of the pulsar over time and frequency. This model reveals qualitative differences between lensing from overdense and underdense corrugated sheets: only if the sheet is overdense compared to the surrounding interstellar medium can the lensed images be brighter than the line-of-sight image to the pulsar, and the faint lensed images are closer to the pulsar at higher frequencies if the sheet is underdense, but at lower frequencies if the sheet is overdense.

  16. Predicting Pulsar Scintillation from Refractive Plasma Sheets

    NASA Astrophysics Data System (ADS)

    Simard, Dana; Pen, Ue-Li

    2018-05-01

    The dynamic and secondary spectra of many pulsars show evidence for long-lived, aligned images of the pulsar that are stationary on a thin scattering sheet. One explanation for this phenomenon considers the effects of wave crests along sheets in the ionized interstellar medium, such as those due to Alfvén waves propagating along current sheets. If these sheets are closely aligned to our line-of-sight to the pulsar, high bending angles arise at the wave crests and a selection effect causes alignment of images produced at different crests, similar to grazing reflection off of a lake. Using geometric optics, we develop a simple parameterized model of these corrugated sheets that can be constrained with a single observation and that makes observable predictions for variations in the scintillation of the pulsar over time and frequency. This model reveals qualitative differences between lensing from overdense and underdense corrugated sheets: Only if the sheet is overdense compared to the surrounding interstellar medium can the lensed images be brighter than the line-of-sight image to the pulsar, and the faint lensed images are closer to the pulsar at higher frequencies if the sheet is underdense, but at lower frequencies if the sheet is overdense.

  17. Impact of reconstructive transplantation on the future of plastic and reconstructive surgery.

    PubMed

    Siemionow, Maria

    2012-10-01

    This article summarizes the current knowledge on the new developing field of reconstructive transplantation. A brief outline of vascularized composite allografts (VCA) such as human hand, face, larynx, and abdominal wall transplants is provided. The clinical applications and indications for these new reconstructive transplantation procedures are outlined. The advantages, disadvantages, and complications and concerns surrounding clinical VCA are discussed. Finally, the impact of reconstructive transplantation on the future of plastic and reconstructive surgery is presented. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Energized Oxygen : Speiser Current Sheet Bifurcation

    NASA Astrophysics Data System (ADS)

    George, D. E.; Jahn, J. M.

    2017-12-01

    A single population of energized Oxygen (O+) is shown to produce a cross-tail bifurcated current sheet in 2.5D PIC simulations of the magnetotail without the influence of magnetic reconnection. Treatment of oxygen in simulations of space plasmas, specifically a magnetotail current sheet, has been limited to thermal energies despite observations of and mechanisms which explain energized ions. We performed simulations of a homogeneous oxygen background, that has been energized in a physically appropriate manner, to study the behavior of current sheets and magnetic reconnection, specifically their bifurcation. This work uses a 2.5D explicit Particle-In-a-Cell (PIC) code to investigate the dynamics of energized heavy ions as they stream Dawn-to-Dusk in the magnetotail current sheet. We present a simulation study dealing with the response of a current sheet system to energized oxygen ions. We establish a, well known and studied, 2-species GEM Challenge Harris current sheet as a starting point. This system is known to eventually evolve and produce magnetic reconnection upon thinning of the current sheet. We added a uniform distribution of thermal O+ to the background. This 3-species system is also known to eventually evolve and produce magnetic reconnection. We add one additional variable to the system by providing an initial duskward velocity to energize the O+. We also traced individual particle motion within the PIC simulation. Three main results are shown. First, energized dawn- dusk streaming ions are clearly seen to exhibit sustained Speiser motion. Second, a single population of heavy ions clearly produces a stable bifurcated current sheet. Third, magnetic reconnection is not required to produce the bifurcated current sheet. Finally a bifurcated current sheet is compatible with the Harris current sheet model. This work is the first step in a series of investigations aimed at studying the effects of energized heavy ions on magnetic reconnection. This work differs

  19. Experimental formability analysis of bondal sandwich sheet

    NASA Astrophysics Data System (ADS)

    Kami, Abdolvahed; Banabic, Dorel

    2018-05-01

    Metal/polymer/metal sandwich sheets have recently attracted the interests of industries like automotive industry. These sandwich sheets have superior properties over single-layer metallic sheets including good sound and vibration damping and light weight. However, the formability of these sandwich sheets should be enhanced which requires more research. In this paper, the formability of Bondal sheet (DC06/viscoelastic polymer/DC06 sandwich sheet) was studied through different types of experiments. The mechanical properties of Bondal were determined by uniaxial tensile tests. Hemispherical punch stretching and hydraulic bulge tests were carried out to determine the forming limit diagram (FLD) of Bondal. Furthermore, cylindrical and square cup drawing tests were performed in dry and oil lubricated conditions. These tests were conducted at different blank holding forces (BHFs). An interesting observation about Bondal sheet deep drawing was obtaining of higher drawing depths at dry condition in comparison with oil-lubricated condition.

