Science.gov

Sample records for platform chemical intermediate

  1. Advanced Biocatalytic Processing of Heterogeneous Lignocellulosic Feedstocks to a Platform Chemical Intermediate (Lactic acid Ester)

    SciTech Connect

    Dr. Sharon Shoemaker

    2004-09-03

    The development of commercial boi-based processes and products derived from agricultural waste biomass has the potential for significant impact on the economy and security of our nation. Adding value, rather than disposing of the waste of agriculture, can solve an environmental problem and reduce our dependence on foreign sources of fossil fuel for production of chemicals, materials and fuels.

  2. Platform Chemicals from an Oilseed Biorefinery

    SciTech Connect

    Tupy, Mike; Schrodi Yann

    2006-11-06

    The US chemical industry is $460 billion in size where a $150 billion segment of which is non-oxygenated chemicals that is sourced today via petroleum but is addressable by a renewable feedstock if one considers a more chemically reduced feedstock such as vegetable oils. Vegetable oil, due to its chemical functionality, provides a largely untapped opportunity as a renewable chemical source to replace petroleum-derived chemicals and produce platform chemicals unavailable today. This project examined the fertile intersection between the rich building blocks provided by vegetable oils and the enhanced chemical modification capability provided by metathesis chemistry. The technology advanced in this study is the process of ethylene cross-metathesis (referred to as ethenolysis) with vegetable oil and vegetable oil derivatives to manufacture the platform-chemical 9-decenoic acid (or 9DA) and olefin co-products. The project team meet its goals of demonstrating improved catalyst efficiencies of several multiples, deepening the mechanistic understanding of metathesis, synthesis and screening of dozens of new catalysts, designing and modeling commercial processes, and estimating production costs. One demonstrable result of the study was a step change improvement in catalyst turnover number in the ethenolysis of methyl oleate as reported here. We met our key measurable of producing 100 lbs of 9DA at the pilot-scale, which demonstrated ability to scale-up ethenolysis. DOE Project funding had significant positive impact on development of metathetically modified vegetable oils more broadly as the Cargill/Materia partnership, that was able to initiate primarily due to DOE funding, has succeeded in commercializing products, validating metathesis as a platform technology, and expanding a diverse products portfolio in high value and in large volume markets. Opportunities have expanded and business development has gained considerable momentum and enabled further expansion of the

  3. Chemical Platforms for Peptide Vaccine Constructs.

    PubMed

    Ramesh, Suhas; Cherkupally, Prabhakar; Govender, Thavendran; Kruger, Hendrik G; Albericio, Fernando; de la Torre, Beatriz G

    2015-01-01

    Knowledge of the sequences and structures of proteins from pathogenic microorganisms has been put to great use in the field of protein chemistry for the development of peptide-based vaccines. These vaccine constructs include chemically tailored, shorter peptidic fragments that can induce high immunogenicity, thus shunning the allergenic and nonimmunogenic part of the antigens. Based on this concept, several different chemistries have been pursued to obtain novel platforms onto which antigenic epitopes can be tethered, with the aim to achieve a higher antibody response. In this regard, here we attempt to summarize the chemical strategies developed for the presentation of peptide epitopes. PMID:26067818

  4. Biologically produced succinic acid: A new route to chemical intermediates

    SciTech Connect

    1995-09-01

    The national laboratory consortium has undertaken an R&D project with the Michigan Biotechnology Institute (MBI) to demonstrate the feasibility of producing a chemical intermediate, succinic acid, and various derivatives, from renewable agricultural resources. The projects near-term goal is to demonstrate an economically competetive process for producing 1,4-butanediol and other derivatives from biologically produced succinic acid without generating a major salt waste. The competitiveness to the petrochemical process must be demonstrated.

  5. Biologically produced succinic acid: A new route to chemical intermediates

    SciTech Connect

    Not Available

    1995-01-01

    The US Department of Energy (DOE) Alternative Feedstocks (AF) program is forging new links between the agricultural community and the chemicals industry through support of research and development (R & D) that uses `green` feedstocks to produce chemicals. The program promotes cost-effective industrial use of renewable biomass as feedstocks to manufacture high-volume chemical building blocks. Industrial commercialization of such processes would stimulate the agricultural sector by increasing the demand of agricultural and forestry commodities. New alternatives for American industry may lie in the nation`s forests and fields. The national laboratory consortium has undertaken a joint R&D project with the Michigan Biotechnology Institute to demonstrate the feasibility of producing a chemical intermediate, succinic acid, and various derivatives, from renewable agricultural resources.

  6. A robust platform for chemical genomics in bacterial systems

    PubMed Central

    French, Shawn; Mangat, Chand; Bharat, Amrita; Côté, Jean-Philippe; Mori, Hirotada; Brown, Eric D.

    2016-01-01

    While genetic perturbation has been the conventional route to probing bacterial systems, small molecules are showing great promise as probes for cellular complexity. Indeed, systematic investigations of chemical-genetic interactions can provide new insights into cell networks and are often starting points for understanding the mechanism of action of novel chemical probes. We have developed a robust and sensitive platform for chemical-genomic investigations in bacteria. The approach monitors colony volume kinetically using transmissive scanning measurements, enabling acquisition of growth rates and conventional endpoint measurements. We found that chemical-genomic profiles were highly sensitive to concentration, necessitating careful selection of compound concentrations. Roughly 20,000,000 data points were collected for 15 different antibiotics. While 1052 chemical-genetic interactions were identified using the conventional endpoint biomass approach, adding interactions in growth rate resulted in 1564 interactions, a 50–200% increase depending on the drug, with many genes uncharacterized or poorly annotated. The chemical-genetic interaction maps generated from these data reveal common genes likely involved in multidrug resistance. Additionally, the maps identified deletion backgrounds exhibiting class-specific potentiation, revealing conceivable targets for combination approaches to drug discovery. This open platform is highly amenable to kinetic screening of any arrayable strain collection, be it prokaryotic or eukaryotic. PMID:26792836

  7. A robust platform for chemical genomics in bacterial systems.

    PubMed

    French, Shawn; Mangat, Chand; Bharat, Amrita; Côté, Jean-Philippe; Mori, Hirotada; Brown, Eric D

    2016-03-15

    While genetic perturbation has been the conventional route to probing bacterial systems, small molecules are showing great promise as probes for cellular complexity. Indeed, systematic investigations of chemical-genetic interactions can provide new insights into cell networks and are often starting points for understanding the mechanism of action of novel chemical probes. We have developed a robust and sensitive platform for chemical-genomic investigations in bacteria. The approach monitors colony volume kinetically using transmissive scanning measurements, enabling acquisition of growth rates and conventional endpoint measurements. We found that chemical-genomic profiles were highly sensitive to concentration, necessitating careful selection of compound concentrations. Roughly 20,000,000 data points were collected for 15 different antibiotics. While 1052 chemical-genetic interactions were identified using the conventional endpoint biomass approach, adding interactions in growth rate resulted in 1564 interactions, a 50-200% increase depending on the drug, with many genes uncharacterized or poorly annotated. The chemical-genetic interaction maps generated from these data reveal common genes likely involved in multidrug resistance. Additionally, the maps identified deletion backgrounds exhibiting class-specific potentiation, revealing conceivable targets for combination approaches to drug discovery. This open platform is highly amenable to kinetic screening of any arrayable strain collection, be it prokaryotic or eukaryotic. PMID:26792836

  8. Chemical Conversions of Biomass-Derived Platform Chemicals over Copper-Silica Nanocomposite Catalysts.

    PubMed

    Upare, Pravin P; Hwang, Young Kyu; Lee, Jong-Min; Hwang, Dong Won; Chang, Jong-San

    2015-07-20

    Biomass and biomass-derived carbohydrates have a high extent of functionality, unlike petroleum, which has limited functionality. In biorefinery applications, the development of methods to control the extent of functionality in final products intended for use as fuels and chemicals is a challenge. In the chemical industry, heterogeneous catalysis is an important tool for the defunctionalization of functionalized feedstocks and biomass-derived platform chemicals to produce value-added chemicals. Herein, we review the recent progress in this field, mainly of vapor phase chemical conversion of biomass-derived C4 -C6 carboxylic acids and esters using copper-silica nanocomposite catalysts. We also demonstrate that these nanocomposite catalysts very efficiently convert biomass-derived platform chemicals into cyclic compounds, such as lactones and hydrofurans, with high selectivities and yields. PMID:26192888

  9. Functional Nanostructured Platforms for Chemical and Biological Sensing

    SciTech Connect

    Letant, S E

    2006-03-20

    The central goal of our work is to combine semiconductor nanotechnology and surface functionalization in order to build platforms for the selective detection of bio-organisms ranging in size from bacteria (micron range) down to viruses, as well as for the detection of chemical agents (nanometer range). We will show on three porous silicon platforms how pore geometry and pore wall chemistry can be combined and optimized to capture and detect specific targets. We developed a synthetic route allowing to directly anchor proteins on silicon surfaces and illustrated the relevance of this technique by immobilizing live enzymes onto electrochemically etched luminescent nano-porous silicon. The powerful association of the specific enzymes with the transducing matrix led to a selective hybrid platform for chemical sensing. We also used light-assisted electrochemistry to produce periodic arrays of through pores on pre-patterned silicon membranes with controlled diameters ranging from many microns down to tens of nanometers. We demonstrated the first covalently functionalized silicon membranes and illustrated their selective capture abilities with antibody-coated micro-beads. These engineered membranes are extremely versatile and could be adapted to specifically recognize the external fingerprints (size and coat composition) of target bio-organisms. Finally, we fabricated locally functionalized single nanopores using a combination of focused ion beam drilling and ion beam assisted oxide deposition. We showed how a silicon oxide ring can be grown around a single nanopore and how it can be functionalized with DNA probes to detect single viral-sized beads. The next step for this platform is the detection of whole viruses and bacteria.

  10. Functional nanostructured platforms for chemical and biological sensing

    NASA Astrophysics Data System (ADS)

    Létant, S. E.

    2006-05-01

    The central goal of our work is to combine semiconductor nanotechnology and surface functionalization in order to build platforms for the selective detection of bio-organisms ranging in size from bacteria (micron range) down to viruses, as well as for the detection of chemical agents (nanometer range). We will show on three porous silicon platforms how pore geometry and pore wall chemistry can be combined and optimized to capture and detect specific targets. We developed a synthetic route allowing to directly anchor proteins on silicon surfaces and illustrated the relevance of this technique by immobilizing live enzymes onto electrochemically etched luminescent nano-porous silicon. The powerful association of the specific enzymes with the transducing matrix led to a selective hybrid platform for chemical sensing. We also used light-assisted electrochemistry to produce periodic arrays of through pores on pre-patterned silicon membranes with controlled diameters ranging from many microns down to tens of nanometers. We demonstrated the first covalently functionalized silicon membranes and illustrated their selective capture abilities with antibody-coated micro-beads. These engineered membranes are extremely versatile and could be adapted to specifically recognize the external fingerprints (size and coat composition) of target bio-organisms. Finally, we fabricated locally functionalized single nanopores using a combination of focused ion beam drilling and ion beam assisted oxide deposition. We showed how a silicon oxide ring can be grown around a single nanopore and how it can be functionalized with DNA probes to detect single viral-sized beads. The next step for this platform is the detection of whole viruses and bacteria.

  11. Smart phones: platform enabling modular, chemical, biological, and explosives sensing

    NASA Astrophysics Data System (ADS)

    Finch, Amethist S.; Coppock, Matthew; Bickford, Justin R.; Conn, Marvin A.; Proctor, Thomas J.; Stratis-Cullum, Dimitra N.

    2013-05-01

    Reliable, robust, and portable technologies are needed for the rapid identification and detection of chemical, biological, and explosive (CBE) materials. A key to addressing the persistent threat to U.S. troops in the current war on terror is the rapid detection and identification of the precursor materials used in development of improvised explosive devices, homemade explosives, and bio-warfare agents. However, a universal methodology for detection and prevention of CBE materials in the use of these devices has proven difficult. Herein, we discuss our efforts towards the development of a modular, robust, inexpensive, pervasive, archival, and compact platform (android based smart phone) enabling the rapid detection of these materials.

  12. Waveguide infrared spectrometer platform for point and standoff chemical sensing

    NASA Astrophysics Data System (ADS)

    Chadha, Suneet; Henning, Pat; Landers, Frank; Weling, Ani

    2004-03-01

    Advanced autonomous detection of chemical warfare agents and toxic industrial chemicals has long been a major military concern. At present, our capability to rapidly assess the immediate environment is severely limited and our domestic infrastructure is burdened by the meticulous procedures required to rule out false threats. While significant advances have recently been accomplished in remote spectral sensing using rugged FTIRs and point detectors, efforts towards low cost chemical discrimination have been lacking. Foster-Miller has developed a unique waveguide spectrometer which is a paradigm shift from the conventional FTIR approach. The spectrometer provides spectral discrimination over the 3-14 μm range and will be the spectrometer platform for both active and passive detection. Foster-Miller has leveraged its innovations in infrared fiber-optic probes and the recent development of a waveguide spectrometer to build a novel infrared sensor platform for both point and stand-off chemical sensing. A monolithic wedge-grating optic provides the spectral dispersion with low cost thermopile point or array detectors picking off the diffracted wavelengths from the optic. The integrated optic provides spectral discrimination between 3-12 μm with resolution at 16 cm-1 or better and overall optical throughput approaching 35%. The device has a fixed cylindrical grating bonded to the edge of a ZnSe conditioning "wedge". The conditioning optic overcomes limitations of concave gratings as it accepts high angle (large FOV) light at the narrow end of the wedge and progressively conditions it to be near normal to the grating. On return, the diffracted wavelengths are concentrated on the discrete or array detector (pixel) elements by the wedge, providing throughput comparable to that of an FTIR. The waveguide spectrometer coupled to ATR probes, flow through liquid cells or multipass gas cells provides significant cost advantage over conventional sampling methodologies. We will

  13. A novel biochemical platform for fuels and chemicals production from cellulosic biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The conventional biochemical platform for biofuels production featuring enzymatic hydrolysis involves five key steps: pretreatment, cellulase production, enzymatic hydrolysis, fermentation, and product recovery. Sugars are produced as reactive intermediates for subsequent fermentation to fuels and c...

  14. Understanding and regulation of microbial lignolysis for renewable platform chemicals

    SciTech Connect

    Singh, Seema; Hudson, Corey; Turner, Kevin.; Tran-Gyamfi, Mary Bao; Williams, Kelly Porter; Powell, Amy Jo; Alam, Todd Michael

    2014-01-01

    Lignin is often overlooked in the valorization of lignocellulosic biomass, but lignin-based materials and chemicals represent potential value-added products for biorefineries that could significantly improve the economics of a biorefinery. Fluctuating crude oil prices and changing fuel specifications are some of the driving factors to develop new technologies that could be used to convert polymeric lignin into low molecular weight lignin and or monomeric aromatic feedstocks to assist in the displacement of the current products associated with the conversion of a whole barrel of oil. Our project of understanding microbial lignolysis for renewable platform chemicals aimed to understand microbial and enzymatic lignolysis processes to break down lignin for conversion into commercially viable drop-in fuels. We developed novel lignin analytics to interrogate enzymatic and microbial lignolysis of native polymeric lignin and established a detailed understanding of lignolysis as a function of fungal enzyme, microbes and endophytes. Bioinformatics pipeline was developed for metatranscryptomic analysis of aridland ecosystem for investigating the potential discovery of new lignolysis gene and gene products.

  15. CHEMICAL COMPOSITION OF PRODUCED WATER AT SOME OFFSHORE OIL PLATFORMS

    EPA Science Inventory

    The effectiveness of produced water treatment was briefly studied in offshore oil and gas extraction operations in Cook Inlet, Alaska, and the Gulf of Mexico. Three offshore oil extraction facilities were examined in the Cook Inlet production field, and seven platforms were studi...

  16. Rapid screening of copper intermediates in Cu(i)-catalyzed azide-alkyne cycloaddition using a modified ICP-MS/MS platform.

    PubMed

    He, Qian; Xing, Zhi; Wei, Chao; Fang, Xiang; Zhang, Sichun; Zhang, Xinrong

    2016-08-18

    Rapid screening of Cu(+)-intermediates by using (63)Cu(+) or (65)Cu(+) ions as catalysts with or without ligand protection in Cu(i)-catalyzed azide-alkyne cycloaddition was realized using an on-line modified ICP-MS/MS platform in this work, while the Cu(+)-intermediates without ligand protection are very active, which are extremely difficult to be observed using other existing techniques. This universal platform was suitable to study the mechanism of organic reactions catalyzed by unstable metal(i) ions as well as to discover new candidates for metal(i) catalysts. PMID:27487942

  17. 75 FR 33824 - Pharmaceutical Products and Chemical Intermediates, Fourth Review: Advice Concerning the Addition...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ...Following receipt of a request dated May 27, 2010 from the United States Trade Representative (USTR) pursuant to section 115 of the Uruguay Round Agreements Act (URAA) (19 U.S.C. 3524) and section 332(g) of the Tariff Act of 1930 (19 U.S.C. 1332 (g)), the U.S. International Trade Commission (Commission) instituted investigation No. 332-520, Pharmaceutical Products and Chemical Intermediates,......

  18. Earle K. Plyler Prize Talk: Using High Resolution Electronic Spectroscopy to Probe Reactive Chemical Intermediates

    NASA Astrophysics Data System (ADS)

    Miller, Terry

    2009-03-01

    Gas phase chemical reactions, such as occur in atmospheric chemistry, combustion, plasma processing, etc. are of great importance to our economy and society. These reactions are typically very complex involving up to 1000's of elementary steps with a corresponding number of reactive chemical intermediates. Spectrospic diagnostics, based upon well analyzed and well understood spectra of the intermediates, are crucial for monitoring such reactions and unraveling their mechanisms. These spectral analyses often benefit from the guidance provided by quantum chemical calculations and conversely the molecular parameters, experimentally determined from the spectra, serve as ``gold standards'' for benchmarking such calculations. Such standards are especially valuable for reactive intermediates whose electronic or geometric structure is particularly complex because of electron-spin interactions, Jahn-Teller effects or other vibronic interactions, hindered internal motions, large molecular size and weight, etc. The organic alkoxy, RO., and peroxy, RO2., (R=alkyl group) free radicals are excellent examples of such species. The talk will focus on our recent characterization of these radicals via their ``high-resolution,'' mostly rotationally resolved, electronic spectra utilizing the techniques of laser induced fluorescence, stimulated emission pumping, and cavity ringdown spectroscopy. Selected spectra, their analysis, and the molecular information resulting therefrom will be discussed.

  19. Direct-Dispense Polymeric Waveguides Platform for Optical Chemical Sensors

    PubMed Central

    Hajj-Hassan, Mohamad; Gonzalez, Timothy; Ghafar-Zadeh, Ebrahim; Djeghelian, Hagop; Chodavarapu, Vamsy; Andrews, Mark; Therriault, Daniel

    2008-01-01

    We describe an automated robotic technique called direct-dispense to fabricate a polymeric platform that supports optical sensor arrays. Direct-dispense, which is a type of the emerging direct-write microfabrication techniques, uses fugitive organic inks in combination with cross-linkable polymers to create microfluidic channels and other microstructures. Specifically, we describe an application of direct-dispensing to develop optical biochemical sensors by fabricating planar ridge waveguides that support sol-gel-derived xerogel-based thin films. The xerogel-based sensor materials act as host media to house luminophore biochemical recognition elements. As a prototype implementation, we demonstrate gaseous oxygen (O2) responsive optical sensors that operate on the basis of monitoring luminescence intensity signals. The optical sensor employs a Light Emitting Diode (LED) excitation source and a standard silicon photodiode as the detector. The sensor operates over the full scale (0%-100%) of O2 concentrations with a response time of less than 1 second. This work has implications for the development of miniaturized multi-sensor platforms that can be cost-effectively and reliably mass-produced.

  20. Digital microfluidic three-dimensional cell culture and chemical screening platform using alginate hydrogels

    PubMed Central

    2015-01-01

    Electro wetting-on-dielectric (EWOD) digital microfluidics (DMF) can be used to develop improved chemical screening platforms using 3-dimensional (3D) cell culture. Alginate hydrogels are one common method by which a 3D cell culture environment is created. This paper presents a study of alginate gelation on EWOD DMF and investigates designs to obtain uniform alginate hydrogels that can be repeatedly addressed by any desired liquids. A design which allows for gels to be retained in place during liquid delivery and removal without using any physical barriers or hydrophilic patterning of substrates is presented. A proof of concept screening platform is demonstrated by examining the effects of different concentrations of a test chemical on 3D cells in alginate hydrogels. In addition, the temporal effects of the various chemical concentrations on different hydrogel posts are demonstrated, thereby establishing the benefits of an EWOD DMF 3D cell culture and chemical screening platform using alginate hydrogels. PMID:25945142

  1. Digital microfluidic three-dimensional cell culture and chemical screening platform using alginate hydrogels.

    PubMed

    George, Subin M; Moon, Hyejin

    2015-03-01

    Electro wetting-on-dielectric (EWOD) digital microfluidics (DMF) can be used to develop improved chemical screening platforms using 3-dimensional (3D) cell culture. Alginate hydrogels are one common method by which a 3D cell culture environment is created. This paper presents a study of alginate gelation on EWOD DMF and investigates designs to obtain uniform alginate hydrogels that can be repeatedly addressed by any desired liquids. A design which allows for gels to be retained in place during liquid delivery and removal without using any physical barriers or hydrophilic patterning of substrates is presented. A proof of concept screening platform is demonstrated by examining the effects of different concentrations of a test chemical on 3D cells in alginate hydrogels. In addition, the temporal effects of the various chemical concentrations on different hydrogel posts are demonstrated, thereby establishing the benefits of an EWOD DMF 3D cell culture and chemical screening platform using alginate hydrogels. PMID:25945142

  2. Polyoxometalates as efficient catalysts for transformations of cellulose into platform chemicals.

    PubMed

    Deng, Weiping; Zhang, Qinghong; Wang, Ye

    2012-09-01

    Efficient utilisation of renewable biomass resources, particularly lignocellulosic biomass, for the production of chemicals and fuels has attracted much attention in recent years. The catalytic conversion of cellulose, the main component of lignocellulosic biomass, selectively into a platform chemical such as glucose, 5-hydroxymethyl furfural (HMF), sorbitol or gluconic acid under mild conditions is the most desirable route. Acid catalysis plays a crucial role in the conversion of cellulose via the cleavage of its glycosidic bonds. Owing to their unique features such as strong acidity, water-tolerance, low corrosiveness and recoverability, polyoxometalates have shown promising performances in transformations of cellulose into platform chemicals both in homogeneous and heterogeneous systems. This article highlights recent studies on polyoxometalates and polyoxometalate-based bifunctional catalysts or catalytic systems for the selective conversions of cellulose and cellobiose, a model molecule of cellulose, into platform chemicals. PMID:22653050

  3. Chemical and enzymatic reductive activation of acylfulvene to isomeric cytotoxic reactive intermediates

    PubMed Central

    Pietsch, Kathryn E.; Neels, James F.; Yu, Xiang; Gong, Jiachang; Sturla, Shana J.

    2011-01-01

    Acylfulvenes, a class of semisynthetic analogues of the sesquiterpene natural product illudin S, are cytotoxic towards cancer cells. The minor structural changes between illudin S and AFs translate to an improved therapeutic window in preclinical cell-based assays and xenograft models. AFs are, therefore, unique tools for addressing the chemical and biochemical basis of cytotoxic selectivity. AFs elicit cytotoxic responses by alkylation of biological targets, including DNA. While AFs are capable of direct alkylation, cytosolic reductive bioactivation to an electrophilic intermediate is correlated with enhanced cytotoxicity. Data obtained in this study illustrates chemical aspects of the process of AF activation. By tracking reaction mechanisms with stable isotope-labeled reagents, enzymatic versus chemical activation pathways for AF were compared for reactions involving the NADPH-dependent enzyme prostaglandin reductase 1 (PTGR1) or sodium borohydride, respectively. These two processes resulted in isomeric products that appear to give rise to similar patterns of DNA modification. The chemically activated isomer has been newly isolated and chemically characterized in this study, including an assessment of its relative stereochemistry, and stability at varying pH and under bioassay conditions. In mammalian cancer cells, this chemically activated analog was shown to not rely on further cellular activation to significantly enhance cytotoxic potency, in contrast to the requirements of AF. On the basis of this study, we anticipate that the chemically activated form of AF will serve as a useful chemical probe for evaluating biomolecular interactions independent of enzyme-mediated activation. PMID:21939268

  4. Integrated optical sensor platform for multiparameter bio-chemical analysis.

    PubMed

    Lützow, Peter; Pergande, Daniel; Heidrich, Helmut

    2011-07-01

    There is growing demand for robust, reliable, low cost, and easy to use sensor systems that feature multiparameter analysis in many application areas ranging from safety and security to point of care and medical diagnostics. Here, we highlight the theory and show first experimental results on a novel approach targeting the realization of massively multiplexed sensor arrays. The presented sensor platform is based on arrays of frequency-modulated integrated optical microring resonators (MRR) fed by a single bus waveguide combined with lock-in detection to filter out in a reliable and simple manner their individual response to external stimuli. The working principle is exemplified on an array of four thermo-optically modulated MRR. It is shown that with this technique tracking of individual resonances is possible even in case of strong spectral overlap. PMID:21747482

  5. Cantilever Arrays as a platform for chemical and biological sensors

    NASA Astrophysics Data System (ADS)

    Datskos, Panos

    2005-03-01

    Since the late 1980's there have been spectacular developments in micro-mechanical or micro-electro-mechanical (MEMS) systems which have enabled exploration of new transduction modes that involve mechanical energy and are based primarily on mechanical phenomena. As a result, an innovative family of chemical and biological sensors has emerged. While MEMS represents a diverse family of designs, devices with simple cantilever configurations are especially attractive as transducers for chemical and biological sensors. In our presentation we deal with four important aspects of cantilever transducers: (i) operation principles and models, (ii) micro-fabrication, (iii) figures of merit, and (iv) applications of cantilever sensors. We also provide a brief analysis of historical predecessors of the modern cantilever sensors. Finally we have demonstrated that using large well designed arrays of differentially coated microcantilevers coupled artificial neural network techniques can provide information on the identity and amount of target chemicals. We will present our results and discuss future directions.

  6. Structurally Integrated Photoluminescent Chemical and Biological Sensors: An Organic Light-Emitting Diode-Based Platform

    NASA Astrophysics Data System (ADS)

    Shinar, J.; Shinar, R.

    The chapter describes the development, advantages, challenges, and potential of an emerging, compact photoluminescence-based sensing platform for chemical and biological analytes, including multiple analytes. In this platform, the excitation source is an array of organic light-emitting device (OLED) pixels that is structurally integrated with the sensing component. Steps towards advanced integration with additionally a thin-film-based photodetector are also described. The performance of the OLED-based sensing platform is examined for gas-phase and dissolved oxygen, glucose, lactate, ethanol, hydrazine, and anthrax lethal factor.

  7. The delayed contribution of low and intermediate mass stars to chemical galactic enrichment: An analytical approach

    NASA Astrophysics Data System (ADS)

    Franco, I.; Carigi, L.

    2008-10-01

    We find a new analytical solution for the chemical evolution equations, taking into account the delayed contribution of all low and intermediate mass stars (LIMS) as one representative star that enriches the interstellar medium. This solution is built only for star formation rate proportional to the gas mass in a closed box model. We obtain increasing C/O and N/O ratios with increasing O/H, behavior impossible to match with the Instantaneous Recycling Approximation (IRA). Our results, obtained by two analytical equations, are very similar to those found by numerical models that consider the lifetimes of each star. This delayed model reproduces successfully the evolution of the C/O-O/H and Y - O relations in the solar vicinity. This analytical approximation is a useful tool to study the chemical evolution of elements produced by LIMS when a galactic chemical evolutionary code is not available.

  8. Graphene oxide as a chemically tunable platform for optical applications

    NASA Astrophysics Data System (ADS)

    Loh, Kian Ping; Bao, Qiaoliang; Eda, Goki; Chhowalla, Manish

    2010-12-01

    Chemically derived graphene oxide (GO) is an atomically thin sheet of graphite that has traditionally served as a precursor for graphene, but is increasingly attracting chemists for its own characteristics. It is covalently decorated with oxygen-containing functional groups - either on the basal plane or at the edges - so that it contains a mixture of sp2- and sp3-hybridized carbon atoms. In particular, manipulation of the size, shape and relative fraction of the sp2-hybridized domains of GO by reduction chemistry provides opportunities for tailoring its optoelectronic properties. For example, as-synthesized GO is insulating but controlled deoxidation leads to an electrically and optically active material that is transparent and conducting. Furthermore, in contrast to pure graphene, GO is fluorescent over a broad range of wavelengths, owing to its heterogeneous electronic structure. In this Review, we highlight the recent advances in optical properties of chemically derived GO, as well as new physical and biological applications.

  9. Cantilever transducers as a platform for chemical and biological sensors

    NASA Astrophysics Data System (ADS)

    Lavrik, Nickolay V.; Sepaniak, Michael J.; Datskos, Panos G.

    2004-07-01

    Since the late 1980s there have been spectacular developments in micromechanical or microelectro-mechanical (MEMS) systems which have enabled the exploration of transduction modes that involve mechanical energy and are based primarily on mechanical phenomena. As a result an innovative family of chemical and biological sensors has emerged. In this article, we discuss sensors with transducers in a form of cantilevers. While MEMS represents a diverse family of designs, devices with simple cantilever configurations are especially attractive as transducers for chemical and biological sensors. The review deals with four important aspects of cantilever transducers: (i) operation principles and models; (ii) microfabrication; (iii) figures of merit; and (iv) applications of cantilever sensors. We also provide a brief analysis of historical predecessors of the modern cantilever sensors.

  10. Platforms.

    PubMed

    Josko, Deborah

    2014-01-01

    The advent of DNA sequencing technologies and the various applications that can be performed will have a dramatic effect on medicine and healthcare in the near future. There are several DNA sequencing platforms available on the market for research and clinical use. Based on the medical laboratory scientist or researcher's needs and taking into consideration laboratory space and budget, one can chose which platform will be beneficial to their institution and their patient population. Although some of the instrument costs seem high, diagnosing a patient quickly and accurately will save hospitals money with fewer hospital stays and targeted treatment based on an individual's genetic make-up. By determining the type of disease an individual has, based on the mutations present or having the ability to prescribe the appropriate antimicrobials based on the knowledge of the organism's resistance patterns, the clinician will be better able to treat and diagnose a patient which ultimately will improve patient outcomes and prognosis. PMID:25219075

  11. Honeywell's organic air vehicle chemical-biological sensing platform

    NASA Astrophysics Data System (ADS)

    Cole, Barry E.; Krafthefer, Brian; Knee, Daniel; Fulton, Vaughn M.; Law, Kristen

    2004-12-01

    Unmanned air vehicles (UAVs) today are mostly used for reconnaissance and sometimes weapons delivery. Remote sensing of chemical-biological (CB) agents is another beneficial use of UAVs. While remote sensing of CB agents can be done by LIDAR spectroscopy, this technology is less spatially precise and less sensitive than actual measurements on a collected sample. One family of UAVs of particularly unique benefit for CB sampling and in-flight analysis is the Honeywell family of Organic Air Vehicles (OAVs). This vehicle with its ability to hover and stare has the unique ability among UAVs to collect and analyze chem-bio samples from a specific location over extended periods of time. Such collections are not possible with other micro-air-vehicles (MAVs) that only operate in fly-by mode. This paper describes some of the Honeywell OAV features that are conducive to CB detection.

  12. Intermediate-range chemical ordering of cations in molten RbCl-AgCl

    SciTech Connect

    Tahara, S.; Kawakita, Y.; Shimakura, H.; Ohara, K.; Fukami, T.; Takeda, S.

    2015-07-28

    A first sharp diffraction peak (FSDP) is observed in the X-ray total structure factor of a molten mixture of RbCl-AgCl, while both pure melts of RbCl and AgCl do not exhibit FSDP individually. Molecular dynamics simulations were performed to investigate the origin of the FSDP with the polarizable ion model (PIM). Coexistence of covalent Ag–Cl and ionic Rb–Cl bonds leads the system to evolve intermediate range ordering, which is simulated by introducing the induced polarization in different ways between Ag–Cl with fully polarizable treatment based on Vashishta-Raman potential and Rb–Cl with suppression over-polarization in the nearest neighbor contribution based on Born-Meyer potential. The partial structure factors for both the Ag–Ag and Rb–Rb correlations, S{sub AgAg}(Q) and S{sub RbRb}(Q), show a positive contribution to the FSDP, while S{sub AgRb}(Q) for the Ag–Rb correlation exhibits a negative contribution, indicating that Ag and Rb ions are distributed in an alternating manner within the intermediate-range length scale. The origin of the intermediate-range chemical ordering of cations can be ascribed to the preferred direction of the dipole moments of anions in the PIM.

  13. Intermediate-range chemical ordering of cations in molten RbCl-AgCl.

    PubMed

    Tahara, S; Kawakita, Y; Shimakura, H; Ohara, K; Fukami, T; Takeda, S

    2015-07-28

    A first sharp diffraction peak (FSDP) is observed in the X-ray total structure factor of a molten mixture of RbCl-AgCl, while both pure melts of RbCl and AgCl do not exhibit FSDP individually. Molecular dynamics simulations were performed to investigate the origin of the FSDP with the polarizable ion model (PIM). Coexistence of covalent Ag-Cl and ionic Rb-Cl bonds leads the system to evolve intermediate range ordering, which is simulated by introducing the induced polarization in different ways between Ag-Cl with fully polarizable treatment based on Vashishta-Raman potential and Rb-Cl with suppression over-polarization in the nearest neighbor contribution based on Born-Meyer potential. The partial structure factors for both the Ag-Ag and Rb-Rb correlations, SAgAg(Q) and SRbRb(Q), show a positive contribution to the FSDP, while SAgRb(Q) for the Ag-Rb correlation exhibits a negative contribution, indicating that Ag and Rb ions are distributed in an alternating manner within the intermediate-range length scale. The origin of the intermediate-range chemical ordering of cations can be ascribed to the preferred direction of the dipole moments of anions in the PIM. PMID:26233147

  14. Chemical stability of glass seal interfaces in intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Yang, Zhenguo; Xia, Guanguang; Meinhardt, Kerry D.; Weil, K. Scott; Stevenson, Jeff W.

    2004-06-01

    In intermediate temperature planar solid oxide fuel cell (SOFC) stacks, the interconnect, which is typically made from cost-effective, oxidation-resistant, high-temperature alloys, is typically sealed to the ceramic positive electrode-electrolyte-negative electrode (PEN) by a sealing glass. To maintain the structural stability and minimize the degradation of stack performance, the sealing glass has to be chemically compatible with the PEN and alloy interconnects. In the present study, the chemical compatibility of a barium-calcium-aluminosilicate (BCAS) based glass-ceramic (specifically developed as a sealant in SOFC stacks) with a number of selected oxidation resistant high temperature alloys (and the yttria-stabilized zirconia electrolyte) was evaluated. This paper reports the results of that study, with a particular focus on Crofer22 APU, a new ferritic stainless steel that was developed specifically for SOFC interconnect applications.

  15. Star formation rates and chemical abundances of emission-line galaxies in intermediate-redshift clusters

    NASA Astrophysics Data System (ADS)

    Mouhcine, M.; Bamford, S. P.; Aragón-Salamanca, A.; Nakamura, O.; Milvang-Jensen, B.

    2006-06-01

    We examine the evolutionary status of luminous, star-forming galaxies in intermediate-redshift clusters by considering their star formation rates (SFRs) and the chemical and ionization properties of their interstellar emitting gas. Our sample consists of 17 massive, star-forming, mostly disc galaxies with MB<~-20, in clusters with redshifts in the range 0.31 <~z<~ 0.59, with a median of = 0.42. We compare these galaxies with the identically selected and analysed intermediate-redshift field sample of Mouhcine et al., and with local galaxies from the Nearby Field Galaxy Survey of Jansen et al. From our optical spectra, we measure the equivalent widths of [OII]λ3727, Hβ and [OIII]λ5007 emission lines to determine diagnostic line ratios, oxygen abundances and extinction-corrected SFRs. The star-forming galaxies in intermediate-redshift clusters display emission-line equivalent widths which are, on average, significantly smaller than measured for field galaxies at comparable redshifts. However, a contrasting fraction of our cluster galaxies have equivalent widths similar to the highest observed in the field. This tentatively suggests a bimodality in the SFRs per unit luminosity for galaxies in distant clusters. We find no evidence for further bimodalities, or differences between our cluster and field samples, when examining additional diagnostics and the oxygen abundances of our galaxies. This maybe because no such differences exist, perhaps because the cluster galaxies which still display signs of star formation have recently arrived from the field. In order to examine this topic with more certainty, and to further investigate the way in which any disparity varies as a function of cluster properties, larger spectroscopic samples are needed.

  16. Ion-radical intermediates of the radiation-chemical transformations of organic carbonates

    NASA Astrophysics Data System (ADS)

    Shiryaeva, Ekaterina S.; Sosulin, Ilya S.; Saenko, Elizaveta V.; Feldman, Vladimir I.

    2016-07-01

    The spectral features and reactions of ion-radical intermediates produced from organic carbonates in low-temperature matrices were investigated by EPR spectroscopy and quantum-chemical calculations. It was shown that radical cations of diethyl carbonate and dimethyl carbonate underwent intramolecular hydrogen transfer to yield alkyl-type species, as was suggested previously. Meanwhile, radical cation of EC demonstrates a ring cleavage even at 77 K, while radical cation of PC is probably intrinsically stable and undergo an ion-molecule reaction with a neighboring neutral molecule in dimers or associates. Radical anions were obtained in glassy matrices of diethyl ether or perdeuteroethanol. The radical anions of linear carbonates show photoinduced fragmentation to yield the corresponding alkyl radicals; such process may also occur directly under radiolysis. Radical anions of cyclic carbonates are relatively stable and yield only trace amounts of fragmentation products under similar conditions.

  17. Model for Transition Zone Formation from Upwelling Thermo-Chemical Plumes of Intermediate Rheology

    NASA Astrophysics Data System (ADS)

    Nguyen, C. T.; Weeraratne, D. S.

    2008-12-01

    The mantle transition zone has been limited to a layer of approximately 250 km at the base of the upper mantle, identified by studies in seismology and mineral physics. However, there are many uncertainties as to the nature of formation of this mid-mantle layer, its evolution over geological time, physical properties, and its role facilitating or inhibiting whole mantle flow. Here, we conduct laboratory fluid experiments using high viscosity corn syrup fluids and liquid gallium to study mantle convection processes in the early Earth. Specifically, we consider early core formation events involving metal-silicate plumes which sink following impact events and entrain magma ocean material from the surface during descent. Preliminary studies indicate that low viscosity, buoyant material, that makes up the model magma ocean near the surface is entrained in conduits that form behind quickly descending liquid metal plumes to the base of the lower mantle. This low density material brought to the base of the model lower mantle becomes buoyant and subsequently rises back up to the top of the fluid box forming a new intermediate material that has experienced both chemical and thermal diffusion along its mantle pathway and empties at the top of the lower mantle or base of a magma ocean. Two-component fluid experiments are considered in the presence of a hot lower thermal boundary layer at Rayleigh numbers of 103 to 105 and low Reynolds number flow, and indicate that upwelling thermo-chemical plumes may form following core formation events. This new third fluid layer of intermediate rheology is considered as a model for the mantle transition zone. Shadow graph images indicate a sharp density contrast with surrounding fluids that persists for long times, consistent with seismic discontinuities observed for the Earth's transition zone. We will present quantitative estimates of material rheology, density, and flow properties for scaling with a silicate mantle, geophysical, and

  18. Glucose and fructose to platform chemicals: understanding the thermodynamic landscapes of acid-catalysed reactions using high-level ab initio methods.

    PubMed

    Assary, Rajeev S; Kim, Taejin; Low, John J; Greeley, Jeff; Curtiss, Larry A

    2012-12-28

    Molecular level understanding of acid-catalysed conversion of sugar molecules to platform chemicals such as hydroxy-methyl furfural (HMF), furfuryl alcohol (FAL), and levulinic acid (LA) is essential for efficient biomass conversion. In this paper, the high-level G4MP2 method along with the SMD solvation model is employed to understand detailed reaction energetics of the acid-catalysed decomposition of glucose and fructose to HMF. Based on protonation free energies of various hydroxyl groups of the sugar molecule, the relative reactivity of gluco-pyranose, fructo-pyranose and fructo-furanose are predicted. Calculations suggest that, in addition to the protonated intermediates, a solvent assisted dehydration of one of the fructo-furanosyl intermediates is a competing mechanism, indicating the possibility of multiple reaction pathways for fructose to HMF conversion in aqueous acidic medium. Two reaction pathways were explored to understand the thermodynamics of glucose to HMF; the first one is initiated by the protonation of a C2-OH group and the second one through an enolate intermediate involving acyclic intermediates. Additionally, a pathway is proposed for the formation of furfuryl alcohol from glucose initiated by the protonation of a C2-OH position, which includes a C-C bond cleavage, and the formation of formic acid. The detailed free energy landscapes predicted in this study can be used as benchmarks for further exploring the sugar decomposition reactions, prediction of possible intermediates, and finally designing improved catalysts for biomass conversion chemistry in the future. PMID:22932938

  19. Total-Internal-Reflection Platforms for Chemical and Biological Sensing Applications

    NASA Astrophysics Data System (ADS)

    Sapsford, Kim E.

    Sensing platforms based on the principle of total internal reflection (TIR) represent a fairly mature yet still expanding and exciting field of research. Sensor development has mainly been driven by the need for rapid, stand-alone, automated devices for application in the fields of clinical diagnosis and screening, food and water safety, environmental monitoring, and chemical and biological warfare agent detection. The technologies highlighted in this chapter are continually evolving, taking advantage of emerging advances in microfabrication, lab-on-a-chip, excitation, and detection techniques. This chapter describes many of the underlying principles of TIR-based sensing platforms and additionally focusses on planar TIR fluorescence (TIRF)-based chemical and biological sensors.

  20. A wearable fingernail chemical sensing platform: pH sensing at your fingertips.

    PubMed

    Kim, Jayoung; Cho, Thomas N; Valdés-Ramírez, Gabriela; Wang, Joseph

    2016-04-01

    This article demonstrates an example of a wearable chemical sensor based on a fingernail platform. Fingernails represent an attractive wearable platform, merging beauty products with chemical sensing, to enable monitoring of our surrounding environment. The new colorimetric pH fingernail sensor relies on coating artificial nails with a recognition layer consisted of pH indicators entrapped in a polyvinyl chloride (PVC) matrix. Such color changing fingernails offer fast and reversible response to pH changes, repeated use, and intense color change detected easily with naked eye. The PVC matrix prevents leaching out of the indicator molecules from the fingernail sensor toward such repeated use. The limited narrow working pH range of a single pH indicator has been addressed by multiplexing three different pH indicators: bromothymol blue (pH 6.0-7.6), bromocresol green (pH 3.8-5.4), and cresol red (pH 7.2-8.8), as demonstrated for analyses of real-life samples of acidic, neutral, and basic character. The new concept of an optical wearable chemical sensor on fingernail platforms can be expanded towards diverse analytes for various applications in connection to the judicious design of the recognition layer. PMID:26838451

  1. Chemically Activated Formation of Organic Acids in Reactions of the Criegee Intermediate with Aldehydes and Ketones

    SciTech Connect

    Jalan, Amrit; Allen, Joshua W.; Green, William H.

    2013-08-08

    Reactions of the Criegee intermediate (CI, .CH2OO.) are important in atmospheric ozonolysis models. In this work, we compute the rates for reactions between .CH2OO. and HCHO, CH3CHO and CH3COCH3 leading to the formation of secondary ozonides (SOZ) and organic acids. Relative to infinitely separated reactants, the SOZ in all three cases is found to be 48–51 kcal mol-1 lower in energy, formed via 1,3- cycloaddition of .CH2OO. across the CQO bond. The lowest energy pathway found for SOZ decomposition is intramolecular disproportionation of the singlet biradical intermediate formed from cleavage of the O–O bond to form hydroxyalkyl esters. These hydroxyalkyl esters undergo concerted decomposition providing a low energy pathway from SOZ to acids. Geometries and frequencies of all stationary points were obtained using the B3LYP/MG3S DFT model chemistry, and energies were refined using RCCSD(T)-F12a/cc-pVTZ-F12 single-point calculations. RRKM calculations were used to obtain microcanonical rate coefficients (k(E)) and the reservoir state method was used to obtain temperature and pressure dependent rate coefficients (k(T, P)) and product branching ratios. At atmospheric pressure, the yield of collisionally stabilized SOZ was found to increase in the order HCHO o CH3CHO o CH3COCH3 (the highest yield being 10-4 times lower than the initial .CH2OO. concentration). At low pressures, chemically activated formation of organic acids (formic acid in the case of HCHO and CH3COCH3, formic and acetic acid in the case of CH3CHO) was found to be the major product channel in agreement with recent direct measurements. Collisional energy transfer parameters and the barrier heights for SOZ reactions were found to be the most sensitive parameters determining SOZ and organic acid yield.

  2. Natural products-prompted chemical biology: phenotypic screening and a new platform for target identification.

    PubMed

    Kakeya, Hideaki

    2016-05-01

    Covering: 1993 to 2016The exploitation of small molecules from natural sources, such as microbial metabolites, has contributed to the discovery of not only new drugs but also new research tools for chemical biology. My research team has discovered several novel bioactive small molecules using in vivo cell-based phenotypic screening, and has investigated their modes of action using chemical genetics and chemical genomics. This highlight focuses on our recent discoveries and chemical genetics approaches for bioactive microbial metabolites that target cancer cells, the cancer microenvironment and cell membrane signalling. In addition, the development of two new platforms, 5-sulfonyl tetrazole-based and thiourea-modified amphiphilic lipid-based probe technologies, to identify the cellular targets of these molecules is also discussed. PMID:26883503

  3. Toward the realization of a compact chemical sensor platform using quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Holthoff, Ellen L.; Marcus, Logan S.; Pellegrino, Paul M.

    2015-05-01

    The Army is investigating several spectroscopic techniques (e.g., infrared spectroscopy) that could allow for an adaptable sensor platform. Traditionally, chemical sensing platforms have been hampered by the opposing concerns of increasing sensor capability while maintaining a minimal package size. Current sensors, although reasonably sized, are geared to more classical chemical threats, and the ability to expand their capabilities to a broader range of emerging threats is uncertain. Recently, photoacoustic spectroscopy, employed in a sensor format, has shown enormous potential to address these ever-changing threats, while maintaining a compact sensor design. In order to realize the advantage of photoacoustic sensor miniaturization, light sources of comparable size are required. Recent research has employed quantum cascade lasers (QCLs) in combination with MEMS-scale photoacoustic cell designs. The continuous tuning capability of QCLs over a broad wavelength range in the mid-infrared spectral region greatly expands the number of compounds that can be identified. Results have demonstrated that utilizing a tunable QCL with a MEMS-scale photoacoustic cell produces favorable detection limits (ppb levels) for chemical targets (e.g., dimethyl methyl phosphonate (DMMP), vinyl acetate, 1,4-dioxane). Although our chemical sensing research has benefitted from the broad tuning capabilities of QCLs, the limitations of these sources must be considered. Current commercially available tunable systems are still expensive and obviously geared more toward laboratory operation, not fielding. Although the laser element itself is quite small, the packaging, power supply, and controller remain logistical burdens. Additionally, operational features such as continuous wave (CW) modulation and laser output powers while maintaining wide tunability are not yet ideal for a variety of sensing applications. In this paper, we will discuss our continuing evaluation of QCL technology as it matures

  4. Chemical trapping of labile aldehyde intermediates in the metabolism of propranolol and oxprenolol.

    PubMed

    Goldszer, F; Tindell, G L; Walle, U K; Walle, T

    1981-11-01

    Propranolol is N-dealkylated to N-desisopropylpropranolol (DIP) by microsomal enzymes. DIP was shown in this study to be rapidly deaminated by monoamine oxidase (MAO). Thus, incubation of DIP (10(-4) M) with rat liver mitochondria for 90 min demonstrated 74.8 +/- 4.1% metabolism which was almost completely blocked by the MAO inhibitor pargyline (10(-5) M). The end products of this deamination were 3-(alpha-naphthoxy)-1,2-propylene glycol (Glycol) and 3-(alpha-naphthoxy)lactic acid (NLA). In the presence of excess NADH the Glycol was the major product whereas NLA was the major product in the presence of excess NAD+. The intermediate aldehyde in this deamination reaction, 3-(alpha-naphthoxy)-2-hydroxypropanal (Ald), was extremely labile and decomposed quantitatively to alpha-naphthol when removed from the incubates. However, the addition of methoxyamine hydrochloride directly to the incubates made it possible to chemically trap the intact Ald as an O-methyloxime and prove its structure by gas chromatography-mass spectrometry. The deamination of the primary amine of oxprenolol also gave rise to a labile aldehyde which could be trapped and identified as its O-methyloxime. PMID:7335950

  5. The Tox21 robotic platform for the assessment of environmental chemicals--from vision to reality.

    PubMed

    Attene-Ramos, Matias S; Miller, Nicole; Huang, Ruili; Michael, Sam; Itkin, Misha; Kavlock, Robert J; Austin, Christopher P; Shinn, Paul; Simeonov, Anton; Tice, Raymond R; Xia, Menghang

    2013-08-01

    Since its establishment in 2008, the US Tox21 inter-agency collaboration has made great progress in developing and evaluating cellular models for the evaluation of environmental chemicals as a proof of principle. Currently, the program has entered its production phase (Tox21 Phase II) focusing initially on the areas of modulation of nuclear receptors and stress response pathways. During Tox21 Phase II, the set of chemicals to be tested has been expanded to nearly 10,000 (10K) compounds and a fully automated screening platform has been implemented. The Tox21 robotic system combined with informatics efforts is capable of screening and profiling the collection of 10K environmental chemicals in triplicate in a week. In this article, we describe the Tox21 screening process, compound library preparation, data processing, and robotic system validation. PMID:23732176

  6. Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals.

    PubMed

    Ruppert, Agnieszka M; Weinberg, Kamil; Palkovits, Regina

    2012-03-12

    In view of the diminishing oil resources and the ongoing climate change, the use of efficient and environmentally benign technologies for the utilization of renewable resources has become indispensible. Therein, hydrogenolysis reactions offer a promising possibility for future biorefinery concepts. These reactions result in the cleavage of C-C and C-O bonds by hydrogen and allow direct access to valuable platform chemicals already integrated in today's value chains. Thus, hydrogenolysis bears the potential to bridge currently available technologies and future biomass-based refinery concepts. This Review highlights past and present developments in this field, with special emphasis on the direct utilization of cellulosic feedstocks. PMID:22374680

  7. Enhanced conversion of carbohydrates to the platform chemical 5-hydroxymethylfurfural using designer ionic liquids.

    PubMed

    Siankevich, Sviatlana; Fei, Zhaofu; Scopelliti, Rosario; Laurenczy, Gabor; Katsyuba, Sergey; Yan, Ning; Dyson, Paul J

    2014-06-01

    5-Hydroxymethylfurfural (HMF) is a key platform chemical that may be obtained from various cellulosic (biomass) derivatives. Previously, it has been shown that ionic liquids (ILs) facilitate the catalytic conversion of glucose into HMF. Herein, we demonstrate that the careful design of the IL cation leads to new ionic solvents that enhance the transformation of glucose and more complex carbohydrates into HMF significantly. In Situ NMR spectroscopy and computational modeling pinpoint the key interactions between the IL, catalyst, and substrate that account for the enhanced reactivities observed. PMID:24700762

  8. Isosorbide as a renewable platform chemical for versatile applications--quo vadis?

    PubMed

    Rose, Marcus; Palkovits, Regina

    2012-01-01

    Isosorbide is a platform chemical of considerable importance for the future replacement of fossil resource-based products. Applications as monomers and building blocks for new polymers and functional materials, new organic solvents, for medical and pharmaceutical applications, and even as fuels or fuel additives are conceivable. The conversion of isosorbide to valuable derivatives by functionalization or substitution of the hydroxyl groups is difficult because of the different configurations of the 2- and 5-positions and the resulting different reactivity and steric hindrance of the two hydroxyl groups. Although a substantial amount of work has been published using exclusively the endo or exo derivatives isomannide and isoidide, respectively, as starting material, a considerable effort is still necessary to transfer and adapt these methods for the efficient conversion of isosorbide. This Minireview deals with all aspects of isosorbide chemistry, which includes its production by catalytic processes, special properties, and chemical transformations for its utilization in biogenic polymers and other applications of interest. PMID:22213713

  9. Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatile platform chemical

    SciTech Connect

    Su, Yu; Brown, Heather M.; Huang, Xiwen; Zhou, Xiao Dong; Amonette, James E.; Zhang, Z. Conrad

    2009-06-20

    The ability to use cellulosic biomass as feedstock for the production of fuels and chemicals currently derived from petroleum depends critically on the development of effective low-temperature processes. While HMF, as a versatile platform chemical suitable for use in polymer synthesis or production of liquid biofuels, can currently be made from fructose and glucose, synthesis of HMF directly from raw natural cellulose represents the last major barrier toward the development of a sustainable HMF platform. Here we report an unprecedented single-step pathway that depolymerizes cellulose rapidly under mild conditions and converts the resulting glucose to hydroxymethylfurfural (HMF). A pair of metal chlorides (CuCl2 and CrCl2) dissolved in 1-ethyl-3-methylimidazolium chloride at temperatures of 80-120°C catalyzes cellulose depolymerization and the subsequent glucose conversion to HMF with 95% selectivity among recoverable products (at 56% HMF yield). Cellulose depolymerization, which can also be catalyzed by other metalchloride pairs such as CuCl2 paired with PdCl2, CrCl3, or FeCl3, occurs at a rate that is more than one order of magnitude faster than conventional acid-catalyzed hydrolysis. In contrast, single-metal chlorides at the same total loading showed low activity under similar conditions. Mechanistic studies suggest that the C2 hydrogen of the imidazolium ring is activated by the paired metal-chloride catalysts.

