Sample records for platelets induces rejection

  1. CTLA4-Ig Prevents Alloantibody Production and BMT Rejection in Response to Platelet Transfusions in Mice

    PubMed Central

    Gilson, Christopher R; Patel, Seema R; Zimring, James C

    2014-01-01

    Background Platelet transfusions can induce humoral and cellular alloimmunity. Anti-HLA antibodies can render patients refractory to subsequent transfusion, and both alloantibodies and cellular alloimmunity can contribute to subsequent bone marrow transplant rejection. Currently, there are no approved therapeutic interventions to prevent alloimmunization to platelet transfusions other than leukoreduction. Targeted blockade of T cell costimulation has shown great promise in inhibiting alloimmunity in the setting of transplantation, but has not been explored in the context of platelet transfusion. Study Design and Methods We tested the hypothesis that the costimulatory blockade reagent CTLA4-Ig would prevent alloreactivity against major and minor alloantigens on transfused platelets. BALB/c (H-2d) mice and C57BL/6 (H-2b) mice were used as platelet donors and transfusion recipients, respectively. Alloantibodies were measured by indirect immunofluorescence using BALB/c platelets and splenocytes as targets. Bone marrow transplants were carried out under reduced intensity conditioning using BALB/b (H-2b) donors and C57BL/6 (H-2b) recipients to model HLA identical transplants. Experimental groups were given CTLA4-Ig (before or after platelet transfusion) with control groups receiving isotype matched antibody. Results CTLA4-Ig abrogated both humoral alloimmunization (anti-H-2d antibodies) and transfusion induced bone marrow transplant rejection. Whereas a single dose of CTLA4-Ig at time of transfusion prevented alloimmunization to subsequent platelet transfusions, administration of CTLA4-Ig after initial platelet transfusion was ineffective. Delaying treatment until after platelet transfusion failed to prevent bone marrow transplant rejection. Conclusions These findings demonstrate a novel strategy using an FDA approved drug that has the potential to prevent the clinical sequela of alloimmunization to platelet transfusions. PMID:22321003

  2. Surfactants reduce platelet-bubble and platelet-platelet binding induced by in vitro air embolism.

    PubMed

    Eckmann, David M; Armstead, Stephen C; Mardini, Feras

    2005-12-01

    The effect of gas bubbles on platelet behavior is poorly characterized. The authors assessed platelet-bubble and platelet-platelet binding in platelet-rich plasma in the presence and absence of bubbles and three surface-active compounds. Platelet-rich plasma was prepared from blood drawn from 16 volunteers. Experimental groups were surfactant alone, sparging (microbubble embolization) alone, sparging with surfactant, and neither sparging nor surfactant. The surfactants were Pluronic F-127 (Molecular Probes, Eugene, OR), Perftoran (OJSC SPC Perftoran, Moscow, Russia), and Dow Corning Antifoam 1510US (Dow Corning, Midland, MI). Videomicroscopy images of specimens drawn through rectangular glass microcapillaries on an inverted microscope and Coulter counter measurements were used to assess platelet-bubble and platelet-platelet binding, respectively, in calcium-free and recalcified samples. Histamine-induced and adenosine diphosphate-induced platelet-platelet binding were measured in unsparged samples. Differences between groups were considered significant for P < 0.05 using analysis of variance and the Bonferroni correction. Sixty to 100 platelets adhered to bubbles in sparged, surfactant-free samples. With sparging and surfactant, few platelets adhered to bubbles. Numbers of platelet singlets and multimers not adherent to bubbles were different (P < 0.05) compared both with unsparged samples and sparged samples without surfactant. No significant platelet-platelet binding occurred in uncalcified, sparged samples, although 20-30 platelets adhered to bubbles. Without sparging, histamine and adenosine diphosphate provoked platelet-platelet binding with and without surfactants present. Sparging causes platelets to bind to air bubbles and each other. Surfactants added before sparging attenuate platelet-bubble and platelet-platelet binding. Surfactants may have a clinical role in attenuating gas embolism-induced platelet-bubble and platelet-platelet binding.

  3. Platelet-derived-growth-factor-induced signalling in human platelets: phosphoinositide-3-kinase-dependent inhibition of platelet activation.

    PubMed Central

    Selheim, F; Fukami, M H; Holmsen, H; Vassbotn, F S

    2000-01-01

    Human platelets release platelet-derived growth factor (PDGF) from alpha-granules during platelet activation. We have previously shown that platelets have PDGF alpha-receptors, a transmembrane tyrosine kinase that takes part in negative feedback regulation during platelet activation. Here we have described a study of PDGF-induced tyrosine phosphorylation of platelet substrates and phosphoinositide 3-kinase (PI-3K) activity in collagen-stimulated platelets. By immunoblotting with phosphotyrosine antibodies of collagen-activated platelets we found that PDGF increased the phosphorylation of several platelet substrates, e.g. pp140, pp120 and pp85. PDGF inhibited collagen-induced platelet activation in the presence of inhibitors of autocrine stimulation, thus blocking the pure collagen-induced signal transduction. PDGF enhanced the collagen-induced formation of PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) as measured by HPLC. Wortmannin and LY294002, two unrelated inhibitors of PI-3K, were used to investigate the role of PI-3K in PDGF-induced platelet signalling. Incubation of platelets with wortmannin and LY294002 blocked the formation of three phosphorylated inositides as well as the inhibitory effect of PDGF on collagen-induced platelet activation. We conclude that the inhibitory effect of PDGF on platelet activation is PI-3K dependent. This is the first demonstration of a negative regulatory function of 3-phosphorylated inositides in platelets. PMID:10947961

  4. Platelet-derived-growth-factor-induced signalling in human platelets: phosphoinositide-3-kinase-dependent inhibition of platelet activation.

    PubMed

    Selheim, F; Fukami, M H; Holmsen, H; Vassbotn, F S

    2000-09-01

    Human platelets release platelet-derived growth factor (PDGF) from alpha-granules during platelet activation. We have previously shown that platelets have PDGF alpha-receptors, a transmembrane tyrosine kinase that takes part in negative feedback regulation during platelet activation. Here we have described a study of PDGF-induced tyrosine phosphorylation of platelet substrates and phosphoinositide 3-kinase (PI-3K) activity in collagen-stimulated platelets. By immunoblotting with phosphotyrosine antibodies of collagen-activated platelets we found that PDGF increased the phosphorylation of several platelet substrates, e.g. pp140, pp120 and pp85. PDGF inhibited collagen-induced platelet activation in the presence of inhibitors of autocrine stimulation, thus blocking the pure collagen-induced signal transduction. PDGF enhanced the collagen-induced formation of PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) as measured by HPLC. Wortmannin and LY294002, two unrelated inhibitors of PI-3K, were used to investigate the role of PI-3K in PDGF-induced platelet signalling. Incubation of platelets with wortmannin and LY294002 blocked the formation of three phosphorylated inositides as well as the inhibitory effect of PDGF on collagen-induced platelet activation. We conclude that the inhibitory effect of PDGF on platelet activation is PI-3K dependent. This is the first demonstration of a negative regulatory function of 3-phosphorylated inositides in platelets.

  5. Secreted Immunomodulatory Proteins of Staphylococcus aureus Activate Platelets and Induce Platelet Aggregation.

    PubMed

    Binsker, Ulrike; Palankar, Raghavendra; Wesche, Jan; Kohler, Thomas P; Prucha, Josephine; Burchhardt, Gerhard; Rohde, Manfred; Schmidt, Frank; Bröker, Barbara M; Mamat, Uwe; Pané-Farré, Jan; Graf, Anica; Ebner, Patrick; Greinacher, Andreas; Hammerschmidt, Sven

    2018-04-01

    Staphylococcus aureus can cause bloodstream infections associated with infective endocarditis (IE) and disseminated intravascular coagulopathy (DIC). Both complications involve platelets. In view of an increasing number of antibiotic-resistant strains, new approaches to control systemic S. aureus infection are gaining importance. Using a repertoire of 52 recombinant S. aureus proteins in flow cytometry-based platelet activation and aggregation assays, we identified, in addition to the extracellular adherence protein Eap, three secreted staphylococcal proteins as novel platelet activating proteins. Eap and the chemotaxis inhibitory protein of S. aureus (CHIPS), the formyl peptide receptor-like 1 inhibitory protein (FLIPr) and the major autolysin Atl induced P-selectin expression in washed platelets and platelet-rich plasma. Similarly, AtlA, CHIPS and Eap induced platelet aggregation in whole blood. Fluorescence microscopy illustrated that P-selectin expression is associated with calcium mobilization and re-organization of the platelet actin cytoskeleton. Characterization of the functionally active domains of the major autolysin AtlA and Eap indicates that the amidase domain of Atl and the tandem repeats 3 and 4 of Eap are crucial for platelet activation. These results provide new insights in S. aureus protein interactions with platelets and identify secreted proteins as potential treatment targets in case of antibiotic-resistant S. aureus infection. Schattauer GmbH Stuttgart.

  6. Clinical application of radiolabelled platelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kessler, C.

    1990-01-01

    This book presents papers on the clinical applications of radiolabelled platelets. The papers are grouped into six sections on platelet labelling techniques, radiolabelled platelets in cardiology, monitoring of antiplatelet therapy, platelet scintigraphy in stroke patients, platelet scintigraphy in angiology, and platelet scintigraphy in hematology and other clinical applications, including renal transplant rejection.

  7. Mechanism of platelet activation induced by endocannabinoids in blood and plasma.

    PubMed

    Brantl, S Annette; Khandoga, Anna L; Siess, Wolfgang

    2014-01-01

    Platelets play a central role in atherosclerosis and atherothrombosis, and circulating endocannabinoids might modulate platelet function. Previous studies concerning effects of anandamide (N-arachidonylethanolamide) and 2-arachidonoylglycerol (2-AG) on platelets, mainly performed on isolated cells, provided conflicting results. We therefore investigated the action of three main endocannabinoids [anandamide, 2-AG and virodhamine (arachidonoylethanolamine)] on human platelets in blood and platelet-rich plasma (PRP). 2-AG and virodhamine induced platelet aggregation in blood, and shape change, aggregation and adenosine triphosphate (ATP) secretion in PRP. The EC50 of 2-AG and virodhamine for platelet aggregation in blood was 97 and 160 µM, respectively. Lower concentrations of 2-AG (20 µM) and virodhamine (50 µM) synergistically induced aggregation with other platelet stimuli. Platelet activation induced by 2-AG and virodhamine resembled arachidonic acid (AA)-induced aggregation: shape change, the first platelet response, ATP secretion and aggregation induced by 2-AG and virodhamine were all blocked by acetylsalicylic acid (ASA) or the specific thromboxane A2 (TXA2) antagonist daltroban. In addition, platelet activation induced by 2-AG and virodhamine in blood and PRP were inhibited by JZL184, a selective inhibitor of monoacylglycerol lipase (MAGL). In contrast to 2-AG and virodhamine, anandamide, a substrate of fatty acid amidohydrolase, was inactive. Synthetic cannabinoid receptor subtype 1 (CB1) and 2 (CB2) agonists lacked stimulatory as well as inhibitory platelet activity. We conclude that 2-AG and virodhamine stimulate platelets in blood and PRP by a MAGL-triggered mechanism leading to free AA and its metabolism by platelet cyclooxygenase-1/thromboxane synthase to TXA2. CB1, CB2 or non-CB1/CB2 receptors are not involved. Our results imply that ASA and MAGL inhibitors will protect platelets from activation by high endocannabinoid levels, and that

  8. Platelet activation in pregnancy-induced hypertension.

    PubMed

    Karalis, Ioannis; Nadar, Sunil K; Al Yemeni, Eman; Blann, Andrew D; Lip, Gregory Y H

    2005-01-01

    Although excess platelet activation, as indicated by increased plasma beta thromboglobulin (beta-TG), has been shown in pregnancy-induced hypertension (PIH), platelet adhesion, platelet morphology and a comparison of platelet and soluble (plasma) levels of the adhesion molecules P-selectin (pPsel and sPsel, respectively) have not been studied. We conducted a cross-sectional study of 35 consecutive women with PIH (age 31+/-6 years), 31 consecutive women with normotensive pregnancies (age 29+/-5 years) and 30 normotensive non pregnant women (age 30+/-5 years). Platelet adhesion was studied in vitro by binding to fibrinogen-coated microwells, platelet morphology [mass and volume by flow cytometry], whole-platelet P-selectin (pPsel) by ELISA of the lysate of 2 x 10(8) cells, and the plasma markers soluble P-selectin (sP-sel) and beta-TG, by ELISA. The women with PIH had significantly raised sPsel, pPsel and (as expected) beta-TG (all p<0.05), when compared to the normotensive pregnant women and controls. However, in PIH platelet adhesion was similar to that in the normotensive pregnancy, but still higher than the normal controls (p<0.001). There was no difference among the three groups with respect to platelet mass and volume. pPsel and platelet adhesion correlated with gestational age and with systolic and diastolic blood pressure (all p<0.05). Increased platelet activation and adhesion develop during normal pregnancy, with some indices being further altered in PIH.

  9. Tocotrienols-induced inhibition of platelet thrombus formation and platelet aggregation in stenosed canine coronary arteries.

    PubMed

    Qureshi, Asaf A; Karpen, Charles W; Qureshi, Nilofer; Papasian, Christopher J; Morrison, David C; Folts, John D

    2011-04-14

    Dietary supplementation with tocotrienols has been shown to decrease the risk of coronary artery disease. Tocotrienols are plant-derived forms of vitamin E, which have potent anti-inflammatory, antioxidant, anticancer, hypocholesterolemic, and neuroprotective properties. Our objective in this study was to determine the extent to which tocotrienols inhibit platelet aggregation and reduce coronary thrombosis, a major risk factor for stroke in humans. The present study was carried out to determine the comparative effects of α-tocopherol, α-tocotrienol, or tocotrienol rich fraction (TRF; a mixture of α-+γ-+δ-tocotrienols) on in vivo platelet thrombosis and ex vivo platelet aggregation (PA) after intravenous injection in anesthetized dogs, by using a mechanically stenosed circumflex coronary artery model (Folts' cyclic flow model). Collagen-induced platelet aggregation (PA) in platelet rich plasma (PRP) was decreased markedly after treatment with α-tocotrienol (59%; P<0.001) and TRF (92%; P<0.001). α-Tocopherol treatment was less effective, producing only a 22% (P<0.05) decrease in PA. Adenosine diphosphate-induced (ADP) PA was also decreased after treatment with α-tocotrienol (34%; P<0.05) and TRF (42%; P<0.025). These results also indicate that intravenously administered tocotrienols were significantly better than tocopherols in inhibiting cyclic flow reductions (CFRs), a measure of the acute platelet-mediated thrombus formation. Tocotrienols (TRF) given intravenously (10 mg/kg), abolished CFRs after a mean of 68 min (range 22 -130 min), and this abolition of CFRs was sustained throughout the monitoring period (50-160 min).Next, pharmacokinetic studies were carried out and tocol levels in canine plasma and platelets were measured. As expected, α-Tocopherol treatment increased levels of total tocopherols in post- vs pre-treatment specimens (57 vs 18 μg/mL in plasma, and 42 vs 10 μg/mL in platelets). However, treatment with α-tocopherol resulted in slightly

  10. Tocotrienols-induced inhibition of platelet thrombus formation and platelet aggregation in stenosed canine coronary arteries

    PubMed Central

    2011-01-01

    Background Dietary supplementation with tocotrienols has been shown to decrease the risk of coronary artery disease. Tocotrienols are plant-derived forms of vitamin E, which have potent anti-inflammatory, antioxidant, anticancer, hypocholesterolemic, and neuroprotective properties. Our objective in this study was to determine the extent to which tocotrienols inhibit platelet aggregation and reduce coronary thrombosis, a major risk factor for stroke in humans. The present study was carried out to determine the comparative effects of α-tocopherol, α-tocotrienol, or tocotrienol rich fraction (TRF; a mixture of α- + γ- + δ-tocotrienols) on in vivo platelet thrombosis and ex vivo platelet aggregation (PA) after intravenous injection in anesthetized dogs, by using a mechanically stenosed circumflex coronary artery model (Folts' cyclic flow model). Results Collagen-induced platelet aggregation (PA) in platelet rich plasma (PRP) was decreased markedly after treatment with α-tocotrienol (59%; P < 0.001) and TRF (92%; P < 0.001). α-Tocopherol treatment was less effective, producing only a 22% (P < 0.05) decrease in PA. Adenosine diphosphate-induced (ADP) PA was also decreased after treatment with α-tocotrienol (34%; P < 0.05) and TRF (42%; P < 0.025). These results also indicate that intravenously administered tocotrienols were significantly better than tocopherols in inhibiting cyclic flow reductions (CFRs), a measure of the acute platelet-mediated thrombus formation. Tocotrienols (TRF) given intravenously (10 mg/kg), abolished CFRs after a mean of 68 min (range 22 -130 min), and this abolition of CFRs was sustained throughout the monitoring period (50 - 160 min). Next, pharmacokinetic studies were carried out and tocol levels in canine plasma and platelets were measured. As expected, α-Tocopherol treatment increased levels of total tocopherols in post- vs pre-treatment specimens (57 vs 18 μg/mL in plasma, and 42 vs 10 μg/mL in platelets). However, treatment with

  11. Dimerization of glycoprotein Ibα is not sufficient to induce platelet clearance.

    PubMed

    Liang, X; Syed, A K; Russell, S R; Ware, J; Li, R

    2016-02-01

    ESSENTIALS: Many anti-glycoprotein (GP)Ibα antibodies induce platelet clearance in a dimer-dependent manner. Characterization of monoclonal antibodies that bind the mechanosensitive domain (MSD) of GPIbα. An anti-MSD antibody binds two copies of GPIbα in platelets but does not induce platelet clearance. The prevailing clustering model of GPIbα signaling is incorrect or needs revision. The mechanism of platelet clearance is not clear. Many antibodies binding the membrane-distal ligand-binding domain of glycoprotein (GP)Ibα induce rapid clearance of platelets and acute thrombocytopenia, which requires the bifurcated antibody structure. It was thought that binding of these antibodies induced lateral dimerization or clustering of GPIbα in the plasma membrane, which leads to downstream signaling and platelet clearance. However, many antibodies targeting GPIbβ and GPIX, which are associated with GPIbα in the GPIb-IX complex, do not induce platelet clearance, which is in contradiction to the clustering model. To test whether dimerization or clustering of GPIbα is sufficient to transmit the signal that leads to platelet clearance. We have recently raised several mAbs targeting the mechanosensitive domain (MSD) of GPIbα. Binding of these anti-MSD antibodies was characterized with biochemical methods. Their ability to stimulate platelets and induce platelet clearance in mice was assessed. Infusion of anti-MSD antibodies does not cause thrombocytopenia in mice. These antibodies show no detectable effects on platelet activation and aggregation in vitro. Further biochemical investigation showed that the anti-MSD antibody 3D1 binds two copies of GPIbα on the platelet surface. Therefore, lateral dimerization of GPIbα induced by antibody binding is not sufficient to initiate GPIb-IX signaling and induce platelet clearance. Our results suggest that a factor other than or in addition to clustering of GPIbα is required to induce platelet clearance. © 2015 International

  12. Platelet Dynamics during Natural and Pharmacologically Induced Torpor and Forced Hypothermia

    PubMed Central

    de Vrij, Edwin L.; Vogelaar, Pieter C.; Goris, Maaike; Houwertjes, Martin C.; Herwig, Annika; Dugbartey, George J.; Boerema, Ate S.; Strijkstra, Arjen M.; Bouma, Hjalmar R.; Henning, Robert H.

    2014-01-01

    Hibernation is an energy-conserving behavior in winter characterized by two phases: torpor and arousal. During torpor, markedly reduced metabolic activity results in inactivity and decreased body temperature. Arousal periods intersperse the torpor bouts and feature increased metabolism and euthermic body temperature. Alterations in physiological parameters, such as suppression of hemostasis, are thought to allow hibernators to survive periods of torpor and arousal without organ injury. While the state of torpor is potentially procoagulant, due to low blood flow, increased viscosity, immobility, hypoxia, and low body temperature, organ injury due to thromboembolism is absent. To investigate platelet dynamics during hibernation, we measured platelet count and function during and after natural torpor, pharmacologically induced torpor and forced hypothermia. Splenectomies were performed to unravel potential storage sites of platelets during torpor. Here we show that decreasing body temperature drives thrombocytopenia during torpor in hamster with maintained functionality of circulating platelets. Interestingly, hamster platelets during torpor do not express P-selectin, but expression is induced by treatment with ADP. Platelet count rapidly restores during arousal and rewarming. Platelet dynamics in hibernation are not affected by splenectomy before or during torpor. Reversible thrombocytopenia was also induced by forced hypothermia in both hibernating (hamster) and non-hibernating (rat and mouse) species without changing platelet function. Pharmacological torpor induced by injection of 5′-AMP in mice did not induce thrombocytopenia, possibly because 5′-AMP inhibits platelet function. The rapidness of changes in the numbers of circulating platelets, as well as marginal changes in immature platelet fractions upon arousal, strongly suggest that storage-and-release underlies the reversible thrombocytopenia during natural torpor. Possibly, margination of platelets

  13. Time-dependent inhibitory effects of cGMP-analogues on thrombin-induced platelet-derived microparticles formation, platelet aggregation, and P-selectin expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nygaard, Gyrid; Department of Biomedicine, University of Bergen, Bergen; Herfindal, Lars

    Highlights: • We investigated the impact of cyclic nucleotide analogues on platelet activation. • Different time dependence were found for inhibition of platelet activation. • Additive effect was found using PKA- and PKG-activating analogues. • Our results may explain some of the discrepancies reported for cNMP signalling. - Abstract: In platelets, nitric oxide (NO) activates cGMP/PKG signalling, whereas prostaglandins and adenosine signal through cAMP/PKA. Cyclic nucleotide signalling has been considered to play an inhibitory role in platelets. However, an early stimulatory effect of NO and cGMP-PKG signalling in low dose agonist-induced platelet activation have recently been suggested. Here, we investigatedmore » whether different experimental conditions could explain some of the discrepancy reported for platelet cGMP-PKG-signalling. We treated gel-filtered human platelets with cGMP and cAMP analogues, and used flow cytometric assays to detect low dose thrombin-induced formation of small platelet aggregates, single platelet disappearance (SPD), platelet-derived microparticles (PMP) and thrombin receptor agonist peptide (TRAP)-induced P-selectin expression. All four agonist-induced platelet activation phases were blocked when platelets were costimulated with the PKG activators 8-Br-PET-cGMP or 8-pCPT-cGMP and low-doses of thrombin or TRAP. However, extended incubation with 8-Br-PET-cGMP decreased its inhibition of TRAP-induced P-selectin expression in a time-dependent manner. This effect did not involve desensitisation of PKG or PKA activity, measured as site-specific VASP phosphorylation. Moreover, PKG activators in combination with the PKA activator Sp-5,6-DCL-cBIMPS revealed additive inhibitory effect on TRAP-induced P-selectin expression. Taken together, we found no evidence for a stimulatory role of cGMP/PKG in platelets activation and conclude rather that cGMP/PKG signalling has an important inhibitory function in human platelet activation.« less

  14. Dabigatran and rivaroxaban do not affect AA- and ADP-induced platelet aggregation in patients receiving concomitant platelet inhibitors.

    PubMed

    Olivier, Christoph B; Weik, Patrick; Meyer, Melanie; Weber, Susanne; Diehl, Philipp; Bode, Christoph; Moser, Martin; Zhou, Qian

    2016-08-01

    Dabigatran and rivaroxaban are novel, vitamin K-independent oral anticoagulants (NOACs) and act via antagonism of the coagulation factor (F) IIa (dabigatran) or FXa (rivaroxaban), respectively. Compared to vitamin-K-antagonists, NOACs have shown non-inferiority of risk and benefit in patients with non valvular atrial fibrillation (AF). In clinical practice there is increasing use of NOACs combined with platelet inhibitors in patients with AF and coronary artery disease. However, whether NOACs affect the function of platelet inhibitors remains incompletely known. This observational study aimed to assess the platelet function in patients receiving dabigatran or rivaroxaban and concomitant platelet inhibitors. A single centre observational study was performed analysing the platelet aggregation of patients treated with dabigatran or rivaroxaban with or without concomitant platelet inhibitors. Measurements before the initiation of NOAC therapy served as the respective control group. Platelet aggregation was measured by multiple electrode aggregometry and was induced with adenosine diphosphate (ADP, 6.5 µM) and arachidonic acid (AA, 0.5 mM), respectively. In order to evaluate whether NOACs interact with platelet inhibition by ASA or the P2Y12-antagonist clopidogrel, 87 patients were grouped according to their concomitant antiplatelet medication. Comparing the ADP- and AA-induced platelet aggregation in patients without concomitant platelet inhibitors (n = 45) no significant differences under therapy with dabigatran (d) or rivaroxaban (r) compared to the control group (c) were observed. In patients taking clopidogrel as a concomitant platelet inhibitor (n = 21), neither dabigatran nor rivaroxaban affected the ADP-induced platelet aggregation (c 20 ± 11, d 21 ± 14, r 18 ± 8 AU*min, p = 0.200). Patients receiving dabigatran or rivaroxaban in combination with ASA (n = 42; 21 ASA only, 21 ASA + clopidogrel) showed no significant differences of the AA-induced

  15. Aspirin Inhibits Platelet-Derived Sphingosine-1-Phosphate Induced Endothelial Cell Migration.

    PubMed

    Polzin, Amin; Knoop, Betül; Böhm, Andreas; Dannenberg, Lisa; Zurek, Mark; Zeus, Tobias; Kelm, Malte; Levkau, Bodo; Rauch, Bernhard H

    2018-01-01

    Aspirin plays a crucial role in the prevention of cardiovascular diseases. We previously described that aspirin has effects beyond inhibition of platelet aggregation, as it inhibited thrombin-mediated release of sphingosine-1-phosphate (S1P) from human platelets. S1P is a bioactive lipid with important functions on inflammation and apoptosis. In endothelial cells (EC), S1P is a key regulator of cell migration. In this study, we aimed to analyze the effects of aspirin on platelet-induced EC migration. Human umbilical EC migration was measured by Boyden chamber assay. EC migration was induced by platelet supernatants of thrombin receptor-activating peptide-1 (AP1) stimulated platelets. To investigate the S1P receptor subtype that promotes EC migration, specific inhibitors of S1P receptor subtypes were applied. S1P induced EC migration in a concentration-dependent manner. EC migration induced by AP1-stimulated platelet supernatants was reduced by aspirin. S1P1 receptor inhibition almost completely abolished EC migration induced by activated platelets. The inhibition of S1P2 or S1P3 receptor had no effect. Aspirin inhibits EC migration induced by activated platelets that is in part due to S1P and mediated by the endothelial S1P1 receptor. The clinical significance of this novel mechanism of aspirin action has to be investigated in future studies. © 2017 S. Karger AG, Basel.

  16. Aggregation and disaggregation kinetics of human blood platelets: Part II. Shear-induced platelet aggregation.

    PubMed Central

    Huang, P Y; Hellums, J D

    1993-01-01

    A population balance equation (PBE) mathematical model for analyzing platelet aggregation kinetics was developed in Part I (Huang, P. Y., and J. D. Hellums. 1993. Biophys. J. 65: 334-343) of a set of three papers. In this paper, Part II, platelet aggregation and related reactions are studied in the uniform, known shear stress field of a rotational viscometer, and interpreted by means of the model. Experimental determinations are made of the platelet-aggregate particle size distributions as they evolve in time under the aggregating influence of shear stress. The PBE model is shown to give good agreement with experimental determinations when either a reversible (aggregation and disaggregation) or an irreversible (no disaggregation) form of the model is used. This finding suggests that for the experimental conditions studied disaggregation processes are of only secondary importance. During shear-induced platelet aggregation, only a small fraction of platelet collisions result in the binding together of the involved platelets. The modified collision efficiency is approximately zero for shear rates below 3000 s-1. It increases with shear rates above 3000 s-1 to about 0.01 for a shear rate of 8000 s-1. Addition of platelet chemical agonists yields order of magnitude increases in collision efficiency. The collision efficiency for shear-induced platelet aggregation is about an order of magnitude less at 37 degrees C than at 24 degrees C. The PBE model gives a much more accurate representation of aggregation kinetics than an earlier model based on a monodispersed particle size distribution. PMID:8369442

  17. PPARγ ligands decrease hydrostatic pressure-induced platelet aggregation and proinflammatory activity.

    PubMed

    Rao, Fang; Yang, Ren-Qiang; Chen, Xiao-Shu; Xu, Jin-Song; Fu, Hui-Min; Su, Hai; Wang, Ling

    2014-01-01

    Hypertension is known to be associated with platelet overactivity, but the direct effects of hydrostatic pressure on platelet function remain unclear. The present study sought to investigate whether elevated hydrostatic pressure is responsible for platelet activation and to address the potential role of peroxisome proliferator-activated receptor-γ (PPARγ). We observed that hypertensive patients had significantly higher platelet volume and rate of ADP-induced platelets aggregation compared to the controls. In vitro, Primary human platelets were cultured under standard (0 mmHg) or increased (120, 180, 240 mmHg) hydrostatic pressure for 18 h. Exposure to elevated pressure was associated with morphological changes in platelets. Platelet aggregation and PAC-1 (the active confirmation of GPIIb/IIIa) binding were increased, CD40L was translocated from cytoplasm to the surface of platelet and soluble CD40L (sCD40L) was released into the medium in response to elevated hydrostatic pressure (180 and 240 mmHg). The PPARγ activity was up-regulated as the pressure was increased from 120 mmHg to 180 mmHg. Pressure-induced platelet aggregation, PAC-1 binding, and translocation and release of CD40L were all attenuated by the PPARγ agonist Thiazolidinediones (TZDs). These results demonstrate that platelet activation and aggregation are increased by exposure to elevated pressure and that PPARγ may modulate platelet activation induced by high hydrostatic pressure.

  18. PPARγ Ligands Decrease Hydrostatic Pressure-Induced Platelet Aggregation and Proinflammatory Activity

    PubMed Central

    Chen, Xiao-Shu; Xu, Jin-Song; Fu, Hui-Min; Su, Hai; Wang, Ling

    2014-01-01

    Hypertension is known to be associated with platelet overactivity, but the direct effects of hydrostatic pressure on platelet function remain unclear. The present study sought to investigate whether elevated hydrostatic pressure is responsible for platelet activation and to address the potential role of peroxisome proliferator-activated receptor-γ (PPARγ). We observed that hypertensive patients had significantly higher platelet volume and rate of ADP-induced platelets aggregation compared to the controls. In vitro, Primary human platelets were cultured under standard (0 mmHg) or increased (120, 180, 240 mmHg) hydrostatic pressure for 18 h. Exposure to elevated pressure was associated with morphological changes in platelets. Platelet aggregation and PAC-1 (the active confirmation of GPIIb/IIIa) binding were increased, CD40L was translocated from cytoplasm to the surface of platelet and soluble CD40L (sCD40L) was released into the medium in response to elevated hydrostatic pressure (180 and 240 mmHg). The PPARγ activity was up-regulated as the pressure was increased from 120 mmHg to 180 mmHg. Pressure-induced platelet aggregation, PAC-1 binding, and translocation and release of CD40L were all attenuated by the PPARγ agonist Thiazolidinediones (TZDs). These results demonstrate that platelet activation and aggregation are increased by exposure to elevated pressure and that PPARγ may modulate platelet activation induced by high hydrostatic pressure. PMID:24586940

  19. Hyaluronic acid influence on platelet-induced airway smooth muscle cell proliferation.

    PubMed

    Svensson Holm, Ann-Charlotte B; Bengtsson, Torbjörn; Grenegård, Magnus; Lindström, Eva G

    2012-03-10

    Hyaluronic acid (HA) is one of the main components of the extracellular matrix (ECM) and is expressed throughout the body including the lung and mostly in areas surrounding proliferating and migrating cells. Furthermore, platelets have been implicated as important players in the airway remodelling process, e.g. due to their ability to induce airway smooth muscle cell (ASMC) proliferation. The aim of the present study was to investigate the role of HA, the HA-binding surface receptor CD44 and focal adhesion kinase (FAK) in platelet-induced ASMC proliferation. Proliferation of ASMC was measured using the MTS-assay, and we found that the CD44 blocking antibody and the HA synthase inhibitor 4-Methylumbelliferone (4-MU) significantly inhibited platelet-induced ASMC proliferation. The interaction between ASMC and platelets was studied by fluorescent staining of F-actin. In addition, the ability of ASMC to synthesise HA was investigated by fluorescent staining using biotinylated HA-binding protein and a streptavidin conjugate. We observed that ASMC produced HA and that a CD44 blocking antibody and 4-MU significantly inhibited platelet binding to the area surrounding the ASMC. Furthermore, the FAK-inhibitor PF 573228 inhibited platelet-induced ASMC proliferation. Co-culture of ASMC and platelets also resulted in increased phosphorylation of FAK as detected by Western blot analysis. In addition, 4-MU significantly inhibited the increased FAK-phosphorylation. In conclusion, our findings demonstrate that ECM has the ability to influence platelet-induced ASMC proliferation. Specifically, we propose that HA produced by ASMC is recognised by platelet CD44. The platelet/HA interaction is followed by FAK activation and increased proliferation of co-cultured ASMC. We also suggest that the mitogenic effect of platelets represents a potential important and novel mechanism that may contribute to airway remodelling. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Molecular mechanisms of platelet activation and aggregation induced by breast cancer cells.

    PubMed

    Zarà, Marta; Canobbio, Ilaria; Visconte, Caterina; Canino, Jessica; Torti, Mauro; Guidetti, Gianni Francesco

    2018-08-01

    Tumor cell-induced platelet aggregation represents a critical process both for successful metastatic spread of the tumor and for the development of thrombotic complications in cancer patients. To get further insights into this process, we investigated and compared the molecular mechanisms of platelet aggregation induced by two different breast cancer cell lines (MDA-MB-231 and MCF7) and a colorectal cancer cell line (Caco-2). All the three types of cancer cells were able to induce comparable platelet aggregation, which, however, was observed exclusively in the presence of CaCl 2 and autologous plasma. Aggregation was supported both by fibrinogen binding to integrin αIIbβ3 as well as by fibrin formation, and was completely prevented by the serine protease inhibitor PPACK. Platelet aggregation was preceded by generation of low amounts of thrombin, possibly through tumor cells-expressed tissue factor, and was supported by platelet activation, as revealed by stimulation of phospholipase C, intracellular Ca 2+ increase and activation of Rap1b GTPase. Pharmacological inhibition of phospholipase C, but not of phosphatidylinositol 3-kinase or Src family kinases prevented tumor cell-induced platelet aggregation. Tumor cells also induced dense granule secretion, and the stimulation of the P2Y12 receptor by released ADP was found to be necessary for complete platelet aggregation. By contrast, prevention of thromboxane A 2 synthesis by aspirin did not alter the ability of all the cancer cell lines analyzed to induce platelet aggregation. These results indicate that tumor cell-induced platelet aggregation is not related to the type of the cancer cells or to their metastatic potential, and is triggered by platelet activation and secretion driven by the generation of small amount of thrombin from plasma and supported by the positive feedback signaling through secreted ADP. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Refrigeration-Induced Binding of von Willebrand Factor Facilitates Fast Clearance of Refrigerated Platelets.

    PubMed

    Chen, Wenchun; Druzak, Samuel A; Wang, Yingchun; Josephson, Cassandra D; Hoffmeister, Karin M; Ware, Jerry; Li, Renhao

    2017-12-01

    Apheresis platelets for transfusion treatment are currently stored at room temperature because after refrigeration platelets are rapidly cleared on transfusion. In this study, the role of von Willebrand factor (VWF) in the clearance of refrigerated platelets is addressed. Human and murine platelets were refrigerated in gas-permeable bags at 4°C for 24 hours. VWF binding, platelet signaling events, and platelet post-transfusion recovery and survival were measured. After refrigeration, the binding of plasma VWF to platelets was drastically increased, confirming earlier studies. The binding was blocked by peptide OS1 that bound specifically to platelet glycoprotein (GP)Ibα and was absent in VWF - / - plasma. Although surface expression of GPIbα was reduced after refrigeration, refrigeration-induced VWF binding under physiological shear induced unfolding of the GPIbα mechanosensory domain on the platelet, as evidenced by increased exposure of a linear epitope therein. Refrigeration and shear treatment also induced small elevation of intracellular Ca 2+ , phosphatidylserine exposure, and desialylation of platelets, which were absent in VWF -/- platelets or inhibited by OS1, which is a monomeric 11-residue peptide (CTERMALHNLC). Furthermore, refrigerated VWF -/- platelets displayed increased post-transfusion recovery and survival than wild-type ones. Similarly, adding OS1 to transgenic murine platelets expressing only human GPIbα during refrigeration improved their post-transfusion recovery and survival. Refrigeration-induced binding of VWF to platelets facilitates their rapid clearance by inducing GPIbα-mediated signaling. Our results suggest that inhibition of the VWF-GPIbα interaction may be a potential strategy to enable refrigeration of platelets for transfusion treatment. © 2017 American Heart Association, Inc.

  2. Platelet activation by Histophilus somni and its lipooligosaccharide induces endothelial cell proinflammatory responses and platelet internalization.

    PubMed

    Kuckleburg, Christopher J; McClenahan, Dave J; Czuprynski, Charles J

    2008-02-01

    Histophilus somni is a gram-negative coccobacillus that causes respiratory and reproductive disease in cattle. The hallmark of systemic H. somni infection is diffuse vascular inflammation that can lead to an acute central nervous system disease known as thrombotic meningoencephalitis. Previously, we demonstrated that H. somni and its lipooligosaccharide (LOS) activate bovine platelets, leading to expression of P selectin, CD40L, and FasL. Because activated platelets have been reported to induce endothelial cell cytokine production and adhesion molecule expression, we sought to determine if bovine platelets induce proinflammatory and procoagulative changes in bovine pulmonary artery endothelial cells. Endothelial cells were incubated with platelets activated with adenosine diphosphate, H. somni, or H. somni LOS. Incubation with activated bovine platelets significantly increased expression of in adhesion molecules (intercellular adhesion molecule 1, E selectin) and tissue factor, as measured by flow cytometry, real-time polymerase chain reaction, and Western blot analysis. Activated platelets also up-regulated expression of endothelial cell IL-1beta, monocyte chemoattractant protein 1, and macrophage inflammatory protein 1alpha as determined by real-time polymerase chain reaction and an IL-1beta enzyme-linked immunosorbent assay. An interesting and surprising finding was that bovine platelets activated by H. somni or its LOS were internalized by bovine endothelial cells as visualized by transmission electron microscopy. This internalization seemed to correlate with endothelial cell activation and morphological changes indicative of cell stress. These findings suggest that activated platelets might play a role in promoting vascular inflammation during H. somni infection.

  3. Atomic Scale Structure of (001) Hydrogen-Induced Platelets in Germanium

    NASA Astrophysics Data System (ADS)

    David, Marie-Laure; Pizzagalli, Laurent; Pailloux, Fréderic; Barbot, Jean François

    2009-04-01

    An accurate characterization of the structure of hydrogen-induced platelets is a prerequisite for investigating both hydrogen aggregation and formation of larger defects. On the basis of quantitative high resolution transmission electron microscopy experiments combined with extensive first principles calculations, we present a model for the atomic structure of (001) hydrogen-induced platelets in germanium. It involves broken Ge-Ge bonds in the [001] direction that are dihydride passivated, vacancies, and trapped H2 molecules, showing that the species involved in platelet formation depend on the habit plane. This model explains all previous experimental observations.

  4. Role of platelet adhesion in homeostasis and immunopathology.

    PubMed Central

    Männel, D N; Grau, G E

    1997-01-01

    Various molecules expressed on the surface of platelets have been shown to mediate the protective or deleterious role of these cells in immuno-inflammatory mechanisms. Increasing evidence points to the involvement of the cell adhesion molecules, gpIIb-IIIa, P-selectin, CD31, LFA-1, and CD36 in the interaction between platelets and endothelial cells as well as other cell types. The possible role of these molecules in the ability of platelets to support endothelium and to protect against tumour necrosis factor mediated cytolysis or parasitic invasion are reviewed. The involvement of platelets as effectors of tissue damage in cerebral malaria, lipopolysaccharide induced pathology, and pulmonary fibrosis is also discussed. This has then been extended to include the intercellular mechanisms underpinning their pathogenic role in metastasis, transplant rejection, stroke, brain hypoxia, and related conditions. A better understanding of the complex regulation and hierarchical organisation of these various platelet adhesion molecules may prove useful in the development of new approaches to the treatment of such diseases. Images PMID:9350300

  5. In vitro platelet activation, aggregation and platelet-granulocyte complex formation induced by surface modified single-walled carbon nanotubes.

    PubMed

    Fent, János; Bihari, Péter; Vippola, Minnamari; Sarlin, Essi; Lakatos, Susan

    2015-08-01

    Surface modification of single-walled carbon nanotubes (SWCNTs) such as carboxylation, amidation, hydroxylation and pegylation is used to reduce the nanotube toxicity and render them more suitable for biomedical applications than their pristine counterparts. Toxicity can be manifested in platelet activation as it has been shown for SWCNTs. However, the effect of various surface modifications on the platelet activating potential of SWCNTs has not been tested yet. In vitro platelet activation (CD62P) as well as the platelet-granulocyte complex formation (CD15/CD41 double positivity) in human whole blood were measured by flow cytometry in the presence of 0.1mg/ml of pristine or various surface modified SWCNTs. The effect of various SWCNTs was tested by whole blood impedance aggregometry, too. All tested SWCNTs but the hydroxylated ones activate platelets and promote platelet-granulocyte complex formation in vitro. Carboxylated, pegylated and pristine SWCNTs induce whole blood aggregation as well. Although pegylation is preferred from biomedical point of view, among the samples tested by us pegylated SWCNTs induced far the most prominent activation and a well detectable aggregation of platelets in whole blood. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. FcγRIIa ligation induces platelet hypersensitivity to thrombotic stimuli.

    PubMed

    Berlacher, Mark D; Vieth, Joshua A; Heflin, Brittany C; Gay, Steven R; Antczak, Adam J; Tasma, Brian E; Boardman, Holly J; Singh, Navinderjit; Montel, Angela H; Kahaleh, M Bashar; Worth, Randall G

    2013-01-01

    Platelets are known for their important role in hemostasis, however their significance in other functions, including inflammation and infection, are becoming more apparent. Patients with systemic lupus erythematosus (SLE) are known to have circulating IgG complexes in their blood and are highly susceptible to thrombotic events. Because platelets express a single receptor for IgG, we tested the hypothesis that ligation of this receptor (FcγRIIa) induces platelet hypersensitivity to thrombotic stimuli. Platelets from SLE patients were considerably more sensitive to thrombin compared to healthy volunteers, and this correlated with elevated levels of surface IgG on SLE platelets. To test whether FcγRIIa ligation stimulated thrombin hypersensitivity, platelets from healthy volunteers were incubated with buffer or heat-aggregated IgG, then stimulated with increasing concentrations of thrombin. Interestingly, heat-aggregated IgG-stimulated platelets, but not buffer-treated platelets, were hypersensitive to thrombin, and hypersensitivity was blocked by an anti-FcγRIIa monoclonal antibody (mAb). Thrombin hypersensitivity was not due to changes in thrombin receptor expression (GPIbα or PAR1) but is dependent on activation of shared signaling molecules. These observations suggest that ligation of platelet FcγRIIa by IgG complexes induces a hypersensitive state whereby small changes in thrombotic stimuli may result in platelet activation and subsequent vascular complications such as transient ischemic attacks or stroke. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  7. Nanomolar concentrations of adrenaline induce platelet adhesion in vitro.

    PubMed

    Eriksson, Andreas C; Whiss, Per A

    2013-01-01

    Adrenaline is a platelet activator having a resting plasma concentration of <1 nmol/l that increases to a few nmol/l during stress. However, most in vitro assays only detect effects of adrenaline in micromolar concentrations. This makes it difficult to estimate the relevance of in vitro data for the in vivo situation. The aim of this study was to investigate experimental conditions in vitro that could detect platelet effects of adrenaline in nanomolar concentrations. Platelet adhesion to albumin and collagen was evaluated with a static platelet adhesion assay. Our results show that 10 nmol/l adrenaline induced platelet adhesion to albumin in platelet-rich plasma (PRP) prepared at 140 × g, while 100 nmol/l was necessary in order to increase adhesion of platelets prepared at 220 × g. The mean platelet volume was increased after preparation at 140 × g, suggesting that large reactive platelets contributed to the increased adrenaline sensitivity. At optimal Mg(2+)-concentration, adhesion to collagen was increased by 10 nmol/l adrenaline irrespective of centrifugal force applied during PRP preparation. More specifically, we defined two populations where adhesion to collagen was increased by 10 nmol/l adrenaline either upon centrifugation at 140 × g but not 220 × g or vice versa. In some experiments, platelet adhesion to collagen was induced by 3 nmol/l adrenaline, which corresponds to concentrations achieved during stress in vivo. In summary, the static adhesion assay is able to detect platelet activating effects of adrenaline very close to physiological concentrations. This is rare for in vitro assays and motivates further research about adrenergic signalling in platelets.

  8. Inhibitory activity of aspirin on von Willebrand factor-induced platelet aggregation.

    PubMed

    Homoncik, M; Jilma, B; Eichelberger, B; Panzer, S

    2000-09-01

    The effect of aspirin (ASA) on vWF induced platelet - platelet interaction is unknown. We therefore tested the response of platelets to von Willebrand factor (vWF) coated beads induced platelet aggregation before and after i.v. and oral ASA. 1000 mg ASA was infused to 10 healthy individuals and after a wash-out period 7 volunteers received 100 mg ASA orally over a period of 11 days. Prior to ASA and in regular intervals thereafter we tested the reactivity to vWF-coated beads to assess platelet adhesion/aggregation and the fade-out time of ASA effects on platelets. Considerable interindividual variability in response to vWF-coated beads was observed, both before ASA and after treatment with ASA. The maximal response to vWF-coated beads (Tmax), the time lag, and the slope of the curve were significantly affected by i.v. ASA, whereas 100 mg of ASA had only inconstant effect on Tmax and slope. The absolute reduction of Tmax after ASA depended on the pre-ASA level, while the percentage of the reduction was similar in all individuals. Thus, platelet aggregation induced by vWF-coated beads is impaired by ASA. Furthermore, our data indicate a large interindividual variability of the response to ASA shortly after treatment induction, which becomes more constant after prolonged treatment.

  9. BH3-mimetic ABT-737 induces strong mitochondrial membrane depolarization in platelets but only weakly stimulates apoptotic morphological changes, platelet shrinkage and microparticle formation.

    PubMed

    Gyulkhandanyan, Armen V; Mutlu, Asuman; Allen, David J; Freedman, John; Leytin, Valery

    2014-01-01

    Depolarization of mitochondrial inner transmembrane potential (ΔΨm) is a key biochemical manifestation of the intrinsic apoptosis pathway in anucleate platelets. Little is known, however, about the relationship between ΔΨm depolarization and downstream morphological manifestations of platelet apoptosis, cell shrinkage and microparticle (MP) formation. To elucidate this relationship in human platelets. Using flow cytometry, we analyzed ΔΨm depolarization, platelet shrinkage and MP formation in platelets treated with BH3-mimetic ABT-737 and calcium ionophore A23187, well-known inducers of intrinsic platelet apoptosis. We found that at optimal treatment conditions (90min, 37°C) both ABT-737 and A23187 induce ΔΨm depolarization in the majority (88-94%) of platelets and strongly increase intracellular free calcium. In contrast, effects of A23187 and ABT-737 on platelet shrinkage and MP formation are quite different. A23187 strongly stimulates cell shrinkage and MP formation, whereas ABT-737 only weakly induces these events (10-20% of the effect seen with A23187, P<0.0001). These data indicate that a high level of ΔΨm depolarization and intracellular free calcium does not obligatorily ensure strong platelet shrinkage and MP formation. Since ABT-737 efficiently induces clearance of platelets from the circulation, our results suggest that platelet clearance may occur in the absence of the morphological manifestations of apoptosis. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  10. Nanodiamonds activate blood platelets and induce thromboembolism.

    PubMed

    Kumari, Sharda; Singh, Manoj K; Singh, Sunil K; Grácio, José J A; Dash, Debabrata

    2014-03-01

    Nanodiamonds (NDs) have been evaluated for a wide range of biomedical applications. Thus, thorough investigation of the biocompatibility of NDs has become a research priority. Platelets are highly sensitive and are one of the most abundant cell types found in blood. They have a central role in hemostasis and arterial thrombosis. In this study, we aim to investigate the direct and acute effects of carboxylated NDs on platelet function. In this study, pro-coagulant parameters such as platelet aggregability, intracellular Ca(2+) flux, mitochondrial transmembrane potential (ΔΨm), generation of reactive oxygen species, surface exposure of phosphatidylserine, electron microscopy, cell viability assay and in vivo thromboembolism were analyzed in great detail. Carboxylated NDs evoked significant activation of human platelets. When administered intravenously in mice, NDs were found to induce widespread pulmonary thromboembolism, indicating the remarkable thrombogenic potential of this nanomaterial. Our findings raise concerns regarding the putative biomedical applications of NDs pertaining to diagnostics and therapeutics, and their toxicity and prothrombotic properties should be critically evaluated.

  11. Thrombin-induced activation of RhoA in platelet shape change.

    PubMed

    Bodie, S L; Ford, I; Greaves, M; Nixon, G F

    2001-09-14

    Thrombin-induced activation of RhoA and its involvement in the regulation of myosin II light chain(20) phosphorylation (MLC-P) in alpha-toxin permeabilized platelets was investigated. Permeabilized platelets, expressing normal levels of P-selectin, displayed a Ca(2+)-dependent increase in shape change and MLC-P. Thrombin activated RhoA as measured by a rhotekin-binding assay within 30 s of stimulation under conditions of constant [Ca(2+)](i). Under the same conditions and timecourse, thrombin or GTPgammaS induced an increase in MLC-P and platelet shape change which was not dependent on an increase in [Ca(2+)](i). The thrombin- and GTPgammaS-induced MLC-P in constant [Ca(2+)](i) was inhibited by the addition of Y27632, a Rho-kinase inhibitor. This study directly demonstrates that thrombin can activate RhoA in platelets in a timecourse compatible with a role in increasing MLC-P and shape change (not involving an increase in [Ca(2+)](i)). This is also Rho-kinase-dependent. Copyright 2001 Academic Press.

  12. Rho Associated Coiled-Coil Kinase-1 Regulates Collagen-Induced Phosphatidylserine Exposure in Platelets

    PubMed Central

    Dasgupta, Swapan K.; Le, Anhquyen; Haudek, Sandra B.; Entman, Mark L.; Rumbaut, Rolando E.; Thiagarajan, Perumal

    2013-01-01

    Background The transbilayer movement of phosphatidylserine mediates the platelet procoagulant activity during collagen stimulation. The Rho-associated coiled-coil kinase (ROCK) inhibitor Y-27632 inhibits senescence induced but not activation induced phosphatidylserine exposure. To investigate further the specific mechanisms, we now utilized mice with genetic deletion of the ROCK1 isoform. Methods and Results ROCK1-deficient mouse platelets expose significantly more phosphatidylserine and generate more thrombin upon activation with collagen compared to wild-type platelets. There were no significant defects in platelet shape change, aggregation, or calcium response compared to wild-type platelets. Collagen-stimulated ROCK1-deficient platelets also displayed decreased phosphorylation levels of Lim Kinase-1 and cofilin-1. However, there was no reduction in phosphorylation levels of myosin phosphatase subunit-1 (MYPT1) or myosin light chain (MLC). In an in vivo light/dye-induced endothelial injury/thrombosis model, ROCK1-deficient mice presented a shorter occlusion time in cremasteric venules when compared to wild-type littermates (3.16 ± 1.33 min versus 6.6 ± 2.6 min; p = 0.01). Conclusions These studies define ROCK1 as a new regulator for collagen-induced phosphatidylserine exposure in platelets with functional consequences on thrombosis. This effect was downstream of calcium signaling and was mediated by Lim Kinase-1 / cofilin-1-induced cytoskeletal changes. PMID:24358370

  13. Ristocetin induces phosphorylated-HSP27 (HSPB1) release from the platelets of type 2 DM patients: Anti-platelet agent-effect on the release.

    PubMed

    Tokuda, Haruhiko; Kuroyanagi, Gen; Onuma, Takashi; Enomoto, Yukiko; Doi, Tomoaki; Iida, Hiroki; Otsuka, Takanobu; Ogura, Shinji; Iwama, Toru; Kojima, Kumi; Kozawa, Osamu

    2018-04-01

    It has been previously reported that HSP27 is released from platelets in type 2 diabetes mellitus (DM) patients according to phosphorylation. In the present study, we investigated the effect of ristocetin, a glycoprotein (GP)Ib/IX/V activator, on the release of HSP27 and the effect of anti-platelet agents, such as acetylsalicylic acid (ASA), on this release. Forty-six patients with type 2 DM were recruited, and classified into two groups depending on administration of anti-platelet agents, resulting in 31 patients without these agents (control group) and 15 patients with them (anti-platelet group). Ristocetin potently induced the aggregation of platelets in the two groups. Ristocetin-induced changes of the area under the curve of light transmittance and the ratio of the size of platelet aggregates in the anti-platelet group were slightly different from those in the control group. On the other hand, the levels of phosphorylated-HSP27 induced by ristocetin in the platelets from a patient of the anti-platelet group taking ASA were significantly lower than those from a patient of the control group. The levels of HSP27 release from the ristocetin-stimulated platelets were significantly correlated with the levels of phosphorylated-HSP27 in the platelets from patients in the two groups. The levels of HSP27 release and those of platelet-derived growth factor-AB (PDGF-AB) secretion stimulated by ristocetin in the anti-platelet group were lower than those in the control group. In addition, the levels of HSP27 release and those of PDGF-AB secretion stimulated by ADP in the anti-platelet group were lower than those in the control group. These results strongly suggest that anti-platelet agents inhibit the HSP27 release from platelets stimulated by ristocetin but not the aggregation in type 2 DM patients.

  14. Mesenchymal Stem Cells Suppress Chronic Rejection in Heterotopic Small Intestine Transplant Rat Models Via Inhibition of CD68, Transforming Growth Factor- β1, and Platelet-Derived Growth Factor Expression.

    PubMed

    Li, Fuxin; Cao, Jisen; Zhao, Zhicheng; Li, Chuan; Qi, Feng; Liu, Tong

    2017-04-01

    Mesenchymal stem cells are easy to obtain and expand, with characteristics of low immunogenicity and strong tissue repair capacity. In this study, our aim was to investigate the role of mesenchymal stem cells in chronic immune rejection of heterotopic small intestine transplant in rats. After successfully constructing a rat chronic immune rejection model of heterotopic small intestine transplant, we infused mesenchymal stem cells into the animal recipients. We observed mesenchymal stem cell location in the recipients, recipient survival, pathology changes, and the expression of CD68, transforming growth factor β1, and platelet-derived growth factor C in the donor intestine. Mesenchymal stem cells inhibited the lymphocyte proliferation caused by concanavalin A in vitro. After stem cells were infused into recipients, they were mainly located in the donor intestine, as well as in the spleen and thymus. Recovery after transplant and pathology changes of the donor intestine in rats with stem cell infusion were better than in the control group; however, we observed no differences in survival time, accompanied by downregulated expression of CD68, transforming growth factor β1, and platelet-derived growth factor C. Mesenchymal stem cells, to a certain extent, could inhibit the process of chronic rejection. The mechanisms may include the inhibited function of these cells on lymphocyte proliferation, reduced infiltration of macrophages, and reduced expression of transforming growth factor β1 and platelet-derived growth factor C.

  15. Scalable Generation of Universal Platelets from Human Induced Pluripotent Stem Cells

    PubMed Central

    Feng, Qiang; Shabrani, Namrata; Thon, Jonathan N.; Huo, Hongguang; Thiel, Austin; Machlus, Kellie R.; Kim, Kyungho; Brooks, Julie; Li, Feng; Luo, Chenmei; Kimbrel, Erin A.; Wang, Jiwu; Kim, Kwang-Soo; Italiano, Joseph; Cho, Jaehyung; Lu, Shi-Jiang; Lanza, Robert

    2014-01-01

    Summary Human induced pluripotent stem cells (iPSCs) provide a potentially replenishable source for the production of transfusable platelets. Here, we describe a method to generate megakaryocytes (MKs) and functional platelets from iPSCs in a scalable manner under serum/feeder-free conditions. The method also permits the cryopreservation of MK progenitors, enabling a rapid “surge” capacity when large numbers of platelets are needed. Ultrastructural/morphological analyses show no major differences between iPSC platelets and human blood platelets. iPSC platelets form aggregates, lamellipodia, and filopodia after activation and circulate in macrophage-depleted animals and incorporate into developing mouse thrombi in a manner identical to human platelets. By knocking out the β2-microglobulin gene, we have generated platelets that are negative for the major histocompatibility antigens. The scalable generation of HLA-ABC-negative platelets from a renewable cell source represents an important step toward generating universal platelets for transfusion as well as a potential strategy for the management of platelet refractoriness. PMID:25418726

  16. Scalable generation of universal platelets from human induced pluripotent stem cells.

    PubMed

    Feng, Qiang; Shabrani, Namrata; Thon, Jonathan N; Huo, Hongguang; Thiel, Austin; Machlus, Kellie R; Kim, Kyungho; Brooks, Julie; Li, Feng; Luo, Chenmei; Kimbrel, Erin A; Wang, Jiwu; Kim, Kwang-Soo; Italiano, Joseph; Cho, Jaehyung; Lu, Shi-Jiang; Lanza, Robert

    2014-11-11

    Human induced pluripotent stem cells (iPSCs) provide a potentially replenishable source for the production of transfusable platelets. Here, we describe a method to generate megakaryocytes (MKs) and functional platelets from iPSCs in a scalable manner under serum/feeder-free conditions. The method also permits the cryopreservation of MK progenitors, enabling a rapid "surge" capacity when large numbers of platelets are needed. Ultrastructural/morphological analyses show no major differences between iPSC platelets and human blood platelets. iPSC platelets form aggregates, lamellipodia, and filopodia after activation and circulate in macrophage-depleted animals and incorporate into developing mouse thrombi in a manner identical to human platelets. By knocking out the β2-microglobulin gene, we have generated platelets that are negative for the major histocompatibility antigens. The scalable generation of HLA-ABC-negative platelets from a renewable cell source represents an important step toward generating universal platelets for transfusion as well as a potential strategy for the management of platelet refractoriness.

  17. Effects of low temperature on shear-induced platelet aggregation and activation.

    PubMed

    Zhang, Jian-ning; Wood, Jennifer; Bergeron, Angela L; McBride, Latresha; Ball, Chalmette; Yu, Qinghua; Pusiteri, Anthony E; Holcomb, John B; Dong, Jing-fei

    2004-08-01

    Hemorrhage is a major complication of trauma and often becomes more severe in hypothermic patients. Although it has been known that platelets are activated in the cold, studies have been focused on platelet behavior at 4 degrees C, which is far below temperatures encountered in hypothermic trauma patients. In contrast, how platelets function at temperatures that are commonly found in hypothermic trauma patients (32-37 degrees C) remains largely unknown, especially when they are exposed to significant changes in fluid shear stress that could occur in trauma patients due to hemorrhage, vascular dilation/constriction, and fluid resuscitation. Using a cone-plate viscometer, we have examined platelet activation and aggregation in response to a wide range of fluid shear stresses at 24, 32, 35, and 37 degrees C. We found that shear-induced platelet aggregation was significantly increased at 24, 32, and 35 degrees C as compared with 37 degrees C and the enhancement was observed in whole blood and platelet-rich plasma. In contrast to observation made at 4 degrees C, the increased shear-induced platelet aggregation at these temperatures was associated with minimal platelet activation as determined by the P-selectin expression on platelet surface. Blood viscosity was also increased at low temperature and the changes in viscosity correlated with levels of plasma total protein and fibrinogen. We found that platelets are hyper-reactive to fluid shear stress at temperatures of 24, 32, and 35 degrees C as compared with at 37 degrees C. The hyperreactivity results in heightened aggregation through a platelet-activation independent mechanism. The enhanced platelet aggregation parallels with increased whole blood viscosity at these temperatures, suggesting that enhanced mechanical cross-linking may be responsible for the enhanced platelet aggregation.

  18. Mutant botrocetin-2 inhibits von Willebrand factor-induced platelet agglutination.

    PubMed

    Matsui, T; Hori, A; Hamako, J; Matsushita, F; Ozeki, Y; Sakurai, Y; Hayakawa, M; Matsumoto, M; Fujimura, Y

    2017-03-01

    Essentials Botrocetin-2 (Bot2) binds to von Willebrand factor (VWF) and induces platelet agglutination. We identified Bot2 residues that are required for binding to VWF and glycoprotein (GP) Ib. We produced a mutant Bot2 that binds to VWF but inhibits platelet agglutination. Mutant Bot2 could be used as a potential anti-thrombotic reagent to block VWF-GPIb interaction. Background Botrocetin-2 (Bot2) is a botrocetin-like protein composed of α and β subunits that have been cloned from the snake Bothrops jararaca. Bot2 binds specifically to von Willebrand factor (VWF), and the complex induces glycoprotein (GP) Ib-dependent platelet agglutination. Objectives To exploit Bot2's VWF-binding capacity in order to attempt to create a mutant Bot2 that binds to VWF but inhibits platelet agglutination. Methods and Results Several point mutations were introduced into Bot2 cDNA, and the recombinant protein (recombinant Bot2 [rBot2]) was purified on an anti-botrocetin column. The mutant rBot2 with either Ala at Asp70 in the β subunit (Aspβ70Ala), or Argβ115Ala and Lysβ117Ala, showed reduced platelet agglutination-inducing activity. rBot2 with Aspβ70Ala showed little binding activity towards immobilized VWF on an ELISA plate, whereas rBot2 with Argβ115Ala/Lysβ117Ala showed reduced binding activity towards GPIb (glycocalicin) after forming a complex with VWF. rBot2 point-mutated to oppositely charged Glu at both Argβ115 and Lysβ117 showed normal binding activity towards VWF but no platelet-agglutinating activity. Furthermore, this doubly mutated protein inhibited ristocetin-induced or high shear stress-induced platelet aggregation, and restrained thrombus formation under flow conditions. Conclusions Asp70 in the β subunit of botrocetin is important for VWF binding, and Arg115 and Lys117 in the β subunit are essential for interaction with GPIb. Doubly mutated rBot2, with Argβ115Glu and Lysβ117Glu, repels GPIb and might have potential as an antithrombotic reagent that

  19. Novel sila-amide derivatives of N-acetylcysteine protects platelets from oxidative stress-induced apoptosis.

    PubMed

    Paul, Manoj; Thushara, Ram M; Jagadish, Swamy; Zakai, Uzma I; West, Robert; Kemparaju, Kempaiah; Girish, Kesturu S

    2017-02-01

    Oxidative stress-induced platelet apoptosis is one among the many causes for the development and progression of many disorders like cardiovascular diseases, arthritis, Alzheimer's disease and many chronic inflammatory responses. Many studies have demonstrated the less optimal effect of N-acetyl cysteine (NAC) in oxidative stress-induced cellular damage. This could be due to its less lipophilicity which makes it difficult to enter the cellular membrane. Therefore in the present study, lipophilic sila-amide derivatives (6a and 6b) synthesized through the reaction of NAC with 3-Aminopropyltrimethylsilane and aminomethyltrimethylsilane were used to determine their protective property against oxidative stress-induced platelet apoptosis. At a concentration of 10 µM, compound 6a and 6b were able to significantly inhibit Rotenone/H 2 O 2 induced platelet apoptotic markers like reactive oxygen species, intracellular calcium level, mitochondrial membrane potential, cytochrome c release from mitochondrial to the cytosol, caspase-9 and -3 activity and phosphatidylserine externalization. Therefore, the compounds can be extrapolated as therapeutic agents to protect platelets from oxidative stress-induced platelet apoptosis and its associated complications.

  20. Shear-induced integrin signaling in platelet phosphatidylserine exposure, microvesicle release and coagulation.

    PubMed

    Pang, Aiming; Cui, Yujie; Chen, Yunfeng; Cheng, Ni; Delaney, M Keegan; Gu, Minyi; Stojanovic-Terpo, Aleksandra; Zhu, Cheng; Du, Xiaoping

    2018-05-31

    It is currently unclear why agonist-stimulated platelets require shear force to efficiently externalize the procoagulant phospholipid phosphatidylserine (PS) and release PS-exposed microvesicles (MVs). We reveal that integrin outside-in signaling is an important mechanism for this requirement. PS exposure and MV release were inhibited in β 3 -/- platelets or by integrin antagonists. The impaired MV release and PS exposure in β 3 -/- platelets were rescued by expressing wild type β 3 but not a Gα 13 binding-deficient β 3 mutant (E 733 EE to AAA), which blocks outside-in signaling but not ligand binding. Inhibition of Gα 13 or Src also diminished agonist/shear-dependent PS exposure and MV release, further indicating a role for integrin outside-in signaling. PS exposure in activated platelets was induced by application of pulling force via an integrin ligand, which was abolished by inhibiting Gα 13 -integrin interaction, suggesting that GGα 13 -dependent transmission of mechanical signals by integrins induces PS exposure. Inhibition of Gα 13 delayed coagulation in vitro. Furthermore, inhibition or platelet-specific knockout of Gα 13 diminished laser-induced intravascular fibrin formation in arterioles in vivo. Thus, β 3 integrins serve as a shear sensor activating the Gα 13 -dependent outside-in signaling pathway to facilitate platelet procoagulant function. Pharmacological targeting of Gα 13 -integrin interaction prevents occlusive thrombosis in vivo by inhibiting both coagulation and platelet thrombus formation. Copyright © 2018 American Society of Hematology.

  1. The effect of aspirin dosing on platelet function in diabetic and nondiabetic patients: an analysis from the aspirin-induced platelet effect (ASPECT) study.

    PubMed

    DiChiara, Joseph; Bliden, Kevin P; Tantry, Udaya S; Hamed, Miruais S; Antonino, Mark J; Suarez, Thomas A; Bailon, Oscar; Singla, Anand; Gurbel, Paul A

    2007-12-01

    Diabetic patients may have a higher prevalence of platelet aspirin resistance than nondiabetic patients. Our goal was to analyze platelet aspirin responsiveness to various aspirin doses in diabetic and nondiabetic patients. We examined the effect of aspirin (81, 162, and 325 mg/day for 4 weeks each) on platelet aspirin responsiveness in 120 stable outpatients (30 diabetic patients and 90 nondiabetic patients) with coronary artery disease (CAD) using light transmittance aggregometry (LTA), VerifyNow, platelet function analyzer (PFA)-100, and levels of urinary 11-dehydro-thromboxane B(2) (11-dh-TxB(2)). In the total group, a low prevalence (0-2%) of aspirin resistance was observed with all aspirin doses as determined by arachidonic acid-induced LTA. Aspirin resistance was higher at the 81-mg dose in diabetic versus nondiabetic patients using collagen-induced LTA (27 vs. 4%, P = 0.001), VerifyNow (13 vs. 3%, P = 0.05), and urinary 11-dh-TxB(2) (37 vs. 17%, P = 0.03). Diabetic patients treated with 81 mg exhibited higher platelet function measured by VerifyNow, collagen- and ADP-induced LTA, and 11-dh-TxB(2) levels (P platelet function and decreased aspirin resistance in diabetic patients (P < 0.05). Diabetic patients with CAD treated with 81 mg aspirin exhibit a higher prevalence of aspirin resistance and have significantly higher ADP- and collagen-induced platelet aggregation, 11-dh-TxB(2) levels, and aspirin reaction units measured by VerifyNow than nondiabetic patients. Increased aspirin dosing resulted in similar rates of resistance and platelet function levels between groups. These findings indicate that diabetic patients exhibit a global high platelet reactivity phenotype that may be partially overcome by higher aspirin doses.

  2. Macrophage migration inhibitory factor limits activation-induced apoptosis of platelets via CXCR7-dependent Akt signaling.

    PubMed

    Chatterjee, Madhumita; Borst, Oliver; Walker, Britta; Fotinos, Anna; Vogel, Sebastian; Seizer, Peter; Mack, Andreas; Alampour-Rajabi, Setareh; Rath, Dominik; Geisler, Tobias; Lang, Florian; Langer, Harald F; Bernhagen, Jürgen; Gawaz, Meinrad

    2014-11-07

    Macrophage migration inhibitory factor (MIF) is released on platelet activation. Circulating MIF could potentially regulate platelets and thereby platelet-mediated inflammatory and regenerative mechanisms. However, the effect of MIF on platelets is unknown. The present study evaluated MIF in regulating platelet survival and thrombotic potential. MIF interacted with CXCR4-CXCR7 on platelets, defining CXCR7 as a hitherto unrecognized receptor for MIF on platelets. MIF internalized CXCR4, but unlike CXCL12 (SDF-1α), it did not phosphorylate Erk1/2 after CXCR4 ligation because of the lack of CD74 and failed in subsequent CXCR7 externalization. MIF did not alter the activation status of platelets. However, MIF rescued platelets from activation and BH3 mimetic ABT-737-induced apoptosis in vitro via CXCR7 and enhanced circulating platelet survival when administered in vivo. The antiapoptotic effect of MIF was absent in Cxcr7(-/-) murine embryonic cells but pronounced in CXCR7-transfected Madin-Darby canine kidney cells. This prosurvival effect was attributed to the MIF-CXCR7-initiated PI3K-Akt pathway. MIF induced CXCR7-Akt-dependent phosphorylation of BCL-2 antagonist of cell death (BAD) both in vitro and in vivo. Consequentially, MIF failed to rescue Akt(-/-) platelets from thrombin-induced apoptosis when challenged ex vivo, also in prolonging platelet survival and in inducing BAD phosphorylation among Akt(-/-) mice in vivo. MIF reduced thrombus formation under arterial flow conditions in vitro and retarded thrombotic occlusion after FeCl3-induced arterial injury in vivo, an effect mediated through CXCR7. MIF interaction with CXCR7 modulates platelet survival and thrombotic potential both in vitro and in vivo and thus could regulate thrombosis and inflammation. © 2014 American Heart Association, Inc.

  3. Von Willebrand's disease with spontaneous platelet aggregation induced by an abnormal plasma von Willebrand factor.

    PubMed Central

    Grainick, H R; Williams, S B; McKeown, L P; Rick, M E; Maisonneuve, P; Jenneau, C; Sultan, Y

    1985-01-01

    We have investigated and characterized the abnormalities in four unrelated patients with von Willebrand's disease (vWd) who have (a) enhanced ristocetin-induced platelet aggregation (RIPA) at low ristocetin concentrations, (b) absence of the largest plasma von Willebrand factor (vWf) multimers, and (c) thrombocytopenia. The platelet-rich plasma of these patients aggregates spontaneously without the addition of any agonists. When isolated normal platelets are resuspended in patient plasma spontaneous aggregation occurs; however, the patients' plasmas did not induce platelet aggregation of normal washed formalinized platelets. When the patients' platelets are suspended in normal plasma, spontaneous aggregation is not observed. The spontaneous platelet aggregation (SPA) is associated with dense granule secretion as measured by ATP release and alpha granule release as measured by beta-thromboglobulin and platelet factor 4 release. The SPA is totally inhibited by 5 mM EDTA, prostaglandin I2, and dibutryl cyclic AMP, while it is only partially inhibited by 1 mM EDTA, acetylsalicylic acid, or apyrase. A monoclonal antibody directed against glycoprotein Ib (GPIb) and/or a monoclonal antibody against the glycoprotein IIb/IIIa (GPIIb/IIIa) complex totally inhibits the SPA. The vWf was isolated from the plasma of one of these patients. The purified vWf induced platelet aggregation of normal platelets resuspended in either normal or severe vWd plasma, but the vWf did not induce platelet aggregation of normal platelets resuspended in afibrinognemic plasma. Sialic acid and galactose quantification of the patient's vWf revealed approximately a 50% reduction compared with normal vWf. These studies indicate that a form of vWd exists, which is characterized by SPA that is induced by the abnormal plasma vWf. The SPA is dependent on the presence of plasma fibrinogen, and the availability of the GPIb and the GPIIb/IIIa complex. In this variant form of vWd the abnormal vWf causes

  4. High shear induces platelet dysfunction leading to enhanced thrombotic propensity and diminished hemostatic capacity.

    PubMed

    Chen, Zengsheng; Mondal, Nandan K; Zheng, Shirong; Koenig, Steven C; Slaughter, Mark S; Griffith, Bartley P; Wu, Zhongjun J

    2017-11-28

    Thrombosis and bleeding are devastating adverse events in patients supported with blood-contacting medical devices (BCMDs). In this study, we delineated that high non-physiological shear stress (NPSS) caused platelet dysfunction that may contribute to both thrombosis and bleeding. Human blood was subjected to NPSS with short exposure time. Levels of platelet surface GPIbα and GPVI receptors as well as activation level of GPIIb/IIIa in NPSS-sheared blood were examined with flow cytometry. Adhesion of sheared platelets on fibrinogen, von Willibrand factor (VWF), and collagen was quantified with fluorescent microscopy. Ristocetin- and collagen-induced platelet aggregation was characterized by aggregometry. NPSS activated platelets in a shear and exposure time-dependent manner. The number of activated platelets increased with increasing levels of NPSS and exposure time, which corresponded well with increased adhesion of sheared platelets on fibrinogen. Concurrently, NPSS caused shedding of GPIbα and GPVI in a manner dependent on shear and exposure time. The loss of intact GPIbα and GPVI increased with increasing levels of NPSS and exposure time. The number of platelets adhered on VWF and collagen decreased with increasing levels of NPSS and exposure time, respectively. The decrease in the number of platelets adhered on VWF and collagen corresponded well with the loss in GPIbα and GPVI on platelet surface. Both ristocetin- and collagen-induced platelet aggregation in sheared blood decreased with increasing levels of NPSS and exposure time. The study clearly demonstrated that high NPSS causes simultaneous platelet activation and receptor shedding, resulting in a paradoxical effect on platelet function via two distinct mechanisms. The results from the study suggested that the NPSS could induce the concurrent propensity for both thrombosis and bleeding in patients.

  5. [Adjusting Platelet Counts for Platelet Aggregation Tests].

    PubMed

    Ling, Li-Qin; Yang, Xin-Chun; Chen, Hao; Liu, Chao-Nan; Chen, Si; Jiang, Hong; Jin, Ya-Xiong; Zhou, Jing

    2018-03-01

    To explore a better method to adjust platelet counts for light transmission aggregometry (LTA). Blood samples from 36 healthy participants aged from 18 to 50 yr. were collected.Platelet-rich plasma (PRP) was diluted using platelet-poor plasma (PPP) and physiological saline (PS),respectively,in a ratio of 1.5,2,2.5 and 3 times. Platelet aggregation was induced by adenosine diphosphate (ADP),arachidonic acid (ARA),collagen (COL), epinephrine (EPI),or ristocetin (RIS). The maximal aggregation rates (MAs) of different approaches were compared. We also compared the MAs induced by RIS between PRP-obtained-PPP and whole blood-obtained-PPP (2 100× g, 5 min). Compared with the original PRP,the MAs induced by ADP,ARA,and EPI decreased in PPP-adjusted PRP (significant at 2-3 times dilution ratio, P <0.05),but not in PS-adjusted PRP ( P >0.05). The MA induced by RIS decreased in PS-adjusted PRP (significant at all dilution ratios, P <0.05),but not in PPP-adjusted PRP ( P >0.05). No changes in the MA induced by COL were found in PS-adjusted PRP and PPP-adjusted PRP ( P >0.05). Whole blood-obtained-PPP (2 100× g, 5 min) had the same MA induced by ristocetin compared with PRP-obtained-PPP ( P >0.05). PS is recommended for adjusting platelets counts for platelet aggregation induced by ADP,ARA,COL and EPI. Whole blood-obtained-PPP (2 100 × g, 5 min) is recommended for RIS-induced aggregation as a matter of convenience. Copyright© by Editorial Board of Journal of Sichuan University (Medical Science Edition).

  6. Platelet size and density affect shear-induced thrombus formation in tortuous arterioles

    NASA Astrophysics Data System (ADS)

    Chesnutt, Jennifer K. W.; Han, Hai-Chao

    2013-10-01

    Thrombosis accounts for 80% of deaths in patients with diabetes mellitus. Diabetic patients demonstrate tortuous microvessels and larger than normal platelets. Large platelets are associated with increased platelet activation and thrombosis, but the physical effects of large platelets in the microscale processes of thrombus formation are not clear. Therefore, the objective of this study was to determine the physical effects of mean platelet volume (MPV), mean platelet density (MPD) and vessel tortuosity on platelet activation and thrombus formation in tortuous arterioles. A computational model of the transport, shear-induced activation, collision, adhesion and aggregation of individual platelets was used to simulate platelet interactions and thrombus formation in tortuous arterioles. Our results showed that an increase in MPV resulted in a larger number of activated platelets, though MPD and level of tortuosity made little difference on platelet activation. Platelets with normal MPD yielded the lowest amount of mural thrombus. With platelets of normal MPD, the amount of mural thrombus decreased with increasing level of tortuosity but did not have a simple monotonic relationship with MPV. The physical mechanisms associated with MPV, MPD and arteriole tortuosity play important roles in platelet activation and thrombus formation.

  7. Effect of heparin bonding on catheter-induced fibrin formation and platelet activation.

    PubMed

    Nichols, A B; Owen, J; Grossman, B A; Marcella, J J; Fleisher, L N; Lee, M M

    1984-11-01

    Pathologic and experimental evidence indicates that platelet activation and fibrin formation contribute to the pathogenesis of angina pectoris, coronary vasospasm and myocardial infarction. Detection of localized intravascular platelet activation and fibrin formation in vivo by selective blood sampling requires catheters that do not induce coagulation ex vivo. We studied the effect of heparin bonding of catheter surfaces on activation of the coagulation system by cardiovascular catheters. Woven Dacron, polyvinylchloride, and polyurethane catheters were tested and compared with identical catheters with heparin-bonded surfaces in 47 patients undergoing percutaneous cardiac catheterization. Platelet activation was measured by radioimmunoassay of plasma platelet factor 4 (PF4), beta-thromboglobulin (BTG), and thromboxane B2 (TXB2) in blood samples withdrawn through catheters, and fibrin formation was assessed by determination of fibrinopeptide A (FPA) levels. In blood samples collected through conventional catheters, FPA, PF4, BTG, and TXB2 levels were markedly elevated; blood sampling through heparin-bonded catheters had no significant effect on FPA, PF4, BTG, or TXB2 levels. Scanning electron microscopy disclosed extensive platelet aggregates and fibrin strands adherent to the surface of conventional catheters but not to heparin-bonded catheter surfaces. This study demonstrates that (1) collection of blood samples through cardiovascular catheters causes artifactual elevation of FPA, PF4, BTG, and TXB2 levels, and (2) heparin-bonded catheter surfaces effectively prevent catheter-induced platelet alpha-granule release and fibrin formation on catheter surfaces. Heparin-bonded catheters will facilitate investigation of the role of intravascular coagulation in coronary artery disease by eliminating catheter-induced fibrin formation and platelet activation.

  8. Epicatechin and catechin modulate endothelial activation induced by platelets of patients with peripheral artery disease.

    PubMed

    Carnevale, R; Loffredo, L; Nocella, C; Bartimoccia, S; Bucci, T; De Falco, E; Peruzzi, M; Chimenti, I; Biondi-Zoccai, G; Pignatelli, P; Violi, F; Frati, G

    2014-01-01

    Platelet activation contributes to the alteration of endothelial function, a critical initial step in atherogenesis through the production and release of prooxidant mediators. There is uncertainty about the precise role of polyphenols in interaction between platelets and endothelial cells (ECs). We aimed to investigate whether polyphenols are able to reduce endothelial activation induced by activated platelets. First, we compared platelet activation and flow-mediated dilation (FMD) in 10 healthy subjects (HS) and 10 patients with peripheral artery disease (PAD). Then, we evaluated the effect of epicatechin plus catechin on platelet-HUVEC interaction by measuring soluble cell adhesion molecules (CAMs), NOx production, and eNOS phosphorylation (p-eNOS) in HUVEC. Compared to HS, PAD patients had enhanced platelet activation. Conversely, PAD patients had lower FMD than HS. Supernatant of activated platelets from PAD patients induced an increase of sCAMs release and a decrease of p-eNOS and nitric oxide (NO) bioavailability compared to unstimulated HUVEC. Coincubation of HUVEC, with supernatant of PAD platelets patients, pretreated with a scalar dose of the polyphenols, resulted in a decrease of sCAMs release and in an increase of p-eNOS and NO bioavailability. This study demonstrates that epicatechin plus catechin reduces endothelial activation induced by activated platelets.

  9. Platelet Activation and Clopidogrel Effects on ADP-Induced Platelet Activation in Cats with or without the A31P Mutation in MYBPC3.

    PubMed

    Li, R H L; Stern, J A; Ho, V; Tablin, F; Harris, S P

    2016-09-01

    Clopidogrel is commonly prescribed to cats with perceived increased risk of thromboembolic events, but little information exists regarding its antiplatelet effects. To determine effects of clopidogrel on platelet responsiveness in cats with or without the A31P mutation in the MYBPC3 gene. A secondary aim was to characterize variability in feline platelet responses to clopidogrel. Fourteen healthy cats from a Maine Coon/outbred mixed Domestic cat colony: 8 cats homozygous for A31P mutation in the MYPBC3 gene and 6 wild-type cats without the A31P mutation. Ex vivo study. All cats received clopidogrel (18.75 mg PO q24h) for 14 days. Before and after clopidogrel treatment, adenosine diphosphate (ADP)-induced P-selectin expression was evaluated. ADP- and thrombin-induced platelet aggregation was measured by optical aggregometry (OA). Platelet pVASP and ADP receptor response index (ARRI) were measured by Western blot analysis. Platelet activation from cats with the A31P mutation was significantly (P = .0095) increased [35.55% (18.58-48.55) to 58.90% (24.85-69.90)], in response to ADP. Clopidogrel treatment attenuated ADP-induced P-selectin expression and platelet aggregation. ADP- and PGE 1 -treated platelets had a similar level of pVASP as PGE 1 -treated platelets after clopidogrel treatment. Clopidogrel administration resulted in significantly lower ARRI [24.13% (12.46-35.50) to 11.30% (-7.383 to 23.27)] (P = .017). Two of 13 cats were nonresponders based on OA and flow cytometry. Clopidogrel is effective at attenuating platelet activation and aggregation in some cats. Cats with A31P mutation had increased platelet activation relative to the variable response seen in wild-type cats. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  10. Function of Platelet-Induced Epithelial Attachment at Titanium Surfaces Inhibits Microbial Colonization.

    PubMed

    Maeno, M; Lee, C; Kim, D M; Da Silva, J; Nagai, S; Sugawara, S; Nara, Y; Kihara, H; Nagai, M

    2017-06-01

    The aim of this study was to evaluate the barrier function of platelet-induced epithelial sheets on titanium surfaces. The lack of functional peri-implant epithelial sealing with basal lamina (BL) attachment at the interface of the implant and the adjacent epithelium allows for bacterial invasion, which may lead to peri-implantitis. Although various approaches have been reported to combat bacterial infection by surface modifications to titanium, none of these have been successful in a clinical application. In our previous study, surface modification with protease-activated receptor 4-activating peptide (PAR4-AP), which induced platelet activation and aggregation, was successful in demonstrating epithelial attachment via BL and epithelial sheet formation on the titanium surface. We hypothesized that the platelet-induced epithelial sheet on PAR4-AP-modified titanium surfaces would reduce bacterial attachment, penetration, and invasion. Titanium surface was modified with PAR4-AP and incubated with platelet-rich plasma (PRP). The aggregated platelets released collagen IV, a critical BL component, onto the PAR4-AP-modified titanium surface. Then, human gingival epithelial cells were seeded on the modified titanium surface and formed epithelial sheets. Green fluorescent protein (GFP)-expressing Escherichia coli was cultured onto PAR4-AP-modified titanium with and without epithelial sheet formation. While Escherichia coli accumulated densely onto the PAR4-AP titanium lacking epithelial sheet, few Escherichia coli were observed on the epithelial sheet on the PAR4-AP surface. No bacterial invasion into the interface of the epithelial sheet and the titanium surface was observed. These in vitro results indicate the efficacy of a platelet-induced epithelial barrier that functions to prevent bacterial attachment, penetration, and invasion on PAR4-AP-modified titanium.

  11. Platelet-derived growth factor inhibits platelet activation in heparinized whole blood.

    PubMed

    Selheim, F; Holmsen, H; Vassbotn, F S

    1999-08-15

    We previously have demonstrated that human platelets have functionally active platelet-derived growth factor alpha-receptors. Studies with gel-filtered platelets showed that an autocrine inhibition pathway is transduced through this tyrosine kinase receptor during platelet activation. The physiological significance of this inhibitory effect of platelet-derived growth factor on gel-filtered platelets activation is, however, not known. In the present study, we investigated whether platelet-derived growth factor inhibits platelet activation under more physiological conditions in heparinized whole blood, which represents a more physiological condition than gel-filtered platelets. Using flow cytometric assays, we demonstrate here that platelet-derived growth factor inhibits thrombin-, thrombin receptor agonist peptide SFLLRN-, and collagen-induced platelet aggregation and shedding of platelet-derived microparticles from the platelet plasma membrane during platelet aggregation in stirred heparinized whole blood. The inhibitory effect of platelet-derived growth factor was dose dependent. However, under nonaggregating conditions (no stirring), we could not demonstrate any significant effect of platelet-derived growth factor on thrombin- and thrombin receptor agonist peptide-induced platelet surface expression of P-selectin. Our results demonstrate that platelet-derived growth factor appears to be a true antithrombotic agent only under aggregating conditions in heparinized whole blood.

  12. Platelet-targeted gene therapy with human factor VIII establishes haemostasis in dogs with haemophilia A.

    PubMed

    Du, Lily M; Nurden, Paquita; Nurden, Alan T; Nichols, Timothy C; Bellinger, Dwight A; Jensen, Eric S; Haberichter, Sandra L; Merricks, Elizabeth; Raymer, Robin A; Fang, Juan; Koukouritaki, Sevasti B; Jacobi, Paula M; Hawkins, Troy B; Cornetta, Kenneth; Shi, Qizhen; Wilcox, David A

    2013-01-01

    It is essential to improve therapies for controlling excessive bleeding in patients with haemorrhagic disorders. As activated blood platelets mediate the primary response to vascular injury, we hypothesize that storage of coagulation Factor VIII within platelets may provide a locally inducible treatment to maintain haemostasis for haemophilia A. Here we show that haematopoietic stem cell gene therapy can prevent the occurrence of severe bleeding episodes in dogs with haemophilia A for at least 2.5 years after transplantation. We employ a clinically relevant strategy based on a lentiviral vector encoding the ITGA2B gene promoter, which drives platelet-specific expression of human FVIII permitting storage and release of FVIII from activated platelets. One animal receives a hybrid molecule of FVIII fused to the von Willebrand Factor propeptide-D2 domain that traffics FVIII more effectively into α-granules. The absence of inhibitory antibodies to platelet-derived FVIII indicates that this approach may have benefit in patients who reject FVIII replacement therapies. Thus, platelet FVIII may provide effective long-term control of bleeding in patients with haemophilia A.

  13. Platelet-targeted gene therapy with human factor VIII establishes haemostasis in dogs with haemophilia A

    PubMed Central

    Du, Lily M.; Nurden, Paquita; Nurden, Alan T.; Nichols, Timothy C.; Bellinger, Dwight A.; Jensen, Eric S.; Haberichter, Sandra L.; Merricks, Elizabeth; Raymer, Robin A.; Fang, Juan; Koukouritaki, Sevasti B.; Jacobi, Paula M.; Hawkins, Troy B.; Cornetta, Kenneth; Shi, Qizhen; Wilcox, David A.

    2013-01-01

    It is essential to improve therapies for controlling excessive bleeding in patients with haemorrhagic disorders. As activated blood platelets mediate the primary response to vascular injury, we hypothesize that storage of coagulation Factor VIII within platelets may provide a locally inducible treatment to maintain haemostasis for haemophilia A. Here we show that haematopoietic stem cell gene therapy can prevent the occurrence of severe bleeding episodes in dogs with haemophilia A for at least 2.5 years after transplantation. We employ a clinically relevant strategy based on a lentiviral vector encoding the ITGA2B gene promoter, which drives platelet-specific expression of human FVIII permitting storage and release of FVIII from activated platelets. One animal receives a hybrid molecule of FVIII fused to the von Willebrand Factor propeptide-D2 domain that traffics FVIII more effectively into α-granules. The absence of inhibitory antibodies to platelet-derived FVIII indicates that this approach may have benefit in patients who reject FVIII replacement therapies. Thus, platelet FVIII may provide effective long-term control of bleeding in patients with haemophilia A. PMID:24253479

  14. Prevention of ischemia-induced myocardial platelet deposition by exogenous prostacyclin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aherne, T.; Price, D.C.; Yee, E.S.

    1986-07-01

    The antithrombotic effects of prostacyclin infusion on myocardial platelet deposition were studied in a canine model during and after global ischemia. Eleven isolated heart preparations were subjected to 1 hour of cardioplegic arrest under moderate hypothermia (27 to 28/sup 0/C), including a control group (n = 7) and a prostacyclin-treated group (n = 4). The hearts of four other dogs were continuously perfused for 180 minutes. Platelet deposition was measured at 15 minute intervals throughout the 3 hour study. Serial full-thickness myocardial biopsy specimens were analyzed for activity of /sup 111/In-labeled platelets with /sup 99m/Tc-labeled erythrocyte correction for tissue bloodmore » content. The pattern of platelet distribution was determined by scintiscans of each heart, taken with a gamma camera at the end of the 60 minute reperfusion period. Substantial myocardial platelet deposition was found in the control hearts after ischemia but not in the prostacyclin-treated group (p less than 0.05). Furthermore, prostacyclin infusion had a significant disaggregatory effect on intracoronary platelet deposits when the precardioplegic and postcardioplegic biopsy specimens were analyzed (p less than 0.05). Three hours of continuous perfusion did not increase tissue /sup 111/In-labeled platelet activity. Ex vivo images showed platelet deposition to be a diffuse patchy process with significantly more /sup 111/In activity in the endocardium than in the epicardium after global ischemia (p less than 0.05). These data show the potent antithrombotic properties of prostacyclin in preventing and disaggregating ischemia-induced intracoronary platelet deposition during and after cardioplegic arrest.« less

  15. Platelet participation in the pathogenesis of dermonecrosis induced by Loxosceles gaucho venom.

    PubMed

    Tavares, F L; Peichoto, M E; Marcelino, J R; Barbaro, K C; Cirillo, M C; Santoro, M L; Sano-Martins, I S

    2016-06-01

    Loxosceles gaucho spider venom induces in vitro platelet activation and marked thrombocytopenia in rabbits. Herein, we investigated the involvement of platelets in the development of the dermonecrosis induced by L. gaucho venom, using thrombocytopenic rabbits as a model. L. gaucho venom evoked a drop in platelet and neutrophil counts 4 h after venom injection. Ecchymotic areas at the site of venom inoculation were noticed as soon as 4 h in thrombocytopenic animals but not in animals with initial normal platelet counts. After 5 days, areas of scars in thrombocytopenic animals were also larger, evidencing the marked development of lesions in the condition of thrombocytopenia. Histologically, local hemorrhage, collagen fiber disorganization, and edema were more severe in thrombocytopenic animals. Leukocyte infiltration, predominantly due to polymorphonuclears, was observed in the presence or not of thrombocytopenia. Thrombus formation was demonstrated by immunohistochemistry at the microvasculature, and it occurred even under marked thrombocytopenia. Taken together, platelets have an important role in minimizing not only the hemorrhagic phenomena but also the inflammatory and wound-healing processes, suggesting that cutaneous loxoscelism may be aggravated under thrombocytopenic conditions. © The Author(s) 2015.

  16. Autoantibody against angiotensin AT1 receptor from preeclamptic patients enhances collagen-induced human platelet aggregation.

    PubMed

    Bai, Kehua; Wang, Ke; Li, Xiaoyu; Wang, Jie; Zhang, Jie; Song, Li; Wang, Jin; Zhang, Suli; Lau, Wayne Bond; Ma, Xinliang; Liu, Huirong

    2013-09-01

    Hypercoagulability, platelet activation, and thrombocytopenia are the chief characteristics of preeclampsia, but their responsible underlying molecular mechanisms remain obscure. Recent studies have demonstrated that the autoantibody against angiotensin II type 1 receptor (AT1-AA) constitutes a novel risk factor for preeclampsia. However, the role of AT1-AA in platelet activation and hypercoagulability in preeclampsia has never been investigated. In the present study, we determined whether AT1-AA promotes platelet aggregation in vitro, and dissected the potential underlying mechanisms. AT1-AA was detected by enzyme-linked immunosorbent assay. After immunoglobulin G fractions purified from the preeclamptic patient positive sera were added to platelets isolated from healthy volunteers, platelet aggregation and intracellular Ca(2+) levels were detected. AT1-AA significantly enhanced in vitro collagen-induced platelet aggregation, an effect blocked by the AT1 receptor antagonist losartan. Additionally, AT1-AA increased and maintained collagen-induced cytosolic calcium concentration throughout the experiment. We demonstrated for the first time that AT1-AA significantly promotes collagen-induced platelet aggregation through angiotensin type 1 receptor activation in vitro, potentially via increased intracellular Ca(2+) concentration, supporting AT1-AA as a potential contributor to the hypercoagulable state of preeclampsia.

  17. Quantitative Characterization of Shear-Induced Platelet Receptor Shedding: Glycoprotein Ibα, Glycoprotein VI, and Glycoprotein IIb/IIIa.

    PubMed

    Chen, Zengsheng; Koenig, Steven C; Slaughter, Mark S; Griffith, Bartley P; Wu, Zhongjun J

    2017-11-07

    The structural integrity of platelet receptors is essential for platelets to play the normal hemostatic function. The high non-physiologic shear stress (NPSS) commonly exists in blood-contacting medical devices and has been shown to cause platelet receptor shedding. The loss of platelet receptors may impair the normal hemostatic function of platelets. The aim of this study was to quantify NPSS-induced shedding of three key receptors on the platelet surface. Human blood was subjected to the matrix of well-defined shear stresses and exposure times, generated by using a custom-designed blood-shearing device. The expression of three key platelet receptors, glycoprotein (GP) Ibα, GPVI, and GPIIb/IIIa, in sheared blood was quantified using flow cytometry. The quantitative relationship between the loss of each of the three receptors on the platelet surface and shear condition (shear stress level and exposure time) was explored. It was found that these relationships followed well the power law functional form. The coefficients of the power law models for the shear-induced shedding of these platelet receptors were derived with coefficients of determination (R) of 0.77, 0.73, and 0.78, respectively. The power law models with these coefficients may be potentially used to predict the shear-induced platelet receptor shedding of human blood.

  18. P-selectin ligation induces platelet activation and enhances microaggregate and thrombus formation.

    PubMed

    Théorêt, Jean-François; Yacoub, Daniel; Hachem, Ahmed; Gillis, Marc-Antoine; Merhi, Yahye

    2011-09-01

    Platelet P-selectin is a thrombo-inflammatory molecule involved in platelet activation and aggregation. This may occur via the adhesive function of P-selectin and its potential capacity to trigger intracellular signaling. However, its impact on platelet function remains elusive. This study was therefore designed to investigate the relationship between the signaling potential of platelet P-selectin and its function in platelet physiology. Human and mouse platelets were freshly isolated from whole blood. Platelet activation was assessed using flow cytometry and western blot analysis, while platelet physiological responses were evaluated through aggregation, microaggregate formation and in a thrombosis model in wild-type and P-selectin-deficient (CD62P(-/-)) mice. Interaction of P-selectin with its high-affinity ligand, a recombinant soluble form of P-Selectin Glycoprotein Ligand-1 (rPSGL-1), enhances platelet activation, adhesion and microaggregate formation. This augmented platelet microaggregates requires an intact cytoskeleton, but occurs independently of platelet α(IIb)β(3). Thrombus formation and microaggregate were both enhanced by rPSGL-1 in wild-type, but not in CD62P(-/-) mice. In addition, CD62P(-/-) mice exhibited thrombosis abnormalities without an α(IIb)β(3) activation defect. This study demonstrates that the role of platelet P-selectin is not solely adhesive; its binding to PSGL-1 induces platelet activation that enhances platelet aggregation and thrombus formation. Therefore, targeting platelet P-selectin or its ligand PSGL-1 could provide a potential therapeutic approach in the management of thrombotic disorders. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Combined aspirin and cilostazol treatment is associated with reduced platelet aggregation and prevention of exercise-induced platelet activation.

    PubMed

    Cleanthis, M; Bhattacharya, V; Smout, J; Ashour, H; Stansby, G

    2009-05-01

    Cilostazol has proven efficacy in increasing walking distance in claudicants, but it has not been demonstrated to be more effective than placebo in secondary cardiovascular prevention. The direct effect of exercise on platelet function remains less well defined. We have investigated the effect of combination treatment with aspirin and cilostazol on platelet activity in claudicants subjected to repeated treadmill exercise. Nineteen claudicants completed a double-blind, randomised, controlled, cross-over trial. Each subject received a 2-week course of aspirin (75mg) and placebo and aspirin and cilostazol (100mg twice daily). Following each 2-week treatment period, patients participated in a standardised treadmill test (3.2kmh(-1), 10 degrees incline) walking to maximal claudication distance. The exercise was repeated thrice in total, and blood was sampled before and after exercise. Platelet activation was measured using free platelet counting aggregation, flow cytometry for surface markers of platelet activation and soluble P-selectin assay. Compared to aspirin and placebo, combination treatment with aspirin and cilostazol was associated with reduced arachidonic-acid-induced platelet aggregation (p<0.01, Wilcoxon signed-rank test). Aspirin and placebo treatment were associated with elevated P-selectin expression, platelet-monocyte aggregation and reduced CD42b expression (p<0.05, Wilcoxon signed-rank test) post-exercise. No difference was seen in spontaneous platelet aggregation whilst soluble P-selectin was reduced post-exercise with combination treatment with aspirin and cilostazol (p<0.05, Wilcoxon signed-rank test). Combination treatment with aspirin and cilostazol results in suppression of platelet activation and reduces the effect of exercise on platelets. The benefit seen may be a result of cilostazol enhancing the inhibitory effect of aspirin on the cyclo-oxygenase pathway.

  20. Meal-induced platelet activation in Type 2 diabetes mellitus: effects of treatment with repaglinide and glibenclamide.

    PubMed

    Yngen, M; Ostenson, C-G; Hjemdahl, P; Wallén, N H

    2006-02-01

    To compare the effects of treatment with repaglinide and glibenclamide on platelet function and endothelial markers in patients with Type 2 diabetes mellitus, before and after a standardized meal. Fifteen patients with Type 2 diabetes were investigated on three occasions: at baseline without oral hypoglycaemic drug treatment, and after 6 weeks' treatment with repaglinide or glibenclamide, respectively, in an open randomized cross-over study. Agonist-induced platelet P-selectin expression and platelet aggregation, urinary thromboxane, soluble P-selectin, von Willebrand factor (VWF), soluble E-selectin, intercellular adhesion molecule (ICAM-1) and C-reactive protein (CRP) were measured. In addition, pre-meal data were compared with non-diabetic control subjects (n = 15), matched for sex, age and BMI. Adenosine diphosphate (ADP)-induced platelet P-selectin expression increased post-meal in Type 2 diabetic patients both at baseline and after treatment with repaglinide and glibenclamide (P < 0.01 for all; repeated measures anova). Repaglinide treatment reduced fasting ADP-induced P-selectin expression compared with baseline (P = 0.01), but did not influence meal-induced platelet hyper-reactivity (P = 0.32). No significant anti-platelet effects of glibenclamide treatment were found. Plasma concentrations of VWF and ICAM-1 were elevated in patients with Type 2 diabetes compared with control subjects (P < 0.05 for both) and were reduced during treatment with repaglinide (P < 0.01 for both) but did not change during glibenclamide treatment. The post-meal state is associated with enhanced platelet reactivity in patients with Type 2 diabetes mellitus. Pre-meal treatment with repaglinide or glibenclamide does not inhibit postprandial platelet activation, but repaglinide treatment is associated with attenuated platelet and endothelial activity in the fasting state.

  1. [Lipid changes of fibrinogen and of platelet aggregation induced by etofibrate].

    PubMed

    Fonseca, F A; Novazzi, J P; Cendoroglo, M S; Duarte, M; Almeida Pinto, L E; Rabelo, L M; da Rocha Martinez, T L

    1996-01-01

    To evaluate modifications on lipid profile, fibrinogen and platelet aggregation induced by etofibrate. Twenty-one adult patients were studied. They all had primary hyperlipidemia and had already been on the AHA step I diet and placebo. Etofibrate (500mg/day) was administered for 60 days in the active phase, when lipid parameters, fibrinogen and platelet aggregation were measured. The % significant reductions were: total cholesterol (-9.50%), LDL-cholesterol (-7.88%), triglycerides (-19.07%), total cholesterol/HDL-cholesterol(-11.90%), LDL-cholesterol/HDL-cholesterol (-10.20%), fibrinogen (-12.79%), platelet aggregation with adrenaline (-24.02%), with ADP 1 mumol (-30.13%), and ADP 3 mumol (-24.51%). The beneficial effects of etofibrate were observed not only on the lipid profile but also on the thrombogenic parameters measured by fibrinogen and platelet aggregation.