  20. Linear instabilities of a planar liquid sheet in a static electric field for intermediate relaxation and convection of surface charges

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Takao

    2018-04-01

    Linear temporal instabilities of a two-dimensional planar liquid sheet in a static electric field are investigated when the relaxation and convection of surface electric charges are considered. Both viscous sheet liquid and inviscid surrounding liquid are placed between two parallel sheath walls, on which an external electric field is imposed. In particular, effects of the electric Peclet number {Pe} (charge relaxation time/convection time) and the electric Euler number Λ (electric pressure/liquid inertial) on the instabilities are emphasized for the symmetric and antisymmetric deformations of the sheet. It is found that the unstable mode is composed of the aerodynamic and electric modes, which are merged with each other for the symmetric deformation and separated for the antisymmetric deformation. For the symmetric deformation, the combined mode is more destabilized with the decrease of {Pe} and the increase of Λ. On the other hand, for the antisymmetric deformation, the electric mode is more destabilized and the aerodynamic mode is left unchanged with the decrease of {Pe}, while the electric mode is more destabilized but the aerodynamic mode is more stabilized with the increase of Λ. It is also found for both symmetric and antisymmetric deformations that the instabilities are most suppressed when {σ }R≃ 1/{ε }P ({σ }R: conductivity ratio of the surrounding to the sheet liquid, {ε }P: permittivity ratio of the sheet to the surrounding liquid), whose trend of the instabilities is more enhanced with the decrease of {Pe} except for vanishingly small {Pe}.

  1. Detection of plasticity mechanisms in an energetic molecular crystal through shock-like 3D unidirectional compressions: A Molecular Dynamics study

    NASA Astrophysics Data System (ADS)

    Lafourcade, Paul; Denoual, Christophe; Maillet, Jean-Bernard

    2017-06-01

    TATB crystal structure consists in graphitic-like sheets arranged in the a-b plane where a, b and c define the edge vectors of the unit cell. This type of stacking provides the TATB monocrystal very anisotropic physical, chemical and mechanical properties. In order to explore which mechanisms are involved in TATB plasticity, we use a Molecular Dynamics code in which the overall deformation is prescribed as a function of time, for any deformation path. Furthermore, a computation of the Green-Lagrange strain tensor is proposed, which helps reveal various defects and plasticity mechanisms. Through prescribed large strain of shock-like deformations, a three-dimensional characterization of TATB monocrystal yield stress has been obtained, confirming the very anisotropic behavior of this energetic material. Various plasticity mechanisms are triggered during these simulations, including counter intuitive defects onset such as gliding along transveral planes containing perfect dislocations and twinning. Gliding in the a-b plane occurs systematically and does not lead to significant plastic behavior, in accordance with a previous study on dislocation core structures for this plane, based on a coupling between the Peierls-Nabarro-Galerkin method and Molecular Dynamics simulations.

  2. Biodegradation of Degradable Plastic Polyethylene by Phanerochaete and Streptomyces Species †

    PubMed Central

    Lee, Byungtae; Pometto, Anthony L.; Fratzke, Alfred; Bailey, Theodore B.

    1991-01-01

    The ability of lignin-degrading microorganisms to attack degradable plastics was investigated in pure shake flask culture studies. The degradable plastic used in this study was produced commercially by using the Archer-Daniels-Midland POLYCLEAN masterbatch and contained pro-oxidant and 6% starch. The known lignin-degrading bacteria Streptomyces viridosporus T7A, S. badius 252, and S. setonii 75Vi2 and fungus Phanerochaete chrysosporium were used. Pro-oxidant activity was accelerated by placing a sheet of plastic into a drying oven at 70°C under atmospheric pressure and air for 0, 4, 8, 12, 16, or 20 days. The effect of 2-, 4-, and 8-week longwave UV irradiation at 365 nm on plastic biodegradability was also investigated. For shake flask cultures, plastics were chemically disinfected and incubated-shaken at 125 rpm at 37°C in 0.6% yeast extract medium (pH 7.1) for Streptomyces spp. and at 30°C for the fungus in 3% malt extract medium (pH 4.5) for 4 weeks along with an uninoculated control for each treatment. Weight loss data were inconclusive because of cell mass accumulation. For almost every 70°C heat-treated film, the Streptomyces spp. demonstrated a further reduction in percent elongation and polyethylene molecular weight average when compared with the corresponding uninoculated control. Significant (P < 0.05) reductions were demonstrated for the 4- and 8-day heat-treated films by all three bacteria. Heat-treated films incubated with P. chrysosporium consistently demonstrated higher percent elongation and molecular weight average than the corresponding uninoculated controls, but were lower than the corresponding zero controls (heat-treated films without 4-week incubation). The 2- and 4-week UV-treated films showed the greatest biodegradation by all three bacteria. Virtually no degradation by the fungus was observed. To our knowledge, this is the first report demonstrating bacterial degradation of these oxidized polyethylenes in pure culture. PMID:16348434

  3. Plasma Chamber and First Wall of the Ignitor Experiment^*

    NASA Astrophysics Data System (ADS)

    Cucchiaro, A.; Coppi, B.; Bianchi, A.; Lucca, F.

