Science.gov

Sample records for plate wave device

  1. Flexural plate wave devices for biosensor platform

    NASA Astrophysics Data System (ADS)

    Yoon, Sang H.; Park, Jung-Hyun; Shen, Dongna; Kim, Dong-Joo

    2007-04-01

    Flexural plate wave (FPW) device is one of promising devices for biological sensor application, because its electronic circuit can be isolated from the medium being detected, and it shows low acoustic energy loss in liquid medium. Moreover, FPW device arrays on the silicon based substrate can be possible at low cost fabrication by micromachining technology, so that it offers batch processing for economic sensor fabrication. In this study, piezoelectric ZnO film was chosen as a material for a biological sensor platform, due to non-toxicity, and chemical and thermal stability. RF magnetron sputtering and chemical solution deposition (CSD) were investigated as film fabrication method. To launch and receive the acoustic wave through the piezoelectric material, it is required that the piezoelectric ZnO film have strong c-axis orientation in the device. For the magnetron RF sputtering, process parameters such as gas ratio, substrate types, and temperature, were varied, and heat treatment and substrate types for CSD. Results indicated that the preferred orientation and microstructure of ZnO films can be controlled by the variation of the process parameter, and that uniform and dense microstructures of ZnO films were obtained by both fabrication methods. CSD method showed, however, stronger dependence of the preferred orientation on substrate types while less dependence on the substrates for sputtering due to energetic sputtered species. Mechanism for ZnO thin film growth will be discussed. FPW devices have been successfully integrated onto 4 inch Si-wafer with 22 different interdigitated electrodes designs, and the device demonstrated the capability to detect biological quantity of 446.13 cm2/gram of sensitivity.

  2. Modeling and Imaging Flexural Plate Wave Devices

    SciTech Connect

    Adkins, D.R.; Butler, M.A.; Chu, A.S.; Schubert, W.K.

    1999-07-09

    Sandia National Laboratories is developing a new form of flexural plate wave device (FPW) for sensor applications. In this device, Lorentz forces cause out of plane vibrations in a silicon nitride membrane. Current induced in transducer lines on the membrane provides information about the amplitude and phase of these surface vibrations. By tracking the large amplitude vibrations that occur at resonant frequencies, it is possible to infer information about loading on the membrane. In fabricating FPWs, it is important to understand the impact that minor defects can have on operation. Through modeling and testing, they are developing resilient designs that provide large amplitude signals with a high tolerance to defects. A finite element model has been developed to perform design trade-off studies, and results from the model are being verified with a unique measurement system that can image Angstrom scale displacements at vibrational frequencies up to 800 kHz. Results from FPW modeling and imaging efforts are presented in this paper.

  3. Surface Micromachined Flexural Plate Wave Device Integrable on Silicon

    SciTech Connect

    Clem, P.G.; Dimos, D.; Garino, T.J.; Martin, S.J.; Mitchell, M.A.; Olson, W.R.; Ruffner, J.A.; Schubert, W.K.; Tuttle, B.A.

    1999-01-01

    Small, reliable chemical sensors are needed for a wide range of applications, such as weapon state-of-health monitoring, nonproliferation activities, and manufacturing emission monitoring. Significant improvements in present surface acoustic wave sensors could be achieved by developing a flexural plate-wave (FPW) architecture, in which acoustic waves are excited in a thin sensor membrane. Further enhancement of device performance could be realized by integrating a piezoelectric thin film on top of the membrane. These new FPW-piezoelectric thin film devices would improve sensitivity, reduce size, enhance ruggedness and reduce the operating frequency so that the FPW devices would be compatible with standard digital microelectronics. Development of these piezoelectric thin film // FPW devices requires integration of (1) acoustic sensor technology, (2) silicon rnicromachining techniques to fabricate thin membranes, and (3) piezoelectric thin films. Two piezoelectric thin film technologies were emphasized in this study: Pb(Zr,Ti)O{sub 3} (PZT) and AlN. PZT thin films were of sufficient quality such that the first high frequency SAW measurements on PZT thin films were measured during the course of this study. Further, reasonable ferroelectric properties were obtained from PZT films deposited on Si surface micromachined FPW device membranes. Fundamental understanding of the effect of nanodimension interfacial layers on AlN thin film domain configurations and piezoelectric response was developed. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy under contract DE-AC04-94AL85000.

  4. Method and apparatus for actively controlling a micro-scale flexural plate wave device

    DOEpatents

    Dohner, Jeffrey L.

    2001-01-01

    An actively controlled flexural plate wave device provides a micro-scale pump. A method of actively controlling a flexural plate wave device produces traveling waves in the device by coordinating the interaction of a magnetic field with actively controlled currents. An actively-controlled flexural plate wave device can be placed in a fluid channel and adapted for use as a micro-scale fluid pump to cool or drive micro-scale systems, for example, micro-chips, micro-electrical-mechanical devices, micro-fluid circuits, or micro-scale chemical analysis devices.

  5. Wave-plate structures, power selective optical filter devices, and optical systems using same

    DOEpatents

    Koplow, Jeffrey P.

    2012-07-03

    In an embodiment, an optical filter device includes an input polarizer for selectively transmitting an input signal. The device includes a wave-plate structure positioned to receive the input signal, which includes first and second substantially zero-order, zero-wave plates arranged in series with and oriented at an angle relative to each other. The first and second zero-wave plates are configured to alter a polarization state of the input signal passing in a manner that depends on the power of the input signal. Each zero-wave plate includes an entry and exit wave plate each having a fast axis, with the fast axes oriented substantially perpendicular to each other. Each entry wave plate is oriented relative to a transmission axis of the input polarizer at a respective angle. An output polarizer is positioned to receive a signal output from the wave-plate structure and selectively transmits the signal based on the polarization state.

  6. New approach to the excitation of plate waves for piezoelectric thick-film devices.

    PubMed

    De Cicco, Giorgio; Morten, Bruno

    2008-12-01

    A method is presented for exciting the propagation of plate waves in elastic guides. It is implemented in a device whose minimum working structure consists of a non-piezoelectric plane guide and two piezoelectric transducers operating as a generator and detector. The device is entirely in accordance with thick-film technology standard procedures. Both transducers are composed of a PZT ferroelectric layer deposited on a ceramic substrate and a suitable system of three coplanar metal electrodes placed inside the same layer. Beside setting the wavelength of propagation, the electrode system promotes piezoelectric deformations parallel to the substrate simultaneously contracting and extending contiguous active regions in the layer. Pure shear stresses are then induced on the involved guide surface, alternately distributed, with the spatial periodicity of the wave that will propagate in the guide. The propagation of several kinds of guided waves is possible so the selection of the one that meets a specific device design best is allowed. This work describes the design, realization and operation of a prototype structure consisting of an alumina plate guide and two pairs of piezoelectric thick-film transducers realized on it. The results related to the propagation of symmetric and asymmetric Lamb modes are reported. Moreover, the potential of the method is highlighted, emphasizing its effectiveness, easy implementation and application in the development of devices for the sensing and non-destructive testing areas. PMID:18486958

  7. Gradient Index Devices for the Full Control of Elastic Waves in Plates

    PubMed Central

    Jin, Yabin; Torrent, Daniel; Pennec, Yan; Pan, Yongdong; Djafari-Rouhani, Bahram

    2016-01-01

    In this work, we present a method for the design of gradient index devices for elastic waves in plates. The method allows the design of devices to control the three fundamental modes, despite the fact that their dispersion relation is managed by different elastic constants. It is shown that by means of complex graded phononic crystals and thickness variations it is possible to independently design the three refractive indexes of these waves, allowing therefore their simultaneous control. The effective medium theory required for this purpose is presented, and the method is applied to the design of the Luneburg and Maxwell lenses as well as to the design of a flat gradient index lens. Finally, numerical simulations are used to demonstrate the performance of the method in a broadband frequency region. PMID:27075601

  8. Gradient Index Devices for the Full Control of Elastic Waves in Plates

    NASA Astrophysics Data System (ADS)

    Jin, Yabin; Torrent, Daniel; Pennec, Yan; Pan, Yongdong; Djafari-Rouhani, Bahram

    2016-04-01

    In this work, we present a method for the design of gradient index devices for elastic waves in plates. The method allows the design of devices to control the three fundamental modes, despite the fact that their dispersion relation is managed by different elastic constants. It is shown that by means of complex graded phononic crystals and thickness variations it is possible to independently design the three refractive indexes of these waves, allowing therefore their simultaneous control. The effective medium theory required for this purpose is presented, and the method is applied to the design of the Luneburg and Maxwell lenses as well as to the design of a flat gradient index lens. Finally, numerical simulations are used to demonstrate the performance of the method in a broadband frequency region.

  9. Gradient Index Devices for the Full Control of Elastic Waves in Plates.

    PubMed

    Jin, Yabin; Torrent, Daniel; Pennec, Yan; Pan, Yongdong; Djafari-Rouhani, Bahram

    2016-01-01

    In this work, we present a method for the design of gradient index devices for elastic waves in plates. The method allows the design of devices to control the three fundamental modes, despite the fact that their dispersion relation is managed by different elastic constants. It is shown that by means of complex graded phononic crystals and thickness variations it is possible to independently design the three refractive indexes of these waves, allowing therefore their simultaneous control. The effective medium theory required for this purpose is presented, and the method is applied to the design of the Luneburg and Maxwell lenses as well as to the design of a flat gradient index lens. Finally, numerical simulations are used to demonstrate the performance of the method in a broadband frequency region. PMID:27075601

  10. Evaluation of Relative Sensitivity of SAW and Flexural Plate Wave Devices for Atmospheric Sensing

    NASA Technical Reports Server (NTRS)

    White, Richard M.; Black, Justin; Chen, Bryan

    1998-01-01

    The objective of this project is to evaluate the suitability of the ultrasonic flexural plate wave (FPW) device as the detector in a gas chromatograph (GC). Of particular interest is the detection of nitrous oxide (N2O). From experimental results we conclude analyte detection is achieved through two mechanisms: changes in gas density, and mass loading of the device membrane due to the sorption of gas molecules. Reducing the dead volume of the FPW chamber increased the FPW response. A comparison of the FPW response to that of the surface acoustic wave (SAW) detector provided with the GC (made by MSI, Microsensor Technologies, Inc.), shows that for unseparated N2O in N2, the FPW exhibits a sensitivity that is at least 550 times greater than that of the SAW device. A Porapak Q column was found to separate N2O from its carrier gas, N2 or He. With the Porapak Q column, a coated FPW detected 1 ppm N2O in N2 or He, with a response magnitude of 7 Hz. A coated SAW exhibited a response of 25 Hz to pure N2O. The minimal detectable N2O concentrations of the sensors were not evaluated.

  11. Phononic plate waves.

    PubMed

    Wu, Tsung-Tsong; Hsu, Jin-Chen; Sun, Jia-Hong

    2011-10-01

    In the past two decades, phononic crystals (PCs) which consist of periodically arranged media have attracted considerable interest because of the existence of complete frequency band gaps and maneuverable band structures. Recently, Lamb waves in thin plates with PC structures have started to receive increasing attention for their potential applications in filters, resonators, and waveguides. This paper presents a review of recent works related to phononic plate waves which have recently been published by the authors and coworkers. Theoretical and experimental studies of Lamb waves in 2-D PC plate structures are covered. On the theoretical side, analyses of Lamb waves in 2-D PC plates using the plane wave expansion (PWE) method, finite-difference time-domain (FDTD) method, and finite-element (FE) method are addressed. These methods were applied to study the complete band gaps of Lamb waves, characteristics of the propagating and localized wave modes, and behavior of anomalous refraction, called negative refraction, in the PC plates. The theoretical analyses demonstrated the effects of PC-based negative refraction, lens, waveguides, and resonant cavities. We also discuss the influences of geometrical parameters on the guiding and resonance efficiency and on the frequencies of waveguide and cavity modes. On the experimental side, the design and fabrication of a silicon-based Lamb wave resonator which utilizes PC plates as reflective gratings to form the resonant cavity are discussed. The measured results showed significant improvement of the insertion losses and quality factors of the resonators when the PCs were applied. PMID:21989878

  12. Thin plate model for transverse mode analysis of surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Tang, Gongbin; Han, Tao; Chen, Jing; Zhang, Benfeng; Omori, Tatsuya; Hashimoto, Ken-ya

    2016-07-01

    In this paper, we propose a physical model for the analysis of transverse modes in surface acoustic wave (SAW) devices. It is mostly equivalent to the scalar potential (SP) theory, but sufficiently flexible to include various effects such as anisotropy, coupling between multiple modes, etc. First, fundamentals of the proposed model are established and procedures for determining the model parameters are given in detailed. Then the model is implemented in the partial differential equation mode of the commercial finite element analysis software COMSOL. The analysis is carried out for an infinitely long interdigital transducer on the 128°YX-LiNbO3 substrate. As a demonstration, it is shown how the energy leakage changes with the frequency and the device design.

  13. Achromatic axially symmetric wave plate.

    PubMed

    Wakayama, Toshitaka; Komaki, Kazuki; Otani, Yukitoshi; Yoshizawa, Toru

    2012-12-31

    An achromatic axially symmetric wave plate (AAS-WP) is proposed that is based on Fresnel reflections. The wave plate does not introduce spatial dispersion. It provides retardation in the wavelength domain with an axially symmetric azimuthal angle. The optical configuration, a numerical simulation, and the optical properties of the AAS-WP are described. It is composed of PMMA. A pair of them is manufactured on a lathe. In the numerical simulation, the achromatic angle is estimated and is used to design the devices. They generate an axially symmetric polarized beam. The birefringence distribution is measured in order to evaluate the AAS-WPs. PMID:23388751

  14. Acoustic wave device using plate modes with surface-parallel displacement

    DOEpatents

    Martin, Stephen J.; Ricco, Antonio J.

    1992-01-01

    Solid-state acoustic sensors for monitoring conditions at a surface immersed in a liquid and for monitoring concentrations of species in a liquid and for monitoring electrical properties of a liquid are formed by placing interdigital input and output transducers on a piezoelectric substrate and propagating acoustic plate modes therebetween. The deposition or removal of material on or from, respectively, a thin film in contact with the surface, or changes in the mechanical properties of a thin film in contact with the surface, or changes in the electrical characteristics of the solution, create perturbations in the velocity and attenuation of the acoustic plate modes as a function of these properties or changes in them.

  15. Acoustic wave device using plate modes with surface-parallel displacement

    DOEpatents

    Martin, S.J.; Ricco, A.J.

    1988-04-29

    Solid-state acoustic sensors for monitoring conditions at a surface immersed in a liquid and for monitoring concentrations of species in a liquid and for monitoring electrical properties of a liquid are formed by placing interdigital input and output transducers on a piezoelectric substrate and propagating acoustic plate modes therebetween. The deposition or removal of material on or from, respectively, a thin film in contact with the surface, or changes in the mechanical properties of a thin film in contact with the surface, or changes in the electrical characteristics of the solution, create perturbations in the velocity and attenuation of the acoustic plate modes as a function of these properties or changes in them. 6 figs.

  16. Acoustic wave device using plate modes with surface-parallel displacement

    DOEpatents

    Martin, S.J.; Ricco, A.J.

    1992-05-26

    Solid-state acoustic sensors for monitoring conditions at a surface immersed in a liquid and for monitoring concentrations of species in a liquid and for monitoring electrical properties of a liquid are formed by placing interdigital input and output transducers on a piezoelectric substrate and propagating acoustic plate modes there between. The deposition or removal of material on or from, respectively, a thin film in contact with the surface, or changes in the mechanical properties of a thin film in contact with the surface, or changes in the electrical characteristics of the solution, create perturbations in the velocity and attenuation of the acoustic plate modes as a function of these properties or changes in them. 6 figs.

  17. Ion plated electronic tube device

    DOEpatents

    Meek, T.T.

    1983-10-18

    An electronic tube and associated circuitry which is produced by ion plating techniques. The process is carried out in an automated process whereby both active and passive devices are produced at very low cost. The circuitry is extremely reliable and is capable of functioning in both high radiation and high temperature environments. The size of the electronic tubes produced are more than an order of magnitude smaller than conventional electronic tubes.

  18. SH wave propagation in piezoelectric coupled plates.

    PubMed

    Wang, Quan

    2002-05-01

    The propagation of shear horizontal (SH) wave in a piezoelectric coupled plate is investigated in this paper. Full account is taken of the piezoelectric coupling effect to the isotropic metal core in the mathematical model. One of the applications of this research is in the damage detection of the host metal structure from the wave propagation signal excited by the piezoelectric layer which is surface bonded on the surface of a metal core. This research is distinct from the previous works on SH propagation in piezoelectric structures because the piezoelectric materials were used as the core structure in the previous studies, and the potential of the studies was mainly on time-delay devices. The dispersive characteristics and the mode shapes of the transverse displacement and the electric potential of the piezoelectric layer are theoretically derived. The results from numerical simulations show that the phase velocity of the plate structure tends to the bulk shear wave velocity of the host metal core at high wavenumber when the shear wave velocity of host plate is larger than that of PZT bonded on it. Furthermore, there are three asymptotic solutions of wave propagation when the shear wave velocity of the host plate is smaller than that of PZT. The mode shape of the electric potential of the piezoelectric layer changes from the quadratic shape at lower wavenumber and with thinner piezoelectric layer to the shape with more zero nodes at higher wavenumber and with thicker piezoelectric layer. These findings are significant in the application of wave propagation in piezoelectric coupled structures. PMID:12046935

  19. Tunable surface plasmon wave plates.

    PubMed

    Djalalian-Assl, Amir; Cadusch, Jasper J; Balaur, Eugeniu; Aramesh, Morteza

    2016-07-01

    The highest resonant transmission through an array of holes perforated in metallic screens occurs when the dielectric constant of the substrate, the superstrate, and the hole are the same. Changes in the refractive index of the homogenous environment also produce the largest shift in resonances per refractive index unit. In this Letter, we first propose and apply a technique in realization of a freestanding bi-periodic array of holes perforated in a silver film. We then show both numerically and experimentally that shifts in (1,0) and (0,1) modes in response to changes in the refractive index of the surrounding dielectric provide a mechanism for realization of a miniaturized tunable quarter-wave plate that operates in an extraordinary optical transmission mode with a high throughput and a near unity state of circularly polarized light. PMID:27367123

  20. Wave propagation in metamaterial lattice sandwich plates

    NASA Astrophysics Data System (ADS)

    Fang, Xin; Wen, Jihong; Yin, Jianfei; Yu, Dianlong

    2016-04-01

    This paper designed a special acoustic metamaterial 3D Kagome lattice sandwich plate. Dispersion properties and vibration responses of both traditional plate and metamaterial plate are investigated based on FEA methods. The traditional plate does not have low-frequency complete bandgaps, but the metamaterial plate has low-frequency complete bandgap (at 620Hz) coming from the symmetrical local cantilever resonators. The bandgap frequency is approximate to the first-order natural frequency of the oscillator. Complex wave modes are analyzed. The dispersion curves of longitudinal waves exist in the flexural bandgap. The dispersion properties demonstrate the metamaterial design is advantageous to suppress the low-frequency flexural wave propagation in lattice sandwich plate. The flexural vibrations near the bandgap are also suppressed efficiently. The longitudinal excitation stimulates mainly longitudinal waves and lots of low-frequency flexural vibration modes are avoided. Furthermore, the free edge effects in metamaterial plate provide new method for damping optimizations. The influences of damping on vibrations of the metamaterial sandwich plate are studied. Damping has global influence on the wave propagation; stronger damping will induce more vibration attenuation. The results enlighten us damping and metamaterial design approaches can be unite in the sandwich plates to suppress the wave propagations.

  1. Millimeter wave nonreciprocal devices

    NASA Astrophysics Data System (ADS)

    Morgenthaler, F. R.

    1983-01-01

    The Microwave and Quantum Magnetics Group within the MIT Department of Electrical Engineering and Computer Science and the Research Laboratory of Electronics proposed a three year research program aimed at developing coherent magnetic wave signal-processing techniques for microwave energy which may form either the primary signal or else the intermediate frequency (IF) modulation of millimeter wavelength signals-especially at frequencies in the 50-94 GHz. range. Emphasis has been placed upon developing advanced types of signal processors that make use of quasi-optical propagation of electromagnetic and magnetostatic waves propagating in high quality single crystal ferrite thin films. A strong theoretical effort is required in order to establish valid models useful for predicting device performance. We emphasized new filter and circulator designs that employ combinations of the Faraday effect, field displacement nonreciprocity and magnetostatic resonance and periodic structures.

  2. Strongly coupled stress waves in heterogeneous plates.

    NASA Technical Reports Server (NTRS)

    Wang, A. S. D.; Chou, P. C.; Rose, J. L.

    1972-01-01

    Consideration of coupled stress waves generated by an impulsive load applied at one end of a semiinfinite plate. For the field equations governing the one-dimensional coupled waves a hyperbolic system of equations is obtained in which a strong coupling in the second derivatives exists. The method of characteristics described by Chou and Mortimer (1967) is extended to cover the case of strong coupling, and a study is made of the transient stress waves in a semiinfinite plate subjected to an initial step input. Coupled discontinuity fronts are found to propagate at different velocities. The normal plate stress and the bending moment at different time regimes are illustrated by graphs.

  3. Broadband infrared meanderline reflective quarter-wave plate.

    PubMed

    Wadsworth, Samuel L; Boreman, Glenn D

    2011-05-23

    We present a novel reflective quarter-wave plate comprised of subwavelength meanderline elements. The device is operational over the long-wave infrared (LWIR) spectrum, with significant spectral and angular bandwidths. Power reflection is approximately 70% over the majority of the LWIR. Efficient conversion from a 45° linear polarization state into circular polarization is demonstrated from finite-element electromagnetic simulations and from broadband polarimetric measurements. PMID:21643314

  4. Extreme Wave Impact on a Flexible Plate

    NASA Astrophysics Data System (ADS)

    Abraham, Aliza; Techet, Alexandra

    2015-11-01

    Digital image correlation (DIC) and particle image velocimetry (PIV) are combined to characterize the flow-structure interaction of a breaking wave impacting a flexible vertically mounted plate. DIC is used with the beam bending equation to determine the stresses on the plate and PIV is used to describe the flow of the wave. In this experiment, a simulated dam break in which water is rapidly released from a reservoir generates the wave, which impinges on a cantilevered stainless steel plate downstream. Pressure sensors mounted on the plate are used to gather further information about the forces acting on it. A series of waves of different heights and breaking locations are tested, controlled by the volume of water in the tank and the volume of water in the dam break reservoir. The deflection of the plate varies depending on the point of breaking and the height of the wave. These results shed light on the effect of breaking wave impacts on offshore structures and ship hulls.

  5. Titanium carbide bipolar plate for electrochemical devices

    DOEpatents

    LaConti, Anthony B.; Griffith, Arthur E.; Cropley, Cecelia C.; Kosek, John A.

    2000-07-04

    A corrosion resistant, electrically conductive, non-porous bipolar plate is made from titanium carbide for use in an eletrochemical device. The process involves blending titanium carbide powder with a suitable binder material, and molding the mixture, at an elevated temperature and pressure.

  6. Linear transformation method to control flexural waves in thin plates.

    PubMed

    Liu, Yongquan; Ma, Zhaoyang; Su, Xianyue

    2016-08-01

    In this paper, the linear transformation method (LTM) to control flexural waves propagating in thin plates is presented. Unlike earlier studies, only a small number of homogeneous materials with no requirement of in-plane forces or pre-stress are needed, which tremendously simplifies the implementation of devices for flexural waves. An invisibility cloak with homogeneous materials is studied to confirm the validity of the present approach, and to show its imperfection due to impedance mismatch at interfaces. Required materials can be further simplified as layered isotropic materials using the effective medium theory. Finally, the LTM can be extended to the case of flexural waves propagating in anisotropic thin plates. The present method opens a promising avenue toward the realization of advanced structured shields and other devices. PMID:27586744

  7. Retardation Measurements of Infrared PVA Wave plate

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Z, H.; W, D.; D, Y.; Z, Z.; S, J.

    The wave plate made of Polyvinyl Alcohol PVA plastic film has several advantages such as its lower cost and insensitivity to temperature and incidence angle so it has been used in the Solar Multi-Channel Telescope SMCT in China But the important parameter retardations of PVA wave plates in the near infrared wavelength have never been provided In this paper a convenient and high precise instrument to get the retardations of discrete wavelengths or a continuous function of wavelength in near infrared is developed In this method the retardations of wave plates have been determined through calculating the maximum and minimum of light intensity The instrument error has been shown Additionally we can get the continuous direction of wavelength retardations in the ultraviolet visible or infrared spectral in another way

  8. Shock wave absorber having apertured plate

    DOEpatents

    Shin, Yong W.; Wiedermann, Arne H.; Ockert, Carl E.

    1985-01-01

    The shock or energy absorber disclosed herein utilizes an apertured plate maintained under the normal level of liquid flowing in a piping system and disposed between the normal liquid flow path and a cavity pressurized with a compressible gas. The degree of openness (or porosity) of the plate is between 0.01 and 0.60. The energy level of a shock wave travelling down the piping system thus is dissipated by some of the liquid being jetted through the apertured plate toward the cavity. The cavity is large compared to the quantity of liquid jetted through the apertured plate, so there is little change in its volume. The porosity of the apertured plate influences the percentage of energy absorbed.

  9. Shock wave absorber having apertured plate

    DOEpatents

    Shin, Y.W.; Wiedermann, A.H.; Ockert, C.E.

    1983-08-26

    The shock or energy absorber disclosed herein utilizes an apertured plate maintained under the normal level of liquid flowing in a piping system and disposed between the normal liquid flow path and a cavity pressurized with a compressible gas. The degree of openness (or porosity) of the plate is between 0.01 and 0.60. The energy level of a shock wave travelling down the piping system thus is dissipated by some of the liquid being jetted through the apertured plate toward the cavity. The cavity is large compared to the quantity of liquid jetted through the apertured plate, so there is little change in its volume. The porosity of the apertured plate influences the percentage of energy absorbed.

  10. Active Wave Propagation and Sensing in Plates

    NASA Technical Reports Server (NTRS)

    Ghoshal, Anindya; Martin, William N.; Sundaresan, Mannur J.; Schulz, Mark J.; Ferguson, Frederick

    2001-01-01

    Health monitoring of aerospace structures can be done using an active interrogation approach with diagnostic Lamb waves. Piezoelectric patches are often used to generate the waves, and it is helpful to understand how these waves propagate through a structure. To give a basic understanding of the actual physical process of wave propagation, a model is developed to simulate asymmetric wave propagation in a panel and to produce a movie of the wave motion. The waves can be generated using piezoceramic patches of any size or shape. The propagation, reflection, and interference of the waves are represented in the model. Measuring the wave propagation is the second important aspect of damage detection. Continuous sensors are useful for measuring waves because of the distributed nature of the sensor and the wave. Two sensor designs are modeled, and their effectiveness in measuring acoustic waves is studied. The simulation model developed is useful to understand wave propagation and to optimize the type of sensors that might be used for health monitoring of plate-like structures.

  11. Observation of wave turbulence in vibrating plates.

    PubMed

    Boudaoud, Arezki; Cadot, Olivier; Odille, Benoît; Touzé, Cyril

    2008-06-13

    The nonlinear interaction of waves in a driven medium may lead to wave turbulence, a state such that energy is transferred from large to small length scales. Here, wave turbulence is observed in experiments on a vibrating plate. The frequency power spectra of the normal velocity of the plate may be rescaled on a single curve, with power-law behaviors that are incompatible with the weak turbulence theory of Düring et al. [Phys. Rev. Lett. 97, 025503 (2006)10.1103/PhysRevLett.97.025503]. Alternative scenarios are suggested to account for this discrepancy -- in particular the occurrence of wave breaking at high frequencies. Finally, the statistics of velocity increments do not display an intermittent behavior. PMID:18643508

  12. Magnetically excited flexural plate wave apparatus

    DOEpatents

    Martin, S.J.; Butler, M.A.; Frye, G.C.; Smith, J.H.

    1998-11-17

    A non-piezoelectric flexural plate wave apparatus having meander-line transducers mounted on a non-piezoelectric membrane is disclosed. A static magnetic field is directed perpendicularly to the conductive legs of the transducers in the plane of the membrane. Single-port, two-port, resonant, non-resonant, eigenmode, and delay-line modes may be employed. 15 figs.

  13. Magnetically excited flexural plate wave apparatus

    DOEpatents

    Martin, Stephen J.; Butler, Michael A.; Frye, Gregory C.; Smith, James H.

    1998-01-01

    A non-piezoelectric flexural plate wave apparatus having meander-line transducers mounted on a non-piezoelectric membrane. A static magnetic field is directed perpendicularly to the conductive legs of the transducers in the plane of the membrane. Single-port, two-port, resonant, non-resonant, eigenmode, and delay-line modes may be employed.

  14. The propagation of horizontally polarized shear waves in plates bordered with viscous liquid.

    PubMed

    Gitis, Alexander; Sauer, Dirk Uwe

    2016-09-01

    Requirements for ultrasonic horizontally polarized shear waves based viscosity sensors and their applicability for continuous in-line measurement are presented and discussed. The results reveal, that sensors using non-piezoelectric plates as well as wave guides and sensing surface have application-oriented advantages in corrosive and hot liquids. For such non-piezoelectric plate sensors, the dispersion relations are found and the linking equation among propagation velocity as well as attenuation coefficient and Newtonian liquid parameters are obtained. The findings show that in presence of viscous liquids the propagation parameters of horizontally polarized shear waves (HPSW) in non-piezoelectric plate change and a viscosity depending attenuation occurs. It is shown that the measurement sensitivity, in physical terms, of the investigated device highly depends on plate thickness, shear wave impedance of the plate material, and the shear wave impedance of the ambient liquid. Further, reasonable geometrical optimizations and suited plate materials are discussed. PMID:27423968

  15. Technology Transfer of Plate Wave NDE to Ultrasonic Rotary Actuation

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.

    1995-01-01

    Plate waves have been the subject of NDE research and applications. These waves, also known as guided waves of Lamb waves, are formed in two distinct modes--symmetric and antisymmetric --depending on their vibration characteristics in relation to the plate geometry. Experiments have corroborated the predictions for various plate wave modes, allowing the elastic properties of composite materials and adhesive bonded joints to be determined.

  16. Broadband and ultra-broadband modular half-wave plates

    NASA Astrophysics Data System (ADS)

    Dimova, Emiliya; Huang, Wei; Popkirov, George; Rangelov, Andon; Kyoseva, Elica

    2016-05-01

    We experimentally demonstrate broadband and ultra-broadband spectral bandwidth modular half-wave plates. Both modular devices comprise an array of rotated single half-wave plates (HWPs), whereby for broadband and ultra-broadband performance we use standard and commercial achromatic HWPs, respectively. The bandwidth of the modular HWPs depends on the number N of individual HWPs used and in this paper we experimentally investigate this for N = { 3 , 5 , 7 , 9 }. The elements in the arrays are rotated at specific angles with respect to their fast-polarization axes, independent of the nature of the birefringent material. We find the rotation angles using an analogy to the technique of composite pulses, which is widely used for control in nuclear magnetic resonance.

  17. Nonlinear guided wave propagation in prestressed plates.

    PubMed

    Pau, Annamaria; Lanza di Scalea, Francesco

    2015-03-01

    The measurement of stress in a structure presents considerable interest in many fields of engineering. In this paper, the diagnostic potential of nonlinear elastic guided waves in a prestressed plate is investigated. To do so, an analytical model is formulated accounting for different aspects involved in the phenomenon. The fact that the initial strains can be finite is considered using the Green Lagrange strain tensor, and initial and final configurations are not merged, as it would be assumed in the infinitesimal strain theory. Moreover, an appropriate third-order expression of the strain energy of the hyperelastic body is adopted to account for the material nonlinearities. The model obtained enables to investigate both the linearized case, which gives the variation of phase and group velocity as a function of the initial stress, and the nonlinear case, involving second-harmonic generation as a function of the initial state of stress. The analysis is limited to Rayleigh-Lamb waves propagating in a plate. Three cases of initial prestress are considered, including prestress in the direction of the wave propagation, prestress orthogonal to the direction of wave propagation, and plane isotropic stress. PMID:25786963

  18. Wave interaction with dual circular porous plates

    NASA Astrophysics Data System (ADS)

    Mondal, Arpita; Gayen, R.

    2015-12-01

    In this paper we investigated the reflection and the transmission of a system of two symmetric circular-arc-shaped thin porous plates submerged in deep water within the context of linear theory. The hypersingular integral equation technique has been used to analyze the problem mathematically. The integral equations are formulated by applying Green's integral theorem to the fundamental potential function and the scattered potential function into a suitable fluid region, and then using the boundary condition on the porous plate surface. These are solved approximately using an expansion-cum-collocation method using the behaviour of the potential functions at the tips of the plates. This method ultimately produces a very good numerical approximation for the reflection and the transmission coefficients and hydrodynamic force components. The numerical results are depicted graphically against the wave number for a variety of layouts of the arc. Some results are compared with known results for similar configurations of dual rigid plate systems available in the literature with good agreement.

  19. Focusing on Plates: Controlling Guided Waves using Negative Refraction.

    PubMed

    Philippe, Franck D; Murray, Todd W; Prada, Claire

    2015-01-01

    Elastic waves are guided along finite structures such as cylinders, plates, or rods through reflection, refraction, and mode conversion at the interfaces. Such wave propagation is ubiquitous in the world around us, and studies of elastic waveguides first emerged in the later part of the 19(th) century. Early work on elastic waveguides revealed the presence of backward propagating waves, in which the phase velocity and group velocity are anti-parallel. While backward wave propagation exists naturally in very simple finite elastic media, there has been remarkably little attention paid to this phenomenon. Here we report the development of a tunable acoustic lens in an isotropic elastic plate showing negative refraction over a finite acoustic frequency bandwidth. As compared to engineered acoustic materials such as phononic crystals and metamaterials, the design of the acoustic lens is very simple, with negative refraction obtained through thickness changes rather than internal periodicity or sub-wavelength resonant structures. A new class of acoustic devices, including resonators, filters, lenses, and cloaks, may be possible through topography optimization of elastic waveguide structures to exploit the unique properties of backward waves. PMID:26053960

  20. Focusing on Plates: Controlling Guided Waves using Negative Refraction

    NASA Astrophysics Data System (ADS)

    Philippe, Franck D.; Murray, Todd W.; Prada, Claire

    2015-06-01

    Elastic waves are guided along finite structures such as cylinders, plates, or rods through reflection, refraction, and mode conversion at the interfaces. Such wave propagation is ubiquitous in the world around us, and studies of elastic waveguides first emerged in the later part of the 19th century. Early work on elastic waveguides revealed the presence of backward propagating waves, in which the phase velocity and group velocity are anti-parallel. While backward wave propagation exists naturally in very simple finite elastic media, there has been remarkably little attention paid to this phenomenon. Here we report the development of a tunable acoustic lens in an isotropic elastic plate showing negative refraction over a finite acoustic frequency bandwidth. As compared to engineered acoustic materials such as phononic crystals and metamaterials, the design of the acoustic lens is very simple, with negative refraction obtained through thickness changes rather than internal periodicity or sub-wavelength resonant structures. A new class of acoustic devices, including resonators, filters, lenses, and cloaks, may be possible through topography optimization of elastic waveguide structures to exploit the unique properties of backward waves.

  1. Focusing on Plates: Controlling Guided Waves using Negative Refraction

    PubMed Central

    Philippe, Franck D.; Murray, Todd W.; Prada, Claire

    2015-01-01

    Elastic waves are guided along finite structures such as cylinders, plates, or rods through reflection, refraction, and mode conversion at the interfaces. Such wave propagation is ubiquitous in the world around us, and studies of elastic waveguides first emerged in the later part of the 19th century. Early work on elastic waveguides revealed the presence of backward propagating waves, in which the phase velocity and group velocity are anti-parallel. While backward wave propagation exists naturally in very simple finite elastic media, there has been remarkably little attention paid to this phenomenon. Here we report the development of a tunable acoustic lens in an isotropic elastic plate showing negative refraction over a finite acoustic frequency bandwidth. As compared to engineered acoustic materials such as phononic crystals and metamaterials, the design of the acoustic lens is very simple, with negative refraction obtained through thickness changes rather than internal periodicity or sub-wavelength resonant structures. A new class of acoustic devices, including resonators, filters, lenses, and cloaks, may be possible through topography optimization of elastic waveguide structures to exploit the unique properties of backward waves. PMID:26053960

  2. Multi-reflective acoustic wave device

    DOEpatents

    Andle, Jeffrey C.

    2006-02-21

    An acoustic wave device, which utilizes multiple localized reflections of acoustic wave for achieving an infinite impulse response while maintaining high tolerance for dampening effects, is disclosed. The device utilized a plurality of electromechanically significant electrodes disposed on most of the active surface. A plurality of sensors utilizing the disclosed acoustic wave mode device are also described.

  3. Propagation of plate acoustic waves in contact with fluid medium

    NASA Astrophysics Data System (ADS)

    Ghatadi Suraji, Nagaraj

    The characteristics of acoustic waves propagating in thin piezoelectric plates in the presence of a fluid medium contacting one or both of the plate surfaces are investigated. If the velocity of plate wave in the substrate is greater than velocity of bulk wave in the fluid, then a plate acoustic wave (PAW) traveling in the substrate will radiate a bulk acoustic wave (BAW) in the fluid. It is found that, under proper conditions, efficient conversion of energy from plate acoustic waves to bulk acoustic waves and vice versa can be obtained. For example, using the fundamental anti symmetric plate wave mode (A0 mode) propagating in a lithium niobate substrate and water as the fluid, total mode conversion loss (PAW to BAW and back from BAW to PAW) of less than 3 dB has been obtained. This mode conversion principle can be used to realize miniature, high efficiency transducers for use in ultrasonic flow meters. Similar type of transducer based on conversion of energy from surface acoustic wave (SAW) to bulk acoustic wave (BAW) has been developed previously. The use of plate waves has several advantages. Since the energy of plate waves is present on both plate surfaces, the inter digital transducer (IDT) can be on the surface opposite from that which is in contact with the fluid. This protects the IDT from possible damage due to the fluid and also simplifies the job of making electrical connections to the IDT. Another advantage is that one has wider choice of substrate materials with plate waves than is the case with SAWs. Preliminary calculations indicate that the mode conversion principle can also be used to generate and detect ultrasonic waves in air. This has potential applications for realizing transducers for use in non-contact ultrasonic's. The design of an ASIC (Application Specific Integrated Circuit) chip containing an amplifier and frequency counter for use with ultrasonic transducers is also presented in this thesis.

  4. Wave transfer matrix for a spiral phase plate.

    PubMed

    Rumala, Yisa S

    2015-05-10

    The wave transfer matrix (WTM) is applied to calculating various characteristics of a spiral phase plate (SPP) for the first time to our knowledge. This approach provides a more convenient and systematic approach to calculating properties of a multilayered SPP device. In particular, it predicts the optical wave characteristics on the input and output plane of the device when the SPP is fabricated on a substrate of the same refractive index as the SPP as well as on a substrate of a different refractive index compared to the SPP. The dependence of the parameters on the input laser frequency is studied in detail for a low finesse SPP etalon device for both cases. The equations derived from the WTM are used to show that a variation in input laser frequency causes the optical intensity pattern on the output plane to rotate, while preserving the topology of the optical vortex, i.e., the variation in laser frequency has a minimal effect on the parameters describing the azimuthal intensity modulation and orbital angular momentum content of the beam. In addition, the equations predict the presence of longitudinal modes in the SPP device. PMID:25967494

  5. Optimization of device geometry in single-plate digital microfluidics

    NASA Astrophysics Data System (ADS)

    Abdelgawad, Mohamed; Park, Philip; Wheeler, Aaron R.

    2009-05-01

    Digital microfluidics is a popular tool for lab-on-a-chip applications and is typically implemented in one of two formats: single-plate ("open") devices or two-plate ("closed") devices. Single-plate devices have some advantages relative to the more common two-plate format such as faster mixing, the capacity to move larger volumes on a given footprint, and easier access to droplets for handling or optical detection. In contrast with the two-plate format, in which ground potential is generally supplied via a top electrode, in the single-plate format, many different geometries of ground wires/electrodes have been used. Until the present study, there has been no metric to determine which of these geometries is best suited for droplet actuation. Here, we present a combination of numerical simulations and experimental tests to compare six different single-plate designs. We applied finite element analysis, using the commercially available COMSOL software package to calculate the electrodynamic actuation forces in each of the different designs and used the results to optimize device design. Forces predicted by the electrodynamic model were in agreement with forces predicted using electromechanical models. More importantly, results were verified experimentally using a unique technique that permits indirect estimation of actuation forces on digital microfluidic devices. This work illustrates the promise of using numerical modeling to enhance the design and performance of digital microfluidic devices.

  6. Plate Wave Resonance with Air-Coupled Ultrasonics

    NASA Astrophysics Data System (ADS)

    Bar, H. N.; Dayal, V.; Barnard, D.; Hsu, D. K.

    2010-02-01

    Air-coupled ultrasonic transducers can excite plate waves in metals and composites. The coincidence effect, i.e., the wave vector of plate wave coincides with projection of exciting airborne sound vector, leads to a resonance which strongly amplifies the sound transmission through the plate. The resonance depends on the angle of incidence and the frequency. In the present study, the incidence angle for maximum transmission (θmax) is measured in plates of steel, aluminum, carbon fiber reinforced composites and honeycomb sandwich panels. The variations of (θmax) with plate thickness are compared with theoretical values in steel, aluminum and quasi-isotropic carbon fiber composites. The enhanced transmission of air-coupled ultrasound at oblique incidence can substantially improve the probability of flaw detection in plates and especially in honeycomb structures. Experimental air-coupled ultrasonic scan of subtle flaws in CFRP laminates showed definite improvement of signal-to-noise ratio with oblique incidence at θmax.

  7. Design of a Variable Thickness Plate to Focus Bending Waves

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Lin, Sz-Chin Steven; Cabell, Randolph H.; Huang, Tony Jun

    2012-01-01

    This paper describes the design of a thin plate whose thickness is tailored in order to focus bending waves to a desired location on the plate. Focusing is achieved by smoothly varying the thickness of the plate to create a type of lens, which focuses structural-borne energy. Damping treatment can then be positioned at the focal point to efficiently dissipate energy with a minimum amount of treatment. Numerical simulations of both bounded and unbounded plates show that the design is effective over a broad frequency range, focusing traveling waves to the same region of the plate regardless of frequency. This paper also quantifies the additional energy dissipated by local damping treatment installed on a variable thickness plate relative to a uniform plate.

  8. Shock wave strength reduction by passive control using perforated plates

    NASA Astrophysics Data System (ADS)

    Doerffer, Piotr; Szulc, Oskar

    2007-05-01

    Strong, normal shock wave, terminating a local supersonic area on an airfoil, not only limits aerodynamic performance but also becomes a source of a high-speed impulsive helicopter noise. The application of a passive control system (a cavity covered by a perforated plate) on a rotor blade should reduce the noise created by a moving shock. This article covers the numerical implementation of the Bohning/Doerffer transpiration law into the SPARC code and includes an extended validation against the experimental data for relatively simple geometries of transonic nozzles. It is a first step towards a full simulation of a helicopter rotor equipped with a noise reducing passive control device in hover and in forward flight conditions.

  9. Longitudinal wave motion in width-constrained auxetic plates

    NASA Astrophysics Data System (ADS)

    Lim, Teik-Cheng

    2016-05-01

    This paper investigates the longitudinal wave velocity in auxetic plates in comparison to conventional ones, in which the plate is constrained from motion in the width direction. By taking into account the thickness change of the plate and its corresponding change in density, the developed wave velocity is casted not only as a function of Young’s modulus and density, but also in terms of Poisson’s ratio and longitudinal strain. Results show that density and thickness variations compensate for one another when the Poisson’s ratio is positive, but add up when the Poisson’s ratio is negative. Results also reveal that the classical model of longitudinal wave velocity for the plate is accurate when the Poisson’s ratio is about 1/3; at this Poisson’s ratio the influence from density and thickness variations cancel each other. Comparison between the current corrected model and the density-corrected Rayleigh–Lamb model reveals a number of consistent trends, while the discrepancies are elucidated. If the plate material possesses a negative Poisson’s ratio, the deviation of the actual wave velocity from the classical model becomes significant; auxeticity suppresses and enhances the wave velocity in compressive and tensile impacts, respectively. Hence the use of the corrected model is proposed when predicting longitudinal waves in width-constrained auxetic plates, and auxetic materials can be harnessed for effectively controlling wave velocities in thin-walled structures.

  10. Omnidirectional refractive devices for flexural waves based on graded phononic crystals

    SciTech Connect

    Torrent, Daniel Pennec, Yan; Djafari-Rouhani, Bahram

    2014-12-14

    Different omnidirectional refractive devices for flexural waves in thin plates are proposed and numerically analyzed. Their realization is explained by means phononic crystal plates, where a previously developed homogenization theory is employed for the design of graded index refractive devices. These devices consist of a circular cluster of inclusions with a properly designed gradient in their radius. With this approach, the Luneburg and Maxwell lenses and a family of beam splitters for flexural waves are proposed and analyzed. Results show that these devices work properly in a broadband frequency region, being therefore an efficient approach for the design of refractive devices specially interesting for nano-scale applications.

  11. Broad-angle negative reflection and focusing of elastic waves from a plate edge

    NASA Astrophysics Data System (ADS)

    Veres, Istvan A.; Grünsteidl, Clemens; Stobbe, David M.; Murray, Todd W.

    2016-05-01

    Guided elastic waves in plates, or Lamb waves, generally undergo reflection and mode conversion upon encountering a free edge. In the case where a backward-propagating Lamb wave is mode-converted to a forward-propagating wave or vice versa, the mode-converted wave is reflected on the same side of the surface normal as the incident wave. In this paper, we study such negative reflection and show that this effect can be achieved over a broad angular range at a simple plate edge. We demonstrate, through both numerical and experimental approaches, that a plate edge can act as a lens and focus a mode-converted Lamb wave field. Furthermore, we show that as the wave vectors of the incident and mode-converted Lamb waves approach each other, the mode-converted field nearly retraces the incident field. We propose that broad-angle negative reflection may find application in the nondestructive testing of structures supporting guided waves and in the development of new acoustic devices including resonators, lenses, and filters.

  12. Plated lamination structures for integrated magnetic devices

    DOEpatents

    Webb, Bucknell C.

    2014-06-17

    Semiconductor integrated magnetic devices such as inductors, transformers, etc., having laminated magnetic-insulator stack structures are provided, wherein the laminated magnetic-insulator stack structures are formed using electroplating techniques. For example, an integrated laminated magnetic device includes a multilayer stack structure having alternating magnetic and insulating layers formed on a substrate, wherein each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by an insulating layer, and a local shorting structure to electrically connect each magnetic layer in the multilayer stack structure to an underlying magnetic layer in the multilayer stack structure to facilitate electroplating of the magnetic layers using an underlying conductive layer (magnetic or seed layer) in the stack as an electrical cathode/anode for each electroplated magnetic layer in the stack structure.

  13. Wave interaction in relativistic harmonic gyro-traveling-wave devices

    SciTech Connect

    Ngogang, R.; Nusinovich, G. S.; Antonsen, T. M. Jr.; Granatstein, V. L.

    2006-05-15

    In gyro-traveling-wave devices, several waves can be excited at different cyclotron harmonics simultaneously. This paper analyzes the interaction between three waves synchronous with gyrating electrons at different cyclotron harmonics in two relativistic gyro-amplifier configurations; viz., gyro-traveling-wave tubes and gyrotwystrons. Two types of nonlinear interactions are considered: (a) excitation of two waves at cyclotron harmonics by a wave excited at the fundamental resonance, and (b) excitation of a wave at the fundamental resonance and another wave at the third harmonic by a wave excited at the second cyclotron harmonic. The effect of the overlapping of electron cyclotron resonances on the performance of relativistic gyrodevices is investigated as well.

  14. Low Frequency Guided Plate Waves Propagation in Fiber Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Lih, S-S.; Bar-Cohen, Y.

    1995-01-01

    Conventional destructive techniques for the determination of the elastic stiffness constants of composite materials can be costly and often inaccurate. Reliable nondestructive evaluation methods for monitoring the integrity of composite materials and structures are needed. Guided wave propagation in isotropic plate have been studied. Studies on the low frequency symmetric guide waves are presented.

  15. Scattering of ultrasonic wave by cracks in a plate

    NASA Technical Reports Server (NTRS)

    Liu, S. W.; Datta, S. K.

    1993-01-01

    A hybrid numerical method combining finite elements and the boundary integral representation is used to investigate the transient scattering of ultrasonic waves by a crack in a plate. The incident wave models the guided waves generated by a steel ball impact on the plate. Two surface-breaking cracks and one subsurface crack are studied here. The results show that the location and depth of cracks have measurable effects on the surface responses in time and frequency domains. Also, the scattered fields have distinct differences in the three cases.

  16. Ultrasonic Plate Wave Evaluation Of Natural Fiber Composite Panels

    SciTech Connect

    Tucker, Brian J. ); Bender, Donald A.; Pollock, David G.; Wolcott, Michael P.

    2003-04-01

    Two key shortcomings of current ultrasonic nondestructive evaluation (NDE) techniques for plywood, medium density fiberboard (MDF), and oriented strandboard are the reliance on empirical correlations and the neglect of valuable waveform information. The research reported herein examined the feasibility of using fundamental mechanics, wave propagation, and laminated, shear deformable plate theories to nondestructively evaluate material properties in natural fiber-based composite panels. Dispersion curves were constructed exhibiting the variation of flexural plate wave phase velocity with frequency. Based on shear deformable laminated plate wave theory, flexural and transverse shear rigidity values for solid transversely isotropic, laminated transversely isotropic, and solid orthotropic natural fiber-based composite panels were obtained from the dispersion curves. Axial rigidity values were obtained directly from extensional plate wave phase velocity. Excellent agreement (within 3%) of flexural rigidity values was obtained between NDE and mechanical testing for most panels. Transverse shear modulus values obtained from plate wave tests were within 4% of values obtained from through-thickness ultrasonic shear wave speed. Tensile and compressive axial rigidity values obtained from NDE were 22% to 41% higher than mechanical tension and compression test results. These differences between NDE and axial mechanical testing results are likely due to load-rate effects; however, these large differences were not apparent in the flexural and transverse shear comparisons. This fundamental research advances the state-of-the-art of NDE of wood-based composites by replacing empirical approaches with a technique based on fundamental mechanics, shear deformation laminated plate theory, and plate wave propagation theory.

  17. Radial Shock Wave Devices Generate Cavitation

    PubMed Central

    Császár, Nikolaus B. M.; Angstman, Nicholas B.; Milz, Stefan; Sprecher, Christoph M.; Kobel, Philippe; Farhat, Mohamed; Furia, John P.; Schmitz, Christoph

    2015-01-01

    Background Conflicting reports in the literature have raised the question whether radial extracorporeal shock wave therapy (rESWT) devices and vibrating massage devices have similar energy signatures and, hence, cause similar bioeffects in treated tissues. Methods and Findings We used laser fiber optic probe hydrophone (FOPH) measurements, high-speed imaging and x-ray film analysis to compare fundamental elements of the energy signatures of two rESWT devices (Swiss DolorClast; Electro Medical Systems, Nyon, Switzerland; D-Actor 200; Storz Medical, Tägerwillen, Switzerland) and a vibrating massage device (Vibracare; G5/General Physiotherapy, Inc., Earth City, MO, USA). To assert potential bioeffects of these treatment modalities we investigated the influence of rESWT and vibrating massage devices on locomotion ability of Caenorhabditis elegans (C. elegans) worms. Results FOPH measurements demonstrated that both rESWT devices generated acoustic waves with comparable pressure and energy flux density. Furthermore, both rESWT devices generated cavitation as evidenced by high-speed imaging and caused mechanical damage on the surface of x-ray film. The vibrating massage device did not show any of these characteristics. Moreover, locomotion ability of C. elegans was statistically significantly impaired after exposure to radial extracorporeal shock waves but was unaffected after exposure of worms to the vibrating massage device. Conclusions The results of the present study indicate that both energy signature and bioeffects of rESWT devices are fundamentally different from those of vibrating massage devices. Clinical Relevance Prior ESWT studies have shown that tissues treated with sufficient quantities of acoustic sound waves undergo cavitation build-up, mechanotransduction, and ultimately, a biological alteration that “kick-starts” the healing response. Due to their different treatment indications and contra-indications rESWT devices cannot be equated to vibrating

  18. Space-time resolved wave turbulence in a vibrating plate.

    PubMed

    Cobelli, Pablo; Petitjeans, Philippe; Maurel, Agnès; Pagneux, Vincent; Mordant, Nicolas

    2009-11-13

    Wave turbulence in a thin elastic plate is experimentally investigated. By using a Fourier transform profilometry technique, the deformation field of the plate surface is measured simultaneously in time and space. This enables us to compute the wave-vector-frequency (k, omega) Fourier spectrum of the full space-time deformation velocity. In the 3D (k, omega) space, we show that the energy of the motion is concentrated on a 2D surface that represents a nonlinear dispersion relation. This nonlinear dispersion relation is close to the linear dispersion relation. This validates the usual wave-number-frequency change of variables used in many experimental studies of wave turbulence. The deviation from the linear dispersion, which increases with the input power of the forcing, is attributed to weak nonlinear effects. Our technique opens the way for many new extensive quantitative comparisons between theory and experiments of wave turbulence. PMID:20365984

  19. Lamb and SH wave transducer arrays for the inspection of large areas of thick plates

    NASA Astrophysics Data System (ADS)

    Wilcox, P.; Lowe, M.; Cawley, P.

    2000-05-01

    The motivation for this work is to develop a rapid inspection system for large steel plates, such as those which the floors and walls of oil storage tanks are constructed from. One approach to inspecting plates using guided ultrasonic waves, is to design a transduction system which uses monolithic devices such as wedge transducers, inter-digital transducers or meander coil electro-magnetic acoustic transducers (EMATs). Unfortunately, in order to achieve a given level of performance at a particular operating point on the dispersion curves, the physical dimensions of a monolithic transducer must be scaled in proportion to the thickness of plate under inspection. This renders the use of monolithic devices on thicker plates increasingly impractical for several reasons, not least because of the cost and difficulties involved in manufacturing large devices. Also, particular monolithic devices are limited to a small range of applications since they are generally designed to be sensitive to a particular wavelength and to be either unfocused or have a fixed focal length. A more attractive solution is to use an array device containing a number of elements which behave individually as point transducers. By controlling the elements individually, wavelength selection, beam steering and focusing can all be performed by post processing the same set of test data. Encouraging experimental results obtained using this technique will be shown for several array designs which operate on 5-10 mm thick plates.

  20. Directional cloaking of flexural waves in a plate with a locally resonant metamaterial.

    PubMed

    Colombi, Andrea; Roux, Philippe; Guenneau, Sebastien; Rupin, Matthieu

    2015-04-01

    This paper deals with the numerical design of a directional invisibility cloak for backward scattered elastic waves propagating in a thin plate (A0 Lamb waves). The directional cloak is based on a set of resonating beams that are attached perpendicular to the plate and are arranged at a sub-wavelength scale in ten concentric rings. The exotic effective properties of this locally resonant metamaterial ensure coexistence of bandgaps and directional cloaking for certain beam configurations over a large frequency band. The best directional cloaking was obtained when the resonators' length decreases from the central to the outermost ring. In this case, flexural waves experience a vanishing index of refraction when they cross the outer layers, leading to a frequency bandgap that protects the central part of the cloak. Numerical simulation shows that there is no back-scattering in these configurations. These results might have applications in the design of seismic-wave protection devices. PMID:25920831

  1. Flexural wave dispersion in orthotropic plates with heavy fluid loading.

    PubMed

    Magliula, Elizabeth; McDaniel, J Gregory

    2008-05-01

    Orthotropic plates support flexural waves with wavenumbers that depend on their angle of propagation. The present work investigates the effect of fluid loading on this angular dependence, and finds that the effect is relatively small for typical composite plate materials in contact with water. This finding results from an analytical model of the fluid-loaded plate, in which the plate is modeled by classical laminated plate theory and the fluid is modeled as an ideal acoustic fluid. The resulting dispersion relation is a tenth-order polynomial in the flexural wavenumber. Direct numerical solution, as well as analysis at frequencies below coincidence, reveals that the angular dependence of wavenumber is magnified but not significantly distorted by the addition of fluid loading. PMID:18529085

  2. Edge waves and resonances in two-dimensional phononic crystal plates

    SciTech Connect

    Hsu, Jin-Chen Hsu, Chih-Hsun

    2015-05-07

    We present a numerical study on phononic band gaps and resonances occurring at the edge of a semi-infinite two-dimensional (2D) phononic crystal plate. The edge supports localized edge waves coupling to evanescent phononic plate modes that decay exponentially into the semi-infinite phononic crystal plate. The band-gap range and the number of edge-wave eigenmodes can be tailored by tuning the distance between the edge and the semi-infinite 2D phononic lattice. As a result, a phononic band gap for simultaneous edge waves and plate waves is created, and phononic cavities beside the edge can be built to support high-frequency edge resonances. We design an L3 edge cavity and analyze its resonance characteristics. Based on the band gap, high quality factor and strong confinement of resonant edge modes are achieved. The results enable enhanced control over acoustic energy flow in phononic crystal plates, which can be used in designing micro and nanoscale resonant devices and coupling of edge resonances to other types of phononic or photonic crystal cavities.

  3. Dynamic interfacial trapping of flexural waves in structured plates

    PubMed Central

    Craster, R. V.; Movchan, A. B.; Movchan, N. V.; Jones, I. S.

    2016-01-01

    The paper presents new results on the localization and transmission of flexural waves in a structured plate containing a semi-infinite two-dimensional array of rigid pins. In particular, localized waves are identified and studied at the interface boundary between the homogeneous part of the flexural plate and the part occupied by rigid pins. A formal connection has been made with the dispersion properties of flexural Bloch waves in an infinite doubly periodic array of rigid pins. Special attention is given to regimes corresponding to standing waves of different types as well as Dirac-like points that may occur on the dispersion surfaces. A single half-grating problem, hitherto unreported in the literature, is also shown to bring interesting solutions. PMID:27118892

  4. Finite Element Modeling of Guided Wave Propagation in Plates

    NASA Astrophysics Data System (ADS)

    Kumar KM, Manoj; Ramaswamy, Sivaramanivas; Kommareddy, Vamshi; Baskaran, Ganesan; Zongqi, Sun; Kirkire, Gautam

    2006-03-01

    This paper aims at developing a numerical model for guided wave propagation in plates and the interaction of modes with defects using Finite Element Modeling (FEM). Guided waves propagate as extensional, flexural and torsional waves. Theoretically, these modes are infinite in number, but only some of these propagate and the others are attenuated. The dispersion curves for a structure reveal the plausibility of these modes. In this paper, FEM is used to examine interaction of first few symmetric and anti-symmetric modes independently with the cracks of various sizes in a plate. A time-frequency representation of the acquired guided wave mode signals will be discussed to show the mode sensitivity with crack size.

  5. Active cloaking of flexural waves in thin plates

    NASA Astrophysics Data System (ADS)

    Futhazar, Gregory; Parnell, William J.; Norris, Andrew N.

    2015-11-01

    An active cloak consists of a set of discrete multipole sources distributed in space. When the source positions and amplitudes are carefully specified the active field destructively interferes with an incident time harmonic wave so as to nullify the total field in some finite domain and ensure that in the far field only the incident wave is present, i.e. the active field is non-radiating. Here it is shown how to efficiently determine the source coefficients explicitly in the context of flexural waves in thin plates. The work is carried out in the context of Kirchhoff plate theory, using the Rayleigh-Green theorem to derive the unique source amplitudes for a given incident flexural wave.

  6. Amplitude-dependent Lamb wave dispersion in nonlinear plates.

    PubMed

    Packo, Pawel; Uhl, Tadeusz; Staszewski, Wieslaw J; Leamy, Michael J

    2016-08-01

    The paper presents a perturbation approach for calculating amplitude-dependent Lamb wave dispersion in nonlinear plates. Nonlinear dispersion relationships are derived in closed form using a hyperelastic stress-strain constitutive relationship, the Green-Lagrange strain measure, and the partial wave technique integrated with a Lindstedt-Poincaré perturbation approach. Solvability conditions are derived using an operator formalism with inner product projections applied against solutions to the adjoint problem. When applied to the first- and second-order problems, these solvability conditions lead to amplitude-dependent, nonlinear dispersion corrections for frequency as a function of wavenumber. Numerical simulations verify the predicted dispersion shifts for an example nonlinear plate. The analysis and identification of amplitude-dependent, nonlinear Lamb wave dispersion complements recent research focusing on higher harmonic generation and internally resonant waves, which require precise dispersion relationships for frequency-wavenumber matching. PMID:27586758

  7. Millimeter wave transmission systems and related devices

    NASA Technical Reports Server (NTRS)

    Hebert, L. M.

    1984-01-01

    A survey was made of the state-of-the-art in millimeter (20 GHz to 300 GHz) wave transmission systems and related devices. The survey includes summaries of analytical studies and theoretical results that were obtained for various transmission line structures. This material was supplemented by further analysis where appropriate. The transmission line structures are evaluated in terms of electrical performance, ease of manufacture, usefulness for building other devices and compatibility with solid state devices. Descriptions of waveguide transmission lines which have commonly been used in the microwave frequency range are provided along with special attention given to the problems that these guides face when their use is extended into the millimeter wave range. Also, guides which have been introduced specifically to satisfy the requirements of millimeter wave transmission are discussed in detail.

  8. Microfabricated bulk wave acoustic bandgap device

    DOEpatents

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol

    2010-06-08

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  9. Microfabricated bulk wave acoustic bandgap device

    DOEpatents

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, legal representative, Carol

    2010-11-23

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  10. Devices for extracting energy from waves

    SciTech Connect

    Comyns-Carr, C.A.; Platts, M.J.

    1981-09-15

    The invention relates to a device for extracting energy from waves and having a pump arranged to be operated by relative motion between members of the device in response to waves. The pump according to the invention has a pump body with a flexible portion extending between the members so as to define a pump chamber having a volume which varies as a result of the aforesaid relative motion. In one form of the invention the pump body is provided by a tubular bellows comprising elastomeric material. A plurality of such pumps may be disposed between the members, each pump being activated by said relative motion.

  11. Gasoline identifier based on SH0 plate acoustic waves.

    PubMed

    Kuznetsova, Iren E; Zaitsev, Boris D; Seleznev, Eugenii P; Verona, Enrico

    2016-08-01

    The present paper is devoted to the development of gasoline identifier based on zero order shear-horizontal (SH0) acoustic wave propagating in piezoelectric plate. It has been found that the permittivity of gasoline is increased when its octane number rises. The development of such identifier is experimentally demonstrated to be possible. PMID:27125559

  12. Analysis of spurious bulk waves in ball surface wave device.

    PubMed

    Ishikawa, Satoru; Cho, Hideo; Tsukahara, Yusuke; Nakaso, Noritaka; Yamanaka, Kazushi

    2003-01-01

    We analyzed the acoustic waves propagating in a sphere to establish a useful guideline for the design of NDE apparatus and ball surface acoustic wave (SAW) device exploiting the diffraction-free propagation of SAW on a sphere. First, we calculated the laser-generated acoustic displacements both under ablation condition and under thermoelastic condition and verified experimentally the validity of the calculation. Next, the acoustic waves excited by out-of-plane stress and those excited by in-plane stress were compared. The results showed that when the out-of-plane stress was applied, the relative amplitudes of the bulk waves to that of the SAW were larger and the number of bulk waves was larger than that when the in-plane stress was applied, while the SAW had similar waveforms in each case. The ratio of the relative amplitude of the bulk waves for the out-of-plane stress and the in-plane stress was 3.1:1 at phi(1)=90 degrees and 1.67:1 at phi(1)=0 degrees. The large amplitude for the out-of-plane stress can be explained by wide directivities of bulk waves. Consequently, we found that it is necessary for ball SAW device to select a piezoelectric material and form of interdigital transducer so that the in-plane stress becomes dominant. PMID:12464407

  13. Platonic Scattering Cancellation for Bending Waves in a Thin Plate

    PubMed Central

    Farhat, M.; Chen, P.-Y.; Bağcı, H.; Enoch, S.; Guenneau, S.; Alù, A.

    2014-01-01

    We propose an ultra-thin elastic cloak to control the scattering of bending waves in isotropic heterogeneous thin plates. The cloak design makes use of the scattering cancellation technique applied, for the first time, to the biharmonic operator describing the propagation of bending waves in thin plates. We first analyze scattering from hard and soft cylindrical objects in the quasistatic limit, then we prove that the scattering of bending waves from an object in the near and far-field regions can be suppressed significantly by covering it with a suitably designed coating. Beyond camouflaging, these findings may have potential applications in protection of buildings from earthquakes and isolating structures from vibrations in the motor vehicle industry. PMID:24844801

  14. Platonic Scattering Cancellation for Bending Waves in a Thin Plate

    NASA Astrophysics Data System (ADS)

    Farhat, M.; Chen, P.-Y.; Bağcı, H.; Enoch, S.; Guenneau, S.; Alù, A.

    2014-04-01

    We propose an ultra-thin elastic cloak to control the scattering of bending waves in isotropic heterogeneous thin plates. The cloak design makes use of the scattering cancellation technique applied, for the first time, to the biharmonic operator describing the propagation of bending waves in thin plates. We first analyze scattering from hard and soft cylindrical objects in the quasistatic limit, then we prove that the scattering of bending waves from an object in the near and far-field regions can be suppressed significantly by covering it with a suitably designed coating. Beyond camouflaging, these findings may have potential applications in protection of buildings from earthquakes and isolating structures from vibrations in the motor vehicle industry.