  10. A Ubiquitous Optical Microsystem Platform with Application to Optical Metrology and Chemical Sensing

    NASA Astrophysics Data System (ADS)

    Gerling, John David

    This dissertation is concerned with the development of a novel, versatile optical sensor platform for optical metrology and chemical sensing. We demonstrate the feasibility of embedding optical components between bonded silicon wafers with receptor cavities and optical windows to create a self-contained sensor microsystem that can be used for in-situ measurement of hostile environments. Arrays of these sensors internal to a silicon wafer can enable optical sensing for in-situ, real-time mapping and process development for the semiconductor industry in the form of an instrumented substrate. Single-die versions of these optical sensor platforms can also enable point-of-care diagnostics, high throughput disease screening, bio-warfare agent detection, and environmental monitoring. Our first discussion will focus on a single-wavelength interferometry-based prototype sensor. Several applications are demonstrated using this single wavelength prototype: refractive index monitoring, SiO2 plasma etching, chemical mechanical polishing, photoresist cure and dissolution, copper etch end-point detection, and also nanopore wetting phenomena. Subsequent sections of this dissertation will describe efforts to improve the optical sensor platform to achieve multi-wavelength sensing function. We explore the use of an off-the-shelf commercial RGB sensor for colorimetric monitoring of copper and aluminum thin-film etchings. We then expand upon our prior work and concepts to realize a fully integrated, chip-sized microspectrometer with a photon engine based on a diffraction grating. The design, fabrication, and demonstration of a working prototype with dimensions < 1 mm thick using standard planar microfabrication techniques is described. Proof-of-concept demonstrations indicate the working principle of dispersion, although with a low spectral resolution of 120 nm. With working knowledge of the issues of the first prototype, we present an improved 5-channel microspectrometer with a

  11. Glucose and Fructose to Platform Chemicals: Understanding the Thermodynamic Landscapes of Acid-Catalysed Reactions Using High-Level ab Initio Methods

    SciTech Connect

    Assary, Rajeev S.; Kim, Taijin; Low, John; Greeley, Jeffrey P.; Curtiss, Larry A.

    2012-12-28

    Molecular level understanding of acid-catalysed conversion of sugar molecules to platform chemicals such as hydroxy-methyl furfural (HMF), furfuryl alcohol (FAL), and levulinic acid (LA) is essential for efficient biomass conversion. In this paper, the high-level G4MP2 method along with the SMD solvation model is employed to understand detailed reaction energetics of the acid-catalysed decomposition of glucose and fructose to HMF. Based on protonation free energies of various hydroxyl groups of the sugar molecule, the relative reactivity of gluco-pyranose, fructo-pyranose and fructo-furanose are predicted. Calculations suggest that, in addition to the protonated intermediates, a solvent assisted dehydration of one of the fructo-furanosyl intermediates is a competing mechanism, indicating the possibility of multiple reaction pathways for fructose to HMF conversion in aqueous acidic medium. Two reaction pathways were explored to understand the thermodynamics of glucose to HMF; the first one is initiated by the protonation of a C2–OH group and the second one through an enolate intermediate involving acyclic intermediates. Additionally, a pathway is proposed for the formation of furfuryl alcohol from glucose initiated by the protonation of a C2–OH position, which includes a C–C bond cleavage, and the formation of formic acid. The detailed free energy landscapes predicted in this study can be used as benchmarks for further exploring the sugar decomposition reactions, prediction of possible intermediates, and finally designing improved catalysts for biomass conversion chemistry in the future.

  12. On the nature of the reaction intermediate in the HIV-1 protease: a quantum chemical study

    NASA Astrophysics Data System (ADS)

    Carnevale, V.; Raugei, S.; Piana, S.; Carloni, P.

    2008-07-01

    Several mechanistic aspects of Aspartic Proteases' enzymatic reaction are currently highly controversial. There is general consensus that the first step of the reaction involves a nucleophilic attack of a water molecule to the substrate carbonyl carbon with subsequent formation of a metastable intermediate (INT). However, the exact nature of this intermediate is subject of debate. While ab initio and QM/MM calculations predict that INT is a neutral gem-diol specie, empirical valence bond calculations suggest that the protein frame can stabilize a charged oxyanion intermediate. Here the relative stability of the gem diol and oxyanion intermediate is calculated by performing density functional and post-Hartree-Fock calculations. The robustness of the results is assessed by increasing the size of the system and of the basis set and by performing QM/MM calculations that explicitly include protein/solvent electrostatic effects. Our results suggest that the neutral gem-diol intermediate is 20-30 kcal/mol more stable than the charged oxyanion. It is therefore concluded that only the neutral specie is populated during the enzymatic reaction.

  13. Chemical sensor platform for non-invasive monitoring of activity and dehydration.

    PubMed

    Solovei, Dmitry; Žák, Jaromír; Majzlíková, Petra; Sedláček, Jiří; Hubálek, Jaromír

    2015-01-01

    A non-invasive solution for monitoring of the activity and dehydration of organisms is proposed in the work. For this purpose, a wireless standalone chemical sensor platform using two separate measurement techniques has been developed. The first approach for activity monitoring is based on humidity measurement. Our solution uses new humidity sensor based on a nanostructured TiO2 surface for sweat rate monitoring. The second technique is based on monitoring of potassium concentration in urine. High level of potassium concentration denotes clear occurrence of dehydration. Furthermore, a Wireless Body Area Network (WBAN) was developed for this sensor platform to manage data transfer among devices and the internet. The WBAN coordinator controls the sensor devices and collects and stores the measured data. The collected data is particular to individuals and can be shared with physicians, emergency systems or athletes' coaches. Long-time monitoring of activity and potassium concentration in urine can help maintain the appropriate water intake of elderly people or athletes and to send warning signals in the case of near dehydration. The created sensor system was calibrated and tested in laboratory and real conditions as well. The measurement results are discussed. PMID:25594591

  14. Quantum Monte Carlo for large chemical systems: implementing efficient strategies for petascale platforms and beyond.

    PubMed

    Scemama, Anthony; Caffarel, Michel; Oseret, Emmanuel; Jalby, William

    2013-04-30

    Various strategies to implement efficiently quantum Monte Carlo (QMC) simulations for large chemical systems are presented. These include: (i) the introduction of an efficient algorithm to calculate the computationally expensive Slater matrices. This novel scheme is based on the use of the highly localized character of atomic Gaussian basis functions (not the molecular orbitals as usually done), (ii) the possibility of keeping the memory footprint minimal, (iii) the important enhancement of single-core performance when efficient optimization tools are used, and (iv) the definition of a universal, dynamic, fault-tolerant, and load-balanced framework adapted to all kinds of computational platforms (massively parallel machines, clusters, or distributed grids). These strategies have been implemented in the QMC=Chem code developed at Toulouse and illustrated with numerical applications on small peptides of increasing sizes (158, 434, 1056, and 1731 electrons). Using 10-80 k computing cores of the Curie machine (GENCI-TGCC-CEA, France), QMC=Chem has been shown to be capable of running at the petascale level, thus demonstrating that for this machine a large part of the peak performance can be achieved. Implementation of large-scale QMC simulations for future exascale platforms with a comparable level of efficiency is expected to be feasible. PMID:23288704

  15. A high throughput platform for understanding the influence of excipients on physical and chemical stability.

    PubMed

    Raijada, Dhara; Cornett, Claus; Rantanen, Jukka

    2013-08-30

    The present study puts forward a miniaturized high-throughput platform to understand influence of excipient selection and processing on the stability of a given drug compound. Four model drugs (sodium naproxen, theophylline, amlodipine besylate and nitrofurantoin) and ten different excipients were selected. Binary physical mixtures of drug and excipient were transferred to a 96-well plate followed by addition of water to simulate aqueous granulation environment. The plate was subjected for XRPD measurements followed by drying and subsequent XRPD and HPLC measurements of the dried samples. Excipients with different water sorbing potential were found to influence distinctly on the phase transformation behaviour of each drug. Moreover, the amount of water addition was also a critical factor affecting phase transformation behaviour. HPLC analysis revealed one of the drug:excipient pairs with a tendency for chemical degradation. The proposed high-throughput platform can be used during early drug development to simulate typical processing induced stress in a small scale and to understand possible phase transformation behaviour and influence of excipients on this. PMID:22944300

  16. Chemical Sensor Platform for Non-Invasive Monitoring of Activity and Dehydration

    PubMed Central

    Solovei, Dmitry; Žák, Jaromír; Majzlíková, Petra; Sedláček, Jiří; Hubálek, Jaromír

    2015-01-01

    A non-invasive solution for monitoring of the activity and dehydration of organisms is proposed in the work. For this purpose, a wireless standalone chemical sensor platform using two separate measurement techniques has been developed. The first approach for activity monitoring is based on humidity measurement. Our solution uses new humidity sensor based on a nanostructured TiO2 surface for sweat rate monitoring. The second technique is based on monitoring of potassium concentration in urine. High level of potassium concentration denotes clear occurrence of dehydration. Furthermore, a Wireless Body Area Network (WBAN) was developed for this sensor platform to manage data transfer among devices and the internet. The WBAN coordinator controls the sensor devices and collects and stores the measured data. The collected data is particular to individuals and can be shared with physicians, emergency systems or athletes' coaches. Long-time monitoring of activity and potassium concentration in urine can help maintain the appropriate water intake of elderly people or athletes and to send warning signals in the case of near dehydration. The created sensor system was calibrated and tested in laboratory and real conditions as well. The measurement results are discussed. PMID:25594591

  17. Characterization of Conserved Toxicogenomic Responses in Chemically Exposed Hepatocytes across Species and Platforms

    PubMed Central

    El-Hachem, Nehme; Grossmann, Patrick; Blanchet-Cohen, Alexis; Bateman, Alain R.; Bouchard, Nicolas; Archambault, Jacques; Aerts, Hugo J.W.L.; Haibe-Kains, Benjamin

    2015-01-01

    findings expand our understanding and interpretation of toxicogenomics data from human hepatocytes exposed to environmental toxicants. Citation El-Hachem N, Grossmann P, Blanchet-Cohen A, Bateman AR, Bouchard N, Archambault J, Aerts HJ, Haibe-Kains B. 2016. Characterization of conserved toxicogenomic responses in chemically exposed hepatocytes across species and platforms. Environ Health Perspect 124:313–320; http://dx.doi.org/10.1289/ehp.1409157 PMID:26173225

  18. Hydrodeoxygenation processes: advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels.

    PubMed

    De, Sudipta; Saha, Basudeb; Luque, Rafael

    2015-02-01

    Lignocellulosic biomass provides an attractive source of renewable carbon that can be sustainably converted into chemicals and fuels. Hydrodeoxygenation (HDO) processes have recently received considerable attention to upgrade biomass-derived feedstocks into liquid transportation fuels. The selection and design of HDO catalysts plays an important role to determine the success of the process. This review has been aimed to emphasize recent developments on HDO catalysts in effective transformations of biomass-derived platform molecules into hydrocarbon fuels with reduced oxygen content and improved H/C ratios. Liquid hydrocarbon fuels can be obtained by combining oxygen removal processes (e.g. dehydration, hydrogenation, hydrogenolysis, decarbonylation etc.) as well as by increasing the molecular weight via C-C coupling reactions (e.g. aldol condensation, ketonization, oligomerization, hydroxyalkylation etc.). Fundamentals and mechanistic aspects of the use of HDO catalysts in deoxygenation reactions will also be discussed. PMID:25443804

  19. SBRC-Nottingham: sustainable routes to platform chemicals from C1 waste gases.

    PubMed

    Burbidge, Alan; Minton, Nigel P

    2016-06-15

    Synthetic Biology Research Centre (SBRC)-Nottingham (www.sbrc-nottingham.ac.uk) was one of the first three U.K. university-based SBRCs to be funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and Engineering and Physical Sciences Research Council (EPSRC) as part of the recommendations made in the U.K.'s Synthetic Biology Roadmap. It was established in 2014 and builds on the pioneering work of the Clostridia Research Group (CRG) who have previously developed a range of gene tools for the modification of clostridial genomes. The SBRC is primarily focussed on the conversion of single carbon waste gases into platform chemicals with a particular emphasis on the use of the aerobic chassis Cupriavidus necator. PMID:27284026

  20. SBRC-Nottingham: sustainable routes to platform chemicals from C1 waste gases

    PubMed Central

    Burbidge, Alan; Minton, Nigel P.

    2016-01-01

    Synthetic Biology Research Centre (SBRC)-Nottingham (www.sbrc-nottingham.ac.uk) was one of the first three U.K. university-based SBRCs to be funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and Engineering and Physical Sciences Research Council (EPSRC) as part of the recommendations made in the U.K.'s Synthetic Biology Roadmap. It was established in 2014 and builds on the pioneering work of the Clostridia Research Group (CRG) who have previously developed a range of gene tools for the modification of clostridial genomes. The SBRC is primarily focussed on the conversion of single carbon waste gases into platform chemicals with a particular emphasis on the use of the aerobic chassis Cupriavidus necator. PMID:27284026

  1. Microfluidic platforms employing integrated fluorescent or luminescent chemical sensors: a review of methods, scope and applications

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Simon A.; Nagl, Stefan

    2015-09-01

    Herein we critically review microfluidic platforms that contain integrated fluorescent or luminescent chemical sensor assemblies. These were employed in particular for miniaturized oxygen and pH sensing. Microchips with optical temperature sensing capability are also covered since these share many concepts and applications. Other analytes and derived parameters from the above analytes are found in some sensing approaches in microfluidics. After an introduction, the work is structured into three main chapters dealing with the fabrication and microintegration of these sensors, readout and detection strategies, and applications of these microsystems. The fabrication is discussed with a focus on soft lithography-based approaches in polydimethylsiloxane (PDMS) or PDMS and glass hybrid devices that form the majority of work so far. Alternative approaches, particularly using glass or quartz as the main chip material are also covered. Detection techniques employed to date are the subject of the next chapter, where simple intensity as well as lifetime- or wavelength-referenced schemes are presented and the utility of image-based sensing on the microscale is discussed. Lastly, exciting applications of these microfluidic chips are highlighted. Luminescent oxygen and pH sensing has been of particular interest in the field of microbioreactors but other areas are also of interest, particularly chemical reactors and electrophoresis. Optical temperature sensing is discussed and its use in fundamental studies as well as in enzyme reactors. Integrated microsystems with biosensing capabilities and some for monitoring of metal ions and other analytes are also presented.

  2. Silicon micro sensors as integrated readout platform for colorimetric and fluorescence based opto-chemical transducers

    NASA Astrophysics Data System (ADS)

    Will, Matthias; Martan, Tomas; Brodersen, Olaf

    2012-02-01

    Opto-chemical transducer almost offers unlimited possibilities for detection of physical quantities. New technologies and research show a steady increasing of publications in the area of sensoric principles. For transfer to real world applications the optical response has to be converted into an electrical signal. An exceptional opto chemical transducer loses the attraction if complex and expensive instruments for analysis are requires. Therefore, the readout system must be very compact and producible for low cost. In this presentation, the technology platform as a solution for these problems will be presented. We combine micro structuring of silicon, photodiode fabrication, chip in chip mounting and novel assembly technologies for creation of a flexible sensor platform. This flexible combination of technologies allows fabricating a family of planar optical remission sensors. With variation of design and modifications, we are able to detect colorimetric, fluorescent properties of an sensitive layer attached on the sensor surface. In our sensor with typical size of 6mm x 6mm x 1mm different emitting sources based on LED's or laser diodes, multiple detection cannels for the remitted light and also measurement of temperature are included. Based on these sensors we proof the concept by demonstrating sensors for oxygen, carbon dioxide and ammonia based on colorimetric and fluorescent changes in the transducer layer. In both configurations, LED's irradiated the sensitive polymer layer through a transparent substrate. The absorption or fluorescence properties of dyed polymer are changed by the chemical reaction and light response is detected by PIN diodes. The signal shift is analyzed by using a computer controlled evaluation board of own construction. Accuracy and reliability of the remission sensor system were verified and the whole sensor system was experimentally tested in the range of concentrations from 50 ppm up to 100 000 ppm for CO2 and O2 Furthermore, we develop

  3. Silicon micro sensors as integrated readout platform for colorimetric and fluorescence based opto-chemical transducers

    NASA Astrophysics Data System (ADS)

    Will, Matthias; Martan, Tomas; Brodersen, Olaf

    2011-09-01

    Opto-chemical transducer almost offers unlimited possibilities for detection of physical quantities. New technologies and research show a steady increasing of publications in the area of sensoric principles. For transfer to real world applications the optical response has to be converted into an electrical signal. An exceptional opto chemical transducer loses the attraction if complex and expensive instruments for analysis are requires. Therefore, the readout system must be very compact and producible for low cost. In this presentation, the technology platform as a solution for these problems will be presented. We combine micro structuring of silicon, photodiode fabrication, chip in chip mounting and novel assembly technologies for creation of a flexible sensor platform. This flexible combination of technologies allows fabricating a family of planar optical remission sensors. With variation of design and modifications, we are able to detect colorimetric, fluorescent properties of an sensitive layer attached on the sensor surface. In our sensor with typical size of 6mm x 6mm x 1mm different emitting sources based on LED's or laser diodes, multiple detection cannels for the remitted light and also measurement of temperature are included. Based on these sensors we proof the concept by demonstrating sensors for oxygen, carbon dioxide and ammonia based on colorimetric and fluorescent changes in the transducer layer. In both configurations, LED's irradiated the sensitive polymer layer through a transparent substrate. The absorption or fluorescence properties of dyed polymer are changed by the chemical reaction and light response is detected by PIN diodes. The signal shift is analyzed by using a computer controlled evaluation board of own construction. Accuracy and reliability of the remission sensor system were verified and the whole sensor system was experimentally tested in the range of concentrations from 50 ppm up to 100 000 ppm for CO2 and O2 Furthermore, we develop

  4. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals

    PubMed Central

    Zeldes, Benjamin M.; Keller, Matthew W.; Loder, Andrew J.; Straub, Christopher T.; Adams, Michael W. W.; Kelly, Robert M.

    2015-01-01

    Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus, and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye toward potential technological advantages for high

  5. Computational analysis of the mechanism of chemical reactions in terms of reaction phases: hidden intermediates and hidden transition States.

    PubMed

    Kraka, Elfi; Cremer, Dieter

    2010-05-18

    (A(n,s) < 0) the curving of the path, and thus the structural changes of the reaction complex. URVA can show the mechanism of a reaction expressed in terms of reaction phases, revealing the sequence of chemical processes in the reaction complex and making it possible to determine those electronic factors that control the mechanism and energetics of the reaction. The magnitude of adiabatic curvature coupling coefficients is related to strength and polarizability of the bonds being broken. Transient points along the reaction path are associated with hidden intermediates and hidden transition states, which can be converted into real intermediates and transition states when the reaction conditions or the substitution pattern of the reaction complex are appropriately changed. Accordingly, URVA represents a theoretical tool with tremendous experimental potential, offering the chemist the ability to assert greater control over reactions. PMID:20232791

  6. Application of merged spectroscopic data combined with chemometric analysis for resolution of hemoglobin intermediates during chemical unfolding

    NASA Astrophysics Data System (ADS)

    Fotouhi, L.; Yousefinejad, S.; Salehi, N.; Saboury, A. A.; Sheibani, N.; Moosavi-Movahedi, A. A.

    2015-02-01

    Using tetradecyltrimethylammonium bromide (TTAB) as a surfactant denaturant, and augmentation of different spectroscopic data, helped to detect the intermediates of hemoglobin (Hb) during unfolding process. UV-vis, fluorescence, and circular dichroism spectroscopy were used simultaneously to monitor different aspects of hemoglobin species from the tertiary or secondary structure points of view. Application of the multivariate curve resolution-alternating least square (MCR-ALS), using the initial estimates of spectral profiles and appropriate constraints on different parts of augmented spectroscopic data, showed good efficiency for characterization of intermediates during Hb unfolding. These results indicated the existence of five protein species, including three intermediate-like compounds in this process. The unfolding pathway in the presence of TTAB included conversion of oxyhemoglobin into deoxyhemoglobin, and then ferrylhemoglobin, ferrihemoglobin or aquamethemoglobin, which finally transformed into hemichrome. This is the first application of chemometric analysis on the merged spectroscopic data related to chemical denaturation of a protein. These types of analysis in multisubunit proteins not only increase the domain of information, but also can reduce the ambiguities of the obtained results.

  7. An in vivo large-scale chemical screening platform using Drosophila for anti-cancer drug discovery

    PubMed Central

    Willoughby, Lee F.; Schlosser, Tanja; Manning, Samuel A.; Parisot, John P.; Street, Ian P.; Richardson, Helena E.; Humbert, Patrick O.; Brumby, Anthony M.

    2013-01-01

    SUMMARY Anti-cancer drug development involves enormous expenditure and risk. For rapid and economical identification of novel, bioavailable anti-tumour chemicals, the use of appropriate in vivo tumour models suitable for large-scale screening is key. Using a Drosophila Ras-driven tumour model, we demonstrate that tumour overgrowth can be curtailed by feeding larvae with chemicals that have the in vivo pharmacokinetics essential for drug development and known efficacy against human tumour cells. We then develop an in vivo 96-well plate chemical screening platform to carry out large-scale chemical screening with the tumour model. In a proof-of-principle pilot screen of 2000 compounds, we identify the glutamine analogue, acivicin, a chemical with known activity against human tumour cells, as a potent and specific inhibitor of Drosophila tumour formation. RNAi-mediated knockdown of candidate acivicin target genes implicates an enzyme involved in pyrimidine biosynthesis, CTP synthase, as a possible crucial target of acivicin-mediated inhibition. Thus, the pilot screen has revealed that Drosophila tumours are glutamine-dependent, which is an emerging feature of many human cancers, and has validated the platform as a powerful and economical tool for in vivo chemical screening. The platform can also be adapted for use with other disease models, thus offering widespread applications in drug development. PMID:22996645

  8. Chemical and Structural Analysis of an Antibody Folding Intermediate Trapped during Glycan Biosynthesis

    PubMed Central

    2012-01-01

    Human IgG Fc glycosylation modulates immunological effector functions such as antibody-dependent cellular cytotoxicity and phagocytosis. Engineering of Fc glycans therefore enables fine-tuning of the therapeutic properties of monoclonal antibodies. The N-linked glycans of Fc are typically complex-type, forming a network of noncovalent interactions along the protein surface of the Cγ2 domain. Here, we manipulate the mammalian glycan-processing pathway to trap IgG1 Fc at sequential stages of maturation, from oligomannose- to hybrid- to complex-type glycans, and show that the Fc is structurally stabilized following the transition of glycans from their hybrid- to complex-type state. X-ray crystallographic analysis of this hybrid-type intermediate reveals that N-linked glycans undergo conformational changes upon maturation, including a flip within the trimannosyl core. Our crystal structure of this intermediate reveals a molecular basis for antibody biogenesis and provides a template for the structure-guided engineering of the protein–glycan interface of therapeutic antibodies. PMID:23025485

  9. Blue holes: Windows into chemical and physical hydrogeologic processes in karst of modern carbonate platforms

    NASA Astrophysics Data System (ADS)

    Martin, J. B.; Gulley, J.; Spellman, P.

    2011-12-01

    Potable water is extracted from thin freshwater lenses that float on saltwater underlying many modern carbonate platforms. Protection of these thin aquifers is critical for the sustainable use of the limited water resources. The fresh water lenses are frequently intersected by dissolution and collapse features, commonly referred to as blue holes in the Bahamas. These features offer windows into physical and chemical processes within and below the freshwater lenses and provide opportunities to study natural and anthropogenic changes to the fresh water quantity and quality. Blue holes also efficiently link surface and subsurface environments and allow fluxes of organic carbon and oxygen into the aquifers. Remineralization of the organic carbon should increase pCO2, reduce pH, and thus enhance dissolution of the aquifer rocks. Enhanced dissolution requires exchange of water between the blue holes and the aquifer porosity, but most modern carbonate platforms have hydraulic gradients as low as 10-5 and lack allogenic recharge, thereby limiting processes to drive exchange. We measured chemical compositions and levels of water in blue holes and wells on San Salvador Island and Rum Cay, Bahamas to develop new techniques to estimate aquifer characteristics and water quality of modern carbonate platforms. On both islands, dampened amplitudes and lags of tides at wells (representing matrix permeability) and blue holes (representing conduit permeability) relative to the ocean indicate approximately 2.5 orders of magnitude greater hydraulic conductivity of conduits than the aquifer matrix. Tidal flow modified by this aquifer heterogeneity exchanges water between blue holes and aquifer rocks at tidal frequency. At Ink Well Blue Hole, on San Salvador Island, organic carbon remineralization is observed as an increase from around 50 to 70 mg/g dissolved inorganic carbon (DIC) and a decrease in δ13CDIC values from around -10 to -15% with depth across the halocline. This

  10. Production of levulinic acid and use as a platform chemical for derived products

    SciTech Connect

    Bozell, J.J.; Moens, L.; Elliott, D.C.; Wang, Y.; Neuenscwander, G.G.; Fitzpatrick, S.W.; Bilski, R.J.; Jarnefeld, J.L.

    1999-07-01

    Levulinic acid (LA) can be produced cost effectively and in high yield from renewable feedstocks in a new industrial process. The technology is being demonstrated on a one ton/day scale at a facility in South Glens Falls, New York. Low cost LA can be used as a platform chemical for the production of a wide range of value-added products. This research has demonstrated that LA can be converted to methyltetrahydrofuran (MTHF), a solvent and fuel extender. MTHF is produced in {gt}80% molar yield via a single stage catalytic hydrogenation process. A new preparation of {delta}-aminolevulinic acid (DALA), a broad spectrum herbicide from LA has also been developed. Each step in this new process proceeds in high ({gt}80%) yield and affords DALA (as the hydrochloride salt) in greater than 90% purity, giving a process that could be commercially viable. LA is also being investigated as a starting material for the production of diphenolic acid (DPA), a direct replacement for bisphenol A.

  11. Synthesis and applications of 2-aminopyrimidine derivatives as key intermediates in chemical synthesis of biomolecules

    NASA Astrophysics Data System (ADS)

    Koroleva, Elena V.; Gusak, K. N.; Ignatovich, Zh V.

    2010-10-01

    Published data on the main approaches to the formation of the heterocyclic 2-aminopyrimidine system, which is one of important pharmacophores responsible for the biological properties of its derivatives, are described systematically. Main chemical transformations of functionalized 2-aminopyrimidines and their application in the synthesis of modern pharmaceuticals are considered.

  12. Intermediate Chemical Precipitation Softening. Training Module 2.216.3.77.

    ERIC Educational Resources Information Center

    McMullen, L. D.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with the operation and maintenance of a chemical precipitation softening system. Included are objectives, instructor guides, student handouts and transparency masters. This is the second level of a three module series. The module considers…

  13. Simulating the Atmospheric Impact of Criegee Intermediates: Implementation of new understanding in atmospheric chemical mechanisms

    NASA Astrophysics Data System (ADS)

    Bloss, William; Newland, Mike; Rickard, Andrew; Vereecken, Luc; Evans, Mathew; Munoz, Amalia; Rodenas, Mila

    2016-04-01

    Unsaturated hydrocarbons - alkenes - account for about 90% of global VOC. Stabilized Criegee Intermediates (SCI) are thought to be formed in the atmosphere mainly from reactions of unsaturated hydrocarbons with ozone. SCI have been shown in laboratory and chamber experiments to rapidly oxidise SO2 and NO2, providing a potentially important gas phase oxidation route for these species in the atmosphere. They have also been implicated in the formation of aerosol and organic acids. However, the importance of SCI reactions with traces gases is critically dependent on the relative ratio of the rate constants for the reactions of the SCI with these and other trace gases, with H2O, and for unimolecular decomposition, which vary between SCIs, and between geometric isomers. The selection of reactions and rate constants is critically important in determining the calculated impact of SCI processes upon atmospheric composition and chemistry. Since the recent resurgence in interest in this chemistry, a number of model studies have been performed, with SCI mechanisms of varying comprehensiveness and accuracy, as the understanding of the community has evolved from new laboratory, theoretical and chamber studies, and field observations. Here we present an assessment of the dependence of modelled SCI abundance, behaviour and impacts upon the Criegee mechanism adopted, in the context of (a) the accepted status quo prior to the laboratory and field studies of Welz et al. and Mauldin et al., (b) changes to the SCI mechanism reflecting new kinetics for key bimolecular reactions, e.g. with SO2 and NO2; (c) emerging understanding of the interactions of SCI with water vapour and their unimolecular decomposition and (d) reactions with other atmospheric trace gases. The modelled SCI behaviour is compared with the results from recent chamber studies, and the resulting calculated SCI abundance and impacts evaluated for urban and forested atmospheric boundary layer scenarios.

  14. Chemical Composition of Intermediate-mass Star Members of the M6 (NGC 6405) Open Cluster

    NASA Astrophysics Data System (ADS)

    Kılıçoğlu, T.; Monier, R.; Richer, J.; Fossati, L.; Albayrak, B.

    2016-03-01

    We present here the first abundance analysis of 44 late B-, A-, and F-type members of the young open cluster M6 (NGC 6405, age about 75 Myr). Low- and medium-resolution spectra, covering the 4500-5840 Å wavelength range, were obtained using the FLAMES/GIRAFFE spectrograph attached to the ESO Very Large Telescopes. We determined the atmospheric parameters using calibrations of the Geneva photometry and by adjusting the Hβ profiles to synthetic ones. The abundances of up to 20 chemical elements, from helium to mercury, were derived for 19 late B, 16 A, and 9 F stars by iteratively adjusting synthetic spectra to the observations. We also derived a mean cluster metallicity of [Fe/H] = 0.07 ± 0.03 dex from the iron abundances of the F-type stars. We find that for most chemical elements, the normal late B- and A-type stars exhibit larger star-to-star abundance variations than the F-type stars probably because of the faster rotation of the B and A stars. The abundances of C, O, Mg, Si, and Sc appear to be anticorrelated with that of Fe, while the opposite holds for the abundances of Ca, Ti, Cr, Mn, Ni, Y, and Ba as expected if radiative diffusion is efficient in the envelopes of these stars. In the course of this analysis, we discovered five new peculiar stars: one mild Am, one Am, and one Fm star (HD 318091, CD-32 13109, GSC 07380-01211, CP1), one HgMn star (HD 318126, CP3), and one He-weak P-rich (HD 318101, CP4) star. We also discovered a new spectroscopic binary, most likely a SB2. We performed a detailed modeling of HD 318101, the new He-weak P-rich CP star, using the Montréal stellar evolution code XEVOL which self-consistently treats all particle transport processes. Although the overall abundance pattern of this star is properly reproduced, we find that detailed abundances (in particular the high P excess) resisted modeling attempts even when a range of turbulence profiles and mass-loss rates were considered. Solutions are proposed which are still under

  15. Centrifugal microfluidic platform for radiochemistry: potentialities for the chemical analysis of nuclear spent fuels.

    PubMed

    Bruchet, Anthony; Taniga, Vélan; Descroix, Stéphanie; Malaquin, Laurent; Goutelard, Florence; Mariet, Clarisse

    2013-11-15

    The use of a centrifugal microfluidic platform is for the first time reported as an alternative to classical chromatographic procedures for radiochemistry. The original design of the microfluidic platform has been thought to fasten and simplify the prototyping process with the use of a circular platform integrating four rectangular microchips made of thermoplastic. The microchips, dedicated to anion-exchange chromatographic separations, integrate a localized monolithic stationary phase as well as injection and collection reservoirs. The results presented here were obtained with a simplified simulated nuclear spent fuel sample composed of non-radioactive isotopes of Europium and Uranium, in proportion usually found for uranium oxide nuclear spent fuel. While keeping the analytical results consistent with the conventional procedure (extraction yield for Europium of ≈97%), the use of the centrifugal microfluidic platform allowed to reduce the volume of liquid needed by a factor of ≈250. Thanks to their unique "easy-to-use" features, centrifugal microfluidic platforms are potential successful candidates for the downscaling of chromatographic separation of radioactive samples (automation, multiplexing, easy integration in glove-boxes environment and low cost of maintenance). PMID:24148434

  16. UV/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering.

    PubMed

    Huh, Sung; Park, Jaesung; Kim, Young Soo; Kim, Kwang S; Hong, Byung Hee; Nam, Jwa-Min

    2011-12-27

    We fabricated a highly oxidized large-scale graphene platform using chemical vapor deposition (CVD) and UV/ozone-based oxidation methods. This platform offers a large-scale surface-enhanced Raman scattering (SERS) substrate with large chemical enhancement in SERS and reproducible SERS signals over a centimeter-scale graphene surface. After UV-induced ozone generation, ozone molecules were reacted with graphene to produce oxygen-containing groups on graphene and induced the p-type doping of the graphene. These modifications introduced the structural disorder and defects on the graphene surface and resulted in a large chemical mechanism-based signal enhancement from Raman dye molecules [rhodamine B (RhB), rhodamine 6G (R6G), and crystal violet (CV) in this case] on graphene. Importantly, the enhancement factors were increased from ∼10(3) before ozone treatment to ∼10(4), which is the largest chemical enhancement factor ever on graphene, after 5 min ozone treatment due to both high oxidation and p-doping effects on graphene surface. Over a centimeter-scale area of this UV/ozone-oxidized graphene substrate, strong SERS signals were repeatedly and reproducibly detected. In a UV/ozone-based micropattern, UV/ozone-treated areas were highly Raman-active while nontreated areas displayed very weak Raman signals. PMID:22070659

  17. Integrating chemical mutagenesis and whole genome sequencing as a platform for forward and reverse genetic analysis of Chlamydia

    PubMed Central

    Kokes, Marcela; Dunn, Joe Dan; Granek, Joshua A.; Nguyen, Bidong D.; Barker, Jeffrey R.; Valdivia, Raphael H.; Bastidas, Robert J.

    2015-01-01

    SUMMARY Gene inactivation by transposon insertion or allelic exchange is a powerful approach to probe gene function. Unfortunately, many microbes, including Chlamydia, are not amenable to routine molecular genetic manipulations. Here we describe an arrayed library of chemically-induced mutants of the genetically-intransigent pathogen Chlamydia trachomatis, in which all mutations have been identified by whole genome sequencing, providing a platform for reverse genetic applications. An analysis of possible loss-of-function mutations in the collection uncovered plasticity in the central metabolic properties of this obligate intracellular pathogen. We also describe the use of the library in a forward genetic screen that identified InaC as a bacterial factor that binds host ARF and 14-3-3 proteins to modulate F-actin assembly and Golgi redistribution around the pathogenic vacuole. This work provides a robust platform for reverse and forward genetic approaches in Chlamydia and should serve as a valuable resource to the community. PMID:25920978

  18. Development of metal-assisted chemical etching of silicon as a 3D nanofabrication platform

    NASA Astrophysics Data System (ADS)

    Hildreth, Owen James

    The considerable interest in nanomaterials and nanotechnology over the last decade is attributed to Industry's desire for lower cost, more sophisticated devices and the opportunity that nanotechnology presents for scientists to explore the fundamental properties of nature at near atomic levels. In pursuit of these goals, researchers around the world have worked to both perfect existing technologies and also develop new nano-fabrication methods; however, no technique exists that is capable of producing complex, 2D and 3D nano-sized features of arbitrary shape, with smooth walls, and at low cost. This in part is due to two important limitations of current nanofabrication methods. First, 3D geometry is difficult if not impossible to fabricate, often requiring multiple lithography steps that are both expensive and do not scale well to industrial level fabrication requirements. Second, as feature sizes shrink into the nano-domain, it becomes increasingly difficult to accurately maintain those features over large depths and heights. The ability to produce these structures affordably and with high precision is critically important to a number of existing and emerging technologies such as metamaterials, nano-fluidics, nano-imprint lithography, and more. To overcome these limitations, this study developed a novel and efficient method to etch complex 2D and 3D geometry in silicon with controllable sub-micron to nano-sized features with aspect ratios in excess of 500:1. This study utilized Metal-assisted Chemical Etching (MaCE) of silicon in conjunction with shape-controlled catalysts to fabricate structures such as 3D cycloids, spirals, sloping channels, and out-of-plane rotational structures. This study focused on taking MaCE from a method to fabricate small pores and silicon nanowires using metal catalyst nanoparticles and discontinuous thin films, to a powerful etching technology that utilizes shaped catalysts to fabricate complex, 3D geometry using a single lithography

  19. Structure of viroid replicative intermediates: physico-chemical studies on SP6 transcripts of cloned oligomeric potato spindle tuber viroid.

    PubMed Central

    Steger, G; Tabler, M; Brüggemann, W; Colpan, M; Klotz, G; Sänger, H L; Riesner, D

    1986-01-01

    The structure and structural transitions of transcripts of cloned oligomeric viroid were studied in physico-chemical experiments and stability calculations. Transcripts of (+) and (-) polarity, from unit up to sixfold length, were synthesized from DNA clones of the potato spindle tuber viroid (PSTV) with the SP6 transcription system. Their structural properties were investigated by optical denaturation curves, high performance liquid chromatography (HPLC), electron microscopy, sedimentation-diffusion equilibrium and velocity sedimentation. Secondary structures of the RNAs and theoretical denaturation curves were calculated using an energy optimization program. The secondary structure of lowest free energy for unit length and oligomeric transcripts is a rod-like structure similar to that of the mature circular viroids. When this structure is used as a model for calculations, there is a large degree of agreement between the theoretical and the experimental denaturation curves. At high temperatures, however, (+) strand transcripts exhibited a transition which was more stable than expected from the calculations or than was known from curves of mature viroids. This transition arises from a rearrangement of the central conserved region of viroids to a helical region of 28 stable base pairs either intermolecularly leading to bimolecular complexes, or intramolecularly giving rise to a branched secondary structure. The rearrangement could be detected by electron microscopy, HPLC, and analytical ultracentrifugation. The helical region serves to divide up the oligomeric (+) strand into structural units which may be recognized by cleavage and ligation enzymes which process the oligomeric intermediates to circular mature viroids. Images PMID:3808953

  20. The usefulness of intermediate products of plum processing for alcoholic fermentation and chemical composition of the obtained distillates.

    PubMed

    Balcerek, Maria; Pielech-Przybylska, Katarzyna; Patelski, Piotr; Sapińska, Ewelina; Księżopolska, Mirosława

    2013-05-01

    In this study, an evaluation of intermediate products of plum processing as potential raw materials for distillates production was performed. Effects of composition of mashes on ethanol yield, chemical composition and taste, and flavor of the obtained spirits were determined. The obtained results showed that spontaneous fermentations of the tested products of plum processing with native microflora of raisins resulted in lower ethanol yields, compared to the ones fermented with wine yeast Saccharomyces bayanus. The supplementation of mashes with 120 g/L of sucrose caused an increase in ethanol contents from 6.2 ± 0.2 ÷ 6.5 ± 0.2% v/v in reference mashes (without sucrose addition, fermented with S. bayanus) to ca. 10.3 ± 0.3% v/v, where its highest yields amounted to 94.7 ± 2.9 ÷ 95.6 ± 2.9% of theoretical capacity, without negative changes in raw material originality of distillates. The concentrations of volatile compounds in the obtained distillates exceeding 2000 mg/L alcohol 100% v/v and low content of methanol and hydrocyanic acid, as well as their good taste and aroma make the examined products of plum processing be very attractive raw materials for the plum distillates production. PMID:23534414

  1. The Markyt visualisation, prediction and benchmark platform for chemical and gene entity recognition at BioCreative/CHEMDNER challenge.

    PubMed

    Pérez-Pérez, Martin; Pérez-Rodríguez, Gael; Rabal, Obdulia; Vazquez, Miguel; Oyarzabal, Julen; Fdez-Riverola, Florentino; Valencia, Alfonso; Krallinger, Martin; Lourenço, Anália

    2016-01-01

    Biomedical text mining methods and technologies have improved significantly in the last decade. Considerable efforts have been invested in understanding the main challenges of biomedical literature retrieval and extraction and proposing solutions to problems of practical interest. Most notably, community-oriented initiatives such as the BioCreative challenge have enabled controlled environments for the comparison of automatic systems while pursuing practical biomedical tasks. Under this scenario, the present work describes the Markyt Web-based document curation platform, which has been implemented to support the visualisation, prediction and benchmark of chemical and gene mention annotations at BioCreative/CHEMDNER challenge. Creating this platform is an important step for the systematic and public evaluation of automatic prediction systems and the reusability of the knowledge compiled for the challenge. Markyt was not only critical to support the manual annotation and annotation revision process but also facilitated the comparative visualisation of automated results against the manually generated Gold Standard annotations and comparative assessment of generated results. We expect that future biomedical text mining challenges and the text mining community may benefit from the Markyt platform to better explore and interpret annotations and improve automatic system predictions.Database URL: http://www.markyt.org, https://github.com/sing-group/Markyt. PMID:27542845

  2. Fabrication of heterogeneous nanomaterial array by programmable heating and chemical supply within microfluidic platform towards multiplexed gas sensing application.

    PubMed

    Yang, Daejong; Kang, Kyungnam; Kim, Donghwan; Li, Zhiyong; Park, Inkyu

    2015-01-01

    A facile top-down/bottom-up hybrid nanofabrication process based on programmable temperature control and parallel chemical supply within microfluidic platform has been developed for the all liquid-phase synthesis of heterogeneous nanomaterial arrays. The synthesized materials and locations can be controlled by local heating with integrated microheaters and guided liquid chemical flow within microfluidic platform. As proofs-of-concept, we have demonstrated the synthesis of two types of nanomaterial arrays: (i) parallel array of TiO2 nanotubes, CuO nanospikes and ZnO nanowires, and (ii) parallel array of ZnO nanowire/CuO nanospike hybrid nanostructures, CuO nanospikes and ZnO nanowires. The laminar flow with negligible ionic diffusion between different precursor solutions as well as localized heating was verified by numerical calculation and experimental result of nanomaterial array synthesis. The devices made of heterogeneous nanomaterial array were utilized as a multiplexed sensor for toxic gases such as NO2 and CO. This method would be very useful for the facile fabrication of functional nanodevices based on highly integrated arrays of heterogeneous nanomaterials. PMID:25634814

  3. Fabrication of heterogeneous nanomaterial array by programmable heating and chemical supply within microfluidic platform towards multiplexed gas sensing application

    PubMed Central

    Yang, Daejong; Kang, Kyungnam; Kim, Donghwan; Li, Zhiyong; Park, Inkyu

    2015-01-01

    A facile top-down/bottom-up hybrid nanofabrication process based on programmable temperature control and parallel chemical supply within microfluidic platform has been developed for the all liquid-phase synthesis of heterogeneous nanomaterial arrays. The synthesized materials and locations can be controlled by local heating with integrated microheaters and guided liquid chemical flow within microfluidic platform. As proofs-of-concept, we have demonstrated the synthesis of two types of nanomaterial arrays: (i) parallel array of TiO2 nanotubes, CuO nanospikes and ZnO nanowires, and (ii) parallel array of ZnO nanowire/CuO nanospike hybrid nanostructures, CuO nanospikes and ZnO nanowires. The laminar flow with negligible ionic diffusion between different precursor solutions as well as localized heating was verified by numerical calculation and experimental result of nanomaterial array synthesis. The devices made of heterogeneous nanomaterial array were utilized as a multiplexed sensor for toxic gases such as NO2 and CO. This method would be very useful for the facile fabrication of functional nanodevices based on highly integrated arrays of heterogeneous nanomaterials. PMID:25634814

  4. Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing.

    PubMed

    Serrano-Ruiz, Juan Carlos; Luque, Rafael; Sepúlveda-Escribano, Antonio

    2011-11-01

    Global warming issues and the medium-term depletion of fossil fuel reserves are stimulating researchers around the world to find alternative sources of energy and organic carbon. Biomass is considered by experts the only sustainable source of energy and organic carbon for our industrial society, and it has the potential to displace petroleum in the production of chemicals and liquid transportation fuels. However, the transition from a petroleum-based economy to one based on biomass requires new strategies since the petrochemical technologies, well-developed over the last century, are not valid to process the biomass-derived compounds. Unlike petroleum feedstocks, biomass derived platform molecules possess a high oxygen content that gives them low volatility, high solubility in water, high reactivity and low thermal stability, properties that favour the processing of these resources by catalytic aqueous-phase technologies at moderate temperatures. This tutorial review is aimed at providing a general overview of processes, technologies and challenges that lie ahead for a range of different aqueous-phase transformations of some of the key biomass-derived platform molecules into liquid fuels for the transportation sector and related high added value chemicals. PMID:21713268

  5. The development of a large-area chemical sensor: A new platform for selective coatings

    SciTech Connect

    Bliss, M.

    1995-04-01

    A new chemical sensor is described which applies multiple phenomena to identify and measure the concentration of selectively sorbed molecules in an optical fiber cladding. In addition, the sensor can be manufactured at the rate of several thousand meters per hour. Only a few meters are needed for calibrations and testing, leaving thousands of meters of calibrated sensor for use. The method employs absorption or raman spectroscopy for verification and quantification. Incorporating various selective materials into the cladding enables the sensor to be used for a variety of chemicals such as various pollutants or chemicals from chemical weapons. Organic phosphates and iodine have been identified as two important classes of compounds related to nuclear weapons proliferation issues.

  6. Multi-Platform Metabolomic Analyses of Rat Urine Following Exposure to Perfluorinated Chemicals (PFCs)

    EPA Science Inventory

    Perfluorinated chemicals (PFCs), namely perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), represent an emerging class of persistent and bioaccumulative compounds. Global occurrence of these fluorochemicals, coupled with probable human exposure, has prompted inv...

  7. Chemical Fabrication and Electrochemical Characterization of Graphene Nanosheets Using a Lithium Battery Platform

    ERIC Educational Resources Information Center

    Blake, Aaron J.; Huang, Hong

    2015-01-01

    Graphene has opened up new opportunities for scientific and technological innovations because of its astonishing electrical, mechanical, chemical, and thermal properties. For instance, graphene-based nanocomposites have found extensive applications in Li-ion batteries (LIBs) as scientists and engineers seek to achieve superior electrochemical…

  8. Chemical & RNAi screening at MSKCC: a collaborative platform to discover & repurpose drugs to fight disease

    PubMed Central

    Bhinder, Bhavneet; Antczak, Christophe; Shum, David; Radu, Constantin; Mahida, Jeni P.; Liu-Sullivan, Nancy; Ibáñez, Glorymar; Raja, Balajee Somalinga; Calder, Paul A.; Djaballah, Hakim

    2014-01-01

    Memorial Sloan-Kettering Cancer Center (MSKCC) has implemented the creation of a full service state-of-the-art High-throughput Screening Core Facility (HTSCF) equipped with modern robotics and custom-built screening data management resources to rapidly store and query chemical and RNAi screening data outputs. The mission of the facility is to provide oncology clinicians and researchers alike with access to cost-effective HTS solutions for both chemical and RNAi screening, with an ultimate goal of novel target identification and drug discovery. HTSCF was established in 2003 to support the institution’s commitment to growth in molecular pharmacology and in the realm of therapeutic agents to fight chronic diseases such as cancer. This endeavor required broad range of expertise in technology development to establish robust and innovative assays, large collections of diverse chemical and RNAi duplexes to probe specific cellular events, sophisticated compound and data handling capabilities, and a profound knowledge in assay development, hit validation, and characterization. Our goal has been to strive for constant innovation, and we strongly believe in shifting the paradigm from traditional drug discovery towards translational research now, making allowance for unmet clinical needs in patients. Our efforts towards repurposing FDA-approved drugs fructified when digoxin, identified through primary HTS, was administered in the clinic for treatment of stage Vb retinoblastoma. In summary, the overall aim of our facility is to identify novel chemical probes, to study cellular processes relevant to investigator’s research interest in chemical biology and functional genomics, and to be instrumental in accelerating the process of drug discovery in academia. PMID:24661215

  9. Combined Rational Design and a High Throughput Screening Platform for Identifying Chemical Inhibitors of a Ras-activating Enzyme*

    PubMed Central

    Evelyn, Chris R.; Biesiada, Jacek; Duan, Xin; Tang, Hong; Shang, Xun; Papoian, Ruben; Seibel, William L.; Nelson, Sandra; Meller, Jaroslaw; Zheng, Yi

    2015-01-01

    The Ras family small GTPases regulate multiple cellular processes, including cell growth, survival, movement, and gene expression, and are intimately involved in cancer pathogenesis. Activation of these small GTPases is catalyzed by a special class of enzymes, termed guanine nucleotide exchange factors (GEFs). Herein, we developed a small molecule screening platform for identifying lead hits targeting a Ras GEF enzyme, SOS1. We employed an ensemble structure-based virtual screening approach in combination with a multiple tier high throughput experimental screen utilizing two complementary fluorescent guanine nucleotide exchange assays to identify small molecule inhibitors of GEF catalytic activity toward Ras. From a library of 350,000 compounds, we selected a set of 418 candidate compounds predicted to disrupt the GEF-Ras interaction, of which dual wavelength GDP dissociation and GTP-loading experimental screening identified two chemically distinct small molecule inhibitors. Subsequent biochemical validations indicate that they are capable of dose-dependently inhibiting GEF catalytic activity, binding to SOS1 with micromolar affinity, and disrupting GEF-Ras interaction. Mutagenesis studies in conjunction with structure-activity relationship studies mapped both compounds to different sites in the catalytic pocket, and both inhibited Ras signaling in cells. The unique screening platform established here for targeting Ras GEF enzymes could be broadly useful for identifying lead inhibitors for a variety of small GTPase-activating GEF reactions. PMID:25825487

  10. Dynamic 3-D chemical agent cloud mapping using a sensor constellation deployed on mobile platforms

    NASA Astrophysics Data System (ADS)

    Cosofret, Bogdan R.; Konno, Daisei; Rossi, David; Marinelli, William J.; Seem, Pete

    2014-05-01

    The need for standoff detection technology to provide early Chem-Bio (CB) threat warning is well documented. Much of the information obtained by a single passive sensor is limited to bearing and angular extent of the threat cloud. In order to obtain absolute geo-location, range to threat, 3-D extent and detailed composition of the chemical threat, fusion of information from multiple passive sensors is needed. A capability that provides on-the-move chemical cloud characterization is key to the development of real-time Battlespace Awareness. We have developed, implemented and tested algorithms and hardware to perform the fusion of information obtained from two mobile LWIR passive hyperspectral sensors. The implementation of the capability is driven by current Nuclear, Biological and Chemical Reconnaissance Vehicle operational tactics and represents a mission focused alternative of the already demonstrated 5-sensor static Range Test Validation System (RTVS).1 The new capability consists of hardware for sensor pointing and attitude information which is made available for streaming and aggregation as part of the data fusion process for threat characterization. Cloud information is generated using 2-sensor data ingested into a suite of triangulation and tomographic reconstruction algorithms. The approaches are amenable to using a limited number of viewing projections and unfavorable sensor geometries resulting from mobile operation. In this paper we describe the system architecture and present an analysis of results obtained during the initial testing of the system at Dugway Proving Ground during BioWeek 2013.

  11. Identification of the Chemical Bonding Prompting Adhesion of a-C:H Thin Films on Ferrous Alloy Intermediated by a SiCx:H Buffer Layer.