    2005-10-01

    The new designs of the Plasma Chamber (PC) and of the First Wall (FW) system are based on updated scenarios for vertical plasma disruption (VDE) as well as estimates for the maximum thermal wall loadings at ignition. The PC wall thickness has been optimized to reduce the deformation during the worst disruption event without sacrificing the dimensions of the plasma column. A non linear dynamic analysis of the PC has been performed on a 360^o model of it, taking into account possible toroidal asymmetries of the halo current. Radial EM loads obtained by scaling JET measurements have been also considered. The low-cycle fatigue analysis confirms that the PC is able to meet a lifetime of few thousand cycles for the most extreme combinations of magnetic fields and plasma currents. The FW, made of Molybdenum (TZM) tiles covering the entire inner surface of the PC, has been designed to withstand thermal and EM loads, both under normal operating conditions and in case of disruption. Detailed elasto-plastic structural analyses of the most (EM) loaded tile-carriers show that these are compatible with the adopted fabrication requirements. ^*Sponsored in part by ENEA of Italy and by the U.S. DOE.

  4. Wrinkles, folds, and plasticity in granular rafts

    NASA Astrophysics Data System (ADS)

    Jambon-Puillet, Etienne; Josserand, Christophe; Protière, Suzie

    2017-09-01

    We investigate the mechanical response of a compressed monolayer of large and dense particles at a liquid-fluid interface: a granular raft. Upon compression, rafts first wrinkle; then, as the confinement increases, the deformation localizes in a unique fold. This characteristic buckling pattern is usually associated with floating elastic sheets, and as a result, particle laden interfaces are often modeled as such. Here, we push this analogy to its limits by comparing quantitative measurements of the raft morphology to a theoretical continuous elastic model of the interface. We show that, although powerful to describe the wrinkle wavelength, the wrinkle-to-fold transition, and the fold shape, this elastic description does not capture the finer details of the experiment. We describe an unpredicted secondary wavelength, a compression discrepancy with the model, and a hysteretic behavior during compression cycles, all of which are a signature of the intrinsic discrete and frictional nature of granular rafts. It suggests also that these composite materials exhibit both plastic transition and jamming dynamics.

  5. Disintegration of liquid sheets

    NASA Technical Reports Server (NTRS)

    Mansour, Adel; Chigier, Norman

    1990-01-01

    The development, stability, and disintegration of liquid sheets issuing from a two-dimensional air-assisted nozzle is studied. Detailed measurements of mean drop size and velocity are made using a phase Doppler particle analyzer. Without air flow the liquid sheet converges toward the axis as a result of surface tension forces. With airflow a quasi-two-dimensional expanding spray is formed. The air flow causes small variations in sheet thickness to develop into major disturbances with the result that disruption starts before the formation of the main break-up region. In the two-dimensional variable geometry air-blast atomizer, it is shown that the air flow is responsible for the formation of large, ordered, and small chaotic 'cell' structures.

  6. Root-growth-inhibiting sheet

    DOEpatents

    Burton, Frederick G.; Cataldo, Dominic A.; Cline, John F.; Skiens, W. Eugene; Van Voris, Peter

    1993-01-01

    In accordance with this invention, a porous sheet material is provided at intervals with bodies of a polymer which contain a 2,6-dinitroaniline. The sheet material is made porous to permit free passage of water. It may be either a perforated sheet or a woven or non-woven textile material. A particularly desirable embodiment is a non-woven fabric of non-biodegradable material. This type of material is known as a "geotextile" and is used for weed control, prevention of erosion on slopes, and other landscaping purposes. In order to obtain a root repelling property, a dinitroaniline is blended with a polymer which is attached to the geotextile or other porous material.

  7. Root-growth-inhibiting sheet

    DOEpatents

    Burton, F.G.; Cataldo, D.A.; Cline, J.F.; Skiens, W.E.; Van Voris, P.

    1993-01-26

    In accordance with this invention, a porous sheet material is provided at intervals with bodies of a polymer which contain a 2,6-dinitroaniline. The sheet material is made porous to permit free passage of water. It may be either a perforated sheet or a woven or non-woven textile material. A particularly desirable embodiment is a non-woven fabric of non-biodegradable material. This type of material is known as a geotextile'' and is used for weed control, prevention of erosion on slopes, and other landscaping purposes. In order to obtain a root repelling property, a dinitroaniline is blended with a polymer which is attached to the geotextile or other porous material.

  8. A Fundamental Study of Stretch-Drawing Process of Sheet Metals : Single and Double Operations

    NASA Astrophysics Data System (ADS)