  15. Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface

    PubMed Central

    Wang, Dacheng; Zhang, Lingchao; Gu, Yinghong; Mehmood, M. Q.; Gong, Yandong; Srivastava, Amar; Jian, Linke; Venkatesan, T.; Qiu, Cheng-Wei; Hong, Minghui

    2015-01-01

    Metamaterials open up various exotic means to control electromagnetic waves and among them polarization manipulations with metamaterials have attracted intense attention. As of today, static responses of resonators in metamaterials lead to a narrow-band and single-function operation. Extension of the working frequency relies on multilayer metamaterials or different unit cells, which hinder the development of ultra-compact optical systems. In this work, we demonstrate a switchable ultrathin terahertz quarter-wave plate by hybridizing a phase change material, vanadium dioxide (VO2), with a metasurface. Before the phase transition, VO2 behaves as a semiconductor and the metasurface operates as a quarter-wave plate at 0.468 THz. After the transition to metal phase, the quarter-wave plate operates at 0.502 THz. At the corresponding operating frequencies, the metasurface converts a linearly polarized light into a circularly polarized light. This work reveals the feasibility to realize tunable/active and extremely low-profile polarization manipulation devices in the terahertz regime through the incorporation of such phase-change metasurfaces, enabling novel applications of ultrathin terahertz meta-devices. PMID:26442614

  16. Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface

    NASA Astrophysics Data System (ADS)

    Wang, Dacheng; Zhang, Lingchao; Gu, Yinghong; Mehmood, M. Q.; Gong, Yandong; Srivastava, Amar; Jian, Linke; Venkatesan, T.; Qiu, Cheng-Wei; Hong, Minghui

    2015-10-01

    Metamaterials open up various exotic means to control electromagnetic waves and among them polarization manipulations with metamaterials have attracted intense attention. As of today, static responses of resonators in metamaterials lead to a narrow-band and single-function operation. Extension of the working frequency relies on multilayer metamaterials or different unit cells, which hinder the development of ultra-compact optical systems. In this work, we demonstrate a switchable ultrathin terahertz quarter-wave plate by hybridizing a phase change material, vanadium dioxide (VO2), with a metasurface. Before the phase transition, VO2 behaves as a semiconductor and the metasurface operates as a quarter-wave plate at 0.468 THz. After the transition to metal phase, the quarter-wave plate operates at 0.502 THz. At the corresponding operating frequencies, the metasurface converts a linearly polarized light into a circularly polarized light. This work reveals the feasibility to realize tunable/active and extremely low-profile polarization manipulation devices in the terahertz regime through the incorporation of such phase-change metasurfaces, enabling novel applications of ultrathin terahertz meta-devices.

  17. Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface.

    PubMed

    Wang, Dacheng; Zhang, Lingchao; Gu, Yinghong; Mehmood, M Q; Gong, Yandong; Srivastava, Amar; Jian, Linke; Venkatesan, T; Qiu, Cheng-Wei; Hong, Minghui

    2015-01-01

    Metamaterials open up various exotic means to control electromagnetic waves and among them polarization manipulations with metamaterials have attracted intense attention. As of today, static responses of resonators in metamaterials lead to a narrow-band and single-function operation. Extension of the working frequency relies on multilayer metamaterials or different unit cells, which hinder the development of ultra-compact optical systems. In this work, we demonstrate a switchable ultrathin terahertz quarter-wave plate by hybridizing a phase change material, vanadium dioxide (VO2), with a metasurface. Before the phase transition, VO2 behaves as a semiconductor and the metasurface operates as a quarter-wave plate at 0.468 THz. After the transition to metal phase, the quarter-wave plate operates at 0.502 THz. At the corresponding operating frequencies, the metasurface converts a linearly polarized light into a circularly polarized light. This work reveals the feasibility to realize tunable/active and extremely low-profile polarization manipulation devices in the terahertz regime through the incorporation of such phase-change metasurfaces, enabling novel applications of ultrathin terahertz meta-devices. PMID:26442614

  18. Guided wave phased array beamforming and imaging in composite plates.

    PubMed

    Yu, Lingyu; Tian, Zhenhua

    2016-05-01

    This paper describes phased array beamforming using guided waves in anisotropic composite plates. A generic phased array algorithm is presented, in which direction dependent guided wave parameters and the energy skew effect are considered. This beamforming at an angular direction is achieved based on the classic delay-and-sum principle by applying phase delays to signals received at array elements and adding up the delayed signals. The phase delays are determined with the goal to maximize the array output at the desired direction and minimize it otherwise. For array characterization, the beam pattern of rectangular grid arrays in composite plates is derived. In addition to the beam pattern, the beamforming factor in terms of wavenumber distribution is defined to provide intrinsic explanations for phased array beamforming. The beamforming and damage detection in a composite plate are demonstrated using rectangular grid arrays made by a non-contact scanning laser Doppler vibrometer. Detection images of the composite plate with multiple surface defects at various directions are obtained. The results show that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures. PMID:26907891

  19. Stable operating regime for traveling wave devices

    DOEpatents

    Carlsten, Bruce E.

    2000-01-01

    Autophase stability is provided for a traveling wave device (TWD) electron beam for amplifying an RF electromagnetic wave in walls defining a waveguide for said electromagnetic wave. An off-axis electron beam is generated at a selected energy and has an energy noise inherently arising from electron gun. The off-axis electron beam is introduced into the waveguide. The off-axis electron beam is introduced into the waveguide at a second radius. The waveguide structure is designed to obtain a selected detuning of the electron beam. The off-axis electron beam has a velocity and the second radius to place the electron beam at a selected distance from the walls defining the waveguide, wherein changes in a density of the electron beam due to the RF electromagnetic wave are independent of the energy of the electron beam to provide a concomitant stable operating regime relative to the energy noise.

  20. Methods of localization of Lamb wave sources on thin plates

    NASA Astrophysics Data System (ADS)

    Turkaya, Semih; Toussaint, Renaud; Kvalheim Eriksen, Fredrik; Daniel, Guillaume; Grude Flekkøy, Eirik; Jørgen Måløy, Knut

    2015-04-01

    Signal localization techniques are ubiquitous in both industry and academic communities. We propose a new localization method on plates which is based on energy amplitude attenuation and inverted source amplitude comparison. This inversion is tested on synthetic data using Lamb wave propagation direct model and on experimental dataset (recorded with 4 Brüel & Kjær Type 4374 miniature piezoelectric shock accelerometers (1-26 kHz frequency range)). We compare the performance of the technique to the classical source localization algorithms, arrival time localization, time reversal localization, localization based on energy amplitude. Furthermore, we measure and compare the accuracy of these techniques as function of sampling rate, dynamic range, geometry, Signal to Noise Ratio, and we show that this very versatile technique works better than classical ones over the sampling rates 100kHz - 1MHz. Experimental phase consists of a glass plate having dimensions of 80cmx40cm with a thickness of 1cm. Generated signals due to a wooden hammer hit or a steel ball hit are captured by sensors placed on the plate on different locations with the mentioned sensors. Numerical simulations are done using dispersive far field approximation of plate waves. Signals are generated using a hertzian loading over the plate. Using imaginary sources outside the plate boundaries the effect of reflections is also included. This proposed method, can be modified to be implemented on 3d environments, monitor industrial activities (e.g boreholes drilling/production activities) or natural brittle systems (e.g earthquakes, volcanoes, avalanches).

  1. Shock waves in Stokes flows down an inclined plate.

    PubMed

    Benilov, E S; Lapin, V N

    2011-06-01

    We consider a viscous flow on an inclined plate, such that the liquid's depth far upstream is larger than that far downstream, resulting in a "smoothed-shock wave" steadily propagating downstream. Our numerical simulations show that in a large section of the problem's parameter space all initial conditions overturn (i.e., the liquid's surface becomes vertical at some point) and thus no steady solution exists. The overturning can only be stopped by a sufficiently strong surface tension. PMID:21797491

  2. Shock Waves Impacting Composite Material Plates: The Mutual Interaction

    NASA Astrophysics Data System (ADS)

    Andreopoulos, Yiannis

    2013-02-01

    High-performance, fiber-reinforced polymer composites have been extensively used in structural applications in the last 30 years because of their light weight combined with high specific stiffness and strength at a rather low cost. The automotive industry has adopted these materials in new designs of lightweight vehicles. The mechanical response and characterization of such materials under transient dynamic loading caused with shock impact induced by blast is not well understood. Air blast is associated with a fast traveling shock front with high pressure across followed by a decrease in pressure behind due to expansion waves. The time scales associated with the shock front are typically 103 faster than those involved in the expansion waves. Impingement of blast waves on structures can cause a reflection of the wave off the surface of the structure followed by a substantial transient aerodynamic load, which can cause significant deformation and damage of the structure. These can alter the overpressure, which is built behind the reflected shock. In addition, a complex aeroelastic interaction between the blast wave and the structure develops that can induce reverberation within an enclosure, which can cause substantial overpressure through multiple reflections of the wave. Numerical simulations of such interactions are quite challenging. They usually require coupled solvers for the flow and the structure. The present contribution provides a physics-based analysis of the phenomena involved, a critical review of existing computational techniques together with some recent results involving face-on impact of shock waves on thin composite plates.

  3. Propagation of Lamb waves in one-dimensional radial phononic crystal plates with periodic corrugations

    NASA Astrophysics Data System (ADS)

    Li, Yinggang; Chen, Tianning; Wang, Xiaopeng; Yu, Kunpeng; Chen, Weihua

    2014-02-01

    In this paper, we theoretically investigate the propagation characteristics of Lamb waves in one-dimensional radial phononic crystal plates with periodic corrugations. The dispersion relations, the power transmission spectra, and the displacement fields of the eigenmodes are calculated by using the finite element method based on two-dimensional axial symmetry models in cylindrical coordinates. The axial symmetry model is validated by three-dimensional finite element model in rectangular coordinates. The effects of the geometrical parameters on the band gaps are further explored numerically. Numerical results show that several complete band gaps with a variable bandwidth exist for Lamb waves in the proposed structures. The formation mechanism of opening the acoustic band gaps is attributed to the coupling between the Lamb modes and the corrugation mode. The band gaps are significantly dependent upon the geometrical parameters such as the corrugation height, the corrugation width, and the plate thickness. Significantly, as the increase of corrugation height, band width shifts, new band gaps appear, the bands become flat, and the corrugation mode plays a more prominent role in the opening of Lamb wave band gaps. These properties of Lamb waves in the radial phononic crystal plates can potentially be applied to optimize band gaps, generate filters, and design acoustic devices.

  4. Guided waves and defect scattering in metal matrix composite plates

    NASA Technical Reports Server (NTRS)

    Datta, Subhendu K.; Bratton, Robert L.; Shah, Arvind H.

    1989-01-01

    Guided Rayleigh-Lamb waves in a continuous graphite fiber reinforced magnesium plate has been studied. The interest in this material arises from its high thermal stability and because it provides high strength-to-weight ratio. Previous studies have shown that for wavelengths much larger than the fiber diameters and spacing, the material can be characterized as transversely isotropic with the symmetry axis aligned with the fiber direction. Because of the high longitudinal stiffness of the graphite fibers, the material shows strong anisotropy, with very high modulus in the fiber direction. For this reason, dispersion of guided waves is strongly influenced by the deviation of the direction of propagation from the symmetry axis. Results are given for propagation in different directions and for scattering of antiplane shear waves by surface-breaking cracks and delaminations.

  5. Thermoelastic Waves with Thermal Diffusion in an Isotropic Micropolar Plate

    NASA Astrophysics Data System (ADS)

    Shaw, S.; Mukhopadhyay, B.

    2015-09-01

    The generalized theory of thermodiffusion is applied to study the propagation of plane harmonic waves in an infinitely long isotropic micropolar plate. The present analysis also includes both the thermal and mass diffusive relaxation times, as well as the coupling of the thermal diffusion with microrotation of the material. To determine the effect of the presence of thermal as well as mass diffusion on the phase velocity of the wave propagation, two potential functions are used, and more general dispersive relations are obtained for symmetric and antisymmetric modes. The results for the cases of thermoelasticity, micropolar thermoelasticity, and thermodiffusive elasticity are derived. The changes in the phase velocity, attenuation coefficient, and the specific loss factor with the wave number are shown graphically.

  6. Wave energy devices with compressible volumes

    PubMed Central

    Kurniawan, Adi; Greaves, Deborah; Chaplin, John

    2014-01-01

    We present an analysis of wave energy devices with air-filled compressible submerged volumes, where variability of volume is achieved by means of a horizontal surface free to move up and down relative to the body. An analysis of bodies without power take-off (PTO) systems is first presented to demonstrate the positive effects a compressible volume could have on the body response. Subsequently, two compressible device variations are analysed. In the first variation, the compressible volume is connected to a fixed volume via an air turbine for PTO. In the second variation, a water column separates the compressible volume from another volume, which is fitted with an air turbine open to the atmosphere. Both floating and bottom-fixed, axisymmetric, configurations are considered, and linear analysis is employed throughout. Advantages and disadvantages of each device are examined in detail. Some configurations with displaced volumes less than 2000 m3 and with constant turbine coefficients are shown to be capable of achieving 80% of the theoretical maximum absorbed power over a wave period range of about 4 s. PMID:25484609

  7. Polarization Altering Devices in Guided Wave Optics

    NASA Astrophysics Data System (ADS)

    Sletten, Mark Arthur

    In this thesis, four guided wave optical devices are investigated, each of which alters the state of polarization of the lightwave which passes through it. Chapter 1 contains general information on the operation of these devices and on the systems in which they are typically used, and the subsequent chapters discuss each device in detail. Chapter 2 presents a quasi-optic analysis of a thin film polarization converter formed by a thin, isotropic film on an anisotropic, electrooptic substrate. In Chapter 3, a singular perturbation technique with multiple scales is used to analyze a thick metal surface polariton polarizer for a planar optical waveguide. This analysis is extended in Chapter 4 to a similar device in which the metal is assumed to have a finite thickness. The analysis indicates two regions of operation for this device and also indicates the importance of phase matching the surface polariton to the transverse magnetic mode guided by the dielectric waveguide. An experimental investigation of a surface polariton polarizer fabricated with optical fiber and silicon v-grooves is reported in Chapter 5. The fabrication process for these devices is described, and the results of investigations into the dependence of the extinction ratio on the device length and fiber core to metal spacing are presented. Chapter 6 outlines a singular perturbation analysis of a polarization splitting directional coupler. Like the polarizers discussed in Chapters 3, 4 and 5, the coupler owes its polarization selecting capability to interactions with surface polaritons. The final chapter contains suggestions for future research related to the polarizer analysis and experiments.

  8. Moulding and shielding flexural waves in elastic plates

    NASA Astrophysics Data System (ADS)

    Antonakakis, T.; Craster, R. V.; Guenneau, S.

    2014-03-01

    Platonic crystals (PlCs) are the elastic plate analogue of the photonic crystals widely used in optics, and are thin structured elastic plates along which flexural waves cannot propagate within certain stop band frequency intervals. The practical importance of PlCs is twofold: These can be used either in the design of microstructured acoustic metamaterials or as an approximate model for surface elastic waves propagating in meter scale seismic metamaterials. Here, we make use of the band spectrum of PlCs created by an array of either very small or densely packed clamped circles to achieve surface wave reflectors at very large wavelengths, a flat lens, a waveguide effect, a directive antenna near the stop band frequencies. The limit in which the circles reduce to points is particularly appealing as there is an exact dispersion relation available so the origin of these phenomena can be explained and interpreted using Fourier series and high-frequency homogenization (HFH). We then enlarge the radius of clamped circles, which both makes the zero-frequency stop band up to five times wider and flattens the dispersion curves. Here, HFH notably captures the essence of localized modes, one of which appears in the zero-frequency stop band and is used in the design of a highly directive waveguide.

  9. Structural Health Monitoring of Stiffened Plates Using Guided Ultrasonic Waves

    NASA Astrophysics Data System (ADS)

    Fromme, P.

    2009-03-01

    The concept of using distributed arrays of permanently attached sensors for the long-term structural health monitoring of large plates has previously been demonstrated under laboratory conditions. Based on the scattering characteristics of the employed guided ultrasonic wave mode at typical defects, the influence of the signal processing parameters on the damage detection and localization accuracy is discussed. Problems employing this structural health monitoring concept can occur due to additional changes in the signal reflected at undamaged parts of the structure. For real technical structures reflections occur at structural features, which have been identified as safety-critical areas for the development of fatigue and corrosion damage. Results from laboratory experiments are presented for the detection of crack-like defects (notch) at a welded stiffener on a large steel plate structure.

  10. Electromagnetic Effects on Wave Propagation in an Isotropic Micropolar Plate

    NASA Astrophysics Data System (ADS)

    Shaw, S.; Mukhopadhyay, B.

    2015-11-01

    The generalized theory of thermoelasticity is applied to study the propagation of plane harmonic waves in an infinitely long, isotropic, micropolar plate in the presence of a uniform magnetic field. The present analysis also includes the thermal relaxation time, electric displacement current, and the coupling of heat transfer and microrotation of the material. To determine the effect of the presence of thermal as well as magnetic fields on the phase velocity, two potential functions are used, and more general dispersive relations are obtained for symmetric and antisymmetric modes. The results for the cases of coupled thermoelasticity, magnetoelasticity, micropolar thermoelasticity, and classical micropolar elasticity as special cases are derived. The changes in the phase velocity and attenuation coefficient with the wave number are shown graphically.

  11. An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface.

    PubMed

    Wang, Dacheng; Gu, Yinghong; Gong, Yandong; Qiu, Cheng-Wei; Hong, Minghui

    2015-05-01

    Metamaterials promise an exotic approach to artificially manipulate the polarization state of electromagnetic waves and boost the design of polarimetric devices for sensitive detection, imaging and wireless communication. Here, we present the design and experimental demonstration of an ultrathin (0.29λ) terahertz quarter-wave plate based on planar babinet-inverted metasurface. The quarter-wave plate consisting of arrays of asymmetric cross apertures reveals a high transmission of 0.545 with 90 degrees phase delay at 0.870 THz. The calculated ellipticity indicates a high degree of polarization conversion from linear to circular polarization. With respect to different incident polarization angles, left-handed circular polarized light, right-handed circular polarized light and elliptically polarized light can be created by this novel design. An analytical model is applied to describe transmitted amplitude, phase delay and ellipticitiy, which are in good agreement with the measured and simulated results. The planar babinet-inverted metasurface with the analytical model opens up avenues for new functional terahertz devices design. PMID:25969207

  12. Scattering of guided waves at delaminations in composite plates.

    PubMed

    Murat, Bibi I S; Khalili, Pouyan; Fromme, Paul

    2016-06-01

    Carbon fiber laminate composites are increasingly employed for aerospace structures as they offer advantages, such as a good strength to weight ratio. However, impact during the operation and servicing of the aircraft can lead to barely visible and difficult to detect damage. Depending on the severity of the impact, fiber and matrix breakage or delaminations can occur, reducing the load carrying capacity of the structure. Efficient nondestructive testing and structural health monitoring of composite panels can be achieved using guided ultrasonic waves propagating along the structure. The scattering of the A0 Lamb wave mode at delaminations was investigated using a full three-dimensional (3D) finite element (FE) analysis. The influence of the delamination geometry (size and depth) was systematically evaluated. In addition to the depth dependency, a significant influence of the delamination width due to sideways reflection of the guided waves within the delamination area was found. Mixed-mode defects were simulated using a combined model of delamination with localized material degradation. The guided wave scattering at cross-ply composite plates with impact damage was measured experimentally using a non-contact laser interferometer. Good agreement between experiments and FE predictions using the mixed-mode model for an approximation of the impact damage was found. PMID:27369126

  13. Axially symmetric polarization converter made of patterned liquid crystal quarter wave plate.

    PubMed

    Fan, Fan; Du, Tao; Srivastava, Abhishek Kumar; Lu, Wang; Chigrinov, Vladimir; Kwok, Hoi Sing

    2012-10-01

    We present a method to fabricate a radially and azimuthally polarized light converter by deploying a patterned liquid crystal (LC) quarter-wave plates (QWP). The patterned QWP has been fabricated by providing the axially symmetric alignment to the LC layer by mean of photo-alignment. When the left handed circularly (LHC) or right handed circularly (RHC) polarized light passes through these patterned QWPs, the emergent light becomes radially or azimuthally polarized. Moreover, the proposed polarization converters are characterized by the fast response time, thus could find application in various fast photonic devices. PMID:23188267

  14. Electrically tunable liquid-crystal wave plate using quadripolar electrode configuration and transparent conductive polymer layers.

    PubMed

    Fraval, Nicolas; Joffre, Pascal; Formont, Stéphane; Chazelas, Jean

    2009-10-01

    We present the realization of an electrically tunable wave plate, which uses a nematic liquid-crystal (LC) phase retarder that allows fast and continuous control of the polarization state. This device is built using a quadripolar electrode design and transparent conductive polymer layers in order to obtain a uniform electric field distribution in the interelectrode area. With this realization, we obtain a high degree of control of the orientation of the electric field and, consequently, of the LC director. Indeed, this modulator outperforms classical bipolar LC cells in both optical path variation (>4 microm) and LC rotation speed (0.4 degrees/micros). PMID:19798369

  15. Surface acoustic wave devices for sensor applications

    NASA Astrophysics Data System (ADS)

    Bo, Liu; Xiao, Chen; Hualin, Cai; Mohammad, Mohammad Ali; Xiangguang, Tian; Luqi, Tao; Yi, Yang; Tianling, Ren

    2016-02-01

    Surface acoustic wave (SAW) devices have been widely used in different fields and will continue to be of great importance in the foreseeable future. These devices are compact, cost efficient, easy to fabricate, and have a high performance, among other advantages. SAW devices can work as filters, signal processing units, sensors and actuators. They can even work without batteries and operate under harsh environments. In this review, the operating principles of SAW sensors, including temperature sensors, pressure sensors, humidity sensors and biosensors, will be discussed. Several examples and related issues will be presented. Technological trends and future developments will also be discussed. Project supported by the National Natural Science Foundation of China (Nos. 60936002, 61025021, 61434001, 61574083), the State Key Development Program for Basic Research of China (No. 2015CB352100), the National Key Project of Science and Technology (No. 2011ZX02403-002) and the Special Fund for Agroscientific Research in the Public Interest of China (No. 201303107). M.A.M is additionally supported by the Postdoctoral Fellowship (PDF) program of the Natural Sciences and Engineering Research Council (NSERC) of Canada and the China Postdoctoral Science Foundation (CPSF).

  16. Consideration of SH-wave fundamental modes in piezoelectromagnetic plate: electrically open and magnetically open boundary conditions

    NASA Astrophysics Data System (ADS)

    Zakharenko, A. A.

    2013-11-01

    This report studies the dispersive wave propagation in the transversely isotropic (6 mm) piezoelectromagnetic (PEM) plate when the mechanical, electrical, and magnetic boundary conditions for both the upper and lower free surfaces of the plate are as follows: the mechanically free, electrically open, and magnetically open surfaces. This study follows some original results obtained in book. The fundamental modes' dispersion relations are graphically shown for the following well-known PEM composite materials: BaTiO3-CoFe2O4 and PZT-5H-Terfenol-D. It is natural that for large values of the nondimensional parameter kd (k is the wave number and d is the plate half-thickness), the velocities of both the fundamental modes approach the surface shear-horizontal wave called the piezomagnetic exchange surface Melkumyan wave. It is well known that plate waves are usually utilized in the nondestructive testing and evaluation, for instance, in the airspace industry. Also, PEM materials are used as smart ones in various technical devices such as dispersive wave delay lines, (biochemi)sensors, lab-on-a-chip, etc.

  17. Thermoelastic Stress in a Functionally Graded Infinite Plate with Electromagnetic Wave Absorption

    NASA Astrophysics Data System (ADS)

    Tian, Hong-Yan; Wang, Xing-Zhe; Zhou, You-He

    2012-11-01

    We present an analysis of thermal and thermoelastic behaviors of a functionally graded infinite plate taking into account electromagnetic wave absorption. To treat with the inhomogeneity of functionally graded wave-absorbing (FGWA) materials, the plate is approximated by subdividing it into thin homogeneous layers to solve the governing equations together with proper boundary and connecting conditions. The results illustrate that the FGWA plate is a broadband type absorber with electromagnetic wave absorption. By choosing proper material gradation character and the thickness of the FGWA plate, it is possible to obtain a good performance of electromagnetic wave absorption and thermoelastic stress characteristics.

  18. Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach.

    PubMed

    Ding, Fei; Wang, Zhuoxian; He, Sailing; Shalaev, Vladimir M; Kildishev, Alexander V

    2015-04-28

    We design, fabricate, and experimentally demonstrate an ultrathin, broadband half-wave plate in the near-infrared range using a plasmonic metasurface. The simulated results show that the linear polarization conversion efficiency is over 97% with over 90% reflectance across an 800 nm bandwidth. Moreover, simulated and experimental results indicate that such broadband and high-efficiency performance is also sustained over a wide range of incident angles. To further obtain a background-free half-wave plate, we arrange such a plate as a periodic array of integrated supercells made of several plasmonic antennas with high linear polarization conversion efficiency, consequently achieving a reflection-phase gradient for the cross-polarized beam. In this design, the anomalous (cross-polarized) and the normal (copolarized) reflected beams become spatially separated, hence enabling highly efficient and robust, background-free polarization conversion along with broadband operation. Our results provide strategies for creating compact, integrated, and high-performance plasmonic circuits and devices. PMID:25790895

  19. Convergence of intense aerial acoustic waves radiated by a rectangular transverse vibrating plate

    NASA Astrophysics Data System (ADS)

    Nakai, Tomoki; Asami, Takuya; Miura, Hikaru

    2016-07-01

    A stripe-mode rectangular transverse vibrating plate can be used as a sound source that emits intense ultrasonic waves in air by placing a jut driving point outside the vibrating plate. The aim of this research was to use this vibrating plate to focus sound waves in the direction perpendicular to the nodal lines of the vibrating plate, which differs from the conventional direction. In this study, we investigated new methods for focusing the emitted sound waves by arranging reflective plates around the vibrating plate, using a design equation for each node between nodes in the vibrating plate, and placing additional reflective plates at an outer position beyond the convergence point, and found that a powerful acoustic field can be formed at an arbitrary position.

  20. Simulation of solidly mounted plate wave resonator with wide bandwidth using 0-th shear horizontal mode in LiNbO3 plate

    NASA Astrophysics Data System (ADS)

    Kadota, Michio; Tanaka, Shuji

    2015-07-01

    A cognitive radio system using a vacant frequency band of digital TV channels (TV white space) requires a tunable filter with wide tunable ranges of center frequency and bandwidth. An ultra-wideband resonator is a key device to implement the tunable filter, because the tunable range is limited by the bandwidth (BW) of the resonators. A 0-th shear horizontal (SH0) mode plate wave resonator using an ultra-thin LiNbO3 plate is known to have a large electromechanical coupling factor, i.e., a large BW, but the structural fragility of the ultra-thin LiNbO3 plate is problematic. In this study, the feasibility of solidly mounted resonator type SH0 mode plate wave resonator was investigated systematically by finite element method simulation. The design parameters including the Euler angle, thickness of a LiNbO3 plate, and the material and thickness of an interdigital transducer were optimized. With the best design, a BW as wide as 26% is obtained.

  1. Fatigue crack detection in a plate girder using Lamb waves

    NASA Astrophysics Data System (ADS)

    Greve, D. W.; Oppenheim, I. J.; Wu, Wei; Zheng, Peng

    2007-04-01

    We report on the application of wafer-type PZT transducers to the detection of flaws in steel plate girders. In these experiments one transducer is used to emit a pulse and the second receives the pulse and reflections from nearby boundaries, flaws, or discontinuities (pitch-catch mode). In this application there will typically be numerous reflections observed in the undamaged structure. A major challenge is to recognize new reflections caused by fatigue cracks in the presence of these background reflections. A laboratory specimen plate girder was fabricated at approximately half scale, 910 mm deep with an h/t ratio of 280 for the web and a b/t ratio of 16 for the flanges, and with transverse stiffeners fabricated with a web gap at the tension flange. Two wafer-type transducers were mounted on the web approximately 175 mm from the crack location, one on each side of the stiffener. The transducers were operated in pitch-catch mode, excited by a windowed sinusoid to create a narrowband transient excitation. The transducer location relative to the crack corresponded to a total included angle of roughly 30 degrees in the path reflecting from the crack. Cyclic loading was applied to develop a distortion-induced fatigue crack in the web at the web gap location. After appearance of the crack, ultrasonic measurements were performed at a range of center frequencies below the cutoff frequency of the A1 Lamb wave mode. Subsequently the crack was extended mechanically to simulate crack growth under primary longitudinal (bending) stress and the measurements were repeated. Direct differencing of the signals showed arrivals at times corresponding to reflection from the crack location, growing in amplitude as the crack was lengthened mechanically. These results demonstrate the utility of Lamb waves for crack detection even in the presence of numerous background reflections.

  2. Broadband Lamb Wave Trapping in Cellular Metamaterial Plates with Multiple Local Resonances

    PubMed Central

    Zhao, De-Gang; Li, Yong; Zhu, Xue-Feng

    2015-01-01

    We have investigated the Lamb wave propagation in cellular metamaterial plates constructed by bending-dominated and stretch-dominated unit-cells with the stiffness differed by orders of magnitude at an ultralow density. The simulation results show that ultralight metamaterial plates with textured stubs deposited on the surface can support strong local resonances for both symmetric and anti-symmetric modes at low frequencies, where Lamb waves at the resonance frequencies are highly localized in the vibrating stubs. The resonance frequency is very sensitive to the geometry of textured stubs. By reasonable design of the geometry of resonant elements, we establish a simple loaded-bar model with the array of oscillators having a gradient relative density (or weight) that can support multiple local resonances, which permits the feasibility of a broadband Lamb wave trapping. Our study could be potentially significant in designing ingenious weight-efficient acoustic devices for practical applications, such as shock absorption, cushioning, and vibrations traffic, etc. PMID:25790858

  3. Guided wave propagation in metallic and resin plates loaded with water on single surface

    NASA Astrophysics Data System (ADS)

    Hayashi, Takahiro; Inoue, Daisuke

    2016-02-01

    Our previous papers reported dispersion curves for leaky Lamb waves in a water-loaded plate and wave structures for several typical modes including quasi-Scholte waves [1,2]. The calculations were carried out with a semi-analytical finite element (SAFE) method developed for leaky Lamb waves. This study presents SAFE calculations for transient guided waves including time-domain waveforms and animations of wave propagation in metallic and resin water-loaded plates. The results show that non-dispersive and non-attenuated waves propagating along the interface between the fluid and the plate are expected for effective non-destructive evaluation of such fluid-loaded plates as storage tanks and transportation pipes. We calculated transient waves in both steel and polyvinyl chloride (PVC) plates loaded with water on a single side and input dynamic loading from a point source on the other water-free surface as typical examples of metallic and resin plates. For a steel plate, there exists a non-dispersive and non-attenuated mode, called the quasi-Scholte wave, having an almost identical phase velocity to that of water. The quasi-Scholte wave has superior generation efficiency in the low frequency range due to its broad energy distribution across the plate, whereas it is localized near the plate-water interface at higher frequencies. This means that it has superior detectability of inner defects. For a PVC plate, plural non-attenuated modes exist. One of the non-attenuated modes similar to the A0 mode of the Lamb wave in the form of a group velocity dispersion curve is promising for the non-destructive evaluation of the PVC plate because it provides prominent characteristics of generation efficiency and low dispersion.

  4. Wave mode extraction from multimodal guided wave signal in a plate

    NASA Astrophysics Data System (ADS)

    Ratassepp, M.; Fan, Z.

    2016-02-01

    One of the challenges in wide-band multimode guided wave testing is the decomposition of multimodal response signal into individual components. In this study the post-processing procedure based on plate wave mode orthogonality is proposed to extract individual waveforms at a plate edge from multimodal signals [1]. To obtain the amplitudes of the individual modes, the numerically predicted modal through-thickness stress and displacement field values are used in the orthogonality relation. Two-dimensional wave propagation cases at normal incidence are considered: signals of overlapping fundamental Lamb modes A0 and S0 and shear horizontal modes SH0 and SH1 are analyzed. The performance of the mode extraction technique is evaluated by processing the signals obtained from Finite Element (FE) modeling and experimental measurements. The required experimental displacement components at the plate edge are measured by 3D Scanning Laser Doppler Vibrometer (3D SLDV) [2]. It is demon-strated that individual modes can be extracted with good accordance with the original waveforms from numerical predictions and experimental measurements.

  5. Transient ultrasonic guided waves in layered plates with rectangular cross section

    NASA Astrophysics Data System (ADS)

    Mukdadi, Osama M.; Datta, Subhendu K.

    2003-06-01

    Transient ultrasonic guided waves in anisotropic layered plates with finite and infinite width are presented in this article. A semianalytical finite-element method is adopted to study the guided waves in both infinite- and finite-width elastic plates. Three-noded beam elements in the thickness direction are used in infinite plate model, whereas the cross section of the finite-width plate is represented by nine-noded quadrilateral elements. Propagation in the axial direction is modeled by analytical wave functions. Elastodynamic Green's functions are derived using modal summation in the frequency-wave number and time-space domains. Results for dispersion and transient analysis of guided waves in infinite nickel plates are presented and compared with those of finite-width plates. Group velocities are calculated and wave arrival times are computed for different plate cross sections. Numerical results show a significant influence of the plate aspect ratio on the dispersion and transient wave response. The complex natures of mode dispersion and propagation due to several mode excitation in finite-width plates require such quantitative analysis to afford easy interpretation. These results play a role of guidance for nondestructive material evaluation.

  6. Trapping of surface gravity waves by a vertical flexible porous plate near a wall

    NASA Astrophysics Data System (ADS)

    Kaligatla, R. B.; Koley, S.; Sahoo, T.

    2015-10-01

    The present study deals with the trapping of oblique surface gravity waves by a vertical submerged flexible porous plate located near a rigid wall in water of finite as well as infinite depths. The physical problem is based on the assumption of small amplitude water wave theory and structural response. The flexible plate is assumed to be thin and is modeled based on the Euler-Bernoulli beam equation. Using the Green's function technique to the plate equation and associated boundary conditions, an integral equation is derived which relates the normal velocity on the plate to the difference in velocity potentials across the plate involving the porous-effect parameter and structural rigidity. Further, applying Green's second identity to the free-surface Green's function and the scattered velocity potentials on the two sides of the plate, a system of three more integral equations is derived involving the velocity potentials and their normal derivatives across the plate boundary along with the velocity potential on the rigid wall. The system of integral equations is converted into a set of algebraic equations using appropriate Gauss quadrature formula which in turn solved to obtain various quantities of physical interest. Utilizing Green's identity, explicit expressions for the reflection coefficients are derived in terms of the velocity potentials and their normal derivatives across the plate. Energy balance relations are derived and used to check the accuracy of the computational results. As special cases of the submerged plate, wave trapping by the bottom-standing as well as surface-piercing plates is analyzed. Effects of various wave and structural parameters in trapping of surface waves are studied from the computational results by analyzing the reflection coefficients, wave forces exerted on the plate and the rigid wall, flow velocity, plate deflections and surface elevations. It is observed that surface-piercing plate is more effective for trapping of water waves

  7. Particle response to shock waves in solids: dynamic witness plate/PIV method for detonations

    NASA Astrophysics Data System (ADS)

    Murphy, Michael J.; Adrian, Ronald J.

    2007-08-01

    Studies using transparent, polymeric witness plates consisting of polydimethlysiloxane (PDMS) have been conducted to measure the output of exploding bridge wire (EBW) detonators and exploding foil initiators (EFI). Polymeric witness plates are utilized to alleviate particle response issues that arise in gaseous flow fields containing shock waves and to allow measurements of shock-induced material velocities to be made using particle image velocimetry (PIV). Quantitative comparisons of velocity profiles across the shock waves in air and in PDMS demonstrate the improved response achieved by the dynamic witness plate method. Schlieren photographs complement the analysis through direct visualization of detonator-induced shock waves in the witness plates.

  8. Mapped orthogonal functions method applied to acoustic waves-based devices

    NASA Astrophysics Data System (ADS)

    Lefebvre, J. E.; Yu, J. G.; Ratolojanahary, F. E.; Elmaimouni, L.; Xu, W. J.; Gryba, T.

    2016-06-01

    This work presents the modelling of acoustic wave-based devices of various geometries through a mapped orthogonal functions method. A specificity of the method, namely the automatic incorporation of boundary conditions into equations of motion through position-dependent physical constants, is presented in detail. Formulations are given for two classes of problems: (i) problems with guided mode propagation and (ii) problems with stationary waves. The method's interest is demonstrated by several examples, a seven-layered plate, a 2D rectangular resonator and a 3D cylindrical resonator, showing how it is easy to obtain either dispersion curves and field profiles for devices with guided mode propagation or electrical response for devices with stationary waves. Extensions and possible further developments are also given.

  9. Response of piezoelectric laminated micro plates under the excitation of an ultrasonic wave

    NASA Astrophysics Data System (ADS)

    Kang, Xin; Dong, Shuai

    2016-01-01

    This study presents the electromechanical response of a piezoelectric laminated micro plate under the excitation of an ultrasonic wave. The laminated plate consists of a piezoelectric layer (AlN), an elastic layer (SiO2) and two electrode layers (Au and Pt). Since the whole thickness of the plate is in micro scale, the size dependence of the dynamic behavior of the laminated plate is evaluated using the couple stress theory. The results show that the bending rigidity of the micro plate increases when the size effect is considered and the amplitudes of output of electric charge and voltage are reduced accordingly when the plate is excited by ultrasonic wave. Also the resonant frequency of the laminated plate increase because of the enhancement of the bending rigidity of the plate. The analysis results can provide a reference for the design of micromachined piezoelectric sensors.

  10. Numerical and experimental investigation on broadband wave propagation features in perforated plates

    NASA Astrophysics Data System (ADS)

    Zhou, C. W.; Lainé, J. P.; Ichchou, M. N.; Zine, A. M.

    2016-06-01

    Perforated plates are widely used in various engineering applications. Their mechanical and dynamical behaviours need to be investigated for the design and optimization purpose. In this work, the wave propagation features on broadband in perforated plates are predicted by a Condensed Wave Finite Element Method (CWFEM). Based on the wave dispersion relation identified by CWFEM, wave-based homogenization methods are proposed to define equivalent solid plates. Three perforated plates with different penetration patterns and hole shapes are considered and the accuracy of the equivalent homogenized model is illustrated by comparing it with finite element method. Experimental validation of the computed wave propagation characteristics on the two models is provided as well. A good correlation is observed not only at low frequency where homogenized model can be found, but also at mid and high frequency, where the wave beaming effect phenomenon occurs.

  11. Wave mode extraction from multimodal wave signals in an orthotropic composite plate.

    PubMed

    Ratassepp, M; Fan, Z; Lasn, K

    2016-09-01

    In this paper the post-processing procedure based on the mode orthogonality is applied to extract individual waveforms at a composite plate edge from multimodal signals. To obtain the amplitudes of individual modes, numerically predicted modal through-thickness stress and displacement field values are used in the orthogonality relation. The performance of the mode extraction technique is evaluated by processing signals obtained from Finite Element (FE) modeling and experimental measurements. The propagation of the overlapping wave packets of Lamb modes S0 and A0 is considered along the fiber direction and perpendicular to that direction. The required experimental two-dimensional displacement components at the plate edge are measured by 3D Scanning Laser Doppler Vibrometer (3D SLDV). It is demonstrated that S0 mode can be extracted very well from the signal but A0 mode with slightly poorer accordance with the original waveforms and numerical predictions. PMID:27403641

  12. Spin-wave logic devices based on isotropic forward volume magnetostatic waves

    SciTech Connect

    Klingler, S. Pirro, P.; Brächer, T.; Leven, B.; Hillebrands, B.; Chumak, A. V.

    2015-05-25

    We propose the utilization of isotropic forward volume magnetostatic spin waves in modern wave-based logic devices and suggest a concrete design for a spin-wave majority gate operating with these waves. We demonstrate by numerical simulations that the proposed out-of-plane magnetized majority gate overcomes the limitations of anisotropic in-plane magnetized majority gates due to the high spin-wave transmission through the gate, which enables a reduced energy consumption of these devices. Moreover, the functionality of the out-of-plane majority gate is increased due to the lack of parasitic generation of short-wavelength exchange spin waves.

  13. Acousto-ultrasonic input-output characterization of unidirectional fiber composite plate by SH waves

    NASA Technical Reports Server (NTRS)

    Williams, James H., Jr.; Liao, Peter

    1987-01-01

    A unidirectional fiberglass epoxy composite plate specimen is modelled as a homogeneous transversely isotropic continuum plate medium. Acousto-ultrasonic non-contact input-output characterization by tracing SH waves in the continuum is studied theoretically with a transmitting and receiving transducer located on the same face of the plate. It is found that the directional dependence of the phase velocity of the SH waves travelling in the transversely isotropic medium has a significant effect on the delay time as opposed to the phase velocity of the SH wave travelling in an isotropic medium.

  14. Location Dependence of Mass Sensitivity for Acoustic Wave Devices

    PubMed Central

    Zhang, Kewei; Chai, Yuesheng; Cheng, Z.-Y.

    2015-01-01

    It is introduced that the mass sensitivity (Sm) of an acoustic wave (AW) device with a concentrated mass can be simply determined using its mode shape function: the Sm is proportional to the square of its mode shape. By using the Sm of an AW device with a uniform mass, which is known for almost all AW devices, the Sm of an AW device with a concentrated mass at different locations can be determined. The method is confirmed by numerical simulation for one type of AW device and the results from two other types of AW devices. PMID:26404313

  15. Experimental studies on the deformation and rupture of thin metal plates subject to underwater shock wave loading

    NASA Astrophysics Data System (ADS)

    Chen, Pengwan; Liu, Han; Zhang, Shaolong; Liu, Haibo; Chen, Ang; Guo, Baoqiao

    2015-09-01

    In this paper, the dynamic deformation and rupture of thin metal plates subject to underwater shock wave loading are studied by using high-speed 3D digital image correlation (3D-DIC). An equivalent device consist of a gas gun and a water anvil tube was used to supplying an exponentially decaying pressure in lieu of explosive detonation which acted on the panel specimen. The thin metal plate is clamped on the end of the shock tube by a flange. The deformation and rupture process of the metal plates subject to underwater shock waves are recorded by two high-speed cameras. The shape, displacement fields and strain fields of the metal plates under dynamic loading are obtained by using VIC-3D digital image correlation software. The strain gauges also were used to monitor the structural response on the selected position for comparison. The DIC data and the strain gauges results show a high level of correlation, and 3D-DIC is proven to be an effective method to measure 3D full-field dynamic response of structures under underwater impact loading. The effects of pre-notches on the failure modes of thin circular plate were also discussed.

  16. Design parameters of stainless steel plates for maximizing high frequency ultrasound wave transmission.

    PubMed

    Michaud, Mark; Leong, Thomas; Swiergon, Piotr; Juliano, Pablo; Knoerzer, Kai

    2015-09-01

    This work validated, in a higher frequency range, the theoretical predictions made by Boyle around 1930, which state that the optimal transmission of sound pressure through a metal plate occurs when the plate thickness equals a multiple of half the wavelength of the sound wave. Several reactor design parameters influencing the transmission of high frequency ultrasonic waves through a stainless steel plate were examined. The transmission properties of steel plates of various thicknesses (1-7 mm) were studied for frequencies ranging from 400 kHz to 2 MHz and at different distances between plates and transducers. It was shown that transmission of sound pressure through a steel plate showed high dependence of the thickness of the plate to the frequency of the sound wave (thickness ratio). Maximum sound pressure transmission of ∼ 60% of the incident pressure was observed when the ratio of the plate thickness to the applied frequency was a multiple of a half wavelength (2 MHz, 6mm stainless steel plate). In contrast, minimal sound pressure transmission (∼ 10-20%) was measured for thickness ratios that were not a multiple of a half wavelength. Furthermore, the attenuation of the sound pressure in the transmission region was also investigated. As expected, it was confirmed that higher frequencies have more pronounced sound pressure attenuation than lower frequencies. The spatial distribution of the sound pressure transmitted through the plate characterized by sonochemiluminescence measurements using luminol emission, supports the validity of the pressure measurements in this study. PMID:25637292

  17. Simulation study of x-ray backscatter imaging of pressure-plate improvised explosive devices

    NASA Astrophysics Data System (ADS)

    van den Heuvel, Johan; Fiore, Franco

    2012-06-01

    Improvised Explosive Devices (IEDs) triggered by pressure-plates are a serious threat in current theatres of operation. X-ray backscatter imaging (XBI) is a potential method for detecting buried pressure-plates. Monte-Carlo simulation code was developed in-house and has been used to study the potential of XBI for pressure-plate detection. It is shown that pressure-plates can be detected at depths up to 7 cm with high photon energies of 350 keV with reasonable speeds of 1 to 10 km/h. However, spatial resolution is relatively low due to multiple scattering.

  18. Traveling wave device for combining or splitting symmetric and asymmetric waves

    DOEpatents

    Möbius, Arnold; Ives, Robert Lawrence

    2005-07-19

    A traveling wave device for the combining or splitting of symmetric and asymmetric traveling wave energy includes a feed waveguide for traveling wave energy, the feed waveguide having an input port and a launching port, a reflector for coupling wave energy between the feed waveguide and a final waveguide for the collection and transport of wave energy to or from the reflector. The power combiner has a launching port for symmetrical waves which includes a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which includes a sawtooth rotated about a central axis.

  19. SH0 Guided Wave Interaction with a Crack Aligned in the Propagation Direction in a Plate

    NASA Astrophysics Data System (ADS)

    Ratassepp, M.; Lowe, M. J. S.

    2009-03-01

    Ultrasonic guided waves are currently of interest for structural health monitoring of large structures such as storage tanks and pipelines. This study focuses on the scattering of the fundamental horizontal shear (SH0) mode at a through-thickness notch or crack in a plate whose alignment is in the direction of the wave propagation. The reflection and diffraction of the wave at a crack are examined using 2D finite element simulations. It is shown that the main reflection is generated by Rayleigh-like surface waves created on the faces of the crack, which radiate energy back into the plate. The amplitudes of the reflected and diffracted signals are verified experimentally.

  20. Acousto-ultrasonic input-output characterization of unidirectional fiber composite plate by SV waves

    NASA Technical Reports Server (NTRS)

    Liao, Peter; Williams, James H., Jr.

    1988-01-01

    A unidirectional fiberglass epoxy compostie specimen is modelled as a homogeneous transversely isotropic continuum plate medium. Acousto-ultrasonic noncontact input-output characterization is studied theoretically with a transmitting and a receiving transducer located on the same face of the plate. The single reflection problem for an incident SV wave at a plane boundary in transversely isotropic medium is analyzed. An obliquely incident SV wave results in a reflected SV wave and a reflected P wave for an angle of incidence of the incident SV wave less than the critical angle. Otherwise, there exists only an SV wave in the medium as the reflected P wave degenerates into a surface wave travelling parallel to the plane boundary. The amplitude ratio of the reflected SV wave is -1 when the angle of incidence is greater than or = the critical angle. The directional dependence of the phase velocity of the SV wave propagating in the transversely isotropic medium has a significant effect on the delay time, as opposed to the directional independence of the phase velocity of a shear wave propagating in an isotropic medium. The displacements associated with the SV wave in the plate and which may be detected by the noncontact receiving transducer are approximated by an asymptotic solution for an infinite transversely isotropic medium subjected to a harmonic point load.

  1. Nematic polymer liquid-crystal wave plate for high-power lasers at 1054 nm

    SciTech Connect

    Kreuzer, F. ); Korenic, E.M.; Jacobs, S.D.; Houghton, J.K.; Schmid, A. )

    1994-04-01

    A nematic polymer liquid crystal is used to construct wave plates for use at 1054 nm. Three methods of wave-plate construction are discussed: double substrate with fiber spacers in homogeneous distribution, double substrate with fiber spacers in annular distribution, and single substrate. The polymer liquid crystal shows high laser-damage resistance, making it particularly useful for high-peak-power laser applications. Alignment techniques and measurement of birefringence for the highly viscous polymer are described.

  2. Nondestructive evaluation of planar defects in plates using low-frequency shear horizontal waves

    NASA Astrophysics Data System (ADS)

    Fortunko, C. M.; King, R. B.; Tan, M.

    1982-05-01

    An ultrasonic technique is described that allows the determination of the through-thickness dimension and limited localization of planar defects (cracks) in an isotropic metal plate. The scattering of horizontally polarized shear (SH) plate waves by edge and buried planar defects is investigated using a variational integral expression. Numerical results are presented that allow the calculation of the SH plate wave signal amplitudes as a function of defect through-thickness dimension and location within a plate for two-dimensional cracks. It is shown that SH waves are particularly useful for detecting and sizing of crack-like defects. In addition, it is demonstrated that in plates, which can support a number of propagating SH plate waves, it is also possible to determine the relative position of a defect from interference phenomena. The numerical results are confirmed experimentally using an electromagnetic-acoustic transducer system to generate and detect 454-kHz SH wave signals along the normal to the circumference of a 1.22-m-diam steel pipe with a 15.9-mm wall thickness. The experimental results demonstrate the efficacy of using SH wave signals in quantitative nondestructive evaluation of butt welds.

  3. Time-frequency beamforming for nondestructive evaluations of plate using ultrasonic Lamb wave

    NASA Astrophysics Data System (ADS)

    Han, Je-Heon; Kim, Yong-Joe

    2015-03-01

    The objective of this study is to detect structural defect locations in a plate by exciting the plate with a specific ultrasonic Lamb wave and recording reflective wave signals using a piezoelectric transducer array. For the purpose of eliminating the effects of the direct excitation signals as well as the boundary-reflected wave signals, it is proposed to improve a conventional MUSIC beamforming procedure by processing the measured signals in the time-frequency domain. In addition, a normalized, damped, cylindrical 2-D steering vector is proposed to increase the spatial resolution of time-frequency MUSIC power results. A cross-shaped array is selected to further improve the spatial resolution and to avoid mirrored virtual image effects. Here, it is experimentally demonstrated that the proposed time-frequency MUSIC beamforming procedure can be used to identify structural defect locations on an aluminum plate by distinguishing the defect-induced waves from the excitation-generated and boundary-reflected waves.

  4. Time-frequency characterization of lamb waves for material evaluation and damage inspection of plates

    NASA Astrophysics Data System (ADS)

    Frank Pai, P.; Deng, Haoguang; Sundaresan, Mannur J.

    2015-10-01

    Guided wave-based technique is one major approach for damage inspection of structures. To detect a small damage, an elastic wave's wavelength needs to be in the order of the damage size and hence the frequency needs to be high. Unfortunately, high-frequency wave dynamics always involves complicated wave reflection, refraction and diffraction, and it is difficult to separate them in order to perform detailed examination and system identification. This paper investigates dynamic characteristics of Lamb waves in plates in order to be used for material evaluation and damage inspection of thin-walled structures. A one-dimensional finite-element modeling and analysis technique is developed for computing dispersion curves and all symmetric and antisymmetric modes of Lamb waves in isotropic and multi-layer plates. Moreover, the conjugate-pair decomposition (CPD) method is introduced for time-frequency analysis of propagating Lamb waves. Results show that, under a k-cycle sine-burst excitation at a plate's edge, the time-varying frequency of a surface point's response can reveal the Lamb wave propagating inside the plate being a symmetric or an antisymmetric mode. The frequency of the measured wave packet increases from the wave front to the trailing edge if it is a symmetric mode, and the frequency decreases from the wave front to the trailing edge if it is an antisymmetric mode. Moreover, interaction of two different wave packets results in a peak in the time-frequency curve. These characteristics can be used for accurate separation of wave packets and identification of different wave speeds to enable fast and accurate material evaluation and damage inspection. Transient finite-element analysis of Lamb waves in finite plates with crack/delamination show that k-cycle sine-burst probing waves are good agents for guided wave-based damage inspection of structures. Although crack and delamination introduce different waves into and complicate the probing wave packet, time

  5. Propagation of Lamb waves in an immersed periodically grooved plate: experimental detection of the scattered converted backward waves.

    PubMed

    Harhad, Nadia; El-Kettani, Mounsif Ech-Cherif; Djelouah, Hakim; Izbicki, Jean-Louis; Predoi, Mihai Valentin

    2014-03-01

    Guided waves propagation in immersed plates with irregular surfaces has potential application to detection and assessment of the extent, depth and pattern of the irregularity. The complexity of the problem, due to the large number of involved parameters, has limited the number of existing studies. The simplest case of irregularities of practical interest is the two-dimensional corrosion profile. Even this case is in general so complex, that one can extract several amplitude dominant periodic surfaces only by using a Fourier spectrum of the surface. Guided waves in plates, with one or both free surfaces having periodic perturbations of different shapes, have been presented in specialized literature. In this paper is studied the propagation of Lamb waves in an aluminum plate with a periodic grooved surface on only one side and immersed in water. The interaction between an incident Lamb wave and the grating gives rise to retro-converted waves. Preliminary numerical simulation by the finite element method is performed in order to obtain key parameters for the experiments. It is shown that retro-converted waves radiating into the water are detectable although their amplitudes are small. The phonon relation is verified for the leaky Lamb modes. The damping coefficients of the leaky Lamb modes in the grooved immersed plate are evaluated. PMID:24262677

  6. Guided ultrasonic wave propagation through inaccessible damage in a folded plate using sensor-actuator network

    NASA Astrophysics Data System (ADS)

    Kolappan Geetha, G.; Roy Mahapatra, D.; Gopalakrishnan, S.

    2013-04-01

    Rapid diagnostics and virtual imaging of damages in complex structures like folded plate can help reduce the inspection time for guided wave based NDE and integrated SHM. Folded plate or box structure is one of the major structural components for increasing the structural strength. Damage in the folded plate, mostly in the form of surface breaking cracks in the inaccessible zone is a usual problem in aerospace structures. One side of the folded plate is attached (either riveted or bonded) to adjacent structure which is not accessible for immediate inspection. The sensor-actuator network in the form of a circular array is placed on the accessible side of the folded plate. In the present work, a circular array is employed for scanning the entire folded plate type structure for damage diagnosis and wave field visualization of entire structural panel. The method employs guided wave with relatively low frequency bandwidth of 100-300 kHz. Change in the response signal with respect to a baseline signal is used to construct a quantitative relationship with damage size parameters. Detecting damage in the folded plate by using this technique has significant potential for off-line and on-line SHM technologies. By employing this technique, surface breaking cracks on inaccessible face of the folded plate are detected without disassembly of structure in a realistic environment.

  7. Propagation of ultrasonic guided waves in an acrylic plate as a cortical-bone-mimicking phantom

    NASA Astrophysics Data System (ADS)

    Lee, Kang Il; Choi, Bok Kyoung

    2014-12-01

    The present study aims to investigate the propagation of ultrasonic guided waves in an acrylic plate as a cortical-bone-mimicking phantom. The velocities of the guided waves in a 5-mm-thick acrylic plate were measured by using the axial transmission technique. A pure A0 Lamb mode could be successfully launched in the 5-mm-thick acrylic plate through a time reversal process of Lamb waves, consistent with the fact that the time reversal process can automatically compensate for the dispersive nature of Lamb waves. The experimental velocities of the slow guided wave (SGW) and the time-reversed Lamb wave were found to be in reasonable agreement with the theoretical group velocity of the A0 Lamb mode, suggesting that both the SGW and the time-reversed Lamb wave excited in the 5-mm-thick acrylic plate correspond to the A0 Lamb mode. These results suggest that the time reversal process of Lamb waves can be usefully applied to noninvasive characterization of long cortical bones.

  8. Resonant excitation of Rayleigh waves in a narrow fluid channel clad between two metal plates

    NASA Astrophysics Data System (ADS)

    Nagaraj, Nagaraj; Krokhin, Arkadii; Sánchez-Dehesa, José.; Garcia-Chocano, Victor M.

    2012-02-01

    We study extraordinary absorption of acoustic energy due to resonant excitation of Rayleigh waves in a narrow water channel clad between two unidentical metal plates with Brass plate on one side of the channel and Aluminium plate on the other. The extraordinary absorption is observed at discrete resonant frequencies. From the elastic properties of the metal plates we derive a dispersion equation for coupled Rayleigh waves. Two different types of resonances, corresponding to different polarizations of the coupled waves, are studied for different channel widths and are experimentally confirmed. We also present the experimental confirmation of coupling through measurements of change in transmission minima with channel aperture. Experimental, theoretical, and numerical results are in a good agreement.

  9. Ultrasonic standing wave generator for a smart particle separating device

    NASA Astrophysics Data System (ADS)

    Yoon, Dong-Jin; Lee, Young-Sup; Kwon, Jaehwa

    2005-02-01

    This paper presents the theory, design, and evaluation of a smart device for the enhanced separation of particles mixed in fluid. The smart device takes advantage of the ultrasonic standing wave, which was generated by the operation of a piezoceramic PZT patch installed in the smart device. The details of the device design including the electro-acoustical modelling for separation and PZT transducer are described at first. Based on this design, the separation device was fabricated and evaluated. In the experiments, an optical camera with a zoom lense was used to monitor the position of interested particles within the separation channel layer in the device. The electric impedance of the PZT patch bonded on the separation device was measured. The device shows a strong levitation force against 50μm diameter sand particles mixed with water at the separation channel in the device. Experimetal results also showed that the device can levitate both heavy and light settled sand particles clouds on the bottom to the nodal lines of the generated standing wave field in the separation channel.

  10. Optimization of magnetically accelerated, ultra-high velocity aluminum flyer plates for use in plate impact, shock wave experiments.

    SciTech Connect

    Cochrane, Kyle Robert; Knudson, Marcus D.; Slutz, Stephen A.; Lemke, Raymond William; Davis, J. P.; Harjes, Henry Charles III; Giunta, Anthony Andrew; Bliss, David Emery

    2005-05-01

    The intense magnetic field produced by the 20 MA Z accelerator is used as an impulsive pressure source to accelerate metal flyer plates to high velocity for the purpose of performing plate impact, shock wave experiments. This capability has been significantly enhanced by the recently developed pulse shaping capability of Z, which enables tailoring the rise time to peak current for a specific material and drive pressure to avoid shock formation within the flyer plate during acceleration. Consequently, full advantage can be taken of the available current to achieve the maximum possible magnetic drive pressure. In this way, peak magnetic drive pressures up to 490 GPa have been produced, which shocklessly accelerated 850 {micro}m aluminum (6061-T6) flyer plates to peak velocities of 34 km/s. We discuss magnetohydrodynamic (MHD) simulations that are used to optimize the magnetic pressure for a given flyer load and to determine the shape of the current rise time that precludes shock formation within the flyer during acceleration to peak velocity. In addition, we present results pertaining to plate impact, shock wave experiments in which the aluminum flyer plates were magnetically accelerated across a vacuum gap and impacted z-cut, {alpha}-quartz targets. Accurate measurements of resulting quartz shock velocities are presented and analyzed through high-fidelity MHD simulations enhanced using optimization techniques. Results show that a fraction of the flyer remains at solid density at impact, that the fraction of material at solid density decreases with increasing magnetic pressure, and that the observed abrupt decrease in the quartz shock velocity is well correlated with the melt transition in the aluminum flyer.

  11. Electrochemical Device Comprising Composite Bipolar Plate and Method of Using the Same

    NASA Technical Reports Server (NTRS)

    Mittelsteadt, Cortney K. (Inventor); Braff, William A. (Inventor)

    2013-01-01

    An electrochemical device and methods of using the same. In one embodiment, the electrochemical device may be used as a fuel cell and/or as an electrolyzer and includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, chemically-inert, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, as well as a fluid chamber and a non-porous an electrically-conductive plate.

  12. Noncontact Determination of Antisymmetric Plate Wave Velocity in Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    1998-01-01

    High-temperature materials are of increasing importance in the development of more efficient engines and components for the aeronautics industry. In particular, ceramic matrix composite (CMC) and metal matrix composite (MMC) structures are under active development for these applications. The acousto-ultrasonic (AU) method has been shown to be useful for assessing mechanical properties in composite structures. In particular, plate wave analysis can characterize composites in terms of their stiffness moduli. It is desirable to monitor changes in mechanical properties that occur during thermomechanical testing and to monitor the health of components whose geometry or position make them hard to reach with conventional ultrasonic probes. In such applications, it would be useful to apply AU without coupling directly to the test surface. For a number of years, lasers have been under investigation as remote ultrasonic input sources and ultrasound detectors. The use of an ultrasonic transducer coupled through an air gap has also been under study. So far at the NASA Lewis Research Center, we have been more successful in using lasers as ultrasonic sources than as output devices. On the other hand, we have been more successful in using an air-coupled piezoelectric transducer as an output device than as an input device. For this reason, we studied the laser in/air-coupled-transducer out combination-using a pulsed NdYAG laser as the ultrasonic source and an air-coupled-transducer as the detector. The present work is focused on one of the AU parameters of interest, the ultrasonic velocity of the antisymmetric plate-wave mode. This easily identified antisymmetric pulse can be used to determine shear and flexure modulus. It was chosen for this initial work because the pulse arrival times are likely to be the most precise. The following schematic illustrates our experimental arrangement for using laser in/air-transducer out on SiC/SiC composite tensile specimens. The NdYAG pulse was

  13. Thermally reliable clocked non-volatile spin wave logic device

    NASA Astrophysics Data System (ADS)

    Dutta, Sourav; Nikonov, Dmitri; Manipatruni, Sasikanth; Young, Ian; Naeemi, Azad

    The possibility of utilizing spin waves for information transmission and computation has been an area of active research due to the unique ability to manipulate the amplitude and phase of the spin waves for building complex logic circuits. Here, we present a comprehensive scheme for building a thermally reliable clocked non-volatile spin wave logic device (SWLD) by introducing a charge-to-spin converter that translates information from electrical domain to spin domain, exploiting the magneto-electric effect for spin wave transmission, detection and non-volatile memory, utilizing the phase of the spin wave as information token, ensuring phase-dependent deterministic switching of the magnetoelectric spin wave detector in the presence of thermal noise via compensation of demagnetization and a novel clocking scheme that ensures sequential transmission of information in a cascaded SWLD and non- reciprocity

  14. Propagation of thickness-twist waves in elastic plates with periodically varying thickness and phononic crystals.

    PubMed

    Zhu, Jun; Chen, Weiqiu; Yang, Jiashi

    2014-09-01

    We study the propagation of thickness-twist (TT) waves in a crystal plate of AT-cut quartz with periodically varying, piecewise constant thickness. The scalar differential equation by Tiersten and Smythe is employed. The problem is found to be mathematically equivalent to the motion of an electron in a periodic potential field governed by Schrodinger's equation. An analytical solution is obtained. Numerical results show that the eigenvalue (frequency) spectrum of the waves has a band structure with allowed and forbidden bands. Therefore, for TT waves, plates with periodically varying thickness can be considered as phononic crystals. The effects of various parameters on the frequency spectrum are examined. PMID:24924785

  15. Concurrent measurement of linear and circular birefringence using rotating-wave-plate Stokes polarimeter.

    PubMed

    Lin, Jing-Fung

    2008-09-01

    A novel technique is presented for obtaining concurrent measurements of the linear and circular birefringence properties of an optical sample by using a rotating-wave-plate Stokes polarimeter to extract the 2x2 central elements of the corresponding Mueller matrix via two linearly polarized probe lights. For a compound sample comprising a half-wave plate in series with a quarter-wave plate, the measured values of the principal angle and retardance of the quarter-wave plate are found to have average normalized errors of 0.56% and 1.16%, respectively, while the measured value of the rotation angle of the half-wave plate has an error of just 0.39%. When analyzing glucose solutions with concentrations ranging from 0-1.2 g/dl positioned in front of a half-wave plate, the average normalized errors in the principal axis angle and retardance measurements of the half-wave plate are 0.69% and 2.65%, respectively, while the error in the rotation angle measurements of the glucose solutions is 2.13%. The correlation coefficient between the measured rotation angle and the concentration of the glucose solution is determined to be 0.99985, while the standard deviation is just 0.0022 deg. Overall the experimental results demonstrate the ability of the proposed system to obtain highly accurate measurements of the linear and circular birefringence properties of an optical sample and to decouple the relationship between the principal axis angle and the rotation angle. PMID:18758522

  16. Experimental and Finite Element Study of Guided Ultrasonic Wave Scattering at Structural Features in a Plate

    NASA Astrophysics Data System (ADS)

    Fromme, P.

    2007-03-01

    Many technical structures contain large plate-like components, which can suffer from severe corrosion and the development of fatigue damage during their service life. Permanent monitoring of such structures can be achieved using guided ultrasonic waves, which can propagate over large distances and allow for efficient nondestructive testing of such structures with limited access. Damage often occurs at or close to structural features, e.g., stiffeners welded to the hull plates of a ship. The reflection of the Lamb wave A0 mode at a stiffener welded to a steel plate has been investigated experimentally in the laboratory. The wave propagation and scattering in the vicinity of the stiffener has been measured using a laser vibrometer and compared to Finite Element predictions; good agreement was found. The sensitivity for damage detection close to structural features has been investigated by studying the combined interaction of the guided ultrasonic wave with defects and structural features.

  17. Surface crack detection for Al plate using the surface acoustic waves and neural network identification

    NASA Astrophysics Data System (ADS)

    Guan, Jianfei; Shen, Zhonghua; Xu, Baiqiang; Lu, Jian; Ni, Xiaowu

    2005-01-01

    This paper utilized the Finite Element Method to investigate the transient scattering of Rayleigh wave by a surface crack in a plate. The incident wave models the guided waves generated by a pulsed line source laser irradiation on the top surface of the plate. The pulsed laser is assumed to be transient heat source, and the surface acoustic wave is calculated based on the thermoelastic theory. We have computed the different results of the Al plates with the varied depth surface-breaking crack, then attained the temporal characteristics of reflected waves and transmitted waves which are generated by the initial surface acoustic waves interacted with the surface breaking cracks with different depth. The artificial neural networks (ANN) are applied to establish the mapping relationship between the characteristic of the reflected waveform and the crack depth. The results of crack damage detection for Al plates show that the method developed in this paper can be applied to online structural damage detection and health monitoring for various industrial structures.

  18. Ultrasonic flexural-plate-wave sensor for detecting the concentration of settling E. coli W3110 cells.

    PubMed

    Cowan, S E; Black, J; Keasling, J D; White, R M

    1999-08-15

    The flexural-plate-wave (FPW) sensor, a type of ultrasonic sensor, can detect changes in E. coli W3110 concentration in solution as the cells settle onto the sensor under the influence of gravity. A model of the sensor's response to cell settling has been developed and is in good agreement with the experimental data. The FPW technique improves on conventional methods for determining cell concentrations; this technique allows for on-line data collection, is nondestructive, and requires only small sample volumes. The FPW sensor has applications as a device to measure cell concentrations and growth rates in industrial fermentors, biofilms, and wastewater treatment facilities. PMID:10464487

  19. Design of multi-stopband metamaterial plates for absorption of broadband elastic waves and vibration

    NASA Astrophysics Data System (ADS)

    Peng, Hao; Pai, P. F.