    PubMed

    Cemin, F; Bim, L T; Leidens, L M; Morales, M; Baumvol, I J R; Alvarez, F; Figueroa, C A

    2015-07-29

    Amorphous carbon (a-C) and several related materials (DLCs) may have ultralow friction coefficients that can be used for saving-energy applications. However, poor chemical bonding of a-C/DLC films on metallic alloys is expected, due to the stability of carbon-carbon bonds. Silicon-based intermediate layers are employed to enhance the adherence of a-C:H films on ferrous alloys, although the role of such buffer layers is not yet fully understood in chemical terms. The chemical bonding of a-C:H thin films on ferrous alloy intermediated by a nanometric SiCx:H buffer layer was analyzed by X-ray photoelectron spectroscopy (XPS). The chemical profile was inspected by glow discharge optical emission spectroscopy (GDOES), and the chemical structure was evaluated by Raman and Fourier transform infrared spectroscopy techniques. The nature of adhesion is discussed by analyzing the chemical bonding at the interfaces of the a-C:H/SiCx:H/ferrous alloy sandwich structure. The adhesion phenomenon is ascribed to specifically chemical bonding character at the buffer layer. Whereas carbon-carbon (C-C) and carbon-silicon (C-Si) bonds are formed at the outermost interface, the innermost interface is constituted mainly by silicon-iron (Si-Fe) bonds. The oxygen presence degrades the adhesion up to totally delaminate the a-C:H thin films. The SiCx:H deposition temperature determines the type of chemical bonding and the amount of oxygen contained in the buffer layer. PMID:26135943

  12. Top value platform chemicals: bio-based production of organic acids.

    PubMed

    Becker, Judith; Lange, Anna; Fabarius, Jonathan; Wittmann, Christoph

    2015-12-01

    Driven by the quest for sustainability, recent years have seen a tremendous progress in bio-based production routes from renewable raw materials to commercial goods. Particularly, the production of organic acids has crystallized as a competitive and fast-evolving field, related to the broad applicability of organic acids for direct use, as polymer building blocks, and as commodity chemicals. Here, we review recent advances in metabolic engineering and industrial market scenarios with focus on organic acids as top value products from biomass, accessible through fermentation and biotransformation. PMID:26360870

  13. A C. elegans Screening Platform for the Rapid Assessment of Chemical Disruption of Germline Function

    PubMed Central

    Allard, Patrick; Kleinstreuer, Nicole C.; Knudsen, Thomas B.

    2013-01-01

    Background: Despite the developmental impact of chromosome segregation errors, we lack the tools to assess environmental effects on the integrity of the germline in animals. Objectives: We developed an assay in Caenorhabditis elegans that fluorescently marks aneuploid embryos after chemical exposure. Methods: We qualified the predictive value of the assay against chemotherapeutic agents as well as environmental compounds from the ToxCast Phase I library by comparing results from the C. elegans assay with the comprehensive mammalian in vivo end point data from the ToxRef database. Results: The assay was highly predictive of mammalian reproductive toxicities, with a 69% maximum balanced accuracy. We confirmed the effect of select compounds on germline integrity by monitoring germline apoptosis and meiotic progression. Conclusions: This C. elegans assay provides a comprehensive strategy for assessing environmental effects on germline function. PMID:23603051

  14. Lignocellulose-based analytical devices: bamboo as an analytical platform for chemical detection

    PubMed Central

    Kuan, Chen-Meng; York, Roger L.; Cheng, Chao-Min

    2015-01-01

    This article describes the development of lignocellulose-based analytical devices (LADs) for rapid bioanalysis in low-resource settings. LADs are constructed using either a single lignocellulose or a hybrid design consisting of multiple types of lignocellulose. LADs are simple, low-cost, easy to use, provide rapid response, and do not require external instrumentation during operation. Here, we demonstrate the implementation of LADs for food and water safety (i.e., nitrite assay in hot-pot soup, bacterial detection in water, and resazurin assay in milk) and urinalysis (i.e., nitrite, urobilinogen, and pH assays in human urine). Notably, we created a unique approach using simple chemicals to achieve sensitivity similar to that of commercially available immunochromatographic strips that is low-cost, and provides on-site, rapid detection, for instance, of Eschericia coli (E. coli) in water. PMID:26686576

  15. A microfluidic platform with pH imaging for chemical and hydrodynamic stimulation of intact oral biofilms.

    PubMed

    Gashti, M Parvinzadeh; Asselin, J; Barbeau, J; Boudreau, D; Greener, J

    2016-04-12

    A microfluidic platform with a fluorescent nanoparticle-based sensor is demonstrated for real-time, ratiometric pH imaging of biofilms. Sensing is accomplished by a thin patterned layer of covalently bonded Ag@SiO2+FiTC nanoparticles on an embedded planar glass substrate. The system is designed to be sensitive, responsive and give sufficient spatial resolution to enable new micro-scale studies of the dynamic response of oral biofilms to well-controlled chemical and hydrodynamic stimulation. Performance under challenging operational conditions is demonstrated, which include long-duration exposure to sheer stresses, photoexcitation and pH sensor biofouling. After comprehensive validation, the device was used to monitor pH changes at the attachment surface of a biofilm of the oral bacteria, Streptococcus salivarius. By controlling flow and chemical concentration conditions in the microchannel, biochemical and mass transport contributions to the Stephan curve could be probed individually. This opens the way for the analysis of separate contributions to dental caries due to localized acidification directly at the biofilm tooth interface. PMID:26956837

  16. Biosynthesis of platform chemical 3-hydroxypropionic acid (3-HP) directly from CO2 in cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Wang, Yunpeng; Sun, Tao; Gao, Xingyan; Shi, Mengliang; Wu, Lina; Chen, Lei; Zhang, Weiwen

    2016-03-01

    3-hydroxypropionic acid (3-HP) is an important platform chemical with a wide range of applications. So far large-scale production of 3-HP has been mainly through petroleum-based chemical processes, whose sustainability and environmental issues have attracted widespread attention. With the ability to fix CO2 directly, cyanobacteria have been engineered as an autotrophic microbial cell factory to produce fuels and chemicals. In this study, we constructed the biosynthetic pathway of 3-HP in cyanobacterium Synechocystis sp. PCC 6803, and then optimized the system through the following approaches: i) increasing expression of malonyl-CoA reductase (MCR) gene using different promoters and cultivation conditions; ii) enhancing supply of the precursor malonyl-CoA by overexpressing acetyl-CoA carboxylase and biotinilase; iii) improving NADPH supply by overexpressing the NAD(P) transhydrogenase gene; iv) directing more carbon flux into 3-HP by inactivating the competing pathways of PHA and acetate biosynthesis. Together, the efforts led to a production of 837.18 mg L(-1) (348.8 mg/g dry cell weight) 3-HP directly from CO2 in Synechocystis after 6 days cultivation, demonstrating the feasibility photosynthetic production of 3-HP directly from sunlight and CO2 in cyanobacteria. In addition, the results showed that overexpression of the ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) gene from Anabaena sp. PCC 7120 and Synechococcus sp. PCC 7942 led to no increase of 3-HP production, suggesting CO2 fixation may not be a rate-limiting step for 3-HP biosynthesis in Synechocystis. PMID:26546088

  17. Kinetic evidence for the formation of discrete 1,4-dehydrobenzene intermediates. Trapping by inter- and intramolecular hydrogen atom transfer and observation of high-temperature CIDNP (chemically induced dynamic nuclear polarization). [Chemically induced dynamic nuclear polarization

    SciTech Connect

    Lockhart, T.P.; Comita, P.B.; Bergman, R.G.

    1981-07-15

    Upon being heated, alkyl-substituted cis-1,2-diethynyl olefins undergo cyclization to yield reactive 1,4-dehydrobenzenes; the products isolated may be derived from either unimolecular or bimolecular reactions of the intermediate. (Z)-4,5-Diethynyl-4-octene (4) undergoes rearrangement to yield 2,3-di-n-propyl-1,4-dehydrobenzene (17). Solution pyrolysis of 4 in inert aromatic solvents produces three unimolecular products, (Z)-dodeca-4,8-diyn-6-ene (7), benzocycloctene (9), and o-allyl-n-propylbenzene (10), in high yield. When 1,4-cyclohexadiene is added to the pyrolysis solution as a trapping agent high yields of the reduced product o-di-n-propylbenzene (12) are obtained. The kinetics of solution pyrolysis of 4 in the presence and absence of trapping agent pyl-1,4-dehydrobenzene is a discrete intermediate on the pathway leading to products. When the reaction was run in the heated probe of an NMR spectrometer, chemically induced dynamic nuclear polarization was observed in 10. This observation, along with kinetic and chemical trapping evidence, indicates the presence of two additional intermediates, formed from 17 by sequential intramolecular (1,5) hydrogen transfer, on the pathway to products. The observation of CIDNP, coupled with the reactivity exhibited by 17 and the other two intermediates, implicates a biradical description of these molecules.

  18. Topographical and Chemical Imaging of a Phase Separated Polymer Using a Combined Atomic Force Microscopy/Infrared Spectroscopy/Mass Spectrometry Platform

    DOE PAGESBeta

    Tai, Tamin; Karácsony, Orsolya; Bocharova, Vera; Van Berkel, Gary J.; Kertesz, Vilmos

    2016-02-18

    This article describes how the use of a hybrid atomic force microscopy/infrared spectroscopy/mass spectrometry imaging platform was demonstrated for the acquisition and correlation of nanoscale sample surface topography and chemical images based on infrared spectroscopy and mass spectrometry.

  19. Coupled sensor/platform control design for low-level chemical detection with position-adaptive micro-UAVs

    NASA Astrophysics Data System (ADS)

    Goodwin, Thomas; Carr, Ryan; Mitra, Atindra K.; Selmic, Rastko R.

    2009-05-01

    We discuss the development of Position-Adaptive Sensors [1] for purposes for detecting embedded chemical substances in challenging environments. This concept is a generalization of patented Position-Adaptive Radar Concepts developed at AFRL for challenging conditions such as urban environments. For purposes of investigating the detection of chemical substances using multiple MAV (Micro-UAV) platforms, we have designed and implemented an experimental testbed with sample structures such as wooden carts that contain controlled leakage points. Under this general concept, some of the members of a MAV swarm can serve as external position-adaptive "transmitters" by blowing air over the cart and some of the members of a MAV swarm can serve as external position-adaptive "receivers" that are equipped with chemical or biological (chem/bio) sensors that function as "electronic noses". The objective can be defined as improving the particle count of chem/bio concentrations that impinge on a MAV-based position-adaptive sensor that surrounds a chemical repository, such as a cart, via the development of intelligent position-adaptive control algorithms. The overall effect is to improve the detection and false-alarm statistics of the overall system. Within the major sections of this paper, we discuss a number of different aspects of developing our initial MAV-Based Sensor Testbed. This testbed includes blowers to simulate position-adaptive excitations and a MAV from Draganfly Innovations Inc. with stable design modifications to accommodate our chem/bio sensor boom design. We include details with respect to several critical phases of the development effort including development of the wireless sensor network and experimental apparatus, development of the stable sensor boom for the MAV, integration of chem/bio sensors and sensor node onto the MAV and boom, development of position-adaptive control algorithms and initial tests at IDCAST (Institute for the Development and

  20. VirtualToxLab — A platform for estimating the toxic potential of drugs, chemicals and natural products

    SciTech Connect

    Vedani, Angelo; Dobler, Max; Smieško, Martin

    2012-06-01

    The VirtualToxLab is an in silico technology for estimating the toxic potential (endocrine and metabolic disruption, some aspects of carcinogenicity and cardiotoxicity) of drugs, chemicals and natural products. The technology is based on an automated protocol that simulates and quantifies the binding of small molecules towards a series of proteins, known or suspected to trigger adverse effects. The toxic potential, a non-linear function ranging from 0.0 (none) to 1.0 (extreme), is derived from the individual binding affinities of a compound towards currently 16 target proteins: 10 nuclear receptors (androgen, estrogen α, estrogen β, glucocorticoid, liver X, mineralocorticoid, peroxisome proliferator-activated receptor γ, progesterone, thyroid α, and thyroid β), four members of the cytochrome P450 enzyme family (1A2, 2C9, 2D6, and 3A4), a cytosolic transcription factor (aryl hydrocarbon receptor) and a potassium ion channel (hERG). The interface to the technology allows building and uploading molecular structures, viewing and downloading results and, most importantly, rationalizing any prediction at the atomic level by interactively analyzing the binding mode of a compound with its target protein(s) in real-time 3D. The VirtualToxLab has been used to predict the toxic potential for over 2500 compounds: the results are posted on (http://www.virtualtoxlab.org). The free platform — the OpenVirtualToxLab — is accessible (in client–server mode) over the Internet. It is free of charge for universities, governmental agencies, regulatory bodies and non-profit organizations. -- Highlights: ► In silico technology for estimating the toxic potential of drugs and chemicals. ► Simulation of binding towards 16 proteins suspected to trigger adverse effects. ► Mechanistic interpretation and real-time 3D visualization. ► Accessible over the Internet. ► Free of charge for universities, governmental agencies, regulatory bodies and NPOs.

  1. An analytical platform for mass spectrometry-based identification and chemical analysis of RNA in ribonucleoprotein complexes

    PubMed Central

    Taoka, Masato; Yamauchi, Yoshio; Nobe, Yuko; Masaki, Shunpei; Nakayama, Hiroshi; Ishikawa, Hideaki; Takahashi, Nobuhiro; Isobe, Toshiaki

    2009-01-01

    We describe here a mass spectrometry (MS)-based analytical platform of RNA, which combines direct nano-flow reversed-phase liquid chromatography (RPLC) on a spray tip column and a high-resolution LTQ-Orbitrap mass spectrometer. Operating RPLC under a very low flow rate with volatile solvents and MS in the negative mode, we could estimate highly accurate mass values sufficient to predict the nucleotide composition of a ∼21-nucleotide small interfering RNA, detect post-transcriptional modifications in yeast tRNA, and perform collision-induced dissociation/tandem MS-based structural analysis of nucleolytic fragments of RNA at a sub-femtomole level. Importantly, the method allowed the identification and chemical analysis of small RNAs in ribonucleoprotein (RNP) complex, such as the pre-spliceosomal RNP complex, which was pulled down from cultured cells with a tagged protein cofactor as bait. We have recently developed a unique genome-oriented database search engine, Ariadne, which allows tandem MS-based identification of RNAs in biological samples. Thus, the method presented here has broad potential for automated analysis of RNA; it complements conventional molecular biology-based techniques and is particularly suited for simultaneous analysis of the composition, structure, interaction, and dynamics of RNA and protein components in various cellular RNP complexes. PMID:19740761

  2. Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopentane in Corynebacterium glutamicum.

    PubMed

    Kind, Stefanie; Kreye, Steffen; Wittmann, Christoph

    2011-09-01

    The present work describes the development of a superior strain of Corynebacterium glutamicum for diaminopentane (cadaverine) production via metabolic engineering of cellular transport processes. In C. glutamicum DAP-3c, a tailor-made producer, the diaminopentane forming enzyme, lysine decarboxylase, was inhibited in vivo by its end-product, suggesting a potential bottleneck at the level of the export. The previously proposed lysine exporter lysE was shown not to be involved in diaminopentane export. Its deletion did not reduce diaminopentane secretion and could therefore be exploited to completely eliminate the export of lysine, an undesired by-product. Genome-wide transcription profiling revealed the up-regulation of 35 candidate genes as response to diaminopentane overproduction, including several transporters. The highest expression increase (2.6-fold) was observed for a permease, encoded by cg2893. Targeted gene deletion in the producer resulted in a 90% reduced diaminopentane secretion. Genome-based overexpression of the exporter, however, revealed a 20% increased yield, a 75% reduced formation of the undesired by-product N-acetyl-diaminopentane and a substantially higher viability, reflected by increased specific rates for growth, glucose uptake and product formation. Similarly, deletion of cg2894, TetR type repressor neighboring the permease gene, resulted in improved production properties. The discovery and amplification of the permease, as presented here, displays a key contribution towards superior C. glutamicum strains for production of the platform chemical diaminopentane. The exact function of the permease remained unclear. Its genetic modification had pronounced effects on various intracellular pools of the biosynthetic pathway, which did not allow a final conclusion on its physiological role, although a direct contribution to diaminopentane export appears possible. PMID:21821142

  3. Time-Resolved X-Ray Absorption Spectroscopy Data for the Study of Chemical Reaction Intermediate States

    SciTech Connect

    Diaz Moreno, Sofia; Bowron, Daniel T.; Evans, John

    2007-02-02

    Energy-dispersive X-ray absorption Spectroscopy is an increasingly powerful tool for the investigation of kinetic processes in chemical systems as an element-specific local structure and electronic-state probe. In this paper we present a study of the structural evolution of the inner-sphere electron transfer reaction between [IrCl6]2- and [Co(CN)5]3-. The experimental requirements necessary for the extraction of maximal structural and electronic information are discussed.

  4. Chemical compatibility and properties of suspension plasma-sprayed SrTiO3-based anodes for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Shan-Lin; Li, Cheng-Xin; Li, Chang-Jiu

    2014-10-01

    La-doped strontium titanate (LST) is a promising, redox-stable perovskite material for direct hydrocarbon oxidation anodes in intermediate-temperature solid oxide fuel cells (IT-SOFCs). In this study, nano-sized LST and Sm-doped ceria (SDC) powders are produced by the sol-gel and glycine-nitrate processes, respectively. The chemical compatibility between LST and electrolyte materials is studied. A LST-SDC composite anode is prepared by suspension plasma spraying (SPS). The effects of annealing conditions on the phase structure, microstructure, and chemical stability of the LST-SDC composite anode are investigated. The results indicate that the suspension plasma-sprayed LST-SDC anode has the same phase structure as the original powders. LST exhibits a good chemical compatibility with SDC and Mg/Sr-doped lanthanum gallate (LSGM). The anode has a porosity of ∼40% with a finely porous structure that provides high gas permeability and a long three-phase boundary for the anode reaction. Single cells assembled with the LST-SDC anode, La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte, and La0.8Sr0.2CoO3-SDC cathode show a good performance at 650-800 °C. The annealing reduces the impedances due to the enhancement in the bonding between the particles in the anode and interface of anode and LSGM electrolyte, thus improving the output performance of the cell.

  5. Regional evaluation of the hydrogeologic framework, hydraulic properties, and chemical characteristics of the intermediate aquifer system underlying southern west-central Florida

    USGS Publications Warehouse

    Knochenmus, Lari A.

    2006-01-01

    Three major aquifer systems-the surficial aquifer system, the intermediate aquifer system, and the Floridan aquifer system-are recognized in the approximately 5,100-square-mile southern west-central Florida study area. The principal source of freshwater for all uses is ground water supplied from the three aquifer systems. Ground water from the intermediate aquifer system is considered only moderately abundant compared to the Upper Floridan aquifer, but it is an important source of water where the Upper Floridan aquifer contains water too mineralized for most uses. In the study area, the potential ground-water resources of the intermediate aquifer system were evaluated by regionally assessing the vertical and lateral distribution of hydrogeologic, hydraulic, and chemical characteristics. Although the intermediate aquifer system is considered a single entity, it is composed of multiple water-bearing zones separated by confining units. Deposition of a complex assemblage of carbonate and siliciclastic sediments during the late Oligocene to early Pliocene time resulted in discontinuities that are reflected in transitional and abrupt contacts between facies. Discontinuous facies produce water-bearing zones that may be locally well-connected or culminate abruptly. Changes in the depositional environment created the multilayered intermediate aquifer system that contains as many as three zones of enhanced water-bearing capacity. The water-bearing zones consist of indurated limestone and dolostone and in some places unindurated sand, gravel, and shell beds, and these zones are designated, in descending order, as Zone 1, Zone 2, and Zone 3. Zone 1 is thinnest (<80 feet thick) and is limited to <20 percent (southern part) of the study area. Zone 2, the only regionally extensive zone, is characterized by moderately low permeability. Zone 3 is found in about 50 percent of the study area, has the highest transmissivities, and generally is in good hydraulic connection with the

  6. Topographical and Chemical Imaging of a Phase Separated Polymer Using a Combined Atomic Force Microscopy/Infrared Spectroscopy/Mass Spectrometry Platform.

    PubMed

    Tai, Tamin; Karácsony, Orsolya; Bocharova, Vera; Van Berkel, Gary J; Kertesz, Vilmos

    2016-03-01

    In this paper, the use of a hybrid atomic force microscopy/infrared spectroscopy/mass spectrometry imaging platform was demonstrated for the acquisition and correlation of nanoscale sample surface topography and chemical images based on infrared spectroscopy and mass spectrometry. The infrared chemical imaging component of the system utilized photothermal expansion of the sample at the tip of the atomic force microscopy probe recorded at infrared wave numbers specific to the different surface constituents. The mass spectrometry-based chemical imaging component of the system utilized nanothermal analysis probes for thermolytic surface sampling followed by atmospheric pressure chemical ionization of the gas phase species produced with subsequent mass analysis. The basic instrumental setup, operation, and image correlation procedures are discussed, and the multimodal imaging capability and utility are demonstrated using a phase separated poly(2-vinylpyridine)/poly(methyl methacrylate) polymer thin film. The topography and both the infrared and mass spectral chemical images showed that the valley regions of the thin film surface were comprised primarily of poly(2-vinylpyridine) and hill or plateau regions were primarily poly(methyl methacrylate). The spatial resolution of the mass spectral chemical images was estimated to be 1.6 μm based on the ability to distinguish surface features in those images that were also observed in the topography and infrared images of the same surface. PMID:26890087

  7. Monash Chemical Yields Project (Monχey) - Element production in low- and intermediate-mass stars of metallicities Z = 0 to 0.04

    NASA Astrophysics Data System (ADS)

    Doherty, Carolyn Louise; Lattanzio, John; Angelou, George; Wattana Campbell, Simon; Church, Ross; Constantino, Thomas; Cristallo, Sergio; Gil-Pons, Pilar; Karakas, Amanda; Lugaro, Maria; Stancliffe, Richard James

    2015-08-01

    The Monχey project provides a large and homogeneous set of stellar yields for the low- and intermediate- mass stars and has applications particularly to galactic chemical evolution modelling.We present a detailed grid of stellar evolutionary models and corresponding nucleosynthetic yields for stars of initial mass 0.8 M⊙ up to the limit for core collapse supernova ≈ 10 M⊙. Our study covers a broad range of metallicities, ranging from the first, primordial stars (Z=0) to those of super-solar metallicity (Z=0.04). The models are evolved from the zero-age main-sequence until the end of the asymptotic giant branch (AGB) and the nucleosynthesis calculations include all elements from H to Bi.A major innovation of our work is the first complete grid of heavy element nucleosynthetic predictions for primordial AGB stars as well as the inclusion of extra-mixing processes (in this case thermohaline) during the red giant branch. We provide a broad overview of our results with implications for galactic chemical evolution as well as highlight interesting results such as heavy element production in dredge-out events of super-AGB stars.We briefly introduce our easy to use web-based database which provides the evolutionary tracks, structural properties, internal/surface nucleosynthetic compositions and stellar yields. Our web interface includes user- driven plotting capabilities with output available in a range of formats. Our nucleosynthetic results are available for further use in post processing calculations for dust production yields.

  8. Alginate based 3D hydrogels as an in vitro co-culture model platform for the toxicity screening of new chemical entities

    SciTech Connect

    Lan, Shih-Feng; Starly, Binil

    2011-10-01

    Prediction of human response to potential therapeutic drugs is through conventional methods of in vitro cell culture assays and expensive in vivo animal testing. Alternatives to animal testing require sophisticated in vitro model systems that must replicate in vivo like function for reliable testing applications. Advancements in biomaterials have enabled the development of three-dimensional (3D) cell encapsulated hydrogels as in vitro drug screening tissue model systems. In this study, we have developed an in vitro platform to enable high density 3D culture of liver cells combined with a monolayer growth of target breast cancer cell line (MCF-7) in a static environment as a representative example of screening drug compounds for hepatotoxicity and drug efficacy. Alginate hydrogels encapsulated with serial cell densities of HepG2 cells (10{sup 5}-10{sup 8} cells/ml) are supported by a porous poly-carbonate disc platform and co-cultured with MCF-7 cells within standard cell culture plates during a 3 day study period. The clearance rates of drug transformation by HepG2 cells are measured using a coumarin based pro-drug. The platform was used to test for HepG2 cytotoxicity 50% (CT{sub 50}) using commercially available drugs which further correlated well with published in vivo LD{sub 50} values. The developed test platform allowed us to evaluate drug dose concentrations to predict hepatotoxicity and its effect on the target cells. The in vitro 3D co-culture platform provides a scalable and flexible approach to test multiple-cell types in a hybrid setting within standard cell culture plates which may open up novel 3D in vitro culture techniques to screen new chemical entity compounds. - Graphical abstract: Display Omitted Highlights: > A porous support disc design to support the culture of desired cells in 3D hydrogels. > Demonstrated the co-culture of two cell types within standard cell-culture plates. > A scalable, low cost approach to toxicity screening involving

  9. Acid-catalyzed conversion of mono- and poly-sugars into platform chemicals: effects of molecular structure of sugar substrate.

    PubMed

    Hu, Xun; Wu, Liping; Wang, Yi; Song, Yao; Mourant, Daniel; Gunawan, Richard; Gholizadeh, Mortaza; Li, Chun-Zhu

    2013-04-01

    Hydrolysis/pyrolysis of lignocellulosic biomass always produces a mixture of sugars with distinct structures as intermediates or products. This study tried to elucidate the effects of molecular structure of sugars on their acid-catalyzed conversions in ethanol/water. Location of carbonyl group in sugars (fructose versus glucose) and steric configuration of hydroxyl groups (glucose versus galactose) significantly affected yields of levulinic acid/ester (fructose>glucose>galactose). The dehydration of fructose to 5-(hydroxymethyl)furfural produces much less soluble polymer than that from glucose and galactose, which results in high yields of levulinic acid/ester from fructose. Anhydrate sugar such as levoglucosan tends to undergo the undesirable decomposition to form less levulinic acid/ester. Catalytic behaviors of the poly-sugars (sucrose, maltose, raffinose, β-cyclodextrins) were determined much by their basic units. However, their big molecular sizes create the steric hindrance that significantly affects their followed conversion over solid acid catalyst. PMID:23454803

  10. Electronic structure and chemical bonding of {alpha}- and {beta}-CeIr{sub 2}Si{sub 2} intermediate valence compounds

    SciTech Connect

    Matar, Samir F.; Poettgen, Rainer; Chevalier, Bernard

    2012-02-15

    The dimorphism of the intermediate valence ternary cerium silicide CeIr{sub 2}Si{sub 2} in the ThCr{sub 2}Si{sub 2} ({alpha}) and CaBe{sub 2}Ge{sub 2} ({beta}) modifications is addressed in the framework of the density functional theory. The geometry optimization is in good agreement with the experiment and the subsequent establishment of the energy-volume equation of state (EOS) indicates a stabilization of the {beta}-type relative to the {alpha}-type concomitant with the trend of the cerium valence, changing to tetravalent in {beta}-CeIr{sub 2}Si{sub 2}. This is equally shown from the site projected DOS and from the large increase of the electronic contribution to the specific heat. The chemical bonding indicates the strongest bonding interactions within the Ir-Si substructure in both varieties. Stabilization of {beta}-CeIr{sub 2}Si{sub 2} with almost tetravalent cerium is in good agreement with Th{sup IV}Ir{sub 2}Si{sub 2} which exclusively crystallizes in the CaBe{sub 2}Ge{sub 2} type. The EOS behavior of different RIr{sub 2}Si{sub 2} (R=Th, Ce, La) is comparatively discussed. - Graphical abstract: The crystal structures of {alpha}- and {beta}-CeIr{sub 2}Si{sub 2}. Relevant interatomic distances (A), the three-dimensional [Ir{sub 2}Si{sub 2}] networks and the crystallographically independent iridium and silicon sites are indicated. Highlights: Black-Right-Pointing-Pointer Energy stabilization of (HT) {beta}-CeIr{sub 2}Si{sub 2} versus (LT) {alpha}-CeIr{sub 2}Si{sub 2} from DFT methods. Black-Right-Pointing-Pointer Concomitant with the change of Ce valence to tetravalent (HT)-enhanced specific heat. Black-Right-Pointing-Pointer Equations of states for La, Ce and Th members with CeIr{sub 2}Si{sub 2} resembling tetravalent-Th. Black-Right-Pointing-Pointer Chemical bonding shows changes on the {l_brace}Ir{sub 2}Si{sub 2}{r_brace} intralayer and Ce{sup IV}-Ir bonds.

  11. Integrated sensing platform and method for improved quantitative and selective monitoring of chemical analytes in both liquid and gas phase

    DOEpatents

    Blair, Dianna S.; Frye-Mason, Gregory C.; Butler, Michael A.

    2000-01-01

    By measuring two or more physical parameters of a thin sensing film which are altered when exposed to chemicals, more effective discrimination between chemicals can be achieved. In using more than one sensor, the sensors are preferably integrated on the same substrate so that they may measure the same thin film. Even more preferably, the sensors are provided orthogonal to one another so that they may measure the same portion of the thin film. These provisions reduce problems in discrimination arising from variations in thin films.

  12. Chemically induced Parkinson's disease: intermediates in the oxidation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine to the 1-methyl-4-phenyl-pyridinium ion

    SciTech Connect

    Chacon, J.N.; Chedekel, M.R.; Land, E.J.; Truscott, T.G.

    1987-04-29

    Various unstable intermediate oxidation states have been postulated in the metabolic activation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine to the 1-methyl-4-phenyl pyridinium ion. We now report the first direct observation of these free radical intermediates by pulse radiolysis and flash photolysis. Studies are described of various reactions of such species, in particular with dopamine whose autoxidation to dopamine quinone is reported to be potentiated by 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine.

  13. Prediction of in vivo potential for metabolic activation of drugs into chemically reactive intermediate: correlation of in vitro and in vivo generation of reactive intermediates and in vitro glutathione conjugate formation in rats and humans.

    PubMed

    Masubuchi, Noriko; Makino, Chie; Murayama, Nobuyuki

    2007-03-01

    The covalent binding of reactive intermediates to macromolecules might have potential involvement in severe adverse drug reactions. Thus, quantification of reactive metabolites is necessary during the early stage of drug discovery to avoid serious toxicity. In this study, the relationship between covalent binding and glutathione (GSH) conjugate formation in rat and human liver microsomes were investigated using 10 representative radioactive compounds that have been reported as hepatotoxic or having other toxicity derived from their reactive intermediates: acetaminophen, amodiaquine, carbamazepine, clozapine, diclofenac, furosemide, imipramine, indomethacin, isoniazid, and tienilic acid, all at a concentration of 10 microM. The GSH conjugate formation rate correlates well with the covalent binding of radioactivity (both rat and human, r2 = 0.93), which suggests that quantification of the GSH conjugate can be used to estimate covalent binding. To quantify the GSH-conjugation rate with non-radiolabeled compounds in vitro, the validation study for the determination of GSH conjugate formation using 35S-GSH by radio-HPLC was useful to predict metabolic activation. Following oral administration of 20 mg/kg of the radiolabeled compounds to rats, radioactivity that covalently bound to plasma and liver proteins was determined. The in vivo maximum covalent binding level in liver based on the free fraction of plasma area under the concentration curve (AUC) and in vitro covalent binding rate was found to correlate well (r2 = 0.79). Therefore, this model for in vitro covalent binding studies in human and rat and in vivo rat studies might be useful in predicting human metabolic activation of compounds. PMID:17309281

  14. A high-content screening platform with fluorescent chemical probes for the discovery of first-in-class therapeutics.

    PubMed

    Jo, Ala; Jung, Jinjoo; Kim, Eunha; Park, Seung Bum

    2016-06-14

    Phenotypic screening has emerged as a promising approach to discover novel first-in-class therapeutic agents. Rapid advances in phenotypic screening systems facilitate a high-throughput unbiased evaluation of compound libraries. However, limited sets of phenotypic changes are utilized in high-content screening, which require extensive genetic engineering. Therefore, it is critical to develop new chemical probes that can reflect phenotypic changes in any type of cells, especially primary cells, tissues, and organisms. Herein, we introduce our continuous efforts in the development of fluorescent bioprobes and their application to phenotypic screening. In addition, we emphasize the importance of the phenotype-based approach in conjunction with target identification at an early stage of research to accelerate the discovery of therapeutics with new modes of action. PMID:27166145

  15. Using a moving measurement platform for determining the chemical composition of atmospheric aerosols between Moscow and Vladivostok

    NASA Astrophysics Data System (ADS)

    Kuokka, S.; Teinilä, K.; Saarnio, K.; Aurela, M.; Sillanpää, M.; Hillamo, R.; Kerminen, V.-M.; Pyy, K.; Vartiainen, E.; Kulmala, M.; Skorokhod, A. I.; Elansky, N. F.; Belikov, I. B.

    2007-09-01

    The TROICA-9 expedition (Trans-Siberian Observations Into the Chemistry of the Atmosphere) was carried out at the Trans-Siberian railway between Moscow and Vladivostok in October 2005. Measurements of aerosol physical and chemical properties were made from an observatory carriage connected to a passenger train. Black carbon (BC) concentrations in fine particles (PM2.5, aerodynamic diameter <2.5 μm) were measured with an aethalometer using a five-minute time resolution. Concentrations of inorganic ions and some organic compounds (Cl-, NO3-, SO42-, Na+, NH4+, K+, Ca2+, Mg2+, oxalate and methane sulphonate) were measured continuously by using an on-line system with a 15-min time resolution. In addition, particle volume size distributions were determined for particles in the diameter range 3-850 nm using a 10-min time resolution. The continuous measurements were completed with 24-h PM2.5 filter samples stored in a refrigerator and analyzed later in a chemical laboratory. The analyses included the mass concentrations of PM2.5, ions, monosaccharide anhydrides (levoglucosan, galactosan and mannosan) and trace elements (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sb, V and Zn). The mass concentrations of PM2.5 varied in the range of 4.3-34.8 μg m-3 with an average of 21.6 μg m-3. Fine particle mass consisted mainly of BC (average 27.6%), SO42- (13.0%), NH4+ (4.1%) and NO3- (1.4%). One of the major constituents was obviously organic carbon which was not determined. The contribution of BC was high compared with other studies made in Europe and Asia. High concentrations of ions, BC and particle volume were observed between Moscow and roughly 4000 km east of it, as well as close to Vladivostok, primarily due to local anthropogenic sources. In the natural background area between 4000 and 7200 km away from Moscow, observed concentrations were low, even though local particle sources, such as forest fires, occasionally increased concentrations. During the measured forest fire

  16. Metabolic Engineering of a Glycerol-Oxidative Pathway in Lactobacillus panis PM1 for Utilization of Bioethanol Thin Stillage: Potential To Produce Platform Chemicals from Glycerol

    PubMed Central

    Kang, Tae Sun; Korber, Darren R.

    2014-01-01

    Lactobacillus panis PM1 has the ability to produce 1,3-propanediol (1,3-PDO) from thin stillage (TS), which is the major waste material after bioethanol production, and is therefore of significance. However, the fact that L. panis PM1 cannot use glycerol as a sole carbon source presents a considerable problem in terms of utilization of this strain in a wide range of industrial applications. Accordingly, L. panis PM1 was genetically engineered to directly utilize TS as a fermentable substrate for the production of valuable platform chemicals without the need for exogenous nutrient supplementation (e.g., sugars and nitrogen sources). An artificial glycerol-oxidative pathway, comprised of glycerol facilitator, glycerol kinase, glycerol 3-phosphate dehydrogenase, triosephosphate isomerase, and NADPH-dependent aldehyde reductase genes of Escherichia coli, was introduced into L. panis PM1 in order to directly utilize glycerol for the production of energy for growth and value-added chemicals. A pH 6.5 culture converted glycerol to mainly lactic acid (85.43 mM), whereas a significant amount of 1,3-propanediol (59.96 mM) was formed at pH 7.5. Regardless of the pH, ethanol (82.16 to 83.22 mM) was produced from TS fermentations, confirming that the artificial pathway metabolized glycerol for energy production and converted it into lactic acid or 1,3-PDO and ethanol in a pH-dependent manner. This study demonstrates the cost-effective conversion of TS to value-added chemicals by the engineered PM1 strain cultured under industrial conditions. Thus, application of this strain or these research findings can contribute to reduced costs of bioethanol production. PMID:25281374

  17. Impact of Genomics Platform and Statistical Filtering on Transcriptional Benchmark Doses (BMD) and Multiple Approaches for Selection of Chemical Point of Departure (PoD)

    PubMed Central

    Webster, A. Francina; Chepelev, Nikolai; Gagné, Rémi; Kuo, Byron; Recio, Leslie; Williams, Andrew; Yauk, Carole L.

    2015-01-01

    Many regulatory agencies are exploring ways to integrate toxicogenomic data into their chemical risk assessments. The major challenge lies in determining how to distill the complex data produced by high-content, multi-dose gene expression studies into quantitative information. It has been proposed that benchmark dose (BMD) values derived from toxicogenomics data be used as point of departure (PoD) values in chemical risk assessments. However, there is limited information regarding which genomics platforms are most suitable and how to select appropriate PoD values. In this study, we compared BMD values modeled from RNA sequencing-, microarray-, and qPCR-derived gene expression data from a single study, and explored multiple approaches for selecting a single PoD from these data. The strategies evaluated include several that do not require prior mechanistic knowledge of the compound for selection of the PoD, thus providing approaches for assessing data-poor chemicals. We used RNA extracted from the livers of female mice exposed to non-carcinogenic (0, 2 mg/kg/day, mkd) and carcinogenic (4, 8 mkd) doses of furan for 21 days. We show that transcriptional BMD values were consistent across technologies and highly predictive of the two-year cancer bioassay-based PoD. We also demonstrate that filtering data based on statistically significant changes in gene expression prior to BMD modeling creates more conservative BMD values. Taken together, this case study on mice exposed to furan demonstrates that high-content toxicogenomics studies produce robust data for BMD modelling that are minimally affected by inter-technology variability and highly predictive of cancer-based PoD doses. PMID:26313361

  18. Metabolic engineering of a glycerol-oxidative pathway in Lactobacillus panis PM1 for utilization of bioethanol thin stillage: potential to produce platform chemicals from glycerol.

    PubMed

    Kang, Tae Sun; Korber, Darren R; Tanaka, Takuji

    2014-12-01

    Lactobacillus panis PM1 has the ability to produce 1,3-propanediol (1,3-PDO) from thin stillage (TS), which is the major waste material after bioethanol production, and is therefore of significance. However, the fact that L. panis PM1 cannot use glycerol as a sole carbon source presents a considerable problem in terms of utilization of this strain in a wide range of industrial applications. Accordingly, L. panis PM1 was genetically engineered to directly utilize TS as a fermentable substrate for the production of valuable platform chemicals without the need for exogenous nutrient supplementation (e.g., sugars and nitrogen sources). An artificial glycerol-oxidative pathway, comprised of glycerol facilitator, glycerol kinase, glycerol 3-phosphate dehydrogenase, triosephosphate isomerase, and NADPH-dependent aldehyde reductase genes of Escherichia coli, was introduced into L. panis PM1 in order to directly utilize glycerol for the production of energy for growth and value-added chemicals. A pH 6.5 culture converted glycerol to mainly lactic acid (85.43 mM), whereas a significant amount of 1,3-propanediol (59.96 mM) was formed at pH 7.5. Regardless of the pH, ethanol (82.16 to 83.22 mM) was produced from TS fermentations, confirming that the artificial pathway metabolized glycerol for energy production and converted it into lactic acid or 1,3-PDO and ethanol in a pH-dependent manner. This study demonstrates the cost-effective conversion of TS to value-added chemicals by the engineered PM1 strain cultured under industrial conditions. Thus, application of this strain or these research findings can contribute to reduced costs of bioethanol production. PMID:25281374

  19. Development and characterization of an exposure platform suitable for physico-chemical, morphological and toxicological characterization of printer-emitted particles (PEPs).

    PubMed

    Pirela, Sandra V; Pyrgiotakis, Georgios; Bello, Dhimiter; Thomas, Treye; Castranova, Vincent; Demokritou, Philip

    2014-06-01

    An association between laser printer use and emissions of particulate matter (PM), ozone and volatile organic compounds has been reported in recent studies. However, the detailed physico-chemical, morphological and toxicological characterization of these printer-emitted particles (PEPs) and possible incorporation of engineered nanomaterials into toner formulations remain largely unknown. In this study, a printer exposure generation system suitable for the physico-chemical, morphological, and toxicological characterization of PEPs was developed and used to assess the properties of PEPs from the use of commercially available laser printers. The system consists of a glovebox type environmental chamber for uninterrupted printer operation, real-time and time-integrated particle sampling instrumentation for the size fractionation and sampling of PEPs and an exposure chamber for inhalation toxicological studies. Eleven commonly used laser printers were evaluated and ranked based on their PM emission profiles. Results show PM peak emissions are brand independent and varied between 3000 to 1 300 000 particles/cm³, with modal diameters ranging from 49 to 208 nm, with the majority of PEPs in the nanoscale (<100 nm) size. Furthermore, it was shown that PEPs can be affected by certain operational parameters and printing conditions. The release of nanoscale particles from a nano-enabled product (printer toner) raises questions about health implications to users. The presented PEGS platform will help in assessing the toxicological profile of PEPs and the link to the physico-chemical and morphological properties of emitted PM and toner formulations. PMID:24862974

  20. Mechanical and chemical processes in the fault zone crosscutting slope Apulian carbonate platform and their effect on the fault permeability (Gargano Promontory, Italy)

    NASA Astrophysics Data System (ADS)

    Korneva, I.; Tondi, E.; Rustichelli, A.; Mitchell, T. M.; Agosta, F.

    2013-12-01

    Fault zones typically consist of a highly fractured and permeable rock mass (damage zone) surrounding a fault core with low permeability. The fluid flow property of such a typical fault zone is determined by a combination/interaction of chemical and mechanical processes. Generally, mechanical processes, for example mode-I fracturing and the subsequent shearing of these pre-existing fractures with formation of secondary tails dilational structures, may significantly increase the amount of fracture porosity in the damage zone. However, mainly in carbonates rocks, chemical processes such as dissolution and re-precipitation of minerals, can have the opposite effect on porosity and, hence, permeability by cementing and sealing the fractured rock masses. In this work, we examine a normal fault crosscutting a slope succession of the Apulian carbonate platform cropping out in the Gargano Promontory of southern Italy (Lower Cretaceous Casa Varfone Formation). First, a mesoscale structural analysis of the fault zone was carried out in the field. Then, a microstructural characterization of representative samples collected from the fault core (cataclastic carbonates) and damage zone (fractured carbonates) was performed in order to describe the chemical and mechanical processes that took place during and after the faulting. Additionally, laboratory experiments of the same representative samples allowed us to assess their main petrophysical properties (porosity and permeability). The results are consistent with this fault juxtaposing reefal and slope carbonates of the footwall against basinal limestone of the hanging wall. The fault core is mainly composed of fine-grained carbonate cataclasites either cohesive or not. The footwall damage zone is made up of fractured reefal breccias, whereas the hanging wall one of fractured fragmented to pulverized micritic carbonates. Microstructural analyses focused primarily on rock texture (matrix and clasts amount and composition, cement

  1. Physico-chemical conditions of crystallization of the Guli ulrabasic massif (North Part of the Siberian Platform): evidence from melt inclusions

    NASA Astrophysics Data System (ADS)

    Simonov, Vladimir; Vasiliev, Yuri; Kotlyarov, Alexey; Stupakov, Sergey

    2014-05-01

    Conditions of formation of the Guli ultrabasic massif (Maimecha Kotui Province in the North Part of the Siberian Platform) attract attention of numerous researchers. For the solution of genetic problems of various rocks from this ultramafic complex the data on melt inclusions in minerals has been earlier used (Sokolov et al., 1999; Rass, Plechov, 2000; Sokolov, 2003; Panina, 2006). At the same time, formation of dunites, occupying the main volume of the Guli massif, remain almost not considered by means of thermobarogeochemical methods and the role of magmatic processes in this case is not ascertained. As a result of melt inclusions study in the Cr-spinel the new data on physical and chemical parameters of dunite crystallization in the Guli ulrabasic massif was obtained. On the ratio (Na2O + K2O) - SiO2 the majority of analyses of glasses and calculated compositions of inclusions settle down in the field of subalkaline series. On the diagram MgO - SiO2 bulk chemical compositions of inclusions (with the magnesium content of 19-28 wt. %) correspond to picrites and picrite-basalts. They are in close association with the data on inclusions in the Cr-spinel from dunites of Konder (Siberian Platform) and Nizhnii Tagil (Ural Mountains) platinum-bearing ultrabasic massifs and also are situated near to the field of inclusions in the olivine phenocrysts from meimechites (Maimecha Kotui Province in the North Part of the Siberian Platform). Similarity of melt inclusions in the Cr-spinel from the dunite of the Guli massif and in the olivine from meimechites is established on the variety of petrochemical components - Al2O3, CaO, Na2O, K2O. The calculated compositions of inclusions from dunites coincide mostly with the data on inclusions from meimechites, while glasses of inclusions from Cr-spinel contain less titan and magnesium. As a whole for the melts of the Maimecha Kotui Province (that form both dunites of the Guli massif and meimechites) much higher contents of TiO2 (from

  2. Xlink-Identifier: An Automated Data Analysis Platform for Confident Identifications of Chemically Cross-linked Peptides using Tandem Mass Spectrometry

    PubMed Central

    Du, Xiuxia; Chowdhury, Saiful M.; Manes, Nathan P.; Wu, Si; Mayer, M. Uljana; Adkins, Joshua N.; Anderson, Gordon A.; Smith, Richard D.

    2011-01-01

    Chemical cross-linking combined with mass spectrometry provides a powerful method for identifying protein-protein interactions and probing the structure of protein complexes. A number of strategies have been reported that take advantage of the high sensitivity and high resolution of modern mass spectrometers. Approaches typically include synthesis of novel cross-linking compounds, and/or isotopic labelling of the cross-linking reagent and/or protein, and label-free methods. We report Xlink-Identifier, a comprehensive data analysis platform that has been developed to support label-free analyses. It can identify inter-peptide, intra-peptide, and deadend cross-links as well as underivatized peptides. The software streamlines data pre-processing, peptide scoring, and visualization and provides an overall data analysis strategy for studying protein-protein interactions and protein structure using mass spectrometry. The software has been evaluated using a custom synthesized cross-linking reagent that features an enrichment tag. Xlink-Identifier offers the potential to perform large-scale identifications of protein-protein interactions using tandem mass spectrometry. PMID:21175198

  3. Lysimeter Platform

    NASA Astrophysics Data System (ADS)

    Klammler, Gernot; Murer, Erwin; Plieschnegger, Markus

    2014-05-01

    The existing European Lysimeter Platform (www.lysimeter.at/HP_EuLP) provides an overview of lysimeter types used in Europe and show details on equipment, research results and future perspectives of lysimeter facilities. However, this platform is not user-editable and has not been updated since 2008. Thus, the Lysimeter Research Group (www.lysimeter.at) intends to serve a new database based website called Lysimeter Platform, where existing information of the former European Lysimeter Platform will be transferred to the new Lysimeter Platform and, furthermore, registered users are able to create and edit sites where lysimeters, soil water samplers and soil hydrologic measuring profiles are operated. The Lysimeter Research Group is a scientific association and, therefore, the membership is free of charge. The new Lysimeter Platform contains general information of lysimeter sites worldwide (e.g., what is measured at which site) in a standardized form to get a quick but informative overview of the sites and can be linked to more detailed, already existing information provided by the site operators. Due to the standardized information in the database the Lysimeter Platform serves also as search-engine for soil water measurements and helps to find sites of interest and corresponding contact information worldwide. The Session "Estimation of soil-atmosphere and vadose zone water fluxes by use of precision lysimeter measurements" at the EGU General Assembly 2014 would be an excellent chance to present the idea and the concept of this new Lysimeter Platform to international site operators and scientists.

  4. Squalenoylation: a generic platform for nanoparticular drug delivery.

    PubMed

    Desmaële, Didier; Gref, Ruxandra; Couvreur, Patrick

    2012-07-20

    Squalene is a triterpene widely distributed in nature that is an intermediate in the cholesterol biosynthesis pathway. The remarkable dynamic folded conformation of squalene has been used to chemically conjugate this lipid with various therapeutic molecules to construct nanoassemblies of 100-300 nm. In this review, we discuss the new concept of "squalenoylation" through application to anticancer (i.e. gemcitabine, paclitaxel, cisplatin etc.…) or antiviral (ddI, ddC) compounds. In a lego-type approach, it is also possible to construct multifunctional nanoparticles endowed with additional imaging functionalities (i.e. "Nanotheragnostics"). This new nanotechnology platform is expected to have important applications in pharmacology. PMID:21840355

  5. ECUT: Energy Conversion and utilization Technologies program biocatalysis research activity. Generation of chemical intermediates by catalytic oxidative decarboxylation of dilute organic acids

    NASA Technical Reports Server (NTRS)

    Distefano, S.; Gupta, A.; Ingham, J. D.

    1983-01-01

    A rhodium-based catalyst was prepared and preliminary experiments were completed where the catalyst appeared to decarboxylate dilute acids at concentrations of 1 to 10 vol%. Electron spin resonance spectroscoy was used to characterize the catalyst as a first step leading toward modeling and optimization of rhodium catalysts. Also, a hybrid chemical/biological process for the production of hydrocarbons has been assessed. These types of catalysts could greatly increase energy efficiency of this process.

  6. Intermediate Volatility Organic Compound Emissions from On-Road Diesel Vehicles: Chemical Composition, Emission Factors, and Estimated Secondary Organic Aerosol Production.

    PubMed

    Zhao, Yunliang; Nguyen, Ngoc T; Presto, Albert A; Hennigan, Christopher J; May, Andrew A; Robinson, Allen L

    2015-10-01

    Emissions of intermediate-volatility organic compounds (IVOCs) from five on-road diesel vehicles and one off-road diesel engine were characterized during dynamometer testing. The testing evaluated the effects of driving cycles, fuel composition and exhaust aftertreatment devices. On average, more than 90% of the IVOC emissions were not identified on a molecular basis, instead appearing as an unresolved complex mixture (UCM) during gas-chromatography mass-spectrometry analysis. Fuel-based emissions factors (EFs) of total IVOCs (speciated + unspeciated) depend strongly on aftertreatment technology and driving cycle. Total-IVOC emissions from vehicles equipped with catalyzed diesel particulate filters (DPF) are substantially lower (factor of 7 to 28, depending on driving cycle) than from vehicles without any exhaust aftertreatment. Total-IVOC emissions from creep and idle operations are substantially higher than emissions from high-speed operations. Although the magnitude of the total-IVOC emissions can vary widely, there is little variation in the IVOC composition across the set of tests. The new emissions data are combined with published yield data to investigate secondary organic aerosol (SOA) formation. SOA production from unspeciated IVOCs is estimated using surrogate compounds, which are assigned based on gas-chromatograph retention time and mass spectral signature of the IVOC UCM. IVOCs contribute the vast majority of the SOA formed from exhaust from on-road diesel vehicles. The estimated SOA production is greater than predictions by previous studies and substantially higher than primary organic aerosol. Catalyzed DPFs substantially reduce SOA formation potential of diesel exhaust, except at low speed operations. PMID:26322746

  7. The "Vsoil Platform" : a tool to integrate the various physical, chemical and biological processes contributing to the soil functioning at the local scale.

    NASA Astrophysics Data System (ADS)

    Lafolie, François; Cousin, Isabelle; Mollier, Alain; Pot, Valérie; Moitrier, Nicolas; Balesdent, Jérome; bruckler, Laurent; Moitrier, Nathalie; Nouguier, Cédric; Richard, Guy

    2014-05-01

    Models describing the soil functioning are valuable tools for addressing challenging issues related to agricultural production, soil protection or biogeochemical cycles. Coupling models that address different scientific fields is actually required in order to develop numerical tools able to simulate the complex interactions and feed-backs occurring within a soil profile in interaction with climate and human activities. We present here a component-based modelling platform named "VSoil", that aims at designing, developing, implementing and coupling numerical representation of biogeochemical and physical processes in soil, from the aggregate to the profile scales. The platform consists of four softwares, i) Vsoil_Processes dedicated to the conceptual description of processes and of their inputs and outputs, ii) Vsoil_Modules devoted to the development of numerical representation of elementary processes as modules, iii) Vsoil_Models which permits the coupling of modules to create models, iv) Vsoil_Player for the run of the model and the primary analysis of results. The platform is designed to be a collaborative tool, helping scientists to share not only their models, but also the scientific knowledge on which the models are built. The platform is based on the idea that processes of any kind can be described and characterized by their inputs (state variables required) and their outputs. The links between the processes are automatically detected by the platform softwares. For any process, several numerical representations (modules) can be developed and made available to platform users. When developing modules, the platform takes care of many aspects of the development task so that the user can focus on numerical calculations. Fortran2008 and C++ are the supported languages and existing codes can be easily incorporated into platform modules. Building a model from available modules simply requires selecting the processes being accounted for and for each process a module

  8. Stabilization of the Simplest Criegee Intermediate from the Reaction between Ozone and Ethylene: A High-Level Quantum Chemical and Kinetic Analysis of Ozonolysis.