  2. Effect of pacing-induced myocardial ischemia on platelet activation and fibrin formation in the coronary circulation.

    PubMed

    Nichols, A B; Gold, K D; Marcella, J J; Cannon, P J; Owen, J

    1987-07-01

    The effect of pacing-induced myocardial ischemia on platelet activation and fibrin formation was investigated in seven patients with severe proximal lesions of the left anterior descending coronary artery to determine if acute ischemia activates the coagulation system. Fibrin formation was assessed from plasma levels of fibrinopeptide A. Platelet activation was assessed by levels of platelet factor 4, beta-thromboglobulin and thromboxane B2. Plasma levels were measured before, during and after acute myocardial ischemia induced by rapid atrial pacing. Blood samples were collected from the ascending aorta and from the great cardiac vein through heparin-bonded catheters. The occurrence of anterior myocardial ischemia was established by electrocardiography and by myocardial lactate extraction. No significant transmyocardial gradients in the levels of fibrinopeptide A, platelet factor 4, beta-thromboglobulin or thromboxane B2 were found at rest, during ischemia or in the recovery period, and levels in the great cardiac vein did not change in response to ischemia. These data indicate that pacing-induced myocardial ischemia does not result in release of fibrinopeptide A, platelet factor 4, beta-thromboglobulin or thromboxane B2 into the coronary circulation, and imply that acute ischemia does not induce platelet activation or fibrin formation in the coronary circulation.

  3. Defining Platelet Function During Polytrauma

    DTIC Science & Technology

    2013-02-01

    calibrated automated thrombography, 3. Platelet-induced clot contraction and using viscoelastic measures such as TEG with Platelet Mapping™ and, 4. Flow...using calibrated automated thrombography (CAT). 3. Platelet-induced clot contraction and using viscoelastic measures such as TEG with Platelet Mapping...formation (such as Hemodyne’s platelet contractile force measurement and thromboelastrography). The degree to which certain injury patterns as well as

  4. Inhibitory effects of Atractylodis lanceae rhizoma and Poria on collagen- or thromboxane A2-induced aggregation in rabbit platelets.

    PubMed

    Nasu, Yuiko; Iwashita, Masaya; Saito, Masaki; Fushiya, Shinji; Nakahata, Norimichi

    2009-05-01

    Kami-shoyo-san (Jia-Wei-Xiao-Yao-San), Toki-shakuyaku-san (Dang-Gui-Shao-Yao-San) and Toki-shigyaku-ka-goshuyu-shokyo-to (Dang-Gui-Si-Ni-Jia-Wu-Zhu-Yu-Sheng-Jiang-Tang) are Kampo (traditional Chinese) medicines which are traditionally and effectively used for the treatment of chilly sensation (Hiesho) in Japan, but the active components and their detailed mechanisms have not yet been clarified. Etiologies of Hiesho include poor peripheral blood circulation and platelet aggregability contributes to peripheral blood circulation; therefore, we investigated the effect of Kampo medicines on platelet aggregation using rabbit platelets in vitro. Collagen and U46619, a thromboxane A(2) receptor agonist, caused rabbit platelet aggregation, which was potently inhibited by pretreatment of platelets with Kami-shoyo-san and Toki-shakuyaku-san in vitro. Toki-shigyaku-ka-goshuyu-shokyo-to, however, did not significantly inhibit collagen- or U46619-induced platelet aggregation. Therefore, we examined the effect on platelet aggregation of two herbal medicines, Atractylodis Lanceae Rhizoma and Poria, both of which are contained in Kami-shoyo-san and Toki-shakuyaku-san but not in Toki-shigyaku-ka-goshuyu-shokyo-to. As the results indicate, Atractylodis Lanceae Rhizoma inhibited platelet aggregation induced by collagen but not by U46619. Poria effectively inhibited U46619-induced platelet aggregation and it partially inhibited collagen-induced platelet aggregation. On the other hand, Atractylodis Lanceae Rhizoma and Poria did not inhibit adrenaline/adenosine diphosphate- or adrenaline/serotonin-induced platelet aggregation. These results suggest the possibility that the inhibition of platelet aggregation by two Kampo medicines, Kami-shoyo-san and Toki-shakuyaku-san, is one of the mechanisms underlying the improvement of Hiesho. Furthermore, Atractylodis Lanceae Rhizoma and Poria are possible herbal medicines for the inhibition of platelet aggregation.

  5. Acute hypertriglyceridemia induces platelet hyperactivity that is not attenuated by insulin in polycystic ovary syndrome.

    PubMed

    Aye, Myint Myint; Kilpatrick, Eric S; Aburima, Ahmed; Wraith, Katie S; Magwenzi, Simbarashe; Spurgeon, B; Rigby, Alan S; Sandeman, Derek; Naseem, Khalid M; Atkin, Stephen L

    2014-02-28

    Atherothrombosis is associated with platelet hyperactivity. Hypertriglyceridemia and insulin resistance (IR) are features of polycystic ovary syndrome (PCOS). The effect of induced hypertriglyceridemia on IR and platelet function was examined in young women with PCOS. Following overnight fasting, 13 PCOS and 12 healthy women were infused with saline or 20% intralipid for 5 hours on separate days. Insulin sensitivity was measured using a hyperinsulinemic euglycaemic clamp in the final 2 hours of each infusion. Platelet responses to adenosine diphosphate (ADP) and prostacyclin (PGI2) were measured by flow cytometric analysis of platelet fibrinogen binding and P-selectin expression using whole blood taken during each infusion (at 2 hours) and at the end of each clamp. Lipid infusion increased triglycerides and reduced insulin sensitivity in both controls (median, interquartile range ) (5.25 [3.3, 6.48] versus 2.60 [0.88, 3.88] mg kg(-1) min(-1), P<0.001) and PCOS (3.15 [2.94, 3.85] versus 1.06 [0.72, 1.43] mg kg(-1) min(-1), P<0.001). Platelet activation by ADP was enhanced and ability to suppress platelet activation by PGI2 diminished during lipid infusion in both groups when compared to saline. Importantly, insulin infusion decreased lipid-induced platelet hyperactivity by decreasing their response to 1 μmol/L ADP (78.7% [67.9, 82.3] versus 62.8% [51.8, 73.3], P=0.02) and increasing sensitivity to 0.01 μmol/L PGI2 (67.6% [39.5, 83.8] versus 40.9% [23.8, 60.9], P=0.01) in controls, but not in PCOS. Acute hypertriglyceridemia induced IR, and increased platelet activation in both groups that was not reversed by insulin in PCOS subjects compared to controls. This suggests that platelet hyperactivity induced by acute hypertriglyceridemia and IR could contribute athero-thrombotic risk. www.isrctn.org. Unique Identifier: ISRCTN42448814.

  6. Acute Hypertriglyceridemia Induces Platelet Hyperactivity That is Not Attenuated by Insulin in Polycystic Ovary Syndrome

    PubMed Central

    Aye, Myint Myint; Kilpatrick, Eric S.; Aburima, Ahmed; Wraith, Katie S.; Magwenzi, Simbarashe; Spurgeon, B.; Rigby, Alan S.; Sandeman, Derek; Naseem, Khalid M.; Atkin, Stephen L.

    2014-01-01

    Background Atherothrombosis is associated with platelet hyperactivity. Hypertriglyceridemia and insulin resistance (IR) are features of polycystic ovary syndrome (PCOS). The effect of induced hypertriglyceridemia on IR and platelet function was examined in young women with PCOS. Methods and Results Following overnight fasting, 13 PCOS and 12 healthy women were infused with saline or 20% intralipid for 5 hours on separate days. Insulin sensitivity was measured using a hyperinsulinemic euglycaemic clamp in the final 2 hours of each infusion. Platelet responses to adenosine diphosphate (ADP) and prostacyclin (PGI2) were measured by flow cytometric analysis of platelet fibrinogen binding and P‐selectin expression using whole blood taken during each infusion (at 2 hours) and at the end of each clamp. Lipid infusion increased triglycerides and reduced insulin sensitivity in both controls (median, interquartile range ) (5.25 [3.3, 6.48] versus 2.60 [0.88, 3.88] mg kg−1 min−1, P<0.001) and PCOS (3.15 [2.94, 3.85] versus 1.06 [0.72, 1.43] mg kg−1 min−1, P<0.001). Platelet activation by ADP was enhanced and ability to suppress platelet activation by PGI2 diminished during lipid infusion in both groups when compared to saline. Importantly, insulin infusion decreased lipid‐induced platelet hyperactivity by decreasing their response to 1 μmol/L ADP (78.7% [67.9, 82.3] versus 62.8% [51.8, 73.3], P=0.02) and increasing sensitivity to 0.01 μmol/L PGI2 (67.6% [39.5, 83.8] versus 40.9% [23.8, 60.9], P=0.01) in controls, but not in PCOS. Conclusion Acute hypertriglyceridemia induced IR, and increased platelet activation in both groups that was not reversed by insulin in PCOS subjects compared to controls. This suggests that platelet hyperactivity induced by acute hypertriglyceridemia and IR could contribute athero‐thrombotic risk. Clinical Trial Registration URL: www.isrctn.org. Unique Identifier: ISRCTN42448814. PMID:24584741

  7. Platelets promote osteosarcoma cell growth through activation of the platelet-derived growth factor receptor-Akt signaling axis.

    PubMed

    Takagi, Satoshi; Takemoto, Ai; Takami, Miho; Oh-Hara, Tomoko; Fujita, Naoya

    2014-08-01

    The interactions of tumor cells with platelets contribute to the progression of tumor malignancy, and the expression levels of platelet aggregation-inducing factors positively correlate with the metastatic potential of osteosarcoma cells. However, it is unclear how tumor-platelet interaction contributes to the proliferation of osteosarcomas. We report here that osteosarcoma-platelet interactions induce the release of platelet-derived growth factor (PDGF) from platelets, which promotes the proliferation of osteosarcomas. Co-culture of platelets with MG63 or HOS osteosarcoma cells, which could induce platelet aggregation, enhanced the proliferation of each cell line in vitro. Analysis of phospho-antibody arrays revealed that co-culture of MG63 cells with platelets induced the phosphorylation of platelet derived growth factor receptor (PDGFR) and Akt. The addition of supernatants of osteosarcoma-platelet reactants also increased the growth of MG63 and HOS cells as well as the level of phosphorylated-PDGFR and -Akt. Sunitinib or LY294002, but not erlotinib, significantly inhibited the platelet-induced proliferation of osteosarcoma cells, indicating that PDGF released from platelets plays an important role in the proliferation of osteosarcomas by activating the PDGFR and then Akt. Our results suggest that inhibitors that specifically target osteosarcoma-platelet interactions may eradicate osteosarcomas. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  8. Agonist-induced platelet reactivity correlates with bleeding in haemato-oncological patients.

    PubMed

    Batman, B; van Bladel, E R; van Hamersveld, M; Pasker-de Jong, P C M; Korporaal, S J A; Urbanus, R T; Roest, M; Boven, L A; Fijnheer, R

    2017-11-01

    Prophylactic platelet transfusions are administered to prevent bleeding in haemato-oncological patients. However, bleeding still occurs, despite these transfusions. This practice is costly and not without risk. Better predictors of bleeding are needed, and flow cytometric evaluation of platelet function might aid the clinician in identifying patients at risk of bleeding. This evaluation can be performed within the hour and is not hampered by low platelet count. Our objective was to assess a possible correlation between bleeding and platelet function in thrombocytopenic haemato-oncological patients. Inclusion was possible for admitted haemato-oncology patients aged 18 years and above. Furthermore, an expected need for platelet transfusions was necessary. Bleeding was graded according to the WHO bleeding scale. Platelet reactivity to stimulation by either adenosine diphosphate (ADP), cross-linked collagen-related peptide (CRP-xL), PAR1- or PAR4-activating peptide (AP) was measured using flow cytometry. A total of 114 evaluations were available from 21 consecutive patients. Platelet reactivity in response to stimulation by all four studied agonists was inversely correlated with significant bleeding. Odds ratios (OR) for bleeding were 0·28 for every unit increase in median fluorescence intensity (MFI) [95% confidence interval (CI) 0·11-0·73] for ADP; 0·59 [0·40-0·87] for CRP-xL; 0·59 [0·37-0·94] for PAR1-AP; and 0·43 [0·23-0·79] for PAR4-AP. The platelet count was not correlated with bleeding (OR 0·99 [0·96-1·02]). Agonist-induced platelet reactivity was significantly correlated to bleeding. Platelet function testing could provide a basis for a personalized transfusion regimen, in which platelet transfusions are limited to those at risk of bleeding. © 2017 International Society of Blood Transfusion.

  9. Abacavir induces platelet-endothelium interactions by interfering with purinergic signalling: A step from inflammation to thrombosis.

    PubMed

    Alvarez, Angeles; Rios-Navarro, Cesar; Blanch-Ruiz, Maria Amparo; Collado-Diaz, Victor; Andujar, Isabel; Martinez-Cuesta, Maria Angeles; Orden, Samuel; Esplugues, Juan V

    2017-05-01

    The controversy connecting Abacavir (ABC) with cardiovascular disease has been fuelled by the lack of a credible mechanism of action. ABC shares structural similarities with endogenous purines, signalling molecules capable of triggering prothrombotic/proinflammatory programmes. Platelets are leading actors in the process of thrombosis. Our study addresses the effects of ABC on interactions between platelets and other vascular cells, while exploring the adhesion molecules implicated and the potential interference with the purinergic signalling pathway. The effects of ABC on platelet aggregation and platelet-endothelium interactions were evaluated, respectively, with an aggregometer and a flow chamber system that reproduced conditions in vivo. The role of adhesion molecules and purinergic receptors in endothelial and platelet populations was assessed by selective pre-incubation with specific antagonists and antibodies. ABC and carbovir triphosphate (CBT) levels were evaluated by HPLC. The results showed that ABC promoted the adherence of platelets to endothelial cells, a crucial step for the formation of thrombi. This was not a consequence of a direct effect of ABC on platelets, but resulted from activation of the endothelium via purinergic ATP-P2X 7 receptors, which subsequently triggered an interplay between P-selectin and ICAM-1 on endothelial cells with constitutively expressed GPIIb/IIIa and GPIbα on platelets. ABC did not induce platelet activation (P-selectin expression or Ca 2+ mobilization) or aggregation, even at high concentrations. CBT levels in endothelial cells were lower than those required to induce platelet-endothelium interactions. Thus, ABC interference with endothelial purinergic signalling leads to platelet recruitment. This highlights the endothelium as the main cell target of ABC in this interaction, which is in line with previous experimental evidence that ABC induces manifestations of vascular inflammation. Copyright © 2017 Elsevier B

  10. Estriol-induced fibrinolysis due to the activation of plasminogen to plasmin by nitric oxide synthesis in platelets.

    PubMed

    Jana, Pradipta; Maiti, Smarajit; Kahn, Nighat N; Sinha, Asru K

    2015-04-01

    Estriol, an oestrogen, at 0.6 nmol/l was reported to inhibit ADP-induced platelet aggregation through nitric oxide synthesis. As nitric oxide has been reported to cause fibrinolysis due to the activation of plasminogen to plasmin, the role of estriol as a fibrinolytic agent was investigated. Also, the mechanism of estriol-induced nitric oxide synthesis in anucleated platelets was investigated. The estriol-induced lysis of platelet-rich plasma (PRP) clot was determined by photography of the clot lysis and by the assay of fibrin degradation products in the lysate and was obtained by SDS-PAGE. Nitric oxide was determined by methemoglobin method. The platelet membrane protein was isolated from the platelets by using Triton X-100 (0.05% v/v). The binding of estriol to the protein was determined by Scatchard plot by using an ELISA for estriol. Estriol at 0.6 nmol/l was found to lyse the clotted PRP due to fibrinolysis that produced fibrin degradation products in the lysate. The amino acid analysis of the platelet membrane protein, which resembles with nitric oxide synthase (NOS) activity, was activated nearly 10-fold over the control in the presence of estriol and was identified to be a human serum albumin precursor (Mr. 69 kDa) that binds to estriol with Kd1 of 6.0 × 10 mol/l and 39 ± 2 molecules of estriol bound the NOS molecule. The estriol-induced nitric oxide is capable of inducing fibrinolysis of the clotted PRP. The binding of estriol to platelet membrane NOS activated the enzyme in the absence of DNA in the platelet.

  11. Delayed xenograft rejection.

    PubMed

    Hancock, W W

    1997-01-01

    The triumph of genetic engineering in overcoming hyperacute rejection (HAR) of a discordant organ xenograft is clear, but the promise of clinical application of xenotransplantation remains unfulfilled as further immunologic barriers are defined that lead to rejection of a vascularized xenograft within days of transplantation. This report describes the features of this second set of immunologic responses, collectively termed delayed xenograft rejection (DXR). DXR is a syndrome seen in xenograft recipients in which HAR has been avoided or suppressed by antibody depletion or blockade of complement activation. DXR may result, at least in part, from the persisting activation of those pathways first encountered during the HAR phase. Serial studies over several days after transplant show that, histologically, xenografts undergoing DXR demonstrate varying combinations of (1) progressive infiltration by activated macrophages and natural killer (NK) cells, (2) platelet aggregation and fibrin deposition throughout the microvasculature, and (3) endothelial activation. In various experimental models, DXR is T cell-independent and can occur in the absence of demonstrable xenoreactive antibodies. Hence DXR is probably best regarded as arising from the activation of innate host defense mechanisms coupled with failure of normal regulatory mechanisms due to manifold molecular incompatibilities. Although DXR-like features can be seen in concordant models, T cell involvement in the latter is probably requisite. Similarly, in a much muted form, aspects of a DXR-like process may contribute to numerous inflammatory processes, including allograft rejection. The importance of DXR in xenotransplantation is that its development appears resistant to all but the most dense and toxic forms of immunosuppression, which prolong xenograft survival at the expense of inducing host leukopenia, thrombocytopenia, and coagulopathies. It is likely that until the basis of DXR is more clearly understood

  12. NOD2 Receptor is Expressed in Platelets and Enhances Platelet Activation and Thrombosis

    PubMed Central

    Zhang, Si; Zhang, Shenghui; Hu, Liang; Zhai, Lili; Xue, Ruyi; Ye, Jianqin; Chen, Leilei; Cheng, Guanjun; Mruk, Jozef; Kunapuli, Satya P.; Ding, Zhongren

    2015-01-01

    Background Pattern recognition receptor NOD2 (nucleotide binding oligomerization domain 2) is well investigated in immunity, its expression and function in platelets has never been explored. Method and Results Using RT-PCR and Western blot we show that both human and mouse platelets express NOD2, and its agonist MDP induced NOD2 activation as evidenced by receptor dimerization. NOD2 activation potentiates platelet aggregation and secretion induced by low concentration of thrombin or collagen, as well as clot retraction. These potentiating effects of MDP were not seen in platelets from NOD2-deficient mice. Plasma from septic patients also potentiates platelet aggregation induced by thrombin or collagen NOD2-dependently. Using intravital microscopy, we found that MDP administration accelerated in vivo thrombosis in FeCl3-injured mesenteric arteriole thrombosis mouse model. Platelet depletion and transfusion experiments confirmed that NOD2 from platelets contributes to the in vivo thrombosis in mice. NOD2 activation also accelerates platelet-dependent hemostasis. We further found that platelets express RIP2 (receptor-interacting protein 2), and provided evidences suggesting that MAPK and NO/sGC/cGMP/PGK pathways downstream of RIP2 mediate the role of NOD2 in platelets. Finally, MDP stimulates proinflammatory cytokine IL-1β maturation and accumulation in human and mouse platelets NOD2-dependently. Conclusions NOD2 is expressed in platelets and functions in platelet activation and arterial thrombosis, possibly during infection. To our knowledge, this is the first study on NOD-like receptors in platelets which links thrombotic events to inflammation. PMID:25825396

  13. Effect of mood stabilizing agents on agonist-induced calcium mobilization in human platelets.

    PubMed Central

    Kusumi, I; Koyama, T; Yamashita, I

    1994-01-01

    The effect of mood stabilizing agents such as lithium, carbamazepine, valproic acid and clonazepam on serotonin(5-HT)- or thrombin-induced intracellular calcium (Ca) mobilization was studied in the platelets of healthy subjects using the fluorescent Ca indicator fura-2. After incubating platelet-rich plasma with these drugs for one or four hours, there was no significant difference in either basal Ca2+ concentration or 5-HT-stimulated Ca response between each agent treatment and control. 5-HT- or thrombin-induced Ca mobilization was not altered by four weeks of lithium carbonate administration in healthy volunteers. These results indicate that these mood stabilizers fail to affect the agonist-stimulated intracellular Ca mobilizing pathway either in vitro or ex vivo in the platelets of healthy subjects. Images Fig. 1 PMID:8031747

  14. Platelet Activation by Streptococcus pyogenes Leads to Entrapment in Platelet Aggregates, from Which Bacteria Subsequently Escape

    PubMed Central

    Svensson, Lisbeth; Baumgarten, Maria; Mörgelin, Matthias

    2014-01-01

    Platelet activation and aggregation have been reported to occur in response to a number of Gram-positive pathogens. Here, we show that platelet aggregates induced by Streptococcus pyogenes were unstable and that viable bacteria escaped from the aggregates over time. This was not due to differential activation in response to the bacteria compared with physiological activators. All the bacterial isolates induced significant platelet activation, including integrin activation and alpha and dense-granule release, at levels equivalent to those induced by potent physiological platelet activators that induced stable aggregates. The ability to escape the aggregates and to resist the antibacterial effects of platelets was dependent on active protein synthesis by the bacteria within the aggregate. We conclude that S. pyogenes bacteria can temporarily cover themselves with activated platelets, and we propose that this may facilitate survival of the bacteria in the presence of platelets. PMID:25069984

  15. Targeting factor VIII expression to platelets for hemophilia A gene therapy does not induce an apparent thrombotic risk in mice.

    PubMed

    Baumgartner, C K; Mattson, J G; Weiler, H; Shi, Q; Montgomery, R R

    2017-01-01

    Essentials Platelet-Factor (F) VIII gene therapy is a promising treatment in hemophilia A. This study aims to evaluate if platelet-FVIII expression would increase the risk for thrombosis. Targeting FVIII expression to platelets does not induce or elevate thrombosis risk. Platelets expressing FVIII are neither hyper-activated nor hyper-responsive. Background Targeting factor (F) VIII expression to platelets is a promising gene therapy approach for hemophilia A, and is successful even in the presence of inhibitors. It is well known that platelets play important roles not only in hemostasis, but also in thrombosis and inflammation. Objective To evaluate whether platelet-FVIII expression might increase thrombotic risk and thereby compromise the safety of this approach. Methods In this study, platelet-FVIII-expressing transgenic mice were examined either in steady-state conditions or under prothrombotic conditions induced by inflammation or the FV Leiden mutation. Native whole blood thrombin generation assay, rotational thromboelastometry analysis and ferric chloride-induced vessel injury were used to evaluate the hemostatic properties. Various parameters associated with thrombosis risk, including D-dimer, thrombin-antithrombin complexes, fibrinogen, tissue fibrin deposition, platelet activation status and activatability, and platelet-leukocyte aggregates, were assessed. Results We generated a new line of transgenic mice that expressed 30-fold higher levels of platelet-expressed FVIII than are therapeutically required to restore hemostasis in hemophilic mice. Under both steady-state conditions and prothrombotic conditions induced by lipopolysaccharide-mediated inflammation or the FV Leiden mutation, supratherapeutic levels of platelet-expressed FVIII did not appear to be thrombogenic. Furthermore, FVIII-expressing platelets were neither hyperactivated nor hyperactivatable upon agonist activation. Conclusion We conclude that, in mice, more than 30-fold higher levels of

  16. Platelet-rich plasma and platelet gel preparation using Plateltex.

    PubMed

    Mazzucco, L; Balbo, V; Cattana, E; Borzini, P

    2008-04-01

    The platelet gel is made by embedding concentrate platelets within a semisolid (gel) network of polymerized fibrin. It is believed that this blood component will be used more and more in the treatment of several clinical conditions and as an adjunctive material in tissue engineering. Several systems are available to produce platelet-rich plasma (PRP) for topical therapy. Recently, a new system became commercially available, Plateltex. Here we report the technical performance of this system in comparison with the performance of other commercially available systems: PRGF, PRP-Landesber, Curasan, PCCS, Harvest, Vivostat, Regen and Fibrinet. Both the PRP and the gel were prepared according to the manufacturer's directions. The blood samples of 20 donors were used. The yield, the efficiency, and the amount of platelet-derived growth factor AB (PDGF-AB), transforming growth factor beta, vascular endothelial growth factor and fibroblast growth factor were measured in the resulting PRP. The feature of the batroxobin-induced gelation was evaluated. The yield, the collection efficiency and the growth factor content of Plateltex were comparable to those of most of the other available systems. The gelation time was not dependent on the fibrinogen concentration; however, it was strongly influenced by the contact surface area of the container where the clotting reaction took place (P < 0.0001). Plateltex provided platelet recovery, collection efficiency and PDGF-AB availability close to those provided by other systems marketed with the same intended use. Batroxobin, the enzyme provided to induce gelation, acts differently from thrombin, which is used by most other systems. Platelets treated with thrombin become activated; they release their growth factors quickly. Furthermore, thrombin-platelet interaction is a physiological mechanism that hastens the clot-retraction rate. On the contrary, platelets treated with batroxobin do not become activated; they are passively entrapped

  17. Negative feedback regulation of human platelets via autocrine activation of the platelet-derived growth factor alpha-receptor.

    PubMed

    Vassbotn, F S; Havnen, O K; Heldin, C H; Holmsen, H

    1994-05-13

    Human platelets contain platelet-derived growth factor (PDGF) in their alpha-granules which is released during platelet exocytosis. We show by immunoprecipitation and 125I-PDGF binding experiments that human platelets have functionally active PDGF alpha-receptors, but not beta-receptors. The PDGF alpha-receptor (PDGFR-alpha) was identified as a 170-kDa glycosylated protein-tyrosine kinase as found in other cell types. Stimulation of platelets with 0.1 unit/ml thrombin resulted in a significant increase (2-5-fold) of the tyrosine phosphorylation of the PDGFR-alpha, as determined by immunoprecipitation with phosphotyrosine antiserum as well as with PDGFR-alpha antiserum. The observed thrombin-induced autophosphorylation of the PDGFR-alpha was inhibited by the addition of a neutralizing monoclonal PDGF antibody. Thus, our results suggest that the platelet PDGFR-alpha is stimulated in an autocrine manner by PDGF secreted during platelet activation. Preincubation of platelets with PDGF inhibited thrombin-induced platelet aggregation and secretion of ATP + ADP and beta-hexosaminidase. Thrombin-induced platelet aggregation was also reversed when PDGF was added 30 s after thrombin stimulation. Inhibition of the autocrine PDGF pathway during platelet activation by the PDGF antibody led to a potentiation of thrombin-induced beta-hexosaminidase secretion. Thus, the PDGFR-alpha takes part in a negative feedback regulation during platelet activation. Our demonstration of PDGF alpha-receptors on human platelets and its inhibitory function during platelet activation identifies a new possible role of PDGF in the regulation of thrombosis.

  18. Chromium picolinate inhibits cholesterol-induced stimulation of platelet aggregation in hypercholesterolemic rats.

    PubMed

    Seif, A A

    2015-06-01

    Hypercholesterolemia indirectly increases the risk of myocardial infarction by enhancing platelet aggregation. Chromium has been shown to lower plasma lipids. This study was designed to investigate whether chromium inhibits platelet aggregation under hypercholesterolemic conditions. Albino rats were divided into four groups: control rats fed with a normolipemic diet (NLD group), chromium-supplemented rats fed with NLD (NLD + Cr group), rats fed with a high-fat diet (HF group), and chromium-supplemented rats fed with HF (HF + Cr group). After 10 weeks, blood was collected to determine adenosine diphosphate and collagen-induced platelet aggregation and plasma levels of total cholesterol, triglycerides, high-density lipoprotein cholesterol, apolipoprotein A1, apolipoprotein B, and thromboxane B2. Low-density lipoprotein cholesterol was calculated by Friedewald formula. High-fat diet animals displayed significant elevation of plasma lipids and platelet aggregation which was normalized to control levels by chromium supplementation. Chromium supplementation in normolipemic (NLD + Cr) rats did not produce significant changes in either plasma lipids or platelet activity. Chromium supplementation to hypercholesterolemic rats improves the lipid profile and returns platelet hyperaggregability to control levels. This normalization is mostly due to a reduction in plasma cholesterol level.

  19. Platelet-rich fibrin matrix improves wound angiogenesis via inducing endothelial cell proliferation.

    PubMed

    Roy, Sashwati; Driggs, Jason; Elgharably, Haytham; Biswas, Sabyasachi; Findley, Muna; Khanna, Savita; Gnyawali, Urmila; Bergdall, Valerie K; Sen, Chandan K

    2011-11-01

    The economic, social, and public health burden of chronic ulcers and other compromised wounds is enormous and rapidly increasing with the aging population. The growth factors derived from platelets play an important role in tissue remodeling including neovascularization. Platelet-rich plasma (PRP) has been utilized and studied for the last four decades. Platelet gel and fibrin sealant, derived from PRP mixed with thrombin and calcium chloride, have been exogenously applied to tissues to promote wound healing, bone growth, hemostasis, and tissue sealing. In this study, we first characterized recovery and viability of as well as growth factor release from platelets in a novel preparation of platelet gel and fibrin matrix, namely platelet-rich fibrin matrix (PRFM). Next, the effect of PRFM application in a delayed model of ischemic wound angiogenesis was investigated. The study, for the first time, shows the kinetics of the viability of platelet-embedded fibrin matrix. A slow and steady release of growth factors from PRFM was observed. The vascular endothelial growth factor released from PRFM was primarily responsible for endothelial mitogenic response via extracellular signal-regulated protein kinase activation pathway. Finally, this preparation of PRFM effectively induced endothelial cell proliferation and improved wound angiogenesis in chronic wounds, providing evidence of probable mechanisms of action of PRFM in healing of chronic ulcers. 2011 by the Wound Healing Society.

  20. [Effect of protopine on rabbit platelet function].

    PubMed

    Ma, G Y; Zhang, Z Z; Chen, Z H

    1994-07-01

    Protopine (Pro) inhibited dose-dependently rabbit platelet aggregation induced by ADP, arachidonic acid (AA), collagen, or aggregoserpentin of Trimeresurus mucrosquamatus venom (TMVA) in vitro. Their IC50 were 25.3, 30.5, 46.9, 33.4 mumol.L-1, respectively. Pro 10, 20 mg.kg-1 iv also inhibited the platelet aggregation induced by these inducers. The effects (maximal at 5 min) lasted 1 h. By using fluorophotometry and RIA, it was seen that Pro suppressed the release of 5-HT from platelets during aggregation induced by collagen, AA, or TMVM in vitro. Pro did not block the formation of thromboxane A2 during aggregation induced by AA and did not increase the content of cAMP in rabbit platelet, but increased the content of cGMP in rabbit platelets. The antiplatelet effect of Pro may be related to an increase cGMP in rabbit platelets and the suppression of the release of the active substances from platelets.

  1. Leukoreduced red blood cell transfusions do not induce platelet glycoprotein antibodies in patients with sickle cell disease.

    PubMed

    Nickel, Robert Sheppard; Winkler, Anne M; Horan, John T; Hendrickson, Jeanne E

    2016-09-01

    Alloimmunization to red blood cell (RBC) antigens after transfusion is well described in patients with sickle cell disease (SCD). We recently demonstrated that leukocyte-reduced RBC transfusions appeared to induce human leukocyte antigen (HLA) antibodies in some children with SCD; now, we hypothesize that residual platelets contained in transfused RBC products may lead to platelet glycoprotein antibody formation. A cross-sectional study was conducted among never pregnant pediatric patients with SCD who either had received many RBC transfusions or had never received any transfusions. Serum was tested for antibodies to platelet-specific glycoproteins using a commercial enzyme immunoassay. Platelet-specific glycoprotein antibodies were found in 12 of 90 patients (13%) in the transfused group versus 5 of 24 patients (21%) in the never transfused group (p = 0.35). The prevalence of antibodies as well as the median standardized optical density for these two groups was not significantly different for any of the studied platelet glycoprotein antigens. There was no association with the presence of platelet-specific glycoprotein antibodies with either RBC or HLA antibodies. Leukocyte-reduced RBC transfusions do not appear to induce platelet-specific glycoprotein antibodies. The positive platelet-specific glycoprotein antibody results from this study may represent platelet autoantibodies, platelet alloantibodies, or false-positive reactions. A better understanding of the immunobiology of patients with SCD at baseline and after blood product exposure may help improve future transfusion and transplantation. © 2016 AABB.

  2. Autonomous role of Wiskott-Aldrich syndrome platelet deficiency in inducing autoimmunity and inflammation.

    PubMed

    Sereni, Lucia; Castiello, Maria Carmina; Marangoni, Francesco; Anselmo, Achille; di Silvestre, Dario; Motta, Sara; Draghici, Elena; Mantero, Stefano; Thrasher, Adrian J; Giliani, Silvia; Aiuti, Alessandro; Mauri, Pierluigi; Notarangelo, Luigi D; Bosticardo, Marita; Villa, Anna

    2018-02-06

    Wiskott-Aldrich syndrome (WAS) is an X-linked immunodeficiency characterized by eczema, infections, and susceptibility to autoimmunity and malignancies. Thrombocytopenia is a constant finding, but its pathogenesis remains elusive. To dissect the basis of the WAS platelet defect, we used a novel conditional mouse model (CoWas) lacking Wiskott-Aldrich syndrome protein (WASp) only in the megakaryocytic lineage in the presence of a normal immunologic environment, and in parallel we analyzed samples obtained from patients with WAS. Phenotypic and functional characterization of megakaryocytes and platelets in mutant CoWas mice and patients with WAS with and without autoantibodies was performed. Platelet antigen expression was examined through a protein expression profile and cluster proteomic interaction network. Platelet immunogenicity was tested by using ELISAs and B-cell and platelet cocultures. CoWas mice showed increased megakaryocyte numbers and normal thrombopoiesis in vitro, but WASp-deficient platelets had short lifespan and high expression of activation markers. Proteomic analysis identified signatures compatible with defects in cytoskeletal reorganization and metabolism yet surprisingly increased antigen-processing capabilities. In addition, WASp-deficient platelets expressed high levels of surface and soluble CD40 ligand and were capable of inducing B-cell activation in vitro. WASp-deficient platelets were highly immunostimulatory in mice and triggered the generation of antibodies specific for WASp-deficient platelets, even in the context of a normal immune system. Patients with WAS also showed platelet hyperactivation and increased plasma soluble CD40 ligand levels correlating with the presence of autoantibodies. Overall, these findings suggest that intrinsic defects in WASp-deficient platelets decrease their lifespan and dysregulate immune responses, corroborating the role of platelets as modulators of inflammation and immunity. Copyright © 2018 American

  3. Mucor circinelloides induces platelet aggregation through integrin αIIbβ3 and FcγRIIA.

    PubMed

    Ghuman, Harlene; Shepherd-Roberts, Alicia; Watson, Stephanie; Zuidscherwoude, Malou; Watson, Steve P; Voelz, Kerstin

    2018-01-03

    Thrombosis is a hallmark of the fatal fungal infection mucormycosis. Yet, the platelet activation pathway in response to mucormycetes is unknown. In this study we determined the platelet aggregation potential of Mucor circinelloides (M. circinelloides) NRRL3631, characterized the signaling pathway facilitating aggregation in response to fungal spores, and identified the influence of the spore developmental stage upon platelet aggregation potential. Using impedance and light-transmission aggregometry, we showed that M. circinelloides induced platelet aggregation in whole blood and in platelet-rich plasma, respectively. The formation of large spore-platelet aggregates was confirmed by light-sheet microscopy, which showed spores dispersed throughout the aggregate. Aggregation potential was dependent on the spore's developmental stage, with the strongest platelet aggregation by spores in mid-germination. Inhibitor studies revealed platelet aggregation was mediated by the low affinity IgG receptor FcγRIIA and integrin αIIbβ3; Src and Syk tyrosine kinase signaling; and the secondary mediators TxA 2 and ADP. Flow cytometry of antibody stained platelets showed that interaction with spores increased expression of platelet surface integrin αIIbβ3 and the platelet activation marker CD62P. Together, this is the first elucidation of the signaling pathways underlying thrombosis formation during a fungal infection, highlighting targets for therapeutic intervention.

  4. Non-redundant roles of phosphoinositide 3-kinase isoforms alpha and beta in glycoprotein VI-induced platelet signaling and thrombus formation.

    PubMed

    Gilio, Karen; Munnix, Imke C A; Mangin, Pierre; Cosemans, Judith M E M; Feijge, Marion A H; van der Meijden, Paola E J; Olieslagers, Servé; Chrzanowska-Wodnicka, Magdalena B; Lillian, Rivka; Schoenwaelder, Simone; Koyasu, Shigeo; Sage, Stewart O; Jackson, Shaun P; Heemskerk, Johan W M

    2009-12-04

    Platelets are activated by adhesion to vascular collagen via the immunoglobulin receptor, glycoprotein VI (GPVI). This causes potent signaling toward activation of phospholipase Cgamma2, which bears similarity to the signaling pathway evoked by T- and B-cell receptors. Phosphoinositide 3-kinase (PI3K) plays an important role in collagen-induced platelet activation, because this activity modulates the autocrine effects of secreted ADP. Here, we identified the PI3K isoforms directly downstream of GPVI in human and mouse platelets and determined their role in GPVI-dependent thrombus formation. The targeting of platelet PI3Kalpha or -beta strongly and selectively suppressed GPVI-induced Ca(2+) mobilization and inositol 1,4,5-triphosphate production, thus demonstrating enhancement of phospholipase Cgamma2 by PI3Kalpha/beta. That PI3Kalpha and -beta have a non-redundant function in GPVI-induced platelet activation and thrombus formation was concluded from measurements of: (i) serine phosphorylation of Akt, (ii) dense granule secretion, (iii) intracellular Ca(2+) increases and surface expression of phosphatidylserine under flow, and (iv) thrombus formation, under conditions where PI3Kalpha/beta was blocked or p85alpha was deficient. In contrast, GPVI-induced platelet activation was insensitive to inhibition or deficiency of PI3Kdelta or -gamma. Furthermore, PI3Kalpha/beta, but not PI3Kgamma, contributed to GPVI-induced Rap1b activation and, surprisingly, also to Rap1b-independent platelet activation via GPVI. Together, these findings demonstrate that both PI3Kalpha and -beta isoforms are required for full GPVI-dependent platelet Ca(2+) signaling and thrombus formation, partly independently of Rap1b. This provides a new mechanistic explanation for the anti-thrombotic effect of PI3K inhibition and makes PI3Kalpha an interesting new target for anti-platelet therapy.

  5. Inhibitory effect of hydrophilic polymer brushes on surface-induced platelet activation and adhesion.

    PubMed

    Zou, Yuquan; Lai, Benjamin F L; Kizhakkedathu, Jayachandran N; Brooks, Donald E

    2010-12-08

    Poly(N,N-dimethylacrylamide) (PDMA) brushes are successfully grown from unplasticized poly(vinyl chloride) (uPVC) by well-controlled surface-initiated atom transfer radical polymerization (SI-ATRP). Molecular weights of the grafted PDMA brushes vary from ≈ 35,000 to 2,170000 Da, while the graft density ranges from 0.08 to 1.13 chains · nm(-2). The polydispersity of the grafted PDMA brushes is controlled within 1.20 to 1.80. Platelet activation (expression of CD62) and adhesion studies reveal that the graft densities of the PDMA brushes play an important role in controlling interfacial properties. PDMA brushes with graft densities between 0.35 and 0.50 chains · nm(-2) induce a significantly reduced platelet activation compared to unmodified uPVC. Moreover, the surface adhesion of platelets on uPVC is significantly reduced by the densely grafted PDMA brushes. PDMA brushes that have high molecular weights lead to a relatively lower platelet activation compared to low-molecular-weight brushes. However, the graft density of the brush is more important than molecular weight in controlling platelet interactions with PVC. PDMA brushes do not produce any significant platelet consumption in platelet rich plasma. Up to a seven-fold decrease in the number of platelets adhered on high graft density brushes is observed compared to the bare PVC surface. Unlike the bare PVC, platelets do not form pseudopodes or change morphology on PDMA brush-coated surfaces. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Hyperglycemia-Induced Platelet Activation in Type 2 Diabetes Is Resistant to Aspirin but Not to a Nitric Oxide–Donating Agent

    PubMed Central

    Gresele, Paolo; Marzotti, Stefania; Guglielmini, Giuseppe; Momi, Stefania; Giannini, Silvia; Minuz, Pietro; Lucidi, Paola; Bolli, Geremia B.

    2010-01-01

    OBJECTIVE Acute, short-term hyperglycemia enhances high shear stress–induced platelet activation in type 2 diabetes. Several observations suggest that platelets in type 2 diabetes are resistant to inhibition by aspirin. Our aim was to assess comparatively the effect of aspirin, a nitric oxide–donating agent (NCX 4016), their combination, or placebo on platelet activation induced by acute hyperglycemia in type 2 diabetes. RESEARCH DESIGN AND METHODS In a double-blind, placebo-controlled, randomized trial, 40 type 2 diabetic patients were allocated to 100 mg aspirin once daily, 800 mg NCX 4016 b.i.d., both of them, or placebo for 15 days. On day 15, 1 h after the morning dose, a 4-h hyperglycemic clamp (plasma glucose 13.9 mmol/l) was performed, and blood samples were collected before and immediately after it for platelet activation and cyclooxygenase-1 (COX-1) inhibition studies. RESULTS Acute hyperglycemia enhanced shear stress–induced platelet activation in placebo-treated patients (basal closure time 63 ± 7.1 s, after hyperglycemia 49.5 ± 1.4 s, −13.5 ± 6.3 s, P < 0.048). Pretreatment with aspirin, despite full inhibition of platelet COX-1, did not prevent it (−12.7 ± 6.9 s, NS vs. placebo). On the contrary, pretreatment with the NO donor NCX 4016, alone or in combination with aspirin, suppressed platelet activation induced by acute hyperglycemia (NCX 4016 +10.5 ± 8.3 s; NCX 4016 plus aspirin: +12.0 ± 10.7 s, P < 0.05 vs. placebo for both). Other parameters of shear stress–dependent platelet activation were also more inhibited by NCX 4016 than by aspirin, despite lesser inhibition of COX-1. CONCLUSIONS Acute hyperglycemia-induced enhancement of platelet activation is resistant to aspirin; a NO-donating agent suppresses it. Therapeutic approaches aiming at a wider platelet inhibitory action than that exerted by aspirin may prove useful in patients with type 2 diabetes. PMID:20299485

  7. Critical Role for CD38-mediated Ca2+ Signaling in Thrombin-induced Procoagulant Activity of Mouse Platelets and Hemostasis*

    PubMed Central

    Mushtaq, Mazhar; Nam, Tae-Sik; Kim, Uh-Hyun

    2011-01-01

    CD38, a multifunctional enzyme that catalyzes the synthesis of intracellular Ca2+ messengers, cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP), is known to be expressed on platelets. However, the role of CD38 in platelets remains unclear. Our present results show that treatment of platelets with thrombin results in a rapid and sustained Ca2+ signal, resulting from a coordinated interplay of Ca2+-mobilizing messengers, inositol 1,4,5-trisphosphate, cADPR, and NAADP. By dissecting the signaling pathway using various agents, we delineated that cADPR and NAADP are sequentially produced through CD38 internalization by protein kinase C via myosin heavy chain IIA following phospholipase C activation in thrombin-induced platelets. An inositol 1,4,5-trisphosphate receptor antagonist blocked the thrombin-induced formation of cADPR and NAADP as well as Ca2+ signals. An indispensable response of platelets relying on cytosolic calcium is the surface exposure of phosphatidylserine (PS), which implicates platelet procoagulant activity. Scrutinizing this parameter reveals that CD38+/+ platelets fully express PS on the surface when stimulated with thrombin, whereas this response was decreased on CD38−/− platelets. Similarly, PS exposure and Ca2+ signals were attenuated when platelets were incubated with 8-bromo-cADPR, bafilomycin A1, and a PKC inhibitor. Furthermore, in vivo, CD38-deficient mice exhibited longer bleeding times and unstable formation of thrombus than wild type mice. These results demonstrate that CD38 plays an essential role in thrombin-induced procoagulant activity of platelets and hemostasis via Ca2+ signaling mediated by its products, cADPR and NAADP. PMID:21339289

  8. The possible involvement of protein phosphatase 1 in thrombin-induced Ca2+ influx of human platelets.

    PubMed

    Murata, K; Sakon, M; Kambayashi, J; Yukawa, M; Yano, Y; Fujitani, K; Kawasaki, T; Shiba, E; Mori, T

    1993-04-01

    Protein phosphatase 1 is considered to be involved in thrombin-induced platelet activation (Murata et al., Biochem Int 26:327-334, 1992). To clarify the mechanism, we examined the effects of protein phosphatase 1 and 2A inhibitors (calyculin A, tautomycin, okadaic acid) on Ca2+ influx. In the presence of 1 mM Ca2+, thrombin- (0.1 U/ml) induced platelet aggregation and ATP release were inhibited by calyculin A, while this inhibitory effect was abolished in the absence of Ca2+ (EGTA 1 mM). Furthermore, thrombin-induced Mn2+ influx but not intracellular Ca2+ mobilization was inhibited by calyculin A in a dose-related manner. Calyculin A also blocked the ongoing Ca2+ influx when added 3 min after thrombin stimulation. Similar inhibitory effects were observed with okadaic acid and tautomycin in the same potency sequence as the reported one for protein phosphatase 1 (calyculin A > tautomycin > okadaic acid). These results suggest that the anti-platelet effects of phosphatase inhibitors are due to the inhibition of Ca2+ influx and that protein phosphatase 1 plays a key role in the regulation of receptor operated Ca2+ channel of human platelets.

  9. Responsiveness of platelets during storage studied with flow cytometry--formation of platelet subpopulations and LAMP-1 as new markers for the platelet storage lesion.

    PubMed

    Södergren, A L; Tynngård, N; Berlin, G; Ramström, S

    2016-02-01

    Storage lesions may prevent transfused platelets to respond to agonists and arrest bleeding. The aim of this study was to evaluate and quantify the capacity of platelet activation during storage using flow cytometry and new markers of platelet activation. Activation responses of platelets prepared by apheresis were measured on days 1, 5, 7 and 12. In addition, comparisons were made for platelet concentrates stored until swirling was affected. Lysosome-associated membrane protein-1 (LAMP-1), P-selectin and phosphatidylserine (PS) exposure were assessed by flow cytometry on platelets in different subpopulations in resting state or following stimulation with platelet agonists (cross-linked collagen-related peptide (CRP-XL), PAR1- and PAR4-activating peptides). The ability to form subpopulations upon activation was significantly decreased already at day 5 for some agonist combinations. The agonist-induced exposure of PS and LAMP-1 also gradually decreased with time. Spontaneous exposure of P-selectin and PS increased with time, while spontaneous LAMP-1 exposure was unchanged. In addition, agonist-induced LAMP-1 expression clearly discriminated platelet concentrates with reduced swirling from those with retained swirling. This suggests that LAMP-1 could be a good marker to capture changes in activation capacity in stored platelets. The platelet activation potential seen as LAMP-1 exposure and fragmentation into platelet subpopulations is potential sensitive markers for the platelet storage lesion. © 2015 International Society of Blood Transfusion.

  10. Blocking of platelets or intrinsic coagulation pathway-driven thrombosis does not prevent cerebral infarctions induced by photothrombosis.

    PubMed

    Kleinschnitz, Christoph; Braeuninger, Stefan; Pham, Mirko; Austinat, Madeleine; Nölte, Ingo; Renné, Thomas; Nieswandt, Bernhard; Bendszus, Martin; Stoll, Guido

    2008-04-01

    Models of photochemically-induced thrombosis are widely used in cerebrovascular research. Photothrombotic brain infarctions can be induced by systemic application of photosensitizing dyes followed by focal illumination of the cerebral cortex. Although the ensuing activation of platelets is well established, their contribution for thrombosis and tissue damage has not formally been proved. Infarction to the cerebral cortex was induced in mice by Rose Bengal and a cold light source. To assess the functional role of platelets, animals were platelet-depleted by anti-GPIbalpha antibodies or treated with GPIIb/IIIa-blocking F(ab)(2) fragments. The significance of the plasmatic coagulation cascade was determined by using blood coagulation factor XII (FXII)-deficient mice or heparin. Infarct development and infarct volumes were determined by serial MRI and conventional and electron microscopy. There was no difference in development and final size of photothrombotic infarctions in mice with impaired platelet function. Moreover, deficiency of FXII, which initiates the intrinsic pathway of coagulation and is essential for thrombus formation, or blockade of FXa, the key protease during the waterfall cascade of plasmatic coagulation, by heparin likewise did not affect lesion development. Our data demonstrate that platelet activation, factor XII-driven thrombus formation, and plasmatic coagulation pathways downstream of FX are not a prerequisite for ensuing tissue damage in models of photothrombotic vessel injury indicating that other pathomechanisms are involved. We suggest that this widely used model does not depend on platelet- or plasmatic coagulation-derived thrombosis.

  11. Functional Comparison of Induced Pluripotent Stem Cell- and Blood-Derived GPIIbIIIa Deficient Platelets

    PubMed Central

    Haas, Jessica; Sandrock-Lang, Kirstin; Gärtner, Florian; Jung, Christian Billy; Zieger, Barbara; Parrotta, Elvira; Kurnik, Karin; Sinnecker, Daniel; Wanner, Gerhard; Laugwitz, Karl-Ludwig; Massberg, Steffen; Moretti, Alessandra

    2015-01-01

    Human induced pluripotent stem cells (hiPSCs) represent a versatile tool to model genetic diseases and are a potential source for cell transfusion therapies. However, it remains elusive to which extent patient-specific hiPSC-derived cells functionally resemble their native counterparts. Here, we generated a hiPSC model of the primary platelet disease Glanzmann thrombasthenia (GT), characterized by dysfunction of the integrin receptor GPIIbIIIa, and compared side-by-side healthy and diseased hiPSC-derived platelets with peripheral blood platelets. Both GT-hiPSC-derived platelets and their peripheral blood equivalents showed absence of membrane expression of GPIIbIIIa, a reduction of PAC-1 binding, surface spreading and adherence to fibrinogen. We demonstrated that GT-hiPSC-derived platelets recapitulate molecular and functional aspects of the disease and show comparable behavior to their native counterparts encouraging the further use of hiPSC-based disease models as well as the transition towards a clinical application. PMID:25607928

  12. Platelet impedance adhesiometry: A novel technique for the measurement of platelet adhesion and spreading.

    PubMed

    Polgár, L; Soós, P; Lajkó, E; Láng, O; Merkely, B; Kőhidai, L

    2018-06-01

    Thrombogenesis plays an important role in today's morbidity and mortality. Antithrombotics are among the most frequently prescribed drugs. Thorough knowledge of platelet function is needed for optimal clinical care. Platelet adhesion is a separate subprocess of platelet thrombus formation; still, no well-standardized technique for the isolated measurement of platelet adhesion exists. Impedimetry is one of the most reliable, state-of-art techniques to analyze cell adhesion, proliferation, viability, and cytotoxicity. We propose impedimetry as a feasible novel method for the isolated measurement of 2 significant platelet functions: adhesion and spreading. Laboratory reference platelet agonists (epinephrine, ADP, and collagen) were applied to characterize platelet functions by impedimetry using the xCELLigence SP system. Platelet samples were obtained from 20 healthy patients under no drug therapy. Standard laboratory parameters and clinical patient history were also analyzed. Epinephrine and ADP increased platelet adhesion in a concentration-dependent manner, while collagen tended to have a negative effect. Serum sodium and calcium levels and age had a negative correlation with platelet adhesion induced by epinephrine and ADP, while increased immunoreactivity connected with allergic diseases was associated with increased platelet adhesion induced by epinephrine and ADP. ADP increased platelet spreading in a concentration-dependent manner. Impedimetry proved to be a useful and sensitive method for the qualitative and quantitated measurement of platelet adhesion, even differentiating between subgroups of a healthy population. This novel technique is offered as an important method in the further investigation of platelet function. © 2018 John Wiley & Sons Ltd.

  13. Platelet granule release is associated with reactive oxygen species generation during platelet storage: A direct link between platelet pro-inflammatory and oxidation states.

    PubMed

    Ghasemzadeh, Mehran; Hosseini, Ehteramolsadat

    2017-08-01

    Upon platelet stimulation with agonists, reactive oxygen species (ROS) generation enhances platelet activation and granule release. Whether ROS generation during platelet storage could be directly correlated with the expression of proinflammatory molecules and granule release has been investigated in this study. PRP-platelet concentrates were subjected to flowcytometry analysis to assess the expression of platelet activation marker, P-selectin and CD40L during storage. Intracellular ROS generation was also detected in platelet by flowcytometry using dihydrorhodamine (DHR) 123. Through the dual staining, ROS production was analyzed in either P-selectin positive or negative populations. ROS formation in platelet population was significantly increased by either TRAP (a potent agonist that induces granule release) or PMA (a classic inducer of ROS generation), while the effects of each agonists on P-selectin expression and ROS generation in platelets were comparable. Platelet storage was also associated with the increasing levels of ROS (day 0 vs. day 5; p<0.001) while this increasing pattern was directly correlated with the either expressed P-selectin or CD40L. In addition, in 5 day-stored platelets, samples with ROS levels above 40% showed significantly higher levels of P-selectin and CD40L expression. P-selectin negative population of platelet did not show significant amount of ROS. Our data demonstrated decreased levels of important platelet pro-inflammatory molecules in stored platelets with lower levels of intraplatelet ROS. However, whether quenching of ROS generation during platelet storage can attenuate adverse transfusion reactions raised by platelet pro-inflammatory status is required to be further studied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Three-dimentional simulation of flow-induced platelet activation in artificial heart valves

    NASA Astrophysics Data System (ADS)

    Hedayat, Mohammadali; Asgharzadeh, Hafez; Borazjani, Iman

    2015-11-01

    Since the advent of heart valve, several valve types such as mechanical and bio-prosthetic valves have been designed. Mechanical Heart Valves (MHV) are durable but suffer from thromboembolic complications that caused by shear-induced platelet activation near the valve region. Bio-prosthetic Heart Valves (BHV) are known for better hemodynamics. However, they usually have a short average life time. Realistic simulations of heart valves in combination with platelet activation models can lead to a better understanding of the potential risk of thrombus formation in such devices. In this study, an Eulerian approach is developed to calculate the platelet activation in three-dimensional simulations of flow through MHV and BHV using a parallel overset-curvilinear immersed boundary technique. A curvilinear body-fitted grid is used for the flow simulation through the anatomic aorta, while the sharp-interface immersed boundary method is used for simulation of the Left Ventricle (LV) with prescribed motion. In addition, dynamics of valves were calculated numerically using under-relaxed strong-coupling algorithm. Finally, the platelet activation results for BMV and MHV are compared with each other.

  15. Greater Collagen‐Induced Platelet Aggregation Following Cyclooxygenase 1 Inhibition Predicts Incident Acute Coronary Syndromes

    PubMed Central

    Becker, Diane M.; Yanek, Lisa R.; Faraday, Nauder; Vaidya, Dhananjay; Mathias, Rasika; Kral, Brian G.; Becker, Lewis C.

    2014-01-01

    Abstract Greater ex vivo platelet aggregation to agonists may identify individuals at risk of acute coronary syndromes (ACS). However, increased aggregation to a specific agonist may be masked by inherent variability in other activation pathways. In this study, we inhibited the cyclooxygenase‐1 (COX1) pathway with 2‐week aspirin therapy and measured residual aggregation to collagen and ADP to determine whether increased aggregation in a non‐COX1 pathway is associated with incident ACS. We assessed ex vivo whole blood platelet aggregation in 1,699 healthy individuals with a family history of early‐onset coronary artery disease followed for 6±1.2 years. Incident ACS events were observed in 22 subjects. Baseline aggregation was not associated with ACS. After COX1 pathway inhibition, collagen‐induced aggregation was significantly greater in participants with ACS compared with those without (29.0 vs. 23.6 ohms, p < 0.001). In Cox proportional hazards models, this association remained significant after adjusting for traditional cardiovascular risk factors (HR = 1.10, 95%CI = 1.06–1.15; p < 0.001). In contrast, ADP‐induced aggregation after COX1 inhibition was not associated with ACS. After COX1 pathway inhibition, subjects with greater collagen‐induced platelet aggregation demonstrated a significant excess risk of incident ACS. These data suggest that platelet activation related to collagen may play an important role in the risk of ACS. PMID:25066685

  16. The mechanisms how heparin affects the tumor cell induced VEGF and chemokine release from platelets to attenuate the early metastatic niche formation

    PubMed Central

    Ponert, Jan Moritz; Schwarz, Svenja; Haschemi, Reza; Müller, Jens; Pötzsch, Bernd; Bendas, Gerd

    2018-01-01

    Metastasis is responsible for the majority of cancer associated fatalities. Tumor cells leaving the primary tumor and entering the blood flow immediately interact with platelets. Activated platelets contribute in different ways to cancer cell survival and proliferation, e.g. in formation of the early metastatic niche by release of different growth factors and chemokines. Here we show that a direct interaction between platelets and MV3 melanoma or MCF7 breast cancer cells induces platelet activation and a VEGF release in citrated plasma that cannot be further elevated by the coagulation cascade and generated thrombin. In contrast, the release of platelet-derived chemokines CXCL5 and CXCL7 depends on both, a thrombin-mediated platelet activation and a direct interaction between tumor cells and platelets. Preincubation of platelets with therapeutic concentrations of unfractionated heparin reduces the tumor cell initiated VEGF release from platelets. In contrast, tumor cell induced CXCL5 and CXCL7 release from platelets was not impacted by heparin pretreatment in citrated plasma. In defibrinated, recalcified plasma, on the contrary, heparin is able to reduce CXCL5 and CXCL7 release from platelets by thrombin inhibition. Our data indicate that different chemokines and growth factors in diverse platelet granules are released in tightly regulated processes by various trigger mechanisms. We show for the first time that heparin is able to reduce the mediator release induced by different tumor cells both in a contact and coagulation dependent manner. PMID:29346400

  17. Sphingosine 1-phosphate (S1P) suppresses the collagen-induced activation of human platelets via S1P4 receptor.

    PubMed

    Onuma, Takashi; Tanabe, Kumiko; Kito, Yuko; Tsujimoto, Masanori; Uematsu, Kodai; Enomoto, Yukiko; Matsushima-Nishiwaki, Rie; Doi, Tomoaki; Nagase, Kiyoshi; Akamatsu, Shigeru; Tokuda, Haruhiko; Ogura, Shinji; Iwama, Toru; Kozawa, Osamu; Iida, Hiroki

    2017-08-01

    Sphingosine 1-phosphate (S1P) is as an extracellular factor that acts as a potent lipid mediator by binding to specific receptors, S1P receptors (S1PRs). However, the precise role of S1P in human platelets that express S1PRs has not yet been fully clarified. We previously reported that heat shock protein 27 (HSP27) is released from human platelets accompanied by its phosphorylation stimulated by collagen. In the present study, we investigated the effect of S1P on the collagen-induced platelet activation. S1P pretreatment markedly attenuated the collagen-induced aggregation. Co-stimulation with S1P and collagen suppressed collagen-induced platelet activation, but the effect was weaker than that of S1P-pretreatment. The collagen-stimulated secretion of platelet-derived growth factor (PDGF)-AB and the soluble CD40 ligand (sCD40L) release were significantly reduced by S1P. In addition, S1P suppressed the collagen-induced release of HSP27 as well as the phosphorylation of HSP27. S1P significantly suppressed the collagen-induced phosphorylation of p38 mitogen-activated protein kinase. S1P increased the levels of GTP-bound Gαi and GTP-bound Gα13 coupled to S1PPR1 and/or S1PR4. CYM50260, a selective S1PR4 agonist, but not SEW2871, a selective S1PR1 agonist, suppressed the collagen-stimulated platelet aggregation, PDGF-AB secretion and sCD40L release. In addition, CYM50260 reduced the release of phosphorylated-HSP27 by collagen as well as the phosphorylation of HSP27. The selective S1PR4 antagonist CYM50358, which failed to affect collagen-induced HSP27 phosphorylation, reversed the S1P-induced attenuation of HSP27 phosphorylation by collagen. These results strongly suggest that S1P inhibits the collagen-induced human platelet activation through S1PR4 but not S1PR1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Inhibition of Glycoprotein VI Clustering by Collagen as a Mechanism of Inhibiting Collagen-Induced Platelet Responses: The Example of Losartan

    PubMed Central

    Jiang, Peng; Loyau, Stéphane; Tchitchinadze, Maria; Ropers, Jacques; Jondeau, Guillaume; Jandrot-Perrus, Martine

    2015-01-01

    Exposure of platelets to collagen triggers the formation of a platelet clot. Pharmacological agents capable of inhibiting platelet activation by collagen are thus of potential therapeutic interest. Thrombus formation is initiated by the interaction of the GPIb-V-IX complex with collagen-bound vWF, while GPVI interaction with collagen triggers platelet activation that is reinforced by ADP and thromboxane A2. Losartan is an angiotensin II (Ang II) type I receptor (AT1R) antagonist proposed to have an antiplatelet activity via the inhibition of both the thromboxane A2 (TXA2) receptor (TP) and the glycoprotein VI (GPVI). Here, we characterized in vitro the effects of losartan at different doses on platelet responses: losartan inhibited platelet aggregation and secretion induced by 1 μg.mL-1 and 10 μg.mL-1 of collagen with an IC50 of ~ 6 μM. Losartan inhibited platelet responses induced by the GPVI specific collagen related peptide but not by the α2β1 specific peptide. However, losartan did not inhibit the binding of recombinant GPVI to collagen, which is not in favor of a simple competition. Indeed, the clustering of GPVI observed in flow cytometry and using the Duolink methodology, was inhibited by losartan. The impact of a therapeutic dose of losartan (100 mg/day) on platelet responses was analyzed ex vivo in a double blind study. No statistically significant differences were observed between losartan-treated (n=25) and non-treated (n=30) patients in terms of collagen and U46619-induced platelet activation. These data indicate that in treated patients, losartan does not achieve a measurable antiplatelet effect but provide the proof of concept that inhibiting collagen-induced GPVI clustering is of pharmacological interest to obtain an antithrombotic efficacy. Trial Registration ClinicalTrials.gov NCT00763893 PMID:26052700

  19. Mechanism of platelet functional changes and effects of anti-platelet agents on in vivo hemostasis under different gravity conditions.

    PubMed

    Li, Suping; Shi, Quanwei; Liu, Guanglei; Zhang, Weilin; Wang, Zhicheng; Wang, Yuedan; Dai, Kesheng

    2010-05-01

    Serious thrombotic and hemorrhagic problems or even fatalities evoked by either microgravity or hypergravity occur commonly in the world. We recently reported that platelet functions are inhibited in microgravity environments and activated under high-G conditions, which reveals the pathogenesis for gravity change-related hemorrhagic and thrombotic diseases. However, the mechanisms of platelet functional variations under different gravity conditions remain unclear. In this study we show that the amount of filamin A coimmunoprecipitated with GPIbalpha was enhanced in platelets exposed to modeled microgravity and, in contrast, was reduced in 8 G-exposed platelets. Hypergravity induced actin filament formation and redistribution, whereas actin filaments were reduced in platelets treated with modeled microgravity. Furthermore, intracellular Ca2+ levels were elevated by hypergravity. Pretreatment of platelets with the cell-permeable Ca2+ chelator BAPTA-AM had no effect on cytoskeleton reorganization induced by hypergravity but significantly reduced platelet aggregation induced by ristocetin/hypergravity. Two anti-platelet agents, aspirin and tirofiban, effectively reversed the shortened tail bleeding time and reduced the death rate of mice exposed to hypergravity. Furthermore, the increased P-selectin surface expression was obviously reduced in platelets from mice treated with aspirin/hypergravity compared with those from mice treated with hypergravity alone. These data suggest that the actin cytoskeleton reorganization and intracellular Ca2+ level play key roles in the regulation of platelet functions in different gravitational environments. The results with anti-platelet agents not only further confirm the activation of platelets in vivo but also suggest a therapeutic potential for hypergravity-induced thrombotic diseases.

  20. Comparison of Immature Platelet Count to Established Predictors of Platelet Reactivity During Thienopyridine Therapy.

    PubMed

    Stratz, Christian; Bömicke, Timo; Younas, Iris; Kittel, Anja; Amann, Michael; Valina, Christian M; Nührenberg, Thomas; Trenk, Dietmar; Neumann, Franz-Josef; Hochholzer, Willibald

    2016-07-19

    Previous data suggest that reticulated platelets significantly affect antiplatelet response to thienopyridines. It is unknown whether parameters describing reticulated platelets can predict antiplatelet response to thienopyridines. The authors sought to determine the extent to which parameters describing reticulated platelets can predict antiplatelet response to thienopyridine loading compared with established predictors. This study randomized 300 patients undergoing elective coronary stenting to loading with clopidogrel 600 mg, prasugrel 30 mg, or prasugrel 60 mg. Adenosine diphosphate (ADP)-induced platelet reactivity was assessed by impedance aggregometry before loading (intrinsic platelet reactivity) and again on day 1 after loading. Multiple parameters of reticulated platelets were assessed by automated whole blood flow cytometry: absolute immature platelet count (IPC), immature platelet fraction, and highly fluorescent immature platelet fraction. Each parameter of reticulated platelets correlated significantly with ADP-induced platelet reactivity (p < 0.01 for all 3 parameters). In a multivariable model including all 3 parameters, only IPC remained a significant predictor of platelet reactivity (p < 0.001). In models adjusting each of the 3 parameters for known predictors of on-treatment platelet reactivity including cytochrome P450 2C19 (CYP2C19) polymorphisms, age, body mass index, diabetes, and intrinsic platelet reactivity, only IPC prevailed as an independent predictor (p = 0.001). In this model, IPC was the strongest predictor of on-treatment platelet reactivity followed by intrinsic platelet reactivity. IPC is the strongest independent platelet count-derived predictor of antiplatelet response to thienopyridine treatment. Given its easy availability, together with its even stronger association with on-treatment platelet reactivity compared with known predictors, including the CYP2C19*2 polymorphism, IPC may become the preferred predictor of

  1. Platelet receptor polymorphisms do not influence Staphylococcus aureus–platelet interactions or infective endocarditis

    PubMed Central

    Daga, Shruti; Shepherd, James G.; Callaghan, J. Garreth S.; Hung, Rachel K.Y.; Dawson, Dana K.; Padfield, Gareth J.; Hey, Shi Y.; Cartwright, Robyn A.; Newby, David E.; Fitzgerald, J. Ross

    2011-01-01

    Cardiac vegetations result from bacterium–platelet adherence, activation and aggregation, and are associated with increased morbidity and mortality in infective endocarditis. The GPIIb/IIIa and FcγRIIa platelet receptors play a central role in platelet adhesion, activation and aggregation induced by endocarditis pathogens such as Staphylococcus aureus, but the influence of known polymorphisms of these receptors on the pathogenesis of infective endocarditis is unknown. We determined the GPIIIa platelet antigen PlA1/A2 and FcγRIIa H131R genotype of healthy volunteers (n = 160) and patients with infective endocarditis (n = 40), and investigated the influence of these polymorphisms on clinical outcome in infective endocarditis and S. aureus–platelet interactions in vitro. Platelet receptor genotype did not correlate with development of infective endocarditis, vegetation characteristics on echocardiogram or the composite clinical end-point of embolism, heart failure, need for surgery or mortality (P > 0.05 for all), even though patients with the GPIIIa PlA1/A1 genotype had increased in vivo platelet activation (P = 0.001). Furthermore, neither GPIIIa PlA1/A2 nor FcγRIIa H131R genotype influenced S. aureus-induced platelet adhesion, activation or aggregation in vitro (P > 0.05). Taken together, our data suggest that the GPIIIa and FcγRIIa platelet receptor polymorphisms do not influence S. aureus–platelet interactions in vitro or the clinical course of infective endocarditis. PMID:21044892

  2. Amifostine, a reactive oxigen species scavenger with radiation- and chemo-protective properties, inhibits in vitro platelet activation induced by ADP, collagen or PAF.

    PubMed

    Porta, C; Maiolo, A; Tua, A; Grignani, G

    2000-08-01

    Reactive oxygen species (ROS) generation has been suggested to represent an important regulatory mechanism of platelet reactivity in both physiologic and pathologic conditions; consistent with this hypothesis is the observation that free-radical scavengers may inhibit platelet activation, thus contributing to the regulation of their reactivity. The purpose of the present study is to study the in vitro effects of amifostine (WR-2721, ethyol ), a selective cytoprotective agent for normal tissues against the toxicities of chemotherapy and radiation, on platelet activation induced by the physiologic agonists ADP, collagen and PAF. The effect of amifostine, added to the experimental system at final concentrations ranging from 10(-7) M to 10(-5) M, was studied on platelet aggregation induced by the following physiologic agonists at the given concentrations: ADP (1 microM), collagen (2 microg/mL), and PAF (0.1 microg/mL). Platelet aggregation was investigated using a platelet ionized calcium aggregometer and was expressed as the percentage change in light transmission. Furthermore, thromboxane B((2)) (TxB((2))) levels and nitric oxide (NO) production were determined by radioimmunoassay and by evaluating the total nitrite/nitrate concentration using a commercially available colorimetric kit, respectively, both in the control system and after the addition of amifostine. Amifostine inhibited both platelet aggregation and TxB((2)) production induced by ADP, collagen and PAF, in a dose-dependent manner. Amifostine proved to be an effective inhibitor of platelet function and the effect was more pronounced if platelets were stimulated with ADP, intermediate when collagen was the chosen agonist, and less evident, though present, when PAF was used. Platelets stimulated with ADP, collagen or PAF produced significant amounts of NO over the baseline. When amifostine was added at a final concentration of 5 microM, it significantly increased ADP, collagen and PAF-induced NO production

  3. CXCL4-platelet factor 4, heparin-induced thrombocytopenia and cancer.

    PubMed

    Sandset, Per Morten

    2012-04-01

    Platelet factor 4 (CXCL4-PF4) is a chemokine that binds to and neutralizes heparin and other negatively charged proteoglycans, but is also involved in angiogenesis and cancer development. In some patients exposed to heparin, antibodies are generated against the CXCL-PF4/heparin complex that may activate platelets and coagulation and lead to thrombocytopenia and arterial or venous thrombosis, a condition commonly named heparin induced thrombocytopenia (HIT). HIT has been investigated in numerous clinical settings, but there is limited data on the epidemiology and phenotype of HIT in cancer patients. The present review describes the role of CXCL4-PF4 in cancer, the immunobiology, clinical presentation and diagnosis of HIT, and the specific problems faced in cancer patients. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Activated Platelets Induce Endothelial Cell Activation via an Interleukin-1β Pathway in Systemic Lupus Erythematosus.

    PubMed

    Nhek, Sokha; Clancy, Robert; Lee, Kristen A; Allen, Nicole M; Barrett, Tessa J; Marcantoni, Emanuela; Nwaukoni, Janet; Rasmussen, Sara; Rubin, Maya; Newman, Jonathan D; Buyon, Jill P; Berger, Jeffrey S

    2017-04-01

    Systemic lupus erythematosus (SLE) is associated with the premature development of cardiovascular disease. The platelet-endothelium interaction is important in the pathogenesis of cardiovascular disease. In this study, we investigated the platelet phenotype from patients with SLE and matched controls, and their effect on endothelial cells. Platelet aggregability was measured in 54 SLE subjects off antiplatelet therapy (mean age 40.1±12.8 years; 82% female; 37% white) with age- and sex-matched controls. Platelets were coincubated with human umbilical vein endothelial cells (HUVECs) and changes to gene expression assessed by an RNA array and quantitative reverse transcription polymerase chain reaction. SLE disease activity index ranged from 0 to 22 (mean 5.1±3.9). Compared with controls, patients with SLE had significantly increased monocyte and leukocyte-platelet aggregation and platelet aggregation in response to submaximal agonist stimulation. An agnostic microarray of HUVECs cocultured with SLE platelets found a platelet-mediated effect on endothelial gene pathways involved in cell activation. Sera from SLE versus control subjects significantly increased (1) activation of control platelets; (2) platelet adhesion to HUVECs; (3) platelet-induced HUVEC gene expression of interleukin-8, and intercellular adhesion molecule 1; and (4) proinflammatory gene expression in HUVECs, mediated by interleukin-1β-dependent pathway. Incubation of SLE-activated platelets with an interleukin-1β-neutralizing antibody or HUVECs pretreated with interleukin-1 receptor antibodies attenuated the platelet-mediated activation of endothelial cells. Platelet activity measurements and subsequent interleukin-1β-dependent activation of the endothelium are increased in subjects with SLE. Platelet-endothelial interactions may play a role in the pathogenesis of cardiovascular disease in patients with SLE. © 2017 American Heart Association, Inc.

  5. Platelet concentration in platelet-rich plasma affects tenocyte behavior in vitro.

    PubMed

    Giusti, Ilaria; D'Ascenzo, Sandra; Mancò, Annalisa; Di Stefano, Gabriella; Di Francesco, Marianna; Rughetti, Anna; Dal Mas, Antonella; Properzi, Gianfranco; Calvisi, Vittorio; Dolo, Vincenza

    2014-01-01

    Since tendon injuries and tendinopathy are a growing problem, sometimes requiring surgery, new strategies that improve conservative therapies are needed. Platelet-rich plasma (PRP) seems to be a good candidate by virtue of its high content of growth factors, most of which are involved in tendon healing. This study aimed to evaluate if different concentrations of platelets in PRP have different effects on the biological features of normal human tenocytes that are usually required during tendon healing. The different platelet concentrations tested (up to 5 × 10(6) plt/µL) stimulated differently tenocytes behavior; intermediate concentrations (0.5 × 10(6), 1 × 10(6) plt/µL) strongly induced all tested processes (proliferation, migration, collagen, and MMPs production) if compared to untreated cells; on the contrary, the highest concentration had inhibitory effects on proliferation and strongly reduced migration abilities and overall collagen production but, at the same time, induced increasing MMP production, which could be counterproductive because excessive proteolysis could impair tendon mechanical stability. Thus, these in vitro data strongly suggest the need for a compromise between extremely high and low platelet concentrations to obtain an optimal global effect when inducing in vivo tendon healing.

  6. Platelet Concentration in Platelet-Rich Plasma Affects Tenocyte Behavior In Vitro

    PubMed Central

    Rughetti, Anna; Dal Mas, Antonella; Properzi, Gianfranco; Calvisi, Vittorio

    2014-01-01

    Since tendon injuries and tendinopathy are a growing problem, sometimes requiring surgery, new strategies that improve conservative therapies are needed. Platelet-rich plasma (PRP) seems to be a good candidate by virtue of its high content of growth factors, most of which are involved in tendon healing. This study aimed to evaluate if different concentrations of platelets in PRP have different effects on the biological features of normal human tenocytes that are usually required during tendon healing. The different platelet concentrations tested (up to 5 × 106 plt/µL) stimulated differently tenocytes behavior; intermediate concentrations (0.5 × 106, 1 × 106 plt/µL) strongly induced all tested processes (proliferation, migration, collagen, and MMPs production) if compared to untreated cells; on the contrary, the highest concentration had inhibitory effects on proliferation and strongly reduced migration abilities and overall collagen production but, at the same time, induced increasing MMP production, which could be counterproductive because excessive proteolysis could impair tendon mechanical stability. Thus, these in vitro data strongly suggest the need for a compromise between extremely high and low platelet concentrations to obtain an optimal global effect when inducing in vivo tendon healing. PMID:25147809

  7. Heterogeneity of antibody response to human platelet transfusion.

    PubMed Central

    Wu, K K; Thompson, J S; Koepke, J A; Hoak, J C; Flink, R

    1976-01-01

    To study the antibody response to human platelet transfusions, nine thrombocytopenia patients with bone marrow failure were given 6 U (3X10(11)) of random platelet concentrates twice a week. Before transfusion, none of the patients had preexisting antibodies detectable with lymphocytotoxicity, platelet aggregation, or capillary leukoagglutination techniques. After receiving 18-78 U of platelets, they became refractory to further transfusions of random platelets and alloantibodies were detectable. Two patterns of antibody response could be identified. In three patients, the sera were not lymphocytotoxic with a panel of standard cells in which all the known HLA antigens in the first and second series were represented at least once. Yet, they caused platelet aggregation with 30, 24, and 60%, respectively, of a donor population studied. The aggregating activities were inhibited by antihuman IgG but not by antihuman IgA or antihuman IgM antiserum. The aggregating antibodies could be absorbed out with donor platelets but not lymphocytes or granulocytes. Antibodies from two of these patients aggregated platelets of their respective siblings matched for both HLA haplotypes. Transfusion of platelets from these two siblings did not increase the platelet count while platelets obtained from aggregation-negative donors did. The sera from the remaining six patients were lymphocytotoxic with 15-100% of the panel of standard cells. They also had aggregating antibodies, which could be absorbed out by both platelets and lymphocytes, suggesting that they were HLA antibodies. These data suggest that the development of platelet-specific antibodies may play an important role in the immunological rejection of isologous platelets, and should be considered in the selection of donors for patients who are refractory to platelets from random donors. PMID:956376

  8. In vitro effect of sodium nitrite on platelet aggregation in human platelet rich plasma--preliminary report.

    PubMed

    Kadan, M; Doğanci, S; Yildirim, V; Özgür, G; Erol, G; Karabacak, K; Avcu, F

    2015-10-01

    The role of nitrates and nitric oxide on platelet functions has obtained an increasing attention with respect to their potential effects on cardiovascular disorders. In this study we aimed to analyze the effect of sodium nitrite on platelet functions in human platelets. This in vitro study was designed to show the effect of sodium nitrite on platelet functions in seven healthy volunteers. Blood samples were centrifuged to prepare platelet rich plasma and platelet poor plasma. Platelet rich plasma was diluted with the platelet poor plasma to have a final count of 300,000 ± 25,000 platelets. Platelet rich plasma was incubated with six different increasing doses (from 10 μM to 5 mM) of sodium nitrite for 1 hour at 37°C. Then stimulating agents including collagen (3 μg ml-1), adenosine diphosphate (10 μM), and epinephrine (10 μM) were added to the cuvette. Changes in light transmission were observed for 10 minutes. In addition spontaneous aggregation were performed in control group with all aggregating agents separately. Effect of sodium nitrite on agonist-induced platelet aggregation depends on the concentration of sodium nitrite. Compared with control group, agonist-induced platelet aggregations were significantly suppressed by sodium nitrite at the concentration of 5, 1.0 and 0.5 mM. Our results suggested that sodium nitrite has inhibitory effects in vitro on platelet aggregation in a dose-dependent manner.

  9. Nicergoline inhibits human platelet Ca(2+) signalling through triggering a microtubule-dependent reorganization of the platelet ultrastructure.

    PubMed

    Walford, T; Musa, F I; Harper, A G S

    2016-01-01

    Recently, we demonstrated that a pericellular Ca(2+) recycling system potentiates agonist-evoked Ca(2+) signalling and granule secretion in human platelets and hypothesized a role for the membrane complex (MC) in orchestrating the accumulation of Ca(2+) in the pericellular region. Previous work has demonstrated that treatment with high concentrations of nicergoline may disrupt the MC through an ability to trigger a re-organization of the dense tubular system. Experiments were therefore performed to assess whether nicergoline-induced changes in platelet ultrastructure affects thrombin-evoked Ca(2+) fluxes and dense granule secretion. Thrombin-evoked Ca(2+) fluxes were monitored in Fura-2- or Fluo-5N-loaded human platelets, or using platelet suspensions containing Fluo-4 or Rhod-5N K(+) salts. Fluorescence microscopy was utilized to monitor microtubule structure and intracellular Ca(2+) store distribution in TubulinTracker- and Fluo-5N-loaded platelets respectively. Dense granule secretion was monitored using luciferin-luciferase. Nicergoline treatment inhibited thrombin-evoked Ca(2+) signalling and induced alterations in the microtubule structure and the distribution of intracellular Ca(2+) stores in platelets. Nicergoline altered the generation and spreading of thrombin-induced pericellular Ca(2+) signals and almost completely prevented dense granule secretion. Stabilization of microtubules using taxol reversed most effects of nicergoline on platelet Ca(2+) signalling and partially reversed its effects on dense granule secretion. Nicergoline-induced alterations to platelet ultrastructure disrupt platelet Ca(2+) signalling in a manner that would be predicted if the MC had been disrupted. These data suggest that nicergoline may be a useful prototype for the discovery of novel MC-disrupting anti-thrombotics. © 2015 The British Pharmacological Society.

  10. Platelets Induce Apoptosis during Sepsis in a Contact-Dependent Manner That Is Inhibited by GPIIb/IIIa Blockade

    PubMed Central

    Sharron, Matthew; Hoptay, Claire E.; Wiles, Andrew A.; Garvin, Lindsay M.; Geha, Mayya; Benton, Angela S.; Nagaraju, Kanneboyina; Freishtat, Robert J.

    2012-01-01

    Purpose End-organ apoptosis is well-described in progressive sepsis and Multiple Organ Dysfunction Syndrome (MODS), especially where platelets accumulate (e.g. spleen and lung). We previously reported an acute sepsis-induced cytotoxic platelet phenotype expressing serine protease granzyme B. We now aim to define the site(s) of and mechanism(s) by which platelet granzyme B induces end-organ apoptosis in sepsis. Methods End-organ apoptosis in murine sepsis (i.e. polymicrobial peritonitis) was analyzed by immunohistochemistry. Platelet cytotoxicity was measured by flow cytometry following 90 minute ex vivo co-incubation with healthy murine splenocytes. Sepsis progression was measured via validated preclinical murine sepsis score. Measurements and Main Results There was evident apoptosis in spleen, lung, and kidney sections from septic wild type mice. In contrast, there was a lack of TUNEL staining in spleens and lungs from septic granzyme B null mice and these mice survived longer following induction of sepsis than wild type mice. In co-incubation experiments, physical separation of septic platelets from splenocytes by a semi-permeable membrane reduced splenocyte apoptosis to a rate indistinguishable from negative controls. Chemical separation by the platelet GPIIb/IIIa receptor inhibitor eptifibatide decreased apoptosis by 66.6±10.6% (p = 0.008). Mice treated with eptifibatide in vivo survived longer following induction of sepsis than vehicle control mice. Conclusions In sepsis, platelet granzyme B-mediated apoptosis occurs in spleen and lung, and absence of granzyme B slows sepsis progression. This process proceeds in a contact-dependent manner that is inhibited ex vivo and in vivo by the platelet GPIIb/IIIa receptor inhibitor eptifibatide. The GPIIb/IIIa inhibitors and other classes of anti-platelet drugs may be protective in sepsis. PMID:22844498

  11. Unaltered Angiogenesis-Regulating Activities of Platelets in Mild Type 2 Diabetes Mellitus despite a Marked Platelet Hyperreactivity.

    PubMed

    Miao, Xinyan; Zhang, Wei; Huang, Zhangsen; Li, Nailin

    2016-01-01

    Type 2 diabetes mellitus (T2DM) is associated with platelet dysfunction and impaired angiogenesis. Aim of the study is to investigate if platelet dysfunction might hamper platelet angiogenic activities in T2DM patients. Sixteen T2DM patients and gender/age-matched non-diabetic controls were studied. Flow cytometry and endothelial colony forming cell (ECFC) tube formation on matrigel were used to assess platelet reactivity and angiogenic activity, respectively. Thrombin receptor PAR1-activating peptide (PAR1-AP) induced higher platelet P-selectin expression, and evoked more rapid and intense platelet annexin V binding in T2DM patients, seen as a more rapid increase of annexin V+ platelets (24.3±6.4% vs 12.6±3.8% in control at 2 min) and a higher elevation (30.9±5.1% vs 24.3±3.0% at 8 min). However, PAR1-AP and PAR4-AP induced similar releases of angiogenic regulators from platelets, and both stimuli evoked platelet release of platelet angiogenic regulators to similar extents in T2DM and control subjects. Thus, PAR1-stimulated platelet releasate (PAR1-PR) and PAR4-PR similarly enhanced capillary-like network/tube formation of ECFCs, and the enhancements did not differ between T2DM and control subjects. Direct supplementation of platelets to ECFCs at the ratio of 1:200 enhanced ECFC tube formation even more markedly, leading to approximately 100% increases of the total branch points of ECFC tube formation, for which the enhancements were also similar between patients and controls. In conclusion, platelets from T2DM subjects are hyperreactive. Platelet activation induced by high doses of PAR1-AP, however, results in similar releases of angiogenic regulators in mild T2DM and control subjects. Platelets from T2DM and control subjects also demonstrate similar enhancements on ECFC angiogenic activities.

  12. Beta-lactam antibiotic-induced platelet dysfunction: Evidence for irreversible inhibition of platelet activation in vitro and in vivo after prolonged exposure to penicillin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burroughs, S.F.; Johnson, G.J.

    beta-Lactam antibiotics cause platelet dysfunction with bleeding complications. Previous in vitro studies documented reversible inhibition of agonist-receptor interaction. This mechanism is inadequate to explain the effect of beta-lactam antibiotics in vivo. Platelet function does not return to normal immediately after drug treatment, implying irreversible inhibition of platelet function. We report here evidence of irreversible platelet functional and biochemical abnormalities after in vitro and in vivo exposure to beta-lactam antibiotics. Irreversible binding of (14C)-penicillin (Pen) occurred in vitro. After 24 hours' in vitro incubation with 10 to 20 mmol/L Pen, or ex vivo after antibiotic treatment, irreversible functional impairment occurred; butmore » no irreversible inhibition of alpha 2 adrenergic receptors, measured with (3H)-yohimbine, or high-affinity thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptors, measured with agonist (3H)-U46619 and antagonist (3H)-SQ29548, occurred. However, low-affinity platelet TXA2/PGH2 receptors were decreased 40% after Pen exposure in vitro or in vivo, indicating irreversible membrane alteration. Two postreceptor biochemical events were irreversibly inhibited in platelets incubated with Pen for 24 hours in vitro or ex vivo after antibiotic treatment. Thromboxane synthesis was inhibited 28.3% to 81.7%. Agonist-induced rises in cytosolic calcium ((Ca2+)i) were inhibited 40.1% to 67.5% in vitro and 26.6% to 52.2% ex vivo. Therefore, Pen binds to platelets after prolonged exposure, resulting in irreversible dysfunction attributable to inhibition of TXA2 synthesis and impairment of the rise in (Ca2+)i. The loss of low-affinity TXA2/PGH2 receptors suggests that the primary site of action of these drugs is on the platelet membrane.« less

  13. An Inherited Platelet Function Defect in Basset Hounds

    PubMed Central

    Johnstone, I. B.; Lotz, F.

    1979-01-01

    An inherited platelet function defect occurring in a family of basset hounds has been described. The trait is transmitted as an autosomal characteristic and appears to be expressed clinically only in the homozygous state. The characteristics of this platelet defect include: 1) marked bleeding tendencies and prolonged skin bleeding times in either male or female dogs. 2) normal blood coagulation mechanism. 3) adequate numbers of circulating platelets which appear morphologically normal by light microscopy. 4) normal whole blood clot retraction. 5) deficient in vivo platelet consumption and in vitro platelet retention in glass bead columns. 6) defective ADP-induced platelet aggregation in homozygotes, apparently normal ADP response in heterozygotes, and defective collagen-induced platelet aggregation in both. PMID:509382

  14. Nicergoline inhibits human platelet Ca2+ signalling through triggering a microtubule‐dependent reorganization of the platelet ultrastructure

    PubMed Central

    Walford, T; Musa, F I

    2015-01-01

    Background and Purpose Recently, we demonstrated that a pericellular Ca2+ recycling system potentiates agonist‐evoked Ca2+ signalling and granule secretion in human platelets and hypothesized a role for the membrane complex (MC) in orchestrating the accumulation of Ca2+ in the pericellular region. Previous work has demonstrated that treatment with high concentrations of nicergoline may disrupt the MC through an ability to trigger a re‐organization of the dense tubular system. Experiments were therefore performed to assess whether nicergoline‐induced changes in platelet ultrastructure affects thrombin‐evoked Ca2+ fluxes and dense granule secretion. Experimental Approach Thrombin‐evoked Ca2+ fluxes were monitored in Fura‐2‐ or Fluo‐5N‐loaded human platelets, or using platelet suspensions containing Fluo‐4 or Rhod‐5N K+ salts. Fluorescence microscopy was utilized to monitor microtubule structure and intracellular Ca2+ store distribution in TubulinTracker‐ and Fluo‐5N‐loaded platelets respectively. Dense granule secretion was monitored using luciferin–luciferase. Key Results Nicergoline treatment inhibited thrombin‐evoked Ca2+ signalling and induced alterations in the microtubule structure and the distribution of intracellular Ca2+ stores in platelets. Nicergoline altered the generation and spreading of thrombin‐induced pericellular Ca2+ signals and almost completely prevented dense granule secretion. Stabilization of microtubules using taxol reversed most effects of nicergoline on platelet Ca2+ signalling and partially reversed its effects on dense granule secretion. Conclusions and Implications Nicergoline‐induced alterations to platelet ultrastructure disrupt platelet Ca2+ signalling in a manner that would be predicted if the MC had been disrupted. These data suggest that nicergoline may be a useful prototype for the discovery of novel MC‐disrupting anti‐thrombotics. PMID:26450366

  15. Induced pluripotent stem cell-derived gamete-associated proteins incite rejection of induced pluripotent stem cells in syngeneic mice.

    PubMed

    Kim, Eun-Mi; Manzar, Gohar; Zavazava, Nicholas

    2017-06-01

    The safety of induced pluripotent stem cells (iPSCs) in autologous recipients has been questioned after iPSCs, but not embryonic stem cells (ESCs), were reported to be rejected in syngeneic mice. This important topic has remained controversial because there has not been a mechanistic explanation for this phenomenon. Here, we hypothesize that iPSCs, but not ESCs, readily differentiate into gamete-forming cells that express meiotic antigens normally found in immune-privileged gonads. Because peripheral blood T cells are not tolerized to these antigens in the thymus, gamete-associated-proteins (GAPs) sensitize T cells leading to rejection. Here, we provide evidence that GAPs expressed in iPSC teratomas, but not in ESC teratomas, are responsible for the immunological rejection of iPSCs. Furthermore, silencing the expression of Stra8, 'the master regulator of meiosis', in iPSCs, using short hairpin RNA led to significant abrogation of the rejection of iPSCs, supporting our central hypothesis that GAPs expressed after initiation of meiosis in iPSCs were responsible for rejection. In contrast to iPSCs, iPSC-derivatives, such as haematopoietic progenitor cells, are able to engraft long-term into syngeneic recipients because they no longer express GAPs. Our findings, for the first time, provide a unifying explanation of why iPSCs, but not ESCs, are rejected in syngeneic recipients, ending the current controversy on the safety of iPSCs and their derivatives. © 2017 John Wiley & Sons Ltd.

  16. Platelet-activated clotting time does not measure platelet reactivity during cardiac surgery.

    PubMed

    Shore-Lesserson, L; Ammar, T; DePerio, M; Vela-Cantos, F; Fisher, C; Sarier, K

    1999-08-01

    Platelet dysfunction is a major contributor to bleeding after cardiopulmonary bypass (CPB), yet it remains difficult to diagnose. A point-of-care monitor, the platelet-activated clotting time (PACT), measures accelerated shortening of the kaolin-activated clotting time by addition of platelet activating factor. The authors sought to evaluate the clinical utility of the PACT by conducting serial measurements of PACT during cardiac surgery and correlating postoperative measurements with blood loss. In 50 cardiac surgical patients, blood was sampled at 10 time points to measure PACT. Simultaneously, platelet reactivity was measured by the thrombin receptor agonist peptide-induced expression of P-selectin, using flow cytometry. These tests were temporally analyzed. PACT values, P-selectin expression, and other coagulation tests were analyzed for correlation with postoperative chest tube drainage. PACT and P-selectin expression were maximally reduced after protamine administration. Changes in PACT did not correlate with changes in P-selectin expression at any time interval. Total 8-h chest tube drainage did not correlate with any coagulation test at any time point except with P-selectin expression after protamine administration (r = -0.4; P = 0.03). The platelet dysfunction associated with CPB may be a result of depressed platelet reactivity, as shown by thrombin receptor activating peptide-induced P-selectin expression. Changes in PACT did not correlate with blood loss or with changes in P-selectin expression suggesting that PACT is not a specific measure of platelet reactivity.

  17. High Fat Diet Induces Adhesion of Platelets to Endothelium in Two Models of Dyslipidemia

    PubMed Central

    Gonzalez, Jaime; Donoso, Wendy; Díaz, Natalia; Albornoz, María Eliana; Huilcaman, Ricardo; Morales, Erik

    2014-01-01

    Cardiovascular diseases (CVD) represent about 30% of all global deaths. It is currently accepted that, in the atherogenic process, platelets play an important role, contributing to endothelial activation and modulation of the inflammatory phenomenon, promoting the beginning and formation of lesions and their subsequent thrombotic complications. The objective of the present work was to study using immunohistochemistry, the presence of platelets, monocytes/macrophages, and cell adhesion molecules (CD61, CD163, and CD54), in two stages of the atheromatous process. CF-1 mice fed a fat diet were used to obtain early stages of atheromatous process, denominated early stage of atherosclerosis, and ApoE−/− mice fed a fat diet were used to observe advanced stages of atherosclerosis. The CF-1 mice model presented immunostaining on endothelial surface for all three markers studied; the advanced atherosclerosis model in ApoE−/− mice also presented granular immunostaining on lesion thickness, for the same markers. These results suggest that platelets participate in atheromatous process from early stages to advance d stages. High fat diet induces adhesion of platelets to endothelial cells in vivo. These findings support studying the participation of platelets in the formation of atheromatous plate. PMID:25328689

  18. High fat diet induces adhesion of platelets to endothelium in two models of dyslipidemia.

    PubMed

    Gonzalez, Jaime; Donoso, Wendy; Díaz, Natalia; Albornoz, María Eliana; Huilcaman, Ricardo; Morales, Erik; Moore-Carrasco, Rodrigo

    2014-01-01

    Cardiovascular diseases (CVD) represent about 30% of all global deaths. It is currently accepted that, in the atherogenic process, platelets play an important role, contributing to endothelial activation and modulation of the inflammatory phenomenon, promoting the beginning and formation of lesions and their subsequent thrombotic complications. The objective of the present work was to study using immunohistochemistry, the presence of platelets, monocytes/macrophages, and cell adhesion molecules (CD61, CD163, and CD54), in two stages of the atheromatous process. CF-1 mice fed a fat diet were used to obtain early stages of atheromatous process, denominated early stage of atherosclerosis, and ApoE(-/-) mice fed a fat diet were used to observe advanced stages of atherosclerosis. The CF-1 mice model presented immunostaining on endothelial surface for all three markers studied; the advanced atherosclerosis model in ApoE(-/-) mice also presented granular immunostaining on lesion thickness, for the same markers. These results suggest that platelets participate in atheromatous process from early stages to advance d stages. High fat diet induces adhesion of platelets to endothelial cells in vivo. These findings support studying the participation of platelets in the formation of atheromatous plate.

  19. Activated Platelets Induce Endothelial Cell Activation via an Interleukin-1β Pathway in Systemic Lupus Erythematosus

    PubMed Central

    Nhek, Sokha; Clancy, Robert; Lee, Kristen A.; Allen, Nicole M.; Barrett, Tessa J.; Marcantoni, Emanuela; Nwaukoni, Janet; Rasmussen, Sara; Rubin, Maya; Newman, Jonathan D.; Buyon, Jill P.; Berger, Jeffrey S.

    2017-01-01

    Objective Systemic lupus erythematosus (SLE) is associated with the premature development of cardiovascular disease. The platelet–endothelium interaction is important in the pathogenesis of cardiovascular disease. In this study, we investigated the platelet phenotype from patients with SLE and matched controls, and their effect on endothelial cells. Approach and Results Platelet aggregability was measured in 54 SLE subjects off antiplatelet therapy (mean age 40.1±12.8 years; 82% female; 37% white) with age- and sex-matched controls. Platelets were coincubated with human umbilical vein endothelial cells (HUVECs) and changes to gene expression assessed by an RNA array and quantitative reverse transcription polymerase chain reaction. SLE disease activity index ranged from 0 to 22 (mean 5.1±3.9). Compared with controls, patients with SLE had significantly increased monocyte and leukocyte–platelet aggregation and platelet aggregation in response to submaximal agonist stimulation. An agnostic microarray of HUVECs cocultured with SLE platelets found a platelet-mediated effect on endothelial gene pathways involved in cell activation. Sera from SLE versus control subjects significantly increased (1) activation of control platelets; (2) platelet adhesion to HUVECs; (3) platelet-induced HUVEC gene expression of interleukin-8, and intercellular adhesion molecule 1; and (4) proinflammatory gene expression in HUVECs, mediated by interleukin-1β–dependent pathway. Incubation of SLE-activated platelets with an interleukin-1β–neutralizing antibody or HUVECs pretreated with interleukin-1 receptor antibodies attenuated the platelet-mediated activation of endothelial cells. Conclusions Platelet activity measurements and subsequent interleukin-1β–dependent activation of the endothelium are increased in subjects with SLE. Platelet–endothelial interactions may play a role in the pathogenesis of cardiovascular disease in patients with SLE. PMID:28153882

  20. Subcutaneous Administration of Low-Molecular-Weight Heparin to Horses Inhibits Ex Vivo Equine Herpesvirus Type 1-Induced Platelet Activation

    PubMed Central

    Stokol, Tracy; Serpa, Priscila B. S.; Brooks, Marjory B.; Divers, Thomas; Ness, Sally

    2018-01-01

    Equine herpesvirus type 1 (EHV-1) is a major cause of infectious respiratory disease, abortion and neurologic disease. Thrombosis in placental and spinal vessels and subsequent ischemic injury in EHV-1-infected horses manifests clinically as abortion and myeloencephalopathy. We have previously shown that addition of heparin anticoagulants to equine platelet-rich plasma (PRP) can abolish ex vivo EHV-1-induced platelet activation. The goal of this study was to test whether platelets isolated from horses treated with unfractionated heparin (UFH) or low-molecular-weight heparin (LMWH) were resistant to ex vivo EHV-1-induced activation. In a masked, block-randomized placebo-controlled cross-over trial, 9 healthy adult horses received 4 subcutaneous injections at q. 12 h intervals of one of the following treatments: UFH (100 U/kg loading dose, 3 maintenance doses of 80 U/kg), 2 doses of LMWH (enoxaparin) 80 U/kg 24 h apart with saline at the intervening 12 h intervals, or 4 doses of saline. Blood samples were collected before treatment and after 36 h, 40 h (4 h after the last injection) and 60 h (24 h after the last injection). Two strains of EHV-1, Ab4 and RacL11, were added to PRP ex vivo and platelet membrane expression of P selectin was measured as a marker of platelet activation. Drug concentrations were monitored in a Factor Xa inhibition (anti-Xa) bioassay. We found that LMWH, but not UFH, inhibited platelet activation induced by low concentrations (1 × 106 plaque forming units/mL) of both EHV-1 strains at 40 h. At this time point, all horses had anti-Xa activities above 0.1 U/ml (range 0.15–0.48 U/ml) with LMWH, but not UFH. By 60 h, a platelet inhibitory effect was no longer detected and anti-Xa activity had decreased (range 0.03 to 0.07 U/ml) in LMWH-treated horses. Neither heparin inhibited platelet activation induced by high concentrations (5 × 106 plaque forming units/mL) of the RacL11 strain. We found substantial between horse

  1. Phosphatidylserine-mediated platelet clearance by endothelium decreases platelet aggregates and procoagulant activity in sepsis.

    PubMed

    Ma, Ruishuang; Xie, Rui; Yu, Chengyuan; Si, Yu; Wu, Xiaoming; Zhao, Lu; Yao, Zhipeng; Fang, Shaohong; Chen, He; Novakovic, Valerie; Gao, Chunyan; Kou, Junjie; Bi, Yayan; Thatte, Hemant S; Yu, Bo; Yang, Shufen; Zhou, Jin; Shi, Jialan

    2017-07-10

    The mechanisms that eliminate activated platelets in inflammation-induced disseminated intravascular coagulation (DIC) in micro-capillary circulation are poorly understood. This study explored an alternate pathway for platelet disposal mediated by endothelial cells (ECs) through phosphatidylserine (PS) and examined the effect of platelet clearance on procoagulant activity (PCA) in sepsis. Platelets in septic patients demonstrated increased levels of surface activation markers and apoptotic vesicle formation, and also formed aggregates with leukocytes. Activated platelets adhered were and ultimately digested by ECs in vivo and in vitro. Blocking PS on platelets or αvβ3 integrin on ECs attenuated platelet clearance resulting in increased platelet count in a mouse model of sepsis. Furthermore, platelet removal by ECs resulted in a corresponding decrease in platelet-leukocyte complex formation and markedly reduced generation of factor Xa and thrombin on platelets. Pretreatment with lactadherin significantly increased phagocytosis of platelets by approximately 2-fold, diminished PCA by 70%, prolonged coagulation time, and attenuated fibrin formation by 50%. Our results suggest that PS-mediated clearance of activated platelets by the endothelium results in an anti-inflammatory, anticoagulant, and antithrombotic effect that contribute to maintaining platelet homeostasis during acute inflammation. These results suggest a new therapeutic target for impeding the development of DIC.

  2. Potentiation by adrenaline of human platelet activation and the inhibition by the alpha-adrenergic antagonist nicergoline of platelet adhesion, secretion and aggregation.