    2015-03-01

    This paper presents the modeling technique, working mechanism and design guidelines for acoustic multi-stopband metamaterial plates for broadband elastic wave absorption and vibration suppression. The metamaterial plate is designed by integrating two-DOF (degree of freedom) mass-spring subsystems with an isotropic plate to act as vibration absorbers. For an infinite metamaterial plate without damping, a unit cell is modeled using the extended Hamilton's principle, and two stopbands are obtained by dispersion analysis on the averaged three-DOF model. For a finite metamaterial plate with boundary conditions and damping, shear-deformable conforming plate elements are used to model the whole plate, and stopbands and their dynamic effects are investigated by frequency response analysis and transient analysis by direct numerical integration. Influences of absorbers' resonant frequencies and damping ratios, plate's boundary conditions and dimensions, and working plate-absorber modes are thoroughly investigated. Results show that the metamaterial plate is essentially based on the concept of conventional vibration absorbers. The local resonance of the two-DOF subsystems generates two stopbands, and the inertial forces generated by the resonant vibrations of absorbers straighten the plate and attenuate/stop wave propagation. Each stopband's bandwidth can be increased by increasing the absorber mass and/or reducing the isotropic plate's unit cell mass. Moreover, a high damping ratio for the secondary absorber can combine the two stopbands into one wide stopband for vibration suppression, and a low damping ratio for the primary absorber warrants absorbers' quick response to steady and/or transient excitations.

  20. Guided wave opto-acoustic device

    DOEpatents

    Jarecki, Jr., Robert L.; Rakich, Peter Thomas; Camacho, Ryan; Shin, Heedeuk; Cox, Jonathan Albert; Qiu, Wenjun; Wang, Zheng

    2016-02-23

    The various technologies presented herein relate to various hybrid phononic-photonic waveguide structures that can exhibit nonlinear behavior associated with traveling-wave forward stimulated Brillouin scattering (forward-SBS). The various structures can simultaneously guide photons and phonons in a suspended membrane. By utilizing a suspended membrane, a substrate pathway can be eliminated for loss of phonons that suppresses SBS in conventional silicon-on-insulator (SOI) waveguides. Consequently, forward-SBS nonlinear susceptibilities are achievable at about 3000 times greater than achievable with a conventional waveguide system. Owing to the strong phonon-photon coupling achievable with the various embodiments, potential application for the various embodiments presented herein cover a range of radiofrequency (RF) and photonic signal processing applications. Further, the various embodiments presented herein are applicable to applications operating over a wide bandwidth, e.g. 100 MHz to 50 GHz or more.

  1. Guided-wave acousto-optic devices for space applications

    NASA Astrophysics Data System (ADS)

    Ciminelli, C.; Peluso, F.; Armenise, M. N.

    2005-09-01

    Production of high- performance and low-cost new devices to be used in space applications is strongly required due to the remarkable development of innovative technologies in the last few years. Guided-wave optoelectronics technologies, including integrated optics, acousto-optics and electro-optics can provide some significant benefits to the space applications. In particular, they can overcome the intrinsic limits of the conventional technologies improving also the cost/performance figures, and enabling new services. Earth observation, telecommunications, radar surveillance and navigation control are the main space areas where guided-wave devices can contribute significantly. In this paper, after some general considerations on the potential of optoelectronics for space, on the use of acousto-optic guided-wave devices, a brief description of the acousto-optic interaction is given. Some functional devices reported in literature having significant potential impact in space applications are described with the aim of highlighting the main features of the acousto-optic technology. The performance limits of guided-wave devices for space applications are also shortly discussed.

  2. Numerical simulation and experimental validation of Lamb wave propagation behavior in composite plates

    NASA Astrophysics Data System (ADS)

    Kim, Sungwon; Uprety, Bibhisha; Mathews, V. John; Adams, Daniel O.

    2015-03-01

    Structural Health Monitoring (SHM) based on Acoustic Emission (AE) is dependent on both the sensors to detect an impact event as well as an algorithm to determine the impact location. The propagation of Lamb waves produced by an impact event in thin composite structures is affected by several unique aspects including material anisotropy, ply orientations, and geometric discontinuities within the structure. The development of accurate numerical models of Lamb wave propagation has important benefits towards the development of AE-based SHM systems for impact location estimation. Currently, many impact location algorithms utilize the time of arrival or velocities of Lamb waves. Therefore the numerical prediction of characteristic wave velocities is of great interest. Additionally, the propagation of the initial symmetric (S0) and asymmetric (A0) wave modes is important, as these wave modes are used for time of arrival estimation. In this investigation, finite element analyses were performed to investigate aspects of Lamb wave propagation in composite plates with active signal excitation. A comparative evaluation of two three-dimensional modeling approaches was performed, with emphasis placed on the propagation and velocity of both the S0 and A0 wave modes. Results from numerical simulations are compared to experimental results obtained from active AE testing. Of particular interest is the directional dependence of Lamb waves in quasi-isotropic carbon/epoxy composite plates. Numerical and experimental results suggest that although a quasi-isotropic composite plate may have the same effective elastic modulus in all in-plane directions, the Lamb wave velocity may have some directional dependence. Further numerical analyses were performed to investigate Lamb wave propagation associated with circular cutouts in composite plates.

  3. Surface acoustic wave coding for orthogonal frequency coded devices

    NASA Technical Reports Server (NTRS)

    Malocha, Donald (Inventor); Kozlovski, Nikolai (Inventor)

    2011-01-01

    Methods and systems for coding SAW OFC devices to mitigate code collisions in a wireless multi-tag system. Each device producing plural stepped frequencies as an OFC signal with a chip offset delay to increase code diversity. A method for assigning a different OCF to each device includes using a matrix based on the number of OFCs needed and the number chips per code, populating each matrix cell with OFC chip, and assigning the codes from the matrix to the devices. The asynchronous passive multi-tag system includes plural surface acoustic wave devices each producing a different OFC signal having the same number of chips and including a chip offset time delay, an algorithm for assigning OFCs to each device, and a transceiver to transmit an interrogation signal and receive OFC signals in response with minimal code collisions during transmission.

  4. Quasi-Rayleigh waves in butt-welded thick steel plate

    NASA Astrophysics Data System (ADS)

    Kamas, Tuncay; Giurgiutiu, Victor; Lin, Bin

    2015-03-01

    This paper discusses theoretical and experimental analyses of weld guided surface acoustic waves (SAW) through the guided wave propagation (GWP) analyses. The GWP analyses have been carried out by utilizing piezoelectric wafer active sensors (PWAS) for in situ structural inspection of a thick steel plate with butt weld as the weld bead is ground flush. Ultrasonic techniques are commonly used for validation of welded structures in many in-situ monitoring applications, e.g. in off-shore structures, in nuclear and pressure vessel industries and in a range of naval applications. PWAS is recently employed in such ultrasonic applications as a resonator as well as a transducer. Quasi-Rayleigh waves a.k.a. SAW can be generated in relatively thick isotropic elastic plate having the same phase velocity as Rayleigh waves whereas Rayleigh waves are a high frequency approximation of the first symmetric (S0) and anti-symmetric (A0) Lamb wave modes. As the frequency becomes very high the S0 and the A0 wave speeds coalesce, and both have the same value. This value is exactly the Rayleigh wave speed and becomes constant along the frequency i.e. Rayleigh waves are non-dispersive guided surface acoustic waves. The study is followed with weld-GWP tests through the pitch-catch method along the butt weld line. The tuning curves of quasi-Rayleigh wave are determined to show the tuning and trapping effect of the weld bead that has higher thickness than the adjacent plates on producing a dominant quasi-Rayleigh wave mode. The significant usage of the weld tuned and guided quasi-Rayleigh wave mode is essentially discussed for the applications in the in-situ inspection of relatively thick structures with butt weld such as naval offshore structures. The paper ends with summary, conclusions and suggestions for future work.

  5. Quasi-Rayleigh waves in butt-welded thick steel plate

    SciTech Connect

    Kamas, Tuncay E-mail: victorg@sc.edu Giurgiutiu, Victor E-mail: victorg@sc.edu Lin, Bin E-mail: victorg@sc.edu

    2015-03-31

    This paper discusses theoretical and experimental analyses of weld guided surface acoustic waves (SAW) through the guided wave propagation (GWP) analyses. The GWP analyses have been carried out by utilizing piezoelectric wafer active sensors (PWAS) for in situ structural inspection of a thick steel plate with butt weld as the weld bead is ground flush. Ultrasonic techniques are commonly used for validation of welded structures in many in-situ monitoring applications, e.g. in off-shore structures, in nuclear and pressure vessel industries and in a range of naval applications. PWAS is recently employed in such ultrasonic applications as a resonator as well as a transducer. Quasi-Rayleigh waves a.k.a. SAW can be generated in relatively thick isotropic elastic plate having the same phase velocity as Rayleigh waves whereas Rayleigh waves are a high frequency approximation of the first symmetric (S0) and anti-symmetric (A0) Lamb wave modes. As the frequency becomes very high the S0 and the A0 wave speeds coalesce, and both have the same value. This value is exactly the Rayleigh wave speed and becomes constant along the frequency i.e. Rayleigh waves are non-dispersive guided surface acoustic waves. The study is followed with weld-GWP tests through the pitch-catch method along the butt weld line. The tuning curves of quasi-Rayleigh wave are determined to show the tuning and trapping effect of the weld bead that has higher thickness than the adjacent plates on producing a dominant quasi-Rayleigh wave mode. The significant usage of the weld tuned and guided quasi-Rayleigh wave mode is essentially discussed for the applications in the in-situ inspection of relatively thick structures with butt weld such as naval offshore structures. The paper ends with summary, conclusions and suggestions for future work.

  6. Stress waves in an isotropic elastic plate excited by a circular transducer

    NASA Technical Reports Server (NTRS)

    Karagulle, H.; Williams, J. H., Jr.; Lee, S. S.

    1985-01-01

    Steady state harmonic stress waves in an isotropic elastic plate excited on one face by a circular transducer are analyzed theoretically. The transmitting transducer transforms an electrical voltage into a uniform normal stress at the top of the plate. To solve the boundary value problem, the radiation into a half-space is considered. The receiving transducer produces an electrical voltage proportional to the average spatially integrated normal stress over its face due to an incident wave. A numerical procedure is given to evaluate the frequency response at a receiving point due to a multiply reflected wave in the near field. Its stability and convergence are discussed. Parameterization plots which determine the particular wave whose frequency response has maximum magnitude compared with other multiple reflected waves are given for a range of values of dimensionless parameters. The effects of changes in the values of the parameters are discussed.

  7. Underwater Shock Wave Research Applied to Therapeutic Device Developments

    NASA Astrophysics Data System (ADS)

    Takayama, K.; Yamamoto, H.; Shimokawa, H.

    2013-07-01

    The chronological development of underwater shock wave research performed at the Shock Wave Research Center of the Institute of Fluid Science at the Tohoku University is presented. Firstly, the generation of planar underwater shock waves in shock tubes and their visualization by using the conventional shadowgraph and schlieren methods are described. Secondly, the generation of spherical underwater shock waves by exploding lead azide pellets weighing from several tens of micrograms to 100 mg, that were ignited by irradiating with a Q-switched laser beam, and their visualization by using double exposure holographic interferometry are presented. The initiation, propagation, reflection, focusing of underwater shock waves, and their interaction with various interfaces, in particular, with air bubbles, are visualized quantitatively. Based on such a fundamental underwater shock wave research, collaboration with the School of Medicine at the Tohoku University was started for developing a shock wave assisted therapeutic device, which was named an extracorporeal shock wave lithotripter (ESWL). Miniature shock waves created by irradiation with Q-switched HO:YAG laser beams are studied, as applied to damaged dysfunctional nerve cells in the myocardium in a precisely controlled manner, and are effectively used to design a catheter for treating arrhythmia.

  8. Integrated high-temperature piezoelectric plate acoustic wave transducers using mode conversion.

    PubMed

    Wu, Kuo-Ting; Kobayashi, Makiko; Jen, Cheng-Kuei

    2009-06-01

    Piezoelectric thick (>66 microm) films have been directly coated onto aluminum (Al) substrates using a sol-gel spray technique. With top electrode, these films serve as integrated ultrasonic transducers (IUT), which normally operate as thickness longitudinal wave transducers. When such IUT are located at the edges of the metallic plates, they can excite and detect symmetrical, antisymmetric and shear horizontal types of plate acoustic waves (PAW) using mode conversion methods. In 2 mm thick Al plates, 2 line defects of 1 mm width and 1 mm depth were clearly detected at temperatures up to 150 degrees C in pulse-echo mode. Results indicated that, for 2 mm thick aluminum plates, shear horizontal PAW were the best for the line defect detection. Also, the experimental results agree well with those obtained by a finite-difference-based method. PMID:19574129

  9. Characterization of guided wave propagation with piezoelectric wafer actuators in prestressed plates

    NASA Astrophysics Data System (ADS)

    Song, F.; Huang, G. L.

    2011-04-01

    Plate-like aerospace engineering structures are prone to mechanical/residual load during flight operation. The mechanical/residual prestresses can cause significant changes in guided-wave (GW) propagation for structural health monitoring (SHM) systems. The paper focuses on the characterization of the GW propagation using surfacebonded piezoelectric wafer actuators in metallic spacecraft plates under prestresses. First, a new in-plane analytical model with coupled piezo-elastodynamics is proposed to quantitatively capture the dynamic load transfer between a thin piezoelectric actuator bonded onto an isotropic plate that is subject to prestresses. Based on the developed model, effects of prestresses on the GW propagation generated by piezoelectric actuators are then analyzed and demonstrated. It can be found that the both time-of-flight and amplitude of wave responses can be affected by the presence of prestresses in plates. The results hopefully provide useful information for the real-time SHM.

  10. Controllable optical transparency using an acoustic standing-wave device

    NASA Astrophysics Data System (ADS)

    Moradi, Kamran; El-Zahab, Bilal

    2015-09-01

    In this paper, a suspended-particle device with controllable light transmittance was developed based on acoustic stimuli. Using a glass compartment and carbon particle suspension in an organic solvent, the device responded to acoustic stimulation by alignment of particles. The alignment of light-absorbing carbon particles afforded an increase in light transmittance as high as 84.5% and was controllable based on the control of the frequency and amplitude of the acoustic waves. The device also demonstrated alignment memory rendering it energy-efficient.

  11. An oxygen pressure sensor using surface acoustic wave devices

    NASA Technical Reports Server (NTRS)

    Leighty, Bradley D.; Upchurch, Billy T.; Oglesby, Donald M.

    1993-01-01

    Surface acoustic wave (SAW) piezoelectric devices are finding widespread applications in many arenas, particularly in the area of chemical sensing. We have developed an oxygen pressure sensor based on coating a SAW device with an oxygen binding agent which can be tailored to provide variable sensitivity. The coating is prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer which is then sprayed onto the surface of the SAW device. Experimental data shows the feasibility of tailoring sensors to measure the partial pressure of oxygen from 2.6 to 67 KPa (20 to 500 torr). Potential applications of this technology are discussed.

  12. Fabrication of Achromatic Infrared Wave Plate by Direct Imprinting Process on Chalcogenide Glass

    NASA Astrophysics Data System (ADS)

    Yamada, Itsunari; Yamashita, Naoto; Tani, Kunihiko; Einishi, Toshihiko; Saito, Mitsunori; Fukumi, Kouhei; Nishii, Junji

    2012-07-01

    An achromatic infrared wave plate was fabricated by forming a subwavelength grating on the chalcogenide glass using direct imprint lithography. A low toxic chalcogenide glass (Sb-Ge-Sn-S system) substrate was imprinted with a grating of 1.63-µm depth, a fill factor of 0.7, and 3-µm period using glassy carbon as a mold at 253 °C and 3.8 MPa. Phase retardation of the element reached around 30° at 8.5-10.5 µm wavelengths, and the transmittance exceeded that of a flat substrate over 8 µm wavelength. Fabrication of the mid-infrared wave plate is thereby less expensive than that of conventional crystalline wave plates.

  13. A Cryogenic Half-Wave Plate Module to Measure Polarization at Multiple FIR Passbands

    NASA Technical Reports Server (NTRS)

    Rennick, Timothy S.; Vaillancourt, John E.; Hildebrand, Roger H.; Heimsath, Stephen J.

    2002-01-01

    One of the key components in a far-infrared polarimeter that is being designed at the University of Chicago is a locally-powered half-wave plate module. This compact, lightweight, and reliable module will operate at cryogenic temperatures, rotating a half-wave plate about its axis within the optical path. By doing so, polarization measurements can be made. Further, by utilizing multiple half-wave plate modules within the polarimeter, multiple wavelengths or passbands can be studied. In this paper, we describe the design and performance of a relatively inexpensive prototype module that was assembled and tested successfully, outline the difficulties that had to be overcome, and recommend improvements to future modules. This effort now lays some of the groundwork for a next-generation polarimeter for far-infrared astronomy.

  14. Interface-guided mode of Lamb waves in a two-dimensional phononic crystal plate

    NASA Astrophysics Data System (ADS)

    Huang, Ping-Ping; Yao, Yuan-Wei; Wu, Fu-Gen; Zhang, Xin; Li, Jing; Hu, Ai-Zhen

    2015-05-01

    We investigate the interface-guided mode of Lamb waves in a phononic crystal heterostructures plate, which is composed of two different semi-infinite phononic crystal (PC) plates. The interface-guided modes of the Lamb wave can be obtained by the lateral lattice slipping or by the interface longitudinal gliding. Significantly, it is observed that the condition to generate the interface-guided modes of the Lamb wave is more demanding than that of the studied fluid-fluid system. The interface-guided modes are strongly affected not only by the relative movement of the two semi-infinite PCs but also by the thickness of the PC plate. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374068 and 11374066), the Science & Technology Star of Zhujiang Foundation of Guangzhou, China (Grant No. 2011J2200013), and the Natural Science Foundation of Guangdong, China (Grant No. S2012020010885).

  15. Wave propagation in a multilayered laminated cross-ply composite plate

    NASA Technical Reports Server (NTRS)

    Shah, A. H.; Datta, S. K.; Karunasena, W.

    1991-01-01

    Dispersion of guided waves in a cross-ply laminated plate has been studied here using a stiffness method and an exact method. It is shown that the number of laminae strongly influences the dispersion behavior. Further, it is found that when the number of laminae is sufficiently large, then the dispersion behavior can be predicted by treating the plate as homogeneous with six stiffness constants obtained by using an effective modulus method.

  16. SIMPLE DEVICE TO DELIVER BEADS TO 96-WELL PLATES FOR RAPID RESUSPENSION OF CELLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic sequencing involves sequence determination of inserts from a large numbers of plasmids of a genomic library. In high throughput DNA sequencing projects, cultures are grown in a 96-deep well plate format, centrifuged, and resuspended. Resuspension of cells was aided by use of a simple devic...

  17. Planar shear horizontal guided wave inspection of a plate using piezoelectric fiber transducers

    NASA Astrophysics Data System (ADS)

    Soorgee, M. H.; Lissenden, C. J.; Rose, J. L.; Yousefi-Koma, A.

    2013-01-01

    Fundamental Shear Horizontal (SH0) guided waves have been simulated using finite element software in order to locate a crack in a plate structure. Long but narrow piezoelectric fiber composite strips have been considered as transducers to excite and receive SH guided waves. A segmented transducer, which enables piecewise sensing, has been shown by finite element analysis to be capable of locating a tiny through-thickness crack. The main benefits are that SH waves could be used to inspect fluid loaded structures and that it is possible to detect a crack oriented parallel to the wave vector.

  18. Propagation of flexural waves in inhomogeneous plates exhibiting hysteretic nonlinearity: Nonlinear acoustic black holes.

    PubMed

    Gusev, Vitalyi E; Ni, Chenyin; Lomonosov, Alexey; Shen, Zhonghua

    2015-08-01

    Theory accounting for the influence of hysteretic nonlinearity of micro-inhomogeneous material on flexural wave in the plates of continuously varying thickness is developed. For the wedges with thickness increasing as a power law of distance from its edge strong modifications of the wave dynamics with propagation distance are predicted. It is found that nonlinear absorption progressively disappearing with diminishing wave amplitude leads to complete attenuation of acoustic waves in most of the wedges exhibiting black hole phenomenon. It is also demonstrated that black holes exist beyond the geometrical acoustic approximation. Applications include nondestructive evaluation of micro-inhomogeneous materials and vibrations damping. PMID:25937493

  19. Identification of a separation wave number between weak and strong turbulence spectra for a vibrating plate.

    PubMed

    Yokoyama, Naoto; Takaoka, Masanori

    2014-01-01

    A weakly nonlinear spectrum and a strongly nonlinear spectrum coexist in a statistically steady state of elastic wave turbulence. The analytical representation of the nonlinear frequency is obtained by evaluating the extended self-nonlinear interactions. The critical wave numbers at which the nonlinear frequencies are comparable with the linear frequencies agree with the separation wave numbers between the weak and strong turbulence spectra. We also confirm the validity of our analytical representation of the separation wave numbers through comparison with the results of direct numerical simulations by changing the material parameters of a vibrating plate. PMID:24580299

  20. Phase Velocity Method for Guided Wave Measurements in Composite Plates

    NASA Astrophysics Data System (ADS)

    Moreno, E.; Galarza, N.; Rubio, B.; Otero, J. A.

    Carbon Fiber Reinforced Polymer is a well-recognized material for aeronautic applications. Its plane structure has been widely used where anisotropic characteristics should be evaluated with flaw detection. A phase velocity method of ultrasonic guided waves based on a pitch-catch configuration is presented for this purpose. Both shear vertical (SV) and shear horizontal (SH) have been studied. For SV (Lamb waves) the measurements were done at different frequencies in order to evaluate the geometrical dispersion and elastic constants. The results for SV are discussed with an orthotropic elastic model. Finally experiments with lamination flaws are presented.

  1. The effects of air gap reflections during air-coupled leaky Lamb wave inspection of thin plates.

    PubMed

    Fan, Zichuan; Jiang, Wentao; Cai, Maolin; Wright, William M D

    2016-02-01

    Air-coupled ultrasonic inspection using leaky Lamb waves offers attractive possibilities for non-contact testing of plate materials and structures. A common method uses an air-coupled pitch-catch configuration, which comprises a transmitter and a receiver positioned at oblique angles to a thin plate. It is well known that the angle of incidence of the ultrasonic bulk wave in the air can be used to preferentially generate specific Lamb wave modes in the plate in a non-contact manner, depending on the plate dimensions and material properties. Multiple reflections of the ultrasonic waves in the air gap between the transmitter and the plate can produce additional delayed waves entering the plate at angles of incidence that are different to those of the original bulk wave source. Similarly, multiple reflections of the leaky Lamb waves in the air gap between the plate and an inclined receiver may then have different angles of incidence and propagation delays when arriving at the receiver and hence the signal analysis may become complex, potentially leading to confusion in the identification of the wave modes. To obtain a better understanding of the generation, propagation and detection of leaky Lamb waves and the effects of reflected waves within the air gaps, a multiphysics model using finite element methods was established. This model facilitated the visualisation of the propagation of the reflected waves between the transducers and the plate, the subsequent generation of additional Lamb wave signals within the plate itself, their leakage into the adjacent air, and the reflections of the leaky waves in the air gap between the plate and receiver. Multiple simulations were performed to evaluate the propagation and reflection of signals produced at different transducer incidence angles. Experimental measurements in air were in good agreement with simulation, which verified that the multiphysics model can provide a convenient and accurate way to interpret the signals in

  2. Surface wave phase velocities from 2-D surface wave tomography studies in the Anatolian plate

    NASA Astrophysics Data System (ADS)

    Arif Kutlu, Yusuf; Erduran, Murat; Çakır, Özcan; Vinnik, Lev; Kosarev, Grigoriy; Oreshin, Sergey

    2014-05-01

    We study the Rayleigh and Love surface wave fundamental mode propagation beneath the Anatolian plate. To examine the inter-station phase velocities a two-station method is used along with the Multiple Filter Technique (MFT) in the Computer Programs in Seismology (Herrmann and Ammon, 2004). The near-station waveform is deconvolved from the far-station waveform removing the propagation effects between the source and the station. This method requires that the near and far stations are aligned with the epicentre on a great circle path. The azimuthal difference of the earthquake to the two-stations and the azimuthal difference between the earthquake and the station are restricted to be smaller than 5o. We selected 3378 teleseismic events (Mw >= 5.7) recorded by 394 broadband local stations with high signal-to-noise ratio within the years 1999-2013. Corrected for the instrument response suitable seismogram pairs are analyzed with the two-station method yielding a collection of phase velocity curves in various period ranges (mainly in the range 25-185 sec). Diffraction from lateral heterogeneities, multipathing, interference of Rayleigh and Love waves can alter the dispersion measurements. In order to obtain quality measurements, we select only smooth portions of the phase velocity curves, remove outliers and average over many measurements. We discard these average phase velocity curves suspected of suffering from phase wrapping errors by comparing them with a reference Earth model (IASP91 by Kennett and Engdahl, 1991). The outlined analysis procedure yields 3035 Rayleigh and 1637 Love individual phase velocity curves. To obtain Rayleigh and Love wave travel times for a given region we performed 2-D tomographic inversion for which the Fast Marching Surface Tomography (FMST) code developed by N. Rawlinson at the Australian National University was utilized. This software package is based on the multistage fast marching method by Rawlinson and Sambridge (2004a, 2004b). The

  3. Effects of adhesive, host plate, transducer and excitation parameters on time reversibility of ultrasonic Lamb waves.

    PubMed

    Agrahari, J K; Kapuria, S

    2016-08-01

    To develop an effective baseline-free damage detection strategy using the time-reversal process (TRP) of Lamb waves in thin walled structures, it is essential to develop a good understanding of the parameters that affect the amplitude dispersion and consequently the time reversibility of the Lamb wave signal. In this paper, the effects of adhesive layer between the transducers and the host plate, the tone burst count of the excitation signal, the plate thickness, and the piezoelectric transducer thickness on the time reversibility of Lamb waves in metallic plates are studied using experiments and finite element simulations. The effect of adhesive layer on the forward propagation response and frequency tuning has been also studied. The results show that contrary to the general expectation, the quality of the reconstruction of the input signal after the TRP may increase with the increase in the adhesive layer thickness at certain frequency ranges. Similarly, an increase in the tone burst count resulting in a narrowband signal does not necessarily enhance the time reversibility at all frequencies, contrary to what has been reported earlier. For a given plate thickness, a thinner transducer yields a better reconstruction, but for a given transducer thickness, the similarity of the reconstructed signal may not be always higher for a thicker plate. It is important to study these effects to achieve the best quality of reconstruction in undamaged plates, for effective damage detection. PMID:27176646

  4. Surface Acoustic Wave Devices for Harsh Environment Wireless Sensing

    PubMed Central

    Greve, David W.; Chin, Tao-Lun; Zheng, Peng; Ohodnicki, Paul; Baltrus, John; Oppenheim, Irving J.

    2013-01-01

    Langasite surface acoustic wave devices can be used to implement harsh-environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensor with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity. PMID:23708273

  5. Surface acoustic wave devices for harsh environment wireless sensing

    SciTech Connect

    Greve, David W.; Chin, Tao -Lun; Zheng, Peng; Ohodnicki, Paul; Baltrus, John; Oppenheim, Irving J.

    2013-05-24

    In this study, langasite surface acoustic wave devices can be used to implement harsh environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensor with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity.

  6. Surface acoustic wave devices for harsh environment wireless sensing

    DOE PAGESBeta

    Greve, David W.; Chin, Tao -Lun; Zheng, Peng; Ohodnicki, Paul; Baltrus, John; Oppenheim, Irving J.

    2013-05-24

    In this study, langasite surface acoustic wave devices can be used to implement harsh environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensormore » with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity.« less

  7. Guided-wave multichannel acousto-optic devices based on collinear wave propagation

    NASA Astrophysics Data System (ADS)

    Proklov, Valery V.; Korablev, E. M.

    1992-11-01

    Recently, there appeared in acousto-optics (AO) a tendency to develop the optical information processing technology based on AO spatial light modulators, which are very promising in relation to very fast analog signal processing and algebraic data processing with digital accuracy. The best widely distinguished way to win many other marketing counterparts lies in the performance of AO interactions in guided wave structures with highly developed planar technology. In contrast to numerous developments devoted to guided wave AO devices the collinear ones facilitate multichannel or 2-D-devices to increase their throughput and processing gain. We discuss general backgrounds of the guided wave AO devices, especially in the case of the collinear wave propagations. Some applications similar to the multichannel collinear AO Bragg cell on LiNbO for 2-D-beam scanning, AO spectrum analysis, 2-D- Fourier signal processing, frequency multiplexing/demultiplexing, and digital vector-matrix multiplication are presented.

  8. Simultaneous measurement of refractive index and thickness of birefringent wave plates.

    PubMed

    Yeh, Yen-Liang

    2008-04-01

    A nondestructive measurement system based on a position sensing detector (PSD) and a laser interferometer for determining the thickness and refractive indices of birefringent optical wave plates has been developed. Unlike previous methods presented in the literature, the proposed metrology system allows the refractive index and thickness properties of the optical plate to be measured simultaneously. The experimental results obtained for the e-light and o-light refractive indices of a commercially available birefringent optical wave plate with refractive indices of n(o)=1.542972 and n(e)=1.552033 are found to be accurate to within 0.004132 and 0.000229, respectively. Furthermore, the experimentally derived value of the wave plate thickness deviates by no more than 0.9 microm from the analytically derived value of 453.95 microm. Overall, the experimental results confirm that the proposed metrology system provides a simple yet highly accurate means of obtaining simultaneous measurements of the refractive indices and thickness of birefringent optical wave plates. PMID:18382573

  9. Metallic nanofilm half-wave plate based on magnetic plasmon resonance.

    PubMed

    Zhu, Z H; Guo, C C; Liu, K; Ye, W M; Yuan, X D; Yang, B; Ma, T

    2012-02-15

    We proposed and fabricated a nanofilm half-wave plate consisting of periodic arrays of orthogonally coupled slit-hole resonator structures in Au film. Experimental results reveal that 95.2% of energy of the incident linearly polarized light is converted to the perpendicular polarization direction after reflection from the nanostructure. The wave plate is single layer with only 180 nm thickness, which is much thinner than the operation wavelength. Our method can be expanded to other resonant structures or transmitted case. PMID:22344152

  10. Analytic approximation to nonlinear hydroelastic waves traveling in a thin elastic plate floating on a fluid

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Lu, DongQiang

    2013-11-01

    An analytic approximation method known as the homotopy analysis method (HAM) is applied to study the nonlinear hydroelastic progressive waves traveling in an infinite elastic plate such as an ice sheet or a very large floating structure (VLFS) on the surface of deep water. A convergent analytical series solution for the plate deflection is derived by choosing the optimal convergencecontrol parameter. Based on the analytical solution the effects of different parameters are considered. We find that the plate deflection becomes lower with an increasing Young's modulus of the plate. The displacement tends to be flattened at the crest and be sharpened at the trough as the thickness of the plate increases, and the larger density of the plate also causes analogous results. Furthermore, it is shown that the hydroelastic response of the plate is greatly affected by the high-amplitude incident wave. The results obtained can help enrich our understanding of the nonlinear hydroelastic response of an ice sheet or a VLFS on the water surface.

  11. Acoustic and Cavitation Fields of Shock Wave Therapy Devices

    NASA Astrophysics Data System (ADS)

    Chitnis, Parag V.; Cleveland, Robin O.

    2006-05-01

    Extracorporeal shock wave therapy (ESWT) is considered a viable treatment modality for orthopedic ailments. Despite increasing clinical use, the mechanisms by which ESWT devices generate a therapeutic effect are not yet understood. The mechanistic differences in various devices and their efficacies might be dependent on their acoustic and cavitation outputs. We report acoustic and cavitation measurements of a number of different shock wave therapy devices. Two devices were electrohydraulic: one had a large reflector (HMT Ossatron) and the other was a hand-held source (HMT Evotron); the other device was a pneumatically driven device (EMS Swiss DolorClast Vet). Acoustic measurements were made using a fiber-optic probe hydrophone and a PVDF hydrophone. A dual passive cavitation detection system was used to monitor cavitation activity. Qualitative differences between these devices were also highlighted using a high-speed camera. We found that the Ossatron generated focused shock waves with a peak positive pressure around 40 MPa. The Evotron produced peak positive pressure around 20 MPa, however, its acoustic output appeared to be independent of the power setting of the device. The peak positive pressure from the DolorClast was about 5 MPa without a clear shock front. The DolorClast did not generate a focused acoustic field. Shadowgraph images show that the wave propagating from the DolorClast is planar and not focused in the vicinity of the hand-piece. All three devices produced measurable cavitation with a characteristic time (cavitation inception to bubble collapse) that varied between 95 and 209 μs for the Ossatron, between 59 and 283 μs for the Evotron, and between 195 and 431 μs for the DolorClast. The high-speed camera images show that the cavitation activity for the DolorClast is primarily restricted to the contact surface of the hand-piece. These data indicate that the devices studied here vary in acoustic and cavitation output, which may imply that the

  12. Micro and nano devices in passive millimetre wave imaging systems

    NASA Astrophysics Data System (ADS)

    Appleby, R.

    2013-06-01

    The impact of micro and nano technology on millimetre wave imaging from the post war years to the present day is reviewed. In the 1950s whisker contacted diodes in mixers and vacuum tubes were used to realise both radiometers and radars but required considerable skill to realise the performance needed. Development of planar semiconductor devices such as Gunn and Schottky diodes revolutionised mixer performance and provided considerable improvement. The next major breakthrough was high frequency transistors based on gallium arsenide which were initially used at intermediate frequencies but later after further development at millimeter wave frequencies. More recently Monolithic Microwave Integrated circuits(MMICs) offer exceptional performance and the opportunity for innovative design in passive imaging systems. In the future the use of micro and nano technology will continue to drive system performance and we can expect to see integration of antennae, millimetre wave and sub millimetre wave circuits and signal processing.

  13. Detection and quantification of delamination in laminated plates from the phase of appropriate guided wave modes

    NASA Astrophysics Data System (ADS)

    Amjad, Umar; Yadav, Susheel Kumar; Kundu, Tribikram

    2016-01-01

    Applicability of specific Lamb wave modes for delamination detection and quantification in a laminated aluminum plate is investigated. The Lamb modes were generated in the plate using a broadband piezoelectric transducer structured with a rigid electrode. Appropriate excitation frequencies and modes for inspection were selected from theoretical dispersion curves. Sensitivity of antisymmetric and symmetric modes for delamination detection and quantification has been investigated using the Hilbert-Huang transform. The mode conversion phenomenon of Lamb waves during progressive delamination is observed. The antisymmetric mode is found to be more reliable for delamination detection and quantification. In this investigation, the changes in the phase of guided Lamb wave modes are related to the degree of delamination, unlike other studies, where mostly the attenuation of the propagating waves has been related to the extent of the internal damage, such as cracks and corrosions. Appropriate features for delamination detection and quantification are extracted from the experimental data.

  14. Guided wave simulation in plates using split-domain FEM approach

    NASA Astrophysics Data System (ADS)

    Kumar, S. R. Sandeep; K, Sri Harsha Reddy; Balasubramaniam, Krishnan; N, Ganesan

    2015-03-01

    This paper reports the quantitative comparison of A-scans obtained from the simulations of fundamental guided wave modes in a plate by split-domain Finite Element Modeling approach with the more conventional single domain FEM method. Split Approach is the computationally efficient technique that has been developed for simulating long-range guided wave propagation in complex structures with limited computation resources. This Split Approach method involves sub-domain FE modeling which involves the splitting the larger FE model into smaller sub-domain models, solving them individually and finally transferring the wave from one sub-domain to the next sub-domain. In this paper, simulations of guided wave propagation were carried out in a plate using ABAQUS® Explicit FE package. The results thus obtained by split approach were compared with conventional full model approach.

  15. SU-8 Guiding Layer for Love Wave Devices

    PubMed Central

    Roach, Paul; Atherton, Shaun; Doy, Nicola; McHale, Glen; Newton, Michael I.

    2007-01-01

    SU-8 is a technologically important photoresist used extensively for the fabrication of microfluidics and MEMS, allowing high aspect ratio structures to be produced. In this work we report the use of SU-8 as a Love wave sensor guiding layer which allows the possibility of integrating a guiding layer with flow cell during fabrication. Devices were fabricated on ST-cut quartz substrates with a single-single finger design such that a surface skimming bulk wave (SSBW) at 97.4 MHz was excited. SU-8 polymer layers were successively built up by spin coating and spectra recorded at each stage; showing a frequency decrease with increasing guiding layer thickness. The insertion loss and frequency dependence as a function of guiding layer thickness was investigated over the first Love wave mode. Mass loading sensitivity of the resultant Love wave devices was investigated by deposition of multiple gold layers. Liquid sensing using these devices was also demonstrated; water-glycerol mixtures were used to demonstrate sensing of density-viscosity and the physical adsorption and removal of protein was also assessed using albumin and fibrinogen as model proteins.

  16. Inverse mirror plasma experimental device (IMPED) - a magnetized linear plasma device for wave studies

    NASA Astrophysics Data System (ADS)

    Bose, Sayak; Chattopadhyay, P. K.; Ghosh, J.; Sengupta, S.; Saxena, Y. C.; Pal, R.

    2015-04-01

    In a quasineutral plasma, electrons undergo collective oscillations, known as plasma oscillations, when perturbed locally. The oscillations propagate due to finite temperature effects. However, the wave can lose the phase coherence between constituting oscillators in an inhomogeneous plasma (phase mixing) because of the dependence of plasma oscillation frequency on plasma density. The longitudinal electric field associated with the wave may be used to accelerate electrons to high energies by exciting large amplitude wave. However when the maximum amplitude of the wave is reached that plasma can sustain, the wave breaks. The phenomena of wave breaking and phase mixing have applications in plasma heating and particle acceleration. For detailed experimental investigation of these phenomena a new device, inverse mirror plasma experimental device (IMPED), has been designed and fabricated. The detailed considerations taken before designing the device, so that different aspects of these phenomena can be studied in a controlled manner, are described. Specifications of different components of the IMPED machine and their flexibility aspects in upgrading, if necessary, are discussed. Initial results meeting the prerequisite condition of the plasma for such study, such as a quiescent, collisionless and uniform plasma, are presented. The machine produces δnnoise/n <= 1%, Luniform ~ 120 cm at argon filling pressure of ~10-4 mbar and axial magnetic field of B = 1090 G.

  17. Excitation and detection of shear horizontal waves with electromagnetic acoustic transducers for nondestructive testing of plates

    NASA Astrophysics Data System (ADS)

    Ma, Qingzeng; Jiao, Jingpin; Hu, Ping; Zhong, Xi; Wu, Bin; He, Cunfu

    2014-03-01

    The fundamental shear horizontal(SH0) wave has several unique features that are attractive for long-range nondestructive testing(NDT). By a careful design of the geometric configuration, electromagnetic acoustic transducers(EMATs) have the capability to generate a wide range of guided wave modes, such as Lamb waves and shear-horizontal(SH) waves in plates. However, the performance of EMATs is influenced by their parameters. To evaluate the performance of periodic permanent magnet(PPM) EMATs, a distributed-line-source model is developed to calculate the angular acoustic field cross-section in the far-field. Numerical analysis is conducted to investigate the performance of such EMATs with different geometric parameters, such as period and number of magnet arrays, and inner and outer coil widths. Such parameters have a great influence on the directivity of the generated SH0 waves that arises mainly in the amplitude and width of both main and side lobes. According to the numerical analysis, these parameters are optimized to obtain better directivity. Optimized PPM EMATs are designed and used for NDT of strip plates. Experimental results show that the lateral boundary of the strip plate has no perceivable influence on SH0-wave propagation, thus validating their used in NDT. The proposed model predicts the radiation pattern of PPM EMATs, and can be used for their parameter optimization.

  18. Time-domain flexural wave intensity estimation in orthotropic Kirchhoff plates

    NASA Astrophysics Data System (ADS)

    Halkyard, C. R.; Masson, P.

    2016-04-01

    In this paper, a method for estimating the vibrational energy flow associated with the flexural vibration of an orthotropic Kirchhoff plate, in the time-domain, is presented. The approach is based on the plane propagating wave solution to the equation of motion, and uses a Fourier series approximation of the wave field. The various linear and angular velocities, shear forces and moments that are needed to calculate the energy flow are estimated by digitally filtering and combining the outputs of an array of sensors. A similar approach is used to reconstruct the local wave field to provide an estimate of the wave propagation direction. The theoretical basis of the approach is described, and design considerations for the sensor array and for the filters used for parameter estimation are discussed. Simulations are presented for plane flexural waves and for transient transverse point force excitation of a range of orthotropic plates having different material properties, using a simulated array of velocity sensors. These simulations show that the method can provide accurate estimates of the magnitude and direction of the vibrational energy flow, as well as of the propagation direction of a single wave train or 'burst', provided that the sensor array is sufficiently distant from the excitation point. This is consistent with preliminary experimental measurements, also presented in this paper, performed on a composite orthotropic plate.

  19. Acousto-ultrasonic input-output characterization of unidirectional fiber composite plate by P waves

    NASA Technical Reports Server (NTRS)

    Liao, Peter; Williams, James H., Jr.

    1988-01-01

    The single reflection problem for an incident P wave at a stress free plane boundary in a semi-infinite transversely isotropic medium whose isotropic plane is parallel to the plane boundary is analyzed. It is found that an obliquely incident P wave results in a reflected P wave and a reflected SV wave. The delay time for propagation between the transmitting and the receiving transducers is computed as if the P waves were propagating in an infinite half space. The displacements associated with the P waves in the plate and which may be detected by a noncontact NDE receiving transducer are approximated by an asymptotic solution for an infinite transversely isotropic medium subjected to a harmonic point load.

  20. Seismic anisotropy and shear wave splitting associated with mantle plume-plate interaction

    NASA Astrophysics Data System (ADS)

    Ito, Garrett; Dunn, Robert; Li, Aibing; Wolfe, Cecily J.; Gallego, Alejandro; Fu, Yuanyuan

    2014-06-01

    Geodynamic simulations of the development of lattice preferred orientation in the flowing mantle are used to characterize the seismic anisotropy and shear wave splitting (SWS) patterns expected for the interaction of mantle plumes and lithospheric plates. Models predict that in the deeper part of the plume layer ponding beneath the plate, olivine a axes tend to align perpendicular to the radially directed plume flow, forming a circular pattern reflecting circumferential stretching. In the shallower part of the plume layer, plate shear is more important and the a axes tend toward the direction of plate motion. Predicted SWS over intraplate plumes reflects the asymmetric influence of plate shear with fast S wave polarization directions forming a pattern of nested U shapes that open in the direction opposing both plate motion and the parabolic shape often used to describe the flow lines of the plume. Predictions explain SWS observations around the Eifel hot spot with an eastward, not westward, moving Eurasian plate, consistent with global studies that require relatively slow net (westward) rotation of all of the plates. SWS at the Hawaiian hot spot can be explained by the effects of plume-plate interaction, combined with fossil anisotropy in the Pacific lithosphere. In ridge-centered plume models, the fast polarization directions angle diagonally toward the ridge axis when the plume is simulated as having low viscosity beneath the thermal lithosphere. Such a model better explains SWS observations in northeast Iceland than a model that incorporates a high-viscosity layer due to dehydration of the shallow-most upper mantle.

  1. Direct Evaluation of the Figure of Merit of Thermoelectric Devices by Guarded Hot Plate Method

    NASA Astrophysics Data System (ADS)

    Kwon, Su Yong; Kim, Yong-Gyoo; Lee, Sanghyun; Kim, Jong Chul

    2013-03-01

    An apparatus for the evaluation of the figure of merit (ZT) of thermoelectric devices has been developed and ZT values have been estimated for a thermoelectric device. The most challenging problem in ZT value evaluation in this apparatus was measuring the thermal conductivity of the devices precisely. We have solved the problem by introducing a primary thermal conductivity measurement technique, a guarded hot plate method, which makes it possible to obtain directly and simultaneously four physical parameters related to the ZT, namely the thermal conductivity, electrical conductivity, Seebeck coefficient, and absolute temperature. The ZT evaluation was performed by a single scan of the temperature difference between the top and bottom surfaces of the device. We also addressed the thermoelectric properties and the power generation efficiency of a commercial thermoelectric device. The evaluation uncertainty of the ZT value was assessed to secure reliability of the apparatus and was found to be 3.59%.

  2. A computer simulation study of imaging flexural inhomogeneities using plate-wave diffraction tomography.

    PubMed

    Rohde, A H; Veidt, M; Rose, L R F; Homer, J

    2008-03-01

    This paper investigates the feasibility of plate-wave diffraction tomography for the reconstruction of flexural inhomogeneities in plates using the results of computer simulation studies. The numerical implementation of the fundamental reconstruction algorithm, which has recently been developed by Wang and Rose [C.H. Wang, L.R.F. Rose, Plate-wave diffraction tomography for structural health monitoring, Rev. Quant. Nondestr. Eval. 22 (2003) 1615-1622] is investigated addressing the essential effects of applying the discrete form of the Fourier diffraction theorem for solving the inverse problem as discussed by Kak and Slaney [A.C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging, IEEE Press, New York, 1988] for the acoustic case, viz. diffraction limited sensitivity, influence of weak scatterer assumption, damage location and scatter field data processing in time and Fourier space as well as experimental limitations such as finite receiver length and limited views. The feasibility of the imaging technique is investigated for cylindrical inhomogeneities of various severities and relative position within the interrogation space and a normal incident interrogation configuration. The results show that plate-wave diffraction tomography enables the quantitative reconstruction of location, size and severity of plate damage with excellent sensitivity and offers the potential for detecting corrosion thinning, disbonds and delamination damage in structural integrity management applications. PMID:18022207

  3. Piezoelectric transducer embedded in a composite plate: Application to Lamb wave generation

    SciTech Connect

    Moulin, E.; Assaad, J.; Delebarre, C.; Kaczmarek, H.; Balageas, D.

    1997-09-01

    The aim of this paper is to show that Lamb waves may be effectively generated using piezoelectric transducers embedded inside a composite plate, for nondestructive evaluation and health monitoring applications. A cylindrical transducer embedded in a composite host plate is considered. The electrical impedance of the transducer alone in vacuum and then of the embedded transducer, which allows the identification of the resonance modes, have been obtained by the finite element method (FEM). Moreover, the displacement fields in the plate, which allow the identification of the types of Lamb waves, have been computed at the resonance frequencies. Comparison between the FEM results and the Lamb wave dispersion curves of the host material are in good agreement. Experimental results (electrical impedance, frequency response, and phase velocities) concerning a composite plate specimen containing the same piezoelectric transducer inside it are shown. A good agreement is generally obtained between numerical and experimental results. In addition, it has been shown that the radial mode of the embedded transducer, which has a high coupling coefficient (around 50{percent}), can be used to generate S{sub 0} Lamb waves. {copyright} {ital 1997 American Institute of Physics.}

  4. Guided ultrasonic wave testing of an immersed plate with hidden defects

    NASA Astrophysics Data System (ADS)

    Bagheri, Abdollah; Rizzo, Piervincenzo

    2016-01-01

    This paper presents the results of an experimental study in which guided ultrasonic waves are used for the contactless nondestructive testing of a plate immersed in water. In the experiment, narrowband leaky Lamb waves are generated using a focused transducer and are detected with an array of five immersion sensors arranged in a semicircle. The ultrasonic signals are processed to extract a few damage-sensitive features from the time and frequency domains. These features are then fed to an artificial neural network to identify the presence of hidden defects, i.e., defects devised on the surface of the plate not facing the probing system. We find that the noncontact inspection system and the signal processing technique enable the classification of the plate health with a success rate >75%.

  5. On the processing of leaky guided waves propagating in immersed plates

    NASA Astrophysics Data System (ADS)

    Bagheri, Abdollah; Rizzo, Piervincenzo; Pistone, Elisabetta

    2014-03-01

    We present a non-destructive inspection method for the structural health monitoring of underwater structures. A laser operating at 532 nm is used to excite leaky guided waves on an aluminum plate immersed in water. The plate has a few artificial defects namely vertical notch, horizontal notch, corrosion, and small hole. An array of five immersion transducers arranged in half-circle is used to detect the propagating waves. A signal processing technique is implemented to assess the presence of damage; the method is based on continuous wavelet transform to extract a few damagesensitive features fed to an artificial neural network for damage classification. The experimental results show that the proposed system can be employed for the inspection of underwater plates.

  6. Experimental study of the acoustoelastic Lamb wave in thin plates

    NASA Astrophysics Data System (ADS)

    Pei, Ning; Bond, Leonard J.

    2016-02-01

    Many factors can cause residual stresses in industry, like rolling, welding and coating. Residual stresses can have both benefits and shortcomings on components, so it is important to find the residual stresses out and enhance its benefits part and get rid of its harmful part. There are many methods for residual stresses detection and ultrasonic method turns out to be a good one for it is nondestructive, relative cheap and portable. The critically refracted longitudinal (LCR) wave is widely used for it is regarded most sensitive to stress and less sensitive to texture which can influence detection results. Ultrasonic methods for residual stresses detection are based on time of flight (TOF) measurement, but because the measurement should reach nanosecond to show stress change, there are many other factors that can influence TOF, like temperature, texture of the components and even the thickness of the couplant. So increasing the TOF's sensitivity to stress is very important. In this paper the relationships between velocity and frequency are studied experimentally[6] for different Lamb modes, under various stress loadings. The result shows that the sensitivity of different modes various a lot, the A1 mode is the most sensitivity, compared to S0, S1 and A0 modes; if the force is added to 100 MPa, the change stress of A1 mode can be as large to 80 m/s, which is about 10 times more sensitive than the traditional bulk wave. This makes it as a good choice for residual stress detection.

  7. Wave motion in an ice covered ocean due to small oscillations of a submerged thin vertical plate

    NASA Astrophysics Data System (ADS)

    Maiti, Paramita; Rakshit, Puspendu; Banerjea, Sudeshna

    2015-12-01

    In this paper we study the problem of generation of surface waves produced by small oscillation of a thin vertical plate submerged in deep ice covered ocean. Two particular problems are considered here viz, the problem of wave generation due to a) rolling of the plate and b) presence of a line source in front of a fixed vertical plate. The amplitude of radiated waves at large distances from the plate, for both problems, is obtained by a suitable application of Green's integral theorem. These are then studied graphically for various values of the ice cover parameter.

  8. Magneto-thermo-elastokinetics of geometrically nonlinear laminated composite plates. Part 2: vibration and wave propagation

    NASA Technical Reports Server (NTRS)

    Qin, Zhanming; Hasanyan, Davresh; Librescu, Liviu; Ambur, Damodar R.

    2005-01-01

    In Part 1 of this paper, the governing equations of geometrically nonlinear, anisotropic composite plates incorporating magneto-thermo-elastic effects have been derived. In order to gain insight into the implications of a number of geometrical and physical features of the system. three special cases are investigated: (i) free vibration of a plate strip immersed in a transversal magnetic field; (ii) free vibration of the plate strip immersed in an axial magnetic field; (iii) magneto-elastic wave propagations of an infinite plate. Within each of these cases, a prescribed uniform thermal field is considered. Special coupling characteristics between the magnetic and elastic fields are put into evidence. Extensive numerical investigations are conducted and pertinent conclusions which highlight the various effects induced by the magneto-elastic couplings and the finite electroconductivity, are outlined.

  9. Interaction of acoustic waves generated by coupled plate

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1990-01-01

    When two substructures are coupled, the acoustic field generated by the motion of each of the substructures will interact with the motion of the other substructure. This would be the case of a structure enclosing an acoustic cavity. A technique to model the interaction of the generated sound fields from the two components of a coupled structure, and the influence of this interaction on the vibration of the structural components is presented. Using a mobility power flow approach, each element of the substructure is treated independently both when developing the structural response and when determining the acoustic field generated by this component. The presence of the other substructural components is introduced by assuming these components to be rigid baffles. The excitation of one of the substructures is assumed to be by an incident acoustic wave which is dependent of the motion of the substructure. The sound field generated by the motion of the substructure is included in the solution of the response.

  10. The environmental interactions of tidal and wave energy generation devices

    SciTech Connect

    Frid, Chris; Andonegi, Eider; Judd, Adrian; Rihan, Dominic; Rogers, Stuart I.; Kenchington, Ellen

    2012-01-15

    Global energy demand continues to grow and tidal and wave energy generation devices can provide a significant source of renewable energy. Technological developments in offshore engineering and the rising cost of traditional energy means that offshore energy resources will be economic in the next few years. While there is now a growing body of data on the ecological impacts of offshore wind farms, the scientific basis on which to make informed decisions about the environmental effects of other offshore energy developments is lacking. Tidal barrages have the potential to cause significant ecological impacts particularly on bird feeding areas when they are constructed at coastal estuaries or bays. Offshore tidal stream energy and wave energy collectors offer the scope for developments at varying scales. They also have the potential to alter habitats. A diversity of designs exist, including floating, mid-water column and seabed mounted devices, with a variety of moving-part configurations resulting in a unique complex of potential environmental effects for each device type, which are discussed to the extent possible. - Highlights: Black-Right-Pointing-Pointer We review the environmental impacts of tidal barrages and fences, tidal stream farms and wave energy capture devices. Black-Right-Pointing-Pointer Impacts on habitats, species and the water column, and effects of noise and electromagnetic fields are considered. Black-Right-Pointing-Pointer Tidal barrages can cause significant impacts on bird feeding areas when constructed at coastal estuaries or bays. Black-Right-Pointing-Pointer Wave energy collectors can alter water column and sea bed habitats locally and over large distances.

  11. Low-cost simulation of guided wave propagation in notched plate-like structures

    NASA Astrophysics Data System (ADS)

    Glushkov, E.; Glushkova, N.; Eremin, A.; Giurgiutiu, V.

    2015-09-01

    The paper deals with the development of low-cost tools for fast computer simulation of guided wave propagation and diffraction in plate-like structures of variable thickness. It is focused on notched surface irregularities, which are the basic model for corrosion damages. Their detection and identification by means of active ultrasonic structural health monitoring technologies assumes the use of guided waves generated and sensed by piezoelectric wafer active sensors as well as the use of laser Doppler vibrometry for surface wave scanning and visualization. To create a theoretical basis for these technologies, analytically based computer models of various complexity have been developed. The simplest models based on the Euler-Bernoulli beam and Kirchhoff plate equations have exhibited a sufficiently wide frequency range of reasonable coincidence with the results obtained within more complex integral equation based models. Being practically inexpensive, they allow one to carry out a fast parametric analysis revealing characteristic features of wave patterns that can be then made more exact using more complex models. In particular, the effect of resonance wave energy transmission through deep notches has been revealed within the plate model and then validated by the integral equation based calculations and experimental measurements.

  12. Impacts of wave energy conversion devices on local wave climate: observations and modelling from the Perth Wave Energy Project

    NASA Astrophysics Data System (ADS)

    Hoeke, Ron; Hemer, Mark; Contardo, Stephanie; Symonds, Graham; Mcinnes, Kathy

    2016-04-01

    As demonstrated by the Australian Wave Energy Atlas (AWavEA), the southern and western margins of the country possess considerable wave energy resources. The Australia Government has made notable investments in pre-commercial wave energy developments in these areas, however little is known about how this technology may impact local wave climate and subsequently affect neighbouring coastal environments, e.g. altering sediment transport, causing shoreline erosion or accretion. In this study, a network of in-situ wave measurement devices have been deployed surrounding the 3 wave energy converters of the Carnegie Wave Energy Limited's Perth Wave Energy Project. This data is being used to develop, calibrate and validate numerical simulations of the project site. Early stage results will be presented and potential simulation strategies for scaling-up the findings to larger arrays of wave energy converters will be discussed. The intended project outcomes are to establish zones of impact defined in terms of changes in local wave energy spectra and to initiate best practice guidelines for the establishment of wave energy conversion sites.

  13. SAW devices based on novel surface wave excitations

    NASA Astrophysics Data System (ADS)

    Therrien, Joel; Dai, Lian

    2015-03-01

    Surface Acoustic Wave (SAW) devices have applications in radio frequency and microwave filtering as well as highly sensitive sensors. Current SAW design employs the use of an array of electrode pairs, referred to as Inter-Digitated Transducers (IDTs) for creating and receiving surface waves on piezoelectric substrates. The pitch of the electrode pairs along with the properties of the substrate determine the operating frequency. The number of electrode pairs determine the bandwidth of the emitted waves. We will present a novel configuration that eliminates the need for the IDTs and replaces with with a single circular electrode located inside a larger ground ring. This configuration induces drumhead modes. We will show that the resonant frequencies follow the zeros of Bessel functions of the first kind. Applications in RF filtering and mass sensing will be presented.

  14. Numerical investigation of a standing-wave thermoacoustic device

    NASA Astrophysics Data System (ADS)

    Dar Ramdane, M. Z.; Khorsi, A.

    2015-05-01

    The thermoacoustic effect concerns conversion of energy between a gas and a solid in the presence of acoustic waves. Although the working principle is well understood, the optimal design of thermoacoustic devices remains a challenge. The present work aims to perform a numerical simulation of a simple standing-wave thermoacoustic device. The analysis of the flow and the prediction of the heat transfer are performed by solving the non-linear unsteady Navier-Stokes equations using the finite volume method implemented in the commercial code ANSYS-CFX. The goal of this work is to study the effect of the stack temperature gradient, on the acoustic pressure and the produced acoustic power. This stack temperature gradient generates the thermoacoustic instability in standing-wave thermoacoustic resonator. The obtained results show an increase of the acoustic pressure and the acoustic power while increasing in the stack temperature gradient. The thermodynamic cycles of the thermoacoustic device are illustrated and observed for the different stack temperature gradients.

  15. An omnidirectional shear-horizontal guided wave EMAT for a metallic plate.

    PubMed

    Seung, Hong Min; Park, Chung Il; Kim, Yoon Young

    2016-07-01

    We propose a new electromagnetic acoustic transducer (EMAT) for generation and measurement of omnidirectional shear-horizontal (SH) guided waves in metallic plates. The proposed EMAT requires a magnetic circuit configuration that allows omnidirectional SH wave transduction. It consists of a pair of ring-type permanent magnets that supply static magnetic fluxes and a specially wound coil that induces eddy currents. The Lorentz force acting along the circumferential direction is induced by the vertical static magnetic flux and the radial eddy current in a plate, resulting in omnidirectional SH wave generation. To maximize the transducer output at given excitation frequencies, optimal EMAT configurations are determined by numerical simulations and validated by experiments. The omnidirectivity of the proposed EMAT is also confirmed by the simulations and experiments. PMID:27058629

  16. The influence of temperature variations on ultrasonic guided waves in anisotropic CFRP plates.

    PubMed

    Putkis, O; Dalton, R P; Croxford, A J

    2015-07-01

    Carbon Fibre Reinforced Polymer (CFRP) materials are lightweight and corrosion-resistant and therefore are increasingly used in aerospace, automotive and construction industries. In Structural Health Monitoring (SHM) applications of CFRP materials, ultrasonic guided waves potentially offer large area inspection or inspection from a remote location. This paper addresses the effect of temperature variation on guided wave propagation in highly anisotropic CFRP materials. Temperature variations cause changes in guided wave velocity that can in turn compromise the baseline subtraction procedures employed by many SHM systems for damage detection. A simple model that describes the dependence of elastic properties of the CFRP plates on temperature is presented in this paper. The model can be used to predict anisotropic velocity changes and baseline subtraction performance under varying thermal conditions. The results produced by the model for unidirectional and 0/90 CFRP plates are compared with experimental measurements. PMID:25812468

  17. Propagating plane harmonic waves through finite length plates of variable thickness using finite element techniques

    NASA Technical Reports Server (NTRS)

    Clark, J. H.; Kalinowski, A. J.; Wagner, C. A.

    1983-01-01

    An analysis is given using finite element techniques which addresses the propagaton of a uniform incident pressure wave through a finite diameter axisymmetric tapered plate immersed in a fluid. The approach utilized in developing a finite element solution to this problem is based upon a technique for axisymmetric fluid structure interaction problems. The problem addressed is that of a 10 inch diameter axisymmetric fixed plate totally immersed in a fluid. The plate increases in thickness from approximately 0.01 inches thick at the center to 0.421 inches thick at a radius of 5 inches. Against each face of the tapered plate a cylindrical fluid volume was represented extending five wavelengths off the plate in the axial direction. The outer boundary of the fluid and plate regions were represented as a rigid encasement cylinder as was nearly the case in the physical problem. The primary objective of the analysis is to determine the form of the transmitted pressure distribution on the downstream side of the plate.

  18. Traveling-wave device with mass flux suppression

    DOEpatents

    Swift, Gregory W.; Backhaus, Scott N.; Gardner, David L.

    2000-01-01

    A traveling-wave device is provided with the conventional moving pistons eliminated. Acoustic energy circulates in a direction through a fluid within a torus. A side branch may be connected to the torus for transferring acoustic energy into or out of the torus. A regenerator is located in the torus with a first heat exchanger located on a first side of the regenerator downstream of the regenerator relative to the direction of the circulating acoustic energy; and a second heat exchanger located on an upstream side of the regenerator. The improvement is a mass flux suppressor located in the torus to minimize time-averaged mass flux of the fluid. In one embodiment, the device further includes a thermal buffer column in the torus to thermally isolate the heat exchanger that is at the operating temperature of the device.

  19. Feature-guided waves (FGW) in plate structures with 90° transverse bends

    NASA Astrophysics Data System (ADS)

    Yu, Xudong; Manogharan, Prabhakaran; Fan, Zheng; Rajagopal, Prabhu

    2015-03-01

    Ultrasonic guided waves are attractive for rapid remote screening of large structures and today they are widely used in several practical applications including the inspection of pipe and plate installations. More recently, guided wave modal solutions confined in extended local features have attracted much research interest, offering the possibility of inspecting complex geometric or topographical features. Such feature-guided wave (FGW) modes have been reported in plate waveguides with local cross-section variation or curvature, and in annular circular cylinders with cross-sectional anomalies. This paper focuses on FGW phenomena in 90 degree structural bends in plate structures, which commonly occur in various industrial structures. Modal studies are carried out using the Semi-Analytical Finite Element (SAFE) method, while 3D finite element (FE) simulations are used to gain visualization of results and also obtain cross-validation. Our studies reveal, perhaps for the first time, the possibility of bend-guided modes of the shear-horizontal (SH) family, in addition those of the Rayleigh-Lamb family reported earlier in the literature. This mode has attractive properties including low attenuation and limited dispersion. We investigate effects of plate thickness and bend radius on the physics of FGW in bends, arguing the strong role of geometry and curvature effects in causing mode confinement. Preliminary experiments have also been carried out to validate the existence of such bend-guided mode.

  20. On the propagation mechanism of a detonation wave in a round tube with orifice plates

    NASA Astrophysics Data System (ADS)

    Ciccarelli, G.; Cross, M.

    2016-06-01

    This study deals with the investigation of the detonation propagation mechanism in a circular tube with orifice plates. Experiments were performed with hydrogen air in a 10-cm-inner-diameter tube with the second half of the tube filled with equally spaced orifice plates. A self-sustained Chapman-Jouguet (CJ) detonation wave was initiated in the smooth first half of the tube and transmitted into the orifice-plate-laden second half of the tube. The details of the propagation were obtained using the soot-foil technique. Two types of foils were used between obstacles, a wall-foil placed on the tube wall, and a flat-foil (sooted on both sides) placed horizontally across the diameter of the tube. When placed after the first orifice plate, the flat foil shows symmetric detonation wave diffraction and failure, while the wall foil shows re-initiation via multiple local hot spots created when the decoupled shock wave interacts with the tube wall. At the end of the tube, where the detonation propagated at an average velocity much lower than the theoretical CJ value, the detonation propagation is much more asymmetric with only a few hot spots on the tube wall leading to local detonation initiation. Consecutive foils also show that the detonation structure changes after each obstacle interaction. For a mixture near the detonation propagation limit, detonation re-initiation occurs at a single wall hot spot producing a patch of small detonation cells. The local overdriven detonation wave is short lived, but is sufficient to keep the global explosion front propagating. Results associated with the effect of orifice plate blockage and spacing on the detonation propagation mechanism are also presented.

  1. HeatWave: the next generation of thermography devices

    NASA Astrophysics Data System (ADS)

    Moghadam, Peyman; Vidas, Stephen

    2014-05-01

    Energy sustainability is a major challenge of the 21st century. To reduce environmental impact, changes are required not only on the supply side of the energy chain by introducing renewable energy sources, but also on the demand side by reducing energy usage and improving energy efficiency. Currently, 2D thermal imaging is used for energy auditing, which measures the thermal radiation from the surfaces of objects and represents it as a set of color-mapped images that can be analysed for the purpose of energy efficiency monitoring. A limitation of such a method for energy auditing is that it lacks information on the geometry and location of objects with reference to each other, particularly across separate images. Such a limitation prevents any quantitative analysis to be done, for example, detecting any energy performance changes before and after retrofitting. To address these limitations, we have developed a next generation thermography device called Heat Wave. Heat Wave is a hand-held 3D thermography device that consists of a thermal camera, a range sensor and color camera, and can be used to generate precise 3D model of objects with augmented temperature and visible information. As an operator holding the device smoothly waves it around the objects of interest, Heat Wave can continuously track its own pose in space and integrate new information from the range and thermal and color cameras into a single, and precise 3D multi-modal model. Information from multiple viewpoints can be incorporated together to improve the accuracy, reliability and robustness of the global model. The approach also makes it possible to reduce any systematic errors associated with the estimation of surface temperature from the thermal images.

  2. Transducer arrays for omnidirectional guided wave mode control in plate like structures

    NASA Astrophysics Data System (ADS)

    Koduru, Jaya P.; Rose, Joseph L.

    2013-01-01

    For structural health monitoring applications, ultrasonic guided wave mode control is critical for obtaining simple signals that can be easily analyzed as well as special modes and frequencies for improved sensitivity to certain defects. This paper discusses the development of an annular array transducer for omnidirectional guided wave mode control in plate like structures. Using a flexible piezoelectric material like polyvinlydine fluoride (PVDF), annular array transducers that are low cost, low profile and conformable to the structure can be made rapidly. Two different array patterns, namely ones of comb and inter-digital (IDT) type, are studied. The loadings of these transducers on a structure differ from one another and hence so do their source influences. An axi-symmetric finite element modeling is employed to study the surface displacement pattern of these two transducer configurations. The source influence of the transducer configurations is studied experimentally by exciting an anti-symmetric (A1) and a symmetric (S1) type guided wave mode in a steel plate. It was observed that IDT type transducers were able to couple well to the guided wave modes at the wavelengths that they are designed for. The comb type transducers have a weak coupling to symmetric guided wave modes at frequencies where the wave structure has high in-plane displacement and negligible out-of-plane displacement on the surface of the structure.