    PubMed

    Nguyen, Thanh Lam; Lee, Hyunwoo; Matthews, Devin A; McCarthy, Michael C; Stanton, John F

    2015-06-01

    The fraction of the collisionally stabilized Criegee species CH2OO produced from the ozonolysis of ethylene is calculated using a two-dimensional (E, J)-grained master equation technique and semiclassical transition-state theory based on the potential energy surface obtained from high-accuracy quantum chemical calculations. Our calculated yield of 42 ± 6% for the stabilized CH2OO agrees well, within experimental error, with available (indirect) experimental results. Inclusion of angular momentum in the master equation is found to play an essential role in bringing the theoretical results into agreement with the experiment. Additionally, yields of HO and HO2 radical products are predicted to be 13 ± 6% and 17 ± 6%, respectively. In the kinetic simulation, the HO radical product is produced mostly from the stepwise decomposition mechanism of primary ozonide rather than from dissociation of hot CH2OO. PMID:25945650

  9. Intermediate-scale 2D experimental investigation of in situ chemical oxidation using potassium permanganate for remediation of complex DNAPL source zones

    NASA Astrophysics Data System (ADS)

    Heiderscheidt, J. L.; Siegrist, R. L.; Illangasekare, T. H.

    2008-11-01

    In situ chemical oxidation is a technology that has been applied to speed up remediation of a contaminant source zone by inducing increased mass transfer from DNAPL sources into the aqueous phase for subsequent destruction. The DNAPL source zone can consist of one or more individual sources that may be present as an interconnected pool of high saturation, as a region of disconnected ganglia at residual saturation, or as combinations of these two morphologies. Potassium permanganate (KMnO 4) is a commonly employed oxidant that has been shown to rapidly destroy DNAPL compounds like PCE and TCE following second-order kinetics in an aqueous system. During the oxidation of a target DNAPL compound, or naturally occurring reduced species in the subsurface, manganese oxide (MnO 2) solids are produced. Research has shown that these manganese oxide solids may result in permeability reductions in the porous media thus reducing the ability for oxidant to be transported to individual DNAPL sources. It can also occur at the DNAPL-water interface, decreasing contact of the oxidant with the DNAPL. Additionally, MnO 2 formation at the DNAPL-water interface, and/or flow-bypassing as a result of permeability reductions around the source, may alter the mass transfer from the DNAPL into the aqueous phase, potentially diminishing the magnitude of any DNAPL mass depletion rate increase induced by oxidation. An experiment was performed in a two-dimensional (2D) sand-filled tank that included several discrete DNAPL source zones. Spatial and temporal monitoring of aqueous PCE, chloride, and permanganate concentrations was used to relate changes in mass depletion of, and mass flux, from DNAPL residual and pool source zones to chemical oxidation performance and MnO 2 formation. During the experiment, permeability changes were monitored throughout the 2D tank and these were related to MnO 2 deposition as measured through post-oxidation soil coring. Under the conditions of this experiment, Mn

  10. Organocatalytic Conversion of Cellulose into a Platform Chemical†

    PubMed Central

    Caes, Benjamin R.; Palte, Michael J.

    2014-01-01

    The search for a source of fuels and chemicals that is both abundant and renewable has become of paramount importance. The polysaccharide cellulose meets both criteria, and methods have been developed for its transformation into the platform chemical 5-(hydroxymethyl)furfural (HMF). These methods employ harsh reaction conditions or toxic heavy metal catalysts, deterring large-scale implementation. Here, we describe a low-temperature, one-pot route that uses ortho-carboxyl-substituted phenylboronic acids as organocatalysts in conjunction with hydrated magnesium chloride and mineral acids to convert cellulose and cellulose-rich municipal waste to HMF in yields comparable to processes that use toxic heavy metal catalysts. Isotopic labeling studies indicate that the key aldose-to-ketose transformation occurs via an enediol intermediate. The route, which also allows for facile catalyst recovery and recycling, provides a green prototype for cellulose conversion. PMID:24596655

  11. Managing the computational chemistry big data problem: the ioChem-BD platform.

    PubMed

    Álvarez-Moreno, M; de Graaf, C; López, N; Maseras, F; Poblet, J M; Bo, C

    2015-01-26

    We present the ioChem-BD platform ( www.iochem-bd.org ) as a multiheaded tool aimed to manage large volumes of quantum chemistry results from a diverse group of already common simulation packages. The platform has an extensible structure. The key modules managing the main tasks are to (i) upload of output files from common computational chemistry packages, (ii) extract meaningful data from the results, and (iii) generate output summaries in user-friendly formats. A heavy use of the Chemical Mark-up Language (CML) is made in the intermediate files used by ioChem-BD. From them and using XSL techniques, we manipulate and transform such chemical data sets to fulfill researchers' needs in the form of HTML5 reports, supporting information, and other research media. PMID:25469626

  12. Microfluidic platform for reproducible self-assembly of chemically communicating droplet networks with predesigned number and type of the communicating compartments.

    PubMed

    Guzowski, Jan; Gizynski, Konrad; Gorecki, Jerzy; Garstecki, Piotr

    2016-02-21

    We report a microfluidic system for individually tailored generation and incubation of core-shell liquid structures with multiple cores that chemically communicate with each other via lipid membranes. We encapsulate an oscillating reaction-diffusion Belousov-Zhabotinsky (BZ) medium inside the aqueous droplets and study the propagation of chemical wave-fronts through the membranes. We further encapsulate the sets of interconnected BZ-droplets inside oil-lipid shells in order to i) chemically isolate the structures and ii) confine them via tunable capillary forces which leads to self-assembly of predesigned topologies. We observe that doublets (pairs) of droplets encapsulated in the shell exhibit oscillation patterns that evolve in time. We collect statistical data from tens of doublets all created under precisely controlled, almost identical conditions from which we conclude that the different types of transitions between the patterns depend on the relative volumes of the droplets within a chemically coupled pair. With this we show that the volume of the compartment is an important control parameter in designing chemical networks, a feature previously appreciated only by theory. Our system not only allows for new insights into the dynamics of geometrically complex and interacting chemical systems but is also suitable for generating autonomous chemically interconnected microstructures with possible future use, e.g., as smart biosensors or drug-release capsules. PMID:26785761

  13. Variability of aerosols and chemical composition of PM10, PM2.5 and PM1 on a platform of the Prague underground metro

    NASA Astrophysics Data System (ADS)

    Cusack, M.; Talbot, N.; Ondráček, J.; Minguillón, M. C.; Martins, V.; Klouda, K.; Schwarz, J.; Ždímal, V.

    2015-10-01

    Measurements of PM10, PM2.5 and PM1 and particle number concentration and size distribution were measured for 24 h on a platform of the Prague underground metro in October 2013. The three PM fractions were analysed for major and minor elements, secondary inorganic aerosols (SIA) and total carbon (TC). Measurements were performed both when the metro was inoperative and closed to the public (referred to as background), and when the metro was in operation and open to passengers. PM concentrations were elevated during both periods, but were substantially increased in the coarse fraction during hours when the metro was in operation. Average PM concentrations were 214.8, 93.9 and 44.8 μg m-3 for PM10, PM2.5 and PM1, respectively (determined gravimetrically). Average particle number concentrations were 8.5 × 103 cm-3 for background hours and 11.5 × 103 cm-3 during operational hours. Particle number concentrations were found to not vary as significantly as PM concentrations throughout the day. Variations in PM were strongly governed by passing trains, with highest concentrations recorded during rush hour. When trains were less frequent, PM concentrations were shown to fluctuate in unison with the entrance and exit of trains (as shown by wind velocity measured on the platform). PM was found to be highly enriched with iron, especially in the coarse fraction, comprising 46% of PM10 (98.9 μg m-3). This reduces to 6.7 μg m-3 during background hours, proving that the trains themselves were the main source of iron, most probably from wheel-rail mechanical abrasion. Other enriched elements relative to background hours included Ba, Cu, Mn, Cr, Mo, Ni and Co, among others. Many of these elements exhibited a similar size distribution, further indicating their sources were common and were attributed to train operations.

  14. Conversion of biomass to selected chemical products.

    PubMed

    Gallezot, Pierre

    2012-02-21

    This critical review provides a survey illustrated by recent references of different strategies to achieve a sustainable conversion of biomass to bioproducts. Because of the huge number of chemical products that can be potentially manufactured, a selection of starting materials and targeted chemicals has been done. Also, thermochemical conversion processes such as biomass pyrolysis or gasification as well as the synthesis of biofuels were not considered. The synthesis of chemicals by conversion of platform molecules obtained by depolymerisation and fermentation of biopolymers is presently the most widely envisioned approach. Successful catalytic conversion of these building blocks into intermediates, specialties and fine chemicals will be examined. However, the platform molecule value chain is in competition with well-optimised, cost-effective synthesis routes from fossil resources to produce chemicals that have already a market. The literature covering alternative value chains whereby biopolymers are converted in one or few steps to functional materials will be analysed. This approach which does not require the use of isolated, pure chemicals is well adapted to produce high tonnage products, such as paper additives, paints, resins, foams, surfactants, lubricants, and plasticisers. Another objective of the review was to examine critically the green character of conversion processes because using renewables as raw materials does not exempt from abiding by green chemistry principles (368 references). PMID:21909591

  15. Gas Fermentation—A Flexible Platform for Commercial Scale Production of Low-Carbon-Fuels and Chemicals from Waste and Renewable Feedstocks

    PubMed Central

    Liew, FungMin; Martin, Michael E.; Tappel, Ryan C.; Heijstra, Björn D.; Mihalcea, Christophe; Köpke, Michael

    2016-01-01

    There is an immediate need to drastically reduce the emissions associated with global fossil fuel consumption in order to limit climate change. However, carbon-based materials, chemicals, and transportation fuels are predominantly made from fossil sources and currently there is no alternative source available to adequately displace them. Gas-fermenting microorganisms that fix carbon dioxide (CO2) and carbon monoxide (CO) can break this dependence as they are capable of converting gaseous carbon to fuels and chemicals. As such, the technology can utilize a wide range of feedstocks including gasified organic matter of any sort (e.g., municipal solid waste, industrial waste, biomass, and agricultural waste residues) or industrial off-gases (e.g., from steel mills or processing plants). Gas fermentation has matured to the point that large-scale production of ethanol from gas has been demonstrated by two companies. This review gives an overview of the gas fermentation process, focusing specifically on anaerobic acetogens. Applications of synthetic biology and coupling gas fermentation to additional processes are discussed in detail. Both of these strategies, demonstrated at bench-scale, have abundant potential to rapidly expand the commercial product spectrum of gas fermentation and further improve efficiencies and yields. PMID:27242719

  16. Gas Fermentation-A Flexible Platform for Commercial Scale Production of Low-Carbon-Fuels and Chemicals from Waste and Renewable Feedstocks.

    PubMed

    Liew, FungMin; Martin, Michael E; Tappel, Ryan C; Heijstra, Björn D; Mihalcea, Christophe; Köpke, Michael

    2016-01-01

    There is an immediate need to drastically reduce the emissions associated with global fossil fuel consumption in order to limit climate change. However, carbon-based materials, chemicals, and transportation fuels are predominantly made from fossil sources and currently there is no alternative source available to adequately displace them. Gas-fermenting microorganisms that fix carbon dioxide (CO2) and carbon monoxide (CO) can break this dependence as they are capable of converting gaseous carbon to fuels and chemicals. As such, the technology can utilize a wide range of feedstocks including gasified organic matter of any sort (e.g., municipal solid waste, industrial waste, biomass, and agricultural waste residues) or industrial off-gases (e.g., from steel mills or processing plants). Gas fermentation has matured to the point that large-scale production of ethanol from gas has been demonstrated by two companies. This review gives an overview of the gas fermentation process, focusing specifically on anaerobic acetogens. Applications of synthetic biology and coupling gas fermentation to additional processes are discussed in detail. Both of these strategies, demonstrated at bench-scale, have abundant potential to rapidly expand the commercial product spectrum of gas fermentation and further improve efficiencies and yields. PMID:27242719

  17. Biological upgrading of volatile fatty acids, key intermediates for the valorization of biowaste through dark anaerobic fermentation.

    PubMed

    Singhania, Reeta Rani; Patel, Anil Kumar; Christophe, Gwendoline; Fontanille, Pierre; Larroche, Christian

    2013-10-01

    VFAs can be obtained from lignocellulosic agro-industrial wastes, sludge, and various biodegradable organic wastes as key intermediates through dark fermentation processes and synthesized through chemical route also. They are building blocks of several organic compounds viz. alcohol, aldehyde, ketones, esters and olefins. These can serve as alternate carbon source for microbial biolipid, biohydrogen, microbial fuel cells productions, methanisation, and for denitrification. Organic wastes are the substrate for VFA platform that is of zero or even negative cost, giving VFA as intermediate product but their separation from the fermentation broth is still a challenge; however, several separation technologies have been developed, membrane separation being the most suitable one. These aspects will be reviewed and results obtained during anaerobic treatment of slaughterhouse wastes with further utilisation of volatile fatty acids for yeast cultivation have been discussed. PMID:23339903

  18. Intermediate Strength Gravitational Lensing

    SciTech Connect

    Irwin, John

    2005-03-17

    Weak lensing is found in the correlations of shear in {approx}10{sup 4} galaxy images, strong lensing is detected by the obvious distortion of a single galaxy image, whereas intermediate lensing requires detection of less obvious curvature in several neighboring galaxies. Small impact-parameter lensing causes a sextupole distortion whose orientation is correlated with the quadrupole distortion (shear). By looking within a field for the spatial correlation of this sextupole-quadrupole correlation, an intermediate lensing regime is observed. This technique requires correction for the sextupole as well as the quadrupole content of the PSF. We remove the HST PSF and uncover intermediate lensing in the Hubble deep fields. Correlations of the type expected are found.

  19. Differential chemical derivatization integrated with chromatographic separation for analysis of isomeric sialylated N-glycans: a nano-hydrophilic interaction liquid chromatography-MS platform.

    PubMed

    Tousi, Fateme; Bones, Jonathan; Hancock, William S; Hincapie, Marina

    2013-09-01

    MS analysis of sialylated glycans is challenging due to their low ionization efficiency in positive ion mode as well as the possibility of in-source fragmentation. Chemical derivatization strategies have been developed to address this issue focused on removal of the labile acidic proton prior to MS analysis. Highly sialylated negatively charged glycans also exhibit high retention and unsatisfactory separation efficiency when analyzed by hydrophilic interaction liquid chromatography (HILIC) due to their high polarity. Here, we combined linkage specific derivatization of sialic acids by reaction with the condensation reagent 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM) in methanol with nanoscale liquid chromatographic separation prior to accurate mass Orbitrap MS analysis. Coupling DMT-MM charge neutralization of sialic acids with nano-HILIC-Orbitrap-MS not only allows for linkage specific characterization of sialylated glycans directly from the precursor mass but also improves the preceding HILIC separation by increasing the hydrophobicity and altering the selectivity of the oligosaccharide analytes. We focused on the trisialylated N-glycan fraction from haptoglobin and human plasma, enriched using weak anion exchange chromatography, as this trisialylated fraction has been linked with cancer associated changes in the serum N-glycome. The developed methodology was applied to investigate whether structural alterations in this oligosaccharide pool, enriched from the sera of pathological stage and sex matched patients bearing lung, breast, ovarian, pancreatic, or gastric cancer, demonstrate any degree of cancer specificity or whether changes in expression levels are purely cancer associated. The results of this pilot study indicate limited degrees of cancer specificity, particularly for pancreatic cancer, based on alterations in the relative abundance of specific trisialylated isomers. PMID:23901877

  20. Integrated chemical/biochemical sample collection, pre-concentration, and analysis on a digital microfluidic lab-on-a-chip platform

    NASA Astrophysics Data System (ADS)

    Fair, Richard B.; Khlystov, A.; Srinivasan, Vijay; Pamula, Vamsee K.; Weaver, Kathryn N.

    2004-12-01

    An ideal on-site chemical/biochemical analysis system must be inexpensive, sensitive, fully automated and integrated, reliable, and compatible with a broad range of samples. The advent of digital microfluidic lab-on-a-chip (LoC) technology offers such a detection system due to the advantages in portability, reduction of the volumes of the sample and reagents, faster analysis times, increased automation, low power consumption, compatibility with mass manufacturing, and high throughput. We describe progress towards integrating sample collection onto a digital microfluidic LoC that is a component of a cascade impactor device. The sample collection is performed by impacting airborne particles directly onto the surface of the chip. After the collection phase, the surface of the chip is washed with a micro-droplet of solvent. The droplet will be digitally directed across the impaction surface, dissolving sample constituents. Because of the very small droplet volume used for extraction of the sample from a wide colection area, the resulting solution is realatively concentrated and the analytes can be detected after a very short sampling time (1 min) due to such pre-concentration. After the washing phase, the droplet is mixed with specific reagents that produce colored reaction products. The concentration of the analyte is quantitatively determined by measuring absorption at target wavelengths using a simple light emitting diode and photodiode setup. Specific applications include automatic measurements of major inorganic ions in aerosols, such as sulfate, nitrate and ammonium, with a time resolution of 1 min and a detection limit of 30 nm/m3. We have already demonstrated the detection and quantification of nitroaromatic explosives without integrating the sample collection. Other applications being developed include airborne bioagent detection.

  1. Hispanic American Heritage, Intermediate.

    ERIC Educational Resources Information Center

    Shepherd, Mike

    This resource book features the cultural heritage of Hispanics living within the United States and includes ideas, materials, and activities to be used with students in the intermediate grades and middle school. This book explores the definition of the term "Hispanic Americans" and suggests a multilayered population with a variety of cultural…

  2. English 200: Intermediate Composition

    ERIC Educational Resources Information Center

    Ritter, Kelly

    2005-01-01

    "English 200: Intermediate Composition" is a program elective for English majors and a writing-intensive elective for nonmajors at Southern Connecticut State University (SCSU), a comprehensive institution of 11,000 undergraduate and graduate (master's level) students. English 200 is described in the departmental course catalog as a course "in…

  3. Water oxidation: Intermediate identification

    NASA Astrophysics Data System (ADS)

    Cowan, Alexander J.

    2016-08-01

    The slow kinetics of light-driven water oxidation on haematite is an important factor limiting the material's efficiency. Now, an intermediate of the water-splitting reaction has been identified offering hope that the full mechanism will soon be resolved.

  4. INTERMEDIATE READINGS IN TAGALOG.

    ERIC Educational Resources Information Center

    BOWEN, J. DONALD, ED.

    THE SECOND IN A SERIES OF TEXTS DESIGNED TO HELP THE STUDENT ACHIEVE AN UNDERSTANDING OF FILIPINO CULTURE AND ACQUIRE ENOUGH PROFICIENCY IN TAGALOG TO COMMUNICATE EASILY AND MEANINGFULLY, THESE INTERMEDIATE READINGS ARE COORDINATED WITH THE EDITOR'S "BEGINNING TAGALOG" (ED 014 696). INCLUDED IN PART I ARE READINGS WRITTEN ESPECIALLY FOR THIS TEXT…

  5. GLOSSARY TO INTERMEDIATE HINDI.

    ERIC Educational Resources Information Center

    Wisconsin Univ., Madison. Indian Language and Area Center.

    INCLUDED IN THIS GLOSSARY ARE THE VOCABULARY ITEMS FOR THE READINGS IN "INTERMEDIATE HINDI." THE ITEMS ARE ARRANGED BY SELECTION IN SERIAL ORDER. EACH ENTRY INCLUDES NAGARI (DEVANAGARI) SCRIPT SPELLING, A NOTATION OF THE FORM CLASS, AND A SHORT ENGLISH GLOSS. THESE TWO VOLUMES ARE ALSO AVAILABLE AS A SET FOR $7.00 FROM THE COLLEGE PRINTING…

  6. SPACE: Intermediate Level Modules.

    ERIC Educational Resources Information Center

    Indiana State Dept. of Education, Indianapolis. Center for School Improvement and Performance.

    These modules were developed to assist teachers at the intermediate level to move away from extensive skill practice and toward more meaningful interdisciplinary learning. This packet, to be used by teachers in the summer Extended Learning Program, provides detailed thematic lesson plans matched to the Indiana Curriculum Proficiency Guide. The…

  7. Intermediate Cambodian Reader.

    ERIC Educational Resources Information Center

    Huffman, Franklin E., Ed.; Proum, Im, Ed.

    This book is a sequel to the "Cambodian System of Writing and Beginning Reader." It is intended to serve as an intermediate reader to develop the student's ability to the point of reading Cambodian texts with the aid of a dictionary. Part One of the book consists of 37 readings, graded in length and difficulty, and selected to provide a wide range…

  8. Defensive platform size and survivability. [Platform survivability

    SciTech Connect

    Canavan, Gregory H.

    1988-06-01

    This report discusses the survivability of space platforms, concentrating on space based kinetic energy interceptors. It evaluates the efficacy of hardening, maneuver, self-defense, and deception in extending the survivability of platforms of varying sizes to expected threats, concluding that they should be adequate in the near and mid terms.

  9. Segway robotic mobility platform

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoa G.; Morrell, John; Mullens, Katherine D.; Burmeister, Aaron B.; Miles, Susan; Farrington, Nathan; Thomas, Kari M.; Gage, Douglas W.

    2004-12-01

    The Segway Robotic Mobility Platform (RMP) is a new mobile robotic platform based on the self-balancing Segway Human Transporter (HT). The Segway RMP is faster, cheaper, and more agile than existing comparable platforms. It is also rugged, has a small footprint, a zero turning radius, and yet can carry a greater payload. The new geometry of the platform presents researchers with an opportunity to examine novel topics, including people-height sensing and actuation modalities. This paper describes the history and development of the platform, its characteristics, and a summary of current research projects involving the platform at various institutions across the United States.

  10. An integrated process for the production of platform chemicals and diesel miscible fuels by acid-catalyzed hydrolysis and downstream upgrading of the acid hydrolysis residues with thermal and catalytic pyrolysis.

    PubMed

    Girisuta, Buana; Kalogiannis, Konstantinos G; Dussan, Karla; Leahy, James J; Hayes, Michael H B; Stefanidis, Stylianos D; Michailof, Chrysa M; Lappas, Angelos A

    2012-12-01

    This study evaluates an integrated process for the production of platform chemicals and diesel miscible biofuels. An energy crop (Miscanthus) was treated hydrothermally to produce levulinic acid (LA). Temperatures ranging between 150 and 200 °C, sulfuric acid concentrations 1-5 wt.% and treatment times 1-12 h were applied to give different combined severity factors. Temperatures of 175 and 200 °C and acid concentration of 5 wt.% were found to be necessary to achieve good yield (17 wt.%) and selectivities of LA while treatment time did not have an effect. The acid hydrolysis residues were characterized for their elemental, cellulose, hemicellulose and lignin contents, and then tested in a small-scale pyrolyzer using silica sand and a commercial ZSM-5 catalyst. Milder pretreatment yielded more oil (43 wt.%) and oil O(2) (37%) while harsher pretreatment and catalysis led to more coke production (up to 58 wt.%), less oil (12 wt.%) and less oil O(2) (18 wt.%). PMID:23073094

  11. Intermediate water recovery system

    NASA Technical Reports Server (NTRS)

    Deckman, G.; Anderson, A. R. (Editor)

    1973-01-01

    A water recovery system for collecting, storing, and processing urine, wash water, and humidity condensates from a crew of three aboard a spacecraft is described. The results of a 30-day test performed on a breadboard system are presented. The intermediate water recovery system produced clear, sterile, water with a 96.4 percent recovery rate from the processed urine. Recommendations for improving the system are included.

  12. Stabilized floating platforms

    DOEpatents

    Thomas, David G.

    1976-01-01

    The subject invention is directed to a floating platform for supporting nuclear reactors and the like at selected offshore sites. The platform is provided with a stabilizer mechanism which significantly reduces the effects of wave action upon the platform and which comprises a pair of relatively small floats attached by rigid booms to the platform at locations spaced therefrom for reducing wave pitch, acceleration, and the resonance period of the wave.

  13. Studying Reaction Intermediates Formed at Graphenic Surfaces

    NASA Astrophysics Data System (ADS)

    Sarkar, Depanjan; Sen Gupta, Soujit; Narayanan, Rahul; Pradeep, Thalappil

    2014-03-01

    We report in-situ production and detection of intermediates at graphenic surfaces, especially during alcohol oxidation. Alcohol oxidation to acid occurs on graphene oxide-coated paper surface, driven by an electrical potential, in a paper spray mass spectrometry experiment. As paper spray ionization is a fast process and the time scale matches with the reaction time scale, we were able to detect the intermediate, acetal. This is the first observation of acetal formed in surface oxidation. The process is not limited to alcohols and the reaction has been extended to aldehydes, amines, phosphenes, sugars, etc., where reaction products were detected instantaneously. By combining surface reactions with ambient ionization and mass spectrometry, we show that new insights into chemical reactions become feasible. We suggest that several other chemical transformations may be studied this way. This work opens up a new pathway for different industrially and energetically important reactions using different metal catalysts and modified substrate.

  14. Floor Plans Engine Removal Platform, Hold Down Arm Platform, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Floor Plans - Engine Removal Platform, Hold Down Arm Platform, Hydraulic Equipment Platforms, Isometric Cutaway of Engine Removal Platform, Isometric Cutaway of Hold Down Arm Platform, Isometric Cutaway of Hydraulic Platforms and Engine Support System Access - Marshall Space Flight Center, Saturn V S-IC Static Test Facility, West Test Area, Huntsville, Madison County, AL

  15. Unveiling the crucial intermediates in androgen production.

    PubMed

    Mak, Piotr J; Gregory, Michael C; Denisov, Ilia G; Sligar, Stephen G; Kincaid, James R

    2015-12-29

    Ablation of androgen production through surgery is one strategy against prostate cancer, with the current focus placed on pharmaceutical intervention to restrict androgen synthesis selectively, an endeavor that could benefit from the enhanced understanding of enzymatic mechanisms that derives from characterization of key reaction intermediates. The multifunctional cytochrome P450 17A1 (CYP17A1) first catalyzes the typical hydroxylation of its primary substrate, pregnenolone (PREG) and then also orchestrates a remarkable C17-C20 bond cleavage (lyase) reaction, converting the 17-hydroxypregnenolone initial product to dehydroepiandrosterone, a process representing the first committed step in the biosynthesis of androgens. Now, we report the capture and structural characterization of intermediates produced during this lyase step: an initial peroxo-anion intermediate, poised for nucleophilic attack on the C20 position by a substrate-associated H-bond, and the crucial ferric peroxo-hemiacetal intermediate that precedes carbon-carbon (C-C) bond cleavage. These studies provide a rare glimpse at the actual structural determinants of a chemical transformation that carries profound physiological consequences. PMID:26668369

  16. Unveiling the crucial intermediates in androgen production

    PubMed Central

    Mak, Piotr J.; Gregory, Michael C.; Denisov, Ilia G.; Sligar, Stephen G.; Kincaid, James R.

    2015-01-01

    Ablation of androgen production through surgery is one strategy against prostate cancer, with the current focus placed on pharmaceutical intervention to restrict androgen synthesis selectively, an endeavor that could benefit from the enhanced understanding of enzymatic mechanisms that derives from characterization of key reaction intermediates. The multifunctional cytochrome P450 17A1 (CYP17A1) first catalyzes the typical hydroxylation of its primary substrate, pregnenolone (PREG) and then also orchestrates a remarkable C17–C20 bond cleavage (lyase) reaction, converting the 17-hydroxypregnenolone initial product to dehydroepiandrosterone, a process representing the first committed step in the biosynthesis of androgens. Now, we report the capture and structural characterization of intermediates produced during this lyase step: an initial peroxo-anion intermediate, poised for nucleophilic attack on the C20 position by a substrate-associated H-bond, and the crucial ferric peroxo-hemiacetal intermediate that precedes carbon–carbon (C-C) bond cleavage. These studies provide a rare glimpse at the actual structural determinants of a chemical transformation that carries profound physiological consequences. PMID:26668369

  17. Omnidirectional holonomic platforms

    SciTech Connect

    Pin, F.G.; Killough, S.M.

    1994-06-01

    This paper presents the concepts for a new family of wheeled platforms which feature full omnidirectionality with simultaneous and independently controlled rotational and translational motion capabilities. The authors first present the orthogonal-wheels concept and the two major wheel assemblies on which these platforms are based. They then describe how a combination of these assemblies with appropriate control can be used to generate an omnidirectional capability for mobile robot platforms. The design and control of two prototype platforms are then presented and their respective characteristics with respect to rotational and translational motion control are discussed.

  18. National Bioenergy Center--Biochemical Platform Integration Project: Quarterly Update, Fall 2010

    SciTech Connect

    Schell, D.

    2010-12-01

    Fall 2010 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: rapid analysis models for compositional analysis of intermediate process streams; engineered arabinose-fermenting Zymomonas mobilis strain.

  19. Chemical and enzymic studies on the characterization of intermediates during the removal of the 14alpha-methyl group in cholesterol biosynthesis. The use of 32-functionalized lanostane derivatives.

    PubMed Central

    Akhtar, M; Alexander, K; Boar, R B; McGhie, J F; Barton, D H

    1978-01-01

    By using cell-free preparations of rat liver it was shown that the removal of the 14alpha-methyl group (C-32) of steroids containing either a delta7(8) or a delta8(9) double bond is attended exclusively by the formation of the corresponding 7,14- and 8,14-dienes respectively (structures of types III and VIII). Cumulative evidence from a variety of experimental approaches had led to the deduction that delta8(14)-steroids are not involved as intermediates on the major pathway of cholesterol biosynthesis. The metabolism of [32-3H]lanost-7-ene-3beta,32-diol (structure of type I) results in the formation of radioactive formic acid, no labelled formaldehyde being formed. By using appropriately labelled species of the compound (I) it was found that the release of formic acid and the formation of 4,4-dimethylcholesta-7,14-dien-3beta-ol (strurcture of type III) were closely linked processes, and that in the conversion of compound (I) into compound (III), 3-beta-hydroxylanost-7-en-32-al (II) is an obligatory intermediate. Both the conversion of lanost-7-ene-3beta,32-diol (I) into 3beta-hydroxylanost-7-en-32-al (II) and the further metabolism of the latter (II) to 4,4-dimethylcholesta-7,14-dien-3beta-ol (III) exhibited a requirement for NADPH and O2. This suggests that the oxidation of the 32-hydroxy group of compound (I) to the aldehyde group of compound (II) does not occur by the conventional alcohol dehydrogenase type of reaction, but may proceed by a novel mechanism involving the intermediacy of a gem-diol. A detailed overall pathway for the 14alpha-demethylation in cholesterol biosynthesis is considered, and proposals about the mechanism of individual steps in the pathway are made. PMID:25646

  20. Conformational dynamics through an intermediate

    NASA Astrophysics Data System (ADS)

    Garai, Ashok; Zhang, Yaojun; Dudko, Olga K.

    2014-04-01

    The self-assembly of biological and synthetic nanostructures commonly proceeds via intermediate states. In living systems in particular, the intermediates have the capacity to tilt the balance between functional and potentially fatal behavior. This work develops a statistical mechanical treatment of conformational dynamics through an intermediate under a variable force. An analytical solution is derived for the key experimentally measurable quantity—the distribution of forces at which a conformational transition occurs. The solution reveals rich kinetics over a broad range of parameters and enables one to locate the intermediate and extract the activation barriers and rate constants.

  1. Current technologies, economics, and perspectives for 2,5-dimethylfuran production from biomass-derived intermediates.

    PubMed

    Saha, Basudeb; Abu-Omar, Mahdi M

    2015-04-13

    Since the U.S. Department of Energy (DOE) published a perspective article that described the potential of the top ten biomass-derived platform chemicals as petroleum replacements for high-value commodity and specialty chemicals, researchers around the world have been motivated to develop technologies for the conversion of biomass and biomass-derived intermediates into chemicals and fuels. Among several biorefinery processes, the conversion of biomass carbohydrates into 2,5-dimethylfuran (DMF) has received significant attention because of its low oxygen content, high energy content, and high octane value. DMF can further serve as a petroleum-replacement, biorenewable feedstock for the production of p-xylene (pX). In this review, we aim specifically to present a concise and up-to-date analysis of DMF production technologies with a critical discussion on catalytic systems, mechanistic insight, and process economics, which includes sensitivity analysis, so that more effective catalysts can be designed. Special emphasis has been given to bifunctional catalysts that improve DMF yields and selectivity and the synergistic effect of the bifunctional sites. Process economics for the current processes and the scope for further improvement are discussed. It is anticipated that the chemistry detailed in this review will guide researchers to develop more practical catalytic processes to enable the economic production of bio-based DMF. Processes for the upgrade of DMF to pX are also described. PMID:25703838

  2. A novel rotating experimental platform in a superconducting magnet.

    PubMed

    Chen, Da; Cao, Hui-Ling; Ye, Ya-Jing; Dong, Chen; Liu, Yong-Ming; Shang, Peng; Yin, Da-Chuan

    2016-08-01

    This paper introduces a novel platform designed to be used in a strong static magnetic field (in a superconducting magnet). The platform is a sample holder that rotates in the strong magnetic field. Any samples placed in the platform will rotate due to the rotation of the sample holder. With this platform, a number of experiments such as material processing, culture of biological systems, chemical reactions, or other processes can be carried out. In this report, we present some preliminary experiments (protein crystallization, cell culture, and seed germination) conducted using this platform. The experimental results showed that the platform can affect the processes, indicating that it provides a novel environment that has not been investigated before and that the effects of such an environment on many different physical, chemical, or biological processes can be potentially useful for applications in many fields. PMID:27587133

  3. A novel rotating experimental platform in a superconducting magnet

    NASA Astrophysics Data System (ADS)

    Chen, Da; Cao, Hui-Ling; Ye, Ya-Jing; Dong, Chen; Liu, Yong-Ming; Shang, Peng; Yin, Da-Chuan

    2016-08-01

    This paper introduces a novel platform designed to be used in a strong static magnetic field (in a superconducting magnet). The platform is a sample holder that rotates in the strong magnetic field. Any samples placed in the platform will rotate due to the rotation of the sample holder. With this platform, a number of experiments such as material processing, culture of biological systems, chemical reactions, or other processes can be carried out. In this report, we present some preliminary experiments (protein crystallization, cell culture, and seed germination) conducted using this platform. The experimental results showed that the platform can affect the processes, indicating that it provides a novel environment that has not been investigated before and that the effects of such an environment on many different physical, chemical, or biological processes can be potentially useful for applications in many fields.

  4. The upper Cenomanian-lower Turonian of the Preafrican Trough (Morocco): Platform configuration and palaeoenvironmental conditions

    NASA Astrophysics Data System (ADS)

    Lebedel, V.; Lézin, C.; Andreu, B.; Ettachfini, El M.; Grosheny, D.

    2015-06-01

    the platform, linked to the end of the major Cenomanian transgression and the presence of eutrophic conditions which disrupted carbonate-producing organisms. This high palaeoproductivity, due to considerable nutrient input, led to the establishment of highly dysoxic conditions in the bottom and intermediate waters, causing the disappearance of the majority of the Cenomanian palaeontological groups, except for the opportunist benthic and planktonic foraminifera which proliferated. Part of the nutrient input could be due to the presence of a hot and wet climate that may have led a slight increase in the degree of chemical weathering of the continent. Nevertheless, many lines of evidence, such as the decrease of the detrital influx during the early Turonian and the reduction of the weatherable continental areas after the Cenomanian transgression, suggest the existence of another source of nutrient inputs. Combined with the presence of dysoxic/anoxic conditions during the lower Turonian in several regions of the tropical Central Atlantic, the occurrence of these nutrient inputs may be linked to the volcanism/hydrothermalism of the Caribbean LIP and the mid-ocean ridges.

  5. Concrete production floating platforms

    SciTech Connect

    Letourneur, O.; Falcimaigne, J.

    1981-01-01

    The floating production platforms operating in the North Sea are adapted from drilling semisubmersibles which allow only a limited payload capacity. Experience of concrete production platforms constructed for the North Sea has led Sea Tank Co. to propose a floating platform which offers large payload and oil storage capacities similar to those of existing fixed platforms. Sea Tank Co. and Institut Francais du Petrole joined forces in early 1976 to study the feasibility of a concrete floating production platform incorporating the structure and the production riser together. The results of this 3-yr program show that the concrete floating structure is economically attractive for permanent utilization on a production site. Furthermore, concrete has definite advantages over other materials, in its long term behavior.

  6. Intermediate BL Lac objects

    NASA Astrophysics Data System (ADS)

    Bondi, M.; Marchã, M. J. M.; Dallacasa, D.; Stanghellini, C.

    2001-08-01

    The 200-mJy sample, defined by Marchã et al., contains about 60 nearby, northern, flat-spectrum radio sources. In particular, the sample has proved effective at finding nearby radio-selected BL Lac objects with radio luminosities comparable to those of X-ray-selected objects, and low-luminosity flat-spectrum weak emission-line radio galaxies (WLRGs). The 200-mJy sample contains 23 BL Lac objects (including 6 BL Lac candidates) and 19 WLRGs. We will refer to these subsamples as the 200-mJy BL Lac sample and the 200-mJy WLRG sample, respectively. We have started a systematic analysis of the morphological pc-scale properties of the 200-mJy radio sources using VLBI observations. This paper presents VLBI observations at 5 and 1.6GHz of 14 BL Lac objects and WLRGs selected from the 200-mJy sample. The pc-scale morphology of these objects is briefly discussed. We derive the radio beaming parameters of the 200-mJy BL Lac objects and WLRGs and compare them with those of other BL Lac samples and with a sample of FR I radio galaxies. The overall broad-band radio, optical and X-ray properties of the 200-mJy BL Lac sample are discussed and compared with those of other BL Lac samples, radio- and X-ray-selected. We find that the 200-mJy BL Lac objects fill the gap between HBL and LBL objects in the colour-colour plot, and have intermediate αXOX as expected in the spectral energy distribution unification scenario. Finally, we briefly discuss the role of the WLRGs.

  7. Masonry. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Thompson, Moses

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 13 terminal objectives for an intermediate masonry course. These materials, developed for a two-semester (3 hours daily) course, are designed to provide the student with the skills and knowledge necessary for entry level employment in the field…

  8. Printing. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Seivert, Chester

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 13 terminal objectives for an intermediate printing course. The materials were developed for a two-semester (3 hours daily) course with specialized classroom, shop, and practical experiences designed to enable the student to develop proficiency…

  9. Welding. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Vincent, Kenneth

    Several intermediate performance objectives and corresponding criterion measures are listed for each of nine terminal objectives for an intermediate welding course. The materials were developed for a 36-week (3 hours daily) course designed to prepare the student for employment in the field of welding. Electric welding and specialized (TIG & MIG)…

  10. Linking Chemical Electron–Proton Transfer to Proton Pumping in Cytochrome c Oxidase: Broken-Symmetry DFT Exploration of Intermediates along the Catalytic Reaction Pathway of the Iron–Copper Dinuclear Complex

    PubMed Central

    2015-01-01

    After a summary of the problem of coupling electron and proton transfer to proton pumping in cytochrome c oxidase, we present the results of our earlier and recent density functional theory calculations for the dinuclear Fe-a3–CuB reaction center in this enzyme. A specific catalytic reaction wheel diagram is constructed from the calculations, based on the structures and relative energies of the intermediate states of the reaction cycle. A larger family of tautomers/protonation states is generated compared to our earlier work, and a new lowest-energy pathway is proposed. The entire reaction cycle is calculated for the new smaller model (about 185–190 atoms), and two selected arcs of the wheel are chosen for calculations using a larger model (about 205 atoms). We compare the structural and redox energetics and protonation calculations with available experimental data. The reaction cycle map that we have built is positioned for further improvement and testing against experiment. PMID:24960612

  11. View from second floor platform looking up at subsequent platforms. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View from second floor platform looking up at subsequent platforms. Note the Shuttle assembly outlined by the platform edges. - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL

  12. Reassessment of offshore platforms

    SciTech Connect

    Nair, V.V.D.; Kuhn, J.M. )

    1993-05-01

    Data from Hurricane Andrew demonstrated that the systems and procedures in place for evacuating offshore workers and minimizing oil spills and environmental damage functioned as planned. While the vast majority of the platforms survived the storm with no damage, a few of the older platforms (installed prior to 1972) either collapsed or suffered severe damage. The collapsed platforms were designed with insufficient deck height to clear the storm waves. In recent years, the API RP 2A has introduced guidance for minimum air gap, minimum structures, platform inspection and platform reuse. These provisions, coupled with natural attribution of the older platforms, will significantly improve the performance of platforms in the future. The reliability of NDT techniques to detect major structural defects should be improved through continued research. While flooded member detection is used by several operators as a screening tool to detect major defects underwater, its reliability is not always good and further research is needed in this area. Another area of high priority research is related to the use of Remotely Operated Vehicles (ROV) to perform underwater inspection of structures. 51 refs., 7 figs.

  13. Using e-Learning Platforms for Mastery Learning in Developmental Mathematics Courses

    ERIC Educational Resources Information Center

    Boggs, Stacey; Shore, Mark; Shore, JoAnna

    2004-01-01

    Many colleges and universities have adopted e-learning platforms to utilize computers as an instructional tool in developmental (i.e., beginning and intermediate algebra) mathematics courses. An e-learning platform is a computer program used to enhance course instruction via computers and the Internet. Allegany College of Maryland is currently…

  14. Ladder attachment platform

    DOEpatents

    Swygert,; Richard, W [Springfield, SC

    2012-08-28

    A ladder attachment platform is provided that includes a base for attachment to a ladder that has first and second side rails and a plurality of rungs that extend between in a lateral direction. Also included is a user platform for having a user stand thereon that is carried by the base. The user platform may be positioned with respect to the ladder so that it is not located between a first plane that extends through the first side rail and is perpendicular to the lateral direction and a second plane that extends through the second side rail and is perpendicular to the lateral direction.

  15. Elusive Reaction Intermediates in Solution Explored by ESI-MS: Reverse Periscope for Mechanistic Investigations.

    PubMed

    Iacobucci, Claudio; Reale, Samantha; De Angelis, Francesco

    2016-02-24

    Just as periscopes allow a submarine to visually search for objects above the surface of the sea, in a reversed periscope fashion electrospray mass spectrometry (ESI-MS) can analyze the compounds at the gas phase/liquid phase interface for chemical entities which may exist in solution. The challenge is the identification and structural characterization of key elusive reaction intermediates in chemical transformations, intermediates which are able to explain how chemical processes occur. This Minireview summarizes recent selected publications on the use of ESI-MS techniques for studying solution intermediates of homogeneous chemical reactions. PMID:26799781

  16. Nanopaper as an Optical Sensing Platform.

    PubMed

    Morales-Narváez, Eden; Golmohammadi, Hamed; Naghdi, Tina; Yousefi, Hossein; Kostiv, Uliana; Horák, Daniel; Pourreza, Nahid; Merkoçi, Arben

    2015-07-28

    Bacterial cellulose nanopaper (BC) is a multifunctional material known for numerous desirable properties: sustainability, biocompatibility, biodegradability, optical transparency, thermal properties, flexibility, high mechanical strength, hydrophilicity, high porosity, broad chemical-modification capabilities and high surface area. Herein, we report various nanopaper-based optical sensing platforms and describe how they can be tuned, using nanomaterials, to exhibit plasmonic or photoluminescent properties that can be exploited for sensing applications. We also describe several nanopaper configurations, including cuvettes, plates and spots that we printed or punched on BC. The platforms include a colorimetric-based sensor based on nanopaper containing embedded silver and gold nanoparticles; a photoluminescent-based sensor, comprising CdSe@ZnS quantum dots conjugated to nanopaper; and a potential up-conversion sensing platform constructed from nanopaper functionalized with NaYF4:Yb(3+)@Er(3+)&SiO2 nanoparticles. We have explored modulation of the plasmonic or photoluminescent properties of these platforms using various model biologically relevant analytes. Moreover, we prove that BC is and advantageous preconcentration platform that facilitates the analysis of small volumes of optically active materials (∼4 μL). We are confident that these platforms will pave the way to optical (bio)sensors or theranostic devices that are simple, transparent, flexible, disposable, lightweight, miniaturized and perhaps wearable. PMID:26135050

  17. ARM for Platform Application

    NASA Astrophysics Data System (ADS)

    Patte, Mathieu; Poupat, Jean-Luc; Le Meur, Patrick

    2015-09-01

    The activities described in this paper are part of the CNES R&T “Study of a Cortex-R ARM based architecture” performed by Airbus DS Space System & Electronics in 2014. With the support of CNES, Airbus DS has performed the porting of a representative space application software on an ARM based demonstration platform. This paper presents the platform itself, the activities performed at software level and the first results on this evaluation study.

  18. Repairing damaged platforms

    SciTech Connect

    Moore, R.E.; Kwok, P.H.; Wang, S.S.

    1995-10-01

    This paper introduces a unique method for strengthening of platforms and replacing damaged members. Extending the life of existing infrastructure is approved means of decreasing cash expenditures for new platforms and facilities. Platforms can be affected by corrosion, overloading and fatigue. The renovation and repair of existing offshore installations is an important part of offshore engineering. The basis behind this paper is an April, 1993 incident in the Arabian Gulf. A vessel broke loose from its moorings in a severe storm and collided with a wellhead platform. The collision severely damaged the platform buckling seven major support members and cracking joints throughout the structure. In view of the significant damage, there was an urgent need to repair the structure to avoid any further damage from potentially sever winter storm conditions. Various means of repair and their associated costs were evaluated: traditional dry hyperbaric welding, adjacent platforms, grouted clamped connections, and mechanical pipe connectors. The repair was completed using an innovative combination of clamps and wet welding to attach external braces to the structure.

  19. A Mechanochemical Switch to Control Radical Intermediates

    PubMed Central

    2015-01-01

    B12-dependent enzymes employ radical species with exceptional prowess to catalyze some of the most chemically challenging, thermodynamically unfavorable reactions. However, dealing with highly reactive intermediates is an extremely demanding task, requiring sophisticated control strategies to prevent unwanted side reactions. Using hybrid quantum mechanical/molecular mechanical simulations, we follow the full catalytic cycle of an AdoB12-dependent enzyme and present the details of a mechanism that utilizes a highly effective mechanochemical switch. When the switch is “off”, the 5′-deoxyadenosyl radical moiety is stabilized by releasing the internal strain of an enzyme-imposed conformation. Turning the switch “on,” the enzyme environment becomes the driving force to impose a distinct conformation of the 5′-deoxyadenosyl radical to avoid deleterious radical transfer. This mechanochemical switch illustrates the elaborate way in which enzymes attain selectivity of extremely chemically challenging reactions. PMID:24846280

  20. A mechanochemical switch to control radical intermediates.

    PubMed

    Brunk, Elizabeth; Kellett, Whitney F; Richards, Nigel G J; Rothlisberger, Ursula

    2014-06-17

    B₁₂-dependent enzymes employ radical species with exceptional prowess to catalyze some of the most chemically challenging, thermodynamically unfavorable reactions. However, dealing with highly reactive intermediates is an extremely demanding task, requiring sophisticated control strategies to prevent unwanted side reactions. Using hybrid quantum mechanical/molecular mechanical simulations, we follow the full catalytic cycle of an AdoB₁₂-dependent enzyme and present the details of a mechanism that utilizes a highly effective mechanochemical switch. When the switch is "off", the 5'-deoxyadenosyl radical moiety is stabilized by releasing the internal strain of an enzyme-imposed conformation. Turning the switch "on," the enzyme environment becomes the driving force to impose a distinct conformation of the 5'-deoxyadenosyl radical to avoid deleterious radical transfer. This mechanochemical switch illustrates the elaborate way in which enzymes attain selectivity of extremely chemically challenging reactions. PMID:24846280

  1. Intermediate state trapping of a voltage sensor

    PubMed Central

    Lacroix, Jérôme J.; Pless, Stephan A.; Maragliano, Luca; Campos, Fabiana V.; Galpin, Jason D.; Ahern, Christopher A.; Roux, Benoît

    2012-01-01

    Voltage sensor domains (VSDs) regulate ion channels and enzymes by undergoing conformational changes depending on membrane electrical signals. The molecular mechanisms underlying the VSD transitions are not fully understood. Here, we show that some mutations of I241 in the S1 segment of the Shaker Kv channel positively shift the voltage dependence of the VSD movement and alter the functional coupling between VSD and pore domains. Among the I241 mutants, I241W immobilized the VSD movement during activation and deactivation, approximately halfway between the resting and active states, and drastically shifted the voltage activation of the ionic conductance. This phenotype, which is consistent with a stabilization of an intermediate VSD conformation by the I241W mutation, was diminished by the charge-conserving R2K mutation but not by the charge-neutralizing R2Q mutation. Interestingly, most of these effects were reproduced by the F244W mutation located one helical turn above I241. Electrophysiology recordings using nonnatural indole derivatives ruled out the involvement of cation-Π interactions for the effects of the Trp inserted at positions I241 and F244 on the channel’s conductance, but showed that the indole nitrogen was important for the I241W phenotype. Insight into the molecular mechanisms responsible for the stabilization of the intermediate state were investigated by creating in silico the mutations I241W, I241W/R2K, and F244W in intermediate conformations obtained from a computational VSD transition pathway determined using the string method. The experimental results and computational analysis suggest that the phenotype of I241W may originate in the formation of a hydrogen bond between the indole nitrogen atom and the backbone carbonyl of R2. This work provides new information on intermediate states in voltage-gated ion channels with an approach that produces minimum chemical perturbation. PMID:23183699

  2. Noncovalent Intermediate of Thymidylate Synthase: Fact or Fiction?

    PubMed

    Kholodar, Svetlana A; Kohen, Amnon

    2016-07-01

    Thymidylate synthase is an attractive target for antibiotic and anticancer drugs due to its essential role in the de novo biosynthesis of the DNA nucleotide thymine. The enzymatic reaction is initiated by a nucleophilic activation of the substrate via formation of a covalent bond to an active site cysteine. The traditionally accepted mechanism is then followed by a series of covalently bound intermediates, where that bond is only cleaved upon product release. Recent computational and experimental studies suggest that the covalent bond between the protein and substrate is actually quite labile. Importantly, these findings predict the existence of a noncovalently bound bisubstrate intermediate, not previously anticipated, which could be the target of a novel class of drugs inhibiting DNA biosynthesis. Here we report the synthesis of the proposed intermediate and findings supporting its chemical and kinetic competence. These findings substantiate the predicted nontraditional mechanism and the potential of this intermediate as a new drug lead. PMID:27327197

  3. Cryospectrokinetic characterization of intermediates in biochemical reactions: carboxypeptidase A.

    PubMed Central

    Auld, D S; Galdes, A; Geoghegan, K F; Holmquist, B; Martinelli, R A; Vallee, B L

    1984-01-01

    Cryospectrokinetic studies provide concurrent structural, kinetic, and chemical data on short-lived intermediates in the course of the interactions of enzymes with their substrates and of other, similar pairs of biomolecules. Subzero temperatures extend the lifetimes of these intermediates and, combined with rapid-mixing and rapid-scanning instrumentation, allow simultaneous measurement of both their physical-chemical and kinetic characteristics. For carboxypeptidase A, the spectra of a chromophoric, enzymatically functional cobalt atom at the active site signal the structure of the coordination complex during catalysis, while radiationless energy transfer between enzyme tryptophans and the fluorescent dansyl blocking group of rapidly hydrolyzed peptide and ester substrates provides the basis for measurement of the rates of formation and breakdown of intermediates. Subzero radiationless energy transfer kinetic studies of the zinc and cobalt enzymes disclose two intermediates in the hydrolysis of both peptides and esters and furnish all the rate and equilibrium constants for the reaction scheme E + S in equilibrium ES1 in equilibrium ES2----E + P. The chemical and kinetic data indicate that neither of these is an acylenzyme intermediate. Both absorption and EPR spectra of the ES2 reaction intermediates consistently demonstrate the formation of transient metal complexes, differences between the effects induced by peptides and esters, and strong similarities between those induced by all peptides on the one hand and all esters on the other. The marked alterations of the cobalt spectra likely reflect the coordination of a substrate carboxyl and/or carbonyl group to the metal at a critical step in the course of catalysis. The cryospectrokinetic approach developed here in the mechanistic study of this metalloenzyme is applicable to the examination of transients of biochemical reactions in general. It will allow molecular characterization of previously elusive

  4. Intermediate ions in the atmosphere

    NASA Astrophysics Data System (ADS)

    Tammet, Hannes; Komsaare, Kaupo; Hõrrak, Urmas

    2014-01-01

    Intermediate air ions are charged nanometer-sized aerosol particles with an electric mobility of about 0.03-0.5 cm2 V- 1 s- 1 and a diameter of about 1.5-7.5 nm. Intensive studies of new particle formation provided good knowledge about intermediate ions during burst events of atmospheric aerosol nucleation. Information about intermediate ions during quiet periods between the bursts remained poor. The new mobility analyzer SIGMA can detect air ions at concentrations of mobility fractions of about 1 cm- 3 and enables studying intermediate ions during quiet periods. It became evident that intermediate ions always exist in atmospheric air and should be considered an indicator and a mediator of aerosol nucleation. The annual average concentration of intermediate ions of one polarity in Tartu, Estonia, was about 40 cm- 3 while 5% of the measurements showed a concentration of less than 10 cm- 3. The fraction concentrations in logarithmic 1/8-decade mobility bins between 0.1 and 0.4 cm2 V- 1 s- 1 often dropped below 1 cm- 3. The bursts of intermediate ions at stations separated by around 100 km appeared to be correlated. The lifespan of intermediate ions in the atmosphere is a few minutes, and they cannot be carried by wind over long distances. Thus the observed long-range correlation of intermediate ions is explained by simultaneous changes in air composition in widely spaced stations. A certain amount of intermediate ion bursts, predominantly of negative polarity, are produced by the balloelectric effect at the splashing of water drops during rain. These bursts are usually excluded when speaking about new particle formation because the balloelectric particles are assumed not to grow to the size of the Aitken mode. The mobility distribution of balloelectric ions is uniform in shape in all measurements. The maximum is located at a mobility of about 0.2 cm2 V- 1 s- 1, which corresponds to the diameter of particles of about 2.5 nm.