    PubMed

    Lanza, F; Cazenave, J P; Beretz, A; Sutter-Bay, A; Kretz, J G; Kieny, R

    1986-08-01

    Adrenaline (1 to 10 microM) can induce the aggregation of human platelets suspended in citrated plasma but does not induce the aggregation of washed human platelets at doses as high as 1 mM, although these platelets respond normally to ADP, PAF-acether, collagen, arachidonic acid, thrombin, the endoperoxide analog U-46619 and the Ca2+ ionophore A23187. Adrenaline (0.5 microM) potentiates the aggregation and secretion induced by all the previous agonists in citrated platelet-rich plasma (cPRP) or in washed platelets. The activation by adrenaline of human platelets is mediated by alpha 2-adrenergic receptors, as demonstrated by inhibition with a series of adrenergic antagonists. The alpha-adrenergic antagonist nicergoline inhibits the activation of human platelets by adrenaline in the following situations: nicergoline inhibits the aggregation and secretion caused by adrenaline in cPRP (IC50 0.22 microM and 0.28 microM respectively); nicergoline inhibits the aggregation and secretion induced by the combination of adrenaline and each aggregating agent listed above in cPRP (IC50 ranging from 0.1 to 2.5 microM) or in washed platelets (IC50 ranging from 0.1 to 0.8 microM); nicergoline inhibits the binding of 3H-yohimbine to washed human platelets (IC50 0.26 microM); the intravenous administration of nicergoline (0.5 mg/kg per day) to patients inhibits significantly the ex vivo response of their platelets to adrenaline in cPRP. High concentrations of nicergoline also inhibit the aggregation and secretion induced by the aggregating agents listed above in cPRP (IC50 range 108 to 670 microM) and in washed platelets (IC50 range 27 to 140 microM) and the adhesion of platelets to collagen-coated surfaces. This latter effect is not mediated through blockade of alpha-adrenoceptors. A possible role of adrenaline in platelet activation in vivo could justify the use of nicergoline (Sermion), an alpha-adrenergic antagonist in combination therapy to prevent arterial thrombosis.

  3. Human Cancer and Platelet Interaction, a Potential Therapeutic Target.

    PubMed

    Wang, Shike; Li, Zhenyu; Xu, Ren

    2018-04-20

    Cancer patients experience a four-fold increase in thrombosis risk, indicating that cancer development and progression are associated with platelet activation. Xenograft experiments and transgenic mouse models further demonstrate that platelet activation and platelet-cancer cell interaction are crucial for cancer metastasis. Direct or indirect interaction of platelets induces cancer cell plasticity and enhances survival and extravasation of circulating cancer cells during dissemination. In vivo and in vitro experiments also demonstrate that cancer cells induce platelet aggregation, suggesting that platelet-cancer interaction is bidirectional. Therefore, understanding how platelets crosstalk with cancer cells may identify potential strategies to inhibit cancer metastasis and to reduce cancer-related thrombosis. Here, we discuss the potential function of platelets in regulating cancer progression and summarize the factors and signaling pathways that mediate the cancer cell-platelet interaction.

  4. Elucidation of flow-mediated tumour cell-induced platelet aggregation using an ultrasound standing wave trap.

    PubMed

    Bazou, D; Santos-Martinez, M J; Medina, C; Radomski, M W

    2011-04-01

    Tumour cells activate and aggregate platelets [tumour cell-induced platelet aggregation (TCIPA)] and this process plays an important role in the successful metastasis of cancer cells. To date, most studies on TCIPA have been conducted under no-flow conditions. In this study, we have investigated TCIPA in real time under flow conditions, using an ultrasound standing wave trap that allows formation and levitation of cancer cell clusters in suspension, thus mimicking the conditions generated by flowing blood. Using 59M adenocarcinoma and HT1080 fibrosarcoma cells and human platelets, cancer cell cluster-platelet aggregates were imaged in real time using epi-fluorescence microscopy (F-actin) and investigated in detail using confocal microscopy (matrix metalloproteinase-2-GPIIb/IIIa co-localization) and scanning electron and helium-ion microscopy (<1 nm resolution). The release of gelatinases from aggregates was studied using zymography. We found that platelet activation and aggregation takes place on the surface of cancer cells (TCIPA), leading to time-dependent disruption of cancer cell clusters. Pharmacological modulation of TCIPA revealed that EDTA, prostacyclin, o-phenanthroline and apyrase significantly down-regulated TCIPA and, in turn, delayed cell cluster disruption, However, EGTA and aspirin were ineffective. Pharmacological inhibition of TCIPA correlated with the down-regulation of platelet activation as shown by flow-cytometry assay of platelet P-selectin. Our results show for the first time, that during TCIPA, platelet activation disrupts cancer cell clusters and this can contribute to metastasis. Thus, selective targeting of platelet aggregate-cancer cell clusters may be an important strategy to control metastasis. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  5. Elucidation of flow-mediated tumour cell-induced platelet aggregation using an ultrasound standing wave trap

    PubMed Central

    Bazou, D; Santos-Martinez, MJ; Medina, C; Radomski, MW

    2011-01-01

    BACKGROUND AND PURPOSE Tumour cells activate and aggregate platelets [tumour cell-induced platelet aggregation (TCIPA)] and this process plays an important role in the successful metastasis of cancer cells. To date, most studies on TCIPA have been conducted under no-flow conditions. In this study, we have investigated TCIPA in real time under flow conditions, using an ultrasound standing wave trap that allows formation and levitation of cancer cell clusters in suspension, thus mimicking the conditions generated by flowing blood. EXPERIMENTAL APPROACH Using 59M adenocarcinoma and HT1080 fibrosarcoma cells and human platelets, cancer cell cluster–platelet aggregates were imaged in real time using epi-fluorescence microscopy (F-actin) and investigated in detail using confocal microscopy (matrix metalloproteinase-2-GPIIb/IIIa co-localization) and scanning electron and helium-ion microscopy (<1 nm resolution). The release of gelatinases from aggregates was studied using zymography. KEY RESULTS We found that platelet activation and aggregation takes place on the surface of cancer cells (TCIPA), leading to time-dependent disruption of cancer cell clusters. Pharmacological modulation of TCIPA revealed that EDTA, prostacyclin, o-phenanthroline and apyrase significantly down-regulated TCIPA and, in turn, delayed cell cluster disruption, However, EGTA and aspirin were ineffective. Pharmacological inhibition of TCIPA correlated with the down-regulation of platelet activation as shown by flow-cytometry assay of platelet P-selectin. CONCLUSION AND IMPLICATIONS Our results show for the first time, that during TCIPA, platelet activation disrupts cancer cell clusters and this can contribute to metastasis. Thus, selective targeting of platelet aggregate–cancer cell clusters may be an important strategy to control metastasis. PMID:21182493

  6. Acidosis downregulates platelet haemostatic functions and promotes neutrophil proinflammatory responses mediated by platelets.

    PubMed

    Etulain, Julia; Negrotto, Soledad; Carestia, Agostina; Pozner, Roberto Gabriel; Romaniuk, María Albertina; D'Atri, Lina Paola; Klement, Giannoula Lakka; Schattner, Mirta

    2012-01-01

    Acidosis is one of the hallmarks of tissue injury such as trauma, infection, inflammation, and tumour growth. Although platelets participate in the pathophysiology of all these processes, the impact of acidosis on platelet biology has not been studied outside of the quality control of laboratory aggregation assays or platelet transfusion optimization. Herein, we evaluate the effect of physiologically relevant changes in extracellular acidosis on the biological function of platelets, placing particular emphasis on haemostatic and secretory functions. Platelet haemostatic responses such as adhesion, spreading, activation of αIIbβ3 integrin, ATP release, aggregation, thromboxane B2 generation, clot retraction and procoagulant activity including phosphatidilserine exposure and microparticle formation, showed a statistically significant inhibition of thrombin-induced changes at pH of 7.0 and 6.5 compared to the physiological pH (7.4). The release of alpha granule content was differentially regulated by acidosis. At low pH, thrombin or collagen-induced secretion of vascular endothelial growth factor and endostatin were dramatically reduced. The release of von Willebrand factor and stromal derived factor-1α followed a similar, albeit less dramatic pattern. In contrast, the induction of CD40L was not changed by low pH, and P-selectin exposure was significantly increased. While the generation of mixed platelet-leukocyte aggregates and the increased chemotaxis of neutrophils mediated by platelets were further augmented under acidic conditions in a P-selectin dependent manner, the increased neutrophil survival was independent of P-selectin expression. In conclusion, our results indicate that extracellular acidosis downregulates most of the haemostatic platelet functions, and promotes those involved in amplifying the neutrophil-mediated inflammatory response.

  7. Transient activation of c-MYC expression is critical for efficient platelet generation from human induced pluripotent stem cells

    PubMed Central

    Takayama, Naoya; Nishimura, Satoshi; Nakamura, Sou; Shimizu, Takafumi; Ohnishi, Ryoko; Endo, Hiroshi; Yamaguchi, Tomoyuki; Otsu, Makoto; Nishimura, Ken; Nakanishi, Mahito; Sawaguchi, Akira; Nagai, Ryozo; Takahashi, Kazutoshi; Yamanaka, Shinya; Nakauchi, Hiromitsu

    2010-01-01

    Human (h) induced pluripotent stem cells (iPSCs) are a potentially abundant source of blood cells, but how best to select iPSC clones suitable for this purpose from among the many clones that can be simultaneously established from an identical source is not clear. Using an in vitro culture system yielding a hematopoietic niche that concentrates hematopoietic progenitors, we show that the pattern of c-MYC reactivation after reprogramming influences platelet generation from hiPSCs. During differentiation, reduction of c-MYC expression after initial reactivation of c-MYC expression in selected hiPSC clones was associated with more efficient in vitro generation of CD41a+CD42b+ platelets. This effect was recapitulated in virus integration-free hiPSCs using a doxycycline-controlled c-MYC expression vector. In vivo imaging revealed that these CD42b+ platelets were present in thrombi after laser-induced vessel wall injury. In contrast, sustained and excessive c-MYC expression in megakaryocytes was accompanied by increased p14 (ARF) and p16 (INK4A) expression, decreased GATA1 expression, and impaired production of functional platelets. These findings suggest that the pattern of c-MYC expression, particularly its later decline, is key to producing functional platelets from selected iPSC clones. PMID:21098095

  8. Mitoquinone restores platelet production in irradiation-induced thrombocytopenia

    PubMed Central

    Ramsey, Haley; Zhang, Qi; Wu, Mei X.

    2014-01-01

    Myelodysplastic syndromes (MDS) are hallmarked by cytopenia and dysplasia of hematopoietic cells, often accompanied by mitochondrial dysfunction and increases of reactive oxygen species (ROS) within affected cells. However, it is not known whether the increase in ROS production is an instigator or a byproduct of the disease. The present investigation shows that mice lacking immediate early responsive gene X-1 (IEX-1) exhibit lineage specific increases in ROS production and abnormal cytology upon radiation in blood cell types commonly identified in MDS. These affected cell lineages chiefly have the bone marrow as a primary site of differentiation and maturation, while cells with extramedullary differentiation and maturation like B- and T-cells remain unaffected. Increased ROS production is likely to contribute significantly to irradiation-induced thrombocytopenia in the absence of IEX-1 as demonstrated by effective reversal of the disorder after mitoquinone (MitoQ) treatment, a mitochondria-specific antioxidant. MitoQ reduced intracellular ROS production within megakaryocytes and platelets. It also normalized mitochondrial membrane potential and superoxide production in platelets in irradiated, IEX-1 deficient mice. The lineage-specific effects of mitochondrial ROS may help us understand the etiology of thrombocytopenia in association with MDS in a subgroup of the patients. PMID:25025394

  9. Pharmacological intervention against bubble-induced platelet aggregation in a rat model of decompression sickness

    PubMed Central

    Vallée, Nicolas; Ignatescu, Mihaela; Bourdon, Lionel

    2011-01-01

    Decompression sickness (DCS) with alterations in coagulation system and formation of platelet thrombi occurs when a subject is subjected to a reduction in environmental pressure. Blood platelet consumption after decompression is clearly linked to bubble formation in humans and offers an index for evaluating DCS severity in animal models. Previous studies highlighted a predominant involvement of platelet activation and thrombin generation in bubble-induced platelet aggregation (BIPA). To study the mechanism of the BIPA in DCS, we examined the effect of acetylsalicylic acid (ASA), heparin (Hep), and clopidogrel (Clo), with anti-thrombotic dose pretreatment in a rat model of DCS. Male Sprague-Dawley rats (n = 208) were randomly assigned to one experimental group treated before the hyperbaric exposure and decompression protocol either with ASA (3×100 mg·kg−1·day−1, n = 30), Clo (50 mg·kg−1·day−1, n = 60), Hep (500 IU/kg, n = 30), or to untreated group (n = 49). Rats were first compressed to 1,000 kPa (90 msw) for 45 min and then decompressed to surface in 38 min. In a control experiment, rats were treated with ASA (n = 13), Clo (n = 13), or Hep (n = 13) and maintained at atmospheric pressure for an equivalent period of time. Onset of DCS symptoms and death were recorded during a 60-min observation period after surfacing. DCS evaluation included pulmonary and neurological signs. Blood samples for platelet count (PC) were taken 30 min before hyperbaric exposure and 30 min after surfacing. Clo reduces the DCS mortality risk (mortality rate: 3/60 with Clo, 15/30 with ASA, 21/30 with Hep, and 35/49 in the untreated group) and DCS severity (neurological DCS incidence: 9/60 with Clo, 6/30 with ASA, 5/30 with Hep, and 12/49 in the untreated group). Clo reduced fall in platelet count and BIPA (−4,5% with Clo, −19.5% with ASA, −19,9% with Hep, and −29,6% in the untreated group). ASA, which inhibits the thromboxane A2 pathway, and Hep, which inhibits thrombin

  10. Trivalent methylated arsenical-induced phosphatidylserine exposure and apoptosis in platelets may lead to increased thrombus formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, Ok-Nam; Lim, Kyung-Min; AMOREPACIFIC CO/R and D Center, Gyeonggi-do 446-729

    2009-09-01

    Trivalent methylated metabolites of arsenic, monomethylarsonous acid (MMA{sup III}) and dimethylarsinous acid (DMA{sup III}), have been found highly reactive and toxic in various cells and in vivo animal models, suggesting their roles in the arsenic-associated toxicity. However, their effects on cardiovascular system including blood cells, one of the most important targets for arsenic toxicity, remain poorly understood. Here we found that MMA{sup III} and DMA{sup III} could induce procoagulant activity and apoptosis in platelets, which play key roles in the development of various cardiovascular diseases (CVDs) through excessive thrombus formation. In freshly isolated human platelets, treatment of MMA{sup III} resultedmore » in phosphatidylserine (PS) exposure, a hallmark of procoagulant activation, accompanied by distinctive apoptotic features including mitochondrial membrane potential disruption, cytochrome c release, and caspase-3 activation. These procoagulant activation and apoptotic features were found to be mediated by the depletion of protein thiol and intracellular ATP, and flippase inhibition by MMA{sup III}, while the intracellular calcium increase or reactive oxygen species generation was not involved. Importantly, increased platelet procoagulant activity by MMA{sup III} resulted in enhanced blood coagulation and excessive thrombus formation in a rat in vivo venous thrombosis model. DMA{sup III} also induced PS-exposure with apoptotic features mediated by protein thiol depletion, which resulted in enhanced thrombin generation. In summary, we believe that this study provides an important evidence for the role of trivalent methylated arsenic metabolites in arsenic-associated CVDs, giving a novel insight into the role of platelet apoptosis in toxicant-induced cardiovascular toxicity.« less

  11. High Residual Collagen-Induced Platelet Reactivity Predicts Development of Restenosis in the Superficial Femoral Artery After Percutaneous Transluminal Angioplasty in Claudicant Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary, Thomas, E-mail: thomas.gary@medunigraz.at; Prüller, Florian, E-mail: florian.prueller@klinikum-graz.at; Raggam, Reinhard, E-mail: reinhard.raggam@klinikum-graz.at

    PurposeAlthough platelet reactivity is routinely inhibited with aspirin after percutaneous angioplasty (PTA) in peripheral arteries, the restenosis rate in the superficial femoral artery (SFA) is high. Interaction of activated platelets and the endothelium in the region of intervention could be one reason for this as collagen in the subendothelium activates platelets.Materials and MethodsA prospective study evaluating on-site platelet reactivity during PTA and its influence on the development of restenosis with a total of 30 patients scheduled for PTA of the SFA. Arterial blood was taken from the PTA site after SFA; platelet function was evaluated with light transmission aggregometry. Aftermore » 3, 6, 12, and 24 months, duplex sonography was performed and the restenosis rate evaluated.ResultsEight out of 30 patients developed a hemodynamically relevant restenosis (>50 % lumen narrowing) in the PTA region during the 24-month follow-up period. High residual collagen-induced platelet reactivity defined as AUC >30 was a significant predictor for the development of restenosis [adjusted odds ratio 11.8 (9.4, 14.2); P = .04].ConclusionsHigh residual collagen-induced platelet reactivity at the interventional site predicts development of restenosis after PTA of the SFA. Platelet function testing may be useful for identifying patients at risk.« less

  12. HMGB1: a novel protein that induced platelets active and aggregation via Toll-like receptor-4, NF-κB and cGMP dependent mechanisms.

    PubMed

    Yang, Xinyu; Wang, Haichao; Zhang, Menmen; Liu, Jin; Lv, Ben; Chen, Fangping

    2015-08-06

    Thrombotic diseases are a group of prevalent and life-threatening diseases. Selective inhibition of pathological thrombosis holds the key to treat variety of thrombotic diseases. The pathological thrombosis can be induced by either tissue necrosis and deregulated inflammation. HMGB1, as an important proinflammatory cytokine and a late mediator, also involves on thrombosis disease. However, the underlying mechanisms are not fully understood. Immunofluorescence, ELISA assay, Platelet Aggregation, Thromboelastogram (TEG) analyzes. Flow cytometric analysis and Western blot analysis were used to investigated the role of HMGB1 in platelet aggregation and obtained following observations. By doing so, we obtained the following observations: i) Highly purified HMGB1 recombinant protein induces platelet aggregation and secretion in a dose-dependent manner in the presence of serum. ii) Low concentration of extracellular HMGB1 could synergistically promote subthreshold concentration of collagen or thrombin induced platelet aggregation. iii) Extracellular HMGB1 promoted platelet aggregation in a platelet-expressed GPIIb/IIIa-dependent manner. iv) We proposed that extracellular HMGB1 seems to promote the phosphorylation of GPIIb/IIIa and subsequent platelet aggregation via TLR4/NF-κB and cGMP pathway. In this study, we provide evidence for the hypothesis that HMGB1 interact with platelet might play an important role in the haemostasis and thrombotic diseases. Our research might be provide an interesting avenue for the treatment of thrombotic diseases in the future.

  13. Quantitative Glycoproteomic Analysis Identifies Platelet-Induced Increase of Monocyte Adhesion via the Up-Regulation of Very Late Antigen 5.

    PubMed

    Huang, Jiqing; Kast, Juergen

    2015-08-07

    Physiological stimuli, such as thrombin, or pathological stimuli, such as lysophosphatidic acid (LPA), activate platelets circulating in blood. Once activated, platelets bind to monocytes via P-selectin-PSGL-1 interactions but also release the stored contents of their granules. These platelet releasates, in addition to direct platelet binding, activate monocytes and facilitate their recruitment to atherosclerotic sites. Consequently, understanding the changes platelet releasates induce in monocyte membrane proteins is critical. We studied the glyco-proteome changes of THP-1 monocytic cells affected by LPA- or thrombin-induced platelet releasates. We employed lectin affinity chromatography combined with filter aided sample preparation to achieve high glyco- and membrane protein and protein sequence coverage. Using stable isotope labeling by amino acids in cell culture, we quantified 1715 proteins, including 852 membrane and 500 glycoproteins, identifying the up-regulation of multiple proteins involved in monocyte extracellular matrix binding and transendothelial migration. Flow cytometry indicated expression changes of integrin α5, integrin β1, PECAM-1, and PSGL-1. The observed increase in monocyte adhesion to fibronectin was determined to be mediated by the up-regulation of very late antigen 5 via a P-selectin-PSGL-1 independent mechanism. This novel aspect could be validated on CD14+ human primary monocytes, highlighting the benefits of the improved enrichment method regarding high membrane protein coverage and reliable quantification.

  14. The trans-sialidase from Trypanosoma cruzi induces thrombocytopenia during acute Chagas' disease by reducing the platelet sialic acid contents.

    PubMed

    Tribulatti, María Virginia; Mucci, Juan; Van Rooijen, Nico; Leguizamón, María Susana; Campetella, Oscar

    2005-01-01

    Strong thrombocytopenia is observed during acute infection with Trypanosoma cruzi, the parasitic protozoan agent of American trypanosomiasis or Chagas' disease. The parasite sheds trans-sialidase, an enzyme able to mobilize the sialyl residues on cell surfaces, which is distributed in blood and is a virulence factor. Since the sialic acid content on the platelet surface is crucial for determining the half-life of platelets in blood, we examined the possible involvement of the parasite-derived enzyme in thrombocytopenia induction. We found that a single intravenous injection of trans-sialidase into naive mice reduced the platelet count by 50%, a transient effect that lasted as long as the enzyme remained in the blood. CD43(-/-) mice were affected to a similar extent. When green fluorescent protein-expressing platelets were treated in vitro with trans-sialidase, their sialic acid content was reduced together with their life span, as determined after transfusion into naive animals. No apparent deleterious effect on the bone marrow was observed. A central role for Kupffer cells in the clearance of trans-sialidase-altered platelets was revealed after phagocyte depletion by administration of clodronate-containing liposomes and splenectomy. Consistent with this, parasite strains known to exhibit more trans-sialidase activity induced heavier thrombocytopenia. Finally, the passive transfer of a trans-sialidase-neutralizing monoclonal antibody to infected animals prevented the clearance of transfused platelets. Results reported here strongly support the hypothesis that the trans-sialidase is the virulence factor that, after depleting the sialic acid content of platelets, induces the accelerated clearance of the platelets that leads to the thrombocytopenia observed during acute Chagas' disease.

  15. Characterization of a potent platelet aggregation inducer from Cerastes cerastes (Egyptian sand viper) venom.

    PubMed

    Basheer, A R; el-Asmar, M F; Soslau, G

    1995-07-03

    A potent, proteinaceous inducer of platelet aggregation designated as IVa, has been purified to homogeneity from Cerastes cerastes venom by molecular sieve and ion exchange chromatography. It is composed of 2 subunits with total M(r) of 62,000 as shown by native gel chromatography and chemical cross-linking with disuccinimidyl suberate. It is not clear at the present time whether both subunits are identical gene products, however, both have identical N-terminal sequences for the first 15 amino acids. The protein has a pI above 9.6. IVa (0.1 micrograms/ml) could aggregate platelets up to 80% and was inhibited by p-APMSF, leupeptin, iodoacetamide, protein kinase C inhibitor, phosphatase inhibitor, ATP and PGE1, while it was insensitive to acetylsalicylic acid, ADP scavenger system, protein kinase A inhibitor and hirudin. Protein IVa is a serine proteinase with thrombin-like activity as it hydrolysed thrombin chromogenic substrate CBS 34.47, its aggregatory activity was partially inhibited by monoclonal antibodies against GPIb and the thrombin receptor, as was the thrombin, and its ability to induce intracellular Ca2+ release was blocked by pretreating platelets with thrombin. Unlike thrombin, the IVa protein showed very weak coagulant activity as indicated by plasma recalcification time and fibrinogen clotting time although it could hydrolyse fibrinogen alpha-chains.

  16. High glucose inhibits the aspirin-induced activation of the nitric oxide/cGMP/cGMP-dependent protein kinase pathway and does not affect the aspirin-induced inhibition of thromboxane synthesis in human platelets.

    PubMed

    Russo, Isabella; Viretto, Michela; Barale, Cristina; Mattiello, Luigi; Doronzo, Gabriella; Pagliarino, Andrea; Cavalot, Franco; Trovati, Mariella; Anfossi, Giovanni

    2012-11-01

    Since hyperglycemia is involved in the "aspirin resistance" occurring in diabetes, we aimed at evaluating whether high glucose interferes with the aspirin-induced inhibition of thromboxane synthesis and/or activation of the nitric oxide (NO)/cGMP/cGMP-dependent protein kinase (PKG) pathway in platelets. For this purpose, in platelets from 60 healthy volunteers incubated for 60 min with 5-25 mmol/L d-glucose or iso-osmolar mannitol, we evaluated the influence of a 30-min incubation with lysine acetylsalicylate (L-ASA; 1-300 μmol/L) on 1) platelet function under shear stress; 2) aggregation induced by sodium arachidonate or ADP; 3) agonist-induced thromboxane production; and 4) NO production, cGMP synthesis, and PKG-induced vasodilator-stimulated phosphoprotein phosphorylation. Experiments were repeated in the presence of the antioxidant agent amifostine. We observed that platelet exposure to 25 mmol/L d-glucose, but not to iso-osmolar mannitol, 1) reduced the ability of L-ASA to inhibit platelet responses to agonists; 2) did not modify the L-ASA-induced inhibition of thromboxane synthesis; and 3) prevented the L-ASA-induced activation of the NO/cGMP/PKG pathway. Preincubation with amifostine reversed the high-glucose effects. Thus, high glucose acutely reduces the antiaggregating effect of aspirin, does not modify the aspirin-induced inhibition of thromboxane synthesis, and inhibits the aspirin-induced activation of the NO/cGMP/PKG pathway. These results identify a mechanism by which high glucose interferes with the aspirin action.

  17. Exercise-induced myocardial ischemia in patients with coronary artery disease: lack of evidence for platelet activation or fibrin formation in peripheral venous blood.

    PubMed

    Marcella, J J; Nichols, A B; Johnson, L L; Owen, J; Reison, D S; Kaplan, K L; Cannon, P J

    1983-05-01

    The hypothesis that exercise-induced myocardial ischemia is associated with abnormal platelet activation and fibrin formation or dissolution was tested in patients with coronary artery disease undergoing upright bicycle stress testing. In vivo platelet activation was assessed by radioimmunoassay of platelet factor 4, beta-thrombo-globulin and thromboxane B2. In vivo fibrin formation was assessed by radioimmunoassay of fibrinopeptide A, and fibrinolysis was assessed by radioimmunoassay of thrombin-increasable fibrinopeptide B which reflects plasmin cleavage of fibrin I. Peripheral venous concentrations of these substances were measured in 10 normal subjects and 13 patients with coronary artery disease at rest and during symptom-limited peak exercise. Platelet factor 4, beta-thromboglobulin and thromboxane B2 concentrations were correlated with rest and exercise catecholamine concentrations to determine if exercise-induced elevation of norepinephrine and epinephrine enhances platelet activation. Left ventricular end-diastolic and end-systolic volumes, ejection fraction and segmental wall motion were measured at rest and during peak exercise by first pass radionuclide angiography. All patients with coronary artery disease had documented exercise-induced myocardial ischemia manifested by angina pectoris, ischemic electrocardiographic changes, left ventricular segmental dyssynergy and a reduction in ejection fraction. Rest and peak exercise plasma concentrations were not significantly different for platelet factor 4, beta-thromboglobulin, thromboxane B2, fibrinopeptide A and thrombin-increasable fibrinopeptide B. Peripheral venous concentrations of norepinephrine and epinephrine increased significantly (p less than 0.001) in both groups of patients. The elevated catecholamine levels did not lead to detectable platelet activation. This study demonstrates that enhanced platelet activation, thromboxane release and fibrin formation or dissolution are not detectable in

  18. Selective Inhibition of ADAM17 Efficiently Mediates Glycoprotein Ibα Retention During Ex Vivo Generation of Human Induced Pluripotent Stem Cell‐Derived Platelets

    PubMed Central

    Hirata, Shinji; Murata, Takahiko; Suzuki, Daisuke; Nakamura, Sou; Jono‐Ohnishi, Ryoko; Hirose, Hidenori; Sawaguchi, Akira; Nishimura, Satoshi; Sugimoto, Naoshi

    2016-01-01

    Abstract Donor‐independent platelet concentrates for transfusion can be produced in vitro from induced pluripotent stem cells (iPSCs). However, culture at 37°C induces ectodomain shedding on platelets of glycoprotein Ibα (GPIbα), the von Willebrand factor receptor critical for adhesive function and platelet lifetime in vivo, through temperature‐dependent activation of a disintegrin and metalloproteinase 17 (ADAM17). The shedding can be suppressed by using inhibitors of panmetalloproteinases and possibly of the upstream regulator p38 mitogen‐activated protein kinase (p38 MAPK), but residues of these inhibitors in the final platelet products may be accompanied by harmful risks that prevent clinical application. Here, we optimized the culture conditions for generating human iPSC‐derived GPIbα+ platelets, focusing on culture temperature and additives, by comparing a new and safe selective ADAM17 inhibitor, KP‐457, with previous inhibitors. Because cultivation at 24°C (at which conventional platelet concentrates are stored) markedly diminished the yield of platelets with high expression of platelet receptors, 37°C was requisite for normal platelet production from iPSCs. KP‐457 blocked GPIbα shedding from iPSC platelets at a lower half‐maximal inhibitory concentration than panmetalloproteinase inhibitor GM‐6001, whereas p38 MAPK inhibitors did not. iPSC platelets generated in the presence of KP‐457 exhibited improved GPIbα‐dependent aggregation not inferior to human fresh platelets. A thrombus formation model using immunodeficient mice after platelet transfusion revealed that iPSC platelets generated with KP‐457 exerted better hemostatic function in vivo. Our findings suggest that KP‐457, unlike GM‐6001 or p38 MAPK inhibitors, effectively enhances the production of functional human iPSC‐derived platelets at 37°C, which is an important step toward their clinical application. Stem Cells Translational Medicine 2017;6:720–730 PMID

  19. Activation and desensitization of platelets by platelet-activating factor (PAF) derived from IgE-sensitized basophils. I. Characteristics of the secretory response

    PubMed Central

    1976-01-01

    The secretion of vasoactive amines from rabbit platelets induced by the platelet-activating factor (PAF) derived from IgE-sensitized rabbit basophils, was examined. The secretion required calcium has previously been shown to be noncytotoxic and was optimal in both rate and extent at 37 degrees C and pH 7.2. Different temperature-sensitive steps were rate limiting for secretion above or below 20 degrees C. The rate of secretion was dependent upon the concentration of PAF and also of platelets. Maximal rates were observed with relatively low concentrations of platelets (2.5 X 10(8)/ml), sharply contrasting with other platelet stimuli such as C3 or thrombin. The extent of secretion was dependent upon PAF concentration until a maximum of 50 or 60% of the serotonin was released and then declined with increasing amounts of PAF. This was interpreted to result from the platelets becoming desensitized to the PAF, a process that shuts off the secretion. Such a desensitization was demonstrated and was shown to be stimulus specific, i.e., other stimuli could still induce secretion from PAF-desensitized platelets. PAF extracted with ethanol from the albumin to which it is usually bound during preparation, exhibited similar characteristics, except that secretion of up to 90% of the serotonin was induced. The extracted PAF thus seemed less able to induce the desensitization. Its use did provide important evidence that populations of rabbit platelets are relatively homogenous in their ability to respond to PAF. PMID:3618

  20. Ethanol inhibits thrombin-induced secretion by human platelets at a site distinct from phospholipase C or protein kinase C.

    PubMed Central

    Benistant, C; Rubin, R

    1990-01-01

    Ethanol is known to inhibit the activation of platelets in response to several physiological agonists, but the mechanism of this action is unclear. The addition of physiologically relevant concentrations of ethanol (25-150 mM) to suspensions of washed human platelets resulted in the inhibition of thrombin-induced secretion of 5-hydroxy[14C]tryptamine. Indomethacin was included in the incubation buffer to prevent feedback amplification by arachidonic acid metabolites. Ethanol had no effect on the activation of phospholipase C by thrombin, as determined by the formation of inositol phosphates and the mobilization of intracellular Ca2+. Moreover, ethanol did not interfere with the thrombin-induced formation of diacylglycerol or phosphatidic acid. Stimulation of platelets with phorbol ester (5-50 nM) resulted in 5-hydroxy[14C]tryptamine release comparable with those with threshold doses of thrombin. However, ethanol did not inhibit phorbol-ester-induced secretion. Ethanol also did not interfere with thrombin- or phorbol-ester-induced phosphorylation of myosin light chain (20 kDa) or a 47 kDa protein, a known substrate for protein kinase C. By electron microscopy, ethanol had no effect on thrombin-induced shape change and pseudopod formation, but prevented granule centralization and fusion. The results indicate that ethanol does not inhibit platelet secretion by interfering with the activation of phosphoinositide-specific phospholipase C or protein kinase C by thrombin. Rather, the data demonstrate an inhibition of a Ca2(+)-mediated event such as granule centralization. Images p495-a PMID:2117442

  1. The role of platelet and endothelial GARP in thrombosis and hemostasis.

    PubMed

    Vermeersch, Elien; Denorme, Frederik; Maes, Wim; De Meyer, Simon F; Vanhoorelbeke, Karen; Edwards, Justin; Shevach, Ethan M; Unutmaz, Derya; Fujii, Hodaka; Deckmyn, Hans; Tersteeg, Claudia

    2017-01-01

    Glycoprotein-A Repetitions Predominant protein (GARP or LRRC32) is present on among others human platelets and endothelial cells. Evidence for its involvement in thrombus formation was suggested by full knockout of GARP in zebrafish. To evaluate the role of GARP in platelet physiology and in thrombus formation using platelet and endothelial conditional GARP knock out mice. Platelet and endothelial specific GARP knockout mice were generated using the Cre-loxP recombination system. The function of platelets without GARP was measured by flow cytometry, spreading analysis and aggregometry using PAR4-activating peptide and collagen related peptide. Additionally, clot retraction and collagen-induced platelet adhesion and aggregation under flow were analyzed. Finally, in vivo tail bleeding time, occlusion time of the mesenteric and carotid artery after FeCl3-induced thrombosis were determined in platelet and endothelial specific GARP knock out mice. Platelet specific GARP knockout mice had normal surface GPIb, GPVI and integrin αIIb glycoprotein expression. Although GARP expression was increased upon platelet activation, platelets without GARP displayed normal agonist induced activation, spreading on fibrinogen and aggregation responses. Furthermore, absence of GARP on platelets did not influence clot retraction and had no impact on thrombus formation on collagen-coated surfaces under flow. In line with this, neither the tail bleeding time nor the occlusion time in the carotid- and mesenteric artery after FeCl3-induced thrombus formation in platelet or endothelial specific GARP knock out mice were affected. Evidence is provided that platelet and endothelial GARP are not important in hemostasis and thrombosis in mice.

  2. Platelet activation independent of pulmonary inflammation contributes to diesel exhaust particulate-induced promotion of arterial thrombosis.

    PubMed

    Tabor, Caroline M; Shaw, Catherine A; Robertson, Sarah; Miller, Mark R; Duffin, Rodger; Donaldson, Ken; Newby, David E; Hadoke, Patrick W F

    2016-02-09

    Accelerated thrombus formation induced by exposure to combustion-derived air pollution has been linked to alterations in endogenous fibrinolysis and platelet activation in response to pulmonary and systemic inflammation. We hypothesised that mechanisms independent of inflammation contribute to accelerated thrombus formation following exposure to diesel exhaust particles (DEP). Thrombosis in rats was assessed 2, 6 and 24 h after administration of DEP, carbon black (CB; control carbon nanoparticle), DQ12 quartz microparticles (to induce pulmonary inflammation) or saline (vehicle) by either intra-tracheal instillation (0.5 mg, except Quartz; 0.125 mg) or intravenous injection (0.5 mg/kg). Thrombogenicity was assessed by carotid artery occlusion, fibrinolytic variables and platelet-monocyte aggregates. Measures of inflammation were determined in plasma and bronchoalveolar lavage fluid. Tissue plasminogen activator (t-PA) and plasminogen activator inhibitor (PAI)-1 were measured following direct in vitro exposure of human umbilical vein endothelial cells (HUVECs) to DEP (10-150 μg/mL). Instillation of DEP reduced the time to thrombotic occlusion in vivo, coinciding with the peak of DEP-induced pulmonary inflammation (6 h). CB and DQ12 produced greater inflammation than DEP but did not alter time to thrombotic occlusion. Intravenous DEP produced an earlier (2 h) acceleration of thrombosis (as did CB) without pulmonary or systemic inflammation. DEP inhibited t-PA and PAI-1 release from HUVECs, and reduced the t-PA/PAI-1 ratio in vivo; similar effects in vivo were seen with CB and DQ12. DEP, but not CB or DQ12, increased platelet-monocyte aggregates. DEP accelerates arterial thrombus formation through increased platelet activation. This effect is dissociated from pulmonary and systemic inflammation and from impaired fibrinolytic function.

  3. Shiga Toxin 2 and Lipopolysaccharide Induce Human Microvascular Endothelial Cells To Release Chemokines and Factors That Stimulate Platelet Function

    PubMed Central

    Guessous, Fadila; Marcinkiewicz, Marek; Polanowska-Grabowska, Renata; Kongkhum, Sudawadee; Heatherly, Daniel; Obrig, Tom; Gear, Adrian R. L.

    2005-01-01

    Shiga toxins (Stxs) produced by Shigella dysenteriae type 1 and enterohemorrhagic Escherichia coli are the most common cause of hemolytic-uremic syndrome (HUS). It is well established that vascular endothelial cells, mainly those located in the renal microvasculature, are targets for Stxs. The aim of the present research was to evaluate whether E. coli-derived Shiga toxin 2 (Stx2) incubated with human microvascular endothelial cells (HMEC-1) induces release of chemokines and other factors that might stimulate platelet function. HMEC-1 were exposed for 24 h in vitro to Stx2, lipopolysaccharide (LPS), or the Stx2-LPS combination, and chemokine production was assessed by immunoassay. More interleukin-8 was released than stromal cell-derived factor 1α (SDF-1α) or SDF-1β and RANTES. The Stx2-LPS combination potentiated chemokine release, but Stx2 alone caused more release of SDF-1α at 24 h than LPS or Stx2-LPS did. In the presence of low ADP levels, HMEC-1 supernatants activated platelet function assessed by classical aggregometry, single-particle counting, granule secretion, P-selectin exposure, and the formation of platelet-monocyte aggregates. Supernatants from HMEC-1 exposed only to Stx2 exhibited enhanced exposure of platelet P-selectin and platelet-THP-1 cell interactions. Blockade of platelet cyclooxygenase by indomethacin prevented functional activation. The chemokine RANTES enhanced platelet aggregation induced by SDF-1α, macrophage-derived chemokine, or thymus and activation-regulated chemokine in the presence of very low ADP levels. These data support the hypothesis that microvascular endothelial cells exposed to E. coli O157:H7-derived Stx2 and LPS release chemokines and other factors, which when combined with low levels of primary agonists, such as ADP, cause platelet activation and promote the renal thrombosis associated with HUS. PMID:16299328

  4. Platelet Senescence and Phosphatidylserine Exposure

    PubMed Central

    Dasgupta, Swapan Kumar; Argaiz, Eduardo Rios; Chedid Mercado, Jose Emmanel; Elizondo Maul, Hector Omar; Garza, Jorge; Enriquez, Ana Bety; Abdel-Monem, Hanan; Prakasam, Anthony; Andreeff, Michael; Thiagarajan, Perumal

    2010-01-01

    Background The exposure of phosphatidylserine occurs during platelet activation and during in vitro storage. Phosphatidylserine exposure also occurs during apoptosis following the release of mitochondrial cytochrome c. We have examined the role of cytochrome c release, mitochondrial membrane potential (ΔΨm), and cyclophilin D (CypD) in phosphatidylserine exposure due to activation and storage. Study Design and Methods The exposure of phosphatidylserine and the loss ΔΨm were determined in a flow cytometer using FITC-lactadherin and JC-1, a lipophilic cationic reporter dye. The role of CypD was determined with cyclosporine A and CypD-deficient murine platelets. Cytochrome C induced caspase-3 and Rho associated kinase I (ROCK1) activation were determined by immunoblotting and using their inhibitors. Results Collagen and thrombin-induced exposure of phosphatidylserine was accompanied by a decrease in ΔΨm. Cyclosporin A inhibited the phosphatidylserine exposure and the loss of ΔΨm. CypD-/- mice had decreased loss of ΔΨm and impaired phosphatidylserine exposure. Collagen and thrombin did not induce the release of cytochrome c nor the activation of caspase-3 and ROCK1. In contrast, in platelets stored for more than 5 days, the phosphatidylserine exposure was associated with cytochrome c induced caspase-3 and ROCK1 activation. ABT737, a BH3 mimetic that induces mitochondrial pathway of apoptosis, induced cytochrome c release and activation of caspase-3 and ROCK1 and phosphatidylserine exposure independent of CypD. Conclusion These results show that in stored platelets cytochrome c release and the subsequent activation of caspase-3 and ROCK1 mediate phosphatidylserine exposure and it is distinct from activation-induced phosphatidylserine exposure. PMID:20456701

  5. Unfractionated and Low-Molecular-Weight Heparin and the Phosphodiesterase Inhibitors, IBMX and Cilostazol, Block Ex Vivo Equid Herpesvirus Type-1-Induced Platelet Activation.

    PubMed

    Stokol, Tracy; Serpa, Priscila Beatriz da Silva; Zahid, Muhammad N; Brooks, Marjory B

    2016-01-01

    Equid herpes virus type-1 (EHV-1) is a major pathogen of horses, causing abortion storms and outbreaks of herpes virus myeloencephalopathy. These clinical syndromes are partly attributed to ischemic injury from thrombosis in placental and spinal vessels. The mechanism of thrombosis in affected horses is unknown. We have previously shown that EHV-1 activates platelets through virus-associated tissue factor-initiated thrombin generation. Activated platelets participate in thrombus formation by providing a surface to localize coagulation factor complexes that amplify and propagate thrombin generation. We hypothesized that coagulation inhibitors that suppress thrombin generation (heparins) or platelet inhibitors that impede post-receptor thrombin signaling [phosphodiesterase (PDE) antagonists] would inhibit EHV-1-induced platelet activation ex vivo . We exposed platelet-rich plasma (PRP) collected from healthy horses to the RacL11 abortigenic and Ab4 neuropathogenic strains of EHV-1 at 1 plaque-forming unit/cell in the presence or absence of unfractionated heparin (UFH), low-molecular-weight heparin (LMWH) or the PDE inhibitors, 3-isobutyl-1methylxanthine (IBMX), and cilostazol. We assessed platelet activation status in flow cytometric assays by measuring P-selectin expression. We found that all of the inhibitors blocked EHV-1- and thrombin-induced platelet activation in a dose-dependent manner. Platelet activation in PRP was maximally inhibited at concentrations of 0.05 U/mL UFH and 2.5 μg/mL LMWH. These concentrations represented 0.1-0.2 U/mL anti-factor Xa activity measured in chromogenic assays. Both IBMX and cilostazol showed maximal inhibition of platelet activation at the highest tested concentration of 50 μM, but inhibition was lower than that seen with UFH and LMWH. Our results indicate that heparin anticoagulants and strong non-selective (IBMX) or isoenzyme-3 selective (cilostazol) PDE antagonists inhibit ex vivo EHV-1-induced platelet activation

  6. Inhibitory effects of ethyl pyruvate on platelet aggregation and phosphatidylserine exposure.

    PubMed

    Li, Wenjin; Yang, Xinyu; Peng, Minyuan; Li, Can; Mu, Guangfu; Chen, Fangping

    2017-06-03

    Ethyl pyruvate (EP) is a stable lipophilic pyruvate derivative. Studies demonstrated that EP shows potent anti-oxidation, anti-inflammatory and anti-coagulant effects. Inflammation and coagulation are closely interacted with platelet activation. However, it is unclear whether EP has anti-platelet effects. Therefore, we investigated the anti-platelet effect of EP in this study in vitro. We found that EP inhibited agonists induced platelets aggregation, ATP release and adhesion to collagen. Flow cytometric analysis revealed that EP inhibited agonist induced platelets PAC-1 binding, as well as P-selectin and CD40L expression. The underlying mechanism of action may involve the inhibition of platelet PI3K/Akt and Protein Kinase C (PKC) signaling pathways. Additionally, EP dose dependently inhibited platelet PS exposure induced by high concentration thrombin. Lactate dehydrogenase (LDH) activity assay and mice platelet count implied that EP may have no toxic effect on platelets. Therefore, we are the first to report that EP has potent anti-platelet activity and attenuates platelet PS exposure in vitro, suggesting that the inhibitory effects of EP on platelets may also play important roles in improvement of inflammation and coagulation disorder in related animal models. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Higher platelet reactivity and platelet-monocyte complex formation in Gram-positive sepsis compared to Gram-negative sepsis.

    PubMed

    Tunjungputri, Rahajeng N; van de Heijden, Wouter; Urbanus, Rolf T; de Groot, Philip G; van der Ven, Andre; de Mast, Quirijn

    2017-09-01

    Platelets may play a role in the high risk for vascular complications in Gram-positive sepsis. We compared the platelet reactivity of 15 patients with Gram-positive sepsis, 17 with Gram-negative sepsis and 20 healthy controls using a whole blood flow cytometry-based assay. Patients with Gram-positive sepsis had the highest median fluorescence intensity (MFI) of the platelet membrane expression of P-selectin upon stimulation with high dose adenosine diphosphate (ADP; P = 0.002 vs. Gram-negative and P = 0.005 vs. control groups) and cross-linked collagen-related peptide (CRP-XL; P = 0.02 vs. Gram-negative and P = 0.0001 vs. control groups). The Gram-positive group also demonstrated significantly higher ADP-induced fibrinogen binding (P = 0.001), as wll as platelet-monocyte complex formation (P = 0.02), compared to the Gram-negative group and had the highest plasma levels of platelet factor 4, β-thromboglobulin and soluble P-selectin. In contrast, thrombin-antithrombin complex and C-reactive protein levels were comparable in both patient groups. In conclusion, common Gram-positive pathogens induce platelet hyperreactivity, which may contribute to a higher risk for vascular complications.

  8. Platelet functional and transcriptional changes induced by intralipid infusion.

    PubMed

    Beaulieu, Lea M; Vitseva, Olga; Tanriverdi, Kahraman; Kucukural, Alper; Mick, Eric; Hamburg, Naomi; Vita, Joseph; Freedman, Jane E

    2016-06-02

    Multiple studies have shown the effects of long-term exposure to high-fat or western diets on the vascular system. There is limited knowledge on the acute effects of high circulating fat levels, specifically on platelets, which have a role in many processes, including thrombosis and inflammation. This study investigated the effects of acute, high-fat exposure on platelet function and transcript profile. Twenty healthy participants were given an intravenous infusion of 20% Intralipid emulsion and heparin over 6 hours. Blood samples were taken prior to and the day after infusion to measure platelet function and transcript expression levels. Platelet aggregation was not significantly affected by Intralipid infusion, but, when mitochondria function was inhibited by carbonyl cyanide 3-chlorophenylhydrazone (CCCP) or oligomycin, platelet aggregation was higher in the post-infusion state compared to baseline. Through RNA sequencing, and verified by RT-qPCR, 902 miRNAs and 617 mRNAs were affected by Intralipid infusion. MicroRNAs increased include miR-4259 and miR-346, while miR-517b and miR-517c are both decreased. Pathway analysis identified two clusters significantly enriched, including cell motility. In conclusion, acute exposure to high fat affects mitochondrial-dependent platelet function, as well as the transcript profile.

  9. The role of platelets during reproduction.

    PubMed

    Isermann, Berend; Nawroth, Peter P

    2006-01-01

    The availability of mice with defined defects within the hemostatic system enabled researchers to identify a role the coagulation system for embryonic and placental development. However, the role of platelets during development has only recently been experimentally addressed, giving some insight into potential functions of platelets during development. Thus, a quantitative embryonic platelet defect (severe thrombopenia secondary to NF-E2 deficiency) is associated with an embryonic growth retardation and reduced vascularisation of the placenta. Maternal platelet deficiency is associated with placental hemorrhage, which, however, does not impair embryonic or maternal survival. In vitro studies established that platelets or platelet conditioned medium regulate the invasive properties of human extravillous trophoblast cells and induce a phenotypical switch of trophoblast cells. These data imply that platelets are of relevance during placentation. Conversely, platelets and the formation of platelet-fibrin aggregates are dispensable for the development of the embryo proper, establishing that the lethal phenotypes observed in some embryo slacking coagulation regulators does not result from an inability to form platelet-fibrin aggregates, but likely reflects altered protease dependent signaling during vascular development.

  10. Effects of short-term streptozotocin-induced diabetes and vitamin C on platelet non-enzymatic glycation.

    PubMed

    Batırel, Saime; Yarat, Ayşen; Emekli, Nesrin

    2010-01-01

    Diabetes mellitus is one of the most prevalent metabolic syndromes worldwide. Glycation, a chemical modification of proteins with reducing sugars, indicates a possible explanation for the association between hyperglycemia and the wide variety of tissue pathologies. Non-enzymatic glycation (NEG) of platelet proteins is one of the key mechanisms in the pathogenesis of diabetic complications and may be significant in diabetic atherothrombosis. The aim of this study was to investigate the effects of streptozotocin (STZ)-induced short-term experimental diabetes on the glycation of platelets and to find out if vitamin C affected this glycation. A total of 40 male Wistar albino rats, 200-250 g, were randomly divided into 4 groups (2 diabetic and 2 control groups). The diabetic groups were made diabetic by intraperitoneal injection of STZ (65 mg/kg, citrate buffer pH 4.5). By daily intraperitoneal injection, 80 mg/kg vitamin C (Roche, Turkey) was administered until the end of the experiment. Blood glucose levels of the diabetic groups were significantly higher than those at day 0 and also higher than those of the non-diabetic control groups. The changes in total protein, NEG and vitamin C levels were not statistically significant. Although the differences among the groups were not statistically significant, vitamin C administration increased NEG levels in the diabetic group. The results of this study demonstrate that 8 days of STZ-induced short-term diabetes did not cause a significant increase in NEG of platelets. However, the effect of vitamin C on platelet NEG needs to be further investigated. Copyright © 2011 S. Karger AG, Basel.

  11. Smoking-induced alterations in platelet membrane fluidity and Na(+)/K(+)-ATPase activity in chronic cigarette smokers.

    PubMed

    Padmavathi, Pannuru; Reddy, Vaddi Damodara; Maturu, Paramahamsa; Varadacharyulu, Nallanchakravarthula

    2010-06-30

    Cigarette smoking is a recognized risk factor for cardiovascular diseases and has been implicated in the pathogenesis of atherosclerosis. Platelet adhesiveness and aggregation increases as a result of smoking. Cigarette smoking modifies haemostatic parameters via thrombosis with a consequently higher rate of cardiovascular events, but smoking-induced alterations of platelet membrane fluidity and other changes have not been studied. Thirty experimental and control subjects (mean age 35+/-8) were selected for the study. Experimental subjects had smoked 10+/-2 cigarettes per day for 7-10 years. The plasma lipid profile, platelet carbonyls, sulfhydryl groups, Na(+)/k(+)-ATPase activity, fluidity using a fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH), total cholesterol and phospholipids as well individual phospholipids were determined. Increases in the platelet membrane cholesterol phospholipid (C/P) ratio, phosphotidylethanolamine, phosphotidylserine with decreased phosphotidylcholine, Na(+)/k(+)-ATPase activity, fluidity and no significant change in phosphotidylinositol and sphingomylein, as well as increases in plasma total cholesterol, LDL-cholesterol, protein carbonyls with decreased HDL-cholesterol and sulfhydryl groups were observed in cigarette smokers. Platelet membrane total phospholipids were positively correlated with plasma LDL-cholesterol (r=0.568) and VLDL-cholesterol (r=0.614) in cigarette smokers. Increased plasma LDL-cholesterol, VLDL-cholesterol and total cholesterol might have resulted in the increased C/P ratio and decreased platelet membrane fluidity of cigarette smokers.

  12. Extracellular cyclophilin A activates platelets via EMMPRIN (CD147) and PI3K/Akt signaling, which promotes platelet adhesion and thrombus formation in vitro and in vivo.

    PubMed

    Seizer, Peter; Ungern-Sternberg, Saskia N I V; Schönberger, Tanja; Borst, Oliver; Münzer, Patrick; Schmidt, Eva-Maria; Mack, Andreas F; Heinzmann, David; Chatterjee, Madhumita; Langer, Harald; Malešević, Miroslav; Lang, Florian; Gawaz, Meinrad; Fischer, Gunter; May, Andreas E

    2015-03-01

    Cyclophilin A (CyPA) is secreted under inflammatory conditions by various cell types. Whereas the important role of intracellular CyPA for platelet function has been reported, the effect of extracellular CyPA on platelet function has not been investigated yet. Inhibition of extracellular CyPA through a novel specific inhibitor MM284 reduced thrombus after ferric chloride-induced injury in vivo. In vitro extracellular CyPA enhanced thrombus formation even in CyPA(-/-) platelets. Treatment of isolated platelets with recombinant CyPA resulted in platelet degranulation in a time- and dose-dependent manner. Inhibition of the platelet surface receptor extracellular matrix metalloproteinase inducer (cluster of differentiation 147) by an anticluster of differentiation 147 monoclonal antibody significantly reduced CyPA-dependent platelet degranulation. Pretreatment of platelets with CyPA enhanced their recruitment to mouse carotid arteries after arterial injury, which could be inhibited by an anticluster of differentiation 147 monoclonal antibody (intravital microscopy). The role of extracellular CyPA in adhesion could be confirmed by infusing CyPA(-/-) platelets in CyPA(+/+) mice and by infusing CyPA(+/+) platelets in CyPA(-/-) mice. Stimulation of platelets with CyPA induced phosphorylation of Akt, which could in turn be inhibited in the presence of phosphoinositid-3-kinase inhibitors. Akt-1(-/-) platelets revealed a markedly decreased degranulation on CyPA stimulation. Finally, ADP-induced platelet aggregation was attenuated by MM284, as well as by inhibiting paracrine-secreted CyPA without directly affecting Ca(2+)-signaling. Extracellular CyPA activates platelets via cluster of differentiation 147-mediated phosphoinositid-3-kinase/Akt-signaling, leading to enhanced adhesion and thrombus formation independently of intracellular CyPA. Targeting extracellular CyPA via a specific inhibitor may be a promising strategy for platelet inhibition without affecting critical

  13. Identification of functional VEGF receptors on human platelets.

    PubMed

    Selheim, Frode; Holmsen, Holm; Vassbotn, Flemming S

    2002-02-13

    Platelets secrete platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) upon stimulation. We have demonstrated that platelets have functionally active PDGF alpha-receptors, a transmembrane tyrosine kinase involved in negative feedback regulation. Here we demonstrate the presence of the related VEGF receptors fms-like tyrosine kinase-1 and kinase-insert domain region on human platelets. VEGF itself did not cause platelet aggregation. However, addition of exogenous VEGF to SFRLLN or thrombin-stimulated platelets potentiated platelet aggregation. Moreover, thrombin-induced phosphoinositide 3-kinase and mitogen-activated protein kinase activity were enhanced in the presence of VEGF.

  14. Splenic release of platelets contributes to increased circulating platelet size and inflammation after myocardial infarction.

    PubMed

    Gao, Xiao-Ming; Moore, Xiao-Lei; Liu, Yang; Wang, Xin-Yu; Han, Li-Ping; Su, Yidan; Tsai, Alan; Xu, Qi; Zhang, Ming; Lambert, Gavin W; Kiriazis, Helen; Gao, Wei; Dart, Anthony M; Du, Xiao-Jun

    2016-07-01

    Acute myocardial infarction (AMI) is characterized by a rapid increase in circulating platelet size but the mechanism for this is unclear. Large platelets are hyperactive and associated with adverse clinical outcomes. We determined mean platelet volume (MPV) and platelet-monocyte conjugation (PMC) using blood samples from patients, and blood and the spleen from mice with AMI. We further measured changes in platelet size, PMC, cardiac and splenic contents of platelets and leucocyte infiltration into the mouse heart. In AMI patients, circulating MPV and PMC increased at 1-3 h post-MI and MPV returned to reference levels within 24 h after admission. In mice with MI, increases in platelet size and PMC became evident within 12 h and were sustained up to 72 h. Splenic platelets are bigger than circulating platelets in normal or infarct mice. At 24 h post-MI, splenic platelet storage was halved whereas cardiac platelets increased by 4-fold. Splenectomy attenuated all changes observed in the blood, reduced leucocyte and platelet accumulation in the infarct myocardium, limited infarct size and alleviated cardiac dilatation and dysfunction. AMI-induced elevated circulating levels of adenosine diphosphate and catecholamines in both human and the mouse, which may trigger splenic platelet release. Pharmacological inhibition of angiotensin-converting enzyme, β1-adrenergic receptor or platelet P2Y12 receptor reduced platelet abundance in the murine infarct myocardium albeit having diverse effects on platelet size and PMC. In conclusion, AMI evokes release of splenic platelets, which contributes to the increase in platelet size and PMC and facilitates myocardial accumulation of platelets and leucocytes, thereby promoting post-infarct inflammation. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  15. The role of platelet and endothelial GARP in thrombosis and hemostasis

    PubMed Central

    Vermeersch, Elien; Denorme, Frederik; Maes, Wim; De Meyer, Simon F.; Vanhoorelbeke, Karen; Edwards, Justin; Shevach, Ethan M.; Unutmaz, Derya; Fujii, Hodaka; Deckmyn, Hans; Tersteeg, Claudia

    2017-01-01

    Background Glycoprotein-A Repetitions Predominant protein (GARP or LRRC32) is present on among others human platelets and endothelial cells. Evidence for its involvement in thrombus formation was suggested by full knockout of GARP in zebrafish. Objectives To evaluate the role of GARP in platelet physiology and in thrombus formation using platelet and endothelial conditional GARP knock out mice. Methods Platelet and endothelial specific GARP knockout mice were generated using the Cre-loxP recombination system. The function of platelets without GARP was measured by flow cytometry, spreading analysis and aggregometry using PAR4-activating peptide and collagen related peptide. Additionally, clot retraction and collagen-induced platelet adhesion and aggregation under flow were analyzed. Finally, in vivo tail bleeding time, occlusion time of the mesenteric and carotid artery after FeCl3-induced thrombosis were determined in platelet and endothelial specific GARP knock out mice. Results Platelet specific GARP knockout mice had normal surface GPIb, GPVI and integrin αIIb glycoprotein expression. Although GARP expression was increased upon platelet activation, platelets without GARP displayed normal agonist induced activation, spreading on fibrinogen and aggregation responses. Furthermore, absence of GARP on platelets did not influence clot retraction and had no impact on thrombus formation on collagen-coated surfaces under flow. In line with this, neither the tail bleeding time nor the occlusion time in the carotid- and mesenteric artery after FeCl3-induced thrombus formation in platelet or endothelial specific GARP knock out mice were affected. Conclusions Evidence is provided that platelet and endothelial GARP are not important in hemostasis and thrombosis in mice. PMID:28278197

  16. Paradoxical Effect of Nonphysiological Shear Stress on Platelets and von Willebrand Factor.

    PubMed

    Chen, Zengsheng; Mondal, Nandan K; Ding, Jun; Koenig, Steven C; Slaughter, Mark S; Wu, Zhongjun J

    2016-07-01

    Blood can become hypercoagulable by shear-induced platelet activation and generation of microparticles. It has been reported that nonphysiological shear stress (NPSS) could induce shedding of platelet receptor glycoprotein (GP) Ibα, which may result in an opposite effect to hemostasis. The aim of this study was to investigate the influence of the NPSS on platelets and von Willebrand factor (vWF). Human blood was exposed to two levels of NPSS (25 Pa, 125 Pa) with an exposure time of 0.5 s, generated by using a novel blood-shearing device. Platelet activation (P-selectin expression, GPIIb/IIIa activation and generation of microparticles) and shedding of three platelet receptors (GPIbα, GPVI, GPIIb/IIIa) in sheared blood were quantified using flow cytometry. Aggregation capacity of sheared blood induced by ristocetin and collagen was evaluated using an aggregometer. Shear-induced vWF damage was characterized with Western blotting. Consistent with the published data, the NPSS caused significantly more platelets to become activated with increasing NPSS level. Meanwhile, the NPSS induced the shedding of platelet receptors. The loss of the platelet receptors increased with increasing NPSS level. The aggregation capacity of sheared blood induced by ristocetin and collagen decreased. There was a loss of high molecular weight multimers (HMWMs) of vWF in sheared blood. These results suggest that the NPSS induced a paradoxical effect. More activated platelets increase the risk of thrombosis, while the reduction in platelet receptors and the loss of HMWM-vWF increased the propensity of bleeding. The finding might provide a new perspective to understand thrombosis and acquired bleeding disorder in patients supported with blood contacting medical devices. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  17. A Novel Variant in the Platelet Endothelial Aggregation Receptor-1 Gene is Associated with Increased Platelet Aggregabili

    PubMed Central

    Herrera-Galeano, J. Enrique; Becker, Diane M.; Wilson, Alexander F.; Yanek, Lisa R.; Bray, Paul; Vaidya, Dhananjay; Faraday, Nauder; Becker, Lewis C

    2009-01-01

    Objective: Platelet endothelial aggregation receptor-1 (PEAR1) is a recently identified platelet transmembrane protein that becomes activated by platelet contact. We looked for novel genetic variants in PEAR1 and studied their association with agonist-induced native platelet aggregation and with aspirin's inhibitory effect on platelets. Methods and Results: We genotyped PEAR1 for 10 single nucleotide polymorphisms (SNPs), selected for optimal gene coverage at a density of 4kb, in 1486 apparently healthy individuals from two generations of families with premature CAD. Subjects had a mean age of 45 years; 62% were white and 38% African American. Platelet aggregation to collagen, epinephrine, and ADP was measured in platelet rich plasma, at baseline and after 2 weeks of aspirin (ASA, 81 mg/day), and genotype-phenotype associations were examined separately by ethnicity using multivariable generalized linear models adjusted for covariates. The C allele of SNP rs2768759 [A/C], located in the promoter region of the gene, was common in whites and uncommon in African Americans (allele frequency 70.2% vs 17.7%). The C allele was generally associated in both ethnic groups with increased aggregation of native platelets to each agonist. Following ASA, the associations were stronger and more consistent, and remained significant when post ASA aggregation was adjusted for baseline aggregation, consistent with a relationship between the C allele and reduced platelet responsiveness to ASA. The PEAR1 SNP explained up to 6.9% of the locus specific genetic variance in African Americans and up to 2.5% of the genetic variance in whites following ASA. Conclusion: PEAR1 appears to play an important role in agonist-induced platelet aggregation and in the response to ASA in both whites and African Americans. PMID:18511696

  18. Effects of pathogen reduction systems on platelet microRNAs, mRNAs, activation, and function

    PubMed Central

    Osman, Abdimajid; Hitzler, Walter E.; Meyer, Claudius U.; Landry, Patricia; Corduan, Aurélie; Laffont, Benoit; Boilard, Eric; Hellstern, Peter; Vamvakas, Eleftherios C.

    2015-01-01

    Pathogen reduction (PR) systems for platelets, based on chemically induced cross-linking and inactivation of nucleic acids, potentially prevent transfusion transmission of infectious agents, but can increase clinically significant bleeding in some clinical studies. Here, we documented the effects of PR systems on microRNA and mRNA levels of platelets stored in the blood bank, and assessed their impact on platelet activation and function. Unlike platelets subjected to gamma irradiation or stored in additive solution, platelets treated with Intercept (amotosalen + ultraviolet-A [UVA] light) exhibited significantly reduced levels of 6 of the 11 microRNAs, and 2 of the 3 anti-apoptotic mRNAs (Bcl-xl and Clusterin) that we monitored, compared with platelets stored in plasma. Mirasol (riboflavin + UVB light) treatment of platelets did not produce these effects. PR neither affected platelet microRNA synthesis or function nor induced cross-linking of microRNA-sized endogenous platelet RNA species. However, the reduction in the platelet microRNA levels induced by Intercept correlated with the platelet activation (p < 0.05) and an impaired platelet aggregation response to ADP (p < 0.05). These results suggest that Intercept treatment may induce platelet activation, resulting in the release of microRNAs and mRNAs from platelets. The clinical implications of this reduction in platelet nucleic acids secondary to Intercept remain to be established. PMID:24749844

  19. Platelet factor XIII increases the fibrinolytic resistance of platelet-rich clots by accelerating the crosslinking of alpha 2-antiplasmin to fibrin

    NASA Technical Reports Server (NTRS)

    Reed, G. L.; Matsueda, G. R.; Haber, E.

    1992-01-01

    Platelet clots resist fibrinolysis by plasminogen activators. We hypothesized that platelet factor XIII may enhance the fibrinolytic resistance of platelet-rich clots by catalyzing the crosslinking of alpha 2-antiplasmin (alpha 2AP) to fibrin. Analysis of plasma clot structure by polyacrylamide gel electrophoresis and immunoblotting revealed accelerated alpha 2AP-fibrin crosslinking in platelet-rich compared with platelet-depleted plasma clots. A similar study of clots formed with purified fibrinogen (depleted of factor XIII activity), isolated platelets, and specific factor XIII inhibitors indicated that this accelerated crosslinking was due to the catalytic activity of platelet factor XIII. Moreover, when washed platelets were aggregated by thrombin, there was evidence of platelet factor XIII-mediated crosslinking between platelet alpha 2AP and platelet fibrin(ogen). Specific inhibition (by a monoclonal antibody) of the alpha 2AP associated with washed platelet aggregates accelerated the fibrinolysis of the platelet aggregate. Thus in platelet-rich plasma clots, and in thrombin-induced platelet aggregates, platelet factor XIII actively formed alpha 2AP-fibrin crosslinks, which appeared to enhance the resistance of platelet-rich clots to fibrinolysis.

  20. Effects of protopine on blood platelet aggregation. II. Effect on metabolic system of adenosine 3',5'-cyclic monophosphate in platelets.

    PubMed

    Shiomoto, H; Matsuda, H; Kubo, M

    1990-08-01

    The mode of action of protopine on rabbit platelet aggregation was investigated in the metabolic system of adenosine 3',5'-cyclic monophosphate (cyclic AMP) in vitro experimental models. The inhibitory activity of protopine on adenosine 5'-diphosphate induced platelet aggregation was increased in the presence of prostaglandin I2 or papaverine in platelets. Protopine elevated content of the basal cyclic AMP accumulation in platelets and enhanced activity of crude adenylate cyclase prepared from platelets, but was ineffective on cyclic AMP phosphodiesterase. It is concluded that protopine has an inhibitory activity on platelet aggregation, activates adenylate cyclase and increases cyclic AMP content in platelets, in addition to other inhibitory actions in the metabolic system of cyclic AMP.

  1. Platelet chemokines in vascular disease

    PubMed Central

    Gleissner, Christian A.; von Hundelshausen, Philipp; Ley, Klaus

    2009-01-01

    Platelets are a rich source of different chemokines and express chemokine receptors. CXCL4 is highly abundant in platelets and involved in promoting monocyte arrest from rolling and monocyte differentiation to macrophages. CXCL4 can also associate with CCL5 and amplify its effect on monocytes. The megakaryocyte CXCL7 gene product is proteolytically cleaved into the strong neutrophil chemoattractant, NAP-2, which has also been implicated in repair cell homing to vascular lesions. Platelet adhesion can induce release of CCL2 and CXCL8 from endothelial cells. Conversely, the chemokines CCL17, CCL22 and CXCL12 made by other cells amplify platelet activation. Platelet chemokines enhance recruitment of various hematopoietic cells to the vascular wall, fostering processes such as neointima formation, atherosclerosis, and thrombosis but also vessel repair and regeneration after vascular injury. PMID:18723831

  2. Short-term exposure of platelets to glucose impairs inhibition of platelet aggregation by cyclooxygenase inhibitors.

    PubMed

    Kobzar, Gennadi; Mardla, Vilja; Samel, Nigulas

    2011-01-01

    Aspirin treatment reduces cardiovascular events and deaths in high-risk non-diabetic patients, but not in patients suffering from diabetes. In these patients, hyperglycemia has been found to cause reduced platelet sensitivity to aspirin. It is supposed that long-term exposure of platelets to glucose leads to non-enzymatic glycosylation and impairs aspirin inhibition of platelet aggregation. On the other hand, short-term exposure of platelets to glucose also attenuates the effect of aspirin on platelets. The aim of the present work was to analyse the effect of short-term exposure of glucose on the inhibition of platelet aggregation by aspirin and other cyclooxygenase (COX) inhibitors. Already a 15 min exposure of platelets to glucose impaired aspirin inhibition of the platelet aggregation induced by collagen, thrombin, adenosine diphosphate (ADP), and arachidonic acid (AA). Aspirin inhibition of platelet aggregation in platelet-rich plasma (PRP) was attenuated by 5.6, 11.2, 16.8, and 22.4 mM of glucose in a concentration-dependent way. The same effect was observed with indomethacin and acetaminophen used as cyclooxygenase inhibitors instead of aspirin. N-methyl-L-arginine, an inhibitor of nitric oxide synthase, prevented the effect of glucose on aspirin, indomethacin and acetaminophen inhibition of platelet aggregation. Other monosaccharides, for example fructose and galactose, impaired aspirin inhibition as did glucose. Lactic acid (0.1, 0.2, 0.4, 0.8 mM), the end product of anaerobic glycolysis in platelets, impaired the inhibition of platelet aggregation with aspirin in a concentration-dependent way but did not affect indomethacin. It is suggested that lactic acid might be a mediator of the effect of glucose on aspirin inhibition in platelets.

  3. Paradoxical Effect of Non-Physiological Shear Stress on Platelets and von Willebrand factor

    PubMed Central

    Chen, Zengsheng; Mondal, Nandan K; Ding, Jun; Koenig, Steven C.; Slaughter, Mark S.; Wu, Zhongjun J.

    2016-01-01

    Blood can become hypercoagulable by shear-induced platelet activation and generation of microparticles. It has been reported that non-physiological shear stress (NPSS) could induce shedding of platelet receptor glycoprotein (GP) Ibα, which may result in an opposite effect to hemostasis. The aim of this study was to investigate the influence of the NPSS on platelets and von Willebrand factor (vWF). Human blood was exposed to two levels of NPSS (25Pa, 125Pa) with an exposure time of 0.5 sec., generated by using a novel blood shearing device. Platelet activation (P-selectin expression, GPIIb/IIIa activation and generation of microparticles) and shedding of three platelet receptors (GPIbα, GPVI, GPIIb/IIIa) in sheared blood were quantified using flow cytometry. Aggregation capacity of sheared blood induced by ristocetin and collagen was evaluated using an aggregometer. Shear-induced vWF damage was characterized with western blotting. Consistent with the published data, the NPSS caused significantly more platelets to become activated with increasing NPSS level. Meanwhile, the NPSS induced the shedding of platelet receptors. The loss of the platelet receptors increased with increasing NPSS level. The aggregation capacity of sheared blood induced by ristocetin and collagen decreased. There was a loss of high molecular weight multimers (HMWM) of vWF in sheared blood. These results suggest that the NPSS induced a paradoxical effect. More activated platelets increase the risk of thrombosis while the reduction in platelet receptors and the loss of HMWM-vWF increased the propensity of bleeding. The finding might provide a new perspective to understand thrombosis and acquired bleeding disorder in patients supported with blood contacting medical devices. PMID:26582038

  4. Triflavin, an Arg‐Gly‐Asp‐containing Peptide, Inhibits Tumor Cell‐induced Platelet Aggregation

    PubMed Central

    Sheu, Joen R.; Lin, Chao H.; Peng, Hui C.; Teng, Che M.

    1993-01-01

    In this study, we examined the effect of triflavin, an Arg‐Gly‐Asp (RGD)‐containing snake venom peptide, on human cervical carcinoma (HeLa) cell‐ and B16‐F10 mouse melanoma cell‐induced platelet aggregation (TCIPA) in heparinized platelet‐rich plasma. TCIPA appears to play an important role in the development of certain experimental tumor metastases. Two ADP‐scavenging agents, apyrase (10 U/ml) and creatine phosphate (CP) (5 mM)/creatine phosphokinase (CPK) (5 U/ml) completely inhibited B16‐F10 TCIPA, but hirudin (5 U/ml) had no effect. In contrast, apyrase and CP/CPK did not inhibit HeLa TCIPA while hirudin completely inhibited it. Furthermore, HeLa cells initially induced platelet aggregation and then blood coagulation at a later stage. In addition, HeLa cells shortened, in a concentration‐dependent manner, the recalcification time of normal as well as factor VIII‐ and IX‐deficient human plasma, but did not affect the recalciflcation time of factor VII‐deficient plasma. This suggests that HeLa TCIPA occurs via activation of the extrinsic pathway, probably owing to tumor cell expression of tissue factor‐like activity. HeLa cell‐induced thrombin generation was confirmed by detection of amidolytic activity towards a chromogenic substrate, S‐2238 (H‐D‐Phe‐Pip‐Arg‐p‐NA). Triflavin and GRGDS inhibited, in a dose‐dependent manner, TCIPA caused by either cell line. On a molar basis, triflavin was 10,000–30,000 times more potent than GRGDS in this regard. Moreover, monoclonal antibodies raised against glycoprotein (GP) IIb/IIIa complex (i.e., 7E3 and AP2) and against GP Ib (i.e., AP1) completely inhibited HeLa TCIPA. 7E3 and AP2 inhibited B16‐F10 TCIPA by up to 80% whereas AP1 showed only 30% inhibition of B16‐F10 TCIPA. In conclusion, the inhibitory effect of triflavin on HeLa and B16‐F10 TCIPA may be mediated principally by the binding of triflavin to the fibrinogen receptor associated with GP IIb/IIIa complex on the

  5. Physiopathology of blood platelets and development of platelets substitutes. Progress report, August 1, 1976--October 31, 1977. [/sup 51/Cr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldini, M G

    1977-07-31

    Progress is reported on the following research projects: the effect of estrogen on platelet aggregability and thrombus formation; the antithrombotic effect of platelet inhibiting agents in a bench model of artificial kidney; the arrest of hemorrhage in severely alloimmunized thrombocytopenic patients; and in vivo elution of /sup 51/Cr from labeled platelets induced by antibody. (HLW)

  6. Induced Pluripotent Stem Cell-Derived Red Blood Cells and Platelet Concentrates: From Bench to Bedside.

    PubMed

    Focosi, Daniele; Amabile, Giovanni

    2017-12-27

    Red blood cells and platelets are anucleate blood components indispensable for oxygen delivery and hemostasis, respectively. Derivation of these blood elements from induced pluripotent stem (iPS) cells has the potential to develop blood donor-independent and genetic manipulation-prone products to complement or replace current transfusion banking, also minimizing the risk of alloimmunization. While the production of erythrocytes from iPS cells has challenges to overcome, such as differentiation into adult-type phenotype that functions properly after transfusion, platelet products are qualitatively and quantitatively approaching a clinically-applicable level owing to advances in expandable megakaryocyte (MK) lines, platelet-producing bioreactors, and novel reagents. Guidelines that assure the quality of iPS cells-derived blood products for clinical application represent a novel challenge for regulatory agencies. Considering the minimal risk of tumorigenicity and the expected significant demand of such products, ex vivo production of iPS-derived blood components can pave the way for iPS translation into the clinic.

  7. Effect of ticlopidine ex vivo on platelet intracellular calcium mobilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derian, C.K.; Friedman, P.A.

    1988-04-01

    The antiplatelet compound ticlopidine exerts its potent inhibitory activity through an as yet undetermined mechanism(s). The goal of this study was to determine the effect, if any, of ticlopidine ex vivo on platelet calcium mobilization. Ticlopidine inhibited ADP-induced platelet aggregation by 50-80%. In the presence of 1 mM EGTA, ticlopidine inhibited ADP- and thrombin-stimulated increases in (Ca2+)i in fura-2 loaded platelets. We evaluated further the effect of ticlopidine on calcium mobilization by examining both agonist-stimulated formation of inositol trisphosphate in intact platelets and the ability of inositol trisphosphate to release /sup 45/Ca from intracellular sites in permeabilized cells. We showmore » here that while ticlopidine significantly affected agonist-induced intracellular calcium mobilization in intact platelets, the drug was without effect on agonist-stimulated formation of inositol trisphosphate in intact platelets and on inositol trisphosphate-induced /sup 45/Ca release in saponin-permeabilized platelets. Our study demonstrates that ticlopidine exerts at least part of its effect via inhibition of intracellular calcium mobilization but that its site of action remains to be determined.« less

  8. Normal platelet function in platelet concentrates requires non-platelet cells: a comparative in vitro evaluation of leucocyte-rich (type 1a) and leucocyte-poor (type 3b) platelet concentrates

    PubMed Central

    Parrish, William R; Roides, Breana; Hwang, Julia; Mafilios, Michael; Story, Brooks; Bhattacharyya, Samir

    2016-01-01

    Background Therapeutic success of platelet-rich plasma (PRP) may vary based on the composition and preparation method. The objective of this study was to evaluate the cellular components of platelet concentrates produced by a leucocyte-rich (LR-PRP) and a leucocyte-poor PRP systems (LP-PRP). Methods Parameters evaluated included platelet recovery, platelet concentration, red blood cell (RBC) and white blood cell (WBC) composition, platelet growth factor release and stimulation of human tendon cell proliferation in vitro. Results Platelet recoveries were 52% for LP-PRP and 89% for LR-PRP. LR-PRP demonstrated greater reproducibility with a 4.2% coefficient of variation (CV) compared with 19.4% for LP-PRP (p<0.001). LR-PRP demonstrated a greater increase in platelet concentration (7.9-fold) than LP-PRP (2.2-fold; p<0.001). LP-PRP showed 5.0-fold reductions in WBCs, while LR-PRP showed a 4.0-fold increase (p<0.001). LP-PRP reduced RBCs to a haematocrit of 0.25, while LR-PRP reduced haematocrit to 11.8. LP-PRP did not coagulate robustly on reactivation with CaCl2, and released significantly lower levels of epidermal growth factor (EGF) and transforming growth factor β1 (TGF-β1) than whole blood (p<0.03). LP-PRP also did not stimulate tendon cell proliferation greater than whole blood. In contrast, LR-PRP showed increases in each growth factor on activation with CaCl2 (p<0.01) and stimulated greater proliferation (p<0.05) compared with whole blood. Forced activation of LP-PRP with exogenous thrombin rescued the coagulation deficiency and induced greater growth factor release than comparable whole blood (p<0.03). Conclusions These data suggest that non-platelet cellular components in platelet concentrates are important for proper platelet function, including thrombin generation, growth factor release and clot retraction. PMID:27900155

  9. Normal platelet function in platelet concentrates requires non-platelet cells: a comparative in vitro evaluation of leucocyte-rich (type 1a) and leucocyte-poor (type 3b) platelet concentrates.

    PubMed

    Parrish, William R; Roides, Breana; Hwang, Julia; Mafilios, Michael; Story, Brooks; Bhattacharyya, Samir

    2016-01-01

    Therapeutic success of platelet-rich plasma (PRP) may vary based on the composition and preparation method. The objective of this study was to evaluate the cellular components of platelet concentrates produced by a leucocyte-rich (LR-PRP) and a leucocyte-poor PRP systems (LP-PRP). Parameters evaluated included platelet recovery, platelet concentration, red blood cell (RBC) and white blood cell (WBC) composition, platelet growth factor release and stimulation of human tendon cell proliferation in vitro. Platelet recoveries were 52% for LP-PRP and 89% for LR-PRP. LR-PRP demonstrated greater reproducibility with a 4.2% coefficient of variation (CV) compared with 19.4% for LP-PRP (p<0.001). LR-PRP demonstrated a greater increase in platelet concentration (7.9-fold) than LP-PRP (2.2-fold; p<0.001). LP-PRP showed 5.0-fold reductions in WBCs, while LR-PRP showed a 4.0-fold increase (p<0.001). LP-PRP reduced RBCs to a haematocrit of 0.25, while LR-PRP reduced haematocrit to 11.8. LP-PRP did not coagulate robustly on reactivation with CaCl 2 , and released significantly lower levels of epidermal growth factor (EGF) and transforming growth factor β1 (TGF-β1) than whole blood (p<0.03). LP-PRP also did not stimulate tendon cell proliferation greater than whole blood. In contrast, LR-PRP showed increases in each growth factor on activation with CaCl 2 (p<0.01) and stimulated greater proliferation (p<0.05) compared with whole blood. Forced activation of LP-PRP with exogenous thrombin rescued the coagulation deficiency and induced greater growth factor release than comparable whole blood (p<0.03). These data suggest that non-platelet cellular components in platelet concentrates are important for proper platelet function, including thrombin generation, growth factor release and clot retraction.

  10. DREAM plays an important role in platelet activation and thrombogenesis

    PubMed Central

    Kim, Kyungho; Tseng, Alan; Barazia, Andrew; Italiano, Joseph E.

    2017-01-01

    Downstream regulatory element antagonist modulator (DREAM), a transcriptional repressor, is known to modulate pain responses. However, it is unknown whether DREAM is expressed in anucleate platelets and plays a role in thrombogenesis. By using intravital microscopy with DREAM-null mice and their bone marrow chimeras, we demonstrated that both hematopoietic and nonhematopoietic cell DREAMs are required for platelet thrombus formation following laser-induced arteriolar injury. In a FeCl3-induced thrombosis model, we found that compared with wild-type (WT) control and nonhematopoietic DREAM knockout (KO) mice, DREAM KO control and hematopoietic DREAM KO mice showed a significant delay in time to occlusion. Tail bleeding time was prolonged in DREAM KO control mice, but not in WT or DREAM bone marrow chimeric mice. In vivo adoptive transfer experiments further indicated the importance of platelet DREAM in thrombogenesis. We found that DREAM deletion does not alter the ultrastructural features of platelets but significantly impairs platelet aggregation and adenosine triphosphate secretion induced by numerous agonists (collagen-related peptide, adenosine 5′-diphosphate, A23187, thrombin, or U46619). Biochemical studies revealed that platelet DREAM positively regulates phosphoinositide 3-kinase (PI3K) activity during platelet activation. Using DREAM-null platelets and PI3K isoform-specific inhibitors, we observed that platelet DREAM is important for α-granule secretion, Ca2+ mobilization, and aggregation through PI3K class Iβ (PI3K-Iβ). Genetic and pharmacological studies in human megakaryoblastic MEG-01 cells showed that DREAM is important for A23187-induced Ca2+ mobilization and its regulatory function requires Ca2+ binding and PI3K-Iβ activation. These results suggest that platelet DREAM regulates PI3K-Iβ activity and plays an important role during thrombus formation. PMID:27903531

  11. EMMPRIN (CD147) is a novel receptor for platelet GPVI and mediates platelet rolling via GPVI-EMMPRIN interaction.

    PubMed

    Seizer, Peter; Borst, Oliver; Langer, Harald F; Bültmann, Andreas; Münch, Götz; Herouy, Yared; Stellos, Konstantinos; Krämer, Björn; Bigalke, Boris; Büchele, Berthold; Bachem, Max G; Vestweber, Dietmar; Simmet, Thomas; Gawaz, Meinrad; May, Andreas E

    2009-04-01

    The Extracellular Matrix Metalloproteinase Inducer (EMMPRIN, CD147, basigin) is an immunoglobulin-like receptor expressed in various cell types. During cellular interactions homotypic EMMPRIN-EMMPRIN interactions are known to induce the synthesis of matrix metalloproteinases. Recently, we have identified EMMPRIN as a novel receptor on platelets. To our knowledge EMMPRIN has not been shown to serve as adhesion receptor, yet. Here we characterise platelet glycoprotein VI (GPVI) as a novel adhesion receptor for EMMPRIN. Human platelets were prestimulated with ADP and perfused over immobilised recombinant EMMPRIN-Fc or Fc-fragments under arterial shear conditions. ADP-stimulated platelets showed significantly enhanced rolling (but not enhanced firm adhesion) on immobilised EMMPRIN-Fc compared to Fc. Pretreatment of platelets with blocking mAbs anti-EMMPRIN or anti-GPVI leads to a significant reduction of rolling platelets on immobilised EMMPRIN-Fc, whereas pretreatment with blocking mAbs anti-p-selectin, anti-alpha4-integrin or anti-GPIIb/IIIa complex (20 microg/ml each) had no effect. Consistently, chinese hamster ovary (CHO) cells stably transfected with GPVI showed enhanced rolling (but not adhesion) on immobilised EMMPRIN-Fc in comparison to non-transfected CHO cells. Similarly, CHO cells stably transfected with EMMPRIN showed enhanced rolling on immobilised GPVI-Fc (or EMMPRIN-Fc) compared to non transfected CHO-cells. Finally, specific binding of EMMPRIN to GPVI was demonstrated by a modified ELISA and surface plasmon resonance technology with a dissociation constant of 88 nM. Platelet GPVI is a novel receptor for EMMPRIN and can mediate platelet rolling via GPVI-EMMPRIN interaction.

  12. Modified diadenosine tetraphosphates with dual specificity for P2Y1 and P2Y12 are potent antagonists of ADP-induced platelet activation

    PubMed Central

    CHANG, H.; YANACHKOV, I. B.; DIX, E. J.; LI, Y. F.; BARNARD, M. R.; WRIGHT, G. E.; MICHELSON, A. D.; FRELINGER, A. L.

    2017-01-01

    Summary Background Diadenosine 5′,5‴-P1,P4-tetraphosphate (Ap4A), a natural compound stored in platelet dense granules, inhibits ADP-induced platelet aggregation. Ap4A inhibits the platelet ADP receptors P2Y1 and P2Y12, is a partial agonist of P2Y12, and is a full agonist of the platelet ATP-gated ion channel P2X1. Modification of the Ap4A tetraphosphate backbone enhances inhibition of ADP-induced platelet aggregation. However, the effects of these Ap4A analogs on human platelet P2Y1, P2Y12 and P2X1 are unclear. Objective To determine the agonist and antagonist activities of diadenosine tetraphosphate analogs towards P2Y1, P2Y12, and P2X1. Methods We synthesized the following Ap4A analogs: P1,P4-dithiotetraphosphate; P2,P3-chloromethylenetetraphosphate; P1-thio-P2,P3-chloromethylenetetraphosphate; and P1,P4-dithio-P2,P3-chloromethylenetetraphosphate. We then measured the effects of these analogs on: (i) ADP-induced platelet aggregation; (ii) P2Y1-mediated changes in cytosolic Ca2+; (iii) P2Y12-mediated changes in vasodilator-stimulated phosphoprotein phosphorylation; and (iv) P2X1-mediated entry of extracellular Ca2+. Results Ap4A analogs with modifications in the phosphate backbone inhibited both P2Y1 and P2Y12, and showed no agonist activity towards these receptors. The dithio modification increased inhibition of P2Y1, P2Y12, and platelet aggregation, whereas the chloromethylene modification increased inhibition of P2Y12 and platelet aggregation, but decreased P2Y1 inhibition. Combining the dithio and chloromethylene modifications increased P2Y1 and P2Y12 inhibition. As compared with Ap4A, each modification decreased agonist activity towards P2X1, and the dual modification completely eliminated P2X1 agonist activity. Conclusions As compared with Ap4A, tetraphosphate backbone analogs of Ap4A have diminished activity towards P2X1 but inhibit both P2Y1 and P2Y12 and, with greater potency, inhibit ADP-induced platelet aggregation. Thus, diadenosine tetraphosphate

  13. In vitro effects of polychlorinated biphenyls on human platelets.

    PubMed Central

    Raulf, M; König, W

    1991-01-01

    Incubation of human platelets with polychlorinated biphenyls (PCB) induced and modulated cellular responses to a different degree. 3,3',4,4'-tetrachlorobiphenyl (TCB) was a more potent inducer of platelet aggregation, serotonin release and 12-HETE generation compared to the other PCB [2,2',3,3'-TCB,3,3'-dichlorobiphenyl (DCB),2,2',4,5,5'-pentachlorobiphenyl (PCB)]. 3,3',4,4'-TCB showed synergistic effects, in combination with other PCB, such as an enhanced formation of 12-HETE, when 3,3'-DCB and 2,2',3,3'-TCB were applied simultaneously. The combined incubation of platelets with PCB and sodium fluoride (NaF), an activator of G-proteins, resulted in synergistic 12-HETE generation compared to stimulation with NaF or PCB alone. Furthermore, when platelets were incubated with the PCB the enzymatic steps controlling the metabolism of the platelet-activating factor (PAF) were modulated. A direct relationship between the extent of platelet activation and the chloro-substitution pattern of PCB exists. PMID:1901832

  14. Involvement of nuclear factor {kappa}B in platelet CD40 signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hachem, Ahmed; Yacoub, Daniel; Centre Hospitalier Universite de Montreal, 264 boul. Rene-Levesque est, Montreal, Quebec, Canada H2X 1P1

    Highlights: Black-Right-Pointing-Pointer sCD40L induces TRAF2 association to CD40 and NF-{kappa}B activation in platelets. Black-Right-Pointing-Pointer I{kappa}B{alpha} phosphorylation downstream of CD40L/CD40 signaling is independent of p38 MAPK phosphorylation. Black-Right-Pointing-Pointer I{kappa}B{alpha} is required for sCD40L-induced platelet activation and potentiation of aggregation. -- Abstract: CD40 ligand (CD40L) is a thrombo-inflammatory molecule that predicts cardiovascular events. Platelets constitute the major source of soluble CD40L (sCD40L), which has been shown to potentiate platelet activation and aggregation, in a CD40-dependent manner, via p38 mitogen activated protein kinase (MAPK) and Rac1 signaling. In many cells, the CD40L/CD40 dyad also induces activation of nuclear factor kappa B (NF-{kappa}B). Givenmore » that platelets contain NF-{kappa}B, we hypothesized that it may be involved in platelet CD40 signaling and function. In human platelets, sCD40L induces association of CD40 with its adaptor protein the tumor necrosis factor receptor associated factor 2 and triggers phosphorylation of I{kappa}B{alpha}, which are abolished by CD40L blockade. Inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced I{kappa}B{alpha} phosphorylation without affecting p38 MAPK phosphorylation. On the other hand, inhibition of p38 MAPK phosphorylation has no effect on I{kappa}B{alpha} phosphorylation, indicating a divergence in the signaling pathway originating from CD40 upon its ligation. In functional studies, inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced platelet activation and potentiation of platelet aggregation in response to a sub-threshold concentration of collagen. This study demonstrates that the sCD40L/CD40 axis triggers NF-{kappa}B activation in platelets. This signaling pathway plays a critical role in platelet activation and aggregation upon sCD40L stimulation and may represent an important target against

  15. Rejected by peers-attracted to antisocial media content: rejection-based anger impairs moral judgment among adolescents.

    PubMed

    Plaisier, Xanthe S; Konijn, Elly A

    2013-06-01

    Adolescence is an important developmental stage during which both peers and the media have a strong influence. Both peer rejection and the use of morally adverse media are associated with negative developmental outcomes. This study examines processes by which peer rejection might drive adolescents to select antisocial media content by tying together developmental research on peer rejection and research on media effects. Assumed underlying mechanisms are rejection-based anger and frustration and the adolescent's moral judgment. A between-participants experimental design manipulated peer rejection versus acceptance in adolescents (Mage = 13.88 years; N = 74) and young adults (Mage = 21.37 years; N = 75), applying the Cyberball paradigm. Measures included the State Anger Inventory (STAXI) to assess feelings of rejection and the newly devised Media, Morals, and Youth Questionnaire (MMaYQue) to assess media preferences and moral judgment of media content. Using bootstrapping analyses, a double mediation was established: Higher levels of state anger in peer-rejected adolescents induced more tolerable moral judgments of antisocial media content, subsequently instigating a preference for antisocial media content. In contrast, the young adult sample showed no relations between peer rejection and antisocial media preference. Results are discussed within a downward spiral framework of combined peer and media influences. PsycINFO Database Record (c) 2013 APA, all rights reserved

  16. Effect of photodynamic therapy on mouse platelets

    NASA Astrophysics Data System (ADS)

    Zhou, Chuannong; Chi, Shunji; Deng, Jinsheng; Zhang, Hua; Liang, Junlin; Ha, Xian-wen

    1993-06-01

    Normal mice received hematoporphyrin derivative (HpD) i.v. prior to red light irradiation and the platelet-rich plasma was prepared and irradiated by red light. The platelets were processed for EM examination and stereological analysis. It was shown the 16 hrs after irradiation almost all platelets were necrotized; 8 hours after irradiation about one fourth of the platelets were necrotized and the remaining were considerably damaged. Immediately after irradiation a small number of platelets became necrotic and most other platelets were swollen and deformated, showing significantly increased mean area, perimeter and short axis, and mean cell volume and cell surface area. The findings indicate that platelets are highly sensitive to PDT action and can be directly and rapidly damaged by PDT even in the absence of vascular endothelial cells. The early platelet photoactivation may play an important role in the initiation of early vascular damage and microcirculatory alterations induced by PDT in vivo.

  17. Biologic variability and correlation of platelet function testing in healthy dogs.

    PubMed

    Blois, Shauna L; Lang, Sean T; Wood, R Darren; Monteith, Gabrielle

    2015-12-01

    Platelet function tests are influenced by biologic variability, including inter-individual (CVG ) and intra-individual (CVI ), as well as analytic (CVA ) variability. Variability in canine platelet function testing is unknown, but if excessive, would make it difficult to interpret serial results. Additionally, the correlation between platelet function tests is poor in people, but not well described in dogs. The aims were to: (1) identify the effect of variation in preanalytic factors (venipuncture, elapsed time until analysis) on platelet function tests; (2) calculate analytic and biologic variability of adenosine diphosphate (ADP) and arachidonic acid (AA)-induced thromboelastograph platelet mapping (TEG-PM), ADP-, AA-, and collagen-induced whole blood platelet aggregometry (WBA), and collagen/ADP and collagen/epinephrine platelet function analysis (PFA-CADP, PFA-CEPI); and (3) determine the correlation between these variables. In this prospective observational trial, platelet function was measured once every 7 days, for 4 consecutive weeks, in 9 healthy dogs. In addition, CBC, TEG-PM, WBA, and PFA were performed. Overall coefficients of variability ranged from 13.3% to 87.8% for the platelet function tests. Biologic variability was highest for AA-induced maximum amplitude generated during TEG-PM (MAAA; CVG = 95.3%, CVI = 60.8%). Use of population-based reference intervals (RI) was determined appropriate only for PFA-CADP (index of individuality = 10.7). There was poor correlation between most platelet function tests. Use of population-based RI appears inappropriate for most platelet function tests, and tests poorly correlate with one another. Future studies on biologic variability and correlation of platelet function tests should be performed in dogs with platelet dysfunction and those treated with antiplatelet therapy. © 2015 American Society for Veterinary Clinical Pathology.

  18. Nattokinase improves blood flow by inhibiting platelet aggregation and thrombus formation.

    PubMed

    Jang, Ja-Young; Kim, Tae-Su; Cai, Jingmei; Kim, Jihyun; Kim, Youngeun; Shin, Kyungha; Kim, Kwang Sei; Park, Sung Kyeong; Lee, Sung-Pyo; Choi, Ehn-Kyoung; Rhee, Man Hee; Kim, Yun-Bae

    2013-12-01

    The effects of nattokinase on the in vitro platelet aggregation and in vivo thrombosis were investigated in comparison with aspirin. Rabbit platelet-rich plasma was incubated with nattokinase and aggregation inducers collagen and thrombin, and the platelet aggregation rate was analyzed. Nattokinase significantly inhibited both the collagen- and thrombin-induced platelet aggregations. Nattokinase also reduced thromboxane B2 formation from collagen-activated platelets in a concentration-dependent manner. Rats were orally administered with nattokinase for 1 week, and their carotid arteries were exposed. Arterial thrombosis was induced by applying 35% FeCl3-soaked filter paper for 10 min, and the blood flow was monitored with a laser Doppler probe. Nattokinase delayed the FeCl3-induced arterial occlusion in a dose-dependent manner, doubling the occlusion time at 160 mg/kg. In addition, a high dose (500 mg/kg) of nattokinase fully prevented the occlusion, as achieved with aspirin (30 mg/kg). The results indicate that nattokinase extracted from fermented soybean inhibit platelet aggregation by blocking thromboxane formation, and thereby delay thrombosis following oxidative arterial wall injury. Therefore, it is suggested that nattokinase could be a good candidate without adverse effects for the improvement of blood flow.

  19. Immature platelet fraction in bacterial sepsis severity assessment

    NASA Astrophysics Data System (ADS)

    Djuang, M. H.; Ginting, F.; Hariman, H.

    2018-03-01

    Sepsis is an infection-induced syndrome, mostly caused by bacteria, of organ dysfunctions that caused by host response dysregulations. One of the simplest sepsis-indicator is platelet and its indexes. A new platelet parameter called immature platelet count (IPF) became theinterest in this study. The study aims to see whether IPF could assess sepsis severity by procalcitonin (PCT).Sixty-four of seventy-one patients with increased PCT were included in this cross-sectional study and separated into three groups based on their PCT levels. IPF showed no significance among the three groups (p-value>0.05) while platelet count was significant (p-value<0.05). Mean Platelet Volume (MPV) and Platelet Distribution Width (PDW) showed a strongpositive correlation with IPF. Higher sepsis severity based on PCT showed larger platelet count, as the result of platelet destructions caused by pro-inflammatory cytokines and endotoxins.

  20. Licochalcones extracted from Glycyrrhiza inflata inhibit platelet aggregation accompanied by inhibition of COX-1 activity

    PubMed Central

    Okuda-Tanino, Asa; Sugawara, Daiki; Tashiro, Takumi; Iwashita, Masaya; Obara, Yutaro; Moriya, Takahiro; Tsushima, Chisato; Saigusa, Daisuke; Tomioka, Yoshihisa; Ishii, Kuniaki; Nakahata, Norimichi

    2017-01-01

    Licochalcones extracted from Glycyrrhiza inflata are known to have a variety of biological properties such as anti-inflammatory, anti-bacterial, and anti-tumor activities, but their action on platelet aggregation has not yet been reported. Therefore, in this study we investigated the effects of licochalcones on platelet aggregation. Collagen and U46619, a thromboxane A2 receptor agonist, caused rabbit platelet aggregation, which was reversed by pretreatment with licochalcones A, C and D in concentration-dependent manners. Among these compounds, licochalcone A caused the most potent inhibitory effect on collagen-induced platelet aggregation. However, the licochalcones showed marginal inhibitory effects on thrombin or ADP-induced platelet aggregation. In addition to rabbit platelets, licochalcone A attenuated collagen-induced aggregation in human platelets. Because licochalcone A also inhibited arachidonic acid-induced platelet aggregation and production of thromboxane A2 induced by collagen in intact platelets, we further examined the direct interaction of licochalcone A with cyclooxygenase (COX)-1. As expected, licochalcone A caused an inhibitory effect on both COX-1 and COX-2 in vitro. Regarding the effect of licochalcone A on COX-1 enzyme reaction kinetics, although licochalcone A showed a stronger inhibition of prostaglandin E2 synthesis induced by lower concentrations of arachidonic acid, Vmax values in the presence or absence of licochalcone A were comparable, suggesting that it competes with arachidonic acid at the same binding site on COX-1. These results suggest that licochalcones inhibit collagen-induced platelet aggregation accompanied by inhibition of COX-1 activity. PMID:28282426

  1. Platelet-derived microparticles regulates thrombin generation via phophatidylserine in abdominal sepsis.

    PubMed

    Wang, Yongzhi; Zhang, Su; Luo, Lingtao; Norström, Eva; Braun, Oscar Ö; Mörgelin, Matthias; Thorlacius, Henrik

    2018-02-01

    Sepsis is associated with dysfunctional coagulation. Recent data suggest that platelets play a role in sepsis by promoting neutrophil accumulation. Herein, we show that cecal ligation and puncture (CLP) triggered systemic inflammation, which is characterized by formation of IL-6 and CXC chemokines as well as neutrophil accumulation in the lung. Platelet depletion decreased neutrophil accumulation, IL-6, and CXC chemokines formation in septic lungs. Depletion of platelets increased peak thrombin formation and total thrombin generation (TG) in plasma from septic animals. CLP elevated circulating levels of platelet-derived microparticles (PMPs). In vitro generated PMPs were a potent inducer of TG. Interestingly, in vitro wild-type recombinant annexin V abolished PMP-induced thrombin formation whereas a mutant annexin V protein, which does not bind to phosphatidylserine (PS), had no effect. Administration of wild-type, but not mutant annexin V, significantly inhibited thrombin formation in septic animals. Moreover, CLP-induced formation of thrombin-antithrombin complexes were reduced in platelet-depleted mice and in animals pretreated with annexin V. PMP-induced TG attenuated in FXII- and FVII-deficient plasma. These findings suggest that sepsis-induced TG is dependent on platelets. Moreover, PMPs formed in sepsis are a potent inducer of TG via PS exposure, and activation of both the intrinsic and extrinsic pathway of coagulation. In conclusion, these observations suggest that PMPs and PS play an important role in dysfunctional coagulation in abdominal sepsis. © 2017 Wiley Periodicals, Inc.