  3. A Serial Sample Loading System: Interfacing Multi-well plates with Microfluidic Devices

    PubMed Central

    Rane, Tushar D.; Zec, Helena; Wang, Jeff Tza-Huei

    2013-01-01

    There is an increasing demand for novel high-throughput screening (HTS) technologies in the pharmaceutical and biotechnological industries. The robotic sample handling techniques currently used in these industries, although fast, are still limited to operating in multi-well plates with the sample volumes per reaction in the microliter regime. Digital microfluidics offers an alternative for reduction in sample volume consumption for HTS but lacks a reliable technique for transporting large number of samples to the microfluidic device. In this report, we develop a technique for serial delivery of sample arrays to a microfluidic device from multi-well plates, through a single sample inlet. Under this approach, a serial array of sample plugs, separated by an immiscible carrier fluid, is loaded into a capillary and delivered to a microfluidic device. Similar approaches have been attempted in the past, however, either with a slower sample loading device like syringe pump or vacuum based sample loading with limited driving pressure. We demonstrated the application of our positive pressure based ‘Serial Sample Loading’ (SSL) system to load a series of sample plugs into a capillary. The adaptability of the SSL system to generate sample plugs with a variety of volumes in a predictable manner was also demonstrated. PMID:22885789

  4. Shock Wave Based Biolistic Device for DNA and Drug Delivery

    NASA Astrophysics Data System (ADS)

    Nakada, Mutsumi; Menezes, Viren; Kanno, Akira; Hosseini, S. Hamid R.; Takayama, Kazuyoshi

    2008-03-01

    A shock wave assisted biolistic (biological ballistic) device has been developed to deliver DNA/drug-coated micro-projectiles into soft living targets. The device consists of an Nd:YAG laser, an optical setup to focus the laser beam and, a thin aluminum (Al) foil (typically 100 µm thick) which is a launch pad for the micro-projectiles. The DNA/drug-coated micro-particles to be delivered are deposited on the anterior surface of the foil and the posterior surface of the foil is ablated using the laser beam with an energy density of about 32×109 W/cm2. The ablation launches a shock wave through the foil that imparts an impulse to the foil surface, due to which the deposited particles accelerate and acquire sufficient momentum to penetrate soft targets. The device has been tested for particle delivery by delivering 1 µm size tungsten particles into liver tissues of experimental rats and in vitro test models made of gelatin. The penetration depths of about 90 and 800 µm have been observed in the liver and gelatin targets, respectively. The device has been tested for in vivo DNA [encoding β-glucuronidase (GUS) gene] transfer by delivering plasmid DNA-coated, 1-µm size gold (Au) particles into onion scale, tobacco leaf and soybean seed cells. The GUS activity was detected in the onion, tobacco and soybean cells after the DNA delivery. The present device is totally non-intrusive in nature and has a potential to get miniaturized to suit the existing medical procedures for DNA and/or drug delivery.

  5. Wireless device for activation of an underground shock wave absorber

    NASA Astrophysics Data System (ADS)

    Chikhradze, M.; Akhvlediani, I.; Bochorishvili, N.; Mataradze, E.

    2011-10-01

    The paper describes the mechanism and design of the wireless device for activation of energy absorber for localization of blast energy in underground openings. The statistics shows that the greatest share of accidents with fatal results associate with explosions in coal mines due to aero-methane and/or air-coal media explosion. The other significant problem is terrorist or accidental explosions in underground structures. At present there are different protective systems to reduce the blast energy. One of the main parts of protective Systems is blast Identification and Registration Module. The works conducted at G. Tsulukidze Mining Institute of Georgia enabled to construct the wireless system of explosion detection and mitigation of shock waves. The system is based on the constant control on overpressure. The experimental research continues to fulfill the system based on both threats, on the constant control on overpressure and flame parameters, especially in underground structures and coal mines. Reaching the threshold value of any of those parameters, the system immediately starts the activation. The absorber contains a pyrotechnic device ensuring the discharge of dispersed water. The operational parameters of wireless device and activation mechanisms of pyrotechnic element of shock wave absorber are discussed in the paper.

  6. Ultra-wideband ladder filters using zero-th shear mode plate wave in ultrathin LiNbO3 plate with apodized interdigital transducers

    NASA Astrophysics Data System (ADS)

    Kadota, Michio; Tanaka, Shuji

    2016-07-01

    There are two kinds of plate waves propagating in a thin plate, Lamb and shear horizontal (SH) waves. The former has a velocity higher than 15,000 m/s when the plate is very thin. On the contrary, 0th SH (SH0) mode plate wave in an ultrathin LiNbO3 plate has an electro-mechanical coupling factor larger than 50%. Authors fabricated an ultra-wideband T-type ladder filter with a relative bandwidth (BW) of 41% using the SH0 mode plate wave. Although the BW of the filter fully covers the digital TV band in Japan, it does not have sufficient margin at the lower and higher end of BW. Besides, periodic small ripples due to transverse mode in pass-band of the filter were observed. In this study π-type ladder filters were fabricated by changing the pitch ratio of interdigital transducer (IDT) of parallel and series arm resonators (PR(IDT)) to control the BW, and by apodizing IDTs to improve the periodic small ripples due to transverse mode. Ultra-wideband filters without periodic small transverse mode with ultrawide bandwidth from 41 to 49% were fabricated. The BWs fully cover ultrawide digital television bands in Japan and U.S.A. These filters with an ultrawide BW and a steep characteristic show the possibility to be applied to a reported cognitive radio system and other communication systems requiring an ultrawide BW.

  7. In-plane vibrations of a rectangular plate: Plane wave expansion modelling and experiment

    NASA Astrophysics Data System (ADS)

    Arreola-Lucas, A.; Franco-Villafañe, J. A.; Báez, G.; Méndez-Sánchez, R. A.

    2015-04-01

    Theoretical and experimental results for in-plane vibrations of a uniform rectangular plate with free boundary conditions are obtained. The experimental setup uses electromagnetic-acoustic transducers and a vector network analyzer. The theoretical calculations were obtained using the plane wave expansion method applied to the in-plane thin plate vibration theory. The agreement between theory and experiment is excellent for the lower 95 modes covering a very wide frequency range from DC to 20 kHz. Some measured normal-mode wave amplitudes were compared with the theoretical predictions; very good agreement was observed. The excellent agreement of the classical theory of in-plane vibrations confirms its reliability up to very high frequencies

  8. Method for measuring retardation of infrared wave-plate by modulated-polarized visible light

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Song, Feijun

    2012-11-01

    A new method for precisely measuring the optical phase retardation of wave-plates in the infrared spectral region is presented by using modulated-polarized visible light. An electro-optic modulator is used to accurately determine the zero point by the frequency-doubled signal of the Modulated-polarized light. A Babinet-Soleil compensator is employed to make the phase delay compensation. Based on this method, an instrument is set up to measure the retardations of the infrared wave-plates with visible region laser. Measurement results with high accuracy and sound repetition are obtained by simple calculation. Its measurement precision is less than and repetitive precision is within 0.3%.

  9. Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: experimental characterization.

    PubMed

    Pisano, Giampaolo; Savini, Giorgio; Ade, Peter A R; Haynes, Vic; Gear, Walter K

    2006-09-20

    An achromatic half-wave plate (HWP) to be used in millimeter cosmic microwave background (CMB) polarization experiments has been designed, manufactured, and tested. The design is based on the 5-plates Pancharatnam recipe and it works in the frequency range 85-185 GHz. A model has been used to predict the transmission, reflection, absorption, and phase shift as a function of frequency. The HWP has been tested by using coherent radiation from a back-wave oscillator to investigate its modulation efficiency and with incoherent radiation from a polarizing Fourier transform spectrometer (FTS) to explore its frequency behavior. The FTS measurements have been fitted with an optical performance model which is in excellent agreement with the data. A detailed analysis of the data also allows a precise determination of the HWP fast and slow axes in the frequency band of operation. A list of the HWP performance characteristics is reported including estimates of its cross polarization. PMID:16946775

  10. Transmission characteristics of the wave cut-off probe with parallel plates

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Ju; Kim, Yu-Sin; Chung, Chin-Wook

    2012-10-01

    A cut-off probe has been used to obtain an absolute electron density from a plasma frequency. A cut-off probe with parallel plates was constructed to investigate the transmission characteristics of electromagnetic waves and electrostatic waves at various gaps, pressures and powers. It is found that a clear cut-off peak at a plasma frequency and many other peaks due to plasma sheath series resonance, cavity resonance and transmission line are observed. By using circuit model of plasma and transmission line theory, the various peaks was analyzed and discussed.

  11. Damage localization in metallic plate structures using edge-reflected lamb waves

    NASA Astrophysics Data System (ADS)

    Ebrahimkhanlou, A.; Dubuc, B.; Salamone, S.

    2016-08-01

    This paper presents a model-based guided ultrasonic waves imaging algorithm, in which multiple ultrasonic echoes caused by reflections from the plate’s boundaries are leveraged to enhance imaging performance. An analytical model is proposed to estimate the envelope of scattered waves. Correlation between the estimated and experimental data is used to generate images. The proposed method is validated through experimental tests on an aluminum plate instrumented with three low profile piezoelectric transducers. Different damage conditions are simulated including through-thickness holes. Results are compared with two other imaging localization methods, that is, delay and sum and minimum variance.

  12. Generalized thermoelastic wave propagation in circumferential direction of transversely isotropic cylindrical curved plates

    NASA Astrophysics Data System (ADS)

    Sharma, J. N.; Pathania, Vijayata

    2005-03-01

    The propagation of thermoelastic waves along circumferential direction in homogeneous, transversely isotropic, cylindrical curved plates has been investigated in the context of theories of thermoelasticity. This type of study is important for ultrasonic non-destructive inspection of large-diameter pipes, which helps in the health monitoring of ailing infrastructure. Longitudinal stress-corrosion cracks are usually temperature dependent and can be detected more efficiently by inducing circumferential waves; hence the study of generalized thermoelastic wave propagation in the circumferential direction in a pipe wall is essential. Mathematical modeling of the problem of obtaining dispersion curves for curved transversely isotropic thermally conducting elastic plates leads to coupled differential equations. The model has been simplified by using the Helmholtz decomposition technique and the resulting equations have been solved by using separation of variable method to obtain the secular equations in isolated mathematical conditions for the plates with stress-free or rigidly fixed, thermally insulated and isothermal boundary surfaces. The closed form solutions are also obtained under different situations and conditions. The longitudinal shear motion and axially symmetric shear vibration modes get decoupled from the rest of the motion and are not affected by thermal variations, whereas for the non-axially symmetric case of plane strain vibrations, these modes remain coupled and are affected by temperature changes. Moreover, these vibration modes are found to be dispersive and dissipative in character. In order to illustrate theoretical development, numerical solutions are obtained and presented graphically for a zinc plate. The obtained results are also compared with those available in the literature in case of waves in cylindrical shell/circular annulus in the absence of thermomechanical coupling and thermal relaxation times.

  13. Fast P wave propagation in subducted Pacific lithosphere: Refraction from the plate

    NASA Astrophysics Data System (ADS)

    Smith, Gideon; Gubbins, David; Mao, Weijian

    1994-12-01

    P waves traveling from events in the Tonga-Kermadec seismic zone to stations in New Zealand are very fast with highly emergent, dispersed waveforms. Ray tracing has shown the waves to travel close to the subducted Pacific plate throughout their length, and synthetic seismogram calculations have shown the dispersion requires a very thin (8-12 km) fast layer. Previous work has been based on data from analog records and one digital, single-component short-period instrument; no polarization analysis was possible, and measurements of dispersion were limited by the bandwidth. From January 1991 to August 1992 we deployed nine broad band, three-component seismometers in good sites for observing these arrivals; the data are augmented by three-component, short-period digital records from new stations of the New Zealand National Network. In this study we analyze 1191 broad-band and 2076 short period seismograms from 71 events for polarization of the initial P wave. The polarization directions are found to be up to 30 deg off the great circle path and consistently steep (20 deg from vertical). They are too steep to be explained by standard ray paths or refraction from a fast horizontal layer. We invert the polarization directions for a tilted interface beneath the array and use arrival times to control the depth to the interface, which is found to lie close to the top of the subducted plate inferred from the seismicity. We conclude that these precursive, emergent P waves have traveled through a fast layer close to the top of the subducted plate and refract upward to the station. A second arrival, with lower dominant frequency near 1 Hz and normal travel time, is occasionally seen on both broad band and short-time stations. Its polarization direction is similarly steep but difficult to measure; the evidence suggests that it also travels within the plate with similar ray path to the precursor.

  14. Plane Wave Diffraction by a Finite Plate with Impedance Boundary Conditions

    PubMed Central

    Nawaz, Rab; Ayub, Muhammad; Javaid, Akmal

    2014-01-01

    In this study we have examined a plane wave diffraction problem by a finite plate having different impedance boundaries. The Fourier transforms were used to reduce the governing problem into simultaneous Wiener-Hopf equations which are then solved using the standard Wiener-Hopf procedure. Afterwards the separated and interacted fields were developed asymptotically by using inverse Fourier transform and the modified stationary phase method. Detailed graphical analysis was also made for various physical parameters we were interested in. PMID:24755624

  15. Second law analysis of a plate heat exchanger with an axial dispersive wave

    NASA Astrophysics Data System (ADS)

    Kumar Das, Sarit; Roetzel, Wilfried

    A second law analysis is presented for thermally dispersive flow through a plate heat exchanger. It is well known that in plate or plate fin type heat exchangers the backmixing and other deviations from plug flow contribute significantly to the inefficiency of the heat exchanger, which is of importance to heat exchangers working in the cryogenic regime. The conventional axial heat dispersion model which is used so far is found to be better than `plug flow' model but still unsatisfactory where the timescale related to heat transfer is comparable with the thermal relaxation time for the propagation of dispersion. The present work therefore considers dispersion as a wave phenomenon propagating with a finite velocity. The study discusses the nature of variation of different contributions to total exergy loss in the heat exchanger with respect to dispersion parameters of the Peclet number and propagation velocity of the dispersive wave. The practical example of the single-pass plate heat exchanger demonstrates how a second law optimization can be carried out for heat transfer equipment under such conditions.

  16. Extremely low-frequency Lamb wave band gaps in a sandwich phononic crystal thin plate

    NASA Astrophysics Data System (ADS)

    Shen, Li; Wu, Jiu Hui; Liu, Zhangyi; Fu, Gang

    2015-11-01

    In this paper, a kind of sandwich phononic crystal (PC) plate with silicon rubber scatterers embedded in polymethyl methacrylate (PMMA) matrix is proposed to demonstrate its low-frequency Lamb wave band gap (BG) characteristics. The dispersion relationship and the displacement vector fields of the basic slab modes and the locally resonant modes are investigated to show the BG formation mechanism. The anti-symmetric Lamb wave BG is further studied due to its important function in reducing vibration. The analysis on the BG characteristics of the PC through changing their geometrical parameters is performed. By optimizing the structure, a sandwich PC plate with a thickness of only 3 mm and a lower boundary (as low as 23.9 Hz) of the first anti-symmetric BG is designed. Finally, sound insulation experiment on a sandwich PC plate with the thickness of only 2.5 mm is conducted, showing satisfactory noise reduction effect in the frequency range of the anti-symmetric Lamb BG. Therefore, this kind of sandwich PC plate has potential applications in controlling vibration and noise in low-frequency ranges.

  17. A novel rheo-optical device for studying complex fluids in a double shear plate geometry

    NASA Astrophysics Data System (ADS)

    Boitte, Jean-Baptiste; Vizcaïno, Claude; Benyahia, Lazhar; Herry, Jean-Marie; Michon, Camille; Hayert, Murielle

    2013-01-01

    A new rheo-optical shearing device was designed to investigate the structural evolution of complex material under shear flow. Seeking to keep the area under study constantly within the field of vision, it was conceived to produce shear flow by relying on the uniaxial translation of two parallel plates. The device features three modes of translation motion: step strain (0.02-320), constant shear rate (0.01-400 s-1), and oscillation (0.01-20 Hz) flow. Because the temperature is controlled by using a Peltier module coupled with a water cooling system, temperatures can range from 10 to 80 °C. The sample is loaded onto a user-friendly plate on which standard glasses can be attached with a depression vacuum pump. The principle innovation of the proposed rheo-optical shearing device lies in the fact that this suction system renders the microscopy glasses one with the plates, thereby ensuring their perfect planarity and parallelism. The gap width between the two plates can range from 0 to 5 mm. The device was designed to fit on any inverted confocal laser scanning microscope. In terms of controlled deformation, the conception and technical solutions achieve a high level of accuracy. Moreover, user-friendly software has been developed to control both shear flow parameters and temperature. The validation of specifications as well as the three modes of motion was carried out, first of all without a sample, and then by tracking fluorescent particles in a model system, in our case a micro-gel. Real values agreed well with those we targeted. In addition, an experiment with bread dough deformation under shear flow was initiated to gain some insight into the potential use of our device. These results show that the RheOptiCAD® promises to be a useful tool to better understand, from both a fundamental and an industrial point of view, the rheological behavior of the microstructure of complex fluids under controlled thermo-mechanical parameters in the case of food and non

  18. Fracture source location in thin plates using the wavelet transform of dispersive waves.

    PubMed

    Jeong, H; Jang, Y S

    2000-01-01

    A new signal processing approach was presented for acoustic emission source location using the dispersive waves in a thin plate. For wave propagation in dispersive media, the accuracy of source location can be improved by using the arrival times of a single frequency component in the output signals at an array of sensors. The wavelet transform (WT) was used to resolve this problem. By utilizing the time-frequency data of the WT, the frequency-dependent arrival time traveling with the group velocity was shown to be easily determined. Experiments were performed using a lead break as the simulated fracture source on the surface of an aluminum plate. Two plate modes corresponding to the S(0) and A(0) Lamb waves were identified, and their group velocities were accurately measured. The source location results based on the WT method agreed well with the true locations. The WT method was also compared with the cross correlation technique, and both methods provide similar results. PMID:18238588

  19. Laser-launched flyer plate and confined laser ablation for shock wave loading: validation and applications.

    PubMed

    Paisley, Dennis L; Luo, Sheng-Nian; Greenfield, Scott R; Koskelo, Aaron C

    2008-02-01

    We present validation and some applications of two laser-driven shock wave loading techniques: laser-launched flyer plate and confined laser ablation. We characterize the flyer plate during flight and the dynamically loaded target with temporally and spatially resolved diagnostics. With transient imaging displacement interferometry, we demonstrate that the planarity (bow and tilt) of the loading induced by a spatially shaped laser pulse is within 2-7 mrad (with an average of 4+/-1 mrad), similar to that in conventional techniques including gas gun loading. Plasma heating of target is negligible, in particular, when a plasma shield is adopted. For flyer plate loading, supported shock waves can be achieved. Temporal shaping of the drive pulse in confined laser ablation allows for flexible loading, e.g., quasi-isentropic, Taylor-wave, and off-Hugoniot loading. These techniques can be utilized to investigate such dynamic responses of materials as Hugoniot elastic limit, plasticity, spall, shock roughness, equation of state, phase transition, and metallurgical characteristics of shock-recovered samples. PMID:18315311

  20. Lamb wave dispersion in a PZT/metal/PZT sandwich plate with imperfect interface

    NASA Astrophysics Data System (ADS)

    Kurt, Ilkay; Akbarov, Surkay D.; Sezer, Semih

    2016-07-01

    The Lamb wave dispersion in a PZT/Metal/PZT sandwich plate is investigated by employing the exact linear equations of electro-elastic waves in piezoelectric materials within the scope of the plane-strain state. It is assumed that at the interfaces between the piezoelectric face layers and metal core layer, shear-spring and normal-spring type imperfect conditions are satisfied. The degree of this imperfectness is estimated through the corresponding shear-spring and normal-spring type parameters which appear in the contact condition characterizing the transverse and normal displacements' discontinuity. The corresponding dispersion equation is derived, and as a result of the numerical solution to this equation, the dispersion curves are constructed for the first and second lowest modes in the cases where the material of the face layers is PZT and the material of the middle layer is Steel (St). Consequently, for the PZT/St/PZT sandwich plate, the study of the influence of the problem parameters such as the piezoelectric and dielectric constants, layer thickness ratios, non-dimensional shear-spring, and normal-spring type parameters, is carried out. In particular, it is established that the imperfectness of the contact between the layers of the plate causes a decrease in the values of the wave propagation velocity.

  1. Detecting the thickness mode frequency in a concrete plate using backward wave propagation.

    PubMed

    Bjurström, Henrik; Ryden, Nils

    2016-02-01

    Material stiffness and plate thickness are the two key parameters when performing quality assurance/quality control on pavement structures. In order to estimate the plate thickness non-destructively, the Impact Echo (IE) method can be utilized to extract the thickness resonance frequency. An alternative to IE for estimating the thickness resonance frequency of a concrete plate, and to subsequently enable thickness determination, is presented in this paper. The thickness resonance is often revealed as a sharp peak in the frequency spectrum when contact receivers are used in seismic testing. Due to a low signal-to-noise ratio, IE is not ideal when using non-contact microphone receivers. In studying the complex Lamb wave dispersion curves at a frequency infinitesimally higher than the thickness frequency, it is seen that two counter-directed waves occur at the same frequency but with phase velocities in opposite directions. Results show that it is possible to detect the wave traveling with a negative phase velocity using both accelerometers and air-coupled microphones as receivers. This alternative technique can possibly be used in non-contact scanning measurements based on air-coupled microphones. PMID:26936549

  2. A detailed numerical model for flat-plate solar thermal devices

    SciTech Connect

    Cadafalch, J.

    2009-12-15

    A one-dimensional transient numerical model for flat-plate solar thermal devices is here presented. The model permits the analysis of different configurations and components such as multiple-glazing, transparent insulation, air-gaps, surface coatings, opaque insulation and energy accumulation in water or PCM internal stores. In order to obtain information of practical interest, the solar thermal devices are modelled following virtual testing procedures in accordance to the experimental test methods described by European and International standards. This paper describes the basis of the model and shows some comparison of numerical and experimental data as an example of the validation process that has been carried out in order to assess the credibility of the numerical model. For simplicity, the explanation is restricted to standard multiple-glazed flat-plate collectors. The use of the model in other more complicated configurations as in transparently insulated covers or integrated collector storage devices with phase change materials will be presented in other separate papers. (author)

  3. Joint Inversion for Bulk Sound and Shear Wave Velocity Heterogeneity Beneath the Mediterranean Plate Boundary Region

    NASA Astrophysics Data System (ADS)

    Schmid, C.; van der Lee, S.; Giardini, D.

    2005-12-01

    We present new 3-D models for shear wave and compressional wave velocity anomalies for the mantle beneath the Mediterranean plate boundary region down to a depth of ~1500 km. These new models are based on a combined set of P and S body-wave arrival time data, which was measured by interstation cross-correlation. Stations used were from the MIDSEA deployment and permanent networks in the region. We invert these data jointly for bulk sound and shear wave velocity heterogeneity. The resulting models of P and S velocity heterogeneity are similar to each other. P wave velocity heterogeneity appears to be dominated by variations in shear modulus. We do not find evidence for large scale anti-correlation between bulk sound and shear wave velocity heterogeneity. We further constrain the mantle's S-velocity with regional S and surface waves and Moho detections. The Mediterranean region is substantially slower than the global average at shallow mantle depths and faster than average at transition zone depths. Our models show high velocities related to present and recent subduction northwards beneath the Hellenic trench, northwestwards beneath the Calabrian Arc, and a much shorter slab dipping southwestwards beneath the Apennines. Our models show somewhat surprising evidence of past subduction in the transition zone beneath the western Mediterranean and in the lower mantle beneath northeastern Africa. The only significantly slower region at transition zone depths is found beneath the Ionian Sea.

  4. Ultrasonic guided wave detection of scatterers on large clad steel plates

    NASA Astrophysics Data System (ADS)

    Gong, Peng; Harley, Joel B.; Berges, Mario; Junker, Warren R.; Greve, David W.; Oppenheim, Irving J.

    2016-04-01

    "Clad steel" refers to a thick carbon steel structural plate bonded to a corrosion resistant alloy (CRA) plate, such as stainless steel or titanium, and is widely used in industry to construct pressure vessels. The CRA resists the chemically aggressive environment on the interior, but cannot prevent the development of corrosion losses and cracks that limit the continued safe operation of such vessels. At present there are no practical methods to detect such defects from the exposed outer surface of the thick carbon steel plate, often necessitating removing such vessels from service and inspecting them visually from the interior. In previous research, sponsored by industry to detect and localize damage in pressurized piping systems under operational and environmental changes, we investigated a number of data-driven signal processing methods to extract damage information from ultrasonic guided wave pitch-catch records. We now apply those methods to relatively large clad steel plate specimens. We study a sparse array of wafer-type ultrasonic transducers adhered to the carbon steel surface, attempting to localize mass scatterers grease-coupled to the stainless steel surface. We discuss conditions under which localization is achieved by relatively simple first-arrival methods, and other conditions for which data-driven methods are needed; we also discuss observations of plate-like mode properties implied by these results.

  5. Well plate-based perfusion culture device for tissue and tumor microenvironment replication.

    PubMed

    Zhang, W; Gu, Y; Hao, Y; Sun, Q; Konior, K; Wang, H; Zilberberg, J; Lee, W Y

    2015-07-01

    There are significant challenges in developing in vitro human tissue and tumor models that can be used to support new drug development and evaluate personalized therapeutics. The challenges include: (1) working with primary cells which are often difficult to maintain ex vivo, (2) mimicking native microenvironments from which primary cells are harvested, and (3) the lack of culture devices that can support these microenvironments to evaluate drug responses in a high-throughput manner. Here we report a versatile well plate-based perfusion culture device that was designed, fabricated and used to: (1) ascertain the role of perfusion in facilitating the expansion of human multiple myeloma cells and evaluate drug response of the cells, (2) preserve the physiological phenotype of primary murine osteocytes by reconstructing the 3D cellular network of osteocytes, and (3) circulate primary murine T cells through a layer of primary murine intestine epithelial cells to recapitulate the interaction of the immune cells with the epithelial cells. Through these diverse case studies, we demonstrate the device's design features to support: (1) the convenient and spatiotemporal placement of cells and biomaterials into the culture wells of the device; (2) the replication of tissues and tumor microenvironments using perfusion, stromal cells, and/or biomaterials; (3) the circulation of non-adherent cells through the culture chambers; and (4) conventional tissue and cell characterization by plate reading, histology, and flow cytometry. Future challenges are identified and discussed from the perspective of manufacturing the device and making its operation for routine and wide use. PMID:26021852

  6. Ion sputter textured graphite. [anode collector plates in electron tube devices

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.; Forman, R.; Curren, A. N.; Wintucky, E. G. (Inventor)

    1982-01-01

    A specially textured surface of pyrolytic graphite exhibits extremely low yields of secondary electrons and reduced numbers of reflected primary electrons after impingement of high energy primary electrons. An ion flux having an energy between 500 eV and 1000 eV and a current density between 1.0 mA/sq cm and 6.0 mA/sq cm produces surface roughening or texturing which is in the form of needles or spines. Such textured surfaces are especially useful as anode collector plates in high efficiency electron tube devices.

  7. Scattering of flexural waves by a pit of quadratic profile inserted in an infinite thin plate

    NASA Astrophysics Data System (ADS)

    Aklouche, Omar; Pelat, Adrien; Maugeais, Sylvain; Gautier, François

    2016-08-01

    An acoustic black hole (ABH) is a pit of power law profile inserted in a plate with internal damping. Such a pit with varying thickness leads to local variations of wave propagation properties and has been found to be an efficient vibration damper. In this paper, the ABH is seen as a penetrable obstacle and is studied through its scattering properties. A wave based model is developed within the framework of the Kirchhoff theory for a thin plate of locally varying thickness. It is shown that analytical solutions can be found in the case of a pit of quadratic profile and for uniform damping properties (without added layer). A major outcome of the model is the derivation of the dispersion relations giving a detailed analysis of the behavior of the waves within the ABH. Particularly, cut-on frequencies below which no wave propagates within the ABH are derived and thus give interpretation of the well known typical ABH efficiency threshold frequency for damping vibrations. The analysis is led from numerical computations of the dispersion curves, the scattering diagrams and the scattering cross-section, which are compared to the case of a simple hole. The results show that the ABH behaves as a resonant scatterer, which is a key outcome of this study. The so-called trapped modes, which describe free damped oscillations of the ABH, are responsible for variations of the scattering cross-section with frequency. These variations are investigated thanks to a parametric study on the geometrical properties of the ABH.

  8. Waveguiding and frequency selection of Lamb waves in a plate with a periodic stubbed surface

    NASA Astrophysics Data System (ADS)

    Wu, Tzung-Chen; Wu, Tsung-Tsong; Hsu, Jin-Chen

    2009-03-01

    In this paper, we numerically and experimentally study the waveguiding of Lamb modes in a thin plate with a periodic stubbed surface and propose a frequency-selection method based on the found complete band gaps of Lamb waves in the periodic structure. In the numerical simulations, we employ finite-element method to analyze the waveguiding effect of a line defect created in the periodic plate structure; and on the experimental side, we utilize a pulsed laser to generate broadband elastic-wave energy and a laser interferometer to receive the wave signals inside the line-defect waveguide. In the experiment, well-confined acoustic energy in the acoustic band gaps is observed. Furthermore, a polyline sharply bent waveguide is designed and used for the frequency selection of Lamb waves. Measurements show that acoustic energy with frequencies in the band gaps can be separated out and guided by the bent waveguiding route. The characteristics of deaf bands found in the experiment are discussed as well.

  9. Method for in-situ nondestructive measurement of Young's modulus of plate structures

    NASA Technical Reports Server (NTRS)

    Huang, Jerry Qixin (Inventor); Perez, Robert J. (Inventor); DeLangis, Leo M. (Inventor)

    2003-01-01

    A method for determining stiffness of a composite laminate plate entails disposing a device for generating an acoustical pulse against a surface of the plate and disposing a detecting device against the same surface spaced a known distance from the pulse-generating device, and using the pulse-generating device to emit a pulse so as to create an extensional wave in the plate. The detecting device is used to determine a time of flight of the wave over the known distance, and the wave velocity is calculated. A Young's modulus of the plate is determined based on the wave velocity. Methods for both anisotropic and quasi-isotropic laminates are disclosed.

  10. Transformation cloaking and radial approximations for flexural waves in elastic plates

    NASA Astrophysics Data System (ADS)

    Brun, M.; Colquitt, D. J.; Jones, I. S.; Movchan, A. B.; Movchan, N. V.

    2014-09-01

    It is known that design of elastic cloaks is much more challenging than that of acoustic cloaks, cloaks of electromagnetic waves or scalar problems of anti-plane shear. In this paper, we address fully the fourth-order problem and develop a model of a broadband invisibility cloak for channelling flexural waves in thin plates around finite inclusions. We also discuss an option to employ efficiently an elastic pre-stress and body forces to achieve such a result. An asymptotic derivation provides a rigorous link between the model in question and elastic wave propagation in thin solids. This is discussed in detail to show connection with non-symmetric formulations in vector elasticity studied in earlier work.

  11. Guided Wave Propagation and Diffraction in Plates with Obstacles: Resonance Transmission and Trapping Mode Effects

    NASA Astrophysics Data System (ADS)

    Glushkov, E. V.; Glushkova, N. V.; Eremin, A. A.; Lammering, R.

    The paper is based on the authors' report at ICU-2015 giving the idea of the semi-analytical integral equation approach to a physically clear simulation of wave phenomena in composite plate-like structures with local inhomogeneities. On this basis, a set of low-cost computer models for a reliable near- and far-field analysis had been developed and experimentally validated. Their abilities have been illustrated with examples of structural frequency response and radiation pattern diagrams for guided waves (GW) generated by piezoelectric wafer active sensors (PWAS); the reconstruction of effective elastic moduli of fiber-reinforced composites; the PWAS frequency tuning with accounting for the radiation directivity induced by anisotropy; and the effects of wave energy resonance transmission and trapping. Some of these examples have been already discussed in journal articles. Therefore, the present paper concentrates on the recent results of resonance GW interaction with deep surface notches and buried cavities.

  12. Universal compensation of the non-reciprocal circular birefringence in a retracing path by a mirrored quarter-wave plate

    NASA Astrophysics Data System (ADS)

    Martinelli, Mario; Martelli, Paolo; Fasiello, Annalaura

    2016-08-01

    A quarter-wave plate combined with a mirror realizes a pure rotator on the reflected beam, hence it realizes the same polarization transformation of a Porro prism, which has been recently demonstrated as a universal compensator for the non-reciprocal circular birefringence present in a retracing path. In the present work, the mirrored quarter-wave plate has been experimentally proved to effectively compensate for the non-reciprocal circular birefringence introduced by a variable Faraday rotator.

  13. Non-contact ultrasonic technique for Lamb wave characterization in composite plates.

    PubMed

    Harb, M S; Yuan, F G

    2016-01-01

    A fully non-contact single-sided air-coupled and laser ultrasonic non-destructive system based on the generation and detection of Lamb waves is implemented for the characterization of A0 Lamb wave mode dispersion in a composite plate. An air-coupled transducer (ACT) radiates acoustic pressure on the surface of the composite and generates Lamb waves within the structure. The out-of-plane velocity of the propagating wave is measured using a laser Doppler vibrometer (LDV). In this study, the non-contact automated system focuses on measuring A0 mode frequency-wavenumber, phase velocity dispersion curves using Snell's law and group velocity dispersion curves using Morlet wavelet transform (MWT) based on time-of-flight along different wave propagation directions. It is theoretically demonstrated that Snell's law represents a direct link between the phase velocity of the generated Lamb wave mode and the coincidence angle of the ACT. Using Snell's law and MWT, the former three dispersion curves of the A0 mode are easily and promptly generated from a set of measurements obtained from a rapid ACT angle scan experiment. In addition, the phase velocity and group velocity polar characteristic wave curves are also computed to analyze experimentally the angular dependency of Lamb wave propagation. In comparison with the results from the theory, it is confirmed that using the ACT/LDV system and implementing simple Snell's law method is highly sensitive and effective in characterizing the dispersion curves of Lamb waves in composite structures as well as its angular dependency. PMID:26385842

  14. The capacitive division image readout: a novel imaging device for microchannel plate detectors

    NASA Astrophysics Data System (ADS)

    Lapington, J. S.; Conneely, T. M.; Leach, S. A.; Moore, L.

    2013-09-01

    The Capacitive Division Image Readout (C-DIR) is a simple and novel image readout for photon counting detectors offering major performance advantages. C-DIR is a charge centroiding device comprising three elements; (i) a resistive anode providing event charge localization, event current return path and electrical isolation from detector high voltage, (ii) a dielectric substrate which capacitively couples the event transient signal to the third element, (iii) the readout device; an array of capacitively coupled electrodes which divides the signal among the readout charge measurement nodes. The resistive anode and dielectric substrate constitute the rear interface of the detector and capacitively couple the signal to the external C-DIR readout device. The C-DIR device is a passive, multilayer printed circuit board type device comprising a matrix of isolated electrodes whose geometries define the capacitive network. C-DIR is manufactured using conventional PCB geometries and is straightforward and economical to construct. C-DIR's robustness and simplicity belie its performance advantages. Its capacitive nature avoids partition noise, the Poisson noise associated with collection of discrete charges. The dominant noise limiting position resolution is electronic noise. However C-DIR also presents a low input capacitance to the readout electronics, minimising this noise component thus maximising spatial resolution. Optimisation of the C-DIR pattern-edge geometry can provide ~90% linear dynamic range. We present data showing image resolution and linearity of the C-DIR device in a microchannel plate detector and describe various electronic charge measurement scheme designed to exploit the full performance potential of the C-DIR device.

  15. Phased annular array transducers for omnidirectional guided wave mode control in isotropic plate like structures

    NASA Astrophysics Data System (ADS)

    Koduru, Jaya P.; Momeni, Sepandarmaz; Rose, Joseph L.

    2013-12-01

    Ultrasonic guided waves are fast emerging as a reliable tool for continuous structural health monitoring. Their multi-modal nature along with their long range propagation characteristics offer several possibilities for interrogating structures. Transducers commonly used to generate guided waves in structures excite multiple modes at any frequency; their complex scattering and reflection from defects and boundaries often complicates the extraction of useful information. Often it is desirable to control the guided wave modes propagating in a structure to take advantage of their unique properties for different applications. Earlier attempts at guided wave mode control involved developing fixed wavelength linear and annular array transducers. Their only disadvantage is that the transducer is limited to a particular wavelength and a change in wavelength necessitates a change in the transducer. In this paper, we propose the development of an annular array transducer that can generate mode controlled omnidirectional guided waves by independently controlling the amplitude and phase of the array elements. A simplified actuator model that approximates the transducer loading on the structure to a constant pressure load under the array elements is assumed and an optimization problem is set up to compute the excitation voltage and phase of the elements. A five element annular array transducer is designed utilizing 1-3 type piezocomposite materials. The theoretical computations are experimentally verified on an aluminum plate like structure by exciting A0 and S0 guided wave modes.

  16. Guided-wave-based detections of weld and crack in steel plates

    NASA Astrophysics Data System (ADS)

    Lu, Mingyu; Lu, Xi; Zhou, Limin; Su, Zhongqing; Ye, Lin

    2009-07-01

    The guided-wave-based damage detection techniques using structurally integrated Lead-zirconate-titanate (PZT) patches for structural health monitoring (SHM) have been developed for many years. However, the method is still in its formative years and one of the main challenges is the application in real-word complicated structures. It's very important to widely study the techniques in the structures with simple geometries which can be used to construct more complicated structures for practical applications. In this paper, different steel plates of the same dimensions were used for detecting a 2mm-gap through-crack in welded zone and studying the effects of different impurities such as water, alcohol, epoxy and mud in the crack on wave propagations. Advanced signal processing and pattern recognition techniques such as the wavelet transform (WT) especially continuous wavelet transform (CWT) and Hilbert transform (HT) were used to enhance the efficiency of damage detections in the steel plates. Some simulation results were obtained to validate of experimental results. The results from both the experiments and simulations show the validity of the proposed method and the effects of different factors on the damage detection of the steel plates.

  17. Identification of thin elastic isotropic plate parameters applying Guided Wave Measurement and Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Pabisek, Ewa; Waszczyszyn, Zenon

    2015-12-01

    A new hybrid computational system for material identification (HCSMI) is presented, developed for the identification of homogeneous, elastic, isotropic plate parameters. Attention is focused on the construction of dispersion curves, related to Lamb waves. The main idea of the system HCSMI lies in separation of two essential basic computational stages, corresponding to direct or inverse analyses. In the frame of the first stage an experimental dispersion curve DCexp is constructed, applying Guided Wave Measurement (GWM) technique. Then, in the other stage, corresponding to the inverse analysis, an Artificial Neural Network (ANN) is trained 'off line'. The substitution of results of the first stage, treated as inputs of the ANN, gives the values of identified plate parameters. In such a way no iteration is needed, unlike to the classical approach. In such an approach, the "distance" between the approximate experimental curves DCexp and dispersion curves DCnum obtained in the direct analysis, is iteratively minimized. Two case studies are presented, corresponding either to measurements in laboratory tests or those related to pseudo-experimental noisy data of computer simulations. The obtained results prove high numerical efficiency of HCSMI, applied to the identification of aluminum plate parameters.

  18. Characteristics of a compression wave propagating over porous plate wall in a high-speed railway tunnel

    NASA Astrophysics Data System (ADS)

    Aoki, T.; Yamamoto, J.; Nagatani, K.

    2008-09-01

    A pressure wave is generated ahead of a high-speed train, while entering a tunnel. This pressure wave propagates to the tunnel exit and spouts as a micro-pressure wave, which causes an exploding sound. From the fact that the ballast track tunnel has smaller noise than the slab track tunnel, we have suggested a new inner tunnel model to decrease the noise of the micro-pressure wave, using the ballast effect. Experimental and numerical investigations are carried out to clarify the attenuation and distortion of propagating compression wave over porous plate wall in a model tunnel. Data shows that the strength of the compression wave and a maximum pressure gradient of the compression wave was weakened. These data shows the possibility of the present alleviative method using the porous plate wall in a tunnel.

  19. [Analysis of bactericidal material generated by electrical devices advertising bactericidal ability against bacteria on the agar gel plates].

    PubMed

    Nishimura, Hidekazu

    2012-11-01

    Several Japanese companies sell electrical devices advertised as effective in inactivating viruses and killing bacteria by releasing special materials, e.g., Plasmacluster ions, Nanoe particle and minus ions, into the air. These companies claim that their devices killed bacteria on plates in their own experiments. We tested device effectiveness using the same experiments from the Plasmacluster ioniser SHARP Co., Japan, the Nanoe generator Panasonic Co., Japan, and the Vion KING JIM Co., Japan, to test their advertising claims. Bactericidal ability on agar plate was tested, using Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus cereus, and Enterococcus faecalis as follows: the medium containing a certain amount of each bacterium was put onto an agar plate and smeared. Plates were kept in a closed chamber (inner volume 14.4 m3) or a glove box (inner volume 0.2 m), with one of the devices run for 2 hours. Plates not exposed to any device were used as controls. Each plate was retrieved and put in an incubator to count the number of bacterial colonies formed on the plate. There was no significant difference in the number of colonies on plates exposed to devices compared to control, in the number for all devices, or in all bacteria tested in experiments in the 14.4 m3 chamber. These results strongly suggest that these devices have almost no bactericidal effect, at least in space exceeding this volume. Colony formation was suppressed in the glove box in all devices and in all bacteria tested except P. aeruginosa, although the degree of suppression differed among experiments. The colony formation suppression mechanism was analyzed, and indicated that:colony formation did not change even after the removal of Plasmacluster ions, Nanoe particles, or negative ions from the air, while colony formation was decreased drastically by the removal of ozone from space, which was revealed to be generated inevitably during device operation. These results strongly suggest that the

  20. Fabrication of new Interdigital Transducers for Surface Acoustic Wave Device

    NASA Astrophysics Data System (ADS)

    Fissi, L. El; Jaouad, A.; Vandormael, D.; Francis, L. A.

    We investigate high-performance interdigital transducers (IDTs) for the generation of surface acoustic waves (SAWs) on AT-cut quartz, where the metal fingers are embedded in the substrate. Three micromachining techniques are used to manufacture SAW structures, namely an inductively coupled plasma, a laser etching and a reactive ion etching. An evaporated layer of Al and a Ni thick electroplating are used to grow the metals in the micromachining structures. A chemical mechanical polishing (CMP) technique is used to remove the exceeding metal and keep a flat surface. The electrical characterizations indicate that the fabricated devices are suited for sensing proposes with a low insertion loss and a linear phase. Results are reported emphasizing the efficiency of the Ni damascene process to manufacture SAW sensors with the embedded structures.

  1. Analysis of transient Lamb waves on metal plates, composite panels and curved members

    NASA Astrophysics Data System (ADS)

    Schumacher, N. A.; Gien, P. H.; Burger, C. P.

    Results of a series of experiments conducted with a laser and fiber-optic-based system for both the generation and detection of transient Lamb waves in a steel plate, a unidirectional composite panel, and a section of seam welded stainless steel tubing are reported. A method for obtaining phase velocity information from FFTs, developed by Sachse & Pao (1978) is used to extract the phase velocity information. In the case of the steel plate, the experimental data are compared to the theoretical results from closed form solutions by Viktorov (1967). It is also demonstrated that the two-channel interferometer provides an excellent source for noncontact 'point' measurements of displacement time histories. When these interferometers are used in pairs, phase velocity for several types of acoustic signals can be extracted from the displacement time histories.

  2. A Fundamental Study on Detection of Defects in the Web Gap Region of Steel Plate Girder Bridges by the Plate Wave Ultrasonic Technique

    NASA Astrophysics Data System (ADS)

    Shirahata, H.; Greimann, L.; Wipf, T.; Phares, B.; Nakagawa, N.

    2004-02-01

    Applicability of the plate wave technique was investigated in this study to detect small defects in the web gap region of the steel plate girder. Torsion induced fatigue cracking is one of the most serious problems for steel bridges. As the conventional inspection method, visual inspection has been applied. However, this method is not always accurate. In addition, accessibility of the inspectors is also a serious problem. This study aims at the application of the plate wave ultrasonic testing to detect a fatigue crack in the web gap area and monitor its propagation. As the first step, the influence of a stiffener and detectability of one or more holes in the web gap were investigated.

  3. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    SciTech Connect

    Mekhiche, Mike; Dufera, Hiz; Montagna, Deb

    2012-10-29

    The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  4. Polarization characterization of PZT disks and of embedded PZT plates by thermal wave methods

    SciTech Connect

    Eydam, Agnes Suchaneck, Gunnar Gerlach, Gerald; Esslinger, Sophia; Schönecker, Andreas; Neumeister, Peter

    2014-11-05

    In this work, the thermal wave method was applied to characterize PZT disks and embedded PZT plates with regard to the polarization magnitude and spatial homogeneity. The samples were exposed to periodic heating by means of a laser beam and the pyroelectric response was determined. Thermal relaxation times (single time constants or distributions of time constants) describe the heat losses of the PZT samples to the environment. The resulting pyroelectric current spectrum was fitted to the superposition of thermal relaxation processes. The pyroelectric coefficient gives insight in the polarization distribution. For PZT disks, the polarization distribution in the surface region showed a characteristic decrease towards the electrodes.

  5. Tunable terahertz half-wave plate based on hybridization effect in coupled graphene nanodisks

    NASA Astrophysics Data System (ADS)

    Peng, Jialong; Zhu, Zhihong; Zhang, Jianfa; Yuan, Xiaodong; Qin, Shiqiao

    2016-05-01

    We demonstrate a tunable terahertz half-wave plate composed of a periodic array of graphene nanodisk dimers supported on a dielectric spacer backed by a planar gold layer. The polarization conversion phenomena are attributed to the hybridization effect caused by coupling interactions between plasmonic resonances in the graphene nanodisk dimers. By varying the distance between graphene nanodisks, the polarization conversion performance can be controlled. Further, the polarization conversion can be dynamically tuned at different frequencies via electrostatic doping of graphene. Other novel phenomena and applications could be developed from coupled graphene structures in the future.

  6. Chemical Sensing with a Magnetically-Excitied Flexural Plate Wave Resonator

    SciTech Connect

    Adkins, D.R.; Butler, M.A.; Kottenstette, R.; Martin, S.J.; Mitchell, M.A.; Schubert, W.K.; Wessendorf, K.O.

    1999-05-26

    Chemical sensing with a magnetically excited flexural plate wave (mag- FPW) resonator has been demonstrated for the first time. One surface of the resonator was coated with ethyl cellulose to impart sensitivity to volatile solvents such as chloroform, tetrachloroethylene, trichloroethylene, and toluene. The absorbed mass of the analyte causes a shift in the membrane resonance frequency of the two-port mag-FPW resonator. An oscillator circuit is used to track the resonance frequency, providing a convenient means of monitoring analyte concentration levels. Analyte concentrations of 10 ppm were easily detected.

  7. Waves on Thin Plates: A New (Energy Based) Method on Localization

    NASA Astrophysics Data System (ADS)

    Turkaya, Semih; Toussaint, Renaud; Kvalheim Eriksen, Fredrik; Lengliné, Olivier; Daniel, Guillaume; Grude Flekkøy, Eirik; Jørgen Måløy, Knut

    2016-04-01

    Noisy acoustic signal localization is a difficult problem having a wide range of application. We propose a new localization method applicable for thin plates which is based on energy amplitude attenuation and inversed source amplitude comparison. This inversion is tested on synthetic data using a direct model of Lamb wave propagation and on experimental dataset (recorded with 4 Brüel & Kjær Type 4374 miniature piezoelectric shock accelerometers, 1 - 26 kHz frequency range). We compare the performance of this technique with classical source localization algorithms, arrival time localization, time reversal localization, localization based on energy amplitude. The experimental setup consist of a glass / plexiglass plate having dimensions of 80 cm x 40 cm x 1 cm equipped with four accelerometers and an acquisition card. Signals are generated using a steel, glass or polyamide ball (having different sizes) quasi perpendicular hit (from a height of 2-3 cm) on the plate. Signals are captured by sensors placed on the plate on different locations. We measure and compare the accuracy of these techniques as function of sampling rate, dynamic range, array geometry, signal to noise ratio and computational time. We show that this new technique, which is very versatile, works better than conventional techniques over a range of sampling rates 8 kHz - 1 MHz. It is possible to have a decent resolution (3cm mean error) using a very cheap equipment set. The numerical simulations allow us to track the contributions of different error sources in different methods. The effect of the reflections is also included in our simulation by using the imaginary sources outside the plate boundaries. This proposed method can easily be extended for applications in three dimensional environments, to monitor industrial activities (e.g boreholes drilling/production activities) or natural brittle systems (e.g earthquakes, volcanoes, avalanches).

  8. Tilted bilayer membranes as simple transmission quarter-wave retardation plates.

    PubMed

    Azzam, R M; Mahmoud, F A

    2001-02-01

    A tilted bilayer membrane, which consists of two thin films of transparent optically isotropic materials of different refractive indices, can function as a transmission quarter-wave retarder (QWR) at a high angle of incidence. A specific design using a cryolite-Si membrane in the infrared is presented, and its tolerances to small shifts of wavelength, incidence angle, and film thickness errors are discussed. Some designs provide a dual QWR in transmission and reflection. Such devices provide simple linear-to-circular (and circular-to-linear) polarization transformers. Bilayer eighth-wave retarders without diattenuation are also introduced. PMID:11205989

  9. Generation and reception of ultrasonic guided waves in composite plates using conformable piezoelectric transmitters and optical-fiber detectors.

    PubMed

    Gachagan, A; Hayward, G; McNab, A; Reynolds, P; Pierce, S G; Philp, W R; Culshaw, B

    1999-01-01

    A condition monitoring nondestructive evaluation (NDE) system, combining the generation of ultrasonic Lamb waves in thin composite plates and their subsequent detection using an embedded optical fiber system is described. The acoustic source is of low profile with respect to the composite plate thickness, surface conformable, and able to efficiently launch a known Lamb wave mode, at operating frequencies between 100 and 500 kHz, over typical propagation distances of 100 to 500 mm. It incorporates both piezocomposite technology and interdigital design techniques to generate the fundamental symmetrical Lamb wave mode in both metallic and carbon-fiber composite plates. Linear systems and finite element modeling techniques have been used to evaluate the operation of the transducer structure, and this is supplemented by experimental verification of the simulated data. An optical fiber, either bonded to the surface or embedded across the length of the composite plate samples, is used to detect the propagating ultrasonic Lamb waves. Single mode silica fiber has been used in conjunction with a portable 633 nm Mach-Zehnder interferometer for signal demodulation and subsequent data acquisition. This hybrid system is shown to generate and detect the fundamental symmetrical Lamb wave (s(0)) in both carbon-fiber and glass-fiber reinforced composite plates. Importantly, the system signal-to-noise ratio (SNR) associated with the acoustic source compares favorably with s(0) Lamb wave generation using a conventional transducer and angled perspex wedge arrangement. PMID:18238400

  10. Transition from 1D to 2D Laser-Induced Ultrasonic Wave Propagation in an Extended Plate

    NASA Astrophysics Data System (ADS)

    Laloš, Jernej; Požar, Tomaž; Možina, Janez

    2016-05-01

    Optodynamic interaction between a laser pulse and the surface of an opaque, solid elastic object produces transient waves that propagate and reverberate within the object. They can be, in general, categorized into three distinctive types which are all formed through different mechanisms: ablation-induced waves, light-pressure-induced waves, and thermoelastic waves. In this paper, out-of-plane displacements of such waves are simulated at the epicentral position on the opposite side of an extended plane-parallel elastic plate. Wave propagation is mathematically described by Green's transfer functions convolved with suitable time profiles of the incoming laser pulses. The simulated size of the circularly symmetric laser-illuminated area on the plate surface is varied to show the limit-to-limit transition of the displacement waveforms: from a 2D point source to an infinite 1D source.

  11. Surface-bonded optical fibre sensors for the inspection of CFRP plates using ultrasonic Lamb waves

    NASA Astrophysics Data System (ADS)

    Pierce, S. G.; Philp, W. R.; Culshaw, B.; Gachagan, A.; McNab, A.; Hayward, G.; Lecuyer, F.

    1996-12-01

    Surface-bonded single-mode optical fibre sensors have been used to monitor the interaction of ultrasonic 0964-1726/5/6/007/img9 Lamb waves with defects in carbon fibre composite plates. Lamb waves were initiated using Perspex-coupled piezoelectric transducers. The defects investigated comprised holes, regions of impact damage and delaminations. Holes could be identified by analysing direct 0964-1726/5/6/007/img9 reflections and impact damage by 0964-1726/5/6/007/img9 back-wall echo amplitude. Large delaminations gave a poor direct 0964-1726/5/6/007/img9 reflection. Evidence was found for mode conversion at centre plane delaminations.

  12. Analytical study on plate edge noise - Trailing edge noise caused by vorticity waves

    NASA Astrophysics Data System (ADS)

    Takahashi, Koji; Kaji, Shojiro

    1991-11-01

    An analysis is performed on the trailing edge noise, one of the important mechanisms of noise generation in flow machines. An acoustic field is treated where a semi-infinite flat plate is placed parallel to the inviscid uniform flow with incident vorticity waves convected from the upstream direction. The Wiener-Hopf technique is used to obtain an exact solution to the sound pressure proportional to the amplitude of the incident vorticity wave without restriction of frequency or velocity. The calculated acoustic field, which varies with flow velocity, exhibits general features of the sound pressure level (SPL) in a cardioid pattern with the constant phase surface distorted by the main flow. The relationship between flow velocity and SPL is ascertained to be dependent on the 5th law at low Mach numbers. However, the results show that such dependence does not hold at higher Mach numbers where the radiated noise level rises progressively as the flow velocity increases.

  13. Analytical study on plate edge noise. I - Trailing edge noise caused by vorticity waves

    NASA Astrophysics Data System (ADS)

    Takahashi, Koji; Kaji, Shojiro

    1990-09-01

    An analysis is performed on the trailing-edge noise which is one of the mechanisms of noise generation in flow machines. An acoustic field is treated where a semiinfinite flat plate is placed parallel to the inviscid uniform flow with incident vorticity waves convected from the upstream direction. Applying the Wiener-Hopf technique, an exact solution is derived for the sound pressure which is proportional to the amplitude of the incident vorticity wave and does not restrict frequency or velocity. The calculated acoustic field exhibits general features of the sound-pressure level (SPL) in a cardioid pattern with the constant phase surface distorted by the main flow. The relationship between flow velocity and SPL is dependent on the fifth law at low Mach numbers. The results show that such dependence does not hold at higher Mach numbers at which the radiated noise level rises progressively as the flow velocity increases.

  14. Rectification of Lamb wave propagation in thin plates with piezo-dielectric periodic structures

    NASA Astrophysics Data System (ADS)

    Iwasaki, Yuhei; Tsuruta, Kenji; Ishikawa, Atsushi

    2016-07-01

    Based on a heterostructured plate consisting of piezoelectric-ceramic/epoxy-resin composites with different periodicities, we design a novel acoustic diode for the symmetrical/asymmetrical (S/A) mode of Lamb wave at audible ranges. The acoustic diode is constructed with two parts, i.e., the mode conversion part and the mode selection part, and the mode conversion mechanism at the interface is applied to the mode hybridization from S to S+A and for the mode conversion from A to S. The phonon band structures for each part are calculated and optimized so that the mode selection is realized for a specific mode at the junction. Finite-element simulations prove that the proposed acoustic diode achieves efficient rectification at audio frequency ranges for both S and A mode incidences of the Lamb wave.

  15. Tunable broadband terahertz wave plate based on one-dimensional superconductor-dielectric photonic crystals

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Liu, Ming; Hu, Xin-Guang; Yu, Li; Xie, Yan-Ding; Yi, Lin

    2016-04-01

    The reflection phase difference between transverse electric (TE) and transverse magnetic (TM) waves in a one-dimensional superconductor-dielectric photonic crystal is studied by the transfer matrix method. The simulation results indicate that wide frequency regions exist within the terahertz range, in which the reflection phase differences can remain constant for a fixed incident angle and can vary continuously from 0 to π (or 0 to -π ) by increasing the incident angle. The shift and the number of such wide frequency regions can be manipulated through changing the thickness of the dielectric layers. The influences of temperature and the normal conducting electrons on the properties of the reflection phase difference are also numerically investigated. Based on these properties, a continuously tunable broadband terahertz wave plate can be designed.

  16. Direct detection of magnetostatic wave excitations in magnetostatic wave device structures by Brillouin light scattering

    NASA Astrophysics Data System (ADS)

    Srinivasan, G.; Patton, C. E.

    1985-10-01

    The technique of Brillouin light scattering has been used to detect magnetostatic wave (MSW) excitations in MSW microwave device structures. The present results are for a signal-to-noise enhancer consisting of a microstrip transmission line in contact with a yttrium iron garnet film with the applied magnetic field parallel to the microstrip line. At low input microwave power levels, the MSW spectra at 4 GHz consisted of surface excitations with wave numbers from about 80 to 470/cm, with the propagation direction perpendicular to the microstrip line. At high power levels, parametric half-frequency MSW excitations were observed, accompanied by a decrease in the scattering of the surface MSW excitations at the pump frequency.

  17. Numerical analysis of wave generation and propagation in a focused surface acoustic wave device for potential microfluidics applications.

    PubMed

    Sankaranarayanan, Subramanian K R S; Bhethanabotla, Venkat R

    2009-03-01

    We develop a 3-D finite element model of a focused surface acoustic wave (F-SAW) device based on LiNbO(3) to analyze the wave generation and propagation characteristics for devices operating at MHz frequencies with varying applied input voltages. We compare the F-SAW device to a conventional SAW device with similar substrate dimensions and transducer finger periodicity. SAW devices with concentrically shaped focused interdigital transducer fingers (F-IDTs) are found to excite waves with high intensity and high beam-width compression ratio, confined to a small localized area. F-SAW devices are more sensitive to amplitude variations at regions close to the focal point than conventional SAW devices having uniform IDT configuration. We compute F-SAW induced streaming forces and velocity fields by applying a successive approximation technique to the Navier-Stokes equation (Nyborg's theory). The maximum streaming force obtained at the focal point varies as the square of the applied input voltage. Computed streaming velocities at the focal point in F-SAW devices are at least an order of magnitude higher than those in conventional SAW devices. Simulated frequency response indicates higher insertion losses in F-SAW devices than in conventional devices, reflecting their greater utility as actuators than as sensors. Our simulation findings suggest that F-SAW devices can be utilized effectively for actuation in microfluidic applications involving diffusion limited transport processes. PMID:19411221

  18. Rayleigh–Lamb wave propagation on a fractional order viscoelastic plate

    PubMed Central

    Meral, F. Can; Royston, Thomas J.; Magin, Richard L.

    2011-01-01

    A previous study of the authors published in this journal focused on mechanical wave motion in a viscoelastic material representative of biological tissue [Meral et al., J. Acoust. Soc. Am. 126, 3278–3285 (2009)]. Compression, shear and surface wave motion in and on a viscoelastic halfspace excited by surface and sub-surface sources were considered. It was shown that a fractional order Voigt model, where the rate-dependent damping component that is dependent on the first derivative of time is replaced with a component that is dependent on a fractional derivative of time, resulted in closer agreement with experiment as compared with conventional (integer order) models, such as those of Voigt and Zener. In the present study, this analysis is extended to another configuration and wave type: out-of-plane response of a viscoelastic plate to harmonic anti-symmetric Lamb wave excitation. Theoretical solutions are compared with experimental measurements for a polymeric tissue mimicking phantom material. As in the previous configurations the fractional order modeling assumption improves the match between theory and experiment over a wider frequency range. Experimental complexities in the present study and the reliability of the different approaches for quantifying the shear viscoelastic properties of the material are discussed. PMID:21361459

  19. Roll-to-plate fabrication of microfluidic devices with rheology-modified thiol-ene resins

    NASA Astrophysics Data System (ADS)

    Senkbeil, Silja; Aho, Johanna; Yde, Leif; Lindvold, Lars R.; Stensborg, Jan F.; Rantanen, Jukka; Lafleur, Josiane P.; Kutter, Jörg P.

    2016-07-01

    In this paper, the replication possibilities of microfluidic channels by UV-roll-to-plate fabrication were investigated and a study of rheology-modified thiol-ene for the application in such a UV-roll-to-plate setup was conducted. The system allows the manufacture of channels with aspect ratios of 2:1 and a maximal channel depth of 90 μm as well as the sealing of the finished devices with patterning and sealing speeds of up to 19 m min‑1. By adding fumed silica nanoparticles to the uncured resins, it was possible to alter the rheological behavior of the resin system to fabricate shallow microfluidic channels with 40  ×  95 μm cross-sectional dimensions. Moreover, deeper (90 μm) channels can be fabricated with highly viscous resins based on thiol-terminated oligomers. As a demonstration, capillary electrophoresis chips were prepared and tested for a simple separation of two fluorescent dyes.

  20. Design and Modelling of a Microfluidic Electro-Lysis Device with Controlling Plates

    NASA Technical Reports Server (NTRS)

    Jenkins, A.; Chen, C. P.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.

    2006-01-01

    Many Lab-on-Chip applications require sample pre-treatment systems. Using electric fields to perform cell-lysis in bio-MEMS systems has provided a powerful tool which can be integrated into Lab-on-a-Chip platforms. The major design considerations for electro-lysis devices include optimal geometry and placement of micro-electrodes, cell concentration, flow rates, optimal electric field (e.g. pulsed DC vs. AC), etc. To avoid electrolysis of the flowing solution at the exposed electrode surfaces, magnitudes and the applied voltages and duration of the DC pulse, or the AC frequency of the AC, have to be optimized for a given configuration. Using simulation tools for calculation of electric fields has proved very useful, for exploring alternative configurations and operating conditions for achieving electro cell-lysis. To alleviate the problem associated with low electric fields within the microfluidics channel and the high voltage demand on the contact electrode strips, two "control plates" are added to the microfluidics configuration. The principle of placing the two controlling plate-electrodes is based on the electric fields generated by a combined insulator/dielectric (gladwater) media. Surface charges are established at the insulator/dielectric interface. This paper discusses the effects of this interface charge on the modification of the electric field of the flowing liquid/cell solution.

  1. Crack Imaging and Quantification in Aluminum Plates with Guided Wave Wavenumber Analysis Methods

    NASA Technical Reports Server (NTRS)

    Yu, Lingyu; Tian, Zhenhua; Leckey, Cara A. C.

    2015-01-01

    Guided wavefield analysis methods for detection and quantification of crack damage in an aluminum plate are presented in this paper. New wavenumber components created by abrupt wave changes at the structural discontinuity are identified in the frequency-wavenumber spectra. It is shown that the new wavenumbers can be used to detect and characterize the crack dimensions. Two imaging based approaches, filter reconstructed imaging and spatial wavenumber imaging, are used to demonstrate how the cracks can be evaluated with wavenumber analysis. The filter reconstructed imaging is shown to be a rapid method to map the plate and any existing damage, but with less precision in estimating crack dimensions; while the spatial wavenumber imaging provides an intensity image of spatial wavenumber values with enhanced resolution of crack dimensions. These techniques are applied to simulated wavefield data, and the simulation based studies show that spatial wavenumber imaging method is able to distinguish cracks of different severities. Laboratory experimental validation is performed for a single crack case to confirm the methods' capabilities for imaging cracks in plates.

  2. A cryogenic half-wave plate polarimeter using a superconducting magnetic bearing

    NASA Astrophysics Data System (ADS)

    Klein, Jeff; Aboobaker, Asad; Ade, Peter; Aubin, François; Baccigalupi, Carlo; Bao, Chaoyun; Borrill, Julian; Chapman, Daniel; Didier, Joy; Dobbs, Matt; Gold, Benjamin; Grainger, Will; Hanany, Shaul; Hubmayr, Johannes; Hillbrand, Seth; Grain, Julien; Jaffe, Andrew; Johnson, Bradley; Jones, Terry; Kisner, Theodore; Korotkov, Andrei; Leach, Sam; Lee, Adrian; Levinson, Lorne; Limon, Michele; MacDermid, Kevin; Matsumura, Tomotake; Miller, Amber; Milligan, Michael; Pascale, Enzo; Polsgrove, Daniel; Ponthieu, Nicolas; Raach, Kate; Reichborn-Kjennerud, Britt; Sagiv, Ilan; Stompor, Radek; Tran, Huan; Tristram, Matthieu; Tucker, Gregory S.; Yadav, Amit; Zaldarriaga, Matias; Zilic, Kyle

    2011-10-01

    We present the design and measured performance of the superconducting magnetic bearing (SMB) that was used successfully as the rotation mechanism in the half-wave plate polarimeter of the E and B Experiment (EBEX) during its North American test flight. EBEX is a NASA-supported balloon-borne experiment that is designed to measure the polarization of the cosmic microwave background. In this implementation the half-wave plate is mounted to the rotor of an SMB that is operating at the sink temperature of 4 K. We demonstrate robust, remote operation on a balloon-borne payload, with angular encoding accuracy of 0.01°. We find rotational speed variation to be 0.2% RMS. We measure vibrational modes and find them to be consistent with a simple SMB model. We search for but do not find magnetic field interference in the detectors and readout. We set an upper limit of 3% of the receiver noise level after 5 minutes of integration on such interference. At 2 Hz rotation we measure a power dissipation of 56 mW. If this power dissipation is reduced, such an SMB implementation is a candidate for low-noise space applications because of the absence of stick-slip friction and low wear.

  3. Feature guided waves (FGW) in fiber reinforced composite plates with 90° transverse bends

    NASA Astrophysics Data System (ADS)

    Yu, Xudong; Ratassepp, Madis; Fan, Zheng; Manogharan, Prabhakaran; Rajagopal, Prabhu

    2016-02-01

    Fiber reinforced composite materials have been increasingly used in high performance structures such as aircraft and large wind turbine blades. 90◦ composite bends are common in reinforcing structural elements, which are prone to defects such as delamination, crack, fatigue, etc. Current techniques are based on local inspection which makes the whole bend area scanning time consuming and tedious. This paper explores the feasibility of using feature guided waves (FGW) for rapid screening of 90◦ composite laminated bends. In this study, the behavior of the bend-guided wave in the anisotropic composite material is investigated through modal studies by applying the Semi-Analytical Finite Element (SAFE) method, also 3D Finite Element (FE) simulations are performed to visualize the results and to obtain cross validation. To understand the influence of the anisotropy, three-dimensional dispersion surfaces of the guided modes in flat laminated plates are obtained, showing the dependence of the phase velocity with the frequency and the fiber orientation. S H0-like and S 0-like bend-guided modes are identified with energy concentrated in the bend region, limiting energy radiation into adjacent plates and thus achieving increased inspection length. Finally, parametric studies are carried out to further investigate the properties of these two bend-guided modes, demonstrating the variation of the group velocity, the energy concentration, and the attenuation with the frequency.