  5. Transactional Network Platform: Applications

    SciTech Connect

    Katipamula, Srinivas; Lutes, Robert G.; Ngo, Hung; Underhill, Ronald M.

    2013-10-31

    In FY13, Pacific Northwest National Laboratory (PNNL) with funding from the Department of Energy’s (DOE’s) Building Technologies Office (BTO) designed, prototyped and tested a transactional network platform to support energy, operational and financial transactions between any networked entities (equipment, organizations, buildings, grid, etc.). Initially, in FY13, the concept demonstrated transactions between packaged rooftop air conditioners and heat pump units (RTUs) and the electric grid using applications or "agents" that reside on the platform, on the equipment, on a local building controller or in the Cloud. The transactional network project is a multi-lab effort with Oakridge National Laboratory (ORNL) and Lawrence Berkeley National Laboratory (LBNL) also contributing to the effort. PNNL coordinated the project and also was responsible for the development of the transactional network (TN) platform and three different applications associated with RTUs. This document describes two applications or "agents" in details, and also summarizes the platform. The TN platform details are described in another companion document.

  6. Integrated microfluidic platforms for investigating neuronal networks

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Joon

    This dissertation describes the development and application of integrated microfluidics-based assay platforms to study neuronal activities in the nervous system in-vitro. The assay platforms were fabricated using soft lithography and micro/nano fabrication including microfluidics, surface patterning, and nanomaterial synthesis. The use of integrated microfluidics-based assay platform allows culturing and manipulating many types of neuronal tissues in precisely controlled microenvironment. Furthermore, they provide organized multi-cellular in-vitro model, long-term monitoring with live cell imaging, and compatibility with molecular biology techniques and electrophysiology experiment. In this dissertation, the integrated microfluidics-based assay platforms are developed for investigation of neuronal activities such as local protein synthesis, impairment of axonal transport by chemical/physical variants, growth cone path finding under chemical/physical cues, and synaptic transmission in neuronal circuit. Chapter 1 describes the motivation, objectives, and scope for developing in-vitro platform to study various neuronal activities. Chapter 2 introduces microfluidic culture platform for biochemical assay with large-scale neuronal tissues that are utilized as model system in neuroscience research. Chapter 3 focuses on the investigation of impaired axonal transport by beta-Amyloid and oxidative stress. The platform allows to control neuronal processes and to quantify mitochondrial movement in various regions of axons away from applied drugs. Chapter 4 demonstrates the development of microfluidics-based growth cone turning assay to elucidate the mechanism underlying axon guidance under soluble factors and shear flow. Using this platform, the behaviors of growth cone of mammalian neurons are verified under the gradient of inhibitory molecules and also shear flow in well-controlled manner. In Chapter 5, I combine in-vitro multicellular model with microfabricated MEA

  7. Universal visualization platform

    NASA Astrophysics Data System (ADS)

    Gee, Alexander G.; Li, Hongli; Yu, Min; Smrtic, Mary Beth; Cvek, Urska; Goodell, Howie; Gupta, Vivek; Lawrence, Christine; Zhou, Jainping; Chiang, Chih-Hung; Grinstein, Georges G.

    2005-03-01

    Although there are a number of visualization systems to choose from when analyzing data, only a few of these allow for the integration of other visualization and analysis techniques. There are even fewer visualization toolkits and frameworks from which one can develop ones own visualization applications. Even within the research community, scientists either use what they can from the available tools or start from scratch to define a program in which they are able to develop new or modified visualization techniques and analysis algorithms. Presented here is a new general-purpose platform for constructing numerous visualization and analysis applications. The focus of this system is the design and experimentation of new techniques, and where the sharing of and integration with other tools becomes second nature. Moreover, this platform supports multiple large data sets, and the recording and visualizing of user sessions. Here we introduce the Universal Visualization Platform (UVP) as a modern data visualization and analysis system.

  8. Geostationary multipurpose platforms

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Bowman, R. M.

    1981-01-01

    In addition to the advantages generally associated with orbital platforms, such as improved reliability, economies of scale, simple connectivity of elements, reduced tracking demands and the restraint of orbital object population growth, geostationary platforms yield: (1) continuous access by fixed ground antennas for communications services; (2) continuous monitoring of phenomena over chosen regions of the earth's surface; (3) a preferred location for many solar-terrestrial physics experiments. The geostationary platform also offers a low-risk and economical solution to the impending saturation of the orbital arc/frequency spectrum, maximizing the capacity of individual slots and increasing the utility of the entire arc. It also allows the use of many small, simple and inexpensive earth stations through complexity inversion and high power per beam. Block diagram and operational flowcharts are provided.

  9. The Personal Motion Platform

    NASA Technical Reports Server (NTRS)

    Park, Brian Vandellyn

    1993-01-01

    The Neutral Body Posture experienced in microgravity creates a biomechanical equilibrium by enabling the internal forces within the body to find their own balance. A patented reclining chair based on this posture provides a minimal stress environment for interfacing with computer systems for extended periods. When the chair is mounted on a 3 or 6 axis motion platform, a generic motion simulator for simulated digital environments is created. The Personal Motion Platform provides motional feedback to the occupant in synchronization with their movements inside the digital world which enhances the simulation experience. Existing HMD based simulation systems can be integrated to the turnkey system. Future developments are discussed.

  10. Electric Propulsion Orbital Platform

    NASA Technical Reports Server (NTRS)

    Friedly, V. J.; Ruyten, Wilhelmus M.; Litchford, R. J.; Garrison, G. W.

    1993-01-01

    This paper describes the Electric Propulsion Orbital Platform (EPOP), of which the primary objective is to provide an instrumented platform for testing electric propulsion devices in space. It is anticipated that the first flight, EPOP-1, will take place on the Shuttle-deployed Wake Shield Facility in 1996, and will be designed around a commercial 1.8 kW arcjet system which will be operated on gaseous hydrogen propellant. Specific subsystems are described, including the arcjet system, the propellant and power systems, and the diagnostics systems.

  11. Compact intermediates in RNA folding

    SciTech Connect

    Woodson, S.A.

    2011-12-14

    Large noncoding RNAs fold into their biologically functional structures via compact yet disordered intermediates, which couple the stable secondary structure of the RNA with the emerging tertiary fold. The specificity of the collapse transition, which coincides with the assembly of helical domains, depends on RNA sequence and counterions. It determines the specificity of the folding pathways and the magnitude of the free energy barriers to the ensuing search for the native conformation. By coupling helix assembly with nascent tertiary interactions, compact folding intermediates in RNA also play a crucial role in ligand binding and RNA-protein recognition.

  12. Nuclear reactions at intermediate energies

    NASA Astrophysics Data System (ADS)

    Shyam, Radhey

    2016-05-01

    In the domain of Nuclear reactions at intermediate energies, the QCD coupling constant αs is large enough (~ 0.3 - 0.5) to render the perturbative calculational techniques inapplicable. In this regime the quarks are confined into colorless hadrons and it is expected that effective field theories of hadron interactions via exchange of hadrons, provide useful tools to describe such reactions. In this contribution we discuss the application of one such theory, the effective Lagrangian model, in describing the hadronic reactions at intermediate energies whose measurements are the focus of a vast international experimental program.

  13. Transportation and platforms perspective

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1992-01-01

    The topics covered are presented in viewgraph form and include the following: Office of Aeronautics and Space Technology; space research and technology (R&T); space R&T mission statement; Space R&T program development; R&T strategy; Office of Space Science and Applications (OSSA) technology needs; transportation technology; and space platforms technology.

  14. Education Platforms for America

    ERIC Educational Resources Information Center

    District Administration, 2012

    2012-01-01

    What is at stake for K12 education in next month's presidential election? Both President Barack Obama (Democratic Party) and Gov. Mitt Romney (Republican Party) say improving education will be a top priority in their administrations, but their policies and initiatives would likely be quite different. While political platforms rarely offer detailed…

  15. Neuroimaging data sharing on the neuroinformatics database platform.

    PubMed

    Book, Gregory A; Stevens, Michael C; Assaf, Michal; Glahn, David C; Pearlson, Godfrey D

    2016-01-01

    We describe the Neuroinformatics Database (NiDB), an open-source database platform for archiving, analysis, and sharing of neuroimaging data. Data from the multi-site projects Autism Brain Imaging Data Exchange (ABIDE), Bipolar-Schizophrenia Network on Intermediate Phenotypes parts one and two (B-SNIP1, B-SNIP2), and Monetary Incentive Delay task (MID) are available for download from the public instance of NiDB, with more projects sharing data as it becomes available. As demonstrated by making several large datasets available, NiDB is an extensible platform appropriately suited to archive and distribute shared neuroimaging data. PMID:25888923

  16. Eclipse Parallel Tools Platform

    SciTech Connect

    Watson, Gregory; DeBardeleben, Nathan; Rasmussen, Craig

    2005-02-18

    Designing and developing parallel programs is an inherently complex task. Developers must choose from the many parallel architectures and programming paradigms that are available, and face a plethora of tools that are required to execute, debug, and analyze parallel programs i these environments. Few, if any, of these tools provide any degree of integration, or indeed any commonality in their user interfaces at all. This further complicates the parallel developer's task, hampering software engineering practices, and ultimately reducing productivity. One consequence of this complexity is that best practice in parallel application development has not advanced to the same degree as more traditional programming methodologies. The result is that there is currently no open-source, industry-strength platform that provides a highly integrated environment specifically designed for parallel application development. Eclipse is a universal tool-hosting platform that is designed to providing a robust, full-featured, commercial-quality, industry platform for the development of highly integrated tools. It provides a wide range of core services for tool integration that allow tool producers to concentrate on their tool technology rather than on platform specific issues. The Eclipse Integrated Development Environment is an open-source project that is supported by over 70 organizations, including IBM, Intel and HP. The Eclipse Parallel Tools Platform (PTP) plug-in extends the Eclipse framwork by providing support for a rich set of parallel programming languages and paradigms, and a core infrastructure for the integration of a wide variety of parallel tools. The first version of the PTP is a prototype that only provides minimal functionality for parallel tool integration of a wide variety of parallel tools. The first version of the PTP is a prototype that only provides minimal functionality for parallel tool integration, support for a small number of parallel architectures, and basis

  17. Learning through Literature: Geography, Intermediate.

    ERIC Educational Resources Information Center

    Sterling, Mary Ellen

    This resource book provides specific strategies and activities for integrating the intermediate geography curriculum with related children's literature selections. The book includes the following sections: (1) "World Geography Overview"; (2) "Oceans"; (3) "Polar Regions"; (4) "Islands"; (5) "Rain Forests"; (6) "Mountains"; (7) "Forests"; (8)…

  18. Intermediality and the Child Performer

    ERIC Educational Resources Information Center

    Budd, Natasha

    2016-01-01

    This report details examples of praxis in the creation and presentation of "Joy Fear and Poetry": an intermedial theatre performance in which children aged 7-12 years generated aesthetic gestures using a range of new media forms. The impetus for the work's development was a desire to make an intervention into habituated patterns of…

  19. Material Voices: Intermediality and Autism

    ERIC Educational Resources Information Center

    Trimingham, Melissa; Shaughnessy, Nicola

    2016-01-01

    Autism continues to be regarded enigmatically; a community that is difficult to access due to perceived disruptions of interpersonal connectedness. Through detailed observations of two children participating in the Arts and Humanities Research Council funded project "Imagining Autism: Drama, Performance and Intermediality as Interventions for…

  20. Susu Intermediate Course. Final Report.

    ERIC Educational Resources Information Center

    Sangster, Linda W.; Faber, Emmanuel

    This intermediate text in Susu is intended to provide the student of Susu with further practice on the grammatical constructions learned in the Basic Course. (See related document AL 001 956.) It is also intended to provide the student with some practice in reading Susu, and to help him gain some appreciation of the cultural life of the Susu in…

  1. Intermediate Filaments: A Historical Perspective

    PubMed Central

    Oshima, Robert G.

    2007-01-01

    Intracellular protein filaments intermediate in size between actin microfilaments and microtubules are composed of a surprising variety of tissue specific proteins commonly interconnected with other filamentous systems for mechanical stability and decorated by a variety of proteins that provide specialized functions. The sequence conservation of the coiled-coil, alpha-helical structure responsible for polymerization into individual 10 nm filaments defines the classification of intermediate filament proteins into a large gene family. Individual filaments further assemble into bundles and branched cytoskeletons visible in the light microscope. However, it is the diversity of the variable terminal domains that likely contributes most to different functions. The search for the functions of intermediate filament proteins has led to discoveries of roles in diseases of the skin, heart, muscle, liver, brain, adipose tissues and even premature aging. The diversity of uses of intermediate filaments as structural elements and scaffolds for organizing the distribution of decorating molecules contrasts with other cytoskeletal elements. This review is an attempt to provide some recollection of how such a diverse field emerged and changed over about 30 years. PMID:17493611

  2. Intermediate Nepali Structure. Volume 1.

    ERIC Educational Resources Information Center

    Verma, M. K.; Sharma, T. N.

    This volume is made up of 20 lessons and is part of a comprehensive course in intermediate Nepali. It explains and illustrates the basic structures of Nepali grammar through lessons which include different tense forms, postpositions, conditionals, comparatives, and other structural elements. The first lesson is devoted specifically to guiding…

  3. Cestina pro Pokrocile (Intermediate Czech).

    ERIC Educational Resources Information Center

    Kabat, Grazyna; And Others

    The textbook in intermediate Czech is designed for second-year students of the language and those who already have a basic knowledge of Czech grammar and vocabulary. It is appropriate for use in a traditional college language classroom, the business community, or a government language school. It can be covered in a year-long conventional…

  4. Floating platform with monolithically formed float members and platform

    SciTech Connect

    Finsterwalder, U.

    1981-06-30

    Floating platforms for various offshore facilities are formed of float members monolithically connected to a superposed platform. The float members are spherically shaped and are formed of reinforced or prestressed concrete. The platform can be a hollow planar member or it can be curved in one or two directions, and the platforms are formed of prestressed concrete. Cylindrical shafts can be used to connect the spherically shaped floats and the platform. Individual floating platforms can be connected by expansion joints and used as a runway. The float members can be constructed at the shoreline, launched into the water and held in a regular pattern while decked over with the platform. After completion of the construction procedure, the floating platform can be moved to an offshore location for use.

  5. Mobility platform coupling device and method for coupling mobility platforms

    DOEpatents

    Shirey, David L.; Hayward, David R.; Buttz, James H.

    2002-01-01

    A coupling device for connecting a first mobility platform to a second mobility platform in tandem. An example mobility platform is a robot. The coupling device has a loose link mode for normal steering conditions and a locking position, tight link mode for navigation across difficult terrain and across obstacles, for traversing chasms, and for navigating with a reduced footprint in tight steering conditions.

  6. Impact of sulfur dioxide oxidation by Stabilized Criegee Intermediate on sulfate

    EPA Science Inventory

    We revise the Carbon Bond chemical mechanism to explicitly represent three Stabilized Criegee Intermediates (SCIs) and their subsequent reactions with sulfur dioxide, water monomer, and water dimer, and incorporate the reactions into the Community Multiscale Air Quality model. Th...

  7. CONSIDERATION OF REACTION INTERMEDIATES IN STRUCTURE-ACTIVITY RELATIONSHIPS: A KEY TO UNDERSTANDING AND PREDICTION

    EPA Science Inventory

    Consideration of Reaction Intermediates in Structure- Activity Relationships: A Key to Understanding and Prediction

    A structure-activity relationship (SAR) represents an empirical means for generalizing chemical information relative to biological activity, and is frequent...

  8. A selection platform for carbon chain elongation using the CoA-dependent pathway to produce linear higher alcohols.

    PubMed

    Machado, Hidevaldo B; Dekishima, Yasumasa; Luo, Hao; Lan, Ethan I; Liao, James C

    2012-09-01

    Production of green chemicals and fuels using metabolically engineered organisms has been a promising alternative to petroleum-based production. Higher chain alcohols (C4-C8) are of interest because they can be used as chemical feedstock as well as fuels. Recently, the feasibility of n-hexanol synthesis using Escherichia coli has been demonstrated by extending the modified Clostridium CoA-dependent n-butanol synthesis pathway, thereby elongating carbon chain length via reactions in reversed β-oxidation, (or β-reduction). Here, we developed an anaerobic growth selection platform that allows selection or enrichment of enzymes for increased synthesis of C6 and C8 linear alcohols. Using this selection, we were able to improve the carbon flux towards the synthesis of C6 and C8 acyl-CoA intermediates. Replacement of the original enzyme Clostridium acetobutylicum Hbd with Ralstonia eutropha homologue PaaH1 increased production of n-hexanol by 10-fold. Further directed evolution by random mutagenesis of PaaH1 improved n-hexanol and n-octanol production. This anaerobic growth selection platform may be useful for selecting enzymes for production of long-chain alcohols and acids using this CoA-dependent pathway. PMID:22819734

  9. Common tester platform concept.

    SciTech Connect

    Hurst, Michael James

    2008-05-01

    This report summarizes the results of a case study on the doctrine of a common tester platform, a concept of a standardized platform that can be applicable across the broad spectrum of testing requirements throughout the various stages of a weapons program, as well as across the various weapons programs. The common tester concept strives to define an affordable, next-generation design that will meet testing requirements with the flexibility to grow and expand; supporting the initial development stages of a weapons program through to the final production and surveillance stages. This report discusses a concept investing key leveraging technologies and operational concepts combined with prototype tester-development experiences and practical lessons learned gleaned from past weapons programs.

  10. Micro borehole drilling platform

    SciTech Connect

    1996-10-01

    This study by CTES, L.C. meets two main objectives. First, evaluate the feasibility of using coiled tubing (CT) to drill 1.0 inches-2.5 inches diameter directional holes in hard rocks. Second, develop a conceptual design for a micro borehole drilling platform (MBDP) meeting specific size, weight, and performance requirements. The Statement of Work (SOW) in Appendix A contains detailed specifications for the feasibility study and conceptual design.

  11. Secure Sensor Platform

    Energy Science and Technology Software Center (ESTSC)

    2010-08-25

    The Secure Sensor Platform (SSP) software provides a framework of functionality to support the development of low-power autonomous sensors for nuclear safeguards. This framework provides four primary functional blocks of capabilities required to implement autonomous sensors. The capabilities are: communications, security, power management, and cryptography. Utilizing this framework establishes a common set of functional capabilities for seamless interoperability of any sensor based upon the SSP concept.

  12. HPC - Platforms Penta Chart

    SciTech Connect

    Trujillo, Angelina Michelle

    2015-10-08

    Strategy, Planning, Acquiring- very large scale computing platforms come and go and planning for immensely scalable machines often precedes actual procurement by 3 years. Procurement can be another year or more. Integration- After Acquisition, machines must be integrated into the computing environments at LANL. Connection to scalable storage via large scale storage networking, assuring correct and secure operations. Management and Utilization – Ongoing operations, maintenance, and trouble shooting of the hardware and systems software at massive scale is required.

  13. The Prodiguer Messaging Platform

    NASA Astrophysics Data System (ADS)

    Greenslade, Mark; Denvil, Sebastien; Raciazek, Jerome; Carenton, Nicolas; Levavasseur, Guillame

    2014-05-01

    CONVERGENCE is a French multi-partner national project designed to gather HPC and informatics expertise to innovate in the context of running French climate models with differing grids and at differing resolutions. Efficient and reliable execution of these models and the management and dissemination of model output (data and meta-data) are just some of the complexities that CONVERGENCE aims to resolve. The Institut Pierre Simon Laplace (IPSL) is responsible for running climate simulations upon a set of heterogenous HPC environments within France. With heterogeneity comes added complexity in terms of simulation instrumentation and control. Obtaining a global perspective upon the state of all simulations running upon all HPC environments has hitherto been problematic. In this presentation we detail how, within the context of CONVERGENCE, the implementation of the Prodiguer messaging platform resolves complexity and permits the development of real-time applications such as: 1. a simulation monitoring dashboard; 2. a simulation metrics visualizer; 3. an automated simulation runtime notifier; 4. an automated output data & meta-data publishing pipeline; The Prodiguer messaging platform leverages a widely used open source message broker software called RabbitMQ. RabbitMQ itself implements the Advanced Message Queue Protocol (AMPQ). Hence it will be demonstrated that the Prodiguer messaging platform is built upon both open source and open standards.

  14. The Prodiguer Messaging Platform

    NASA Astrophysics Data System (ADS)

    Denvil, S.; Greenslade, M. A.; Carenton, N.; Levavasseur, G.; Raciazek, J.

    2015-12-01

    CONVERGENCE is a French multi-partner national project designed to gather HPC and informatics expertise to innovate in the context of running French global climate models with differing grids and at differing resolutions. Efficient and reliable execution of these models and the management and dissemination of model output are some of the complexities that CONVERGENCE aims to resolve.At any one moment in time, researchers affiliated with the Institut Pierre Simon Laplace (IPSL) climate modeling group, are running hundreds of global climate simulations. These simulations execute upon a heterogeneous set of French High Performance Computing (HPC) environments. The IPSL's simulation execution runtime libIGCM (library for IPSL Global Climate Modeling group) has recently been enhanced so as to support hitherto impossible realtime use cases such as simulation monitoring, data publication, metrics collection, simulation control, visualizations … etc. At the core of this enhancement is Prodiguer: an AMQP (Advanced Message Queue Protocol) based event driven asynchronous distributed messaging platform. libIGCM now dispatches copious amounts of information, in the form of messages, to the platform for remote processing by Prodiguer software agents at IPSL servers in Paris. Such processing takes several forms: Persisting message content to database(s); Launching rollback jobs upon simulation failure; Notifying downstream applications; Automation of visualization pipelines; We will describe and/or demonstrate the platform's: Technical implementation; Inherent ease of scalability; Inherent adaptiveness in respect to supervising simulations; Web portal receiving simulation notifications in realtime.

  15. "Platform switching": serendipity.

    PubMed

    Kalavathy, N; Sridevi, J; Gehlot, Roshni; Kumar, Santosh

    2014-01-01

    Implant dentistry is the latest developing field in terms of clinical techniques, research, material science and oral rehabilitation. Extensive work is being done to improve the designing of implants in order to achieve better esthetics and function. The main drawback with respect to implant restoration is achieving good osseointegration along with satisfactory stress distribution, which in turn will improve the prognosis of implant prosthesis by reducing the crestal bone loss. Many concepts have been developed with reference to surface coating of implants, surgical techniques for implant placement, immediate and delayed loading, platform switching concept, etc. This article has made an attempt to review the concept of platform switching was in fact revealed accidentally due to the nonavailability of the abutment appropriate to the size of the implant placed. A few aspect of platform switching, an upcoming idea to reduce crestal bone loss have been covered. The various methods used for locating and preparing the data were done through textbooks, Google search and related articles. PMID:24992863

  16. Reactive chromophores for sensitive and selective detection of chemical warfare agents and toxic industrial chemicals

    NASA Astrophysics Data System (ADS)

    Frye-Mason, Greg; Leuschen, Martin; Wald, Lara; Paul, Kateri; Hancock, Lawrence F.

    2005-05-01

    A reactive chromophore developed at MIT exhibits sensitive and selective detection of surrogates for G-class nerve agents. This reporter acts by reacting with the agent to form an intermediate that goes through an internal cyclization reaction. The reaction locks the molecule into a form that provides a strong fluorescent signal. Using a fluorescent sensor platform, Nomadics has demonstrated rapid and sensitive detection of reactive simulants such as diethyl chloro-phosphate (simulant for sarin, soman, and related agents) and diethyl cyanophosphate (simulant for tabun). Since the unreacted chromophore does not fluoresce at the excitation wavelength used for the cyclized reporter, the onset of fluo-rescence can be easily detected. This fluorescence-based detection method provides very high sensitivity and could enable rapid detection at permissible exposure levels. Tests with potential interferents show that the reporter is very selective, with responses from only a few highly toxic, electrophilic chemicals such as phosgene, thionyl chloride, and strong acids such as HF, HCl, and nitric acid. Dimethyl methyl phosphonate (DMMP), a common and inactive simu-lant for other CW detectors, is not reactive enough to generate a signal. The unique selectivity to chemical reactivity means that a highly toxic and hazardous chemical is present when the reporter responds and illustrates that this sensor can provide very low false alarm rates. Current efforts focus on demonstrating the sensitivity and range of agents and toxic industrial chemicals detected with this reporter as well as developing additional fluorescent reporters for a range of chemical reactivity classes. The goal is to produce a hand-held sensor that can sensitively detect a broad range of chemical warfare agent and toxic industrial chemical threats.

  17. How much can an intermediate state influence competing reactive pathways?

    NASA Astrophysics Data System (ADS)

    Despa, Florin; Berry, R. Stephen

    2004-03-01

    A molecule undergoing reaction may form a short-lived intermediate. Under certain conditions, the rate at which the reaction proceeds toward the product state via the intermediate may exceed that of a simple, direct path. The competition of two alternative reactive pathways is analyzed here in terms of a stochastic model. The approach allows one to diagnose this competition as a function of the energy of the intermediate relative to the barrier heights of the potential surface and values of the reactive vibrational modes. The result has applications to a variety of problems in chemical physics, ranging from the "lock-and-key" mechanism for the enzymatic activity to control of temporal evolution of complex systems by optimal laser fields.

  18. Eclipse Parallel Tools Platform

    Energy Science and Technology Software Center (ESTSC)

    2005-02-18

    Designing and developing parallel programs is an inherently complex task. Developers must choose from the many parallel architectures and programming paradigms that are available, and face a plethora of tools that are required to execute, debug, and analyze parallel programs i these environments. Few, if any, of these tools provide any degree of integration, or indeed any commonality in their user interfaces at all. This further complicates the parallel developer's task, hampering software engineering practices,more » and ultimately reducing productivity. One consequence of this complexity is that best practice in parallel application development has not advanced to the same degree as more traditional programming methodologies. The result is that there is currently no open-source, industry-strength platform that provides a highly integrated environment specifically designed for parallel application development. Eclipse is a universal tool-hosting platform that is designed to providing a robust, full-featured, commercial-quality, industry platform for the development of highly integrated tools. It provides a wide range of core services for tool integration that allow tool producers to concentrate on their tool technology rather than on platform specific issues. The Eclipse Integrated Development Environment is an open-source project that is supported by over 70 organizations, including IBM, Intel and HP. The Eclipse Parallel Tools Platform (PTP) plug-in extends the Eclipse framwork by providing support for a rich set of parallel programming languages and paradigms, and a core infrastructure for the integration of a wide variety of parallel tools. The first version of the PTP is a prototype that only provides minimal functionality for parallel tool integration of a wide variety of parallel tools. The first version of the PTP is a prototype that only provides minimal functionality for parallel tool integration, support for a small number of parallel architectures

  19. Mechanics of vimentin intermediate filaments

    NASA Technical Reports Server (NTRS)

    Wang, Ning; Stamenovic, Dimitrijie

    2002-01-01

    It is increasingly evident that the cytoskeleton of living cells plays important roles in mechanical and biological functions of the cells. Here we focus on the contribution of intermediate filaments (IFs) to the mechanical behaviors of living cells. Vimentin, a major structural component of IFs in many cell types, is shown to play an important role in vital mechanical and biological functions such as cell contractility, migration, stiffness, stiffening, and proliferation.

  20. Integrated Proteomic Approaches for Understanding Toxicity of Environmental Chemicals

    EPA Science Inventory

    To apply quantitative proteomic analysis to the evaluation of toxicity of environmental chemicals, we have developed an integrated proteomic technology platform. This platform has been applied to the analysis of the toxic effects and pathways of many important environmental chemi...

  1. Branching of keratin intermediate filaments.

    PubMed

    Nafeey, Soufi; Martin, Ines; Felder, Tatiana; Walther, Paul; Felder, Edward

    2016-06-01

    Keratin intermediate filaments (IFs) are crucial to maintain mechanical stability in epithelial cells. Since little is known about the network architecture that provides this stiffness and especially about branching properties of filaments, we addressed this question with different electron microscopic (EM) methods. Using EM tomography of high pressure frozen keratinocytes, we investigated the course of several filaments in a branching of a filament bundle. Moreover we found several putative bifurcations in individual filaments. To verify our observation we also visualized the keratin network in detergent extracted keratinocytes with scanning EM. Here bifurcations of individual filaments could unambiguously be identified additionally to bundle branchings. Interestingly, identical filament bifurcations were also found in purified keratin 8/18 filaments expressed in Escherichia coli which were reassembled in vitro. This excludes that an accessory protein contributes to the branch formation. Measurements of the filament cross sectional areas showed various ratios between the three bifurcation arms. This demonstrates that intermediate filament furcation is very different from actin furcation where an entire new filament is attached to an existing filament. Instead, the architecture of intermediate filament bifurcations is less predetermined and hence consistent with the general concept of IF formation. PMID:27039023

  2. Chemical Addressability of Ultraviolet-Inactivated Viral Nanoparticles (VNPs)

    PubMed Central

    Rae, Chris; Koudelka, Kristopher J.; Destito, Giuseppe; Estrada, Mayra N.; Gonzalez, Maria J.; Manchester, Marianne

    2008-01-01

    Background Cowpea Mosaic Virus (CPMV) is increasingly being used as a nanoparticle platform for multivalent display of molecules via chemical bioconjugation to the capsid surface. A growing variety of applications have employed the CPMV multivalent display technology including nanoblock chemistry, in vivo imaging, and materials science. CPMV nanoparticles can be inexpensively produced from experimentally infected cowpea plants at high yields and are extremely stable. Although CPMV has not been shown to replicate in mammalian cells, uptake in mammalian cells does occur in vitro and in vivo. Thus, inactivation of the virus RNA genome is important for biosafety considerations, however the surface characteristics and chemical reactivity of the particles must be maintained in order to preserve chemical and structural functionality. Methodology/Principal Findings Short wave (254 nm) UV irradiation was used to crosslink the RNA genome within intact particles. Lower doses of UV previously reported to inactivate CPMV infectivity inhibited symptoms on inoculated leaves but did not prohibit systemic virus spread in plants, whereas higher doses caused aggregation of the particles and an increase in chemical reactivity further indicating broken particles. Intermediate doses of 2.0–2.5 J/cm2 were shown to maintain particle structure and chemical reactivity, and cellular binding properties were similar to CPMV-WT. Conclusions These studies demonstrate that it is possible to inactivate CPMV infectivity while maintaining particle structure and function, thus paving the way for further development of CPMV nanoparticles for in vivo applications. PMID:18830402

  3. Photocrystallographic Observation of Halide-Bridged Intermediates in Halogen Photoeliminations

    PubMed Central

    2015-01-01

    Polynuclear transition metal complexes, which frequently constitute the active sites of both biological and chemical catalysts, provide access to unique chemical transformations that are derived from metal–metal cooperation. Reductive elimination via ligand-bridged binuclear intermediates from bimetallic cores is one mechanism by which metals may cooperate during catalysis. We have established families of Rh2 complexes that participate in HX-splitting photocatalysis in which metal–metal cooperation is credited with the ability to achieve multielectron photochemical reactions in preference to single-electron transformations. Nanosecond-resolved transient absorption spectroscopy, steady-state photocrystallography, and computational modeling have allowed direct observation and characterization of Cl-bridged intermediates (intramolecular analogues of classical ligand-bridged intermediates in binuclear eliminations) in halogen elimination reactions. On the basis of these observations, a new class of Rh2 complexes, supported by CO ligands, has been prepared, allowing for the isolation and independent characterization of the proposed halide-bridged intermediates. Direct observation of halide-bridged structures establishes binuclear reductive elimination as a viable mechanism for photogenerating energetic bonds. PMID:25264809

  4. The Geohazards Exploitation Platform

    NASA Astrophysics Data System (ADS)

    Laur, Henri; Casu, Francesco; Bally, Philippe; Caumont, Hervé; Pinto, Salvatore

    2016-04-01

    The Geohazards Exploitation Platform, or Geohazards TEP (GEP), is an ESA originated R&D activity of the EO ground segment to demonstrate the benefit of new technologies for large scale processing of EO data. This encompasses on-demand processing for specific user needs, systematic processing to address common information needs of the geohazards community, and integration of newly developed processors for scientists and other expert users. The platform supports the geohazards community's objectives as defined in the context of the International Forum on Satellite EO and Geohazards organised by ESA and GEO in Santorini in 2012. The GEP is a follow on to the Supersites Exploitation Platform (SSEP) an ESA initiative to support the Geohazards Supersites & Natural Laboratories initiative (GSNL). Today the GEP allows to exploit 70+ Terabyte of ERS and ENVISAT archive and the Copernicus Sentinel-1 data available on line. The platform has already engaged 22 European early adopters in a validation activity initiated in March 2015. Since September, this validation has reached 29 single user projects. Each project is concerned with either integrating an application, running on demand processing or systematically generating a product collection using an application available in the platform. The users primarily include 15 geoscience centres and universities based in Europe: British Geological Survey (UK), University of Leeds (UK), University College London (UK), ETH University of Zurich (CH), INGV (IT), CNR-IREA and CNR-IRPI (IT), University of L'Aquila (IT), NOA (GR), Univ. Blaise Pascal & CNRS (FR), Ecole Normale Supérieure (FR), ISTERRE / University of Grenoble-Alpes (FR). In addition, there are users from Africa and North America with the University of Rabat (MA) and the University of Miami (US). Furthermore two space agencies and four private companies are involved: the German Space Research Centre DLR (DE), the European Space Agency (ESA), Altamira Information (ES

  5. Automated Platform Management System Scheduling

    NASA Technical Reports Server (NTRS)

    Hull, Larry G.

    1990-01-01

    The Platform Management System was established to coordinate the operation of platform systems and instruments. The management functions are split between ground and space components. Since platforms are to be out of contact with the ground more than the manned base, the on-board functions are required to be more autonomous than those of the manned base. Under this concept, automated replanning and rescheduling, including on-board real-time schedule maintenance and schedule repair, are required to effectively and efficiently meet Space Station Freedom mission goals. In a FY88 study, we developed several promising alternatives for automated platform planning and scheduling. We recommended both a specific alternative and a phased approach to automated platform resource scheduling. Our recommended alternative was based upon use of exactly the same scheduling engine in both ground and space components of the platform management system. Our phased approach recommendation was based upon evolutionary development of the platform. In the past year, we developed platform scheduler requirements and implemented a rapid prototype of a baseline platform scheduler. Presently we are rehosting this platform scheduler rapid prototype and integrating the scheduler prototype into two Goddard Space Flight Center testbeds, as the ground scheduler in the Scheduling Concepts, Architectures, and Networks Testbed and as the on-board scheduler in the Platform Management System Testbed. Using these testbeds, we will investigate rescheduling issues, evaluate operational performance and enhance the platform scheduler prototype to demonstrate our evolutionary approach to automated platform scheduling. The work described in this paper was performed prior to Space Station Freedom rephasing, transfer of platform responsibility to Code E, and other recently discussed changes. We neither speculate on these changes nor attempt to predict the impact of the final decisions. As a consequence some of our

  6. Structural Insights into Intermediate Steps in the Sir2 Deacetylation Reaction

    SciTech Connect

    Hawse, William F.; Hoff, Kevin G.; Fatkins, David G.; Daines, Alison; Zubkova, Olga V.; Schramm, Vern L.; Zheng, Weiping; Wolberger, Cynthia

    2010-07-22

    Sirtuin enzymes comprise a unique class of NAD{sup +}-dependent protein deacetylases. Although structures of many sirtuin complexes have been determined, structural resolution of intermediate chemical steps are needed to understand the deacetylation mechanism. We report crystal structures of the bacterial sirtuin, Sir2Tm, in complex with an S-alkylamidate intermediate, analogous to the naturally occurring O-alkylamidate intermediate, and a Sir2Tm ternary complex containing a dissociated NAD{sup +} analog and acetylated peptide. The structures and biochemical studies reveal critical roles for the invariant active site histidine in positioning the reaction intermediate, and for a conserved phenylalanine residue in shielding reaction intermediates from base exchange with nicotinamide. The new structural and biochemical studies provide key mechanistic insight into intermediate steps of the Sir2 deacetylation reaction.

  7. Tension leg platform system

    SciTech Connect

    Burns, R.B.

    1983-12-20

    A tension leg platform system for use in drilling wellbores into the floor of an offshore body of water. Includes in the system is a buoyancy control vessel having a plurality of pull down cables attached thereto which extend to the ocean floor. A plurality of spaced apart anchors disposed at the ocean floor are positioned to receive the lower ends of the respective pull down cables. A submergible hull slidably engages the respective hold down cables such that the hull can be controllably lowered to the ocean floor whereby a canopy carried on the hull will cover an uncontrollably flowing well to conduct the effluent to the water's surface.

  8. Reinforced concrete offshore platform

    SciTech Connect

    Martyshenko, J.P.; Martyshenko, S.J.; Kotelnikov, J.S.; Kutukhtin, E.G.; Petrosian, M.S.; Ilyasova, N.I.; Volkov, J.S.; Vardanian, A.M.

    1987-10-20

    A reinforced concrete offshore platform is described comprising a honeycomb foundation (A), a supporting structure (B) and an above-surface section (C) carrying appropriate equipment. The honeycomb foundation (A) and the supporting structure (B) are made of prefabricated reinforced concrete elements which are polyhedral hollow prisms arranged with gaps between the external sides thereof and joined by a system of prestressed vertical diaphragm walls and horizontal diaphragm walls formed by pre-tensioning reinforcing bars placed in the gaps between the faces of the prisms and casting in-situ the gaps later on.

  9. Materials for Intermediate-Temperature Solid-Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Kilner, John A.; Burriel, Mónica

    2014-07-01

    Solid-oxide fuel cells are devices for the efficient conversion of chemical energy to electrical energy and heat. Research efforts are currently addressed toward the optimization of cells operating at temperatures in the region of 600°C, known as intermediate-temperature solid-oxide fuel cells, for which materials requirements are very stringent. In addition to the requirements of mechanical and chemical compatibility, the materials must show a high degree of oxide ion mobility and electrochemical activity at this low temperature. Here we mainly examine the criteria for the development of two key components of intermediate-temperature solid-oxide fuel cells: the electrolyte and the cathode. We limit the discussion to novel approaches to materials optimization and focus on the fluorite oxide for electrolytes, principally those based on ceria and zirconia, and on perovskites and perovskite-related families in the case of cathodes.

  10. Role of Intermediate Filaments in Vesicular Traffic

    PubMed Central

    Margiotta, Azzurra; Bucci, Cecilia

    2016-01-01

    Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway. PMID:27120621

  11. Role of Intermediate Filaments in Vesicular Traffic.

    PubMed

    Margiotta, Azzurra; Bucci, Cecilia

    2016-01-01

    Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway. PMID:27120621

  12. Open systems storage platforms

    NASA Technical Reports Server (NTRS)

    Collins, Kirby

    1992-01-01

    The building blocks for an open storage system includes a system platform, a selection of storage devices and interfaces, system software, and storage applications CONVEX storage systems are based on the DS Series Data Server systems. These systems are a variant of the C3200 supercomputer with expanded I/O capabilities. These systems support a variety of medium and high speed interfaces to networks and peripherals. System software is provided in the form of ConvexOS, a POSIX compliant derivative of 4.3BSD UNIX. Storage applications include products such as UNITREE and EMASS. With the DS Series of storage systems, Convex has developed a set of products which provide open system solutions for storage management applications. The systems are highly modular, assembled from off the shelf components with industry standard interfaces. The C Series system architecture provides a stable base, with the performance and reliability of a general purpose platform. This combination of a proven system architecture with a variety of choices in peripherals and application software allows wide flexibility in configurations, and delivers the benefits of open systems to the mass storage world.

  13. Cots Correlator Platform

    NASA Astrophysics Data System (ADS)

    Schaaf, Kjeld; Overeem, Ruud

    2004-06-01

    Moore’s law is best exploited by using consumer market hardware. In particular, the gaming industry pushes the limit of processor performance thus reducing the cost per raw flop even faster than Moore’s law predicts. Next to the cost benefits of Common-Of-The-Shelf (COTS) processing resources, there is a rapidly growing experience pool in cluster based processing. The typical Beowulf cluster of PC’s supercomputers are well known. Multiple examples exists of specialised cluster computers based on more advanced server nodes or even gaming stations. All these cluster machines build upon the same knowledge about cluster software management, scheduling, middleware libraries and mathematical libraries. In this study, we have integrated COTS processing resources and cluster nodes into a very high performance processing platform suitable for streaming data applications, in particular to implement a correlator. The required processing power for the correlator in modern radio telescopes is in the range of the larger supercomputers, which motivates the usage of supercomputer technology. Raw processing power is provided by graphical processors and is combined with an Infiniband host bus adapter with integrated data stream handling logic. With this processing platform a scalable correlator can be built with continuously growing processing power at consumer market prices.

  14. Platform for Action: update.

    PubMed

    1995-01-01

    The Center for Women's Global Leadership (CWGL) has collaborated in the preparation of amendments and strategies designed to withstand the challenges being posed to the Platform for Action of the Fourth World Conference on Women. Specific challenges include the inappropriate use of the word "universal" to modify "human rights." This implies that some human rights are less than universal. The strategy proposed is to accept the use of the word "universal" in this context only when it affirms principles of universality contained in the Vienna Programme of Action and not where its use would restrict the rights to which women are entitled. A second concern is over the use of the word "equity" rather than "equality" when referring to gender relations. The use of these terms will be carefully monitored to insure that "equity" not be used to undermine the principle of gender equality. The third concern is the efforts of some governments to hinder the integration of women's human rights throughout the UN system. Such efforts will be opposed. Fourth, the CWGL will seek the inclusion of language which recognizes the barriers that different groups of women face when trying to secure their rights. Finally, the CWGL will propose inclusion of language recognizing and protecting sexual orientation rights. The CWGL is also going to work to translate the abstract language of the Platform for Action into political organizing potential to insure that governments will follow through on their agreements. PMID:12346441

  15. The LMC Intermediate and Populations

    NASA Astrophysics Data System (ADS)

    Olszewski, E. W.

    I will discuss our current understanding of the intermediate and old populations of the LMC. Dominant themes will be what those populations tell us about the relative ages of the oldest components of the Milky Way and LMC, what they tell us about the star formation history of the LMC, and what they tell us about the presence or absence of a halo (as we understand that term in the Milky Way) in the LMC. Topics not discussed at previous Magellanic Cloud meetings include the ages of the oldest LMC clusters from HST data, and the seeming lack of agreement between deep luminosity function analyses and distributions of abundances of red giants.

  16. Geosynchronous platform definition study. Volume 5: Geosynchronous platform synthesis

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The development is described of the platform configurations, support subsystems, mission equipment, and servicing concepts. A common support module is developed; subsystem concepts are traded off; data relay, TDRS, earth observational, astro-physics, and advanced navigation and traffic control mission equipment concepts are postulated; and ancillary equipment required for delivery and on-orbit servicing interfaces with geosynchronous platforms is grossly defined. The general approach was to develop a platform concept capable of evolving through three on-orbit servicing modes: remote, EVA, and shirtsleeve. The definition of the equipment is to the assembly level. Weight, power, and volumetric data are compiled for all the platforms.

  17. White Dwarfs in Intermediate Polars

    NASA Astrophysics Data System (ADS)

    Belle, Kunegunda E.; Sion, E. M.

    2009-01-01

    Intermediate polars (IPs), magnetic cataclysmic variables (CVs) in which the white dwarf (WD) has an intermediate strength magnetic field (B< 5 MG), present an interesting laboratory for the study of the evolution of CVs as they contain elements of both non-magnetic and magnetic systems. Do magnetic CVs and IPs evolve in the same manner as non-magnetic systems? One answer in this puzzle may come from understanding the nature of the white dwarf in a magnetic CV. Standard CV evolution theory predicts a white dwarf temperature for a given CV orbital period and accretion rate. By investigating the temperature of white dwarfs in IPs and comparing the temperatures to those predicted from theory, we can learn where IPs fit into the model of CV evolution. Here we present the results of our continued study of the nature of WDs in IPs. We compare temperatures derived from model fits to UV spectra with temperatures calculated based on the accretion rate and binary orbital period. Our preliminary results indicate that IPs follow the general trend of magnetic CVs containing cooler WDs than non-magnetic CVs.

  18. Turbine blade platform seal

    DOEpatents

    Zagar, Thomas W.; Schiavo, Anthony L.

    2001-01-01

    A rotating blade group 90 for a turbo-machine having an improved device for sealing the gap 110 between the edges 112,114 of adjacent blade platforms 96,104. The gap 110 between adjacent blades 92,100 is sealed by a seal pin 20 its central portion 110 and by a seal plate 58,60 at each of the front 54 and rear 56 portions. The seal plates 58,60 are inserted into corresponding grooves 62,64 formed in the adjacent edges 112,114 of adjoining blades 92,100 and held in place by end plates 40,42. The end of the seal plates 58,60 may be chamfered 78,80 to improve the seal against the end plate 40,42. The seal pin 20 provides the required damping between the blades 92,100 and the seal plates 58,60 provide improved sealing effectiveness.

  19. Energy Tracking Software Platform

    SciTech Connect

    Ryan Davis; Nathan Bird; Rebecca Birx; Hal Knowles

    2011-04-04

    Acceleration has created an interactive energy tracking and visualization platform that supports decreasing electric, water, and gas usage. Homeowners have access to tools that allow them to gauge their use and track progress toward a smaller energy footprint. Real estate agents have access to consumption data, allowing for sharing a comparison with potential home buyers. Home builders have the opportunity to compare their neighborhood's energy efficiency with competitors. Home energy raters have a tool for gauging the progress of their clients after efficiency changes. And, social groups are able to help encourage members to reduce their energy bills and help their environment. EnergyIT.com is the business umbrella for all energy tracking solutions and is designed to provide information about our energy tracking software and promote sales. CompareAndConserve.com (Gainesville-Green.com) helps homeowners conserve energy through education and competition. ToolsForTenants.com helps renters factor energy usage into their housing decisions.

  20. Platform evolution studies

    NASA Technical Reports Server (NTRS)

    Walton, Barbara A.

    1990-01-01

    The polar orbiting platform (POP), being developed by the Work Package 3 (WP3) Project at the Goddard Space Flight Center, will play a key role in the NASA Leadership Initiative, Mission to Planet Earth (MPE). It becomes, with the addition of payloads, an Earth observation satellite observatory. Mission to Planet Earth also has geostationary platforms (GEOP) as part of its global observational system. A study was begun in March 1988 to assess the applicability of the POP orbital replacement units (ORUs) for a geostationary Earth observing mission. Two test cases, representative of MPE payloads, were studied. Case A was used to emphasize the GEOP configuration and design; it used a Titan/Centaur to achieve orbit. Case B, considered to be much further in the future, included some assembly at the Space Station Freedom manned base and use of an orbital transfer vehicle to achieve orbit; requirements on the manned base to support such a mission were emphasized. The study found the POP systems more than adequate to meet GEOP requirements. Two types of changes were required for the POP ORUs: (1) modification to use only one surface for heat rejection; for the battery ORU, this meant 'opening up' the ORU to retain the radiator area with a corresponding decrease in depth; and (2) deletion of equipment not needed. The Case A configuration was shown to be within the planned capability of the Titan IV/Centaur. Assembly requirements were included for the Case B configuration, which is driven by the large microwave antennas of two of the payloads. The final review was April 19, 1989.

  1. Intermediate Filaments in Caenorhabditis elegans.

    PubMed

    Zuela, Noam; Gruenbaum, Yosef

    2016-01-01

    More than 70 different genes in humans and 12 different genes in Caenorhabditis elegans encode the superfamily of intermediate filament (IF) proteins. In C. elegans, similar to humans, these proteins are expressed in a cell- and tissue-specific manner, can assemble into heteropolymers and into 5-10nm wide filaments that account for the principal structural elements at the nuclear periphery, nucleoplasm, and cytoplasm. At least 5 of the 11 cytoplasmic IFs, as well as the nuclear IF, lamin, are essential. In this chapter, we will include a short review of our current knowledge of both cytoplasmic and nuclear IFs in C. elegans and will describe techniques used for their analyses. PMID:26795488

  2. A Platform to Stand On

    ERIC Educational Resources Information Center

    Texley, Juliana; Adelstein, David

    2006-01-01

    One of the most powerful technology tools available to science teachers is often the least used. A course management system (CMS) is a web-based application that provides an online distance learning platform for teachers and students. CMS platforms such as Blackboard, WebCT, Jenzabar, and Desire-2-Learn provide many opportunities for good science…

  3. Intermediate magnetite formation during dehydration of goethite

    NASA Astrophysics Data System (ADS)

    Özdemir, Özden; Dunlop, David J.

    2000-04-01

    The dehydration of goethite has been studied by low-temperature induced magnetization (LTIM) and X-ray diffraction on well-characterized acicular crystals. Fresh samples were heated in air to temperatures between 155°C and 610°C. Goethite and hematite were the magnetically dominant phases after all runs except 500°C and 610°C, for which only hematite was found. However, partially dehydrated goethites after the 238-402°C runs had broad peaks or inflections in the LTIM curves around 120 K, suggesting the formation of an intermediate spinel phase. These samples were next given a saturation remanence in a field of 2 T at 10 K and the remanence was measured continuously during zero-field warming to 300 K. There was a decrease in remanence at the Verwey transition (120 K), diagnostic of magnetite. The possible formation of a small amount of magnetite is of serious concern in studies of goethite-bearing sediments and rocks. Chemical remanent magnetization (CRM) of this strongly magnetic spinel phase could significantly modify the direction as well as the intensity of the original goethite CRM. As well, it would be a new source of paleomagnetic noise as far as primary remanence carried by other mineral phases is concerned.

  4. Reproducible Experiment Platform

    NASA Astrophysics Data System (ADS)

    Likhomanenko, Tatiana; Rogozhnikov, Alex; Baranov, Alexander; Khairullin, Egor; Ustyuzhanin, Andrey

    2015-12-01

    Data analysis in fundamental sciences nowadays is an essential process that pushes frontiers of our knowledge and leads to new discoveries. At the same time we can see that complexity of those analyses increases fast due to a) enormous volumes of datasets being analyzed, b) variety of techniques and algorithms one have to check inside a single analysis, c) distributed nature of research teams that requires special communication media for knowledge and information exchange between individual researchers. There is a lot of resemblance between techniques and problems arising in the areas of industrial information retrieval and particle physics. To address those problems we propose Reproducible Experiment Platform (REP), a software infrastructure to support collaborative ecosystem for computational science. It is a Python based solution for research teams that allows running computational experiments on shared datasets, obtaining repeatable results, and consistent comparisons of the obtained results. We present some key features of REP based on case studies which include trigger optimization and physics analysis studies at the LHCb experiment.

  5. Prototype space fabrication platform

    NASA Astrophysics Data System (ADS)

    Bessel, James A.; Ceney, James M.; Crean, David M.; Ingham, Edward A.; Pabst, David J.

    1993-12-01

    Current plans for constructing large structures in space entail fabricating the primary components, such as truss segments, on the ground and assembling them in space. This process requires an exorbitant number of support missions, and methods to minimize the number must be considered. Whenever the space shuttle is launched, its external tank is jettisoned and destroyed prior to reaching orbit. This aerospace grade aluminum structure can be carried into orbit and utilized extrusively. The Prototype Space Fabrication Platform (SFP) fabricates aluminum materials, reduced from external tanks, into functional trusses. The trusses are strong and can be used as the primary components for future structures in space. The fabrication process produces a continuous truss allowing the end user to determine the length. The SFP can fabricate the same amount of truss from one external tank as four dedicated shuttle missions can deliver in the cargo bay. The SFP utilizes electrodynamic propulsion, via shielded coils, for maneuvering. The novel propulsion system facilitates a versatile payload transportation and delivery capability. The SFP can continuously track a target from all directions. The tracking system is ideal for docking since plume impingement is not a concern. With the assistance of remote manipulators, the SFP can deliver a payload in a wide variety of orientations. Under most conditions, the remote manipulator and maneuvering commands originate from ground workstations. Required manned presence is greatly reduced, and the time when the space shuttle is off station is effectively utilized. The logistical complications, currently inhibiting advancement in space, can be eliminated.

  6. Reduction of matrix interferences in furnace atomic absorption with the L'vov Platform

    USGS Publications Warehouse

    Kaiser, M.L.; Koirtyohann, S.R.; Hinderberger, E.J.; Taylor, H.E.