  2. Involvement of nuclear factor κB in platelet CD40 signaling.

    PubMed

    Hachem, Ahmed; Yacoub, Daniel; Zaid, Younes; Mourad, Walid; Merhi, Yahye

    2012-08-17

    CD40 ligand (CD40L) is a thrombo-inflammatory molecule that predicts cardiovascular events. Platelets constitute the major source of soluble CD40L (sCD40L), which has been shown to potentiate platelet activation and aggregation, in a CD40-dependent manner, via p38 mitogen activated protein kinase (MAPK) and Rac1 signaling. In many cells, the CD40L/CD40 dyad also induces activation of nuclear factor kappa B (NF-κB). Given that platelets contain NF-κB, we hypothesized that it may be involved in platelet CD40 signaling and function. In human platelets, sCD40L induces association of CD40 with its adaptor protein the tumor necrosis factor receptor associated factor 2 and triggers phosphorylation of IκBα, which are abolished by CD40L blockade. Inhibition of IκBα phosphorylation reverses sCD40L-induced IκBα phosphorylation without affecting p38 MAPK phosphorylation. On the other hand, inhibition of p38 MAPK phosphorylation has no effect on IκBα phosphorylation, indicating a divergence in the signaling pathway originating from CD40 upon its ligation. In functional studies, inhibition of IκBα phosphorylation reverses sCD40L-induced platelet activation and potentiation of platelet aggregation in response to a sub-threshold concentration of collagen. This study demonstrates that the sCD40L/CD40 axis triggers NF-κB activation in platelets. This signaling pathway plays a critical role in platelet activation and aggregation upon sCD40L stimulation and may represent an important target against thrombo-inflammatory disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Paying To Belong: When Does Rejection Trigger Ingratiation?

    PubMed Central

    Romero-Canyas, Rainer; Downey, Geraldine; Reddy, Kavita S.; Rodriguez, Sylvia; Cavanaugh, Timothy J.; Pelayo, Rosemary

    2010-01-01

    Societies and social scientists have long held the belief that exclusion induces ingratiation and conformity, an idea in contradiction with robust empirical evidence linking rejection with hostility and aggression. The classic literatures on ingratiation and conformity help resolve this contradiction by identifying circumstances under which rejection may trigger efforts to ingratiate. Jointly, findings from these literatures suggest that when people are given an opportunity to impress their rejecters, ingratiation is likely after rejection experiences that are harsh and that occur in important situations that threaten the individual’s self-definition. Four studies tested the hypothesis that people high in rejection sensitivity, and therefore dispositionally concerned about rejection, will utilize opportunities to ingratiate after harsh rejection in situations that are self-defining. In three studies of situations that are particularly self-defining for men, rejection predicted ingratiation among men (but not women) who were high in rejection sensitivity. In a fourth study, harsh rejection in a situation particularly self-defining for women predicted ingratiation among highly rejection-sensitive women (but not men). These findings help identify the specific circumstances under which people are willing to act in socially desirable ways toward those who have rejected them harshly. PMID:20649367

  4. Equid Herpesvirus Type 1 Activates Platelets

    PubMed Central

    Stokol, Tracy; Yeo, Wee Ming; Burnett, Deborah; DeAngelis, Nicole; Huang, Teng; Osterrieder, Nikolaus; Catalfamo, James

    2015-01-01

    Equid herpesvirus type 1 (EHV-1) causes outbreaks of abortion and neurological disease in horses. One of the main causes of these clinical syndromes is thrombosis in placental and spinal cord vessels, however the mechanism for thrombus formation is unknown. Platelets form part of the thrombus and amplify and propagate thrombin generation. Here, we tested the hypothesis that EHV-1 activates platelets. We found that two EHV-1 strains, RacL11 and Ab4 at 0.5 or higher plaque forming unit/cell, activate platelets within 10 minutes, causing α-granule secretion (surface P-selectin expression) and platelet microvesiculation (increased small events double positive for CD41 and Annexin V). Microvesiculation was more pronounced with the RacL11 strain. Virus-induced P-selectin expression required plasma and 1.0 mM exogenous calcium. P-selectin expression was abolished and microvesiculation was significantly reduced in factor VII- or X-deficient human plasma. Both P-selectin expression and microvesiculation were re-established in factor VII-deficient human plasma with added purified human factor VIIa (1 nM). A glycoprotein C-deficient mutant of the Ab4 strain activated platelets as effectively as non-mutated Ab4. P-selectin expression was abolished and microvesiculation was significantly reduced by preincubation of virus with a goat polyclonal anti-rabbit tissue factor antibody. Infectious virus could be retrieved from washed EHV-1-exposed platelets, suggesting a direct platelet-virus interaction. Our results indicate that EHV-1 activates equine platelets and that α-granule secretion is a consequence of virus-associated tissue factor triggering factor X activation and thrombin generation. Microvesiculation was only partly tissue factor and thrombin-dependent, suggesting the virus causes microvesiculation through other mechanisms, potentially through direct binding. These findings suggest that EHV-1-induced platelet activation could contribute to the thrombosis that occurs in

  5. [27- Hydroxycholesterol reverses estradiol induced inhibition of platelet aggregation in postmenopausal women].

    PubMed

    Rocha, Gladys; Sierralta, Walter; Valladares, Luis

    2016-11-01

    The decline of estrogen levels increases cardiovascular risk in women. Platelets express estrogen receptors and 17β-estradiol- (E2) can produce a protective effect on thrombus formation. The hydroxylation of cholesterol generates several sterols and 27-hydroxycholesterol (27HC) predominates in circulation. To evaluate the effect of 27HC as an endogenous antagonist of the anti-aggregating properties of E2 in platelets of postmenopausal women. Platelet function of postmenopausal women was evaluated ex-vivo. Platelets pre-incubated with 27HC in the presence or absence of E2, were stimulated with collagen. Aggregation was evaluated using turbidimetry using a Chrono-log aggregometer. Collagen-stimulated platelet aggregation was significantly inhibited by E2. The inhibitory effect of E2 on collagen-stimulated platelet aggregation was significantly reversed in the presence of 27HC. The suppressive effect of E2 on platelet aggregation is inhibited by 27HC, which could contribute to increase cardiovascular risk in postmenopausal women.

  6. Echicetin Coated Polystyrene Beads: A Novel Tool to Investigate GPIb-Specific Platelet Activation and Aggregation

    PubMed Central

    Petunin, Alexey; Clemetson, Kenneth J.; Gambaryan, Stepan; Walter, Ulrich

    2014-01-01

    von Willebrand factor/ristocetin (vWF/R) induces GPIb-dependent platelet agglutination and activation of αIIbβ3 integrin, which also binds vWF. These conditions make it difficult to investigate GPIb-specific signaling pathways in washed platelets. Here, we investigated the specific mechanisms of GPIb signaling using echicetin-coated polystyrene beads, which specifically activate GPIb. We compared platelet activation induced by echicetin beads to vWF/R. Human platelets were stimulated with polystyrene beads coated with increasing amounts of echicetin and platelet activation by echicetin beads was then investigated to reveal GPIb specific signaling. Echicetin beads induced αIIbβ3-dependent aggregation of washed platelets, while under the same conditions vWF/R treatment led only to αIIbβ3-independent platelet agglutination. The average distance between the echicetin molecules on the polystyrene beads must be less than 7 nm for full platelet activation, while the total amount of echicetin used for activation is not critical. Echicetin beads induced strong phosphorylation of several proteins including p38, ERK and PKB. Synergistic signaling via P2Y12 and thromboxane receptor through secreted ADP and TxA2, respectively, were important for echicetin bead triggered platelet activation. Activation of PKG by the NO/sGC/cGMP pathway inhibited echicetin bead-induced platelet aggregation. Echicetin-coated beads are powerful and reliable tools to study signaling in human platelets activated solely via GPIb and GPIb-triggered pathways. PMID:24705415

  7. Investigating the fluid mechanics behind red blood cell-induced lateral platelet motion

    NASA Astrophysics Data System (ADS)

    Crowl Erickson, Lindsay; Fogelson, Aaron

    2009-11-01

    Platelets play an essential role in blood clotting; they adhere to damaged tissue and release chemicals that activate other platelets. Yet in order to adhere, platelets must first come into contact with the injured vessel wall. Under arterial flow conditions, platelets have an enhanced concentration near blood vessel walls. This non-uniform cell distribution depends on the fluid dynamics of blood as a heterogeneous medium. We use a parallelized lattice Boltzmann-immersed boundary method to solve the flow dynamics of red cells and platelets in a periodic 2D vessel with no-slip boundary conditions. Red cells are treated as biconcave immersed boundary objects with isotropic Skalak membrane tension and an internal viscosity five times that of the surrounding plasma. Using this method we analyze the influence of shear rate, hematocrit, and red cell membrane properties on lateral platelet motion. We find that the effective diffusion of platelets is significantly lower near the vessel wall compared to the center of the vessel. Insight gained from this work could lead to significant improvements to current models for platelet adhesion where the presence of red blood cells is neglected due to computational intensity.

  8. Orally given gastroprotective capsaicin does not modify aspirin-induced platelet aggregation in healthy male volunteers (human phase I examination).

    PubMed

    Sandor, B; Papp, J; Mozsik, Gy; Szolcsanyi, J; Keszthelyi, Zs; Juricskay, I; Toth, K; Habon, Tamas

    2014-12-01

    Capsaicin is a well-known component of red pepper. Recent studies have shown that capsaicin could prevent gastric ulcer provoked by various NSAID-s like acetylsalicylic acid (ASA). Primary objective of this human clinical phase I trial was to investigate whether two different doses of capsaicin co-administered with ASA could alter the inhibitory effect of ASA on platelet aggregation. 15 healthy male subjects were involved in the study and treated orally with 400 μg capsaicin, 800 μg capsaicin, 500 mg ASA, 400 μg capsaicin+500 mg ASA and 800 μg capsaicin+500 mg ASA. Blood was drawn before and 1, 2, 6 and 24 hours after the drug administration. After that epinephrine induced platelet aggregation was measured by optical aggregometry. Between treatments, volunteers had a 6-day wash-out period. Our results showed that capsaicin had no effect on platelet aggregation, while as expected, ASA monotherapy resulted in a significant and clinically effective platelet aggregation inhibition (p ≤ 0.001). The combined ASA-capsaicin therapies reached equivalent effectiveness in platelet aggregation inhibition as ASA monotherapy. Our investigation proved that capsaicin did not influence the inhibitory effect of ASA on platelet aggregation, thus the capsaicin-ASA treatment would combine the antiplatelet effect of ASA with the possible gastroprotection of capsaicin.

  9. Modeling HIV-1 Induced Neuroinflammation in Mice: Role of Platelets in Mediating Blood-Brain Barrier Dysfunction

    PubMed Central

    Jones, Letitia D.; Jackson, Joseph W.; Maggirwar, Sanjay B.

    2016-01-01

    The number of HIV-1 positive individuals developing some form of HIV-associated neurocognitive disorder (HAND) is increasing. In these individuals, the integrity of the blood-brain barrier (BBB) is compromised due to an increase in exposure to pro-inflammatory mediators, viral proteins, and virus released from infected cells. It has been shown that soluble CD40L (sCD40L) is released upon platelet activation and is an important mediator of the pathogenesis of HAND but the underlying mechanisms are unclear, emphasizing the need of an effective animal model. Here, we have utilized a novel animal model in which wild-type (WT) mice were infected with EcoHIV; a derivative of HIV-1 that contains a substitution of envelope protein gp120 with that of gp80 derived from murine leukemia virus-1 (MuLV-1). As early as two-weeks post-infection, EcoHIV led to increased permeability of the BBB associated with decreased expression of tight junction protein claudin-5, in CD40L and platelet activation-dependent manner. Treatment with an antiplatelet drug, eptifibatide, in EcoHIV-infected mice normalized BBB function, sCD40L release and platelet activity, thus implicating platelet activation and platelet-derived CD40L in virally induced BBB dysfunction. Our results also validate and underscore the importance of EcoHIV infection mouse model as a tool to explore therapeutic targets for HAND. PMID:26986758

  10. HMGB1 binds to activated platelets via the receptor for advanced glycation end products and is present in platelet rich human coronary artery thrombi.

    PubMed

    Ahrens, Ingo; Chen, Yung-Chih; Topcic, Danijal; Bode, Michael; Haenel, David; Hagemeyer, Christoph E; Seeba, Hannah; Duerschmied, Daniel; Bassler, Nicole; Jandeleit-Dahm, Karin A; Sweet, Matthew J; Agrotis, Alex; Bobik, Alex; Peter, Karlheinz

    2015-11-01

    High mobility group box 1 (HMGB1) acts as both a nuclear protein that regulates gene expression, as well as a pro-inflammatory alarmin that is released from necrotic or activated cells. Recently, HMGB1-expression in human atherosclerotic plaques was identified. Therapeutic blockade of HMGB1 reduced the development of diet-induced atherosclerosis in ApoE knockout mice. Thus, we hypothesised an interaction between HMGB1 and activated platelets. Binding of recombinant HMGB1 to platelets was assessed by flow cytometry. HMGB1 bound to thrombin-activated human platelets (MFI 2.49 vs 25.01, p=0.0079). Blood from wild-type, TLR4 and RAGE knockout mice was used to determine potential HMGB1 receptors on platelets. HMGB1 bound to platelets from wild type C57Bl6 (MFI 2.64 vs 20.3, p< 0.05), and TLR4-/- mice (MFI 2.11 vs 25.65, p< 0.05) but failed to show binding to platelets from RAGE-/- mice (p > 0.05). RAGE expression on human platelets was detected by RT-PCR with mRNA extracted from highly purified platelets and confirmed by Western blot and immunofluorescence microscopy. Platelet activation increased RAGE surface expression (MFI 4.85 vs 6.74, p< 0.05). Expression of HMGB1 in human coronary artery thrombi was demonstrated by immunohistochemistry and revealed high expression levels. Platelets bind HMGB1 upon thrombin-induced activation. Platelet specific expression of RAGE could be detected at the mRNA and protein level and is involved in the binding of HMGB1. Furthermore, platelet activation up-regulates platelet surface expression of RAGE. HMGB1 is highly expressed in platelet-rich human coronary artery thrombi pointing towards a central role for HMGB1 in atherothrombosis, thereby suggesting the possibility of platelet targeted anti-inflammatory therapies for atherothrombosis.

  11. Nattokinase improves blood flow by inhibiting platelet aggregation and thrombus formation

    PubMed Central

    Jang, Ja-Young; Kim, Tae-Su; Cai, Jingmei; Kim, Jihyun; Kim, Youngeun; Shin, Kyungha; Kim, Kwang Sei; Park, Sung Kyeong; Lee, Sung-Pyo; Choi, Ehn-Kyoung

    2013-01-01

    The effects of nattokinase on the in vitro platelet aggregation and in vivo thrombosis were investigated in comparison with aspirin. Rabbit platelet-rich plasma was incubated with nattokinase and aggregation inducers collagen and thrombin, and the platelet aggregation rate was analyzed. Nattokinase significantly inhibited both the collagen- and thrombin-induced platelet aggregations. Nattokinase also reduced thromboxane B2 formation from collagen-activated platelets in a concentration-dependent manner. Rats were orally administered with nattokinase for 1 week, and their carotid arteries were exposed. Arterial thrombosis was induced by applying 35% FeCl3-soaked filter paper for 10 min, and the blood flow was monitored with a laser Doppler probe. Nattokinase delayed the FeCl3-induced arterial occlusion in a dose-dependent manner, doubling the occlusion time at 160 mg/kg. In addition, a high dose (500 mg/kg) of nattokinase fully prevented the occlusion, as achieved with aspirin (30 mg/kg). The results indicate that nattokinase extracted from fermented soybean inhibit platelet aggregation by blocking thromboxane formation, and thereby delay thrombosis following oxidative arterial wall injury. Therefore, it is suggested that nattokinase could be a good candidate without adverse effects for the improvement of blood flow. PMID:24396387

  12. Platelet-rich concentrates differentially release growth factors and induce cell migration in vitro.

    PubMed

    Schär, Michael O; Diaz-Romero, Jose; Kohl, Sandro; Zumstein, Matthias A; Nesic, Dobrila

    2015-05-01

    Platelet-rich concentrates are used as a source of growth factors to improve the healing process. The diverse preparation protocols and the gaps in knowledge of their biological properties complicate the interpretation of clinical results. In this study we aimed to (1) analyze the concentration and kinetics of growth factors released from leukocyte- and platelet-rich fibrin (L-PRF), leukocyte- and platelet-rich plasma (L-PRP), and natural blood clot during in vitro culture; (2) investigate the migration of mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs) as a functional response to the factors released; and (3) uncover correlations between individual growth factors with the initial platelet/leukocyte counts or the induced cell migration. L-PRF, L-PRP, and natural blood clot prepared from 11 donors were cultured in vitro for 28 days and media supernatants collected after 8 hours and 1, 3, 7, 14, and 28 days. Released transforming growth factor β1 (TGF-β1), vascular endothelial growth factor (VEGF), insulin growth factor (IGF-1), platelet-derived growth factor AB (PDGF-AB), and interleukin-1β (IL-1β) were measured in the supernatants with enzyme-linked immunosorbent assay. Migration of MSC and HUVEC induced by the supernatants was evaluated in Boyden chambers. More TGF-ß1 was released (mean ± SD in pg/mL of blood) from L-PRF (37,796 ± 5492) compared with L-PRP (23,738 ± 6848; p < 0.001) and blood clot (3739 ± 4690; p < 0.001), whereas more VEGF and IL-1ß were released from blood clot (1933 ± 704 and 2053 ± 908, respectively) compared with both L-PRP (642 ± 208; p < 0.001 and 273 ± 386; p < 0.001, respectively) and L-PRF (852 ± 376; p < 0.001 and 65 ± 56, p < 0.001, respectively). No differences were observed in IGF-1 and PDGF-AB released from any of the concentrates. TGF-β1 release peaked at Day 7 in L-PRF and at 8 hours and Day 7 in L-PRP and 8 hours and Day 14 in blood clot. In all concentrates, main release of VEGF

  13. Blood platelet kinetics and platelet transfusion.

    PubMed

    Aster, Richard H

    2013-11-01

    The discovery of citrate anticoagulant in the 1920s and the development of plastic packs for blood collection in the 1960s laid the groundwork for platelet transfusion therapy on a scale not previously possible. A major limitation, however, was the finding that platelet concentrates prepared from blood anticoagulated with citrate were unsuitable for transfusion because of platelet clumping. We found that this could be prevented by simply reducing the pH of platelet-rich plasma to about 6.5 prior to centrifugation. We used this approach to characterize platelet kinetics and sites of platelet sequestration in normal and pathologic states and to define the influence of variables such as anticoagulant and ABO incompatibility on post-transfusion platelet recovery. The "acidification" approach enabled much wider use of platelet transfusion therapy until alternative means of producing concentrates suitable for transfusion became available.

  14. Effect of photodynamic therapy on mouse platelets

    NASA Astrophysics Data System (ADS)

    Zhou, Chuannong; Chi, Shunji; Deng, Jinsheng; Zhang, Hua; Liang, Junlin; Ha, Xian-wen

    1993-03-01

    Normal mice received hematoporphyrin derivative (10 mg/kg iv) immediately, 24 or 48 hrs prior to red light irradiation. The blood was collected and the platelet-rich plasma was irradiated by red light (100 J/cm2). The platelets were fixed immediately, 8 or 16 hrs after irradiation, and processed for EM examination. In comparison with those of control mice, the platelets of all experimental mice showed structural changes: 16 hrs after irradiation all platelets were necrotized; 8 hrs after irradiation almost one fourth of the platelets were necrotized and the remaining were considerably damaged; immediately after irradiation a small number of platelets became necrotic and most other platelets were swollen and deformed, often with many cytoplasmic projections and considerable dilatation of the canalicular membrane system. Our findings provided a clear evidence that platelets are highly sensitive to PDT action and can be directly and rapidly injured by PDT even in the absence of vascular endothelial cells. Our results give firm support to the hypothesis that both endothelial cells and platelets may play an important role in the initiation of early vascular damage and microcirculatory alterations induced by PDT in vivo.

  15. Platelet Kainate Receptor Signaling Promotes Thrombosis by Stimulating Cyclooxygenase Activation

    PubMed Central

    Sun, Henry; Swaim, AnneMarie; Herrera, Jesus Enrique; Becker, Diane; Becker, Lewis; Srivastava, Kalyan; Thompson, Laura E.; Shero, Michelle R.; Perez-Tamayo, Alita; Suktitpat, Bhoom; Mathias, Rasika; Contractor, Anis; Faraday, Nauder; Morrell, Craig N.

    2009-01-01

    Rationale Glutamate is a major signaling molecule that binds to glutamate receptors including the ionotropic glutamate receptors; kainate (KA) receptor (KAR), the N-methyl-D-aspartate (NMDA) receptor (NMDAR), and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR). Each is well characterized in the central nervous system (CNS), but glutamate has important signaling roles in peripheral tissues as well, including a role in regulating platelet function. Objective Our previous work has demonstrated that glutamate is released by platelets in high concentrations within a developing thrombus and increases platelet activation and thrombosis. We now show that platelets express a functional KAR that drives increased agonist induced platelet activation. Methods and Results KAR induced increase in platelet activation is in part the result of activation of platelet cyclooxygenase (COX) in a Mitogen Activated Protein Kinase (MAPK) dependent manner. Platelets derived from KA receptor subunit knockout mice (GluR6−/−) are resistant to KA effects and have a prolonged time to thrombosis in vivo. Importantly, we have also identified polymorphisms in KA receptor subunits that are associated with phenotypic changes in platelet function in a large group of Caucasians and African Americans. Conclusion Our data demonstrate that glutamate regulation of platelet activation is in part COX dependent, and suggest that the KA receptor is a novel anti-thrombotic target. PMID:19679838

  16. Role for Neutrophil Extracellular Traps (NETs) and Platelet Aggregation in Early Sepsis-induced Hepatic Dysfunction.

    PubMed

    Sakurai, Kentaro; Miyashita, Tomoharu; Okazaki, Mitsuyoshi; Yamaguchi, Takahisa; Ohbatake, Yoshinao; Nakanuma, Shinichi; Okamoto, Koichi; Sakai, Seisho; Kinoshita, Jun; Makino, Isamu; Nakamura, Keishi; Hayashi, Hironori; Oyama, Katsunobu; Tajima, Hidehiro; Takamura, Hiroyuki; Ninomiya, Itasu; Fushida, Sachio; Harada, Kenichi; Harmon, John W; Ohta, Tetsuo

    2017-01-01

    Severe sepsis is associated with high morbidity and mortality rates. Inflammation and coagulation play pivotal roles in the pathogenesis of sepsis leading to multiple organ failure, especially in the liver. The aim of the present study was to assess the mechanism from sepsis to liver damage in a mouse model. We created a sepsis model by injecting lipopolysaccharide (LPS) intraperitoneally in mice. At 0, 6, 12, and 24 h following intraperitoneal injection of LPS, mice were euthanised and analyzed. Primary antibodies against myeloperoxidase (MPO), hepatic sinusoidal endothelial cells (SE-1), and P-selectin (CD62p) were used. Expression and localization in neutrophil, sinusoidal endothelial, and platelet cells were assessed by immunohistochemistry. Immunohistochemical analyses revealed a positive staining for MPO, most abundantly in neutrophil granulocytes, within the hepatic sinusoids immediately after injection. Neutrophil extracellular trap (NET)-like structures stained for MPO, indicating the presence of neutrophils undergoing NETosis, were confirmed at 6 h after LPS administration. SE-1 staining for liver sinusoidal endothelial cells was significantly reduced at 12 h post-LPS administration through sinusoidal endothelial injury or detachment. Furthermore, the presence of extravasated platelets was confirmed in the space of Disse at 24 h after LPS administration. Blood sample analyses showed that white blood cell counts and platelet counts decreased gradually, while MPO amounts increased until 12 h after LPS administration. We conclude that NET formation and intravasated platelet aggregation are the first steps from sepsis to liver damage, and that extravasated platelet aggregation promoted by NET-facilitated detachment of sinusoidal endothelial cells is the origin of sepsis-induced liver dysfunction. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  17. Effects of acute and chronic psychological stress on platelet aggregation in mice.

    PubMed

    Matsuhisa, Fumikazu; Kitamura, Nobuo; Satoh, Eiki

    2014-03-01

    Although psychological stress has long been known to alter cardiovascular function, there have been few studies on the effect of psychological stress on platelets, which play a pivotal role in cardiovascular disease. In the present study, we investigated the effects of acute and chronic psychological stress on the aggregation of platelets and platelet cytosolic free calcium concentration ([Ca(2+)]i). Mice were subjected to both transportation stress (exposure to novel environment, psychological stress) and restraint stress (psychological stress) for 2 h (acute stress) or 3 weeks (2 h/day) (chronic stress). In addition, adrenalectomized mice were subjected to similar chronic stress (both transportation and restraint stress for 3 weeks). The aggregation of platelets from mice and [Ca(2+)]i was determined by light transmission assay and fura-2 fluorescence assay, respectively. Although acute stress had no effect on agonist-induced platelet aggregation, chronic stress enhanced the ability of the platelet agonists thrombin and ADP to stimulate platelet aggregation. However, chronic stress failed to enhance agonist-induced increase in [Ca(2+)]i. Adrenalectomy blocked chronic stress-induced enhancement of platelet aggregation. These results suggest that chronic, but not acute, psychological stress enhances agonist-stimulated platelet aggregation independently of [Ca(2+)]i increase, and the enhancement may be mediated by stress hormones secreted from the adrenal glands.

  18. Lactodifucotetraose, a human milk oligosaccharide, attenuates platelet function and inflammatory cytokine release.

    PubMed

    Newburg, David S; Tanritanir, Ayse C; Chakrabarti, Subrata

    2016-07-01

    Human milk strongly quenches inflammatory processes in vitro, and breastfed infants have lower incidence of inflammatory diseases than those fed artificially. Platelets from neonates, in contrast to those from adults, are less responsive to platelet agonists such as collagen, thrombin, ADP, and epinephrine. Breastfed infants absorb oligosaccharides intact from the human milk in their gut to the circulation. This study was to determine whether these oligosaccharides can attenuate platelet function and platelet secretion of pro-inflammatory proteins, and to identify the active component. The natural mixture of oligosaccharides from human milk and pure individual human milk oligosaccharides were tested for their ability to modulate responses of platelets isolated from human blood following exposure to thrombin, ADP, and collagen. Human milk and the natural mixture of human milk oligosaccharides inhibited platelet release of inflammatory proteins. Of the purified human milk oligosaccharides tested, only lactodifucotetraose (LDFT) significantly inhibited thrombin induced release of the pro-inflammatory proteins RANTES and sCD40L. LDFT also inhibited platelet adhesion to a collagen-coated surface, as well as platelet aggregation induced by ADP or collagen. These data indicate that LDFT may help modulate hemostasis by suppressing platelet-induced inflammatory processes in breastfed infants. This activity suggests further study of LDFT for its potential as a therapeutic agent in infants and adults.

  19. Abnormal Whole Blood Thrombi in Humans with Inherited Platelet Receptor Defects

    PubMed Central

    Castellino, Francis J.; Liang, Zhong; Davis, Patrick K.; Balsara, Rashna D.; Musunuru, Harsha; Donahue, Deborah L.; Smith, Denise L.; Sandoval-Cooper, Mayra J.; Ploplis, Victoria A.; Walsh, Mark

    2012-01-01

    To delineate the critical features of platelets required for formation and stability of thrombi, thromboelastography and platelet aggregation measurements were employed on whole blood of normal patients and of those with Bernard-Soulier Syndrome (BSS) and Glanzmann’s Thrombasthenia (GT). We found that separation of platelet activation, as assessed by platelet aggregation, from that needed to form viscoelastic stable whole blood thrombi, occurred. In normal human blood, ristocetin and collagen aggregated platelets, but did not induce strong viscoelastic thrombi. However, ADP, arachidonic acid, thrombin, and protease-activated-receptor-1 and -4 agonists, stimulated both processes. During this study, we identified the genetic basis of a very rare double heterozygous GP1b deficiency in a BSS patient, along with a new homozygous GP1b inactivating mutation in another BSS patient. In BSS whole blood, ADP responsiveness, as measured by thrombus strength, was diminished, while ADP-induced platelet aggregation was normal. Further, the platelets of 3 additional GT patients showed very weak whole blood platelet aggregation toward the above agonists and provided whole blood thrombi of very low viscoelastic strength. These results indicate that measurements of platelet counts and platelet aggregability do not necessarily correlate with generation of stable thrombi, a potentially significant feature in patient clinical outcomes. PMID:23300803

  20. Review: The transcripts associated with organ allograft rejection.

    PubMed

    Halloran, Philip F; Venner, Jeffery M; Madill-Thomsen, Katelynn S; Einecke, Gunilla; Parkes, Michael D; Hidalgo, Luis G; Famulski, Konrad S

    2018-04-01

    The molecular mechanisms operating in human organ transplant rejection are best inferred from the mRNAs expressed in biopsies because the corresponding proteins often have low expression and short half-lives, while small non-coding RNAs lack specificity. Associations should be characterized in a population that rigorously identifies T cell-mediated (TCMR) and antibody-mediated rejection (ABMR). This is best achieved in kidney transplant biopsies, but the results are generalizable to heart, lung, or liver transplants. Associations can be universal (all rejection), TCMR-selective, or ABMR-selective, with universal being strongest and ABMR-selective weakest. Top universal transcripts are IFNG-inducible (eg, CXCL11 IDO1, WARS) or shared by effector T cells (ETCs) and NK cells (eg, KLRD1, CCL4). TCMR-selective transcripts are expressed in activated ETCs (eg, CTLA4, IFNG), activated (eg, ADAMDEC1), or IFNG-induced macrophages (eg, ANKRD22). ABMR-selective transcripts are expressed in NK cells (eg, FGFBP2, GNLY) and endothelial cells (eg, ROBO4, DARC). Transcript associations are highly reproducible between biopsy sets when the same rejection definitions, case mix, algorithm, and technology are applied, but exact ranks will vary. Previously published rejection-associated transcripts resemble universal and TCMR-selective transcripts due to incomplete representation of ABMR. Rejection-associated transcripts are never completely rejection-specific because they are shared with the stereotyped response-to-injury and innate immunity. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  1. TMEM16F is required for phosphatidylserine exposure and microparticle release in activated mouse platelets.

    PubMed

    Fujii, Toshihiro; Sakata, Asuka; Nishimura, Satoshi; Eto, Koji; Nagata, Shigekazu

    2015-10-13

    Phosphatidylserine (PtdSer) exposure on the surface of activated platelets requires the action of a phospholipid scramblase(s), and serves as a scaffold for the assembly of the tenase and prothrombinase complexes involved in blood coagulation. Here, we found that the activation of mouse platelets with thrombin/collagen or Ca(2+) ionophore at 20 °C induces PtdSer exposure without compromising plasma membrane integrity. Among five transmembrane protein 16 (TMEM16) members that support Ca(2+)-dependent phospholipid scrambling, TMEM16F was the only one that showed high expression in mouse platelets. Platelets from platelet-specific TMEM16F-deficient mice exhibited defects in activation-induced PtdSer exposure and microparticle shedding, although α-granule and dense granule release remained intact. The rate of tissue factor-induced thrombin generation by TMEM16F-deficient platelets was severely reduced, whereas thrombin-induced clot retraction was unaffected. The imaging of laser-induced thrombus formation in whole animals showed that PtdSer exposure on aggregated platelets was TMEM16F-dependent in vivo. The phenotypes of the platelet-specific TMEM16F-null mice resemble those of patients with Scott syndrome, a mild bleeding disorder, indicating that these mice may provide a useful model for human Scott syndrome.

  2. Glycoprotein Ib activation by thrombin stimulates the energy metabolism in human platelets

    PubMed Central

    Corona de la Peña, Norma; Gutiérrez-Aguilar, Manuel; Hernández-Reséndiz, Ileana; Marín-Hernández, Álvaro

    2017-01-01

    Thrombin-induced platelet activation requires substantial amounts of ATP. However, the specific contribution of each ATP-generating pathway i.e., oxidative phosphorylation (OxPhos) versus glycolysis and the biochemical mechanisms involved in the thrombin-induced activation of energy metabolism remain unclear. Here we report an integral analysis on the role of both energy pathways in human platelets activated by several agonists, and the signal transducing mechanisms associated with such activation. We found that thrombin, Trap-6, arachidonic acid, collagen, A23187, epinephrine and ADP significantly increased glycolytic flux (3–38 times vs. non-activated platelets) whereas ristocetin was ineffective. OxPhos (33 times) and mitochondrial transmembrane potential (88%) were increased only by thrombin. OxPhos was the main source of ATP in thrombin-activated platelets, whereas in platelets activated by any of the other agonists, glycolysis was the principal ATP supplier. In order to establish the biochemical mechanisms involved in the thrombin-induced OxPhos activation in platelets, several signaling pathways associated with mitochondrial activation were analyzed. Wortmannin and LY294002 (PI3K/Akt pathway inhibitors), ristocetin and heparin (GPIb inhibitors) as well as resveratrol, ATP (calcium-release inhibitors) and PP1 (Tyr-phosphorylation inhibitor) prevented the thrombin-induced platelet activation. These results suggest that thrombin activates OxPhos and glycolysis through GPIb-dependent signaling involving PI3K and Akt activation, calcium mobilization and protein phosphorylation. PMID:28817667

  3. Inhibitory Effect of Flavonolignans on the P2Y12 Pathway in Blood Platelets.

    PubMed

    Bijak, Michal; Szelenberger, Rafal; Dziedzic, Angela; Saluk-Bijak, Joanna

    2018-02-10

    Adenosine diphosphate (ADP) is the major platelet agonist, which is important in the shape changes, stability, and growth of the thrombus. Platelet activation by ADP is associated with the G protein-coupled receptors P2Y1 and P2Y12. The pharmacologic blockade of the P2Y12 receptor significantly reduces the risk of peripheral artery disease, myocardial infarction, ischemic stroke, and vascular death. Recent studies demonstrated the inhibition of ADP-induced blood platelet activation by three major compounds of the flavonolignans group: silybin, silychristin, and silydianin. For this reason, the aim of the current work was to verify the effects of silybin, silychristin, and silydianin on ADP-induced physiological platelets responses, as well as mechanisms of P2Y12-dependent intracellular signal transduction. We evaluated the effect of tested flavonolignans on ADP-induced blood platelets' aggregation in platelet-rich plasma (PRP) (using light transmission aggregometry), adhesion to fibrinogen (using the static method), and the secretion of PF-4 (using the ELISA method). Additionally, using the double labeled flow cytometry method, we estimated platelet vasodilator-stimulated phosphoprotein (VASP) phosphorylation. We demonstrated a dose-dependent reduction of blood platelets' ability to perform ADP-induced aggregation, adhere to fibrinogen, and secrete PF-4 in samples treated with flavonolignans. Additionally, we observed that all of the tested flavonolignans were able to increase VASP phosphorylation in blood platelets samples, which is correlated with P2Y12 receptor inhibition. All of these analyses show that silychristin and silybin have the strongest inhibitory effect on blood platelet activation by ADP, while silydianin also inhibits the ADP pathway, but to a lesser extent. The results obtained in this study clearly demonstrate that silybin, silychristin, and silydianin have inhibitory properties against the P2Y12 receptor and block ADP-induced blood platelet

  4. Sepsis induced by cecal ligation and perforation (CLP) alters nucleotidase activities in platelets of rats.

    PubMed

    Pereira, Renata S; Bertoncheli, Claudia M; Adefegha, Stephen A; Castilhos, Lívia G; Silveira, Karine L; Rezer, João Felipe P; Doleski, Pedro H; Abdalla, Fátima H; Santos, Karen F; Leal, Claudio A M; Santos, Roberto C V; Casali, Emerson A; Moritz, Cesar E J; Stainki, Daniel R; Leal, Daniela B R

    2017-10-01

    Sepsis is a potentially lethal condition, and it is associated with platelet alterations. The present study sought to investigate the activity of ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase), E-5'-nucleotidase, and ecto-adenosine deaminase (E-ADA) in the platelets of rats that were induced with sepsis. Male Wistar rats were divided into three groups of ten animals each: a negative control group (normal; NC); a group that underwent surgical procedures (sham); and a group that underwent cecal ligation and perforation (CLP). The induction of sepsis was confirmed by bacteremia, and the causative pathogen identified was Escherichia coli. Hematological parameters showed leukocytosis and thrombocytopenia in animals in the septic group. The results also revealed that there were significant (p < 0.05) increases in adenosine triphosphate (ATP) and adenosine monophosphate (AMP) hydrolyses, and in the deamination of adenosine in the CLP group compared to the sham and control groups. Conversely, ADP hydrolysis was significantly decreased (p < 0.05) in the CLP group compared to the sham and control groups. Purine levels were analyzed by high-performance liquid chromatography (HPLC) in serum samples from control, sham, and CLP groups. Increased concentrations of ATP, adenosine, and inosine were found in the CLP group compared to the sham and control groups. Conversely, the concentrations of ADP and AMP in the CPL group were not significantly altered. We suggest that alterations in hematological parameters, nucleotide hydrolysis in platelets, and nucleotide concentrations in serum samples of rats with induced sepsis may be related to thromboembolic events. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Deciphering of ADP-induced, phosphotyrosine-dependent signaling networks in human platelets by Src-homology 2 region (SH2)-profiling.

    PubMed

    Schweigel, Hardy; Geiger, Jörg; Beck, Florian; Buhs, Sophia; Gerull, Helwe; Walter, Ulrich; Sickmann, Albert; Nollau, Peter

    2013-03-01

    Tyrosine phosphorylation plays a central role in signal transduction controlling many important biological processes. In platelets, the activity of several signaling proteins is controlled by tyrosine phosphorylation ensuring proper platelet activation and aggregation essential for regulation of the delicate balance between bleeding and hemostasis. Here, we applied Src-homology 2 region (SH2)-profiling for deciphering of the phosphotyrosine state of human platelets activated by adenosine diphosphate (ADP). Applying a panel of 31 SH2-domains, rapid and complex regulation of the phosphotyrosine state of platelets was observed after ADP stimulation. Specific inhibition of platelet P2Y receptors by synthetic drugs revealed a major role for the P2Y1 receptor in tyrosine phosphorylation. Concomitant activation of protein kinase A (PKA) abolished ADP-induced tyrosine phosphorylation in a time and concentration-dependent manner. Given the fact that PKA activity is negatively regulated by the P2Y12 receptor, our data provide evidence for a novel link of synergistic control of the state of tyrosine phosphorylation by both P2Y receptors. By SH2 domain pull down and MS/MS analysis, we identified distinct tyrosine phosphorylation sites in cell adhesion molecules, intracellular adapter proteins and phosphatases suggesting a major, functional role of tyrosine phosphorylation of theses candidate proteins in ADP-dependent signaling in human platelets. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Storage of platelets: effects associated with high platelet content in platelet storage containers.

    PubMed

    Gulliksson, Hans; Sandgren, Per; Sjödin, Agneta; Hultenby, Kjell

    2012-04-01

    A major problem associated with platelet storage containers is that some platelet units show a dramatic fall in pH, especially above certain platelet contents. The aim of this study was a detailed investigation of the different in vitro effects occurring when the maximum storage capacity of a platelet container is exceeded as compared to normal storage. Buffy coats were combined in large-volume containers to create primary pools to be split into two equal aliquots for the preparation of platelets (450-520×10(9) platelets/unit) in SSP+ for 7-day storage in two containers (test and reference) with different platelet storage capacity (n=8). Exceeding the maximum storage capacity of the test platelet storage container resulted in immediate negative effects on platelet metabolism and energy supply, but also delayed effects on platelet function, activation and disintegration. Our study gives a very clear indication of the effects in different phases associated with exceeding the maximum storage capacity of platelet containers but throw little additional light on the mechanism initiating those negative effects. The problem appears to be complex and further studies in different media using different storage containers will be needed to understand the mechanisms involved.

  7. Tetraspanin Tspan9 regulates platelet collagen receptor GPVI lateral diffusion and activation

    PubMed Central

    Haining, Elizabeth J.; Matthews, Alexandra L.; Noy, Peter J.; Romanska, Hanna M.; Harris, Helen J.; Pike, Jeremy; Morowski, Martina; Gavin, Rebecca L.; Yang, Jing; Milhiet, Pierre-Emmanuel; Berditchevski, Fedor; Nieswandt, Bernhard; Poulter, Natalie S.; Watson, Steve P.; Tomlinson, Michael G.

    2017-01-01

    Abstract The tetraspanins are a superfamily of four-transmembrane proteins, which regulate the trafficking, lateral diffusion and clustering of the transmembrane proteins with which they interact. We have previously shown that tetraspanin Tspan9 is expressed on platelets. Here we have characterised gene-trap mice lacking Tspan9. The mice were viable with normal platelet numbers and size. Tspan9-deficient platelets were specifically defective in aggregation and secretion induced by the platelet collagen receptor GPVI, despite normal surface GPVI expression levels. A GPVI activation defect was suggested by partially impaired GPVI-induced protein tyrosine phosphorylation. In mechanistic experiments, Tspan9 and GPVI co-immunoprecipitated and co-localised, but super-resolution imaging revealed no defects in collagen-induced GPVI clustering on Tspan9-deficient platelets. However, single particle tracking using total internal reflection fluorescence microscopy showed that GPVI lateral diffusion was reduced by approximately 50% in the absence of Tspan9. Therefore, Tspan9 plays a fine-tuning role in platelet activation by regulating GPVI membrane dynamics. PMID:28032533

  8. Dark chocolate inhibits platelet aggregation in healthy volunteers.

    PubMed

    Innes, Andrew J; Kennedy, Gwen; McLaren, Margaret; Bancroft, Anne J; Belch, Jill J F

    2003-08-01

    Cardiovascular disease is a leading cause of death in the UK. The flavonoids found in cocoa may produce a cardio-protective role for chocolate with a high cocoa content. Thirty healthy volunteers were randomised to receive 100 g of white, milk or dark chocolate, and assessments of platelet function were undertaken on venous blood samples before and after chocolate consumption. White and milk chocolate had no significant effect on platelets. However dark chocolate inhibited collagen-induced platelet aggregation in platelet rich plasma. In the future dark chocolate may have a role in prevention of cardiovascular and thromboembolic diseases.

  9. Functional expression of cysteinyl leukotriene receptors on human platelets.

    PubMed

    Hasegawa, Shunji; Ichiyama, Takashi; Hashimoto, Kunio; Suzuki, Yasuo; Hirano, Reiji; Fukano, Reiji; Furukawa, Susumu

    2010-01-01

    Normal peripheral blood leukocytes, such as basophils, eosinophils, B lymphocytes and monocytes/macrophages, have a cysteinyl leukotriene 1 (CysLT1) receptor, while the cysteinyl leukotriene 2 (CysLT2) receptor is expressed in cardiac Purkinje cells, endothelium, brain and leukocytes. However, it is unknown whether or not platelets express the CysLT1 or CysLT2 receptor. In this study we identify and characterize the biological function of the CysLT receptor of human platelets. We determined the CysLT1 or CysLT2 receptor mRNA expression in normal human platelets by RT-PCR and determined protein expression by Western blotting and flow cytometry. Moreover, we examined the effect of cysteinyl leukotrienes (CysLTs) in platelets on the induction of RANTES (Regulated on Activation, Normal T Expressed, and presumably Secreted). We also investigated whether the CysLT1 receptor antagonist pranlukast inhibits CysLT-induced RANTES release. In conclusion, we showed the functional expression of CysLT receptors on human platelets and demonstrated that CysLTs induced the release of significant amounts of RANTES, which suggests a novel role for human platelets in CysLT-mediated allergic inflammation.

  10. Modulation of platelet aggregation by areca nut and betel leaf ingredients: roles of reactive oxygen species and cyclooxygenase.

    PubMed

    Jeng, Jiiang-Huei; Chen, Shiao-Yun; Liao, Chang-Hui; Tung, Yuan-Yii; Lin, Bor-Ru; Hahn, Liang-Jiunn; Chang, Mei-Chi

    2002-05-01

    There are 2 to 6 billion betel quid (BQ) chewers in the world. Areca nut (AN), a BQ component, modulates arachidonic acid (AA) metabolism, which is crucial for platelet function. AN extract (1 and 2 mg/ml) stimulated rabbit platelet aggregation, with induction of thromboxane B2 (TXB2) production. Contrastingly, Piper betle leaf (PBL) extract inhibited AA-, collagen-, and U46619-induced platelet aggregation, and TXB2 and prostaglandin-D2 (PGD2) production. PBL extract also inhibited platelet TXB2 and PGD2 production triggered by thrombin, platelet activating factor (PAF), and adenosine diphosphate (ADP), whereas little effect on platelet aggregation was noted. Moreover, PBL is a scavenger of O2(*-) and *OH, and inhibits xanthine oxidase activity and the (*)OH-induced PUC18 DNA breaks. Deferoxamine, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) and neomycin prevented AN-induced platelet aggregation and TXB2 production. Indomethacin, genistein, and PBL extract inhibited only TXB2 production, but not platelet aggregation. Catalase, superoxide dismutase, and dimethylthiourea (DMT) showed little effect on AN-induced platelet aggregation, whereas catalase and DMT inhibited the AN-induced TXB2 production. These results suggest that AN-induced platelet aggregation is associated with iron-mediated reactive oxygen species production, calcium mobilization, phospholipase C activation, and TXB2 production. PBL inhibited platelet aggregation via both its antioxidative effects and effects on TXB2 and PGD2 production. Effects of AN and PBL on platelet aggregation and AA metabolism is crucial for platelet activation in the oral mucosa and cardiovascular system in BQ chewers.

  11. The polyphenol-rich extracts from black chokeberry and grape seeds impair changes in the platelet adhesion and aggregation induced by a model of hyperhomocysteinemia.

    PubMed

    Malinowska, Joanna; Oleszek, Wieslaw; Stochmal, Anna; Olas, Beata

    2013-04-01

    The mechanism action of the polyphenol-rich extracts from berries of Aronia melanocarpa (black chokeberry) and from grape seeds in the defence against homocysteine (Hcy) and its derivatives action in blood platelets is still unknown. In this study, the influence of the aronia extract and grape seeds extract (GSE) on the platelet adhesion to collagen and fibrinogen and the platelet aggregation during a model of hyperhomocysteinemia was investigated. The aim of our study in vitro was also to investigate superoxide anion radicals (O₂⁻•) production after incubation of platelets with Hcy, HTL and the aronia extract and GSE during a model of hyperhomocysteinemia (induced by reduced form of homocysteine at final dose of 100 μM) and the most reactive form of Hcy--its cyclic thioester, homocysteine thiolactone (HTL, 1 μM). Moreover, the additional aim of our study was also to establish and compare the influence of the aronia extract, GSE and resveratrol (3,4',5-trihydroxystilben), a phenolic compound, which has been supposed to be beneficial for the prevention of cardiovascular events, on selected steps of platelet activation. The effects of tested extracts on adhesion of blood platelets to collagen and fibrinogen were determined according to Tuszynski and Murphy. The platelet aggregation was determined by turbidimetry method using a Chrono-log Lumi-aggregometer. We have observed that HTL, like its precursor-Hcy stimulated the generation of O₂⁻• (measured by the superoxide dismutase-inhibitable reduction of cytochrome c) in platelets and caused an augmentation of the platelet adhesion and aggregation induced by the strong physiological agonist-thrombin. Our present results in vitro also demonstrated that the aronia extract and grape seeds extract reduced the toxicity action of Hcy and HTL on blood platelet adhesion to collagen and fibrinogen, the platelet aggregation and superoxide anion radicals production in platelets, suggesting its potential protective

  12. Glutamate mediates platelet activation through the AMPA receptor

    PubMed Central

    Morrell, Craig N.; Sun, Henry; Ikeda, Masahiro; Beique, Jean-Claude; Swaim, Anne Marie; Mason, Emily; Martin, Tanika V.; Thompson, Laura E.; Gozen, Oguz; Ampagoomian, David; Sprengel, Rolf; Rothstein, Jeffrey; Faraday, Nauder; Huganir, Richard; Lowenstein, Charles J.

    2008-01-01

    Glutamate is an excitatory neurotransmitter that binds to the kainate receptor, the N-methyl-D-aspartate (NMDA) receptor, and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR). Each receptor was first characterized and cloned in the central nervous system (CNS). Glutamate is also present in the periphery, and glutamate receptors have been identified in nonneuronal tissues, including bone, heart, kidney, pancreas, and platelets. Platelets play a central role in normal thrombosis and hemostasis, as well as contributing greatly to diseases such as stroke and myocardial infarction. Despite the presence of glutamate in platelet granules, the role of glutamate during hemostasis is unknown. We now show that activated platelets release glutamate, that platelets express AMPAR subunits, and that glutamate increases agonist-induced platelet activation. Furthermore, we demonstrate that glutamate binding to the AMPAR increases intracellular sodium concentration and depolarizes platelets, which are important steps in platelet activation. In contrast, platelets treated with the AMPAR antagonist CNQX or platelets derived from GluR1 knockout mice are resistant to AMPA effects. Importantly, mice lacking GluR1 have a prolonged time to thrombosis in vivo. Our data identify glutamate as a regulator of platelet activation, and suggest that the AMPA receptor is a novel antithrombotic target. PMID:18283118

  13. Influence of gold nanoparticles on platelets functional activity in vitro

    NASA Astrophysics Data System (ADS)

    Akchurin, Garif G.; Akchurin, George G.; Ivanov, Alexey N.; Kirichuk, Vyacheslav F.; Terentyuk, George S.; Khlebtsov, Boris N.; Khlebtsov, Nikolay G.

    2008-02-01

    Now in the leading biomedical centers of the world approved new technology of laser photothermal destruction of cancer cells using plasmon gold nanoparticles. Investigations of influence of gold nanoparticles on white rat platelets aggregative activity in vitro have been made. Platelet aggregation was investigated in platelet rich plasma (PRP) with help of laser analyzer 230 LA <>, Russia). Aggregation inductor was ADP solution in terminal concentration 2.5 micromole (<>, Russia). Gold nanoshells soluted in salt solution were used for experiments. Samples of PRP were incubated with 50 or 100 μl gold nanoshells solution in 5 minute, after that we made definition ADP induced platelet aggregation. We found out increase platelet function activity after incubation with nanoparticles solution which shown in maximum ADP-induced aggregation degree increase. Increase platelet function activity during intravenous nanoshells injection can be cause of thrombosis on patients. That's why before clinical application of cancer cell destruction based on laser photothermal used with plasmon gold nanoparticles careful investigations of thrombosis process and detail analyze of physiological blood parameters are very necessary.

  14. Cystamine immobilization on TiO 2 film surfaces and the influence on inhibition of collagen-induced platelet activation

    NASA Astrophysics Data System (ADS)

    Zhou, Yujuan; Weng, Yajun; Zhang, Liping; Jing, Fengjuan; Huang, Nan; Chen, Junying

    2011-12-01

    Poor haemocompatibility is a main issue of artificial cardiovascular materials in clinical application. Nitric oxide (NO), produced by vascular endothelial cells, is a well known inhibitor of platelet adhesion and activation. Thus, NO-releasing biomaterials are beneficial for improving haemocompatibility of blood-contacting biomedical devices. In this paper, a novel method was developed for enhancement of haemocompatibility by exploiting endogenous NO donors. TiO 2 films were firstly synthesized on Si (1 0 0) wafers via unbalanced magnetron sputtering technology, and then polydopamine was grafted on TiO 2 films and used as a linker for further immobilization of cystamine. The obtained surfaces were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis. NO generation is evaluated by saville-griess reagents, and it shows that cystamine immobilized samples are able to catalytically generate NO by decomposing endogenous S-nitrosothiols (RSNO). In vitro platelet adhesion results reveal that cystamine modified surfaces can inhibit collagen-induced platelet activation. ELISA analysis reveals that cGMP in platelets obviously increases on cystamine immobilized surface, which suggests the reducing of platelet activation is through NO/cGMP signal channel. It can be concluded that cystamine immobilized surface shows better blood compatibility by catalyzing NO release from the endogenous NO donor. It may be a promising method for improvement of haemocompatibility of blood-contacting implants.

  15. Fibrin activates GPVI in human and mouse platelets

    PubMed Central

    Alshehri, Osama M.; Montague, Samantha; Watson, Stephanie K.; Frampton, Jon; Bender, Markus; Watson, Steve P.

    2015-01-01

    The glycoprotein VI (GPVI)-Fc receptor γ (FcRγ) chain is the major platelet signaling receptor for collagen. Paradoxically, in a FeCl3 injury model, occlusion, but not initiation of thrombus formation, is delayed in GPVI-deficient and GPVI-depleted mice. In this study, we demonstrate that GPVI is a receptor for fibrin and speculate that this contributes to development of an occlusive thrombus. We observed a marked increase in tyrosine phosphorylation, including the FcRγ chain and Syk, in human and mouse platelets induced by thrombin in the presence of fibrinogen and the αIIbβ3 blocker eptifibatide. This was not seen in platelets stimulated by a protease activated receptor (PAR)-4 peptide, which is unable to generate fibrin from fibrinogen. The pattern of tyrosine phosphorylation was similar to that induced by activation of GPVI. Consistent with this, thrombin did not induce tyrosine phosphorylation of Syk and the FcRγ chain in GPVI-deficient mouse platelets. Mouse platelets underwent full spreading on fibrin but not fibrinogen, which was blocked in the presence of a Src kinase inhibitor or in the absence of GPVI. Spreading on fibrin was associated with phosphatidylserine exposure (procoagulant activity), and this too was blocked in GPVI-deficient platelets. The ectodomain of GPVI was shown to bind to immobilized monomeric and polymerized fibrin. A marked increase in embolization was seen following FeCl3 injury in GPVI-deficient mice, likely contributing to the delay in occlusion in this model. These results demonstrate that GPVI is a receptor for fibrin and provide evidence that this interaction contributes to thrombus growth and stability. PMID:26282541

  16. Role of the recombinant protein of the platelet receptor for type I collagen in the release of nitric oxide during platelet aggregation.

    PubMed

    Chiang, T M; Wang, Y B; Kang, E S

    2000-12-01

    Nitric oxide plays an important role in platelet function and platelets possess the endothelial isoform of nitric oxide synthase. Several reports have indicated that nitric oxide is released upon exposure of platelets to collagen. We have reported that a non-integrin platelet protein of 65 kDa is a receptor for type I collagen. By direct measurement of NO release from washed human platelets suspended in Tyrode buffer with a ISO-NO Mark II, World Precision Instruments, Sarasota, FL, USA, p30 sensor, type I collagen, but not ADP and epinephrine, induces the release of NO in a time-dependent manner. The production of NO is inhibited either by preincubation of type I collagen with the platelet type I collagen receptor recombinant protein or by preincubation of platelets with the antibody to the receptor protein, the anti-65 antibody. However, preincubation of platelets with anti-P-selectin and anti-glycoprotein IIb/IIIa did not affect the release of NO by platelets. These results suggest that the 65 kDa platelet receptor for type I collagen is specifically linked to the generation of NO, and that the 65 kDa platelet receptor for type I collagen plays an important new role in platelet function.

  17. Platelet-Derived MRP-14 Induces Monocyte Activation in Patients With Symptomatic Peripheral Artery Disease.

    PubMed

    Dann, Rebecca; Hadi, Tarik; Montenont, Emilie; Boytard, Ludovic; Alebrahim, Dornaszadat; Feinstein, Jordyn; Allen, Nicole; Simon, Russell; Barone, Krista; Uryu, Kunihiro; Guo, Yu; Rockman, Caron; Ramkhelawon, Bhama; Berger, Jeffrey S

    2018-01-02

    Peripheral artery disease (PAD), a diffuse manifestation of atherothrombosis, is a major cardiovascular threat. Although platelets are primary mediators of atherothrombosis, their role in the pathogenesis of PAD remains unclear. The authors sought to investigate the role of platelets in a cohort of symptomatic PAD. The authors profiled platelet activity, mRNA, and effector roles in patients with symptomatic PAD and in healthy controls. Patients with PAD and carotid artery stenosis were recruited into ongoing studies (NCT02106429 and NCT01897103) investigating platelet activity, platelet RNA, and cardiovascular disease. Platelet RNA sequence profiling mapped a robust up-regulation of myeloid-related protein (MRP)-14 mRNA, a potent calcium binding protein heterodimer, in PAD. Circulating activated platelets were enriched with MRP-14 protein, which augmented the expression of the adhesion mediator, P-selectin, thereby promoting monocyte-platelet aggregates. Electron microscopy confirmed the firm interaction of platelets with monocytes in vitro and colocalization of macrophages with MRP-14 confirmed their cross talk in atherosclerotic manifestations of PAD in vivo. Platelet-derived MRP-14 was channeled to monocytes, thereby fueling their expression of key PAD lesional hallmarks and increasing their directed locomotion, which were both suppressed in the presence of antibody-mediated blockade. Circulating MRP-14 was heightened in the setting of PAD, significantly correlated with PAD severity, and was associated with incident limb events. The authors identified a heightened platelet activity profile and unraveled a novel immunomodulatory effector role of platelet-derived MRP-14 in reprograming monocyte activation in symptomatic PAD. (Platelet Activity in Vascular Surgery and Cardiovascular Events [PACE]; NCT02106429; and Platelet Activity in Vascular Surgery for Thrombosis and Bleeding [PIVOTAL]; NCT01897103). Copyright © 2018 American College of Cardiology Foundation

  18. Endothelial progenitor cells bind and inhibit platelet function and thrombus formation.

    PubMed

    Abou-Saleh, Haissam; Yacoub, Daniel; Théorêt, Jean-François; Gillis, Marc-Antoine; Neagoe, Paul-Eduard; Labarthe, Benoit; Théroux, Pierre; Sirois, Martin G; Tabrizian, Maryam; Thorin, Eric; Merhi, Yahye

    2009-12-01

    Interactions of endothelial progenitor cells (EPCs) with vascular and blood cells contribute to vascular homeostasis. Although platelets promote the homing of EPCs to sites of vascular injury and their differentiation into endothelial cells, the functional consequences of such interactions on platelets remain unknown. Herein, we addressed the interactions between EPCs and platelets and their impact on platelet function and thrombus formation. Cultured on fibronectin in conditioned media, human peripheral blood mononuclear cells differentiated, within 10 days of culture, into EPCs, which uptake acetylated low-density lipoprotein, bind ulex-lectin, lack monocyte/leukocyte markers (CD14, P-selectin glycoprotein ligand-1, L-selectin), express progenitor/endothelial markers (CD34, vascular endothelial growth factor receptor-2, von Willebrand factor, and vascular endothelial cadherin), and proliferate in culture. These EPCs bound activated platelets via CD62P and inhibited its translocation, glycoprotein IIb/IIIa activation, aggregation, and adhesion to collagen, mainly via prostacyclin secretion. Indeed, this was associated with upregulation of cyclooxygenase-2 and inducible nitric oxide synthase. However, the effects on platelets in vitro were reversed by cyclooxygenase and cyclooxygenase-2 inhibition but not by nitric oxide or inducible nitric oxide synthase inhibition. Moreover, in a ferric chloride-induced murine arterial thrombosis model, injection of EPCs led to their incorporation into sites of injury and impaired thrombus formation, leading to an incomplete occlusion with 50% residual flow. Peripheral blood mononuclear cell-derived EPCs bind platelets via CD62P and inhibit platelet activation, aggregation, adhesion to collagen, and thrombus formation, predominantly via upregulation of cyclooxygenase-2 and secretion of prostacyclin. These findings add new insights into the biology of EPCs and define their potential roles in regulating platelet function and

  19. Clot lysis time in platelet-rich plasma: method assessment, comparison with assays in platelet-free and platelet-poor plasmas, and response to tranexamic acid.

    PubMed

    Panes, Olga; Padilla, Oslando; Matus, Valeria; Sáez, Claudia G; Berkovits, Alejandro; Pereira, Jaime; Mezzano, Diego

    2012-01-01

    Fibrinolysis dysfunctions cause bleeding or predisposition to thrombosis. Platelets contain several factors of the fibrinolytic system, which could up or down regulate this process. However, the temporal relationship and relative contributions of plasma and platelet components in clot lysis are mostly unknown. We developed a clot lysis time (CLT) assay in platelet-rich plasma (PRP-CLT, with and without stimulation) and compared it to a similar one in platelet-free plasma (PFP) and to another previously reported test in platelet-poor plasma (PPP). We also studied the differential effects of a single dose of tranexamic acid (TXA) on these tests in healthy subjects. PFP- and PPP-CLT were significantly shorter than PRP-CLT, and the three assays were highly correlated (p < 0.0001). PFP- and PPP-, but more significantly PRP-CLT, were positively correlated with age and plasma PAI-1, von Willebrand factor, fibrinogen, LDL-cholesterol, and triglycerides (p < 0.001). All these CLT assays had no significant correlations with platelet aggregation/secretion, platelet counts, and pro-coagulant tests to explore factor X activation by platelets, PRP clotting time, and thrombin generation in PRP. Among all the studied variables, PFP-CLT was independently associated with plasma PAI-1, LDL-cholesterol, and triglycerides and, additionally, stimulated PRP-CLT was also independently associated with plasma fibrinogen. A single 1 g dose of TXA strikingly prolonged all three CLTs, but in contrast to the results without the drug, the lysis times were substantially shorter in non-stimulated or stimulated PRP than in PFP and PPP. This standardized PRP-CLT may become a useful tool to study the role of platelets in clot resistance and lysis. Our results suggest that initially, the platelets enmeshed in the clot slow down the fibrinolysis process. However, the increased clot resistance to lysis induced by TXA is overcome earlier in platelet-rich clots than in PFP or PPP clots. This is

  20. Chitosan inhibits platelet-mediated clot retraction, increases platelet-derived growth factor release, and increases residence time and bioactivity of platelet-rich plasma in vivo.

    PubMed

    Deprés-Tremblay, Gabrielle; Chevrier, Anik; Tran-Khanh, Nicolas; Nelea, Monica; Buschmann, Michael D

    2017-11-10

    Platelet-rich plasma (PRP) has been used to treat different orthopedic conditions, however, the clinical benefits of using PRP remain uncertain. Chitosan (CS)-PRP implants have been shown to improve meniscus, rotator cuff and cartilage repair in pre-clinical models. The purpose of this current study was to investigate in vitro and in vivo mechanisms of action of CS-PRP implants. Freeze-dried formulations containing 1% (w/v) CS (80% degree of deacetylation and number average molar mass 38 kDa), 1% (w/v) trehalose as a lyoprotectant and 42.2 mM calcium chloride as a clot activator were solubilized in PRP. Gravimetric measurements and molecular/cellular imaging studies revealed that clot retraction is inhibited in CS-PRP hybrid clots through physical coating of platelets, blood cells and fibrin strands by chitosan, which interferes with platelet aggregation and platelet-mediated clot retraction. Flow cytometry and ELISA assays revealed that platelets are activated and granules secreted in CS-PRP hybrid clots and that cumulative release of platelet-derived growth factor (PDGF-AB) and epidermal growth factor is higher from CS-PRP hybrid clots compared to PRP clots in vitro. Finally, CS-PRP implants resided for up to 6 weeks in a subcutaneous implantation model and induced cell recruitment and granulation tissue synthesis, confirming greater residency and bioactivity compared to PRP in vivo.

  1. Binding of /sup 125/I-labeled endotoxin to bovine, canine, and equine platelets and endotoxin-induced agglutination of canine platelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyers, K.M.; Boehme, M.; Inbar, O.

    Endotoxin from Escherichia coli O127:B8, Salmonella abortus-equi and S minnesota induced clumping of some canine platelets (PLT) at a final endotoxin concentration of 1 microgram/ml. Endotoxin-induced clumping of canine PLT was independent of PLT energy-requiring processes, because clumping was observed with canine PLT incubated with 2-deoxy-D-glucose and antimycin A. The PLT responded to adenosine diphosphate before, but not after, incubation with the metabolic inhibitors. Endotoxin induced a slight and inconsistant clumping of bovine and equine PLT at high (mg/ml) endotoxin concentration. High-affinity binding sites could not be demonstrated on canine, bovine, and equine PLT, using /sup 125/I-labeled E coli O127:B8more » endotoxin. Nonspecific binding was observed and appeared to be due primarily to an extraneous coat on the PLT surface that was removed by gel filtration. The endotoxin that was bound to PLT did not appear to modify PLT function. An attempt to identify plasma proteins that bound physiologically relevant amounts of endotoxin was not successful. The significance of the endotoxin-induced clumping or lack of it on the pathophysiology of endotoxemia is discussed.« less

  2. Human plasma platelet-derived exosomes: effects of aspirin.

    PubMed

    Goetzl, Edward J; Goetzl, Laura; Karliner, Joel S; Tang, Norina; Pulliam, Lynn

    2016-05-01

    Platelet-derived exosomes mediate platelet atherogenic interactions with endothelial cells and monocytes. A new method for isolation of plasma platelet-derived exosomes is described and used to examine effects of aging and aspirin on exosome cargo proteins. Exosome secretion by purified platelets in vitro did not increase after exposure to thrombin or collagen, as assessed by exosome counts and quantification of the CD81 exosome marker. Thrombin and collagen increased exosome content of α-granule chemokines CXCL4 and CXCL7 and cytoplasmic high-mobility group box 1 (HMGB1) protein, but not membrane platelet glycoprotein VI (GPVI), with dependence on extracellular calcium. Aspirin consumption significantly blocked thrombin- and collagen-induced increases in exosome cargo levels of chemokines and HMGB1, without altering total exosome secretion or GPVI cargo. Plasma platelet-derived exosomes, enriched by absorption with mouse antihuman CD42b [platelet glycoprotein Ib (GPIb)] mAb, had sizes and cargo protein contents similar to those of exosomes from purified platelets. The plasma platelet-derived exosome number is lower and its chemokine and HMGB1 levels higher after age 65 yr. Aspirin consumption significantly suppressed cargo protein levels of plasma platelet-derived exosomes without altering total levels of exosomes. Cargo proteins of human plasma platelet-derived exosomes may biomark platelet abnormalities and in vivo effects of drugs.- Goetzl, E. J., Goetzl, L., Karliner, J. S., Tang, N., Pulliam, L. Human plasma platelet-derived exosomes: effects of aspirin. © FASEB.

  3. Protective mechanisms of adenosine 5'-monophosphate in platelet activation and thrombus formation.

    PubMed

    Fuentes, E; Badimon, L; Caballero, J; Padró, T; Vilahur, G; Alarcón, M; Pérez, P; Palomo, I

    2014-03-03

    Platelet activation is relevant to a variety of acute thrombotic events. We sought to examine adenosine 5'-monophosphate (AMP) mechanisms of action in preventing platelet activation, thrombus formation and platelet-related inflammatory response. We assessed the effect of AMP on 1) P-selectin expression and GPIIb/IIIa activation by flow cytometry; 2) Platelet aggregation and ATP secretion induced by ADP, collagen, TRAP-6, convulxin and thrombin; 3) Platelet rolling and firm adhesion, and platelet-leukocyte interactions under flow-controlled conditions; and, 4) Platelet cAMP levels, sP-selectin, sCD40L, IL-1β, TGF-β1 and CCL5 release, PDE3A activity and PKA phosphorylation. The effect of AMP on in vivo thrombus formation was also evaluated in a murine model. The AMP docking with respect to A2 adenosine receptor was determined by homology. AMP concentration-dependently (0.1 to 3 mmol/l) inhibited P-selectin expression and GPIIb/IIIa activation, platelet secretion and aggregation induced by ADP, collagen, TRAP-6 and convulxin, and diminished platelet rolling and firm adhesion. Furthermore, AMP induced a marked increase in the rolling speed of leukocytes retained on the platelet surface. At these concentrations AMP significantly decreased inflammatory mediator from platelet, increased intraplatelet cAMP levels and inhibited PDE3A activity. Interestingly, SQ22536, ZM241385 and SCH58261 attenuated the antiplatelet effect of AMP. Docking experiments revealed that AMP had the same orientation that adenosine inside the A2 adenosine receptor binding pocket. These in vitro antithrombotic properties were further supported in an in vivo model of thrombosis. Considering the successful use of combined antiplatelet therapy, AMP may be further developed as a novel antiplatelet agent.

  4. Abacavir has no prothrombotic effect on platelets in vitro.

    PubMed

    Diallo, Yacouba L; Ollivier, Véronique; Joly, Véronique; Faille, Dorothée; Catalano, Giovanna; Jandrot-Perrus, Martine; Rauch, Antoine; Yeni, Patrick; Ajzenberg, Nadine

    2016-12-01

    HIV patients exposed to abacavir have an increased risk of myocardial infarction, with contradictory results in the literature. The aim of our study was to determine whether abacavir has a direct effect on platelet activation and aggregation using platelets from healthy donors and from HIV-infected patients under therapy with an undetectable viral load. Platelet-rich plasma (PRP) or whole blood from healthy donors was treated with abacavir (5 or 10 μg/mL) or its active metabolite carbovir diphosphate. Experiments were also performed using blood of HIV-infected patients (n = 10) with an undetectable viral load. Platelet aggregation was performed on PRP by turbidimetry and under high shear conditions at 4000 s -1 . Platelet procoagulant potential was analysed by measuring thrombin generation by thrombinography. Abacavir and carbovir diphosphate significantly increased the aggregation of platelets from healthy donors induced by collagen at 2 μg/mL (P = 0.002), but not at 0.5 μg/mL. No effect of abacavir or carbovir diphosphate was observed on platelet aggregation induced by other physiological agonists or by high shear stress, or on thrombin generation. Pretreatment of blood from HIV-infected patients with abacavir produced similar results. Our results suggest that abacavir does not significantly influence platelet activation in vitro when incubated with platelets from healthy donors or from HIV-infected patients. It is, however, not excluded that a synergistic effect with other drugs could promote platelet activation and thereby play a role in the pathogenesis of myocardial infarction. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Streptococcus sanguinis-induced cytokine and matrix metalloproteinase-1 release from platelets.

    PubMed

    Cognasse, Fabrice; Hamzeh-Cognasse, Hind; Chabert, Adrien; Jackson, Elke; Arthaud, Charles-Antoine; Garraud, Olivier; McNicol, Archie

    2014-04-22

    Streptococcus sanguinis (S.sanguinis), a predominant bacterium in the human oral cavity, has been widely associated with the development of infective endocarditis. Platelets play both a haemostatic function and can influence both innate and adaptive immune responses. Previous studies have shown that S.sanguinis can interact with, and activate, platelets. The aim of this study was to determine whether S.sanguinis stimulates the release of matrix metalloproteinases (MMPs) 1, 2 and 9 and the pro-inflammatory mediators SDF-1, VEGF and sCD40L, from platelets and to subsequently pharmacologically address the release mechanism (s). S.sanguinis stimulated the release of MMP-1, SDF-1, VEGF and sCD40L from platelets and inhibitors of cyclooxygenase and phosphatidylinositol 3-kinase, and antagonists of the αIIbβ3 integrin and glycoprotein Ib, each inhibited the secretion of all factors. Therefore the release of MMP-1, SDF-1, VEGF and sCD40L occurs late in the platelet response to S.sanguinis and highlights the complex intracellular signalling pathways stimulated in response to S.sanguinis which lead to haemostasis, MMP and pro-inflammatory mediator secretion.

  6. Streptococcus sanguinis-induced cytokine and matrix metalloproteinase-1 release from platelets

    PubMed Central

    2014-01-01

    Background Streptococcus sanguinis (S.sanguinis), a predominant bacterium in the human oral cavity, has been widely associated with the development of infective endocarditis. Platelets play both a haemostatic function and can influence both innate and adaptive immune responses. Previous studies have shown that S.sanguinis can interact with, and activate, platelets. Results The aim of this study was to determine whether S.sanguinis stimulates the release of matrix metalloproteinases (MMPs) 1, 2 and 9 and the pro-inflammatory mediators SDF-1, VEGF and sCD40L, from platelets and to subsequently pharmacologically address the release mechanism (s). S.sanguinis stimulated the release of MMP-1, SDF-1, VEGF and sCD40L from platelets and inhibitors of cyclooxygenase and phosphatidylinositol 3-kinase, and antagonists of the αIIbβ3 integrin and glycoprotein Ib, each inhibited the secretion of all factors. Conclusions Therefore the release of MMP-1, SDF-1, VEGF and sCD40L occurs late in the platelet response to S.sanguinis and highlights the complex intracellular signalling pathways stimulated in response to S.sanguinis which lead to haemostasis, MMP and pro-inflammatory mediator secretion. PMID:24755160

  7. Delineating the roles of the GPIIb/IIIa and GP-Ib-IX-V platelet receptors in mediating platelet adhesion to adsorbed fibrinogen and albumin.

    PubMed

    Sivaraman, Balakrishnan; Latour, Robert A

    2011-08-01

    Platelet adhesion to adsorbed plasma proteins, such as fibrinogen (Fg), has been conventionally thought to be mediated by the GPIIb/IIIa receptor binding to Arg-Gly-Asp (RGD)-like motifs in the adsorbed protein. In previous studies, we showed that platelet adhesion response to adsorbed Fg and Alb was strongly influenced by the degree of adsorption-induced protein unfolding and that platelet adhesion was only partially blocked by soluble RGD, with RGD-blocked platelets adhering without activation. Based on these results, we hypothesized that in addition to the RGD-specific GPIIb/IIIa receptor, which mediates both adhesion and activation, a non-RGD-specific receptor set likely also plays a role in platelet adhesion (but not activation) to both Fg and albumin (Alb). To identify and elucidate the role of these receptors, in addition to GPIIb/IIIa, we also examined the GPIb-IX-V receptor complex, which has been shown to mediate platelet adhesion (but not activation) in studies by other groups. The platelet suspension was pretreated with either a GPIIb/IIIa-antagonist drug Aggrastat(®) or monoclonal antibodies 6B4 or 24G10 against GPIb-IX-V prior to adhesion on Fg- and Alb-coated OH- and CH(3)-functionalized alkanethiol self-assembled monolayer surfaces. The results revealed that GPIIb/IIIa is the primary receptor set involved in platelet adhesion to adsorbed Fg and Alb irrespective of their degree of adsorption-induced unfolding, while the GPIb-IX-V receptor complex plays an insignificant role. Overall, these studies provide novel insights into the molecular-level mechanisms mediating platelet interactions with adsorbed plasma proteins, thereby assisting the biomaterials field develop potent strategies for inhibiting platelet-protein interactions in the design of more hemocompatible cardiovascular biomaterials and effective anti-thrombotic therapies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Modulation of platelet functions by crude rice (Oryza sativa) bran policosanol extract.

    PubMed

    Wong, Wai-Teng; Ismail, Maznah; Imam, Mustapha Umar; Zhang, Yi-Da

    2016-07-28

    Rice bran is bioactive-rich and has proven health benefits for humans. Moreover, its source, the brown rice has antioxidant, hypolipidemic and other functional properties that are increasingly making it a nutritional staple especially in Asian countries. This study investigated the antiplatelet aggregation mechanisms of crude hexane/methanolic rice bran extract, in which policosanol was the targeted bioactive. Platelets play a vital role in pathogenesis of atherosclerosis and cardiovascular diseases, and their increased activities could potentially cause arterial thrombus formation or severe bleeding disorders. Thus, in this study, platelet aggregation and adhesion of platelets to major components of basal lamina were examined in vitro. In addition, cellular protein secretion was quantified as a measurement of platelet activation. Adenosine diphosphate (ADP), collagen, and arachidonic acid (AA)-induced aggregation were studied using the microtiter technique. Rat platelets were pre-treated with various concentrations of policosanol extract, and the adhesion of platelets onto collagen- and laminin-coated surface (extracellular matrix) was studied using the acid phosphatase assay. The effect of crude policosanol extract on released proteins from activated platelets was measured using modified Lowry determination method. Rice bran policosanol extract significantly inhibited in vitro platelet aggregation induced by different agonists in a dose dependent manner. The IC50 of ADP-, collagen-, and AA-induced platelet aggregation were 533.37 ± 112.16, 635.94 ± 78.45 and 693.86 ± 70.57 μg/mL, respectively. The present study showed that crude rice bran policosanol extract significantly inhibited platelet adhesion to collagen in a dose dependent manner. Conversely, at a low concentration of 15.625 μg/mL, the extract significantly inhibited platelet adhesion to laminin stimulated by different platelet agonists. In addition to the alteration of cell adhesive

  9. Mechanism of free radical generation in platelets and primary hepatocytes: A novel electron spin resonance study.

    PubMed

    Wang, Chiun-Lang; Yang, Po-Sheng; Tsao, Jeng-Ting; Jayakumar, Thanasekaran; Wang, Meng-Jiy; Sheu, Joen-Rong; Chou, Duen-Suey

    2018-01-01

    Oxygen free radicals have been implicated in the pathogenesis of toxic liver injury and are thought to be involved in cardiac dysfunction in the cirrhotic heart. Therefore, direct evidence for the electron spin resonance (ESR) detection of how D‑galactosamine (GalN), an established experimental hepatotoxic substance, induced free radicals formation in platelets and primary hepatocytes is presented in the present study. ESR results demonstrated that GalN induced hydroxyl radicals (OH•) in a resting human platelet suspension; however, radicals were not produced in a cell free Fenton reaction system. The GalN‑induced OH• formation was significantly inhibited by the cyclooxygenase (COX) inhibitor indomethasin, though it was not affected by the lipoxygenase (LOX) or cytochrome P450 inhibitors, AA861 and 1‑aminobenzotriazole (ABT), in platelets. In addition, the present study demonstrated that baicalein induced semiquinone free radicals in platelets, which were significantly reduced by the COX inhibitor without affecting the formed OH•. In the mouse primary hepatocytes, the formation of arachidonic acid (AA) induced carbon‑centered radicals that were concentration dependently enhanced by GalN. These radicals were inhibited by AA861, though not affected by indomethasin or ABT. In addition, GalN did not induce platelet aggregation prior to or following collagen pretreatment in human platelets. The results of the present study indicated that GalN and baicalein may induce OH• by COX and LOX in human platelets. GalN also potentiated AA induced carbon‑centered radicals in hepatocytes via cytochrome P450. The present study presented the role of free radicals in the pathophysiological association between platelets and hepatocytes.

  10. Characterization of the aggregation responses of camel platelets.

    PubMed

    Al Ghumlas, Abeer K; Gader, Abdel Galil M Abdel

    2013-09-01

    Despite evidence of active hemostasis, camel platelets barely respond to common aggregating agents at standard doses used for human platelet aggregation. The purpose of the study was to find out whether camel platelets can be activated by high doses or combinations of aggregation agonists, and to characterize the receptor that mediates the aggregation response to adenosine diphosphate (ADP), the most potent agonist for camel platelets known so far. Aggregation studies were performed with platelet-rich plasma (PRP) in response to multiple doses or combinations of ADP, epinephrine (EPN), collagen, and arachidonic acid (AA). Aggregation responses to ADP were performed before and after the addition of the ADP receptor (P2Y12) antagonist Clopidogrel. Camel platelets responded to ADP at doses higher than the standard dose for human platelets, and to combinations of EPN and other agonists, while no aggregation was elicited with EPN or AA alone. Clopidogrel blocked the ADP-induced aggregation responses in a dose-dependent fashion in vitro. Camel platelet aggregation can be activated by increasing the dose of some agonists such as ADP, but not AA or EPN. Irreversible aggregation of camel platelets could also be triggered by a combination of EPN and ADP, and collagen and AA. Inhibition with clopidogrel suggests that camel platelets express the ADP receptor, P2Y12. Understanding platelet function in camels will add to the understanding of platelet function in health and disease. © 2013 American Society for Veterinary Clinical Pathology.

  11. Platelet proteome reveals novel pathways of platelet activation and platelet-mediated immunoregulation in dengue.

    PubMed

    Trugilho, Monique Ramos de Oliveira; Hottz, Eugenio Damaceno; Brunoro, Giselle Villa Flor; Teixeira-Ferreira, André; Carvalho, Paulo Costa; Salazar, Gustavo Adolfo; Zimmerman, Guy A; Bozza, Fernando A; Bozza, Patrícia T; Perales, Jonas

    2017-05-01

    Dengue is the most prevalent human arbovirus disease worldwide. Dengue virus (DENV) infection causes syndromes varying from self-limiting febrile illness to severe dengue. Although dengue pathophysiology is not completely understood, it is widely accepted that increased inflammation plays important roles in dengue pathogenesis. Platelets are blood cells classically known as effectors of hemostasis which have been increasingly recognized to have major immune and inflammatory activities. Nevertheless, the phenotype and effector functions of platelets in dengue pathogenesis are not completely understood. Here we used quantitative proteomics to investigate the protein content of platelets in clinical samples from patients with dengue compared to platelets from healthy donors. Our assays revealed a set of 252 differentially abundant proteins. In silico analyses associated these proteins with key molecular events including platelet activation and inflammatory responses, and with events not previously attributed to platelets during dengue infection including antigen processing and presentation, proteasome activity, and expression of histones. From these results, we conducted functional assays using samples from a larger cohort of patients and demonstrated evidence for platelet activation indicated by P-selectin (CD62P) translocation and secretion of granule-stored chemokines by platelets. In addition, we found evidence that DENV infection triggers HLA class I synthesis and surface expression by a mechanism depending on functional proteasome activity. Furthermore, we demonstrate that cell-free histone H2A released during dengue infection binds to platelets, increasing platelet activation. These findings are consistent with functional importance of HLA class I, proteasome subunits, and histones that we found exclusively in proteome analysis of platelets in samples from dengue patients. Our study provides the first in-depth characterization of the platelet proteome in dengue

  12. Platelet proteome reveals novel pathways of platelet activation and platelet-mediated immunoregulation in dengue

    PubMed Central

    Teixeira-Ferreira, André; Carvalho, Paulo Costa; Salazar, Gustavo Adolfo; Zimmerman, Guy A.; Perales, Jonas

    2017-01-01

    Dengue is the most prevalent human arbovirus disease worldwide. Dengue virus (DENV) infection causes syndromes varying from self-limiting febrile illness to severe dengue. Although dengue pathophysiology is not completely understood, it is widely accepted that increased inflammation plays important roles in dengue pathogenesis. Platelets are blood cells classically known as effectors of hemostasis which have been increasingly recognized to have major immune and inflammatory activities. Nevertheless, the phenotype and effector functions of platelets in dengue pathogenesis are not completely understood. Here we used quantitative proteomics to investigate the protein content of platelets in clinical samples from patients with dengue compared to platelets from healthy donors. Our assays revealed a set of 252 differentially abundant proteins. In silico analyses associated these proteins with key molecular events including platelet activation and inflammatory responses, and with events not previously attributed to platelets during dengue infection including antigen processing and presentation, proteasome activity, and expression of histones. From these results, we conducted functional assays using samples from a larger cohort of patients and demonstrated evidence for platelet activation indicated by P-selectin (CD62P) translocation and secretion of granule-stored chemokines by platelets. In addition, we found evidence that DENV infection triggers HLA class I synthesis and surface expression by a mechanism depending on functional proteasome activity. Furthermore, we demonstrate that cell-free histone H2A released during dengue infection binds to platelets, increasing platelet activation. These findings are consistent with functional importance of HLA class I, proteasome subunits, and histones that we found exclusively in proteome analysis of platelets in samples from dengue patients. Our study provides the first in-depth characterization of the platelet proteome in dengue

  13. Aerobic exercise training lowers platelet reactivity and improves platelet sensitivity to prostacyclin in pre- and postmenopausal women.

    PubMed

    Lundberg Slingsby, M H; Nyberg, M; Egelund, J; Mandrup, C M; Frikke-Schmidt, R; Kirkby, N S; Hellsten, Y

    2017-12-01

    Essentials It is unknown how regular exercise affects platelet function after menopause. We studied the effect of 3-months of high-intensity exercise in pre- and postmenopausal women. Platelet sensitivity to the inhibitory effect of arterially infused prostacyclin was increased. Reduced basal platelet reactivity was seen in the premenopausal women only. Background The risk of atherothrombotic events increases after the menopause. Regular physical activity has been shown to reduce platelet reactivity in younger women, but it is unknown how regular exercise affects platelet function after the menopause. Objectives To examine the effects of regular aerobic exercise in late premenopausal and recent postmenopausal women by testing basal platelet reactivity and platelet sensitivity to prostacyclin and nitric oxide. Methods Twenty-five sedentary, but healthy, late premenopausal and 24 matched recently postmenopausal women, mean (95% confidence interval) 49.1 (48.2-49.9) and 53.7 (52.5-55.0) years old, participated in an intervention study: 3-month high-intensity supervised aerobic spinning-cycle training (1 h, × 3/week). Basal platelet reactivity was analyzed in platelet-rich plasma from venous blood as agonist-induced % aggregation. In a subgroup of 13 premenopausal and 14 postmenopausal women, platelet reactivity was tested ex vivo after femoral arterial infusion of prostacyclin, acetylcholine, a cyclooxygenase inhibitor, and after acute one-leg knee extensor exercise. Results Basal platelet reactivity (%aggregation) to TRAP-6 (1 μm) was higher in the postmenopausal, 59% (50-68), than the premenopausal women, 45% (35-55). Exercise training reduced basal platelet reactivity to collagen (1 μg mL -1 ) in the premenopausal women only: from 63% (55-71%) to 51% (41-62%). After the training intervention, platelet aggregation was more inhibited by the arterial prostacyclin infusion and the acute exercise in both premenopausal and postmenopausal women. Conclusions These

  14. Origin-Specific Adhesive Interactions of Mesenchymal Stem Cells with Platelets Influence Their Behavior After Infusion.

    PubMed

    Sheriff, Lozan; Alanazi, Asma; Ward, Lewis S C; Ward, Carl; Munir, Hafsa; Rayes, Julie; Alassiri, Mohammed; Watson, Steve P; Newsome, Phil N; Rainger, G E; Kalia, Neena; Frampton, Jon; McGettrick, Helen M; Nash, Gerard B

    2018-02-28

    We investigated the adhesive behavior of mesenchymal stem cells (MSC) in blood, which might influence their fate when infused as therapy. Isolated human bone marrow MSC (BMMSC) or umbilical cord MSC (UCMSC) adhered efficiently from flow to the matrix proteins, collagen, or fibronectin, but did not adhere to endothelial selectins. However, when suspended in blood, BMMSC no longer adhered to collagen, while UCMSC adhered along with many aggregated platelets. Neither MSC adhered to fibronectin from flowing blood, although the fibronectin surface did become coated with a platelet monolayer. UCMSC induced platelet aggregation in platelet rich plasma, and caused a marked drop in platelet count when mixed with whole human or mouse blood in vitro, or when infused into mice. In contrast, BMMSC did not activate platelets or induce changes in platelet count. Interestingly, isolated UCMSC and BMMSC both adhered to predeposited platelets. The differences in behavior in blood were attributable to expression of podoplanin (an activating ligand for the platelet receptor CLEC-2), which was detected on UCMSC, but not BMMSC. Thus, platelets were activated when bound to UCMSC, but not BMMSC. Platelet aggregation by UCMSC was inhibited by recombinant soluble CLEC-2, and UCMSC did not cause a reduction in platelet count when mixed with blood from mice deficient in CLEC-2. We predict that both MSC would carry platelets in the blood, but their interaction with vascular endothelium would depend on podoplanin-induced activation of the bound platelets. Such interactions with platelets might target MSC to damaged tissue, but could also be thrombotic. Stem Cells 2018. © 2018 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  15. Endothelial Progenitor Cells Bind and Inhibit Platelet Function and Thrombus Formation

    PubMed Central

    Abou-Saleh, Haissam; Yacoub, Daniel; Théorêt, Jean-François; Gillis, Marc-Antoine; Neagoe, Paul-Eduard; Labarthe, Benoit; Théroux, Pierre; Sirois, Martin G.; Tabrizian, Maryam; Thorin, Eric; Merhi, Yahye

    2013-01-01

    Background Interactions of endothelial progenitor cells (EPCs) with vascular and blood cells contribute to vascular homeostasis. Although platelets promote the homing of EPCs to sites of vascular injury and their differentiation into endothelial cells, the functional consequences of such interactions on platelets remain unknown. Herein, we addressed the interactions between EPCs and platelets and their impact on platelet function and thrombus formation. Methods and Results Cultured on fibronectin in conditioned media, human peripheral blood mononuclear cells differentiated, within 10 days of culture, into EPCs, which uptake acetylated low-density lipoprotein, bind ulex-lectin, lack monocyte/leukocyte markers (CD14, P-selectin glycoprotein ligand-1, L-selectin), express progenitor/endothelial markers (CD34, vascular endothelial growth factor receptor-2, von Willebrand factor, and vascular endothelial cadherin), and proliferate in culture. These EPCs bound activated platelets via CD62P and inhibited its translocation, glycoprotein IIb/IIIa activation, aggregation, and adhesion to collagen, mainly via prostacyclin secretion. Indeed, this was associated with upregulation of cyclooxygenase-2 and inducible nitric oxide synthase. However, the effects on platelets in vitro were reversed by cyclooxygenase and cyclooxygenase-2 inhibition but not by nitric oxide or inducible nitric oxide synthase inhibition. Moreover, in a ferric chloride–induced murine arterial thrombosis model, injection of EPCs led to their incorporation into sites of injury and impaired thrombus formation, leading to an incomplete occlusion with 50% residual flow. Conclusions Peripheral blood mononuclear cell– derived EPCs bind platelets via CD62P and inhibit platelet activation, aggregation, adhesion to collagen, and thrombus formation, predominantly via upregulation of cyclooxygenase-2 and secretion of prostacyclin. These findings add new insights into the biology of EPCs and define their potential

  16. Heparin-associated thrombocytopenia: antibody binding specificity to platelet antigens.

    PubMed

    Lynch, D M; Howe, S E

    1985-11-01

    Sera from four patients with heparin-associated thrombocytopenia (HAT) were evaluated by a quantitative enzyme-linked immunosorbent assay (ELISA) to detect heparin-dependent serum platelet-bindable immunoglobulin (S-PBIg) and by Western blotting and immunoprecipitation to investigate the specificity of the antibody binding. All HAT sera showed mildly increased S-PBIg (mean, 7.8 fg per platelet; normal, less than 6.0 fg per platelet) to intact target platelets in the ELISA, which was markedly increased in the presence of heparin (mean, 20.9 fg per platelet). This increase was 20-fold greater than normal control sera, which showed a mean differential increase of only 0.5 fg per platelet. Immunoglobulin binding specificity to platelet antigens was investigated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis of platelet lysate with transfer of the platelet fractions onto nitrocellulose strips (Western blotting) and subsequent immunoassay using HAT and normal sera. In the presence of heparin, the four HAT patients demonstrated increased binding of immunoglobulin to platelet antigens of apparent molecular weights of 180, 124, and 82 kd. Radiolabeled heparin when incubated with HAT sera, normal sera, or albumin blanks bound to platelet proteins of the same apparent molecular weights. These observations are consistent with current hypotheses suggesting that HAT antibody is directed to heparin-platelet complexes or, alternatively, that heparin induces conformational change of antigenic sites on the platelet membrane.

  17. Opposing Effects of Platelet-Activating Factor and Lyso-Platelet-Activating Factor on Neutrophil and Platelet ActivationS⃞

    PubMed Central

    Welch, Emily J.; Naikawadi, Ram P.; Li, Zhenyu; Lin, Phoebe; Ishii, Satoshi; Shimizu, Takao; Tiruppathi, Chinnaswamy; Du, Xiaoping; Subbaiah, Papasani V.; Ye, Richard D.

    2009-01-01

    Platelet-activating factor (PAF) is a potent, bioactive phospholipid that acts on multiple cells and tissues through its G protein-coupled receptor (GPCR). PAF is not stored but is rapidly generated via enzymatic acetylation of the precursor 1-O-hexadecyl-2-hydroxy-sn-glycero-3-phosphocholine (lysoPAF). The bioactivity of PAF is effectively and tightly regulated by PAF acetylhydrolases, which convert PAF back to lysoPAF. Previous studies report that lysoPAF is an inactive precursor and metabolite of PAF. However, lysoPAF has not been carefully studied in its own context. Here we report that lysoPAF has an opposing effect of PAF in the activation of neutrophils and platelets. Whereas PAF potentiates neutrophil NADPH oxidase activation, lysoPAF dose-dependently inhibits this function. Inhibition by lysoPAF is not affected by the use of a PAF receptor antagonist or genetic deletion of the PAF receptor gene. The mechanism of lysoPAF-mediated inhibition of neutrophils involves an elevation in the intracellular cAMP level, and pharmacological blockade of adenylyl cyclase completely reverses the inhibitory effect of lysoPAF. In addition, lysoPAF increases intracellular cAMP levels in platelets and inhibits thrombin-induced platelet aggregation, which can be reversed by inhibition of protein kinase A. These findings identify lysoPAF as a bioactive lipid with opposing functions of PAF and suggest a novel and intrinsic regulatory mechanism for balance of the potent activity of PAF. PMID:18931035

  18. Platelet Storage Lesions: What More Do We Know Now?

    PubMed

    Ng, Monica Suet Ying; Tung, John-Paul; Fraser, John Francis

    2018-04-17

    Platelet concentrate (PC) transfusions are a lifesaving adjunct to control and prevent bleeding in cancer, hematologic, surgical, and trauma patients. Platelet concentrate availability and safety are limited by the development of platelet storage lesions (PSLs) and risk of bacterial contamination. Platelet storage lesions are a series of biochemical, structural, and functional changes that occur from blood collection to transfusion. Understanding of PSLs is key for devising interventions that prolong PC shelf life to improve PC access and wastage. This article will review advancements in clinical and mechanistic PSL research. In brief, exposure to artificial surfaces and high centrifugation forces during PC preparation initiate PSLs by causing platelet activation, fragmentation, and biochemical release. During room temperature storage, enhanced glycolysis and reduced mitochondrial function lead to glucose depletion, lactate accumulation, and product acidification. Impaired adenosine triphosphate generation reduces platelet capacity to perform energetically demanding processes such as hypotonic stress responses and activation/aggregation. Storage-induced alterations in platelet surface proteins such as thrombin receptors and glycoproteins decrease platelet aggregation. During storage, there is an accumulation of immunoactive proteins such as leukocyte-derive cytokines (tumor necrosis factor α, interleukin (IL) 1α, IL-6, IL-8) and soluble CD40 ligand which can participate in transfusion-related acute lung injury and nonhemolytic transfusion reactions. Storage-induced microparticles have been linked to enhanced platelet aggregation and immune system modulation. Clinically, stored PCs have been correlated with reduced corrected count increment, posttransfusion platelet recovery, and survival across multiple meta-analyses. Fresh PC transfusions have been associated with superior platelet function in vivo; however, these differences were abrogated after a period of

  19. Clopidogrel (Plavix) and cardiac surgical patients: implications for platelet function monitoring and postoperative bleeding.

    PubMed

    Tanaka, Kenichi A; Szlam, Fania; Kelly, Andrew B; Vega, J David; Levy, Jerrold H

    2004-08-01

    The use of clopidogrel (Plavix), an inhibitor of adenosine diphosphate (ADP)-induced platelet aggregation, has been proven to reduce ischemic events in cardiovascular patients, but little information is available for optimal monitoring of platelet function in patients receiving the drug preoperatively. In the first part of the study we compared different testing modalities (thrombelastography (TEG), platelet aggregometry, and whole blood aggregation) to assess platelet ADP receptor inhibition. Because clopidogrel is a pro-drug, we used an in vitro model of ADP inhibition with 5'-p-fluorosulfonylbenzoyladenosine (FSBA). FSBA at final concentration of 80 microM completely inhibited platelet aggregation but had no effect on TEG maximum amplitude (MA). In the second part of the study, antiplatelet effects of clopidogrel were clinically assessed and correlated to postoperative bleeding in 18 coronary bypass surgery patients. Preoperative TEG results were normal or hypercoagulable in clopidogrel-treated patients, although platelet aggregation responses to ADP were inhibited. Clopidogrel-treated patients who underwent cardiopulmonary bypass had a high incidence (84.6%) of platelet transfusion therapy due to increased chest tube drainage. In conclusion, we have demonstrated that normal preoperative TEG-MA does not preclude clopidogrel-induced ADP receptor blockade; however, TEG can be a reliable monitor for CPB-induced platelet dysfunction related to GPIIb/IIIa. For monitoring clopidogrel, it is necessary to perform more specific platelet function tests (aggregometry or platelet count ratio) using ADP as an activator.

  20. Protective effects of diketopiperazines from Moslae Herba against influenza A virus-induced pulmonary inflammation via inhibition of viral replication and platelets aggregation.

    PubMed

    Zhang, Huan-Huan; Yu, Wen-Ying; Li, Lan; Wu, Fang; Chen, Qin; Yang, Yang; Yu, Chen-Huan

    2018-04-06

    Moslae Herba (MH) is broadly used as an antiviral, antipyretic and anticoagulant drug which effectively treats respiratory diseases including cough, asthma, throat, cold and flu. The excessive inflammation of the lungs is the hallmark of severe influenza A virus (IAV) infection, while platelet aggregation and its subsequent microvascular thrombosis can exacerbate IAV-induced lung injury. Thus, inhibition of platelet aggregation can be a potential target for IAV treatment. Previous studies focus on the flavonoids from MH and their anti-inflammatory activities, but the anticoagulant compounds and potential molecular mechanism of MH remains unclear. This study was to isolate and characterize diketopiperazines (DKPs) from MH and to explore the underlying anticoagulant mechanism on IAV infection models. EtOAc sub-extract separated from MH ethanolic extract was subjected to fractionation through column chromatography. The chemical structures of pure compounds were characterized by the spectral analysis. Antiviral activities of DKPs were assayed in IAV-infected Madin-Darby canine kidney (MDCK) cells and mice. Anticoagulant effects of DKPs were investigated on adenosine 5'-diphosphate (ADP)-induced acute pulmonary embolism and IAV-induced lung injury in vivo, as well as the inhibition on platelet activating factor (PAF), arachidonic acid (AA) and ADP-induced platelet aggregation in vitro. The serum levels of thromboxane B 2 (TXB 2 ) and 6-keto-PGF 1α were detected by ELISA. The expressions of key proteins in CD41-mediated PI3K/AKT pathways were determined by western blotting analysis. Six DKPs were, for the first time, isolated from MH and identified as cyclo(Tyr-Leu) (1), cyclo(Phe-Phe) (2), cyclo(Phe-Tyr) (3), cyclo(Ala-Ile) (4), cyclo(Ala-Leu) (5) and Bz-Phe-Phe-OMe (6). Among these DKPs, cyclo(Ala-Ile) and Bz-Phe-Phe-OMe possessed low cytotoxicities and significant inhibition against cytopathic effects induced by IAV (H1N1 and H3N2) replication in MDCK cells

  1. Blood Platelets in the Progression of Alzheimer’s Disease

    PubMed Central

    Gowert, Nina S.; Donner, Lili; Chatterjee, Madhumita; Eisele, Yvonne S.; Towhid, Seyda T.; Münzer, Patrick; Walker, Britta; Ogorek, Isabella; Borst, Oliver; Grandoch, Maria; Schaller, Martin; Fischer, Jens W.; Gawaz, Meinrad; Weggen, Sascha; Lang, Florian; Jucker, Mathias; Elvers, Margitta

    2014-01-01

    Alzheimer’s disease (AD) is characterized by neurotoxic amyloid-ß plaque formation in brain parenchyma and cerebral blood vessels known as cerebral amyloid angiopathy (CAA). Besides CAA, AD is strongly related to vascular diseases such as stroke and atherosclerosis. Cerebrovascular dysfunction occurs in AD patients leading to alterations in blood flow that might play an important role in AD pathology with neuronal loss and memory deficits. Platelets are the major players in hemostasis and thrombosis, but are also involved in neuroinflammatory diseases like AD. For many years, platelets were accepted as peripheral model to study the pathophysiology of AD because platelets display the enzymatic activities to generate amyloid-ß (Aß) peptides. In addition, platelets are considered to be a biomarker for early diagnosis of AD. Effects of Aß peptides on platelets and the impact of platelets in the progression of AD remained, however, ill-defined. The present study explored the cellular mechanisms triggered by Aß in platelets. Treatment of platelets with Aß led to platelet activation and enhanced generation of reactive oxygen species (ROS) and membrane scrambling, suggesting enhanced platelet apoptosis. More important, platelets modulate soluble Aß into fibrillar structures that were absorbed by apoptotic but not vital platelets. This together with enhanced platelet adhesion under flow ex vivo and in vivo and platelet accumulation at amyloid deposits of cerebral vessels of AD transgenic mice suggested that platelets are major contributors of CAA inducing platelet thrombus formation at vascular amyloid plaques leading to vessel occlusion critical for cerebrovascular events like stroke. PMID:24587388

  2. Direct Adaptive Rejection of Vortex-Induced Disturbances for a Powered SPAR Platform

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.; Balas, Mark J.; VanZwieten, James H.; Driscoll, Frederick R.

    2009-01-01

    The Rapidly Deployable Stable Platform (RDSP) is a novel vessel designed to be a reconfigurable, stable at-sea platform. It consists of a detachable catamaran and spar, performing missions with the spar extending vertically below the catamaran and hoisting it completely out of the water. Multiple thrusters located along the spar allow it to be actively controlled in this configuration. A controller is presented in this work that uses an adaptive feedback algorithm in conjunction with Direct Adaptive Disturbance Rejection (DADR) to mitigate persistent, vortex-induced disturbances. Given the frequency of a disturbance, the nominal DADR scheme adaptively compensates for its unknown amplitude and phase. This algorithm is extended to adapt to a disturbance frequency that is only coarsely known by including a Phase Locked Loop (PLL). The PLL improves the frequency estimate on-line, allowing the modified controller to reduce vortex-induced motions by more than 95% using achievable thrust inputs.