    Gotoh, Manabu; Kim, Young-soo; Yamashita, Minoru

    1998-05-01

    Fundamental and informative data of axisymmetric stretch-drawing of several sheet metals with thichness of 0.7 1.0 mm are presented especially for single and double operations. Very small radius is applied to the die-profile (or -shoulder) in all operations to induce wall-thinning by the effect of bending-under-tension, from which the name `stretch-drawing' comes. It is clearly demonstrated that deeper cups could be formed by the single and double stretch-drawings from smaller cirlcular blanks due to such wall-thinning action than in the usual deep-drawing of larger blanks. From this fact, it is emphasized that the deep-drawability of a sheet metal is not evaluated simply by the conventional LDR (=limiting drawing ratio), but the depth of the drawn cup should also be taken into account. Many experimental data about various metals and thicknesses given in this paper offer a valueable information on this process for more general use which recommends to replace the conventional deep-drawing process by the stretch-drawing process both for single and double operations. In the single stretch-drawing, it is also confirmed that a deeper cup can be produced by raising the blank-holding force at later stage of operation. Fracturing is found to occur at the middle section of the wall part or at the die-profile other than at the punch profile common in the usual deep-drawing process. Numerical simulation of the single stretch-drawing process is also performed by use of DYNA-3D code to confirm that a satisfactory prediction especially in the depth of the drawn-cup can be done at least in a practical sense, although this kind of numerical analysis is very difficult because of the severity or localization of deformation around the die profile. The drawn cup of SUS304 among others fractures in a couple of weeks after the operation due to the residual circumferential tensile stress, whereas that of SUS304L does not. In the double stretch-drawing, it is confirmed that very deeper

  9. 16 CFR 460.13 - Fact sheets.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... heat flow. The higher the R-value, the greater the insulating power. Compare insulation R-values before... INSULATION § 460.13 Fact sheets. If you are a manufacturer, you must give retailers and installers fact sheets for the insulation products you sell to them. Each sheet must contain what is listed here. You can...

  10. 16 CFR 460.13 - Fact sheets.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... heat flow. The higher the R-value, the greater the insulating power. Compare insulation R-values before... INSULATION § 460.13 Fact sheets. If you are a manufacturer, you must give retailers and installers fact sheets for the insulation products you sell to them. Each sheet must contain what is listed here. You can...

  11. 16 CFR 460.13 - Fact sheets.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... heat flow. The higher the R-value, the greater the insulating power. Compare insulation R-values before... INSULATION § 460.13 Fact sheets. If you are a manufacturer, you must give retailers and installers fact sheets for the insulation products you sell to them. Each sheet must contain what is listed here. You can...

  12. 16 CFR 460.13 - Fact sheets.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... heat flow. The higher the R-value, the greater the insulating power. Compare insulation R-values before... INSULATION § 460.13 Fact sheets. If you are a manufacturer, you must give retailers and installers fact sheets for the insulation products you sell to them. Each sheet must contain what is listed here. You can...

  13. 16 CFR 460.13 - Fact sheets.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... heat flow. The higher the R-value, the greater the insulating power. Compare insulation R-values before... INSULATION § 460.13 Fact sheets. If you are a manufacturer, you must give retailers and installers fact sheets for the insulation products you sell to them. Each sheet must contain what is listed here. You can...

  14. Cell-wall recovery after irreversible deformation of wood

    NASA Astrophysics Data System (ADS)

    Keckes, Jozef; Burgert, Ingo; Frühmann, Klaus; Müller, Martin; Kölln, Klaas; Hamilton, Myles; Burghammer, Manfred; Roth, Stephan V.; Stanzl-Tschegg, Stefanie; Fratzl, Peter

    2003-12-01

    The remarkable mechanical properties of biological materials reside in their complex hierarchical architecture and in specific molecular mechanistic phenomena. The fundamental importance of molecular interactions and bond recovery has been suggested by studies on deformation and fracture of bone and nacre. Like these mineral-based materials, wood also represents a complex nanocomposite with excellent mechanical performance, despite the fact that it is mainly based on polymers. In wood, however, the mechanistic contribution of processes in the cell wall is not fully understood. Here we have combined tensile tests on individual wood cells and on wood foils with simultaneous synchrotron X-ray diffraction analysis in order to separate deformation mechanisms inside the cell wall from those mediated by cell-cell interactions. We show that tensile deformation beyond the yield point does not deteriorate the stiffness of either individual cells or foils. This indicates that there is a dominant recovery mechanism that re-forms the amorphous matrix between the cellulose microfibrils within the cell wall, maintaining its mechanical properties. This stick-slip mechanism, rather like Velcro operating at the nanometre level, provides a 'plastic response' similar to that effected by moving dislocations in metals. We suggest that the molecular recovery mechanism in the cell matrix is a universal phenomenon dominating the tensile deformation of different wood tissue types.

  15. Weld residual stresses and plastic deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rybicki, E.; Shiratori, M.

    1989-01-01

    Residual stresses due to welding can play a primary role in the performance of piping systems and pressure vessels. The stresses are high, in the range of the yield stress of the material, and can influence the fatigue and fracture behavior as well as component service life. Thus, it is important to have an understanding of weld residual stresses. The papers in this section address the important topic of residual stresses and failure analysis. The paper by Boyles reviews computer simulation in the prediction and analysis of fatigue, fracture, and creep of welded structures. The growing use of expert systemsmore » for these purposes is also covered. Karisson, et al, determine the deformations and stresses during the butt-welding of a pipe. The determination of residual deformations and stresses is also presented. Oddy, Goldak, and McDill propose a method to incorporate transformation plasticity in a finite element program. A three-dimensional analysis of a short longitudinal pipe weld in a typical pressure vessel steel is presented. Chaaban, Morin, Ma, and Bazergui study the influence of ligament thickness, strain hardening, expansion sequence, and level of applied expansion pressure on the interference fit in a model of a tube-to-tubesheet joint in a heat exchanger. This section contains papers dealing with models for plastic deformation. Imatani, Teraura, and Inoue formulate a viscoplastic constitutive model based on an anisotropic yield criterion. Comparisons with experimental results obtained using thin walled tubular specimens made from SUS 304 stainless steel show that the present yield criterion adequately accounts for prior deformation history. Niitsu, Horiguchi, and Ikegami investigate the plastic behavior of S25C mild steel tubular specimens subjected to combined axial and torsional loading at both constant and variable temperatures.« less

  16. Manifold free multiple sheet superplastic forming

    DOEpatents

    Elmer, John W.; Bridges, Robert L.