    1981-01-01

    Use of a modified L'vov Platform and ammonium phosphate as a matrix modifier greatly reduced matrix interferences in a commercial Massmann-type atomic absorption furnace. Platforms were readily fabricated from furnace tubes and, once positioned in the furnace, caused no inconvenience in operation. Two volatile elements (Pb, Cd), two of intermediate volatility (Co, Cr) and two which form stable oxides (Al, Sn) were tested in natural water and selected synthetic matrices. In every case for which there was a significant matrix effect during atomization from the tube wall, the platform and platform plus modifier gave improved performance. With lead, for example, an average ratio of 0.48 ?? 0.11 was found when the slope of the standard additions plot for six different natural water samples was compared to the slope of the standard working curve in dilute acid. The average slope ratio between the natural water matrices and the dilute acid matrix was 0.94 ?? 0.03 with the L'vov Platform and 0.96 ?? 0.03 with the platform and matrix modifier. In none of the cases studied did the use of the platform or platform plus modifier cause an interference problem where none existed while atomizing from the tube wall. An additional benefit of the platform was a factor of about two improvement in peak height precision. ?? 1981.

  7. Microbial metabolomics in open microscale platforms

    PubMed Central

    Barkal, Layla J.; Theberge, Ashleigh B.; Guo, Chun-Jun; Spraker, Joe; Rappert, Lucas; Berthier, Jean; Brakke, Kenneth A.; Wang, Clay C. C.; Beebe, David J.; Keller, Nancy P.; Berthier, Erwin

    2016-01-01

    The microbial secondary metabolome encompasses great synthetic diversity, empowering microbes to tune their chemical responses to changing microenvironments. Traditional metabolomics methods are ill-equipped to probe a wide variety of environments or environmental dynamics. Here we introduce a class of microscale culture platforms to analyse chemical diversity of fungal and bacterial secondary metabolomes. By leveraging stable biphasic interfaces to integrate microculture with small molecule isolation via liquid–liquid extraction, we enable metabolomics-scale analysis using mass spectrometry. This platform facilitates exploration of culture microenvironments (including rare media typically inaccessible using established methods), unusual organic solvents for metabolite isolation and microbial mutants. Utilizing Aspergillus, a fungal genus known for its rich secondary metabolism, we characterize the effects of culture geometry and growth matrix on secondary metabolism, highlighting the potential use of microscale systems to unlock unknown or cryptic secondary metabolites for natural products discovery. Finally, we demonstrate the potential for this class of microfluidic systems to study interkingdom communication between fungi and bacteria. PMID:26842393

  8. Microbial metabolomics in open microscale platforms.

    PubMed

    Barkal, Layla J; Theberge, Ashleigh B; Guo, Chun-Jun; Spraker, Joe; Rappert, Lucas; Berthier, Jean; Brakke, Kenneth A; Wang, Clay C C; Beebe, David J; Keller, Nancy P; Berthier, Erwin

    2016-01-01

    The microbial secondary metabolome encompasses great synthetic diversity, empowering microbes to tune their chemical responses to changing microenvironments. Traditional metabolomics methods are ill-equipped to probe a wide variety of environments or environmental dynamics. Here we introduce a class of microscale culture platforms to analyse chemical diversity of fungal and bacterial secondary metabolomes. By leveraging stable biphasic interfaces to integrate microculture with small molecule isolation via liquid-liquid extraction, we enable metabolomics-scale analysis using mass spectrometry. This platform facilitates exploration of culture microenvironments (including rare media typically inaccessible using established methods), unusual organic solvents for metabolite isolation and microbial mutants. Utilizing Aspergillus, a fungal genus known for its rich secondary metabolism, we characterize the effects of culture geometry and growth matrix on secondary metabolism, highlighting the potential use of microscale systems to unlock unknown or cryptic secondary metabolites for natural products discovery. Finally, we demonstrate the potential for this class of microfluidic systems to study interkingdom communication between fungi and bacteria. PMID:26842393

  9. Sensing platforms for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Zheng, Shijie; Naik, Gautam; Chen, Zhongbi; Zhu, Yinian; Krishnaswamy, Sridhar

    2013-04-01

    The emerging concept of structural health management relies on extensive onboard diagnostic sensors that can provide near real-time information about the state of a structure so that informed prognostic assessment can be made of the continuing reliability of the structure. In this paper, we will discuss two types of sensing platforms that can provide valuable information about the state of a structure: 1D fiber-optic sensors and 2D thin-film sensors. Both fiber-optic and thin film sensors are easily integrated with structures, and can offer local and/or distributed sensing capabilities. Parameters that can be sensed include: static and dynamic strain, acoustic emission, vibration, corrosion products, moisture ingression etc. We will first describe some recent developments in dynamic strain sensing using optical fiber Bragg grating (FBG) sensors. Applications to detection of acoustic emission and impact will be described. In the area of chemical sensing, we will describe a nanofilm-coated photonic crystal fiber (PCF) long-period grating (LPG) sensing platform. PCF-LPG sensors can be designed to provide greater interaction between the analyte of interest and the light propagating in the fiber, thereby increasing the sensitivity of detection. Applications to humidity sensing will be described. Finally, 2D thin-film sensors on polymer substrates will be discussed. One type of sensor we have been fabricating is based on reduced graphene oxide for large-area chemical sensing applications. It is expected that these 1D and 2D sensing platforms will form part of a suite of sensors that can provide diagnostic structural health information.

  10. An unprecedented single platform via cross-linking of zeolite and MOFs.

    PubMed

    Lim, Dae-Woon; Lee, Heeju; Kim, Sungjune; Cho, In Hwa; Yoon, Minyoung; Choi, Yong Nam

    2016-05-21

    The unprecedented ternary nanocomposites have been synthesized as a single platform via cross-linking of two nanoporous materials, MOFs and Pt nanoparticle (NP) loaded zeolite. The heterojunction of the novel nanocomposites is anticipated to work as a chemical platform for size selective catalytic hydrogenation or deuteration of small molecules. PMID:27086901

  11. Modeling of intermediate phase growth

    SciTech Connect

    Umantsev, A.

    2007-01-15

    We introduced a continuum method for modeling of intermediate phase growth and numerically simulated three common experimental situations relevant to the physical metallurgy of soldering: growth of intermetallic compound layer from an unlimited amount of liquid and solid solders and growth of the compound from limited amounts of liquid solder. We found qualitative agreements with the experimental regimes of growth in all cases. For instance, the layer expands in both directions with respect to the base line when it grows from solid solder, and grows into the copper phase when the solder is molten. The quantitative agreement with the sharp-interface approximation was also achieved in these cases. In the cases of limited amounts of liquid solder we found the point of turnaround when the compound/solder boundary changed the direction of its motion. Although such behavior had been previously observed experimentally, the simulations revealed important information: the turnaround occurs approximately at the time of complete saturation of solder with copper. This result allows us to conclude that coarsening of the intermetallic compound structure starts only after the solder is practically saturated with copper.

  12. Experiments in intermediate energy physics

    SciTech Connect

    Dehnhard, D.

    2003-02-28

    Research in experimental nuclear physics was done from 1979 to 2002 primarily at intermediate energy facilities that provide pion, proton, and kaon beams. Particularly successful has been the work at the Los Alamos Meson Physics Facility (LAMPF) on unraveling the neutron and proton contributions to nuclear ground state and transition densities. This work was done on a wide variety of nuclei and with great detail on the carbon, oxygen, and helium isotopes. Some of the investigations involved the use of polarized targets which allowed the extraction of information on the spin-dependent part of the triangle-nucleon interaction. At the Indiana University Cyclotron Facility (IUCF) we studied proton-induced charge exchange reactions with results of importance to astrophysics and the nuclear few-body problem. During the first few years, the analysis of heavy-ion nucleus scattering data that had been taken prior to 1979 was completed. During the last few years we created hypernuclei by use of a kaon beam at Brookhaven National Laboratory (BNL) and an electron beam at Jefferson Laboratory (JLab). The data taken at BNL for a study of the non-mesonic weak decay of the A particle in a nucleus are still under analysis by our collaborators. The work at JLab resulted in the best resolution hypernuclear spectra measured thus far with magnetic spectrometers.

  13. Intermediate Energy Metabolism of Leptospira

    PubMed Central

    Baseman, J. B.; Cox, C. D.

    1969-01-01

    Metabolic studies were performed on three representative serotypes of Leptospira: a water isolate designated B16 and two pathogenic serotypes, pomona and schueffneri. Examination of whole cells of B16 for their ability to oxidize various substrates revealed that oleate significantly stimulated oxygen uptake. The respiratory quotient of 0.7 implied that oleate was degraded to carbon dioxide and water. Other substrates, such as carbohydrates, alcohols, intermediates of the citric acid cycle, and short-chain acids, including selected amino acids, did not stimulate endogenous respiration of whole cells. No oxygen uptake could be measured when cell-free extracts were tested with the substrates used with whole cells. Enzymatic analyses of cell-free extracts of the three strains demonstrated enzymes of the citric acid cycle, enzymes of the glycolytic and pentose pathways, and the general acyl coenzyme A dehydrogenase required for β-oxidation of fatty acids. Strain B16 and the two pathogenic serotypes appeared to possess similar metabolic capabilities. Enzymatic data might also explain the apparent inability of B16 to oxidize other substrates; kinases necessary for activation of common nonphosphorylated compounds were not detected in leptospiral extracts. These findings emphasized the dependence of leptospiral growth upon long-chain fatty acids. PMID:5776541

  14. Methods for Determining the Cellular Functions of Vimentin Intermediate Filaments.

    PubMed

    Ridge, Karen M; Shumaker, Dale; Robert, Amélie; Hookway, Caroline; Gelfand, Vladimir I; Janmey, Paul A; Lowery, Jason; Guo, Ming; Weitz, David A; Kuczmarski, Edward; Goldman, Robert D

    2016-01-01

    The type III intermediate filament protein vimentin was once thought to function mainly as a static structural protein in the cytoskeleton of cells of mesenchymal origin. Now, however, vimentin is known to form a dynamic, flexible network that plays an important role in a number of signaling pathways. Here, we describe various methods that have been developed to investigate the cellular functions of the vimentin protein and intermediate filament network, including chemical disruption, photoactivation and photoconversion, biolayer interferometry, soluble bead binding assay, three-dimensional substrate experiments, collagen gel contraction, optical-tweezer active microrheology, and force spectrum microscopy. Using these techniques, the contributions of vimentin to essential cellular processes can be probed in ever further detail. PMID:26795478

  15. Storage Stability and Improvement of Intermediate Moisture Foods, Phase 3

    NASA Technical Reports Server (NTRS)

    Labuza, T. P.

    1975-01-01

    Methods were determined for the improvement of shelf-life stability of intermediate moisture foods (IMF). Microbial challenge studies showed that protection against molds and Staphylococcus aureus could be achieved by a combination of antimicrobial agents, humectants and food acids. Potassium sorbate and propylene glycol gave the best results. It was also confirmed that the maximum in heat resistance shown by vegetative pathogens at intermediate water activities also occurred in a solid food. Glycols and sorbitol both achieve browning inhibition because of their action as a medium for reaction and effect on viscosity of the adsorbed phase. Chemical availability results showed rapid lysine loss before visual discoloration occurred. This is being confirmed with a biological test using Tetrahymena pyriformis W. Accelerated temperature tests show that effectiveness of food antioxidants against rancidity development can be predicted; however, the protection factor changes with temperature. BHA was found to be the best antioxidant for iron catalyzed oxidation.

  16. Intermediate-Band Photometric Luminosity Descrimination for M Stars

    NASA Astrophysics Data System (ADS)

    Robertson, T. H.; Furiak, N. M.

    1995-12-01

    Synthetic photometry has been used to design an intermediate-band filter to be used with CCD cameras to facilitate the luminosity classification of M stars. Spectrophotometric data published by Gunn & Stryker (1983) were used to test various bandwidths and centers. Based on these calculations an intermediate-band filter has been purchased. This filter is being used in conjunction with standard BVRI filters to test its effectiveness in luminosity classification of M stars having a wide range of temperatures and different chemical compositions. The results of the theoretical calculations, filter design specifications and preliminary results of the testing program are presented. This research is supported in part by funds provided by Ball State University, The Fund for Astrophysical Research and the Indiana Academy of Science.

  17. Methods for Determining the Cellular Functions of Vimentin Intermediate Filaments

    PubMed Central

    Ridge, Karen M.; Shumaker, Dale; Robert, Amélie; Hookway, Caroline; Gelfand, Vladimir I.; Janmey, Paul A.; Lowery, Jason; Guo, Ming; Weitz, David A.; Kuczmarski, Edward; Goldman, Robert D.

    2016-01-01

    The type III intermediate filament protein vimentin was once thought to function mainly as a static structural protein in the cytoskeleton of cells of mesenchymal origin. Now, however, vimentin is known to form a dynamic, flexible network that plays an important role in a number of signaling pathways. Here, we describe various methods that have been developed to investigate the cellular functions of the vimentin protein and intermediate filament network, including chemical disruption, photoactivation and photoconversion, biolayer interferometry, soluble bead binding assay, three-dimensional substrate experiments, collagen gel contraction, optical-tweezer active microrheology, and force spectrum microscopy. Using these techniques, the contributions of vimentin to essential cellular processes can be probed in ever further detail. PMID:26795478

  18. Creating new growth platforms.

    PubMed

    Laurie, Donald L; Doz, Yves L; Sheer, Claude P

    2006-05-01

    Sooner or later, most companies can't attain the growth rates expected by their boards and CEOs and demanded by investors. To some extent, such businesses are victims of their own successes. Many were able to sustain high growth rates for a long time because they were in high-growth industries. But once those industries slowed down, the businesses could no longer deliver the performance that investors had come to take for granted. Often, companies have resorted to acquisition, though this strategy has a discouraging track record. Over time, 65% of acquisitions destroy more value than they create. So where does real growth come from? For the past 12 years, the authors have been researching and advising companies on this issue. With the support of researchers at Harvard Business School and Insead, they instituted a project titled "The CEO Agenda and Growth". They identified and approached 24 companies that had achieved significant organic growth and interviewed their CEOs, chief strategists, heads of R&D, CFOs, and top-line managers. They asked, "Where does your growth come from?" and found a consistent pattern in the answers. All the businesses grew by creating new growth platforms (NGPs) on which they could build families of products and services and extend their capabilities into multiple new domains. Identifying NGP opportunities calls for executives to challenge conventional wisdom. In all the companies studied, top management believed that NGP innovation differed significantly from traditional product or service innovation. They had independent, senior-level units with a standing responsibility to create NGPs, and their CEOs spent as much as 50% of their time working with these units. The payoff has been spectacular and lasting. For example, from 1985 to 2004, the medical devices company Medtronic grew revenues at 18% per year, earnings at 20%, and market capitalization at 30%. PMID:16649700

  19. Space platform advanced technology study

    NASA Technical Reports Server (NTRS)

    Burns, G.

    1981-01-01

    Current and past space platform and power module studies were utilized to point the way to areas of development for mechanical devices that will be required for the ultimate implementation of a platform erected and serviced by the Shuttle/Orbiter. The study was performed in accordance with a study plan which included: a review of space platform technology; orbiter berthing system requirements; berthing latch interface requirements, design, and model fabrication; berthing umbilical interface requirements and design; adaptive end effector design and model fabrication; and adaptive end effector requirements.

  20. Micro-chemical synthesis of molecular probes on an electronic microfluidic device

    PubMed Central

    Keng, Pei Yuin; Chen, Supin; Ding, Huijiang; Sadeghi, Saman; Shah, Gaurav J.; Dooraghi, Alex; Phelps, Michael E.; Satyamurthy, Nagichettiar; Chatziioannou, Arion F.; Kim, Chang-Jin “CJ”; van Dam, R. Michael

    2012-01-01

    We have developed an all-electronic digital microfluidic device for microscale chemical synthesis in organic solvents, operated by electrowetting-on-dielectric (EWOD). As an example of the principles, we demonstrate the multistep synthesis of [18F]FDG, the most common radiotracer for positron emission tomography (PET), with high and reliable radio-fluorination efficiency of [18F]FTAG (88 ± 7%, n = 11) and quantitative hydrolysis to [18F]FDG (> 95%, n = 11). We furthermore show that batches of purified [18F]FDG can successfully be used for PET imaging in mice and that they pass typical quality control requirements for human use (including radiochemical purity, residual solvents, Kryptofix, chemical purity, and pH). We report statistical repeatability of the radiosynthesis rather than best-case results, demonstrating the robustness of the EWOD microfluidic platform. Exhibiting high compatibility with organic solvents and the ability to carry out sophisticated actuation and sensing of reaction droplets, EWOD is a unique platform for performing diverse microscale chemical syntheses in small volumes, including multistep processes with intermediate solvent-exchange steps. PMID:22210110

  1. Nuclear structure at intermediate energies

    SciTech Connect

    Bonner, B.E.; Mutchler, G.S.

    1991-09-30

    The theme that unites the sometimes seemingly disparate experiments undertaken by the Bonner Lab Medium Energy Group is a determination to understand in detail the many facets and manifestations of the strong interaction, that which is now referred to as nonperturbative QCD. Whether we are investigating the question of just what does carry the spin of baryons, or the extent of the validity of the SU(6) wavefunctions for the excited hyperons (as will be measured in their radiative decays in our CEBAF experiment), or questions associated with the formation of a new state of matter predicted by QCD (the subject of our BNL experiments E810, E854, as well as our approved experiment at RHIC), -- all these projects share this common goal. Our other experiments represent different approaches to the same broad undertaking. LAMPF E1097 will provide definitive answers to the question of the spin dependence of the inelastic channel of pion production in the n-p interaction. FNAL E683 may well open a new field of investigation in nuclear physics: that of just how quarks and gluons interact with nuclear matter as they transverse nuclei of different sizes. In most all of the experiments mentioned above, the Bonner Lab Group is playing major leadership roles as well as doing a big fraction of the hard work that such experiments require. We use many of the facilities that are unavailable to the intermediate energy physics community and we use our expertise to design and fabricate the detectors and instrumentation that are required to perform the measurements which we decide to do.

  2. Air Conditioning. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Long, William

    Several intermediate performance objectives and corresponding criterion measures are listed for each of seven terminal objectives for an intermediate air conditioning course. The titles of the seven terminal objectives are Refrigeration Cycle, Job Requirement Skills, Air Conditioning, Trouble Shooting, Performance Test, Shop Management, and S.I.E.…

  3. Business Machine Maintenance. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    McMinn, Robert

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 28 terminal objectives presented in this guide for an intermediate business machine maintenance course at the secondary level. (For the basic course guide see CE 010 949.) Titles of the 28 terminal objective sections are Career Opportunities,…

  4. Marine Engine Mechanics. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Jones, Marion

    Several intermediate performance objectives and corresponding criterion measures are presented for each of ten terminal objectives for a two-semester course (3 hours daily). This 540-hour intermediate course includes advanced troubleshooting techniques on outboard marine engines, inboard-outboard marine engines, inboard marine engines, boat…

  5. [Intermediate phenotype studies in psychiatric disorder].

    PubMed

    Hashimoto, Ryota

    2016-02-01

    The concept of intermediate phenotype was proposed by Dr. Weinberger of the National Institute of Mental Health (NIMH). The risk genes for mental disorders define intermediate phenotypes, neurobiological characteristics observed in psychiatric disorders, and intermediate phenotypes increase the risk of mental disorders. The author worked at Dr. Weinberger's laboratory, and after returning home, introduced the concept to Japan, creating a term "Chukanhyogengata" to translate "intermediate phenotype". Intermediate phenotype has been proposed as a tool for the identification of risk genes for mental disorders, spreading the concept as a biomarker for the bridging between genes and behaviors. Intermediate phenotype studies later became one of the main pillars of psychiatric research. As a large number of data and samples are needed for intermediate phenotype research, we built a research resource database that combines the brain phenotype and bioresources. We performed genome-wide association analysis of cognitive decline in schizophrenia and identified the DEGS2 gene using this sample. This research resource database was developed for a multicenter study by COCORO (Cognitive Genetics Collaborative Research Organization). COCORO carried out genome-wide association analysis of the gray matter volume of the superior temporal gyrus and identified genome-wide significant loci. In this paper, we introduce the concept and history of intermediate phenotype study of mental illness and the latest trends. We hope to contribute to the future development of mental illness research through translational research. PMID:27044135

  6. Radio and Television Servicing. Intermediate Course.

    ERIC Educational Resources Information Center

    Campbell, Guy; And Others

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 32 terminal objectives for an intermediate (second year) radio/TV servicing course. This 1-year course (3 hours daily) was designed to provide the student with the basic skills and knowledges necessary for entry level employment in the Radio/TV…

  7. Appliance Services. Intermediate Course. Career Education.

    ERIC Educational Resources Information Center

    Killough, Joseph

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 16 terminal objectives for an intermediate appliance repair course. The materials were developed for a 36-week course (3 hours daily) covering the areas of refrigeration, maintenance, repair, and troubleshooting of refrigerators and air…

  8. Gasoline Engine Mechanics. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Jones, Marion

    Several intermediate performance objectives and corresponding criterion measures are listed for each of six terminal objectives presented in this curriculum guide for an intermediate gasoline engine mechanics course at the secondary level. (For the beginning course guide see CE 010 947.) The materials were developed for a two-semester (2 hour…

  9. Liver resection for intermediate hepatocellular carcinoma

    PubMed Central

    Yi, Peng-Sheng; Zhang, Ming; Zhao, Ji-Tong; Xu, Ming-Qing

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in China. The Barcelona Clinic Liver Cancer (BCLC) staging system is regarded as the gold standard staging system for HCC, classifying HCC as early, intermediate, or advanced. For intermediate HCC, trans-catheter arterial chemoembolization (TACE) is recommended as the optimal strategy by the BCLC guideline. This review investigates whether liver resection is better than TACE for intermediate HCC. Based on published studies, we compare the survival benefits and complications of liver resection and TACE for intermediate HCC. We also compare the survival benefits of liver resection in early and intermediate HCC. We find that liver resection can achieve better or at least comparable survival outcomes compared with TACE for intermediate HCC; however, we do not observe a significant difference between liver resection and TACE in terms of safety and morbidity. We conclude that liver resection may improve the short- and long-term survival of carefully selected intermediate HCC patients, and the procedure may be safely performed in the management of intermediate HCC. PMID:27190577

  10. Automotive Body Repair. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Lang, Thomas

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 10 terminal objectives for an intermediate automotive body repair and refinishing course. The materials were developed for a two-semester (3 hours daily) course for specialized classrooms, shop, and practical experiences designed to enable the…

  11. Diesel Mechanics. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Tidwell, Joseph

    Several intermediate performance objectives and corresponding criterion measures are listed for each of six terminal objectives for an intermediate diesel mechanics course (two semesters, 3 hours daily) designed for high school students who upon completion would be ready for an on-the-job training experience in diesel service and repair. Through…

  12. 39 CFR 3001.39 - Intermediate decisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Intermediate decisions. 3001.39 Section 3001.39... Applicability § 3001.39 Intermediate decisions. (a) Initial decision by presiding officer. In any proceedings in... certify and file with the Secretary, a copy of the record of the hearing and his/her initial decision...

  13. Some Intermediate-Level Violin Concertos.

    ERIC Educational Resources Information Center

    Abramson, Michael

    1997-01-01

    Contends that many violin students attempt difficult concertos before they are technically or musically prepared. Identifies a variety of concertos at the intermediate and advanced intermediate-level for students to study and master before attempting the advanced works by Bach and Mozart. Includes concertos by Vivaldi, Leclair, Viotti, Haydn,…

  14. BETTER EDUCATION THROUGH EFFECTIVE INTERMEDIATE UNITS.

    ERIC Educational Resources Information Center

    RHODES, ALVIN E.

    AN INTERMEDIATE EDUCATION UNIT, ORGANIZED AT THE REGIONAL LEVEL AND COVERING SUFFICIENT AREA TO WARRANT EMPLOYMENT OF A STAFF OF SPECIALISTS, IS CAPABLE OF OFFERING A WIDE VARIETY OF ESSENTIAL SERVICES, AND THUS OCCUPIES A UNIQUE NICHE IN THE EDUCATIONAL SETTING. THE ACTIVITIES OF AN INTERMEDIATE UNIT MAY BE CATEGORIZED INTO (1) ARTICULATIVE, OR…

  15. Programmable data collection platform study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The results of a feasibility study incorporating microprocessors in data collection platforms in described. An introduction to microcomputer hardware and software concepts is provided. The influence of microprocessor technology on the design of programmable data collection platform hardware is discussed. A standard modular PDCP design capable of meeting the design goals is proposed, and the process of developing PDCP programs is examined. A description of design and construction of the UT PDCP development system is given.

  16. Patents protect deepwater platform concepts

    SciTech Connect

    Khurana, S.

    1998-06-22

    Numerous deepwater platform concepts have patents that provide an inventor protection for his new ideas. But an inventor should not be discouraged by the fact that many patents exist. In fact, it may be advantageous to build on existing patents and prior art, and patent new ideas and concepts for reducing costs. Challenges still remain such as for optimizing drilling and production operations simultaneously on deepwater platforms for accessing and producing oil and gas reserves.

  17. The COMET Sleep Research Platform

    PubMed Central

    Nichols, Deborah A.; DeSalvo, Steven; Miller, Richard A.; Jónsson, Darrell; Griffin, Kara S.; Hyde, Pamela R.; Walsh, James K.; Kushida, Clete A.

    2014-01-01

    Introduction: The Comparative Outcomes Management with Electronic Data Technology (COMET) platform is extensible and designed for facilitating multicenter electronic clinical research. Background: Our research goals were the following: (1) to conduct a comparative effectiveness trial (CET) for two obstructive sleep apnea treatments—positive airway pressure versus oral appliance therapy; and (2) to establish a new electronic network infrastructure that would support this study and other clinical research studies. Discussion: The COMET platform was created to satisfy the needs of CET with a focus on creating a platform that provides comprehensive toolsets, multisite collaboration, and end-to-end data management. The platform also provides medical researchers the ability to visualize and interpret data using business intelligence (BI) tools. Conclusion: COMET is a research platform that is scalable and extensible, and which, in a future version, can accommodate big data sets and enable efficient and effective research across multiple studies and medical specialties. The COMET platform components were designed for an eventual move to a cloud computing infrastructure that enhances sustainability, overall cost effectiveness, and return on investment. PMID:25848590

  18. 78 FR 11871 - Certain New Chemicals; Receipt and Status Information

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-20

    ... and silica complex P-13-0151 12/6/2012 3/5/2013 CBI (G) Chemical (G) Vegetable intermediate. oil based... with [(2- water-based ink Aminoalkyl)amin vehicle. o]alkylsulfonic acid monosodium salt. alkyldiol... ether- blocked P-13-0164 12/10/2012 3/9/2013 CBI (G) Chemical (G) intermediate. Benzotriazole...

  19. Laser-induced fluorescence measurement of combustion chemistry intermediates

    NASA Technical Reports Server (NTRS)

    Crosley, David R.

    1986-01-01

    Laser-induced fluorescence (LIF) can measure the trace (often free radical) species encountered as intermediates in combustion chemistry; OH, CS, NH, NS, and NCO are typical of the species detected in flames by LIF. Attention is given to illustrative experiments designed to accumulate a quantitative data base for LIF detection in low pressure flow systems and flames, as well as to flame measurements conducted with a view to the detection of new chemical intermediaries that may deepen insight into the chemistry of combustion.

  20. Absolute Configuration of Hydroxysqualene. An Intermediate in Bacterial Hopanoid Biosynthesis.

    PubMed

    Pan, Jian-Jung; Ramamoorthy, Gurusankar; Poulter, C Dale

    2016-02-01

    Squalene (SQ) is a key intermediate in hopanoid biosynthesis. Many bacteria synthesize SQ from farnesyl diphosphate (FPP) in three steps: FPP to (1R,2R,3R)-presqualene diphosphate (PSPP), (1R,2R,3R)-PSPP to hydroxysqualene (HSQ), and HSQ to SQ. Chemical, biochemical, and spectroscopic methods were used to establish that HSQ synthase synthesizes (S)-HSQ. In contrast, eukaryotic squalene synthase catalyzes solvolysis of (1R,2R,3R)-PSPP to give (R)-HSQ. The bacterial enzyme that reduces HSQ to SQ does not accept (R)-HSQ as a substrate. PMID:26756303

  1. Variability in eastern equatorial Pacific intermediate water circulation during the last glacial termination: the impact of high latitude climate on equatorial stratification

    NASA Astrophysics Data System (ADS)

    Bova, S. C.; Herbert, T.; Mojarro, A.

    2013-12-01

    The eastern equatorial Pacific (EEP) is linked directly to the Southern High latitudes through an oceanic tunneling system that transports Antarctic Intermediate Water (AAIW) and Subantarctic Mode Water (SAMW) directly into the equatorial and Peru Margin upwelling systems (Toggweiler et al. 1991). These intermediate water masses form within the subantarctic zone and flow north, propagating signals of high latitude climate to the low latitude ocean (Kessler 2006). Their heat and salinity content are transported conservatively along their flow path and the high nutrient content of these waters support up to three-fourths of all biological production north of 30°S (Fiedler and Talley 2006, Sarmiento et al. 2004). Thus, variations in the physio-chemical properties and/or transport of these water masses into the low latitude thermocline have vast implications for oceanic heat transport, primary production, and global nutrient cycles (e.g CO2 and N). Here we assess the physio-chemical response of these Southern Ocean intermediate waters to high latitude forcing during the last glacial termination and the impact of these changes on EEP subsurface structure. Alkenone sea surface temperature reconstructions and benthic foraminiferal stable isotopic records from four rapidly accumulating sediment cores from the EEP cold tongue document variation in temperature and salinity gradients at three intermediate water depths (370, 600, and 1000 m). Our records provide evidence for substantial change in water column structure during the last glacial termination. Regional stratification decreased significantly during the deglacial (11-18 ka) relative to the last glacial period and the Holocene due to asynchronous warming of the EEP water column. Deglacial warming began first at 1000 m depth at ~18.2 ka, in phase with southern hemisphere temperatures, while surface warming experienced a 1-2 kyr delay. Additionally, we observe a convergence of oxygen and carbon isotopes across

  2. Value-Added Chemicals from Animal Manure

    SciTech Connect

    Chen, Shulin; Liao, Wei; Liu, Chuanbin; Wen, Zhiyou; Kincaid, R L.; Harrison, J H.; Elliott, Douglas C.; Brown, Michael D.; Solana, Amy E.; Stevens, Don J.

    2003-12-19

    The objective of the project proposed by Washington State University (WSU) and Pacific Northwest National Laboratory (PNNL) was to develop technology for the utilization of animal manures as feedstocks to produce value-added products. These included medium-volume commodity chemicals such as glycols or diols and protein-based products such as chemicals or feed supplements. The research focused on two aspects of this approach including the analysis and treatment of the feedstock to produce intermediate chemical precursors and the aqueous phase conversion of these intermediates to chemicals and other value-added products.

  3. Platform Management System (PMS) evolution

    NASA Technical Reports Server (NTRS)

    Tilley, Mike; Hartley, Jonathan

    1990-01-01

    In fiscal year 1988 a study was begun to define the platform management system (PMS) functions required for the mature platform operations era. The objectives of the task include: (1) defining how to increase the operational productivity of the platform by providing enhanced capability for responding to changing events, (2) influencing the initial PMS design by identifying required 'hooks and scars', and (3) evaluation potential automation techniques that are appropriate given predicted onboard computing resources. Initial platform operations scenarios were defined. The focus was on PMS-related functions where operations enhancements are likely to occur. Operations productivity was defined in terms of scientific productivity of the platform as well as the level of automation of the ground system. The Platform Operations Productivity Enhancement Report was completed earlier this year documenting system enhancements to increase science productivity and ground system automation. Using the baseline PMS defined in the PMS Definition Document as a starting point, the resulting PMS-specific enhancements were molded into a sequence of progressively more sophisticated operations management capabilities. This sequence of upgrades to the PMS has been documented in a PMS Evolution Plan. The plan includes enhancements in the areas of resources scheduling, resource modeling, system and payload anomaly management, and transaction sequence interpretation. A plan for migration of functions from the ground portion of the PMS to the flight portion is also included. The impacts of this plan on the platform are now being documented to ensure that the required 'hooks and scars' are included in the baseline system. Future plans include a prototype of some of the PMS enhancements to address the feasibility of and techniques for implementing these enhancements in the onboard computing environment.

  4. Synthetic Routes to Methylerythritol Phosphate Pathway Intermediates and Downstream Isoprenoids

    PubMed Central

    Jarchow-Choy, Sarah K; Koppisch, Andrew T; Fox, David T

    2014-01-01

    Isoprenoids constitute the largest class of natural products with greater than 55,000 identified members. They play essential roles in maintaining proper cellular function leading to maintenance of human health, plant defense mechanisms against predators, and are often exploited for their beneficial properties in the pharmaceutical and nutraceutical industries. Most impressively, all known isoprenoids are derived from one of two C5-precursors, isopentenyl diphosphate (IPP) or dimethylallyl diphosphate (DMAPP). In order to study the enzyme transformations leading to the extensive structural diversity found within this class of compounds there must be access to the substrates. Sometimes, intermediates within a biological pathway can be isolated and used directly to study enzyme/pathway function. However, the primary route to most of the isoprenoid intermediates is through chemical catalysis. As such, this review provides the first exhaustive examination of synthetic routes to isoprenoid and isoprenoid precursors with particular emphasis on the syntheses of intermediates found as part of the 2C-methylerythritol 4-phosphate (MEP) pathway. In addition, representative syntheses are presented for the monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), triterpenes (C30) and tetraterpenes (C40). Finally, in some instances, the synthetic routes to substrate analogs found both within the MEP pathway and downstream isoprenoids are examined. PMID:25009443

  5. Glycerol as a platform chemical: sweet opportunities on the horizon?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased global production of biodiesel since the late-1990s has created an abundance of crude glycerin that has significantly impacted the glycerin market resulting in a decline in glycerin pricing. Because the economic viability of the biodiesel and oleochemical industries are closely linked to ...

  6. Chemical substructure analysis in toxicology

    SciTech Connect

    Beauchamp, R.O. Jr.

    1990-12-31

    A preliminary examination of chemical-substructure analysis (CSA) demonstrates the effective use of the Chemical Abstracts compound connectivity file in conjunction with the bibliographic file for relating chemical structures to biological activity. The importance of considering the role of metabolic intermediates under a variety of conditions is illustrated, suggesting structures that should be examined that may exhibit potential activity. This CSA technique, which utilizes existing large files accessible with online personal computers, is recommended for use as another tool in examining chemicals in drugs. 2 refs., 4 figs.

  7. Assembly Platform For Use In Outer Space

    NASA Technical Reports Server (NTRS)

    Rao, Niranjan S.; Buddington, Patricia A.

    1995-01-01

    Report describes conceptual platform or framework for use in assembling other structures and spacecraft in outer space. Consists of three fixed structural beams comprising central beam and two cross beams. Robotic manipulators spaced apart on platform to provide telerobotic operation of platform by either space-station or ground crews. Platform and attached vehicles function synergistically to achieve maximum performance for intended purposes.

  8. INL Subsurface Wireless Sensor Platform

    SciTech Connect

    Dennis C. Kunerth; John M. Svoboda; James T. Johnson

    2005-10-01

    The Idaho National Laboratory is developing a versatile micro-power sensor interface platform for periodic subsurface sensing of environmental variables important to waste disposal sites such as volumetric moisture, water potential, and temperature. The key characteristics of the platform architecture are that the platform is passive until externally energized --no internal power source is required -- and that it communicates with a "reader" via short-range telemetry - no wires penetrate the subsurface. Other significant attributes include the potential for a long service life and a compact size that makes it well suited for retrofitting existing landfill structures. Functionally, the sensor package is "read" by a short-range induction coil that activates and powers the sensor platform as well as detects the sensor output via a radio frequency signal generated by the onboard programmable interface controller microchip. As a result, the platform has a functional subsurface communication range of approximately 10 to 12 ft. and can only accept sensors that require low power to operate.

  9. Intermediate/Advanced Research Design and Statistics

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, Robert

    2009-01-01

    The purpose of this module is To provide Institutional Researchers (IRs) with an understanding of the principles of advanced research design and the intermediate/advanced statistical procedures consistent with such designs

  10. The deterioration of intermediate moisture foods

    NASA Technical Reports Server (NTRS)

    Labruza, T. P.

    1971-01-01

    Deteriorative reactions are low and food quality high if intermediate moisture content of a food is held at a water activity of 0.6 to 0.75. Information is of interest to food processing and packaging industry.

  11. Bursts of intermediate ions in atmospheric air

    NASA Astrophysics Data System (ADS)

    Hõrrak, U.; Salm, J.; Tammet, H.

    1998-06-01

    The mobility spectrum of air ions has been measured at Tahkuse Observatory in Estonia for several years. The average concentration of intermediate ions with mobilities of 0.05-0.5 cm2 V-1 s-1 in atmospheric air is about 50 cm-3. On the level of this low background, high concentration bursts of intermediate air ions occur occasionally. A burst can be followed by subsequent evolution of intermediate ions into larger ones. To explain the bursts of intermediate air ions, two hypotheses can be advanced: (1)A burst of neutral particles occurs due to homogeneous nucleation, and the particles are charged by the attachment of cluster ions. (2) The cluster ions grow by ion-induced nucleation in proper environmental conditions.

  12. Single-molecule spectroscopy using microfluidic platforms.

    PubMed

    Kim, Samuel; Zare, Richard N

    2010-01-01

    Microfluidics serves as a convenient platform for single-molecule experiments by providing manipulation of small amounts of liquids and micron-sized particles. An adapted version of capillary electrophoresis (CE) on a microchip can be utilized to separate chemical species with high resolution based on their ionic mobilities (i.e., charges and sizes), but identification of separated species is not trivial, especially for complex mixtures of sticky biomolecules. We describe here how to use a surfactant mixture system for CE on a poly(dimethylsiloxane) (PDMS) microchip, capture separated peaks within a 50-pl chamber using microvalves, analyze the fluorescence signals with correlation spectroscopy to extract molecular diffusion characteristics, and to identify the biomolecular clusters in a model immunocomplex system. PMID:20580962

  13. Leasecraft - A commercial space platform

    NASA Astrophysics Data System (ADS)

    Burrowbridge, D. R.

    The Multimission Modular Spacecraft (MMS) is the result of a NASA program concerned with the identification of new approaches to spacecraft design. A mandatory requirement regarding the MMS was flexibility to accommodatae a wide variety of payloads. MMS derived subsystems will provide a platform in low orbit for scientific, commercial, and government users on a leased or service contract basis. The payload may consist of scientific instruments, materials processing equipment, or remote sensors. Secondary payloads may be mounted in standard MMS module boxes. The platform forms a part of the 'Leasecraft' system, which was developed by an American aerospace company. Attention is given to the Leasecraft vehicle, details regarding the Leasecraft platform, and payload accommodations and Leasecraft missions.

  14. Persistent Monitoring Platforms Final Report

    SciTech Connect

    Bennett, C L

    2007-02-22

    This project was inspired and motivated by the need to provide better platforms for persistent surveillance. In the years since the inception of this work, the need for persistence of surveillance platforms has become even more widely appreciated, both within the defense community and the intelligence community. One of the most demanding technical requirements for such a platform involves the power plant and energy storage system, and this project concentrated almost exclusively on the technology associated with this system for a solar powered, high altitude, unmanned aircraft. An important realization for the feasibility of such solar powered aircraft, made at the outset of this project, was that thermal energy may be stored with higher specific energy density than for any other known practical form of rechargeable energy storage. This approach has proved to be extraordinarily fruitful, and a large number of spin-off applications of this technology were developed in the course of this project.

  15. Data requirements for intermediate energy nuclear applications

    SciTech Connect

    Pearlstein, S.

    1990-01-01

    Several applications that include spallation neutron sources, space radiation effects, biomedical isotope production, accelerator shielding and radiation therapy make use of intermediate energy nuclear data extending to several GeV. The overlapping data needs of these applications are discussed in terms of what projectiles, targets and reactions are of interest. Included is a discussion of what is generally known about these data and what is needed to facilitate their use in intermediate energy applications. 40 refs., 2 figs., 2 tabs.

  16. Chemical Emergencies

    MedlinePlus

    When a hazardous chemical has been released, it may harm people's health. Chemical releases can be unintentional, as in the case of an ... the case of a terrorist attack with a chemical weapon. Some hazardous chemicals have been developed by ...

  17. Identification and Structural Characterization of an Intermediate in the Folding of the Measles Virus X Domain.

    PubMed

    Bonetti, Daniela; Camilloni, Carlo; Visconti, Lorenzo; Longhi, Sonia; Brunori, Maurizio; Vendruscolo, Michele; Gianni, Stefano

    2016-05-13

    Although most proteins fold by populating intermediates, the transient nature of such states makes it difficult to characterize their structures. In this work we identified and characterized the structure of an intermediate of the X domain of phosphoprotein (P) of measles virus. We obtained this result by a combination of equilibrium and kinetic measurements and NMR chemical shifts used as structural restraints in replica-averaged metadynamics simulations. The structure of the intermediate was then validated by rationally designing four mutational variants predicted to affect the stability of this state. These results provide a detailed view of an intermediate state and illustrate the opportunities offered by a synergistic use of experimental and computational methods to describe non-native states at atomic resolution. PMID:27002146

  18. Space platform utilities distribution study

    NASA Technical Reports Server (NTRS)

    Lefever, A. E.

    1980-01-01

    Generic concepts for the installation of power data and thermal fluid distribution lines on large space platforms were discussed. Connections with central utility subsystem modules and pallet interfaces were also considered. Three system concept study platforms were used as basepoints for the detail development. The tradeoff of high voltage low voltage power distribution and the impact of fiber optics as a data distribution mechanism were analyzed. Thermal expansion and temperature control of utility lines and ducts were considered. Technology developments required for implementation of the generic distribution concepts were identified.

  19. Seismic and geologic characteristics of drowning events on carbonate platforms

    SciTech Connect

    Erlich, R.N.; Barrett, S.E. )

    1990-05-01

    Carbonate platform drowning events were recorded in Late Jurassic-Early Cretaceous carbonates of the Baltimore Canyon area, and early Miocene carbonates of the Pearl River Mouth basin. Cursory examination of seismic data from both areas would suggest that the platforms appear to fit the classic definition of a drowning unconformity. Lithologic and paleontologic data however, indicate that depositional hiatuses vary widely in each area (from 0-25 Ma in the Baltimore Canyon area, to no hiatus, but a condensed section in the Pearl River Mouth basin). The sedimentary sequence produced during a drowning event (the drowning sequence) in both areas is gradational with underlying shallow platform carbonates and, in some places, overlying deeper marine limestones and shales. Facies models illustrate that drowning event, in general, can appear as instantaneous or gradual changes in lithologic and seismic data. However, evidence from platforms adjacent to continental margins (Baltimore Canyon) and isolated open ocean atolls and banks (Pearl River Mouth basin) indicates that their response to drowning is different. In addition, bypass/erosional and accretionary carbonate platforms also respond somewhat differently to drowning events. The geologic characteristics of drowning events on carbonate platforms include gradational lower (and sometimes upper) contacts, chemical sedimentation, open-marine shelf sediments, and variable loss of time at the upper boundary. Late-growth shelf margin reefs can also be a diagnostic feature of drowned platforms. Seismic characteristics include horizontal to subhorizontal basinal marine onlap and basin-parallel reflector continuity above the carbonate sequence boundary. Proper recognition of the seismic and geologic characteristics of drowning events can lead to better reservoir-seal predictions, and to correct reconstruction of the depositional and tectonic/eustatic history of an area.

  20. Magnetic Driving Flowerlike Soft Platform: Biomimetic Fabrication and External Regulation.

    PubMed

    Gao, Wei; Wang, Lanlan; Wang, Xingzhe; Liu, Hongzhong

    2016-06-01

    Nature-inspired actuators that can be driven by various stimuli are an emerging application in mobile microrobotics and microfluidics. In this study, a soft and multiple-environment-adaptive robotic platform with ferromagnetic particles impregnated in silicon-based polymer is adopted to fabricate microrobots for minimally invasive locomotion and control interaction with their environment. As an intelligent structure of platform, the change of its bending, deformation, and flapping displacement is rapid, reversible, and continuously controllable with sweeping and multicycle magnetic actuation. The bending angle of the soft platform (0.2 mm in thickness and 8.5 mm in length) can be deflected up to almost 90° within 2.7 s. Experiments demonstrated that the flexible platform of human skin-like material in various shapes, that is, flowerlike shapes, can transport a cargo to targeted area in air and a variety of liquids. It indicates excellent magnetic-actuation ability and good controllability. The results may be helpful in developing a magnetic-driven carrying platform, which can be operated like a human finger to manipulate biological objects such as single cells, microbeads, or embryos. Especially, it is likely to be used in harsh chemical and physical circumstances. PMID:27182884

  1. Laser-treated hydrophobic paper: an inexpensive microfluidic platform.

    PubMed

    Chitnis, Girish; Ding, Zhenwen; Chang, Chun-Li; Savran, Cagri A; Ziaie, Babak

    2011-03-21

    We report a method for fabricating inexpensive microfluidic platforms on paper using laser treatment. Any paper with a hydrophobic surface coating (e.g., parchment paper, wax paper, palette paper) can be used for this purpose. We were able to selectively modify the surface structure and property (hydrophobic to hydrophilic) of several such papers using a CO(2) laser. We created patterns down to a minimum feature size of 62±1 µm. The modified surface exhibited a highly porous structure which helped to trap/localize chemical and biological aqueous reagents for analysis. The treated surfaces were stable over time and were used to self-assemble arrays of aqueous droplets. Furthermore, we selectively deposited silica microparticles on patterned areas to allow lateral diffusion from one end of a channel to the other. Finally, we demonstrated the applicability of this platform to perform chemical reactions using luminol-based hemoglobin detection. PMID:21264372

  2. Microeconomic Concepts Students Should Learn before Intermediate Macroeconomics.

    ERIC Educational Resources Information Center

    Salemi, Michael K.

    1996-01-01

    Identifies four microeconomic concepts students should learn before entering the study of intermediate macroeconomics. Included are relative prices, general versus partial equilibrium, constrained optimization, and the nature of production concepts. Recommends making intermediate microeconomics a prerequisite for intermediate macroeconomics. (MJP)

  3. Earth Science Geostationary Platform Technology

    NASA Technical Reports Server (NTRS)

    Wright, Robert L. (Editor); Campbell, Thomas G. (Editor)

    1989-01-01

    The objective of the workshop was to address problems in science and in four technology areas (large space antenna technology, microwave sensor technology, electromagnetics-phased array adaptive systems technology, and optical metrology technology) related to Earth Science Geostationary Platform missions.

  4. Platform Support for Pedagogical Scenarios

    ERIC Educational Resources Information Center

    Peter, Yvan; Vantroys, Thomas

    2005-01-01

    This article deals with providing support for the execution of pedagogical scenarios in Learning Management Systems. It takes an engineering point of view to identifies actors, design and use processes. Next it defines the necessary capabilities of a platform so that actors can manage or use pedagogical scenarios. The second part of the article is…

  5. 2009 Analysis Platform Review Report

    SciTech Connect

    Ferrell, John

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program’s Analysis platform review meeting, held on February 18, 2009, at the Marriott Residence Inn, National Harbor, Maryland.

  6. NAESP 2009-2010 Platform

    ERIC Educational Resources Information Center

    National Association of Elementary School Principals (NAESP), 2010

    2010-01-01

    The NAESP (National Association of Elementary School Principals) Platform consists of a summary of all resolutions adopted by business meetings and, since 1974, by Delegate Assemblies. Each resolution presented for action by the Delegate Assembly carries with it a rationale for its adoption as well as the specific area and section of the Platform…

  7. 2009 Feedstocks Platform Review Report

    SciTech Connect

    Ferrell, John

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program‘s Feedstock platform review meeting, held on April 8–10, 2009, at the Grand Hyatt Washington, Washington, D.C.

  8. Long range hopping mobility platform.

    SciTech Connect

    Spletzer, Barry Louis; Fischer, Gary John

    2003-03-01

    Sandia National Laboratories has developed a mesoscale hopping mobility platform (Hopper) to overcome the longstanding problems of mobility and power in small scale unmanned vehicles. The system provides mobility in situations such as negotiating tall obstacles and rough terrain that are prohibitive for other small ground base vehicles. The Defense Advanced Research Projects Administration (DARPA) provided the funding for the hopper project.

  9. Spintronic platforms for biomedical applications.

    PubMed

    Freitas, P P; Cardoso, F A; Martins, V C; Martins, S A M; Loureiro, J; Amaral, J; Chaves, R C; Cardoso, S; Fonseca, L P; Sebastião, A M; Pannetier-Lecoeur, M; Fermon, C

    2012-02-01

    Since the fundamental discovery of the giant magnetoresistance many spintronic devices have been developed and implemented in our daily life (e.g. information storage and automotive industry). Lately, advances in the sensors technology (higher sensitivity, smaller size) have potentiated other applications, namely in the biological area, leading to the emergence of novel biomedical platforms. In particular the investigation of spintronics and its application to the development of magnetoresistive (MR) biomolecular and biomedical platforms are giving rise to a new class of biomedical diagnostic devices, suitable for bench top bioassays as well as point-of-care and point-of-use devices. Herein, integrated spintronic biochip platforms for diagnostic and cytometric applications, hybrid systems incorporating magnetoresistive sensors applied to neuroelectronic studies and biomedical imaging, namely magneto-encephalography and magneto-cardiography, are reviewed. Also lab-on-a-chip MR-based platforms to perform biological studies at the single molecule level are discussed. Overall the potential and main characteristics of such MR-based biomedical devices, comparing to the existing technologies while giving particular examples of targeted applications, are addressed. PMID:22146898

  10. 2009 Infrastructure Platform Review Report

    SciTech Connect

    Ferrell, John

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass program‘s Infrastructure platform review meeting, held on February 19, 2009, at the Marriott Residence Inn, National Harbor, Maryland.

  11. Magnetic Particle-Based Hybrid Platforms for Bioanalytical Sensors

    PubMed Central

    Stanciu, Lia; Won, Yu-Ho; Ganesana, Mallikarjunarao; Andreescu, Silvana

    2009-01-01

    Biomagnetic nano and microparticles platforms have attracted considerable interest in the field of biological sensors due to their interesting physico-chemical properties, high specific surface area, good mechanical stability and opportunities for generating magneto-switchable devices. This review discusses recent advances in the development and characterization of active biomagnetic nanoassemblies, their interaction with biological molecules and their use in bioanalytical sensors. PMID:22574058

  12. Control Dewar and VLPC Bayonet Can Platform Connection Design and Analysis

    SciTech Connect

    Kuwazaki, A.; /Fermilab

    1997-07-29

    The four connections for the control dewar and VLPC bayonet can platform are designed, using finite element analysis, to carry all dead weight and live loads. Based on the loads applied to the platform, two 1 inch thick plates and two 3/4 inch thick brackets made of ASTM A572-Grade 42 are required. The 1 inch thick plate requires a 3/8 inch thick intermediate steel material, between the 8-inch x 4-inch x 1/4-inch boom and the plate, for load reinforcement as well as weld area reinforcement. Both the plates and the brackets require 3/4 inch steel bolt connections.

  13. A nanowaveguide platform for collective atom-light interaction

    NASA Astrophysics Data System (ADS)

    Meng, Y.; Lee, J.; Dagenais, M.; Rolston, S. L.

    2015-08-01

    We propose a nanowaveguide platform for collective atom-light interaction through evanescent field coupling. We have developed a 1 cm-long silicon nitride nanowaveguide can use evanescent fields to trap and probe an ensemble of 87Rb atoms. The waveguide has a sub-micrometer square mode area and was designed with tapers for high fiber-to-waveguide coupling efficiencies at near-infrared wavelengths (750 nm to 1100 nm). Inverse tapers in the platform adiabatically transfer a weakly guided mode of fiber-coupled light into a strongly guided mode with an evanescent field to trap atoms and then back to a weakly guided mode at the other end of the waveguide. The coupling loss is -1 dB per facet (˜80% coupling efficiency) at 760 nm and 1064 nm, which is estimated by a propagation loss measurement with waveguides of different lengths. The proposed platform has good thermal conductance and can guide high optical powers for trapping atoms in ultra-high vacuum. As an intermediate step, we have observed thermal atom absorption of the evanescent component of a nanowaveguide and have demonstrated the U-wire mirror magneto-optical trap that can transfer atoms to the proximity of the surface.

  14. Developing a cross-platform port simulation system.

    SciTech Connect

    Nevins, M. R.