  4. The Half Wave Plate Rotator for the BLAST-TNG Balloon-Borne Telescope

    NASA Astrophysics Data System (ADS)

    Setiawan, Hananiel; Ashton, Peter; Novak, Giles; Angilè, Francesco E.; Devlin, Mark J.; Galitzki, Nicholas; Ade, Peter; Doyle, Simon; Pascale, Enzo; Pisano, Giampaolo; Tucker, Carole E.

    2016-01-01

    The Next Generation Balloon-borne Large Aperture Submillimeter Telescope (BLAST-TNG) is an experiment designed to map magnetic fields in molecular clouds in order to study their role in the star formation process. The telescope will be launched aboard a high-altitude balloon in December 2016 for a 4-week flight from McMurdo station in Antarctica. BLAST-TNG will measure the polarization of submillimeter thermal emission from magnetically aligned interstellar dust grains, using large format arrays of kinetic inductance detectors operating in three bands centered at 250, 350, and 500 microns, with sub-arcminute angular resolution. The optical system includes an achromatic Half Wave Plate (HWP), mounted in a Half Wave Plate rotator (HWPr). The HWP and HWPr will operate at 4 K temperature to reduce thermal noise in our measurements, so it was crucial to account for the effects of thermal contraction at low temperature in the HWPr design. It was also equally important for the design to meet torque requirements while minimizing the power from friction and conduction dissipated at the 4 K stage. We also discuss our plan for cold testing the HWPr using a repurposed cryostat with a Silicon Diode thermometer read out by an EDAS-CE Ethernet data acquisition system.

  5. Shear horizontal feature guided ultrasonic waves in plate structures with 90° transverse bends.

    PubMed

    Yu, Xudong; Manogharan, Prabhakaran; Fan, Zheng; Rajagopal, Prabhu

    2016-02-01

    Antisymmetric and symmetric Lamb-type feature guided waves (FGW) have recently been shown to exist in small angle plate bends. This paper reports Semi-Analytical Finite Element (SAFE) method simulations revealing the existence of a new family of Shear Horizontal (SHB) type of FGW mode in 90° bends in plate structures. Mode shapes and velocity dispersion curves are extracted, demonstrating the SH-like nature of a bend-confined mode identified in studies of power flow across the bend. The SHB mode is shown to have reduced attenuation in the higher frequency range, making it an ideal choice for high-resolution inspection of such bends. Further modal studies examine the physical basis for mode confinement, and argue that this is strongly related to FGW phenomena reported earlier, and also linked to the curvature at the bend region. Wedge acoustic waves discussed widely in literature are shown as arising from surface-limiting of the SHB mode at higher frequencies. The results are validated by experiments and supported by 3D Finite Element (FE) simulations. PMID:26409768

  6. Underwater Sound Levels at a Wave Energy Device Testing Facility in Falmouth Bay, UK.

    PubMed

    Garrett, Joanne K; Witt, Matthew J; Johanning, Lars

    2016-01-01

    Passive acoustic monitoring devices were deployed at FaBTest in Falmouth Bay, UK, a marine renewable energy device testing facility during trials of a wave energy device. The area supports considerable commercial shipping and recreational boating along with diverse marine fauna. Noise monitoring occurred during (1) a baseline period, (2) installation activity, (3) the device in situ with inactive power status, and (4) the device in situ with active power status. This paper discusses the preliminary findings of the sound recording at FabTest during these different activity periods of a wave energy device trial. PMID:26610976

  7. Shear wave velocity structure of the Anatolian Plate: anomalously slow crust in southwestern Turkey

    NASA Astrophysics Data System (ADS)

    Delph, Jonathan R.; Biryol, C. Berk; Beck, Susan L.; Zandt, George; Ward, Kevin M.

    2015-07-01

    The Anatolian Plate is composed of different lithospheric blocks and ribbon continents amalgamated during the closure of the Paleotethys Ocean and Neotethys Ocean along a subduction margin. Using ambient noise tomography, we investigate the crustal and uppermost mantle shear wave velocity structure of the Anatolian Plate. A total of 215 broad-band seismic stations were used spanning 7 yr of recording to compute 13 778 cross-correlations and obtain Rayleigh wave dispersion measurements for periods between 8 and 40 s. We then perform a shear wave inversion to calculate the seismic velocity structure of the crust and uppermost mantle. Our results show that the overall crustal shear wave velocities of the Anatolian crust are low (˜3.4 km s-1), indicative of a felsic overall composition. We find that prominent lateral seismic velocity gradients correlate with Tethyan suture zones, supporting the idea that the neotectonic structures of Turkey are exploiting the lithospheric weaknesses associated with the amalgamation of Anatolia. Anomalously slow shear wave velocities (˜3.15 km s-1 at 25 km) are located in the western limb of the Isparta Angle in southwestern Turkey. In the upper crust, we find that these low shear wave velocities correlate well with the projected location of a carbonate platform unit (Bey Dağlari) beneath the Lycian Nappe complex. In the lower crust and upper mantle of this region, we propose that the anomalously slow velocities are due to the introduction of aqueous fluids related to the underplating of accretionary material from the underthrusting of a buoyant, attenuated continental fragment similar to the Eratosthenes seamount. We suggest that this fragment controlled the location of the formation of the Subduction-Transform Edge Propagator fault in the eastern Aegean Sea during rapid slab rollback of the Aegean Arc in early Miocene times. Lastly, we observe that the uppermost mantle beneath continental Anatolia is generally slow (˜4.2 km s-1

  8. Ultrasonic Plastic Welding at 1.2 MHz using a Surface Acoustic Wave Device

    NASA Astrophysics Data System (ADS)

    Naruse, Kengo; Watanabe, Yuji

    2006-05-01

    In this study, we evaluated a higher frequency ultrasonic welding system using a surface acoustic wave (SAW) device with inter-digital electrodes. In ultrasonic plastic welding, welding at higher frequencies has some merits. First, it is assumed that welding at high frequency makes the joining time shorter, because ultrasonic absorption by the polymer is proportional to the square of the frequency. Second, damage to joined parts can be avoided, because vibration displacement amplitude on joining tool is lower at high frequency. However, it is very difficult to maintain a wider joined area at a higher frequency using a conventional longitudinal-mode transducer system. Therefore, a joining system using a SAW device will be quite effective for high frequency joining. In this paper, we describe 1220.6 kHz SAW system with a 20× 18 mm2 work area. Using the SAW system, we joined polyethylene films of 0.8 mm of thick and acrylic plates 2.0 mm of thickness. Furthermore, we compared the SAW system with a conventional 19 kHz longitudinal-mode welding system based on the results of joining.

  9. Comparing the In Vitro Stiffness of Straight-DCP, Wave-DCP, and LCP Bone Plates for Femoral Osteosynthesis.

    PubMed

    Mariolani, José Ricardo Lenzi; Belangero, William Dias

    2013-01-01

    The objective of this study was to compare the Locking Compression Plate (LCP) with the more cost-effective straight-dynamic compression plate (DCP) and wave-DCPs by testing in vitro the effects of plate stiffness on different types of diaphyseal femur fractures (A, B, and C, according to AO classification). The bending structural stiffness of each plate was obtained from four-point bending tests according to ASTM F382-99(2008). The plate systems were tested by applying compression/bending in different osteosynthesis simulation models using wooden rods to simulate the fractured bone fragments. Kruskal-Wallis test showed no significant difference in the bending structural stiffness between the three plate models. Rank-transformed two-way ANOVA showed significant influence of plate type, fracture type, and interaction plate versus fracture on the stiffness of the montages. The straight-DCP produced the most stable model for types B and C fractures, which makes its use advantageous for complex nonosteoporotic fractures that require minimizing focal mobility, whereas no difference was found for type A fracture. Our results indicated that DCPs, in straight or wave form, can provide adequate biomechanical properties for fixing diaphyseal femoral fractures in cases where more modern osteosynthesis systems are cost restrictive. PMID:24959354

  10. Comparing the In Vitro Stiffness of Straight-DCP, Wave-DCP, and LCP Bone Plates for Femoral Osteosynthesis

    PubMed Central

    Mariolani, José Ricardo Lenzi; Belangero, William Dias

    2013-01-01

    The objective of this study was to compare the Locking Compression Plate (LCP) with the more cost-effective straight-dynamic compression plate (DCP) and wave-DCPs by testing in vitro the effects of plate stiffness on different types of diaphyseal femur fractures (A, B, and C, according to AO classification). The bending structural stiffness of each plate was obtained from four-point bending tests according to ASTM F382-99(2008). The plate systems were tested by applying compression/bending in different osteosynthesis simulation models using wooden rods to simulate the fractured bone fragments. Kruskal-Wallis test showed no significant difference in the bending structural stiffness between the three plate models. Rank-transformed two-way ANOVA showed significant influence of plate type, fracture type, and interaction plate versus fracture on the stiffness of the montages. The straight-DCP produced the most stable model for types B and C fractures, which makes its use advantageous for complex nonosteoporotic fractures that require minimizing focal mobility, whereas no difference was found for type A fracture. Our results indicated that DCPs, in straight or wave form, can provide adequate biomechanical properties for fixing diaphyseal femoral fractures in cases where more modern osteosynthesis systems are cost restrictive. PMID:24959354

  11. Cellophane as a half-wave plate and its use for converting a laptop computer screen into a three-dimensional display

    NASA Astrophysics Data System (ADS)

    Iizuka, Keigo

    2003-08-01

    It was experimentally verified that an ordinary 25-μm-thick cellophane sheet possesses properties of a wide wavelength spectrum half-wave plate. Moreover, cellophane displayed superior performance when used for rotating the direction of polarization of white light than a commercially available half-wave plate with a specified wavelength. The retardance of the cellophane was measured to be 170°. The availability of a half-wave plate of an extra large size with low cost opens up usages for large size displays. As an example of its application, an ordinary screen of a laptop personal computer was converted into that of a three-dimensional display by the cellophane half-wave plate. It may be added that the price per square cm2 of the cellophane half-wave plate is about 1/3500 of that of a commercially available half-wave plate.

  12. Less invasive percutaneous wave plating of simple femur shaft fractures: A prospective series.

    PubMed

    Angelini, Alessandro Janson; Livani, Bruno; Flierl, Michael A; Morgan, Steven J; Belangero, William Dias

    2010-06-01

    In developing nations, fixation of femoral shaft fractures with intramedullary (IM) nails can pose significant challenges. Use of IM implants is commonly limited by availability, funds or patient's physique. Conversely, traditional compression plates are usually readily available at a much lower cost, making bridge plating of femur fractures a frequently used surgical technique. We hypothesised that less invasive percutaneous plate osteosynthesis (MIPPO) of femoral shaft fractures has a similar outcome compared to IM nailing. The study is designed as a prospective case series at a Level 1 university trauma centre. Fifty-seven patients with simple femur shaft fractures (Arbeitsgemeinschaft für Osteosynthesefragen/Orthopaedic Trauma Association (AO/OTA) type A) were enrolled between April 2001 and December 2005 and followed up for a minimum of 1 year or until fracture union. Primary outcome measures included union rate and time to union. Secondary outcome parameters were hardware failure, malalignment, infection and need for revision surgery. The mean age of the study cohort was 24.7 years. Fifty-four patients sustained associated systems injury. Primary union occurred in 54 patients in an average time of 13 weeks. Two patients presented with implant failure, and one patient displayed signs of delayed union. Six patients developed valgus deformities, whereas five patients displayed external rotation malalignment. One patient developed a superficial wound infection, and another presented with a deep infection. Bridge wave plating represents a safe and efficacious treatment alternative to IM nailing for simple femoral shaft fractures in countries where IM nails are limited by availability, costs and patient's physical characteristics. PMID:20170914

  13. A new algorithm for three-dimensional joint inversion of body wave and surface wave data and its application to the Southern California plate boundary region

    NASA Astrophysics Data System (ADS)

    Fang, Hongjian; Zhang, Haijiang; Yao, Huajian; Allam, Amir; Zigone, Dimitri; Ben-Zion, Yehuda; Thurber, Clifford; van der Hilst, Robert D.

    2016-05-01

    We introduce a new algorithm for joint inversion of body wave and surface wave data to get better 3-D P wave (Vp) and S wave (Vs) velocity models by taking advantage of the complementary strengths of each data set. Our joint inversion algorithm uses a one-step inversion of surface wave traveltime measurements at different periods for 3-D Vs and Vp models without constructing the intermediate phase or group velocity maps. This allows a more straightforward modeling of surface wave traveltime data with the body wave arrival times. We take into consideration the sensitivity of surface wave data with respect to Vp in addition to its large sensitivity to Vs, which means both models are constrained by two different data types. The method is applied to determine 3-D crustal Vp and Vs models using body wave and Rayleigh wave data in the Southern California plate boundary region, which has previously been studied with both double-difference tomography method using body wave arrival times and ambient noise tomography method with Rayleigh and Love wave group velocity dispersion measurements. Our approach creates self-consistent and unique models with no prominent gaps, with Rayleigh wave data resolving shallow and large-scale features and body wave data constraining relatively deeper structures where their ray coverage is good. The velocity model from the joint inversion is consistent with local geological structures and produces better fits to observed seismic waveforms than the current Southern California Earthquake Center (SCEC) model.

  14. Dual subduction tectonics and plate dynamics of central Japan shown by three-dimensional P-wave anisotropic structure

    NASA Astrophysics Data System (ADS)

    Ishise, Motoko; Miyake, Hiroe; Koketsu, Kazuki

    2015-07-01

    The central Japanese subduction zone is characterized by a complex tectonic setting affected by the dual subduction of oceanic plates and collisions between the island arcs. To better understand of the subduction system, we performed an anisotropic tomography analysis using P-wave arrival times from local earthquakes to determine the three-dimensional structure of P-wave azimuthal anisotropy in the overriding plate and the Pacific and Philippine Sea (PHS) slabs. The principal characteristics of anisotropy in the subducted and subducting plates are (1) in the overriding plate, the distribution pattern of fast direction of crustal anisotropy coincides with that of the strike of geological structure, (2) in the two oceanic plates, fast propagation directions of P-wave were sub-parallel to the directions of seafloor spreading. Additionally, our tomographic images demonstrate that (1) the bottom of the Median Tectonic Line, the longest fault zone in Japan, reaches to the lower crust, and seems to link to the source region of an inter-plate earthquake along the PHS slab, (2) the segmentation of the PHS slab - the Izu Islands arc, the Nishi-Shichito ridge, and the Shikoku basin - due to the formation history, is reflected in the regional variation of anisotropy. The tomographic study further implies that there might be a fragment of the Pacific slab suggested by a previous study beneath the Tokyo metropolitan area. The overall findings strongly indicate that seismic anisotropy analysis provide potentially useful information to understand a subduction zone.

  15. Experimental and theoretical study of Rayleigh-Lamb waves in a plate containing a surface-breaking crack

    NASA Technical Reports Server (NTRS)

    Paffenholz, Joseph; Fox, Jon W.; Gu, Xiaobai; Jewett, Greg S.; Datta, Subhendu K.

    1990-01-01

    Scattering of Rayleigh-Lamb waves by a normal surface-breaking crack in a plate has been studied both theoretically and experimentally. The two-dimensionality of the far field, generated by a ball impact source, is exploited to characterize the source function using a direct integration technique. The scattering of waves generated by this impact source by the crack is subsequently solved by employing a Green's function integral expression for the scattered field coupled with a finite element representation of the near field. It is shown that theoretical results of plate response, both in frequency and time, are similar to those obtained experimentally. Additionally, implication for practical applications are discussed.

  16. Laser-Generated Lamb Waves Propagation in Multilayered Plates Composed of Viscoelastic Fiber-reinforced Composite Materials

    NASA Astrophysics Data System (ADS)

    Sun, Hong-xiang; Zhang, Shu-yi; Yuan, Shou-qi; Guan, Yi-jun; Ge, Yong

    2016-07-01

    The propagation characteristics of laser-generated Lamb waves in multilayered fiber-reinforced composite plates with different fiber orientations and number of layers have been investigated quantitatively. Considering the viscoelasticity of the composite materials, we have set up finite element models for simulating the laser-generated Lamb waves in two types of the multilayered composite plates. In the first type, different fiber orientations are adopted. In the second one, different number of layers are considered. The results illustrate the occurrence of attenuation and dispersion, which is induced by the viscoelasticity and multilayer structure, respectively.

  17. Exploring the resonant vibration of thin plates: Reconstruction of Chladni patterns and determination of resonant wave numbers.

    PubMed

    Tuan, P H; Wen, C P; Chiang, P Y; Yu, Y T; Liang, H C; Huang, K F; Chen, Y F

    2015-04-01

    The Chladni nodal line patterns and resonant frequencies for a thin plate excited by an electronically controlled mechanical oscillator are experimentally measured. Experimental results reveal that the resonant frequencies can be fairly obtained by means of probing the variation of the effective impedance of the exciter with and without the thin plate. The influence of the extra mass from the central exciter is confirmed to be insignificant in measuring the resonant frequencies of the present system. In the theoretical aspect, the inhomogeneous Helmholtz equation is exploited to derive the response function as a function of the driving wave number for reconstructing experimental Chladni patterns. The resonant wave numbers are theoretically identified with the maximum coupling efficiency as well as the maximum entropy principle. Substituting the theoretical resonant wave numbers into the derived response function, all experimental Chladni patterns can be excellently reconstructed. More importantly, the dispersion relationship for the flexural wave of the vibrating plate can be determined with the experimental resonant frequencies and the theoretical resonant wave numbers. The determined dispersion relationship is confirmed to agree very well with the formula of the Kirchhoff-Love plate theory. PMID:25920861

  18. Wide spectral range multiple orders and half-wave achromatic phase retarders fabricated from two lithium tantalite single crystal plates

    NASA Astrophysics Data System (ADS)

    Emam-Ismail, M.

    2015-11-01

    In a broad spectral range (300-2500 nm), we report the use of channeled spectra formed from the interference of polarized white light to extract the dispersion of the phase birefringence Δnp(λ) of the x- and y-cuts of lithium tantalite (LiTaO3:LT) plates. A new method named as wavenumber difference method is used to extract the spectral behavior of the phase birefringence of the x- and y- cuts of LT plates. The correctness of the obtained birefringence data is confirmed by using Jones vector method through recalculating the plates thicknesses. The spectral variation of the phase birefringence Δnp(λ) of the x- and y-cuts of LT plates is fitted to Cauchy dispersion function with relative error for both x- and y-cuts of order 2.4×10-4. The group birefringence dispersion Δng (λ) of the x- and y-cuts of LT plates is also calculated and fitted to Ghosh dispersion function with relative error for both x- and y-cuts of order 2.83×10-4. Furthermore, the phase retardation introduced by the x- and y-cuts of LT plates is also calculated. It is found that the amount of phase retardation confirms that the x- and y-cuts of LT plates can act as a multiple order half- and quarter-wave plates working at many different wavelengths through the spectral range 300-2500 nm. For the x- and y-cuts of LT plates, a large difference between group and phase birefringence is observed at a short wavelength (λ=300 nm); while such difference progressively diminished at longer wavelength (λ=2000 nm). In the near infrared region (NIR) region (700-2500 nm), a broad spectral full width at half maximum (FWHM) is observed for either x- or y-cut of LT plate which can act as if it is working as a zero order wave plate. Finally, an achromatic half-wave plate working at 598 nm and covering a wide spectral range (300-900 nm) is demonstrated experimentally by combining both x- and y-cuts of LT plates.

  19. Parametric Decay of Pump Waves into two Linear Modes in SINP MaPLE Device

    SciTech Connect

    Biswas, Subir; Pal, Rabindranath

    2010-11-23

    Parametric decay of incident waves of ion cyclotron frequency range into linear modes is observed in experiment performed in the SINP MaPLE device where nitrogen plasma produced by ECR discharge. Along with a mode in drift wave frequency range, sideband of the incident waves are observed when amplitude of the exciter signal goes above a threshold value. Sideband of the second harmonic is also seen. Preliminary studies point towards excitation of ion Bernstein wave. Details of the experimental results are presented.

  20. Parametric Decay of Pump Waves into two Linear Modes in SINP MaPLE Device

    NASA Astrophysics Data System (ADS)

    Biswas, Subir; Pal, Rabindranath

    2010-11-01

    Parametric decay of incident waves of ion cyclotron frequency range into linear modes is observed in experiment performed in the SINP MaPLE device where nitrogen plasma produced by ECR discharge. Along with a mode in drift wave frequency range, sideband of the incident waves are observed when amplitude of the exciter signal goes above a threshold value. Sideband of the second harmonic is also seen. Preliminary studies point towards excitation of ion Bernstein wave. Details of the experimental results are presented.

  1. Computational Characterization of Adhesive Bond Properties Using Guided Waves in Bonded Plates

    NASA Astrophysics Data System (ADS)

    Koreck, Juergen; Valle, Christine; Qu, Jianmin; Jacobs, Laurence J.

    2007-03-01

    This research focuses on the application of guided waves techniques to nondestructively characterize the structural integrity of bonded engineering components. Computational methods are used to examine the properties of double-layered, adhesive bonded plates. This study quantifies the effect of the adhesive bond parameters (Young's modulus, Poisson's ratio and bond thickness) on the dispersion curves. A commercial finite element (FE) code (ABAQUS/Explicit) is used for the numerical model while the global matrix method (GMM) is used to benchmark the resulting dispersion relationships in the form of a frequency-wavenumber or slowness-frequency relation. In the dispersion relations, a set of bond parameter sensitive and FE-visible points is selected. The frequency locations of these points represent the solution criteria for the inversion procedure based on the global matrix method. The capabilities of the inversion process depend on the number of transient output signals from a FE simulation for the forward problem.

  2. Calculation of oblique-shock-wave laminar-boundary-layer interaction on a flat plate

    NASA Technical Reports Server (NTRS)

    Goldberg, U.; Reshotko, E.

    1980-01-01

    A finite difference solution to the problem of the interaction between an impinging oblique shock wave and the laminar boundary layer on a flat plate is presented. The boundary layer equations coupled with the Prandtl-Meyer relation for the external flow are used to calculate the flow field. A method for the calculation of the separated flow region is presented and discussed. Comparisons between this theory and the experimental results of other investigators show fairly good agreement. Results are presented for the case of a cooled wall with an oncoming flow at Mach number 2.0 without and with suction. The results show that a small amount of suction greatly reduces the extent of the separated region in the vicinity of the shock impingement location.

  3. A Protein Concentration Measurement System Using a Flexural Plate-Wave Frequency-Shift Readout Technique

    PubMed Central

    Wang, Chua-Chin; Sung, Tzu-Chiao; Hsu, Chia-Hao; Tsai, Yue-Da; Chen, Yun-Chi; Lee, Ming-Chih; Huang, I-Yu

    2013-01-01

    A protein concentration measurement system with two-port flexural plate-wave (FPW) biosensors using a frequency-shift readout technique is presented in this paper. The proposed frequency-shift readout method employs a peak detecting scheme to measure the amount of resonant frequency shift. The proposed system is composed of a linear frequency generator, a pair of peak detectors, two registers, and a subtractor. The frequency sweep range of the linear frequency generator is limited to 2 MHz to 10 MHz according to the characteristics of the FPW biosensors. The proposed frequency-shift readout circuit is carried out on silicon using a standard 0.18 μm CMOS technology. The sensitivity of the peak detectors is measured to be 10 mV. The power consumption of the proposed protein concentration measurement system is 48 mW given a 0.1 MHz system clock. PMID:23344375

  4. Ultrasonic wave propagation in viscoelastic cortical bone plate coupled with fluids: a spectral finite element study.

    PubMed

    Nguyen, Vu-Hieu; Naili, Salah

    2013-01-01

    This work deals with the ultrasonic wave propagation in the cortical layer of long bones which is known as being a functionally graded anisotropic material coupled with fluids. The viscous effects are taken into account. The geometrical configuration mimics the one of axial transmission technique used for evaluating the bone quality. We present a numerical procedure adapted for this purpose which is based on the spectral finite element method (FEM). By using a combined Laplace-Fourier transform, the vibroacoustic problem may be transformed into the frequency-wavenumber domain in which, as radiation conditions may be exactly introduced in the infinite fluid halfspaces, only the heterogeneous solid layer needs to be analysed using FEM. Several numerical tests are presented showing very good performance of the proposed approach. We present some results to study the influence of the frequency on the first arriving signal velocity in (visco)elastic bone plate. PMID:22288934

  5. A novel interferometric vibration measurement sensor with quadrature detection based on 1/8 wave plate

    NASA Astrophysics Data System (ADS)

    Zhen, Shenglai; Chen, Bo; Yuan, Liang; Li, Min; Liang, Jing; Yu, Benli

    2010-03-01

    In-phase and quadrature-phase (I/Q) signals often need to be formed in the laser interferometric vibration measurement technique. To avoid the disadvantages of traditional I/Q signals forming methods such as effect of piezoelectric ceramic (PZT) for generating high frequency carrier, or optical configuration with complicated structure, a novel interferometric vibration measurement sensor with quadrature detection is proposed. The sensor utilizes simple optical configuration which contains 1/8 wave plate to generate two I/Q signals, then the signals were processed by arctangent algorithm which is compiled by Labview software through data acquisition card. Theoretical analysis and experimental Lissajous figures synthesis prove the phase orthogonality of the two signals. The experimental results indicate that the system can measure the vibration displacement accurately.

  6. Surface acoustic wave devices as passive buried sensors

    NASA Astrophysics Data System (ADS)

    Friedt, J.-M.; Rétornaz, T.; Alzuaga, S.; Baron, T.; Martin, G.; Laroche, T.; Ballandras, S.; Griselin, M.; Simonnet, J.-P.

    2011-02-01

    Surface acoustic wave (SAW) devices are currently used as passive remote-controlled sensors for measuring various physical quantities through a wireless link. Among the two main classes of designs—resonator and delay line—the former has the advantage of providing narrow-band spectrum informations and hence appears compatible with an interrogation strategy complying with Industry-Scientific-Medical regulations in radio-frequency (rf) bands centered around 434, 866, or 915 MHz. Delay-line based sensors require larger bandwidths as they consists of a few interdigitated electrodes excited by short rf pulses with large instantaneous energy and short response delays but is compatible with existing equipment such as ground penetrating radar (GPR). We here demonstrate the measurement of temperature using the two configurations, particularly for long term monitoring using sensors buried in soil. Although we have demonstrated long term stability and robustness of packaged resonators and signal to noise ratio compatible with the expected application, the interrogation range (maximum 80 cm) is insufficient for most geology or geophysical purposes. We then focus on the use of delay lines, as the corresponding interrogation method is similar to the one used by GPR which allows for rf penetration distances ranging from a few meters to tens of meters and which operates in the lower rf range, depending on soil water content, permittivity, and conductivity. Assuming propagation losses in a pure dielectric medium with negligible conductivity (snow or ice), an interrogation distance of about 40 m is predicted, which overcomes the observed limits met when using interrogation methods specifically developed for wireless SAW sensors, and could partly comply with the above-mentioned applications. Although quite optimistic, this estimate is consistent with the signal to noise ratio observed during an experimental demonstration of the interrogation of a delay line buried at a depth of 5

  7. A New Omni-Directional EMAT for Ultrasonic Lamb Wave Tomography Imaging of Metallic Plate Defects

    PubMed Central

    Huang, Songling; Wei, Zheng; Zhao, Wei; Wang, Shen

    2014-01-01

    This paper proposes a new omni-directional electromagnetic acoustic transducer (EMAT) for the ultrasonic Lamb wave (ULW) tomography imaging (TI) of defects in metallic plates. The proposed EMAT is composed of a permanent magnet and a coil with a contra-flexure structure. This new EMAT coil structure is used for omni-directional ULW transmission and reception and ULW TI for the first time. The theoretical background and the working principles of this EMAT are presented and analyzed. The experimental results of its use on a 3 mm thick aluminum plate indicate that the EMAT with a contra-flexure coil (CFC) can transmit and receive a pure single A0 mode ULW with a high signal-to-noise ratio (SNR). Thus, the extraction of the projection data used for ULW TI may be performed accurately. The circumferential consistency of the projection data is only slightly influenced by the distortion of the eddy current field that is induced by the new CFC with an irregular shape. When the new EMAT array is used for ULW TI using the cross-hole method and SIRT arithmetic, a desirable imaging quality can be achieved, and the estimated size of an artificial corrosion defect agreed well with its actual value. The relation between the reconstruction resolution and the number of the new EMATs used is analyzed. More TI experiments are carried out when the aluminum plate defect is in two different locations relative to the EMAT array, for the further investigation of the performances of the new EMATs. PMID:24561398

  8. A new omni-directional EMAT for ultrasonic Lamb wave tomography imaging of metallic plate defects.

    PubMed

    Huang, Songling; Wei, Zheng; Zhao, Wei; Wang, Shen

    2014-01-01

    This paper proposes a new omni-directional electromagnetic acoustic transducer (EMAT) for the ultrasonic Lamb wave (ULW) tomography imaging (TI) of defects in metallic plates. The proposed EMAT is composed of a permanent magnet and a coil with a contra-flexure structure. This new EMAT coil structure is used for omni-directional ULW transmission and reception and ULW TI for the first time. The theoretical background and the working principles of this EMAT are presented and analyzed. The experimental results of its use on a 3 mm thick aluminum plate indicate that the EMAT with a contra-flexure coil (CFC) can transmit and receive a pure single A0 mode ULW with a high signal-to-noise ratio (SNR). Thus, the extraction of the projection data used for ULW TI may be performed accurately. The circumferential consistency of the projection data is only slightly influenced by the distortion of the eddy current field that is induced by the new CFC with an irregular shape. When the new EMAT array is used for ULW TI using the cross-hole method and SIRT arithmetic, a desirable imaging quality can be achieved, and the estimated size of an artificial corrosion defect agreed well with its actual value. The relation between the reconstruction resolution and the number of the new EMATs used is analyzed. More TI experiments are carried out when the aluminum plate defect is in two different locations relative to the EMAT array, for the further investigation of the performances of the new EMATs. PMID:24561398

  9. Resonant excitation of coupled Rayleigh waves in a short and narrow fluid channel clad between two identical metal plates

    DOE PAGESBeta

    García-Chocano, Victor M.; López-Rios, Tomás; Krokhin, Arkadii; Sanchez-Dehesa, Jose

    2011-12-23

    Transmission of ultrasonic waves through a slit between two water immersed brass plates is studied for sub-wavelength plate thicknesses and slit apertures. Extraordinary high absorption is observed at discrete frequencies corresponding to resonant excitation of Rayleigh waves on the both sides of the channel. The coupling of the Rayleigh waves occurs through the fluid and the corresponding contribution to the dispersion has been theoretically derived and also experimentally confirmed. Symmetric and anti-symmetric modes are predicted but only the symmetric mode resonances have been observed. It follows from the dispersion equation that the coupled Rayleigh waves cannot be excited in amore » channel with apertures less than the critical one. The calculated critical aperture is in a good agreement with the measured acoustic spectra. These findings could be applied to design a broadband absorptive metamaterial.« less

  10. Resonant excitation of coupled Rayleigh waves in a short and narrow fluid channel clad between two identical metal plates

    SciTech Connect

    García-Chocano, Victor M.; López-Rios, Tomás; Krokhin, Arkadii; Sanchez-Dehesa, Jose

    2011-12-23

    Transmission of ultrasonic waves through a slit between two water immersed brass plates is studied for sub-wavelength plate thicknesses and slit apertures. Extraordinary high absorption is observed at discrete frequencies corresponding to resonant excitation of Rayleigh waves on the both sides of the channel. The coupling of the Rayleigh waves occurs through the fluid and the corresponding contribution to the dispersion has been theoretically derived and also experimentally confirmed. Symmetric and anti-symmetric modes are predicted but only the symmetric mode resonances have been observed. It follows from the dispersion equation that the coupled Rayleigh waves cannot be excited in a channel with apertures less than the critical one. The calculated critical aperture is in a good agreement with the measured acoustic spectra. These findings could be applied to design a broadband absorptive metamaterial.

  11. P and S Waves Traversing Beneath Western Japan and the Shape of the Subducting Philippine Sea Plate

    NASA Astrophysics Data System (ADS)

    Kuge, K.; Fukuda, T.

    2011-12-01

    We show the characteristics of P and S waves traversing beneath western Japan, which can provide constraints on the shape of the subducting Philippine Sea plate. The subduction of the Philippine Sea plate causes megathrust earthquakes along the Nankai trough in western Japan. The complicated shape of the subducting plate can affect the spatial variation of the plate coupling as well as the recurrence of great interplate earthquakes. For slab earthquakes at depths of about 45 km in northwestern Shikoku, we observe two arrivals of P wave at the NIED Hi-net stations in the azimuth range from the north to the east. The apparent velocities are about 8 and 6.7 km/s, corresponding to P velocities in the mantle and crust, respectively. Dominant S waves propagate by apparent velocity of about 3.8 km/s, being S velocity in the crust. These observations are in agreement with those of Oda et al. (1990) and Ohkura (2000) using a smaller number of local stations. The P and S waves propagating at the slow apparent velocities can be modeled by horizontally layered structure if the earthquakes are located within a low-velocity layer spanning the stations. The thick low-velocity layer can be a stack of the continental crust of the Eurasian plate and the oceanic crust of the Philippine Sea plate subducting nearly subhorizontally (Oda et al., 1990; Ohkura, 2000). The P and S waves with the slow apparent velocities are observable at distances up to about 300 km. On the other hand, they are not observed or observable only at small distances in the western side of the epicenters. The spatial characteristics can be used to constrain the geometry of the low-velocity layer associated with the shape of the oceanic crust of the Philippine Sea plate. We observe two arrivals of P wave in the eastern side of the Kii Peninsula for slab earthquakes beneath Shikoku. Both apparent velocities are in a range of P velocity in the mantle. There appear two ray paths of P wave propagating in the mantle

  12. Microwave and millimeter-wave resonant-tunneling devices

    NASA Technical Reports Server (NTRS)

    Sollner, T. C. L. Gerhard; Le, Han Quang; Brown, E. L.

    1988-01-01

    Resonant-tunneling devices in microelectronic component form, whose structure is the electron analog of a Fabry-Perot resonator, encompass oscillators, self-oscillating mixers, and harmonic multipliers. The negative differential resistance characteristic of these devices has been obtained at room temperature, and resonant-tunneling transistors capable of operation in the THz-frequency range appear to be feasible. Three-terminal resonant-tunneling device development is in its infancy, as is that of devices for digital applications.

  13. A novel coaptation plate device for functional mitral regurgitation: an in vitro study.

    PubMed

    He, Zhaoming; Zhang, Kailiang; Gao, Bo

    2014-10-01

    A novel mitral valve repair device, coaptation plate (CP), was proposed to treat functional mitral regurgitation. The objective of this study was to test efficacy of the CP in an in vitro model of functional mitral regurgitation. Ten fresh porcine mitral valves were mounted in a left heart simulator, Mitral regurgitation was emulated by means of annular dilatation, and the asymmetrical or symmetrical papillary muscles (PM) displacement. A rigid and an elastic CPs were fabricated and mounted in the orifice of regurgitant mitral valves. Steady flow leakage in a hydrostatic condition and regurgitant volume in a pulsatile flow were measured before and after implantation of the CPs. The rigid and elastic CPs reduced mitral valve regurgitant volume fraction from 60.5 ± 11.4 to 35 ± 11.6 and 36.5 ± 9.9%, respectively, in the asymmetric PM displacement. Mitral regurgitation was much lower in the symmetric PM displacement than in the asymmetric PM displacement, and was not significantly reduced after implantation of either CP. In conclusion, both the rigid and elastic CPs are effective and have no difference in reduction of functional mitral regurgitation. The CP does not aggravate mitral valve coaptation and may be used as a preventive way. PMID:25015132

  14. Non-linear control of the ''clam'' wave energy device. Final report

    SciTech Connect

    Not Available

    1983-09-01

    A promising wave energy device being currently investigated is the ''clam'' device. The clam extracts energy by pumping air through a specially designed (Wells) turbine. Although operation of the Wells turbine does not require a rectified air flow, some additional control will be necessary to optimize the phase of the clam motion for good efficiencies. An examination of the equation of motion in the time domain suggests the possibility of non-linear phase control by mechanical, power take-off, or pneumatic latching. Latching can be shown to increase the efficiency of the device in the longer wavelengths of the wave spectrum, i.e. those of high incident wave power.

  15. Characterizing Atacama B-mode Search Detectors with a Half-Wave Plate

    NASA Astrophysics Data System (ADS)

    Simon, S. M.; Appel, J. W.; Campusano, L. E.; Choi, S. K.; Crowley, K. T.; Essinger-Hileman, T.; Gallardo, P.; Ho, S. P.; Kusaka, A.; Nati, F.; Palma, G. A.; Page, L. A.; Raghunathan, S.; Staggs, S. T.

    2016-08-01

    The Atacama B-Mode Search (ABS) instrument is a cryogenic (˜ 10 K) crossed-Dragone telescope located at an elevation of 5190 m in the Atacama Desert in Chile that observed for three seasons between February 2012 and October 2014. ABS observed the cosmic microwave background (CMB) at large angular scales (40<ℓ <500) to limit the B-mode polarization spectrum around the primordial B-mode peak from inflationary gravity waves at ℓ ˜ 100. The ABS focal plane consists of 480 transition-edge sensor (TES) bolometers. They are coupled to orthogonal polarizations from a planar ortho-mode transducer and observe at 145 GHz. ABS employs an ambient-temperature, rapidly rotating half-wave plate (HWP) to mitigate systematic effects and move the signal band away from atmospheric 1 / f noise, allowing for the recovery of large angular scales. We discuss how the signal at the second harmonic of the HWP rotation frequency can be used for data selection and for monitoring the detector responsivities.

  16. Characterizing Atacama B-mode Search Detectors with a Half-Wave Plate

    NASA Astrophysics Data System (ADS)

    Simon, S. M.; Appel, J. W.; Campusano, L. E.; Choi, S. K.; Crowley, K. T.; Essinger-Hileman, T.; Gallardo, P.; Ho, S. P.; Kusaka, A.; Nati, F.; Palma, G. A.; Page, L. A.; Raghunathan, S.; Staggs, S. T.

    2015-12-01

    The Atacama B-Mode Search (ABS) instrument is a cryogenic (˜ 10 K) crossed-Dragone telescope located at an elevation of 5190 m in the Atacama Desert in Chile that observed for three seasons between February 2012 and October 2014. ABS observed the cosmic microwave background (CMB) at large angular scales (40<ℓ <500 ) to limit the B-mode polarization spectrum around the primordial B-mode peak from inflationary gravity waves at ℓ ˜ 100 . The ABS focal plane consists of 480 transition-edge sensor (TES) bolometers. They are coupled to orthogonal polarizations from a planar ortho-mode transducer and observe at 145 GHz. ABS employs an ambient-temperature, rapidly rotating half-wave plate (HWP) to mitigate systematic effects and move the signal band away from atmospheric 1 / f noise, allowing for the recovery of large angular scales. We discuss how the signal at the second harmonic of the HWP rotation frequency can be used for data selection and for monitoring the detector responsivities.

  17. Unsteady heat-flux measurements of second-mode instability waves in a hypersonic flat-plate boundary layer

    NASA Astrophysics Data System (ADS)

    Kegerise, Michael A.; Rufer, Shann J.

    2016-08-01

    In this paper, we report on the application of the atomic layer thermopile (ALTP) heat-flux sensor to the measurement of laminar-to-turbulent transition in a hypersonic flat-plate boundary layer. The centerline of the flat-plate model was instrumented with a streamwise array of ALTP sensors, and the flat-plate model was exposed to a Mach 6 freestream over a range of unit Reynolds numbers. Here, we observed an unstable band of frequencies that are associated with second-mode instability waves in the laminar boundary layer that forms on the flat-plate surface. The measured frequencies, group velocities, phase speeds, and wavelengths of these instability waves are consistent with data previously reported in the literature. Heat flux time series, and the Morlet wavelet transforms of them, revealed the wave-packet nature of the second-mode instability waves. In addition, a laser-based radiative heating system was used to measure the frequency response functions (FRF) of the ALTP sensors used in the wind tunnel test. These measurements were used to assess the stability of the sensor FRFs over time and to correct spectral estimates for any attenuation caused by the finite sensor bandwidth.

  18. Arbitrary photonic wave plate operations on chip: Realizing Hadamard, Pauli-X, and rotation gates for polarisation qubits

    NASA Astrophysics Data System (ADS)

    Heilmann, René; Gräfe, Markus; Nolte, Stefan; Szameit, Alexander

    2014-02-01

    Chip-based photonic quantum computing is an emerging technology that promises much speedup over conventional computers at small integration volumes. Particular interest is thereby given to polarisation-encoded photonic qubits, and many protocols have been developed for this encoding. However, arbitrary wave plate operation on chip are not available so far, preventing from the implementation of integrated universal quantum computing algorithms. In our work we close this gap and present Hadamard, Pauli-X, and rotation gates of high fidelity for photonic polarisation qubits on chip by employing a reorientation of the optical axis of birefringent waveguides. The optical axis of the birefringent waveguide is rotated due to the impact of an artificial stress field created by an additional modification close to the waveguide. By adjusting this length of the defect along the waveguide, the retardation between ordinary and extraordinary field components is precisely tunable including half-wave plate and quarter-wave plate operations. Our approach demonstrates the full range control of orientation and strength of the induced birefringence and thus allows arbitrary wave plate operations without affecting the degree of polarisation or introducing additional losses to the waveguides. The implemented gates are tested with classical and quantum light.

  19. Production of three-dimensional, spatially stimulated disturbance waves by periodic blowing and suction in a plate boundary layer flow

    NASA Astrophysics Data System (ADS)

    Konzelmann, U.; Rist, U.; Fasel, H.

    An attempt has been made to study disturbance waves by numerically simulating temporally periodic blowing and suction through a hole in a plate. Modified mixed spectral and difference methods were used, and the resulting vortex strength components are shown. With a few modifications, the procedure can be used for realistic simulation of active boundary layer influences.

  20. Imaging of Lamb Waves in Plates for Quantitative Determination of Anisotropy using Photorefractive Dynamic Holography

    SciTech Connect

    Telschow, Kenneth Louis; Deason, Vance Albert; Schley, Robert Scott; Watson, Scott Marshall

    1998-06-01

    Anisotropic properties of sheet materials can be determined by measuring the propagation of Lamb waves in different directions. Electromagnetic acoustic transduction and laser ultrasonic methods provide noncontacting approaches that are often desired for application to industrial and processing environments. This paper describes a laser imaging approach utilizing the adaptive property of photorefractive materials to produce a real-time measurement of the antisymmetric Lamb wave mode in all directions simultaneously. Continuous excitation is employed enabling the data to be recorded and displayed by a CCD camera. Analysis of the image produces a direct quantitative determination of the phase velocity in all directions showing plate anisotropy in the plane. Many optical techniques for measuring ultrasonic motion at surfaces have been developed for use in applications such as vibration measurement and laser ultrasonics. Most of these methods have similar sensitivities and are based on time domain processing using homodyne, Fabry-Perot [1], and, more recently, photorefractive interferometry [2]. Generally, the methods described above do not allow measurement at more than one surface point simultaneously, requiring multiple beam movements and scanning in order to produce images of surface ultrasonic motion over a large area. Electronic speckle interferometry, including shearography, does provide images directly of vibrations over large surface areas. This method has proven very durable in the field for large displacement amplitudes of several wavelengths. In addition, a sensitivity of ë/3000 has been demonstrated under laboratory conditions [3]. Full-field imaging of traveling ultrasonic waves using digital shearography has been recently reported with sensitivity in the nanometer range [4]. With this method, optical interference occurs at the photodetector

  1. Application of surface acoustic wave devices to radio telemetry

    NASA Technical Reports Server (NTRS)

    Strasilla, U.

    1983-01-01

    Three experimental Surface Acoustic Wave Resonators (SAWR) are developed and evaluated. A desired center frequency is obtained by correct spacing of the Inter-Digital Transducers (IDT). Transmitting and receiving IDT's must be close for adequate coupling and a sufficient number of reflectors are required to create a high quality standing wave. A review of oscillator theory is given and current technology evaluated.

  2. Power selective optical filter devices and optical systems using same

    DOEpatents

    Koplow, Jeffrey P

    2014-10-07

    In an embodiment, a power selective optical filter device includes an input polarizer for selectively transmitting an input signal. The device includes a wave-plate structure positioned to receive the input signal, which includes at least one substantially zero-order, zero-wave plate. The zero-order, zero-wave plate is configured to alter a polarization state of the input signal passing in a manner that depends on the power of the input signal. The zero-order, zero-wave plate includes an entry and exit wave plate each having a fast axis, with the fast axes oriented substantially perpendicular to each other. Each entry wave plate is oriented relative to a transmission axis of the input polarizer at a respective angle. An output polarizer is positioned to receive a signal output from the wave-plate structure and selectively transmits the signal based on the polarization state.

  3. The effect of shock wave impingement on thin, woven glass fiber reinforced, polymer composite plates

    NASA Astrophysics Data System (ADS)

    Jahnke, Douglas M.

    deformation of the test specimen. The technique has been validated by comparing the results obtained in a static experiment with the results measured by laser displacement sensors. Additional validation of dynamically obtained strain measurements was carried out by using a 13 mm (1/2") thick in-house fabricated composite specimen with embedded strain gauges and piezoelectric sensors. Surface mounted sensors due to the large inertia forces experienced by a test specimen tend to detach from it almost immediately after the shock impact, so very little useful data could be collected. The present work has created a strong foundation in testing methodology and baseline results in studying the effects of shock wave impingement on FRP composites. It was found that the maximum deformation of the plate occurs immediate after the shock impact and much before the whole loading cycle is completed. The results of permanent deformation have been normalized by using the impulse of the loading force. Additional work has been focused on the energy exchange between the incoming shock wave and the specimen. Understanding how much energy is associated with the shock reflection, transmission, absorption, or passed through is critical to designing protective systems using FRP composites.

  4. Numerical Simulation of Nonlinear Lamb Waves Used in a Thin Plate for Detecting Buried Micro-Cracks

    PubMed Central

    Wan, Xiang; Zhang, Qing; Xu, Guanghua; Tse, Peter W.

    2014-01-01

    Compared with conventional linear ultrasonic inspection methods, which are sensitive only to severe defects, nonlinear ultrasonic inspection methods are better for revealing micro-cracks in thin plates. However, most nonlinear ultrasonic inspection methods have only been experimentally investigated using bulk or Rayleigh waves. Numerical studies, especially numerical simulations of Lamb ultrasonic waves, have seldom been reported. In this paper, the interaction between nonlinear S0 mode Lamb waves and micro-cracks of various lengths and widths buried in a thin metallic plate was simulated using the finite element method (FEM). The numerical results indicate that after interacting with a micro-crack, a new wave-packet was generated in addition to the S0 mode wave-packet. The second harmonics of the S0 mode Lamb waves and the new wave-packet were caused by nonlinear acoustic effects at the micro-crack. An amplitude ratio indicator is thus proposed for the early detection of buried micro-cracks. PMID:24834908

  5. Numerical study and topology optimization of 1D periodic bimaterial phononic crystal plates for bandgaps of low order Lamb waves.

    PubMed

    Hedayatrasa, Saeid; Abhary, Kazem; Uddin, Mohammad

    2015-03-01

    The optimum topology of bimaterial phononic crystal (PhCr) plates with one-dimensional (1D) periodicity to attain maximum relative bandgap width of low order Lamb waves is computationally investigated. The evolution of optimized topology with respect to filling fraction of constituents, alternatively stiff scattering inclusion, is explored. The underlying idea is to develop PhCr plate structures with high specific bandgap efficiency at particular filling fraction, or further with multiscale functionality through gradient of optimized PhCr unitcell all over the lattice array. Multiobjective genetic algorithm (GA) is employed in this research in conjunction with finite element method (FEM) for topology optimization of silicon-tungsten PhCr plate unitcells. A specialized FEM model is developed and verified for dispersion analysis of plate waves and calculation of modal response. Modal band structure of regular PhCr plate unitcells with centric scattering layer is studied as a function of aspect ratio and filling fraction. Topology optimization is then carried out for a few aspect ratios, with and without prescribed symmetry, over various filling fractions. The efficiency of obtained solutions is verified as compared to corresponding regular centric PhCr plate unitcells. Moreover, being inspired by the obtained optimum topologies, definite and easy to produce topologies are proposed with enhanced bandgap efficiency as compared to centric unitcells. Finally a few cases are introduced to evaluate the frequency response of finite PhCr plate structures produced by achieved topologies and also to confirm the reliability of calculated modal band structures. Cases made by consecutive unitcells of different filling fraction are examined in order to attest the bandgap efficiency and multiscale functionality of such graded PhCr plate structures. PMID:25468146

  6. High-Q cross-plate phononic crystal resonator for enhanced acoustic wave localization and energy harvesting

    NASA Astrophysics Data System (ADS)

    Yang, Aichao; Li, Ping; Wen, Yumei; Yang, Chao; Wang, Decai; Zhang, Feng; Zhang, Jiajia

    2015-05-01

    A high-Q cross-plate phononic crystal resonator (Cr-PCR) coupled with an electromechanical Helmholtz resonator (EMHR) is proposed to improve acoustic wave localization and energy harvesting. Owing to the strongly directional wave-scattering effect of the cross-plate corners, strong confinement of acoustic waves emerges. Consequently, the proposed Cr-PCR structure exhibits ∼353.5 times higher Q value and ∼6.1 times greater maximum pressure amplification than the phononic crystal resonator (Cy-PCR) (consisting of cylindrical scatterers) of the same size. Furthermore, the harvester using the proposed Cr-PCR and the EMHR has ∼22 times greater maximum output-power volume density than the previous harvester using Cy-PCR and EMHR structures.

  7. PZT-induced Lamb waves and pattern recognitions for on-line health monitoring of jointed steel plates

    NASA Astrophysics Data System (ADS)

    Park, Seung-Hee; Yun, Chung-Bang; Roh, Yongrae

    2005-05-01

    This paper presents a non-destructive evaluation (NDE) technique for detecting damages on a jointed steel plate on the basis of the time of flight and wavelet coefficient, obtained from wavelet transforms of Lamb wave signals. Probabilistic neural networks (PNNs) and support vector machines (SVMs), which are tools for pattern classification problems, were applied to the damage estimation. Two kinds of damages were artificially introduced by loosening bolts located in the path of the Lamb waves and those out of the path. The damage cases were used for the establishment of the optimal decision boundaries which divide each damage class"s region from the intact class. In this study, the applicability of the PNNs and SVMs was investigated for the damages in and out of the Lamb wave path. It has been found that the present methods are very efficient in detecting the damages simulated by loose bolts on the jointed steel plate.

  8. Apparatus for in-situ nondestructive measurement of Young's modulus of plate structures

    NASA Technical Reports Server (NTRS)

    Huang, Jerry Qixin (Inventor); Perez, Robert J. (Inventor); DeLangis, Leo M. (Inventor)

    2005-01-01

    A method and apparatus for determining stiffness of a plate-like structure including a monolithic or composite laminate plate entails disposing a device for generating an acoustical pulse against a surface of the plate and disposing a detecting device against the same surface spaced a known distance from the pulse-generating device, and using the pulse-generating device to emit a pulse so as to create an extensional wave in the plate. The detecting device is used to determine a time of flight of the wave over the known distance, and the wave velocity is calculated. A Young's modulus of the plate is determined by a processor based on the wave velocity. Methods and apparatus for evaluating both isotropic plates and anisotropic laminates are disclosed.

  9. Seismic Anisotropy beneath the African Plate using Shear Wave Splitting Measurements from AfricaArray Stations

    NASA Astrophysics Data System (ADS)

    Nunley, M. E.; Weeraratne, D.; Nyblade, A.

    2011-12-01

    The African continental plate is made up of a series of cratons and fold belts with activation ages ranging from present to Archean. Recent studies have shown that this tectonic assemblage occurred over a long history of accretion and rifting cycles that likely left behind the complex crust and lithospheric fabric that we see today. Here we study seismic anisotropy beneath the African continent using a large array of permanent AfricaArray and Global Seismic Network seismic stations located throughout Africa. We supply shear wave splitting techniques to teleseismic earthquake events using the eigenvalue method where the second eigenvalue is minimized to determine anisotropy. Stations located in the Ethiopian rift zone yield a NE-SW fast direction with the largest delay times of 1.5s. One station (KOWA) located in the west African craton displays a NW-SE fast direction. Stations located near Cameroon, at the coastal edge of the central African shear zone, produce NW-SE fast directions oriented perpendicular to the shear zone axis. . A group of stations located on Archean crust in central Africa skirt the Congo craton and display consistent NNE fast directions and delay times of 1.0s. Two stations, LSZ and TEZI are located in the Damara suture belt between the Congo and Kaapvaal cratons display a NE-SW fast direction parallel to the suture axis. In the Kaapvaal craton region the average anisotropic direction is NNE with a 1.0s delay time. New stations available south of the Kaapvaal craton reveal a NE fast direction with delay times that vary from 0.5 to 1.3 s. Several splitting measurements are made for the southern station HVD which display backazimuth dependence producing NW-SE fast directions for ray paths coming from the east and are consistent with observations at GRM located east of HVD. These results show that seismic anisotropy across the continent is not uniform and shows significant variation between tectonic regions. While mantle flow and lithospheric

  10. Ultrasonic inspection apparatus and method using a focused wave device

    SciTech Connect

    Gieske, John H.; Roach, Dennis P.; Walkington, Phillip D.

    2001-01-01

    An ultrasonic pulse echo inspection apparatus and method for detecting structural failures. A focus lens is coupled to the transducer to focus the ultrasonic signal on an area to be inspected and a stop is placed in the focus lens to block selected ultrasonic waves. Other waves are not blocked and are transmitted through the structure to arrive at interfaces therein concurrently to produce an echo response with significantly less distortion.

  11. A submicron device to rectify a square-wave angular velocity.

    PubMed

    Moradian, A; Miri, M F

    2011-02-01

    We study a system composed of two thick dielectric disks separated by a thin layer of an electrolyte solution. Initially both plates have the same surface charge distribution. The surface charge distribution has no rotational symmetry. We show that the top plate experiences a torque [Formula: see text]([Formula: see text]) if it rotates about its axis by an angle [Formula: see text] . The torque can be controlled by varying the electrolyte concentration, the separation and the surface charge density of the plates. For a specific example of charged rods attached to the plates, we find [Formula: see text]([Formula: see text]) [Formula: see text] sin(4[Formula: see text]) . We also study the dynamics of the system. We consider the case where the angular velocity of the bottom disk is a square-wave signal. We find that the average angular velocity of the top disk is not zero. PMID:21337018

  12. Micromagnetic calculation of spin wave propagation for magnetologic devices

    NASA Astrophysics Data System (ADS)

    Bance, Simon; Schrefl, Thomas; Hrkac, Gino; Goncharov, Alexander; Allwood, Dan A.; Dean, Julian

    2008-04-01

    The propagation of magnetic wave packets in magnetic nanowires was calculated as a function of wire width, field strength, field ramp time, field area size, and geometry of a magnetic nanowire. Spin waves are excited locally by applying a small perturbation in the magnetization in a 20nm wide region. A wave packet is emitted from the input region and travels along the wire with a velocity of 740m/s. The finite element micromagnetic simulations show that wave packets can be guided along a bent nanostructure without losses due to geometry; amplitude and frequency are exactly the same as in a straight wire with equal distance between excitation point and probe. The wave amplitude was found to decrease with increasing rise time of the excitation field with an upper limit of 100ps. For a Permalloy wire with a thickness of 10nm, the frequency peak changes from 10GHz in a wire with 60nm width to 6GHz in a wire with 140nm width.

  13. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    SciTech Connect

    Hart, Philip R.

    2011-09-27

    This presentation from the Water Peer Review highlights one of the program's marine and hyrokinetics device design projects to scale up the current Ocean Power Technology PowerBuoy from 150kW to 500kW.

  14. The propagation of RF wave in a tandem mirror plasma propulsion device

    NASA Technical Reports Server (NTRS)

    Yang, T. F.; Peng, S.; Chang-Diaz, F. R.

    1990-01-01

    The propagation of RF waves launched in the end and the central cell of the tandem mirror propulsion device has been investigated both theoretically and experimentally. It was found that the amplitude of the wave excited in the plasma peaked while approaching the resonance, but then damped out, indicating strong absorption of the wave by the plasma. The absorption took place near the axis and the midplane of the device. The experimental results confirmed the theoretical prediction of the resonance effect. A very important discovery of this experiment was the broadening of the ICRF Fourier spectrum in the presence of the plasma.

  15. Integratable quarter-wave plates enable one-way angular momentum conversion.

    PubMed

    Liang, Yao; Zhang, Fengchun; Gu, Jiahua; Huang, Xu Guang; Liu, Songhao

    2016-01-01

    Nanophotonic waveguides are the building blocks of integrated photonics. To date, while quarter-wave plates (QWPs) are widely used as common components for a wide range of applications in free space, there are almost no reports of Integratable QWPs being able to manipulate the angular momentum (AM) of photons inside nanophotonic waveguides. Here, we demonstrate two kinds of Integratable QWPs respectively based on the concept of abrupt phase change and birefringence effect. The orientation of the equivalent optical axis of an Integratable QWP is designable. Remarkably, a combination of two integratable QWPs with different equivalent optical axes leads to an integrated system that performances one-way AM conversion. Moreover, this system can be used as a point source that can excite different patterns on a metal surface via directional excitation of surface plasmon polaritons (SPP). These results allow for the control of AM of light in nanophotonic waveguides, which are crucial for various applications with limited physical space, such as on-chip bio-sensing and integrated quantum information processing. PMID:27102332

  16. Integratable quarter-wave plates enable one-way angular momentum conversion

    NASA Astrophysics Data System (ADS)

    Liang, Yao; Zhang, Fengchun; Gu, Jiahua; Huang, Xu Guang; Liu, Songhao

    2016-04-01

    Nanophotonic waveguides are the building blocks of integrated photonics. To date, while quarter-wave plates (QWPs) are widely used as common components for a wide range of applications in free space, there are almost no reports of Integratable QWPs being able to manipulate the angular momentum (AM) of photons inside nanophotonic waveguides. Here, we demonstrate two kinds of Integratable QWPs respectively based on the concept of abrupt phase change and birefringence effect. The orientation of the equivalent optical axis of an Integratable QWP is designable. Remarkably, a combination of two integratable QWPs with different equivalent optical axes leads to an integrated system that performances one-way AM conversion. Moreover, this system can be used as a point source that can excite different patterns on a metal surface via directional excitation of surface plasmon polaritons (SPP). These results allow for the control of AM of light in nanophotonic waveguides, which are crucial for various applications with limited physical space, such as on-chip bio-sensing and integrated quantum information processing.

  17. Optically switchable and axially symmetric half-wave plate based on photoaligned liquid crystal films

    NASA Astrophysics Data System (ADS)

    Lin, C.-C.; Huang, T.-C.; Chu, C.-C.; Hsiao, Vincent K. S.

    2016-07-01

    We demonstrate an optically switchable half-wave plate (HWP) composed of a photoaligned and axially symmetric liquid crystal (ASLC) film containing two azobenzene derivatives, methyl red (MR) and 4-butyl-4‧-methoxyazobenzene (BMAB). MR is responsible for photoalignment, and BMAB is used for optical tuning and switching the state of polarization (SOP) of probe beam (633 nm He-Ne laser) passing through the MR/BMAB doped ASLC film. The photoaligned ASLC film is first fabricated using a line-shaped laser beam (532 nm) exposure applied on a rotating LC sample. The fabricated ASLC film can passively change the linearly polarized light. Under UV light exposure, the formation of cis-BMAB (bend-like shape) within the film disrupts the LC molecules, switches the LC orientation, and further changes the SOP of the probe beam. Under laser irradiation (532 nm), the formation of trans-BMAB (rod-like shape) reverts the LC orientation back and simultaneously generates cis-MR, helping anchor the LC in the previously photoaligned orientation. The photoaligned MR/BMAB-doped LC HWP can change the linear SOP under alternating UV and visible light exposure.

  18. Robust sky light polarization detection with an S-wave plate in a light field camera.

    PubMed

    Zhang, Wenjing; Zhang, Xuanzhe; Cao, Yu; Liu, Haibo; Liu, Zejin

    2016-05-01

    The sky light polarization navigator has many advantages, such as low cost, no decrease in accuracy with continuous operation, etc. However, current celestial polarization measurement methods often suffer from low performance when the sky is covered by clouds, which reduce the accuracy of navigation. In this paper we introduce a new method and structure based on a handheld light field camera and a radial polarizer, composed of an S-wave plate and a linear polarizer, to detect the sky light polarization pattern across a wide field of view in a single snapshot. Each micro-subimage has a special intensity distribution. After extracting the texture feature of these subimages, stable distribution information of the angle of polarization under a cloudy sky can be obtained. Our experimental results match well with the predicted properties of the theory. Because the polarization pattern is obtained through image processing, rather than traditional methods based on mathematical computation, this method is less sensitive to errors of pixel gray value and thus has better anti-interference performance. PMID:27140364

  19. Integratable quarter-wave plates enable one-way angular momentum conversion

    PubMed Central

    Liang, Yao; Zhang, Fengchun; Gu, Jiahua; Huang, Xu Guang; Liu, Songhao

    2016-01-01

    Nanophotonic waveguides are the building blocks of integrated photonics. To date, while quarter-wave plates (QWPs) are widely used as common components for a wide range of applications in free space, there are almost no reports of Integratable QWPs being able to manipulate the angular momentum (AM) of photons inside nanophotonic waveguides. Here, we demonstrate two kinds of Integratable QWPs respectively based on the concept of abrupt phase change and birefringence effect. The orientation of the equivalent optical axis of an Integratable QWP is designable. Remarkably, a combination of two integratable QWPs with different equivalent optical axes leads to an integrated system that performances one-way AM conversion. Moreover, this system can be used as a point source that can excite different patterns on a metal surface via directional excitation of surface plasmon polaritons (SPP). These results allow for the control of AM of light in nanophotonic waveguides, which are crucial for various applications with limited physical space, such as on-chip bio-sensing and integrated quantum information processing. PMID:27102332

  20. Multilayer magnetostrictive structure based surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Talbi, A.; Tiercelin, N.; Bou Matar, O.

    2014-03-01

    This study addresses the experimental and theoretical investigations of guided elastic waves propagation in piezo-magnetic multi-layered structure. The structure is composed of a 20×TbCo2(5nm)/FeCo(5nm) nanostructured multi-layer deposited between two Aluminum (Al) Inter-Digitals Transducers forming a surface acoustic wave delay line, on a Y-cut LiNbO3 substrate. We compare the calculated and measured phase velocity variation under the action of the external magnetic field orientation and magnitude. We find quantitative agreement between the measured and modeled phase velocity shift for all external magnetic field configurations (hard axis and easy axis) and for different shape modes of elastic waves at their first and third harmonic operation frequencies. The shear horizontal mode exhibits a maximum phase velocity shift close to 20% for a ratio close to 1 between magneto-elastic film thickness and wavelength.

  1. On-chip temperature-compensated Love mode surface acoustic wave device for gravimetric sensing

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Flewitt, A. J.

    2014-11-01

    Love mode surface acoustic wave (SAW) sensors have been recognized as one of the most sensitive devices for gravimetric sensors in liquid environments such as bio sensors. Device operation is based upon measuring changes in the transmitted (S21) frequency and phase of the first-order Love wave resonance associated with the device upon on attachment of mass. However, temperature variations also cause a change in the first order S21 parameters. In this work, shallow grooved reflectors and a "dotted" single phase unidirectional interdigitated transducer (D-SPUDT) have been added to the basic SAW structure, which promote unidirectional Love wave propagation from the device's input interdigitated transducers. Not only does this enhance the first-order S21 signal but also it allows propagation of a third-order Love wave. The attenuation coefficient of the third-order wave is sufficiently great that, whilst there is a clear reflected S11 signal, the third-order wave does not propagate into the gravimetric sensing area of the device. As a result, whilst the third-order S11 signal is affected by temperature changes, it is unaffected by mass attachment in the sensing area. It is shown that this signal can be used to remove temperature effects from the first-order S21 signal in real time. This allows gravimetric sensing to take place in an environment without the need for any other temperature measurement or temperature control; this is a particular requirement of gravimetric biosensors.

  2. A field-emission based vacuum device for the generation of THz waves

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Chieh

    2005-03-01

    Terahertz waves have been used to characterize the electronic, vibrational and compositional properties of solid, liquid and gas phase materials during the past decade. More and more applications in imaging science and technology call for the well development of THz wave sources. Amplification and generation of a high frequency electromagnetic wave are a common interest of field emission based devices. In the present work, we propose a vacuum electronic device based on field emission mechanism for the generation of THz waves. To verify our thinking and designs, the cold tests and the hot tests have been studied via the simulation tools, SUPERFISH and MAGIC. In the hot tests, two types of electron emission mechanisms are considered. One is the field emission and the other is the explosive emission. The preliminary design of the device is carried out and tested by the numerical simulations. The simulation results show that an electronic efficiency up to 4% can be achieved without employing any magnetic circuits.

  3. Theoretical investigation of acoustic wave devices based on different piezoelectric films deposited on silicon carbide

    NASA Astrophysics Data System (ADS)

    Fan, Li; Zhang, Shu-yi; Ge, Huan; Zhang, Hui

    2013-07-01

    Performances of acoustic wave (AW) devices based on silicon carbide (SiC) substrates are theoretically studied, in which two types of piezoelectric films of ZnO and AlN deposited on 4H-SiC and 3C-SiC substrates are adopted. The phase velocities (PV), electromechanical coupling coefficients (ECC), and temperature coefficients of frequency (TCF) for three AW modes (Rayleigh wave, A0 and S0 modes of Lamb wave) often used in AW devices are calculated based on four types of configurations of interdigital transducers (IDTs). It is found that that the ZnO piezoelectric film is proper for the AW device operating in the low-frequency range because a high ECC can be realized using a thin ZnO film. The AlN piezoelectric film is proper for the device operating in the high-frequency range in virtue of the high PV of AlN, which can increase the finger width of the IDT. Generally, in the low-frequency Lamb wave devices using ZnO piezoelectric films with small normalized thicknesses of films to wavelengths hf/λ, thin SiC substrates can increase ECCs but induce high TCFs simultaneously. In the high-frequency device with a large hf/λ, the S0 mode of Lamb wave based on the AlN piezoelectric film deposited on a thick SiC substrate exhibits high performances by simultaneously considering the PV, ECC, and TCF.

  4. Observation of a spark channel generated in water with shock wave assistance in plate-to-plate electrode configuration

    NASA Astrophysics Data System (ADS)

    Stelmashuk, V.