    2001-01-01

    Fluid-forming compositions in a container attached to enclosed adjacent sheets are heated to relatively high temperatures to generate fluids (gases) that effect inflation of the sheets. Fluid rates to the enclosed space between the sheets can be regulated by the canal from the container. Inflated articles can be produced by a continuous, rather than batch-type, process.

  17. 21 CFR 880.5180 - Burn sheet.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Burn sheet. 880.5180 Section 880.5180 Food and... Burn sheet. (a) Identification. A burn sheet is a device made of a porous material that is wrapped aroung a burn victim to retain body heat, to absorb wound exudate, and to serve as a barrier against...

  18. 21 CFR 880.5180 - Burn sheet.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Burn sheet. 880.5180 Section 880.5180 Food and... Burn sheet. (a) Identification. A burn sheet is a device made of a porous material that is wrapped aroung a burn victim to retain body heat, to absorb wound exudate, and to serve as a barrier against...

  19. 21 CFR 880.5180 - Burn sheet.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Burn sheet. 880.5180 Section 880.5180 Food and... Burn sheet. (a) Identification. A burn sheet is a device made of a porous material that is wrapped aroung a burn victim to retain body heat, to absorb wound exudate, and to serve as a barrier against...

  20. 21 CFR 880.5180 - Burn sheet.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Burn sheet. 880.5180 Section 880.5180 Food and... Burn sheet. (a) Identification. A burn sheet is a device made of a porous material that is wrapped aroung a burn victim to retain body heat, to absorb wound exudate, and to serve as a barrier against...

  1. 21 CFR 880.5180 - Burn sheet.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Burn sheet. 880.5180 Section 880.5180 Food and... Burn sheet. (a) Identification. A burn sheet is a device made of a porous material that is wrapped aroung a burn victim to retain body heat, to absorb wound exudate, and to serve as a barrier against...

  2. Manifold free multiple sheet superplastic forming

    DOEpatents

    Elmer, John W.; Bridges, Robert L.

    2004-01-13

    Fluid-forming compositions in a container attached to enclosed adjacent sheets are heated to relatively high temperatures to generate fluids (gases) that effect inflation of the sheets. Fluid rates to the enclosed space between the sheets can be regulated by the canal from the container. Inflated articles can be produced by a continuous, rather than batch-type, process.

  3. The Pack Method for Compressive Tests of Thin Specimens of Materials Used in Thin-Wall Structures

    NASA Technical Reports Server (NTRS)

    Aitchison, C S; Tuckerman, L B

    1939-01-01

    The strength of modern lightweight thin-wall structures is generally limited by the strength of the compression members. An adequate design of these members requires a knowledge of the compressive stress-strain graph of the thin-wall material. The "pack" method was developed at the National Bureau of Standards with the support of the National Advisory Committee for Aeronautics to make possible a determination of compressive stress-strain graphs for such material. In the pack test an odd number of specimens are assembled into a relatively stable pack, like a "pack of cards." Additional lateral stability is obtained from lateral supports between the external sheet faces of the pack and outside reactions. The tests seems adequate for many problems in structural research.

  4. Reconstructing the last Irish Ice Sheet 2: a geomorphologically-driven model of ice sheet growth, retreat and dynamics

    NASA Astrophysics Data System (ADS)

    Greenwood, Sarah L.; Clark, Chris D.

    2009-12-01

    The ice sheet that once covered Ireland has a long history of investigation. Much prior work focussed on localised evidence-based reconstructions and ice-marginal dynamics and chronologies, with less attention paid to an ice sheet wide view of the first order properties of the ice sheet: centres of mass, ice divide structure, ice flow geometry and behaviour and changes thereof. In this paper we focus on the latter aspect and use our new, countrywide glacial geomorphological mapping of the Irish landscape (>39 000 landforms), and our analysis of the palaeo-glaciological significance of observed landform assemblages (article Part 1), to build an ice sheet reconstruction yielding these fundamental ice sheet properties. We present a seven stage model of ice sheet evolution, from initiation to demise, in the form of palaeo-geographic maps. An early incursion of ice from Scotland likely coalesced with local ice caps and spread in a south-westerly direction 200 km across Ireland. A semi-independent Irish Ice Sheet was then established during ice sheet growth, with a branching ice divide structure whose main axis migrated up to 140 km from the west coast towards the east. Ice stream systems converging on Donegal Bay in the west and funnelling through the North Channel and Irish Sea Basin in the east emerge as major flow components of the maximum stages of glaciation. Ice cover is reconstructed as extending to the continental shelf break. The Irish Ice Sheet became autonomous (i.e. separate from the British Ice Sheet) during deglaciation and fragmented into multiple ice masses, each decaying towards the west. Final sites of demise were likely over the mountains of Donegal, Leitrim and Connemara. Patterns of growth and decay of the ice sheet are shown to be radically different: asynchronous and asymmetric in both spatial and temporal domains. We implicate collapse of the ice stream system in the North Channel - Irish Sea Basin in driving such asymmetry, since rapid

  5. Experimental study of plastic responses of pipe elbows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenstreet, W.L.