    1999-07-08

    With the advent of networked computer systems that connect disparate computer hardware and operating systems, it is important for port simulation systems to be able to run on a wide variety of computer platforms. This paper describes the design and implementation issues in reengineering the PORTSIM model in order to field the model to Windows-based systems as well as to Unix-based systems such as the Sun, Silicon Graphics, and HP workstations. The existing PORTSIM model was written to run on a Sun workstation running Unix. The model was initially implemented in MODSIM and C and utilized embedded SQL to retrieve port, ship, and cargo data from back-end OMCLE databases. Output reports, graphs, and tables for model results were written in C, utilizing third-party graphics libraries. This design and implementation worked well for the intended hardware platform and configuration, but as the number of model users grew and as the capabilities of the model expanded, a need developed to field the model to varying hardware configurations. This new requirement demanded that the existing design be modified to more easily allow for model fielding and maintenance. A phased approach is described that (1) identifies the existing model from which cross-platform development began, (2) delineates an intermediate client-server model that has been developed utilizing Java to allow for greater flexibility and ease in distributing and fielding the model, and (3) describes the final goals to be achieved in this development process.

  15. A nanowaveguide platform for collective atom-light interaction

    SciTech Connect

    Meng, Y.; Dagenais, M.; Lee, J.; Rolston, S. L.

    2015-08-31

    We propose a nanowaveguide platform for collective atom-light interaction through evanescent field coupling. We have developed a 1 cm-long silicon nitride nanowaveguide can use evanescent fields to trap and probe an ensemble of {sup 87}Rb atoms. The waveguide has a sub-micrometer square mode area and was designed with tapers for high fiber-to-waveguide coupling efficiencies at near-infrared wavelengths (750 nm to 1100 nm). Inverse tapers in the platform adiabatically transfer a weakly guided mode of fiber-coupled light into a strongly guided mode with an evanescent field to trap atoms and then back to a weakly guided mode at the other end of the waveguide. The coupling loss is −1 dB per facet (∼80% coupling efficiency) at 760 nm and 1064 nm, which is estimated by a propagation loss measurement with waveguides of different lengths. The proposed platform has good thermal conductance and can guide high optical powers for trapping atoms in ultra-high vacuum. As an intermediate step, we have observed thermal atom absorption of the evanescent component of a nanowaveguide and have demonstrated the U-wire mirror magneto-optical trap that can transfer atoms to the proximity of the surface.

  16. Intermediate load-center photovoltaic application experiments

    SciTech Connect

    Burgess, E. L.

    1980-01-01

    A total of nine intermediate load-center photovoltaic systems were carried into the construction phase this year. These nine systems range in size from 20 to 225 kW/sub p/ electrical output and total almost 1 MW/sub p/. They are being installed in a diverse set of applications and locations and represent the bulk of the photovoltaic initial system evaluation experiments (ISEE) for the intermediate load-center sector. Each of these experiments are briefly described and the status of the construction phase is given for each project.

  17. Intermediate-energy nuclear chemistry workshop

    SciTech Connect

    Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

    1981-05-01

    This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities.

  18. Blue outliers among intermediate redshift quasars

    NASA Astrophysics Data System (ADS)

    Marziani, P.; Sulentic, J. W.; Stirpe, G. M.; Dultzin, D.; Del Olmo, A.; Martínez-Carballo, M. A.

    2016-01-01

    [OIII]λ 5007 "blue outliers"—that are suggestive of outflows in the narrow line region of quasars—appear to be much more common at intermediate z (high luminosity) than at low z. About 40~% of quasars in a Hamburg ESO intermediate z sample of 52 sources qualify as "blue outliers" (i.e., quasars with [OIII]λλ 4959,5007 lines showing large systematic blueshifts with respect to rest frame). We discuss major findings on what has become an intriguing field in active galactic nuclei research and stress the relevance of "blue outliers" to feedback and host galaxy evolution.

  19. Coupling chemical and biological catalysis: a flexible paradigm for producing biobased chemicals.

    PubMed

    Schwartz, Thomas J; Shanks, Brent H; Dumesic, James A

    2016-04-01

    Advances in metabolic engineering have allowed for the development of new biological catalysts capable of selectively de-functionalizing biomass to yield platform molecules that can be upgraded to biobased chemicals using high efficiency continuous processing allowed by heterogeneous chemical catalysis. Coupling these disciplines overcomes the difficulties of selectively activating COH bonds by heterogeneous chemical catalysis and producing petroleum analogues by biological catalysis. We show that carboxylic acids, pyrones, and alcohols are highly flexible platforms that can be used to produce biobased chemicals by this approach. More generally, we suggest that molecules with three distinct functionalities may represent a practical upper limit on the extent of functionality present in the platform molecules that serve as the bridge between biological and chemical catalysis. PMID:26785391

  20. Submerged tank aids platform stability

    SciTech Connect

    Compagnon, J.P.

    1985-05-01

    A new floating platform concept, proposed for the installation of a new lighthouse, 64 km off Ouessant Island, northwest France, in water 130 meters deep, is described. A series of model tests carried out in test tanks in 1983 demonstrated that this new concept is viable in the offshore business as an alternative for deep and rough seas. The key to the success of this design is primarily the location and shape of a large, submerged buoyancy tank - a floater sandwiched between a conventional rig topside and a rigid, vertically suspended counter-weight. The floater balanced by a counter-weight acts as a damper and minimizes the effect of most wave action. This configuration permits a considerable gain in structure weight, improves stability and allows the structure to support a very high deck load with or without storage facilities when used as a production platform.

  1. Potential threats to offshore platforms

    SciTech Connect

    Jenkins, B.M.

    1988-01-01

    Increasingly spectacular acts of terrorism have led to growing concern that terrorists will move beyond the symbols of society and directly attack its technological and industrial vulnerabilities. Offshore platforms have been frequently mentioned among the potential targets terrorists might attack. This concern, however, has not resulted in extensive research like that devoted to possible threats to nuclear facilities, which have also been frequently mentioned as possible future targets of terrorists. For one thing, offshore drilling does not invoke the fear inherent in the word nuclear, a fear that translates directly into heavy security for the nuclear industry. Neither does the construction of offshore platforms provoke anything like the kind of protest generated by the construction of nuclear facilities.

  2. In Vitro Platforms for Evaluating Liver Toxicity

    PubMed Central

    Senutovitch, Nina; Jindal, Rohit; Hegde, Manjunath; Gough, Albert; McCarty, William J; Bakan, Ahmet; Bhushan, Abhinav; Shun, Tong Ying; Golberg, Inna; DeBiasio, Richard; Usta, Berk Osman; Taylor, D. Lansing; Yarmush, Martin L.

    2014-01-01

    The liver is a heterogeneous organ with many vital functions, including metabolism of pharmaceutical drugs and is highly susceptible to injury from these substances. The etiology of drug induced liver disease is still debated although generally regarded as a continuum between an activated immune response and hepatocyte metabolic dysfunction, most often resulting from an intermediate reactive metabolite. This debate stems from the fact that current animal and in vitro models provide limited physiologically relevant information and their shortcomings have resulted in ‘silent’ hepatotoxic drugs being introduced into clinical trials, garnering huge financial losses for drug companies through withdrawals and late stage clinical failures. As we advance our understanding into the molecular processes leading to liver injury, it is increasingly clear that a) the pathologic lesion is not only due to liver parenchyma but is also due to the interactions between the hepatocytes and the resident liver immune cells, stellate cells and endothelial cells; and, b) animal models do not reflect the human cell interactions. Therefore, a predictive human, in vitro model must address the interactions between the major human liver cell types and measure key determinants of injury such as the dosage and metabolism of the drug, the stress response, cholestatic effect, and the immune and fibrotic response. In this mini-review, we first discuss the current state of macro-scale in vitro liver culture systems with examples that have been commercialized. We then introduce the paradigm of microfluidic culture systems that aim to mimic the liver with physiologically relevant dimensions, cellular structure, perfusion and mass transport by taking advantage of micro and nanofabrication technologies. We review the most prominent liver-on-a-chip platforms in terms of their physiological relevance and drug response. We conclude with a commentary on other critical advances such as the deployment of

  3. Microarray platform for omics analysis

    NASA Astrophysics Data System (ADS)

    Mecklenburg, Michael; Xie, Bin

    2001-09-01

    Microarray technology has revolutionized genetic analysis. However, limitations in genome analysis has lead to renewed interest in establishing 'omic' strategies. As we enter the post-genomic era, new microarray technologies are needed to address these new classes of 'omic' targets, such as proteins, as well as lipids and carbohydrates. We have developed a microarray platform that combines self- assembling monolayers with the biotin-streptavidin system to provide a robust, versatile immobilization scheme. A hydrophobic film is patterned on the surface creating an array of tension wells that eliminates evaporation effects thereby reducing the shear stress to which biomolecules are exposed to during immobilization. The streptavidin linker layer makes it possible to adapt and/or develop microarray based assays using virtually any class of biomolecules including: carbohydrates, peptides, antibodies, receptors, as well as them ore traditional DNA based arrays. Our microarray technology is designed to furnish seamless compatibility across the various 'omic' platforms by providing a common blueprint for fabricating and analyzing arrays. The prototype microarray uses a microscope slide footprint patterned with 2 by 96 flat wells. Data on the microarray platform will be presented.

  4. Communications platform payload definition study

    NASA Technical Reports Server (NTRS)

    Clopp, H. W.; Hawkes, T. A.; Bertles, C. R.; Pontano, B. A.; Kao, T.

    1986-01-01

    Large geostationary communications platforms were investigated in a number of studies since 1974 as a possible means to more effectively utilize the geostationary arc and electromagnetic spectrum and to reduce overall satellite communications system costs. The commercial feasibility of various communications platform payload concepts circa 1998 was addressed. Promising payload concepts were defined, recurring costs were estimated, and critical technologies needed to enable eventual commercialization were identified. Ten communications service aggregation scenarios describing potential groupings of service were developed for a range of conditions. Payload concepts were defined for four of these scenarios: (1) Land Mobile Satellite Service (LMSS) meets 100% of Contiguous United States (CONUS) plus Canada demand with a single platform; (2) Fixed Satellite Service (FSS) (trunking + Customer Premises Service (CPS)), meet 20% of CONUS demand;(3) FSS (trunking + CPS + video distribution), 10 to 13% of CONUS demand; and (4) FSS (20% of demand) + Inter Satellite Links (ISL) + Tracking and Data Relay Satellite System (TDRSS)/Tracking and Data Acquisition System (TDAS) Data Distribution.

  5. Small animal radiotherapy research platforms

    NASA Astrophysics Data System (ADS)

    Verhaegen, Frank; Granton, Patrick; Tryggestad, Erik

    2011-06-01

    Advances in conformal radiation therapy and advancements in pre-clinical radiotherapy research have recently stimulated the development of precise micro-irradiators for small animals such as mice and rats. These devices are often kilovolt x-ray radiation sources combined with high-resolution CT imaging equipment for image guidance, as the latter allows precise and accurate beam positioning. This is similar to modern human radiotherapy practice. These devices are considered a major step forward compared to the current standard of animal experimentation in cancer radiobiology research. The availability of this novel equipment enables a wide variety of pre-clinical experiments on the synergy of radiation with other therapies, complex radiation schemes, sub-target boost studies, hypofractionated radiotherapy, contrast-enhanced radiotherapy and studies of relative biological effectiveness, to name just a few examples. In this review we discuss the required irradiation and imaging capabilities of small animal radiation research platforms. We describe the need for improved small animal radiotherapy research and highlight pioneering efforts, some of which led recently to commercially available prototypes. From this, it will be clear that much further development is still needed, on both the irradiation side and imaging side. We discuss at length the need for improved treatment planning tools for small animal platforms, and the current lack of a standard therein. Finally, we mention some recent experimental work using the early animal radiation research platforms, and the potential they offer for advancing radiobiology research.

  6. Review of an intermediate-layer lithography approach

    NASA Astrophysics Data System (ADS)

    Luo, Cheng

    2007-04-01

    Conducting polymers, because of their promising potential to replace silicon and metals in building devices, have attracted great attention since the discovery of high conductivity in doped polyacetylene in 1977. Lithographic techniques present significant technical challenges when working with conducting polymers. Sensitivity of conducting polymers to environmental conditions (e.g., air, oxygen, moisture, high temperature and chemical solutions) makes current photolithographic methods unsuitable for patterning the conducting polymers due to the involvement of wet and/or dry etching processes in those methods. Existing non-photolithographic approaches have limitations in throughput, resolution or electrical insulation. Therefore, an intermediate-layer lithography (ILL) approach has been recently developed by my group to produce conducting polymer micro/nanostructures. In the ILL method, an intermediate layer of an electrically insulating polymer is coated between the substrate and a layer of the conducting polymer to be printed. Subsequently, the conducting polymer is printed through mold insertion using a hot-embossing process. The current hot-embossing based methods face the obstacles of residual layer and depth of field (i.e., the height variation in the mold structures). In contrast, the ILL approach does not leave a residual layer in the material of interest, making conducting polymer patterns isolated from one another and avoiding the shorting problem in the electrical applications of these patterns. Furthermore, in the ILL, the height variation potentially existing among the mold structures has been transferred to the intermediate layer, ensuring that all patterns in the mold have been properly transferred to the conducting polymer layer. In addition to conducting polymers, the ILL can also be applied to pattern metals as well as other types of polymers. This paper gives a review of this ILL method and reports the results that we have achieved to date.

  7. Unmanned Instrument Platform for Undersea Exploration

    NASA Technical Reports Server (NTRS)

    Paine, G.; Hansen, G. R.; Gulizia, R. W.; Paluzzi, P.

    1984-01-01

    Instruments accommodated on moving underwater platform. Towable underwater platform 3.2 meters long, 1.2 meters wide, 1.4 meters high and has mass of about 1,250 kilogram. Platform remotely operated and unmanned. Serves as test bed for development of ocean-measuring instruments and sonars at depths to 20,000 feet.

  8. 29 CFR 452.123 - Elections of intermediate body officers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 2 2013-07-01 2013-07-01 false Elections of intermediate body officers. 452.123 Section... intermediate body officers. Section 401(d) states that officers of intermediate bodies shall be elected either... intermediate bodies. Such delegates may therefore participate in the election of officers of...

  9. 29 CFR 452.123 - Elections of intermediate body officers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 2 2014-07-01 2014-07-01 false Elections of intermediate body officers. 452.123 Section... intermediate body officers. Section 401(d) states that officers of intermediate bodies shall be elected either... intermediate bodies. Such delegates may therefore participate in the election of officers of...

  10. 29 CFR 452.123 - Elections of intermediate body officers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 2 2012-07-01 2012-07-01 false Elections of intermediate body officers. 452.123 Section... intermediate body officers. Section 401(d) states that officers of intermediate bodies shall be elected either... intermediate bodies. Such delegates may therefore participate in the election of officers of...

  11. 29 CFR 452.123 - Elections of intermediate body officers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 2 2010-07-01 2010-07-01 false Elections of intermediate body officers. 452.123 Section... intermediate body officers. Section 401(d) states that officers of intermediate bodies shall be elected either... intermediate bodies. Such delegates may therefore participate in the election of officers of...

  12. 29 CFR 452.123 - Elections of intermediate body officers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 2 2011-07-01 2011-07-01 false Elections of intermediate body officers. 452.123 Section... intermediate body officers. Section 401(d) states that officers of intermediate bodies shall be elected either... intermediate bodies. Such delegates may therefore participate in the election of officers of...

  13. The Usage of an Online Discussion Forum for the Facilitation of Case-Based Learning in an Intermediate Accounting Course: A New Zealand Case

    ERIC Educational Resources Information Center

    Weil, Sidney; McGuigan, Nicholas; Kern, Thomas

    2011-01-01

    This paper describes the implementation of an online discussion forum as a means of facilitating case-based learning in an intermediate financial accounting course. The paper commences with a review of case-based learning literature and the use of online discussions as a delivery platform, linking these pedagogical approaches to the emerging needs…

  14. Generation of free radical intermediates from foreign compounds by neutrophil-derived oxidants.

    PubMed Central

    Kalyanaraman, B; Sohnle, P G

    1985-01-01

    A large number of foreign compounds, including many drugs, industrial pollutants, and environmental chemicals, can be oxidized under appropriate conditions to potentially toxic free radical intermediates. We evaluated the ability of the oxidants produced by the neutrophil myeloperoxidase system to generate free radical intermediates from several such compounds. Sodium hypochlorite or hypochlorous acid produced by human peripheral blood neutrophils and trapped in the form of taurine chloramine were both found to be capable of producing free radicals from chlorpromazine, aminopyrine, and phenylhydrazine. These radical intermediates were demonstrated by visible light spectroscopy and by direct electron spin resonance (for the chlorpromazine and aminopyrine radicals) or by spin-trapping (for the phenyl radical generated from phenylhydrazine). Stable oxidants produced by the neutrophils (i.e., those present in the supernatants of stimulated neutrophils in the absence of added taurine) also were found to be capable of generating free radical intermediates. The production of the oxidants and the ability of neutrophil supernatants to generate these radicals were almost completely eliminated by sodium azide, a myeloperoxidase inhibitor. We suggest that the oxidation by neutrophils of certain chemical compounds to potentially damaging electrophilic free radical forms may represent a new metabolic pathway for these substances and could be important in the processes of drug toxicity and chemical carcinogenesis. PMID:2987307

  15. Teacher Education for the Intermediate School Staff.

    ERIC Educational Resources Information Center

    Stainbrook, James R., Jr.

    The aim of this 1970 investigation was to analyze the professional education of Indiana's intermediate school teachers. This analysis involved a comparison of the data collected from middle and junior high school teachers. Results obtained from the junior high school teachers were also utilized in a second comparison with the findings from a…

  16. The intermediate anomaly. [satellite orbit integration

    NASA Technical Reports Server (NTRS)

    Nacozy, P.

    1977-01-01

    Time transformations of the equation dt = cr to the n ds, where s is a variable called the intermediate anomaly, are known to reduce global error in the solution of gravitational systems obtained by numerical integration. Attention is given to the Sundman time transformation, and its relation to equations of Keplerian elliptical motion.

  17. THE INTERMEDIATE UNIT IN IOWA. (TITLE SUPPLIED).

    ERIC Educational Resources Information Center

    MESSERLI, JOHN H.

    THE INTERMEDIATE UNIT IS A MODEL WHICH WOULD ENABLE TWO OR MORE SCHOOL DISTRICTS TO DEVELOP SEVERAL COOPERATIVE EDUCATIONAL PROGRAMS. REASONS PRESENTED FOR FORMING SUCH A UNIT INCLUDE THE RECOGNITION THAT A MAJORITY OF RURAL SCHOOL DISTRICTS CANNOT BE SELF SUFFICIENT AND THAT SUCH A COOPERATIVE PLAN MAY EFFECT GREAT SAVINGS TO SCHOOL SYSTEMS. ONE…

  18. What Should be Taught in Intermediate Macroeconomics?

    ERIC Educational Resources Information Center

    de Araujo, Pedro; O'Sullivan, Roisin; Simpson, Nicole B.

    2013-01-01

    A lack of consensus remains on what should form the theoretical core of the undergraduate intermediate macroeconomic course. In determining how to deal with the Keynesian/classical divide, instructors must decide whether to follow the modern approach of building macroeconomic relationships from micro foundations, or to use the traditional approach…

  19. A new intermediate in the Prins reaction

    PubMed Central

    Fukuda, Takeshi; Yamazaki, Shoko

    2013-01-01

    Summary Two Prins reactions were investigated by the use of DFT calculations. A model composed of R–CH=CH2 + H3O+(H2O)13 + (H2C=O)2, R = Me and Ph, was adopted to trace reaction paths. For both alkenes, the concerted path forming 1,3-diols was obtained as the rate determining step (TS1). TS stands for a transition state. From the 1,3-diol, a bimolecular elimination (TS2) leads to the allylic alcohol as the first channel. In the second channel, the 1,3-diol was converted via TS3 into an unprecedented hemiacetal intermediate, HO–CH2–O–CH(R)–CH2–CH2–OH. This intermediate undergoes ring closure (TS4), affording the 1,3-dioxane product. The intermediate is of almost the same stability as the product, and two species were suggested to be in a state of equilibrium. While the geometry of TS1 appears to be forwarded to that of a carbocation intermediate, the cation disappeared through the enlargement of the water cluster. Dynamical calculations of a classical trajectory using the atom-centered density matrix propagation molecular dynamics model on the four TSs were carried out, and results of IRC calculations were confirmed by them. PMID:23532354

  20. A new intermediate in the Prins reaction.

    PubMed

    Yamabe, Shinichi; Fukuda, Takeshi; Yamazaki, Shoko

    2013-01-01

    Two Prins reactions were investigated by the use of DFT calculations. A model composed of R-CH=CH2 + H3O(+)(H2O)13 + (H2C=O)2, R = Me and Ph, was adopted to trace reaction paths. For both alkenes, the concerted path forming 1,3-diols was obtained as the rate determining step (TS1). TS stands for a transition state. From the 1,3-diol, a bimolecular elimination (TS2) leads to the allylic alcohol as the first channel. In the second channel, the 1,3-diol was converted via TS3 into an unprecedented hemiacetal intermediate, HO-CH2-O-CH(R)-CH2-CH2-OH. This intermediate undergoes ring closure (TS4), affording the 1,3-dioxane product. The intermediate is of almost the same stability as the product, and two species were suggested to be in a state of equilibrium. While the geometry of TS1 appears to be forwarded to that of a carbocation intermediate, the cation disappeared through the enlargement of the water cluster. Dynamical calculations of a classical trajectory using the atom-centered density matrix propagation molecular dynamics model on the four TSs were carried out, and results of IRC calculations were confirmed by them. PMID:23532354

  1. Giano Intermediate School: The Parent Factor

    ERIC Educational Resources Information Center

    Rourke, James; Hartzman, Marlene

    2009-01-01

    On a Wednesday morning at Giano Intermediate School in West Covina, California, 25 mothers and fathers sit in rapt attention, many taking notes, as a school counselor outlines the morning's Parent Chat. The session is devoted to exploring how well the parents know their children. Parents complete a questionnaire that asks them to answer such…

  2. Moroccan Arabic Intermediate Reader, Part II.

    ERIC Educational Resources Information Center

    Alami, Wali A.; Hodge, Carlton T., Ed.

    The first section of this companion volume to "Moroccan Arabic Intermediate Reader, Part I" (AL 002 041) presents the Arabic script version of the pre-drills in Lessons IA-IIB in that volume. The second and major section comprises 20 lessons consisting of pre-drills, texts, notes, and questions. All material in this volume appears in Arabic script…

  3. A Concurrent Support Course for Intermediate Algebra

    ERIC Educational Resources Information Center

    Cooper, Cameron I.

    2011-01-01

    This article summarizes the creation and implementation of a concurrent support class for TRS 92--Intermediate Algebra, a developmental mathematics course at Fort Lewis College in Durango, Colorado. The concurrent course outlined in this article demonstrates a statistically significant increase in student success rates since its inception.…

  4. Tape Lessons to Accompany Intermediate Nepali Reader.

    ERIC Educational Resources Information Center

    Verma, Manindra K.

    These tape lessons follow the sequence of the intermediate Nepali Reader. There are 12 lessons each containing various types of exercises designed to increase listening, speaking, and reading skills. Each lesson contains the following types of exercises: (1) listening comprehension; (2) question answering; (3) repetition; and (4) multiple choice…

  5. Membrane Fission: Model for Intermediate Structures

    PubMed Central

    Kozlovsky, Yonathan; Kozlov, Michael M.

    2003-01-01

    Membrane budding-fission is a fundamental process generating intracellular carriers of proteins. Earlier works were focused only on formation of coated buds connected to the initial membrane by narrow membrane necks. We present the theoretical analysis of the whole pathway of budding-fission, including the crucial stage where the membrane neck undergoes fission and the carrier separates from the donor membrane. We consider two successive intermediates of the reaction: 1), a constricted membrane neck coming out of aperture of the assembling protein coat, and 2), hemifission intermediate resulting from self-fusion of the inner monolayer of the neck, while its outer monolayer remains continuous. Transformation of the constricted neck into the hemifission intermediate is driven by the membrane stress produced in the neck by the protein coat. Although apparently similar to hemifusion, the fission is predicted to have an opposite dependence on the monolayer spontaneous curvature. Analysis of the further stages of the process demonstrates that in all practically important cases the hemifission intermediate decays spontaneously into two separate membranes, thereby completing the fission process. We formulate the “job description” for fission proteins by calculating the energy they have to deliver and the radii of the protein coat aperture which have to be reached to drive the fission process. PMID:12829467

  6. Teaching Vocabulary and Morphology in Intermediate Grades

    ERIC Educational Resources Information Center

    Palumbo, Anthony; Kramer-Vida, Louisa; Hunt, Carolyn V.

    2015-01-01

    Direct vocabulary instruction of Tier 2 and Tier 3 words in intermediate-grade curricula is an important tool of literacy instruction because English is a language grafted from many roots and has not developed a one-to-one phoneme-grapheme correspondence. In addition to knowing graphemes and phonemes, students must formally learn words that cross…

  7. Graphing. USMES Intermediate "How To" Set.

    ERIC Educational Resources Information Center

    Agro, Sally; And Others

    In this set of six booklets on graphing, intermediate grade students learn how to choose which kind of graph to make; make bar graphs, histograms, line graphs, and conversion graphs; and use graphs to compare two sets of data. The major emphasis in all Unified Sciences and Mathematics for Elementary Schools (USMES) units is on open-ended,…

  8. Measuring. USMES Intermediate "How To" Set.

    ERIC Educational Resources Information Center

    Agro, Sally; And Others

    In this set of five booklets on measuring, intermediate grade students learn how to use a stopwatch, choose the right tool to measure distance, use a trundle wheel, make a scale drawing, and find the speed of things. The major emphasis in all Unified Sciences and Mathematics for Elementary Schools (USMES) units is on open-ended, long-range…

  9. Collecting Data. USMES Intermediate "How To" Set.

    ERIC Educational Resources Information Center

    Agro, Sally; And Others

    In this set of six booklets on collecting data, intermediate grade students learn how to collect good data, round off and record data, do an experiment, make an opinion survey, and choose a sample. The major emphasis in all Unified Sciences and Mathematics for Elementary Schools (USMES) units is on open-ended, long-range investigations of real…

  10. Simplifying Data. USMES Intermediate "How To" Set.

    ERIC Educational Resources Information Center

    Agro, Sally; And Others

    In this set of six booklets on simplifying data, intermediate grade students learn how to tell what data show, find the median/mean/mode from sets of data, find different kinds of ranges, and use key numbers to compare two sets of data. The major emphasis in all Unified Sciences and Mathematics for Elementary Schools (USMES) units is on…

  11. 34 CFR 200.17 - Intermediate goals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Intermediate goals. 200.17 Section 200.17 Education Regulations of the Offices of the Department of Education OFFICE OF ELEMENTARY AND SECONDARY EDUCATION, DEPARTMENT OF EDUCATION TITLE I-IMPROVING THE ACADEMIC ACHIEVEMENT OF THE DISADVANTAGED Improving...

  12. Changes to the Intermediate Accounting Course Sequence

    ERIC Educational Resources Information Center

    Davidson, Lesley H.; Francisco, William H.

    2009-01-01

    There is an ever-growing amount of information that must be covered in Intermediate Accounting courses. Due to recent accounting standards and the implementation of IFRS this trend is likely to continue. This report incorporates the results of a recent survey to examine the trend of spending more course time to cover this additional material.…

  13. NTTC Course 215: Intermediate Water Examination.

    ERIC Educational Resources Information Center

    Department of the Navy, Washington, DC.

    This publication is the examination booklet used for a home study course in water treatment. This course is the intermediate part of a series produced by the Department of the Navy. This publication is designed to be used in conjunction with a textbook. Each of the two examinations contained in this document are referenced to a section of the…

  14. Renne Intermediate School Features Personalized Instruction.

    ERIC Educational Resources Information Center

    Profiles, Programs & Products, 1983

    1983-01-01

    Renne (Oregon) Intermediate School offers an innovative program of personalized instruction to students in grades 6-8. Teachers work closely with individual students, following a continuous progress curriculum which allows cross-grade-level placement in the core areas of math, reading, and language arts. Based on cooperative district planning, the…

  15. Reactive intermediates: Radicals with multiple personalities

    NASA Astrophysics Data System (ADS)

    Forbes, Malcolm D. E.

    2013-06-01

    A combined theoretical and experimental approach has revealed that radicals can be significantly stabilized by the presence of a remote anionic site in the same molecule. This finding has implications for understanding and potentially controlling the reactivity of these important reactive intermediates.

  16. Polyamines are traps for reactive intermediates in furan metabolism.

    PubMed

    Peterson, Lisa A; Phillips, Martin B; Lu, Ding; Sullivan, Mathilde M

    2011-11-21

    Furan is toxic and carcinogenic in rodents. Because of the large potential for human exposure, furan is classified as a possible human carcinogen. The detailed mechanism by which furan causes toxicity and cancer is not yet known. Since furan toxicity requires cytochrome P450-catalyzed oxidation of furan, we have characterized the urinary and hepatocyte metabolites of furan to gain insight into the chemical nature of the reactive intermediate. Previous studies in hepatocytes indicated that furan is oxidized to the reactive α,β-unsaturated dialdehyde, cis-2-butene-1,4-dial (BDA), which reacts with glutathione (GSH) to form 2-(S-glutathionyl)succinaldehyde (GSH-BDA). This intermediate forms pyrrole cross-links with cellular amines such as lysine and glutamine. In this article, we demonstrate that GSH-BDA also forms cross-links with ornithine, putrescine, and spermidine when furan is incubated with rat hepatocytes. The relative levels of these metabolites are not completely explained by hepatocellular levels of the amines or by their reactivity with GSH-BDA. Mercapturic acid derivatives of the spermidine cross-links were detected in the urine of furan-treated rats, which indicates that this metabolic pathway occurs in vivo. Their detection in furan-treated hepatocytes and in urine from furan-treated rats indicates that polyamines may play an important role in the toxicity of furan. PMID:21842885

  17. Researchers Resolve Intermediate Mass Black Hole Mystery

    NASA Astrophysics Data System (ADS)

    2004-04-01

    New research, funded by the Royal Netherlands Academy of Sciences, the Institute of Advanced Physical and Chemical Research, NASA and the University of Tokyo, solved the mystery of how a black hole, with the mass more than several hundreds times larger than that of our Sun, could be formed in the nearby starburst galaxy, M82. Recent observations of the Chandra X-ray observatory (Matsumoto et al., 2001 ApJ 547, L25) indicate the presence of an unusually bright source in the star cluster MGG11 in the starburst galaxy M82. The properties of the X-ray source are best explained by a black hole with a mass of about a thousand times the mass of the Sun, placing it intermediate between the relatively small (stellar mass) black holes in the Milky way Galaxy and the supermassive black holes found in the nuclei of galaxies. For comparison, stellar-mass black holes are only a few times more massive than the Sun, whereas the black hole in the center of the Milky-way Galaxy is more than a few million times more massive than the Sun. An international team of researchers, using the world's fastest computer, the GRAPE-6 system in Japan, were engaged in a series of simulations of star clusters that resembled MGG11. They used the GRAPE-6 to perform simulations with two independently developed computer programs (Starlab and NBODY4 developed by Sverre Aarseth in Cambridge), both of which give the same qualitative result. The simulations ware initiated by high resolution observations of the star cluster MGG11 by McCrady et al (2003, ApJ 596, 240) using the Hubble Space Telescope and Keck, and by Harashima et al (2001) using the giant Subaru telescope. M82 Chandra X-ray image of the central region of the starburst galaxy M82. The GRAPE's detailed, star-by-star simulations represent the state of the art in cluster modeling. For the first time using the GRAPE, researchers perform simulations of the evolution of young and dense star clusters with up to 600000 stars; they calculate the

  18. Kinetic and mechanistic studies of reactive intermediates in photochemical and transition metal-assisted oxidation, decarboxylation and alkyl transfer reactions

    SciTech Connect

    Carraher, Jack McCaslin

    2014-01-01

    Reactive species like high-valent metal-oxo complexes and carbon and oxygen centered radicals are important intermediates in enzymatic systems, atmospheric chemistry, and industrial processes. Understanding the pathways by which these intermediates form, their relative reactivity, and their fate after reactions is of the utmost importance. Herein are described the mechanistic detail for the generation of several reactive intermediates, synthesis of precursors, characterization of precursors, and methods to direct the chemistry to more desirable outcomes yielding ‘greener’ sources of commodity chemicals and fuels.

  19. Storage stability and improvement of intermediate moisture foods

    NASA Technical Reports Server (NTRS)

    Labuza, T. P.

    1973-01-01

    The rates of chemical reactions which deteriorate foods prepared to an intermediate moisture content and water activity (A sub w 0.6 to 0.9) were studied. The phenomenon of sorption hysteresis was used to prepare model systems and foods to similar A sub w's but different moisture levels so that the separate effects of water binding and water content could be elucidated. It was found that water content is the controlling factor for lipid oxidation in model systems comprised of a solid support and an oxidizable liquid. It was proposed that metal chelating agents like EDTA should give good protection to oxidation. EDTA exhibited the highest efficacy, about 10-15 times better than BHA which is a radical scavenger when studied in the model systems.

  20. Thermo-Physical Properties of Intermediate Temperature Heat Pipe Fluids

    NASA Technical Reports Server (NTRS)

    Beach, Duane E. (Technical Monitor); Devarakonda, Angirasa; Anderson, William G.

    2005-01-01

    Heat pipes are among the most promising technologies for space radiator systems. The paper reports further evaluation of potential heat pipe fluids in the intermediate temperature range of 400 to 700 K in continuation of two recent reports. More thermo-physical property data are examined. Organic, inorganic, and elemental substances are considered. The evaluation of surface tension and other fluid properties are examined. Halides are evaluated as potential heat pipe fluids. Reliable data are not available for all fluids and further database development is necessary. Many of the fluids considered are promising candidates as heat pipe fluids. Water is promising as a heat pipe fluid up to 500 to 550 K. Life test data for thermo-chemical compatibility are almost non-existent.

  1. Isostatic controls on carbonate platform development

    SciTech Connect

    Aigner, T.; Doyle, M.; Lawrence, D.T.

    1987-05-01

    Although carbonate bodies represent a significant surface load on the lithosphere, isostatic effects have been little studied in carbonate systems. In addition to well-documented controls such as spatially varying growth potential, the isostatic response to carbonate platform loads can be an important control on a variety of large-scale patterns in carbonate platform evolution. (1) The bucket structure as the basic anatomy of carbonate platforms can be explained isostatically by load-induced sagging of platform interiors and upbulging of platform margins. (2) Pulses of rapid sea level rises may transform isostatically sagged platform interiors into partly drowned intra-platform basins surrounded by elevated rims. (3) Differential drowning of isostatically sagged platforms may cause a wide-spread megabank to evolve into an archipelago of isolated platforms and intervening troughs. This may be an alternative mechanism for the origin of isolated platforms in the Bahamas. (4) Isolated pinnacle reefs within carbonate/evaporite provinces that occur close to the shelf margin may be initiated in flexural bulges developing beyond the edges of the load of the carbonate shelf during a cycle of sea level fall and rise. Quantitative computer simulations of the isostatic control on carbonate platform development will be presented.

  2. Results of intermediate-scale hot isostatic press can experiments

    SciTech Connect

    Nelson, L.O.; Vinjamuri, K.

    1995-05-01

    Radioactive high-level waste (HLW) has been managed at the Idaho Chemical Processing Plant (ICPP) for a number of years. Since 1963, liquid HLW has been solidified into a granular solid (calcine). Presently, over 3,800 m{sup 3} of calcine is stored in partially-underground stainless steel bins. Four intermediate- scale HLW can tests (two 6-in OD {times} 12-in tall and two 4-in OD {times} 7-in tall) are described and compared to small-scale HIP can tests (1- to 3-in OD {times} 1- to 4.5-in tall). The intermediate-scale HIP cans were loaded with a 70/30 calcine/frit blend and HIPped at an off-site facility at 1050{degrees}C; and 20 ksi. The dimensions of two cans (4-in OD {times} 7-in tall) were monitored during the HIP cycle with eddy-current sensors. The sensor measurements indicated that can deformation occurs rapidly at 700{degrees}C; after which, there is little additional can shrinkage. HIP cans were subjected to a number of analyses including calculation of the overall packing efficiency (56 to 59%), measurement of glass-ceramic (3.0 to 3.2 g/cc), 14-day MCC-1 leach testing (total mass loss rates < 1 g/m{sup 2} day), and scanning electron microscopy (SEM). Based on these analyses, the glass-ceramic material produced in intermediate-scale cans is similar to material produced in small-scale cans. No major scale-up problems were indicated. Based on the packing efficiency observed in intermediate- and small-scale tests, the overall packing efficiency of production-scale (24-in OD {times} 36- to 190-in tall) cans would be approximately 64% for a pre-HIP right-circular cylinder geometry. An efficiency of 64% would represent a volume reduction factor of 2.5 over a candidate glass waste prepared at 33 wt% waste loading.

  3. Turbine engine airfoil and platform assembly

    DOEpatents

    Campbell, Christian X.; James, Allister W.; Morrison, Jay A.

    2012-07-31

    A turbine airfoil (22A) is formed by a first process using a first material. A platform (30A) is formed by a second process using a second material that may be different from the first material. The platform (30A) is assembled around a shank (23A) of the airfoil. One or more pins (36A) extend from the platform into holes (28) in the shank (23A). The platform may be formed in two portions (32A, 34A) and placed around the shank, enclosing it. The two platform portions may be bonded to each other. Alternately, the platform (30B) may be cast around the shank (23B) using a metal alloy with better castability than that of the blade and shank, which may be specialized for thermal tolerance. The pins (36A-36D) or holes for them do not extend to an outer surface (31) of the platform, avoiding stress concentrations.

  4. The ESA Geohazard Exploitation Platform

    NASA Astrophysics Data System (ADS)

    Bally, Philippe; Laur, Henri; Mathieu, Pierre-Philippe; Pinto, Salvatore

    2015-04-01

    Earthquakes represent one of the world's most significant hazards in terms both of loss of life and damages. In the first decade of the 21st century, earthquakes accounted for 60 percent of fatalities from natural disasters, according to the United Nations International Strategy for Disaster Reduction (UNISDR). To support mitigation activities designed to assess and reduce risks and improve response in emergency situations, satellite EO can be used to provide a broad range of geo-information services. This includes for instance crustal block boundary mapping to better characterize active faults, strain rate mapping to assess how rapidly faults are deforming, soil vulnerability mapping to help estimate how the soil is behaving in reaction to seismic phenomena, geo-information to assess the extent and intensity of the earthquake impact on man-made structures and formulate assumptions on the evolution of the seismic sequence, i.e. where local aftershocks or future main shocks (on nearby faults) are most likely to occur. In May 2012, the European Space Agency and the GEO Secretariat convened the International Forum on Satellite EO for Geohazards now known as the Santorini Conference. The event was the continuation of a series of international workshops such as those organized by the Geohazards Theme of the Integrated Global Observing Strategy Partnership. In Santorini the seismic community has set out a vision of the EO contribution to an operational global seismic risk program, which lead to the Geohazard Supersites and Natural Laboratories (GSNL) initiative. The initial contribution of ESA to suuport the GSNL was the first Supersites Exploitation Platform (SSEP) system in the framework of Grid Processing On Demand (GPOD), now followed by the Geohazard Exploitation Platform (GEP). In this presentation, we will describe the contribution of the GEP for exploiting satellite EO for geohazard risk assessment. It is supporting the GEO Supersites and has been further

  5. Education Platform at ZDM8

    PubMed Central

    Lyman Gingerich, Jamie S.; Pickart, Michael A.

    2016-01-01

    Abstract Interest among the zebrafish community in education and science accessibility for all ages has increased. At the 8th Annual Zebrafish Disease Models Conference (ZDM8), a specifically designed session enabled professional scientists, educators, and students to have a venue to present their science, discuss ideas in education, and partner to navigate a scientific meeting as an educational experience. This meeting report describes the format of the Platform Session as well as challenges and future plans to leverage impact of conferences on the local communities. PMID:26982162

  6. Building the right physician platform.

    PubMed

    Pizzo, James J; Sullivan, Luke; Ryan, Debra L

    2015-07-01

    The challenges health systems often face in aligning physicians with organizational cost and quality goals related to the delivery of value-based care differ between employed and independent physicians. With employed physicians, the focus should be on right-sizing the service delivery network and employed medical group, building a sustainable compensation program, enhancing the revenue cycle, increasing use of midlevel providers, and implementing a common technology platform. With independent physicians, the focus should be on understanding available contracting models, participating in shared-savings arrangements, considering alternative payment distribution models, choosing the right metrics, and exploring shared branding options. PMID:26376510

  7. Education Platform at ZDM8.

    PubMed

    Lyman Gingerich, Jamie S; Pickart, Michael A; Pierret, Chris

    2016-04-01

    Interest among the zebrafish community in education and science accessibility for all ages has increased. At the 8th Annual Zebrafish Disease Models Conference (ZDM8), a specifically designed session enabled professional scientists, educators, and students to have a venue to present their science, discuss ideas in education, and partner to navigate a scientific meeting as an educational experience. This meeting report describes the format of the Platform Session as well as challenges and future plans to leverage impact of conferences on the local communities. PMID:26982162

  8. Geostationary earth science platform concepts

    NASA Technical Reports Server (NTRS)

    Herardian, M. M.

    1989-01-01

    The new concepts are presented for the Geostationary Earth Science Platform. Bus and payload arrangements, with instrument locations on the payload module and basic payload dimensions, are depicted and compared for each concept. The Titan 4 SRMU (with solid rocket motor upgrage) launch vehicle is described and compared to the standard Titan 4. The upgraded Titan 4 is capable of launching a 13,500 lb payload to GEO. The launch configuration showing each concept packaged within the 16 ft diameter payload envelope is presented. This presentation is represented by viewgraph only.

  9. Floating platform well production apparatus

    SciTech Connect

    Nobileau, P.C.

    1980-10-21

    A plurality of wells are clustered around a central riser which is maintained under tension from a floating platform. A plurality of spiders on the riser carry funnels in vertical alignment with the wells. The funnels are sufficiently large to permit the passage of wellhead connectors and master block valves, and the production risers include centralizers which brace the production riser from the funnels through a limited vertical range. Tensioning of the production riser is with a lower force and through a limited range which precludes disengagement of the centralizers from the funnel. Some centralizers are located to facilitate entry and attachment to the wellhead.

  10. Spacecraft platform cost estimating relationships

    NASA Technical Reports Server (NTRS)

    Gruhl, W. M.

    1972-01-01

    The three main cost areas of unmanned satellite development are discussed. The areas are identified as: (1) the spacecraft platform (SCP), (2) the payload or experiments, and (3) the postlaunch ground equipment and operations. The SCP normally accounts for over half of the total project cost and accurate estimates of SCP costs are required early in project planning as a basis for determining total project budget requirements. The development of single formula SCP cost estimating relationships (CER) from readily available data by statistical linear regression analysis is described. The advantages of single formula CER are presented.

  11. Interactive chemical reactivity exploration.

    PubMed

    Haag, Moritz P; Vaucher, Alain C; Bosson, Maël; Redon, Stéphane; Reiher, Markus

    2014-10-20

    Elucidating chemical reactivity in complex molecular assemblies of a few hundred atoms is, despite the remarkable progress in quantum chemistry, still a major challenge. Black-box search methods to find intermediates and transition-state structures might fail in such situations because of the high-dimensionality of the potential energy surface. Here, we propose the concept of interactive chemical reactivity exploration to effectively introduce the chemist's intuition into the search process. We employ a haptic pointer device with force feedback to allow the operator the direct manipulation of structures in three dimensions along with simultaneous perception of the quantum mechanical response upon structure modification as forces. We elaborate on the details of how such an interactive exploration should proceed and which technical difficulties need to be overcome. All reactivity-exploration concepts developed for this purpose have been implemented in the samson programming environment. PMID:25205397

  12. Quantum dot imaging platform for single-cell molecular profiling

    NASA Astrophysics Data System (ADS)

    Zrazhevskiy, Pavel; Gao, Xiaohu

    2013-03-01

    Study of normal cell physiology and disease pathogenesis heavily relies on untangling the complexity of intracellular molecular mechanisms and pathways. To achieve this goal, comprehensive molecular profiling of individual cells within the context of microenvironment is required. Here we report the development of a multicolour multicycle in situ imaging technology capable of creating detailed quantitative molecular profiles for individual cells at the resolution of optical imaging. A library of stoichiometric fluorescent probes is prepared by linking target-specific antibodies to a universal quantum dot-based platform via protein A in a quick and simple procedure. Surprisingly, despite the potential for multivalent binding between protein A and antibody and the intermediate affinity of this non-covalent bond, fully assembled probes do not aggregate or exchange antibodies, facilitating highly multiplexed parallel staining. This single-cell molecular profiling technology is expected to open new opportunities in systems biology, gene expression studies, signalling pathway analysis and molecular diagnostics.

  13. An integrated platform for directly widely-targeted quantitative analysis of feces part I: Platform configuration and method validation.

    PubMed

    Song, Yuelin; Song, Qingqing; Li, Jun; Zheng, Jiao; Li, Chun; Zhang, Yuan; Zhang, Lingling; Jiang, Yong; Tu, Pengfei

    2016-07-01

    Direct analysis is of great importance to understand the real chemical profile of a given sample, notably biological materials, because either chemical degradation or diverse errors and uncertainties might be resulted from sophisticated protocols. In comparison with biofluids, it is still challenging for direct analysis of solid biological samples using high performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Herein, a new analytical platform was configured by online hyphenating pressurized liquid extraction (PLE), turbulent flow chromatography (TFC), and LC-MS/MS. A facile, but robust PLE module was constructed based on the phenomenon that noticeable back-pressure can be generated during rapid fluid passing through a narrow tube. TFC column that is advantageous at extracting low molecular analytes from rushing fluid was employed to link at the outlet of the PLE module to capture constituents-of-interest. An electronic 6-port/2-position valve was introduced between TFC column and LC-MS/MS to fragment each measurement into extraction and elution phases, whereas LC-MS/MS took the charge of analyte separation and monitoring. As a proof of concept, simultaneous determination of 24 endogenous substances including eighteen steroids, five eicosanoids, and one porphyrin in feces was carried out in this paper. Method validation assays demonstrated the analytical platform to be qualified for directly simultaneous measurement of diverse endogenous analytes in fecal matrices. Application of this integrated platform on homolog-focused profiling of feces is discussed in a companion paper. PMID:27268518

  14. A two-electron shell game: Intermediates of the extradiol-cleaving catechol dioxygenases

    PubMed Central

    Fielding, Andrew J.

    2014-01-01

    Extradiol catechol ring-cleaving dioxygenases function by binding both the organic substrate and O2 at a divalent metal center in the active site. They have proven to be a particularly versatile group of enzymes with which to study the O2 activation process. Here, recent studies of homoprotocatechuate 2,3-dioxygenase (HPCD) are summarized with the objective of showing how Nature can utilize the enzyme structure and the properties of the metal and the substrate to select among many possible chemical paths to achieve both specificity and efficiency. Possible intermediates in the mechanism have been trapped by swapping active site metals, introducing active site amino acid substituted variants, and using substrates with different electron donating capacities. While each of these intermediates could form part of a viable reaction pathway, kinetic measurements significantly limit the likely candidates. Structural, kinetic, spectroscopic and computational analysis of the various intermediates shed light on how catalytic efficiency can be achieved. PMID:24615282

  15. A two-electron-shell game: intermediates of the extradiol-cleaving catechol dioxygenases.

    PubMed

    Fielding, Andrew J; Lipscomb, John D; Que, Lawrence

    2014-06-01

    Extradiol-cleaving catechol dioxygenases function by binding both the organic substrate and O2 at a divalent metal center in the active site. They have proven to be a particularly versatile group of enzymes with which to study the O2 activation process. Here, recent studies of homoprotocatechuate 2,3-dioxygenase are summarized, showing how nature can utilize the enzyme structure and the properties of the metal and the substrate to select among many possible chemical paths to achieve both specificity and efficiency. Possible intermediates in the mechanism have been trapped by swapping active-site metals, introducing active-site amino acid substituted variants, and using substrates with different electron-donating capacities. Although each of these intermediates could form part of a viable reaction pathway, kinetic measurements significantly limit the likely candidates. Structural, kinetic, spectroscopic, and computational analyses of the various intermediates shed light on how catalytic efficiency can be achieved. PMID:24615282

  16. Analysis of Kinetic Intermediates in Single-Particle Dwell-Time Distributions

    PubMed Central

    Floyd, Daniel L.; Harrison, Stephen C.; van Oijen, Antoine M.

    2010-01-01

    Abstract Many biological and chemical processes proceed through one or more intermediate steps. Statistical analysis of dwell-time distributions from single molecule trajectories enables the study of intermediate steps that are not directly observable. Here, we discuss the application of the randomness parameter and model fitting in determining the number of steps in a stochastic process. Through simulated examples, we show some of the limitations of these techniques. We discuss how shot noise and heterogeneity among the transition rates of individual steps affect how accurately the number of steps can be determined. Finally, we explore dynamic disorder in multistep reactions and show that the phenomenon can obscure the presence of rate-limiting intermediate steps. PMID:20643053

  17. Houdini: a remote mobile platform for tank waste retrieval tasks

    SciTech Connect

    Denmeade, T.J.; SSlifko, A.D.; Thompson, B.R.; White, D.W.

    1996-12-31

    RedZone has developed Houdini{trademark}, a folding frame vehicle for work in waste storage tanks and other confined-access areas. Houdini is a tethered, hydraulically-powered platform that folds to fit through small openings. Once deployed, the vehicle unfolds to provide a substantial work platform for the deployment of a wide variety of tools. The Houdini system will perform wheel removal, waste retrieval, waste mobilization, waste size reduction, and other tank waste retrieval and decommissioning tasks. Within the DOE Complex, 332 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production. The ultimate goal of the program is to develop and commercialize the Houdini system for broad application throughout the DOE Complex.

  18. Substrate Activation by Iron Superoxo Intermediates

    PubMed Central

    van der Donk, Wilfred A.; Krebs, Carsten; Bollinger, J. Martin

    2010-01-01

    A growing number of non-heme-iron oxygenases and oxidases catalyze reactions for which the well-established mechanistic paradigm involving a single C-H-bond cleaving intermediate of the Fe(IV)-oxo (ferryl) type [1] is insufficient to explain the chemistry. It is becoming clear that, in several of these cases, Fe(III)-superoxide complexes formed by simple addition of O2 to the reduced [Fe(II)] cofactor initiate substrate oxidation by abstracting hydrogen [2]. This substrate-oxidizing entry route into high-valent-iron intermediates makes possible an array of complex and elegant oxidation reactions without consumption of valuable reducing equivalents. Examples of this novel mechanistic strategy are discussed with the goal of bringing forth unifying principles. PMID:20951572

  19. Intermediate filaments in small configuration spaces.

    PubMed

    Nöding, Bernd; Köster, Sarah

    2012-02-24

    Intermediate filaments play a key role in cell mechanics. Apart from their great importance from a biomedical point of view, they also act as a very suitable micrometer-sized model system for semiflexible polymers. We perform a statistical analysis of the thermal fluctuations of individual filaments confined in microchannels. The small channel width and the resulting deflections at the walls give rise to a reduction of the configuration space by about 2 orders of magnitude. This circumstance enables us to precisely measure the intrinsic persistence length of vimentin intermediate filaments and to show that they behave as ideal wormlike chains; we observe that small fluctuations in perpendicular planes decouple. Furthermore, the inclusion of results for confined actin filaments demonstrates that the Odijk confinement regime is valid over at least 1 order of magnitude in persistence length. PMID:22463576

  20. Comments on intermediate-scale models

    NASA Astrophysics Data System (ADS)

    Ellis, J.; Enqvist, K.; Nanopoulos, D. V.; Olive, K.

    1987-04-01

    Some superstring-inspired models employ intermediate scales m1 of gauge symmetry breaking. Such scales should exceed 10 16 GeV in order to avoid prima facie problems with baryon decay through heavy particles and non-perturbative behaviour of the gauge couplings above mI. However, the intermediate-scale phase transition does not occur until the temperature of the Universe falls below O( mw), after which an enormous excess of entropy is generated. Moreover, gauge symmetry breaking by renormalization group-improved radiative corrections is inapplicable because the symmetry-breaking field has no renormalizable interactions at scales below mI. We also comment on the danger of baryon and lepton number violation in the effective low-energy theory.

  1. Intermediate Temperature Water Heat Pipe Tests

    NASA Technical Reports Server (NTRS)

    Devarakonda, Angirasa; Xiong, Da-Xi; Beach, Duane E.

    2005-01-01

    Heat pipes are among the most promising technologies for space radiator systems. Water heat pipes are explored in the intermediate temperature range of 400 to above 500 K. The thermodynamic and thermo-physical properties of water are reviewed in this temperature range. Test data are reported for a copper-water heat pipe. The heat pipe was tested under different orientations. Water heat pipes show promise in this temperature range. Fabrication and testing issues are being addressed.

  2. Intermediate Temperature Water Heat Pipe Tests

    NASA Technical Reports Server (NTRS)

    Devarakonda, Angirasa; Xiong, Daxi; Beach, Duane E.

    2004-01-01

    Heat pipes are among the most promising technologies for space radiator systems. Water heat pipes are explored in the intermediate temperature range of 400 to above 500 K. The thermodynamic and thermo-physical properties of water are reviewed in this temperature range. Test Data are reported for a copper-water heat pipe. The heat pipe was tested under different orientations. Water heat pipes show promise in this temperature range.Fabrication and testing issues are being addressed.