  3. DUSP3 Phosphatase Deficiency or Inhibition Limit Platelet Activation and Arterial Thrombosis

    PubMed Central

    Musumeci, Lucia; Kuijpers, Marijke J; Gilio, Karen; Hego, Alexandre; Théâtre, Emilie; Maurissen, Lisbeth; Vandereyken, Maud; Diogo, Catia V; Lecut, Christelle; Guilmain, William; Bobkova, Ekaterina V; Eble, Johannes A.; Dahl, Russell; Drion, Pierre; Rascon, Justin; Mostofi, Yalda; Yuan, Hongbin; Sergienko, Eduard; Chung, Thomas DY; Thiry, Marc; Senis, Yotis; Moutschen, Michel; Mustelin, Tomas; Lancellotti, Patrizio; Heemskerk, Johan WM; Tautz, Lutz; Oury, Cécile; Rahmouni, Souad

    2015-01-01

    Background A limitation of current antiplatelet therapies is their inability to separate thrombotic events from bleeding occurrences. Better understanding of the molecular mechanisms leading to platelet activation is of importance for the development of improved therapies. Recently, protein tyrosine phosphatases (PTPs) have emerged as critical regulators of platelet function. Methods and Results This is the first report implicating the dual-specificity phosphatase 3 (DUSP3) in platelet signaling and thrombosis. This phosphatase is highly expressed in human and mouse platelets. Platelets from DUSP3-deficient mice displayed a selective impairment of aggregation and granule secretion mediated through the collagen receptor glycoprotein VI (GPVI) and the C-type lectin-like receptor 2 (CLEC-2). DUSP3-deficient mice were more resistant to collagen- and epinephrine-induced thromboembolism, compared to wild-type mice, and showed severely impaired thrombus formation upon ferric chloride-induced carotid artery injury. Intriguingly, bleeding times were not altered in DUSP3-deficient mice. At the molecular level, DUSP3 deficiency impaired Syk tyrosine phosphorylation, subsequently reducing phosphorylation of PLCγ2 and calcium fluxes. To investigate DUSP3 function in human platelets, a novel small-molecule inhibitor of DUSP3 was developed. This compound specifically inhibited collagen and CLEC-2-induced human platelet aggregation, thereby phenocopying the effect of DUSP3 deficiency in murine cells. Conclusions DUSP3 plays a selective and essential role in collagen- and CLEC-2-mediated platelet activation and thrombus formation in vivo. Inhibition of DUSP3 may prove therapeutic for arterial thrombosis. This is the first time a PTP, implicated in platelet signaling, has been targeted with a small-molecule drug. PMID:25520375

  4. Anti-type V collagen lymphocytes that express IL-17 and IL-23 induce rejection pathology in fresh and well-healed lung transplants.

    PubMed

    Yoshida, S; Haque, A; Mizobuchi, T; Iwata, T; Chiyo, M; Webb, T J; Baldridge, L A; Heidler, K M; Cummings, O W; Fujisawa, T; Blum, J S; Brand, D D; Wilkes, D S

    2006-04-01

    Immunity to collagen V [col(V)] contributes to lung 'rejection.' We hypothesized that ischemia reperfusion injury (IRI) associated with lung transplantation unmasks antigenic col(V) such that fresh and well-healed lung grafts have differential susceptibility to anti-col(V)-mediated injury; and expression of the autoimmune cytokines, IL-17 and IL-23, are associated with this process. Adoptive transfer of col(V)-reactive lymphocytes to WKY rats induced grade 2 rejection in fresh isografts, but induced worse pathology (grade 3) when transferred to isograft recipients 30 days post-transplantation. Immunhistochemistry detected col(V) in fresh and well-healed isografts but not native lungs. Hen egg lysozyme-reactive lymphocytes (HEL, control) did not induce lung disease in any group. Col(V), but not HEL, immunization induced transcripts for IL-17 and IL-23 (p19) in the cells utilized for adoptive transfer. Transcripts for IL-17 were upregulated in fresh, but not well-healed isografts after transfer of col(V)-reactive cells. These data show that IRI predisposes to anti-col(V)-mediated pathology; col(V)-reactive lymphocytes express IL-17 and IL-23; and anti-col(V)-mediated lung disease is associated with local expression of IL-17. Finally, because of similar histologic patterns, the pathology of clinical rejection may reflect the activity of autoimmunity to col(V) and/or alloimmunity.

  5. Pneumatic tube system transport does not alter platelet function in optical and whole blood aggregometry, prothrombin time, activated partial thromboplastin time, platelet count and fibrinogen in patients on anti-platelet drug therapy

    PubMed Central

    Enko, Dietmar; Mangge, Harald; Münch, Andreas; Niedrist, Tobias; Mahla, Elisabeth; Metzler, Helfried; Prüller, Florian

    2017-01-01

    Introduction The aim of this study was to assess pneumatic tube system (PTS) alteration on platelet function by the light transmission aggregometry (LTA) and whole blood aggregometry (WBA) method, and on the results of platelet count, prothrombin time (PT), activated partial thromboplastin time (APTT), and fibrinogen. Materials and methods Venous blood was collected into six 4.5 mL VACUETTE® 9NC coagulation sodium citrate 3.8% tubes (Greiner Bio-One International GmbH, Kremsmünster, Austria) from 49 intensive care unit (ICU) patients on dual anti-platelet therapy and immediately hand carried to the central laboratory. Blood samples were divided into 2 Groups: Group 1 samples (N = 49) underwent PTS (4 m/s) transport from the central laboratory to the distant laboratory and back to the central laboratory, whereas Group 2 samples (N = 49) were excluded from PTS forces. In both groups, LTA and WBA stimulated with collagen, adenosine-5’-diphosphate (ADP), arachidonic acid (AA) and thrombin-receptor-activated-peptide 6 (TRAP-6) as well as platelet count, PT, APTT, and fibrinogen were performed. Results No statistically significant differences were observed between blood samples with (Group 1) and without (Group 2) PTS transport (P values from 0.064 – 0.968). The AA-induced LTA (bias: 68.57%) exceeded the bias acceptance limit of ≤ 25%. Conclusions Blood sample transportation with computer controlled PTS in our hospital had no statistically significant effects on platelet aggregation determined in patients with anti-platelet therapy. Although AA induced LTA showed a significant bias, the diagnostic accuracy was not influenced. PMID:28392742

  6. Adenosine diphosphate-induced platelet-fibrin clot strength: a new thrombelastographic indicator of long-term poststenting ischemic events.

    PubMed

    Gurbel, Paul A; Bliden, Kevin P; Navickas, Irene A; Mahla, Elizabeth; Dichiara, Joseph; Suarez, Thomas A; Antonino, Mark J; Tantry, Udaya S; Cohen, Eli

    2010-08-01

    Poststenting ischemic events occur despite dual-antiplatelet therapy, suggesting that a "one size fits all" antithrombotic strategy has significant limitations. Ex vivo platelet function measurements may facilitate risk stratification and personalized antiplatelet therapy. We investigated the prognostic utility of the strength of adenosine diphosphate (ADP)-induced (MA(ADP)) and thrombin-induced (MA(THROMBIN)) platelet-fibrin clots measured by thrombelastography and ADP-induced light transmittance aggregation (LTA(ADP)) in 225 serial patients after elective stenting treated with aspirin and clopidogrel. Ischemic and bleeding events were assessed over 3 years. Overall, 59 (26%) first ischemic events occurred. Patients with ischemic events had higher MA(ADP), MA(THROMBIN), and LTA(ADP) (P < .0001 for all comparisons). By receiver operating characteristic curve analysis, MA(ADP) >47 mm had the best predictive value of long-term ischemic events compared with other measurements (P < .0001), with an area under the curve = 0.84 (95% CI 0.78-0.89, P < .0001). The univariate Cox proportional hazards model identified MA(ADP) >47 mm, MA(THROMBIN) >69 mm, and LTA(ADP) >34% as significant independent predictors of first ischemic events at the 3-year time point, with hazard ratios of 10.3 (P < .0001), 3.8 (P < .0001), and 4.8 (P < .0001), respectively. Fifteen bleeding events occurred. Receiver operating characteristic curve and quartile analysis suggests MA(ADP) platelet-fibrin clot strength measured by thrombelastography can serve as a future tool in investigations of personalized antiplatelet treatment designed to reduce ischemic events and bleeding. Copyright 2010 Mosby, Inc. All rights reserved.

  7. Aspirin decreases platelet uptake on Dacron vascular grafts in baboons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, W.C.; Connolly, R.J.; Callow, A.D.

    The influence of a single dose of aspirin (5.4-7.4 mg/kg) on platelet uptake on 4-mm Dacron interposition grafts was studied in a baboon model using gamma camera scanning for 111-Indium labeled platelets. In vitro assessment of platelet function after aspirin administration revealed that in the baboon, as in the human, aspirin abolished arachidonic acid-induced platelet aggregation, prolonged the lag time between exposure to collagen and aggregation, and decreased plasma thromboxane B2 levels. Aspirin also prolonged the template bleeding time. Scans for 111-Indium labeled platelets revealed that pretreatment with a single dose of aspirin decreased platelet uptake on 4-mm Dacron carotidmore » interposition grafts. This decrease in platelet uptake was associated with a significant improvement in 2-hour graft patency and with a trend toward improved 2-week patency.« less

  8. A case report of pseudo grey platelet syndrome with citrate-induced pseudothrombocytopenia: those artifacts may interfere in the platelet numeration and lead to critical misdiagnosis.

    PubMed

    Herb, Agathe; Maurer, Maxime; Alamome, Isabelle; Bihl, Pierre-Adrien; Ghiura, Cosmina; Hurstel, Rémy

    2017-08-01

    The pseudo grey platelet syndrome is a rare artifact due to the degranulation of platelets caused, in vitro, by EDTA. This phenomenon is likely to disturb the platelet numeration and it is essential not to mistake it for a grey syndrome platelet, which is a constitutional thrombopathy with macrothrombopenia, in order to avoid specialized tests, or even misdiagnosis. Indeed, these two entities are cytologically alike, as grey platelets are found on the blood smear of a sample collected on EDTA in both cases. We here describe the case of a patient admitted in Colmar's Hospital for a chronic thrombocytopenia, associating both a pseudothrombocytopenia and a pseudo grey platelet syndrome.

  9. Anti-platelet activity of a three-finger toxin (3FTx) from Indian monocled cobra (Naja kaouthia) venom.

    PubMed

    Chanda, Chandrasekhar; Sarkar, Angshuman; Sistla, Srinivas; Chakrabarty, Dibakar

    2013-11-22

    A low molecular weight anti-platelet peptide (6.9 kDa) has been purified from Naja kaouthia venom and was named KT-6.9. MALDI-TOF/TOF mass spectrometry analysis revealed the homology of KT-6.9 peptide sequence with many three finger toxin family members. KT-6.9 inhibited human platelet aggregation process in a dose dependent manner. It has inhibited ADP, thrombin and arachidonic acid induced platelet aggregation process in dose dependent manner, but did not inhibit collagen and ristocetin induced platelet aggregation. Strong inhibition (70%) of the ADP induced platelet aggregation by KT-6.9 suggests competition with ADP for its receptors on platelet surface. Anti-platelet activity of KT-6.9 was found to be 25 times stronger than that of anti-platelet drug clopidogrel. Binding of KT-6.9 to platelet surface was confirmed by surface plasma resonance analysis using BIAcore X100. Binding was also observed by a modified sandwich ELISA method using anti-KT-6.9 antibodies. KT-6.9 is probably the first 3 FTx from Indian monocled cobra venom reported as a platelet aggregation inhibitor. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Attenuation of Folic Acid-Induced Renal Inflammatory Injury in Platelet-Activating Factor Receptor-Deficient Mice

    PubMed Central

    Doi, Kent; Okamoto, Koji; Negishi, Kousuke; Suzuki, Yoshifumi; Nakao, Akihide; Fujita, Toshiro; Toda, Akiko; Yokomizo, Takehiko; Kita, Yoshihiro; Kihara, Yasuyuki; Ishii, Satoshi; Shimizu, Takao; Noiri, Eisei

    2006-01-01

    Platelet-activating factor (PAF), a potent lipid mediator with various biological activities, plays an important role in inflammation by recruiting leukocytes. In this study we used platelet-activating factor receptor (PAFR)-deficient mice to elucidate the role of PAF in inflammatory renal injury induced by folic acid administration. PAFR-deficient mice showed significant amelioration of renal dysfunction and pathological findings such as acute tubular damage with neutrophil infiltration, lipid peroxidation observed with antibody to 4-hydroxy-2-hexenal (day 2), and interstitial fibrosis with macrophage infiltration associated with expression of monocyte chemoattractant protein-1 and tumor necrosis factor-α in the kidney (day 14). Acute tubular damage was attenuated by neutrophil depletion using a monoclonal antibody (RB6-8C5), demonstrating the contribution of neutrophils to acute phase injury. Macrophage infiltration was also decreased when treatment with a PAF antagonist (WEB2086) was started after acute phase. In vitro chemotaxis assay using a Boyden chamber demonstrated that PAF exhibits a strong chemotactic activity for macrophages. These results indicate that PAF is involved in pathogenesis of folic acid-induced renal injury by activating neutrophils in acute phase and macrophages in chronic interstitial fibrosis. Inhibiting the PAF pathway might be therapeutic to kidney injury from inflammatory cells. PMID:16651609

  11. Hydroxychavicol, a novel betel leaf component, inhibits platelet aggregation by suppression of cyclooxygenase, thromboxane production and calcium mobilization.

    PubMed

    Chang, M C; Uang, B J; Tsai, C Y; Wu, H L; Lin, B R; Lee, C S; Chen, Y J; Chang, C H; Tsai, Y L; Kao, C J; Jeng, J H

    2007-09-01

    Platelet hyperactivity is important in the pathogenesis of cardiovascular diseases. Betel leaf (PBL) is consumed by 200-600 million betel quid chewers in the world. Hydroxychavicol (HC), a betel leaf component, was tested for its antiplatelet effect. We tested the effect of HC on platelet aggregation, thromboxane B(2) (TXB(2)) and reactive oxygen species (ROS) production, cyclooxygenase (COX) activity, ex vivo platelet aggregation and mouse bleeding time and platelet plug formation in vivo. The pharmacokinetics of HC in rats was also assessed. HC inhibited arachidonic acid (AA) and collagen-induced platelet aggregation and TXB(2) production. HC inhibited the thrombin-induced TXB(2) production, but not platelet aggregation. SQ29548, suppressed collagen- and thrombin-induced TXB(2) production, but not thrombin-induced platelet aggregation. HC also suppressed COX-1/COX-2 enzyme activity and the AA-induced ROS production and Ca(2+) mobilization. HC further inhibited the ex vivo platelet aggregation of platelet-rich plasma (>100 nmole/mouse) and prolonged platelet plug formation (>300 nmole/mouse) in mesenteric microvessels, but showed little effect on bleeding time in mouse tail. Moreover, pharmacokinetics analysis found that more than 99% of HC was metabolized within 3 min of administration in Sprague-Dawley rats in vivo. HC is a potent COX-1/COX-2 inhibitor, ROS scavenger and inhibits platelet calcium signaling, TXB(2) production and aggregation. HC could be a potential therapeutic agent for prevention and treatment of atherosclerosis and other cardiovascular diseases through its anti-inflammatory and antiplatelet effects, without effects on haemostatic functions.

  12. Platelet-Released Growth Factors Induce Differentiation of Primary Keratinocytes

    PubMed Central

    Tohidnezhad, Mersedeh; Lammel, Justus; Lippross, Sebastian; Behrendt, Peter; Klüter, Tim; Pufe, Thomas; Jahr, Holger; Cremer, Jochen; Rademacher, Franziska; Gläser, Regine; Harder, Jürgen

    2017-01-01

    Autologous thrombocyte concentrate lysates, for example, platelet-released growth factors, (PRGFs) or their clinically related formulations (e.g., Vivostat PRF®) came recently into the physicians' focus as they revealed promising effects in regenerative and reparative medicine such as the support of healing of chronic wounds. To elucidate the underlying mechanisms, we analyzed the influence of PRGF and Vivostat PRF on human keratinocyte differentiation in vitro and on epidermal differentiation status of skin wounds in vivo. Therefore, we investigated the expression of early (keratin 1 and keratin 10) and late (transglutaminase-1 and involucrin) differentiation markers. PRGF treatment of primary human keratinocytes decreased keratin 1 and keratin 10 gene expression but induced involucrin and transglutaminase-1 gene expression in an epidermal growth factor receptor- (EGFR-) dependent manner. In concordance with these results, microscopic analyses revealed that PRGF-treated human keratinocytes displayed morphological features typical of keratinocytes undergoing terminal differentiation. In vivo treatment of artificial human wounds with Vivostat PRF revealed a significant induction of involucrin and transglutaminase-1 gene expression. Together, our results indicate that PRGF and Vivostat PRF induce terminal differentiation of primary human keratinocytes. This potential mechanism may contribute to the observed beneficial effects in the treatment of hard-to-heal wounds with autologous thrombocyte concentrate lysates in vivo. PMID:28808357

  13. [Effects of lysine clonixinate on platelet function. Comparison with other non-steroidal anti-inflammatory agents].

    PubMed

    Kramer, E H; Sassetti, B; Kaminker, A J; De Los Santos, A R; Martí, M L; Di Girolamo, G

    2001-01-01

    One of the mechanisms of action of non steroid antiinflammatory drugs (NSAIDs) consists of inhibition of prostaglandin synthesis. This explains many of the pharmacological effects and adverse events observed in medical practice. Administration of NSAIDs to patients with hemostatic disorders or perioperative conditions entails the risk of bleeding due to inhibition of platelet function. This study deals with platelet changes induced by lysine clonixinate vs diclofenac, ibuprofen and aspirin in classical tests such as platelet count, platelet factor 3 (PF3) activity and platelet aggregation with various inductors and more recent procedures such as P-selectin measurement by flow cytometry. Unlike control drugs, lysine clonixinate did not induce changes in platelet count or function when administered to healthy volunteers at the commonly used therapeutic doses.

  14. The membrane attack complex of complement contributes to plasmin-induced synthesis of platelet-activating factor by endothelial cells and neutrophils

    PubMed Central

    Lupia, Enrico; Del Sorbo, Lorenzo; Bergerone, Serena; Emanuelli, Giorgio; Camussi, Giovanni; Montrucchio, Giuseppe

    2003-01-01

    Thrombolytic agents, used to restore blood flow to ischaemic tissues, activate several enzymatic systems with pro-inflammatory effects, thus potentially contributing to the pathogenesis of ischaemia–reperfusion injury. Platelet-activating factor (PAF), a phospholipid mediator of inflammation, has been implicated in the pathogenesis of this process. We previously showed that the infusion of streptokinase (SK) induces the intravascular release of PAF in patients with acute myocardial infarction (AMI), and that cultured human endothelial cells (EC) synthesized PAF in response to SK and plasmin (PLN). In the present study, we investigated the role of the membrane attack complex (MAC) of complement in the PLN-induced synthesis of PAF. In vivo, we showed a correlation between the levels of soluble terminal complement components (sC5b-9) and the concentrations of PAF detected in blood of patients with AMI infused with SK. In vitro both EC and polymorphonuclear neutrophils (PMN), incubated in the presence of PLN and normal human serum, showed an intense staining for the MAC neoepitope, while no staining was detected when they were incubated with PLN in the presence of heat-inactivated normal human serum. Moreover, the insertion of MAC on EC and PMN plasmamembrane elicited the synthesis of PAF. In conclusion, our results elucidate the mechanisms involved in PAF production during the activation of the fibrinolytic system, showing a role for complement products in this setting. The release of PAF may increase the inflammatory response, thus limiting the beneficial effects of thrombolytic therapy. Moreover, it may have a pathogenic role in other pathological conditions, such as transplant rejection, tumoral angiogenesis, and septic shock, where fibrinolysis is activated. PMID:12871223

  15. The membrane attack complex of complement contributes to plasmin-induced synthesis of platelet-activating factor by endothelial cells and neutrophils.

    PubMed

    Lupia, Enrico; Del Sorbo, Lorenzo; Bergerone, Serena; Emanuelli, Giorgio; Camussi, Giovanni; Montrucchio, Giuseppe

    2003-08-01

    Thrombolytic agents, used to restore blood flow to ischaemic tissues, activate several enzymatic systems with pro-inflammatory effects, thus potentially contributing to the pathogenesis of ischaemia-reperfusion injury. Platelet-activating factor (PAF), a phospholipid mediator of inflammation, has been implicated in the pathogenesis of this process. We previously showed that the infusion of streptokinase (SK) induces the intravascular release of PAF in patients with acute myocardial infarction (AMI), and that cultured human endothelial cells (EC) synthesized PAF in response to SK and plasmin (PLN). In the present study, we investigated the role of the membrane attack complex (MAC) of complement in the PLN-induced synthesis of PAF. In vivo, we showed a correlation between the levels of soluble terminal complement components (sC5b-9) and the concentrations of PAF detected in blood of patients with AMI infused with SK. In vitro both EC and polymorphonuclear neutrophils (PMN), incubated in the presence of PLN and normal human serum, showed an intense staining for the MAC neoepitope, while no staining was detected when they were incubated with PLN in the presence of heat-inactivated normal human serum. Moreover, the insertion of MAC on EC and PMN plasmamembrane elicited the synthesis of PAF. In conclusion, our results elucidate the mechanisms involved in PAF production during the activation of the fibrinolytic system, showing a role for complement products in this setting. The release of PAF may increase the inflammatory response, thus limiting the beneficial effects of thrombolytic therapy. Moreover, it may have a pathogenic role in other pathological conditions, such as transplant rejection, tumoral angiogenesis, and septic shock, where fibrinolysis is activated.

  16. Evaluation of the effect of phosphodiesterase on equine platelet activation and the effect of antigen challenge on platelet phosphodiesterase activity in horses with recurrent airway obstruction.

    PubMed

    Dunkel, Bettina; Rickards, Karen J; Werling, Dirk; Page, Clive P; Cunningham, Fiona M

    2010-05-01

    To determine whether expression of equine platelet activation-dependent surface markers is influenced by phospodiesterase (PDE) isoenzyme activity and whether antigen challenge alters platelet PDE activity in horses with recurrent airway obstruction (RAO). 16 horses. 7 healthy horses were used for in vitro experiments, 6 horses with RAO were used for antigen challenge, and 6 healthy horses were used as control animals. Three of the healthy horses had also been used in the in vitro experiments. Effects of PDE inhibition and activation of adenylyl cyclase on CD41/61 and CD62P expression on platelets and platelet-neutrophil aggregate formation in vitro were investigated via flow cytometry. Platelet PDE activity and sensitivity to inhibition of PDE3 and PDE5 isoenzymes were examined in horses with RAO and control horses before and after antigen challenge. Inhibition of PDE or activation of adenylyl cyclase significantly inhibited stimulus-induced expression of CD41/61 and CD62P (by approx 94% and 40%, respectively) and percentage of CD62P positive cells (by approx 30%). Only the PDE3 inhibitor, trequinsin, caused a significant (53%) reduction in platelet-neutrophil aggregate formation. Platelet PDE activity decreased following antigen challenge in RAO-affected horses and control horses. In horses with RAO, a significant increase in sensitivity of platelet PDE to inhibition by the PDE5 inhibitor zaprinast was observed after 5 hours. Results provided further evidence that PDE3 is an important regulator of equine platelet activation and suggested that changes in regulation of platelet PDE5 may contribute to antigen-induced response in horses with RAO.

  17. Early storage lesions in apheresis platelets are induced by the activation of the integrin αIIbβ₃ and focal adhesion signaling pathways.

    PubMed

    Thiele, Thomas; Iuga, Cristina; Janetzky, Susann; Schwertz, Hansjorg; Gesell Salazar, Manuela; Fürll, Birgit; Völker, Uwe; Greinacher, Andreas; Steil, Leif

    2012-12-05

    Production and storage of platelet concentrates (PC) induce protein changes in platelets leading to impaired platelet function. This study aimed to identify signaling pathways involved in the development of early platelet storage lesions in apheresis-PCs stored in plasma or additive solution (PAS). Apheresis-PCs from four donors were stored in plasma or in PAS at 22°C (n=4 each). Platelets were analyzed at day 0 (production day) and after 1, 6 and 9 days of storage. Platelet response to agonists (TRAP, collagen, ADP) and to hypotonic shock decreased, CD62P expression increased in both storage media over time. Using DIGE 1550 protein spots were monitored and compared to baseline values at day 0. Platelets in plasma displayed changes in 352 spots (166/day 1, 263/day 6 and 201/day 9); in PAS 325 spots changed (202/day 1, 221/day 6, 200/day 9). LC-ESI-MS/MS analysis of 405 platelet proteins revealed 32 proteins changed during storage in plasma (9/day 1, 15/day 6 and 26/day 9) and 28 in PAS (5/day 1, 20/day 6, 26/day 9). Ingenuity pathway analysis found integrin-αII(b)β(3) and focal adhesion signaling pathways involved in early alterations, being confirmed by Western blotting. Corresponding mRNAs in platelets were identified by next generation sequencing for 84 changed proteins. Integrin-αII(b)β(3) and focal adhesion signaling cause irreversible early storage lesions in apheresis platelets. This article is part of a Special Issue entitled: Integrated omics. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Mapuche herbal medicine inhibits blood platelet aggregation.

    PubMed

    Falkenberg, Susan Skanderup; Tarnow, Inge; Guzman, Alfonso; Mølgaard, Per; Simonsen, Henrik Toft

    2012-01-01

    12 plant species traditionally used by the Mapuche people in Chile to treat wounds and inflammations have been evaluated for their direct blood platelet inhibition. Seven of the 12 tested plant species showed platelet inhibitory effect in sheep blood, and four of these were also able to inhibit the ADP- (5.0 μM) and collagen- (2.0 μg/mL) induced aggregations in human blood. These four species in respective extracts (in brackets) were Blechnum chilense (MeOH), Luma apiculata (H(2)O), Amomyrtus luma (DCM : MeOH 1 : 1) and Cestrum parqui (DCM : MeOH 1 : 1). The platelet aggregating inhibitory effects of A. luma (DCM : MeOH 1 : 1), and L. apiculata (H(2)O) were substantial and confirmed by inhibition of platelet surface activation markers.

  19. Mapuche Herbal Medicine Inhibits Blood Platelet Aggregation

    PubMed Central

    Falkenberg, Susan Skanderup; Tarnow, Inge; Guzman, Alfonso; Mølgaard, Per; Simonsen, Henrik Toft

    2012-01-01

    12 plant species traditionally used by the Mapuche people in Chile to treat wounds and inflammations have been evaluated for their direct blood platelet inhibition. Seven of the 12 tested plant species showed platelet inhibitory effect in sheep blood, and four of these were also able to inhibit the ADP- (5.0 μM) and collagen- (2.0 μg/mL) induced aggregations in human blood. These four species in respective extracts (in brackets) were Blechnum chilense (MeOH), Luma apiculata (H2O), Amomyrtus luma (DCM : MeOH 1 : 1) and Cestrum parqui (DCM : MeOH 1 : 1). The platelet aggregating inhibitory effects of A. luma (DCM : MeOH 1 : 1), and L. apiculata (H2O) were substantial and confirmed by inhibition of platelet surface activation markers. PMID:22028732

  20. Cellular immune responses to platelet factor 4 and heparin complexes in patients with heparin-induced thrombocytopenia.

    PubMed

    Nazy, Ishac; Clare, Rumi; Staibano, Phillip; Warkentin, Theodore E; Larche, Mark; Moore, Jane C; Smith, James W; Whitlock, Richard P; Kelton, John G; Arnold, Donald M

    2018-05-03

    Heparin-induced thrombocytopenia (HIT) is an adverse reaction to heparin characterized by thrombocytopenia and thrombotic complications. HIT is caused by pathogenic antibodies that bind to complexes of platelet factor 4 and heparin (PF4/heparin) leading to platelet activation and inducing a hypercoagulable state. Previous studies have shown immunity to PF4/heparin occurs early in life even before heparin exposure; however, the immunogenesis of HIT is not well characterized. The aim of this study was to investigate cellular proliferation in response to PF4/heparin complexes in patients with HIT. Peripheral blood mononuclear cells (PBMCs) from healthy controls (n = 30), postoperative cardiac surgery patients who underwent cardiopulmonary bypass (CPB, n = 17), and patients with confirmed HIT (n = 41) were cultured with PF4 and PF4/heparin. Cellular proliferation was assessed by 3 H-thymidine uptake and 5-ethynyl-2'-deoxyuridine (EdU) detection. PBMCs proliferated in the presence of PF4 and was enhanced by the addition of heparin in all study groups. CPB and HIT patients exhibited significantly higher proliferative responses compared to healthy controls. PBMC proliferation was antigen-specific, depended on the presence of platelets, and only CD14 + cells were identified as proliferating cells. Culture supernatants were tested for the levels of regulatory cytokines and both CPB and HIT patients produced significantly lower levels of IL-10 and TGF-β1 compared to healthy controls. These findings further demonstrate that cellular immune sensitization to PF4/heparin occurs before heparin exposure and suggests that immune dysregulation can contribute to the immunogenesis of HIT. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Platelet RNA as a circulating biomarker trove for cancer diagnostics.

    PubMed

    Best, M G; Vancura, A; Wurdinger, T

    2017-07-01

    Platelets are multifunctional cell fragments, circulating in blood in high abundance. Platelets assist in thrombus formation, sensing of pathogens entering the blood stream, signaling to immune cells, releasing vascular remodeling factors, and, negatively, enhancing cancer metastasis. Platelets are 'educated' by their environment, including in patients with cancer. Cancer cells appear to initiate intraplatelet signaling, resulting in splicing of platelet pre-mRNAs, and enhance secretion of cytokines. Platelets can induce leukocyte and endothelial cell modeling factors, for example, through adenine nucleotides (ATP), thereby facilitating extravasation of cancer cells. Besides releasing factors, platelets can also sequester RNAs and proteins released by cancer cells. Thus, platelets actively respond to queues from local and systemic conditions, thereby altering their transcriptome and molecular content. Platelets contain a rich repertoire of RNA species, including mRNAs, small non-coding RNAs and circular RNAs; although studies regarding the functionality of the various platelet RNA species require more attention. Recent advances in high-throughput characterization of platelet mRNAs revealed 10 to > 1000 altered mRNAs in platelets in the presence of disease. Hence, platelet RNA appears to be dynamically affected by pathological conditions, thus possibly providing opportunities to use platelet RNA as diagnostic, prognostic, predictive, or monitoring biomarkers. In this review, we cover the literature regarding the platelet RNA families, processing of platelet RNAs, and the potential application of platelet RNA as disease biomarkers. © 2017 International Society on Thrombosis and Haemostasis.

  2. Stacking fault induced tunnel barrier in platelet graphite nanofiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, Yann-Wen, E-mail: chiidong@phys.sinica.edu.tw, E-mail: ywlan@phys.sinica.edu.tw; Chang, Yuan-Chih; Chang, Chia-Seng

    A correlation study using image inspection and electrical characterization of platelet graphite nanofiber devices is conducted. Close transmission electron microscopy and diffraction pattern inspection reveal layers with inflection angles appearing in otherwise perfectly stacked graphene platelets, separating nanofibers into two domains. Electrical measurement gives a stability diagram consisting of alternating small-large Coulomb blockade diamonds, suggesting that there are two charging islands coupled together through a tunnel junction. Based on these two findings, we propose that a stacking fault can behave as a tunnel barrier for conducting electrons and is responsible for the observed double-island single electron transistor characteristics.

  3. Towards optical control of single blood platelet activation

    NASA Astrophysics Data System (ADS)

    Spiryova, Darya V.; Karmatskih, Oleg Yu.; Vorob'ev, Alexei Yu.; Moskalensky, Alexander E.

    2018-04-01

    Blood platelets play a pivotal role in blood coagulation and in other normal and pathological processes. The understanding of fundamental mechanisms underlying their functions is very important for diagnostics and treatment. Single-cell experiments are needed for this purpose, which are complicated by insufficient spatiotemporal precision of conventional activation protocols. We present an approach to trigger single platelet activation optically, without the need of reagent mixing. This is achieved using photolabile compound, which rapidly delivers epinephrine upon UV irradiation. We demonstrated the applicability of the technique to rapidly induce platelet activation for studying dynamics of activation. The presented method may give novel fundamental knowledge about platelet functions and facilitate current research of their ability to deliver drugs to tumors or vascular injury sites.

  4. Thrombopoietin contributes to enhanced platelet activation in cigarette smokers.

    PubMed

    Lupia, Enrico; Bosco, Ornella; Goffi, Alberto; Poletto, Cesare; Locatelli, Stefania; Spatola, Tiziana; Cuccurullo, Alessandra; Montrucchio, Giuseppe

    2010-05-01

    Thrombopoietin (TPO) is a humoral growth factor that primes platelet activation in response to several agonists. We recently showed that TPO enhances platelet activation in unstable angina and sepsis. Aim of this study was to investigate the role of TPO in platelet function abnormalities described in cigarette smokers. In a case-control study we enrolled 20 healthy cigarette smokers and 20 nonsmokers, and measured TPO and C-reactive protein (CRP), as well as platelet-leukocyte binding and P-selectin expression. In vitro we evaluated the priming activity of smoker or control plasma on platelet activation, and the role of TPO in this effect. We then studied the effects of acute smoking and smoking cessation on TPO levels and platelet activation indices. Chronic cigarette smokers had higher circulating TPO levels than nonsmoking controls, as well as increased platelet-leukocyte binding, P-selectin expression, and CRP levels. Serum cotinine concentrations correlated with TPO concentrations, platelet-monocyte aggregates and P-selectin expression. In addition, TPO levels significantly correlated with ex vivo platelet-monocyte aggregation and P-selectin expression. In vitro, the plasma from cigarette smokers, but not from nonsmoking controls, primed platelet-monocyte binding, which was reduced when an inhibitor of TPO was used. We also found that acute smoking slightly increased TPO levels, but did not affect platelet-leukocyte binding, whereas smoking cessation induced a significant decrease in both circulating TPO and platelet-leukocyte aggregation. Elevated TPO contributes to enhance platelet activation and platelet-monocyte cross-talk in cigarette smokers. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  5. Angiotensin peptides attenuate platelet-activating factor-induced inflammatory activity in rats.

    PubMed

    Sato, Akira; Yokoyama, Izumi; Ebina, Keiichi

    2015-11-01

    Angiotensin (Ang)--a peptide that is part of the renin-angiotensin system-induces vasoconstriction and a subsequent increase in blood pressure; Ang peptides, especially AngII, can also act as potent pro-inflammatory mediators. Platelet-activating factor (PAF) is a potent phospholipid mediator that is implicated in many inflammatory diseases. In this study, we investigated the effects of Ang peptides (AngII, AngIII, and AngIV) on PAF-induced inflammatory activity. In experiments using a rat hind-paw oedema model, AngII markedly and dose-dependently attenuated the paw oedema induced by PAF. The inhibitory effects of AngIII and AngIV on PAF-induced paw oedema were lower than that of AngII. Two Ang receptors, the AT1 and AT2 receptors, did not affect the AngII-mediated attenuation of PAF-induced paw oedema. Moreover, intrinsic tyrosine fluorescence studies demonstrated that AngII, AngIII, and AngIV interact with PAF, and that their affinities were closely correlated with their inhibitory effects on PAF-induced rat paw oedema. Also, AngII interacted with metabolite/precursor of PAF (lyso-PAF), and an oxidized phospholipid, 1-palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC), which bears a marked structural resemblance to PAF. Furthermore, POVPC dose-dependently inhibited AngII-mediated attenuation of PAF-induced paw oedema. These results suggest that Ang peptides can attenuate PAF-induced inflammatory activity through binding to PAF and lyso-PAF in rats. Therefore, Ang peptides may be closely involved in the regulation of many inflammatory diseases caused by PAF. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Hydroxychavicol, a novel betel leaf component, inhibits platelet aggregation by suppression of cyclooxygenase, thromboxane production and calcium mobilization

    PubMed Central

    Chang, M C; Uang, B J; Tsai, C Y; Wu, H L; Lin, B R; Lee, C S; Chen, Y J; Chang, C H; Tsai, Y L; Kao, C J; Jeng, J H

    2007-01-01

    Background and purpose: Platelet hyperactivity is important in the pathogenesis of cardiovascular diseases. Betel leaf (PBL) is consumed by 200-600 million betel quid chewers in the world. Hydroxychavicol (HC), a betel leaf component, was tested for its antiplatelet effect. Experimental approach: We tested the effect of HC on platelet aggregation, thromboxane B2 (TXB2) and reactive oxygen species (ROS) production, cyclooxygenase (COX) activity, ex vivo platelet aggregation and mouse bleeding time and platelet plug formation in vivo. The pharmacokinetics of HC in rats was also assessed. Key results: HC inhibited arachidonic acid (AA) and collagen-induced platelet aggregation and TXB2 production. HC inhibited the thrombin-induced TXB2 production, but not platelet aggregation. SQ29548, suppressed collagen- and thrombin-induced TXB2 production, but not thrombin-induced platelet aggregation. HC also suppressed COX-1/COX-2 enzyme activity and the AA-induced ROS production and Ca2+ mobilization. HC further inhibited the ex vivo platelet aggregation of platelet-rich plasma (>100 nmole/mouse) and prolonged platelet plug formation (>300 nmole/mouse) in mesenteric microvessels, but showed little effect on bleeding time in mouse tail. Moreover, pharmacokinetics analysis found that more than 99% of HC was metabolized within 3 min of administration in Sprague-Dawley rats in vivo. Conclusions and implications: HC is a potent COX-1/COX-2 inhibitor, ROS scavenger and inhibits platelet calcium signaling, TXB2 production and aggregation. HC could be a potential therapeutic agent for prevention and treatment of atherosclerosis and other cardiovascular diseases through its anti-inflammatory and antiplatelet effects, without effects on haemostatic functions. PMID:17641677

  7. Dual-specificity phosphatase 3 deficiency or inhibition limits platelet activation and arterial thrombosis.

    PubMed

    Musumeci, Lucia; Kuijpers, Marijke J; Gilio, Karen; Hego, Alexandre; Théâtre, Emilie; Maurissen, Lisbeth; Vandereyken, Maud; Diogo, Catia V; Lecut, Christelle; Guilmain, William; Bobkova, Ekaterina V; Eble, Johannes A; Dahl, Russell; Drion, Pierre; Rascon, Justin; Mostofi, Yalda; Yuan, Hongbin; Sergienko, Eduard; Chung, Thomas D Y; Thiry, Marc; Senis, Yotis; Moutschen, Michel; Mustelin, Tomas; Lancellotti, Patrizio; Heemskerk, Johan W M; Tautz, Lutz; Oury, Cécile; Rahmouni, Souad

    2015-02-17

    A limitation of current antiplatelet therapies is their inability to separate thrombotic events from bleeding occurrences. A better understanding of the molecular mechanisms leading to platelet activation is important for the development of improved therapies. Recently, protein tyrosine phosphatases have emerged as critical regulators of platelet function. This is the first report implicating the dual-specificity phosphatase 3 (DUSP3) in platelet signaling and thrombosis. This phosphatase is highly expressed in human and mouse platelets. Platelets from DUSP3-deficient mice displayed a selective impairment of aggregation and granule secretion mediated by the collagen receptor glycoprotein VI and the C-type lectin-like receptor 2. DUSP3-deficient mice were more resistant to collagen- and epinephrine-induced thromboembolism compared with wild-type mice and showed severely impaired thrombus formation on ferric chloride-induced carotid artery injury. Intriguingly, bleeding times were not altered in DUSP3-deficient mice. At the molecular level, DUSP3 deficiency impaired Syk tyrosine phosphorylation, subsequently reducing phosphorylation of phospholipase Cγ2 and calcium fluxes. To investigate DUSP3 function in human platelets, a novel small-molecule inhibitor of DUSP3 was developed. This compound specifically inhibited collagen- and C-type lectin-like receptor 2-induced human platelet aggregation, thereby phenocopying the effect of DUSP3 deficiency in murine cells. DUSP3 plays a selective and essential role in collagen- and C-type lectin-like receptor 2-mediated platelet activation and thrombus formation in vivo. Inhibition of DUSP3 may prove therapeutic for arterial thrombosis. This is the first time a protein tyrosine phosphatase, implicated in platelet signaling, has been targeted with a small-molecule drug. © 2014 American Heart Association, Inc.

  8. A Histologically Distinctive Interstitial Pneumonia Induced by Overexpression of the Interleukin 6, Transforming Growth Factor β1, or Platelet-Derived Growth Factor B Gene

    NASA Astrophysics Data System (ADS)

    Yoshida, Mitsuhiro; Sakuma, Junko; Hayashi, Seiji; Abe, Kin'ya; Saito, Izumu; Harada, Shizuko; Sakatani, Mitsunoir; Yamamoto, Satoru; Matsumoto, Norinao; Kaneda, Yasufumi; Kishmoto, Tadamitsu

    1995-10-01

    Interstitial pneumonia is characterized by alveolitis with resulting fibrosis of the interstitium. To determine the relevance of humoral factors in the pathogenesis of interstitial pneumonia, we introduced expression vectors into Wistar rats via the trachea to locally overexpress humoral factors in the lungs. Human interleukin (IL) 6 and IL-6 receptor genes induced lymphocytic alveolitis without marked fibroblast proliferation. In contrast, overexpression of human transforming growth factor β1 or human platelet-derived growth factor B gene induced only mild or apparent cellular infiltration in the alveoli, respectively. However, both factors induced significant proliferation of fibroblasts and deposition of collagen fibrils. These histopathologic changes induced by the transforming growth factor β1 and platelet-derived growth factor B gene are partly akin to those changes seen in lung tissues from patients with pulmonary fibrosis and markedly contrast with the changes induced by overexpression of the IL-6 and IL-6 receptor genes that mimics lymphocytic interstitial pneumonia.

  9. Detection of HIT antibody dependent platelet aggregation using novel surface imprinting approach.

    PubMed

    Hussain, Munawar; Northoff, Hinnak; Gehring, Frank K

    2016-01-15

    We present a fast, robust and straightforward spin force assisted surface imprinting approach for activated platelets and demonstrate that Heparin induced thrombocytopenia (HIT) platelet aggregation can be measured by this approach. A critical and challenging step in functional assays for HIT is platelet separation from the healthy donor's platelet-rich plasma (PRP). Our approach using surface imprinted polymer (MIP) for measurements on a quartz crystal microbalance with dissipation (QCM-D) enables monitoring of platelet aggregation directly in PRP thus eliminating the challenge of platelet separation. This is the first report of platelet imprinting. We also provide proof of principle that QCM-D technology can be applied for functional measurements of HIT antibodies. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Platelet glycoproteins associated with aspirin-treatment upon platelet activation

    PubMed Central

    Shah, Punit; Yang, Weiming; Sun, Shisheng; Pasay, Jered; Faraday, Nauder; Zhang, Hui

    2017-01-01

    Platelet glycoproteins are known to play central roles in hemostasis and vascular integrity and have pathologic roles in vascular occlusive diseases such as myocardial infarction and stroke. Characterizing glycoproteins within and secreted by platelets can provide insight into the mechanisms that underlie vascular pathologies and the therapeutic benefits or failure of anti-platelet agents. To study the impact of aspirin, which is commonly prescribed for primary and secondary cardiovascular prevention, on the platelet glycoproteome, we evaluated washed platelets from ten donors. The platelet glycoproteome, was studied using an iTRAQ in resting and stimulated states and with and without aspirin treatment. Using solid phase extraction of glycosite-containing peptides (SPEG), we were able to identify 799 unique N-linked glycosylation sites (glycosites) in platelets, representing the largest and the most comprehensive analysis to date. We were able to identity a number of glycoproteins impacted by aspirin treatment, which we validated using global proteomics analysis of platelets and their secreted proteins. In our analyses, metallopeptidase inhibitor 1 (TIMP1) was the single most significantly affected glycoprotein by aspirin treatment. ELISA assays confirmed proteomic results and validated our strategy. Functional analysis demonstrated that TIMP1 levels were highly correlated with platelet reactivity in vitro, with a correlation coefficient of −0.5. The release of TIMP1 from platelets, which was previously unknown to be affected by aspirin treatment, may play important roles in hemostasis and/or vascular integrity. If validated, our findings may be useful for developing assays that assess platelet response to aspirin or other anti-platelet therapies. PMID:27452734

  11. Adenosine Diphosphate-Induced Platelet-Fibrin Clot Strength: A New Thrombelastographic Indicator of Long-Term Post-Stenting Ischemic Events

    PubMed Central

    Gurbel, Paul A.; Bliden, Kevin P.; Navickas, Irene A.; Mahla, Elizabeth; Dichiara, Joseph; Suarez, Thomas A.; Antonino, Mark J.; Tantry, Udaya S.; Cohen, Eli

    2010-01-01

    Background Post-stenting ischemic events occur despite dual antiplatelet therapy suggesting that a “one size fits all” antithrombotic strategy has significant limitations. Ex vivo platelet function measurements may facilitate risk stratification and personalized antiplatelet therapy. Methods We investigated the prognostic utility of the strength of ADP-induced (MAADP) and thrombin-induced (MATHROMBIN) platelet-fibrin clots measured by thrombelastography and ADP-induced light transmittance aggregation (LTAADP) in 225 serial patients following elective stenting treated with aspirin and clopidogrel. Ischemic and bleeding events were assessed over three-years. Results Overall, 59 (26 %) first ischemic events occurred. Patients with ischemic events had higher MAADP, MATHROMBIN, and LTAADP (p<0.0001 for all comparisons). By receiver operating characteristic curve analysis, MAADP > 47mm had the best predictive value of long-term ischemic events compared to other measurements (p<0.0001) with an area under the curve = 0.84 [95% CI 0.78 – 0.89, p < 0.0001]. The univariate Cox proportional hazards model identified MAADP >47mm, MATHROMBIN >69mm, and LTA ADP >34% as significant independent predictors of first ischemic events at the three-year time point, with hazard ratios of 10.3 (p<0.0001), 3.8 (p<0.0001), and 4.8 (p<0.0001) respectively. Fifteen bleeding events occurred. Receiver operator characteristic curve and quartile analysis suggest MAADP ≤ 31 as a predictive value for bleeding. Conclusion This study is the first demonstration of the prognostic utility of MAADP in predicting long term event occurrence following stenting. The quantitative assessment of ADP-stimulated platelet-fibrin clot strength measured by thrombelastography can serve as a future tool in investigations of personalized antiplatelet treatment designed to reduce ischemic events and bleeding. PMID:20691842

  12. The in vitro and in vivo pharmacological profiles of a platelet glycoprotein IIb/IIIa antagonist, NSL-9403.

    PubMed

    Katada, J; Takiguchi, Y; Muramatsu, M; Fujiyoshi, T; Uno, I

    1997-10-01

    The in vitro and in vivo pharmacological profiles of NSL-9403 [orotyl-serylarginyl-glycyl-asparatyl-tryptophane], a platelet glycoprotein IIb/IIIa (GpIIb/IIIa) antagonist, has been studied. NSL-9403 inhibited platelet aggregation of human platelet-rich plasma (PRP) with IC50 values of 4.3 +/- 0.4 microM (collagen) and 1.8 +/- 0.3 microM (ADP), which was about 100 times more potent than RGDS. It also inhibited the binding of fibrinogen to activated platelets. Ex vivo collagen and ADP-induced platelet aggregation in a guinea pig was inhibited after a bolus intravenous administration of NSL-9403 at 1.25 mg/kg and above. NSL-9403 had an anti-thrombotic effect in in vivo thrombosis models. In a platelet agonist-induced pulmonary embolic sudden death model, where a bolus injection of collagen and epinephrine induced sudden death in mice, intravenous administration of NSL-9403 before an injection of collagen and epinephrine inhibited this platelet-agonist induced death in a dose dependent manner. In an arterio-venous shunt, infusion of NSL-9403 at 3 mg/kg/hour prevented an increase in circulation pressure due to thrombus formation in the shunt circuit and platelet loss. Infusion of NSL-9403 at 1 to 10 mg/kg/hour produced a complete inhibition of platelet-dependent arterial thrombosis in a dog femoral arterial thrombosis model. Thus NSL-9403 is a potent inhibitor or platelet aggregation in vitro and a potent anti-thrombotic agent in vivo with a relatively short duration of action.

  13. Platelet-TLR7 mediates host survival and platelet count during viral infection in the absence of platelet-dependent thrombosis

    PubMed Central

    Koupenova, Milka; Vitseva, Olga; MacKay, Christopher R.; Beaulieu, Lea M.; Benjamin, Emelia J.; Mick, Eric; Kurt-Jones, Evelyn A.; Ravid, Katya

    2014-01-01

    Viral infections have been associated with reduced platelet counts, the biological significance of which has remained elusive. Here, we show that infection with encephalomyocarditis virus (EMCV) rapidly reduces platelet count, and this response is attributed to platelet Toll-like receptor 7 (TLR7). Platelet-TLR7 stimulation mediates formation of large platelet-neutrophil aggregates, both in mouse and human blood. Intriguingly, this process results in internalization of platelet CD41-fragments by neutrophils, as assessed biochemically and visualized by microscopy, with no influence on platelet prothrombotic properties. The mechanism includes TLR7-mediated platelet granule release, translocation of P-selectin to the cell surface, and a consequent increase in platelet-neutrophil adhesion. Viral infection of platelet-depleted mice also led to increased mortality. Transfusion of wild-type, TLR7-expressing platelets into TLR7-deficient mice caused a drop in platelet count and increased survival post EMCV infection. Thus, this study identifies a new link between platelets and their response to single-stranded RNA viruses that involves activation of TLR7. Finally, platelet-TLR7 stimulation is independent of thrombosis and has implications to the host immune response and survival. PMID:24755410

  14. Intracellular origin and ultrastructure of platelet-derived microparticles.

    PubMed

    Ponomareva, A A; Nevzorova, T A; Mordakhanova, E R; Andrianova, I A; Rauova, L; Litvinov, R I; Weisel, J W

    2017-08-01

    Essentials Platelet microparticles play a major role in pathologies, including hemostasis and thrombosis. Platelet microparticles have been analyzed and classified based on their ultrastructure. The structure and intracellular origin of microparticles depend on the cell-activating stimulus. Thrombin-treated platelets fall apart and form microparticles that contain cellular organelles. Background Platelet-derived microparticles comprise the major population of circulating blood microparticles that play an important role in hemostasis and thrombosis. Despite numerous studies on the (patho)physiological roles of platelet-derived microparticles, mechanisms of their formation and structural details remain largely unknown. Objectives Here we studied the formation, ultrastructure and composition of platelet-derived microparticles from isolated human platelets, either quiescent or stimulated with one of the following activators: arachidonic acid, ADP, collagen, thrombin or calcium ionophore A23187. Methods Using flow cytometry, transmission and scanning electron microscopy, we analyzed the intracellular origin, structural diversity and size distributions of the subcellular particles released from platelets. Results The structure, dimensions and intracellular origin of microparticles depend on the cell-activating stimulus. The main structural groups include a vesicle surrounded by one thin membrane or multivesicular structures. Thrombin, unlike other stimuli, induced formation of microparticles not only from the platelet plasma membrane and cytoplasm but also from intracellular structures. A fraction of these vesicular particles having an intracellular origin contained organelles, such as mitochondria, glycogen granules and vacuoles. The size of platelet-derived microparticles depended on the nature of the cell-activating stimulus. Conclusion The results obtained provide a structural basis for the qualitative differences of various platelet activators, for specific

  15. Human platelet activation by C3a and C3a des-arg

    PubMed Central

    1983-01-01

    C3a liberated from C3 by treatment with C3 convertase (or by trypsin) induced aggregation of gel-filtered human platelets and stimulated serotonin release. At concentrations of 10(-10) M to 8 X 10(-12) M, C3a induced aggregation when added alone to platelets. However, at lower concentrations (2 X 10(-12) M) C3a did not aggregate platelets directly but exhibited highly significant synergism (two-way analysis of variance P less than 0.0001) with ADP in mediating platelet aggregation and release of serotonin. Removal of the C-terminus arginine from C3a abolished anaphylotoxin activity but did not affect the platelet- stimulating activity of the peptide. C3a and C3a des-arg were equally reactive in mediating platelet aggregation and release of serotonin. Further C3a and C3a des-arg exhibited synergism with ADP of equal significance in both aggregation and the release reaction. The concentrations of C3a required for the platelet-stimulating activity involve relatively small number of molecules per platelet (4,000-10,000 for the synergistic reaction with ADP). These data suggest the possibility of a C3a (C3a des-arg) receptor on human platelets. This premise is strengthened by the demonstration ultrastructurally of C3a on the platelet membrane subsequent to C3a stimulation. PMID:6604123

  16. Tangeretin regulates platelet function through inhibition of phosphoinositide 3-kinase and cyclic nucleotide signaling.

    PubMed

    Vaiyapuri, Sakthivel; Ali, Marfoua S; Moraes, Leonardo A; Sage, Tanya; Lewis, Kirsty R; Jones, Chris I; Gibbins, Jonathan M

    2013-12-01

    Dietary flavonoids have long been appreciated in reducing cardiovascular disease risk factors, but their mechanisms of action are complex in nature. In this study, the effects of tangeretin, a dietary flavonoid, were explored on platelet function, signaling, and hemostasis. Tangeretin inhibited agonist-induced human platelet activation in a concentration-dependent manner. It inhibited agonist-induced integrin αIIbβ3 inside-out and outside-in signaling, intracellular calcium mobilization, and granule secretion. Tangeretin also inhibited human platelet adhesion and subsequent thrombus formation on collagen-coated surfaces under arterial flow conditions in vitro and reduced hemostasis in mice. Further characterization to explore the mechanism by which tangeretin inhibits platelet function revealed distinctive effects of platelet signaling. Tangeretin was found to inhibit phosphoinositide 3-kinase-mediated signaling and increase cGMP levels in platelets, although phosphodiesterase activity was unaffected. Consistent with increased cGMP levels, tangeretin increased the phosphorylation of vasodilator-stimulated phosphoprotein at S239. This study provides support for the ability and mechanisms of action of dietary flavonoids to modulate platelet signaling and function, which may affect the risk of thrombotic disease.

  17. Quantitative Protein Sulfenic Acid Analysis Identifies Platelet Releasate-Induced Activation of Integrin β2 on Monocytes via NADPH Oxidase.

    PubMed

    Li, Ru; Klockenbusch, Cordula; Lin, Liwen; Jiang, Honghui; Lin, Shujun; Kast, Juergen

    2016-12-02

    Physiological stimuli such as thrombin, or pathological stimuli such as lysophosphatidic acid (LPA), activate platelets. The activated platelets bind to monocytes through P-selectin-PSGL-1 interactions but also release the contents of their granules, commonly called "platelet releasate". It is known that monocytes in contact with platelet releasate produce reactive oxygen species (ROS). Reversible cysteine oxidation by ROS is considered to be a potential regulator of protein function. In a previous study, we used THP-1 monocytic cells exposed to LPA- or thrombin-induced platelet releasate and a modified biotin switch assay to unravel the biological processes that are influenced by reversible cysteine oxidation. To gain a better understanding of the redox regulation of monocytes in atherosclerosis, we have now altered the modified biotin switch to selectively quantify protein sulfenic acid, a subpopulation of reversible cysteine oxidation. Using arsenite as reducing agent in the modified biotin switch assay, we were able to quantify 1161 proteins, in which more than 100 sulfenic acid sites were identified. Bioinformatics analysis of the quantified sulfenic acid sites highlighted the relevant, previously missed biological process of monocyte transendothelial migration, which included integrin β 2 . Flow cytometry validated the activation of LFA-1 (α L β 2 ) and Mac-1 (α M β 2 ), two subfamilies of integrin β 2 complexes, on human primary monocytes following platelet releasate treatment. The activation of LFA-1 was mediated by ROS from NADPH oxidase (NOX) activation. Production of ROS and activation of LFA-1 in human primary monocytes were independent of P-selectin-PSGL-1 interaction. Our results proved the modified biotin switch assay to be a powerful tool with the ability to reveal new regulatory mechanisms and identify new therapeutic targets.

  18. Dabigatran affects thrombin-dependent platelet aggregation after a week-long therapy.

    PubMed

    Sokol, Juraj; Nehaj, Frantisek; Ivankova, Jela; Mokan, Michal; Mokan, Marian; Stasko, Jan

    2018-05-29

    Dabigatran is a direct thrombin inhibitor. As the main adverse event is bleeding, it is relevant whether dabigatran has additional effects on platelet function. If so, it could affect the bleeding risk. We aimed to assess in vitro aggregation in patients with atrial fibrillation (AF) receiving dabigatran. We evaluated 32 AF patients treated with dabigatran (study group) and 18 non-anticoagulated non-AF blood donors (control group). We assessed light transmittance platelet aggregation (LTA) with 100 nmol/L γ-thrombin in both groups. The LTA was performed at two time-points in our dabigatran group of patients. The thrombin-induced platelet aggregation was significantly lower two hours after dabigatran was taken compared to baseline measurement (9% ± 6% vs. 29% ± 21%) in our study group. Moreover, we observed that the baseline value of platelet aggregation in patients on dabigatran treatment was significantly lower compared to healthy volunteers (29% ± 21% vs. 89 ± 8). However, one subanalysis showed that this significant reduction in platelet aggregation at baseline was only observed in patients who received dabigatran for over a week. The thrombin-induced platelet aggregation is reduced in non-valvular AF patients receiving dabigatran after a week-long therapy.

  19. Thrombopoietin contributes to enhanced platelet activation in patients with unstable angina.

    PubMed

    Lupia, Enrico; Bosco, Ornella; Bergerone, Serena; Dondi, Anna Erna; Goffi, Alberto; Oliaro, Elena; Cordero, Marco; Del Sorbo, Lorenzo; Trevi, Giampaolo; Montrucchio, Giuseppe

    2006-12-05

    We sought to investigate the potential role of elevated levels of thrombopoietin (TPO) in platelet activation during unstable angina (UA). Thrombopoietin is a humoral growth factor that does not induce platelet aggregation per se, but primes platelet activation in response to several agonists. No data concerning its contribution to platelet function abnormalities described in patients with UA are available. We studied 15 patients with UA and, as controls, 15 patients with stable angina (SA) and 15 healthy subjects. We measured TPO and C-reactive protein (CRP), as well as monocyte-platelet binding and the platelet expression of P-selectin and of the TPO receptor, c-Mpl. The priming activity of patient or control plasma on platelet aggregation and monocyte-platelet binding and the role of TPO in this effect also were studied. Patients with UA showed higher circulating TPO levels, as well as increased monocyte-platelet binding, platelet P-selectin expression, and CRP levels, than those with SA and healthy control subjects. The UA patients also showed reduced platelet expression of the TPO receptor, c-Mpl. In vitro, the plasma from UA patients, but not from SA patients or healthy controls, primed platelet aggregation and monocyte-platelet binding, which were both reduced when an inhibitor of TPO was used. Thrombopoietin may enhance platelet activation in the early phases of UA, potentially participating in the pathogenesis of acute coronary syndromes.

  20. Role of leukocytes and platelets in acute myocardial infarction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bednar, M.M.

    1986-01-01

    Myocardial ischemia initiates an inflammatory-like response in which invading neutrophils exacerbate the degree of injury. The effects of nafazatrom, a new antithrombotic agent, on leukocyte function in vitro and in vivo were related to its ability to salvage ischemic myocardium in an occulsion-reperfusion model of myocardial injury in the anesthetized dogs. Measurements of the neutrophil-specific myeloperoxidase enzyme in ischemic myocardium indicate that the smaller infarct size in dogs treated with nafazatrom is accompanied by a diminished leukocyte infiltration. The results obtained with nafazatrom emphasize the important role of the neutrophil in ischemia-induced myocardial damage. The possibility that myocardial ischemia-induced plateletmore » deposition was secondary to a neutrophil-mediated event was assessed by the injection of PGI{sub 2}-washed autologous {sup 111}indium-labeled platelets and measuring the amount of radioactivity in different regions of the heart following a 90 min. occlusion of the left anterior descending coronary artery followed by reperfusion for periods up to 5 hrs. Neutropenia, induced with specific sheep anti-dog neutrophil antiserum, significantly reduced platelet accumulation in the ischemic myocardium following 5 hrs. reperfusion and abolished the transmural platelet distribution. These results suggest that myocardial platelet deposition is secondary to a neutrophil-mediated event in this occlusion-reperfusion model of myocardial injury.« less

  1. Functional genomics in zebrafish permits rapid characterization of novel platelet membrane proteins.

    PubMed

    O'Connor, Marie N; Salles, Isabelle I; Cvejic, Ana; Watkins, Nicholas A; Walker, Adam; Garner, Stephen F; Jones, Chris I; Macaulay, Iain C; Steward, Michael; Zwaginga, Jaap-Jan; Bray, Sarah L; Dudbridge, Frank; de Bono, Bernard; Goodall, Alison H; Deckmyn, Hans; Stemple, Derek L; Ouwehand, Willem H

    2009-05-07

    In this study, we demonstrate the suitability of the vertebrate Danio rerio (zebrafish) for functional screening of novel platelet genes in vivo by reverse genetics. Comparative transcript analysis of platelets and their precursor cell, the megakaryocyte, together with nucleated blood cell elements, endothelial cells, and erythroblasts, identified novel platelet membrane proteins with hitherto unknown roles in thrombus formation. We determined the phenotype induced by antisense morpholino oligonucleotide (MO)-based knockdown of 5 of these genes in a laser-induced arterial thrombosis model. To validate the model, the genes for platelet glycoprotein (GP) IIb and the coagulation protein factor VIII were targeted. MO-injected fish showed normal thrombus initiation but severely impaired thrombus growth, consistent with the mouse knockout phenotypes, and concomitant knockdown of both resulted in spontaneous bleeding. Knockdown of 4 of the 5 novel platelet proteins altered arterial thrombosis, as demonstrated by modified kinetics of thrombus initiation and/or development. We identified a putative role for BAMBI and LRRC32 in promotion and DCBLD2 and ESAM in inhibition of thrombus formation. We conclude that phenotypic analysis of MO-injected zebrafish is a fast and powerful method for initial screening of novel platelet proteins for function in thrombosis.

  2. Platelet-rich plasma stimulated by pulse electric fields: Platelet activation, procoagulant markers, growth factor release and cell proliferation.

    PubMed

    Frelinger, A L; Torres, A S; Caiafa, A; Morton, C A; Berny-Lang, M A; Gerrits, A J; Carmichael, S L; Neculaes, V B; Michelson, A D

    2016-01-01

    Therapeutic use of activated platelet-rich plasma (PRP) has been explored for wound healing, hemostasis and antimicrobial wound applications. Pulse electric field (PEF) stimulation may provide more consistent platelet activation and avoid complications associated with the addition of bovine thrombin, the current state of the art ex vivo activator of therapeutic PRP. The aim of this study was to compare the ability of PEF, bovine thrombin and thrombin receptor activating peptide (TRAP) to activate human PRP, release growth factors and induce cell proliferation in vitro. Human PRP was prepared in the Harvest SmartPreP2 System and treated with vehicle, PEF, bovine thrombin, TRAP or Triton X-100. Platelet activation and procoagulant markers and microparticle generation were measured by flow cytometry. Released growth factors were measured by ELISA. The releasates were tested for their ability to stimulate proliferation of human epithelial cells in culture. PEF produced more platelet-derived microparticles, P-selectin-positive particles and procoagulant annexin V-positive particles than bovine thrombin or TRAP. These differences were associated with higher levels of released epidermal growth factor after PEF than after bovine thrombin or TRAP but similar levels of platelet-derived, vascular-endothelial, and basic fibroblast growth factors, and platelet factor 4. Supernatant from PEF-treated platelets significantly increased cell proliferation compared to plasma. In conclusion, PEF treatment of fresh PRP results in generation of microparticles, exposure of prothrombotic platelet surfaces, differential release of growth factors compared to bovine thrombin and TRAP and significant cell proliferation. These results, together with PEF's inherent advantages, suggest that PEF may be a superior alternative to bovine thrombin activation of PRP for therapeutic applications.

  3. Zbtb7a induction in alveolar macrophages is implicated in anti-HLA-mediated lung allograft rejection.

    PubMed

    Nayak, Deepak K; Zhou, Fangyu; Xu, Min; Huang, Jing; Tsuji, Moriya; Yu, Jinsheng; Hachem, Ramsey; Gelman, Andrew E; Bremner, Ross M; Smith, Michael A; Mohanakumar, Thalachallour

    2017-07-12

    Chronic rejection significantly limits long-term success of solid organ transplantation. De novo donor-specific antibodies (DSAs) to mismatched donor human leukocyte antigen after human lung transplantation predispose lung grafts to chronic rejection. We sought to delineate mediators and mechanisms of DSA pathogenesis and to define early inflammatory events that trigger chronic rejection in lung transplant recipients and obliterative airway disease, a correlate of human chronic rejection, in mouse. Induction of transcription factor zinc finger and BTB domain containing protein 7a (Zbtb7a) was an early response critical in the DSA-induced chronic rejection. A cohort of human lung transplant recipients who developed DSA and chronic rejection demonstrated greater Zbtb7a expression long before clinical diagnosis of chronic rejection compared to nonrejecting lung transplant recipients with stable pulmonary function. Expression of DSA-induced Zbtb7a was restricted to alveolar macrophages (AMs), and selective disruption of Zbtb7a in AMs resulted in less bronchiolar occlusion, low immune responses to lung-restricted self-antigens, and high protection from chronic rejection in mice. Additionally, in an allogeneic cell transfer protocol, antigen presentation by AMs was Zbtb7a-dependent where AMs deficient in Zbtb7a failed to induce antibody and T cell responses. Collectively, we demonstrate that AMs play an essential role in antibody-induced pathogenesis of chronic rejection by regulating early inflammation and lung-restricted humoral and cellular autoimmunity. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. Platelet Function Analyzed by Light Transmission Aggregometry.

    PubMed

    Hvas, Anne-Mette; Favaloro, Emmanuel J

    2017-01-01

    Analysis of platelet function is widely used for diagnostic work-up in patients with increased bleeding tendency. During the last decades, platelet function testing has also been introduced for evaluation of antiplatelet therapy, but this is still recommended for research purposes only. Platelet function can also be assessed for hyper-aggregability, but this is less often evaluated. Light transmission aggregometry (LTA) was introduced in the early 1960s and has since been considered the gold standard. This optical detection system is based on changes in turbidity measured as a change in light transmission, which is proportional to the extent of platelet aggregation induced by addition of an agonist. LTA is a flexible method, as different agonists can be used in varying concentrations, but performance of the test requires large blood volumes and experienced laboratory technicians as well as specialized personal to interpret results. In the present chapter, a protocol for LTA is described including all steps from pre-analytical preparation to interpretation of results.

  5. Is platelet function as measured by Thrombelastograph monitoring in whole blood affected by platelet inhibitors?

    PubMed

    Bailey, Lori A; Sistino, Joseph J; Uber, Walter E

    2005-03-01

    Platelet inhibitors, especially the glycoprotein (GP) IIb/IIIa receptor antagonists, have demonstrated their effectiveness in reducing the acute ischemic complications of percutaneous coronary intervention (PCI) and in improving clinical outcomes in patients with acute coronary crisis. Three common platelet inhibitors observed in emergent cardiopulmonary bypass (CPB) for failed PCI are abciximab, eptifibatide, and tirofiban. An in vitro model was constructed in two parts to determine whether platelet aggregation inhibition induced by platelet inhibitors would be demonstrated by the Thrombelastograph (TEG) monitor when compared with baseline samples with no platelet inhibitor. In part A, 20 mL of fresh whole blood was divided into four groups: group I = baseline, group A = abcix-imab microg/mL, group E = eptifibatide ng/mL, and group T = tirofiban ng/mL. Platelet inhibitor concentrations in whole blood were derived starting with reported serum concentrations with escalation to achieve 80% platelet inhibition using the Medtronic hemoSTATUS and/or Lumi-aggregometer. A concentration range determined by our in vitro tests were chosen for each drug using concentrations achieving less than, equal to, or greater than 80% platelet inhibition. In part B, TEG analysis was then performed using baseline and concentrations for each drug derived in part A. Parameters measured were clot formation reaction time (R), coagulation time (K), maximum amplitude (MA) and alpha angle (A). Groups E1000 and E2000 extended R over control by 37% and 23%, respectively (p = 0.01 and 0.03). Groups E1000 and E2000 increased K times by 45% and 58% (p = .02 and .04). T160 samples prolonged K by 20% (p = 0.01). The angle or clot strength (A) was decreased in groups T160 and E1000 by 23% (+ 7.06 SD) and 18% (+ 11.23 SD), respectively (p = 0.001 and 0.01). The MA decrease was statistically significant in the T160, E1000 and E2000 by 9%, 6% and 13% respectively (p = 0.01). Samples treated with abciximab

  6. Did You Reject Me for Someone Else? Rejections That Are Comparative Feel Worse.

    PubMed

    Deri, Sebastian; Zitek, Emily M

    2017-12-01

    Rejections differ. For those who are rejected, one important difference is whether they are rejected for someone else (comparative rejection) or no one at all (noncomparative rejection). We examined the effect of this distinction on emotional reactions to a rejection in four studies ( N = 608), one of which was fully preregistered. Our results show that comparative rejections feel worse than noncomparative rejections and that this may be because such rejections lead to an increased sense of exclusion and decreased belonging. Furthermore, we found evidence that, by default, people react to a rejection as though it were comparative-that is, in the absence of any information about whether they have been rejected for someone or no one, they react as negatively as if they were rejected for someone. Our discussion focuses on the implications of these findings, including why people often seek out information in the wake of a rejection.

  7. Platelets and Infections – Complex Interactions with Bacteria

    PubMed Central

    Hamzeh-Cognasse, Hind; Damien, Pauline; Chabert, Adrien; Pozzetto, Bruno; Cognasse, Fabrice; Garraud, Olivier

    2015-01-01

    Platelets can be considered sentinels of vascular system due to their high number in the circulation and to the range of functional immunoreceptors they express. Platelets express a wide range of potential bacterial receptors, including complement receptors, FcγRII, Toll-like receptors but also integrins conventionally described in the hemostatic response, such as GPIIb–IIIa or GPIb. Bacteria bind these receptors either directly, or indirectly via fibrinogen, fibronectin, the first complement C1q, the von Willebrand Factor, etc. The fate of platelet-bound bacteria is questioned. Several studies reported the ability of activated platelets to internalize bacteria such as Staphylococcus aureus or Porphyromonas gingivalis, though there is no clue on what happens thereafter. Are they sheltered from the immune system in the cytoplasm of platelets or are they lysed? Indeed, while the presence of phagolysosome has not been demonstrated in platelets, they contain antimicrobial peptides that were shown to be efficient on S. aureus. Besides, the fact that bacteria can bind to platelets via receptors involved in hemostasis suggests that they may induce aggregation; this has indeed been described for Streptococcus sanguinis, S. epidermidis, or C. pneumoniae. On the other hand, platelets are able to display an inflammatory response to an infectious triggering. We, and others, have shown that platelet release soluble immunomodulatory factors upon stimulation by bacterial components. Moreover, interactions between bacteria and platelets are not limited to only these two partners. Indeed, platelets are also essential for the formation of neutrophil extracellular traps by neutrophils, resulting in bacterial clearance by trapping bacteria and concentrating antibacterial factors but in enhancing thrombosis. In conclusion, the platelet–bacteria interplay is a complex game; its fine analysis is complicated by the fact that the inflammatory component adds to the aggregation response

  8. Lactobacillus rhamnosus GG (ATCC 53103) and platelet aggregation in vitro.

    PubMed

    Korpela, R; Moilanen, E; Saxelin, M; Vapaatalo, H

    1997-06-17

    Lactobacillus rhamnosus GG is an experimentally and clinically well documented probiotic used in different dairy products. The present study aimed to investigate the safety aspects of Lactobacillus rhamnosus GG, particularly with respect to platelet aggregation, the initiating event in thrombosis. Platelet rich plasma was separated from the blood of healthy volunteers, and the effects of Lactobacillus rhamnosus GG (ATCC 53103), Lactobacillus rhamnosus (ATCC 7469) and Enterococcus faecium T2L6 in different dilutions on spontaneous, ADP- and adrenaline-induced aggregation were tested. The bacteria did not influence spontaneous aggregation. Only Enterococcus faecium T2L6 enhanced the adrenaline-induced aggregation, with a less clear effect on ADP-induced aggregation.

  9. Platelet antiheparin activity. The isolation and characterisation of platelet factor 4 released from thrombin-aggregated washed human platelets and its dissociation into subunits and the isolation of membrane-bound antiheparin activity.

    PubMed

    Moore, S; Pepper, D S; Cash, J D

    1975-02-27

    Platelet factor 4 was isolated by gel filtration from the soluble release products of thrombin-aggregated washed human platelets as a proteoglycan-platelet factor 4 complex of molecular weight 358 000, Stokes radius (r-s) of 14.0 nm, sedimentation coefficient (s) of 7.1 S and frictional ratio (f/f-o) of 3.04. The complex was dissociated at high ionic strength (I equals 0.75) and the proteoglycan separated from platelet factor 4 by gel filtration. Platelet factor 4 had a molecular weight of 27 100, r-s of 2.52 nm, s of 2.4 S and f/f-o of 1.26, was insoluble under physiological conditions but readily soluble at pH 3. Under these conditions platelet factor 4 dissociated into four subunits with a molecular weight of 6900, r-s of 1.92 nm, s of 0.8 S, and f/f-o of 1.52. Qualitative N-terminal amino acid analysis showed the presence of glutamic acid or glutamine as the major end group. Platelet factor 4 was compared with protamine sulphate, which has similar biological properties, by electrophoresis at pH 2.2, in which both migrated as single bands but with differing mobility, and by amino acid analysis which showed a more normal distribution of residues than occurred in protamine sulphate. Of the basic amino acids platelet factor 4 (molecular weight 27 100) contained 5.97% arginine, 3.18% histidine, and 12.31% lysine compared to protamine sulphate with 64.2% arginine, 0.6% lysine and no histidine. A partial specific volume (v) of 0.747 was calculated for platelet factor 4 from its amino acid analysis. A membrane fraction with antiheparin activity, an isopycnic density of 1.090-1.110 and r-s of 15-35 nm, was also isolated by sucrose density gradient centrifugation from the ultrasonicated insoluble platelet residue remaining after thrombin-induced aggregation of washed human platelets. Trypsin treatment of the membrane fraction neither solubilised nor destroyed the activity.

  10. Platelets are dispensable for antibody-mediated transfusion-related acute lung injury in the mouse.

    PubMed

    Hechler, B; Maître, B; Magnenat, S; Heim, V; El Mdawar, M-B; Gachet, C; de la Salle, H

    2016-06-01

    Essentials Role of platelets in immunological transfusion-related acute lung injury (TRALI) is debated. Immunological TRALI was tested in mice exhibiting severe thrombocytopenia or platelet dysfunction. Platelets are required to prevent lung hemorrhage but not edema formation and respiratory distress. Platelets are dispensable for the initiation and development of TRALI. Background Transfusion-related acute lung injury (TRALI) is a serious transfusion-related complication. Previous conflicting studies have indicated that platelets are either crucial or dispensable for TRALI. Objectives To evaluate the role of platelets in major histocompatibility complex (MHC) I-induced-TRALI. Methods Antibody-mediated TRALI was experimentally induced in mice by lipopolysaccharide priming followed by the administration of an anti-MHC I mAb. Results TRALI was tested in the context of severe thrombocytopenia provoked by the administration of diphtheria toxin (DT) in transgenic iDTR mice selectively expressing DT receptor in megakaryocytes. The pathologic responses occurring within the first 10 min following the injection of the anti-MHC I mAb, i.e. the severity of lung edema and the drop in aortic blood oxygenation, were similar in severely thrombocytopenic DT-iDTR and control mice. At later times, mortality was nevertheless increased in DT-iDTR mice, owing to lung hemorrhages. When less severe thrombocytopenia was induced with an antiplatelet mAb, TRALI started and developed similarly as in control mice, but hemorrhages were absent. Furthermore, when platelet functions were defective because of administration of aspirin or clopidogrel, or because of glycoprotein (GP)IIbIIIa deficiency, TRALI still developed but no lung hemorrhages were observed. In contrast, when GPVI was immunodepleted, TRALI still occurred, but was occasionally accompanied by hemorrhages. Conclusions Platelets are dispensable for the initiation and development of MHC I-induced TRALI. Although they do not protect

  11. In vitro anti-platelet effects of simple plant-derived phenolic compounds are only found at high, non-physiological concentrations.

    PubMed

    Ostertag, Luisa M; O'Kennedy, Niamh; Horgan, Graham W; Kroon, Paul A; Duthie, Garry G; de Roos, Baukje

    2011-11-01

    Bioactive polyphenols from fruits, vegetables, and beverages have anti-platelet effects and may thus affect the development of cardiovascular disease. We screened the effects of 26 low molecular weight phenolic compounds on two in vitro measures of human platelet function. After platelets had been incubated with one of 26 low molecular weight phenolic compounds in vitro, collagen-induced human platelet aggregation and in vitro TRAP-induced P-selectin expression (as marker of platelet activation) were assessed. Incubation of platelet-rich plasma from healthy volunteers with 100 μmol/L hippuric acid, pyrogallol, catechol, or resorcinol significantly inhibited collagen-induced platelet aggregation (all p<0.05; n≥15). Incubation of whole blood with concentrations of 100 μmol/L salicylic acid, p-coumaric acid, caffeic acid, ferulic acid, 4-hydroxyphenylpropionyl glycine, 5-methoxysalicylic acid, and catechol significantly inhibited TRAP-induced surface P-selectin expression (all p<0.05; n=10). Incubation with lower concentrations of phenolics affected neither platelet aggregation nor activation. As concentrations of 100 μmol/L are unlikely to be reached in the circulation, it is doubtful whether consumption of dietary phenolics in nutritionally attainable amounts plays a major role in inhibition of platelet activation and aggregation in humans. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Incomplete inhibition of platelet function as assessed by the platelet function analyzer (PFA-100) identifies a subset of cardiovascular patients with high residual platelet response while on aspirin.

    PubMed

    Crescente, M; Mezzasoma, A M; Del Pinto, M; Palmerini, F; Di Castelnuovo, A; Cerletti, C; De Gaetano, G; Gresele, P

    2011-01-01

    Sixty-six patients with a history of ischemic events (myocardial infarction, unstable angina, or stroke) on chronic aspirin therapy were studied by different platelet function tests: 37 patients had suffered a recurrent event while on aspirin and 29 were without recurrences. Based on results from light transmission aggregometry (LTA) induced by arachidonic acid (AA) and serum TxB(2) both COX-1-dependent methods, only one patient could be identified as aspirin "resistant". However, when methods only partially-dependent on platelet COX-1 activity were considered, the prevalence of aspirin non-responders ranged, according to the different tests, from 0 to 52%. No difference was observed between patients with recurrences and those without. Among patients with recurrent events, those with an incomplete inhibition of platelet function, as assessed by the PFA-100, had significantly higher residual serum TxB(2) (2.4 ± 2.4 ng/mL vs 0.4 ± 0.1 ng/mL, p = 0.03), residual LTA-AA (9.2 ± 10.6% vs 2.0 ± 1.6%, p = 0.008), LTA-Coll (49.3 ± 14.6% vs 10.2 ± 8.3%, p = 0.007) and LTA-ADP (50.9 ± 16.2% vs 34.3 ± 11.0%, p = 0.04). In conclusion, laboratory tests solely exploring the AA-mediated pathway of platelet function, while being the most appropriate to detect the effect of aspirin on its pharmacologic target (platelet COX-1), may fail to reveal the functional interactions between minimal residual TxA(2) and additional stimuli or primers potentially leading to aspirin-insensitive platelet aggregation. High residual platelet response in platelet function tests only partially dependent on COX-1 may reveal a condition of persistent platelet reactivity in a subset of aspirin-treated patients characterizing them as a subgroup at higher vascular risk.

  13. Possible roles of platelet-derived microparticles in atherosclerosis.

    PubMed

    Wang, Zhi-Ting; Wang, Zi; Hu, Yan-Wei

    2016-05-01

    Platelets and platelet-derived microparticles (PMPs) play important roles in cardiovascular diseases, especially atherosclerosis. Continued research has revealed that PMPs have numerous functions in atherosclerosis, not only in thrombosis formation, but also by induction of inflammation. PMPs also induce formation of foam cells. Recent evidence strongly indicates a significant role of PMPs in atherosclerosis. Here, current research on the function of PMPs in atherosclerosis is reviewed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Intracellular activation of the fibrinolytic cascade in the Quebec Platelet Disorder.

    PubMed

    Sheth, Prameet M; Kahr, Walter H A; Haq, M Anwar; Veljkovic, Dragoslava Kika; Rivard, Georges E; Hayward, Catherine P M

    2003-08-01

    The Quebec Platelet Disorder (QPD) is an unusual bleeding disorder associated with increased platelet stores of urokinase-type plasminogen activator (u-PA) and proteolysis of platelet alpha-granule proteins. The increased u-PA and proteolyzed plasminogen in QPD platelets led us to investigate possible contributions of intracellular plasmin generation to QPD alpha-granule proteolysis. ELISA indicated there were normal amounts of plasminogen and plasmin-alpha(2)-antiplasmin (PAP) complexes in QPD plasmas. Like normal platelets, QPD platelets contained only a small proportion of the blood plasminogen, however, they contained an increased amount of PAP complexes compared to normal platelets (P < 0.005). The quantities of plasminogen stored in platelets were important to induce QPD-like proteolysis of normal alpha-granule proteins by two chain u-PA (tcu-PA) in vitro. Moreover, adding supplemental plasminogen to QPD, but not to control, platelet lysates, triggered further alpha-granule protein proteolysis to forms that comigrated with plasmin degraded proteins. These data suggest the generation of increased but limiting amounts of plasmin within platelets is involved in producing the unique phenotypic changes to alpha-granule proteins in QPD platelets. The QPD is the only known bleeding disorder associated with chronic, intracellular activation of the fibrinolytic cascade.

  15. Studies on antioxidant properties of polyphenol-rich extract from berries of Aronia melanocarpa in blood platelets.

    PubMed

    Olas, B; Wachowicz, B; Nowak, P; Kedzierska, M; Tomczak, A; Stochmal, A; Oleszek, W; Jeziorski, A; Piekarski, J

    2008-12-01

    The antioxidant properties of extract from berries of Aronia melanocarpa (chokeberry) containing: anthocyanidines, phenolic acids and quercetine glycosides on oxidative/nitrative stress induced by peroxynitrite (ONOO(-), a powerful physiological oxidant, nitrating species and inflammatory mediator) in human blood platelets were studied in vitro. The extract from A. melanocarpa (5 - 50 microg/mL) significantly inhibited platelet protein carbonylation (measured by ELISA method) and thiol oxidation estimated with 5,5'-dithio-bis(2-nitro-benzoic acid) (DTNB) induced by peroxynitrite (0.1 mM) (IC(50)--35 microg/mL for protein carbonylation, and IC(50)--33 microg/mL for protein thiol oxidation). The tested extract only slightly reduced platelet protein nitration (measured by C- ELISA method). The extract also caused a distinct reduction of platelet lipid peroxidation induced by peroxynitrite. Moreover, in our preliminary experiments we observed that the extract (50 microg/mL) reduced oxidative/nitrative stress in blood platelets from patients with breast cancer. The obtained results indicate that in vitro the extract from A. melanocarpa has the protective effects against peroxynitrite-induced oxidative/nitrative damage to the human platelet proteins and lipids. The extract from A. melanocarpa seems to be also useful as an antioxidant in patients with breast cancer.

  16. Multiple electrode aggregometry for the assessment of acquired platelet dysfunctions during extracorporeal circulation.

    PubMed

    Mutlak, Haitham; Reyher, Christian; Meybohm, Patrick; Papadopoulos, Nestoras; Hanke, Alexander Alfons; Zacharowski, Kai; Weber, Christian Friedrich

    2015-02-01

    There have been many reports on how the usage of extracorporeal circulation (ECC) is independently associated with the induction of platelet dysfunctions. The aim of the present investigation was to study the capability of the multiple electrode aggregometry (MEA) using the Multiplate (Roche AG, Grenzach, Germany) device to reflect the extent of ECC-associated platelet dysfunctions. The study population consisted of patients who were treated with either hypothermic (cardiopulmonary bypass [CPB]) or normothermic (extracorporeal membrane oxygenation) ECC. Hemostatic analyses included conventional laboratory coagulation tests and aggregometric measures following stimulation with different agonists using MEA. The area under the aggregation curve in the ADPtest (ex vivo adenosine diphosphate induced platelet aggregation) of the MEA was defined as the primary end point. The analyses were performed before the usage of ECC (baseline) and 90 minutes (T1), 120 minutes (T2), 150 minutes (T3), and 180 minutes (T4) after the usage of ECC. In the hypothermic ECC group, additional hemostatic analyses were performed after the patient's postoperative admission to the intensive care unit (T5). Periprocedural data and results of other hemostatic testing were defined as secondary end points. A total of n = 40 patients were assessed for eligibility and n = 25 patients were finally enrolled into the study (hypothermic ECC group: n = 20; normothermic ECC group: n = 5). The extent of ADP-induced platelet aggregation decreased significantly between baseline and consecutive measuring points during hypothermic ECC and remained unchanged between T4 and T5. In the normothermic ECC group, ADP-induced aggregability was significantly lower at T1 compared with baseline and remained unchanged from T1 onward. Data from the present study indicate that ex vivo ADP-induced platelet aggregation in MEA reflects the time-dependent extent of ECC-induced platelet dysfunction. Georg Thieme

  17. A Biomarker to Differentiate between Primary and Cocaine-Induced Major Depression in Cocaine Use Disorder: The Role of Platelet IRAS/Nischarin (I1-Imidazoline Receptor).

    PubMed

    Keller, Benjamin; Mestre-Pinto, Joan-Ignasi; Álvaro-Bartolomé, María; Martinez-Sanvisens, Diana; Farre, Magí; García-Fuster, M Julia; García-Sevilla, Jesús A; Torrens, Marta

    2017-01-01

    The association of cocaine use disorder (CUD) and comorbid major depressive disorder (MDD; CUD/MDD) is characterized by high prevalence and poor treatment outcomes. CUD/MDD may be primary (primary MDD) or cocaine-induced (CUD-induced MDD). Specific biomarkers are needed to improve diagnoses and therapeutic approaches in this dual pathology. Platelet biomarkers [5-HT 2A receptor and imidazoline receptor antisera selected (IRAS)/nischarin] were assessed by Western blot in subjects with CUD and primary MDD ( n  = 16) or CUD-induced MDD ( n  = 9; antidepressant free, AD-; antidepressant treated, AD+) and controls ( n  = 10) at basal level and/or after acute tryptophan depletion (ATD). Basal platelet 5-HT 2A receptor (monomer) was reduced in comorbid CUD/MDD subjects (all patients: 43%) compared to healthy controls, and this down-regulation was independent of AD medication (decreases in AD-: 47%, and in AD+: 40%). No basal differences were found for IRAS/nischarin contents in AD+ and AD- comorbid CUD/MDD subjects. The comparison of IRAS/nischarin in the different subject groups during/after ATD showed opposite modulations (i.e., increases and decreases) in response to low plasma tryptophan levels with significant differences discriminating between the subgroups of CUD with primary MDD and CUD-induced MDD. These specific alterations suggested that platelet IRAS/nischarin might be useful as a biomarker to discriminate between primary and CUD-induced MDD in this dual pathology.

  18. Platelet activation in the hypertensive disorders of pregnancy.

    PubMed

    Nadar, Sunil; Lip, Gregory Y H

    2004-05-01

    The hypertensive disorders of pregnancy, including gestational hypertension, pre-eclampsia and eclampsia, continue to be an important cause of maternal morbidity and mortality. Abnormal placentation is considered to be the main instigating factor, which then leads to widespread maternal endothelial activation and dysfunction. This endothelial perturbation leads to the release of many substances into the circulation, many of which result in platelet activation. For example, there is an imbalance between the levels of prostacyclin (a vasodilator and platelet inhibitor) and thromboxane (a platelet activator and vasoconstrictor), which then results in the maintenance of high blood pressure and complications. It is also likely that platelets play an important part in the pathogenesis of hypertension in pregnancy. The use of antiplatelet drugs has been shown to be effective in reducing the incidence of gestational hypertension in women at high risk and in preventing the complications associated with it. In addition, some antihypertensive agents are effective in reversing platelet activation in essential hypertension and, therefore, their use in pregnancy-induced hypertension may be beneficial in more ways than simply blood pressure reduction.

  19. Generation of Megakaryocytes and Platelets from Human Pluripotent Stem Cells.

    PubMed

    Pick, Marjorie

    2016-01-01

    Human pluripotent stem cells (hPSC) have the potential to produce any tissue type in the body and thus represent a source of cells for regenerative medicine. Here we have shown that human platelets can be produced from embryonic or induced pluripotent stem cells in a defined culture system. We describe a serum- and feeder-free culture system that enabled the generation of megakaryocyte (Mk) progenitors and functional platelets from hPSCs. After 13 days the differentiated population included precursor cells that formed colonies containing differentiated Mks, and after 20 days these Mks were able to fragment into platelet-like particles that were functional. This protocol represents an important step towards the generation of human platelets for therapeutic use.

  20. Insomnia, platelet serotonin and platelet monoamine oxidase in chronic alcoholism.

    PubMed

    Nenadic Sviglin, Korona; Nedic, Gordana; Nikolac, Matea; Mustapic, Maja; Muck-Seler, Dorotea; Borovecki, Fran; Pivac, Nela

    2011-08-18

    Insomnia is a common sleep disorder frequently occurring in chronic alcoholic patients. Neurobiological basis of insomnia, as well as of alcoholism, is associated with disrupted functions of the main neurotransmitter systems, including the serotonin (5-hydroxytryptamine, 5-HT) system. Blood platelets are considered a limited peripheral model for the central 5-HT neurons, since both platelets and central 5-HT synaptosomes have similar dynamics of 5-HT. Platelet 5-HT concentration and platelet monoamine oxidase type B (MAO-B) are assumed to represent biomarkers for particular symptoms and behaviors in psychiatric disorders. The hypothesis of this study was that platelet 5-HT concentration and platelet MAO-B activity will be altered in chronic alcoholic patients with insomnia compared to comparable values in patients without insomnia. The study included 498 subjects: 395 male and 103 female medication-free patients with alcohol dependence and 502 healthy control subjects: 325 men and 177 women. The effects of early, middle and late insomnia (evaluated using the Hamilton Depression Rating Scale), as well as sex, age and smoking on platelet 5-HT concentration and platelet MAO-B activity were evaluated using one-way ANOVA and multiple regression analysis by the stepwise method. Platelet 5-HT concentration, but not platelet MAO-B activity, was significantly reduced in alcoholic patients with insomnia compared to patients without insomnia. Multiple regression analysis revealed that platelet 5-HT concentration was affected by middle insomnia, smoking and sex, while platelet MAO activity was affected only by sex and age. The present and previous data suggest that platelet 5-HT concentration might be used, after controlling for sex and smoking, as a biomarker for insomnia in alcoholism, PTSD and in rotating shift workers. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. Platelet biomechanics, platelet bioenergetics, and applications to clinical practice and translational research.

    PubMed

    George, Mitchell J; Bynum, James; Nair, Prajeeda; Cap, Andrew P; Wade, Charles E; Cox, Charles S; Gill, Brijesh S

    2018-07-01

    The purpose of this review is to explore the relationship between platelet bioenergetics and biomechanics and how this relationship affects the clinical interpretation of platelet function devices. Recent experimental and technological advances highlight platelet bioenergetics and biomechanics as alternative avenues for collecting clinically relevant data. Platelet bioenergetics drive energy production for key biomechanical processes like adhesion, spreading, aggregation, and contraction. Platelet function devices like thromboelastography, thromboelastometry, and aggregometry measure these biomechanical processes. Platelet storage, stroke, sepsis, trauma, or the activity of antiplatelet drugs alters measures of platelet function. However, the specific mechanisms governing these alterations in platelet function and how they relate to platelet bioenergetics are still under investigation.

  2. [Platelet allo-antibodies identification strategies for preventing and managing platelet refractoriness].

    PubMed

    Basire, A; Picard, C

    2014-11-01

    Platelet refractoriness is a serious complication for patients receiving recurrent platelet transfusions, which can be explained by non-immune and immune causes. Human Leukocyte Antigens (HLA) allo-immunization, especially against HLA class I, is the major cause for immune platelet refractoriness. To a lesser extent, allo-antibodies against specific Human Platelet Antigen (HPA) are also involved. Pregnancy, transplantation and previous transfusions can lead to allo-immune reaction against platelet antigens. After transfusion, platelet count is decreased by accelerated platelet destruction related to antibodies fixation on incompatible platelet antigens. New laboratory tests for allo-antibodies identification were developed to improve sensibility and specificity, especially with the LUMINEX(®) technology. The good use and interpretation of these antibodies assays can improve strategies for platelet refractoriness prevention and management with a patient adapted response. Compatible platelets units can be selected according to their identity with recipient typing or immune compatibility regarding HLA or HPA antibodies or HLA epitope compatibility. Prospective studies are needed to further confirm the clinical benefit of new allo-antibodies identification methods and consensus strategies for immune platelet refractoriness management. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. The feed gas composition determines the degree of physical plasma-induced platelet activation for blood coagulation

    NASA Astrophysics Data System (ADS)

    Bekeschus, Sander; Brüggemeier, Janik; Hackbarth, Christine; Weltmann, Klaus-Dieter; von Woedtke, Thomas; Partecke, Lars-Ivo; van der Linde, Julia

    2018-03-01

    Cold atmospheric (physical) plasma has long been suggested to be a useful tool for blood coagulation. However, the clinical applicability of this approach has not been addressed sufficiently. We have previously demonstrated the ability of a clinically accepted atmospheric pressure argon plasma jet (kINPen® MED) to coagulate liver incisions in mice with similar performance compared to the gold standard electrocauterization. We could show that plasma-mediated blood coagulation was dependent on platelet activation. In the present work, we extended on this by investigating kINPen®-mediated platelet activation in anticoagulated human donor blood ex vivo. With focus on establishing high-throughput, multi-parametric platelet activation assays and performing argon feed gas parameter studies we achieved the following results: (i) plasma activated platelets in heparinized but not in EDTA-anticoagulated blood; (ii) plasma decreased total platelet counts but increased numbers of microparticles; (iii) plasma elevated the expression of several surface activation markers on platelets (CD62P, CD63, CD69, and CD41/61); (iv) in platelet activation, wet and dry argon plasma outperformed feed gas admixtures with oxygen and/or nitrogen; (v) plasma-mediated platelet activation was accompanied by platelet aggregation. Platelet aggregation is a necessary requirement for blood clot formation. These findings are important to further elucidate molecular details and clinical feasibility of cold physical plasma-mediated blood coagulation.

  4. Platelet aggregation caused by a partially purified jellyfish toxin from Carybdea rastonii.

    PubMed

    Azuma, H; Sekizaki, S; Satoh, A; Nakajima, T; Ishikawa, M

    1986-01-01

    A partially purified toxin (pCrTX) was obtained from the tentacles of the jellyfish, Carybdea rastonii. When pCrTX (3 X 10(-8) - 3 X 10(-7) g/ml) was added to citrated platelet-rich plasma, aggregation was produced in a concentration-dependent manner. Scanning electron microscopic examination revealed that both pCrTX and collagen produced aggregates of platelets possessing many pseudopods. The concentration which produced 50% aggregation for pCrTX was 1.8 X 10(-7) g/ml, as compared to 2.3 X 10(-6) g/ml for collagen. The pCrTX-induced aggregation was only slightly inhibited by indomethacin and quinacrine in concentrations sufficient to inhibit arachidonic acid- and collagen-induced aggregation. pCrTX was less active in washed platelets suspended in Ca2+ free medium, whereas the pCrTX-induced aggregation was significantly augmented in the presence of Ca2+. The augmentation of aggregation by Ca2+ was only slightly attenuated by pretreatment with 100 microM verapamil. pCrTX significantly increased the concentration of cytoplasmic free Ca2+ ([Ca2+]i) and depolarized the platelet membrane in concentrations that produced aggregation. The increase in [Ca2+]i caused by pCrTX was little affected by verapamil. The depolarization by pCrTX was unchanged in the presence or absence of Ca2+, or by sodium or potassium transport inhibitors. The movement of 22Na+ into platelets was significantly increased by pCrTX. This increase in the movement of 22N+ into platelets was unaffected by tetrodotoxin. On the other hand, pCrTX-induced aggregation, depolarization and the increase in [Ca2+]i were all significantly attenuated in low Na+ medium. These results suggest that pCrTX causes a massive depolarization by increasing cation permeability indiscriminately and this generalized depolarization permits an inward movement of calcium down an electrochemical gradient which, in turn triggers platelet aggregation.

  5. Platelet Activation in Human Immunodeficiency Virus Type-1 Patients Is Not Altered with Cocaine Abuse

    PubMed Central

    Kiebala, Michelle; Singh, Meera V.; Piepenbrink, Michael S.; Qiu, Xing; Kobie, James J.; Maggirwar, Sanjay B.

    2015-01-01

    Recent work has indicated that platelets, which are anucleate blood cells, significantly contribute to inflammatory disorders. Importantly, platelets also likely contribute to various inflammatory secondary disorders that are increasingly associated with Human Immunodeficiency Virus Type-1 (HIV) infection including neurological impairments and cardiovascular complications. Indeed, HIV infection is often associated with increased levels of platelet activators. Additionally, cocaine, a drug commonly abused by HIV-infected individuals, leads to increased platelet activation in humans. Considering that orchestrated signaling mechanisms are essential for platelet activation, and that nuclear factor-kappa B (NF-κB) inhibitors can alter platelet function, the role of NF-κB signaling in platelet activation during HIV infection warrants further investigation. Here we tested the hypothesis that inhibitory kappa B kinase complex (IKK) activation would be central for platelet activation induced by HIV and cocaine. Whole blood from HIV-positive and HIV-negative individuals, with or without cocaine abuse was used to assess platelet activation via flow cytometry whereas IKK activation was analyzed by performing immunoblotting and in vitro kinase assays. We demonstrate that increased platelet activation in HIV patients, as measured by CD62P expression, is not altered with reported cocaine use. Furthermore, cocaine and HIV do not activate platelets in whole blood when treated ex vivo. Finally, HIV-induced platelet activation does not involve the NF-κB signaling intermediate, IKKβ. Platelet activation in HIV patients is not altered with cocaine abuse. These results support the notion that non-IKK targeting approaches will be better suited for the treatment of HIV-associated inflammatory disorders. PMID:26076359

  6. Novel direct factor Xa inhibitory compounds from Tenebrio molitor with anti-platelet aggregation activity.

    PubMed

    Lee, Wonhwa; Kim, Mi-Ae; Park, InWha; Hwang, Jae Sam; Na, MinKyun; Bae, Jong-Sup

    2017-11-01

    Tenebrio molitor is an edible insect that has antimicrobial, anticancer, and antihypertensive effects. The aim of this study was to identify the unreported bioactive compounds from T. molitor larvae with inhibitory activities against factor Xa (FXa) and platelet aggregation. Isolated compounds were evaluated for their anti-FXa and anti-platelet aggregation properties by monitoring clotting time, platelet aggregation, FXa activity, and thrombus formation. A diketopiperazine (1, cyclo( L -Pro- L -Tyr)) and a phenylethanoid (2, N-acetyltyramine) were isolated and inhibited the catalytic activity of FXa in a mixed inhibition model and inhibited platelet aggregation induced by adenosine diphosphate (ADP) and U46619. They inhibited ADP- and U46619-induced phosphorylation of myristoylated alanine-rich C kinase substrate (MARCKS) and the expression of P-selectin and PAC-1 in platelets. They also improved the production of nitric oxide and inhibited the oversecretion of endothelin-1 compared to that of the ADP- or U46619-treated group. In an animal model of arterial and pulmonary thrombosis, the isolated compounds showed enhanced antithrombotic effects. They also elicited anticoagulant effects in mice. Compounds 1-2 inhibited ADP-, collagen-, or U46619-induced platelet aggregation and showed similar anti-thrombotic efficacy to rivaroxaban, a positive control. Therefore, 1-2 could serve as candidates and provide scaffolds for the development of new anti-FXa and anti-platelet drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. IMMUNOREACTIONS INVOLVING PLATELETS

    PubMed Central

    Shulman, N. Raphael

    1958-01-01

    Quantitative aspects of platelet agglutination and inhibition of clot retraction by the antibody of quinidine purpura were described. The reactions appeared to depend on formation of types of antibody-quinidine-platelet complexes which could fix complement but complement was not necessary for these reactions. Complement fixation was at least 10 times more sensitive than platelet agglutination or inhibition of clot retraction for measurement and detection of antibody activity. Although it has been considered that antibodies of drug purpura act as platelet lysins in the presence of complement and that direct lysis of platelets accounts for development of thrombocytopenia in drug purpura, the present study suggests that attachment of antibody produces a change in platelets which is manifested in vitro only by increased susceptibility to non-specific factors which can alter the stability of platelets in the absence of antibody. The attachment of antibody to platelets in vivo may only indirectly affect platelet survival. In contrast to human platelets, dog, rabbit, and guinea pig platelets, and normal or trypsin-treated human red cells did not agglutinate, fix complement, or adsorb antibody; and intact human endothelial cells did not fix complement or adsorb antibody. Rhesus monkey platelets were not agglutinated by the antibody but did adsorb antibody and fix complement although their activity in these reactions differed quantitatively from that of human platelets. Cinchonine could be substituted for quinidine in agglutination and inhibition of clot retraction reactions but quinine and cinchonidine could not. Attempts to cause passive anaphylaxis in guinea pigs with the antibody of quinidine purpura were not successful. PMID:13525580

  8. Platelet-Rich Plasma and Platelet Gel: A Review

    PubMed Central

    Everts, Peter A.M.; Knape, Johannes T.A.; Weibrich, Gernot; Schönberger, Jacques P.A.M.; Hoffmann, Johannes; Overdevest, Eddy P.; Box, Henk A.M.; van Zundert, André

    2006-01-01

    Abstract: Strategies to reduce blood loss and transfusion of allogeneic blood products during surgical procedures are important in modern times. The most important and well-known autologous techniques are preoperative autologous predonation, hemodilution, perioperative red cell salvage, postoperative wound blood autotransfusion, and pharmacologic modulation of the hemostatic process. At present, new developments in the preparation of preoperative autologous blood component therapy by whole blood platelet-rich plasma (PRP) and platelet-poor plasma (PPP) sequestration have evolved. This technique has been proven to reduce the number of allogeneic blood transfusions during open heart surgery and orthopedic operations. Moreover, platelet gel and fibrin sealant derived from PRP and PPP mixed with thrombin, respectively, can be exogenously applied to tissues to promote wound healing, bone growth, and tissue sealing. However, to our disappointment, not many well-designed scientific studies are available, and many anecdotic stories exist, whereas questions remain to be answered. We therefore decided to study perioperative blood management in more detail with emphasis on the application and production of autologous platelet gel and the use of fibrin sealant. This review addresses a large variety of aspects relevant to platelets, platelet-rich plasma, and the application of platelet gel. In addition, an overview of recent animal and human studies is presented. PMID:16921694

  9. Prolonging shelf-life of platelets by low-level laser

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Lu, Min; Wu, Mei X.