    2014-01-01

    When a high voltage pulse with an amplitude of 30 kV is applied to a pair of disk electrodes at a time when a shock wave is passing between them, an electrical spark is generated. The dynamic changes in the spark morphology are studied here using a high-speed framing camera. The primary result of this work is the provision of experimental evidence of plasma instability that was observed in the channel of the electric spark.

  5. Lamb wave dispersion and anisotropy profiling of composite plates via non-contact air-coupled and laser ultrasound

    NASA Astrophysics Data System (ADS)

    Harb, M. S.; Yuan, F. G.

    2015-03-01

    Conventional ultrasound inspection has been a standard non-destructive testing method for providing an in-service evaluation and noninvasive means of probing the interior of a structure. In particular, measurement of the propagation characteristics of Lamb waves allows inspection of plates that are typical components in aerospace industry. A rapid, complete non-contact hybrid approach for excitation and detection of Lamb waves is presented and applied for non-destructive evaluation of composites. An air-coupled transducer (ACT) excites ultrasonic waves on the surface of a composite plate, generating different propagating Lamb wave modes and a laser Doppler vibrometer (LDV) is used to measure the out-of-plane velocity of the plate. This technology, based on direct waveform imaging, focuses on measuring dispersive curves for A0 mode in a composite laminate and its anisotropy. A two-dimensional fast Fourier transform (2D-FFT) is applied to out-of-plane velocity data captured experimentally using LDV to go from the time-spatial domain to frequency-wavenumber domain. The result is a 2D array of amplitudes at discrete frequencies and wavenumbers for A0 mode in a given propagation direction along the composite. The peak values of the curve are then used to construct frequency wavenumber and phase velocity dispersion curves, which are also obtained directly using Snell's law and the incident angle of the excited ultrasonic waves. A high resolution and strong correlation between numerical and experimental results are observed for dispersive curves with Snell's law method in comparison to 2D-FFT method. Dispersion curves as well as velocity curves for the composite plate along different directions of wave propagation are measured. The visual read-out of the dispersion curves at different propagation directions as well as the phase velocity curves provide profiling and measurements of the composite anisotropy. The results proved a high sensitivity of the air-coupled and laser

  6. Fast wave heating in the NSTX-Upgrade device

    SciTech Connect

    Bertelli, Nicola; Jaeger, E. F.; Berry, Lee Alan; Bonoli, P.; Budny, R. V.; Fu, GuoYong; Gerhardt, S.; Green, David L; Harvey, R. W.; Hosea, J.; Kramer, G.; LeBlanc, B; Perkins, R. J.; Phillips, C. K.; Ryan, Philip Michael; Taylor, G.; Valeo, E. J.; Wilson, J. R.; Wright, J.

    2013-01-01

    NSTX-Upgrade will operate with toroidal magnetic fields (B T) up to 1 T, nearly twice the value used in the experiments on NSTX, and the available NBI power will be doubled. The doubling of B T while retaining the 30 MHz RF source frequency has moved the heating regime from the high harmonic fast wave (HHFW) regime used in NSTX to the mid harmonic fast wave (MHFW) regime. By making use of the full wave code AORSA, this work shows that direct ion damping (mainly by thermal ions localized at the 5th harmonic resonance) might be significant in NSTX-Upgrade under TRANSP predicted full performance conditions and the electron and ion absorption is sensitive to the ratio of electron and ion temperature. Launching at high toroidal wave number appears to be one way to significantly reduce the ion damping. By using the extended AORSA code, which includes a detailed description of the scrape-off layer in the field solutions, we found a large electric field amplitude outside of the last closed flux surface as previously seen in NSTX from AORSA simulations (D. L. Green, et al, Phys. Rev. Lett. 107, 145001 (2011)). Preliminary results by introducing a collision damping in the scrape-off layer in the AORSA code to represent a damping process are presented, showing for the first time absorbed power in the scrape-off layer.

  7. Fast wave heating in the NSTX-Upgrade device

    SciTech Connect

    Bertelli, N.; Budny, R.; Fu, G.-Y.; Gerhardt, S.; Hosea, J. C.; Kramer, G. J.; LeBlanc, B.; Perkins, R. J.; Phillips, C. K.; Taylor, G.; Valeo, E. J.; Wilson, J. R.; Jaeger, E. F.; Berry, L.; Green, D. L.; Ryan, P.; Bonoli, P. T.; Wright, J. C.; Harvey, R. W.

    2014-02-12

    NSTX-Upgrade will operate with toroidal magnetic fields (B{sub T}) up to 1 T, nearly twice the value used in the experiments on NSTX, and the available NBI power will be doubled. The doubling of B{sub T} while retaining the 30 MHz RF source frequency has moved the heating regime from the high harmonic fast wave (HHFW) regime used in NSTX to the mid harmonic fast wave (MHFW) regime. By making use of the full wave code AORSA, this work shows that direct ion damping (mainly by thermal ions localized at the 5th harmonic resonance) might be significant in NSTX-Upgrade under TRANSP predicted full performance conditions and the electron and ion absorption is sensitive to the ratio of electron and ion temperature. Launching at high toroidal wave number appears to be one way to significantly reduce the ion damping. By using the extended AORSA code, which includes a detailed description of the scrape-off layer in the field solutions, we found a large electric field amplitude outside of the last closed flux surface as previously seen in NSTX from AORSA simulations (D. L. Green, et al, Phys. Rev. Lett. 107, 145001 (2011)). Preliminary results by introducing a collision damping in the scrape-off layer in the AORSA code to represent a damping process are presented, showing for the first time absorbed power in the scrape-off layer.

  8. Dynamics of a mechanical frequency up-converted device for wave energy harvesting

    NASA Astrophysics Data System (ADS)

    Lin, Zheng; Zhang, Yongliang

    2016-04-01

    This paper proposes a novel mechanical impact-driven frequency up-converted device for wave energy harvesting, which could bridge a gap between waves of frequency 0.03-1 Hz and electrical generators of operation frequency hundreds hertz. The device mainly consists of a cylindrical buoy, beams and teeth. A mathematical model for the dynamics of such a device is presented, which incorporates the fluid-structure interaction between the wave and the buoy, and the structural interactions between the beams and the teeth. The momentum balance method and the coefficient of restitution are employed, which give rise to piecewise nonlinear equations governing the motions of the buoy and the beams. Experimental tests carried out in a wave flume validate the model and prove the effectiveness of frequency up-converted method in wave energy harvesting. The characteristics of frequency up-converted transformation from buoy motion to beams oscillation for wave energy harvesting are probed, and the effects of beam Young's modulus, beam number, wave period and wave height on strain power of the beams are explored.

  9. Hybrid yttrium iron garnet-ferromagnet structures for spin-wave devices

    NASA Astrophysics Data System (ADS)

    Papp, A.; Porod, W.; Csaba, G.

    2015-05-01

    We study coupled ferromagnetic layers, which could facilitate low loss, sub 100 nm wavelength spin-wave propagation and manipulation. One of the layers is a low-loss garnet film (such as yttrium iron garnet (YIG)) that enables long-distance, coherent spin-wave propagation. The other layer is made of metal-based (Permalloy, Co, and CoFe) magnetoelectronic structures that can be used to generate, manipulate, and detect the spin waves. Using micromagnetic simulations, we analyze the interactions between the spin waves in the YIG and the metallic nanomagnet structures and demonstrate the components of a scalable spin-wave based signal processing device. We argue that such hybrid-metallic ferromagnet structures can be the basis of potentially high-performance, ultra low-power computing devices.

  10. Hybrid yttrium iron garnet-ferromagnet structures for spin-wave devices

    SciTech Connect

    Papp, A.; Porod, W. Csaba, G.

    2015-05-07

    We study coupled ferromagnetic layers, which could facilitate low loss, sub 100 nm wavelength spin-wave propagation and manipulation. One of the layers is a low-loss garnet film (such as yttrium iron garnet (YIG)) that enables long-distance, coherent spin-wave propagation. The other layer is made of metal-based (Permalloy, Co, and CoFe) magnetoelectronic structures that can be used to generate, manipulate, and detect the spin waves. Using micromagnetic simulations, we analyze the interactions between the spin waves in the YIG and the metallic nanomagnet structures and demonstrate the components of a scalable spin-wave based signal processing device. We argue that such hybrid-metallic ferromagnet structures can be the basis of potentially high-performance, ultra low-power computing devices.

  11. Temperature effects on the band gaps of Lamb waves in a one-dimensional phononic-crystal plate (L).

    PubMed

    Cheng, Y; Liu, X J; Wu, D J

    2011-03-01

    This study investigates the temperature-tuned band gaps of Lamb waves in a one-dimensional phononic-crystal plate, which is formed by alternating strips of ferroelectric ceramic Ba(0.7)Sr(0.3)TiO(3) and epoxy. The sensitive and continuous temperature-tunability of Lamb wave band gaps is demonstrated using the analyses of the band structures and the transmission spectra. The width and position of Lamb wave band gaps shift prominently with variation of temperature in the range of 26 °C-50 °C. For example, the width of the second band gap increases from 0.066 to 0.111 MHz as the temperature is increased from 26 °C to 50 °C. The strong shift promises that the structure could be suitable for temperature-tuned multi-frequency Lamb wave filters. PMID:21428478

  12. Propagation of SH waves in a piezoelectric/piezomagnetic plate: Effects of interfacial imperfection couplings and the related physical mechanisms

    NASA Astrophysics Data System (ADS)

    Wei, Hong-Xing; Li, Yong-Dong; Xiong, Tao; Guan, Yong

    2016-09-01

    The problem of dispersive SH wave in a piezoelectric/piezomagnetic plate that contains an imperfect interface is considered in the present work. An imperfection coupling model is adopted to describe the magnetic, electric and mechanical imperfections on the interface. A transcendental dispersion equation is derived and numerically solved to get the phase velocity. The validity of the numerical procedure is verified in a degenerated case. The effects of the coupled interfacial imperfections on the dispersion behavior of SH waves are discussed in detail and the related underlying physical mechanisms are explained.

  13. Application of planar laser-induced fluorescence measurement techniques to study the heat transfer characteristics of parallel-plate heat exchangers in thermoacoustic devices

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Mao, Xiaoan; Jaworski, Artur J.

    2010-11-01

    This paper describes the development of an experimental arrangement and the application of acetone-based planar laser-induced fluorescence (PLIF) measurement techniques to study the unsteady characteristics of heat transfer processes in the parallel-plate heat exchangers of thermoacoustic devices. The experimental rig is a quarter-wavelength acoustic resonator where a standing wave imposes oscillatory flow conditions. Two mock-up heat exchangers, 'hot' and 'cold', have their fins kept at constant temperatures by electrical heating and water cooling, respectively. A purpose-designed acetone tracer seeding mechanism is used for PLIF temperature measurement. Acetone concentration is optimized from the viewpoint of PLIF signal intensity. Two-dimensional temperature distributions in the gas surrounding the heat exchanger plates, as a function of phase angle in the acoustic cycle, are obtained. Local and global (instantaneous and cycle-averaged) heat flux values on the fin surface are estimated and used to obtain the dependence of the space-cycle averaged Nusselt versus Reynolds number. Measurement uncertainties are discussed.

  14. Note: Device for underwater laboratory simulation of unconfined blast waves

    NASA Astrophysics Data System (ADS)

    Courtney, Elijah; Courtney, Amy; Courtney, Michael

    2015-06-01

    Shock tubes simulate blast waves to study their effects in air under laboratory conditions; however, few experimental models exist for simulating underwater blast waves that are needed for facilitating experiments in underwater blast transmission, determining injury thresholds in marine animals, validating numerical models, and exploring mitigation strategies for explosive well removals. This method incorporates an oxy-acetylene driven underwater blast simulator which creates peak blast pressures of about 1860 kPa. Shot-to-shot consistency was fair, with an average standard deviation near 150 kPa. Results suggest that peak blast pressures from 460 kPa to 1860 kPa are available by adjusting the distance from the source.

  15. Efficiency of plasma actuator ionization in shock wave modification in a rarefied supersonic flow over a flat plate

    NASA Astrophysics Data System (ADS)

    Joussot, Romain; Lago, Viviana; Parisse, Jean-Denis

    2014-12-01

    This paper describes experimental and numerical investigations focused on the shock wave modification, induced by a dc glow discharge, of a Mach 2 flow under rarefied regime. The model under investigation is a flat plate equipped with a plasma actuator composed of two electrodes. The glow discharge is generated by applying a negative potential to the upstream electrode, enabling the creation of a weakly ionized plasma. The natural flow (i.e. without the plasma) exhibits a thick laminar boundary layer and a shock wave with a hyperbolic shape. Images of the flow obtained with an ICCD camera revealed that the plasma discharge induces an increase in the shock wave angle. Thermal effects (volumetric, and at the surface) and plasma effects (ionization, and thermal non-equilibrium) are the most relevant processes explaining the observed modifications. The effect induced by the heating of the flat plate surface is studied experimentally by replacing the upstream electrode by a heating element, and numerically by modifying the thermal boundary condition of the model surface. The results show that for a similar temperature distribution over the plate surface, modifications induced by the heating element are lower than those produced by the plasma. This difference shows that other effects than purely thermal effects are involved with the plasma actuator. Measurements of the electron density with a Langmuir probe highlight the fact that the ionization degree plays an important role into the modification of the flow. The gas properties, especially the isentropic exponent, are indeed modified by the plasma above the actuator and upstream the flat plate. This leads to a local modification of the flow conditions, inducing an increase in the shock wave angle.

  16. Efficiency of plasma actuator ionization in shock wave modification in a rarefied supersonic flow over a flat plate

    SciTech Connect

    Joussot, Romain; Lago, Viviana; Parisse, Jean-Denis

    2014-12-09

    This paper describes experimental and numerical investigations focused on the shock wave modification, induced by a dc glow discharge, of a Mach 2 flow under rarefied regime. The model under investigation is a flat plate equipped with a plasma actuator composed of two electrodes. The glow discharge is generated by applying a negative potential to the upstream electrode, enabling the creation of a weakly ionized plasma. The natural flow (i.e. without the plasma) exhibits a thick laminar boundary layer and a shock wave with a hyperbolic shape. Images of the flow obtained with an ICCD camera revealed that the plasma discharge induces an increase in the shock wave angle. Thermal effects (volumetric, and at the surface) and plasma effects (ionization, and thermal non-equilibrium) are the most relevant processes explaining the observed modifications. The effect induced by the heating of the flat plate surface is studied experimentally by replacing the upstream electrode by a heating element, and numerically by modifying the thermal boundary condition of the model surface. The results show that for a similar temperature distribution over the plate surface, modifications induced by the heating element are lower than those produced by the plasma. This difference shows that other effects than purely thermal effects are involved with the plasma actuator. Measurements of the electron density with a Langmuir probe highlight the fact that the ionization degree plays an important role into the modification of the flow. The gas properties, especially the isentropic exponent, are indeed modified by the plasma above the actuator and upstream the flat plate. This leads to a local modification of the flow conditions, inducing an increase in the shock wave angle.

  17. Surface acoustic wave-driven planar light-emitting device

    NASA Astrophysics Data System (ADS)

    Cecchini, Marco; De Simoni, Giorgio; Piazza, Vincenzo; Beltram, Fabio; Beere, H. E.; Ritchie, D. A.

    2004-10-01

    Electroluminescence emission controlled by means of surface acoustic waves (SAWs) in planar light-emitting diodes (pLEDs) is demonstrated. Interdigital transducers for SAW generation were integrated onto pLEDs fabricated following the scheme which we have recently developed [Cecchini et al., Appl. Phys. Lett. 82, 636 (2003)]. Current-voltage, light-voltage, and photoluminescence characteristics are presented at cryogenic temperatures. We argue that this scheme represents a valuable building block for advanced optoelectronic architectures.

  18. Space manufacturing of surface acoustic wave devices, appendix D

    NASA Technical Reports Server (NTRS)

    Sardella, G.

    1973-01-01

    Space manufacturing of transducers in a vibration free environment is discussed. Fabrication of the masks, and possible manufacturing of the surface acoustic wave components aboard a space laboratory would avoid the inherent ground vibrations and the frequency limitation imposed by a seismic isolator pad. The manufacturing vibration requirements are identified. The concepts of space manufacturing are analyzed. A development program for manufacturing transducers is recommended.

  19. Applications of Shock Wave Research to Developments of Therapeutic Devices.

    NASA Astrophysics Data System (ADS)

    Takayama, Kazuyoshi

    2007-06-01

    Underwater shock wave research applied to medicine started in 1980 by exploding micro lead azide pellets in water. Collaboration with urologists in the School of Medicine, Tohoku University at the same time was directed to disintegration of kidney stones by controlling shock waves. We initially proposed a miniature truncated ellipsoidal cavity for generating high-pressures enough to disintegrate the stone but gave up the idea, when encountering the Dornie Systems' invention of an extracorporeal shock wave lithotripter (ESWL). Then we confirmed its effectiveness by using 10 mg silver azide pellets and constructed our own lithotripter, which was officially approved for a clinical use in 1987. Tissue damage during ESWL was attributable to bubble collapse and we convinced it could be done in a controlled fashion. In 1996, we used 160 mJ pulsed Ho:YAG laser beam focusing inside a catheter for shock generation and applied it to the revascularization of cerebral embolism, which is recently expanded to the treatment of pulmonary infarction. Micro water jets discharged in air were so effective to dissect soft tissues preserving small blood vessels. Animal experiments are successfully performed with high frequency water jets driven by an actuator-assisted micro-pump. A metal foil is deformed at high speed by a Q-switched Nd:YAG laser beam loading. We used this technique to project micro-particles or dry drugs attached on its reverse side and extended it to a laser ablation assisted dry drug delivery or DNA introductory system.

  20. Design, Implementation, and Calibration of Half-Wave Plate Polarimetry for the E and B Experiment

    NASA Astrophysics Data System (ADS)

    Klein, Jeffrey Michael

    The E and B Experiment (EBEX) is a balloon-borne telescope designed to measure the polarization of the Cosmic Microwave Background (CMB) and dust foregrounds at 10' scales and three frequency bands of 150 GHz, 250 GHz, and 410 GHz in order to detect or constrain B-mode polarization. Results may provide evidence to support the theory of cosmological inflation, or constrain specific models. EBEX's polarization measurement capability is implemented via continuously-rotating Half-Wave Plate (HWP) polarimetry. We discuss the design and implementation of the polarimetry hardware for the E and B Experiment (EBEX). In order to achieve low-temperature rotation of our 15 cm, 635 g achromatic HWP stack, we implement a unique application of a Superconducting Magnetic Bearing (SMB), building off an earlier prototype. We discuss design constraints, detail our implementation, and present results of tests of power dissipation, rotation speed stability, dynamic stability, and operational lifetime. We find power dissipation of 15 mW in our LDB configuration, and achieve successful operation of the system in both a 2009 test flight and a 2012 Long Duration (LDB) flight. We design and carry out calibration tests to verify our ability to measure polarized signals. We develop a data analysis pipeline to extract polarization measurements from the chopped polarized signals we use in calibration; we verify and optimize the performance of this pipeline with a simulation. We find that a thorough understanding of the time constants of EBEX's bolometric sensors is essential to measure polarization. We develop methods to measure and remove the effects of these time constants. Tests of polarization rotation across our bands verify predictions of rotation due to our achromatic HWP 5-stack. Polarized beam scans allow us to set an absolute calibration for EBEX with a standard deviation of 1.5 degrees.

  1. Corrosion and erosion monitoring in plates and pipes using constant group velocity Lamb wave inspection.

    PubMed

    Nagy, Peter B; Simonetti, Francesco; Instanes, Geir

    2014-09-01

    Recent improvements in tomographic reconstruction techniques generated a renewed interest in short-range ultrasonic guided wave inspection for real-time monitoring of internal corrosion and erosion in pipes and other plate-like structures. Emerging evidence suggests that in most cases the fundamental asymmetric A0 mode holds a distinct advantage over the earlier market leader fundamental symmetric S0 mode. Most existing A0 mode inspections operate at relatively low inspection frequencies where the mode is highly dispersive therefore very sensitive to variations in wall thickness. This paper examines the potential advantages of increasing the inspection frequency to the so-called constant group velocity (CGV) point where the group velocity remains essentially constant over a wide range of wall thickness variation, but the phase velocity is still dispersive enough to allow accurate wall thickness assessment from phase angle measurements. This paper shows that in the CGV region the crucial issue of temperature correction becomes especially simple, which is particularly beneficial when higher-order helical modes are also exploited for tomography. One disadvantage of working at such relatively high inspection frequency is that, as the slower A0 mode becomes faster and less dispersive, the competing faster S0 mode becomes slower and more dispersive. At higher inspection frequencies these modes cannot be separated any longer based on their vibration polarization only, which is mostly tangential for the S0 mode while mostly normal for the A0 at low frequencies, as the two modes become more similar as the frequency increases. Therefore, we propose a novel method for suppressing the unwanted S0 mode based on the Poisson effect of the material by optimizing the angle of inclination of the equivalent transduction force of the Electromagnetic Acoustic Transducers (EMATs) used for generation and detection purposes. PMID:24582555

  2. Reflectivity and Transmissivity of a Water-saturated Porous Plate: First Observations of Slow Biot Wave Conversions on Reflection

    NASA Astrophysics Data System (ADS)

    Bouzidi, Y.; Schmitt, D. R.

    2008-12-01

    Three distinct body wave modes, the fast and slow P and an S wave, propagate in a liquid saturated porous and permeable solid. The slow, or Biot, wave is highly attenuated and while it may be impossible to observe directly in the earth it does influence the energy budget available and as such influences both the seismic reflectivity and transmissivity of porous materials. There remain few experimental tests of wave propagation in such materials but there are still questions with regards to mechanisms of seismic attenuation and completely untested theories regarding the boundary conditions that control reflection and transmission at interfaces. To overcome this limitation, a series of pulse transmission and reflection tests were made through and from, respectively, a water-saturated plate of sintered glass beads. A novel ultrasonic goniometer system consisting of a large ultrasonic transmitter and a near-point source ultrasonic receiver were specially constructed for these tests. Despite the attempt to emulate plane wave behaviour, the finite diffraction effects of even the large aperture transducer influenced all the observations. This necessitated that the transducer response be fully modelled in order to eliminate misinterpretation, and these concepts were validated first on plates of simple isotropic glasses. The reflectivity and transmissivity of the plate were observed for incidence angles ranging from -50 ° to +50 °. The reflection responses were well modeled using the open pore boundary condition assumption. Additionally, the more complex transmission responses were successfully modeled but only once the viscoelastic response of the dry frame was included for the fast P and S waves. Notably, the slow P attenuation did not depend on the frame attenuation. Taken together, these results provide additional support for the dynamic poro-elastic theory of Biot in high porosity materials. An added serendipitous bonus of the reflectivity experiments is the first

  3. Shallow structure and surface wave propagation characteristics of the Juan de Fuca plate from seismic ambient noise

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Shen, W.; Ritzwoller, M. H.

    2013-12-01

    Ambient noise cross-correlation analysis has been widely used to investigate the continental lithosphere, but the method has been applied much less to study the oceanic lithosphere due to the relative shortage of continuous ocean bottom seismic measurements. The Cascadia Initiative experiment possesses a total of 62 ocean bottom seismometers that spans much of the Juan de Fuca plate and provides data to investigate both the structure and evolution of the oceanic lithosphere near the Juan De Fuca ridge and the characteristics of surface waves and overtones propagating within the oceanic lithosphere. We produce ambient noise cross correlations for the first year of Cascadia OBS data for both the vertical and the horizontal components. The observed empirical Green's functions are first used to test the hypothesis that the near-ridge phase speeds can be described by a simple age-dependent formula, which we invert for an age-dependent shear wave speed model (Figure 1a). A shallow low shear velocity zone with a velocity minimum at about 20km depth is observed in Vsv and the lithosphere thickens with age faster than predicted by a half-space conductive cooling model (Figure 1b). To further understand the oceanic surface waves, we analyze the first higher mode Rayleigh waves that propagate within the Juan De Fuca plate and emerge on the North American continent and investigate the existence of radial anisotropy beneath the ridge by exploring the Rayleigh and Love wave Green's functions. The results of the study are summarized with the age-dependent shear velocity model along with some preliminary observations of both Love wave and higher mode Rayleigh waves.

  4. Application of Normal Mode Expansion to AE Waves in Finite Plates

    NASA Technical Reports Server (NTRS)

    Gorman, M. R.; Prosser, W. H.

    1997-01-01

    Breckenridge et al. (1975), Hsu (1985) and Pao (1978) adapted approaches from seismology to calculate the response at the surface of an infinite half-space and an infinite plate. These approaches have found use in calibrating acoustic emission (AE) transducers. However, it is difficult to extend this theoretical approach to AE testing of practical structures. Weaver and Pao (1982) considered a normal mode solution to the Lamb equations. Hutchinson (1983) pointed out the potential relevance of Mindlin's plate theory (1951) to AE. Pao (1982) reviewed Medick s (1961) classical plate theory for a point source, but rejected it as useful for AE and no one seems to have investigated its relevance to AE any further. Herein, a normal mode solution to the classical plate bending equation was investigated for its applicability to AE. The same source-time function chosen by Weaver and Pao is considered. However, arbitrary source and receiver positions are chosen relative to the boundaries of the plate. This is another advantage of the plate theory treatment in addition to its simplicity. The source does not have to be at the center of the plate as in the axisymmetric treatment. The plate is allowed to remain finite and reflections are predicted. The importance of this theory to AE is that it can handle finite plates, realistic boundary conditions, and can be extended to composite materials.

  5. Exponential stabilization of magnetoelastic waves in a Mindlin-Timoshenko plate by localized internal damping

    NASA Astrophysics Data System (ADS)

    Grobbelaar-Van Dalsen, Marié

    2015-08-01

    This article is a continuation of our earlier work in Grobbelaar-Van Dalsen (Z Angew Math Phys 63:1047-1065, 2012) on the polynomial stabilization of a linear model for the magnetoelastic interactions in a two-dimensional electrically conducting Mindlin-Timoshenko plate. We introduce nonlinear damping that is effective only in a small portion of the interior of the plate. It turns out that the model is uniformly exponentially stable when the function , that represents the locally distributed damping, behaves linearly near the origin. However, the use of Mindlin-Timoshenko plate theory in the model enforces a restriction on the region occupied by the plate.

  6. A Bi-Frequency Linear Slow Wave Device

    NASA Astrophysics Data System (ADS)

    Simon, David; Zhang, Peng; Lau, Y. Y.; Greening, Geoff; Gilgenbach, Ronald; Hoff, Brad

    2014-10-01

    Bi-frequency sources are of interest to plasma processing, diagnostics, RF heating, and defense electronics. The recirculating planar magnetron has been modified to produce two frequencies using two different slow wave structures in the planar regions. To highlight the coupling in the two frequencies, we consider here a linear TWT driven by a sheet beam inside such a structure. The cold tube dispersion is derived and is compared favorably with HFSS. The hot tube dispersion has also been derived, and is being compared with MAGIC simulations. Various nonlinear effects are explored, such as harmonic generation, parametric amplification, and intermodulation. This work was supported by ONR and AFOSR.

  7. Measurement of Underwater Operational Noise Emitted by Wave and Tidal Stream Energy Devices.

    PubMed

    Lepper, Paul A; Robinson, Stephen P

    2016-01-01

    The increasing international growth in the development of marine and freshwater wave and tidal energy harvesting systems has been followed by a growing requirement to understand any associated underwater impact. Radiated noise generated during operation is dependent on the device's physical properties, the sound-propagation environment, and the device's operational state. Physical properties may include size, distribution in the water column, and mechanics/hydrodynamics. The sound-propagation environment may be influenced by water depth, bathymetry, sediment type, and water column acoustic properties, and operational state may be influenced by tidal cycle and wave height among others This paper discusses some of the challenges for measurement of noise characteristics from these devices as well as a case study of the measurement of radiated noise from a full-scale wave energy converter. PMID:26611011

  8. Device connectivity: the next big wave in diabetes.

    PubMed

    Walsh, John; Roberts, Ruth; Morris, Richard; Heinemann, Lutz

    2015-05-01

    Patients with diabetes have to take numerous factors/data into their therapeutic decisions in daily life. Connecting the devices they are using by feeding the data generated into a database/app is supposed to help patients to optimize their glycemic control. As this is not established in practice, the different roadblocks have to be discussed to open the road. That large telecommunication companies are now entering this market might be a big help in pushing this forward. Smartphones offer an ideal platform for connectivity solutions. PMID:25614015

  9. Surface-acoustic-wave device incorporating conducting Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Holcroft, B.; Roberts, G. G.; Barraud, A.; Richard, J.

    1987-04-01

    Surface-acoustic-wave devices incorporating conducting Langmuir-Blodgett films are reported for the first time. Excellent characteristics have been obtained using a mixed valence charge transfer salt of a substituted pyridinium tetracyanoquinodimethane. The control afforded by the deposition technique has enabled the fractional change in surface wave velocity due to the electrical effects to be distinguished from those due to mass loading. The resistivity of the organic surface layer is measured to be 2 ohm-cm.

  10. Focus Adjustment System of Laser Probe for Radio Frequency Surface and Bulk Acoustic Wave Devices

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Kashiwa, Keisuke; Hashimoto, Ken-ya; Omori, Tatsuya; Yamaguchi, Masatsune; Kasai, Naoki

    2009-10-01

    In this paper, we describe a focus adjustment system designed especially for a fast-mechanical-scanning laser probe for radio-frequency surface and bulk acoustic wave devices. When high spatial resolution is necessary for the observation, one needs an objective lens of large magnifying power with extremely shallow focal depth. Then, a small inclination of a measurement device may cause severe defocus resulting in blurred images. We installed the focus adjustment system in the laser probe, and showed that even with inclination, high-quality information of the wave field can be acquired without reducing the scanning speed.

  11. Performance Prediction of OWC Type Small Size Wave Power Device with Impulse Turbine

    NASA Astrophysics Data System (ADS)

    Suzuki, Masami; Takao, Manabu; Satoh, Eiji; Nagata, Shuichi; Toyota, Kazutaka; Setoguchi, Toshiaki

    This paper investigates a small size wave power device with an impulse turbine installed in the breakwater near Niigata Port, Japan. The device consists of an air chamber, a turbine, a generator and pressure-relief valves. This study reveals the characteristics of each component in this system with impulse turbine and a direct current dynamo the power of which is consumed by a constant resistor. In this paper special features of the impulse turbine are found, and the system characteristics are briefly represented. The overall plant performance was analyzed using mathematical model of an oscillating water column (OWC) based on linear water wave theory and the special features of the impulse turbine.

  12. High-frequency programmable acoustic wave device realized through ferroelectric domain engineering

    SciTech Connect

    Ivry, Yachin E-mail: cd229@eng.cam.ac.uk; Wang, Nan; Durkan, Colm E-mail: cd229@eng.cam.ac.uk

    2014-03-31

    Surface acoustic wave devices are extensively used in contemporary wireless communication devices. We used atomic force microscopy to form periodic macroscopic ferroelectric domains in sol-gel deposited lead zirconate titanate, where each ferroelectric domain is composed of many crystallites, each of which contains many microscopic ferroelastic domains. We examined the electro-acoustic characteristics of the apparatus and found a resonator behavior similar to that of an equivalent surface or bulk acoustic wave device. We show that the operational frequency of the device can be tailored by altering the periodicity of the engineered domains and demonstrate high-frequency filter behavior (>8 GHz), allowing low-cost programmable high-frequency resonators.

  13. Bendable ZnO thin film surface acoustic wave devices on polyethylene terephthalate substrate

    SciTech Connect

    He, Xingli; Guo, Hongwei; Chen, Jinkai; Wang, Wenbo; Xuan, Weipeng; Xu, Yang E-mail: jl2@bolton.ac.uk; Luo, Jikui E-mail: jl2@bolton.ac.uk

    2014-05-26

    Bendable surface acoustic wave (SAW) devices were fabricated using high quality c-axis orientation ZnO films deposited on flexible polyethylene terephthalate substrates at 120 °C. Dual resonance modes, namely, the zero order pseudo asymmetric (A{sub 0}) and symmetric (S{sub 0}) Lamb wave modes, have been obtained from the SAW devices. The SAW devices perform well even after repeated flexion up to 2500 με for 100 times, demonstrating its suitability for flexible electronics application. The SAW devices are also highly sensitive to compressive and tensile strains, exhibiting excellent anti-strain deterioration property, thus, they are particularly suitable for sensing large strains.

  14. Surface acoustic wave devices fabricated on epitaxial AlN film

    NASA Astrophysics Data System (ADS)

    Gao, Junning; Hao, Zhibiao; Yanxiong E.; Niu, Lang; Wang, Lai; Sun, Changzheng; Xiong, Bin; Han, Yanjun; Wang, Jian; Li, Hongtao; Luo, Yi; Li, Guoqiang

    2016-04-01

    This paper reports surface acoustic wave (SAW) devices fabricated on AlN epitaxial film grown on sapphire, aiming to avoid the detrimental polarization axis inconsistency and refrained crystalline quality of the normally used polycrystalline AlN films. Devices with center frequency of 357 MHz and 714 MHz have been fabricated. The stop band rejection ratio of the as-obtained device reaches 24.5 dB and the pass band ripple is profoundly smaller compared to most of the reported AlN SAW devices with the similar configuration. Judging from the rather high edge dislocation level of the film used in this study, the properties of the SAW devices have great potential to be improved by further improving the crystalline quality of the film. It is then concluded that the AlN epitaxial film is favorable for high quality SAW devices to meet the high frequency and low power consumption challenges facing the signal processing components.

  15. Coating thickness affects surface stress measurement of brush electro-plating nickel coating using Rayleigh wave approach.

    PubMed

    Liu, Bin; Dong, Shiyun; Xu, Binshi; He, Peng

    2012-09-01

    A surface ultrasonic wave approach was presented for measuring surface stress of brush electro-plating nickel coating specimen, and the influence of coating thickness on surface stress measurement was discussed. In this research, two Rayleigh wave transducers with 5MHz frequency were employed to collect Rayleigh wave signals of coating specimen with different static tensile stresses and different coating thickness. The difference in time of flight between two Rayleigh wave signals was determined based on normalized cross correlation function. The influence of stress on propagation velocity of Rayleigh wave and the relationship between the difference in time of flight and tensile stress that corresponded to different coating thickness were discussed. Results indicate that inhomogeneous deformation of coating affects the relationship between the difference in time of flight and tensile stress, velocity of Rayleigh wave propagating in coating specimen increases with coating thickness increasing, and the variation rate reduces of difference in time of flight with tensile stress increasing as coating thickness increases. PMID:22534060

  16. Gas sensor technology at Sandia National Laboratories: Catalytic gate, Surface Acoustic Wave and Fiber Optic Devices

    SciTech Connect

    Hughes, R.C.; Moreno, D.J.; Jenkins, M.W.; Rodriguez, J.L.

    1993-10-01

    Sandia`s gas sensor program encompasses three separate electronic platforms: Acoustic Wave Devices, Fiber Optic Sensors and sensors based on silicon microelectronic devices. A review of most of these activities was presented recently in a article in Science under the title ``Chemical Microsensors.`` The focus of the program has been on understanding and developing the chemical sensor coatings that are necessary for using these electronic platforms as effective chemical sensors.

  17. Contactless remote induction of shear waves in soft tissues using a transcranial magnetic stimulation device

    NASA Astrophysics Data System (ADS)

    Grasland-Mongrain, Pol; Miller-Jolicoeur, Erika; Tang, An; Catheline, Stefan; Cloutier, Guy

    2016-03-01

    This study presents the first observation of shear waves induced remotely within soft tissues. It was performed through the combination of a transcranial magnetic stimulation device and a permanent magnet. A physical model based on Maxwell and Navier equations was developed. Experiments were performed on a cryogel phantom and a chicken breast sample. Using an ultrafast ultrasound scanner, shear waves of respective amplitudes of 5 and 0.5 μm were observed. Experimental and numerical results were in good agreement. This study constitutes the framework of an alternative shear wave elastography method.

  18. Prediction and Direct Measurement of Scattered Plate-Wave Fields Using S0 to A0 Mode Conversion at Non-Symmetric Circular Inhomogeneities

    NASA Astrophysics Data System (ADS)

    Cegla, F. B.; Veidt, M.

    2007-03-01

    The scattering of A0 waves from blind holes and added masses when plane S0 waves are incident was investigated. Predictions from an approximate theoretical model and experimental results were found to be in good agreement at low frequency thickness products. The presented technique has the advantage of being most sensitive to the mode converted scattered A0 field while it hardly picks up any of the incident wave mode. This method has potential applications in plate wave diffraction tomography where the wave field of the scattered flexural wave has to be accurately determined in order to reconstruct an image of damage such as corrosion thinning or laminar disbonds.

  19. Wave propagation in parallel-plate waveguides filled with nonlinear left-handed material

    NASA Astrophysics Data System (ADS)

    Burhan, Zamir; Rashid, Ali

    2011-01-01

    A theoretical investigation of field components for transverse electric mode in the parallel-plate waveguides has been studied. In this analysis two different types of waveguide structures have been discussed, i.e., (a) normal good/perfect conducting parallel-plate waveguide filled with nonlinear left-handed material and (b) high-temperature-superconducting parallel-plate waveguide filled with nonlinear left-handed material. The dispersion relations of transverse electric mode have also been discussed for these two types of waveguide structures.

  20. Experimental and Numerical Investigations of Effects of Flow Control Devices Upon Flat-Plate Film Cooling Performance.

    PubMed

    Kawabata, Hirokazu; Funazaki, Ken-Ichi; Nakata, Ryota; Takahashi, Daichi

    2014-06-01

    This study deals with the experimental and numerical studies of the effect of flow control devices (FCDs) on the film cooling performance of a circular cooling hole on a flat plate. Two types of FCDs with different heights are examined in this study, where each of them is mounted to the flat plate upstream of the cooling hole by changing its lateral position with respect to the hole centerline. In order to measure the film effectiveness as well as heat transfer downstream of the cooling hole with upstream FCD, a transient method using a high-resolution infrared camera is adopted. The velocity field downstream of the cooling hole is captured by 3D laser Doppler velocimeter (LDV). Furthermore, the aerodynamic loss associated with the cooling hole with/without FCD is measured by a total pressure probe rake. The experiments are carried out at blowing ratios ranging from 0.5 to 1.0. In addition, numerical simulations are also made to have a better understanding of the flow field. LES approach is employed to solve the flow field and visualize the vortex structure around the cooling hole with FCD. When a taller FCD is mounted to the plate, the film effectiveness tends to increase due to the vortex structure generated by the FCD. As FCD is laterally shifted from the centerline, the film effectiveness increases, while the lift-off of cooling air is also promoted when FCD is put on the center line. PMID:25278646

  1. Multi-Mode Electromagnetic Ultrasonic Lamb Wave Tomography Imaging for Variable-Depth Defects in Metal Plates.

    PubMed

    Huang, Songling; Zhang, Yu; Wang, Shen; Zhao, Wei

    2016-01-01

    This paper proposes a new cross-hole tomography imaging (CTI) method for variable-depth defects in metal plates based on multi-mode electromagnetic ultrasonic Lamb waves (LWs). The dispersion characteristics determine that different modes of LWs are sensitive to different thicknesses of metal plates. In this work, the sensitivities to thickness variation of A0- and S0-mode LWs are theoretically studied. The principles and procedures for the cooperation of A0- and S0-mode LW CTI are proposed. Moreover, the experimental LW imaging system on an aluminum plate with a variable-depth defect is set up, based on A0- and S0-mode EMAT (electromagnetic acoustic transducer) arrays. For comparison, the traditional single-mode LW CTI method is used in the same experimental platform. The imaging results show that the computed thickness distribution by the proposed multi-mode method more accurately reflects the actual thickness variation of the defect, while neither the S0 nor the A0 single-mode method was able to distinguish thickness variation in the defect region. Moreover, the quantification of the defect's thickness variation is more accurate with the multi-mode method. Therefore, theoretical and practical results prove that the variable-depth defect in metal plates can be successfully quantified and visualized by the proposed multi-mode electromagnetic ultrasonic LW CTI method. PMID:27144571

  2. Multi-Mode Electromagnetic Ultrasonic Lamb Wave Tomography Imaging for Variable-Depth Defects in Metal Plates

    PubMed Central

    Huang, Songling; Zhang, Yu; Wang, Shen; Zhao, Wei

    2016-01-01

    This paper proposes a new cross-hole tomography imaging (CTI) method for variable-depth defects in metal plates based on multi-mode electromagnetic ultrasonic Lamb waves (LWs). The dispersion characteristics determine that different modes of LWs are sensitive to different thicknesses of metal plates. In this work, the sensitivities to thickness variation of A0- and S0-mode LWs are theoretically studied. The principles and procedures for the cooperation of A0- and S0-mode LW CTI are proposed. Moreover, the experimental LW imaging system on an aluminum plate with a variable-depth defect is set up, based on A0- and S0-mode EMAT (electromagnetic acoustic transducer) arrays. For comparison, the traditional single-mode LW CTI method is used in the same experimental platform. The imaging results show that the computed thickness distribution by the proposed multi-mode method more accurately reflects the actual thickness variation of the defect, while neither the S0 nor the A0 single-mode method was able to distinguish thickness variation in the defect region. Moreover, the quantification of the defect’s thickness variation is more accurate with the multi-mode method. Therefore, theoretical and practical results prove that the variable-depth defect in metal plates can be successfully quantified and visualized by the proposed multi-mode electromagnetic ultrasonic LW CTI method. PMID:27144571

  3. Modal density and modal distribution of bending wave vibration fields in ribbed plates.

    PubMed

    Dickow, Kristoffer Ahrens; Brunskog, Jonas; Ohlrich, Mogens

    2013-10-01

    Plates reinforced by ribs or joists are common elements in lightweight building structures, as well as in other engineering structures such as vehicles, ships, and aircraft. These structures, however, are often not well suited for simple structural acoustic prediction models such as statistical energy analysis. One reason is that the modal density is not uniformly distributed due to the spatial periodicity introduced by the ribs. This phenomenon is investigated in the present paper, using a modal model of a ribbed plate. The modal model uses the Fourier sine modes, and the coupling between the plate and ribs is incorporated using Hamilton's principle. This model is then used to investigate the modal density of the considered spatially periodic structure, and a grouping of the modes in different dominating directions is proposed. Suggestions are also given regarding how to proceed towards a simplified prediction model for ribbed plates. PMID:24116410

  4. Air-coupled detection of the S1-ZGV lamb mode in a concrete plate based on backward wave propagation

    NASA Astrophysics Data System (ADS)

    Bjurström, H.; Ryden, N.

    2013-01-01

    Impact Echo is commonly used to determine thickness of concrete plate like structures. The method is based on the generation and detection of the plate thickness resonance frequency, where the group velocity of the first higher symmetric Lamb mode goes to zero (S1-ZGV). When using air-coupled microphones as receivers it is hard to determine the correct resonance frequency due to low signal to noise ratio. In this study multichannel signal processing is used to identify the S1-ZGV frequency, based on backward wave propagation instead of the conventional amplitude spectrum approach. The original PDF file of this article, as supplied to AIP Publishing, contained some minor font problems within Figures 1, 4, 7, 8, and 9. An updated PDF file using the correct font within those figures was issued on June 3, 2013. There are no other changes to the scientific content.

  5. Plate acoustic wave sensor for detection of small amounts of bacterial cells in micro-litre liquid samples.

    PubMed

    Anisimkin, V I; Kuznetsova, I Е; Kolesov, V V; Pyataikin, I I; Sorokin, V V; Skladnev, D A

    2015-09-01

    Ultrasonic acoustic waves propagating in thin piezoelectric plates with free faces are used for bacteria detection in micro-litre liquid samples deposited on one of the plate surface. The limits of the detection at normal conditions are as low as 0.04% for highly diluted rich cultural Luria-Bertani broth (LB-media) in distillate water, 0.07% for bacterial cells in distillate water, and 0.6% for bacterial cells in LB-media. For all analytes the most probable detection mechanism is the change in liquid conductivity. Because of no using any sorbent film the long-term stability of the detection is expected as very high. PMID:26049732

  6. Holographic video display based on guided-wave acousto-optic devices

    NASA Astrophysics Data System (ADS)

    Smalley, Daniel E.; Smithwick, Quinn Y. J.; Bove, V. Michael, Jr.

    2007-02-01

    We introduce a new holo-video display architecture ("Mark III") developed at the MIT Media Laboratory. The goal of the Mark III project is to reduce the cost and size of a holo-video display, making it into an inexpensive peripheral to a standard desktop PC or game machine which can be driven by standard graphics chips. Our new system is based on lithium niobate guided-wave acousto-optic devices, which give twenty or more times the bandwidth of the tellurium dioxide bulk-wave acousto-optic modulators of our previous displays. The novel display architecture is particularly designed to eliminate the high-speed horizontal scanning mechanism that has traditionally limited the scalability of Scophony- style video displays. We describe the system architecture and the guided-wave device, explain how it is driven by a graphics chip, and present some early results.

  7. Flow-Field Measurement of Device-Induced Embedded Streamwise Vortex on a Flat Plate

    NASA Technical Reports Server (NTRS)

    Yao, Chung-Sheng; Lin, John C.; Allan, Brian G.

    2002-01-01

    Detailed flow-field measurements were performed downstream of a single vortex generator (VG) using an advanced Stereo Digital Particle Image Velocimetry system. Thc passive flow-control devices examined consisted of a low-profile VG with a device height, h, approximately equal to 20 percent of the boundary-layer thickness, sigma, and a conventional VG with h is approximately sigma. Flow-field data were taken at twelve cross-flow planes downstream of the VG to document and quantify the evolution of embedded streamwise vortex. The effects of device angle of attack on vortex development downstream were compared between the low-profile VG and the conventional VG. Key parameters including vorticity, circulation, trajectory, and half-life radius - describing concentration, strength, path, and size, respectively--of the device-induced streamwise vortex were extracted from the flow-field data. The magnitude of maximum vorticity increases as angle of attack increases for the low-profile VG, but the trend is reversed for the conventional VG, probably due to flow stalling around the larger device at higher angles of attack. Peak vorticity and circulation for the low-profile VG decays exponentially and inversely proportional to the distance downstream from the device. The device-height normalized vortex trajectories for the low-profile VG, especially in the lateral direction, follow the general trends of the conventional VG. The experimental database was used to validate the predictive capability of computational fluid dynamics (CFD). CFD accurately predicts the vortex circulation and path; however, improvements are needed for predicting the vorticity strength and vortex size.

  8. Solitary wave-based delamination detection in composite plates using a combined granular crystal sensor and actuator

    NASA Astrophysics Data System (ADS)

    Kim, Eunho; Restuccia, Francesco; Yang, Jinkyu; Daraio, Chiara

    2015-12-01

    We experimentally and numerically investigate a diagnostic method for detecting hidden delamination in composite panels, using highly nonlinear solitary waves. Solitary waves are a type of nonlinear waves with strong energy intensity and non-distortive nature, which can be controllably generated in one-dimensional granular crystals. In this study, we use granular crystals as a combined sensor and actuator to detect hidden delamination in carbon fiber reinforced polymer (CFRP) composite panels. Specifically, we locally excite a CFRP composite specimen using the granular crystal as an actuator and measure the reflected waves that carry the specimen’s diagnostic information using the same device as a sensor. We first investigate the effect of the panel’s boundary conditions on the response of the reflected solitary waves. We then investigate the interactions of a solitary wave with delamination hidden in the CFRP composite specimen. Lastly, we define a damage index based on the solitary waves’ responses to identify the location of the hidden delamination in the CFRP composite panel. The solitary wave-based diagnostic method can provide unique merits, such as portable and fast sensing of composites’ hidden damage, thereby with the potential of being used for hot spot monitoring of composite-based structures.

  9. The method of imbedded Lagrangian element to estimate wave power absorption by some submerged devices

    NASA Astrophysics Data System (ADS)

    Nihous, Gérard C.

    2014-06-01

    A simple approach is described to estimate the wave power absorption potential of submerged devices known to cause wave focusing and flow enhancement. In particular, the presence of a flow-through power take-off (PTO) system, such as low-head turbines, can be accounted for. The wave radiation characteristics of an appropriately selected Lagrangian element (LE) in the fluid domain are first determined. In the limit of a vanishing mass, the LE reduces to a patch of distributed normal dipoles. The hydrodynamic coefficients of this virtual object are then input in a standard equation of motion where the effect of the PTO can be represented, for example, as a dashpot damping term. The process is illustrated for a class of devices recently proposed by Carter and Ertekin (2011), although in a simplified form. Favorable wave power absorption is shown for large ratios of the LE wave radiation coefficient over the LE added mass coefficient. Under optimal conditions, the relative flow reduction from the PTO theoretically lies between 0.50 and , with lower values corresponding to better configurations. Wave power capture widths, the sensitivity of results to PTO damping and sample spectral calculations at a typical site in Hawaiian waters are proposed to further illustrate the versatility of the method.

  10. Imaging flaws in thin metal plates using a magneto-optic device

    NASA Technical Reports Server (NTRS)

    Wincheski, B.; Prabhu, D. R.; Namkung, M.; Birt, E. A.

    1992-01-01

    An account is given of the capabilities of the magnetooptic/eddy-current imager (MEI) apparatus in the case of aging aircraft structure-type flaws in 2024-T3 Al alloy plates. Attention is given to images of cyclically grown fatigue cracks from rivetted joints in fabricated lap-joint structures, electrical discharge machining notches, and corrosion spots. Although conventional eddy-current methods could have been used, the speed and ease of MEI's use in these tests is unmatched by such means. Results are displayed in real time as a test piece is scanned, furnishing easily interpreted flaw images.

  11. Imaging flaws in thin metal plates using a magneto-optic device

    NASA Astrophysics Data System (ADS)

    Wincheski, B.; Prabhu, D. R.; Namkung, M.; Birt, E. A.

    An account is given of the capabilities of the magnetooptic/eddy-current imager (MEI) apparatus in the case of aging aircraft structure-type flaws in 2024-T3 Al alloy plates. Attention is given to images of cyclically grown fatigue cracks from rivetted joints in fabricated lap-joint structures, electrical discharge machining notches, and corrosion spots. Although conventional eddy-current methods could have been used, the speed and ease of MEI's use in these tests is unmatched by such means. Results are displayed in real time as a test piece is scanned, furnishing easily interpreted flaw images.

  12. Micro-Fresnel Zone Plate Optical Devices Using Densely Accumulated Ray Points

    NASA Technical Reports Server (NTRS)

    Choi, Sang H. (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2011-01-01

    An embodiment generally relates to an optical device suitable for use with an optical medium for the storage and retrieval of data. The optical device includes an illumination means for providing a beam of optical radiation of wavelength .lamda. and an optical path that the beam of optical radiation follows. The optical device also includes a diffractive optical element defined by a plurality of annular sections. The plurality of annular sections having a first material alternately disposed with a plurality of annular sections comprising a second material. The diffractive optical element generates a plurality of focal points and densely accumulated ray points with phase contrast phenomena and the optical medium is positioned at a selected focal point or ray point of the diffractive optical element.

  13. Nature defect evaluation of laser welded thin plate using laser guide wave

    NASA Astrophysics Data System (ADS)

    Song, Kyung Seok; Kim, Jae Yeol

    2007-07-01

    The longitudinal, shear and surface waves have been used to an Ultrasonic wave exploration method to identify internal defects but it has technical difficulties to detect defects in a limited space with having several millimeters board thickness. It is applicable to use Lamb wave, a kind of induction ultrasonic wave that has a relatively high inspection efficiency and defect detection sensitiveness compare to perpendicular or square explorations in terms of the internal defect detection in these kinds of thin board. The Lamb wave is a special type of induction ultrasonic wave to propagate to a board and it is effective to inspect such as board structure, cell structure, etc. Recently a laser is being used to generate Lamb wave but it not being widely utilized because of difficulties in receiving and selective generation in various modes Lamb wave generating and a low S/N ratio, wide range of generating frequency band when a laser is used. This paper aims to study that the defect exploration method to specimen's thickness, using an characteristic of an ultrasonic wave generating in ablation area and thermoelasticity area, has been applied to using a way of receiving it by Air-Coupled Transducer and transmitting it by an ultrasonic wave and a way of non-contact receiving and transmitting ultrasonic wave using a laser. The longitudinal, shear waves have been used in 60mm thickness specimen and Lamb wave in 3mm to run artificial defect detection test. In this way, the usefulness of non-contact laser ultrasonic wave has been verified. To confirm the possibility of implementation on natural defect existing at real welding part, thickness in 3mm SM45C and STS304 artificial defect specimen has been made and defect detection test using Lamb wave has been executed. Detected signal by signal treatment has been expressed in visual not RF signal. By doing so the convenience of defect detection has been attempted and the effectiveness of defect signal visualization using Lamb

  14. Heterodyne mixing of millimetre electromagnetic waves and sub-THz sound in a semiconductor device

    PubMed Central

    Heywood, Sarah L.; Glavin, Boris A.; Beardsley, Ryan P.; Akimov, Andrey V.; Carr, Michael W.; Norman, James; Norton, Philip C.; Prime, Brian; Priestley, Nigel; Kent, Anthony J.

    2016-01-01

    We demonstrate heterodyne mixing of a 94 GHz millimetre wave photonic signal, supplied by a Gunn diode oscillator, with coherent acoustic waves of frequency ~100 GHz, generated by pulsed laser excitation of a semiconductor surface. The mixing takes place in a millimetre wave Schottky diode, and the intermediate frequency electrical signal is in the 1–12 GHz range. The mixing process preserves all the spectral content in the acoustic signal that falls within the intermediate frequency bandwidth. Therefore this technique may find application in high-frequency acoustic spectroscopy measurements, exploiting the nanometre wavelength of sub-THz sound. The result also points the way to exploiting acoustoelectric effects in photonic devices working at sub-THz and THz frequencies, which could provide functionalities at these frequencies, e.g. acoustic wave filtering, that are currently in widespread use at lower (GHz) frequencies. PMID:27477841

  15. Heterodyne mixing of millimetre electromagnetic waves and sub-THz sound in a semiconductor device.

    PubMed

    Heywood, Sarah L; Glavin, Boris A; Beardsley, Ryan P; Akimov, Andrey V; Carr, Michael W; Norman, James; Norton, Philip C; Prime, Brian; Priestley, Nigel; Kent, Anthony J

    2016-01-01

    We demonstrate heterodyne mixing of a 94 GHz millimetre wave photonic signal, supplied by a Gunn diode oscillator, with coherent acoustic waves of frequency ~100 GHz, generated by pulsed laser excitation of a semiconductor surface. The mixing takes place in a millimetre wave Schottky diode, and the intermediate frequency electrical signal is in the 1-12 GHz range. The mixing process preserves all the spectral content in the acoustic signal that falls within the intermediate frequency bandwidth. Therefore this technique may find application in high-frequency acoustic spectroscopy measurements, exploiting the nanometre wavelength of sub-THz sound. The result also points the way to exploiting acoustoelectric effects in photonic devices working at sub-THz and THz frequencies, which could provide functionalities at these frequencies, e.g. acoustic wave filtering, that are currently in widespread use at lower (GHz) frequencies. PMID:27477841

  16. Heterodyne mixing of millimetre electromagnetic waves and sub-THz sound in a semiconductor device

    NASA Astrophysics Data System (ADS)

    Heywood, Sarah L.; Glavin, Boris A.; Beardsley, Ryan P.; Akimov, Andrey V.; Carr, Michael W.; Norman, James; Norton, Philip C.; Prime, Brian; Priestley, Nigel; Kent, Anthony J.

    2016-08-01

    We demonstrate heterodyne mixing of a 94 GHz millimetre wave photonic signal, supplied by a Gunn diode oscillator, with coherent acoustic waves of frequency ~100 GHz, generated by pulsed laser excitation of a semiconductor surface. The mixing takes place in a millimetre wave Schottky diode, and the intermediate frequency electrical signal is in the 1–12 GHz range. The mixing process preserves all the spectral content in the acoustic signal that falls within the intermediate frequency bandwidth. Therefore this technique may find application in high-frequency acoustic spectroscopy measurements, exploiting the nanometre wavelength of sub-THz sound. The result also points the way to exploiting acoustoelectric effects in photonic devices working at sub-THz and THz frequencies, which could provide functionalities at these frequencies, e.g. acoustic wave filtering, that are currently in widespread use at lower (GHz) frequencies.

  17. Fabrication and Operation of Acoustofluidic Devices Supporting Bulk Acoustic Standing Waves for Sheathless Focusing of Particles

    PubMed Central

    Shields, C. Wyatt; Cruz, Daniela F.; Ohiri, Korine A.; Yellen, Benjamin B.; Lopez, Gabriel P.

    2016-01-01

    Acoustophoresis refers to the displacement of suspended objects in response to directional forces from sound energy. Given that the suspended objects must be smaller than the incident wavelength of sound and the width of the fluidic channels are typically tens to hundreds of micrometers across, acoustofluidic devices typically use ultrasonic waves generated from a piezoelectric transducer pulsating at high frequencies (in the megahertz range). At characteristic frequencies that depend on the geometry of the device, it is possible to induce the formation of standing waves that can focus particles along desired fluidic streamlines within a bulk flow. Here, we describe a method for the fabrication of acoustophoretic devices from common materials and clean room equipment. We show representative results for the focusing of particles with positive or negative acoustic contrast factors, which move towards the pressure nodes or antinodes of the standing waves, respectively. These devices offer enormous practical utility for precisely positioning large numbers of microscopic entities (e.g., cells) in stationary or flowing fluids for applications ranging from cytometry to assembly. PMID:27022681

  18. Fabrication and Operation of Acoustofluidic Devices Supporting Bulk Acoustic Standing Waves for Sheathless Focusing of Particles.

    PubMed

    Shields, C Wyatt; Cruz, Daniela F; Ohiri, Korine A; Yellen, Benjamin B; Lopez, Gabriel P

    2016-01-01

    Acoustophoresis refers to the displacement of suspended objects in response to directional forces from sound energy. Given that the suspended objects must be smaller than the incident wavelength of sound and the width of the fluidic channels are typically tens to hundreds of micrometers across, acoustofluidic devices typically use ultrasonic waves generated from a piezoelectric transducer pulsating at high frequencies (in the megahertz range). At characteristic frequencies that depend on the geometry of the device, it is possible to induce the formation of standing waves that can focus particles along desired fluidic streamlines within a bulk flow. Here, we describe a method for the fabrication of acoustophoretic devices from common materials and clean room equipment. We show representative results for the focusing of particles with positive or negative acoustic contrast factors, which move towards the pressure nodes or antinodes of the standing waves, respectively. These devices offer enormous practical utility for precisely positioning large numbers of microscopic entities (e.g., cells) in stationary or flowing fluids for applications ranging from cytometry to assembly. PMID:27022681

  19. Surface acoustic wave nebulization device with dual interdigitated transducers improves SAWN-MS performance.

    PubMed

    Huang, Yue; Heron, Scott R; Clark, Alicia M; Edgar, J Scott; Yoon, Sung Hwan; Kilgour, David P A; Turecek, Frantisek; Aliseda, Alberto; Goodlett, David R

    2016-06-01

    We compared mass spectrometric (MS) performance of surface acoustic wave nebulization (SAWN) generated by a single interdigitated transducer (IDT) designed to produce a progressive wave (PW) to one with a dual IDT that can in theory generate standing waves (SW). Given that devices using dual IDTs had been shown to produce fewer large size droplets on average, we hypothesized they would improve MS performance by improving the efficiency of desolvation. Indeed, the SW-SAWN chip provided an improved limit of detection of 1 femtomole of peptide placed on chip making it 100× more sensitive than the PW design. However, as measured by high-speed image recording and phase Doppler particle analyzer measurements, there was only a 26% increase in the small diameter (1-10 µm) droplets produced from the new device, precluding a conclusion that the decrease in droplet size was solely responsible for the improvement in MS signal/noise. Given that the dual IDT design produced a more instantaneous plume than the PW design, the more likely contributor to improved MS signal/noise was concluded to be a higher ion flux entering the mass spectrometer for the dual IDT designs. Notably, the dual IDT device allowed production of much higher quality protein mass spectra up to about 20 kDa, compared with the single IDT device. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27270865

  20. Properties of Maser Generated Alfvén Wave in a Large Laboratory Device

    NASA Astrophysics Data System (ADS)

    Zhu, Ziyan; Carter, Troy; Dorfman, Seth; Rossi, Giovanni; Clark, Mary

    2015-11-01

    This research is motivated by the investigations of the natural Alfvén wave maser, which refers to the resonant amplification of Alfvén wave in the earth-surrounding plasmas. A resonant cavity that results from applying a locally non-uniform magnetic field to a plasma source region between the anode and cathode of the Large Plasma Device creates the maser. In this research, a lanthanum hexaboride (LaB6) cathode is used as the plasma source. When a threshold in the plasma discharge current is exceeded, selective amplification produces a highly coherent, large amplitude shear Alfvén wave that propagates out of the resonator through a semitransparent mesh anode into the plasma column where the magnetic field is uniform. The discharge current threshold for maser action increases as background magnetic field strength B0 increases; this threshold influences the maser behaviors, including amplitude modulations. This maser with LaB6 source has only m = 1 mode, while the maser with BaO source has a mode transition from m = 0 to m = 1 mode. The LaB6 maser wavelength is insensitive to parameters except for discharge voltage, which is under investigation. The experimental results will motivate future Alfvén wave study in laboratory device and thus help better understand space plasma physics such as testing the theory of Alfvén-wave-induced heating of stellar atmosphere.

  1. Finite element method analysis of surface acoustic wave devices with microcavities for detection of liquids

    NASA Astrophysics Data System (ADS)

    Senveli, Sukru U.; Tigli, Onur

    2013-12-01

    This paper introduces the use of finite element method analysis tools to investigate the use of a Rayleigh type surface acoustic wave (SAW) sensor to interrogate minute amounts of liquids trapped in microcavities placed on the delay line. Launched surface waves in the ST-X quartz substrate couple to the liquid and emit compressional waves. These waves form a resonant cavity condition and interfere with the surface waves in the substrate. Simulations show that the platform operates in a different mechanism than the conventional mass loading of SAW devices. Based on the proposed detection mechanism, it is able to distinguish between variations of 40% and 90% glycerin based on phase relations while using liquid volumes smaller than 10 pl. Results from shallow microcavities show high correlation with sound velocity parameter of the liquid whereas deeper microcavities display high sensitivities with respect to glycerin concentration. Simulated devices yield a maximum sensitivity of -0.77°/(% glycerin) for 16 μm wavelength operation with 8 μm deep, 24 μm wide, and 24 μm long microcavities.

  2. Flow boiling with enhancement devices for cold plate coolant channel design

    NASA Technical Reports Server (NTRS)

    Boyd, Ronald D.; Turknett, Jerry C.; Smith, Alvin

    1989-01-01

    The effects of enhancement devices on flow boiling heat transfer in circular coolant channels, which are heated over a fraction of their perimeters, are studied. The variations were examined in both the mean and local (axial, and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls. Improvements were initiated in the present data reduction analysis. These efforts should lead to the development of heat transfer correlations which include effects of single side heat flux and enhancement device configuration. It is hoped that a stage will be set for the study of heat transfer and pressure drop in single sided heated systems under zero gravity conditions.

  3. Discharge and photo-luminance properties of a parallel plates electron emission lighting device.

    PubMed

    Li, Chia-Hung; Liu, Ming-Chung; Chiang, Chang-Lin; Li, Jung-Yu; Chen, Shih-Pu; Hsieh, Tai-Chiung; Chou, Yen-I; Lin, Yi-Ping; Wang, Po-Hung; Chun, Ming-Shin; Zeng, Hui-Kai; Juang, Jenh-Yih

    2011-01-01

    The gas discharge and photo-luminance properties of a planar lighting source featuring highly uniform light emission and mercury-free design were studied. The current density-voltage characteristics and the associated gas discharge of the devices operating with the values of the ratio of electric field to gas pressure (E/p) between 4.3 kV/Torr-cm and 35.7 kV/Torr-cm indicate that the width of the cathode fall extends over the entire gap between the two electrodes and the device is mostly in the obstructed discharge regime. The optical emission analysis confirmed the electron collision-induced gas emissions and strong effect of gas pressure on the phosphor emission when operated at constant current density, both are indicative of the primary roles played by the electron energy. PMID:21263712

  4. Determination of plate wave velocities and diffuse field decay rates with braod-band acousto-ultrasonic signals

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    1993-01-01

    Lowest symmetric and lowest antisymmetric plate wave modes were excited and identified in broad-band acousto-ultrasonic (AU) signals collected from various high temperature composite materials. Group velocities have been determined for these nearly nondispersive modes. An algorithm has been developed and applied to determine phase velocities and hence dispersion curves for the frequency ranges of the broad-band pulses. It is demonstrated that these data are sensitive to changes in the various stiffness moduli of the materials, in agreement by analogy, with the theoretical and experimental results of Tang and Henneke on fiber reinforced polymers. Diffuse field decay rates have been determined in the same specimen geometries and AU configuration as for the plate wave measurements. These decay rates are of value in assessing degradation such as matrix cracking in ceramic matrix composites. In addition, we verify that diffuse field decay rates respond to fiber/matrix interfacial shear strength and density in ceramic matrix composites. This work shows that velocity/stiffness and decay rate measurements can be obtained in the same set of AU experiments for characterizing materials and in specimens with geometries useful for mechanical measurements.

  5. Tailoring the Blast Exposure Conditions in the Shock Tube for Generating Pure, Primary Shock Waves: The End Plate Facilitates Elimination of Secondary Loading of the Specimen.