    Load-deflection responses were determined experimentally for sixteen 152.4-mm (6-in.) (nominal) commercial carbon steel pipe elbows and four 152.4-mm (6-in.) stainless steel elbows. Each specimen was loaded with an external force of sufficient magnitude to produce predominantly plastic response. The influences of bend radius and wall thickness were studied, as well as the effect of internal prssure on load-deflection behavior. Comparisons of results from stainless steel and from carbon steel elbows indicate differences in responses attributable to material differences. The results were interpreted in terms of limit analysis concepts, and collapse loads were determined. Trends given by the collapse loads aremore » identified and discussed.« less

  6. Quality Control: (Material) Safety Data Sheets.

    PubMed

    Allen, Loyd V

    2017-01-01

    Safety Data Sheets (formerly Material Safety Data Sheets) are a system for cataloging information on chemicals, chemical compounds, and chemical mixtures and include instructions for the safe use and potential hazards associated with a particular material or product. At present, there are 16 sections of Safety Data Sheets, and these sections are discussed in this article. Two United States Pharmacopeia compounding-related chapters (<795> and <800>) refer to Safety Data Sheets, and this article provides a brief discussion on the terminology contained within those chapters. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  7. Research on Al-alloy sheet forming formability during warm/hot sheet hydroforming based on elliptical warm bulging test

    NASA Astrophysics Data System (ADS)

    Cai, Gaoshen; Wu, Chuanyu; Gao, Zepu; Lang, Lihui; Alexandrov, Sergei

    2018-05-01

    An elliptical warm/hot sheet bulging test under different temperatures and pressure rates was carried out to predict Al-alloy sheet forming limit during warm/hot sheet hydroforming. Using relevant formulas of ultimate strain to calculate and dispose experimental data, forming limit curves (FLCS) in tension-tension state of strain (TTSS) area are obtained. Combining with the basic experimental data obtained by uniaxial tensile test under the equivalent condition with bulging test, complete forming limit diagrams (FLDS) of Al-alloy are established. Using a quadratic polynomial curve fitting method, material constants of fitting function are calculated and a prediction model equation for sheet metal forming limit is established, by which the corresponding forming limit curves in TTSS area can be obtained. The bulging test and fitting results indicated that the sheet metal FLCS obtained were very accurate. Also, the model equation can be used to instruct warm/hot sheet bulging test.

  8. Wall extensibility and cell hydraulic conductivity decrease in enlarging stem tissues at low water potentials. [Glycine max L. Merr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nonami, Hiroshi; Boyer, J.S.

    1990-08-01

    Measurements with a guillotine psychrometer indicate that the inhibition of stem growth at low water potentials (low {psi}{sub w}) is accompanied by decreases in cell wall extensibility and tissue hydraulic conductance to water that eventually limit growth rate in soybean (Glycine max L. Merr.). To check this conclusion, we measured cell wall properties and cell hydraulic conductivities with independent techniques in soybean seedlings grown and treated the same way, i.e. grown in the dark and exposed to low {psi}{sub w} by transplanting dark grown seedlings to vermiculite of low water content. Results suggest that the plastic properties of the cellmore » walls and the conductance of the cells to water were decreased at low {psi}{sub w} but that the elastic properties of the walls were of little consequence in this response.« less

  9. Scaling results for the Liquid Sheet Radiator (LSR)

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Calfo, Frederick D.

    1989-01-01

    Surface tension forces at the edges of a thin liquid (approx. 100 micrometers) sheet flow result in a triangularly shaped sheet. Such a geometry is ideal for an external flow radiator. The experimental investigation of such sheet flows was extended to large sheets (width = W = 23.5 cm, length = L approx. = 3.5 m). Experimental L/W results are greater than the calculated results. However, more experimental results are necessary for a complete comparison. The calculated emissivity of a sheet of Dow-Corning 705 silicone oil, which is a low temperature (300 to 400K) candidate for a liquid sheet radiator (LSR), is greater than .8 for sheet thicknesses greater than 100 micrometers.

  10. Characterization of the deformation and thermal behavior of granitic exfoliation sheets with LiDAR and infrared thermography (Yosemite Valley, USA)

    NASA Astrophysics Data System (ADS)

    Guerin, Antoine; Derron, Marc-Henri; Jaboyedoff, Michel; Collins, Brian D.; Stock, Greg M.