    2018-02-01

    It remains significant challenges to extend a shelf life of platelets beyond the conventional five days. Unlike red blood cells that can be stored at 4°C for a few weeks, platelets are stored at room temperature only, which results in a gradual loss of their quality owing to a switch of energy metabolism from aerobic oxidative phosphorylation toward anaerobic glycolysis. Given the well-documented beneficial effect of near infrared low-level laser (LLL) on mitochondrial functions in a variety of cells under stress, we explored a potential for LLL to extend the shelf life of platelets beyond the five days. We found that exposure of a platelet-containing storage bag to LLL at 830nm at 0.5J/cm2 prior to storage could significantly retain a pH value and viability of the platelets stored within the bag under a standard condition for eight days with improved quality compared to those platelets stored similarly for five days in controls. LLL inhibited reactive oxygen species (ROS) and lactate production, but sustained ATP production, mitochondrial membrane potential, and morphology in the stored platelets. While preserving their metabolic activity, LLL didn't activate platelets but increased their aggregation capacity and in vivo survival as suggested by similar levels of surface CD62p expression and enhanced agonist-induced aggregation and recovery following infusion in the presence compared to the absence of LLL treatment. This simple, addition-free, cost-effective, noninvasive laser illumination can be readily incorporated into the current platelet storage system to prolong shelf life of platelets with improved quality of stored platelets.

  10. Acacia nilotica leave extract and glyburide: comparison of fasting blood glucose, serum insulin, beta-thromboglubulin levels and platelet aggregation in streptozotocin induced diabetic rats.

    PubMed

    Asad, Munnaza; Munir, Tahir Ahmad; Afzal, Nasir

    2011-03-01

    To evaluate the hypoglycaemic and anti-platelet aggregation effect of aqueous methanol extract of Acacia Nilotica (AN) leaves compared with glyburide on streptozotocin induced diabetic rats. Diabetes mellitus was induced in 90 out of 120 albino rats by administering 50 mg/kg body weight (b.w) streptozotocin and was confirmed by measuring fasting blood glucose level >200 mg/dL on 4th post-induction day. The rats were equally divided into 4 groups, A (normal control), B (diabetic control), C (diabetic rats treated with AN extract) and group D (diabetic rats treated with glyburide). The rats of group C and D were given 300 mg/kg b.w AN extract and 900 microgm/kg b.w glyburide respectively for 3 weeks. Blood glucose was measured by glucometer, platelet aggregation by Dia-Med method and insulin and beta-thromboglobulin by ELISA technique. A significant increase (p<0.05) in fasting blood glucose, beta-thromboglobulin and platelet aggregation and a significant decrease (p<0.05) in insulin levels was observed in streptozotocin induced diabetic rats than the normal controls. The rats treated with AN extract and glyburide showed a significant decrease (p<0.05) in fasting blood glucose and increase (p<0.05) in insulin levels than the diabetic control rats. However, the levels in both the treatment groups remained significantly different than the normal controls. A significant decrease (p<0.05) in beta-thromboglobulin levels was seen in diabetic rats treated with glyburide than the diabetic control rats and diabetic rats treated with AN extract. AN leaves extract result into hypoglycaemic and anti-platelet aggregation activity in diabetic rats as that of glyburide.

  11. Thioredoxin Inhibitors Attenuate Platelet Function and Thrombus Formation

    PubMed Central

    Metcalfe, Clive; Ramasubramoni, Anjana; Pula, Giordano; Harper, Matthew T.; Mundell, Stuart J.; Coxon, Carmen H.

    2016-01-01

    Thioredoxin (Trx) is an oxidoreductase with important physiological function. Imbalances in the NADPH/thioredoxin reductase/thioredoxin system are associated with a number of pathologies, particularly cancer, and a number of clinical trials for thioredoxin and thioredoxin reductase inhibitors have been carried out or are underway. Due to the emerging role and importance of oxidoreductases for haemostasis and the current interest in developing inhibitors for clinical use, we thought it pertinent to assess whether inhibition of the NADPH/thioredoxin reductase/thioredoxin system affects platelet function and thrombosis. We used small molecule inhibitors of Trx (PMX 464 and PX-12) to determine whether Trx activity influences platelet function, as well as an unbiased proteomics approach to identify potential Trx substrates on the surface of platelets that might contribute to platelet reactivity and function. Using LC-MS/MS we found that PMX 464 and PX-12 affected the oxidation state of thiols in a number of cell surface proteins. Key surface receptors for platelet adhesion and activation were affected, including the collagen receptor GPVI and the von Willebrand factor receptor, GPIb. To experimentally validate these findings we assessed platelet function in the presence of PMX 464, PX-12, and rutin (a selective inhibitor of the related protein disulphide isomerase). In agreement with the proteomics data, small molecule inhibitors of thioredoxin selectively inhibited GPVI-mediated platelet activation, and attenuated ristocetin-induced GPIb-vWF-mediated platelet agglutination, thus validating the findings of the proteomics study. These data reveal a novel role for thioredoxin in regulating platelet reactivity via proteins required for early platelet responses at sites of vessel injury (GPVI and GPIb). This work also highlights a potential opportunity for repurposing of PMX 464 and PX-12 as antiplatelet agents. PMID:27716777

  12. Thioredoxin Inhibitors Attenuate Platelet Function and Thrombus Formation.

    PubMed

    Metcalfe, Clive; Ramasubramoni, Anjana; Pula, Giordano; Harper, Matthew T; Mundell, Stuart J; Coxon, Carmen H

    2016-01-01

    Thioredoxin (Trx) is an oxidoreductase with important physiological function. Imbalances in the NADPH/thioredoxin reductase/thioredoxin system are associated with a number of pathologies, particularly cancer, and a number of clinical trials for thioredoxin and thioredoxin reductase inhibitors have been carried out or are underway. Due to the emerging role and importance of oxidoreductases for haemostasis and the current interest in developing inhibitors for clinical use, we thought it pertinent to assess whether inhibition of the NADPH/thioredoxin reductase/thioredoxin system affects platelet function and thrombosis. We used small molecule inhibitors of Trx (PMX 464 and PX-12) to determine whether Trx activity influences platelet function, as well as an unbiased proteomics approach to identify potential Trx substrates on the surface of platelets that might contribute to platelet reactivity and function. Using LC-MS/MS we found that PMX 464 and PX-12 affected the oxidation state of thiols in a number of cell surface proteins. Key surface receptors for platelet adhesion and activation were affected, including the collagen receptor GPVI and the von Willebrand factor receptor, GPIb. To experimentally validate these findings we assessed platelet function in the presence of PMX 464, PX-12, and rutin (a selective inhibitor of the related protein disulphide isomerase). In agreement with the proteomics data, small molecule inhibitors of thioredoxin selectively inhibited GPVI-mediated platelet activation, and attenuated ristocetin-induced GPIb-vWF-mediated platelet agglutination, thus validating the findings of the proteomics study. These data reveal a novel role for thioredoxin in regulating platelet reactivity via proteins required for early platelet responses at sites of vessel injury (GPVI and GPIb). This work also highlights a potential opportunity for repurposing of PMX 464 and PX-12 as antiplatelet agents.

  13. Mechanisms of the priming effect of low doses of lipopoly-saccharides on leukocyte-dependent platelet aggregation in whole blood.

    PubMed

    Montrucchio, Giuseppe; Bosco, Ornella; Del Sorbo, Lorenzo; Fascio Pecetto, Paolo; Lupia, Enrico; Goffi, Alberto; Omedè, Paola; Emanuelli, Giorgio; Camussi, Giovanni

    2003-11-01

    Several studies focused on the ability of bacterial lipopolysac-charides (LPS) in triggering platelet and/or leukocyte activation. The aim of this study was to investigate the molecular mechanisms involved in the aggregation of platelets and in their interaction with leukocytes in whole blood after stimulation with low doses of LPS. LPS did not directly induce platelet aggregation in whole blood, but they primed the aggregation of platelets induced by epinephrine, adenosine diphosphate and arachidonic acid. As shown by cytofluorimetry, platelets neither bind FITC-LPS, nor express the LPS-receptors CD14 and toll-like receptor 4 (TLR4). On the contrary, LPS primed monocytes and to a lesser extent polymorphonuclear neutrophils to adhere to platelets. Both platelet-leukocyte interaction and platelet aggregation in whole blood were inhibited by blockade of CD14 and TLR4. Moreover, the interaction between platelets and leukocytes was inhibited by P-selectin, and by blockade of PAF and reactive oxygen species, suggesting a role of P-selectin and of leukocyte-derived mediators. In conclusion, these results elucidate the mechanisms leading to platelet activation and interaction with leukocytes triggered by LPS. They suggest that the activation of platelets by LPS is mainly dependent on leukocytes and especially monocytes as a result of CD14 and TLR4 engagement. Moreover, we found that leukocyte-platelet interaction was triggered by the synthesis of PAF and the generation of oxygen radicals that induced upregulation of surface expression of P-selectin.

  14. Interaction between human blood platelets, viruses and antibodies. IV. Post-Rubella thrombocytopenic purpura and platelet aggregation by Rubella antigen–antibody interaction

    PubMed Central

    Myllylä, G.; Vaheri, A.; Vesikari, T.; Penttinen, K.

    1969-01-01

    A new method of measuring antibodies by observing sedimentation patterns of platelets has been compared with the complement fixation and haemagglutination inhibition techniques in ten cases of Rubella and seven cases of post-Rubella thrombocytopenic purpura. The method is based on the aggregation of platelets by the joint action of antibody and small size antigens. The platelet aggregation method gave exceptionally high titres in cases of post-Rubella thrombocytopenic purpura. Other serologic methods did not give these high titres. The hypothesis that small size virus antigen and antibody against it are both needed to induce thrombocytopenia during the recovery period is discussed. Large amounts of both may result in clinical symptoms. PMID:5814719

  15. Demonstration of a specific C3a receptor on guinea pig platelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuoka, Y.; Hugli, T.E.

    1988-05-15

    Guinea pig platelets reportedly contain receptors specific for the anaphylatoxin C3a based on both ligand-binding studies and functional responses. A portion of the human 125I-C3a that binds to guinea pig platelets is competitively displaced by excess unlabeled C3a; however, the majority of ligand uptake was nonspecific. Uptake of 125I-C3a by guinea pig platelets is maximal in 1 min, and stimulation of guinea pig platelets by thrombin, ADP, or the Ca2+ ionophore A23187 showed little influence on binding of the ligand. Scatchard analysis indicated that approximately 1200 binding sites for C3a exist per cell with an estimated Kd of 8 xmore » 10(-10) M. Human C3a des Arg also binds to guinea pig platelets, but Scatchard analysis indicated that no specific binding occurred. Because the ligand-binding studies were complicated by high levels of nonspecific uptake, we attempted to chemically cross-link the C3a molecule to a specific component on the platelet surface. Cross-linkage of 125I-C3a to guinea pig platelets with bis(sulfosuccinimidyl)suberate revealed radioactive complexes at 105,000 and 115,000 m.w. on SDS-PAGE gels by autoradiographic analysis. In the presence of excess unlabeled C3a, complex formation was inhibited. No cross-linkage could be demonstrated between the inactive 125I-C3a des Arg and the putative C3a-R on guinea pig platelets. Human C3a, but not C3a des Arg induces serotonin release and aggregation of the guinea pig platelets. Human C3a was unable to induce either serotonin release or promote aggregation of human platelets. Uptake of human 125I-C3a by human platelets was not saturable, and Scatchard analysis was inconclusive. Attempts to cross-link 125I-C3a to components on the surface of human platelets also failed to reveal a ligand-receptor complex. Therefore, we conclude that guinea pig platelets have specific surface receptors to C3a and that human platelets appear devoid of receptors to the anaphylatoxin.« less

  16. Functional genomics in zebrafish permits rapid characterization of novel platelet membrane proteins

    PubMed Central

    O'Connor, Marie N.; Salles, Isabelle I.; Cvejic, Ana; Watkins, Nicholas A.; Walker, Adam; Garner, Stephen F.; Jones, Chris I.; Macaulay, Iain C.; Steward, Michael; Zwaginga, Jaap-Jan; Bray, Sarah L.; Dudbridge, Frank; de Bono, Bernard; Goodall, Alison H.; Stemple, Derek L.; Ouwehand, Willem H.

    2009-01-01

    In this study, we demonstrate the suitability of the vertebrate Danio rerio (zebrafish) for functional screening of novel platelet genes in vivo by reverse genetics. Comparative transcript analysis of platelets and their precursor cell, the megakaryocyte, together with nucleated blood cell elements, endothelial cells, and erythroblasts, identified novel platelet membrane proteins with hitherto unknown roles in thrombus formation. We determined the phenotype induced by antisense morpholino oligonucleotide (MO)–based knockdown of 5 of these genes in a laser-induced arterial thrombosis model. To validate the model, the genes for platelet glycoprotein (GP) IIb and the coagulation protein factor VIII were targeted. MO-injected fish showed normal thrombus initiation but severely impaired thrombus growth, consistent with the mouse knockout phenotypes, and concomitant knockdown of both resulted in spontaneous bleeding. Knockdown of 4 of the 5 novel platelet proteins altered arterial thrombosis, as demonstrated by modified kinetics of thrombus initiation and/or development. We identified a putative role for BAMBI and LRRC32 in promotion and DCBLD2 and ESAM in inhibition of thrombus formation. We conclude that phenotypic analysis of MO-injected zebrafish is a fast and powerful method for initial screening of novel platelet proteins for function in thrombosis. PMID:19109564

  17. Platelet activating factor induces transient blood-brain barrier opening to facilitate edaravone penetration into the brain.

    PubMed

    Fang, Weirong; Zhang, Rui; Sha, Lan; Lv, Peng; Shang, Erxin; Han, Dan; Wei, Jie; Geng, Xiaohan; Yang, Qichuan; Li, Yunman

    2014-03-01

    The blood-brain barrier (BBB) greatly limits the efficacy of many neuroprotective drugs' delivery to the brain, so improving drug penetration through the BBB has been an important focus of research. Here we report that platelet activating factor (PAF) transiently opened BBB and facilitated neuroprotectant edaravone penetration into the brain. Intravenous infusion with PAF induced a transient BBB opening in rats, reflected by increased Evans blue leakage and mild edema formation, which ceased within 6 h. Furthermore, rat regional cerebral blood flow (rCBF) declined acutely during PAF infusion, but recovered slowly. More importantly, this transient BBB opening significantly increased the penetration of edaravone into the brain, evidenced by increased edaravone concentrations in tissue interstitial fluid collected by microdialysis and analyzed by Ultra-performance liquid chromatograph combined with a hybrid quadrupole time-of-flight mass spectrometer (UPLC-MS/MS). Similarly, incubation of rat brain microvessel endothelial cells monolayer with 1 μM PAF for 1 h significantly increased monolayer permeability to (125)I-albumin, which recovered 1 h after PAF elimination. However, PAF incubation with rat brain microvessel endothelial cells for 1 h did not cause detectable cytotoxicity, and did not regulate intercellular adhesion molecule-1, matrix-metalloproteinase-9 and P-glycoprotein expression. In conclusion, PAF could induce transient and reversible BBB opening through abrupt rCBF decline, which significantly improved edaravone penetration into the brain. Platelet activating factor (PAF) transiently induces BBB dysfunction and increases BBB permeability, which may be due to vessel contraction and a temporary decline of regional cerebral blood flow (rCBF) triggered by PAF. More importantly, the PAF induced transient BBB opening facilitates neuroprotectant edaravone penetration into brain. The results of this study may provide a new approach to improve drug delivery into

  18. Efficient production of platelets from mouse embryonic stem cells by enforced expression of Gata2 in late hemogenic endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawaguchi, Manami; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510; Kitajima, Kenji

    Platelets are essential for blood circulation and coagulation. Previous study indicated that overexpression of Gata2 in differentiated mouse embryonic stem cells (ESCs) resulted in robust induction of megakaryocytes (Mks). To evaluate platelet production capacity of the Gata2-induced ESC-derived Mks, we generated iGata2-ESC line carrying the doxycycline-inducible Gata2 expression cassette. When doxycycline was added to day 5 hemogenic endothelial cells in the in vitro differentiation culture of iGata2-ESCs, c-Kit{sup −}Tie2{sup −}CD41{sup +} Mks were predominantly generated. These iGata2-ESC-derived Mks efficiently produced CD41{sup +}CD42b{sup +}CD61{sup +} platelets and adhered to fibrinogen-coated glass coverslips in response to thrombin stimulation. Transmission electron microscopy analysis demonstratedmore » that the iGata2-ESC-derived platelets were discoid-shaped with α-granules and an open canalicular system, but were larger than peripheral blood platelets in size. These results demonstrated that an enforced expression of Gata2 in late HECs of differentiated ESCs efficiently promotes megakaryopoiesis followed by platelet production. This study provides valuable information for ex vivo platelet production from human pluripotent stem cells in future. -- Highlights: •Megakaryocytes are efficiently induced by Gata2 from ESC-derived day 5 HECs. •Gata2-induced ESC-derived megakaryocytes are c-Kit{sup −}Tie2{sup −}CD41{sup +}. •Gata2-induced ESC-derived megakaryocytes produce larger discoid-shaped platelets. •Gata2-induced ESC-derived platelets bind fibrinogen upon thrombin stimulation.« less

  19. The effect of anthocyanin supplementation in modulating platelet function in sedentary population: a randomised, double-blind, placebo-controlled, cross-over trial.

    PubMed

    Thompson, Kiara; Hosking, Holly; Pederick, Wayne; Singh, Indu; Santhakumar, Abishek B

    2017-09-01

    The anti-thrombotic properties of anthocyanin (ACN) supplementation was evaluated in this randomised, double-blind, placebo (PBO) controlled, cross-over design, dietary intervention trial in sedentary population. In all, sixteen participants (three males and thirteen females) consumed ACN (320 mg/d) or PBO capsules for 28 d followed by a 2-week wash-out period. Biomarkers of thrombogenesis and platelet activation induced by ADP; platelet aggregation induced by ADP, collagen and arachidonic acid; biochemical, lipid, inflammatory and coagulation profile were evaluated before and after supplementation. ACN supplementation reduced monocyte-platelet aggregate formation by 39 %; inhibited platelet endothelial cell adhesion molecule-1 expression by 14 %; reduced platelet activation-dependant conformational change and degranulation by reducing procaspase activating compound-1 (PAC-1) (↓10 %) and P-selectin expression (↓14 %), respectively; and reduced ADP-induced whole blood platelet aggregation by 29 %. Arachidonic acid and collagen-induced platelet aggregation; biochemical, lipid, inflammatory and coagulation parameters did not change post-ACN supplementation. PBO treatment did not have an effect on the parameters tested. The findings suggest that dietary ACN supplementation has the potential to alleviate biomarkers of thrombogenesis, platelet hyperactivation and hyper-aggregation in sedentary population.

  20. The Antimicrobial Peptide Human Beta-Defensin-3 Is Induced by Platelet-Released Growth Factors in Primary Keratinocytes

    PubMed Central

    Lammel, Justus; Tohidnezhad, Mersedeh; Lippross, Sebastian; Behrendt, Peter; Klüter, Tim; Pufe, Thomas; Cremer, Jochen; Jahr, Holger; Rademacher, Franziska; Gläser, Regine; Harder, Jürgen

    2017-01-01

    Platelet-released growth factors (PRGF) and its related clinically used formulations (e.g., Vivostat Platelet-Rich Fibrin (PRF®)) contain a variety of chemokines, cytokines, and growth factors and are therefore used to support healing of chronic, hard-to-heal, or infected wounds. Human beta-defensin-3 (hBD-3) is an antimicrobial peptide inducibly expressed in human keratinocytes especially upon wounding. The potent antimicrobial activity of hBD-3 together with its wound closure-promoting activities suggests that hBD-3 may play a crucial role in wound healing. Therefore, we analyzed the influence of PRGF on hBD-3 expression in human primary keratinocytes in vitro. In addition, we investigated the influence of Vivostat PRF on hBD-3 expression in artificially generated human skin wounds in vivo. PRGF treatment of primary keratinocytes induced a significant, concentration- and time-dependent increase in hBD-3 gene expression which was partially mediated by the epidermal growth factor receptor (EGFR). In line with these cell culture data, in vivo experiments revealed an enhanced hBD-3 expression in experimentally produced human wounds after the treatment with Vivostat PRF. Thus, the induction of hBD-3 may contribute to the beneficial effects of thrombocyte concentrate lysates in the treatment of chronic or infected wounds. PMID:28811680

  1. Role of platelet activating factor in pathogenesis of acute pancreatitis in rats.

    PubMed Central

    Konturek, S J; Dembinski, A; Konturek, P J; Warzecha, Z; Jaworek, J; Gustaw, P; Tomaszewska, R; Stachura, J

    1992-01-01

    The importance of platelet activating factor in acute pancreatitis was examined by determining the tissue content of endogenous platelet activating factor and the protective effects of TCV-309, a highly selective platelet activating factor blocker, against caerulein induced pancreatitis in rats. Infusion of caerulein (10 micrograms/kg/h) for five hours resulted in about 70% increase in pancreatic weight, 22% rise in protein content, 50% reduction in tissue blood flow, nine fold increase in tissue level of platelet activating factor and 165% rise in plasma amylase as well as histological evidence of acute pancreatitis. Such infusion of caerulein in chronic pancreatic fistula rats caused a marked increase in protein output from basal secretion of 10 mg/30 minutes to 40 mg/30 minutes in the first hour of infusion followed by a decline in protein output to 15-20 mg/30 minutes in the following hours of the experiment. Exogenous platelet activating factor (50 micrograms/kg) injected ip produced similar alterations in weight, protein content, blood flow, and histology of the pancreas but the increment in serum amylase was significantly smaller and pancreatic secretion was reduced below the basal level. TCV-309 (50 micrograms/kg) given ip before caerulein or platelet activating factor administration significantly reduced the biochemical and morphological alterations caused by caerulein and abolished those induced by exogenous platelet activating factor. These results indicate that platelet activating factor plays an important role in the pathogenesis of acute pancreatitis probably by reducing the blood flow and increasing vascular permeability in the pancreas. PMID:1385272

  2. The influence of Rubus idaeus and Rubus caesius leaf extracts on platelet aggregation in whole blood. Cross-talk of platelets and neutrophils.

    PubMed

    Dudzinska, Dominika; Bednarska, Katarzyna; Boncler, Magdalena; Luzak, Boguslawa; Watala, Cezary

    2016-07-01

    Recently, polyphenols have gained attention as potential natural cardioprotective therapeutics, due to their antiplatelet, anti-inflammatory and anticoagulant activity. Species belonging to the genus Rubus sp. have been reported to be a source of polyphenolic compounds with antioxidative proprieties and beneficial biological activities. This study investigates the effects of leaf extracts obtained from red raspberry (Rubus idaeus L.) and European dewberry (Rubus caesius L.) on the reactivity of blood platelets. In ADP-stimulated blood, raspberry and dewberry extracts (15 µg/ml) markedly decreased platelet surface membrane expression of activated GPIIbIIIa receptor by 16% and 21%, respectively (P < 0.01) and significantly inhibited platelet aggregation (by 31-41% for raspberry and by 38-55% for dewberry, P < 0.01). In platelet-rich plasma (PRP), the extracts had no effect on ADP-induced platelet aggregation. The effectiveness of the extracts in whole blood and the lack of their activity in PRP indicate that leukocytes are likely to participate in the platelet response to the extracts. Our experiments show that the extracts significantly reduced the amount of free radicals released by activated neutrophils in whole blood (P < 0.001), as well as in suspensions of isolated neutrophils (P < 0.05). Moreover, the reduced number of neutrophils leads to the decreased efficiency of the extracts in the inhibition of platelet aggregation. In summary, our findings show that the raspberry and dewberry leaf extracts considerably modulated blood platelet reactivity in whole blood: they influenced blood platelet aggregation, possibly via the modulation of the redox status dependent on the oxidative activity of neutrophils.

  3. [Platelet function in acute myeloid leukemia. II. Aggregation of isolated platelets].

    PubMed

    Zawilska, K; Komarnicki, M; Mańka, B

    1978-01-01

    In 22 patients with acute myeloid leukaemia (17 cases of myeloblastic leukaemia, 4 cases of myelomonocytic leukaemia and 1 case of undifferentiated-cell leukaemia) platelets were isolated from the plasma by the method of Nicholls and Hampton as modified by Levy-Toledano by centrifugation in albumin gradient. The aim of platelet isolation was their "concentration" in cases of thrombocytopenia to values making possible aggregation tests, and platelet separation from the influence of plasma factors. Then aggregation of isolated platelets caused by ADP was studied. In 16 out of 22 patients a fall of aggregation was observed, with the mean values of aggregation rate and intensity were significantly lower. Parallelly done determinations of aggregating activity released from the platelets by thrombin showed lower values as compared with platelets from healthy subjects. In might be thought, in this connection, that the demonstrated reduction of isolated platelets is associated with a diminution of the nucleotide pool or disturbances of the platelet release reaction. The disturbances of the platelet release reaction. The disturbances of aggregation of isolated platelets and reduction of the aggregating activity were most pronounced in acute myelomonocytic leukaemia.

  4. Mechanism of smectic arrangement of montmorillonite and bentonite clay platelets incorporated in gels of poly(acrylamide) induced by the interaction with cationic surfactants.

    PubMed

    Starodoubtsev, S G; Lavrentyeva, E K; Khokhlov, A R; Allegra, G; Famulari, A; Meille, S V

    2006-01-03

    Structure transitions, induced by the interaction with the cationic surfactant cetylpyridinium chloride in nanocomposite gels of poly(acrylamide) with incorporated suspensions of the two closely related layered clays bentonite and montmorillonite, were studied. Unexpectedly, different behaviors were revealed. X-ray diffraction measurements confirm that, due to the interaction with the surfactant, initially disordered bentonite platelets arrange into highly ordered structures incorporating alternating clay platelets and surfactant bilayers. The formation of these smectic structures also in the cross-linked polymer gels, upon addition of the surfactant, is explained by the existence of preformed, poorly ordered aggregates of the clay platelets in the suspensions before the gel formation. In the case of montmorillonite, smectic ordering of the disordered platelets in the presence of the surfactant is observed only after drying the suspensions and the clay-gel composites. Rheology studies of aqueous suspensions of the two clays, in the absence of both surfactant and gel, evidence a much higher viscosity for bentonite than for montmorillonite, suggesting smaller clay-aggregate size in the latter case. Qualitatively consistent results are obtained from optical micrographs.

  5. Preanalytical requirements for flow cytometric evaluation of platelet activation: choice of anticoagulant.

    PubMed

    Mody, M; Lazarus, A H; Semple, J W; Freedman, J

    1999-06-01

    Accurate assessment of in vivo or in vitro platelet activation requires optimal preanalytical conditions to prevent artefactual in vitro activation of the platelets. The choice of anticoagulant is one of the critical preanalytical conditions as anticoagulants exert different effects on the activation of platelets ex vivo. We tested the effectiveness of Diatube-H (also known as CTAD; sodium citrate, theophylline, adenosine and dipyridamole) and citrate vacutainer tubes in preventing artefactual activation of platelets and preserving functional reserve. Platelet surface expression of the CD62P (reflecting alpha granule release), CD63 (reflecting lysosomal release) and modulation of normal platelet membrane glycoproteins CD41a and CD42b, were measured in whole blood and in isolated platelets immediately after collection and at 6, 24 and 48 h after venipuncture. Samples taken into Diatube-H showed less spontaneous platelet activation than did those taken into citrate. To measure in vitro platelet functional reserve, thrombin was added as agonist to blood stored for varying periods up to 48 h. Although Diatube-H suppressed in vitro platelet activation for up to 4 h, in samples kept for 6-24 h before thrombin addition, the inhibitory effect was lost and platelets responded fully to agonist activation. Hence, Diatube-H preserved platelets and allowed for measurement of in vivo platelet activation as well as thrombin-induced in vitro platelet activation after 6-24 h, in both whole blood and isolated platelets.

  6. Bivalirudin and clopidogrel with and without eptifibatide for elective stenting: effects on platelet function, thrombelastographic indexes, and their relation to periprocedural infarction results of the CLEAR PLATELETS-2 (Clopidogrel with Eptifibatide to Arrest the Reactivity of Platelets) study.

    PubMed

    Gurbel, Paul A; Bliden, Kevin P; Saucedo, Jorge F; Suarez, Thomas A; DiChiara, Joseph; Antonino, Mark J; Mahla, Elisabeth; Singla, Anand; Herzog, William R; Bassi, Ashwani K; Hennebry, Thomas A; Gesheff, Tania B; Tantry, Udaya S

    2009-02-24

    The primary objective of this study was to compare the effect of therapy with bivalirudin alone versus bivalirudin plus eptifibatide on platelet reactivity measured by turbidometric aggregometry and thrombin-induced platelet-fibrin clot strength (TIP-FCS) measured by thrombelastography in percutaneous coronary intervention (PCI) patients. The secondary aim was to study the relation of platelet aggregation and TIP-FCS to the occurrence of periprocedural infarction. Bivalirudin is commonly administered alone to clopidogrel naïve (CN) patients and to patients on maintenance clopidogrel therapy (MT) undergoing elective stenting. The effect of adding eptifibatide to bivalirudin on platelet reactivity (PR) and TIP-FCS, and their relation to periprocedural infarction in these patients are unknown. Patients (n = 200) stratified to clopidogrel treatment status were randomly treated with bivalirudin (n = 102) or bivalirudin plus eptifibatide (n = 98). One hundred twenty-eight CN patients were loaded with 600 mg clopidogrel immediately after stenting, and 72 MT patients were not loaded. The PR, TIP-FCS, and myonecrosis markers were serially determined. In CN and MT patients, bivalirudin plus eptifibatide was associated with markedly lower PR at all times (5- and 20-microM adenosine diphosphate-induced, and 15- and 25-microM thrombin receptor activator peptide-induced aggregation; p < 0.001 for all) and reduced mean TIP-FCS (p < 0.05). Patients who had a periprocedural infarction had higher mean 18-h PR (p < 0.0001) and TIP-FCS (p = 0.002). For elective stenting, the addition of eptifibatide to bivalirudin lowered PR to multiple agonists and the tensile strength of the TIP-FCS, 2 measurements strongly associated with periprocedural myonecrosis. Future studies of PR and TIP-FCS for elective stenting may facilitate personalized antiplatelet therapy and enhance the selection of patients for glycoprotein IIb/IIIa blockade. (Peri-Procedural Myocardial Infarction, Platelet

  7. Lipopolysaccharide treatment reduces rat platelet aggregation independent of intracellular reactive-oxygen species generation.

    PubMed

    Lopes-Pires, M Elisa; Casarin, André L; Pereira-Cunha, Fernanda G; Lorand-Metze, Irene; Antunes, Edson; Marcondes, Sisi

    2012-01-01

    High production of reactive-oxygen species (ROS) by blood cells is involved in damage of the vascular endothelium and multiple organ dysfunction in sepsis. However, little is known about the intraplatelet ROS production in sepsis and its consequences on platelet reactivity. In this study, we evaluated whether the treatment of rats with lipopolysaccharide (LPS) affects platelet aggregation through intraplatelet ROS generation. Rats were injected with LPS (1 mg/kg, i.p.), and at 2 to 72 h thereafter, adenosine diphosphate (ADP) (3-10 µM) induced platelet aggregation was evaluated. Production of ROS in platelets was measured by flow cytometry using 2',7'-dichlorofluorescein diacetate (DCFH-DA). Treatment of rats with LPS time-dependently inhibited ADP-induced platelet aggregation within 72 h. The inhibitory effect of LPS on platelet aggregation was further increased when the platelets were incubated with polyethylene glycol-superoxide dismutase (PEG-SOD; 30 U/mL), polyethylene glycol-catalase (PEG-CAT; 1000 U/mL) or the NADPH oxidase inhibitor diphenyleneiodonium (DPI; 10 µM). The ROS production in non-stimulated platelets did not differ between control and LPS-treated rats. However, in ADP-activated platelets, generation of ROS was increased by 3.0- and 7.0-fold, as evaluated at 8 and 48 h after LPS injection, respectively. This increased ROS production was significantly reduced when platelets were incubated in vitro with DPI, PEG-SOD or PEG-CAT. In contrast, treatment of rats with N-acetylcysteine (150 mg/kg, i.p.) significantly reduced the inhibitory effect of LPS on platelet aggregation, and prevented the increased ROS production by in vivo LPS. Our results indicate that the increased intraplatelet ROS production does not contribute to the inhibitory effect of LPS on platelet aggregation; however, the maintenance of redox balance in LPS-treated rats is fundamental to restore the normal platelet response in these animals.

  8. Disorders of Platelet Function

    PubMed Central

    Huebsch, Lothar B.; Harker, Laurence A.

    1981-01-01

    Platelets play an important role in hemostasis, and alterations in platelet function may be the cause of abnormal bleeding in a wide variety of congenital and acquired clinical disorders. Platelet dysfunction may be classified as disorders of (1) substrate connective tissue, (2) adhesion, (3) aggregation and (4) platelet-release reaction. The congenital defects of platelet function, although uncommon, have provided important insights into platelet physiology and pathophysiology and, as a group, are less common, better characterized and more readily classified than the acquired defects. The severity of bleeding resulting from platelet dysfunction varies greatly and is substantially increased when another defect of hemostasis coexists. A disorder of platelet function is suspected on the basis of the history and physical examination and is confirmed by the finding of a prolonged bleeding time in the presence of an adequate number of platelets. A specific diagnosis often requires measurements of the factor VIII and von Willebrand factor complex and other tests of platelet function. Some of these tests may be available only in specialized laboratories. Therapy for bleeding episodes resulting from platelet dysfunction is directed at (1) removing or treating the underlying cause of the platelet disorder; (2) replacing the missing plasma cofactors needed to support normal platelet function (such as by the transfusion of cryoprecipitate in patients with von Willebrand disease, and (3) transfusing functional platelets in the form of platelet concentrates in patients with disorders of intrinsic platelet dysfunction. ImagesFigure 1.Figure 2.Figure 3. PMID:7013276

  9. Amarogentin, a Secoiridoid Glycoside, Abrogates Platelet Activation through PLCγ2-PKC and MAPK Pathways

    PubMed Central

    Yen, Ting-Lin; Lu, Wan-Jung; Lien, Li-Ming; Thomas, Philip Aloysius; Lee, Tzu-Yin; Chiu, Hou-Chang; Sheu, Joen-Rong

    2014-01-01

    Amarogentin, an active principle of Gentiana lutea, possess antitumorigenic, antidiabetic, and antioxidative properties. Activation of platelets is associated with intravascular thrombosis and cardiovascular diseases. The present study examined the effects of amarogentin on platelet activation. Amarogentin treatment (15~60 μM) inhibited platelet aggregation induced by collagen, but not thrombin, arachidonic acid, and U46619. Amarogentin inhibited collagen-induced phosphorylation of phospholipase C (PLC)γ2, protein kinase C (PKC), and mitogen-activated protein kinases (MAPKs). It also inhibits in vivo thrombus formation in mice. In addition, neither the guanylate cyclase inhibitor ODQ nor the adenylate cyclase inhibitor SQ22536 affected the amarogentin-mediated inhibition of platelet aggregation, which suggests that amarogentin does not regulate the levels of cyclic AMP and cyclic GMP. In conclusion, amarogentin prevents platelet activation through the inhibition of PLCγ2-PKC cascade and MAPK pathway. Our findings suggest that amarogentin may offer therapeutic potential for preventing or treating thromboembolic disorders. PMID:24868545

  10. Blockade of GpIIb/IIIa inhibits the release of vascular endothelial growth factor (VEGF) from tumor cell-activated platelets and experimental metastasis.

    PubMed

    Amirkhosravi, A; Amaya, M; Siddiqui, F; Biggerstaff, J P; Meyer, T V; Francis, J L

    1999-01-01

    Evidence that platelets play a role in tumor metastasis includes the observation of circulating tumor cell-platelet aggregates and the anti-metastatic effect of thrombocytopenia and anti-platelet drugs. Platelets have recently been shown to contain vascular endothelial growth factor (VEGF) which is released during clotting. We therefore studied the effects of (1) tumor cell-platelet adherence and tumor cell TF activity on platelet VEGF release; and (2) the effects of GpIIb/IIIa blockade on tumor cell-induced platelet VEGF release, tumor cell-induced thrombocytopenia and experimental metastasis. Adherent A375 human melanoma cells (TF+) and KG1 myeloid leukemia (TF-) cells were cultured in RPMI containing 10% fetal bovine serum. Platelet-rich plasma was obtained from normal citrated whole blood and the presence of VEGF (34 and 44 kDa isoforms) confirmed by immunoblotting. Platelet-rich plasma with or without anti-GpIIb/IIIa (Abciximab) was added to A375 monolayers and supernatant VEGF measured by ELISA. Tumor cell-induced platelet activation and release were determined by CD62P expression and serotonin release respectively. In vitro, tumor cell-platelet adherence was evaluated by flow cytometry. In vivo, thrombocytopenia and lung seeding were assessed 30 min and 18 days, respectively, after i.v. injection of Lewis Lung carcinoma (LL2) cells into control or murine 7E3 F(ab')(2) (6 mg/ kg) athymic rats. Maximal in vitro platelet activation (72% serotonin release) occurred 30 min after adding platelets to tumor cells. At this time, 87% of the A375 cells had adhered to platelets. Abciximab significantly (P<0.05) reduced platelet adherence to tumor cells as evidenced by flow cytometry. Incubation of A375 cells with platelets induced VEGF release in a time-dependent manner. This release was significantly inhibited by Abciximab (81% at 30 min; P<0.05). In the presence of fibrinogen and FII, VEGF release induced by A375 (TF+) cells was significantly higher than that induced

  11. CD40 activation induces apoptosis in cultured human hepatocytes via induction of cell surface fas ligand expression and amplifies fas-mediated hepatocyte death during allograft rejection.

    PubMed

    Afford, S C; Randhawa, S; Eliopoulos, A G; Hubscher, S G; Young, L S; Adams, D H

    1999-01-18

    We propose that a novel mechanism of hepatocyte apoptosis, involving a cooperative interaction between CD40 and Fas, is involved in the hepatocyte loss of chronic liver allograft rejection. We detected increased hepatocyte expression of Fas, Fas ligand (FasL), and CD40 associated with dropout of centrilobular (acinar zone 3) hepatocytes in chronic allograft rejection. Expression of CD40 ligand (CD40L) was also increased but was largely restricted to CD68(+) macrophages. A functional role for CD40 and Fas in hepatocyte apoptosis was demonstrated in vitro using primary human hepatocytes and the HepG2 cell line in both of which apoptosis was induced, not only by cross-linking Fas directly but also via CD40 activation. Our data suggest that CD40 activation induces apoptosis via Fas because (a) ligation of CD40 upregulated hepatocyte FasL expression, and (b) apoptosis induced via activation of CD40 was prevented by a neutralizing monoclonal antibody to FasL. Thus, CD40 engagement triggers apoptosis of human hepatocytes and might amplify Fas-dependent hepatocyte apoptosis in chronic rejection and other inflammatory liver diseases in which Fas-mediated apoptosis is involved.

  12. Niacin and biosynthesis of PGD2 by platelet COX-1 in mice and humans

    PubMed Central

    Song, Wen-Liang; Stubbe, Jane; Ricciotti, Emanuela; Alamuddin, Naji; Ibrahim, Salam; Crichton, Irene; Prempeh, Maxwell; Lawson, John A.; Wilensky, Robert L.; Rasmussen, Lars Melholt; Puré, Ellen; FitzGerald, Garret A.

    2012-01-01

    The clinical use of niacin to treat dyslipidemic conditions is limited by noxious side effects, most commonly facial flushing. In mice, niacin-induced flushing results from COX-1–dependent formation of PGD2 and PGE2 followed by COX-2–dependent production of PGE2. Consistent with this, niacin-induced flushing in humans is attenuated when niacin is combined with an antagonist of the PGD2 receptor DP1. NSAID-mediated suppression of COX-2–derived PGI2 has negative cardiovascular consequences, yet little is known about the cardiovascular biology of PGD2. Here, we show that PGD2 biosynthesis is augmented during platelet activation in humans and, although vascular expression of DP1 is conserved between humans and mice, platelet DP1 is not present in mice. Despite this, DP1 deletion in mice augmented aneurysm formation and the hypertensive response to Ang II and accelerated atherogenesis and thrombogenesis. Furthermore, COX inhibitors in humans, as well as platelet depletion, COX-1 knockdown, and COX-2 deletion in mice, revealed that niacin evoked platelet COX-1–derived PGD2 biosynthesis. Finally, ADP-induced spreading on fibrinogen was augmented by niacin in washed human platelets, coincident with increased thromboxane (Tx) formation. However, in platelet-rich plasma, where formation of both Tx and PGD2 was increased, spreading was not as pronounced and was inhibited by DP1 activation. Thus, PGD2, like PGI2, may function as a homeostatic response to thrombogenic and hypertensive stimuli and may have particular relevance as a constraint on platelets during niacin therapy. PMID:22406532

  13. Nonhuman primate model of polytraumatic hemorrhagic shock recapitulates early platelet dysfunction observed following severe injury in humans.

    PubMed

    Schaub, Leasha J; Moore, Hunter B; Cap, Andrew P; Glaser, Jacob J; Moore, Ernest E; Sheppard, Forest R

    2017-03-01

    Platelet dysfunction has been described as an early component of trauma-induced coagulopathy. The platelet component of trauma-induced coagulopathy remains to be fully elucidated and translatable animal models are required to facilitate mechanistic investigations. We sought to determine if the early platelet dysfunction described in trauma patients could be recapitulated in a nonhuman primate model of polytraumatic hemorrhagic shock. Twenty-four male rhesus macaques weighting 7 to 14 kg were subjected to 60 minutes (min) of severe pressure-targeted controlled hemorrhagic shock (HS) with and without other injuries. After 60 min, resuscitation with 0.9% NaCl and whole blood was initiated. Platelet counts and platelet aggregation assays were performed at baseline (BSLN), end of shock (EOS; T = 60 min), end of resuscitation (EOR; T = 180 min), and T = 360 min on overall cohort. Results are reported as mean ± standard deviation (SD) or median (interquartile range). Statistical analysis was conducted using Spearmen correlation, one-way analysis of variance, two-way repeated-measures analysis of variance, paired t-test or Wilcoxon nonparametric test, with p < 0.05 considered significant. Platelet count in all injury cohorts decreased over time, but no animals developed thrombocytopenia. Correlations were observed between platelet aggregation and platelet count for all agonists: adenosine diphosphate, thrombin recognition-activating peptide-6, collagen, and arachidonic acid. Overall, compared to BSLN, platelet aggregation decreased for all agonist at EOS, EOR, and T = 360 min. When normalized to platelet count, platelet aggregation in response to agonist thrombin recognition-activating peptide-6 demonstrated no change from BSLN at subsequent time points. Aggregation to adenosine diphosphate was significantly less at EOR but not EOS or T = 360 min compared to BSLN. Platelet aggregation to collagen and arachidonic acid was not significantly different at EOS compared to BSLN

  14. Dynamic adhesion of eryptotic erythrocytes to immobilized platelets via platelet phosphatidylserine receptors.

    PubMed

    Walker, Britta; Towhid, Syeda T; Schmid, Evi; Hoffmann, Sascha M; Abed, Majed; Münzer, Patrick; Vogel, Sebastian; Neis, Felix; Brucker, Sara; Gawaz, Meinrad; Borst, Oliver; Lang, Florian

    2014-02-01

    Glucose depletion of erythrocytes triggers suicidal erythrocyte death or eryptosis, which leads to cell membrane scrambling with phosphatidylserine exposure at the cell surface. Eryptotic erythrocytes adhere to endothelial cells by a mechanism involving phosphatidylserine at the erythrocyte surface and CXCL16 as well as CD36 at the endothelial cell membrane. Nothing has hitherto been known about an interaction between eryptotic erythrocytes and platelets, the decisive cells in primary hemostasis and major players in thrombotic vascular occlusion. The present study thus explored whether and how glucose-depleted erythrocytes adhere to platelets. To this end, adhesion of phosphatidylserine-exposing erythrocytes to platelets under flow conditions was examined in a flow chamber model at arterial shear rates. Platelets were immobilized on collagen and further stimulated with adenosine diphosphate (ADP, 10 μM) or thrombin (0.1 U/ml). As a result, a 48-h glucose depletion triggered phosphatidylserine translocation to the erythrocyte surface and augmented the adhesion of erythrocytes to immobilized platelets, an effect significantly increased upon platelet stimulation. Adherence of erythrocytes to platelets was blunted by coating of erythrocytic phosphatidylserine with annexin V or by neutralization of platelet phosphatidylserine receptors CXCL16 and CD36 with respective antibodies. In conclusion, glucose-depleted erythrocytes adhere to platelets. The adhesive properties of platelets are augmented by platelet activation. Erythrocyte adhesion to immobilized platelets requires phosphatidylserine at the erythrocyte surface and CXCL16 as well as CD36 expression on platelets. Thus platelet-mediated erythrocyte adhesion may foster thromboocclusive complications in diseases with stimulated phosphatidylserine exposure of erythrocytes.

  15. Platelet production proceeds independently of the intrinsic and extrinsic apoptosis pathways.

    PubMed

    Josefsson, Emma C; Burnett, Deborah L; Lebois, Marion; Debrincat, Marlyse A; White, Michael J; Henley, Katya J; Lane, Rachael M; Moujalled, Diane; Preston, Simon P; O'Reilly, Lorraine A; Pellegrini, Marc; Metcalf, Donald; Strasser, Andreas; Kile, Benjamin T

    2014-03-17

    BH3 mimetic drugs that target BCL-2 family pro-survival proteins to induce tumour cell apoptosis represent a new era in cancer therapy. Clinical trials of navitoclax (ABT-263, which targets BCL-2, BCL-XL and BCL-W) have shown great promise, but encountered dose-limiting thrombocytopenia. Recent work has demonstrated that this is due to the inhibition of BCL-XL, which is essential for platelet survival. These findings raise new questions about the established model of platelet shedding by megakaryocytes, which is thought to be an apoptotic process. Here we generate mice with megakaryocyte-specific deletions of the essential mediators of extrinsic (Caspase-8) and intrinsic (BAK/BAX) apoptosis. We show that megakaryocytes possess a Fas ligand-inducible extrinsic apoptosis pathway. However, Fas activation does not stimulate platelet production, rather, it triggers Caspase-8-mediated killing. Combined loss of Caspase-8/BAK/BAX does not impair thrombopoiesis, but can protect megakaryocytes from death in mice infected with lymphocytic choriomeningitis virus. Thus, apoptosis is dispensable for platelet biogenesis.

  16. Potential Role of Protein Disulfide Isomerase in Metabolic Syndrome-Derived Platelet Hyperactivity

    PubMed Central

    Gaspar, Renato Simões

    2016-01-01

    Metabolic Syndrome (MetS) has become a worldwide epidemic, alongside with a high socioeconomic cost, and its diagnostic criteria must include at least three out of the five features: visceral obesity, hypertension, dyslipidemia, insulin resistance, and high fasting glucose levels. MetS shows an increased oxidative stress associated with platelet hyperactivation, an essential component for thrombus formation and ischemic events in MetS patients. Platelet aggregation is governed by the peroxide tone and the activity of Protein Disulfide Isomerase (PDI) at the cell membrane. PDI redox active sites present active cysteine residues that can be susceptible to changes in plasma oxidative state, as observed in MetS. However, there is a lack of knowledge about the relationship between PDI and platelet hyperactivation under MetS and its metabolic features, in spite of PDI being a mediator of important pathways implicated in MetS-induced platelet hyperactivation, such as insulin resistance and nitric oxide dysfunction. Thus, the aim of this review is to analyze data available in the literature as an attempt to support a possible role for PDI in MetS-induced platelet hyperactivation. PMID:28053690

  17. Potential Role of Protein Disulfide Isomerase in Metabolic Syndrome-Derived Platelet Hyperactivity.

    PubMed

    Gaspar, Renato Simões; Trostchansky, Andrés; Paes, Antonio Marcus de Andrade

    2016-01-01

    Metabolic Syndrome (MetS) has become a worldwide epidemic, alongside with a high socioeconomic cost, and its diagnostic criteria must include at least three out of the five features: visceral obesity, hypertension, dyslipidemia, insulin resistance, and high fasting glucose levels. MetS shows an increased oxidative stress associated with platelet hyperactivation, an essential component for thrombus formation and ischemic events in MetS patients. Platelet aggregation is governed by the peroxide tone and the activity of Protein Disulfide Isomerase (PDI) at the cell membrane. PDI redox active sites present active cysteine residues that can be susceptible to changes in plasma oxidative state, as observed in MetS. However, there is a lack of knowledge about the relationship between PDI and platelet hyperactivation under MetS and its metabolic features, in spite of PDI being a mediator of important pathways implicated in MetS-induced platelet hyperactivation, such as insulin resistance and nitric oxide dysfunction. Thus, the aim of this review is to analyze data available in the literature as an attempt to support a possible role for PDI in MetS-induced platelet hyperactivation.

  18. An effector role for platelets in systemic and local lipopolysaccharide-induced toxicity in mice, mediated by a CD11a- and CD54-dependent interaction with endothelium.

    PubMed Central

    Piguet, P F; Vesin, C; Ryser, J E; Senaldi, G; Grau, G E; Tacchini-Cottier, F

    1993-01-01

    The role of platelets was investigated in two models of lipopolysaccharide (LPS)-induced toxicity in mice: the systemic reaction, provoked by intravenous LPS injection in D-galactosamine-sensitized recipients, which results in host death, and the local reaction, elicited in the skin by sequential injections of LPS and tumor necrosis factor alpha at 24-h intervals, which results in hemorrhagic necrosis. In both models, the depletion of platelets with a rabbit polyclonal or a mouse monoclonal antiplatelet immunoglobulin G afforded significant protection. In the local reaction, studies of the distribution of 111In-labelled platelets as well as optical and electron microscopy showed that platelets are localized in the dermal venules before hemorrhage occurs. Anti-CD11a (LFA-1) and anti-CD54 (ICAM-1) monoclonal antibodies prevented both platelet localization and hemorrhagic necrosis, and these determinants were detected on mouse platelets by immunofluorescence. The antiplatelet monoclonal antibody did not reduce the localization of polymorphonuclear leukocytes in the dermal venules, as shown by histological sections. Thus, in the local reaction, the stimulation with LPS and tumor necrosis factor alpha leads to a binding of platelets to the endothelium of venules by their beta 2 integrins, which seems necessary for the development of the hemorrhagic necrosis. Images PMID:8104895

  19. Overview of platelet physiology and laboratory evaluation of platelet function.

    PubMed

    Rodgers, G M

    1999-06-01

    Appropriate laboratory testing for the platelet-type bleeding disorders hinges on an adequate assessment in the history and physical examination. Patients with histories and screening laboratory results consistent with coagulation disorders (hemophilia, disseminated intravascular coagulation) are not appropriate candidates for platelet function testing. In contrast, patients with a lifelong history of platelet-type bleeding symptoms and perhaps a positive family history of bleeding would be appropriate for testing. Figure 6 depicts one strategy to evaluate these patients. Platelet morphology can easily be evaluated to screen for two uncommon qualitative platelet disorders: Bernard-Soulier syndrome (associated with giant platelets) and gray platelet syndrome, a subtype of storage pool disorder in which platelet granulation is morphologically abnormal by light microscopy. If the bleeding disorder occurred later in life (no bleeding with surgery or trauma early in life), the focus should be on acquired disorders of platelet function. For those patients thought to have an inherited disorder, testing for vWD should be done initially because approximately 1% of the population has vWD. The complete vWD panel (factor VIII coagulant activity, vWf antigen, ristocetin cofactor activity) should be performed because many patients will have abnormalities of only one particular panel component. Patients diagnosed with vWD should be classified using multimeric analysis to identify the type 1 vWD patients likely to respond to DDAVP. If vWD studies are normal, platelet aggregation testing should be performed, ensuring that no antiplatelet medications have been ingested at least 1 week before testing. If platelet aggregation tests are normal and if suspicion for an inherited disorder remains high, vWD testing should be repeated. The evaluation of thrombocytopenia may require bone marrow examination to exclude primary hematologic disorders. If future studies with thrombopoietin assays

  20. Pyridoxine improves platelet nitric oxide synthase dysfunction induced by advanced glycation end products in vitro.

    PubMed

    Han, Yi; Liu, Yuan; Mi, Qiongyu; Xie, Liping; Huang, Yan; Jiang, Qin; Chen, Qi; Ferro, Albert; Liu, Naifeng; Ji, Yong

    2010-06-01

    Advanced glycation end products (AGEs) increase platelet aggregation and suppress vascular nitric oxide (NO) synthase (NOS) activity, and these effects may contribute to the atherothrombotic disease seen in diabetes. The aims of this study were to determine in vitro whether pyridoxine can abrogate the impairment in platelet NOS activity caused by AGEs, and to determine the mechanism by which it does this. Platelet aggregation was measured by Born aggregometry. Intraplatelet cyclic guanosine-3',5'-monophosphate (cGMP, an index of bioactive NO) was measured by radioimmunoassay. Serine-1177-specific phosphorylation of NOS type 3 (NOS-3) and phosphorylation of protein kinase Akt were determined in platelets by Western blotting. Phosphatidylinositol 3-kinase (PI3K) activity in platelets was ascertained by homogeneous time-resolved fluorescence (HTRF) assay. We found that AGE-modified albumin (AGEs) 200 mg/L increased platelet aggregability and decreased intraplatelet cGMP; these effects were largely attenuated by pyridoxine. Western blotting studies revealed that AGEs decreased NOS-3 phosphorylation on serine-1177, increased NOS-3 O-glycosylation, and decreased serine phosphorylation of protein kinase Akt; all of these changes were abrogated by pyridoxine. Direct measurement of PI3K activity in platelets demonstrated that all of the above effects could be attributed to a suppression by AGEs of PI3K activity, which was prevented by co-incubation with pyridoxine. We conclude that pyridoxine is effective in ameliorating the dysfunction of platelet NO signaling in response to AGEs, through improving PI3K activity, and hence downstream Akt phosphorylation and in turn serine-1177 phosphorylation of NOS-3.

  1. Platelet-Specific Chemokines Contribute to the Pathogenesis of Acute Lung Injury.

    PubMed

    Bdeir, Khalil; Gollomp, Kandace; Stasiak, Marta; Mei, Junjie; Papiewska-Pajak, Izabela; Zhao, Guohua; Worthen, G Scott; Cines, Douglas B; Poncz, Mortimer; Kowalska, M Anna

    2017-02-01

    Platelets and neutrophils contribute to the development of acute lung injury (ALI). However, the mechanism by which platelets make this contribution is incompletely understood. We investigated whether the two most abundant platelet chemokines, CXCL7, which induces neutrophil chemotaxis and activation, and CXCL4, which does neither, mediate ALI through complementary pathogenic pathways. To examine the role of platelet-derived chemokines in the pathogenesis of ALI using Cxcl7 -/- and Cxcl4 -/- knockout mice and mice that express human CXCL7 or CXCL4, we measured levels of chemokines in these mice. ALI was then induced by acid aspiration, and the severity of injury was evaluated by histology and by the presence of neutrophils and protein in the bronchoalveolar lavage fluid. Pulmonary vascular permeability was studied in vivo by measuring extravasation of fluorescently labeled dextran. Murine CXCL7, both recombinant and native protein released from platelets, can be N-terminally processed by cathepsin G to yield a biologically active CXCL7 fragment. Although Cxcl7 -/- mice are protected from lung injury through the preservation of endothelial/epithelial barrier function combined with impaired neutrophils transmigration, Cxcl4 -/- mice are protected through improved barrier function without affecting neutrophils transmigration to the airways. Sensitivity to ALI is restored by transgenic expression of CXCL7 or CXCL4. Platelet-derived CXCL7 and CXCL4 contribute to the pathogenesis of ALI through complementary effects on neutrophil chemotaxis and through activation and vascular permeability.

  2. Comparison of the inhibitory effects of cilostazol, acetylsalicylic acid and ticlopidine on platelet functions ex vivo. Randomized, double-blind cross-over study.

    PubMed

    Ikeda, Y; Kikuchi, M; Murakami, H; Satoh, K; Murata, M; Watanabe, K; Ando, Y

    1987-05-01

    A randomized double-blind cross-over study was conducted to determine the inhibitory effects of acetylsalicylic acid (ASA), ticlopidine (TP) and cilostazol (OPC-13013; in the following briefly called CS), a new antithrombotic agent on platelet functions ex vivo. Nine patients with cerebral thrombosis were enrolled in this study. Patients were given each of the three drugs for one week in a complete cross-over design according to a randomization schedule, followed by a wash-out period with a placebo for one week. It was found that CS and TP significantly inhibited platelet aggregation induced by ADP. Collagen- and arachidonic acid-induced platelet aggregation was all inhibited by CS, TP and ASA. Duncan's multiple range test to compare the anti-platelet effects of the three drugs revealed that: CS greater than ASA and TP greater than ASA in inhibiting ADP-induced platelet aggregation and CS greater than TP and ASA greater than TP in inhibiting arachidonic acid-induced platelet aggregation. These results may suggest that CS is superior to ASA and TP in inhibiting platelet aggregation ex vivo.

  3. Release of Phosphorylated HSP27 (HSPB1) from Platelets Is Accompanied with the Acceleration of Aggregation in Diabetic Patients.

    PubMed

    Tokuda, Haruhiko; Kuroyanagi, Gen; Tsujimoto, Masanori; Enomoto, Yukiko; Matsushima-Nishiwaki, Rie; Onuma, Takashi; Kojima, Akiko; Doi, Tomoaki; Tanabe, Kumiko; Akamatsu, Shigeru; Iida, Hiroki; Ogura, Shinji; Otsuka, Takanobu; Iwama, Toru; Tanikawa, Takahisa; Ishikawa, Kei; Kojima, Kumi; Kozawa, Osamu

    2015-01-01

    We investigated the relationship between HSP27 phosphorylation and collagen-stimulated activation of platelets in patients with diabetes mellitus (DM). Platelet-rich plasma was prepared from blood of type 2 DM patients. The platelet aggregation was analyzed in size of aggregates by an aggregometer using a laser scattering method. The protein phosphorylation was analyzed by Western blotting. Phosphorylated-HSP27 and PDGF-AB released from platelets were measured by ELISA. The phosphorylated-HSP27 levels at Ser-78 and Ser-82 induced by collagen were directly proportional to the platelet aggregation. Total HSP27 levels in platelets were decreased concomitantly with the phosphorylation. The released HSP27 levels were significantly correlated with the phosphorylated levels of HSP27 in the platelets stimulated by 0.3 μg/ml collagen. The low dose collagen-stimulated release of HSP27 was detected but relatively small in healthy donors. The released levels of PDGF-AB were in parallel with the levels of released HSP27. Area under the curve (AUC) of small aggregation (9-25 μm) induced by 0.3 μg/ml collagen was inversely proportional to the levels of released HSP27. AUC of large aggregation (50-70 μm) was directly proportional to the levels of released HSP27. Exogenous recombinant phosphorylated- HSP27 hardly affected the aggregation or the released levels of PDGF-AB induced by collagen. These results strongly suggest that HSP27 is released from human platelets accompanied with its phosphorylation induced by collagen, which is correlated with the acceleration of platelet aggregation in type 2 DM patients.

  4. Differences in levels of platelet-derived microparticles in platelet components prepared using the platelet rich plasma, buffy coat, and apheresis procedures.

    PubMed

    Noulsri, Egarit; Udomwinijsilp, Prapaporn; Lerdwana, Surada; Chongkolwatana, Viroje; Permpikul, Parichart

    2017-04-01

    There has been an increased interest in platelet-derived microparticles (PMPs) in transfusion medicine. Little is known about PMP status during the preparation of platelet concentrates for transfusion. The aim of this study is to compare the PMP levels in platelet components prepared using the buffy coat (BC), platelet-rich plasma platelet concentrate (PRP-PC), and apheresis (AP) processes. Platelet components were prepared using the PRP-PC and BC processes. Apheresis platelets were prepared using the Trima Accel and Amicus instruments. The samples were incubated with annexin A5-FITC, CD41-PE, and CD62P-APC. At day 1 after processing, the PMPs and activated platelets were determined using flow cytometry. Both the percentage and number of PMPs were higher in platelet components prepared using the Amicus instrument (2.6±1.8, 32802±19036 particles/μL) than in platelet components prepared using the Trima Accel instrument (0.5±0.4, 7568±5298 particles/μL), BC (1.2±0.6, 12,920±6426 particles/μL), and PRP-PC (0.9±0.6, 10731±5514 particles/μL). Both the percentage and number of activated platelets were higher in platelet components prepared using the Amicus instrument (33.2±13.9, 427553±196965 cells/μL) than in platelet components prepared using the Trima Accel instrument (16.2±6.1, 211209±87706 cells/μL), BC (12.9±3.2, 140624±41003 cells/μL), and PRP-PC (21.1±6.3, 265210±86257 cells/μL). The study suggests high variability of PMPs and activated platelets in platelet components prepared using different processes. This result may be important in validating the instruments involved in platelet blood collection and processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Fish Oil Supplementation in Humans: Effects on Platelet Responses, Phospholipid Composition and Metabolism.

    NASA Astrophysics Data System (ADS)

    Skeaff, Clark Murray

    Platelets are believed to play a significant role in the development of occlusive vascular diseases. Epidemiological reports have correlated the high intake of marine foods, rich in omega3 fatty acids, with diminished platelet responses and a low incidence of arterial thrombosis and myocardial infarction. The activation of platelet responses is mediated by the accelerated metabolism of membrane phospholipid; therefore, it was of interest to examine, in human volunteers, the effect of a dietary fish oil concentrate (MaxEPA), enriched in omega 3 polyunsaturated fatty acids, on platelet aggregation and phospholipid composition/metabolism. For the complete separation of cellular phospholipids, a one-dimensional thin-layer chromatography system using silica-gel pre-coated glass plates was developed. The solvent system consisted of CHCl_3/CH_3OH/CH _3COOH/H_2O (50/37.5/3.5/2.0, by vol), required approximately 90-120 minutes for full phospholipid separation, and was highly reproducible even under conditions of variable humidity and temperature. The consumption of a fish oil concentrate (MaxEPA) for 6 weeks (3.6 g of 20:5omega 3 and 2.4 g of 22:6omega3 per day) diminished both the collagen- and platelet activating factor-induced maximum aggregation responses in washed human platelet suspensions by 50.1% and 27.2%, respectively, as compared to initial unsupplemented baseline responses. Thrombin -induced aggregation remained unchanged. Thrombin stimulation of intact human platelets produced a significant decrease in the mass of phosphatidylinositol in plasma membrane. In platelets pre-labelled with (2-^3H) glycerol and stimulated with either thrombin or low-dose collagen, the loss of (^3H) phosphatidylinositol did not differ between those subjects consuming olive oil or fish oil. Likewise, the thrombin-stimulated accumulation of diacylglycerol, an activator of protein kinase C, was unaffected by fish oil consumption. The ratio of collagen -induced increase in radioactivity

  6. Explaining the paradoxical rejection-aggression link: the mediating effects of hostile intent attributions, anger, and decreases in state self-esteem on peer rejection-induced aggression in youth.

    PubMed

    Reijntjes, Albert; Thomaes, Sander; Kamphuis, Jan H; Bushman, Brad J; de Castro, Bram Orobio; Telch, Michael J

    2011-07-01

    People are strongly motivated to feel accepted by others. Yet when faced with acute peer rejection they often aggress against the very peers they desire acceptance from, which may lead to further rejection. The present experiment tests three potential mediators of aggressive responses to acute peer rejection in the critical developmental stage of early adolescence. Participants (N=185, M(age)=11.5 years) completed personal profiles that were allegedly evaluated online by peers. After receiving negative or neutral peer feedback, participants could aggress against the same peers who had evaluated them. Rejected participants attributed more hostile intent to the peers, were angrier, showed a greater reduction in state self-esteem, and were more aggressive. Mediational analyses showed that hostile intent attributions mediated the acute peer rejection-aggression relationship, whereas increases in anger and decreases in state self-esteem did not. Thus, acute peer rejection evokes hostile intent attributions that, in turn, lead to aggressive reactions. © 2011 by the Society for Personality and Social Psychology, Inc

  7. Microfluidic model of the platelet-generating organ: beyond bone marrow biomimetics

    NASA Astrophysics Data System (ADS)

    Reyssat, Mathilde; Blin, Antoine; Le Goff, Anne; Magniez, Aurelie; Poirault-Chassac, Sonia; Teste, Bruno; Sicot, Geraldine; Nguyen, Kim Anh; Hamdi, Feriel S.; Baruch, Dominique

    2015-11-01

    We present a new, rapid method for producing blood platelets in vitro from cultured megakaryocytes based on a microfluidic device. This device consists in a wide array of VWF coated micropillars. Such pillars act as anchors on megakaryocytes, allowing them to remain trapped in the device and subjected to hydrodynamic shear. The combined effect of anchoring and shear induces the elongation of megakaryocytes and finally their rupture into platelets and proplatelets. This process was observed with megakaryocytes from different origins and found to be robust. This original bioreactor design allows to process megakaryocytes at high throughput (millions per hour), with a platelet yield increasing four times in comparison with control experiments. Since platelets are produced in such a large amount, their extensive biological characterization is possible. Fluorescent microscopy observations, flow cytometry, aggregometry results indicate that platelets produced in this bioreactor are functional.

  8. Glaucocalyxin A Inhibits Platelet Activation and Thrombus Formation Preferentially via GPVI Signaling Pathway

    PubMed Central

    Li, Qiang; Ren, Lijie; Liu, Xiaohui; Chu, Chunjun; Ozaki, Yukio; Zhang, Jian; Zhu, Li

    2013-01-01

    Platelets play a pivotal role in atherothrombosis and the antiplatelet agents have been proved to be useful in preventing onset of acute clinical events including myocardial infarction and stroke. Increasing number of natural compounds has been identified to be potential antiplatelet agents. Here we report the antiplatelet effect of glaucocalyxin A (GLA), an ent-diterpenoid that we isolated and purified from the aerial parts of Rabdosia japonica (Burm. f.) var. glaucocalyx (Maxim.) Hara, and investigate the molecular mechanisms by which GLA inhibits platelet activation and thrombus formation. The effect of GLA on platelet activation was measured using platelets freshly isolated from peripheral blood of healthy donors. Results showed that pretreatment of human platelets with lower concentrations of GLA (0.01μg/ml, 0.1μg/ml) significantly inhibited platelet aggregation induced by collagen (P<0.001) and CRP (P<0.01), a synthetic GPVI ligand, but not by ADP and U46619. Accordingly, GLA inhibited collagen-stimulated tyrosine phosphorylation of Syk, LAT, and phospholipase Cγ2, the signaling events in collagen receptor GPⅥ pathway. GLA also inhibited platelet p-selectin secretion and integrin activation by convulxin, a GPVI selective ligand. Additionally, GLA was found to inhibit low-dose thrombin-induced platelet activation. Using a flow chamber device, GLA was found to attenuate platelet adhesion on collagen surfaces in high shear condition. In vivo studies showed that GLA administration increased the time for complete occlusion upon vascular injury in mice, but did not extend tail-bleeding time when mice were administered with relatively lower doses of GLA. Therefore, the present results provide the molecular basis for the inhibition effect of GLA on platelet activation and its in vivo effect on thrombus formation, suggesting that GLA could potentially be developed as an antiplatelet and antithrombotic agent. PMID:24386454

  9. Essential role of protein kinase C delta in platelet signaling, alpha IIb beta 3 activation, and thromboxane A2 release.

    PubMed

    Yacoub, Daniel; Théorêt, Jean-François; Villeneuve, Louis; Abou-Saleh, Haissam; Mourad, Walid; Allen, Bruce G; Merhi, Yahye

    2006-10-06

    The protein kinase C (PKC) family is an essential signaling mediator in platelet activation and aggregation. However, the relative importance of the major platelet PKC isoforms and their downstream effectors in platelet signaling and function remain unclear. Using isolated human platelets, we report that PKCdelta, but not PKCalpha or PKCbeta, is required for collagen-induced phospholipase C-dependent signaling, activation of alpha(IIb)beta(3), and platelet aggregation. Analysis of PKCdelta phosphorylation and translocation to the membrane following activation by both collagen and thrombin indicates that it is positively regulated by alpha(IIb)beta(3) outside-in signaling. Moreover, PKCdelta triggers activation of the mitogen-activated protein kinase-kinase (MEK)/extracellular-signal regulated kinase (ERK) and the p38 MAPK signaling. This leads to the subsequent release of thromboxane A(2), which is essential for collagen-induced but not thrombin-induced platelet activation and aggregation. This study adds new insight to the role of PKCs in platelet function, where PKCdelta signaling, via the MEK/ERK and p38 MAPK pathways, is required for the secretion of thromboxane A(2).

  10. Efficacy of platelet-rich plasma applied to post-extraction retained lower third molar alveoli. A systematic review.

    PubMed

    Barona-Dorado, C; González-Regueiro, I; Martín-Ares, M; Arias-Irimia, O; Martínez-González, J-M

    2014-03-01

    Dental retentions have a high prevalence among the general population and their removal can involve multiple complications. The use of platelet rich plasma has been proposed in an attempt to avoid these complications, as it contains high growth factors and stimulates diverse biological functions that facilitate the healing of soft and hard tissues. To evaluate the available scientific evidence related to the application of platelet-rich plasma in the post-extraction alveoli of a retained lower third molars. A systematic review of published literature registered in the Medline, EMBASE, Cochrane and NIH databases. The following categories were included: human randomized clinical studies. Key search words were: platelet rich plasma; platelet rich plasma and oral surgery; platelet rich in growth factors and third molar. Of 101 potentially valid articles, seven were selected, of which four were rejected as they failed to meet quality criteria. Three studies fulfilled all selection and quality criteria: Ogundipe et al.; Rutkowski et al.; Haraji et al. The studies all measured osteoblast activity by means of sintigraphy, and also registered pain, bleeding, inflammation, temperature, numbness as perceived by the patients, radiological bone density and the incidence of alveolar osteitis. Scientific evidence for the use of PRP in retained third molar surgery is poor. For this reason randomized clinical trials are needed before recommendations for the clinical application of PRP can be made.

  11. Flow cytometric and radioisotopic determinations of platelet survival time in normal cats and feline leukemia virus-infected cats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, R.M.; Boyce, J.T.; Kociba, G.J.

    This study demonstrates the potential usefulness of a flow cytometric technique to measure platelet survival time in cats utilizing autologous platelets labeled in vitro with fluorescein isothiocyanate (FITC). When compared with a 51Cr method, no significant differences in estimated survival times were found. Both the 51Cr and FITC-labeling procedures induced similar changes in platelet shape and collagen-induced aggregation. Platelets labeled with FITC had significantly greater volumes compared with those of glutaraldehyde-fixed platelets. These changes were primarily related to the platelet centrifugation and washing procedures rather than the labels themselves. This novel technique potentially has wide applicability to cell circulation timemore » studies as flow cytometry equipment becomes more readily available. Problems with the technique are discussed. In a preliminary study of the platelet survival time in feline leukemia virus (FeLV)-infected cats, two of three cats had significantly reduced survival times using both flow cytometric and radioisotopic methods. These data suggest increased platelet turnover in FeLV-infected cats.« less

  12. Platelet collection efficiencies of three different platelet-rich plasma preparation systems.

    PubMed

    Aydin, Fatma; Pancar Yuksel, Esra; Albayrak, Davut

    2015-06-01

    Different systems have been used for the preparation of platelet-rich plasma (PRP), but platelet collection efficiencies of these systems are not clear. To evaluate the platelet collection efficiencies of three different PRP preparation systems. Blood samples were obtained from the same 16 volunteers for each system. The samples were centrifuged and PRP was prepared by three systems. The ratio of the total number of platelets in PRP to the total number of platelets of the venous blood sample of the patient expressed in percentage was named as platelet collection efficiency and calculated for each system. Mean platelet collection efficiencies were 66.6 (min: 56.9, max: 76.9), 58.3 (min: 27.3, max: 102.8), 50.8 (min: 27.2, max: 73) for top and bottom bag system, system using citrated tube, and the system using tube with Ficoll and cell extraction kit, respectively. Statistically significant difference was found only between the platelet collection efficiencies of systems using the tube with ficoll and cell extraction kit and the top and bottom bag system (p = 0.002). All three systems could be used for PRP preparation, but top and bottom bag system offers a slight advantage over the system using Ficoll and cell extraction kit regarding the platelet collection efficiency.

  13. Exploratory studies of extended storage of apheresis platelets in a platelet additive solution (PAS)

    PubMed Central

    Corson, Jill; Jones, Mary Kay; Christoffel, Todd; Pellham, Esther; Bailey, S. Lawrence; Bolgiano, Doug

    2014-01-01

    To evaluate the poststorage viability of apheresis platelets stored for up to 18 days in 80% platelet additive solution (PAS)/20% plasma, 117 healthy subjects donated platelets using the Haemonetics MCS+, COBE Spectra (Spectra), or Trima Accel (Trima) systems. Control platelets from the same subjects were compared with their stored test PAS platelets by radiolabeling their stored and control platelets with either 51chromium or 111indium. Trima platelets met Food and Drug Administration poststorage platelet viability criteria for only 7 days vs almost 13 days for Haemonetics platelets; ie, platelet recoveries after these storage times averaged 44 ± 3% vs 49 ± 3% and survivals were 5.4 ± 0.3 vs 4.6 ± 0.3 days, respectively. The differences in storage duration are likely related to both the collection system and the storage bag. The Spectra and Trima platelets were hyperconcentrated during collection, and PAS was added, whereas the Haemonetics platelets were elutriated with PAS, which may have resulted in less collection injury. When Spectra and Trima platelets were stored in Haemonetics’ bags, poststorage viability was significantly improved. Platelet viability is better maintained in vitro than in vivo, allowing substantial increases in platelet storage times. However, implementation will require resolution of potential bacterial overgrowth during storage. PMID:24258816

  14. A critical role for the regulation of Syk from agglutination to aggregation in human platelets.

    PubMed

    Shih, Chun-Ho; Chiang, Tin-Bin; Wang, Wen-Jeng

    2014-01-10

    Agglucetin, a tetrameric glycoprotein (GP) Ibα agonist from Formosan Agkistrodon acutus venom, has been characterized as an agglutination inducer in human washed platelets (WPs). In platelet-rich plasma (PRP), agglucetin dramatically elicits a biphasic response of agglutination and subsequent aggregation. For clarifying the intracellular signaling events from agglutination to aggregation in human platelets, we examined the essential signaling molecules involved through the detection of protein tyrosine phosphorylation (PTP). In WPs, an anti-GPIbα monoclonal antibody (mAb) AP1, but not a Src kinase inhibitor PP1, completely inhibited agglucetin-induced agglutination. However, PP1 but not AP1 had a potent suppression on platelet aggregation by a GPVI activator convulxin. The PTP analyses showed agglucetin alone can cause a weak pattern involving sequential phosphorylation of Lyn/Fyn, Syk, SLP-76 and phospholipase Cγ2 (PLCγ2). Furthermore, a Syk-selective kinase inhibitor, piceatannol, significantly suppressed the aggregating response in agglucetin-activated PRP. Analyzed by flow cytometry, the binding capacity of fluorophore-conjugated PAC-1, a mAb recognizing activated integrin αIIbβ3, was shown to increase in agglucetin-stimulated platelets. Again, piceatannol but not PP1 had a concentration-dependent suppression on agglucetin-induced αIIbβ3 exposure. Moreover, the formation of signalosome, including Syk, SLP-76, VAV, adhesion and degranulation promoting adapter protein (ADAP) and PLCγ2, are required for platelet aggregation in agglucetin/fibrinogen-activated platelets. In addition, GPIbα-ligation via agglucetin can substantially promote the interactions between αIIbβ3 and fibrinogen. Therefore, the signal pathway of Lyn/Fyn/Syk/SLP-76/ADAP/VAV/PLCγ2/PKC is sufficient to trigger platelet aggregation in agglucetin/fibrinogen-pretreated platelets. Importantly, Syk may function as a major regulator for the response from GPIbα-initiated agglutination to

  15. Amarogentin, a secoiridoid glycoside, abrogates platelet activation through PLC γ 2-PKC and MAPK pathways.

    PubMed

    Yen, Ting-Lin; Lu, Wan-Jung; Lien, Li-Ming; Thomas, Philip Aloysius; Lee, Tzu-Yin; Chiu, Hou-Chang; Sheu, Joen-Rong; Lin, Kuan-Hung

    2014-01-01

    Amarogentin, an active principle of Gentiana lutea, possess antitumorigenic, antidiabetic, and antioxidative properties. Activation of platelets is associated with intravascular thrombosis and cardiovascular diseases. The present study examined the effects of amarogentin on platelet activation. Amarogentin treatment (15~60  μM) inhibited platelet aggregation induced by collagen, but not thrombin, arachidonic acid, and U46619. Amarogentin inhibited collagen-induced phosphorylation of phospholipase C (PLC) γ2, protein kinase C (PKC), and mitogen-activated protein kinases (MAPKs). It also inhibits in vivo thrombus formation in mice. In addition, neither the guanylate cyclase inhibitor ODQ nor the adenylate cyclase inhibitor SQ22536 affected the amarogentin-mediated inhibition of platelet aggregation, which suggests that amarogentin does not regulate the levels of cyclic AMP and cyclic GMP. In conclusion, amarogentin prevents platelet activation through the inhibition of PLC γ2-PKC cascade and MAPK pathway. Our findings suggest that amarogentin may offer therapeutic potential for preventing or treating thromboembolic disorders.

  16. Effect of Physical Exercise on Platelet Reactivity in Patients with Dual Antiplatelet Therapy.

    PubMed

    Brunner, Stefan; Rizas, Konstantinos; Hamm, Wolfgang; Mehr, Michael; Lackermair, Korbinian

    2018-06-14

    It is known that physical exercise may increase platelet activity. However, the effect of exercise on platelet reactivity in patients on dual antiplatelet therapy has not been investigated yet. In our study, 21 patients with coronary artery disease on dual antiplatelet therapy and 10 controls were enrolled. We performed an exercise test using a cycle ergometer and determined the adenosine diphosphate-induced platelet reactivity before and immediately after exercise testing. Additionally, we analysed maximal exercise capacity and an electrocardiogram. Further, we assessed chromogranin A and P-selectin levels and platelet counts. © Georg Thieme Verlag KG Stuttgart · New York.

  17. LDL oxidation by platelets propagates platelet activation via an oxidative stress-mediated mechanism.

    PubMed

    Carnevale, Roberto; Bartimoccia, Simona; Nocella, Cristina; Di Santo, Serena; Loffredo, Lorenzo; Illuminati, Giulio; Lombardi, Elisabetta; Boz, Valentina; Del Ben, Maria; De Marco, Luigi; Pignatelli, Pasquale; Violi, Francesco

    2014-11-01

    Platelets generate oxidized LDL (ox-LDL) via NOX2-derived oxidative stress. We investigated if once generated by activated platelets ox-LDL can propagate platelet activation. Experiments were performed in platelets from healthy subjects (HS), hyper-cholesterolemic patients and patients with NOX2 hereditary deficiency. Agonist-stimulated platelets from HS added with LDL were associated with a dose-dependent increase of reactive oxidant species and ox-LDL. Agonist-stimulated platelets from HS added with a fixed dose of LDL (57.14 μmol/L) or added with homogenized human atherosclerotic plaque showed enhanced ox-LDL formation (approximately +50% and +30% respectively), which was lowered by a NOX2 inhibitor (approximately -35% and -25% respectively). Compared to HS, ox-LDL production was more pronounced in agonist-stimulated platelet rich plasma (PRP) from hyper-cholesterolemic patients but was almost absent in PRP from NOX2-deficient patients. Platelet aggregation and 8-iso-PGF2α-ΙΙΙ formation increased in LDL-treated washed platelets (+42% and +53% respectively) and PRP (+31% and +53% respectively). Also, LDL enhanced platelet-dependent thrombosis at arterial shear rate (+33%) but did not affect platelet activation in NOX2-deficient patients. Platelet activation by LDL was significantly inhibited by CD36 or LOX1 blocking peptides, two ox-LDL receptor antagonists, or by a NOX2 inhibitor. LDL-added platelets showed increased p38MAPK (+59%) and PKC (+51%) phosphorylation, p47(phox) translocation to platelet membrane (+34%) and NOX2 activation (+30%), which were inhibited by ox-LDL receptor antagonists. Platelets oxidize LDL, which in turn amplify platelet activation via specific ox-LDL receptors; both effects are mediated by NOX2 activation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Emotional responses to a romantic partner's imaginary rejection: the roles of attachment anxiety, covert narcissism, and self-evaluation.

    PubMed

    Besser, Avi; Priel, Beatriz

    2009-02-01

    These studies tested the associations between responses to an induced imaginary romantic rejection and individual differences on dimensions of attachment and covert narcissism. In Study 1 (N=125), we examined the associations between attachment dimensions and emotional responses to a vignette depicting a scenario of romantic rejection, as measured by self-reported negative mood states, expressions of anger, somatic symptoms, and self-evaluation. Higher scores on attachment anxiety, but not on attachment avoidance, were associated with stronger reactions to the induced rejection. Moreover, decreased self-evaluation scores (self-esteem and pride) were found to mediate these associations. In Study 2 (N=88), the relative contributions of covert narcissism and attachment anxiety to the emotional responses to romantic rejection were explored. Higher scores on covert narcissism were associated with stronger reactions to the induced rejection. Moreover, covert narcissism seemed to constitute a specific aspect of attachment anxiety.

  19. Congenital platelet function defects

    MedlinePlus

    Platelet storage pool disorder; Glanzmann's thrombasthenia; Bernard-Soulier syndrome; Platelet function defects - congenital ... This disorder may also cause severe bleeding. Platelet storage pool disorder (also called platelet secretion disorder) occurs ...

  20. Chlorogenic Acid Inhibits Human Platelet Activation and Thrombus Formation

    PubMed Central

    Fuentes, Eduardo; Caballero, Julio; Alarcón, Marcelo; Rojas, Armando; Palomo, Iván

    2014-01-01

    Background Chlorogenic acid is a potent phenolic antioxidant. However, its effect on platelet aggregation, a critical factor in arterial thrombosis, remains unclear. Consequently, chlorogenic acid-action mechanisms in preventing platelet activation and thrombus formation were examined. Methods and Results Chlorogenic acid in a dose-dependent manner (0.1 to 1 mmol/L) inhibited platelet secretion and aggregation induced by ADP, collagen, arachidonic acid and TRAP-6, and diminished platelet firm adhesion/aggregation and platelet-leukocyte interactions under flow conditions. At these concentrations chlorogenic acid significantly decreased platelet inflammatory mediators (sP-selectin, sCD40L, CCL5 and IL-1β) and increased intraplatelet cAMP levels/PKA activation. Interestingly, SQ22536 (an adenylate cyclase inhibitor) and ZM241385 (a potent A2A receptor antagonist) attenuated the antiplatelet effect of chlorogenic acid. Chlorogenic acid is compatible to the active site of the adenosine A2A receptor as revealed through molecular modeling. In addition, chlorogenic acid had a significantly lower effect on mouse bleeding time when compared to the same dose of aspirin. Conclusions Antiplatelet and antithrombotic effects of chlorogenic acid are associated with the A2A receptor/adenylate cyclase/cAMP/PKA signaling pathway. PMID:24598787

  1. Acute effects of 30 minutes of exposure to a smartphone call on in vitro platelet function

    PubMed Central

    Lippi, Giuseppe; Danese, Elisa; Brocco, Giorgio; Gelati, Matteo; Salvagno, Gian Luca; Montagnana, Martina

    2017-01-01

    Background Significant concerns are now regularly raised about the safety of excessive mobile phone use. This study was aimed to assess the acute effects of radiofrequency waves emitted by a commercial smartphone on platelet function. Materials and methods Two sequential citrated blood samples were collected from 16 healthy volunteers recruited from laboratory staff. The first sample was placed in a plastic rack, 1 cm distant from a commercial smartphone receiving a 30-min call and emitting 900 MHz radiofrequency waves. The second sample was placed in another plastic rack, isolated from radiofrequency wave sources, for the same period. The platelet count and the mean platelet volume were then assessed in all blood samples, whereas platelet function was evaluated using the platelet function analyser-100 (PFA-100). Results A 30-min exposure of citrated blood to smartphone radiofrequency waves induced significant prolongation of collagen-epinephrine aggregation (median increase, 10%) and a considerable increase of mean platelet volume (median increase, 5%), whereas collagen-adenosine diphosphate aggregation and platelet count remained unchanged. Discussion This study demonstrates that smartphone radiofrequency waves induce significant perturbation of platelet structure and function, thus providing further support to concerns regarding excessive use of mobile phones. Caution should also be taken with regards to blood products containing platelets, which should be kept far away from mobile phones and smartphones throughout the production pipeline and storage period. PMID:27177410

  2. Acute effects of 30 minutes of exposure to a smartphone call on in vitro platelet function.

    PubMed

    Lippi, Giuseppe; Danese, Elisa; Brocco, Giorgio; Gelati, Matteo; Salvagno, Gian Luca; Montagnana, Martina

    2017-05-01

    Significant concerns are now regularly raised about the safety of excessive mobile phone use. This study was aimed to assess the acute effects of radiofrequency waves emitted by a commercial smartphone on platelet function. Two sequential citrated blood samples were collected from 16 healthy volunteers recruited from laboratory staff. The first sample was placed in a plastic rack, 1 cm distant from a commercial smartphone receiving a 30-min call and emitting 900 MHz radiofrequency waves. The second sample was placed in another plastic rack, isolated from radiofrequency wave sources, for the same period. The platelet count and the mean platelet volume were then assessed in all blood samples, whereas platelet function was evaluated using the platelet function analyser-100 (PFA-100). A 30-min exposure of citrated blood to smartphone radiofrequency waves induced significant prolongation of collagen-epinephrine aggregation (median increase, 10%) and a considerable increase of mean platelet volume (median increase, 5%), whereas collagen-adenosine diphosphate aggregation and platelet count remained unchanged. This study demonstrates that smartphone radiofrequency waves induce significant perturbation of platelet structure and function, thus providing further support to concerns regarding excessive use of mobile phones. Caution should also be taken with regards to blood products containing platelets, which should be kept far away from mobile phones and smartphones throughout the production pipeline and storage period.

  3. Rejection sensitivity moderates the impact of rejection on self-concept clarity.

    PubMed

    Ayduk, Ozlem; Gyurak, Anett; Luerssen, Anna

    2009-11-01

    Self-concept clarity (SCC) refers to the extent to which self-knowledge is clearly and confidently defined, internally consistent, and temporally stable. Research shows that SCC can be undermined by failures in valued goal domains. Because preventing rejection is an important self-relevant goal for people high in rejection sensitivity (RS), it is hypothesized here that failures to attain this goal would cause them to experience diminished SCC. Study 1, an experimental study, showed that high-RS people's SCC was undermined following rejection but not following an aversive experience unrelated to rejection. Study 2, a daily diary study of couples in relationships, used occurrence of partner conflicts to operationalize rejection. Replicating the findings in Study 1, having a conflict on any given diary day predicted a greater reduction in the SCC of high- compared to low-RS people on the following day. The implications for understanding the conditions under which rejection negatively affects the self-concept are discussed.

  4. Infections and reduced functioning kidney mass induce chronic rejection in rat kidney allografts.

    PubMed

    Heemann, U W; Azuma, H; Tullius, S G; Schmid, C; Philipp, T; Tilney, N L

    1996-07-01

    The etiology of chronic rejection of kidney allografts is unknown, although hyperfiltration, acute rejection, viral infection and initial graft ischemia have been implicated. To test whether endothelial activation may be the link between these factors and chronic rejection, the endotoxin (lipopolysaccharide-LPS), a potent activator of endothelial cells, was evaluated in an established chronic rejection model. Bilaterally nephrectomized Lewis recipients of orthotopically transplanted Fisher 344 kidneys were treated briefly with low dose cyclosporine (1.5 mg/kg/day x 10). Recipients were given a non-lethal dose of LPS (2 mg) i.p. at 8 weeks and compared to allografted controls treated with vehicle. Urine protein was measured every 4 weeks. Rats in the treated group were sacrificed at 12 and 16 weeks, control animals at 12, 16 and 24 weeks (20/group) and examined histologically. In the chronically rejecting control allografts, progressive interstitial and glomerular sclerosis and vascular intimal proliferation had become apparent by 12 weeks. Infiltration of glomeruli, particularly by macrophages (M phi), and the coincident presence of cytokines were prominent, peaking at 16 weeks. LPS treatment accelerated and intensified these changes; proteinuria was more pronounced (16 weeks: 79 mg/24 h vs. 49 mg/24 h, p < 0.05). Numbers of infiltrating M phi peaked at 12 weeks in LPS treated hosts (69 c/FV vs. 27 c/FV in untreated controls, p < 0.01), accompanied by an increased upregulation of MHC class II and cytokine expression, particularly TNF alpha and PDGF around arteries and areas of infiltration. BY 16 weeks, 35 +/- 3% of glomeruli in LPS treated recipients had become sclerotic vs. 15 +/- 6% (p < 0.05) in controls, again associated with increased expression of cytokines (PDGF, TNF alpha, TGF beta), adhesion molecules (ICAM-1) and extracellular matrix proteins. Overall, the extent of chronic rejection of grafts in LPS treated rats at 16 weeks was similar to that

  5. Primary porcine Kupffer cell phagocytosis of human platelets involves the CD18 receptor.

    PubMed

    Chihara, Ray K; Paris, Leela L; Reyes, Luz M; Sidner, Richard A; Estrada, Jose L; Downey, Susan M; Wang, Zheng-Yu; Tector, A Joseph; Burlak, Christopher

    2011-10-15

    Hepatic failure has been treated successfully with clinical extracorporeal perfusions of porcine livers. However, dog-to-pig and pig-to-baboon liver xenotransplant models have resulted in severe bleeding secondary to liver xenograft-induced thrombocytopenia. Kupffer cells (KC) are abundant phagocytic cells in the liver. KC express the CD11b/CD18 receptor, which has been implicated in chilled platelet binding and phagocytosis through interaction with platelet surface proteins and carbohydrates. We sought to identify the role of KC CD18 in liver xenograft-induced thrombocytopenia. Primary pig KC were characterized by flow cytometry, immunoblots, and quantitative polymerase chain reaction. Pig KC were used in inhibition assays with fluorescently labeled human platelets. The CD18 receptor was targeted for siRNA knockdown. Domestic and α1,3-galactosyltransferase double knockout porcine KC cultures were approximately 92% positive for CD18 as detected by quantitative polymerase chain reaction and flow cytometry. Use of CD18 blocking antibodies resulted in reduction of human platelet binding and phagocytosis. Additionally, asialofetuin, not fetuin, inhibited platelet phagocytosis suggesting the involvement of an oligosaccharide-binding site. Furthermore, reduced CD18 expression by siRNA resulted in decreased human platelet binding. Our data suggest that primary pig KC bind and phagocytose human platelets with involvement of CD18. Further understanding and modification of CD18 expression in pigs may result in a liver xenograft with reduced thrombocytopenic effects, which could be used as a bridge to allogeneic liver transplantation.

  6. Microfluidic model of the platelet-generating organ: beyond bone marrow biomimetics

    NASA Astrophysics Data System (ADS)

    Blin, Antoine; Le Goff, Anne; Magniez, Aurélie; Poirault-Chassac, Sonia; Teste, Bruno; Sicot, Géraldine; Nguyen, Kim Anh; Hamdi, Feriel S.; Reyssat, Mathilde; Baruch, Dominique

    2016-02-01

    We present a new, rapid method for producing blood platelets in vitro from cultured megakaryocytes based on a microfluidic device. This device consists in a wide array of VWF-coated micropillars. Such pillars act as anchors on megakaryocytes, allowing them to remain trapped in the device and subjected to hydrodynamic shear. The combined effect of anchoring and shear induces the elongation of megakaryocytes and finally their rupture into platelets and proplatelets. This process was observed with megakaryocytes from different origins and found to be robust. This original bioreactor design allows to process megakaryocytes at high throughput (millions per hour). Since platelets are produced in such a large amount, their extensive biological characterisation is possible and shows that platelets produced in this bioreactor are functional.

  7. Microfluidic model of the platelet-generating organ: beyond bone marrow biomimetics.

    PubMed

    Blin, Antoine; Le Goff, Anne; Magniez, Aurélie; Poirault-Chassac, Sonia; Teste, Bruno; Sicot, Géraldine; Nguyen, Kim Anh; Hamdi, Feriel S; Reyssat, Mathilde; Baruch, Dominique

    2016-02-22

    We present a new, rapid method for producing blood platelets in vitro from cultured megakaryocytes based on a microfluidic device. This device consists in a wide array of VWF-coated micropillars. Such pillars act as anchors on megakaryocytes, allowing them to remain trapped in the device and subjected to hydrodynamic shear. The combined effect of anchoring and shear induces the elongation of megakaryocytes and finally their rupture into platelets and proplatelets. This process was observed with megakaryocytes from different origins and found to be robust. This original bioreactor design allows to process megakaryocytes at high throughput (millions per hour). Since platelets are produced in such a large amount, their extensive biological characterisation is possible and shows that platelets produced in this bioreactor are functional.

  8. Microfluidic model of the platelet-generating organ: beyond bone marrow biomimetics

    PubMed Central

    Blin, Antoine; Le Goff, Anne; Magniez, Aurélie; Poirault-Chassac, Sonia; Teste, Bruno; Sicot, Géraldine; Nguyen, Kim Anh; Hamdi, Feriel S.; Reyssat, Mathilde; Baruch, Dominique

    2016-01-01

    We present a new, rapid method for producing blood platelets in vitro from cultured megakaryocytes based on a microfluidic device. This device consists in a wide array of VWF-coated micropillars. Such pillars act as anchors on megakaryocytes, allowing them to remain trapped in the device and subjected to hydrodynamic shear. The combined effect of anchoring and shear induces the elongation of megakaryocytes and finally their rupture into platelets and proplatelets. This process was observed with megakaryocytes from different origins and found to be robust. This original bioreactor design allows to process megakaryocytes at high throughput (millions per hour). Since platelets are produced in such a large amount, their extensive biological characterisation is possible and shows that platelets produced in this bioreactor are functional. PMID:26898346

  9. Release of Phosphorylated HSP27 (HSPB1) from Platelets Is Accompanied with the Acceleration of Aggregation in Diabetic Patients

    PubMed Central

    Tokuda, Haruhiko; Kuroyanagi, Gen; Tsujimoto, Masanori; Enomoto, Yukiko; Matsushima-Nishiwaki, Rie; Onuma, Takashi; Kojima, Akiko; Doi, Tomoaki; Tanabe, Kumiko; Akamatsu, Shigeru; Iida, Hiroki; Ogura, Shinji; Otsuka, Takanobu; Iwama, Toru; Tanikawa, Takahisa; Ishikawa, Kei; Kojima, Kumi; Kozawa, Osamu

    2015-01-01

    We investigated the relationship between HSP27 phosphorylation and collagen-stimulated activation of platelets in patients with diabetes mellitus (DM). Platelet-rich plasma was prepared from blood of type 2 DM patients. The platelet aggregation was analyzed in size of aggregates by an aggregometer using a laser scattering method. The protein phosphorylation was analyzed by Western blotting. Phosphorylated-HSP27 and PDGF-AB released from platelets were measured by ELISA. The phosphorylated-HSP27 levels at Ser-78 and Ser-82 induced by collagen were directly proportional to the platelet aggregation. Total HSP27 levels in platelets were decreased concomitantly with the phosphorylation. The released HSP27 levels were significantly correlated with the phosphorylated levels of HSP27 in the platelets stimulated by 0.3 μg/ml collagen. The low dose collagen-stimulated release of HSP27 was detected but relatively small in healthy donors. The released levels of PDGF-AB were in parallel with the levels of released HSP27. Area under the curve (AUC) of small aggregation (9-25 μm) induced by 0.3 μg/ml collagen was inversely proportional to the levels of released HSP27. AUC of large aggregation (50-70 μm) was directly proportional to the levels of released HSP27. Exogenous recombinant phosphorylated- HSP27 hardly affected the aggregation or the released levels of PDGF-AB induced by collagen. These results strongly suggest that HSP27 is released from human platelets accompanied with its phosphorylation induced by collagen, which is correlated with the acceleration of platelet aggregation in type 2 DM patients. PMID:26046355

  10. Platelet lysate activates quiescent cell proliferation and reprogramming in human articular cartilage: Involvement of hypoxia inducible factor 1.

    PubMed

    Nguyen, Van Thi; Cancedda, Ranieri; Descalzi, Fiorella

    2018-03-01

    The idea of rescuing the body self-repair capability lost during evolution is progressively gaining ground in regenerative medicine. In particular, growth factors and bioactive molecules derived from activated platelets emerged as promising therapeutic agents acting as trigger for repair of tissue lesions and restoration of tissue functions. Aim of this study was to assess the potential of a platelet lysate (PL) for human articular cartilage repair considering its activity on progenitor cells and differentiated chondrocytes. PL induced the re-entry in the cell cycle of confluent, growth-arrested dedifferentiated/progenitor cartilage cells. In a cartilage permissive culture environment, differentiated cells also resumed proliferation after exposure to PL. These findings correlated with an up-regulation of the proliferation/survival pathways ERKs and Akt and with an induction of cyclin D1. In short- and long-term cultures of articular cartilage explants, we observed a release of proliferating chondroprogenitors able to differentiate and form an "in vitro" tissue with properties of healthy articular cartilage. Moreover, in cultured cartilage cells, PL induced a hypoxia-inducible factor (HIF-1) alpha increase, its nuclear relocation and the binding to HIF-1 responsive elements. These events were possibly related to the cell proliferation because the HIF-1 inhibitor acriflavine inhibited HIF-1 binding to HIF-1 responsive elements and cell proliferation. Our study demonstrates that PL induces quiescent cartilage cell activation and proliferation leading to new cartilage formation, identifies PL activated pathways playing a role in these processes, and provides a rationale to the application of PL for therapeutic treatment of damaged articular cartilage. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Adrenaline potentiates PI 3-kinase in platelets stimulated with thrombin and SFRLLN: role of secreted ADP.

    PubMed

    Selheim, F; Frøyset, A K; Strand, I; Vassbotn, F S; Holmsen, H

    2000-11-17

    Adrenaline significantly potentiated late thrombin- and SFRLLN-induced PtdIns(3,4)P(2) production. Furthermore, the potentiating effect of adrenaline on thrombin-induced PtdIns(3, 4)P(2) production was independent on secreted ADP, whereas, the effect of adrenaline on SFRLLN-induced PtdIns(3,4)P(2) production was completely dependent of secreted ADP. However, the ADP-dependent accumulation of PtdIns(3,4)P(2) was not required for irreversible platelet aggregation induced by SFRLLN in the presence of adrenaline. It is concluded that adrenaline can replace secreted ADP to potentiate PtdIns(3,4)P(2) production in thrombin-stimulated but not in SFRLLN-stimulated platelets, thus demonstrating a qualitative difference between platelet stimulation by thrombin and the thrombin receptor activating peptide SFRLLN.