    PubMed

    Kuriakose, Matthew; Skotak, Maciej; Misistia, Anthony; Kahali, Sudeepto; Sundaramurthy, Aravind; Chandra, Namas

    2016-01-01

    The end plate mounted at the mouth of the shock tube is a versatile and effective implement to control and mitigate the end effects. We have performed a series of measurements of incident shock wave velocities and overpressures followed by quantification of impulse values (integral of pressure in time domain) for four different end plate configurations (0.625, 2, 4 inches, and an open end). Shock wave characteristics were monitored by high response rate pressure sensors allocated in six positions along the length of 6 meters long 229 mm square cross section shock tube. Tests were performed at three shock wave intensities, which was controlled by varying the Mylar membrane thickness (0.02, 0.04 and 0.06 inch). The end reflector plate installed at the exit of the shock tube allows precise control over the intensity of reflected waves penetrating into the shock tube. At the optimized distance of the tube to end plate gap the secondary waves were entirely eliminated from the test section, which was confirmed by pressure sensor at T4 location. This is pronounced finding for implementation of pure primary blast wave animal model. These data also suggest only deep in the shock tube experimental conditions allow exposure to a single shock wave free of artifacts. Our results provide detailed insight into spatiotemporal dynamics of shock waves with Friedlander waveform generated using helium as a driver gas and propagating in the air inside medium sized tube. Diffusion of driver gas (helium) inside the shock tube was responsible for velocity increase of reflected shock waves. Numerical simulations combined with experimental data suggest the shock wave attenuation mechanism is simply the expansion of the internal pressure. In the absence of any other postulated shock wave decay mechanisms, which were not implemented in the model the agreement between theory and experimental data is excellent. PMID:27603017

  6. Ultra-wideband ladder filter using SH(0) plate wave in thin LiNbO(3) plate and its application to tunable filter.

    PubMed

    Kadota, Michio; Tanaka, Shuji

    2015-05-01

    A cognitive radio terminal using vacant frequency bands of digital TV (DTV) channels, i.e., TV white space, strongly requires a compact tunable filter covering a wide frequency range of the DTV band (470 to 710 MHz in Japan). In this study, a T-type ladder filter using ultra-wideband shear horizontal mode plate wave resonators was fabricated, and a low peak insertion loss of 0.8 dB and an ultra-large 6 dB bandwidth of 240 MHz (41%) were measured in the DTV band. In addition, bandpass filters with different center frequencies of 502 and 653 MHz at 6 dB attenuation were numerically synthesized based on the same T-type ladder filter in conjunction with band rejection filters with different frequencies. The results suggest that the combination of the wideband T-type ladder filter and the band rejection filters connected with variable capacitors enables a tunable filter with large tunability of frequency and bandwidth as well as large rejection at the adjacent channels of an available TV white space. PMID:25965686

  7. Sensor Measurement Strategies for Monitoring Offshore Wind and Wave Energy Devices

    NASA Astrophysics Data System (ADS)

    O'Donnell, Deirdre; Srbinovsky, Bruno; Murphy, Jimmy; Popovici, Emanuel; Pakrashi, Vikram

    2015-07-01

    While the potential of offshore wind and wave energy devices is well established and accepted, operations and maintenance issues are still not very well researched or understood. In this regard, scaled model testing has gained popularity over time for such devices at various technological readiness levels. The dynamic response of these devices are typically measured by different instruments during such scaled tests but agreed sensor choice, measurement and placement guidelines are still not in place. This paper compared the dynamic responses of some of these sensors from a scaled ocean wave testing to highlight the importance of sensor measurement strategies. The possibility of using multiple, cheaper sensors of seemingly inferior performance as opposed to the deployment of a small number of expensive and accurate sensors are also explored. An energy aware adaptive sampling theory is applied to highlight the possibility of more efficient computing when large volumes of data are available from the tested structures. Efficient sensor measurement strategies are expected to have a positive impact on the development of an device at different technological readiness levels while it is expected to be helpful in reducing operation and maintenance costs if such an approach is considered for the devices when they are in operation.

  8. Flow boiling with enhancement devices for cold plate coolant channel design

    NASA Technical Reports Server (NTRS)

    Boyd, Ronald D., Sr.

    1989-01-01

    A research program to study the effect of enhancement devices on flow boiling heat transfer in coolant channels, which are heated either from the top side or uniformly, is discussed. Freon 11 is the working fluid involved. The specific objectives are: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls, (2) examine the effect channel diameter (and the length-to-diameter aspect ratio) variations for the smooth wall channel, and (3) develop an improved data reduction analysis.

  9. Tailorable Zero-Phase Delay of Subwavelength Particles toward Miniaturized Wave Manipulation Devices.

    PubMed

    Zhao, Qian; Xiao, Zongqi; Zhang, Fuli; Ma, Junming; Qiao, Ming; Meng, Yonggang; Lan, Chuwen; Li, Bo; Zhou, Ji; Zhang, Peng; Shen, Nian-Hai; Koschny, Thomas; Soukoulis, Costas M

    2015-10-28

    Adjustable zero-phase delay and equiphase control are demonstrated in single and multilayer dielectric particle arrays with high index and low loss. The polarization-independent near-zero permeability is the origin of the wave control near the first Mie magnetic resonance. The proposed design paves the way for subwavelength devices and opens up new avenues for the miniaturization and integration of THz and optical components. PMID:26332831

  10. Re-thinking Reading in the Context of a New Wave of Electronic Reading Devices

    NASA Astrophysics Data System (ADS)

    Kratky, Andreas

    We are currently witnessing a new wave of digital reading devices that will probably significantly change the way we read and publish. This is not the first digital revolution of aspects of cultural production and perception. This paper compares the previous digital revolutions of the music, film and publishing industries and attempts a prognosis of coming changes in the way we will work with digital texts. As a conclusion a new notion of interface design for the emerging reading ecology is proposed.

  11. Application of wave mechanics theory to fluid dynamics problems: Flat plate flow

    NASA Technical Reports Server (NTRS)

    Krzywoblocki, M. Z. V.

    1974-01-01

    The characteristics of the flow in the laminar boundary layer along an infinitely long flat plate are discussed. The flow may be disturbed or not, depending on the situation. The physical, natural aspects of the flow, either a laminar flow free from disturbances or a flow which originally is a laminar one with disturbances superimposed upon it. Oscillograms of turbulence in wind tunnel tests and in the wake of a cylinder are presented.

  12. Device and packaging considerations for MMIC-based millimeter-wave quasi-optical amplifier arrays

    NASA Astrophysics Data System (ADS)

    Kolias, Nicholas J.; Kazior, Thomas E.; Chen, Yan; Wright, Warren

    1999-11-01

    Practical implementation of millimeter-wave quasi-optical amplifier arrays will require high device uniformity across the array, efficient coupling to and from each gain device, good device-to-device isolation, and efficient heat removal. This paper presents techniques that address these issues for a 44 GHz MMIC-based design. To improve device uniformity, a double selective gate recess approach is introduced which results in a demonstrated 3 - 5X improvement in uniformity when compared to Raytheon's standard production pHEMT process. For packaging, direct backside interconnect technology (DBIT) is introduced as a bondwire-free scheme for connecting each amplifier to the array. This approach significantly reduces interconnect loss by reducing interconnect inductance. Measured insertion loss at 44 GHz for the DBIt transition is 0.35 dB compared to 2.3 dB for a typical bondwire transition produced on a manufacturing automated bonding machine. By eliminating bondwires which tend to radiate at millimeter wave frequencies, the DBIT approach also significantly improves the device-to-device isolation, thereby improving the array stability. The DBIT approach would not be viable if it could not effectively dissipate heat (a typical 25 watt array generates greater than 100 watts of heat). Finite element thermal analysis results are presented which show that the DBIT approach adds a tolerable 15.5 degree(s)C temperature rise over a standard solder-based MMIC die-attach to a heatsink. Thus, the DBIT approach, along with the double selective gate recess process, provides an attractive, low-loss, bondwire-free approach for producing uniform amplifier arrays.

  13. Experimental Structural Dynamic Response of Plate Specimens Due to Sonic Loads in a Progressive Wave Tube

    NASA Technical Reports Server (NTRS)

    Betts, Juan F.

    2001-01-01

    The objective of the current study was to assess the repeatability of experiments at NASA Langley's Thermal Acoustic Fatigue Apparatus (TAFA) facility and to use these experiments to validate numerical models. Experiments show that power spectral density (PSD) curves were repeatable except at the resonant frequencies, which tended to vary between 5 Hz to 15 Hz. Results show that the thinner specimen had more variability in the resonant frequency location than the thicker sample, especially for modes higher than the first mode in the frequency range. Root Mean Square (RMS) tended to be more repeatable. The RMS behaved linearly through the SPL range of 135 to 153 dB. Standard Deviations (STDs) of the results tended to be relatively low constant up to about 147 dB. The RMS results were more repeatable than the PDS results. The STD results were less than 10% of the RMS results for both the 0.125 in (0.318 cm) and 0.062 in (0.1588 cm) thick plate. The STD of the PSD results were around 20% to 100% of the mean PSD results for non-resonant and resonant frequencies, respectively, for the 0.125 in (0.318 cm) thicker plate and between 25% to 125% of the mean PSD results, for nonresonant and resonant frequencies, respectively, for the thinner plate.

  14. Numerical calculation of electromagnetic eigenfields and dispersion relations for slow-wave device simulation

    SciTech Connect

    Oslake, J.M.; Verboncoeur, J.P.; Birdsall, C.K.

    1996-12-31

    Slow-wave structures support microwave amplification via electromagnetic coupling with an injected electron beam. Critical in the design of such devices is the dependence of the dispersion relation on the geometry of the guiding structure. The dispersion relation provides phase and group velocities, and the fields provide the impedance as seen by the beam. To this end, a computer model is developed which first numerically solves a wave equation in finite difference form subject to boundary conditions periodic in z and conducting elsewhere. For decades, the desired dispersion and impedance have been obtained experimentally from cold tests (no beam) on slow-wave structures by varying structure dimensions. However, the numerical approach condenses this process to a few minutes of simulation.

  15. Photonic devices for tunable continuous-wave terahertz generation and detection

    NASA Astrophysics Data System (ADS)

    Park, Kyung Hyun; Kim, Namje; Moon, Kiwon; Ko, Hyunsung; Park, Jeong-Woo; Lee, Eui Su; Lee, Il-Min; Han, Sang-Pil

    2014-03-01

    A novel type of semiconductor beating source, a monolithically integrated dual-mode laser, and continuous-wave terahertz (THz) system adopting it will be investigated. The combined system of the beating source with broadbandantenna- integrated low-temperature-grown semiconductor photomixers shows the possibility of the realization of the cost-effective and compact continuous-wave THz systems. Such a system is highly-demanded to examine the THz finger prints of specimens without limitations. Since the optimized performance depends not only on the characteristics of functional devices but also module configurations, various approaches such as traveling-wave photomixers, Schottky barrier diodes, and nano-structure contained photomixers have been investigated to implement high-performance THz platforms as the main building blocks of a THz system. Semiconductor-based compact and cost-effective photonics technologies will envisage the bright future of THz systems.

  16. Cascadia tremor located near plate interface constrained by S minus P wave times.

    PubMed

    La Rocca, Mario; Creager, Kenneth C; Galluzzo, Danilo; Malone, Steve; Vidale, John E; Sweet, Justin R; Wech, Aaron G

    2009-01-30

    Nonvolcanic tremor is difficult to locate because it does not produce impulsive phases identifiable across a seismic network. An alternative approach to identifying specific phases is to measure the lag between the S and P waves. We cross-correlate vertical and horizontal seismograms to reveal signals common to both, but with the horizontal delayed with respect to the vertical. This lagged correlation represents the time interval between vertical compressional waves and horizontal shear waves. Measurements of this interval, combined with location techniques, resolve the depth of tremor sources within +/-2 kilometers. For recent Cascadia tremor, the sources locate near or on the subducting slab interface. Strong correlations and steady S-P time differences imply that tremor consists of radiation from repeating sources. PMID:19179527

  17. Lamb wave excitation and propagation in elastic plates with surface obstacles: proper choice of central frequencies

    NASA Astrophysics Data System (ADS)

    Glushkov, Evgeny; Glushkova, Natalia; Lammering, Rolf; Eremin, Artem; Neumann, Mirko N.

    2011-01-01

    Experimental and theoretical investigations of Lamb wave excitation and sensing using piezo patch transducers and the laser vibrometer technique have been performed, aiming at the development of adequate mathematical and computer models for the interpretation of sensing data and for the choice of optimal parameters for structural health monitoring. The proposed models are validated by experimental results. Furthermore, a methodology is presented which allows for the determination of central frequencies at which maximal values of the structural response spectrum can be expected in the case of wave propagation monitoring with laser vibrometry.

  18. Novel device (AirWave) to assess endotracheal tube migration: A pilot study☆,☆☆

    PubMed Central

    Nacheli, Gustavo Cumbo; Sharma, Manish; Wang, Xiaofeng; Gupta, Amit; Guzman, Jorge A.; Tonelli, Adriano R.

    2013-01-01

    Introduction Little is known about endotracheal tube (ETT) migration during routine care among critically ill patients. AirWave is a novel device that uses sonar waves to measure ETT migration and obstructions in real time. The aim of the present study is to assess the accuracy of the AirWave to evaluate ETT migration. In addition, we determined the degree of variation in ETT position and tested whether more pronounced migration occurs in specific clinical scenarios. Methods After institutional review board approval, we included mechanically ventilated patients from February 2012 to May 2012. A chest radiography (CXR) was obtained at baseline and 24 hours when clinically indicated. The ETT distance at the lips was recorded at baseline and every 4 hours. The AirWave system continuously recorded ETT position changes from baseline, and luminal obstructions. Results A total of 42 patients (age: 61 [SD ± 13] years, men: 52%) were recruited. A total of 19 patients had measurements of ETT migration at 24 hours by the 3 methodologies used in this study. The mean (SD) of the ETT migration at 24 hours was +0.04 (1.2), −0.42 (0.7) and +0.34 (1.81) cm when measured by portable CXR, ETT distance at the teeth and AirWave device, respectively. Bland-Altman analysis of tube migration at 24 hours comparing the AirWave with CXR readings showed a bias of 0.1 cm with 95% limit of agreement of −3.8 and +4.3 cm. Comparison of tube migration at 24 hours determined by AirWave with ETT distance at the lips revealed a bias of −0.4 with 95% limit of agreement −3.7 to +3 cm, similar to the values observed between CXR and ETT distance at the lips (bias of −0.3 cm, 95% limit of agreement of −3.4 to +2.8 cm). Factors associated with ETT migration at 24 hours were ETT size and initial measurement from ETT tip to carina by portable CXR. AirWave detected in eight patients some degree of ETT obstruction (30% ± 9.6%) that resolved with prompt ETT catheter suction. Conclusions The AirWave

  19. AlScN thin film based surface acoustic wave devices with enhanced microfluidic performance

    NASA Astrophysics Data System (ADS)

    Wang, W. B.; Fu, Y. Q.; Chen, J. J.; Xuan, W. P.; Chen, J. K.; Wang, X. Z.; Mayrhofer, P.; Duan, P. F.; Bittner, A.; Schmid, U.; Luo, J. K.

    2016-07-01

    This paper reports the characterization of scandium aluminum nitride (Al1‑x Sc x N, x  =  27%) films and discusses surface acoustic wave (SAW) devices based on them. Both AlScN and AlN films were deposited on silicon by sputtering and possessed columnar microstructures with (0 0 0 2) crystal orientation. The AlScN/Si SAW devices showed improved electromechanical coupling coefficients (K 2, ~2%) compared with pure AlN films (<0.5%). The performance of the two types of devices was also investigated and compared, using acoustofluidics as an example. The AlScN/Si SAW devices achieved much lower threshold powers for the acoustic streaming and pumping of liquid droplets, and the acoustic streaming and pumping velocities were 2  ×  and 3  ×  those of the AlN/Si SAW devices, respectively. Mechanical characterization showed that the Young’s modulus and hardness of the AlN film decreased significantly when Sc was doped, and this was responsible for the decreased acoustic velocity and resonant frequency, and the increased temperature coefficient of frequency, of the AlScN SAW devices.

  20. Estimation of frequency conversion efficiency of THz devices using a ballistic electron wave swing circuit model

    NASA Astrophysics Data System (ADS)

    Schildbach, Christian; Ong, Duu Sheng; Hartnagel, Hans; Schmidt, Lorenz-Peter

    2016-06-01

    The ballistic electron wave swing device has previously been presented as a possible candidate for a simple power conversion technique to the THz -domain. This paper gives a simulative estimation of the power conversion efficiency. The harmonic balance simulations use an equivalent circuit model, which is also derived in this work from a mechanical model. To verify the validity of the circuit model, current waveforms are compared to Monte Carlo simulations of identical setups. Model parameters are given for a wide range of device configurations. The device configuration exhibiting the most conforming waveform is used further for determining the best conversion efficiency. The corresponding simulation setup is described. Simulation results implying a conversion efficiency of about 22% are presented.

  1. Scattering of electromagnetic waves from surfaces with conformal mapping: An example of a triangular plate

    NASA Astrophysics Data System (ADS)

    Chui, S. T.; Wang, Shubo; Chan, C. T.

    2016-03-01

    We discuss a way to exploit conformal mapping to study the response of a finite metallic film of arbitrary shape to an external electromagnetic field at finite frequencies. This provides a simple way to understand different physics issues and provides insights that include the issue of vorticity and eddy current and the nature of the divergent electric field at the boundaries and at corners. We study an example of an equilateral triangular plate and find good agreement with results obtained with traditional numerical techniques.

  2. Numerical calculation of electromagnetic eigenfields and dispersion relation for slow-wave device simulation

    SciTech Connect

    Oslake, J.M.; Verboncoeur, J.P.; Birdsall, C.K.

    1996-12-31

    Slow-wave structures support microwave amplification via electromagnetic coupling with an injected electron beam. Critical in the design of such devices is the dependence of the dispersion relation on the geometry of the guiding structure. The dispersion relation provides phase and group velocities, and the fields provide the impedance as seen by the beam. To this end, a computer model is developed which first numerically solves a wave equation in finite difference from subject to boundary conditions periodic in z and conducting elsewhere. Here the direction of wave propagation is along the z-axis. The solution produces a sequence of eigenfrequencies and eigenfields beginning with cut-off. Fourier decomposition of each eigenfield along selected mesh lines coincident with the location of the electron beam is then performed to establish a correspondence between eigenfrequency and wave number. From this data the dispersion relation for the slow-wave structure can then be formed. An example showing the first two TM passbands and E{sub z} fields for a slotted waveguide in xz coordinates is demonstrated. The authors plan to incorporate plasma loading with space-time dependent dielectric constant.

  3. Development of a Highly Portable Plate Loading Device and In Situ Modulus Measurements in Weak Rock Masses

    NASA Astrophysics Data System (ADS)

    Kallu, Raj R.; Keffeler, Evan R.; Watters, Robert J.; Warren, Sean N.

    2016-02-01

    In recent years, underground mines in Nevada are increasingly exploiting in weak mineralized zones at greater depths that are intensely fractured and highly altered. The mechanical behavior of these rock masses ranges between weak rock and very stiff soil. A common limitation for design of underground mining excavations in these types of rock masses is absence of in situ geotechnical data. This limitation is generally overcome by estimating in situ mechanical behavior from empirical relationships so that the continuum-based numerical methods can be used to evaluate ground support designs. Because of the cost, time, and specialized equipment involved, historically in situ tests have not been performed in these underground mines. Predictive rock mass modulus relationships that are currently available in the literature are derived from field testing of predominantly good-quality rock masses. Consequently, there is limited confidence in using these models for rock masses with Rock Mass Ratings less than 45. In order to overcome some of these limitations, a portable plate loading device (PPLD) was designed and fabricated. The PPLD allows one to perform low cost and relatively quick in situ deformability tests to be performed on weak rock masses in underground mines. Test procedures and data reduction methods were developed to limit potential sources of error associated with the PPLD test. A total of fourteen plate loading tests were performed in weak rock masses at two different active underground mines in Nevada, USA. The resulting the test data were compared to eight published empirical rock mass modulus relationships to determine which, if any, of these relationships are sufficiently accurate for estimating modulus in similar geotechnical conditions. Only two of these relationships were found to be sufficient for first-order estimations of in situ modulus.

  4. A cryogenic rotation stage with a large clear aperture for the half-wave plates in the Spider instrument

    NASA Astrophysics Data System (ADS)

    Bryan, Sean; Ade, Peter; Amiri, Mandana; Benton, Steven; Bihary, Richard; Bock, James; Bond, J. Richard; Chiang, H. Cynthia; Contaldi, Carlo; Crill, Brendan; Dore, Olivier; Elder, Benjamin; Filippini, Jeffrey; Fraisse, Aurelien; Gambrel, Anne; Gandilo, Natalie; Gudmundsson, Jon; Hasselfield, Matthew; Halpern, Mark; Hilton, Gene; Holmes, Warren; Hristov, Viktor; Irwin, Kent; Jones, William; Kermish, Zigmund; Lawrie, Craig; MacTavish, Carrie; Mason, Peter; Megerian, Krikor; Moncelsi, Lorenzo; Montroy, Thomas; Morford, Tracy; Nagy, Johanna; Netterfield, C. Barth; Padilla, Ivan; Rahlin, Alexandra S.; Reintsema, Carl; Riley, Daniel C.; Ruhl, John; Runyan, Marcus; Saliwanchik, Benjamin; Shariff, Jamil; Soler, Juan; Trangsrud, Amy; Tucker, Carole; Tucker, Rebecca; Turner, Anthony; Wen, Shyang; Wiebe, Donald; Young, Edward

    2016-01-01

    We describe the cryogenic half-wave plate rotation mechanisms built for and used in Spider, a polarization-sensitive balloon-borne telescope array that observed the cosmic microwave background at 95 GHz and 150 GHz during a stratospheric balloon flight from Antarctica in January 2015. The mechanisms operate at liquid helium temperature in flight. A three-point contact design keeps the mechanical bearings relatively small but allows for a large (305 mm) diameter clear aperture. A worm gear driven by a cryogenic stepper motor allows for precise positioning and prevents undesired rotation when the motors are depowered. A custom-built optical encoder system monitors the bearing angle to an absolute accuracy of ±0.1∘. The system performed well in Spider during its successful 16 day flight.

  5. Analytical determination of the reflection coefficient by the evanescent modes model during the wave-current-horizontal plate interaction

    NASA Astrophysics Data System (ADS)

    Errifaiy, Meriem; Naasse, Smail; Chahine, Chakib

    2016-07-01

    Our work presents an analytical study of the determination of the reflection coefficient during the interaction between the regular wave current and a horizontal plate. This study was done using the linearized potential flow theory with the evanescent modes model, while searching for complex solutions to the dispersion equation that are neither real pure nor imaginary pure. To validate the established model, it has been confronted with the experimental results of V. Rey and J. Touboul, in a first phase, and then compared to those of the numerical study by H.-X. Lin et al. Then, this model was used to study the effect of current on the reflection coefficient. xml:lang="fr"

  6. Three-dimensional laparoscope based on the manipulation of polarized light by a cellophane half-wave plate

    NASA Astrophysics Data System (ADS)

    Iizuka, Keigo

    2005-11-01

    A three-dimensional laparoscope that can capture three-dimensional images during surgery is reported. The principle is solely based on the manipulation of polarized light by a cellophane half-wave plate rather than computer processing; hence there is no time delay (it operates in real time) and lesions are viewed in true color, which is important for diagnostics. Three-dimensional images are obtained with a single laparoscope. A unique feature of this three-dimensional laparoscope is that it includes a virtual ruler to measure distances without physically touching the affected areas. The structure is simple, sturdy, lightweight, and its diameter is no bigger than a standard 10 mm diam laparoscope.

  7. Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies.

    PubMed

    Strikwerda, Andrew C; Fan, Kebin; Tao, Hu; Pilon, Daniel V; Zhang, Xin; Averitt, Richard D

    2009-01-01

    We have fabricated a quarter-wave plate from a single layer of birefringent electric split-ring resonators (ELC). For comparison, an appropriately scaled double layer meanderline structure was fabricated. At the design frequency of 639 GHz, the ELC structure achieves 99.9% circular polarization while the meanderline achieves 99.6%. The me-anderline displays a larger bandwidth of operation, attaining over 99% circular polarization from 615 - 743 GHz, while the ELC achieves 99% from 626 - 660 GHz. However, both are broad enough for use with CW sources making ELCs a more attractive choice due to the ease of fabrication. Both samples are free standing with a total thickness of 70 microm for the meanderline structure and a mere 20 microm for the ELC highlighting the large degree of birefringence exhibited with metamaterial structures. PMID:19129881

  8. A cryogenic rotation stage with a large clear aperture for the half-wave plates in the Spider instrument.

    PubMed

    Bryan, Sean; Ade, Peter; Amiri, Mandana; Benton, Steven; Bihary, Richard; Bock, James; Bond, J Richard; Chiang, H Cynthia; Contaldi, Carlo; Crill, Brendan; Dore, Olivier; Elder, Benjamin; Filippini, Jeffrey; Fraisse, Aurelien; Gambrel, Anne; Gandilo, Natalie; Gudmundsson, Jon; Hasselfield, Matthew; Halpern, Mark; Hilton, Gene; Holmes, Warren; Hristov, Viktor; Irwin, Kent; Jones, William; Kermish, Zigmund; Lawrie, Craig; MacTavish, Carrie; Mason, Peter; Megerian, Krikor; Moncelsi, Lorenzo; Montroy, Thomas; Morford, Tracy; Nagy, Johanna; Netterfield, C Barth; Padilla, Ivan; Rahlin, Alexandra S; Reintsema, Carl; Riley, Daniel C; Ruhl, John; Runyan, Marcus; Saliwanchik, Benjamin; Shariff, Jamil; Soler, Juan; Trangsrud, Amy; Tucker, Carole; Tucker, Rebecca; Turner, Anthony; Wen, Shyang; Wiebe, Donald; Young, Edward

    2016-01-01

    We describe the cryogenic half-wave plate rotation mechanisms built for and used in Spider, a polarization-sensitive balloon-borne telescope array that observed the cosmic microwave background at 95 GHz and 150 GHz during a stratospheric balloon flight from Antarctica in January 2015. The mechanisms operate at liquid helium temperature in flight. A three-point contact design keeps the mechanical bearings relatively small but allows for a large (305 mm) diameter clear aperture. A worm gear driven by a cryogenic stepper motor allows for precise positioning and prevents undesired rotation when the motors are depowered. A custom-built optical encoder system monitors the bearing angle to an absolute accuracy of ±0.1(∘). The system performed well in Spider during its successful 16 day flight. PMID:26827333

  9. Interaction of a Guided Wave with a Crack in an Embedded Multilayered Anisotropic Plate: Global Matrix with Laplace Transform Formalism

    NASA Astrophysics Data System (ADS)

    Mora, Pierric; Ducasse, Eric; Deschamps, Marc

    We solve the problem of the interaction of a transient guided elastic wave by a planar crack with an indirect Boundary Element approach in the Laplace domain (t → s). The originality of this work is to use the numerical Green function of the layered plate rather than the analytical Green function of each layer. As a consequence, the BEM matrices are small. To obtain the Green function in the (x,z,s) domain we first solve the equations in the Fourier transform (k,z,s) domain with a Global Matrix approach, and then perform a numerical inverse FFT. Comparisons with finite element show excellent agreement. This approach is fast and low memory consuming for planar defects in arbitrary layered media, and can be extended to arbitrary shapes and boundary conditions for a higher computational cost. It is valid in 3D, however only the 2D case is considered in this work.

  10. Broadband cloaking of bending waves via homogenization of multiply perforated radially symmetric and isotropic thin elastic plates

    NASA Astrophysics Data System (ADS)

    Farhat, Mohamed; Guenneau, Sebastien; Enoch, Stefan

    2012-01-01

    A cylindrical cloak is designed to control the bending waves propagating in isotropic thin plates. This is achieved through homogenization of a multiply perforated coating of isotropic homogeneous elastic material, which greatly simplifies the design of the multilayered cloak we proposed [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.103.024301 103, 024301 (2009)]. We first derive the homogenized biharmonic equation, which involves an anisotropic Young's modulus and an isotropic mass density. We then numerically show that a clamped obstacle is cloaked over a finite range of frequencies for an acoustic source located a couple of wavelengths away from its surrounding cloak. The reduced backward and forward scattering is confirmed by both the profile of the total field computed along a line passing through the source and the center of the cloak (near field confirmation), and the computation of the scattered far field.

  11. On the design of a prototype model of the floating wave power device ``Mighty Whale``

    SciTech Connect

    Hotta, H.; Washio, Y.; Yokozawa, H.; Pizer, D.J.

    1996-12-31

    The Mighty Whale is a floating wave power device to convert the wave energy to other convenient energy for the conservation of the sea, and to create the calm sea area such as a floating breakwater. JAMSTEC (Japan Marine Science and Technology Center) has been promoting the R and D on this Mighty Whale since 1986. Already, the authors have finished fundamental development by theoretical, numerical and experimental study on the basic Mighty Whale. By 1996, they will finish designing the prototype model of the Mighty Whale, will start to construct it, and will carry out the open sea test between 1998 and 1999 at the coastal sea of Japan. The dimensions of the Mighty Whale are 50m in length, 30m in breadth and it has 3 air chambers, 3 units of the air turbines and generators of 50 kW rated power. It will be moored by mooring chains and anchors at the site of about 35m water depth. The mechanism to absorb the wave energy is of the OWC (Oscillating Water Column) type with the Wells Turbine. Its efficiency to absorb the wave energy is about 40--50% on average in regular waves, and it can make in the lee zone the height of incident waves about one half under 8 sec of the significant wave period. Because of such behavior, and from the view point of sustainable development at the coastal zone, the authors recognize the Mighty Whale can be a convenient and beneficial structure for the coastal development. In this paper, they introduce this design, and discuss the utilization of the Mighty Whale for the coastal development.

  12. Improvement of insertion loss and quality factor of flexural plate-wave-based alpha-fetoprotein biosensor using groove-type reflective grating structures

    NASA Astrophysics Data System (ADS)

    Lin, Chang-Yu; Huang, I.-Yu; Lan, Je-Wei

    2013-01-01

    Conventional flexural plate-wave (FPW) transducers have limited applications in biomedical sensing due to their disadvantages such as high insertion loss and low quality factor. To overcome these shortcomings, we propose a FPW transducer on a low phase velocity insulator membrane (5-μm-thick SiO2) with a novel groove-type reflective grating structure design. Additionally, a cystamine self-assembly monolayer and a glutaraldehyde cross-linking layer are implemented on the backside of the FPW device to immobilize alpha-fetoprotein (AFP) antibody. A FPW-based AFP biosensor with low detection limit (5 ng/mL) can be achieved and used to measure the extreme low concentration of AFP antigen in human serum for early detection of hepatocellular carcinoma. The proposed FPW-based AFP biosensor also demonstrates a very high quality factor (206), low insertion loss (-40.854 dB), low operating frequency (6.388 MHz), and high sensing linearity (90.7%).

  13. Non-Reflecting Regions for Finite Difference Methods in Modeling of Elastic Wave Propagation in Plates

    NASA Technical Reports Server (NTRS)

    Kishoni, Doron; Taasan, Shlomo

    1994-01-01

    Solution of the wave equation using techniques such as finite difference or finite element methods can model elastic wave propagation in solids. This requires mapping the physical geometry into a computational domain whose size is governed by the size of the physical domain of interest and by the required resolution. This computational domain, in turn, dictates the computer memory requirements as well as the calculation time. Quite often, the physical region of interest is only a part of the whole physical body, and does not necessarily include all the physical boundaries. Reduction of the calculation domain requires positioning an artificial boundary or region where a physical boundary does not exist. It is important however that such a boundary, or region, will not affect the internal domain, i.e., it should not cause reflections that propagate back into the material. This paper concentrates on the issue of constructing such a boundary region.

  14. Modeling seismic wave propagation across the European plate: structural models and numerical techniques, state-of-the-art and prospects

    NASA Astrophysics Data System (ADS)

    Morelli, Andrea; Danecek, Peter; Molinari, Irene; Postpischl, Luca; Schivardi, Renata; Serretti, Paola; Tondi, Maria Rosaria

    2010-05-01

    Together with the building and maintenance of observational and data banking infrastructures - i.e. an integrated organization of coordinated sensor networks, in conjunction with connected data banks and efficient data retrieval tools - a strategic vision for bolstering the future development of geophysics in Europe should also address the essential issue of improving our current ability to model coherently the propagation of seismic waves across the European plate. This impacts on fundamental matters, such as correctly locating earthquakes, imaging detailed earthquake source properties, modeling ground shaking, inferring geodynamic processes. To this extent, we both need detailed imaging of shallow and deep earth structure, and accurate modeling of seismic waves by numerical methods. Our current abilities appear somewhat limited, but emerging technologies may enable soon a significant leap towards better accuracy and reliability. To contribute to this debate, we present here the state-of-the-art of knowledge of earth structure and numerical wave modeling in the European plate, as the result of a comprehensive study towards the definition of a continental-scale reference model. Our model includes a description of crustal structure (EPcrust) merging information deriving from previous studies - large-scale compilations, seismic prospection, receiver functions, inversion of surface wave dispersion measurements and Green functions from noise correlation. We use a simple description of crustal structure, with laterally-varying sediment and cristalline layers thickness, density, and seismic parameters. This a priori crustal model improves the overall fit to observed Bouguer anomaly maps over CRUST2.0. The new crustal model is then used as a constraint in the inversion for mantle shear wave speed, based on fitting Love and Rayleigh surface wave dispersion. The new mantle model sensibly improves over global S models in the imaging of shallow asthenospheric (slow) anomalies

  15. Acoustic field characterization of the Duolith: measurements and modeling of a clinical shock wave therapy device.

    PubMed

    Perez, Camilo; Chen, Hong; Matula, Thomas J; Karzova, Maria; Khokhlova, Vera A

    2013-08-01

    Extracorporeal shock wave therapy (ESWT) uses acoustic pulses to treat certain musculoskeletal disorders. In this paper the acoustic field of a clinical portable ESWT device (Duolith SD1) was characterized. Field mapping was performed in water for two different standoffs of the electromagnetic head (15 or 30 mm) using a fiber optic probe hydrophone. Peak positive pressures at the focus ranged from 2 to 45 MPa, while peak negative pressures ranged from -2 to -11 MPa. Pulse rise times ranged from 8 to 500 ns; shock formation did not occur for any machine settings. The maximum standard deviation in peak pressure at the focus was 1.2%, indicating that the Duolith SD1 generates stable pulses. The results compare qualitatively, but not quantitatively with manufacturer specifications. Simulations were carried out for the short standoff by matching a Khokhlov-Zabolotskaya-Kuznetzov equation to the measured field at a plane near the source, and then propagating the wave outward. The results of modeling agree well with experimental data. The model was used to analyze the spatial structure of the peak pressures. Predictions from the model suggest that a true shock wave could be obtained in water if the initial pressure output of the device were doubled. PMID:23927207

  16. Acoustic field characterization of the Duolith: Measurements and modeling of a clinical shock wave therapy device

    PubMed Central

    Perez, Camilo; Chen, Hong; Matula, Thomas J.; Karzova, Maria; Khokhlova, Vera A.

    2013-01-01

    Extracorporeal shock wave therapy (ESWT) uses acoustic pulses to treat certain musculoskeletal disorders. In this paper the acoustic field of a clinical portable ESWT device (Duolith SD1) was characterized. Field mapping was performed in water for two different standoffs of the electromagnetic head (15 or 30 mm) using a fiber optic probe hydrophone. Peak positive pressures at the focus ranged from 2 to 45 MPa, while peak negative pressures ranged from −2 to −11 MPa. Pulse rise times ranged from 8 to 500 ns; shock formation did not occur for any machine settings. The maximum standard deviation in peak pressure at the focus was 1.2%, indicating that the Duolith SD1 generates stable pulses. The results compare qualitatively, but not quantitatively with manufacturer specifications. Simulations were carried out for the short standoff by matching a Khokhlov-Zabolotskaya-Kuznetzov equation to the measured field at a plane near the source, and then propagating the wave outward. The results of modeling agree well with experimental data. The model was used to analyze the spatial structure of the peak pressures. Predictions from the model suggest that a true shock wave could be obtained in water if the initial pressure output of the device were doubled. PMID:23927207

  17. A Microfluidic Love-Wave Biosensing Device for PSA Detection Based on an Aptamer Beacon Probe

    PubMed Central

    Zhang, Feng; Li, Shuangming; Cao, Kang; Wang, Pengjuan; Su, Yan; Zhu, Xinhua; Wan, Ying

    2015-01-01

    A label-free and selective aptamer beacon-based Love-wave biosensing device was developed for prostate specific antigen (PSA) detection. The device consists of the following parts: LiTaO3 substrate with SiO2 film as wave guide layer, two set of inter-digital transducers (IDT), gold film for immobilization of the biorecongniton layer and a polydimethylsiloxane (PDMS) microfluidic channels. DNA aptamer, or “artificial antibody”, was used as the specific biorecognition probe for PSA capture. Some nucleotides were added to the 3'-end of the aptamer to form a duplex with the 3'-end, turning the aptamer into an aptamer-beacon. Taking advantage of the selective target-induced assembly changes arising from the “aptamer beacon”, highly selective and specific detection of PSA was achieved. Furthermore, PDMS microfluidic channels were designed and fabricated to realize automated quantitative sample injection. After optimization of the experimental conditions, the established device showed good performance for PSA detection between 10 ng/mL to 1 μg/mL, with a detection limit of 10 ng/mL. The proposed sensor might be a promising alternative for point of care diagnostics. PMID:26110408

  18. A Microfluidic Love-Wave Biosensing Device for PSA Detection Based on an Aptamer Beacon Probe.

    PubMed

    Zhang, Feng; Li, Shuangming; Cao, Kang; Wang, Pengjuan; Su, Yan; Zhu, Xinhua; Wan, Ying

    2015-01-01

    A label-free and selective aptamer beacon-based Love-wave biosensing device was developed for prostate specific antigen (PSA) detection. The device consists of the following parts: LiTaO3 substrate with SiO2 film as wave guide layer, two set of inter-digital transducers (IDT), gold film for immobilization of the biorecongniton layer and a polydimethylsiloxane (PDMS) microfluidic channels. DNA aptamer, or "artificial antibody", was used as the specific biorecognition probe for PSA capture. Some nucleotides were added to the 3'-end of the aptamer to form a duplex with the 3'-end, turning the aptamer into an aptamer-beacon. Taking advantage of the selective target-induced assembly changes arising from the "aptamer beacon", highly selective and specific detection of PSA was achieved. Furthermore, PDMS microfluidic channels were designed and fabricated to realize automated quantitative sample injection. After optimization of the experimental conditions, the established device showed good performance for PSA detection between 10 ng/mL to 1 μg/mL, with a detection limit of 10 ng/mL. The proposed sensor might be a promising alternative for point of care diagnostics. PMID:26110408

  19. Separation of the elastic waves' system in pre-stretched bar devices

    NASA Astrophysics Data System (ADS)

    Haugou, Grégory; Leconte, Nicolas; Morvan, Hervé

    2015-09-01

    The loading mode generated by Kolsky bars apparatus is limited due to physical reasons to a duration time of around 0.4 ms. This is not suited in the characterization of high ductility metallic alloys up to fracture at moderate strain rates, since the duration time is too short. The pre-stretched bar device is a good candidate to characterize these materials up to the moderate strain rates. Unfortunately, the elastic waves are generally not separated in time at measurements points in the input bar, and post treatment leads to assumptions. A configuration of the pre-stretching conditions that ensures no superposition of the elastic waves' system developed along the input bar is thus proposed so as to fulfill standard data analysis requirements, i.e. without any assumptions. However, a drawback of the proposed device is that one of its hydraulic devices generates a loosen tail. This statement comes from a FE numerical model of the whole set-up including the generation of the loosen tail. Finally, an analytical correction to cancel the loosen tail is proposed and validated with respect to a numerical model featuring ideal pre-loading conditions.

  20. Development and Demonstration of a Device to Determine Thrust by Measuring the Force on a Target Plate in the Exhaust of a Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Chavers, Greg; Chang-Diaz, Franklin

    2004-01-01

    A device has been developed to measure the force on a target plate by an impacting beam of charged and neutral particles. This device, an impact thrust stand, was developed to allow thrusters at low TRL, levels to be easily tested without the expense of developing a flight prototype of the thruster to be placed on a conventional thrust stand. The impact thrust stand was developed for the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) but has been tested and calibrated using several devices including Hall thrusters. The calibration and comparison of the impact thrust stand against conventional thrust stands will be discussed in this paper.

  1. Growth and characterization of zinc oxide and PZT films for micromachined acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Yoon, Sang Hoon

    The ability to detect the presence of low concentrations of harmful substances, such as biomolecular agents, warfare agents, and pathogen cells, in our environment and food chain would greatly advance our safety, provide more sensitive tools for medical diagnostics, and protect against terrorism. Acoustic wave (AW) devices have been widely studied for such applications due to several attractive properties, such as rapid response, reliability, portability, ease of use, and low cost. The principle of these sensors is based on a fundamental feature of the acoustic wave that is generated and detected by a piezoelectric material. The performance of the device, therefore, greatly depends on the properties of piezoelectric thin film. The required properties include a high piezoelectric coefficient and high electromechanical coefficients. The surface roughness and the mechanical properties, such as Young's modulus and hardness, are also factors that can affect the wave propagation of the device. Since the film properties are influenced by the structure of the material, understanding thin film structure is very important for the design of high-performance piezoelectric MEMS devices for biosensor applications. In this research, two piezoelectric thin film materials were fabricated and investigated. ZnO films were fabricated by CSD (Chemical Solution Deposition) and sputtering, and PZT films were fabricated by CSD only. The process parameters for solution derived ZnO and PZT films, such as the substrate type, the effect of the chelating agent, and heat treatment, were studied to find the relationship between process parameters and thin film structure. In the case of the sputtered ZnO films, the process gas types and their ratio, heat treatment in situ, and post deposition were investigated. The key results of systematic experiments show that the combined influence of chemical modifiers and substrates in chemical solution deposition have an effect on the crystallographic

  2. Determination of retardation parameters of multiple-order wave plate using a phase-sensitive heterodyne ellipsometer.

    PubMed

    Hsieh, Cheng-Hung; Tsai, Chien-Chung; Wei, Hsiang-Chun; Yu, Li-Ping; Wu, Jheng-Syong; Chou, Chien

    2007-08-10

    To characterize the linear birefringence of a multiple-order wave plate (MWP), an oblique incidence is one of the methods available. Multiple reflections in the MWP are produced, and oscillations in the phase retardation measurement versus the oblique incident angle are then measured. Therefore, an antireflection coated MWP is required to avoid oscillation of the phase retardation measurement. In this study, we set up a phase-sensitive heterodyne ellipsometer to measure the phase retardations of an uncoated MWP versus the oblique incident angle, which was scanned in the x-z plane and y-z plane independently. Thus, the effect on multiple reflections by the MWP is reduced by means of subtracting the two measured phase retardations from each other. As a result, a highly sensitive and accurate measurement of retardation parameters (RPs), which includes the refractive indices of the extraordinary ray n(e) and ordinary ray n(o), is obtained by this method. On measurement, a sensitivity (n(e),n(o)) of 10(-6) was achieved by this experiment setup. At the same time, the spatial shifting of the P and S waves emerging from the MWP introduced a deviation between experimental results and the theoretical calculation. PMID:17694147

  3. Detection of plate components defects by surface wave based on transducer arrays

    NASA Astrophysics Data System (ADS)

    Liu, Zhao; Meng, Fanwu; Xu, Chunguang; Li, Xipeng; Zhou, Shiyuan; Xiao, Dingguo

    2013-01-01

    Detection of micro damages in flat components on-site has a significant sense for improving the safety of the equipment. Based on the theory of the surface acoustic wave (SAW) propagation laws in flat components, the micro damage detection in the flat component has been researched. Using wavelet analysis technology and inversed spectrum technology, the microdamages' feature parameters can be extracted out accurately. Utilizing the feature parameters got by every transducer in a transducer arrays, the micro-damages' image can be reconstructed, and the micro-damages' location, outer geometric configuration, and damage level can be showed clearly.

  4. Modeling and Design of Two-Dimensional Guided-Wave Photonic Band-Gap Devices

    NASA Astrophysics Data System (ADS)

    Ciminelli, Caterina; Peluso, Francesco; Armenise, Mario N.

    2005-02-01

    The model of two-dimensional (2-D) guided-wave photonic band-gap structures based on the Bloch-Floquet theory is proposed for the first time for both infinite and finite length devices. The efficient computation of dispersion curves and field distribution is carried out in very short computer time. Both guided and radiated modes can be easily identified to give a physical insight, even in defective structures. The accuracy of the model has been tested through the design of a very compact narrow-band 2-D guided-wave photonic band-gap filter at 1.55 μm. The filter has a channel isolation of 22 dB, a large number of channel (>80) with a channel spacing of 50 GHz, and a very short length (24 μm).

  5. Printed circuit board impedance matching step for microwave (millimeter wave) devices

    DOEpatents

    Pao, Hsueh-Yuan; Aguirre, Jerardo; Sargis, Paul

    2013-10-01

    An impedance matching ground plane step, in conjunction with a quarter wave transformer section, in a printed circuit board provides a broadband microwave matching transition from board connectors or other elements that require thin substrates to thick substrate (>quarter wavelength) broadband microwave (millimeter wave) devices. A method of constructing microwave and other high frequency electrical circuits on a substrate of uniform thickness, where the circuit is formed of a plurality of interconnected elements of different impedances that individually require substrates of different thicknesses, by providing a substrate of uniform thickness that is a composite or multilayered substrate; and forming a pattern of intermediate ground planes or impedance matching steps interconnected by vias located under various parts of the circuit where components of different impedances are located so that each part of the circuit has a ground plane substrate thickness that is optimum while the entire circuit is formed on a substrate of uniform thickness.

  6. Enhancement of effective electromechanical coupling factor by mass loading in layered surface acoustic wave device structures

    NASA Astrophysics Data System (ADS)

    Tang, Gongbin; Han, Tao; Teshigahara, Akihiko; Iwaki, Takao; Hashimoto, Ken-ya

    2016-07-01

    This paper describes a drastic enhancement of the effective coupling factor K\\text{e}2 by mass loading in layered surface acoustic wave (SAW) device structures such as the ScAlN film/Si substrate structure. This phenomenon occurs when the piezoelectric layer exhibits a high acoustic wave velocity. The mass loading decreases the SAW velocity and causes SAW energy confinement close to the top surface where an interdigital transducer is placed. It is shown that this phenomenon is obvious even when an amorphous SiO2 film is deposited on the top surface for temperature compensation. This K\\text{e}2 enhancement was also found in various combinations of electrode, piezoelectric layer, and/or substrate materials. The existence of this phenomenon was verified experimentally using the ScAlN film/Si substrate structure.

  7. The emission mechanism of THz electromagnetic waves from Bi2212 mesa device

    NASA Astrophysics Data System (ADS)

    Watanabe, Chiharu; Minami, Hidetoshi; Kitamura, Takeo; Kashiwagi, Takanari; Klemm, Richard; Kadowaki, Kazuo

    From the detailed study of the severe temperature inhomogeneity of the Bi2212 IJJ mesa structure often forming ``hot-spot'' at relatively higher bias current region, while the electromagnetic waves are emitted, multi terminal potential measurement of the mesa device has revealed that the equipotential part of the mesa can only give universal ac-Josephson relationship between the potential difference and the frequency measured by the FT-IR spectrometer, and it is violated as the potential is measured in the region where the hot-spot is formed. This means that the deviation of the emission frequency from the ac-Josephson effect comes from a gradient of the electrical potential distribution. This strongly suggests that the electromagnetic waves at THz frequency may be generated in the superconducting part of the mesa, where the static electric potential is uniform, satisfying the ac-Josephson relation universally no matter how much temperature gradient is.

  8. Analysis and Synthesis of Leaky-Wave Devices in Planar Technology

    NASA Astrophysics Data System (ADS)

    Martinez Ros, Alejandro Javier

    The work developed along this doctoral thesis has been focused on the analysis and synthesis of microwave devices in planar technology. In particular, several types of devices based on the radiation mechanism of leaky waves have been studied. Typically, the radiation properties in leaky-wave devices are determined by the complex propagation constant of the leaky mode, wherein the phase constant is responsible for the pointing angle and the leakage rate for the intensity of the radiated fields. In this manner, by controlling both amplitude and phase of the leaky mode, an effective control over the device's radiation diagram can be obtained. Moreover, with the purpose of efficiently obtaining the leaky mode's radiation properties as function of the main geometrical parameters of the structure, several modal tools based on the transverse resonance analysis of the structure have been performed. In order to demonstrate this simultaneous control over the complex propagation constant in planar technology, several types of leaky-wave devices, including antennas (LWAs), multiplexors and near-field focusing systems, have been designed and manufactured in the technology of substrate integrated waveguide (SIW). This recently proposed technology, allows the design of devices based on classical waveguide technology with standard manufacturing techniques used for printed circuit board (PCB) designs. In this way, most of the parts that form a communication system can be integrated into a single substrate, thus reducing its cost and providing a more robust and compact device, which has less losses compared to other planar technologies such as the microstrip. El trabajo llevado a cabo durante la realizacion de esta tesis doctoral, se ha centrado en el analisis y sintesis de dispositivos de microondas en tecnologia planar. En concreto, se han estudiado diferentes tipos de dispositivos basados en radiacion por ondas de fuga "leaky waves", en los cuales las propiedades de radiacion

  9. S-velocity model and inferred Moho topography beneath the Antarctic Plate from Rayleigh waves

    NASA Astrophysics Data System (ADS)

    An, Meijian; Wiens, Douglas A.; Zhao, Yue; Feng, Mei; Nyblade, Andrew A.; Kanao, Masaki; Li, Yuansheng; Maggi, Alessia; Lévêque, Jean-Jacques

    2015-01-01

    Since 2007/2008, seismographs were deployed in many new locations across much of Antarctica. Using the records from 122 broadband seismic stations, over 10,000 Rayleigh wave fundamental-mode dispersion curves have been retrieved from earthquake waveforms and from ambient noise. Using the processed data set, a 3-D S-velocity model for the Antarctic lithosphere was constructed using a single-step surface wave tomographic method, and a Moho depth map was estimated from the model. Using the derived crustal thicknesses, the average ratio of lithospheric mantle and crustal densities of Antarctica was calculated. The calculated density ratio indicates that the average crustal density for Antarctica is much higher than the average values for continental crust or the average density of lithospheric mantle is so low as to be equal to low-density bound of Archean lithosphere. The latter implies that the lithospheric mantle in much of Antarctica should be old and of Archean age. The East Antarctic Mountain Ranges (EAMOR) represent a thick crustal belt, with the thickest crust (~60 km) located close to Dome A. Very high velocities can be found at depths greater than 200 km beneath parts of East Antarctica, demonstrating that the continental lithosphere extends deeper than 200 km. The very thick crust beneath the EAMOR may represent the collision suture of East Gondwana with Indo-Antarctica and West Gondwana during the Pan-African orogeny.

  10. Transversal and longitudinal mode selections in double-corrugation coaxial slow-wave devices

    NASA Astrophysics Data System (ADS)

    Ge, Xingjun; Zhong, Huihuang; Qian, Baoliang; Liu, Lie; Liu, Yonggui; Li, Limin; Shu, Ting; Zhang, Jiande

    2009-06-01

    To reduce the dimensions of relativistic backward wave oscillators (RBWOs) operating in the low frequency regime of less than 2 GHz, the theory of transversal and longitudinal mode selections are introduced in this paper. The transversal mode selection is achieved using the property of "surface wave" of the coaxial slow-wave structure (SWS) to excite the quasi transverse electromagnetic (quasi-TEM) mode without the higher transverse magnetic (TM) modes and it is proved that the coaxial SWS may decrease the transversal dimension of the SWS sections. In addition, the S-parameter method is employed to investigate the longitudinal resonant characteristic of the finite-length SWS, and the scheme of longitudinal mode selection is put forward. It is proposed that the introduction of a well-designed coaxial extractor to slow-wave devices can help to achieve the longitudinal mode selection and reduce the period number of the SWS, which not only can make the devices more compact, but also can avoid the destructive competition between various longitudinal modes, therefore can enhance the efficiency and stabilize the frequency. To sum up, the physical mechanisms of transversal and longitudinal mode selections ensure that the microwave is produced with a single mode and a narrow band. Based on the above discussion, a compact L-band coaxial RBWO is investigated and optimized in detail with the particle-in-cell KARAT code (V. P. Tarakanov, Berkeley Research Associates, Inc., 1992). In simulation, the L-band coaxial RBWO, driven by a 700 kV, 11 kA electron beam, comes to a nonlinear steady state in 20 ns. High-power microwave of quasi-TEM mode is generated with an average power of 2.66 GW, a frequency of 1.6 GHz, and power conversion efficiency of 34.5% in durations of 30-60 ns.

  11. Transversal and longitudinal mode selections in double-corrugation coaxial slow-wave devices

    SciTech Connect

    Ge Xingjun; Zhong Huihuang; Qian Baoliang; Liu Lie; Liu Yonggui; Li Limin; Shu Ting; Zhang Jiande

    2009-06-15

    To reduce the dimensions of relativistic backward wave oscillators (RBWOs) operating in the low frequency regime of less than 2 GHz, the theory of transversal and longitudinal mode selections are introduced in this paper. The transversal mode selection is achieved using the property of ''surface wave'' of the coaxial slow-wave structure (SWS) to excite the quasi transverse electromagnetic (quasi-TEM) mode without the higher transverse magnetic (TM) modes and it is proved that the coaxial SWS may decrease the transversal dimension of the SWS sections. In addition, the S-parameter method is employed to investigate the longitudinal resonant characteristic of the finite-length SWS, and the scheme of longitudinal mode selection is put forward. It is proposed that the introduction of a well-designed coaxial extractor to slow-wave devices can help to achieve the longitudinal mode selection and reduce the period number of the SWS, which not only can make the devices more compact, but also can avoid the destructive competition between various longitudinal modes, therefore can enhance the efficiency and stabilize the frequency. To sum up, the physical mechanisms of transversal and longitudinal mode selections ensure that the microwave is produced with a single mode and a narrow band. Based on the above discussion, a compact L-band coaxial RBWO is investigated and optimized in detail with the particle-in-cell KARAT code (V. P. Tarakanov, Berkeley Research Associates, Inc., 1992). In simulation, the L-band coaxial RBWO, driven by a 700 kV, 11 kA electron beam, comes to a nonlinear steady state in 20 ns. High-power microwave of quasi-TEM mode is generated with an average power of 2.66 GW, a frequency of 1.6 GHz, and power conversion efficiency of 34.5% in durations of 30-60 ns.

  12. Predicting HHFW Heating Efficiency on NSTX via Whole-Device Full-Wave Simulation

    SciTech Connect

    Green, D. L.; Berry, L. A.; Ryan, P. M.; Jaeger, E. F.

    2011-12-23

    We present a qualitative comparison of NSTX HHFW heating efficiency observations with results from the AORSA whole-device, linear simulation. The simulation retains a realistic geometry and core plasma kinetic physics such that scrape-off plasma linear RF fields can be calculated. By examining L-mode and neutral beam heated H-mode scenarios we quantify the conditions that result in a fast-wave coaxial mode in the scrape-off plasma. These large amplitude coaxial modes are expected to damp on collisions or couple to non-linear damping mechanisms and be correlated to an observed drop in core heating efficiency.

  13. Effect of crystalline quality of diamond film to the propagation loss of surface acoustic wave devices.

    PubMed

    Fujii, Satoshi; Shikata, Shinichi; Uemura, Tomoki; Nakahata, Hideaki; Harima, Hiroshi

    2005-10-01

    Diamond films with various crystal qualities were grown by chemical vapor deposition on silicon wafers. Their crystallinity was characterized by Raman scattering and electron backscattering diffraction. By fabricating a device structure for surface acoustic wave (SAW) using these diamond films, the propagation loss was measured at 1.8 GHz and compared with the crystallinity. It was found that the propagation loss was lowered in relatively degraded films having small crystallites, a narrow distribution in the diamond crystallite size, and preferential grain orientation. This experiment clarifies diamond film characteristics required for high-frequency applications in SAW filters. PMID:16382634

  14. In situ high-temperature characterization of AlN-based surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Aubert, Thierry; Bardong, Jochen; Legrani, Ouarda; Elmazria, Omar; Badreddine Assouar, M.; Bruckner, Gudrun; Talbi, Abdelkrim

    2013-07-01

    We report on in situ electrical measurements of surface acoustic wave delay lines based on AlN/sapphire structure and iridium interdigital transducers between 20 °C and 1050 °C under vacuum conditions. The devices show a great potential for temperature sensing applications. Burnout is only observed after 60 h at 1050 °C and is mainly attributed to the agglomeration phenomena undergone by the Ir transducers. However, despite the vacuum conditions, a significant oxidation of the AlN film is observed, pointing out the limitation of the considered structure at least at such extreme temperatures. Original structures overcoming this limitation are then proposed and discussed.

  15. Superconducting magnetostatic wave devices using HTS/perovskite-type manganite PCMO heterostructure

    NASA Astrophysics Data System (ADS)

    Terakago, Masafumi; Mine, Shigenobu; Sakatani, Tomotaka; Hontsu, Shigeki; Nishikawa, Hiroaki; Nakamori, Masaya; Tabata, Hitoshi; Kawai, Tomoji

    2001-12-01

    Pr1-xCaxMnO3 (PCMO) (x = 0.15~0.30) has good dielectric and magnetic properties at the microwave band. High-Tc superconductor (HTS)/ferromagnetic PCMO heterostructure has a high potential for superconducting tunable microwave filters and superconducting magnetostatic wave (MSW) devices. In order to demonstrate the preparation possibility of superconducting MSW devices, we investigated the microwave behaviour of YBa2Cu3O7-δ(YBCO)/PCMO heterostructures fabricated by a pulsed laser deposition technique on (La0.3Sr0.7)(Al0.65Ta0.35)O3 (100) substrate. We also fabricated superconducting MSW-band elimination filter (BEF) with YBCO/PCMO structure. The MSW-BEF exhibited notch characteristic that is caused by the energy conversion due to the coupling between the MSW mode and the transverse electromagnetic mode. These results suggest that the HTS/PCMO heterostructure is effective for the superconducting MSW application.

  16. Surface acoustic wave devices on AlN/3C-SiC/Si multilayer structures

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Ming; Chen, Yung-Yu; Felmetsger, Valery V.; Lien, Wei-Cheng; Riekkinen, Tommi; Senesky, Debbie G.; Pisano, Albert P.

    2013-02-01

    Surface acoustic wave (SAW) propagation characteristics in a multilayer structure including a piezoelectric aluminum nitride (AlN) thin film and an epitaxial cubic silicon carbide (3C-SiC) layer on a silicon (Si) substrate are investigated by theoretical calculation in this work. Alternating current (ac) reactive magnetron sputtering was used to deposit highly c-axis-oriented AlN thin films, showing the full width at half maximum (FWHM) of the rocking curve of 1.36° on epitaxial 3C-SiC layers on Si substrates. In addition, conventional two-port SAW devices were fabricated on the AlN/3C-SiC/Si multilayer structure and SAW propagation properties in the multilayer structure were experimentally investigated. The surface wave in the AlN/3C-SiC/Si multilayer structure exhibits a phase velocity of 5528 m s-1 and an electromechanical coupling coefficient of 0.42%. The results demonstrate the potential of AlN thin films grown on epitaxial 3C-SiC layers to create layered SAW devices with higher phase velocities and larger electromechanical coupling coefficients than SAW devices on an AlN/Si multilayer structure. Moreover, the FWHM values of rocking curves of the AlN thin film and 3C-SiC layer remained constant after annealing for 500 h at 540 °C in air atmosphere. Accordingly, the layered SAW devices based on AlN thin films and 3C-SiC layers are applicable to timing and sensing applications in harsh environments.

  17. Separation of biological cells in a microfluidic device using surface acoustic waves (SAWs)

    NASA Astrophysics Data System (ADS)

    Ai, Ye; Marrone, Babetta L.

    2014-03-01

    In this study, a surface acoustic wave (SAW)-based microfluidic device has been developed to separate heterogeneous particle or cell mixtures in a continuous flow using acoustophoresis. The microfluidic device is comprised of two components, a SAW transducer and a microfluidic channel made of polydimethylsiloxane (PDMS). The SAW transducer was fabricated by patterning two pairs of interdigital electrodes on a lithium niobate (LiNbO3) piezoelectric substrate. When exciting the SAW transducer by AC signals, a standing SAW is generated along the cross-section of the channel. Solid particles immersed in the standing SAW field are accordingly pushed to the pressure node arising from the acoustic radiation force acting on the particles, referring to the acoustic particle-focusing phenomenon. Acoustic radiation force highly depends on the particle properties, resulting in different acoustic responses for different types of cells. A numerical model, coupling the piezoelectric effect in the solid substrate and acoustic pressure in the fluid, was developed to provide a better understanding of SAW-based particle manipulation. Separation of two types of fluorescent particles has been demonstrated using the developed SAW-based microfluidic device. An efficient separation of E. coli bacteria from peripheral blood mononuclear cell (PBMC) samples has also been successfully achieved. The purity of separated E. coli bacteria and separated PBMCs were over 95% and 91%, respectively, obtained by a flow cytometric analysis. The developed microfluidic device can efficiently separate E. coli bacteria from biological samples, which has potential applications in biomedical analysis and clinical diagnosis.

  18. Relationship between compressional-wave velocity and porosity of sediments along subduction plate interface

    NASA Astrophysics Data System (ADS)

    Yamaguchi, M.; Hashimoto, Y.

    2012-12-01

    Evolution of physical properties of sediments along subduction interface has effects on wedge strength, wedge geometry, dewatering and dehydration processes, and seismic behavior. Sediments have initially more than 70% of porosity prior to subduction. Through underthrusting and accretion, porosity of sediments decreases by compaction and cementation to be lithified sediments. The purpose of this study is to understand evolution of physical properties from a state before subduction to a state within a wedge using a relationship between compressional-wave velocity and porosity. In this study, we obtained new data for sediments from a reference site in IODP NanTroSEIZE, Expedition 333. In addition to that, we have complied velocity-porosity relationships for the samples and also for previous studies from NanTroSEIZE (off Kumano) (Hashimoto et al., 2010, 2011), ODP Leg 190 (off Shikoku) (Hoffman and Tobin, 2004) and ODP Leg 170 (off Costa Rica) (Gettemy and Tobin, 2003). Velocity measurement procedure in this study to obtain new data is as following: Two pumps were used to control pore fluid pressure and confining pressure. The pore pressure of 1000kPa was kept under drained conditions. Confining (effective) pressure was increased stepwise in the measurements. Velocity measurements were conducted under isotropic pressure conditions. Confining pressure was pressurized in tens seconds and kept for more than 8 hours for next step to obtain equilibrium conditions between effective pressure and sediments strain. Lead zirconate titanate (PZT) shear wave transducers (500kHz) were used in a source-receiver pair to measure wave speed. Porosity and P-wave velocity ranges about 27 - 75% and 1.4 - 2.2 km/s in this study, respectively. In the comparison in Vp-porosity relationships between sedimetns from reference sites and others, sediments were classified into two, simply compacted sediments (reference site and slope sediments) and wedge sediments. Different trends in Vp

  19. Scattering of trapped P and S waves in the hydrated subducting crust of the Philippine Sea plate at shallow depths beneath the Kanto region, Japan

    NASA Astrophysics Data System (ADS)

    Takemura, Shunsuke; Yoshimoto, Kazuo; Tonegawa, Takashi

    2015-12-01

    We performed a detailed analysis of seismograms obtained during intraslab earthquakes beneath the Kanto region and revealed a strong lateral variation in the waveforms of high-frequency trapped P and S waves propagating through the subducting crust of the Philippine Sea plate. Significantly distorted spindle-shaped trapped P and S waves with large peak delays were observed in areas where the Philippine Sea plate is at shallow depths beneath the Kanto region. In order to interpret these seismic observations, in relation to the structural properties of the crust of the Philippine Sea plate, we conducted finite difference method simulations of high-frequency seismic wave propagation using various possible heterogeneous velocity structure models. Our simulation successfully reproduced the observed characteristics of the trapped waves and demonstrated that the propagation of high-frequency P and S waves is significantly affected by small-scale velocity heterogeneities in the subducting crust. These heterogeneities can be traced to a depth of approximately 40 km, before disappearing at greater depths, a phenomenon that may be related to dehydration in the subducting crust at shallower depths.

  20. The properties of thickness-twist (TT) wave modes in a rotated Y-cut quartz plate with a functionally graded material top layer.

    PubMed

    Wang, Bin; Qian, Zhenghua; Li, Nian; Sarraf, Hamid

    2016-01-01

    We propose the use of thickness-twist (TT) wave modes of an AT-cut quartz crystal plate resonator for measurement of material parameters, such as stiffness, density and material gradient, of a functionally graded material (FGM) layer on its surface, whose material property varies exponentially in thickness direction. A theoretical analysis of dispersion relations for TT waves is presented using Mindlin's plate theory, with displacement mode shapes plotted, and the existence of face-shear (FS) wave modes discussed. Through numerical examples, the effects of material parameters (stiffness, density and material gradient) on dispersion curves, cutoff frequencies and mode shapes are thoroughly examined, which can act as a theoretical reference for measurements of unknown properties of FGM layer. PMID:26254981

  1. Laser-generated shock wave attenuation aimed at microscale pyrotechnic device design

    NASA Astrophysics Data System (ADS)

    Yu, Hyeonju; Yoh, Jack J.

    2016-05-01

    To meet the rising demand for miniaturizing the pyrotechnic device that consists of donor/acceptor pair separated by a bulkhead or a thin gap, the shock initiation sensitivity in the microscale gap test configuration is investigated. For understanding the shock attenuation within a gap sample (304 stainless steel) thickness of 10˜800 μm, the laser-generated shock wave in water confinement is adopted. The shock properties are obtained from the free surface velocity by making use of a velocity interferometer system for any reflector (VISAR). Analytical models for plasma generation in a confined geometry and for evolution and decay of shock waves during the propagation are considered. The shape and amplitude of the laser-driven initial pressure load and its attenuation pattern in the gap are effectively controlled for targeting the microscale propagation distance and subsequent triggering pressure for the acceptor charge. The reported results are important in the precise controlling of the shock strength during the laser initiation of microscale pyrotechnic devices.

  2. Vortex generation and wave-vortex interaction over a concave plate with roughness and suction

    NASA Astrophysics Data System (ADS)

    Bertolotti, Fabio

    1993-12-01

    The generation and amplification of vortices by surface homogeneities, both in the form of surface waviness and of wall-normal velocity, is investigated using the nonlinear parabolic stability equations. Transients and issues of algebraic growth are avoided through the use of a similarity solution as initial condition for the vortex. In the absence of curvature, the vortex decays as the square root of 1/x when flowing over streamwise aligned riblets of constant height, and grows as the square root of x when flowing over a corresponding streamwise aligned variation of blowing/suction transpiration velocity. However, in the presence of wall inhomogeneities having both streamwise and spanwise periodicity, the growth of the vortex can be much larger. In the presence of curvature, the vortex develops into a Gortler vortex. The 'direct' and 'indirect' interaction mechanisms possible in wave-vortex interaction are presented. The 'direct' interaction does not lead to strong resonance with the flow conditions investigated. The 'indirect' interaction leads to K-type transition.