    2017-04-01

    Yosemite Valley is a long (11 km) and deep ( 1 km) glacier-carved valley, bounded by steep granitic cliffs cutting the western slope of the central Sierra Nevada mountain range (California, USA). These cliffs produce numerous rockfalls every year (925 events reported between 1857 and 2011) and this rockfall activity is often linked to the presence of sheeting joints (Stock et al., 2013), also called exfoliation joints, formed in response to stress changes associated with changes in the topography (Martel, 2011). Furthermore, the historical rockfall inventory indicates that many events occurred without recognized triggers (Austin et al., 2014), in summer time, and on sunny days in particular. This suggests that thermal stress changes are involved in triggering of rockfalls (Collins and Stock, 2016). To further characterize the relationship between thermal stresses and rock face deformation, we carried out three experiments in Yosemite Valley during October 2015: (i) monitoring of a sub-vertical granodiorite exfoliation sheet on the Rhombus Wall for 24 consecutive hours (from 8:00 p.m. to 8:00 p.m.) using terrestrial LiDAR, crackmeters and infrared thermal sensors; (ii) monitoring the El Capitan rockwall composed of tens of exfoliation sheets for 8 consecutive hours (from 5:30 p.m. to 1:30 a.m.) with terrestrial LiDAR and thermal imaging; (iii) collecting several sequences of thermal GigaPan panoramas during periods of rock cooling on both cliffs (Rhombus Wall and El Capitan). In parallel to these experiments, we also developed a method for calibrating and correcting the raw apparent temperature measured by our thermal imager (a FLIR T660 infrared camera) from thermoresistances, reflective and black papers and by using some information given by the LiDAR point clouds (range, dip and dip direction). LiDAR monitoring of experiments (i) and (ii) allowed us to detect millimetric deformations for the exfoliations sheets whose crack aperture is persistent, deep and greater

  11. Our plastic age.

    PubMed

    Thompson, Richard C; Swan, Shanna H; Moore, Charles J; vom Saal, Frederick S

    2009-07-27

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste plastic, the effects of plastic debris on wildlife and concerns for human health that arise from the production, usage and disposal of plastics. Finally, we consider some possible solutions to these problems together with the research and policy priorities necessary for their implementation.

  12. Our plastic age

    PubMed Central

    Thompson, Richard C.; Swan, Shanna H.; Moore, Charles J.; vom Saal, Frederick S.

    2009-01-01

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste plastic, the effects of plastic debris on wildlife and concerns for human health that arise from the production, usage and disposal of plastics. Finally, we consider some possible solutions to these problems together with the research and policy priorities necessary for their implementation. PMID:19528049

  13. Method for heating, forming and tempering a glass sheet

    DOEpatents

    Boaz, Premakaran Tucker; Sitzman, Gary W.

    1998-01-01

    A method for heating, forming and tempering a glass sheet including the steps of heating at least one glass sheet to at least a first predetermined temperature, applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature, forming the glass sheet to a predetermined configuration, and cooling an outer surface of the glass sheet to at least a third predetermined temperature to temper the glass sheet.

  14. Exposure age and ice-sheet model constraints on Pliocene East Antarctic ice sheet dynamics.

    PubMed

    Yamane, Masako; Yokoyama, Yusuke; Abe-Ouchi, Ayako; Obrochta, Stephen; Saito, Fuyuki; Moriwaki, Kiichi; Matsuzaki, Hiroyuki

    2015-04-24

    The Late Pliocene epoch is a potential analogue for future climate in a warming world. Here we reconstruct Plio-Pleistocene East Antarctic Ice Sheet (EAIS) variability using cosmogenic nuclide exposure ages and model simulations to better understand ice sheet behaviour under such warm conditions. New and previously published exposure ages indicate interior-thickening during the Pliocene. An ice sheet model with mid-Pliocene boundary conditions also results in interior thickening and suggests that both the Wilkes Subglacial and Aurora Basins largely melted, offsetting increased ice volume. Considering contributions from West Antarctica and Greenland, this is consistent with the most recent IPCC AR5 estimate, which indicates that the Pliocene sea level likely did not exceed +20 m on Milankovitch timescales. The inception of colder climate since ∼3 Myr has increased the sea ice cover and inhibited active moisture transport to Antarctica, resulting in reduced ice sheet thickness, at least in coastal areas.

  15. Current sheet Formation in a Conical Theta Pinch Faraday Accelerator with Radio-Frequency Assisted Discharge

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Choueiri, Edgar Y.; Polzin, Kurt A.

    2007-01-01

    The inductive formation of current sheets in a conical theta pinch FARAD (Faraday Accelerator with Radio-frequency Assisted Discharge) thruster is investigated experimentally with time-integrated photography. The goal is to help in understanding the mechanisms and conditions controlling the strength and extent of the current sheet, which are two indices important for FARAD as a propulsion concept. The profiles of these two indices along the inside walls of the conical acceleration coil are assumed to be related to the profiles of the strength and extent of the luminosity pattern derived from photographs of the discharge. The variations of these profiles as a function of uniform back-fill neutral pressure (with no background magnetic field and all parameters held constant) provided the first clues on the nature and qualitative dependencies of current sheet formation. It was found that there is an optimal pressure for which both indices reach a maximum and that the rate of change in these indices with pressure differs on either side of this optimal pressure. This allowed the inference that current sheet formation follows a Townsend-like breakdown mechanism modified by the existence of a finite pressure-dependent radio-frequency-generated electron density background. The observation that the effective location of the luminosity pattern favors the exit-half of the conical coil is explained as the result of the tendency of the inductive discharge circuit to operate near its minimal self-inductance. Movement of the peak in the luminosity pattern towards the upstream side of the cone with increasing pressure is believed to result from the need of the circuit to compensate for the increase in background plasma resistivity due to increasing pressure.