  12. Platelet-Specific Chemokines Contribute to the Pathogenesis of Acute Lung Injury

    PubMed Central

    Bdeir, Khalil; Gollomp, Kandace; Stasiak, Marta; Mei, Junjie; Papiewska-Pajak, Izabela; Zhao, Guohua; Worthen, G. Scott; Cines, Douglas B.; Poncz, Mortimer

    2017-01-01

    Platelets and neutrophils contribute to the development of acute lung injury (ALI). However, the mechanism by which platelets make this contribution is incompletely understood. We investigated whether the two most abundant platelet chemokines, CXCL7, which induces neutrophil chemotaxis and activation, and CXCL4, which does neither, mediate ALI through complementary pathogenic pathways. To examine the role of platelet-derived chemokines in the pathogenesis of ALI using Cxcl7−/− and Cxcl4−/− knockout mice and mice that express human CXCL7 or CXCL4, we measured levels of chemokines in these mice. ALI was then induced by acid aspiration, and the severity of injury was evaluated by histology and by the presence of neutrophils and protein in the bronchoalveolar lavage fluid. Pulmonary vascular permeability was studied in vivo by measuring extravasation of fluorescently labeled dextran. Murine CXCL7, both recombinant and native protein released from platelets, can be N-terminally processed by cathepsin G to yield a biologically active CXCL7 fragment. Although Cxcl7−/− mice are protected from lung injury through the preservation of endothelial/epithelial barrier function combined with impaired neutrophils transmigration, Cxcl4−/− mice are protected through improved barrier function without affecting neutrophils transmigration to the airways. Sensitivity to ALI is restored by transgenic expression of CXCL7 or CXCL4. Platelet-derived CXCL7 and CXCL4 contribute to the pathogenesis of ALI through complementary effects on neutrophil chemotaxis and through activation and vascular permeability. PMID:27755915

  13. Dynamin-related protein-1 controls fusion pore dynamics during platelet granule exocytosis.

    PubMed

    Koseoglu, Secil; Dilks, James R; Peters, Christian G; Fitch-Tewfik, Jennifer L; Fadel, Nathalie A; Jasuja, Reema; Italiano, Joseph E; Haynes, Christy L; Flaumenhaft, Robert

    2013-03-01

    Platelet granule exocytosis serves a central role in hemostasis and thrombosis. Recently, single-cell amperometry has shown that platelet membrane fusion during granule exocytosis results in the formation of a fusion pore that subsequently expands to enable the extrusion of granule contents. However, the molecular mechanisms that control platelet fusion pore expansion and collapse are not known. We identified dynamin-related protein-1 (Drp1) in platelets and found that an inhibitor of Drp1, mdivi-1, blocked exocytosis of both platelet dense and α-granules. We used single-cell amperometry to monitor serotonin release from individual dense granules and, thereby, measured the effect of Drp1 inhibition on fusion pore dynamics. Inhibition of Drp1 increased spike width and decreased prespike foot events, indicating that Drp1 influences fusion pore formation and expansion. Platelet-mediated thrombus formation in vivo after laser-induced injury of mouse cremaster arterioles was impaired after infusion of mdivi-1. These results demonstrate that inhibition of Drp1 disrupts platelet fusion pore dynamics and indicate that Drp1 can be targeted to control thrombus formation in vivo.

  14. Effects of high flavanol dark chocolate on cardiovascular function and platelet aggregation.

    PubMed

    Rull, Gurvinder; Mohd-Zain, Zetty N; Shiel, Julian; Lundberg, Martina H; Collier, David J; Johnston, Atholl; Warner, Timothy D; Corder, Roger

    2015-08-01

    Regular consumption of chocolate and cocoa products has been linked to reduced cardiovascular mortality. This study compared the effects of high flavanol dark chocolate (HFDC; 1064mg flavanols/day for 6weeks) and low flavanol dark chocolate (LFDC; 88mg flavanols/day for 6weeks) on blood pressure, heart rate, vascular function and platelet aggregation in men with pre-hypertension or mild hypertension. Vascular function was assessed by pulse wave analysis using radial artery applanation tonometry in combination with inhaled salbutamol (0.4mg) to assess changes due to endothelium-dependent vasodilatation. HFDC did not significantly reduce blood pressure compared to baseline or LFDC. Heart rate was increased by LFDC compared to baseline, but not by HFDC. Vascular responses to salbutamol tended to be greater after HFDC. Platelet aggregation induced by collagen or the thromboxane analogue U46619 was unchanged after LFDC or HFDC, whereas both chocolates reduced responses to ADP and the thrombin receptor activator peptide, SFLLRNamide (TRAP6), relative to baseline. Pre-incubation of platelets with theobromine also attenuated platelet aggregation induced by ADP or TRAP6. We conclude that consumption of HFDC confers modest improvements in cardiovascular function. Platelet aggregation is modulated by a flavanol-independent mechanism that is likely due to theobromine. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Magnetic and Contrast Properties of Labeled Platelets for Magnetomotive Optical Coherence Tomography

    PubMed Central

    Oldenburg, Amy L.; Gallippi, Caterina M.; Tsui, Frank; Nichols, Timothy C.; Beicker, Kellie N.; Chhetri, Raghav K.; Spivak, Dmitry; Richardson, Aaron; Fischer, Thomas H.

    2010-01-01

    This article introduces a new functional imaging paradigm that uses optical coherence tomography (OCT) to detect rehydrated, lyophilized platelets (RL platelets) that are in the preclinical trial stage and contain superparamagnetic iron oxides (SPIOs) approved by the U.S. Food and Drug Administration. Platelets are highly functional blood cells that detect and adhere to sites of vascular endothelial damage by forming primary hemostatic plugs. By applying magnetic gradient forces, induced nanoscale displacements (magnetomotion) of the SPIO-RL platelets are detected as optical phase shifts in OCT. In this article, we characterize the iron content and magnetic properties of SPIO-RL platelets, construct a model to predict their magnetomotion in a tissue medium, and demonstrate OCT imaging in tissue phantoms and ex vivo pig arteries. Tissue phantoms containing SPIO-RL platelets exhibited >3 dB contrast/noise ratio at ≥1.5 × 109 platelets/cm3. OCT imaging was performed on ex vivo porcine arteries after infusion of SPIO-RL platelets, and specific contrast was obtained on an artery that was surface-damaged (P < 10−6). This may enable new technologies for in vivo monitoring of the adherence of SPIO-RL platelets to sites of bleeding and vascular damage, which is broadly applicable for assessing trauma and cardiovascular diseases. PMID:20923673

  16. Protein A Sepharose immunoadsorption can restore the efficacy of platelet concentrates in patients with Glanzmann's thrombasthenia and anti-glycoprotein IIb-IIIa antibodies.

    PubMed

    Martin, Isabelle; Kriaa, Fayçal; Proulle, Valérie; Guillet, Benoît; Kaplan, Cécile; D'Oiron, Roseline; Debré, Marianne; Fressinaud, Edith; Laurian, Yyes; Tchernia, Gil; Charpentier, Bernard; Lambert, Thierry; Dreyfus, Marie

    2002-12-01

    Type I Glanzmann's thrombasthenia is a rare congenital platelet function disorder, characterized by undetectable platelet membrane glycoprotein IIb-IIIa (GPIIb-IIIa). Severe bleeding is controlled by transfusion of normal platelets, leading in some cases to the occurrence of anti-GPIIb-IIIa isoantibodies, which induces a loss of transfused platelet efficacy. We used immunoadsorption on protein A Sepharose (IA-PA), which has been shown to be efficient in decreasing the titre of antibodies in several immune diseases, in three patients with Glanzmann's thrombasthenia and anti-GPIIb-IIIa isoantibodies on five different occasions. IA-PA was well tolerated with no deleterious side-effects reported. It induced a dramatic decrease of total immunoglobulin (Ig)G, including anti-GPIIb-IIIa isoantibody levels, as assessed by the monoclonal antibody-specific immobilization of platelet antigens test and the ex vivo inhibition of normal platelet aggregation induced by the patient's platelet-rich or platelet-poor plasma. Elimination of the antibody was associated with a correction of the bleeding time following platelet transfusion. IA-PA combined with platelet transfusion made it possible to control two life-threatening haemorrhages, and allowed two surgical procedures and one bone marrow transplantation to be performed safely. Our experience suggests that IA-PA, which restores the haemostatic efficacy of platelet transfusion, is a valuable therapeutic strategy in patients with Glanzmann's thrombasthenia and anti-GPIIb-IIIa isoantibodies.

  17. Platelet Counts in Insoluble Platelet-Rich Fibrin Clots: A Direct Method for Accurate Determination.

    PubMed

    Kitamura, Yutaka; Watanabe, Taisuke; Nakamura, Masayuki; Isobe, Kazushige; Kawabata, Hideo; Uematsu, Kohya; Okuda, Kazuhiro; Nakata, Koh; Tanaka, Takaaki; Kawase, Tomoyuki

    2018-01-01

    Platelet-rich fibrin (PRF) clots have been used in regenerative dentistry most often, with the assumption that growth factor levels are concentrated in proportion to the platelet concentration. Platelet counts in PRF are generally determined indirectly by platelet counting in other liquid fractions. This study shows a method for direct estimation of platelet counts in PRF. To validate this method by determination of the recovery rate, whole-blood samples were obtained with an anticoagulant from healthy donors, and platelet-rich plasma (PRP) fractions were clotted with CaCl 2 by centrifugation and digested with tissue-plasminogen activator. Platelet counts were estimated before clotting and after digestion using an automatic hemocytometer. The method was then tested on PRF clots. The quality of platelets was examined by scanning electron microscopy and flow cytometry. In PRP-derived fibrin matrices, the recovery rate of platelets and white blood cells was 91.6 and 74.6%, respectively, after 24 h of digestion. In PRF clots associated with small and large red thrombi, platelet counts were 92.6 and 67.2% of the respective total platelet counts. These findings suggest that our direct method is sufficient for estimating the number of platelets trapped in an insoluble fibrin matrix and for determining that platelets are distributed in PRF clots and red thrombi roughly in proportion to their individual volumes. Therefore, we propose this direct digestion method for more accurate estimation of platelet counts in most types of platelet-enriched fibrin matrix.

  18. Platelet Counts in Insoluble Platelet-Rich Fibrin Clots: A Direct Method for Accurate Determination

    PubMed Central

    Kitamura, Yutaka; Watanabe, Taisuke; Nakamura, Masayuki; Isobe, Kazushige; Kawabata, Hideo; Uematsu, Kohya; Okuda, Kazuhiro; Nakata, Koh; Tanaka, Takaaki; Kawase, Tomoyuki

    2018-01-01

    Platelet-rich fibrin (PRF) clots have been used in regenerative dentistry most often, with the assumption that growth factor levels are concentrated in proportion to the platelet concentration. Platelet counts in PRF are generally determined indirectly by platelet counting in other liquid fractions. This study shows a method for direct estimation of platelet counts in PRF. To validate this method by determination of the recovery rate, whole-blood samples were obtained with an anticoagulant from healthy donors, and platelet-rich plasma (PRP) fractions were clotted with CaCl2 by centrifugation and digested with tissue-plasminogen activator. Platelet counts were estimated before clotting and after digestion using an automatic hemocytometer. The method was then tested on PRF clots. The quality of platelets was examined by scanning electron microscopy and flow cytometry. In PRP-derived fibrin matrices, the recovery rate of platelets and white blood cells was 91.6 and 74.6%, respectively, after 24 h of digestion. In PRF clots associated with small and large red thrombi, platelet counts were 92.6 and 67.2% of the respective total platelet counts. These findings suggest that our direct method is sufficient for estimating the number of platelets trapped in an insoluble fibrin matrix and for determining that platelets are distributed in PRF clots and red thrombi roughly in proportion to their individual volumes. Therefore, we propose this direct digestion method for more accurate estimation of platelet counts in most types of platelet-enriched fibrin matrix. PMID:29450197

  19. Effects of Rivaroxaban on Platelet Activation and Platelet–Coagulation Pathway Interaction

    PubMed Central

    Heitmeier, Stefan; Laux, Volker

    2015-01-01

    Introduction: Activation of coagulation and platelets is closely linked, and arterial thrombosis involves coagulation activation as well as platelet activation and aggregation. In these studies, we investigated the possible synergistic effects of rivaroxaban in combination with antiplatelet agents on thrombin generation and platelet aggregation in vitro and on arterial thrombosis and hemostasis in rat models. Materials and Methods: Thrombin generation was measured by the Calibrated Automated Thrombogram method (0.5 pmol/L tissue factor) using human platelet-rich plasma (PRP) spiked with rivaroxaban (15, 30, or 60 ng/mL), ticagrelor (1.0 µg/mL), and acetylsalicylic acid (ASA; 100 µg/mL). Tissue factor-induced platelet aggregation was measured in PRP spiked with rivaroxaban (15 or 30 ng/mL), ticagrelor (1 or 3 µg/mL), or a combination of these. An arteriovenous (AV) shunt model in rats was used to determine the effects of rivaroxaban (0.01, 0.03, or 0.1 mg/kg), clopidogrel (1 mg/kg), ASA (3 mg/kg), and combinations on arterial thrombosis. Results: Rivaroxaban inhibited thrombin generation in a concentration-dependent manner and the effect was enhanced with ticagrelor and ticagrelor plus ASA. Rivaroxaban and ticagrelor also concentration-dependently inhibited tissue factor-induced platelet aggregation, and their combination increased the inhibition synergistically. In the AV shunt model, rivaroxaban dose-dependently reduced thrombus formation. Combining subefficacious or weakly efficacious doses of rivaroxaban with ASA or ASA plus clopidogrel increased the antithrombotic effect. Conclusion: These data indicate that the combination of rivaroxaban with single or dual antiplatelet agents works synergistically to reduce platelet activation, which may in turn lead to the delayed/reduced formation of coagulation complexes and vice versa, thereby enhancing antithrombotic potency. PMID:25848131

  20. Platelet activation in essential hypertension during exercise: pre- and post-treatment changes with an angiotensin II receptor blocker.

    PubMed

    Gkaliagkousi, Eugenia; Gavriilaki, Eleni; Yiannaki, Efi; Markala, Dimitra; Papadopoulos, Nikolaos; Triantafyllou, Areti; Anyfanti, Panagiota; Petidis, Konstantinos; Garypidou, Vasileia; Doumas, Michael; Ferro, Albert; Douma, Stella

    2014-04-01

    Acute exercise may exert deleterious effects on the cardiovascular system through a variety of pathophysiological mechanisms, including increased platelet activation. However, the degree of exercise-induced platelet activation in untreated hypertensive (UH) individuals as compared with normotensive (NT) individuals has yet to be established. Furthermore, the effect of antihypertensive treatment on exercise-induced platelet activation in essential hypertension (EH) remains unknown. Study 1 consisted of 30 UH and 15 NT subjects. UH subjects who received treatment were included in study 2 and were followed-up after a 3-month treatment period with an angiotensin II receptor blocker (ARB; valsartan). Circulating monocyte-platelet aggregates (MPA) and platelet P-selectin were measured as platelet activation markers at baseline, immediately after a treadmill exercise test, and 10, 30, and 90 minutes later. Maximal platelet activation was observed at 10 minutes after peak exercise in both groups. In UH subjects, MPA levels remained increased at 30 minutes after peak exercise, despite BP fall to baseline levels. MPA levels were significantly higher in UH subjects than NT subjects at maximal exercise and at 10 and 30 minutes of recovery. Post-treatment MPA levels increased significantly only at 10 minutes into recovery and were similar to those of NT subjects. Acute high-intensity exercise exaggerates platelet activation in untreated patients with EH compared with NT individuals. Angiotensin II receptor blockade with adequate BP control greatly improves exercise-induced platelet activation in EH. Further studies are needed to clarify whether this phenomenon depends purely on BP lowering or benefits also from the pleiotropic effects of ARBs.

  1. Platelet abnormalities in adults with severe pulmonary arterial hypertension related to congenital heart defects (Eisenmenger syndrome).

    PubMed

    Remková, Anna; Šimková, Iveta; Valkovičová, Tatiana; Kaldarárová, Monika

    2016-12-01

    Patients with severe pulmonary arterial hypertension suffer from life-threatening thrombotic and bleeding complications. The aim of this study was to compare selected platelet, endothelial, and coagulation parameters in healthy volunteers and patients with severe pulmonary arterial hypertension because of congenital heart defects. The study included healthy volunteers (n = 50) and patients with cyanotic congenital heart defects classified as Eisenmenger syndrome (n = 41). We investigated platelet count, mean platelet volume, and platelet aggregation - spontaneous and induced by various concentrations of five agonists. Von Willebrand factor (vWF), fibrinogen, factor VIII and XII, plasminogen activator inhibitor, antithrombin, D-dimer, and antiphospholipid antibodies were also investigated. We found a decreased platelet count [190 (147-225) vs. 248 (205-295) 10 l, P < 0.0001], higher mean platelet volume [10.9 (10.1-12.0) vs. 10.2 (9.4-10.4) fl, P < 0.0001], and significantly decreased platelet aggregation (induced by five agonists, in various concentrations) in patients with Eisenmenger syndrome compared with controls. These changes were accompanied by an increase of plasma vWF antigen [141.6 (108.9-179.1) vs. 117.4 (9.2-140.7) IU/dl, P = 0.022] and serum anti-β2-glycoprotein [2.07 (0.71-3.41) vs. 0.47 (0.18-0.99) U/ml, P < 0.0001]. Eisenmenger syndrome is accompanied by platelet abnormalities. Thrombocytopenia with increased platelet size is probably due to a higher platelet turnover associated with platelet activation. Impaired platelet aggregation can reflect specific platelet behaviour in patients with Eisenmenger syndrome. These changes can be related both to bleeding and to thrombotic events. A higher vWF antigen may be a consequence of endothelial damage in Eisenmenger syndrome, but the cause for an increase of anti-β2-glycoprotein is unknown.

  2. HILDA/LIF urinary excretion during acute kidney rejection.

    PubMed

    Taupin, J L; Morel, D; Moreau, J F; Gualde, N; Potaux, L; Bezian, J H

    1992-03-01

    Recently, a new lymphokine called HILDA (human interleukin for DA cells) has been described and cloned. This cytokine, initially described to be produced by alloreactive T lymphocyte clones grown from a rejected human kidney allograft, is identical to other factors termed D-factor, differentiation-inducing factor, differentiation inhibitory activity, hepatocyte-stimulating factor III, and leukemia inhibitory factor. HILDA/LIF induces various effects on neural, hemopoietic, embryonic cells as well as on bone remodeling and acute phase protein synthesis in hepatocyte. In this study we demonstrate the presence of HILDA/LIF in the urine but not in the serum of kidney graft recipients during acute rejection episodes, whereas this lymphokine was detectable neither in the serum nor in the urine of kidney transplanted patients with stable renal function. These data reinforce the notion of a possible role for this lymphokine in the inflammatory and/or the immune response.

  3. On the Use of the Platelet Activity State Assay for the In Vitro Quantification of Platelet Activation in Blood Recirculating Devices for Extracorporeal Circulation.

    PubMed

    Consolo, Filippo; Valerio, Lorenzo; Brizzola, Stefano; Rota, Paolo; Marazzato, Giulia; Vincoli, Valentina; Reggiani, Stefano; Redaelli, Alberto; Fiore, Gianfranco

    2016-10-01

    We designed an experimental setup to characterize the thrombogenic potential associated with blood recirculating devices (BRDs) used in extracorporeal circulation (ECC). Our methodology relies on in vitro flow loop platelet recirculation experiments combined with the modified-prothrombinase platelet activity state (PAS) assay to quantify the bulk thrombin production rate of circulated platelets, which correlates to the platelet activation (PA) level. The method was applied to a commercial neonatal hollow fiber membrane oxygenator. In analogous hemodynamic environment, we compared the PA level resulting from multiple passes of platelets within devices provided with phosphorylcholine (PC)-coated and noncoated (NC) fibers to account for flow-related mechanical factors (i.e., fluid-induced shear stress) together with surface contact activation phenomena. We report for the first time that PAS assay is not significantly sensitive to the effect of material coating under clinically pertinent flow conditions (500 mL/min), while providing straightforward information on shear-mediated PA dynamics in ECC devices. Being that the latter is intimately dependent on local flow dynamics, according to our results, the rate of thrombin production as measured by the PAS assay is a valuable biochemical marker of the selective contribution of PA in BRDs induced by device design features. Thus, we recommend the use of PAS assay as a means of evaluating the effect of modification of specific device geometrical features and/or different design solutions for developing ECC devices providing flow conditions with reduced thrombogenic impact. Copyright © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  4. Farnesoid X Receptor and Liver X Receptor Ligands Initiate Formation of Coated Platelets

    PubMed Central

    Unsworth, Amanda J.; Bye, Alexander P.; Tannetta, Dionne S.; Desborough, Michael J.R.; Kriek, Neline; Sage, Tanya; Allan, Harriet E.; Crescente, Marilena; Yaqoob, Parveen; Warner, Timothy D.; Jones, Chris I.

    2017-01-01

    Objectives— The liver X receptors (LXRs) and farnesoid X receptor (FXR) have been identified in human platelets. Ligands of these receptors have been shown to have nongenomic inhibitory effects on platelet activation by platelet agonists. This, however, seems contradictory with the platelet hyper-reactivity that is associated with several pathological conditions that are associated with increased circulating levels of molecules that are LXR and FXR ligands, such as hyperlipidemia, type 2 diabetes mellitus, and obesity. Approach and Results— We, therefore, investigated whether ligands for the LXR and FXR receptors were capable of priming platelets to the activated state without stimulation by platelet agonists. Treatment of platelets with ligands for LXR and FXR converted platelets to the procoagulant state, with increases in phosphatidylserine exposure, platelet swelling, reduced membrane integrity, depolarization of the mitochondrial membrane, and microparticle release observed. Additionally, platelets also displayed features associated with coated platelets such as P-selectin exposure, fibrinogen binding, fibrin generation that is supported by increased serine protease activity, and inhibition of integrin αIIbβ3. LXR and FXR ligand-induced formation of coated platelets was found to be dependent on both reactive oxygen species and intracellular calcium mobilization, and for FXR ligands, this process was found to be dependent on cyclophilin D. Conclusions— We conclude that treatment with LXR and FXR ligands initiates coated platelet formation, which is thought to support coagulation but results in desensitization to platelet stimuli through inhibition of αIIbβ3 consistent with their ability to inhibit platelet function and stable thrombus formation in vivo. PMID:28619996

  5. Thrombin Receptor-Activating Protein (TRAP)-Activated Akt Is Involved in the Release of Phosphorylated-HSP27 (HSPB1) from Platelets in DM Patients

    PubMed Central

    Tokuda, Haruhiko; Kuroyanagi, Gen; Tsujimoto, Masanori; Matsushima-Nishiwaki, Rie; Akamatsu, Shigeru; Enomoto, Yukiko; Iida, Hiroki; Otsuka, Takanobu; Ogura, Shinji; Iwama, Toru; Kojima, Kumi; Kozawa, Osamu

    2016-01-01

    It is generally known that heat shock protein 27 (HSP27) is phosphorylated through p38 mitogen-activated protein (MAP) kinase. We have previously reported that HSP27 is released from human platelets associated with collagen-induced phosphorylation. In the present study, we conducted an investigation into the effect of thrombin receptor-activating protein (TRAP) on the release of HSP27 in platelets in type 2 diabetes mellitus (DM) patients. The phosphorylated-HSP27 levels induced by TRAP were directly proportional to the aggregation of platelets. The levels of phosphorylated-HSP27 (Ser-78) were correlated with the levels of phosphorylated-p38 MAP kinase and phosphorylated-Akt in the platelets stimulated by 10 µM TRAP but not with those of phosphorylated-p44/p42 MAP kinase. The levels of HSP27 released from the TRAP (10 µM)-stimulated platelets were correlated with the levels of phosphorylated-HSP27 in the platelets. The released platelet-derived growth factor-AB (PDGF-AB) levels were in parallel with the HSP27 levels released from the platelets stimulated by 10 µM TRAP. Although the area under the curve (AUC) of small aggregates (9–25 µm) induced by 10 µM TRAP showed no significant correlation with the released HSP27 levels, AUC of medium aggregates (25–50 µm), large aggregates (50–70 µm) and light transmittance were significantly correlated with the released HSP27 levels. TRAP-induced phosphorylation of HSP27 was truly suppressed by deguelin, an inhibitor of Akt, in the platelets from a healthy subject. These results strongly suggest that TRAP-induced activation of Akt in addition to p38 MAP kinase positively regulates the release of phosphorylated-HSP27 from human platelets, which is closely related to the platelet hyper-aggregation in type 2 DM patients. PMID:27187380

  6. Thrombin Receptor-Activating Protein (TRAP)-Activated Akt Is Involved in the Release of Phosphorylated-HSP27 (HSPB1) from Platelets in DM Patients.

    PubMed

    Tokuda, Haruhiko; Kuroyanagi, Gen; Tsujimoto, Masanori; Matsushima-Nishiwaki, Rie; Akamatsu, Shigeru; Enomoto, Yukiko; Iida, Hiroki; Otsuka, Takanobu; Ogura, Shinji; Iwama, Toru; Kojima, Kumi; Kozawa, Osamu

    2016-05-14

    It is generally known that heat shock protein 27 (HSP27) is phosphorylated through p38 mitogen-activated protein (MAP) kinase. We have previously reported that HSP27 is released from human platelets associated with collagen-induced phosphorylation. In the present study, we conducted an investigation into the effect of thrombin receptor-activating protein (TRAP) on the release of HSP27 in platelets in type 2 diabetes mellitus (DM) patients. The phosphorylated-HSP27 levels induced by TRAP were directly proportional to the aggregation of platelets. The levels of phosphorylated-HSP27 (Ser-78) were correlated with the levels of phosphorylated-p38 MAP kinase and phosphorylated-Akt in the platelets stimulated by 10 µM TRAP but not with those of phosphorylated-p44/p42 MAP kinase. The levels of HSP27 released from the TRAP (10 µM)-stimulated platelets were correlated with the levels of phosphorylated-HSP27 in the platelets. The released platelet-derived growth factor-AB (PDGF-AB) levels were in parallel with the HSP27 levels released from the platelets stimulated by 10 µM TRAP. Although the area under the curve (AUC) of small aggregates (9-25 µm) induced by 10 µM TRAP showed no significant correlation with the released HSP27 levels, AUC of medium aggregates (25-50 µm), large aggregates (50-70 µm) and light transmittance were significantly correlated with the released HSP27 levels. TRAP-induced phosphorylation of HSP27 was truly suppressed by deguelin, an inhibitor of Akt, in the platelets from a healthy subject. These results strongly suggest that TRAP-induced activation of Akt in addition to p38 MAP kinase positively regulates the release of phosphorylated-HSP27 from human platelets, which is closely related to the platelet hyper-aggregation in type 2 DM patients.

  7. Overcoming the bottleneck of platelet lysate supply in large-scale clinical expansion of adipose-derived stem cells: A comparison of fresh versus three types of platelet lysates from outdated buffy coat-derived platelet concentrates.

    PubMed

    Glovinski, Peter V; Herly, Mikkel; Mathiasen, Anders B; Svalgaard, Jesper D; Borup, Rehannah; Talman, Maj-Lis M; Elberg, Jens J; Kølle, Stig-Frederik T; Drzewiecki, Krzysztof T; Fischer-Nielsen, Anne

    2017-02-01

    Platelet lysates (PL) represent a promising replacement for xenogenic growth supplement for adipose-derived stem cell (ASC) expansions. However, fresh platelets from human blood donors are not clinically feasible for large-scale cell expansion based on their limited supply. Therefore, we tested PLs prepared via three methods from outdated buffy coat-derived platelet concentrates (PCs) to establish an efficient and feasible expansion of ASCs for clinical use. PLs were prepared by the freeze-thaw method from freshly drawn platelets or from outdated buffy coat-derived PCs stored in the platelet additive solution, InterSol. Three types of PLs were prepared from outdated PCs with platelets suspended in either (1) InterSol (not manipulated), (2) InterSol + supplemented with plasma or (3) plasma alone (InterSol removed). Using these PLs, we compared ASC population doubling time, cell yield, differentiation potential and cell surface markers. Gene expression profiles were analyzed using microarray assays, and growth factor concentrations in the cell culture medium were measured using enzyme-linked immunosorbent assay (ELISA). Of the three PL compositions produced from outdated PCs, removal of Intersol and resuspension in plasma prior to the first freezing process was overall the best. This specific outdated PL induced ASC growth kinetics, surface markers, plastic adherence and differentiation potentials comparable with PL from fresh platelets. ASCs expanded in PL from fresh versus outdated PCs exhibited different expressions of 17 overlapping genes, of which 10 were involved in cellular proliferation, although not significantly reflected by cell growth. Only minor differences in growth factor turnover were observed. PLs from outdated platelets may be an efficient and reliable source of human growth supplement allowing for large-scale ASC expansion for clinical use. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights

  8. The role of Nox1 and Nox2 in GPVI-dependent platelet activation and thrombus formation☆

    PubMed Central

    Walsh, T.G.; Berndt, M.C.; Carrim, N.; Cowman, J.; Kenny, D.; Metharom, P.

    2014-01-01

    Background Activation of the platelet-specific collagen receptor, glycoprotein (GP) VI, induces intracellular reactive oxygen species (ROS) production; however the relevance of ROS to GPVI-mediated platelet responses remains unclear. Objective The objective of this study was to explore the role of the ROS-producing NADPH oxidase (Nox)1 and 2 complexes in GPVI-dependent platelet activation and collagen-induced thrombus formation. Methods and results ROS production was measured by quantitating changes in the oxidation-sensitive dye, H2DCF-DA, following platelet activation with the GPVI-specific agonist, collagen related peptide (CRP). Using a pharmacological inhibitor specific for Nox1, 2-acetylphenothiazine (ML171), and Nox2 deficient mice, we show that Nox1 is the key Nox homolog regulating GPVI-dependent ROS production. Nox1, but not Nox2, was essential for CRP-dependent thromboxane (Tx)A2 production, which was mediated in part through p38 MAPK signaling; while neither Nox1 nor Nox2 was significantly involved in regulating CRP-induced platelet aggregation/integrin αIIbβ3 activation, platelet spreading, or dense granule and α-granule release (ATP release and P-selectin surface expression, respectively). Ex-vivo perfusion analysis of mouse whole blood revealed that both Nox1 and Nox2 were involved in collagen-mediated thrombus formation at arterial shear. Conclusion Together these results demonstrate a novel role for Nox1 in regulating GPVI-induced ROS production, which is essential for optimal p38 activation and subsequent TxA2 production, providing an explanation for reduced thrombus formation following Nox1 inhibition. PMID:24494191

  9. Comparison of point-of-care methods for preparation of platelet concentrate (platelet-rich plasma).

    PubMed

    Weibrich, Gernot; Kleis, Wilfried K G; Streckbein, Philipp; Moergel, Maximilian; Hitzler, Walter E; Hafner, Gerd

    2012-01-01

    This study analyzed the concentrations of platelets and growth factors in platelet-rich plasma (PRP), which are likely to depend on the method used for its production. The cellular composition and growth factor content of platelet concentrates (platelet-rich plasma) produced by six different procedures were quantitatively analyzed and compared. Platelet and leukocyte counts were determined on an automatic cell counter, and analysis of growth factors was performed using enzyme-linked immunosorbent assay. The principal differences between the analyzed PRP production methods (blood bank method of intermittent flow centrifuge system/platelet apheresis and by the five point-of-care methods) and the resulting platelet concentrates were evaluated with regard to resulting platelet, leukocyte, and growth factor levels. The platelet counts in both whole blood and PRP were generally higher in women than in men; no differences were observed with regard to age. Statistical analysis of platelet-derived growth factor AB (PDGF-AB) and transforming growth factor β1 (TGF-β1) showed no differences with regard to age or gender. Platelet counts and TGF-β1 concentration correlated closely, as did platelet counts and PDGF-AB levels. There were only rare correlations between leukocyte counts and PDGF-AB levels, but comparison of leukocyte counts and PDGF-AB levels demonstrated certain parallel tendencies. TGF-β1 levels derive in substantial part from platelets and emphasize the role of leukocytes, in addition to that of platelets, as a source of growth factors in PRP. All methods of producing PRP showed high variability in platelet counts and growth factor levels. The highest growth factor levels were found in the PRP prepared using the Platelet Concentrate Collection System manufactured by Biomet 3i.

  10. Megakaryocytic Smad4 Regulates Platelet Function through Syk and ROCK2 Expression.

    PubMed

    Wang, Yanhua; Jiang, Lirong; Mo, Xi; Lan, Yu; Yang, Xiao; Liu, Xinyi; Zhang, Jian; Zhu, Li; Liu, Junling; Wu, Xiaolin

    2017-09-01

    Smad4, a key transcription factor in the transforming growth factor- β signaling pathway, is involved in a variety of cell physiologic and pathologic processes. Here, we characterized megakaryocyte/platelet-specific Smad4 deficiency in mice to elucidate its effect on platelet function. We found that megakaryocyte/platelet-specific loss of Smad4 caused mild thrombocytopenia and significantly extended first occlusion time and tail bleeding time in mice. Smad4-deficient platelets showed reduced agonist-induced platelet aggregation. Further studies showed that a severe defect was seen in integrin α IIb β 3 -mediated bidirectional (inside-out and outside-in) signaling in Smad4-deficient platelets, as evidenced by reduced fibrinogen binding and α -granule secretion, suppressed platelet spreading and clot retraction. Microarray analysis showed that the expression levels of multiple genes were altered in Smad4-deficient platelets. Among these genes, spleen tyrosine kinase (Syk) and Rho-associated coiled-coil containing protein kinase 2 (ROCK2) were downregulated several times as confirmed by quantitative reverse-transcription polymerase chain reaction and immunoblotting. Further research showed that Smad4 directly regulates ROCK2 transcription but indirectly regulates Syk. Megakaryocyte/platelet-specific Smad4 deficiency caused decreased expression levels of Syk and ROCK2 in platelets. These results suggest potential links among Smad4 deficiency, attenuated Syk, and ROCK2 expression and defective platelet activation. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  11. Chloride channels are necessary for full platelet phosphatidylserine exposure and procoagulant activity.

    PubMed

    Harper, M T; Poole, A W

    2013-12-19

    Platelets enhance thrombin generation at sites of vascular injury by exposing phosphatidylserine during necrosis-like cell death. Anoctamin 6 (Ano6) is required for Ca(2+)-dependent phosphatidylserine exposure and is defective in patients with Scott syndrome, a rare bleeding disorder. Ano6 may also form Cl(-) channels, though the role of Cl(-) fluxes in platelet procoagulant activity has not been explored. We found that Cl(-) channel blockers or removal of extracellular Cl(-) inhibited agonist-induced phosphatidylserine exposure. However, this was not due to direct inhibition of Ca(2+)-dependent scrambling since Ca(2+) ionophore-induced phosphatidylserine exposure was normal. This implies that the role of Ano6 in Ca(2+-)dependent PS exposure is likely to differ from any putative function of Ano6 as a Cl(-) channel. Instead, Cl(-) channel blockade inhibited agonist-induced Ca(2+) entry. Importantly, Cl(-) channel blockers also prevented agonist-induced membrane hyperpolarization, resulting in depolarization. We propose that Cl(-) entry through Cl(-) channels is required for this hyperpolarization, maintaining the driving force for Ca(2+) entry and triggering full phosphatidylserine exposure. This demonstrates a novel role for Cl(-) channels in controlling platelet death and procoagulant activity.

  12. Direct factor IXa inhibition with the RNA-aptamer pegnivacogin reduces platelet reactivity in vitro and residual platelet aggregation in patients with acute coronary syndromes.

    PubMed

    Staudacher, Dawid L; Putz, Vera; Heger, Lukas; Reinöhl, Jochen; Hortmann, Marcus; Zelenkofske, Steven L; Becker, Richard C; Rusconi, Christopher P; Bode, Christoph; Ahrens, Ingo

    2017-04-01

    Residual platelet reactivity is a predictor of poor prognosis in patients with acute coronary syndromes (ACSs) undergoing percutaneous coronary intervention. Thrombin is a major platelet activator and upon initiation of the coagulation cascade, it is subsequently produced downstream of factor IXa, which itself is known to be increased in ACS. Pegnivacogin is a novel RNA-aptamer based factor IXa inhibitor featuring a reversal agent, anivamersen. We hypothesized that pegnivacogin could reduce platelet reactivity. Whole blood samples from healthy volunteers were incubated in vitro in the presence and absence of pegnivacogin and platelet reactivity was analysed. In addition, platelet aggregometry was performed in blood samples from ACS patients in the RADAR trial featuring the intravenous administration of pegnivacogin as well as reversal by anivamersen. In vitro, pegnivacogin significantly reduced adenosine diphosphate-induced CD62P-expression (100% vs. 89.79±4.04%, p=0.027, n=9) and PAC-1 binding (100% vs. 83.02±4.08%, p=0.010, n=11). Platelet aggregation was reduced (97.71±5.30% vs. 66.53±9.92%, p=0.013, n=10) as evaluated by light transmission aggregometry. In the presence of the RNA-aptamer reversal agent anivamersen, neither CD62P-expression nor platelet aggregation was attenuated. In patients with ACS treated with aspirin and clopidogrel, residual platelet aggregation was significantly reduced 20 min after intravenous bolus of 1 mg/kg pegnivacogin (100% versus 43.21±8.23%, p=0.020). Inhibition of factor IXa by pegnivacogin decreases platelet activation and aggregation in vitro. This effect was negated by anivamersen. In ACS patients, platelet aggregation was significantly reduced after intravenous pegnivacogin. An aptamer-based anticoagulant inhibiting factor IXa therefore might be a promising antithrombotic strategy in ACS patients.

  13. Endothelial progenitor cells inhibit platelet function in a P-selectin-dependent manner.

    PubMed

    Abou-Saleh, Haissam; Hachem, Ahmed; Yacoub, Daniel; Gillis, Marc-Antoine; Merhi, Yahye

    2015-05-07

    The role of endothelial progenitor cells (EPCs) in vascular repair is related to their recruitment at the sites of injury and their interaction with different components of the circulatory system. We have previously shown that EPCs bind and inhibit platelet function and impair thrombus formation via prostacyclin secretion, but the role of EPC binding to platelet P-selectin in this process has not been fully characterized. In the present study, we assessed the impact of EPCs on thrombus formation and we addressed the implication of P-selectin in this process. EPCs were generated from human peripheral blood mononuclear cells cultured on fibronectin in conditioned media. The impact of EPCs on platelet aggregation and thrombus formation was investigated in P-selectin deficient (P-sel(-/-)) mice and their wild-type (WT) counterparts. EPCs significantly and dose-dependently impaired collagen-induced whole blood platelet aggregation in WT mice, whereas no effects were observed in P-sel(-/-) mice. Moreover, in a ferric chloride-induced arterial thrombosis model, infusion of EPCs significantly reduced thrombus formation in WT, but not in P-sel(-/-) mice. Furthermore, the relative mass of thrombi generated in EPC-treated P-sel(-/-) mice were significantly larger than those in EPC-treated WT mice, and the number of EPCs recruited within the thrombi and along the arterial wall was reduced in P-sel(-/-) mice as compared to WT mice. This study shows that EPCs impair platelet aggregation and reduce thrombus formation via a cellular mechanism involving binding to platelet P-selectin. These findings add new insights into the role of EPC-platelet interactions in the regulation of thrombotic events during vascular repair.

  14. A time course study on prothrombotic parameters and their modulation by anti-platelet drugs in hyperlipidemic hamsters.

    PubMed

    Singh, Vishal; Jain, Manish; Prakash, Prem; Misra, Ankita; Khanna, Vivek; Tiwari, Rajiv Lochan; Keshari, Ravi Shankar; Singh, Shivendra; Dikshit, Madhu; Barthwal, Manoj Kumar

    2011-06-01

    The present study was undertaken to assess the chronology of major pathological events associated with high cholesterol (HC) diet and their modulation by anti-platelet drugs. Male Golden Syrian hamsters were fed HC diet up to 90 days. Plasma lipid, glucose and coagulation parameters (commercial kits), platelet activation (whole blood aggregation and static adhesion), endothelial dysfunction (aortic ring vasoreactivity), splenocyte TNF-α, IFN-γ and iNOS mRNA transcripts (RT-PCR), and ferric chloride (time to occlusion) induced thrombosis were monitored at 15, 30, 60, and 90 days after HC feeding and compared with normolipidemic hamsters. A significant increase in plasma lipid levels was observed at 15 days of HC feeding, but other parameters remain unaltered. Enhanced ADP, collagen, and thrombin-induced platelet aggregation, splenocyte TNF-α expression along with endothelial dysfunction were observed from 30 to 90 days of HC feeding. Platelet adhesion on collagen-/fibrinogen-coated surface and IFN-γ expression were augmented only after 60 days, while enhanced iNOS expression, reduction in thrombin time, and potentiation of ferric chloride-induced thrombosis was observed only at 90 days of HC feeding. Thus, pathological changes induced by HC diet depend on the duration and extent of hyperlipidemia. Moreover, hamsters treated with anti-platelet drugs aspirin (5 mg/kg) or clopidogrel (10 mg/kg) along with HC feeding exhibited reduction in platelet activation as well as subsequent changes observed in the abovementioned parameters following HC feeding. Since reduction in TNF-α was associated with reversion in endothelial dysfunction and prothrombotic state, the role of platelets is implicated in the pathological changes associated with HC feeding.

  15. Comparison of ultrastructural and nanomechanical signature of platelets from acute myocardial infarction and platelet activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Aiqun; Chen, Jianwei; Liang, Zhi-Hong

    Acute myocardial infarction (AMI) initiation and progression follow complex molecular and structural changes in the nanoarchitecture of platelets. However, it remains poorly understood how the transformation from health to AMI alters the ultrastructural and biomechanical properties of platelets within the platelet activation microenvironment. Here, we show using an atomic force microscope (AFM) that platelet samples, including living human platelets from the healthy and AMI patient, activated platelets from collagen-stimulated model, show distinct ultrastructural imaging and stiffness profiles. Correlative morphology obtained on AMI platelets and collagen-activated platelets display distinct pseudopodia structure and nanoclusters on membrane. In contrast to normal platelets, AMImore » platelets have a stiffer distribution resulting from complicated pathogenesis, with a prominent high-stiffness peak representative of platelet activation using AFM-based force spectroscopy. Similar findings are seen in specific stages of platelet activation in collagen-stimulated model. Further evidence obtained from different force measurement region with activated platelets shows that platelet migration is correlated to the more elasticity of pseudopodia while high stiffness at the center region. Overall, ultrastructural and nanomechanical profiling by AFM provides quantitative indicators in the clinical diagnostics of AMI with mechanobiological significance.« less

  16. The Use of Spinning-Disk Confocal Microscopy for the Intravital Analysis of Platelet Dynamics in Response to Systemic and Local Inflammation

    PubMed Central

    Jenne, Craig N.; Wong, Connie H. Y.; Petri, Björn; Kubes, Paul

    2011-01-01

    Platelets are central players in inflammation and are an important component of the innate immune response. The ability to visualize platelets within the live host is essential to understanding their role in these processes. Past approaches have involved adoptive transfer of labelled platelets, non-specific dyes, or the use of fluorescent antibodies to tag platelets in vivo. Often, these techniques result in either the activation of the platelet, or blockade of specific platelet receptors. In this report, we describe two new methods for intravital visualization of platelet biology, intravenous administration of labelled anti-CD49b, which labels all platelets, and CD41-YFP transgenic mice, in which a percentage of platelets express YFP. Both approaches label endogenous platelets and allow for their visualization using spinning-disk confocal fluorescent microscopy. Following LPS-induced inflammation, we were able to measure a significant increase in both the number and size of platelet aggregates observed within the vasculature of a number of different tissues. Real-time observation of these platelet aggregates reveals them to be large, dynamic structures that are continually expanding and sloughing-off into circulation. Using these techniques, we describe for the first time, platelet recruitment to, and behaviour within numerous tissues of the mouse, both under control conditions and following LPS induced inflammation. PMID:21949865

  17. Meloxicam, 15 mg/day, spares platelet function in healthy volunteers.

    PubMed

    de Meijer, A; Vollaard, H; de Metz, M; Verbruggen, B; Thomas, C; Novakova, I

    1999-10-01

    To study the influence of meloxicam, a cyclooxygenase-2 (COX-2) preferential nonsteroidal anti-inflammatory drug, on serum thromboxane and platelet function in healthy volunteers with use of the maximum recommended daily dosage of 15 mg/day. This study used an open, randomized crossover design. Indomethacin (INN, indometacin) was given as a positive control for nonsteroidal anti-inflammatory drug-induced inhibition of platelet function. The following variables were recorded: thromboxane B2 serum concentrations by radioimmunoassay, platelet aggregation by whole blood aggregometry in response to collagen 1.1 microg/L and to arachidonic acid 0.35 mmol/L, and closure time with use of the PFA-100. Serum thromboxane B2 at baseline was 535+/-233 nmol/L (mean +/- SD) and was reduced for 95% by indomethacin to 26+/-19 nmol/L (P < .001) and for 66% by meloxicam to 183+/-62 nmol/L (P < .001). Maximal platelet aggregation in response to collagen at baseline was 18.7+/-1.6 ohms (ohms). It was reduced by indomethacin to 7.3+/-4.5 ohms (P < .001), but not by meloxicam (19+/-2.5 ohms). Platelet aggregation in response to arachidonic acid at baseline was 12.2+/-2.0 ohms. It was reduced by indomethacin in all subjects to 0 ohms, but not by meloxicam (11+/-2.4 ohms). Closure time at baseline was 128+/-24 seconds and was prolonged by indomethacin to 286+/-38 seconds (P < .001). Meloxicam caused a minor prolongation of the closure time (141+/-32 seconds; P < .05). Meloxicam, 15 mg/day caused a major reduction of maximum thromboxane production but no reduction in collagen- or arachidonic acid-induced platelet aggregation and only minor increase of the closure time.

  18. Comparison of cytotoxic and anti-platelet activities of polyphenolic extracts from Arnica montana flowers and Juglans regia husks.

    PubMed

    Rywaniak, Joanna; Luzak, Boguslawa; Podsedek, Anna; Dudzinska, Dominika; Rozalski, Marcin; Watala, Cezary

    2015-01-01

    Polyphenolic compounds of plant origin are well known to be beneficial to human health: they exert protective effects on haemostasis and have a particular influence on blood platelets. However, the anti-platelet properties of polyphenolic compounds observed so far have not been weighed against their potential cytotoxic action against platelets. The aim of this study was to demonstrate that anti-platelet and cytotoxic effects on blood platelets may interfere and therefore, may often lead to confusion when evaluating the properties of plant extracts or other agents towards blood platelets. The anti-platelet and cytotoxic in vitro effects of plant extracts obtained from the husks of walnuts (J. regia) and flowers of arnica (A. montana) on platelet reactivity and viability were examined. Platelet function was assessed using standard methods (flow cytometry: P-selectin expression, activation of GPIIbIIIa complex, vasodilator-stimulated phosphoprotein, VASP index; turbidimetric and impedance aggregometry) and newly set assays (flow cytometric monitoring of platelet cytotoxicity). The results reveal that none of the studied plant extracts demonstrated cytotoxicity towards blood platelets. The phenolic acid-rich extract of A. montana (7.5 and 15 µg/ml) significantly reduced the ADP-induced aggregation in both whole blood and PRP, and decreased the platelet reactivity index (PRI; VASP phosphorylation) in whole blood, while showing excellent antioxidant capacity. The extract of J. regia husks significantly reduced ADP-induced platelet aggregation in whole blood when applied at 7.5 µg/ml, and only slightly decreased the PRI at 15 µg/ml. Both examined extracts suppressed platelet hyper-reactivity, and such influence did not interfere with cytotoxic effects of the extracts. Thus, its high polyphenol content, excellent antioxidant capacity and distinct anti-platelet properties, in combination with its lack of toxicity, make the extract of A. montana flowers a possible

  19. Stereochemistry- and concentration-dependent effects of phosphatidylserine enrichment on platelet function.

    PubMed

    Meyer, Audrey F; Gruba, Sarah M; Kim, Donghyuk; Meyer, Ben M; Koseoglu, Secil; Dalluge, Joseph J; Haynes, Christy L

    2017-08-01

    Platelets are small (1-2μm in diameter), circulating anuclear cell fragments with important roles in hemostasis and thrombosis that provide an excellent platform for studying the role of membrane components in cellular communication. Platelets use several forms of communication including exocytosis of three distinct granule populations, formation of bioactive lipid mediators, and shape change (allowing for adhesion). This work explores the role of stereochemistry and concentration of exogenous phosphatidylserine (PS) on platelet exocytosis and adhesion. PS, most commonly found in the phosphatidyl-l-serine (l-PS) form, is exposed on the outer leaflet of the cell membrane after the platelet is activated. Knowledge about the impact of exogenous phosphatidylserine on cell-to-cell communication is limited (particularly concentration and stereochemistry effects). This study found that platelets incubated in l-PS or phosphatidyl-d-serine (d-PS) are enriched to the same extent with their respective incubated PS. All levels of l-PS enrichment also showed an increase in platelet cholesterol, but only the 50μM d-PS incubation showed an increase in cholesterol. The uptake of d-PS induced the secretion of granules and manufactured platelet activating factor (PAF) in otherwise unstimulated platelets. The uptake of l-PS had a greater impact on platelet stimulation by decreasing both the amount of δ-granule secretion and the amount of PAF that was manufactured. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Platelet adhesion in hypertension: application of a novel assay of platelet adhesion.

    PubMed

    Nadar, Sunil K; Caine, Graham J; Blann, Andrew D; Lip, Gregory Y H

    2005-01-01

    The increased risk of thromboembolism in hypertension may be related to a prothrombotic or hypercoagulable state, with abnormalities in haemostasis and platelet function. To investigate the role of platelets in the pathogenesis of thrombosis in hypertension, we applied a novel new assay to detect and quantify the degree of platelet adhesion to a defined coagulation molecule. Platelet-rich plasma (PRP) and citrated plasma (CP) were obtained from 50 patients with hypertension (25 treated, and 25 untreated) and 30 healthy controls. A suspension of 2 x 10(7) platelets were incubated for one hour in microtitre plates pre-coated with 5mg/mL fibrinogen. The supernatant was carefully aspirated, lysed with 5% tween and stored at -70 degrees C as supernatant platelet lysate (SPL). The wells were carefully washed with saline and bound platelets lysed as before, and stored at -70 degrees C as bound-platelet lysate (BPL). Soluble P-selectin (sP-sel) was determined in CP, SPL and BPL by enzyme-linked immunosorbent assay (ELISA). Patients with hypertension (both treated and previously untreated) had increased platelet adhesion, as determined by increased lysate sP-sel (P=0.002) in BPL, with no change in SPL (P=0.5) compared to healthy controls. There was no significant difference between treated and previously untreated hypertensives. Platelets from patients with hypertension display increased adhesion to an important coagulation factor (fibrinogen). This may, in part, account for the increased risk of thrombosis seen in these patients.

  1. Additive solutions differentially affect metabolic and functional parameters of platelet concentrates.

    PubMed

    Leitner, G C; List, J; Horvath, M; Eichelberger, B; Panzer, S; Jilma-Stohlawetz, P

    2016-01-01

    Pathogen inactivation (PI) of platelet concentrates with extension of shelf life to 7 days requires the use of platelet additive solutions (PAS). We examined the quality of platelets resuspended in three different PAS stored for up to 7 days. Twelve triple adult dose platelet concentrates (PC) were collected using the TrimaAccel® collection system. Each highly concentrated product was divided into three equal parts, and the additive solutions (Composol® or SSP+® or Intersol™) were added to a final concentration of 56% PAS and 44% plasma. Samples were drawn on days 1, 5 and 7 to measure pH, glucose, lactate dehydrogenase (LDH), lactate, mean platelet volume (MPV) and the aggregation response to collagen and the thrombin receptor agonist peptide-6. Further, p-selectin expression on platelets was assessed. No statistically significant changes were observed for pH and MPV during 7 days of storage in all PAS containing PCs, whereas glucose decreased and LDH and lactate increased over time (P < 0·05). These changes were particularly evident in Intersol PCs on days 5 and 7 compared with Composol® PCs or SSP+® PCs (P < 0·05). Platelets from Intersol PCs exhibited the highest baseline activation of p-selectin and showed reduced collagen- and TRAP-6-induced aggregation. Resuspension of platelets in Intersol for 7 days results in increased platelet activation and platelet metabolism compared with SSP+® or Composol®. Further clinical studies are needed to evaluate whether the observed differences in PAS-PCs affect the recovery rate or the life span of transfused platelets. © 2015 International Society of Blood Transfusion.

  2. Vasorelaxant and anti-platelet aggregation effects of aqueous Ocimum basilicum extract.

    PubMed

    Amrani, Souliman; Harnafi, Hicham; Gadi, Dounia; Mekhfi, Hassane; Legssyer, Abdelkhaleq; Aziz, Mohammed; Martin-Nizard, Françoise; Bosca, Lisardo

    2009-08-17

    In this work the endothelium-dependant vasorelaxant and anti-platelet aggregation activities of an aqueous extract from Ocimum basilicum were studied. The vasorelaxant effect was undertaken in thoracic aorta from three experimental groups of rats: one of them (NCG) fed with standard diet, the second (HCG) with hypercholesterolemic diet (HCD) and the third (BTG) with hypercholesterolemic diet together with an intragastric administration of Ocimum basilicum extract at a dose of 0.5 g/kg body weight for a period of 10 weeks. The in vitro anti-platelet aggregation of Ocimum basilicum extract was studied using thrombin (0.5 U/ml) and ADP (5 microM) as agonists. The results show that the HCD statistically decreases vascular relaxation in HCG compared to NCG (p<0.001) and increases the vascular responses to phenylephrine (p<0.02). Ocimum basilicum extract exerts a significant vasorelaxant effect at 10(-5) M (p<0.01) and 10(-4) M carbachol (p=0.001). The plant extract also tends to suppress the elevated contractions induced by HCD (p=0.05). The extract inhibits ADP-induced platelet aggregation by 13%, 28.2%, 30.5%, 44.7% and 53% at a dose of 1, 2, 3, 4 and 5 g/l, respectively. Thrombin-induced platelet activation was also reduced by 15%, 23%, 40%, 38.4%, and 42% at the same doses of extract described above. The use of Ocimum basilicum as medicinal plant could be beneficial for cardiovascular system.

  3. Platelet aggregation caused by Carybdea rastonii toxins (CrTX-I, II and III) obtained from a jellyfish, Carybdea rastonii.

    PubMed

    Azuma, H; Sekizaki, S; Satoh, A; Nakajima, T

    1986-05-01

    The pharmacological mechanisms of platelet aggregation induced by highly toxic proteins (CrTX-I, CrTX-II, and CrTX-III) obtained from tentacles of a jellyfish, Carybdea rastonii, were investigated. When the partially purified toxin (pCrTX) and CrTXs were added to the citrated platelet-rich plasma (PRP), aggregation was produced in a concentration-dependent manner. The activity of CrTXs was approximately 100 times more potent than pCrTX. The CrTXs-induced aggregation was little affected by indomethacin and quinacrine at concentrations sufficient to inhibit arachidonic acid- and collagen-induced aggregation. The CrTXs-induced aggregation in washed platelets was significantly augmented in the presence of Ca2+. The pretreatment with verapamil failed to modify this augmentation of aggregation. The concentration of cytoplasmic-free calcium ([Ca2+]i) of platelets was increased by CrTXs at the same concentrations that produced aggregation. This effect of CrTXs was again little affected by verapamil. CrTXs at the same concentrations as those that produced aggregation and increased [Ca2+]i caused depolarization of platelets, which was unchanged after pretreatment with sodium or potassium transport inhibitors. CrTX-I significantly increased the 22Na flux into platelets and this effect of CrTX-I was unaffected by tetrodotoxin. The CrTX-I-induced aggregation, depolarization, and increase in [Ca2+]i were all significantly attenuated in the low Na+ medium. These results suggest that CrTXs cause a massive depolarization by increasing cation permeability and this generalized depolarization permits an inward movement of Ca2+ down its electrochemical gradient which, in turn, triggers platelet aggregation.

  4. Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow.

    PubMed

    AlMomani, T; Udaykumar, H S; Marshall, J S; Chandran, K B

    2008-06-01

    Platelet activation, adhesion, and aggregation on the blood vessel and implants result in the formation of mural thrombi. Platelet dynamics in blood flow is influenced by the far more numerous erythrocytes (RBCs). This is particularly the case in the smaller blood vessels (arterioles) and in constricted regions of blood flow (such as in valve leakage and hinge regions) where the dimensions of formed elements of blood become comparable with that of the flow geometry. In such regions, models to predict platelet motion, activation, aggregation and adhesion must account for platelet-RBC interactions. This paper studies platelet-RBC interactions in shear flows by performing simulations of micro-scale dynamics using a computational fluid dynamics (CFD) model. A level-set sharp-interface immersed boundary method is employed in the computations in which RBC and platelet boundaries are tracked on a two-dimensional Cartesian grid. The RBCs are assumed to have an elliptical shape and to deform elastically under fluid forces while the platelets are assumed to behave as rigid particles of circular shape. Forces and torques between colliding blood cells are modeled using an extension of the soft-sphere model for elliptical particles. RBCs and platelets are transported under the forces and torques induced by fluid flow and cell-cell and cell-platelet collisions. The simulations show that platelet migration toward the wall is enhanced with increasing hematocrit, in agreement with past experimental observations. This margination is seen to occur due to hydrodynamic forces rather than collisional forces or volumetric exclusion effects. The effect of fluid shear forces on the platelets increases exponentially as a function of hematocrit for the range of parameters covered in this study. The micro-scale analysis can be potentially employed to obtain a deterministic relationship between fluid forces and platelet activation and aggregation in blood flow past cardiovascular implants.

  5. Apheresis platelet concentrates contain platelet-derived and endothelial cell-derived microparticles.

    PubMed

    Rank, A; Nieuwland, R; Liebhardt, S; Iberer, M; Grützner, S; Toth, B; Pihusch, R

    2011-02-01

    Microparticles (MP) are membrane vesicles with thrombogenic and immunomodulatory properties. We determined MP subgroups from resting platelets, activated platelets and endothelial cells in donors and apheresis platelet concentrates (PC). MP were double stained with annexin V and CD61 (platelet-derived MP; PMP), P-selectin or CD63 (MP from activated platelets) and CD144 plus E-selectin (endothelial cell-derived MP; EMP) and detected by flow cytometry in platelet donors (n=36) and apheresis PC (n=11; Trima™). PC contained MP, mainly from resting platelets [93% (90-95)], and minor fractions of PMP from activated platelets [P-selectin(+) or CD63(+); 4·8% (3·2-7·7) and 2·6% (2·0-4·0)]. Compared to donors, levels of annexin V+ MP, PMP, P-selectin(+) and CD63(+) MP were 1·7-, 2·3-, 8·6- and 3·1-fold higher in PC (all P<0·05). During storage (1-5 days), levels of annexin V+ MP and PMP did not increase, although small increases in the fraction of P-selectin(+) or CD63(+) MP occurred (both P<0·05). PC also contained EMP, which were 2·6- to 3·7-fold enriched in PC compared to donors (P<0·05). Transfusion of apheresis PC also results in transfusion of HLA-carrying PMP and EMP. This might counteract the aim of reducing transfused HLA load by leucodepletion. The increases in PMP exposing P-selectin or CD63 reflect mild platelet activation during storage. We conclude that in leucodepleted platelet apheresis using fluidized particle bed technology, MP are harvested mainly from the donor by apheresis. Improvement in apheresis technology might reduce MP load. © 2010 The Author(s). Vox Sanguinis © 2010 International Society of Blood Transfusion.

  6. Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF).

    PubMed

    Dohan Ehrenfest, David M; Rasmusson, Lars; Albrektsson, Tomas

    2009-03-01

    The topical use of platelet concentrates is recent and its efficiency remains controversial. Several techniques for platelet concentrates are available; however, their applications have been confusing because each method leads to a different product with different biology and potential uses. Here, we present classification of the different platelet concentrates into four categories, depending on their leucocyte and fibrin content: pure platelet-rich plasma (P-PRP), such as cell separator PRP, Vivostat PRF or Anitua's PRGF; leucocyte- and platelet-rich plasma (L-PRP), such as Curasan, Regen, Plateltex, SmartPReP, PCCS, Magellan or GPS PRP; pure plaletet-rich fibrin (P-PRF), such as Fibrinet; and leucocyte- and platelet-rich fibrin (L-PRF), such as Choukroun's PRF. This classification should help to elucidate successes and failures that have occurred so far, as well as providing an objective approach for the further development of these techniques.

  7. A comprehensive proteomics study on platelet concentrates: Platelet proteome, storage time and Mirasol pathogen reduction technology.

    PubMed

    Salunkhe, Vishal; De Cuyper, Iris M; Papadopoulos, Petros; van der Meer, Pieter F; Daal, Brunette B; Villa-Fajardo, María; de Korte, Dirk; van den Berg, Timo K; Gutiérrez, Laura

    2018-03-19

    Platelet concentrates (PCs) represent a blood transfusion product with a major concern for safety as their storage temperature (20-24°C) allows bacterial growth, and their maximum storage time period (less than a week) precludes complete microbiological testing. Pathogen inactivation technologies (PITs) provide an additional layer of safety to the blood transfusion products from known and unknown pathogens such as bacteria, viruses, and parasites. In this context, PITs, such as Mirasol Pathogen Reduction Technology (PRT), have been developed and are implemented in many countries. However, several studies have shown in vitro that Mirasol PRT induces a certain level of platelet shape change, hyperactivation, basal degranulation, and increased oxidative damage during storage. It has been suggested that Mirasol PRT might accelerate what has been described as the platelet storage lesion (PSL), but supportive molecular signatures have not been obtained. We aimed at dissecting the influence of both variables, that is, Mirasol PRT and storage time, at the proteome level. We present comprehensive proteomics data analysis of Control PCs and PCs treated with Mirasol PRT at storage days 1, 2, 6, and 8. Our workflow was set to perform proteomics analysis using a gel-free and label-free quantification (LFQ) approach. Semi-quantification was based on LFQ signal intensities of identified proteins using MaxQuant/Perseus software platform. Data are available via ProteomeXchange with identifier PXD008119. We identified marginal differences between Mirasol PRT and Control PCs during storage. However, those significant changes at the proteome level were specifically related to the functional aspects previously described to affect platelets upon Mirasol PRT. In addition, the effect of Mirasol PRT on the platelet proteome appeared not to be exclusively due to an accelerated or enhanced PSL. In summary, semi-quantitative proteomics allows to discern between proteome changes due to

  8. Endogenous Memory CD8 T Cells Directly Mediate Cardiac Allograft Rejection

    PubMed Central

    Su, C. A.; Iida, S.; Abe, T.; Fairchild, R. L.

    2014-01-01

    Differences in levels of environmentally induced memory T cells that cross-react with donor MHC molecules are postulated to account for the efficacy of allograft tolerance inducing strategies in rodents versus their failure in nonhuman primates and human transplant patients. Strategies to study the impact of donor-reactive memory T cells on allografts in rodents have relied on the pre-transplant induction of memory T cells cross-reactive with donor allogeneic MHC molecules through recipient viral infection, priming directly with donor antigen, or adoptive transfer of donor-antigen primed memory T cells. Each approach accelerates allograft rejection and confers resistance to tolerance induction, but also biases the T cell repertoire to strong donor-reactivity. The ability of endogenous memory T cells within unprimed mice to directly reject an allograft is unknown. Here we show a direct association between increased duration of cold ischemic allograft storage and numbers and enhanced functions of early graft infiltrating endogenous CD8 memory T cells. These T cells directly mediate rejection of allografts subjected to prolonged ischemia and this rejection is resistant to costimulatory blockade. These findings recapitulate the clinically significant impact of endogenous memory T cells with donor reactivity in a mouse transplant model in the absence of prior recipient priming. PMID:24502272

  9. EV-077 in vitro inhibits platelet aggregation in type-2 diabetics on aspirin.

    PubMed

    Sakariassen, Kjell S; Femia, Eti A; Daray, Federico M; Podda, Gian M; Razzari, Cristina; Pugliano, Mariateresa; Errasti, Andrea E; Armesto, Arnaldo R; Nowak, Wanda; Alberts, Pēteris; Meyer, Jean-Philippe; Sorensen, Alexandra S; Cattaneo, Marco; Rothlin, Rodolfo P

    2012-11-01

    This study aimed to characterize the in vitro effect of EV-077, a compound that antagonises the binding of prostanoids and isoprostanes to the thromboxane receptor (TP) and inhibits the thromboxane synthase (TS), on platelet aggregation of patients with type-2 diabetes and coronary artery disease (CAD) on chronic aspirin treatment. The effect of EV-077 on 8-iso-PGE(2)-mediated TP receptor contraction of human arteries was also investigated. Fifty-two type-2 diabetics with CAD on chronic aspirin (100 mg) treatment were studied. Arachidonic acid-induced platelet aggregation was measured by impedance aggregometry in platelet-rich plasma (PRP) and whole blood anticoagulated with hirudin, and by light transmission aggregometry in citrate-anticoagulated PRP following 10-min in vitro exposure to EV-077 (100 nmol/l) or control. The effect of EV-077 was measured on isometric contraction of 24 human umbilical arteries induced by isoprostane 8-iso-PGE(2). Arachidonic acid (1 mmol/l) induced substantial aggregation in hirudin-anticoagulated whole blood (63 ± 4 AU), which was significantly reduced by in vitro exposure to EV-077 (38 ± 3 AU, P<0.001). Virtually no arachidonic acid-induced aggregation in citrate-anticoagulated or hirudin-anticoagulated PRP was observed. EV-077 potently, competitively and reversibly inhibited TP mediated contraction of umbilical arteries by 8-iso-PGE(2) (P<0.01). Aspirin did not completely inhibit arachidonic acid-induced platelet aggregation in whole blood from type-2 diabetics with CAD. This aggregation is likely induced by prostanoids and/or isoprostanes produced by leukocytes, because it was significantly reduced by EV-077. The TP receptor-mediated contraction of human arteries induced by isoprostane 8-iso-PGE(2) was effectively inhibited by EV-077. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Examining platelet-fibrin interactions during traumatic shock in a swine model using platelet contractile force and clot elastic modulus.

    PubMed

    White, Nathan J; Martin, Erika J; Brophy, Donald F; Ward, Kevin R

    2011-07-01

    A significant proportion of severely injured patients develop early coagulopathy, characterized by abnormal clot formation, which impairs resuscitation and increases mortality. We have previously demonstrated an isolated decrease in clot strength by thrombelastography in a swine model of nonresuscitated traumatic shock. In order to more closely examine platelet-fibrin interactions in this setting, we define the observed decrease in clot strength in terms of platelet-induced clot contraction and clot elastic modulus using the Hemostasis Analysis System (HAS) (Hemodyne Inc., Richmond, Virginia, USA). Whole blood was sampled for HAS measurements, metabolic measurements, cell counts, and fibrinogen concentration at baseline prior to injury and again at a predetermined level of traumatic shock defined by oxygen debt. Male swine (N=17) received femur fracture and controlled arterial hemorrhage to achieve an oxygen debt of 80 ml/kg. Platelet counts were unchanged, but fibrinogen concentration was reduced significantly during shock (167.6 vs. 66.7 mg/dl, P=0.0007). Platelet contractile force generated during clot formation did not change during shock (11.7 vs. 10.4 kdynes, P=0.41), but clot elastic modulus was dynamically altered, resulting in a lower final value (22.9 vs. 17.3 kdynes/cm, P<0.0001). In this model of traumatic shock, platelet function was preserved, whereas terminal clot elastic modulus was reduced during shock in a manner most consistent with early changes in the mechanical properties of the developing fibrin fiber network.

  11. Anti-platelet effects of chalcones from Angelica keiskei Koidzumi (Ashitaba) in vivo.

    PubMed

    Ohkura, N; Ohnishi, K; Taniguchi, M; Nakayama, A; Usuba, Y; Fujita, M; Fujii, A; Ishibashi, K; Baba, K; Atsumi, G

    2016-11-02

    Angelica keiskei Koidzumi (Ashitaba) is a traditional folk medicine that is also regarded in Japan as a health food with potential antithrombotic properties. The ability of the major chalcones, xanthoangelol (XA) and 4-hydroxyderricin (4-HD) extracted from Ashitaba roots to inhibit platelet aggregation activity in vitro was recently determined. However, the anti-platelet activities of Ashitaba chalcones in vivo have remained unclear. The present study examines the anti-platelet effects of Ashitaba exudate and its constituent chalcones using mouse tail-bleeding models that reflect platelet aggregation in vivo. Ashitaba exudate and the major chalcone subtype XA, suppressed the lipopolysaccharide (LPS)-induced shortening of mouse tail bleeding. However, trace amounts of other Ashitaba chalcone subtypes including xanthoangelols B (XB), D (XD), E (XE) and F (XF) did not affect tail bleeding. These results suggest that the major chalcone subtype in Ashitaba, XA, has anti-platelet-activities in vivo.

  12. The neuropeptide substance P stimulates the effector functions of platelets.

    PubMed Central

    Damonneville, M; Monté, D; Auriault, C; Capron, A

    1990-01-01

    Sensory neuropeptides, such as substance P, appear as potent mediators of various immunological reactions, and inhibit or stimulate a wide range of functions of immune inflammatory cells. Platelets were recently shown to participate as effector cells in an IgE or lymphokine-dependent killing of parasites. Substance P and its carboxy-terminal fragment SP (4-11) induce the cytotoxic activity of platelets towards the larvae of Schistosoma mansoni, respectively, by 90% and 40%, whereas the modified C terminal SP, the SP-free acid, exhibits no effect on the platelets. The neuropeptide effects occur at low doses (10(-8) M), are specific as shown by inhibition studies with a substance P antagonist, the D-SP. Binding data obtained after flow cytofluorometry with FITC-SP lead to the conclusion that SP binds specifically to about 20% of the homogenous population of platelets. Moreover, IgE could modulate the SP-dependent functions of platelets since the pre-incubation with myeloma human IgE or with AP2 monoclonal antibodies--known to inhibit the IgE-dependent killing of these cells-leads to a dramatic decrease of the SP dependent cytotoxic activity of platelets towards the larvae. These findings identify a potent mechanism for nervous system regulation of host defence responses. PMID:1696868

  13. Effects of alcohol on platelet functions.

    PubMed

    Renaud, S C; Ruf, J C

    1996-03-15

    Recent epidemiologic studies have consistently shown that moderate intake of alcoholic beverages protect against morbidity and mortality from coronary heart disease and ischemic stroke. By contrast, alcohol drinking may also predispose to cerebral hemorrhage. These observations suggest an effect of alcohol similar to that of aspirin. Several studies in humans and animals have shown that the immediate effect of alcohol, either added in vitro to platelets or 10 to 20 min after ingestion, is to decrease platelet aggregation in response to most agonists (thrombin, ADP, epinephrine, collagen). Several hours later, as, in free-living populations deprived of drinking since the previous day it is mostly secondary aggregation to ADP and epinephrine and aggregation to collagen that are still inhibited in alcohol drinkers. By contrast, in binge drinkers or in alcoholics after alcohol withdrawal, response to aggregation, especially that induced by thrombin, is markedly increased. This rebound phenomenon, easily reproduced in rats, may explain ischemic strokes or sudden death known to occur after episodes of drunkenness. The platelet rebound effect of alcohol drinking was not observed with moderate red wine consumption in man. The protection afforded by wine has been recently duplicated in rats by grape tannins added to alcohol. This protection was associated with a decrease in the level of conjugated dienes, the first step in lipid peroxidation. In other words, wine drinking does not seem to be associated with the increased peroxidation usually observed with spirit drinking. Although further studies are required, the platelet rebound effect of alcohol drinking could be associated with an excess of lipid peroxides known to increase platelet reactivity, especially to thrombin.

  14. Effect of meiotic maturation on yolk platelet lipids from Bufo arenarum oocytes.

    PubMed

    Buschiazzo, Jorgelina; Alonso, Telma Susana

    2005-09-01

    Progesterone induces the resumption of meiosis in Bufo arenarum full-grown arrested oocytes through a nongenomic mechanism called meiotic maturation. Growing evidence indicates that lipids are involved in the maturation process. They are mainly located in yolk platelets, the principal organelles of amphibian oocytes. The aim of the present study was to analyze the effect of progesterone-induced maturation on lipids from B. arenarum yolk platelets. Ovarian oocytes, manually obtained, were incubated with progesterone to induce maturation. Yolk platelets were isolated by centrifugation at low velocity. Lipids were separated by thin-layer chromatography. For compositional analysis, they were derivatized by methanolysis, and were identified and quantified in a gas-liquid chromatograph. Phospholipid content decreased in progesterone-treated oocytes, mainly as a result of a decrease at the level of phosphatidylcholine (PC). The turnover of this lipid is considered crucial for the completion of meiosis. Sphingomyelin also underwent a decrease that could be related to the important role of ceramide as an inducer of germinal vesicle breakdown. Maturation effect on fatty acid composition registered significant changes in PC whose saturated fatty acids increased. A net increase in arachidonic acid was observed in phosphatidylserine after progesterone treatment. The contents of total triacylglycerols and diacylglycerols were not significantly modified by hormone effect while free fatty acids underwent a significant increase as a result of polyunsaturated fatty acids increase. Altogether, our results demonstrate that yolk platelet lipids are involved in the resumption of the meiotic cell cycle, thus suggesting that these organelles participate in a dynamic role during amphibian development. (c) 2005 Wiley-Liss, Inc.

  15. Thromboxane Formation Assay to Identify High On-Treatment Platelet Reactivity to Aspirin.

    PubMed

    Mohring, Annemarie; Piayda, Kerstin; Dannenberg, Lisa; Zako, Saif; Schneider, Theresa; Bartkowski, Kirsten; Levkau, Bodo; Zeus, Tobias; Kelm, Malte; Hohlfeld, Thomas; Polzin, Amin

    2017-01-01

    Platelet inhibition by aspirin is indispensable in the secondary prevention of cardiovascular events. Nevertheless, impaired aspirin antiplatelet effects (high on-treatment platelet reactivity [HTPR]) are frequent. This is associated with an enhanced risk of cardiovascular events. The current gold standard to evaluate platelet hyper-reactivity despite aspirin intake is the light-transmittance aggregometry (LTA). However, pharmacologically, the most specific test is the measurement of arachidonic acid (AA)-induced thromboxane (TX) B2 formation. Currently, the optimal cut-off to define HTPR to aspirin by inhibition of TX formation is not known. Therefore, in this pilot study, we aimed to calculate a TX formation cut-off value to detect HTPR defined by the current gold standard LTA. We measured platelet function in 2,507 samples. AA-induced TX formation by ELISA and AA-induced LTA were used to measure aspirin antiplatelet effects. TX formation correlated nonlinearly with the maximum of aggregation in the AA-induced LTA (Spearman's rho R = 0.7396; 95% CI 0.7208-0.7573, p < 0.0001). Receiver operating characteristic analysis and Youden's J statistics revealed 209.8 ng/mL as the optimal cut-off value to detect HTPR to aspirin with the TX ELISA (area under the curve: 0.92, p < 0.0001, sensitivity of 82.7%, specificity of 90.3%). In summary, TX formation ELISA is reliable in detecting HTPR to aspirin. The calculated cut-off level needs to be tested in trials with clinical end points. © 2017 S. Karger AG, Basel.

  16. Effect of protopine on cytosolic Ca2+ in rabbit platelets.

    PubMed

    Shen, Z Q; Chen, Z H; Duan, L

    1999-04-01

    To study the influence of protopine (Pro) on the cytoplasmic free Ca2+ concentration ([Ca2+]i) in rabbit platelets. Measurement of [Ca2+]i of platelets in vitro by Fura 2-AM fluorescence technique. In the presence of CaCl2 1 mmol.L-1, Pro 10, 20, and 40 mumol.L-1 attenuated the rise in [Ca2+]i evoked by ADP from (420 +/- 57) to (320 +/- 26), (264 +/- 21), and (180 +/- 14) nmol.L-1, respectively, by arachidonic acid (AA) from (280 +/- 36) to (210 +/- 17), (184 +/- 21), and (143 +/- 16) nmol.L-1, respectively, and by platelet-activating factor (PAF) from (350 +/- 42) to (282 +/- 31), (223 +/- 30), and (165 +/- 15) nmol.L-1, respectively. In the presence of egtazic acid 1 mmol.L-1, Pro 10, 20, and 40 mumol.L-1 reduced the Ca2+ release induced by ADP, AA, and PAF, respectively. Pro 10, 20, and 40 mumol.L-1 also decreased ADP-, AA-, and PAF-induced Ca2+ influx. Pro inhibited not only Ca2+ release but also the influx of Ca2+.

  17. EXTENDED STORAGE OF BUFFY-COAT PLATELET CONCENTRATES IN PLASMA OR A PLATELET ADDITIVE SOLUTION

    PubMed Central

    Slichter, Sherrill J.; Bolgiano, Doug; Corson, Jill; Jones, Mary Kay; Christoffel, Todd; Bailey, S. Lawrence; Pellham, Esther

    2014-01-01

    Background Platelet concentrates prepared from whole blood in the U.S. are made using the platelet-rich-plasma (PRP) method. The platelet concentrates must be made within 8 hours of blood collection and stored for only 5 days. In Europe and Canada, platelet concentrates are made using the buffy-coat (BC) method from whole blood held overnight at 22°C and storage times may be up to 7 days. Our studies were designed to determine how long BC platelets can be stored in plasma or Plasmalyte while meeting the FDA’s post-storage viability criteria. Study Design, Materials, And Methods Normal subjects donated whole blood that was stored at 22°C for 22 ± 2 hours prior to preparation of BC platelets. Platelets were stored for 5 to 8 days in either plasma or Plasmalyte concentrations of 65% or 80%. Radiolabeled autologous stored versus fresh platelet recoveries and survivals were assessed as well as post-storage in vitro assays. Results BC platelets stored in either plasma or 65% Plasmalyte met FDA post-storage platelet recovery criteria for 7 days but survivals for only 6 days, while storage in 80% Plasmalyte gave very poor results. Both stored platelet recoveries and survivals correlated with the same donor’s fresh results, but the correlation was much stronger between recoveries than survivals. In vitro measures of extent of shape change, morphology score, and pH best predicted post-storage platelet recoveries, while annexin V binding best predicted platelet survivals. Conclusion BC platelets stored in either plasma or 65% Plasmalyte meet FDA’s post-storage viability criteria for 6 days. PMID:24673482

  18. Dietary flavanols and procyanidin oligomers from cocoa (Theobroma cacao) inhibit platelet function.

    PubMed

    Murphy, Karen J; Chronopoulos, Andriana K; Singh, Indu; Francis, Maureen A; Moriarty, Helen; Pike, Marilyn J; Turner, Alan H; Mann, Neil J; Sinclair, Andrew J

    2003-06-01

    Flavonoids may be partly responsible for some health benefits, including antiinflammatory action and a decreased tendency for the blood to clot. An acute dose of flavanols and oligomeric procyanidins from cocoa powder inhibits platelet activation and function over 6 h in humans. This study sought to evaluate whether 28 d of supplementation with cocoa flavanols and related procyanidin oligomers would modulate human platelet reactivity and primary hemostasis and reduce oxidative markers in vivo. Thirty-two healthy subjects were assigned to consume active (234 mg cocoa flavanols and procyanidins/d) or placebo (< or = 6 mg cocoa flavanols and procyanidins/d) tablets in a blinded parallel-designed study. Platelet function was determined by measuring platelet aggregation, ATP release, and expression of activation-dependent platelet antigens by using flow cytometry. Plasma was analyzed for oxidation markers and antioxidant status. Plasma concentrations of epicatechin and catechin in the active group increased by 81% and 28%, respectively, during the intervention period. The active group had significantly lower P selectin expression and significantly lower ADP-induced aggregation and collagen-induced aggregation than did the placebo group. Plasma ascorbic acid concentrations were significantly higher in the active than in the placebo group (P < 0.05), whereas plasma oxidation markers and antioxidant status did not change in either group. Cocoa flavanol and procyanidin supplementation for 28 d significantly increased plasma epicatechin and catechin concentrations and significantly decreased platelet function. These data support the results of acute studies that used higher doses of cocoa flavanols and procyanidins.

  19. Multiscale Particle-Based Modeling of Flowing Platelets in Blood Plasma Using Dissipative Particle Dynamics and Coarse Grained Molecular Dynamics

    PubMed Central

    Zhang, Peng; Gao, Chao; Zhang, Na; Slepian, Marvin J.; Deng, Yuefan; Bluestein, Danny

    2014-01-01

    We developed a multiscale particle-based model of platelets, to study the transport dynamics of shear stresses between the surrounding fluid and the platelet membrane. This model facilitates a more accurate prediction of the activation potential of platelets by viscous shear stresses - one of the major mechanisms leading to thrombus formation in cardiovascular diseases and in prosthetic cardiovascular devices. The interface of the model couples coarse-grained molecular dynamics (CGMD) with dissipative particle dynamics (DPD). The CGMD handles individual platelets while the DPD models the macroscopic transport of blood plasma in vessels. A hybrid force field is formulated for establishing a functional interface between the platelet membrane and the surrounding fluid, in which the microstructural changes of platelets may respond to the extracellular viscous shear stresses transferred to them. The interaction between the two systems preserves dynamic properties of the flowing platelets, such as the flipping motion. Using this multiscale particle-based approach, we have further studied the effects of the platelet elastic modulus by comparing the action of the flow-induced shear stresses on rigid and deformable platelet models. The results indicate that neglecting the platelet deformability may overestimate the stress on the platelet membrane, which in turn may lead to erroneous predictions of the platelet activation under viscous shear flow conditions. This particle-based fluid-structure interaction multiscale model offers for the first time a computationally feasible approach for simulating deformable platelets interacting with viscous blood flow, aimed at predicting flow induced platelet activation by using a highly resolved mapping of the stress distribution on the platelet membrane under dynamic flow conditions. PMID:25530818

  20. Hostility and platelet reactivity in individuals without a history of cardiovascular disease events.

    PubMed

    Shimbo, Daichi; Chaplin, William; Kuruvilla, Sujith; Wasson, Lauren Taggart; Abraham, Dennis; Burg, Matthew M

    2009-09-01

    To examine the association between hostility and platelet reactivity in individuals without a prior history of cardiovascular disease (CVD) events. Hostility is associated with incident CVD events, independent of traditional risk factors. Increased platelet reactivity and thrombus formation over a disrupted coronary plaque are fundamental for CVD event onset. Hypertensive patients (n = 42) without concomitant CVD event history completed the 50-item Cook-Medley Hostility Scale, and a subset score of 27 items (Barefoot Ho) was derived. We examined the relationship between Barefoot Ho scores and platelet aggregation. We also examined individual components of Barefoot Ho (aggressive responding, cynicism, and hostile affect) and their associations with platelet aggregation. Platelet reactivity, induced by adenosine diphosphate (ADP), was assessed by standard light transmission aggregometry, the current gold standard method of platelet aggregation assessment. Barefoot Ho scores were related significantly to increased rate of platelet aggregation in response to ADP. Of the three Barefoot Ho components, only aggressive responding was associated independently with increased platelet aggregation rate. The strength of these relationships did not diminish after adjusting for several standard CVD risk factors. These data demonstrate that hostility, particularly the aggressive responding subtype, is associated with platelet reactivity-a key pathophysiological pathway in the onset of CVD events.

  1. Inhibitory Effects of Yuzu and Its Components on Human Platelet Aggregation

    PubMed Central

    Kim, Tae-Ho; Kim, Hye-Min; Park, Se Won; Jung, Yi-Sook

    2015-01-01

    Our previous study demonstrated that yuzu has an anti-platelet effect in rat blood. In the present study, we examined whether the anti-platelet effect of yuzu can be extended to human blood by investigating its ability to inhibit aggregations induced by various agonists in human platelet rich plasma (PRP). This study also investigated the underlying mechanism of yuzu focusing on ADP granule secretion, TXB2 formations, and PLCγ/Akt signaling. The results from this study showed that ethanolic yuzu extract (YE), and its components, hesperidin and naringin, inhibited human platelet aggregation in a concentration-dependent manner. YE, hesperidin and naringin also inhibited TXB2 formation and ADP release. The phosphorylation of PLCγ and Akt was significantly inhibited by YE, heperidin and naringin. Furthermore, we demonstrated that YE, heperidin and naringin has anti-platelet effects in rat ex vivo studies, and lower side effects in mice tail bleeding time studies. The results from this study suggest that YE, hesperidin and naringin can inhibit human platelet aggregation, at least partly through the inhibition of PLCγ and Akt, leading to a decrease in TXB2 formation and granule secretion. PMID:25767683

  2. Inhibitory effects of yuzu and its components on human platelet aggregation.

    PubMed

    Kim, Tae-Ho; Kim, Hye-Min; Park, Se Won; Jung, Yi-Sook

    2015-03-01

    Our previous study demonstrated that yuzu has an anti-platelet effect in rat blood. In the present study, we examined whether the anti-platelet effect of yuzu can be extended to human blood by investigating its ability to inhibit aggregations induced by various agonists in human platelet rich plasma (PRP). This study also investigated the underlying mechanism of yuzu focusing on ADP granule secretion, TXB2 formations, and PLCγ/Akt signaling. The results from this study showed that ethanolic yuzu extract (YE), and its components, hesperidin and naringin, inhibited human platelet aggregation in a concentration-dependent manner. YE, hesperidin and naringin also inhibited TXB2 formation and ADP release. The phosphorylation of PLCγ and Akt was significantly inhibited by YE, heperidin and naringin. Furthermore, we demonstrated that YE, heperidin and naringin has anti-platelet effects in rat ex vivo studies, and lower side effects in mice tail bleeding time studies. The results from this study suggest that YE, hesperidin and naringin can inhibit human platelet aggregation, at least partly through the inhibition of PLCγ and Akt, leading to a decrease in TXB2 formation and granule secretion.

  3. Concomitant nitrates enhance clopidogrel response during dual anti-platelet therapy.

    PubMed

    Lee, Dong Hyun; Kim, Moo Hyun; Guo, Long Zhe; De Jin, Cai; Cho, Young Rak; Park, Kyungil; Park, Jong Sung; Park, Tae-Ho; Serebruany, Victor

    2016-01-15

    Despite advances in modern anti-platelet strategies, clopidogrel still remains the cornerstone of dual anti-platelet therapy (DAPT) in patients undergoing percutaneous coronary interventions (PCI). There is some inconclusive evidence that response after clopidogrel may be impacted by concomitant medications, potentially affecting clinical outcomes. Sustained released nitrates (SRN) are commonly used together with clopidogrel in post-PCI setting for mild vasodilatation and nitric oxide-induced platelet inhibition. We prospectively enrolled 458 patients (64.5 ± 9.6 years old, and 73.4% males) following PCI undergoing DAPT with clopidogrel and aspirin. Platelet reactivity was assessed by the VerifyNow™ P2Y12 assay at the maintenance outpatient setting. Concomitant SRN (n=266) significantly (p=0.008) enhanced platelet inhibition after DAPT (251.6 ± 80.9PRU) when compared (232.1 ± 73.5PRU) to the SRN-free (n=192) patients. Multivariate logistic regression analysis with the cut-off value of 253 PRU for defining heightened platelet reactivity confirmed independent correlation of more potent platelet inhibition during DAPT and use of SRN (Relative risk=1.675; Odds ratio [1.059-2.648]; p=0.027). In contrast, statins, calcium-channel blockers, beta blockers, angiotensin receptor blockers, ACE-inhibitors, diuretics, and anti-diabetic agents did not significantly impact platelet inhibition following DAPT. The synergic ability of SRN to enhance response during DAPT may have important clinical implications with regard to better cardiovascular protection, but extra bleeding risks, requiring further confirmation in a large randomized study. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Two distinct roles of mitogen-activated protein kinases in platelets and a novel Rac1-MAPK–dependent integrin outside-in retractile signaling pathway

    PubMed Central

    Flevaris, Panagiotis; Li, Zhenyu; Zhang, Guoying; Zheng, Yi; Liu, Junling

    2009-01-01

    Mitogen-activated protein kinases (MAPK), p38, and extracellular stimuli-responsive kinase (ERK), are acutely but transiently activated in platelets by platelet agonists, and the agonist-induced platelet MAPK activation is inhibited by ligand binding to the integrin αIIbβ3. Here we show that, although the activation of MAPK, as indicated by MAPK phosphorylation, is initially inhibited after ligand binding to integrin αIIbβ3, integrin outside-insignaling results in a late but sustained activation of MAPKs in platelets. Furthermore, we show that the early agonist-induced MAPK activation and the late integrin-mediated MAPK activation play distinct roles in different stages of platelet activation. Agonist-induced MAPK activation primarily plays an important role in stimulating secretion of platelet granules, while integrin-mediated MAPK activation is important in facilitating clot retraction. The stimulatory role of MAPK in clot retraction is mediated by stimulating myosin light chain (MLC) phosphorylation. Importantly, integrin-dependent MAPK activation, MAPK-dependent MLC phosphorylation, and clot retraction are inhibited by a Rac1 inhibitor and in Rac1 knockout platelets, indicating that integrin-induced activation of MAPK and MLC and subsequent clot retraction is Rac1-dependent. Thus, our results reveal 2 different activation mechanisms of MAPKs that are involved in distinct aspects of platelet function and a novel Rac1-MAPK–dependent cell retractile signaling pathway. PMID:18957688

  5. Heparin-independent, PF4-dependent binding of HIT antibodies to platelets: implications for HIT pathogenesis.

    PubMed

    Padmanabhan, Anand; Jones, Curtis G; Bougie, Daniel W; Curtis, Brian R; McFarland, Janice G; Wang, Demin; Aster, Richard H

    2015-01-01

    Antibodies specific for platelet factor 4 (PF4)/heparin complexes are the hallmark of heparin-induced thrombocytopenia and thrombosis (HIT), but many antibody-positive patients have normal platelet counts. The basis for this is not fully understood, but it is believed that antibodies testing positive in the serotonin release assay (SRA) are the most likely to cause disease. We addressed this issue by characterizing PF4-dependent binding of HIT antibodies to intact platelets and found that most antibodies testing positive in the SRA, but none of those testing negative, bind to and activate platelets when PF4 is present without any requirement for heparin (P < .0001). Binding of SRA-positive antibodies to platelets was inhibited by chondroitinase ABC digestion (P < .05) and by the addition of chondroitin-4-sulfate (CS) or heparin in excess quantities. The findings suggest that although all HIT antibodies recognize PF4 in a complex with heparin, only a subset of these antibodies recognize more subtle epitopes induced in PF4 when it binds to CS, the major platelet glycosaminoglycan. Antibodies having this property could explain "delayed HIT" seen in some individuals after discontinuation of heparin and the high risk for thrombosis that persists for weeks in patients recovered from HIT. © 2015 by The American Society of Hematology.

  6. Heparin-independent, PF4-dependent binding of HIT antibodies to platelets: implications for HIT pathogenesis

    PubMed Central

    Jones, Curtis G.; Bougie, Daniel W.; Curtis, Brian R.; McFarland, Janice G.; Wang, Demin; Aster, Richard H.

    2015-01-01

    Antibodies specific for platelet factor 4 (PF4)/heparin complexes are the hallmark of heparin-induced thrombocytopenia and thrombosis (HIT), but many antibody-positive patients have normal platelet counts. The basis for this is not fully understood, but it is believed that antibodies testing positive in the serotonin release assay (SRA) are the most likely to cause disease. We addressed this issue by characterizing PF4-dependent binding of HIT antibodies to intact platelets and found that most antibodies testing positive in the SRA, but none of those testing negative, bind to and activate platelets when PF4 is present without any requirement for heparin (P < .0001). Binding of SRA-positive antibodies to platelets was inhibited by chondroitinase ABC digestion (P < .05) and by the addition of chondroitin-4-sulfate (CS) or heparin in excess quantities. The findings suggest that although all HIT antibodies recognize PF4 in a complex with heparin, only a subset of these antibodies recognize more subtle epitopes induced in PF4 when it binds to CS, the major platelet glycosaminoglycan. Antibodies having this property could explain “delayed HIT” seen in some individuals after discontinuation of heparin and the high risk for thrombosis that persists for weeks in patients recovered from HIT. PMID:25342714

  7. Inhibition of the plasma SCUBE1, a novel platelet adhesive protein, protects mice against thrombosis.

    PubMed

    Wu, Meng-Ying; Lin, Yuh-Charn; Liao, Wei-Ju; Tu, Cheng-Fen; Chen, Ming-Huei; Roffler, Steve R; Yang, Ruey-Bing

    2014-07-01

    Signal peptide-CUB-EGF domain-containing protein 1 (SCUBE1), a secreted and surface-exposed glycoprotein on activated platelets, promotes platelet-platelet interaction and supports platelet-matrix adhesion. Its plasma level is a biomarker of platelet activation in acute thrombotic diseases. However, the exact roles of plasma SCUBE1 in vivo remain undefined. We generated new mutant (Δ) mice lacking the soluble but retaining the membrane-bound form of SCUBE1. Plasma SCUBE1-depleted Δ/Δ mice showed normal hematologic and coagulant features and expression of major platelet receptors, but Δ/Δ platelet-rich plasma showed impaired platelet aggregation in response to ADP and collagen treatment. The addition of purified recombinant SCUBE1 protein restored the aggregation of platelets in Δ/Δ platelet-rich plasma and further enhanced platelet aggregation in +/+ platelet-rich plasma. Plasma deficiency of SCUBE1 diminished arterial thrombosis in mice and protected against lethal thromboembolism induced by collagen-epinephrine treatment. Last, antibodies directed against the epidermal growth factor-like repeats of SCUBE1, which are involved in trans-homophilic protein-protein interactions, protected mice against fatal thromboembolism without causing bleeding in vivo. We conclude that plasma SCUBE1 participates in platelet aggregation by bridging adjacent activated platelets in thrombosis. Blockade of soluble SCUBE1 might represent a novel antithrombotic strategy. © 2014 American Heart Association, Inc.

  8. The Protective Effect of Poloxamer-188 on Platelet Functions.

    PubMed

    Guler, Nil; Abro, Schuharazad; Emanuele, Marty; Iqbal, Omer; Hoppensteadt, Debra; Fareed, Jawed

    2017-11-01

    Poloxamer-188 (MST-188) is effective in the repair/recovery of damaged cell membranes. MST-188 is a promising agent for protecting blood cell viability. The aim of the study is to test the hypothesis that MST-188 can extend the duration of platelet function. Blood samples were collected from 20 healthy volunteers. MST-188 (10 or 2 mg/mL) containing platelet-rich plasma (PRP) was prepared with 2 procedures. First, PRP prepared from MST-188 added whole blood (WB); second, MST-188 was added to PRP. These were referred to MST-188-WB preparation (WBP) and MST-188-PRP preparation (PRPP), respectively. For control, saline was used in the same manner. Agonist-induced aggregation (AIA) studies were performed at 30, 180, and 300 minutes using Platelet Aggregation Profiler (PAP-8) aggregometer (Bio/Data Corporation, Horsham, Pennsylvania) and Adenosine diphosphate (ADP), arachidonic acid, collagen, and epinephrine as agonists at final concentration of 20 µM, 500 µg/mL, 0.19 mg/mL, and 100 µM, respectively. There was a protective effect of MST-188 on ADP and collagen AIA. At 300 minutes, ADP AIA was found to be 50.2% higher than saline control in 2-mg WBP, 43% at 10-mg PRPP, and 10.4% at 2-mg PRPP. Protective effect of on collagen AIA was 65.9% in 2-mg WBP, 42.74% at 10-mg PRPP, and 11.42% at 2-mg PRPP. In comparison between 30 and 300 minutes, MST-188 showed significant protection in terms of ADP and collagen receptors and for both types of preparations (WBP and PRPP). The protective effects of MST-188 on ADP- and collagen-induced platelet aggregation may contribute to the preservation of platelet functionality upon storage in blood banks.

  9. Platelets release CXCL4L1, a nonallelic variant of the chemokine platelet factor-4/CXCL4 and potent inhibitor of angiogenesis.

    PubMed

    Struyf, Sofie; Burdick, Marie D; Proost, Paul; Van Damme, Jo; Strieter, Robert M

    2004-10-29

    Platelet factor-4 (PF-4)/CXCL4 was the first chemokine described to inhibit neovascularization. Here, the product of the nonallelic variant gene of CXCL4, PF-4var1/PF-4alt, designated CXCL4L1, was isolated for the first time from thrombin-stimulated human platelets and purified to homogeneity. Although secreted CXCL4 and CXCL4L1 differ in only three amino acids, CXCL4L1 was more potent in inhibiting chemotaxis of human microvascular endothelial cells toward interleukin-8 (IL-8)/CXCL8 or basic fibroblast growth factor (bFGF). In vivo, CXCL4L1 was also more effective than CXCL4 in inhibiting bFGF-induced angiogenesis in rat corneas. Thus, activated platelets release CXCL4L1, a potent regulator of endothelial cell biology, which affects angiogenesis and vascular diseases.

  10. Mean Platelet Volume (MPV), Platelet Distribution Width (PDW), Platelet Count and Plateletcrit (PCT) as predictors of in-hospital paediatric mortality: a case-control Study.

    PubMed

    Golwala, Zainab Mohammedi; Shah, Hardik; Gupta, Neeraj; Sreenivas, V; Puliyel, Jacob M

    2016-06-01

    Thrombocytopenia has been shown to predict mortality. We hypothesize that platelet indices may be more useful prognostic indicators. Our study subjects were children one month to 14 years old admitted to our hospital. To determine whether platelet count, plateletcrit (PCT), mean platelet volume (MPV) and platelet distribution width (PDW) and their ratios can predict mortality in hospitalised children. Children who died during hospital stay were the cases. Controls were age matched children admitted contemporaneously. The first blood sample after admission was used for analysis. Receiver operating characteristic (ROC) curve was used to identify the best threshold for measured variables and the ratios studied. Multiple regression analysis was done to identify independent predictors of mortality. Forty cases and forty controls were studied. Platelet count, PCT and the ratios of MPV/Platelet count, MPV/PCT, PDW/Platelet count, PDW/PCT and MPV × PDW/Platelet count × PCT were significantly different among children who survived compared to those who died. On multiple regression analysis the ratio of MPV/PCT, PDW/Platelet count and MPV/Platelet count were risk factors for mortality with an odds ratio of 4.31(95% CI, 1.69-10.99), 3.86 (95% CI, 1.53-9.75), 3.45 (95% CI, 1.38-8.64) respectively. In 67% of the patients who died MPV/PCT ratio was above 41.8 and PDW/Platelet count was above 3.86. In 65% of patients who died MPV/Platelet count was above 3.45. The MPV/PCT, PDW/Platelet count and MPV/Platelet count, in the first sample after admission in this case control study were predictors of mortality and could predict 65% to 67% of deaths accurately.

  11. Platelet ERK5 is a Redox Switch and Triggers Maladaptive Platelet Responses and Myocardial Infarct Expansion

    PubMed Central

    Cameron, Scott J.; Ture, Sara K.; Mickelsen, Deanne; Chakrabarti, Enakshi; Modjeski, Kristina L.; McNitt, Scott; Seaberry, Micheal; Field, David J.; Le, Nhat-Tu; Abe, Jun-ichi; Morrell, Craig N.

    2015-01-01

    Background Platelets have a pathophysiologic role in the ischemic microvascular environment of acute coronary syndromes (ACS). Compared to platelet activation in normal healthy conditions, less attention is given to mechanisms of platelet activation in diseased states. Platelet function and mechanisms of activation in ischemic and reactive oxygen species (ROS) rich environments may not be the same as in normal healthy conditions. Extracellular Regulated Protein Kinase 5 (ERK5) is a Mitogen Activated Protein Kinase (MAPK) family member activated in hypoxic, ROS rich environments, and in response to receptor signaling mechanisms. Prior studies suggest a protective effect of ERK5 in endothelial and myocardial cells following ischemia. We present evidence that platelets express ERK5 and platelet ERK5 has an adverse effect on platelet activation via selective receptor-dependent and receptor-independent ROS mediated mechanisms in ischemic myocardium. Methods and Results Using isolated human platelets and a mouse model of myocardial infarction (MI), we found that platelet ERK5 is activated post-MI and platelet specific ERK5−/− mice have less platelet activation, reduced MI size, and improved post-MI heart function. Furthermore, the expression of downstream ERK5 regulated proteins is reduced in ERK5−/− platelets post-MI. Conclusions ERK5 functions as a platelet activator in ischemic conditions and platelet ERK5 maintains the expression of some platelet proteins following MI, leading to infarct expansion. This demonstrates that platelet function in normal healthy conditions is different from platelet function in chronic ischemic and inflammatory conditions. Platelet ERK5 may be a target for acute therapeutic intervention in the thrombotic and inflammatory post-MI environment. PMID:25934838

  12. Antimicrobial effect of platelet-rich plasma and platelet-rich fibrin.

    PubMed

    Badade, Pallavi S; Mahale, Swapna A; Panjwani, Alisha A; Vaidya, Prutha D; Warang, Ayushya D

    2016-01-01

    Platelet concentrates have been extensively used in a variety of medical fields to promote soft- and hard-tissue regeneration. The significance behind their use lies in the abundance of growth factors (GFs) in platelets α-granules that promote wound healing. Other than releasing a pool of GFs upon activation, platelets also have many features that indicate their role in the anti-infective host defense. The aim of this study is to evaluate the antimicrobial activities of platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) against periodontal disease-associated bacteria. Blood samples were obtained from ten adult male patients. PRP and PRF were procured using centrifugation. The antimicrobial activity of PRP and PRF was evaluated by microbial culturing using bacterial strains of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. P. gingivalis and A. actinomycetemcomitans were inhibited by PRP but not by PRF. PRP is a potentially useful substance in the fight against periodontal pathogens. This might represent a valuable property in adjunct to the enhancement of tissue regeneration.

  13. Microfluidic measurement for blood flow and platelet adhesion around a stenotic channel: Effects of tile size on the detection of platelet adhesion in a correlation map

    PubMed Central

    Jung, Sung Yong; Yeom, Eunseop

    2017-01-01

    Platelet aggregation affects the surrounding blood flow and usually occurs where a blood vessel is narrowed as a result of atherosclerosis. The relationship between blood flow and platelet aggregation is not yet fully understood. This study proposes a microfluidic method to measure the velocity and platelet aggregation simultaneously by combining the micro-particle image velocimetry technique and a correlation mapping method. The blood flow and platelet adhesion procedure in a stenotic micro-channel with 90% severity were observed for a relatively long period of 4 min. In order to investigate the effect of tile size on the detection of platelet adhesion, 2D correlation coefficients were evaluated with binary images obtained by manual labeling and the correlation mapping method with different sizes of the square tile ranging from 3 to 50 pixels. The maximum 2D correlation coefficient occurred with the optimum tile size of 5 × 5 pixels. Since the blood flow and platelet aggregation are mutually influenced by each other, blood flow and platelet adhesion were continuously varied. When there was no platelet adhesion (t = 0 min), typical blood flow is observed. The blood flow passes through the whole channel smoothly, and jet-like flow occurs in the post-stenosis region. However, the flow pattern changes when platelet adhesion starts at the stenosis apex and after the stenosis. These adhesions induce narrow high velocity regions to become wider over a range of area from upstream to downstream of the stenosis. Separated jet-like flows with two high velocity regions are also created. The changes in flow patterns may alter the patterns of platelet adhesion. As the area of the plate adhesion increases, the platelets plug the micro-channel and there is only a small amount of blood flow, finally. The microfluidic method could provide new insights for better understanding of the interactions between platelet aggregation and blood flow in various physiological

  14. Microfluidic measurement for blood flow and platelet adhesion around a stenotic channel: Effects of tile size on the detection of platelet adhesion in a correlation map.