  3. Vortex generation and wave-vortex interaction over a concave plate with roughness and suction

    NASA Technical Reports Server (NTRS)

    Bertolotti, Fabio

    1993-01-01

    The generation and amplification of vortices by surface homogeneities, both in the form of surface waviness and of wall-normal velocity, is investigated using the nonlinear parabolic stability equations. Transients and issues of algebraic growth are avoided through the use of a similarity solution as initial condition for the vortex. In the absence of curvature, the vortex decays as the square root of 1/x when flowing over streamwise aligned riblets of constant height, and grows as the square root of x when flowing over a corresponding streamwise aligned variation of blowing/suction transpiration velocity. However, in the presence of wall inhomogeneities having both streamwise and spanwise periodicity, the growth of the vortex can be much larger. In the presence of curvature, the vortex develops into a Gortler vortex. The 'direct' and 'indirect' interaction mechanisms possible in wave-vortex interaction are presented. The 'direct' interaction does not lead to strong resonance with the flow conditions investigated. The 'indirect' interaction leads to K-type transition.

  4. System and Method for Measuring the Transfer Function of a Guided Wave Device

    NASA Technical Reports Server (NTRS)

    Froggatt, Mark E. (Inventor); Erdogan, Turan (Inventor)

    2002-01-01

    A method/system are provided for measuring the NxN scalar transfer function elements for an N-port guided wave device. Optical energy of a selected wavelength is generated at a source and directed along N reference optical paths having N reference path lengths. Each reference optical path terminates in one of N detectors such that N reference signals are produced at the N detectors. The reference signals are indicative of amplitude, phase and frequency of the optical energy carried along the N reference optical paths. The optical energy from the source is also directed to the N-ports of the guided wave device and then on to each of the N detectors such that N measurement optical paths are defined between the source and each of the N detectors. A portion of the optical energy is modified in terms of at least one of the amplitude and phase to produce N modified signals at each of the N detectors. At each of the N detectors, each of the N modified signals is combined with a corresponding one of the N reference signals to produce corresponding N combined signals at each of the N detectors. A total of N(sup 2) measurement signals are generated by the N detectors. Each of the N(sup 2) measurement signals is sampled at a wave number increment (Delta)k so that N(sup 2) sampled signals are produced. The NxN transfer function elements are generated using the N(sup 2) sampled signals. Reference and measurement path length constraints are defined such that the N combined signals at each of the N detectors are spatially separated from one another in the time domain.

  5. An optimal modeling of multidimensional wave digital filtering network for free vibration analysis of symmetrically laminated composite FSDT plates

    NASA Astrophysics Data System (ADS)

    Tseng, Chien-Hsun

    2015-02-01

    The technique of multidimensional wave digital filtering (MDWDF) that builds on traveling wave formulation of lumped electrical elements, is successfully implemented on the study of dynamic responses of symmetrically laminated composite plate based on the first order shear deformation theory. The philosophy applied for the first time in this laminate mechanics relies on integration of certain principles involving modeling and simulation, circuit theory, and MD digital signal processing to provide a great variety of outstanding features. Especially benefited by the conservation of passivity gives rise to a nonlinear programming problem (NLP) for the issue of numerical stability of a MD discrete system. Adopting the augmented Lagrangian genetic algorithm, an effective optimization technique for rapidly achieving solution spaces of NLP models, numerical stability of the MDWDF network is well received at all time by the satisfaction of the Courant-Friedrichs-Levy stability criterion with the least restriction. In particular, optimum of the NLP has led to the optimality of the network in terms of effectively and accurately predicting the desired fundamental frequency, and thus to give an insight into the robustness of the network by looking at the distribution of system energies. To further explore the application of the optimum network, more numerical examples are engaged in efforts to achieve a qualitative understanding of the behavior of the laminar system. These are carried out by investigating various effects based on different stacking sequences, stiffness and span-to-thickness ratios, mode shapes and boundary conditions. Results are scrupulously validated by cross referencing with early published works, which show that the present method is in excellent agreement with other numerical and analytical methods.

  6. Vanadium dioxide devices for terahertz wave modulation: a study of wire grid structures

    NASA Astrophysics Data System (ADS)

    Parrott, Edward P. J.; Han, Chunrui; Yan, Fei; Humbert, Georges; Bessaudou, Annie; Crunteanu, Aurelian; Pickwell-MacPherson, Emma

    2016-05-01

    Vandium dioxide (VO2) shows promise as the basis for a terahertz wave modulator due to its phase transition properties. Its insulator–metal-transition (IMT) can be induced either through temperature changes, optically or electronically. Recently, a metal-VO2 wire grid structure was proposed which was able to increase the modulation depth (MD) from 0.65 to 0.9, suggesting that these simple metallic structures could greatly increase the difference in terahertz transmission for the insulating and metallic states of VO2 based structures. In this paper, we have found that the increase in MD decreases with increasing VO2 conductivity in the metallic state, resulting in a maximum modulation depth of approximately 0.95 for wire grid structures that preserves a high transmission in the insulating state. Surprisingly, we find that deposition of VO2 on top of metallic structures results in reduced performance. However, we find that devices based upon VO2 alone can achieve unexpectedly high performance. In this work we present a device with a switchable wire-grid polariser effect over a broadband frequency range (from 0.3 to 2 THz). To our knowledge this is the first such broadband metamaterial based solely on VO2. The ability to switch on a metamaterial property like this to produce a polarisation effect is very useful for future terahertz optical devices such as rotators and waveplates.

  7. Vanadium dioxide devices for terahertz wave modulation: a study of wire grid structures.

    PubMed

    Parrott, Edward P J; Han, Chunrui; Yan, Fei; Humbert, Georges; Bessaudou, Annie; Crunteanu, Aurelian; Pickwell-MacPherson, Emma

    2016-05-20

    Vandium dioxide (VO2) shows promise as the basis for a terahertz wave modulator due to its phase transition properties. Its insulator-metal-transition (IMT) can be induced either through temperature changes, optically or electronically. Recently, a metal-VO2 wire grid structure was proposed which was able to increase the modulation depth (MD) from 0.65 to 0.9, suggesting that these simple metallic structures could greatly increase the difference in terahertz transmission for the insulating and metallic states of VO2 based structures. In this paper, we have found that the increase in MD decreases with increasing VO2 conductivity in the metallic state, resulting in a maximum modulation depth of approximately 0.95 for wire grid structures that preserves a high transmission in the insulating state. Surprisingly, we find that deposition of VO2 on top of metallic structures results in reduced performance. However, we find that devices based upon VO2 alone can achieve unexpectedly high performance. In this work we present a device with a switchable wire-grid polariser effect over a broadband frequency range (from 0.3 to 2 THz). To our knowledge this is the first such broadband metamaterial based solely on VO2. The ability to switch on a metamaterial property like this to produce a polarisation effect is very useful for future terahertz optical devices such as rotators and waveplates. PMID:27070298

  8. Seismic Tomography of the Southern California Plate Boundary Region from Noise-Based Rayleigh and Love Waves

    NASA Astrophysics Data System (ADS)

    Zigone, Dimitri; Ben-Zion, Yehuda; Campillo, Michel; Roux, Philippe

    2015-05-01

    We use cross-correlations of ambient seismic noise between pairs of 158 broadband and short-period sensors to investigate velocity structure over the top 5-10 km of the crust in the Southern California plate boundary region around the San Jacinto Fault Zone (SJFZ). From the 9-component correlation tensors associated with all station pairs we derive dispersion curves of Rayleigh and Love wave group velocities. The dispersion results are inverted first for Rayleigh and Love waves group velocity maps on a 1.5 × 1.5 km2 grid that includes portions of the SJFZ, the San Andreas Fault (SAF), and the Elsinore fault. We then invert these maps to 3D shear wave velocities in the top ~7 km of the crust. The distributions of the Rayleigh and Love group velocities exhibit 2θ azimuthal anisotropy with fast directions parallel to the main faults and rotations in complex areas. The reconstructed 3D shear velocity model reveals complex shallow structures correlated with the main geological units, and strong velocity contrasts across various fault sections along with low-velocity damage zones and basins. The SJFZ is marked by a clear velocity contrast with higher V s values on the NE block for the section SE of the San Jacinto basin and a reversed contrast across the section between the San Jacinto basin and the SAF. Velocity contrasts are also observed along the southern parts on the SAF and the Elsinore fault, with a faster southwest block in both cases. The region around the Salton Trough is associated with a significant low-velocity zone. Strong velocity reductions following flower-shape with depth are observed extensively around both the SJFZ and the SAF, and are especially prominent in areas of geometrical complexity. In particular, the area between the SJFZ and the SAF is associated with an extensive low-velocity zone correlated with diffuse seismicity at depth, and a similar pattern including correlation with deep diffuse seismicity is observed on a smaller scale in the

  9. The propagation characteristics of the plate modes of acoustic emission waves in thin aluminum plates and thin graphite/epoxy composite plates and tubes. Ph.D. Thesis - Johns Hopkins Univ., 1991

    NASA Technical Reports Server (NTRS)

    Prosser, William H.

    1991-01-01

    Acoustic emission was interpreted as modes of vibration in plates. Classical plate theory was used to predict dispersion curves for the two fundamental modes and to calculate the shapes of flexural waveforms produced by vertical step function loading. There was good agreement between theoretical and experimental results for aluminum. Composite materials required the use of a higher order plate theory (Reissner-Mindlin) to get good agreement with the measured velocities. Four composite plates with different laminate stacking sequences were studied. The dispersion curves were determined from phase spectra of the time dependent waveforms. Plate modes were shown to be useful for determining the direction of source motion. Aluminum plates were loaded by breaking a pencil lead against their surface. By machining slots at angles to the plane of a plate, the direction in which the force acted was varied. Changing the source motion direction produced regular variations in the waveforms. To demonstrate applicability beyond simple plates, waveforms produced by lead breaks on a thin walled composite tube were also shown to be interpretable as plate modes. The tube design was based on the type of struts proposed for Space Station Freedom's trussed structures.

  10. Ultrasonic probe deployment device for increased wave transmission and rapid area scan inspections

    SciTech Connect

    DiMambro, Joseph; Roach, Dennis P; Rackow, Kirk A; Nelson, Ciji L; Dasch, Cameron J; Moore, David G

    2013-02-12

    An ultrasonic probe deployment device in which an ultrasound-transmitting liquid forms the portion of the ultrasonic wave path in contact with the surface being inspected (i.e., the inspection surface). A seal constrains flow of the liquid, for example preventing the liquid from surging out and flooding the inspection surface. The seal is not rigid and conforms to variations in the shape and unevenness of the inspection surface, thus forming a seal (although possibly a leaky seal) around the liquid. The probe preferably is held in place to produce optimum ultrasonic focus on the area of interest. Use of encoders can facilitate the production of C-scan area maps of the material being inspected.

  11. Ultrasonic probe deployment device for increased wave transmission and rapid area scan inspections

    SciTech Connect

    DiMambro, Joseph; Roach, Dennis P.; Rackow, Kirk A.; Nelson, Ciji L.; Dasch, Cameron J.; Moore, David G.

    2012-01-03

    An ultrasonic probe deployment device in which an ultrasound-transmitting liquid forms the portion of the ultrasonic wave path in contact with the surface being inspected (i.e., the inspection surface). A seal constrains flow of the liquid, for example preventing the liquid from surging out and flooding the inspection surface. The seal is not rigid and conforms to variations in the shape and unevenness of the inspection surface, thus forming a seal (although possibly a leaky seal) around the liquid. The probe preferably is held in place to produce optimum ultrasonic focus on the area of interest. Use of encoders can facilitate the production of C-scan area maps of the material being inspected.

  12. The propagation of in-plane P-SV waves in a layered elastic plate with periodic interface cracks: exact versus spring boundary conditions

    NASA Astrophysics Data System (ADS)

    Kvasha, Oleg V.; Boström, Anders; Glushkova, Natalia V.; Glushkov, Evgeny V.

    2011-08-01

    The propagation of in-plane (P-SV) waves in a symmetrically three-layered thick plate with a periodic array of interface cracks is investigated. The exact dispersion relation is derived based on an integral equation approach and Floquet's theorem. The interface cracks can be a model for interface damage, but a much simpler model is a recently developed spring boundary condition. This boundary condition is used for the thick plate and also in the derivation of plate equations with the help of power series expansions in the thickness coordinate. For low frequencies (cracks small compared to the wavelength) the three approaches give more or less coinciding dispersion curves, and this is a confirmation that the spring boundary condition is a reasonable approximation at low frequencies.

  13. Resonant excitation of waves by a spiraling ion beam on the large plasma device

    NASA Astrophysics Data System (ADS)

    Tripathi, Shreekrishna

    2015-11-01

    The resonant interaction between energetic-ions and plasma waves is a fundamental topic of importance in the space, controlled magnetic-fusion, and laboratory plasma physics. We report new results on the spontaneous generation of traveling shear Alfvén waves and high-harmonic beam-modes in the lower-hybrid range of frequencies by an intense ion beam. In particular, the role of Landau and Doppler-shifted ion-cyclotron resonances (DICR) in extracting the free-energy from the ion-beam and destabilizing Alfvén waves was explored on the Large Plasma Device (LAPD). In these experiments, single and dual-species magnetized plasmas (n ~1010 -1012 cm-3, Te ~ 5.0-10.0 eV, B = 0.6-1.8 kG, He+ and H+ ions, 19.0 m long, 0.6 m diameter) were produced and a spiraling hydrogen ion beam (5-15 keV, 2-10 A, beam-speed/Alfvén-speed = 0.2-1.5, J ~ 50-150 mA/cm2, pitch-angle ~53°) was injected into the plasma. The interaction of the beam with the plasma was diagnosed using a retarding-field energy analyzer, three-axis magnetic-loop, and Langmuir probes. The resonance conditions for the growth of shear Alfvén waves were examined by varying the parameters of the ion-beam and ambient plasma. The experimental results demonstrate that the DICR process is particularly effective in exciting left-handed polarized shear Alfvén waves that propagate in the direction opposite to the ion beam. The high-harmonic beam modes were detected in the vicinity of the spiraling ion beam and contained more than 80 harmonics of Doppler-shifted gyro-frequency of the beam. Work jointly supported by US DOE and NSF and performed at the Basic Plasma Science Facility, UCLA.

  14. Application of Wave Propagation and Vibration-based Structural Health Monitoring Techniques to Friction Stir Welded Plate and Sandwich Honeycomb Panel

    NASA Astrophysics Data System (ADS)

    Sundararaman, S.; White, J. R.; Adams, D. E.; Jata, K. V.

    2007-03-01

    Wave propagation and vibration-based structural health monitoring methodologies are presented to detect, locate and quantify dent/crack, thermal debond, and corrosion damage in a solid aluminum friction stir weld plate and a sandwich honeycomb thermal protection panel. A wave propagation based method can identify small defects because propagating waves typically consist of small wavelengths while a vibration-based scheme is better equipped to quantify damage over wide areas of large structures. Near-real time online diagnostics is achieved by using localized sensing (wave propagation) and distributed sensing (vibration-based) in an active measurement array. Sensor/actuator arrays have been developed to implement these techniques and portable health management systems have been developed based on the combination of damage detection algorithms, active sensing, and graphical user interfaces. Propagating waves are shown to have a heightened sensitivity to damage located at the anti-nodes of a friction stir wed plate forced by low frequency environmental vibrations. Measurement of the input forcing in the vibration-based method is shown to enable damage quantification.

  15. Quantification of the effect of surface heating on shock wave modification by a plasma actuator in a low-density supersonic flow over a flat plate

    NASA Astrophysics Data System (ADS)

    Joussot, Romain; Lago, Viviana; Parisse, Jean-Denis

    2015-05-01

    This paper describes experimental and numerical investigations focused on the shock wave modification induced by a dc glow discharge. The model is a flat plate in a Mach 2 air flow, equipped with a plasma actuator composed of two electrodes. A weakly ionized plasma was created above the plate by generating a glow discharge with a negative dc potential applied to the upstream electrode. The natural flow exhibited a shock wave with a hyperbolic shape. Pitot measurements and ICCD images of the modified flow revealed that when the discharge was ignited, the shock wave angle increased with the discharge current. The spatial distribution of the surface temperature was measured with an IR camera. The surface temperature increased with the current and decreased along the model. The temperature distribution was reproduced experimentally by placing a heating element instead of the active electrode, and numerically by modifying the boundary condition at the model surface. For the same surface temperature, experimental investigations showed that the shock wave angle was lower with the heating element than for the case with the discharge switched on. The results show that surface heating is responsible for roughly 50 % of the shock wave angle increase, meaning that purely plasma effects must also be considered to fully explain the flow modifications observed.

  16. Structure of the Lithosphere-Asthenosphere System Beneath the Juan de Fuca Plate: Results of Body Wave Imaging Using Cascadia Initiative Data

    NASA Astrophysics Data System (ADS)

    Byrnes, J. S.; Toomey, D. R.; Hooft, E. E. E.

    2014-12-01

    The plate-scale deployment of ocean bottom seismometers (OBS) as part of the Cascadia Initiative (CI) of NSF provides a unique opportunity to study the structure and dynamics of the lithosphere-asthenosphere system beneath an entire oceanic plate, from its birth at a spreading center to its subduction beneath a continent. Here we present tomographic images of the seismic structure of oceanic upper mantle beneath the Juan de Fuca (JdF) and Gorda plates derived from body wave delay times. The results constrain structural anomalies beneath the JdF and Gorda spreading centers, the Blanco and Mendocino transform faults, near ridge hotspots such as Axial Seamount, and the upper mantle structure beneath the subducting oceanic lithosphere. We measured delay times of teleseismic P and S wave phases for the first two years of the CI. Our tomographic analysis assumes both isotropic and anisotropic starting models and accounts for finite-frequency effects and three-dimensional ray bending. Preliminary results indicate that the upper mantle structure beneath the JdF spreading center is asymmetric, with lower shear wave velocities beneath the Pacific plate (also the direction of ridge migration). On a regional scale, regions of lower seismic velocities beneath the JdF and Gorda spreading centers correlate with shallower ridge depths. Beneath the southern Gorda plate a low velocity anomaly is detected, which is absent to the north; this anomaly is bounded to the south by the Mendocino transform. Ongoing work includes analysis of the third year of CI data, which will improve resolution of structure and allow better definition of anomalies in the vicinity of the Blanco transform. In addition, we will combine ocean and continental data to obtain images of the Cascadia subduction zone.

  17. Excess Propagation Loss of Semi-Closed Obstacles for Inter/Intra-Device Communications in the Millimeter-Wave Range

    NASA Astrophysics Data System (ADS)

    Guan, Ke; Ai, Bo; Fricke, Alexander; He, Danping; Zhong, Zhangdui; Matolak, David W.; Kürner, Thomas

    2016-02-01

    The ever decreasing geometrical dimensions of electronic devices makes miscellaneous cables or connectors of relatively large dimensions unwanted. Thus, wireless inter/intra-device communications in the millimeter-wave range become a topic of recent interest. In this paper, the excess losses of three groups of typical semi-closed obstacles (connectors, heatsinks, and printed circuit boards) in inter/intra-device communications are measured and empirically modeled. Specific coefficients for each of the obstacles are estimated to describe the excess loss in the millimeter-wave band. Validation shows that the empirical model structure combined with the specific coefficients can provide an effective and simple way to include various semi-closed obstacles in the network planning, simulation, and design of inter/intra-device communications.

  18. Excess Propagation Loss of Semi-Closed Obstacles for Inter/Intra-Device Communications in the Millimeter-Wave Range

    NASA Astrophysics Data System (ADS)

    Guan, Ke; Ai, Bo; Fricke, Alexander; He, Danping; Zhong, Zhangdui; Matolak, David W.; Kürner, Thomas

    2016-07-01

    The ever decreasing geometrical dimensions of electronic devices makes miscellaneous cables or connectors of relatively large dimensions unwanted. Thus, wireless inter/intra-device communications in the millimeter-wave range become a topic of recent interest. In this paper, the excess losses of three groups of typical semi-closed obstacles (connectors, heatsinks, and printed circuit boards) in inter/intra-device communications are measured and empirically modeled. Specific coefficients for each of the obstacles are estimated to describe the excess loss in the millimeter-wave band. Validation shows that the empirical model structure combined with the specific coefficients can provide an effective and simple way to include various semi-closed obstacles in the network planning, simulation, and design of inter/intra-device communications.

  19. Shear horizontal acoustic waves propagating along two isotropic solid plates bonded with a non-dissipative adhesive layer: Effects of the rough interfaces

    NASA Astrophysics Data System (ADS)

    Potel, Catherine; Bruneau, Michel; Foze N'Djomo, Ludovic C.; Leduc, Damien; Echcherif Elkettani, Mounsif; Izbicki, Jean-Louis

    2015-12-01

    The aim of this paper is to provide an analytical contribution which presents the application of shear-horizontal (SH)-guided waves for the characterisation of a bi-layered structure which consists of two isotropic plates adhesively bonded using a non-dissipative thin layer of glue. The thickness of the layer of glue is assumed to be non-negligible, and the interfaces between this layer of glue and the plates are both assumed to be roughened (parallel ridges with complex shape and depth profiles). The basis of the theoretical approach is an extension of the integral formulation, in the frame of SH modal couplings due to the roughness, which has been developed previously for SH-wave propagation over a single plate with a rough surface. This approach assumes that the average roughness height is a small fraction of the thicknesses of the waveguides (the plates) everywhere. The changes, due to the roughness, in the characteristics of the fields created by a harmonic source set at the entrance edge of the structure are expressed through the mapping of the displacement and stress perturbations. Preliminary tests of the effectiveness of the model are given; they rely on the phase-matching effects of periodic profiles and pseudo-random experimental profile.

  20. The Characterization of Surface Acoustic Wave Devices Based on AlN-Metal Structures

    PubMed Central

    Shu, Lin; Peng, Bin; Li, Chuan; Gong, Dongdong; Yang, Zhengbing; Liu, Xingzhao; Zhang, Wanli

    2016-01-01

    We report in this paper on the study of surface acoustic wave (SAW) resonators based on an AlN/titanium alloy (TC4) structure. The AlN/TC4 structure with different thicknesses of AlN films was simulated, and the acoustic propagating modes were discussed. Based on the simulation results, interdigital transducers with a periodic length of 24 μm were patterned by lift-off photolithography techniques on the AlN films/TC4 structure, while the AlN film thickness was in the range 1.5–3.5 μm. The device performances in terms of quality factor (Q-factor) and electromechanical coupling coefficient (k2) were determined from the measure S11 parameters. The Q-factor and k2 were strongly dependent not only on the normalized AlN film thickness but also on the full-width at half-maximum (FWHM) of AlN (002) peak. The dispersion curve of the SAW phase velocity was analyzed, and the experimental results showed a good agreement with simulations. The temperature behaviors of the devices were also presented and discussed. The prepared SAW resonators based on AlN/TC4 structure have potential applications in integrated micromechanical sensing systems. PMID:27077864

  1. The Characterization of Surface Acoustic Wave Devices Based on AlN-Metal Structures.

    PubMed

    Shu, Lin; Peng, Bin; Li, Chuan; Gong, Dongdong; Yang, Zhengbing; Liu, Xingzhao; Zhang, Wanli

    2016-01-01

    We report in this paper on the study of surface acoustic wave (SAW) resonators based on an AlN/titanium alloy (TC4) structure. The AlN/TC4 structure with different thicknesses of AlN films was simulated, and the acoustic propagating modes were discussed. Based on the simulation results, interdigital transducers with a periodic length of 24 μm were patterned by lift-off photolithography techniques on the AlN films/TC4 structure, while the AlN film thickness was in the range 1.5-3.5 μm. The device performances in terms of quality factor (Q-factor) and electromechanical coupling coefficient (k²) were determined from the measure S11 parameters. The Q-factor and k² were strongly dependent not only on the normalized AlN film thickness but also on the full-width at half-maximum (FWHM) of AlN (002) peak. The dispersion curve of the SAW phase velocity was analyzed, and the experimental results showed a good agreement with simulations. The temperature behaviors of the devices were also presented and discussed. The prepared SAW resonators based on AlN/TC4 structure have potential applications in integrated micromechanical sensing systems. PMID:27077864

  2. Surface wave Tomography on the Indian Plate under La Réunion Island from RHUM-RUM experiment data

    NASA Astrophysics Data System (ADS)

    Mazzullo, Alessandro; Stutzmann, Eleonore; Montagner, Jean-Paul; Barruol, Guilhem; Sigloch, Karin; Maurya, Satish

    2016-04-01

    The island of La Reunion has been created by one of the most active volcanoes in the world, but the origin at depth of the mantle upwelling beneath the hotspot is still controversial. More particularly the interaction between the plume and the ridge is not known. In the framework of the RHUM-RUM project, an array of 57 french and german ocean bottom seismometers (OBS) has been deployed during one year (2012-2013) over an area of 2000 km x 2000 km centered on La Reunion Island. 15 land stations have also been installed in Madagascar, the Comoros and Mozambique. This dataset has been used to obtain a high resolution tomographic model of the South West indian area. For each earthquake-station path, Rayleigh wave fundamental mode phase velocity has been measured using the roller-coaster method in the period range 30-250 seconds. The total dataset consists of 3500 paths. This dataset has then been regionalized and inverted versus depth using a simulated annealing method in which the number and shape of the splines that describe the S-wave velocity model are variable. The model lateral resolution is about 500 km. We observe a good correlation between the tomographic model and surface tectonics down to about 100 km depth. At 50 km depth, a slow velocity anomaly is found beneath the hot-spot of Réunion-Mauritius islands. This slow anomaly is extended along the Rodrigues ridge up to the Indian central ridge which confirms a connection between the plume and the ridge. At greater depth (150 km) a large slow velocity anomaly is observed beneath the Réunion hot-spot elongated in the direction of the African plate motion, that may be related to the spreading of hot plume material. We also observe slow velocities beneath the hot-spots of Marion, Crozet and Kerguelen. Finally, under Comoros archipelago, the slow velocity anomaly may be the signature of the termination of the East African rift.

  3. High sensitive mesoporous TiO2-coated love wave device for heavy metal detection.

    PubMed

    Gammoudi, I; Blanc, L; Moroté, F; Grauby-Heywang, C; Boissière, C; Kalfat, R; Rebière, D; Cohen-Bouhacina, T; Dejous, C

    2014-07-15

    This work deals with the design of a highly sensitive whole cell-based biosensor for heavy metal detection in liquid medium. The biosensor is constituted of a Love wave sensor coated with a polyelectrolyte multilayer (PEM). Escherichia coli bacteria are used as bioreceptors as their viscoelastic properties are influenced by toxic heavy metals. The acoustic sensor is constituted of a quartz substrate with interdigitated transducers and a SiO2 guiding layer. However, SiO2 shows some degradation when used in a saline medium. Mesoporous TiO2 presents good mechanical and chemical stability and offers a high active surface area. Then, the addition of a thin titania layer dip-coated onto the acoustic path of the sensor is proposed to overcome the silica degradation and to improve the mass effect sensitivity of the acoustic device. PEM and bacteria deposition, and heavy metal influence, are real time monitored through the resonance frequency variations of the acoustic device. The first polyelectrolyte layer is inserted through the titania mesoporosity, favouring rigid link of the PEM on the sensor and improving the device sensitivity. Also, the mesoporosity of surface increases the specific surface area which can be occupied and favors the formation of homogeneous PEM. It was found a frequency shift near -20±1 kHz for bacteria immobilization with titania film instead of -7±3 kHz with bare silica surface. The sensitivity is highlighted towards cadmium detection. Moreover, in this paper, particular attention is given to the immobilization of bacteria and to biosensor lifetime. Atomic Force Microscopy characterizations of the biosurface have been done for several weeks. They showed significant morphological differences depending on the bacterial life time. We noticed that the lifetime of the biosensor is longer in the case of using a mesoporous TiO2 layer. PMID:24583687

  4. An efficient model to predict guided wave radiation by finite-sized sources in multilayered anisotropic plates with account of caustics

    NASA Astrophysics Data System (ADS)

    Stévenin, M.; Lhémery, A.; Grondel, S.

    2016-01-01

    Elastic guided waves (GW) are used in various non-destructive testing (NDT) methods to inspect plate-like structures, generated by finite-sized transducers. Thanks to GW long range propagation, using a few transducers at permanent positions can provide a full coverage of the plate. Transducer diffraction effects take place, leading to complex radiated fields. Optimizing transducers positioning makes it necessary to accurately predict the GW field radiated by a transducer. Fraunhofer-like approximations applied to GW in isotropic homogeneous plates lead to fast and accurate field computation but can fail when applied to multi-layered anisotropic composite plates, as shown by some examples given. Here, a model is proposed for composite plates, based on the computation of the approximate Green's tensor describing modal propagation from a source point, with account of caustics typically seen when strong anisotropy is concerned. Modal solutions are otherwise obtained by the Semi-Analytic Finite Element method. Transducer diffraction effects are accounted for by means of an angular integration over the transducer surface as seen from the calculation point, that is, over energy paths involved, which are mode-dependent. The model is validated by comparing its predictions with those computed by means of a full convolution integration of the Green's tensor with the source over transducer surface. Examples given concern disk and rectangular shaped transducers commonly used in NDT.

  5. Finite elements modelling of scattering problems for flexural waves in thin plates: Application to elliptic invisibility cloaks, rotators and the mirage effect

    NASA Astrophysics Data System (ADS)

    Farhat, M.; Guenneau, S.; Enoch, S.

    2011-03-01

    We propose a finite elements algorithm to solve a fourth order partial differential equation governing the propagation of time-harmonic bending waves in thin elastic plates. Specially designed perfectly matched layers are implemented to deal with the infinite extent of the plates. These are deduced from a geometric transform in the biharmonic equation. To numerically illustrate the power of elastodynamic transformations, we analyze the elastic response of an elliptic invisibility cloak surrounding a clamped obstacle in the presence of a cylindrical excitation i.e. a concentrated point force. Elliptic cloaking for flexural waves involves a density and an orthotropic Young's modulus which depend on the radial and azimuthal positions, as deduced from a coordinates transformation for circular cloaks in the spirit of Pendry et al. [Science 312, 1780 (2006)], but with a further stretch of a coordinate axis. We find that a wave radiated by a concentrated point force located a couple of wavelengths away from the cloak is almost unperturbed in magnitude and in phase. However, when the point force lies within the coating, it seems to radiate from a shifted location. Finally, we emphasize the versatility of transformation elastodynamics with the design of an elliptic cloak which rotates the wavevector of a flexural wave within its core.

  6. Finite elements modelling of scattering problems for flexural waves in thin plates: Application to elliptic invisibility cloaks, rotators and the mirage effect

    SciTech Connect

    Farhat, M.; Guenneau, S.; Enoch, S.

    2011-03-20

    We propose a finite elements algorithm to solve a fourth order partial differential equation governing the propagation of time-harmonic bending waves in thin elastic plates. Specially designed perfectly matched layers are implemented to deal with the infinite extent of the plates. These are deduced from a geometric transform in the biharmonic equation. To numerically illustrate the power of elastodynamic transformations, we analyze the elastic response of an elliptic invisibility cloak surrounding a clamped obstacle in the presence of a cylindrical excitation i.e. a concentrated point force. Elliptic cloaking for flexural waves involves a density and an orthotropic Young's modulus which depend on the radial and azimuthal positions, as deduced from a coordinates transformation for circular cloaks in the spirit of Pendry et al. [Science 312, 1780 (2006)], but with a further stretch of a coordinate axis. We find that a wave radiated by a concentrated point force located a couple of wavelengths away from the cloak is almost unperturbed in magnitude and in phase. However, when the point force lies within the coating, it seems to radiate from a shifted location. Finally, we emphasize the versatility of transformation elastodynamics with the design of an elliptic cloak which rotates the wavevector of a flexural wave within its core.

  7. Phase-Sensitive Reflective Imaging Device in the mm-wave and Terahertz Regions

    NASA Astrophysics Data System (ADS)

    Gallerano, Gian Piero; Doria, Andrea; Germini, Marzia; Giovenale, Emilio; Messina, Giovanni; Spassovsky, Ivan P.

    2009-12-01

    Two Free Electron Laser sources have been developed at ENEA-Frascati for a variety of applications: A Compact Free Electron Laser (C-FEL) that provides coherent radiation in the frequency range between 90 and 150 GHz Gallerano et al. (Infrared Phys. and Techn. 40:161, 1999), and a second source, FEL-CATS, which utilizes a peculiar radio-frequency structure to generate coherent emission in the range 0.4 to 0.7 THz Doria et al. (Phys. Rev. Lett 93:264801, 2004). The high peak power of several kW in 15 to 50 ps pulses, makes these sources particularly suitable for the assessment of exposure limits in biological systems and for long range detection. In this paper we present a phase-sensitive reflective imaging device in the mm-wave and THz regions, which has proven to be a valuable tool in the biological Ramundo-Orlando et al. (Bioelectromagnetics 28:587-598, 2007), environmental Doria et al. (2005) and art conservation fields Gallerano et al. (2008). Different setups have been tested at different levels of spatial resolution to image objects from a few centimeter square to larger sizes. Images have been compared to identify and characterize the contrast mechanism.

  8. Shear flow and drift wave turbulence dynamics in a cylindrical plasma device

    SciTech Connect

    Yan, Z.; Tynan, G. R.; Holland, C.; Xu, M.; Mueller, S. H.; Yu, J. H.

    2010-03-15

    The experimental observations of the dynamics of the coupled drift wave turbulence (DWT)/sheared zonal flow (ZF) system in a cylindrical plasma device using a combination of Langmuir probe and fast-framing imaging measurements are reported. The results show the presence of an azimuthal ZF that exhibits low frequency (approx250 Hz) fluctuations. The envelope of the higher frequency (above 5 kHz) floating potential fluctuations associated with the DWT, the density gradient, and the turbulent radial particle flux are all modulated out of phase with the strength of the ZF. The divergence of the turbulent Reynolds stress is also modulated at the same slow time scale in a phase-coherent manner consistent with a turbulent-driven shear flow sustained against the collisional and viscous damping. The radial turbulence correlation length and cross-field particle transport are reduced during periods of strong flow shear. The results are qualitatively consistent with theoretical expectations for coupled DWT-ZF dynamics.

  9. Development of an impact-reduction device by applying ultrasonic vibrations to a high-strength steel plate using a downsized transducer

    NASA Astrophysics Data System (ADS)

    Suzuki, Atsuyuki; Ikeoka, Shota; Tsujino, Jiromaru

    2016-07-01

    In this study, we attempted to downsize an ultrasonic impact-reduction device and studied its use in vehicles because the use of large devices increases the overall vehicle weight and size and reduces fuel economy. We downsized the ultrasonic transducer to 195 mm from 435 mm and measured the vibration, deformation, and impact-reduction characteristics. The resonant frequency changed after a bolt-clamped Langevin-type transducer was connected with the horn, and the motional admittance decreased. Upon application of ultrasonic vibrations to a high-strength steel plate, the deformation magnitude increased, the springback magnitude decreased by up to 25%, and the impact force decreased by 18%. While the downsized impact reduction system was found to be less effective, it still showed an impact reduction effect.

  10. Need for and evaluation of hail protection devices for solar flat plate collectors. Final report, June 1978-March 1980

    SciTech Connect

    Armstrong, P R; Cox, M; de Winter, F

    1980-03-01

    A brief summary of the hail risk work previously done under this contract is given, and a summary evaluation of hail impact resistance standards currently being developed is presented. Simulated hail impact test data, field data, and the impact resistance of commercially available glazings are discussed. The use of screens for protection against hail and the threat of vandalism to solar flat plate collectors are discussed. (WHK)

  11. Multiple-frequency acoustic wave devices for chemical sensing and materials characterization in both gas and liquid phase

    SciTech Connect

    Martin, S.J.; Ricco, A.J.

    1991-12-31

    This invention consists of a chemical sensor that includes two or more pairs of interdigital electrodes having different periodicities. Each pair is comprised of a first electrode and a second electrode. The electrodes are patterned on a surface of a piezoelectric substrate. Each pair of electrodes may launch and receive various acoustic waves (AW), including a surface acoustic wave (SAW), and may also launch and receive several acoustic plate modes (APMs). The frequencies associated with each are functions of the transducer periodicity as well as the velocity of the particular AW in the chosen substrate material. An AW interaction region exists between each pair of electrodes. Circuitry is used to launch, receive, and monitor the propagation characteristics of the AWs and may be configured in an intermittent measurement fashion or in a continuous measurement fashion. Perturbations to the AW velocity and attenuation are recorded at several frequencies and provide the sensor response.

  12. Multiple-frequency acoustic wave devices for chemical sensing and materials characterization in both gas and liquid phase

    DOEpatents

    Martin, Stephen J.; Ricco, Antonio J.

    1993-01-01

    A chemical sensor (1) includes two or more pairs of interdigital electrodes (10) having different periodicities. Each pair is comprised of a first electrode (10a) and a second electrode (10b). The electrodes are patterned on a surface of a piezoelectric substrate (12). Each pair of electrodes may launch and receive various acoustic waves (AW), including a surface acoustic wave (SAW), and may also launch and receive several acoustic plate modes (APMs). The frequencies associated with each are functions of the transducer periodicity as well as the velocity of the particular AW in the chosen substrate material. An AW interaction region (13) exists between each pair of electrodes. Circuitry (20, 40) is used to launch, receive, and monitor the propagation characteristics of the AWs and may be configured in an intermittent measurement fashion or in a continuous measurement fashion. Perturbations to the AW velocity and attenuation are recorded at several frequencies and provide the sensor response.

  13. Millimeter-Wave Imaging of Person-Borne Improvised Explosive Devices

    NASA Astrophysics Data System (ADS)

    Fernandes, Justin Leigh

    With the recent rise in casualties and threat of casulties resulting from person-borne improvised explosive devices (PBIEDs) there is an urgent need for building imaging systems to perform standoff and portal detection of such threats. An optimum system that fulfills the requirements of PBIED detection must be low cost and have a high probability of detection with low probability of false alarm. A standoff detection system must also be portable while a portal imaging system can be stationary. Currently there are a variety of modalities being researched to perform standoff detection of PBIED's including: backscatter X-ray imaging, infrared imaging, optical detection, terahertz imaging, video analytics, and millimeter-wave (MMW) imaging. MMW imaging is a perferable modality for full body imaging of PBIEDs for many reasons. MMWs can propagate through the atmosphere and clothing with very little attenuation, while at the same time do not cause damage to human skin tissue. MMWs are small enough to build physical and synthetic aperture systems small enough to have a realistic physical system footprint while also providing excellent cross-range resolution. Present technology is available to generate very wideband coherent MMWsignals, which can be used to generate very high resolution images of targets at both standoff (> 15 meters) and portal (< 1 meter) distances. Due to the large expense of building MMW imaging systems there is a large need to accurately model such systems numerically. With a forward model complex geometries, novel sensor and system configurations can be tested with minimal cost and overhead. Models also allow researchers to carry out extremely precise and repeatable analyses that have the ability to give extraordinary insight to scattering processes. The finite difference method in the frequency domain (FDFD) is a forward model which yields itself as an excellent method to analyze the scattering at MMW frequencies. However, due to the matrix inversion

  14. Millimeter wave imaging at up to 40 frames per second using an optoelectronic photo-injected Fresnel zone plate lens antenna

    NASA Astrophysics Data System (ADS)

    Robertson, Duncan A.; Gallacher, Thomas F.; Søndenâ, Rune; Macfarlane, David G.

    2016-05-01

    Optoelectronic methods are promising for rapid and highly reconfigurable beam steering across the microwave to the terahertz range. In particular, the photo-injected Fresnel zone plate antenna (piFZPA) offers high speed, wide angle, precise beam steering with good beam quality, to enable video rate millimeter wave imagery with no moving parts. We present a piFZPA demonstrator based on a commercial digital light projector (DLP) and high power laser which achieves steering rates up to 17,500 beams per second at 94 and 188 GHz. We also demonstrate radar imaging at 94 GHz at frame rates of 40 Hz (2D PPI) and 7 Hz (3D volumetric).

  15. Charge coupled devices vs. microchannel plates in the extreme and far ultraviolet - A comparison based on the latest laboratory measurements

    NASA Technical Reports Server (NTRS)

    Vallerga, J.; Lampton, M.

    1988-01-01

    While microchannel plates (MCPs) have been established as imaging photon counters in the EUV and FUV for some years, CCDs are associated with low light level sensing at visible and near-IR wavelengths. Attention is presently given to recent proposals for CCDs' use as EUV and FUV detectors with quantum efficiencies sometimes exceeding those of MCPs; quantum resolution, format size, dynamic range, and long-term stability are also used as bases of comparison, for the cases of both space-based astronomical and spectroscopic applications.

  16. Aging Index using Photoplethysmography for a Healthcare Device: Comparison with Brachial-Ankle Pulse Wave Velocity

    PubMed Central

    Hong, Kyung Soon; Park, Kyu Tae

    2015-01-01

    Objectives Recent studies have emphasized the potential information embedded in peripheral fingertip photoplethysmogram (PPG) signals for the assessment of arterial wall stiffening during aging. For the discrimination of arterial stiffness with age, the brachial-ankle pulse wave velocity (baPWV) has been widely used in clinical applications. The second derivative of the PPG (acceleration photoplethysmogram [APG]) has been reported to correlate with the presence of atherosclerotic disorders. In this study, we investigated the association among age, the baPWV, and the APG and found a new aging index reflecting arterial stiffness for a healthcare device. Methods The APG and the baPWV were simultaneously applied to assess the accuracy of the APG in measuring arterial stiffness in association with age. A preamplifier and motion artifact removal algorithm were newly developed to obtain a high quality PPG signal. In total, 168 subjects with a mean ± SD age of 58.1 ± 12.6 years were followed for two months to obtain a set of complete data using baPWV and APG analysis. Results The baPWV and the B ratio of the APG indices were correlated significantly with age (r = 0.6685, p < 0.0001 and r = -0.4025, p < 0.0001, respectively). A regression analysis revealed that the c and d peaks were independent of age (r = -0.3553, p < 0.0001 and r = -0.3191, p < 0.0001, respectively). Conclusions We determined the B ratio, which represents an improved aging index and suggest that the APG may provide qualitatively similar information for arterial stiffness. PMID:25705555

  17. A New Inverse Method of Elastic Constants for a Fibre-Reinforced Composite Plate from Laser-Based Ultrasonic Lamb Waves

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Cheng, Jian-Chun

    2001-12-01

    A new inverse method based on the wavelet transform and artificial neural networks (ANN) is presented to recover elastic constants of a fibre-reinforced composite plate from laser-based ultrasonic Lamb waves. The transient waveforms obtained by numerical simulations under different elastic constants are taken as the input of the ANN for training and learning. The wavelet transform is employed for extracting the eigenvectors from the raw Lamb wave signals so as to simplify the structure of the ANN. Then these eigenvectors are input to a multi-layer internally recurrent neural network with a back-propagation algorithm. Finally, the experimental waveforms are used as the input in the whole system to inverse elastic constants of the experimental material.

  18. Optimum design of phononic crystal perforated plate structures for widest bandgap of fundamental guided wave modes and maximized in-plane stiffness

    NASA Astrophysics Data System (ADS)

    Hedayatrasa, Saeid; Abhary, Kazem; Uddin, Mohammad; Ng, Ching-Tai

    2016-04-01

    This paper presents a topology optimization of single material phononic crystal plate (PhP) to be produced by perforation of a uniform background plate. The primary objective of this optimization study is to explore widest exclusive bandgaps of fundamental (first order) symmetric or asymmetric guided wave modes as well as widest complete bandgap of mixed wave modes (symmetric and asymmetric). However, in the case of single material porous phononic crystals the bandgap width essentially depends on the resultant structural integration introduced by achieved unitcell topology. Thinner connections of scattering segments (i.e. lower effective stiffness) generally lead to (i) wider bandgap due to enhanced interfacial reflections, and (ii) lower bandgap frequency range due to lower wave speed. In other words higher relative bandgap width (RBW) is produced by topology with lower effective stiffness. Hence in order to study the bandgap efficiency of PhP unitcell with respect to its structural worthiness, the in-plane stiffness is incorporated in optimization algorithm as an opposing objective to be maximized. Thick and relatively thin Polysilicon PhP unitcells with square symmetry are studied. Non-dominated sorting genetic algorithm NSGA-II is employed for this multi-objective optimization problem and modal band analysis of individual topologies is performed through finite element method. Specialized topology initiation, evaluation and filtering are applied to achieve refined feasible topologies without penalizing the randomness of genetic algorithm (GA) and diversity of search space. Selected Pareto topologies are presented and gradient of RBW and elastic properties in between the two Pareto front extremes are investigated. Chosen intermediate Pareto topology, even not extreme topology with widest bandgap, show superior bandgap efficiency compared with the results reported in other works on widest bandgap topology of asymmetric guided waves, available in the literature

  19. Cellophane film as half wave retarder of wide spectrum

    NASA Astrophysics Data System (ADS)

    Ortiz-Gutiérrez, M.; Olivares-Pérez, A.; Sánchez-Villicaña, V.

    2001-08-01

    In this work, we introduce the use of a cellophane film as a half wave retarder plate of wide spectrum. Using a commercial arc lamp as a light source, we have characterized a cellophane film as half wave plate retarder in the spectral range from λ=400 to 700 nm. In addition, we made similar characterizations for several commercial laser emission lines. Although this film behaves as other commercial half wave plate retarder devices, it has the advantages of a low cost and an easy availability.

  20. Highly efficient full-wave electromagnetic analysis of 3-D arbitrarily shaped waveguide microwave devices using an integral equation technique

    NASA Astrophysics Data System (ADS)

    Vidal, A.; San-Blas, A. A.; Quesada-Pereira, F. D.; Pérez-Soler, J.; Gil, J.; Vicente, C.; Gimeno, B.; Boria, V. E.

    2015-07-01

    A novel technique for the full-wave analysis of 3-D complex waveguide devices is presented. This new formulation, based on the Boundary Integral-Resonant Mode Expansion (BI-RME) method, allows the rigorous full-wave electromagnetic characterization of 3-D arbitrarily shaped metallic structures making use of extremely low CPU resources (both time and memory). The unknown electric current density on the surface of the metallic elements is represented by means of Rao-Wilton-Glisson basis functions, and an algebraic procedure based on a singular value decomposition is applied to transform such functions into the classical solenoidal and nonsolenoidal basis functions needed by the original BI-RME technique. The developed tool also provides an accurate computation of the electromagnetic fields at an arbitrary observation point of the considered device, so it can be used for predicting high-power breakdown phenomena. In order to validate the accuracy and efficiency of this novel approach, several new designs of band-pass waveguides filters are presented. The obtained results (S-parameters and electromagnetic fields) are successfully compared both to experimental data and to numerical simulations provided by a commercial software based on the finite element technique. The results obtained show that the new technique is specially suitable for the efficient full-wave analysis of complex waveguide devices considering an integrated coaxial excitation, where the coaxial probes may be in contact with the metallic insets of the component.

  1. Polarization-independent light-dispersing device based on diffractive optics

    NASA Astrophysics Data System (ADS)

    Amako, J.; Fujii, E.

    2015-03-01

    We report a light-dispersing device comprised of two transmission gratings and a wave plate. The gratings split the light incident at the Bragg angle into two orthogonally polarized components. The wave plate, which is placed between the gratings, functions as a polarization converter for oblique illumination. Appropriate assembly of these optical parts results in efficient diffraction of the unpolarized light with high spectral resolution. Using coupled-wave theories and Mueller matrix analysis, we constructed a device with a grating period of 400 nm for the spectral range of 680 ± 50 nm. We verified the proposed polarization-independent light-dispersing concept from the evaluation of this device.

  2. S-Local-Wave Seismic Anisotropy in the Forearc Above the Subducted Nazca Plate Between 33°S and 34.5°S

    NASA Astrophysics Data System (ADS)

    Nacif, Silvina; Triep, Enrique G.

    2016-04-01

    S-wave splitting from local earthquakes within the Nazca plate that are deeper than the interplate seismogenic zone enabled the determination of the fast velocity direction, Φ, and the lag time, δt, in the forearc of the overriding plate. Data were collected from 20 seismic stations, most of which were temporary, deployed between ~33.5°S and ~34.5°S and included part of the normal subduction section to the south and part of the transitional section to flat subduction to the north. The fast velocity direction has a complex pattern with three predominant directions northwest-southeast, north-south and northeast-southwest and relatively high δt. A quality evaluation of the highest measurements enabled us to identify possible cycle skipping in some of the measurements, which could be responsible for the large observed lag time. We consider that most of the anisotropy that was observed in the forearc is probably located in the mantle wedge, and a minor part is located in the crust. The complex pattern of splitting parameters when the anisotropy is associated at the mantle wedge could be the result of three-dimensional variations in the subducting Nazca plate at these latitudes. Also, similarities between the splitting parameters and the principal compressional stress direction from Pliocene and Quaternary rocks suggest that the anisotropy in the crust could originate by tectonic local stress.

  3. Combined plate motion and density driven flow in the asthenosphere beneath Saudi Arabia: Evidence from shear-wave splitting and seismic anisotropy

    SciTech Connect

    Hansen, S; Schwartz, S

    2006-02-08

    A comprehensive study of mantle anisotropy along the Red Sea and across Saudi Arabia was performed by analyzing shear-wave splitting recorded by stations from three different seismic networks: the largest, most widely distributed array of stations examined across Saudi Arabia to date. Stations near the Gulf of Aqaba display fast orientations that are aligned parallel to the Dead Sea Transform Fault, most likely related to the strike-slip motion between Africa and Arabia. However, most of our observations across Saudi Arabia are statistically the same, showing a consistent pattern of north-south oriented fast directions with delay times averaging about 1.4 s. Fossilized anisotropy related to the Proterozoic assembly of the Arabian Shield may contribute to the pattern but is not sufficient to fully explain the observations. We feel that the uniform anisotropic signature across Saudi Arabia is best explained by a combination of plate and density driven flow in the asthenosphere. By combining the northeast oriented flow associated with absolute plate motion with the northwest oriented flow associated with the channelized Afar plume along the Red Sea, we obtain a north-south oriented resultant that matches our splitting observations and supports models of active rifting processes. This explains why the north-south orientation of the fast polarization direction is so pervasive across the vast Arabian Plate.

  4. Character of the Caribbean-Gônave-North America plate boundaries in the upper mantle based on shear-wave splitting

    NASA Astrophysics Data System (ADS)

    Benford, B.; Tikoff, B.; DeMets, C.

    2012-12-01

    We present new shear-wave splitting measurements of SKS, SKKS, PKS, and sSKS phases from eight stations in the northern Caribbean. Prior to this work, shear-wave splitting analysis of the northern Caribbean boundary was only evaluated at a station in Puerto Rico. Stations that lie within several tens of kilometers of microplate boundaries have mean fast polarization directions parallel to the boundary and have delay times greater than 1 s. Stations more than several tens of kilometers away from microplate boundaries show no evidence for an anisotropic upper mantle. Stations in Cuba and Jamaica have fast axes oriented ˜100° with delay times of ˜1.5 s, indicating that the east-striking left-lateral strike-slip faults that define the north and south boundaries of the Gônave microplate continue into the upper mantle. A station located in Antigua, where the North America plate subducts beneath the Caribbean plate, has a high degree of splitting with the fast axis parallel to the trench. Based on our results, the deformation related to the presence of microplates in the northern Caribbean extends into the upper mantle.

  5. High performance AlScN thin film based surface acoustic wave devices with large electromechanical coupling coefficient

    SciTech Connect

    Wang, Wenbo; He, Xingli; Ye, Zhi E-mail: jl2@bolton.ac.uk; Wang, Xiaozhi; Mayrhofer, Patrick M.; Gillinger, Manuel; Bittner, Achim; Schmid, Ulrich

    2014-09-29

    AlN and AlScN thin films with 27% scandium (Sc) were synthesized by DC magnetron sputtering deposition and used to fabricate surface acoustic wave (SAW) devices. Compared with AlN-based devices, the AlScN SAW devices exhibit much better transmission properties. Scandium doping results in electromechanical coupling coefficient, K{sup 2}, in the range of 2.0% ∼ 2.2% for a wide normalized thickness range, more than a 300% increase compared to that of AlN-based SAW devices, thus demonstrating the potential applications of AlScN in high frequency resonators, sensors, and high efficiency energy harvesting devices. The coupling coefficients of the present AlScN based SAW devices are much higher than that of the theoretical calculation based on some assumptions for AlScN piezoelectric material properties, implying there is a need for in-depth investigations on the material properties of AlScN.

  6. Focusing, refraction, and asymmetric transmission of elastic waves in solid metamaterials with aligned parallel gaps.

    PubMed

    Su, Xiaoshi; Norris, Andrew N

    2016-06-01

    Gradient index (GRIN), refractive, and asymmetric transmission devices for elastic waves are designed using a solid with aligned parallel gaps. The gaps are assumed to be thin so that they can be considered as parallel cracks separating elastic plate waveguides. The plates do not interact with one another directly, only at their ends where they connect to the exterior solid. To formulate the transmission and reflection coefficients for SV- and P-waves, an analytical model is established using thin plate theory that couples the waveguide modes with the waves in the exterior body. The GRIN lens is designed by varying the thickness of the plates to achieve different flexural wave speeds. The refractive effect of SV-waves is achieved by designing the slope of the edge of the plate array, and keeping the ratio between plate length and flexural wavelength fixed. The asymmetric transmission of P-waves is achieved by sending an incident P-wave at a critical angle, at which total conversion to SV-wave occurs. An array of parallel gaps perpendicular to the propagation direction of the reflected waves stop the SV-wave but let P-waves travel through. Examples of focusing, steering, and asymmetric transmission devices are discussed. PMID:27369165

  7. Phase velocities and attenuations of shear, Lamb, and Rayleigh waves in plate-like tissues submerged in a fluid (L).

    PubMed

    Nenadic, Ivan Z; Urban, Matthew W; Bernal, Miguel; Greenleaf, James F

    2011-12-01

    In the past several decades, the fields of ultrasound and magnetic resonance elastography have shown promising results in noninvasive estimates of mechanical properties of soft tissues. These techniques often rely on measuring shear wave velocity due to an external or internal source of force and relating the velocity to viscoelasticity of the tissue. The mathematical relationship between the measured velocity and material properties of the myocardial wall, arteries, and other organs with non-negligible boundary conditions is often complicated and computationally expensive. A simple relationship between the Lamb-Rayleigh dispersion and the shear wave dispersion is derived for both the velocity and attenuation. The relationship shows that the shear wave velocity is around 20% higher than the Lamb-Rayleigh velocity and that the shear wave attenuation is about 20% lower than the Lamb-Rayleigh attenuation. Results of numerical simulations in the frequency range 0-500 Hz are presented. PMID:22225009

  8. Development of two-channel prototype ITER vacuum ultraviolet spectrometer with back-illuminated charge-coupled device and microchannel plate detectors

    SciTech Connect

    Seon, C. R.; Choi, S. H.; Cheon, M. S.; Pak, S.; Lee, H. G.; Biel, W.; Barnsley, R.

    2010-10-15

    A vacuum ultraviolet (VUV) spectrometer of a five-channel spectral system is designed for ITER main plasma impurity measurement. To develop and verify the system design, a two-channel prototype system is fabricated with No. 3 (14.4-31.8 nm) and No. 4 (29.0-60.0 nm) among the five channels. The optical system consists of a collimating mirror to collect the light from source to slit, two holographic diffraction gratings with toroidal geometry, and two different electronic detectors. For the test of the prototype system, a hollow cathode lamp is used as a light source. To find the appropriate detector for ITER VUV system, two kinds of detectors of the back-illuminated charge-coupled device and the microchannel plate electron multiplier are tested, and their performance has been investigated.

  9. Microwave and millimeter-wave power generation in silicon carbide avalanche devices

    NASA Technical Reports Server (NTRS)

    Mehdi, I.; Haddad, G. I.; Mains, R. K.

    1988-01-01

    Numerical simulations were performed to investigate the typical power-generating capabilities of SiC IMPATT diodes. Using available material parameters, SiC double-drift IMPATT diodes were simulated at 10, 35, 60, and 94 GHz, and the operating characteristics of these devices were compared to those of Si and GaAs devices. Compared to the Si and GaAs IMPATT performances in the pulsed mode, the SiC IMPATT performance was found to be far superior. The performance of SiC devices in the CW mode was also superior to that of GaAs devices, especially at lower frequencies. At a high frequency (94 GHz), the performance of the SiC device was found to be comparable to that of Si devices.

  10. Determining the nominal power transfer coefficient for passive surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Timoshenko, A. N.; Palamarchuk, A. A.; Semenko, A. I.

    1982-05-01

    A method for calculating the nominal power transfer coefficient of passive SAW devices operating in a linear mode is described. Relations of practical importance are obtained, making it possible, on the basis of known characteristics of acousto-electric transducers and acoustic lines, to determine the losses incurred by devices when they are connected to radioelectronic equipment. The relations also permit an assessment of the uniformity of the amplitude-frequency characteristics of the devices.

  11. Detailed structure of the Philippine Sea plate subducting along the Nankai Trough, western Japan, inferred from high-frequency seismic wave analysis

    NASA Astrophysics Data System (ADS)

    Furumura, T.; Padhy, S.; Maeda, T.

    2012-12-01

    A detailed structure of the subducting Philippine Sea plate (PHP) along the Nankai trough in western Japan was studied by analyzing waveforms recorded at dense Hi-net stations in Japan. It is well recognized that the waveforms from intraplate earthquakes dominate in high-frequency (f >1 Hz) signals due to the waveguide effect of the subducting slab (Furumura and Kennett, 2005; 2008). This results in distorted pattern of intensity and peak ground acceleration (PGA) above the hypocenter with a substantial elongation of isoseismic contours correlated with the configuration of the isodepth contours of the subducting PHP beneath western Japan. A detailed analysis of the dense Hi-net waveform data from the intermediate-depth PHP event shows that the high-frequency S-wave signals suddenly disappear as the waves propagate the zone away from the Kii Channel to the boundary of Hyogo and Okayama prefectures and large S-to-P conversion occurs before the arrival of S-wave. Such anomalies do not occur for shallow and deep earthquakes occurring outside the PHP. These observations support the recent debate on the complexities of the configuration of the PHP subducting beneath western Japan such as that shown by Shiomi et al. (2008) based on receiver function images and the PHP-split model beneath the Kii channel shown by Ide et al.(2010) based on the analysis of comprehensive geophysical data. In order to explain the observations associated with sudden lateral change in the PHP structure, we conducted finite difference method (FDM) simulations of seismic wave propagation taking the detailed PHP model into account. It is confirmed that high-frequency guided wave energy decouple from waveguide where the shape of the PHP is suddenly deformed, which results in dramatic attenuation of high-frequency signals associating with large S-to-P conversions developed at sharp plate boundary. The present results also support the recently proposed complicated PHP-split model, however, further

  12. Development and experimental verification of a finite element method for accurate analysis of a surface acoustic wave device

    NASA Astrophysics Data System (ADS)

    Mohibul Kabir, K. M.; Matthews, Glenn I.; Sabri, Ylias M.; Russo, Salvy P.; Ippolito, Samuel J.; Bhargava, Suresh K.

    2016-03-01

    Accurate analysis of surface acoustic wave (SAW) devices is highly important due to their use in ever-growing applications in electronics, telecommunication and chemical sensing. In this study, a novel approach for analyzing the SAW devices was developed based on a series of two-dimensional finite element method (FEM) simulations, which has been experimentally verified. It was found that the frequency response of the two SAW device structures, each having slightly different bandwidth and center lobe characteristics, can be successfully obtained utilizing the current density of the electrodes via FEM simulations. The two SAW structures were based on XY Lithium Niobate (LiNbO3) substrates and had two and four electrode finger pairs in both of their interdigital transducers, respectively. Later, SAW devices were fabricated in accordance with the simulated models and their measured frequency responses were found to correlate well with the obtained simulations results. The results indicated that better match between calculated and measured frequency response can be obtained when one of the input electrode finger pairs was set at zero volts and all the current density components were taken into account when calculating the frequency response of the simulated SAW device structures.

  13. Three Dimensional Numerical Analysis on Discharge Properties of Microwave Excited Ring-Dielectric-Line Surface Wave Processing Plasma Device

    NASA Astrophysics Data System (ADS)

    Nakagawa, Takashi; Kim, Jaeho; Toba, Takayuki; Katsurai, Makoto

    A three dimensional simulation code with the finite difference time domain (FDTD) method combined with the fluid model for electron has been developed for the microwave excited surface wave plasma in the RDL-SWP device. This code permits the numerical analysis of the spatial distributions of electric field, power absorption, electron density and electron temperature. At low gas pressure of about 10 mTorr, the numerical results were compared with the experimental measurements that show the validity of this 3-D simulation code. A simplified analysis assuming that an electron density is spatially uniform has been studied and its applicability is evaluated by the 3-D simulation. The surface wave eigenmodes are determined by the electron density, and it is found that the structure of the device strongly influences to the spatial distribution of the electric fields of surface waves in a low density area (ne<3.0×1011cm-3). A method to irradiate a microwave to the whole surface area of the plasma is proposed which is found to be effective to obtain a high uniformity distribution of electron density.

  14. Growth and Characterization of Polyimide-Supported AlN Films for Flexible Surface Acoustic Wave Devices

    NASA Astrophysics Data System (ADS)

    Li, Qi; Liu, Hongyan; Li, Gen; Zeng, Fei; Pan, Feng; Luo, Jingting; Qian, Lirong

    2016-06-01

    Highly c-axis oriented aluminum nitride (AlN) films, which can be used in flexible surface acoustic wave (SAW) devices, were successfully deposited on polyimide (PI) substrates by direct current reactive magnetron sputtering without heating. The sputtering power, film thickness, and deposition pressure were optimized. The characterization studies show that at the optimized conditions, the deposited AlN films are composed of columnar grains, which penetrate through the entire film thickness (~2 μm) and exhibit an excellent (0002) texture with a full width at half maximum value of the rocking curve equal to 2.96°. The film surface is smooth with a root mean square value of roughness of 3.79 nm. SAW prototype devices with a center frequency of about 520 MHz and a phase velocity of Rayleigh wave of about 4160 m/s were successfully fabricated using the AlN/PI composite structure. The obtained results demonstrate that the highly c-axis oriented AlN films with a smooth surface and low stress can be produced on relatively rough, flexible substrates, and this composite structure can be possibly used in flexible SAW devices.

  15. Design and simulation study of high frequency response for surface acoustic wave device by using CST software

    NASA Astrophysics Data System (ADS)

    Zakaria, M. R.; Hashim, U.; Amin, Mohd Hasrul I. M.; Ayub, R. Mat; Hashim, M. N.; Adam, T.

    2015-05-01

    This paper focuses on the enhancement and improvement of the Surface Acoustic Wave (SAW) device performance. Due to increased demand in the international market for biosensor product, the product must be emphasized in terms of quality. However, within the technological advances, demand for device with low cost, high efficiency and friendly-user preferred. Surface Acoustic Wave (SAW) device with the combination of pair electrode know as Interdigital Transducer (IDT) was fabricated on a piezoelectric substrate. The design of Interdigital Transducer (IDT) parameter is changes in several sizes and values for which it is able to provide greater efficiency in sensing sensitivity by using process simulation with CST STUDIO Suite software. In addition, Interdigital Transducer (IDT) parameters also changed to be created the products with a smaller size and easy to handle where it also reduces the cost of this product. Parameter values of an Interdigital Transducer (IDT) will be changed in the design is the total number of fingers pair, finger length, finger width and spacing, aperture and also the thickness of the Interdigital Transducer (IDT). From the result, the performance of the sensor is improved significantly after modification is done.

  16. Sealing device

    SciTech Connect

    Garcia-Crespo, Andres Jose

    2013-12-10

    A sealing device for sealing a gap between a dovetail of a bucket assembly and a rotor wheel is disclosed. The sealing device includes a cover plate configured to cover the gap and a retention member protruding from the cover plate and configured to engage the dovetail. The sealing device provides a seal against the gap when the bucket assemply is subjected to a centrifugal force.

  17. The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Wave Energy Devices

    SciTech Connect

    Copping, Andrea E.; Geerlofs, Simon H.; Hanna, Luke A.

    2014-06-30

    Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data all add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects. Costs have been developed at the pilot scale and for commercial arrays for a surge wave energy converter

  18. Shear-horizontal surface acoustic wave phononic device with high density filling material for ultra-low power sensing applications

    SciTech Connect

    Richardson, M.; Bhethanabotla, V. R.; Sankaranarayanan, S. K. R. S.

    2014-06-23

    Finite element simulations of a phononic shear-horizontal surface acoustic wave (SAW) sensor based on ST 90°-X Quartz reveal a dramatic reduction in power consumption. The phononic sensor is realized by artificially structuring the delay path to form an acoustic meta-material comprised of a periodic microcavity array incorporating high-density materials such as tantalum or tungsten. Constructive interference of the scattered and secondary reflected waves at every microcavity interface leads to acoustic energy confinement in the high-density regions translating into reduced power loss. Tantalum filled cavities show the best performance while tungsten inclusions create a phononic bandgap. Based on our simulation results, SAW devices with tantalum filled microcavities were fabricated and shown to significantly decrease insertion loss. Our findings offer encouraging prospects for designing low power, highly sensitive portable biosensors.

  19. The CARS Measurement of Nitrogen Vibrational and Rotational Temperatures around Wedge-Plate Model behind Hypervelocity Shock Wave

    NASA Astrophysics Data System (ADS)

    Shirota, D.; Bindu, V. H.; Oguro, M.; Eto, W.; Ota, M.; Maeno, K.

    When a space vehicle re-enters from the space into the atmosphere, the hypersonic shock wave is generated in front of the vehicle. The surface of the vehicle is exposed to the hypersonic non-equilibrium flow with strong radiative heating.

  20. Acoustic regulation of extracorporeal shock wave (ESW) therapy devices in the U.S

    NASA Astrophysics Data System (ADS)

    Maruvada, Subha; Harris, Gerald R.

    2005-04-01

    The focused, large amplitude pressure fields produced by ESW lithotripsy devices were shown in the early 1980s to provide an efficient means for fragmenting urinary tract calculi. More recently, orthopedic applications of intense pressure pulses for pain relief and fracture healing have been developed. Under the US Medical Device Amendments of 1976, ESW therapy devices were deemed Class III, meaning that a pre-market application typically would be supported by both pre-clinical and clinical studies. This classification still applies, except for ESW lithotripters indicated for fragmenting kidney and ureteral calculi. These devices were reclassified to Class II in 2000, resulting in a simpler path to market in which a demonstration of substantial equivalence to a currently marketed device is sufficient. As part of its regulatory responsibility to address the safety and effectiveness of these devices, particularly with regard to acoustic output, the US Food and Drug Administration has recognized two International Electrotechnical Commission (IEC) standards for ESW lithotripters, one covering field measurements (IEC 61846) and the other dealing with labeling and other safety aspects (IEC 60601-2-36). Although these standards were designed primarily for lithotripsy, the FDA has used them where applicable in the regulatory analysis of other ESW therapy devices.