  16. All-Printed, Self-Aligned Carbon Nanotube Thin-Film Transistors on Imprinted Plastic Substrates.

    PubMed

    Song, Donghoon; Zare Bidoky, Fazel; Hyun, Woo Jin; Walker, S Brett; Lewis, Jennifer A; Frisbie, C Daniel

    2018-05-09

    We present a self-aligned process for printing thin-film transistors (TFTs) on plastic with single-walled carbon nanotube (SWCNT) networks as the channel material. The SCALE (self-aligned capillarity-assisted lithography for electronics) process combines imprint lithography with inkjet printing. Specifically, inks are jetted into imprinted reservoirs, where they then flow into narrow device cavities due to capillarity. Here, we incorporate a composite high- k gate dielectric and an aligned conducting polymer gate electrode in the SCALE process to enable a smaller areal footprint than prior designs that yields low-voltage SWCNT TFTs with average p-type carrier mobilities of 4 cm 2 /V·s and ON/OFF current ratios of 10 4 . Our work demonstrates the promising potential of the SCALE process to fabricate SWCNT-based TFTs with favorable I- V characteristics on plastic substrates.

  17. Method for heating, forming and tempering a glass sheet

    DOEpatents

    Boaz, P.T.; Sitzman, G.W.

    1998-10-27

    A method for heating, forming and tempering a glass sheet is disclosed including the steps of heating at least one glass sheet to at least a first predetermined temperature, applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature, forming the glass sheet to a predetermined configuration, and cooling an outer surface of the glass sheet to at least a third predetermined temperature to temper the glass sheet. 2 figs.

  18. Flammability properties and radiant fraction of FRT wood plastic composites using mass loss calorimeter under HRR hood

    Treesearch

    Mark A. Dietenberger; Charles R. Boardman; Nicole Stark

    2017-01-01

    A special test arrangement was used to assess the flammability of 4 different wood plastic composites (WPC), most with fire retardants, all of which has a tendency to high smoke production leading to high radiant energy losses to the apparatus walls. The mass loss calorimeter (MLC) was modified to include a thermopile on the exhaust pipe stack to compensate for radiant...

  19. Plastic condoms.

    PubMed

    1968-01-01

    Only simple equipment, simple technology and low initial capital investment are needed in their manufacture. The condoms can be made by people who were previously unskilled or only semi-skilled workers. Plastic condoms differ from those made of latex rubber in that the nature of the plastic film allows unlimited shelf-life. Also, the plastic has a higher degree of lubricity than latex rubber; if there is a demand for extra lubrication in a particular market, this can be provided. Because the plastic is inert, these condoms need not be packaged in hermetically sealed containers. All these attributes make it possible to put these condoms on the distributors' shelves in developing countries competitively with rubber condoms. The shape of the plastic condom is based on that of the lamb caecum, which has long been used as luxury-type condom. The plastic condom is made from plastic film (ethylene ethyl acrilate) of 0.001 inch (0.0254 mm.) thickness. In addition, a rubber ring is provided and sealed into the base of the condom for retention during coitus. The advantage of the plastic condom design and the equipment on which it is made is that production can be carried out either in labour-intensive economy or with varying degrees of mechanization and automation. The uniform, finished condom if made using previously untrained workers. Training of workers can be done in a matter of hours on the two machines which are needed to produce and test the condoms. The plastic film is provided on a double wound roll, and condom blanks are prepared by means of a heat-sealing die on the stamping machine. The rubber rings are united to the condom blanks on an assembly machine, which consists of a mandrel and heat-sealing equipment to seal the rubber ring to the base of the condom. Built into the assembly machine is a simple air-testing apparatus that can detect the smallest pinhole flaw in a condom. The manufacturing process is completed by unravelling the condom from the assembly

  20. Experimental realization of two-dimensional boron sheets

    NASA Astrophysics Data System (ADS)

    Feng, Baojie; Zhang, Jin; Zhong, Qing; Li, Wenbin; Li, Shuai; Li, Hui; Cheng, Peng; Meng, Sheng; Chen, Lan; Wu, Kehui

    2016-06-01

    A variety of two-dimensional materials have been reported in recent years, yet single-element systems such as graphene and black phosphorus have remained rare. Boron analogues have been predicted, as boron atoms possess a short covalent radius and the flexibility to adopt sp2 hybridization, features that favour the formation of two-dimensional allotropes, and one example of such a borophene material has been reported recently. Here, we present a parallel experimental work showing that two-dimensional boron sheets can be grown epitaxially on a Ag(111) substrate. Two types of boron sheet, a β12 sheet and a χ3 sheet, both exhibiting a triangular lattice but with different arrangements of periodic holes, are observed by scanning tunnelling microscopy. Density functional theory simulations agree well with experiments, and indicate that both sheets are planar without obvious vertical undulations. The boron sheets are quite inert to oxidization and interact only weakly with their substrate. We envisage that such boron sheets may find applications in electronic devices in the future.