    PubMed

    Jung, Sung Yong; Yeom, Eunseop

    2017-03-01

    Platelet aggregation affects the surrounding blood flow and usually occurs where a blood vessel is narrowed as a result of atherosclerosis. The relationship between blood flow and platelet aggregation is not yet fully understood. This study proposes a microfluidic method to measure the velocity and platelet aggregation simultaneously by combining the micro-particle image velocimetry technique and a correlation mapping method. The blood flow and platelet adhesion procedure in a stenotic micro-channel with 90% severity were observed for a relatively long period of 4 min. In order to investigate the effect of tile size on the detection of platelet adhesion, 2D correlation coefficients were evaluated with binary images obtained by manual labeling and the correlation mapping method with different sizes of the square tile ranging from 3 to 50 pixels. The maximum 2D correlation coefficient occurred with the optimum tile size of 5 × 5 pixels. Since the blood flow and platelet aggregation are mutually influenced by each other, blood flow and platelet adhesion were continuously varied. When there was no platelet adhesion (t = 0 min), typical blood flow is observed. The blood flow passes through the whole channel smoothly, and jet-like flow occurs in the post-stenosis region. However, the flow pattern changes when platelet adhesion starts at the stenosis apex and after the stenosis. These adhesions induce narrow high velocity regions to become wider over a range of area from upstream to downstream of the stenosis. Separated jet-like flows with two high velocity regions are also created. The changes in flow patterns may alter the patterns of platelet adhesion. As the area of the plate adhesion increases, the platelets plug the micro-channel and there is only a small amount of blood flow, finally. The microfluidic method could provide new insights for better understanding of the interactions between platelet aggregation and blood flow in various physiological

  15. Comparative Effects of Platelet-Rich Plasma, Platelet Lysate, and Fetal Calf Serum on Mesenchymal Stem Cells.

    PubMed

    Lykov, A P; Bondarenko, N A; Surovtseva, M A; Kim, I I; Poveshchenko, O V; Pokushalov, E A; Konenkov, V I

    2017-10-01

    We studied the effects of human platelet-rich plasma and platelet lysate on proliferation, migration, and colony-forming properties of rat mesenchymal stem cells. Platelet-rich plasma and platelet lysate stimulated the proliferation, migration, and colony formation of mesenchymal stem cells. A real-time study showed that platelet-rich plasma produces the most potent stimulatory effect, while both platelet-rich plasma and platelet lysate stimulated migration of cells.

  16. Anti-platelet and anti-thrombotic effect of a traditional herbal medicine Kyung-Ok-Ko.

    PubMed

    Kim, Tae-Ho; Lee, Kyoung Mee; Hong, Nam Doo; Jung, Yi-Sook

    2016-02-03

    Kyung-Ok-Ko (KOK), a traditional herbal prescription, contains six main ingredients; Rehmannia glutinosa var. purpurae, Lycium chinense, Aquillaria agallocha, Poria cocos, Panax ginseng, and honey. KOK has been widely taken as a traditional oriental medicine for improving blood circulation or age-related symptoms, such as dementia and stroke. However, the effect of KOK on platelet activity has not been clarified. To evaluate the effect of KOK on platelet function, we evaluated its effect on functional markers of platelet activation such as aggregation and shape change. As a mechanism study for the effect of KOK, we examined its effect on granule secretion, intracellular Ca(2+) increase, and PLCγ and Akt activation. To investigate the effect of orally administered KOK (0.5, 1, 2 g/kg), we examined its ex vivo effect on platelet aggregation in rat, and its in vivo anti-thrombotic effect in mice thromboembolism model. Furthermore, the effect of KOK on bleeding time was examined to estimate its potential side effect. KOK (0.3, 1, 3, 10 mg/ml) inhibited collagen-induced platelet aggregation and shape change in rat platelets in a concentration-dependent manner. The mechanism for the anti-platelet effect of KOK seems to involve the inhibition of ATP release, intracellular Ca(2+) elevation, and the phosphorylation of PLCγ and Akt. In rat ex vivo study, KOK (2 g/kg, p.o. for 1 day, and 0.5, 1, 2 g/kg, p.o. for 7 days) also had significant inhibitory effects on collagen-induced platelet aggregation. In addition, KOK showed a significant protective effect against thrombosis attack in mice. The prolongation of bleeding time by KOK was much less than that by ASA, suggesting a beneficial potential of KOK than ASA in view of side effect. These findings suggest that KOK elicits remarkable anti-platelet and anti-thrombotic effects with less side effect of bleeding, and therefore, it may have a therapeutic potential for the prevention of platelet-associated cardiovascular diseases

  17. Spectral anomaly methods for aerial detection using KUT nuisance rejection

    NASA Astrophysics Data System (ADS)

    Detwiler, R. S.; Pfund, D. M.; Myjak, M. J.; Kulisek, J. A.; Seifert, C. E.

    2015-06-01

    This work discusses the application and optimization of a spectral anomaly method for the real-time detection of gamma radiation sources from an aerial helicopter platform. Aerial detection presents several key challenges over ground-based detection. For one, larger and more rapid background fluctuations are typical due to higher speeds, larger field of view, and geographically induced background changes. As well, the possible large altitude or stand-off distance variations cause significant steps in background count rate as well as spectral changes due to increased gamma-ray scatter with detection at higher altitudes. The work here details the adaptation and optimization of the PNNL-developed algorithm Nuisance-Rejecting Spectral Comparison Ratios for Anomaly Detection (NSCRAD), a spectral anomaly method previously developed for ground-based applications, for an aerial platform. The algorithm has been optimized for two multi-detector systems; a NaI(Tl)-detector-based system and a CsI detector array. The optimization here details the adaptation of the spectral windows for a particular set of target sources to aerial detection and the tailoring for the specific detectors. As well, the methodology and results for background rejection methods optimized for the aerial gamma-ray detection using Potassium, Uranium and Thorium (KUT) nuisance rejection are shown. Results indicate that use of a realistic KUT nuisance rejection may eliminate metric rises due to background magnitude and spectral steps encountered in aerial detection due to altitude changes and geographically induced steps such as at land-water interfaces.

  18. Platelet-derived chemokines in atherogenesis: what's new?

    PubMed

    Gleissner, Christian A

    2012-09-01

    Over the past decade, platelets have been demonstrated to have various functions beyond their role in hemostasis. Platelets possess a rich repertoire of chemokines that are stored in their alpha granules and can be released upon activation. The pro-atherogenic effects of activated platelets are most likely mediated by release of these pro-inflammatory mediators that promote recruitment, activation or differentiation of other cell types including endothelial cells and leukocytes. These effects have been excellently reviewed in the past by various authors. The current review will therefore focus on novel findings. A specific focus will be put on CXCL4, on which a lot of new data have been published since 2008. Thus, the effects of CXCL4 on macrophage differentiation have been studied in detail revealing that CXCL4 induces a specific macrophage phenotype. Furthermore, novel data on CXCL4L1, a protein similar to CXCL4 that is probably transcribed from a duplication of the PF4 gene coding for CXCL4, will be discussed. A very interesting study has recently demonstrated that the inhibition of heterophilic chemokine interactions using a specifically designed small molecule can inhibit atherogenesis in Apoe-/- mice, thereby demonstrating the clinical potential of tackling platelet chemokines as therapeutic targets in atherosclerosis. Finally, novel data on CXCL1 and CCL5 will be discussed. Overall, while our understanding of the role of platelet chemokines in atherogenesis has significantly improved over the past years, it seems that there may still be many buried treasures in this field that could improve disease prevention or lead to novel clinical therapies.

  19. Comparison of the effects of isobutylmethylxanthine and milrinone on ischaemia-induced arrhythmias and platelet aggregation in anaesthetized rabbits.

    PubMed Central

    Holbrook, M.; Coker, S. J.

    1989-01-01

    1. The aim of this study was to compare the effects of the non-selective phosphodiesterase (PDE) inhibitor, isobutylmethylxanthine (IBMX) and the selective PDE III inhibitor, milrinone, in a rabbit model of acute myocardial ischaemia. 2. Coronary artery occlusion caused changes in the ST-segment of the ECG and ectopic activity in all control rabbits. Ventricular fibrillation occurred in 10 out of 14 (71%) of these animals. Pretreatment with IBMX 100 micrograms kg-1 plus 10 micrograms kg-1 min-1, starting 10 min before coronary artery occlusion, reduced ischaemia-induced ST-segment changes and ventricular fibrillation occurred in only 10% of this group (n = 10). A similar dose of milrinone had no antiarrhythmic activity, whereas with a lower dose of milrinone, 30 micrograms kg-1 plus 3 micrograms kg-1 min-1 (n = 10), only 30% of rabbits fibrillated and ST-segment changes were attenuated. 3. Acute administration of both IBMX and milrinone reduced arterial blood pressure. With the higher dose of milrinone a significant effect was still present after 10 min of drug infusion. A greater hypotensive response to the higher dose of milrinone was observed in the rabbits which subsequently fibrillated during ischaemia. A marked tachycardia was also observed after administration of the higher dose of milrinone. 4. At the end of the experiment platelet aggregation was studied ex vivo. ADP-induced aggregation was reduced by pretreatment of the rabbits with milrinone but not IBMX. Both PDE inhibitors enhanced the ability of isoprenaline to inhibit ADP-induced platelet aggregation but milrinone was more effective, particularly at the higher dose.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2478245

  20. Serotonin-induced mate rejection in the female cabbage butterfly, Pieris rapae crucivora

    NASA Astrophysics Data System (ADS)

    Obara, Yoshiaki; Fukano, Yuya; Watanabe, Kenta; Ozawa, Gaku; Sasaki, Ken

    2011-11-01

    Virgin female cabbage butterflies, Pieris rapae crucivora, accept and mate with courting males, whereas mated females reject them and assume the "mate refusal posture". This study tested whether the biogenic amines, serotonin (5HT), dopamine (DA), and octopamine (OA), were responsible for this change in behavior. The results showed that 2-3-day-old virgin females fed with 5HT rejected courting males significantly more frequently compared with controls fed on sucrose. In contrast, the proportions of courting males rejected by virgin females fed with either DA or OA did not differ from sucrose-fed controls. Oral application of each amine resulted in significantly increased levels of the amine applied (or its metabolite) in the brain. The results strongly suggest that 5HT or a 5HT metabolite may be responsible for the post-mating change in behavioral response of 2-3-day-old virgin females to courting males. Similar effects of 5HT treatment were observed in 6-8-day-old virgin females, but in this case the results were only marginally different from the controls, suggesting that the effect may decline with increasing female age.

  1. Nitric oxide mediates angiogenesis induced in vivo by platelet-activating factor and tumor necrosis factor-alpha.

    PubMed Central

    Montrucchio, G.; Lupia, E.; de Martino, A.; Battaglia, E.; Arese, M.; Tizzani, A.; Bussolino, F.; Camussi, G.

    1997-01-01

    We evaluated the role of an endogenous production of nitric oxide (NO) in the in vitro migration of endothelial cells and in the in vivo angiogenic response elicited by platelet-activating factor (PAF), tumor necrosis factor-alpha (TNF), and basic fibroblast growth factor (bFGF). The NO synthase inhibitor, N omega-nitro-L-arginine-methyl ester (L-NAME), but not its enantiomer D-NAME, prevented chemotaxis of endothelial cells induced in vitro by PAF and by TNF. The motogenic activity of TNF was also inhibited by WEB 2170, a specific PAF-receptor antagonist. In contrast, chemotaxis induced by bFGF was not prevented by L-NAME or by WEB 2170. Angiogenesis was studied in vivo in a murine model in which Matrigel was used as a vehicle for the delivery of mediators. In this model, the angiogenesis induced by PAF and TNF was inhibited by WEB 2170 and L-NAME but not by D-NAME. In contrast, angiogenesis induced by bFGF was not affected by L-NAME or by WEB 2170. TNF, but not bFGF, induced PAF synthesis within Matrigel. These results suggest that NO mediates the angiogenesis induced by PAF as well as that induced by TNF, which is dependent on the production of PAF. In contrast, the angiogenic effect of bFGF appears to be both PAF and NO independent. Images Figure 3 Figure 4 PMID:9250168

  2. Modification of Pulsed Electric Field Conditions Results in Distinct Activation Profiles of Platelet-Rich Plasma.

    PubMed

    Frelinger, Andrew L; Gerrits, Anja J; Garner, Allen L; Torres, Andrew S; Caiafa, Antonio; Morton, Christine A; Berny-Lang, Michelle A; Carmichael, Sabrina L; Neculaes, V Bogdan; Michelson, Alan D

    2016-01-01

    Activated autologous platelet-rich plasma (PRP) used in therapeutic wound healing applications is poorly characterized and standardized. Using pulsed electric fields (PEF) to activate platelets may reduce variability and eliminate complications associated with the use of bovine thrombin. We previously reported that exposing PRP to sub-microsecond duration, high electric field (SMHEF) pulses generates a greater number of platelet-derived microparticles, increased expression of prothrombotic platelet surfaces, and differential release of growth factors compared to thrombin. Moreover, the platelet releasate produced by SMHEF pulses induced greater cell proliferation than plasma. To determine whether sub-microsecond duration, low electric field (SMLEF) bipolar pulses results in differential activation of PRP compared to SMHEF, with respect to profiles of activation markers, growth factor release, and cell proliferation capacity. PRP activation by SMLEF bipolar pulses was compared to SMHEF pulses and bovine thrombin. PRP was prepared using the Harvest SmartPreP2 System from acid citrate dextrose anticoagulated healthy donor blood. PEF activation by either SMHEF or SMLEF pulses was performed using a standard electroporation cuvette preloaded with CaCl2 and a prototype instrument designed to take into account the electrical properties of PRP. Flow cytometry was used to assess platelet surface P-selectin expression, and annexin V binding. Platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), endothelial growth factor (EGF) and platelet factor 4 (PF4), and were measured by ELISA. The ability of supernatants to stimulate proliferation of human epithelial cells in culture was also evaluated. Controls included vehicle-treated, unactivated PRP and PRP with 10 mM CaCl2 activated with 1 U/mL bovine thrombin. PRP activated with SMLEF bipolar pulses or thrombin had similar light scatter profiles, consistent with the presence of platelet

  3. Separation of platelets from whole blood using standing surface acoustic waves in a microchannel.

    PubMed

    Nam, Jeonghun; Lim, Hyunjung; Kim, Dookon; Shin, Sehyun

    2011-10-07

    Platelet separation from blood is essential for biochemical analyses and clinical diagnosis. In this article, we propose a method to separate platelets from undiluted whole blood using standing surface acoustic waves (SSAWs) in a microfluidic device. A polydimethylsiloxane (PDMS) microfluidic channel was fabricated and integrated with interdigitated transducer (IDT) electrodes patterned on a piezoelectric substrate. To avoid shear-induced activation of platelets, the blood sample flow was hydrodynamically focused by introducing sheath flow from two side-inlets and pressure nodes were designed to locate at side walls. By means of flow cytometric analysis, the RBC clearance ratio from whole blood was found to be over 99% and the purity of platelets was close to 98%. Conclusively, the present technique using SSAWs can directly separate platelets from undiluted whole blood with higher purity than other methods.

  4. RNA sequencing enables systematic identification of platelet transcriptomic alterations in NSCLC patients.

    PubMed

    Zhang, Qun; Hu, Huan; Liu, Hongda; Jin, Jiajia; Zhu, Peiyuan; Wang, Shujun; Shen, Kaikai; Hu, Yangbo; Li, Zhou; Zhan, Ping; Zhu, Suhua; Fan, Hang; Zhang, Jianya; Lv, Tangfeng; Song, Yong

    2018-05-29

    Platelets are implicated as key players in the metastatic dissemination of tumor cells. Previous evidence demonstrated platelets retained cytoplasmic RNAs with physiologically activity, splicing pre-mRNA to mRNA and translating into functional proteins in response to external stimulation. Recently, platelets gene profile of healthy or diseased individuals were characterized with the help of RNA sequencing (RNA-Seq) in some studies, leading to new insights into the mechanisms underlying disease pathogenesis. In this study, we performed RNA-seq in platelets from 7 healthy individuals and 15 non-small cell lung cancer (NSCLC) patients. Our data revealed a subset of near universal differently expressed gene (DEG) profiles in platelets of metastatic NSCLC compared to healthy individuals, including 626 up-regulated RNAs (mRNAs and ncRNAs) and 1497 down-regulated genes. The significant over-expressed genes showed enrichment in focal adhesion, platelets activation, gap junction and adherens junction pathways. The DEGs also included previously reported tumor-related genes such as PDGFR, VEGF, EGF, etc., verifying the consistence and significance of platelet RNA-Seq in oncology study. We also validated several up-regulated DEGs involved in tumor cell-induced platelet aggregation (TCIPA) and tumorigenesis. Additionally, transcriptomic comparison analyses of NSCLC subgroups were conducted. Between non-metastatic and metastatic NSCLC patients, 526 platelet DEGs were identified with the most altered expression. The outcomes from subgroup analysis between lung adenocarcinoma and lung squamous cell carcinoma demonstrated the diagnostic potential of platelet RNA-Seq on distinguishing tumor histological types. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Antiplatelet activity of L-sulforaphane by regulation of platelet activation factors, glycoprotein IIb/IIIa and thromboxane A2.

    PubMed

    Oh, Chung-Hun; Shin, Jang-In; Mo, Sang Joon; Yun, Sung-Jo; Kim, Sung-Hoon; Rhee, Yun-Hee

    2013-07-01

    L-sulforaphane was identified as an anticarcinogen that could produce quinine reductase and a phase II detoxification enzyme. In recent decades, multi-effects of L-sulforaphane may have been investigated, but, to the authors' knowledge, the antiplatelet activation of L-sulforaphane has not been studied yet.In this study, 2 μg/ml of collagen, 50 μg/ml of ADP and 5 μg/ml of thrombin were used for platelet aggregations with or without L-sulforaphane. L-sulforaphane inhibited the platelet aggregation dose-dependently. Among these platelet activators, collagen was most inhibited by L-sulforaphane, which markedly decreased collagen-induced glycoprotein IIb/IIIa activation and thromboxane A2 (TxA2) formation in vitro. L-sulforaphane also reduced the collagen and epinephrine-induced pulmonary embolism, but did not affect prothrombin time (PT) in vivo. This finding demonstrated that L-sulforaphane inhibited the platelet activation through an intrinsic pathway.L-sulforaphane had a beneficial effect on various pathophysiological pathways of the collagen-induced platelet aggregation and thrombus formation as a selective inhibition of cyclooxygenase and glycoprotein IIb/IIIa antagonist. Thus, we recommend L-sulforaphane as a potential antithrombotic drug.

  6. Early outgrowth cells versus endothelial colony forming cells functions in platelet aggregation.

    PubMed

    Bou Khzam, Lara; Bouchereau, Olivier; Boulahya, Rahma; Hachem, Ahmed; Zaid, Younes; Abou-Saleh, Haissam; Merhi, Yahye

    2015-11-09

    Endothelial progenitor cells (EPCs) have been implicated in neoangiogenesis, endothelial repair and cell-based therapies for cardiovascular diseases. We have previously shown that the recruitment of EPCs to sites of vascular lesions is facilitated by platelets where EPCs, in turn, modulate platelet function and thrombosis. However, EPCs encompass a heterogeneous population of progenitor cells that may exert different effects on platelet function. Recent evidence suggests the existence of two EPC subtypes: early outgrowth cells (EOCs) and endothelial colony-forming cells (ECFCs). We aimed at characterizing these two EPC subtypes and at identifying their role in platelet aggregation. EOCs and ECFCs were generated from human peripheral blood mononuclear cells (PBMCs) seeded in conditioned media on fibronectin and collagen, respectively. The morphological, phenotypical and functional characteristics of EOCs and ECFCs were assessed by optical and confocal laser scanning microscopes, cell surface markers expression, and Matrigel tube formation. The impact of EOCs and ECFCs on platelet aggregation was monitored in collagen-induced optical aggregometry and compared with PBMCs and human umbilical vein endothelial cells (HUVECs). The levels of the anti-platelet agents' nitric oxide (NO) and prostacyclin (PGI2) released from cultured cells as well as the expression of their respective producing enzymes NO synthases (NOS) and cyclooxygenases (COX) were also assessed. We showed that EOCs display a monocytic-like phenotype whereas ECFCs have an endothelial-like phenotype. We demonstrated that both EOCs and ECFCs and their supernatants inhibited platelet aggregation; however ECFCs were more efficient than EOCs. This could be related to the release of significantly higher amounts of NO and PGI2 from ECFCs, in comparison to EOCs. Indeed, ECFCs, like HUVECs, constitutively express the endothelial (eNOS)-and inducible (iNOS)-NOS isoforms, and COX-1 and weakly express COX-2, whereas

  7. Increased nitric oxide production in platelets from severe chronic renal failure patients.

    PubMed

    Siqueira, Mariana Alves de Sá; Brunini, Tatiana M C; Pereira, Natália Rodrigues; Martins, Marcela Anjos; Moss, Monique Bandeira; Santos, Sérgio F; Lugon, Jocemir R; Mendes-Ribeiro, Antônio C

    2011-02-01

    Nitric oxide (NO) production occurs through oxidation of the amino acid L-arginine by NO synthase (NOS). NO inhibits platelet activation by increasing the levels of cyclic guanosine monophosphate (cGMP), thus maintaining vascular homeostasis. Our group previously demonstrated (da Silva et al. 2005) an enhancement of the L-arginine-NO-cGMP pathway in platelets taken from chronic renal failure (CRF) patients on haemodialysis associated with reduced platelet aggregation. We investigate the platelet L-arginine-NO-cGMP pathway, platelet function, and inflammation from patients in CRF on conservative treatment. A total of 42 CRF patients and 42 controls (creatinine clearance = 27 ± 3 vs. 93 ± 1 mL per min per 1.73 m2, respectively) participated in this study. NOS activity and expression and cGMP concentration were measured in platelets. Platelet aggregation induced by collagen or ADP was evaluated and plasma levels of fibrinogen were determined by the Clauss method. A marked increase in basal NOS activity was seen in undialysed CRF patients compared with controls, accompanied by an elevation of fibrinogen plasma levels. There were no differences in expression of NOS and in cGMP levels. In this context, platelet aggregation was not affected. We provide the first evidence of increased intraplatelet NO biosynthesis in undialysed CRF patients, which can be an early marker of future haemostatic abnormalities during dialysis treatment.

  8. How platelets safeguard vascular integrity

    PubMed Central

    Ho-Tin-Noé, Benoit; Demers, Mélanie; Wagner, Denisa D

    2011-01-01

    Summary The haemostatic role of platelets was established in the 1880s by Bizzozero who observed their ability to adhere and aggregate at sites of vascular injury. It was only some 80 years later that the function of platelets in maintaining the structural integrity of intact blood vessels was reported by Danielli. Danielli noted that platelets help preserve the barrier function of endothelium during organ perfusion. Subsequent studies have demonstrated further that platelets are continuously needed to support intact mature blood vessels. More recently, platelets were shown to safeguard developing vessels, lymphatics, as well as the microvasculature at sites of leukocyte infiltration, including inflamed organs and tumours. Interestingly, from a mechanistic point of view, the supporting role of platelets in these various vessels does not necessarily involve the well-understood process of platelet plug formation but, rather, may rely on secretion of the various platelet granules and their many active components. The present review focuses on these nonconventional aspects of platelet biology and function by presenting situations in which platelets intervene to maintain vascular integrity and discusses possible mechanisms of their actions. We propose that modulating these newly described platelet functions may help treat haemorrhage as well as treat cancer by increasing the efficacy of drug delivery to tumours. PMID:21781242

  9. Alternatives to allogeneic platelet transfusion.

    PubMed

    Desborough, Michael J R; Smethurst, Peter A; Estcourt, Lise J; Stanworth, Simon J

    2016-11-01

    Allogeneic platelet transfusions are widely used for the prevention and treatment of bleeding in thrombocytopenia. Recent evidence suggests platelet transfusions have limited efficacy and are associated with uncertain immunomodulatory risks and concerns about viral or bacterial transmission. Alternatives to transfusion are a well-recognised tenet of Patient Blood Management, but there has been less focus on different strategies to reduce bleeding risk by comparison to platelet transfusion. Direct alternatives to platelet transfusion include agents to stimulate endogenous platelet production (thrombopoietin mimetics), optimising platelet adhesion to endothelium by treating anaemia or increasing von Willebrand factor levels (desmopressin), increasing formation of cross-linked fibrinogen (activated recombinant factor VII, fibrinogen concentrate or recombinant factor XIII), decreasing fibrinolysis (tranexamic acid or epsilon aminocaproic acid) or using artificial or modified platelets (cryopreserved platelets, lyophilised platelets, haemostatic particles, liposomes, engineered nanoparticles or infusible platelet membranes). The evidence base to support the use of these alternatives is variable, but an area of active research. Much of the current randomised controlled trial focus is on evaluation of the use of thrombopoietin mimetics and anti-fibrinolytics. It is also recognised that one alternative strategy to platelet transfusion is choosing not to transfuse at all. © 2016 John Wiley & Sons Ltd.

  10. Ginsenoside-Rp3 inhibits platelet activation and thrombus formation by regulating MAPK and cyclic nucleotide signaling.

    PubMed

    Irfan, Muhammad; Jeong, Da Hye; Kwon, Hyuk-Woo; Shin, Jung-Hae; Park, Sang-Joon; Kwak, Dongmi; Kim, Tae-Hwan; Lee, Dong-Ha; Park, Hwa-Jin; Rhee, Man Hee

    2018-06-08

    Ginseng (Panax ginseng C.A. Mayer) contains saponin fractions called ginsenosides, which are thought to be the main components responsible for its various pharmacological activities. Ginsenosides have cardioprotective and antiplatelet effects. In the present study, we evaluated the effects of ginsenoside Rp3 (G-Rp3) on platelet function. The in vitro effects of G-Rp3 were evaluated on agonist-induced human and rat platelet aggregation, while [Ca 2+ ] i mobilization, granule secretion, integrin α IIb β 3 activation, and clot retraction were assessed in rat platelets. Its effects on vasodilator-stimulated phosphoprotein (VASP) expression, phosphorylation of MAPK signaling molecules, and PI3K/Akt activation were also studied. Moreover, the tyrosine phosphorylation of components of the P 2 Y 12 receptor downstream signaling pathway was also examined. The in vivo effects of G-Rp3 were studied using an acute pulmonary thromboembolism model and lung histopathology. G-Rp3 significantly inhibited collagen, ADP, and thrombin-induced platelet aggregation. G-Rp3 elevated cAMP levels and VASP phosphorylation and suppressed agonist-induced [Ca 2+ ] i mobilization, ATP release, and P-selectin expression along with fibrinogen binding to integrin α IIb β 3 , fibronectin adhesion, and clot retraction. G-Rp3 also attenuated the phosphorylation of MAPK, Src, and PLCγ2 as well as PI3K/Akt activation. Furthermore, it inhibited tyrosine phosphorylation of the Src family kinases (Src, Fyn, and Lyn) and PLCγ2 and protected mice from thrombosis. G-Rp3 modulates agonist-induced platelet activation and thrombus formation by inhibiting granule secretion, integrin α IIb β 3 activation, MAPK signaling, and Src, PLCγ2, and PI3K/Akt activation, and VASP stimulation. Our data suggest that G-Rp3 has therapeutic potential as a treatment for platelet-related cardiovascular disorders. Copyright © 2017. Published by Elsevier Inc.

  11. Platelet-Derived Growth Factor-BB Lessens Light-Induced Rod Photoreceptor Damage in Mice.

    PubMed

    Takahashi, Kei; Shimazawa, Masamitsu; Izawa, Hiroshi; Inoue, Yuki; Kuse, Yoshiki; Hara, Hideaki

    2017-12-01

    Platelet-derived growth factor (PDGF)-BB is known to have neuroprotective effects against various neurodegenerative disorders. The purpose of this study was to determine whether PDGF-BB can be neuroprotective against light-induced photoreceptor damage in mice. Mice were exposed to 8000-lux luminance for 3 hours to induce phototoxicity. Two hours before light exposure, the experimental mice were injected with PDGF-BB intravitreally, and the control mice were injected with phosphate-buffered saline. The light-exposed PDGF-BB-injected mice and saline-injected mice were evaluated electroretinographically and histologically. The site and expression levels of PDGFR-β and PDGF-BB were determined by immunostaining and Western blotting, respectively. The effect of PDGF-BB on light-induced cone and rod photoreceptor damage was also evaluated in vitro in 661W cells, a murine cone photoreceptor cell line, and in primary retinal cell cultures. An intravitreal injection of PDGF-BB significantly reduced the decrease in the amplitudes of the electroretinograms (ERGs) and the thinning of the outer nuclear layer (ONL) induced by the light exposure. It also reduced the number of TUNEL-positive cells in the ONL. PDGFR-β was expressed in the rod outer segments (OSs) but not the cone OSs. The levels of PDGF-BB and PDGFR-β were decreased after light irradiation. In addition, PDGF-BB had protective effects against light-induced damage to cells of rod photoreceptors but had no effect on the 661W cells in vitro. These findings indicate that PDGF-BB reduces the degree of light-induced retinal damage by activating PDGFR-β in rod photoreceptors. These findings suggest that PDGF-BB could play a role in the prevention of degeneration in eyes susceptible to phototoxicity.

  12. Platelet lipidomics: a modern day perspective on lipid discovery and characterization in platelets

    PubMed Central

    O’Donnell, Valerie B; Murphy, Robert C.; Watson, Steve P

    2014-01-01

    Lipids are diverse families of biomolecules that perform essential structural and signaling roles in platelets. Their formation and metabolism is tightly controlled by enzymes and signal transduction pathways, and their dysregulation leads to significant defects in platelet function and disease. Platelet activation is associated with significant changes to membrane lipids, and formation of diverse bioactive lipids that play essential roles in hemostasis. In recent years, new generation mass spectrometry analysis of lipids (termed “lipidomics”) has begun to alter our understanding of how these molecules participate in key cellular processes. While, the application of lipidomics to platelet biology is still in its infancy, seminal earlier studies have shaped our knowledge of how lipids regulate key aspects of platelet biology, including aggregation, shape change, coagulation and degranulation, as well as how lipids generated by platelets influence other cells, such as leukocytes and the vascular wall, and thus how they regulate hemostasis, vascular integrity and inflammation, as well as contribute to pathologies including arterial/deep vein thrombosis and atherosclerosis. This review will provide a brief historical perspective on the characterization of lipids in platelets, then an overview of the new generation lipidomic approaches, their recent application to platelet biology, and future perspectives for research in this area. The major platelet-regulatory lipid families, their formation, metabolism, and their role in health and disease, will be summarized. PMID:24677238

  13. Acetylsalicylic Acid Produces Different Effects on the Production of Active Oxygen Species by Activated Platelets in Different Inflammatory Diseases.

    PubMed

    Gabbasov, Z A; Kogan-Yasny, V V; Lakhno, D A; Kagan, L G; Ryzhkova, E V; Vasilieva, E Yu; Shpektor, A V

    2017-11-01

    We studied the effect of acetylsalicylic acid on ROS generation by platelets in patients after surgical interventions and in patients with bronchial asthma was studied. Platelets stimulated with platelet-activating factor are characterized by weak luminol-enhanced chemiluminescence in healthy people and patients after operations with laparoscopic incisions. Addition of platelet activation factor to platelet samples from patients after open abdominal surgery caused intensive chemiluminescence that was suppressed after platelet incubation with acetylsalicylic acid. At the same time, platelets of patients with aspirin-sensitive asthma did not respond to addition of platelet activating factor, but after incubation with acetylsalicylic acid, an intensive burst of chemiluminescence was detected with a maximum in 5-10 sec after the addition of a platelet-activating factor. In patients with bronchial asthma tolerant to aspirin, platelet activation factor did not induce chemiluminescence irrespective of incubation with acetylsalicylic acid.

  14. Platelet oxidative stress and its relationship with cardiovascular diseases in type 2 diabetes mellitus patients.

    PubMed

    El Haouari, Mohammed

    2017-10-05

    Enhanced platelet activation and thrombosis are linked to various cardiovascular diseases. Among other mechanisms, oxidative stress seems to play a pivotal role in platelet hyperactivity. Indeed, upon stimulation by physiological agonists, human platelets generate and release several types of reactive oxygen species (ROS) such as O2-, H2O2 or OH- , further amplifying the platelet activation response via various signalling pathways, including, formation of isoprostanes, Ca2+ mobilization and NO inactivation. Furthermore, excessive platelet ROS generation, incorporation of free radicals from environment and/or depletion of antioxidants induce pro-oxidant, pro-inflammatory and platelet hyperaggregability effects, leading to the incidence of cardiovascular events. Here, we review the current knowledge regarding the effect of oxidative stress on platelet signaling pathways and its implication in CVD such as type 2 diabetes mellitus. We also summarize the role of natural antioxidants included in vegetables, fruits and medicinal herbs in reducing platelet function via an oxidative stress-mediated mechanism. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Agonist and antagonist effects of diadenosine tetraphosphate, a platelet dense granule constituent, on platelet P2Y1, P2Y12 and P2X1 receptors.

    PubMed

    Chang, Hung; Yanachkov, Ivan B; Michelson, Alan D; Li, YouFu; Barnard, M R; Wright, George E; Frelinger, Andrew L

    2010-02-01

    Diadenosine 5',5'''-P(1),P(4)- tetraphosphate (Ap(4)A) is stored in platelet dense granules, but its effects on platelet function are not well understood. We examined the effects of Ap(4)A on platelet purinergic receptors P2Y(1), P2Y(12) and P2X(1). Flow cytometry was used to measure the effects of Ap(4)A in the presence or absence of ADP on: a) P2Y(12)-mediated decrease in intraplatelet phosphorylated vasodilator stimulated phosphoprotein (VASP), b) P2Y(1)-mediated increase in platelet cytosolic Ca(2+), and c) P2X(1)-mediated intraplatelet entry of extracellular Ca(2+). ADP-stimulated platelet shape change (P2Y(1)-mediated) and aggregation (P2Y(1)- and P2Y(12)-mediated) were measured optically. Ap(4)A inhibited 3 microM ADP-induced: a) platelet aggregation (IC(50) 9.8+/-2.8 microM), b) P2Y(1)-mediated shape change, c) P2Y(1)-mediated increase in platelet cytosolic Ca(2+) (IC(50) 40.8+/-12.3 microM), and d) P2Y(12)-mediated decrease in VASP phosphorylation (IC(50)>250 microM). In the absence of added ADP, Ap(4)A had agonist effects on platelet P2X(1) and P2Y(12), but not P2Y(1), receptors. Ap(4)A, a constituent of platelet dense granules, is a) an antagonist of platelet P2Y(1) and P2Y(12) receptors, where it inhibits the effects of ADP, and b) an agonist of platelet P2X(1) and P2Y(12) receptors. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. Agonist and Antagonist Effects of Diadenosine Tetraphosphate, a Platelet Dense Granule Constituent, on Platelet P2Y1, P2Y12 and P2X1 Receptors

    PubMed Central

    Chang, Hung; Yanachkov, Ivan B.; Michelson, Alan D.; Li, YouFu; Barnard, M.R.; Wright, George E.; Frelinger, Andrew L.

    2010-01-01

    Introduction Diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) is stored in platelet dense granules, but its effects on platelet function are not well understood. Methods and Results We examined the effects of Ap4A on platelet purinergic receptors P2Y1, P2Y12 and P2X1. Flow cytometry was used to measure the effects of Ap4A in the presence or absence of ADP on: a) P2Y12-mediated decrease in intraplatelet phosphorylated vasodilator stimulated phosphoprotein (VASP), b) P2Y1-mediated increase in platelet cytosolic Ca2+, and c) P2X1-mediated intraplatelet entry of extracellular Ca2+. ADP-stimulated platelet shape change (P2Y1-mediated) and aggregation (P2Y1- and P2Y12-mediated) were measured optically. Ap4A inhibited 3 µM ADP-induced: a) platelet aggregation (IC50 9.8 ± 2.8 µM), b) P2Y1-mediated shape change, c) P2Y1-mediated increase in platelet cytosolic Ca2+ (IC50 40.8 ± 12.3 µM), and d) P2Y12-mediated decrease in VASP phosphorylation (IC50 >250 µM). In the absence of added ADP, Ap4A had agonist effects on platelet P2X1 and P2Y12, but not P2Y1, receptors. Conclusion Ap4A, a constituent of platelet dense granules, is a) an antagonist of platelet P2Y1 and P2Y12 receptors, where it inhibits the effects of ADP, and b) an agonist of platelet P2X1 and P2Y12 receptors. PMID:19945153

  17. Compression force sensing regulates integrin αIIbβ3 adhesive function on diabetic platelets.

    PubMed

    Ju, Lining; McFadyen, James D; Al-Daher, Saheb; Alwis, Imala; Chen, Yunfeng; Tønnesen, Lotte L; Maiocchi, Sophie; Coulter, Brianna; Calkin, Anna C; Felner, Eric I; Cohen, Neale; Yuan, Yuping; Schoenwaelder, Simone M; Cooper, Mark E; Zhu, Cheng; Jackson, Shaun P

    2018-03-14

    Diabetes is associated with an exaggerated platelet thrombotic response at sites of vascular injury. Biomechanical forces regulate platelet activation, although the impact of diabetes on this process remains ill-defined. Using a biomembrane force probe (BFP), we demonstrate that compressive force activates integrin α IIb β 3 on discoid diabetic platelets, increasing its association rate with immobilized fibrinogen. This compressive force-induced integrin activation is calcium and PI 3-kinase dependent, resulting in enhanced integrin affinity maturation and exaggerated shear-dependent platelet adhesion. Analysis of discoid platelet aggregation in the mesenteric circulation of mice confirmed that diabetes leads to a marked enhancement in the formation and stability of discoid platelet aggregates, via a mechanism that is not inhibited by therapeutic doses of aspirin and clopidogrel, but is eliminated by PI 3-kinase inhibition. These studies demonstrate the existence of a compression force sensing mechanism linked to α IIb β 3 adhesive function that leads to a distinct prothrombotic phenotype in diabetes.

  18. Absence of Gal epitope prolongs survival of swine lungs in an ex vivo model of hyperacute rejection

    PubMed Central

    Nguyen, Bao-Ngoc H.; Azimzadeh, Agnes M.; Schroeder, Carsten; Buddensick, Thomas; Zhang, Tianshu; Laaris, Amal; Cochrane, Megan; Schuurman, Henk-Jan; Sachs, David H.; Allan, James S.; Pierson, Richard N.

    2012-01-01

    Background Galactosyl transferase gene knock-out (GalTKO) swine offer a unique tool to evaluate the role of the Gal antigen in xenogenic lung hyperacute rejection. Methods We perfused GalTKO miniature swine lungs with human blood. Results were compared with those from previous studies using wild-type and human decay-accelerating factor-transgenic (hDAF+/+) pig lungs. Results GalTKO lungs survived 132 ± 52 min compared to 10 ± 9 min for wild-type lungs (P = 0.001) and 45 ± 60 min for hDAF+/+ lungs (P = 0.18). GalTKO lungs displayed stable physiologic flow and pulmonary vascular resistance (PVR) until shortly before graft demise, similar to autologous perfusion, and unlike wild-type or hDAF+/+ lungs. Early (15 and 60 min) complement (C3a) and platelet activation and intrapulmonary platelet deposition were significantly diminished in GalTKO lungs relative to wild-type or hDAF+/+ lungs. However, GalTKO lungs adsorbed cytotoxic anti-non-Gal antibody and elaborated high levels of thrombin; their demise was associated with increased PVR, capillary congestion, intravascular thrombi and strong CD41 deposition not seen at earlier time points. Conclusions In summary, GalTKO lungs are substantially protected from injury but, in addition to anti-non-Gal antibody and complement, platelet adhesion and non-physiologic intravascular coagulation contribute to Gal-independent lung injury mechanisms. PMID:21496117

  19. In vitro analysis of platelet function in acute aneurysmal subarachnoid haemorrhage.

    PubMed

    von der Brelie, Christian; Subai, Alexander; Limperger, Verena; Rohde, Veit; Dempfle, Astrid; Boström, Azize

    2018-04-01

    Platelet function might play an essential role in the pathogenesis of delayed cerebral ischemia (DCI) after aneurysmal subarachnoid haemorrhage (SAH). Thus, impaired platelet function and disturbed primary haemostasis induced by intake of acetylsalicylic acid (ASA) might influence the rate of DCI. Primary haemostasis and platelet function can be measured with in vitro diagnosis (platelet function analyser test, PFA 100). The aim of this study is to evaluate the rate of DCI, haemorrhagic complications and the neurological outcome. Two groups were compared (patients with regular platelet function versus patients with impaired platelet function). This is a retrospective observational study. An initial cohort of 787 patients with SAH has been treated from January 2005 to September 2012. Seventy-nine patients (10%) with aneurysmal SAH, a history of ASA medication and PFA testing within the first 24 h after aneurysm rupture have been included. The overall rate of DCI in the present study was 43%. In vitro platelet function testing showed pathological primary haemostasis in 69.6%. The DCI rate was higher in patients with regular tested primary haemostasis (p = 0.02, OR = 3.16, 95%CI = [1.19; 8.83]). However, outcome assessment by mGOS did not show a significant difference between the groups. Patients with impaired primary haemostasis did not display a higher rate of haemorrhagic complications. Impairment of primary haemostasis resulting from an impairment of platelet function at an early stage after SAH might lead to a lower rate of DCI. In vitro testing of platelet function might be useful to predict the occurrence of DCI in the course.

  20. Peer Rejection Cues Induce Cardiac Slowing after Transition into Adolescence

    ERIC Educational Resources Information Center

    Gunther Moor, Bregtje; Bos, Marieke G. N.; Crone, Eveline A.; van der Molen, Maurits W.

    2014-01-01

    The present study examined developmental and gender differences in sensitivity to peer rejection across the transition into adolescence by examining beat-by-beat heart rate responses. Children between the ages of 8 and 14 years were presented with unfamiliar faces of age-matched peers and were asked to predict whether they would be liked by the…

  1. Effects of hormones on platelet aggregation.

    PubMed

    Farré, Antonio López; Modrego, Javier; Zamorano-León, José J

    2014-04-01

    Platelets and their activation/inhibition mechanisms play a central role in haemostasis. It is well known agonists and antagonists of platelet activation; however, during the last years novel evidences of hormone effects on platelet activation have been reported. Platelet functionality may be modulated by the interaction between different hormones and their platelet receptors, contributing to sex differences in platelet function and even in platelet-mediated vascular damage. It has suggested aspects that apparently are well established should be reviewed. Hormones effects on platelet activity are included among them. This article tries to review knowledge about the involvement of hormones in platelet biology and activity.

  2. Influence of calcium salts and bovine thrombin on growth factor release from equine platelet-rich gel supernatants.

    PubMed

    Giraldo, Carlos E; Álvarez, María E; Carmona, Jorge U

    2017-01-16

    To compare five activation methods in equine platelet-rich plasma (PRP) by determination of platelet-derived growth factor BB (PDGF-BB) and transforming growth factor beta 1 (TGF-β1) concentrations in platelet-rich gel (PRG) supernatants. Platelet-rich plasma from 20 horses was activated by calcium chloride (CC), calcium gluconate (CG), bovine thrombin (BT), and their combinations, BTCC and BTCG. Both growth factor concentrations in PRG supernatants were measured by ELISA and compared with plasma and platelet lysates (PL) over time. Growth factor concentrations were significantly lower in plasma and higher for all PRG supernatants. Platelet lysates contained a significantly lower concentration of PDGF-BB than PRG supernatants and a significantly higher concentration of TGF-β1 than PRG supernatants. Clots from PRP activated with sodium salts were more stable over time and had significant growth factor release, whereas CC produced gross salt deposition. Significant correlations were noticed for platelet with leukocyte concentrations in PRP (r s : 0.76), platelet counts in PRP with TGF-β1 concentrations in PRG supernatants (r s : 0.86), platelet counts in PRP with PDGF-BB concentrations in PRG supernatants (r s : 0.78), leukocyte counts in PRP with TGF-β1 concentrations in PRG supernatants (r s : 0.76), and PDGF-BB concentrations with activating substances (r s : 0.72). Calcium gluconate was the better substance to induce PRP activation. It induced growth factor release free from calcium precipitates in the clots. Use of BT alone or combined with calcium salts was not advantageous for growth factor release.

  3. Platelet activation, adhesion, inflammation, and aggregation potential are altered in the presence of electronic cigarette extracts of variable nicotine concentrations.

    PubMed

    Hom, Sarah; Chen, Li; Wang, Tony; Ghebrehiwet, Berhane; Yin, Wei; Rubenstein, David A

    2016-11-01

    Tobacco smoke extracts prepared from both mainstream and sidestream smoking have been associated with heightened platelet activation, aggregation, adhesion, and inflammation. Conversely, it has been shown that pure nicotine inhibits similar platelet functions. In this work, we 1) evaluated the effects of e-cigarette extracts on platelet activities and 2) elucidated the differences between the nicotine-dependent and non-nicotine dependent (e.g. fine particulate matter or toxic compounds) effects of tobacco and e-cigarette products on platelet activities. To accomplish these goals, platelets from healthy volunteers (n = 50) were exposed to tobacco smoke extracts, e-cigarette vapor extracts, and pure nicotine and changes in platelet activation, adhesion, aggregation, and inflammation were evaluated, using optical aggregation, flow cytometry, and ELISA methods. Interestingly, the exposure of platelets to e-vapor extracts induced a significant up-regulation in the expression of the pro-inflammatory gC1qR and cC1qR and induced a marked increase in the deposition of C3b as compared with traditional tobacco smoke extracts. Similarly, platelet activation, as measured by a prothrombinase based assay, and platelet aggregation were also significantly enhanced after exposure to e-vapor extracts. Finally, platelet adhesion potential toward fibrinogen, von Willebrand factor, and other platelets was also enhanced after exposure to e-cigarette vapor extracts. In the presence of pure nicotine, platelet functions were observed to be inhibited, which further suggests that other constituents of tobacco smoke and electronic vapor can antagonize platelet functions, however, the presence of nicotine in extracts somewhat perpetuated the platelet functional changes in a dose-dependent manner.

  4. Effects of rosuvastatin on platelet inhibition by clopidogrel in cardiovascular patients.

    PubMed

    Riondino, Silvia; Petrini, Natalia; Donato, Luciamaria; Torromeo, Concetta; Tanzilli, Gaetano; Pulcinelli, Fabio M; Barillà, Francesco

    2009-08-01

    Statin interference has been suggested among the mechanisms of reduction of the antiplatelet effect of clopidogrel. We thus sought to assess the influence of rosuvastatin on clopidogrel antiplatelet action in high-risk (HR) cardiovascular patients. To set the level of platelet inhibition by combined antithrombotic treatments we retrospectively studied two populations of HR patients, one under aspirin alone, the other under aspirin plus rosuvastatin, before and after addition of clopidogrel. The effects of rosuvastatin compared with atorvastatin were then prospectively investigated in patients who underwent percutaneous coronary intervention (PCI), under clopidogrel and aspirin treatment. Light transmission platelet aggregation (LTA) was studied in response to adenosine diphosphate (ADP) (5 microM) or arachidonic acid (0.5 mM). The inhibitory effect of clopidogrel in reducing ADP-induced LTA was similar in the two HR groups of patients. No difference in ADP-induced platelet aggregation was observed in the two PCI groups of patients with either atorvastatin or rosuvastatin. In conclusion, rosuvastatin does not interfere with the antiplatelet effect of clopidogrel in patients with cardiovascular disease.

  5. Dietary calcium attenuates platelet aggregation and intracellular Ca2+ mobilization in spontaneously hypertensive rats

    NASA Technical Reports Server (NTRS)

    Otsuka, K.; Watanabe, M.; Yue, Q.; McCarron, D. A.; Hatton, D.

    1997-01-01

    Spontaneously hypertensive rats (SHR) are known to be blood pressure sensitive to dietary calcium. The effects of dietary calcium on platelet aggregation and intracellular Ca2+ mobilization were assessed by turbidimetric methods and fura-2 methods, respectively, in washed platelets of SHR. Ca2+ ATPase activity was examined in aortic membrane fractions. Six weeks of dietary calcium supplementation attenuated the increase of systolic blood pressure (SBP 199 +/- 16 v 170 +/- 9 mm Hg, P < .001) and thrombin-induced platelet aggregation (84.5 +/- 3.7 v 73.7 +/- 7.4%, P < .004) at 9 weeks of age. The ionomycin-induced intracellular calcium ([Ca2+]i) peak in the absence of external Ca2+, which reflects [Ca2+]i storage size, and thrombin-evoked [Ca2+]i release from [Ca2+]i storage were decreased by 2.0% Ca diet (472 +/- 55 v 370 +/- 23 nmol/L, P < .001, 339 +/- 29 v 278 +/- 33 nmol/L, P < .002). In addition, SBP was positively correlated with platelet aggregation (r = 0.703, P = .0088), thrombin-evoked [Ca2+]i (r = 0.739, P = .0044), and ionomycin-induced [Ca2+]i (r = 0.591, P = .0415), respectively. However, there was no significant effect of dietary calcium on Ca2+-ATPase activity in aortic membranes. These results suggest that dietary calcium supplementation had a beneficial effect on platelets of SHR by attenuating [Ca2+]i mobilization from [Ca2+]i storage. The hypotensive effect of dietary calcium might be associated with attenuated [Ca2+]i mobilization in SHR.

  6. Modulation of Platelet Activation and Thrombus Formation Using a Pan-PI3K Inhibitor S14161

    PubMed Central

    Ren, Lijie; Liu, Xiaohui; Wang, Qi; He, Sudan; Wu, Qingyu; Hu, Hu; Mao, Xinliang; Zhu, Li

    2014-01-01

    The phosphatidylinositol 3–kinase (PI3K) signaling pathway is critical in modulating platelet functions. In the present study, we evaluated the effect of S14161, a recently identified pan-class I PI3K inhibitor, on platelet activation and thrombus formation. Results showed that S14161 inhibited human platelet aggregation induced by collagen, thrombin, U46619, and ADP in a dose-dependent manner. Flow cytometric studies showed that S14161 inhibited convulxin- or thrombin-induced P-selectin expression and fibrinogen binding of single platelet. S14161 also inhibited platelet spreading on fibrinogen and clot retraction, processes mediated by outside-in signaling. Using a microfluidic chamber we demonstrated that S14161 decreased platelet adhesion on collagen-coated surface by about 80%. Western blot showed that S14161 inhibited phosphorylation of Akt at both Ser473 and Thr308 sites, and GSK3β at Ser9 in response to collagen, thrombin, or U46619. Comparable studies showed that S14161 has a higher potential bioavailability than LY294002, a prototypical inhibitor of pan-class I PI3K. Finally, the effects of S14161 on thrombus formation in vivo were measured using a ferric chloride-induced carotid artery injury model in mice. The intraperitoneal injection of S14161 (2 mg/kg) to male C57BL/6 mice significantly extended the first occlusion time (5.05±0.99 min, n = 9) compared to the vehicle controls (3.72±0.95 min, n = 8) (P<0.05), but did not prolong the bleeding time (P>0.05). Taken together, our data showed that S14161 inhibits platelet activation and thrombus formation without significant bleeding tendency and toxicity, and considering its potential higher bioavailability, it may be developed as a novel therapeutic agent for the prevention of thrombotic disorders. PMID:25115838

  7. Severing corneal nerves in one eye induces sympathetic loss of immune privilege and promotes rejection of future corneal allografts placed in either eye

    PubMed Central

    Paunicka, Kathryn J.; Mellon, Jessamee; Robertson, Danielle; Petroll, Matthew; Brown, Joseph R.; Niederkorn, Jerry Y.

    2015-01-01

    Less than 10% of corneal allografts undergo rejection even though HLA matching is not performed. However, second corneal transplants experience a three-fold increase in rejection, which is not due to prior sensitization to histocompatibility antigens shared by the first and second transplants since corneal grafts are selected at random without histocompatibility matching. Using a mouse model of penetrating keratoplasty we found that 50% of the initial corneal transplants survived, yet 100% of the subsequent corneal allografts (unrelated to the first graft) placed in the opposite eye underwent rejection. The severing of corneal nerves that occurs during surgery induced substance P (SP) secretion in both eyes, which disabled T regulatory cells that are required for allograft survival. Administration of an SP antagonist restored immune privilege and promoted graft survival. Thus, corneal surgery produces a sympathetic response that permanently abolishes immune privilege of subsequent corneal allografts, even those placed in the opposite eye and expressing a completely different array of foreign histocompatibility antigens from the first corneal graft. PMID:25872977

  8. Iron deficiency alters megakaryopoiesis and platelet phenotype independent of thrombopoietin.

    PubMed

    Evstatiev, Rayko; Bukaty, Adam; Jimenez, Kristine; Kulnigg-Dabsch, Stefanie; Surman, Lidia; Schmid, Werner; Eferl, Robert; Lippert, Kathrin; Scheiber-Mojdehkar, Barbara; Kvasnicka, Hans Michael; Khare, Vineeta; Gasche, Christoph

    2014-05-01

    Iron deficiency is a common cause of reactive thrombocytosis, however, the exact pathways have not been revealed. Here we aimed to study the mechanisms behind iron deficiency-induced thrombocytosis. Within few weeks, iron-depleted diet caused iron deficiency in young Sprague-Dawley rats, as reflected by a drop in hemoglobin, mean corpuscular volume, hepatic iron content and hepcidin mRNA in the liver. Thrombocytosis established in parallel. Moreover, platelets produced in iron deficient animals displayed a higher mean platelet volume and increased aggregation. Bone marrow studies revealed subtle alterations that are suggestive of expansion of megakaryocyte progenitors, an increase in megakaryocyte ploidy and accelerated megakaryocyte differentiation. Iron deficiency did not alter the production of hematopoietic growth factors such as thrombopoietin, interleukin 6 or interleukin 11. Megakaryocytic cell lines grown in iron-depleted conditions exhibited reduced proliferation but increased ploidy and cell size. Our data suggest that iron deficiency increases megakaryopoietic differentiation and alters platelet phenotype without changes in megakaryocyte growth factors, specifically TPO. Iron deficiency-induced thrombocytosis may have evolved to maintain or increase the coagulation capacity in conditions with chronic bleeding. Copyright © 2014 Wiley Periodicals, Inc.

  9. Current concepts in platelet transfusion

    PubMed Central

    Mohanty, Dipika

    2009-01-01

    This is the era of component therapy. Therefore there is a need for rational use of platelet concentrate. Lot of knowledge has been added recently in the field of platelet specially about the platelet rich plasma and its application in clinical practice. The current review focuses on improvement in preparation of platelet rich plasma, the procedure to make the same more safe and its rational use. Furthermore newer aspects of platelet concentrate use in surgical practice and for regenerative medicine has also been discussed. It also covers some progress and hurdles in preparation of platelet substitutes. PMID:20041092

  10. Dual mechanism of integrin αIIbβ3 closure in procoagulant platelets.

    PubMed

    Mattheij, Nadine J A; Gilio, Karen; van Kruchten, Roger; Jobe, Shawn M; Wieschhaus, Adam J; Chishti, Athar H; Collins, Peter; Heemskerk, Johan W M; Cosemans, Judith M E M

    2013-05-10

    Inactivation of integrin αIIbβ3 reverses platelet aggregate formation upon coagulation. Platelets from patient (Scott) and mouse (Capn1(-/-) and Ppif(-/-)) blood reveal a dual mechanism of αIIbβ3 inactivation: by calpain-2 cleavage of integrin-associated proteins and by cyclophilin D/TMEM16F-dependent phospholipid scrambling. These data provide novel insight into the switch mechanisms from aggregating to procoagulant platelets. Aggregation of platelets via activated integrin αIIbβ3 is a prerequisite for thrombus formation. Phosphatidylserine-exposing platelets with a key role in the coagulation process disconnect from a thrombus by integrin inactivation via an unknown mechanism. Here we show that αIIbβ3 inactivation in procoagulant platelets relies on a sustained high intracellular Ca(2+), stimulating intracellular cleavage of the β3 chain, talin, and Src kinase. Inhibition of calpain activity abolished protein cleavage, but only partly suppressed αIIbβ3 inactivation. Integrin αIIbβ3 inactivation was unchanged in platelets from Capn1(-/-) mice, suggesting a role of the calpain-2 isoform. Scott syndrome platelets, lacking the transmembrane protein TMEM16F and having low phosphatidylserine exposure, displayed reduced αIIbβ3 inactivation with the remaining activity fully dependent on calpain. In platelets from Ppif(-/-) mice, lacking mitochondrial permeability transition pore (mPTP) formation, agonist-induced phosphatidylserine exposure and αIIbβ3 inactivation were reduced. Treatment of human platelets with cyclosporin A gave a similar phenotype. Together, these data point to a dual mechanism of αIIbβ3 inactivation via calpain(-2) cleavage of integrin-associated proteins and via TMEM16F-dependent phospholipid scrambling with an assistant role of mPTP formation.

  11. Comparative analysis of human ex vivo–generated platelets vs megakaryocyte-generated platelets in mice: a cautionary tale

    PubMed Central

    Wang, Yuhuan; Hayes, Vincent; Jarocha, Danuta; Sim, Xiuli; Harper, Dawn C.; Fuentes, Rudy; Sullivan, Spencer K.; Gadue, Paul; Chou, Stella T.; Torok-Storb, Beverly J.; Marks, Michael S.; French, Deborah L.

    2015-01-01

    Thrombopoiesis is the process by which megakaryocytes release platelets that circulate as uniform small, disc-shaped anucleate cytoplasmic fragments with critical roles in hemostasis and related biology. The exact mechanism of thrombopoiesis and the maturation pathways of platelets released into the circulation remain incompletely understood. We showed that ex vivo–generated murine megakaryocytes infused into mice release platelets within the pulmonary vasculature. Here we now show that infused human megakaryocytes also release platelets within the lungs of recipient mice. In addition, we observed a population of platelet-like particles (PLPs) in the infusate, which include platelets released during ex vivo growth conditions. By comparing these 2 platelet populations to human donor platelets, we found marked differences: platelets derived from infused megakaryocytes closely resembled infused donor platelets in morphology, size, and function. On the other hand, the PLP was a mixture of nonplatelet cellular fragments and nonuniform-sized, preactivated platelets mostly lacking surface CD42b that were rapidly cleared by macrophages. These data raise a cautionary note for the clinical use of human platelets released under standard ex vivo conditions. In contrast, human platelets released by intrapulmonary-entrapped megakaryocytes appear more physiologic in nature and nearly comparable to donor platelets for clinical application. PMID:25852052

  12. S1P and the birth of platelets

    PubMed Central

    Galvani, Sylvain; Rafii, Shahin; Nachman, Ralph

    2012-01-01

    Recent work has highlighted the multitude of biological functions of sphingosine 1-phosphate (S1P), which include roles in hematopoietic cell trafficking, organization of immune organs, vascular development, and neuroinflammation. Indeed, a functional antagonist of S1P1 receptor, FTY720/Gilenya, has entered the clinic as a novel therapeutic for multiple sclerosis. In this issue of the JEM, Zhang et al. highlight yet another function of this lipid mediator: thrombopoiesis. The S1P1 receptor is required for the growth of proplatelet strings in the bloodstream and the shedding of platelets into the circulation. Notably, the sharp gradient of S1P between blood and the interstitial fluids seems to be essential to ensure the production of platelets, and S1P appears to cooperate with the CXCL12–CXCR4 axis. Pharmacologic modulation of the S1P1 receptor altered circulating platelet numbers acutely, suggesting a potential therapeutic strategy for controlling thrombocytopenic states. However, the S1P4 receptor may also regulate thrombopoiesis during stress-induced accelerated platelet production. This work reveals a novel physiological action of the S1P/S1P1 duet that could potentially be harnessed for clinical translation. PMID:23166370

  13. Elevated thrombopoietin in plasma of burned patients without and with sepsis enhances platelet activation.

    PubMed

    Lupia, E; Bosco, O; Mariano, F; Dondi, A E; Goffi, A; Spatola, T; Cuccurullo, A; Tizzani, P; Brondino, G; Stella, M; Montrucchio, G

    2009-06-01

    Thrombopoietin (TPO) is a humoral growth factor that does not induce platelet aggregation per se, but enhances platelet activation in response to several agonists. Circulating levels of TPO are increased in patients with sepsis and are mainly related to sepsis severity. To investigate the potential contribution of elevated TPO levels in platelet activation during burn injury complicated or not by sepsis. We studied 22 burned patients, 10 without and 12 with sepsis, and 10 healthy subjects. We measured plasma levels of TPO, as well as leukocyte-platelet binding and P-selectin expression. The priming activity of plasma from burned patients or healthy subjects on platelet aggregation and leukocyte-platelet binding, and the role of TPO in these effects were also studied in vitro. Burned patients without and with sepsis showed higher circulating TPO levels and increased monocyte-platelet binding compared with healthy subjects. Moreover, TPO levels, monocyte-platelet binding and P-selectin expression were significantly higher in burned patients with sepsis than in burned patients without sepsis. In vitro, plasma from burned patients without and with sepsis, but not from healthy subjects, primed platelet aggregation, monocyte-platelet binding and platelet P-selectin expression. The effect of plasma from burned patients with sepsis was significantly higher than that of plasma from burned patients without sepsis. An inhibitor of TPO prevented the priming effect of plasma from burned patients. Increased TPO levels may enhance platelet activation during burn injury and sepsis, potentially participating in the pathogenesis of multi-organ failure in these diseases.

  14. Decreased platelet inhibition by nitric oxide in two brothers with a history of arterial thrombosis.

    PubMed Central

    Freedman, J E; Loscalzo, J; Benoit, S E; Valeri, C R; Barnard, M R; Michelson, A D

    1996-01-01

    Highly reactive oxygen species rapidly inactivate nitric oxide (NO), and endothelial product which inhibits platelet activation. We studied platelet inhibition by NO in two brothers with a cerebral thrombotic disorder. Both children had hyperreactive platelets, as determined by whole blood platelet aggregometry and flow cytometric analysis of the platelet surface expression of P-selectin. Mixing experiments showed that the patients'platelets behaved normally in control plasma; however, control platelets suspended in patient plasma were not inhibited by NO. As determined by flow cytometry, in the presence of plasma from either patient there was normal inhibition of the thrombin-induced expression of platelet surface P-selectin by prostacyclin, but not NO. Using a scopoletin assay, we measured a 2.7-fold increase in plasma H2O2 generation in one patient and a 3.4-fold increase in the second patient, both compared woth control plasma. Glutathione peroxidase (GSH-Px) activity was decreased in the patients' plasmas compared with control plasma. The addition of exogenous GSH-Px led to restoration of platelet inhibition by NO. These data show that, in these patients' plasmas, impaired metabolism of reactive oxygen species reduces the bioavailability of NO and impairs normal platelet inhibitory mechanisms. These findings suggest that attenuated NO-mediated platelet inhibition produced by increased reactive oxygen species or impaired antioxidant defense may cause a thrombotic disorder in humans. PMID:8613552

  15. Effects of Antimalarial Tafenoquine on Blood Platelet Activity and Survival.

    PubMed

    Cao, Hang; Bissinger, Rosi; Umbach, Anja T; Al Mamun Bhuyan, A; Lang, Florian; Gawaz, Meinrad

    2017-01-01

    annexin-V-binding, significantly augmented the effect of thrombin on caspase 3 activity and platelet volume and significantly enhanced platelet aggregation. Tafenoquine counteracts thrombin and CRP induced increase of cytosolic Ca2+ activity and platelet activation, but enhances platelet apoptosis and platelet aggregation. © 2017 The Author(s) Published by S. Karger AG, Basel.

  16. Recombinant P-selectin glycoprotein-ligand-1 delays thrombin-induced platelet aggregation: a new role for P-selectin in early aggregation

    PubMed Central

    Théorêt, Jean-François; Chahrour, Wissam; Yacoub, Daniel; Merhi, Yahye

    2006-01-01

    P-selectin is involved, with P-selectin glycoprotein (GP)-ligand-1 (PSGL-1), in platelet/leukocyte interactions during thrombo-inflammatory reactions; it also stabilizes platelet aggregates. Its antagonism accelerates thrombolysis and enhances the anti-aggregatory effects of GPIIb–IIIa inhibitors. This study was designed to investigate the mechanisms of P-selectin-mediated platelet aggregation. In freshly isolated human platelets, P-selectin translocation after thrombin stimulation increased rapidly to 48, 72, and 86% positive platelets after 60, 120, and 300 s, respectively. Platelet aggregation at 60 s post-stimulation averaged 46.7±1.9% and its extent followed closely the kinetics of P-selectin translocation. Pre-treatment of platelets with P-selectin antagonists, a recombinant PSGL-1 (rPSGL-Ig) or a blocking monoclonal antibody, significantly delayed platelet aggregation in a dose-dependent manner. At 100 μg ml−1 of rPSGL-Ig, platelet aggregation was completely inhibited up to 60 s post-stimulation and increased thereafter to reach maximal aggregation at 5 min. The second phase of platelet aggregation, in the presence of rPSGL-Ig, was completely prevented by the addition of a GPIIb–IIIa antagonist (Reopro) at 60 s, whereas its addition in the absence of rPSGL-Ig was without any significant effect. Combination of rPSGL-Ig with Reopro or with an inhibitor of Pi3K (LY294002), which reduces GPIIb–IIIa activation, showed to be more effective in inhibiting platelet aggregation, in comparison to the effects observed individually. rPSGL-Ig blocks P-selectin, whereas Reopro and LY294002 block GPIIb–IIIa and its activation, respectively, without a major effect on the percentage of platelets expressing P-selectin. In summary, platelet P-selectin participates with GPIIb–IIIa in the initiation of platelet aggregation. Its inhibition, with rPSGL-Ig, delays the aggregation process and increases the anti-aggregatory potency of Reopro. Thus

  17. Recombinant P-selectin glycoprotein-ligand-1 delays thrombin-induced platelet aggregation: a new role for P-selectin in early aggregation.

    PubMed

    Théorêt, Jean-François; Chahrour, Wissam; Yacoub, Daniel; Merhi, Yahye

    2006-06-01

    1. P-selectin is involved, with P-selectin glycoprotein (GP)-ligand-1 (PSGL-1), in platelet/leukocyte interactions during thrombo-inflammatory reactions; it also stabilizes platelet aggregates. Its antagonism accelerates thrombolysis and enhances the anti-aggregatory effects of GPIIb-IIIa inhibitors. This study was designed to investigate the mechanisms of P-selectin-mediated platelet aggregation. 2. In freshly isolated human platelets, P-selectin translocation after thrombin stimulation increased rapidly to 48, 72, and 86% positive platelets after 60, 120, and 300 s, respectively. Platelet aggregation at 60 s post-stimulation averaged 46.7 +/- 1.9% and its extent followed closely the kinetics of P-selectin translocation. 3. Pre-treatment of platelets with P-selectin antagonists, a recombinant PSGL-1 (rPSGL-Ig) or a blocking monoclonal antibody, significantly delayed platelet aggregation in a dose-dependent manner. At 100 microg ml(-1) of rPSGL-Ig, platelet aggregation was completely inhibited up to 60 s post-stimulation and increased thereafter to reach maximal aggregation at 5 min. The second phase of platelet aggregation, in the presence of rPSGL-Ig, was completely prevented by the addition of a GPIIb-IIIa antagonist (Reopro) at 60 s, whereas its addition in the absence of rPSGL-Ig was without any significant effect. 4. Combination of rPSGL-Ig with Reopro or with an inhibitor of Pi3K (LY294002), which reduces GPIIb-IIIa activation, showed to be more effective in inhibiting platelet aggregation, in comparison to the effects observed individually. 5. rPSGL-Ig blocks P-selectin, whereas Reopro and LY294002 block GPIIb-IIIa and its activation, respectively, without a major effect on the percentage of platelets expressing P-selectin. 6. In summary, platelet P-selectin participates with GPIIb-IIIa in the initiation of platelet aggregation. Its inhibition, with rPSGL-Ig, delays the aggregation process and increases the anti-aggregatory potency of Reopro. Thus

  18. Increasing platelet concentrations in leukocyte-reduced platelet-rich plasma decrease collagen gene synthesis in tendons.

    PubMed

    Boswell, Stacie G; Schnabel, Lauren V; Mohammed, Hussni O; Sundman, Emily A; Minas, Tom; Fortier, Lisa A

    2014-01-01

    Platelet-rich plasma (PRP) is used for the treatment of tendinopathy. There are numerous PRP preparations, and the optimal combination of platelets and leukocytes is not known. Within leukocyte-reduced PRP (lrPRP), there is a plateau effect of platelet concentration, with increasing platelet concentrations being detrimental to extracellular matrix synthesis. Controlled laboratory study. Different formulations of lrPRP with respect to the platelet:leukocyte ratio were generated from venous blood of 8 horses. Explants of the superficial digital flexor tendon were cultured in lrPRP products for 96 hours. Platelet-derived growth factor-BB (PDGF-BB), tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1), and interleukin-1β (IL-1β) concentrations were determined in the media by enzyme-linked immunosorbent assay. Gene expression in tendon tissue for collagen type I and III (COL1A1 and COL3A1, respectively), matrix metalloproteinase-3 and -13 (MMP-3 and MMP-13, respectively), cartilage oligomeric matrix protein (COMP), and IL-1β was determined. Data were divided into 3 groups of lrPRP based on the ratio of platelets:leukocytes and evaluated to determine the effect of platelet concentration. Complete blood counts verified leukocyte reduction and platelet enrichment in all PRP preparations. In the lrPRP preparation, the anabolic growth factors PDGF-BB and TGF-β1 were increased with increasing platelet concentrations, and the catabolic cytokine IL-1β was decreased with increasing platelet concentrations. Increasing the platelet concentration resulted in a significant reduction in COL1A1 and COL3A1 synthesis in tendons. Increasing the platelet concentration within lrPRP preparations results in the delivery of more anabolic growth factors and less proinflammatory cytokines, but the biological effect on tendons is diminished metabolism as indicated by a decrease in the synthesis of both COL1A1 and COL3A1. Together, this information suggests that

  19. Flavan-3-ol-enriched dark chocolate and white chocolate improve acute measures of platelet function in a gender-specific way--a randomized-controlled human intervention trial.

    PubMed

    Ostertag, Luisa M; Kroon, Paul A; Wood, Sharon; Horgan, Graham W; Cienfuegos-Jovellanos, Elena; Saha, Shikha; Duthie, Garry G; de Roos, Baukje

    2013-02-01

    We examined whether flavan-3-ol-enriched dark chocolate, compared with standard dark and white chocolate, beneficially affects platelet function in healthy subjects, and whether this relates to flavan-3-ol bioavailability. A total of 42 healthy subjects received an acute dose of flavan-3-ol-enriched dark, standard dark or white chocolate, in random order. Blood and urine samples were obtained just before and 2 and 6 h after consumption for measurements of platelet function, and bioavailability and excretion of flavan-3-ols. Flavan-3-ol-enriched dark chocolate significantly decreased adenosine diphosphate-induced platelet aggregation and P-selectin expression in men (all p ≤ 0.020), decreased thrombin receptor-activating peptide-induced platelet aggregation and increased thrombin receptor-activating peptide-induced fibrinogen binding in women (both p ≤ 0.041), and increased collagen/epinephrine-induced ex vivo bleeding time in men and women (p ≤ 0.042). White chocolate significantly decreased adenosine diphosphate-induced platelet P-selectin expression (p = 0.002) and increased collagen/epinephrine-induced ex vivo bleeding time (p = 0.042) in men only. Differences in efficacy by which flavan-3-ols affect platelet function were only partially explained by concentrations of flavan-3-ols and their metabolites in plasma or urine. Flavan-3-ols in dark chocolate, but also compounds in white chocolate, can improve platelet function, dependent on gender, and may thus beneficially affect atherogenesis. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Prophylactic platelet transfusions prior to surgery for people with a low platelet count

    PubMed Central

    Estcourt, Lise J; Malouf, Reem; Doree, Carolyn; Trivella, Marialena; Hopewell, Sally; Birchall, Janet

    2017-01-01

    This is a protocol for a Cochrane Review (Intervention). The objectives are as follows: To determine the clinical effectiveness and safety of prophylactic platelet transfusions prior to surgery for people with a low platelet count or platelet dysfunction (inherited or acquired). PMID:29151812

  1. Contrast-enhanced imaging of SPIO-labeled platelets using magnetomotive ultrasound

    NASA Astrophysics Data System (ADS)

    Pope, Ava G.; Wu, Gongting; McWhorter, Frances Y.; Merricks, Elizabeth P.; Nichols, Timothy C.; Czernuszewicz, Tomasz J.; Gallippi, Caterina M.; Oldenburg, Amy L.

    2013-10-01

    The ability to image platelets in vivo can provide insight into blood clotting processes and coagulopathies, and aid in identifying sites of vascular endothelial damage related to trauma or cardiovascular disease. Toward this end, we have developed a magnetomotive ultrasound (MMUS) system that provides contrast-enhanced imaging of superparamagnetic iron oxide (SPIO) labeled platelets via magnetically-induced vibration. Platelets are a promising platform for functional imaging contrast because they readily take up SPIOs and are easily harvested from blood. Here we report a novel MMUS system that accommodates an arbitrarily thick sample while maintaining portability. We employed a frequency- and phase-locked motion detection algorithm based on bandpass filtering of the differential RF phase, which allows for the detection of sub-resolution vibration amplitudes on the order of several nanometers. We then demonstrated MMUS in homogenous tissue phantoms at SPIO concentrations as low as 0.09 mg ml-1 Fe (p < 0.0001, n = 6, t-test). Finally, we showed that our system is capable of three-dimensional imaging of a 185 µL simulated clot containing SPIO-platelets. This highlights the potential utility for non-invasive imaging of platelet-rich clots, which would constitute a fundamental advance in technology for the study of hemostasis and detection of clinically relevant thrombi.

  2. Contrast-enhanced imaging of SPIO-labeled platelets using magnetomotive ultrasound.

    PubMed

    Pope, Ava G; Wu, Gongting; McWhorter, Frances Y; Merricks, Elizabeth P; Nichols, Timothy C; Czernuszewicz, Tomasz J; Gallippi, Caterina M; Oldenburg, Amy L

    2013-10-21

    The ability to image platelets in vivo can provide insight into blood clotting processes and coagulopathies, and aid in identifying sites of vascular endothelial damage related to trauma or cardiovascular disease. Toward this end, we have developed a magnetomotive ultrasound (MMUS) system that provides contrast-enhanced imaging of superparamagnetic iron oxide (SPIO) labeled platelets via magnetically-induced vibration. Platelets are a promising platform for functional imaging contrast because they readily take up SPIOs and are easily harvested from blood. Here we report a novel MMUS system that accommodates an arbitrarily thick sample while maintaining portability. We employed a frequency- and phase-locked motion detection algorithm based on bandpass filtering of the differential RF phase, which allows for the detection of sub-resolution vibration amplitudes on the order of several nanometers. We then demonstrated MMUS in homogenous tissue phantoms at SPIO concentrations as low as 0.09 mg ml(-1) Fe (p < 0.0001, n = 6, t-test). Finally, we showed that our system is capable of three-dimensional imaging of a 185 µL simulated clot containing SPIO-platelets. This highlights the potential utility for non-invasive imaging of platelet-rich clots, which would constitute a fundamental advance in technology for the study of hemostasis and detection of clinically relevant thrombi.

  3. Platelet-rich plasma as treatment for persistent ocular epithelial defects.

    PubMed

    Ronci, Corrado; Ferraro, Angelo Salvatore; Lanti, Alessandro; Missiroli, Filippo; Sinopoli, Silvia; Del Proposto, Gianpaolo; Cipriani, Chiara; De Felici, Cecilia; Ricci, Federico; Ciotti, Marco; Cudillo, Laura; Arcese, William; Adorno, Gaspare

    2015-06-01

    Platelet- rich plasma (PRP) exhibits regenerative proprieties in wound healing but the biochemical mechanisms are unclear. In this study, autologous PRP with a mean value of 338 × 10(3) platelets/µL was used to treat corneal lesions of different aetiology, while homologous PRP with 1 × 10(6) platelets/µL was used to treat cornel lesions induced by a graft versus host disease. The impact of platelet count on the levels of PDGF AA and BB, VEGF, and EGF in the two PRPs was evaluated after a cycle of freezing/thawing. Treated corneal lesions healed or improved. The levels of PDGF AA and BB, VEGF, and EGF in the autologous PRP raised from 296 ± 61; 201.8 ± 24; 53 ± 14 and 8.9 ± 2 to 1017 ± 253; 924.7 ± 222; 101 ± 46.5 and 174 ± 15.5 pg/mL, while in the homologous PRP were 3.4, 4.5, 3.2 and 2 folds higher, respectively. High level of platelet counts seems not required to treat corneal lesions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Contrast-enhanced imaging of SPIO-labeled platelets using magnetomotive ultrasound

    PubMed Central

    Pope, Ava G.; Wu, Gongting; McWhorter, Frances Y.; Merricks, Elizabeth C.; Nichols, Timothy C.; Czernuszewicz, Tomasz J.; Gallippi, Caterina M.; Oldenburg, Amy L.

    2013-01-01

    The ability to image platelets in vivo can provide insight into blood clotting processes and coagulopathies, and aid in identifying sites of vascular endothelial damage related to trauma or cardiovascular disease. Toward this end, we have developed a magnetomotive ultrasound (MMUS) system that provides contrast-enhanced imaging of superparamagnetic iron oxide (SPIO) labeled platelets via magnetically-induced vibration. Platelets are a promising platform for functional imaging contrast because they readily take up SPIOs and are easily harvested from blood. Here we report a novel MMUS system that accommodates an arbitrarily thick sample while maintaining portability. We employed a frequency- and phase-locked motion detection algorithm based on bandpass filtering of the differential RF phase, which allows for the detection of sub-resolution vibration amplitudes on the order of several nanometers. We then demonstrated MMUS in homogenous tissue phantoms at SPIO concentrations as low as 0.09 mg/ml Fe (p < 0.0001, n = 6, t-test). Finally, we showed that our system is capable of 3-dimensional imaging of a 185 μL simulated clot containing SPIO-platelets. This highlights the potential utility for non-invasive imaging of platelet-rich clots, which would constitute a fundamental advance in technology for the study of hemostasis and detection of clinically relevant thrombi. PMID:24077004

  5. Failure of platelet parameters and biomarkers to correlate platelet function to severity and etiology of heart failure in patients enrolled in the EPCOT trial. With special reference to the Hemodyne hemostatic analyzer. Whole Blood Impedance Aggregometry for the Assessment of Platelet Function in Patients with Congestive Heart Failure.

    PubMed

    Serebruany, Victor L; McKenzie, Marcus E; Meister, Andrew F; Fuzaylov, Sergey Y; Gurbel, Paul A; Atar, Dan; Gattis, Wendy A; O'Connor, Christopher M

    2002-01-01

    Data from small studies have suggested the presence of platelet abnormalities in patients with congestive heart failure (CHF). We sought to characterize the diagnostic utility of different platelet parameters and platelet-endothelial biomarkers in a random outpatient CHF population investigated in the EPCOT ('Whole Blood Impedance Aggregometry for the Assessment of Platelet Function in Patients with Congestive Heart Failure') Trial. Blood samples were obtained for measurement of platelet contractile force (PCF), whole blood aggregation, shear-induced closure time, expression of glycoprotein (GP) IIb/IIIa, and P-selectin in 100 consecutive patients with CHF. Substantial interindividual variability of platelet characteristics exists in patients with CHF. There were no statistically significant differences when patients were grouped according to incidence of vascular events, emergency revascularization needs, survival, or etiology of heart failure. Aspirin use did not affect instrument readings either. PCF correlates very poorly with whole blood aggregometry (r(2) = 0.023), closure time (r(2) = 0.028), platelet GP IIb/IIIa (r(2) = 0.0028), and P-selectin (r(2) = 0.002) expression. Furthermore, there was no correlation with brain natriuretic peptide concentrations, a marker of severity and prognosis in heart failure reflecting the neurohumoral status. Patients with heart failure enrolled in the EPCOT Trial exhibited a marginal, sometimes oppositely directed change in platelet function, challenging the diagnostic utility of these platelet parameters and biomarkers to serve as useful tools for the identification of platelet abnormalities, for predicting clinical outcomes, or for monitoring antiplatelet strategies in this population. The usefulness of these measurements for assessing platelets in the different clinical settings remains to be explored. Taken together, opposite to our expectations, major clinical characteristics of heart failure did not correlate well with

  6. The Platelet Function Defect of Cardiopulmonary Bypass.

    DTIC Science & Technology

    1992-11-24

    K complex, not to uncomplexed GPIb or GPDC.31 FMC25 (provided by Dr. Berndt) is directed against GPK .32-33 A panel of platelet GPIIb-IIIa-specific...on GPIb (Fig 2, panel B), GPK (Fig 2, panel C), or the GPIb-K complex (Fig 2, panel D). 14 In addition, we examined the ristocetin-induced binding...on GPIb (6D1), the thrombin binding site on GPIb (TM60), GPK (FMC25), and the GPIb-K complex (AK1). Panel E: ristocetin-induced binding of exogenous

  7. Aspirin inhibition of platelet deposition at angioplasty sites: demonstration by platelet scintigraphy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuningham, D.A.; Kumar, B.; Siegel, B.A.

    In-111 platelet scintigraphy was used to evaluate the effects of prior aspirin administration on the accumulation of In-111-labeled autologous platelets at sites of arterial injury resulting from iliac, femoral, or popliteal transluminal angioplasty in a nonrandomized study of 17 men. The degree of platelet localization at angioplasty sites was significantly less in nine men who had received aspirin in varying doses within the 4 days before angioplasty than in eight men who had not received aspirin for at least two weeks. The results suggest that aspirin treatment before angioplasty limits the early platelet deposition at the angioplasty site in men.

  8. Effect of platelet lysate on human cells involved in different phases of wound healing.

    PubMed

    Barsotti, Maria Chiara; Chiara Barsotti, Maria; Losi, Paola; Briganti, Enrica; Sanguinetti, Elena; Magera, Angela; Al Kayal, Tamer; Feriani, Roberto; Di Stefano, Rossella; Soldani, Giorgio

    2013-01-01

    Platelets are rich in mediators able to positively affect cell activity in wound healing. Aim of this study was to characterize the effect of different concentrations of human pooled allogeneic platelet lysate on human cells involved in the different phases of wound healing (inflammatory phase, angiogenesis, extracellular matrix secretion and epithelialization). Platelet lysate effect was studied on endothelial cells, monocytes, fibroblasts and keratinocytes, in terms of viability and proliferation, migration, angiogenesis, tissue repair pathway activation (ERK1/2) and inflammatory response evaluation (NFκB). Results were compared both with basal medium and with a positive control containing serum and growth factors. Platelet lysate induced viability and proliferation at the highest concentrations tested (10% and 20% v/v). Whereas both platelet lysate concentrations increased cell migration, only 20% platelet lysate was able to significantly promote angiogenic activity (p<0.05 vs. control), comparably to the positive control. Both platelet lysate concentrations activated important inflammatory pathways such as ERK1/2 and NFκB with the same early kinetics, whereas the effect was different for later time-points. These data suggest the possibility of using allogeneic platelet lysate as both an alternative to growth factors commonly used for cell culture and as a tool for clinical regenerative application for wound healing.

  9. Acetylglyceryl ether phosphorylcholine (AGEPC; platelet-activating factor)-induced stimulation of rabbit platelets: correlation between phosphatidic acid level, 45Ca2+ uptake, and (3H)serotonin secretion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, S.D.; Hanahan, D.J.

    1984-08-01

    When 32P-labeled rabbits platelet were incubated with 5 X 10(-10) M 1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine (AGEPC), either in the presence or absence (0.1 mM EGTA) of added Ca2+, there was a three- to five-fold increase in the (32P)phosphatidic acid (PA) pool within 15 to 20 s. This event was followed by a gradual decrease in the (32P)PA level to near basal level in 5 min. AGEPC effected this change in (32P)PA in a characteristic dose- and time-dependent manner. Polar head group analogs of AGEPC, such as AGEDME and AGEMME, also effected an increase in PA labeling at levels comparable to those previously reportedmore » for their activity toward rabbit platelets. Other analogs, i.e., lysoGEPC and the enantiomer, sn-1-AGEPC, which are inactive toward rabbit platelets, also showed no effect on the level of (32P)PA. The finding that the PA level in rabbit platelets could be manipulated by the addition of AGEPC, without any added Ca2+, provided an excellent model system for establishing a correlation between the uptake of Ca2+, serotonin release, and PA level. Thus, PA must be regarded as a sensitive indicator of a reaction mechanism important to the platelet response to AGEPC, and could be the focal point in promoting calcium uptake during the stimulation process.« less

  10. The influence of four different anticoagulants on dynamic light scattering of platelets.

    PubMed

    Raczat, T; Kraemer, L; Gall, C; Weiss, D R; Eckstein, R; Ringwald, J

    2014-08-01

    For testing of dynamic light scattering of platelets with ThromboLUX (TLX) in platelet-rich plasma (PRP) derived from venous whole blood (vWB), anticoagulation is needed. We compared TLX score in PRPs containing citrate, ethylene-diamine-tetraacetic-acid (EDTA), citrate-phosphate-dextrose-adenine (CPDA) or citrate-theophylline-adenosine-dipyridamole. Initial and late TLX scores were measured after 30-120 min or four to six hours, respectively. Compared with citrate, mean differences in initial TLX score were only significant for CPDA. Also, mean differences between initial and late TLX scores were only significant for CPDA. TLX failed to detect EDTA-induced platelet alterations. The clinical relevance of TLX needs further studies. © 2014 International Society of Blood Transfusion.

  11. A novel platelet concentrate: titanium-prepared platelet-rich fibrin.

    PubMed

    Tunalı, Mustafa; Özdemir, Hakan; Küçükodacı, Zafer; Akman, Serhan; Yaprak, Emre; Toker, Hülya; Fıratlı, Erhan

    2014-01-01

    We developed a new product called titanium-prepared platelet-rich fibrin (T-PRF). The T-PRF method is based on the hypothesis that titanium may be more effective in activating platelets than the silica activators used with glass tubes in Chouckroun's leukocyte- and platelet-rich fibrin (L-PRF) method. In this study, we aimed to define the structural characteristics of T-PRF and compare it with L-PRF. Blood samples were collected from 10 healthy male volunteers. The blood samples were drawn using a syringe. Nine milliliters was transferred to a dry glass tube, and 9 mL was transferred to a titanium tube. Half of each clot (i.e., the blood that was clotted using T-PRF or L-PRF) was processed with a scanning electron microscope (SEM). The other half of each clot was processed for fluorescence microscopy analysis and light microscopy analysis. The T-PRF samples seemed to have a highly organized network with continuous integrity compared to the other L-PRF samples. Histomorphometric analysis showed that T-PRF fibrin network covers larger area than L-PRF fibrin network; also fibrin seemed thicker in the T-PRF samples. This is the first human study to define T-PRF as an autogenous leukocyte- and platelet-rich fibrin product. The platelet activation by titanium seems to offer some high characteristics to T-PRF.

  12. Why do people reject unintended inequity? Responders' rejection in a truncated ultimatum game.

    PubMed

    Ohmura, Yu; Yamagishi, Toshio

    2005-04-01

    Rejection of an inequitable and yet unintended outcome in a truncated ultimatum game was examined in an experiment with 46 undergraduate students (27 men and 19 women) from a large national university in Japan. In an ultimatum game, one of two players, the proposer, makes an offer to divide a fixed-sum of money. The other player, the responder, decides whether to accept or reject the offer. When the responder rejects the proposer's offer, neither of the two players receives a reward. Previous work examining the behavior of participants in the truncated ultimatum game employed strategy method in their experimental design. We examined whether these previous findings would be replicated in an experimental design that did not use the strategy method and instead used the standard one-shot game. Seven out of 46 responders given an inequitable offer rejected it, replicating prior results with the strategy method. We further found that subjects who rejected an offer that was involuntary and yet inequitable did not over-attribute intentions to the proposer's involuntary behavior more strongly than did acceptors. These findings strongly suggest that aversion to inequity is the explanation for the subjects' rejection of the inequitable offer.

  13. A critical role for the transcription factor Scl in platelet production during stress thrombopoiesis.

    PubMed

    McCormack, Matthew P; Hall, Mark A; Schoenwaelder, Simone M; Zhao, Quan; Ellis, Sarah; Prentice, Julia A; Clarke, Ashleigh J; Slater, Nicholas J; Salmon, Jessica M; Jackson, Shaun P; Jane, Stephen M; Curtis, David J

    2006-10-01

    The generation of platelets from megakaryocytes in the steady state is regulated by a variety of cytokines and transcription factors, including thrombopoietin (TPO), GATA-1, and NF-E2. Less is known about platelet production in the setting of stress thrombopoiesis, a pivotal event in the context of cytotoxic chemotherapy. Here we show in mice that the transcription factor Scl is critical for platelet production after chemotherapy and in thrombopoiesis induced by administration of TPO. Megakaryocytes from these mice showed appropriate increases in number and ploidy but failed to shed platelets. Ultrastructural examination of Scl-null megakaryocytes revealed a disorganized demarcation membrane and reduction in platelet granules. Quantitative real-time polymerase chain reaction showed that Scl-null platelets lacked NF-E2, and chromatin immunoprecipitation analysis demonstrated Scl binding to the NF-E2 promoter in the human megakaryoblastic-cell line Meg-01, along with its binding partners E47, Lmo2, and the cofactors Ldb1 and GATA-2. These findings suggest that Scl acts up-stream of NF-E2 expression to control megakaryocyte development and platelet release in settings of thrombopoietic stress.

  14. Effect of platelet-derived β-thromboglobulins on coagulation.

    PubMed

    Egan, Karl; van Geffen, Johanna P; Ma, Hui; Kevane, Barry; Lennon, Aine; Allen, Seamus; Neary, Elaine; Parsons, Martin; Maguire, Patricia; Wynne, Kieran; O' Kennedy, Richard; Heemskerk, Johan W M; Áinle, Fionnuala Ní

    2017-06-01

    β-thromboglobulins are derived from the cleavage of the CXC chemokine platelet basic protein and are released in high concentrations by activated platelets. Platelet-derived β-thromboglobulins (βTG) share 70% homology with platelet factor 4 (PF4), another CXC chemokine released by activated platelets. PF4 modulates coagulation by inhibiting heparin-antithrombin interactions, promoting protein C activation, and attenuating the activity of activated protein C. In contrast, the effect of βTG on coagulation is unknown. Clotting times, thrombin generation, chromogenic clotting factor assays, and surface plasmon resonance (SPR) were used to assess the effect of purified βTG on coagulation. In normal pooled plasma, βTG shortened the lagtime and time to peak thrombin generation of tissue factor (TF)-dependent and TF-independent thrombin generation. In factor VIII and factor IX-deficient plasmas, βTG induced thrombin generation in the absence of a TF stimulus and in the presence of anti-TF and factor VIIa inhibitory antibodies. The procoagulant effect was not observed when thrombin generation was independent of factor X activation (supplementation of factor X-deficient plasma with factor Xa). Cleavage of a factor Xa-specific chromogenic substrate was observed when βTG was incubated with factor X, suggesting a direct interaction between βTG and factor X. Using SPR, βTG were found to bind to immobilised factor X in a dose dependent manner. βTG modulate coagulation in vitro via an interaction with factor X. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Rejected applications

    PubMed Central

    2014-01-01

    Objective: To review membership application materials (especially rejected applications) to the American Academy of Neurology (AAN) during its formative years (1947–1953). Methods: Detailed study of materials in the AAN Historical Collection. Results: The author identified 73 rejected applications. Rejected applicants (71 male, 2 female) lived in 25 states. The largest number was for the Associate membership category (49). These were individuals “in related fields who have made and are making contributions to the field of neurology.” By contrast, few applicants to Active membership or Fellowship status were rejected. The largest numbers of rejectees were neuropsychiatrists (19), neurosurgeons (16), and psychiatrists (14). Conclusion: The AAN, established in the late 1940s, was a small and politically vulnerable organization. A defining feature of the fledgling society was its inclusiveness; its membership was less restrictive than that of the older American Neurological Association. At the same time, the society needed to preserve its core as a neurologic society rather than one of psychiatry or neurosurgery. Hence, the balance between inclusiveness and exclusive identity was a difficult one to maintain. The Associate membership category, more than any other, was at the heart of this issue of self-definition. Associate members were largely practitioners of psychiatry or neurosurgery. Their membership was a source of consternation and was to be carefully been held in check during these critical formative years. PMID:24944256

  16. Effects of an injectable platelet-rich fibrin on osteoblast behavior and bone tissue formation in comparison to platelet-rich plasma.

    PubMed

    Wang, Xuzhu; Zhang, Yufeng; Choukroun, Joseph; Ghanaati, Shahram; Miron, Richard J

    2018-01-01

    Platelet-rich plasma (PRP) has been utilized for many years as a regenerative agent capable of inducing vascularization of various tissues using blood-derived growth factors. Despite this, drawbacks mostly related to the additional use of anti-coagulants found in PRP have been shown to inhibit the wound healing process. For these reasons, a novel platelet concentrate has recently been developed with no additives by utilizing lower centrifugation speeds. The purpose of this study was therefore to investigate osteoblast behavior of this novel therapy (injectable-platelet-rich fibrin; i-PRF, 100% natural with no additives) when compared to traditional PRP. Human primary osteoblasts were cultured with either i-PRF or PRP and compared to control tissue culture plastic. A live/dead assay, migration assay as well as a cell adhesion/proliferation assay were investigated. Furthermore, osteoblast differentiation was assessed by alkaline phosphatase (ALP), alizarin red and osteocalcin staining, as well as real-time PCR for genes encoding Runx2, ALP, collagen1 and osteocalcin. The results showed that all cells had high survival rates throughout the entire study period irrespective of culture-conditions. While PRP induced a significant 2-fold increase in osteoblast migration, i-PRF demonstrated a 3-fold increase in migration when compared to control tissue-culture plastic and PRP. While no differences were observed for cell attachment, i-PRF induced a significantly higher proliferation rate at three and five days when compared to PRP. Furthermore, i-PRF induced significantly greater ALP staining at 7 days and alizarin red staining at 14 days. A significant increase in mRNA levels of ALP, Runx2 and osteocalcin, as well as immunofluorescent staining of osteocalcin was also observed in the i-PRF group when compared to PRP. In conclusion, the results from the present study favored the use of the naturally-formulated i-PRF when compared to traditional PRP with anti

  17. Flow cytometric assessment of activation of peripheral blood platelets in dogs with normal platelet count and asymptomatic thrombocytopenia.

    PubMed

    Żmigrodzka, M; Guzera, M; Winnicka, A

    2016-01-01

    Platelets play a crucial role in hemostasis. Their activation has not yet been evaluated in healthy dogs with a normal and low platelet count. The aim of this study was to determine the influence of activators on platelet activation in dogs with a normal platelet count and asymptomatic thrombocytopenia. 72 clinically healthy dogs were enrolled. Patients were allocated into three groups. Group 1 consisted of 30 dogs with a normal platelet count, group 2 included 22 dogs with a platelet count between 100 and 200×109/l and group 3 consisted of 20 dogs with a platelet count lower than 100×109/l. Platelet rich-plasma (PRP) was obtained from peripheral blood samples using tripotassium ethylenediaminetetraacetic acid (K3-EDTA) as anticoagulant. Next, platelets were stimulated using phorbol-12-myristate-13-acetate or thrombin, stabilized using procaine or left unstimulated. The expression of CD51 and CD41/CD61 was evaluated. Co-expression of CD41/CD61 and Annexin V served as a marker of platelet activation. The expression of CD41/CD61 and CD51 did not differ between the 3 groups. Thrombin-stimulated platelets had a significantly higher activity in dogs with a normal platelet count than in dogs with asymptomatic thrombocytopenia. Procaine inhibited platelet activity in all groups. In conclusion, activation of platelets of healthy dogs in vitro varied depending on the platelet count and platelet activator.

  18. Understanding Rejection between First-and-Second-Grade Elementary Students through Reasons Expressed by Rejecters.

    PubMed

    García Bacete, Francisco J; Carrero Planes, Virginia E; Marande Perrin, Ghislaine; Musitu Ochoa, Gonzalo

    2017-01-01

    Objective: The aim of this research was to obtain the views of young children regarding their reasons for rejecting a peer. Method: To achieve this goal, we conducted a qualitative study in the context of theory building research using an analysis methodology based on Grounded Theory. The collected information was extracted through semi-structured individual interviews from a sample of 853 children aged 6 from 13 urban public schools in Spain. Results: The children provided 3,009 rejection nominations and 2,934 reasons for disliking the rejected peers. Seven reason categories emerged from the analysis. Four categories refer to behaviors of the rejected children that have a cost for individual peers or peer group such as: direct aggression, disturbance of wellbeing, problematic social and school behaviors and dominance behaviors. A further two categories refer to the identities arising from the preferences and choices of rejected and rejecter children and their peers: personal identity expressed through preferences and disliking, and social identity expressed through outgroup prejudices. The "no-behavior or no-choice" reasons were covered by one category, unfamiliarity. In addition, three context categories were found indicating the participants (interpersonal-group), the impact (low-high), and the subjectivity (subjective-objective) of the reason. Conclusion: This study provides researchers and practitioners with a comprehensive taxonomy of reasons for rejection that contributes to enrich the theoretical knowledge and improve interventions for preventing and reducing peer rejection.

  19. Understanding Rejection between First-and-Second-Grade Elementary Students through Reasons Expressed by Rejecters

    PubMed Central

    García Bacete, Francisco J.; Carrero Planes, Virginia E.; Marande Perrin, Ghislaine; Musitu Ochoa, Gonzalo

    2017-01-01

    Objective: The aim of this research was to obtain the views of young children regarding their reasons for rejecting a peer. Method: To achieve this goal, we conducted a qualitative study in the context of theory building research using an analysis methodology based on Grounded Theory. The collected information was extracted through semi-structured individual interviews from a sample of 853 children aged 6 from 13 urban public schools in Spain. Results: The children provided 3,009 rejection nominations and 2,934 reasons for disliking the rejected peers. Seven reason categories emerged from the analysis. Four categories refer to behaviors of the rejected children that have a cost for individual peers or peer group such as: direct aggression, disturbance of wellbeing, problematic social and school behaviors and dominance behaviors. A further two categories refer to the identities arising from the preferences and choices of rejected and rejecter children and their peers: personal identity expressed through preferences and disliking, and social identity expressed through outgroup prejudices. The “no-behavior or no-choice” reasons were covered by one category, unfamiliarity. In addition, three context categories were found indicating the participants (interpersonal–group), the impact (low–high), and the subjectivity (subjective–objective) of the reason. Conclusion: This study provides researchers and practitioners with a comprehensive taxonomy of reasons for rejection that contributes to enrich the theoretical knowledge and improve interventions for preventing and reducing peer rejection. PMID:28421008

  20. Factor Xa Inhibitor Suppresses the Release of Phosphorylated HSP27 from Collagen-Stimulated Human Platelets: Inhibition of HSP27 Phosphorylation via p44/p42 MAP Kinase

    PubMed Central

    Tsujimoto, Masanori; Kuroyanagi, Gen; Matsushima-Nishiwaki, Rie; Kito, Yuko; Enomoto, Yukiko; Iida, Hiroki; Ogura, Shinji; Otsuka, Takanobu; Tokuda, Haruhiko; Kozawa, Osamu; Iwama, Toru

    2016-01-01

    Selective inhibitors of factor Xa (FXa) are widely recognized as useful therapeutic tools for stroke prevention in non-valvular atrial fibrillation or venous thrombosis. Thrombin, which is rapidly generated from pro-thrombin through the activation of factor X to FXa, acts as a potent activator of human platelets. Thus, the reduction of thrombin generation by FXa inhibitor eventually causes a suppressive effect on platelet aggregation. However, little is known whether FXa inhibitors directly affect the function of human platelets. We have previously reported that collagen induces the phosphorylation of heat shock protein 27 (HSP27), a low-molecular weight heat shock protein via Rac-dependent activation of p44/p42 mitogen-activated protein (MAP) kinase in human platelets, eventually resulting in the release of HSP27. In the present study, we investigated the direct effect of FXa inhibitor on the collagen-induced human platelet activation. Rivaroxaban as well as edoxaban significantly reduced the collagen-induced phosphorylation of both HSP27 and p44/p42 MAP kinase without affecting the platelet aggregation. Rivaroxaban significantly inhibited the release of phosphorylated HSP27 from collagen-stimulated platelets but not the secretion of platelet derived growth factor-AB. In patients administrated with rivaroxaban, the collagen-induced levels of phosphorylated HSP27 were markedly diminished after 2 days of administration, which failed to affect the platelet aggregation. These results strongly suggest that FXa inhibitor reduces the collagen-stimulated release of phosphorylated HSP27 from human platelets due to the inhibition of HSP27 phosphorylation via p44/p42 MAP kinase. PMID:26867010