  3. DBS platforms - A viable solution

    NASA Astrophysics Data System (ADS)

    Cohen, N. L.; Stone, G. R.

    1982-12-01

    Various design options for the basic direct broadcast satellite (DBS) system are discussed. The first generation spacecraft are constrained by time zone problems, noting that one unit is insufficient to provide direct TV to an entire continent. An 800 W traveling wave amplifier is sufficient for full coverage of the entire U.S., while 200 W amplifiers are capable of single channel broadcast to a quarter to a third of the U.S. land area. A total of 24-32 satellites costing a total of $3.2-4.8 billion is required to provide full U.S. coverage with first generation DBS systems. The Shuttle is described as the means to providing GEO DBS services at affordable costs. Four large platforms, weighing 5300 kg, could be placed in GEO by a Centaur transfer stage after launch into LEO on the Shuttle. Studies have shown that four platforms, each with a 40 channel capability, power generating capacity of 30 kW, and 100% eclipse capability, could provide coverage for the entire U.S. Beam-shaping techniques offer any desired illumination pattern. Details of the institutional barriers which must be satisfied before the $500 million spacecraft could be launched are outlined.

  4. Flexural plate wave devices for biosensor platform

    NASA Astrophysics Data System (ADS)

    Yoon, Sang H.; Park, Jung-Hyun; Shen, Dongna; Kim, Dong-Joo

    2007-04-01

    Flexural plate wave (FPW) device is one of promising devices for biological sensor application, because its electronic circuit can be isolated from the medium being detected, and it shows low acoustic energy loss in liquid medium. Moreover, FPW device arrays on the silicon based substrate can be possible at low cost fabrication by micromachining technology, so that it offers batch processing for economic sensor fabrication. In this study, piezoelectric ZnO film was chosen as a material for a biological sensor platform, due to non-toxicity, and chemical and thermal stability. RF magnetron sputtering and chemical solution deposition (CSD) were investigated as film fabrication method. To launch and receive the acoustic wave through the piezoelectric material, it is required that the piezoelectric ZnO film have strong c-axis orientation in the device. For the magnetron RF sputtering, process parameters such as gas ratio, substrate types, and temperature, were varied, and heat treatment and substrate types for CSD. Results indicated that the preferred orientation and microstructure of ZnO films can be controlled by the variation of the process parameter, and that uniform and dense microstructures of ZnO films were obtained by both fabrication methods. CSD method showed, however, stronger dependence of the preferred orientation on substrate types while less dependence on the substrates for sputtering due to energetic sputtered species. Mechanism for ZnO thin film growth will be discussed. FPW devices have been successfully integrated onto 4 inch Si-wafer with 22 different interdigitated electrodes designs, and the device demonstrated the capability to detect biological quantity of 446.13 cm2/gram of sensitivity.

  5. Time-resolved heme protein intermediates

    NASA Astrophysics Data System (ADS)

    Rousseau, Denis

    2005-03-01

    To determine the enzymatic mechanisms of heme proteins, it is necessary to identify the intermediates along the catalytic pathway and measure the times of their formation and decay. Resonance Raman scattering spectra are especially powerful for obtaining such information as the electronic structure of the heme group and the nature of the ligand coordinated to the heme iron atom may be monitored. The oxygen intermediates of two physiologically important enzymes will be presented. Nitric oxide synthase (NOS) uses oxygen to convert arginine to NO and citrulline; and cytochrome c oxidase (CcO) reduces oxygen to water to support oxidative phosphorylation. The fate or the oxygen in each of these enzymes has been followed by resonance Raman scattering. In NOS the oxygen is slowly converted to an activated species that then reacts fast, whereas in CcO the oxygen is rapidly converted to a reactive species that subsequently reacts slowly. The properties of the intermediates and the origin of the differences between these enzymes will be discussed.

  6. National Bioenergy Center, Biochemical Platform Integration Project: Quarterly Update, Winter 2011-2012 (Newsletter)

    SciTech Connect

    Not Available

    2012-04-01

    Winter 2011-2012 issue of the National Bioenergy Center Biochemical Platform Integration Project quarterly update. Issue topics: 34th Symposium on Biotechnology for Fuels and Chemicals; feasibility of NIR spectroscopy-based rapid feedstock reactive screening; demonstrating integrated pilot-scale biomass conversion. The Biochemical Process Integration Task focuses on integrating the processing steps in enzyme-based lignocellulose conversion technology. This project supports the U.S. Department of Energy's efforts to foster development, demonstration, and deployment of 'biochemical platform' biorefineries that economically produce ethanol or other fuels, as well as commodity sugars and a variety of other chemical products, from renewable lignocellulosic biomass.

  7. Seismic and geologic characteristics of drowning events on carbonate platforms

    SciTech Connect

    Erlich, R.N.; Barrett, S.F. ); Guo Bai Ju )

    1990-10-01

    Carbonate platform drowning events are recorded in Upper Jurassic-Lower Cretaceous carbonates of the Baltimore Canyon area, offshore US East Coast, and lower Miocene carbonates of the Pearl River Mouth Basin, offshore People's Republic of China. Cursory examination of seismic data from both areas would indicate that the platforms fit the classic definition of a drowning unconformity. However, detailed lithologic and paleontologic data indicate that the depositional/erosional hiatuses vary widely in each area, from 0-25 m.y. in the Baltimore Canyon area, to a condensed section with no hiatus in the Pearl River Mouth Basin. The sedimentary sequence produced during drowning in both areas is gradational with underlying shallow platform carbonates and, in some places, overlying deeper marine limestones and shales. The generalized facies models proposed for drowning events suggest that they may appear as instantaneous or gradual changes in geologic and seismic data. Because of this resolution problem, a distinction should be made between seismically and geologically defined unconformity surfaces. The geologic characteristics of drowning events on carbonate platforms include a gradational lower (and sometimes upper) contact, chemical sedimentation (glauconite, phosphate), open-marine shelf sediments, and a variable hiatus at the upper boundary. Data from isolated open-ocean atolls (Pearl River Mouth Basin) indicate that they respond differently to drowning, showing an asymmetric decrease in shallow platform environments as drowning occurs. Proper recognition by a geoscientist of the seismic and geological characteristics of drowning events can lead to better reservoir and seal estimates, and the correct reconstruction of the depositional, tectonic, and eustatic histories of an area.

  8. Exploring Granular Flows at Intermediate Velocities

    NASA Astrophysics Data System (ADS)

    Brodsky, E. E.; van der Elst, N.

    2012-12-01

    Geophysical and geomorphological flows often encompass a wide range of strain rates. Landslides accelerate from nearly static conditions to velocities in the range of meters/seconds. The rheology of granular flows for the end-members is moderately well-understood, but the constitutive low at intermediate velocities is largely unexplored. Here we present evidence that granular flows transition through a regime in which internally generated acoustic waves play a critical role in controlling rheology. In laboratory experiments on natural sand under shear in a commercial rheometer, we observe that the steady-state flows at intermediate velocities are compacted relative to the end members. In a confined volume, this compaction results in a decrease in stress on the boundaries. We establish the key role of the acoustic waves by measuring the noise generated by the shear flows with an accelerometer and then exciting the flow with similar amplitude noise under lower shear rate conditions. The observed compaction for a given amplitude noise is the same in both cases, regardless of whether the noise is generated internally by the grains colliding or artificially applied externally. The boundaries of this acoustically controlled regime can be successfully predicted through non-dimensional analysis balancing the overburden, acoustic pressure and granular inertial terms. In our laboratory experiments, this regime corresponds to 0.1 to 10 cm/s. The controlling role of acoustic waves in intermediate velocities is significant because: (1) Geological systems must pass through this regime on their route to instability. (2) Acoustic waves are much more efficiently generated by angular particles, likely to be found in natural samples, than by perfectly spherical particles, which are more tractable for laboratory and theoretical studies. Therefore, this regime is likely to be missed in many analog and computational approaches. (3) Different mineralogies and shapes result in different

  9. Cosmogenic nuclides application on French Mediterranean shore platform development

    NASA Astrophysics Data System (ADS)

    Giuliano, Jérémy; Lebourg, Thomas; Godard, Vincent; Dewez, Thomas; Braucher, Régis; Bourlès, Didier; Marçot, Nathalie

    2014-05-01

    Rocky shorelines are among the most common elements of the world's littoral zone, and the potential effects of rising sea level on the ever increasing populations require a better understanding of their dynamics. The sinuosity and heterogeneity of the shoreline morphology at large and intermediate wavelengths (1-100 km) results from their constant evolution under the combined influence of marine and continental forcings. This macro-scale organization is the expression of the action of elementary erosion processes acting at shorter wavelengths (<1 km) which lead to the development of shore platforms by landward retreat of cliff edges. Modern analytical techniques (laser-scaning, micro-erosion meters, aerial surveys) constitute appropriate methods to identify and quantify processes of cliff retreat to 1-100 yrs time-scales. But over this time frame, shore platform development appears imperceptible. Precise knowledge of long-term erosion rates are needed to understand rocky shore evolution, and develop quantitative modeling of platform development. Rocky coasts constitute a Quaternary sea level evolution archive that is partly preserved and progressively destroyed. One major challenges is to determine the degree to which coast morphologies are (i) contemporary, (ii) or ancient features inherited, (iii) or partly inherited from Quaternary interglacial stages. In order to fill the lack of long term coast morphodynamic data, we use cosmogenic nuclides (36Cl) to study abrasion surfaces carved in carbonates lithologies along the French Mediterranean coast, in a microtidal environment (Côte Bleue, West of Marseille). 36Cl concentration heritage influences strongly our interpretations in terms of age and denudation of the surfaces. We propose to constrain heritage in sampling oldest relic marine surfaces at 10m of altitude, and along recent cliff scarp. 36Cl concentrations show that the lowest platforms near sea level are contemporary and the highest ones (8-14 m above sea

  10. METABOLISM AND METABOLIC ACTIVATION OF CHEMICALS: IN-SILICO SIMULATION

    EPA Science Inventory

    The role of metabolism in prioritizing chemicals according to their potential adverse health effects is extremely important because innocuous parents can be transformed into toxic metabolites. This work presents the TIssue MEtabolism Simulator (TIMES) platform for simulating met...

  11. Miocene platform-margin reefs, Gulf of Suez, Egypt

    SciTech Connect

    Noel, J.P.; Rosen, B.; Coniglio, M.

    1988-01-01

    Jebel Abu Shaar is a completely dolomitized carbonate platform atop a crystalline basement horst on the western side of the Gulf of Suez. Margins of the platform, where not removed by synsedimentary faulting, are formed by well-developed coral reefs. The massive reef carbonates consistently illustrate two stages of growth: a basal paucispecific unit of branching coral bafflestone, mostly Stylophora and a thicker upper unit of diverse coral framestone, dominated by faviids. In the upper unit, the reef crest is massive columnar Porites and less common Caulastrea framestone. The back-reef is a framestone of diverse faviids, mainly Montastrea Favites, and Tarbellastrea, and interbedded reef-flat rhodolite rudstones. The back-reef and reef-flat facies grade onshelf into Stylophora bafflestone biostromers and faviid bioherms. The reef front is a shallow to intermediate depth zone of numerous and diverse faviids, dominated by Montastrea and Acanthastrea framestones, bioclastic sands, and hardgrounds. Deeper zones are mostly small Acanthastrea mounds or rhodolite/bivalve rudstones with scattered faviids and Acanthastrea. Synsedimentary lithification, internal sedimentationm, and bioerosion prevail throughout. A deep-water, slope-parallel biostrome of ahermatypic corals, dominated by Dendrophyllia and containing numerous Balanophyllia and Madracis, is present 10 km north of Abu Shaar. Corals are well cemented by numerous rinds of marine cement which is overlain by geopetal internal sediment containing planktonic foraminifers and pteropods.

  12. Examining the freezing process of an intermediate bulk containing an industrially relevant protein

    PubMed Central

    Reinsch, Holger; Spadiut, Oliver; Heidingsfelder, Johannes; Herwig, Christoph

    2015-01-01

    Numerous biopharmaceuticals are produced in recombinant microorganisms in the controlled environment of a bioreactor, a process known as Upstream Process. To minimize product loss due to physico-chemical and enzymatic degradation, the Upstream Process should be directly followed by product purification, known as Downstream Process. However, the Downstream Process can be technologically complex and time-consuming which is why Upstream and Downstream Process usually have to be decoupled temporally and spatially. Consequently, the product obtained after the Upstream Process, known as intermediate bulk, has to be stored. In those circumstances, a freezing procedure is often performed to prevent product loss. However, the freezing process itself is inseparably linked to physico-chemical changes of the intermediate bulk which may in turn damage the product. The present study analysed the behaviour of a Tris-buffered intermediate bulk containing a biopharmaceutically relevant protein during a bottle freezing process. Major damaging mechanisms, like the spatiotemporal redistribution of ion concentrations and pH, and their influence on product stability were investigated. Summarizing, we show the complex events which happen in an intermediate bulk during freezing and explain the different causes for product loss. PMID:25765305

  13. A Major Intermediate Component in Drawn High-Density Polyethylene Identified by Solid-State NMR

    NASA Astrophysics Data System (ADS)

    Mowery, Daniel; Schmidt-Rohr, Klaus

    2001-03-01

    In a commercial polyethylene (HDPE) highly drawn at 295 K, a distinct morphological component intermediate to the crystalline and the almost isotropic amorphous phases has been identified by solid-state nuclear magnetic resonance (NMR). This intermediate component accounts for nearly 25% of the material bulk, exceeding the amorphous fraction at the highest draw ratios. In the neat isotropic material examined for reference, the NMR-derived composition shows excellent agreement with other techniques. 13C NMR isotropic chemical shifts of the intermediate component, whose signal was selected using an “inverse T1,C filter”, prove chains of nearly all-trans conformations; the line width indicates significant disorder. Reduction of dipolar couplings and the chemical-shift anisotropy show fast rotations of 30 50 deg. amplitude around the chain axes. The degree of orientation of the chain axes is high. Spin diffusion experiments suggest that the intermediate component consists mostly of extended chain bundles closely associated with the amorphous phase (tie-molecule bundles ?).

  14. Spectroscopic features of cytochrome P450 reaction intermediates

    PubMed Central

    Luthra, Abhinav; Denisov, Ilia G.; Sligar, Stephen G.

    2010-01-01

    Preface Cytochromes P450 constitute a broad class of heme monooxygenase enzymes with more than 11,500 isozymes which have been identified in organisms from all biological kingdoms [1]. These enzymes are responsible for catalyzing dozens chemical oxidative transformations such as hydroxylation, epoxidation, N-demethylation, etc., with very broad range of substrates [2-3]. Historically these enzymes received their name from ‘pigment 450’ due to the unusual position of the Soret band in UV-Vis absorption spectra of the reduced CO-saturated state [4-5]. Despite detailed biochemical characterization of many isozymes, as well as later discoveries of other ‘P450-like heme enzymes’ such as nitric oxide synthase and chloroperoxidase, the phenomenological term ‘cytochrome P450’ is still commonly used as indicating an essential spectroscopic feature of the functionally active protein which is now known to be due to the presence of a thiolate ligand to the heme iron [6]. Heme proteins with an imidazole ligand such as myoglobin and hemoglobin as well as an inactive form of P450 are characterized by Soret maxima at 420 nm [7]. This historical perspective highlights the importance of spectroscopic methods for biochemical studies in general, and especially for heme enzymes, where the presence of the heme iron and porphyrin macrocycle provides rich variety of specific spectroscopic markers available for monitoring chemical transformations and transitions between active intermediates of catalytic cycle. PMID:21167809

  15. Source of Mesozoic intermediate-felsic igneous rocks in the North China craton: Granulite xenolith evidence

    NASA Astrophysics Data System (ADS)

    Jiang, Neng; Carlson, Richard W.; Guo, Jinhui

    2011-07-01

    chemical and isotopic compositions to rocks with SiO2 < 62 wt.% from the granulite terrain. If so, pyroxene-rich mafic granulite xenoliths found in the Hannuoba basalts could be restites left behind after the partial melting of the late Archean lower crust. The results shed new light on the origin for Mesozoic zircons in granulite xenoliths from Nushan, at the southern margin of the North China craton. We suggest that the widespread Mesozoic intermediate-felsic igneous rocks in the eastern North China craton are most likely derived from partial melting of the intermediate-mafic rocks of the late Archean lower crust.

  16. Bioelectrochemical system platform for sustainable environmental remediation and energy generation.

    PubMed

    Wang, Heming; Luo, Haiping; Fallgren, Paul H; Jin, Song; Ren, Zhiyong Jason

    2015-01-01

    The increasing awareness of the energy-environment nexus is compelling the development of technologies that reduce environmental impacts during energy production as well as energy consumption during environmental remediation. Countries spend billions in pollution cleanup projects, and new technologies with low energy and chemical consumption are needed for sustainable remediation practice. This perspective review provides a comprehensive summary on the mechanisms of the new bioelectrochemical system (BES) platform technology for efficient and low cost remediation, including petroleum hydrocarbons, chlorinated solvents, perchlorate, azo dyes, and metals, and it also discusses the potential new uses of BES approach for some emerging contaminants remediation, such as CO2 in air and nutrients and micropollutants in water. The unique feature of BES for environmental remediation is the use of electrodes as non-exhaustible electron acceptors, or even donors, for contaminant degradation, which requires minimum energy or chemicals but instead produces sustainable energy for monitoring and other onsite uses. BES provides both oxidation (anode) and reduction (cathode) reactions that integrate microbial-electro-chemical removal mechanisms, so complex contaminants with different characteristics can be removed. We believe the BES platform carries great potential for sustainable remediation and hope this perspective provides background and insights for future research and development. PMID:25886880

  17. Multidimensional Profiling Platforms Reveal Metabolic Dysregulation caused by Organophosphorus Pesticides

    PubMed Central

    Medina-Cleghorn, Daniel; Heslin, Ann; Morris, Patrick J.; Mulvihill, Melinda M.; Nomura, Daniel K.

    2014-01-01

    We are environmentally exposed to countless synthetic chemicals on a daily basis with an increasing number of these chemical exposures linked to adverse health effects. However, our understanding of the (patho)physiological effects of these chemicals remains poorly understood, due in-part to a general lack of effort to systematically and comprehensively identify the direct interactions of environmental chemicals with biological macromolecules in mammalian systems in vivo. Here, we have used functional chemoproteomic and metabolomic platforms to broadly identify direct enzyme targets that are inhibited by widely used organophosphorus (OP) pesticides in vivo in mice and to determine metabolic alterations that are caused by these chemicals. We find that these pesticides directly inhibit over 20 serine hydrolases in vivo leading to widespread disruptions in lipid metabolism. Through identifying direct biological targets of OP pesticides, we show heretofore unrecognized modes of toxicity that may be associated with these agents and underscore the utility of utilizing multidimensional profiling approaches to obtain a more complete understanding of toxicities associated with environmental chemicals. PMID:24205821

  18. Bucket platform cooling scheme and related method

    DOEpatents

    Abuaf, Nesim; Barb, Kevin Joseph; Chopra, Sanjay; Kercher, David Max; Kellock, Iain Robertson; Lenahan, Dean Thomas; Nellian, Sankar; Starkweather, John Howard; Lupe, Douglas Arthur

    2002-01-01

    A turbine bucket includes an airfoil extending from a platform, having high and low pressure sides; a wheel mounting portion; a hollow shank portion located radially between the platform and the wheel mounting portion, the platform having an under surface. An impingement cooling plate is located in the hollow shank portion, spaced from the under surface, and the impingement plate is formed with a plurality of impingement cooling holes therein.

  19. Optical transceiver platform for laser communication experiments

    NASA Astrophysics Data System (ADS)

    Coffelt, Everett L.; Ebben, Thomas H.

    1986-01-01

    This paper describes a laser communication (lasercom) transceiver platform to be used for laboratory experiments. The platform features a directly modulated semiconductor laser, avalanche photodiode receiver, and microprocessor-controlled acquisition and tracking system. The platform provides a test-bed, enabling study in vital areas of lasercom hardware such as system performance versus link distance, optical power, tracking accuracy, and subsystem and component characterization for future system specifications, including critical areas limiting present system performance.

  20. Gas turbine bucket with impingement cooled platform

    DOEpatents

    Jones, Raphael Durand

    2002-01-01

    In a turbine bucket having an airfoil portion and a root portion, with a substantially planar platform at an interface between the airfoil portion and root portion, a platform cooling arrangement including at least one bore in the root portion and at least one impingement cooling tube seated in the bore, the tube extending beyond the bore with an outlet in close proximity to a targeted area on an underside of the platform.

  1. Biomass - chemicals

    SciTech Connect

    Kovaly, K.A.

    1982-08-01

    A host of industrial chemicals, specialty items, solvents, plastics, elastomers, fibers and films can be produced from agricultural crops, wood, paper mill wastes, food processing wastes, municipal waste and sewage. Existing chemical processes based on readily renewable plant materials are reviewed. These include ethanol and acetone-butanol fermentations, oilseed chemicals, furfural and cellulosics. (Refs. 16).

  2. Chemical sensor

    NASA Technical Reports Server (NTRS)

    Rauh, R. David (Inventor)

    1990-01-01

    A sensor for detecting a chemical substance includes an insertion element having a structure which enables insertion of the chemical substance with a resulting change in the bulk electrical characteristics of the insertion element under conditions sufficient to permit effective insertion; the change in the bulk electrical characteristics of the insertion element is detected as an indication of the presence of the chemical substance.

  3. Radio communication between manoeuvring platforms

    NASA Astrophysics Data System (ADS)

    Millward, G. W.

    1985-05-01

    A method for deriving the probability distribution of the link margin is proposed. The effects of attitude on antenna gain and cross-polarization loss are examined. The relative distribution of energy between the specular and diffuse reflections of the multipath signals is determined by the roughness of the terrain, grazing angle, and transmission frequency. The relation between the absorption coefficient and height, water vapor content, the earth's curvature, and refraction is discussed. Platform height, maneuver, and velocity, which influence multipath propagation and antenna gain, are studied. An example in which the probability distribution of link margin is calculated for a short range ground-to-air system for a single aircraft is provided.

  4. Quantum photonics hybrid integration platform

    SciTech Connect

    Murray, E.; Floether, F. F.; Ellis, D. J. P.; Meany, T.; Bennett, A. J. Shields, A. J.; Lee, J. P.; Griffiths, J. P.; Jones, G. A. C.; Farrer, I.; Ritchie, D. A.

    2015-10-26

    Fundamental to integrated photonic quantum computing is an on-chip method for routing and modulating quantum light emission. We demonstrate a hybrid integration platform consisting of arbitrarily designed waveguide circuits and single-photon sources. InAs quantum dots (QD) embedded in GaAs are bonded to a SiON waveguide chip such that the QD emission is coupled to the waveguide mode. The waveguides are SiON core embedded in a SiO{sub 2} cladding. A tuneable Mach Zehnder interferometer (MZI) modulates the emission between two output ports and can act as a path-encoded qubit preparation device. The single-photon nature of the emission was verified using the on-chip MZI as a beamsplitter in a Hanbury Brown and Twiss measurement.

  5. Web platform for functional design

    NASA Astrophysics Data System (ADS)

    Dijmarescu, M. R.; Dijmarescu, M. C.

    2015-11-01

    Today's global competitive trends, especially those related to industries, determine a much higher degree of pressure and demands for substantial innovation driven improvements, flexible and time sensitive solutions. Improving and optimizing the design activity by shortening its timeline and maintaining a high quality level for its output have become the main success factors. The evolution of design activity is strongly related to the evolution of education and research made in the design field. Thus, the development of web tools which can contain knowledge about mechanical products functionality and structure may be an important achievement for the education and industry. This paper presents a web platform which contains functional-constructive knowledge in the area of mechanical design field and was developed to support design activity. The proposed web tool can provide any user, even one without background in design theory, information about the functionality of products and the way it is related to the product structure.

  6. Language Geography from Microblogging Platforms

    NASA Astrophysics Data System (ADS)

    Mocanu, Delia; Baronchelli, Andrea; Perra, Nicola; Gonçalves, Bruno; Vespignani, Alessandro

    2013-03-01

    Microblogging platforms have now become major open source indicators for complex social interactions. With the advent of smartphones, the everincreasing mobile Internet traffic gives us the unprecedented opportunity to complement studies of complex social phenomena with real-time location information. In this work, we show that the data nowadays accessible allows for detailed studies at different scales, ranging from country-level aggregate analysis to the analysis of linguistic communities withing specific neighborhoods. The high resolution and coverage of this data permits us to investigate such issues as the linguistic homogeneity of different countries, touristic seasonal patterns within countries, and the geographical distribution of different languages in bilingual regions. This work highlights the potentialities of geolocalized studies of open data sources that can provide an extremely detailed picture of the language geography.

  7. The bacterial ghost platform system

    PubMed Central

    Langemann, Timo; Koller, Verena Juliana; Muhammad, Abbas; Kudela, Pavol; Mayr, Ulrike Beate

    2010-01-01

    The Bacterial Ghost (BG) platform technology is an innovative system for vaccine, drug or active substance delivery and for technical applications in white biotechnology. BGs are cell envelopes derived from Gram-negative bacteria. BGs are devoid of all cytoplasmic content but have a preserved cellular morphology including all cell surface structures. Using BGs as delivery vehicles for subunit or DNA-vaccines the particle structure and surface properties of BGs are targeting the carrier itself to primary antigen-presenting cells. Furthermore, BGs exhibit intrinsic adjuvant properties and trigger an enhanced humoral and cellular immune response to the target antigen. Multiple antigens of the native BG envelope and recombinant protein or DNA antigens can be combined in a single type of BG. Antigens can be presented on the inner or outer membrane of the BG as well as in the periplasm that is sealed during BG formation. Drugs or supplements can also be loaded to the internal lumen or periplasmic space of the carrier. BGs are produced by batch fermentation with subsequent product recovery and purification via tangential flow filtration. For safety reasons all residual bacterial DNA is inactivated during the BG production process by the use of staphylococcal nuclease A and/or the treatment with β-propiolactone. After purification BGs can be stored long-term at ambient room temperature as lyophilized product. The production cycle from the inoculation of the pre-culture to the purified BG concentrate ready for lyophilization does not take longer than a day and thus meets modern criteria of rapid vaccine production rather than keeping large stocks of vaccines. The broad spectrum of possible applications in combination with the comparably low production costs make the BG platform technology a safe and sophisticated product for the targeted delivery of vaccines and active agents as well as carrier of immobilized enzymes for applications in white biotechnology. PMID:21326832

  8. SpaceCube Demonstration Platform

    NASA Technical Reports Server (NTRS)

    Espinosa, Daniel; Hosler, Jeffrey; Geist, Alessandro; Patrick, David; Buenfil, Manuel; Crum, Gary; Flatley, Tom

    2011-01-01

    A document discusses how the HST SM4 SpaceCube flight spare was modified to create an experiment called the Space- Cube Demonstration Platform (SC DP) for use on the MISSE7 Space Station payload (in collaboration with NRL). It is designed to serve as an on-orbit platform for demonstrating advanced fault tolerance technologies. A simple C&DH (command and data handling) system was developed for the Virtex4 FPGAs (field programmable gate arrays). Both Virtex4s on each SpaceCube run the same program, and both receive incoming telemetry. The rad-hard service FPGA performs simple error checking to verify that the incoming telemetry is valid. The SpaceCube framework was modified to allow for new program files to be sent from the ground, to be stored on the SpaceCube, and to be executed through ground commands. Each SpaceCube Virtex4 FPGA has resources set aside for experiments that are functionally isolated from the C&DH system. The experiments communicate to the C&DH system through a set of dual port memories, and this area is where the fault-tolerance experiments are executed. With the use of Xilinx commercial Virtex4 FX60 FPGAs, the fault tolerant framework allows the system to recover from radiation upsets that occur in the rad-soft parts (Virtex4 FPGA logic, embedded PPCs in Virtex4 FPGAs, SDRAM and Flash), the C&DH system that runs simultaneously on both Virtex4 FPGAs that uses a robust telemetry packet structure, checksums, and the rad-hard service FPGA to validate incoming telemetry. The ability to be reconfigured from the ground while in orbit is a novel benefit, as well as is the onboard compression capabilities that allow compressed files from the ground to be uploaded to the SpaceCube.

  9. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications.

    PubMed

    Mark, Daniel; Haeberle, Stefan; Roth, Günter; von Stetten, Felix; Zengerle, Roland

    2010-03-01

    This critical review summarizes developments in microfluidic platforms that enable the miniaturization, integration, automation and parallelization of (bio-)chemical assays (see S. Haeberle and R. Zengerle, Lab Chip, 2007, 7, 1094-1110, for an earlier review). In contrast to isolated application-specific solutions, a microfluidic platform provides a set of fluidic unit operations, which are designed for easy combination within a well-defined fabrication technology. This allows the easy, fast, and cost-efficient implementation of different application-specific (bio-)chemical processes. In our review we focus on recent developments from the last decade (2000s). We start with a brief introduction into technical advances, major market segments and promising applications. We continue with a detailed characterization of different microfluidic platforms, comprising a short definition, the functional principle, microfluidic unit operations, application examples as well as strengths and limitations of every platform. The microfluidic platforms in focus are lateral flow tests, linear actuated devices, pressure driven laminar flow, microfluidic large scale integration, segmented flow microfluidics, centrifugal microfluidics, electrokinetics, electrowetting, surface acoustic waves, and dedicated systems for massively parallel analysis. This review concludes with the attempt to provide a selection scheme for microfluidic platforms which is based on their characteristics according to key requirements of different applications and market segments. Applied selection criteria comprise portability, costs of instrument and disposability, sample throughput, number of parameters per sample, reagent consumption, precision, diversity of microfluidic unit operations and the flexibility in programming different liquid handling protocols (295 references). PMID:20179830

  10. Platform evaluation of an offshore field

    SciTech Connect

    Huang, K.L.; Saleri, N.G.; Al-Khowaiter, A.O.

    1995-10-01

    A numerical study of an offshore field was performed to evaluate the relative performance of horizontal versus conventional wells, and various well completion/placement/production scenarios for a six-well platform. The results presented in this paper are found to be counterintuitive. While horizontal/high slant wells showed delayed gas and/or water breakthroughs, the overall platform performance remained largely insensitive to well configuration (horizontal versus conventional). Well placement, completion interval, and production strategy after breakthrough were identified to be the critical parameters in determining the performance of the platform. The study results favor conventional completions for this particular six-well platform.

  11. A new intermediate for the production of flexible stable polymers

    NASA Technical Reports Server (NTRS)

    Webster, J. A.

    1973-01-01

    Method of incorporating ether linkages into perfluoroalkylene segment of a dianydride intermediate yields intermediate that may be used in synthesis of flexible, stable polyimides for use as high-temperature, solvent-resistant sealants.

  12. Nanorod Material Developed for Use as an Optical Sensor Platform

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J.

    2005-01-01

    Optical sensors are becoming increasingly important in the development of new nonintrusive or embedded sensors. The use of light and material optical properties helps us measure unknown parameters such as temperature, pressure, flow, or chemical species. The focus of this work is to develop new nanostructure platforms upon which optical sensors can be constructed. These nanorods are synthesized oxides that form a base structure to which luminescent sensing dyes or dopants can be attached or embedded. The nanorod structure allows for a much greater open area than closed or polymer-based sensors do, enabling a much faster contact of the measured species with the luminescent sensor and, thus, a potentially faster measurement.

  13. From Laboratory to the Field: Intermediate Scale Testing, a Necessary Step.

    NASA Astrophysics Data System (ADS)

    Illangasekare, T. H.

    2005-05-01

    Fundamental processes associated with water flow and transport and fate of chemicals, both dissolved and in separate phase, that occur at the microscopic pore scale will affect the large-scale evolution of chemical plumes in the subsurface. However, the ultimate transport and fate that define the spatial and time distribution of plume concentrations are significantly dependent on both the physical and chemical heterogeneity of subsurface formations. In attempting to understand, study and model the field behavior, the question always arises on how to transfer the pore-scale or the representative elementary volume scale observations and characterization data to the large field scales, incorporating the information on multi-dimensional flow fields and heterogeneity. In most cases, field systems are difficult to study due to their inherent complexity, inadequacy of characterization data, expense, and infeasibility in conducting controlled experiments. The author will make an argument that controlled experiments conducted in intermediate-scale laboratory test tanks even though difficult, is a necessary step in up-scaling the information from the laboratory to the field in studying a class of complex subsurface problems. Intermediate scale tank testing offers many advantages over complex and generally expensive field-testing. Testing conducted in two and there-dimensional test tanks in laboratory settings provides for better control, accurate characterization and higher precision achievable in data collection. The art and science of designing successful intermediate scale experiment require in-depth understanding of fundamentals, good engineering, understanding of capabilities and limitations of modeling tools, careful planning and patience. The author will share the knowledge gained and lessons learned from more than twenty years of experience in conducting such experiments involving water flow, solute transport, non-aqueous phase liquid behavior, site characterization

  14. Intermediate temperature solid oxide fuel cells.

    PubMed

    Brett, Daniel J L; Atkinson, Alan; Brandon, Nigel P; Skinner, Stephen J

    2008-08-01

    High temperature solid oxide fuel cells (SOFCs), typified by developers such as Siemens Westinghouse and Rolls-Royce, operate in the temperature region of 850-1000 degrees C. For such systems, very high efficiencies can be achieved from integration with gas turbines for large-scale stationary applications. However, high temperature operation means that the components of the stack need to be predominantly ceramic and high temperature metal alloys are needed for many balance-of-plant components. For smaller scale applications, where integration with a heat engine is not appropriate, there is a trend to move to lower temperatures of operation, into the so-called intermediate temperature (IT) range of 500-750 degrees C. This expands the choice of materials and stack geometries that can be used, offering reduced system cost and, in principle, reducing the corrosion rate of stack and system components. This review introduces the IT-SOFC and explains the advantages of operation in this temperature regime. The main advances made in materials chemistry that have made IT operation possible are described and some of the engineering issues and the new opportunities that reduced temperature operation affords are discussed. This tutorial review examines the advances being made in materials and engineering that are allowing solid oxide fuel cells to operate at lower temperature. The challenges and advantages of operating in the so-called 'intermediate temperature' range of 500-750 degrees C are discussed and the opportunities for applications not traditionally associated with solid oxide fuel cells are highlighted. This article serves as an introduction for scientists and engineers interested in intermediate temperature solid oxide fuel cells and the challenges and opportunities of reduced temperature operation. PMID:18648682

  15. Structure based prediction of protein folding intermediates.

    PubMed

    Xie, D; Freire, E

    1994-09-01

    The complete unfolding of a protein involves the disruption of non-covalent intramolecular interactions within the protein and the subsequent hydration of the backbone and amino acid side-chains. The magnitude of the thermodynamic parameters associated with this process is known accurately for a growing number of globular proteins for which high-resolution structures are also available. The existence of this database of structural and thermodynamic information has facilitated the development of statistical procedures aimed at quantifying the relationships existing between protein structure and the thermodynamic parameters of folding/unfolding. Under some conditions proteins do not unfold completely, giving rise to states (commonly known as molten globules) in which the molecule retains some secondary structure and remains in a compact configuration after denaturation. This phenomenon is reflected in the thermodynamics of the process. Depending on the nature of the residual structure that exists after denaturation, the observed enthalpy, entropy and heat capacity changes will deviate in a particular and predictable way from the values expected for complete unfolding. For several proteins, these deviations have been shown to exhibit similar characteristics, suggesting that their equilibrium folding intermediates exhibit some common structural features. Employing empirically derived structure-energetic relationships, it is possible to identify in the native structure of the protein those regions with the higher probability of being structured in equilibrium partly folded states. In this work, a thermodynamic search algorithm aimed at identifying the structural determinants of the molten globule state has been applied to six globular proteins; alpha-lactalbumin, barnase, IIIGlc, interleukin-1 beta, phage T4 lysozyme and phage 434 repressor. Remarkably, the structural features of the predicted equilibrium intermediates coincide to a large extent with the known

  16. Intermediate Temperature Solid Oxide Fuel Cell Development

    SciTech Connect

    S. Elangovan; Scott Barnett; Sossina Haile

    2008-06-30

    Solid oxide fuel cells (SOFCs) are high efficiency energy conversion devices. Present materials set, using yttria stabilized zirconia (YSZ) electrolyte, limit the cell operating temperatures to 800 C or higher. It has become increasingly evident however that lowering the operating temperature would provide a more expeditious route to commercialization. The advantages of intermediate temperature (600 to 800 C) operation are related to both economic and materials issues. Lower operating temperature allows the use of low cost materials for the balance of plant and limits degradation arising from materials interactions. When the SOFC operating temperature is in the range of 600 to 700 C, it is also possible to partially reform hydrocarbon fuels within the stack providing additional system cost savings by reducing the air preheat heat-exchanger and blower size. The promise of Sr and Mg doped lanthanum gallate (LSGM) electrolyte materials, based on their high ionic conductivity and oxygen transference number at the intermediate temperature is well recognized. The focus of the present project was two-fold: (a) Identify a cell fabrication technique to achieve the benefits of lanthanum gallate material, and (b) Investigate alternative cathode materials that demonstrate low cathode polarization losses at the intermediate temperature. A porous matrix supported, thin film cell configuration was fabricated. The electrode material precursor was infiltrated into the porous matrix and the counter electrode was screen printed. Both anode and cathode infiltration produced high performance cells. Comparison of the two approaches showed that an infiltrated cathode cells may have advantages in high fuel utilization operations. Two new cathode materials were evaluated. Northwestern University investigated LSGM-ceria composite cathode while Caltech evaluated Ba-Sr-Co-Fe (BSCF) based pervoskite cathode. Both cathode materials showed lower polarization losses at temperatures as low as 600

  17. Intermediate depth seismicity - a reflection seismic approach

    NASA Astrophysics Data System (ADS)

    Haberland, C.; Rietbrock, A.

    2004-12-01

    During subduction the descending oceanic lithosphere is subject to metamorphic reactions, some of them associated with the release of fluids. It is now widely accepted, that these reactions and associated dehydration processes are directly related with the generation of intermediate depth earthquakes (dehydration embrittlement). However, the structure of the layered oceanic plate at depth and the location of the earthquakes relative to structural units of the subducting plate (sources within the oceanic crust and/or in the upper oceanic mantle lithosphere?) are still not resolved yet. This is in mainly due to the fact that the observational resolution needed to address these topics (in the range of only a few kilometers) is hardly achieved in field experiments and related studies. Here we study the wavefields of intermediate depth earthquakes typically observed by temporary networks in order to assess their high-resolution potential in resolving structure of the down going slab and locus of seismicity. In particular we study whether the subducted oceanic Moho can be detected by the analysis of secondary phases of local earthquakes (near vertical reflection). Due to the irregular geometry of sources and receivers we apply an imaging technique similar to diffraction stack migration. The method is tested using synthetic data both based on 2-D finite difference simulations and 3-D kinematic ray tracing. The accuracy of the hypocenter location and onset times crucial for the successful application of stacking techniques (coherency) was achieved by the use of relatively relocated intermediate depth seismicity. Additionally, we simulate the propagation of the wavefields at larger distance (wide angle) indicating the development of guided waves traveling in the low-velocity waveguide associated with the modeled oceanic crust. We also present application on local earthquake data from the South American subduction zone.

  18. Graphene-Plasmonic Hybrid Platform for Label-Free SERS Biomedical Detection

    NASA Astrophysics Data System (ADS)

    Wang, Pu

    Surface Enhanced Raman Scattering (SERS) has attracted explosive interest for the wealth of vibrational information it provides with minimal invasive effects to target analyte. Nanotechnology, especially in the form of noble metal nanoparticles exhibit unique electromagnetic and chemical characteristics that are explored to realize ultra-sensitive SERS detection in chemical and biological analysis. Graphene, atom-thick carbon monolayer, exhibits superior chemical stability and bio-compatibility. A combination of SERS-active metal nanostructures and graphene will create various synergies in SERS. The main objective of this research was to exploit the applications of the graphene-Au tip hybrid platform in SERS. The hybrid platform consists of a periodic Au nano-pyramid substrate to provide reproducible plasmonic enhancement, and the superimposed monolayer graphene sheet, serving as "built-in" Raman marker. Extensive theoretical and experimental studies were conducted to determine the potentials of the hybrid platform as SERS substrate. Results from both Finite-Domain Time-Domain (FDTD) numerical simulation and Raman scattering of graphene suggested that the hybrid platform boosted a high density of hotspots yielding 1000 times SERS enhancement of graphene bands. Ultra-high sensitivity of the hybrid platform was demonstrated by bio-molecules including dye, protein and neurotransmitters. Dopamine and serotonin can be detected and distinguished at 10-9 M concentration in the presence of human body fluid. Single molecule detection was obtained using a bi-analyte technique. Graphene supported a vibration mode dependent SERS chemical enhancement of ˜10 to the analyte. Quantitative evaluation of hotspots was presented using spatially resolved Raman mapping of graphene SERS enhancement. Graphene plays a crucial role in quantifying SERS hotspots and paves the path for defining SERS EF that could be universally applied to various SERS systems. A reproducible and statistically

  19. Location of an intermediate hub for port activities

    NASA Astrophysics Data System (ADS)

    Burciu, Ş.; Ştefănică, C.; Roşca, E.; Dragu, V.; Ruscă, F.

    2015-11-01

    An intermediate hub might increase the accessibility level of ports but also hinterland and so it can be considered more than a facility with a transhipment role. These hubs might lead to the development of other transport services and enhance their role in gathering and covering economic centres within hinterlands and also getting the part of logistic facility for the ports, with effects on port utilization and its connectivity to global economy. A new location for a hub terminal leads to reduced transport distances within hinterland, with decreased transport costs and external effects, so with gains in people's life quality. Because the production and distribution systems are relatively fixed on short and medium term and the location decisions are strategic and on long term, the logistic chains activities location models have to consider the uncertainties regarding the possible future situations. In most models, production costs are considered equal, the location problem reducing itself to a problem that aims to minimize the total transport costs, meaning the transport problem. The main objective of the paper is to locate a hub terminal that links the producers of cereals that are going to be exported by naval transportation with the Romanian fluvial-maritime ports (Galaţi, Brăila). GIS environment can be used to integrate and analyse a great amount of data and has the ability of using functions as location - allocation models necessary both to private and public sector, being able to determine the optimal location for services like factories, warehouses, logistic platforms and other public services.

  20. Solvent effects on ozonolysis reaction intermediates

    NASA Astrophysics Data System (ADS)

    del Rio, Emma; Aplincourt, Philippe; Ruiz-López, Manuel F.

    1997-12-01

    Solvent effects on relative stability, electronic and molecular structure of ozonolysis reaction intermediates are analyzed with the help of ab initio MP2/6-31+G ** calculations. A continuum model is employed to account for solute-solvent electrostatic interactions. The results show that there are large effects on the structure and relative stability of carbonyl oxide by substantially favoring its zwitterionic character. A complex formed by carbonyl oxide and formaldehyde is shown to be stable in the gas phase and in solution. This complex can be involved in solvent cage reactions leading to secondary ozonides. Thermodynamically, primary ozonide decomposition is favored by the solvent.

  1. Intermediate Bandgap Solar Cells From Nanostructured Silicon

    SciTech Connect

    Black, Marcie

    2014-10-30

    This project aimed to demonstrate increased electronic coupling in silicon nanostructures relative to bulk silicon for the purpose of making high efficiency intermediate bandgap solar cells using silicon. To this end, we formed nanowires with controlled crystallographic orientation, small diameter, <111> sidewall faceting, and passivated surfaces to modify the electronic band structure in silicon by breaking down the symmetry of the crystal lattice. We grew and tested these silicon nanowires with <110>-growth axes, which is an orientation that should produce the coupling enhancement.

  2. National pilot audit of intermediate care.

    PubMed

    Hutchinson, Tom; Young, John; Forsyth, Duncan

    2011-04-01

    The National Service Framework for Older People resulted in the widespread introduction of intermediate care (IC) services. However, although these services have shared common aims, there has been considerable diversity in their staffing, organisation and delivery. Concerns have been raised regarding the clinical governance of IC with a paucity of data to evaluate the effectiveness, quality and safety of these services. This paper presents the results of a national pilot audit of IC services focusing particularly on clinical governance issues. The results confirm these concerns and provide support for a larger scale national audit of IC services to monitor and improve care quality. PMID:21526696

  3. Ruthenium Vinyl Carbene Intermediates in Enyne Metathesis

    PubMed Central

    Diver, Steven T.

    2009-01-01

    This review provides an overview of ruthenium vinyl carbene reactivity as it relates to enyne metathesis. Methods for the synthesis of metathesis-active and metathesis-inactive complexes are also summarized. Some of the early hypotheses about vinyl carbene intermediates in enyne metatheses were tested in the arena of synthetic chemistry and subsequently led to mechanistic studies. In these two areas, studies from the author's labs are described. There are still many unresolved questions in enyne metathesis that trace back to vinyl carbene reactivity. Hopefully this review will stimulate further investigation into vinyl carbene reactivity which should further refine our understanding of catalytic enyne metathesis. PMID:19590747

  4. Thermoelectric power generator with intermediate loop

    SciTech Connect

    Bell, Lon E; Crane, Douglas Todd

    2013-05-21

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  5. MHD oxidant intermediate temperature ceramic heater study

    NASA Technical Reports Server (NTRS)

    Carlson, A. W.; Chait, I. L.; Saari, D. P.; Marksberry, C. L.

    1981-01-01

    The use of three types of directly fired ceramic heaters for preheating oxygen enriched air to an intermediate temperature of 1144K was investigated. The three types of ceramic heaters are: (1) a fixed bed, periodic flow ceramic brick regenerative heater; (2) a ceramic pebble regenerative heater. The heater design, performance and operating characteristics under conditions in which the particulate matter is not solidified are evaluated. A comparison and overall evaluation of the three types of ceramic heaters and temperature range determination at which the particulate matter in the MHD exhaust gas is estimated to be a dry powder are presented.

  6. Reactive Intermediates in Cytochrome P450 Catalysis*

    PubMed Central

    Krest, Courtney M.; Onderko, Elizabeth L.; Yosca, Timothy H.; Calixto, Julio C.; Karp, Richard F.; Livada, Jovan; Rittle, Jonathan; Green, Michael T.

    2013-01-01

    Recently, we reported the spectroscopic and kinetic characterizations of cytochrome P450 compound I in CYP119A1, effectively closing the catalytic cycle of cytochrome P450-mediated hydroxylations. In this minireview, we focus on the developments that made this breakthrough possible. We examine the importance of enzyme purification in the quest for reactive intermediates and report the preparation of compound I in a second P450 (P450ST). In an effort to bring clarity to the field, we also examine the validity of controversial reports claiming the production of P450 compound I through the use of peroxynitrite and laser flash photolysis. PMID:23632017

  7. Thermoelectric power generator with intermediate loop

    DOEpatents

    Bel,; Lon E.; Crane, Douglas Todd

    2009-10-27

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  8. EGRET Sources at Intermediate Galactic Latitudes

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.

    1998-01-01

    During the period 15 March 1992 through 31 October 1997, 12 papers using ROSAT data, supported in part by this grant, were published in referred journals, and one paper was published in a conference proceedings. Their bibliographical references are listed in the Appendix, and the abstracts of these papers are given in the next 13 sections of this report. Finally, a summary of the work completed to date on the newest project, for which ROSAT data are still being received, is given in the section entitled "EGRET Sources at Intermediate Galactic Latitude".

  9. Chemical Leukoderma.

    PubMed

    Bonamonte, Domenico; Vestita, Michelangelo; Romita, Paolo; Filoni, Angela; Foti, Caterina; Angelini, Gianni

    2016-01-01

    Chemical leukoderma, often clinically mimicking idiopathic vitiligo and other congenital and acquired hypopigmentation, is an acquired form of cutaneous pigment loss caused by exposure to a variety of chemicals that act through selective melanocytotoxicity. Most of these chemicals are phenols and aromatic or aliphatic catechols derivatives. These chemicals, however, are harmful for melanocytes in individuals with an individual susceptibility. Nowadays, chemical leukoderma is fairly common, caused by common domestic products. The presence of numerous acquired confetti- or pea-sized macules is clinically characteristic of chemical leukoderma, albeit not diagnostic. Other relevant diagnostic elements are a history of repeated exposure to a known or suspected depigmenting agent at the sites of onset and a macules distribution corresponding to sites of chemical exposure. Spontaneous repigmentation has been reported when the causative agent is avoided; the repigmentation process is perifollicular and gradual, taking place for a variable period of weeks to months. PMID:27172302

  10. XMS: Cross-Platform Normalization Method for Multimodal Mass Spectrometric Tissue Profiling

    NASA Astrophysics Data System (ADS)

    Golf, Ottmar; Muirhead, Laura J.; Speller, Abigail; Balog, Júlia; Abbassi-Ghadi, Nima; Kumar, Sacheen; Mróz, Anna; Veselkov, Kirill; Takáts, Zoltán

    2015-01-01

    Here we present a proof of concept cross-platform normalization approach to convert raw mass spectra acquired by distinct desorption ionization methods and/or instrumental setups to cross-platform normalized analyte profiles. The initial step of the workflow is database driven peak annotation followed by summarization of peak intensities of different ions from the same molecule. The resulting compound-intensity spectra are adjusted to a method-independent intensity scale by using predetermined, compound-specific normalization factors. The method is based on the assumption that distinct MS-based platforms capture a similar set of chemical species in a biological sample, though these species may exhibit platform-specific molecular ion intensity distribution patterns. The method was validated on two sample sets of (1) porcine tissue analyzed by laser desorption ionization (LDI), desorption electrospray ionization (DESI), and rapid evaporative ionization mass spectrometric (REIMS) in combination with Fourier transformation-based mass spectrometry; and (2) healthy/cancerous colorectal tissue analyzed by DESI and REIMS with the latter being combined with time-of-flight mass spectrometry. We demonstrate the capacity of our method to reduce MS-platform specific variation resulting in (1) high inter-platform concordance coefficients of analyte intensities; (2) clear principal component based clustering of analyte profiles according to histological tissue types, irrespective of the used desorption ionization technique or mass spectrometer; and (3) accurate "blind" classification of histologic tissue types using cross-platform normalized analyte profiles.

  11. 22 CFR 140.10 - Intermediate credit institutions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Intermediate credit institutions. 140.10... TRAFFICKERS Enforcement § 140.10 Intermediate credit institutions. (a) Treatment as non-governmental entity or as a foreign government entity. Intermediate credit institutions (“ICIs”) shall be subject to...

  12. 22 CFR 140.10 - Intermediate credit institutions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Intermediate credit institutions. 140.10... TRAFFICKERS Enforcement § 140.10 Intermediate credit institutions. (a) Treatment as non-governmental entity or as a foreign government entity. Intermediate credit institutions (“ICIs”) shall be subject to...

  13. 14 CFR 398.8 - Number of intermediate stops.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Number of intermediate stops. 398.8 Section 398.8 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION... Number of intermediate stops. (a) Except in Alaska, no more than one intermediate stop is permitted...

  14. Investigation of the intermediate oxidation regime of Diesel fuel

    SciTech Connect

    Al-Hamamre, Z.; Trimis, D.

    2009-09-15

    A very high temperature fuel-air mixture is necessary for the thermal partial oxidation process of hydrocarbon fuels in order to have a high reaction temperature which accelerate the reaction kinetics. For Diesel fuel and due to the ignition delay time behavior, different oxidation behavior can be realized at different preheating temperatures. In this work, the intermediate oxidation region of Diesel fuel is investigated. By making use of the ignition delay time behavior, an vaporizer like tube reactor is constructed in order to enable a very high preheating temperature without the risk of self-ignition in a time-independent experiment. The oxidation behavior of Diesel fuel in air is investigated numerically and experimentally. In the numerical part, the ignition delay time was estimated using CHEMIKIN tools for different air-fuel mixtures at different temperatures. The evaporation behavior of the Diesel fuel-air mixtures are investigated at relatively high air preheating temperatures ranging from 500 C up to 680 C. The amount of the process air was varied from an air ratio {lambda} = 0.35 to {lambda} = 0.6. The experiments are also performed with N{sub 2} as an evaporation media and compared with those performed with air to detect any temperature increase in the case of Diesel-air mixtures. The amount of heat release in the low chemistry region as well as in the intermediate region is calculated for the case of Diesel/air mixtures. The experiments show that four different oxidation region of Diesel fuel can be distinguished depending on air inlet temperatures and on the air ratio. At a temperature lower than 723 K (450 C), no chemical reaction takes place. The cool flame reactions start at temperatures above 723 K (450 C). However, no stable cool flame can be achieved unless the air preheating temperature reached about 753 K (480 C). The cool flame region is extended up to about 873 K (600 C), at which the intermediate regime started. This regime stabilized to a

  15. Jurassic platform development, northwestern Gulf of Mexico

    SciTech Connect

    Moore, C.H. Jr.

    1987-05-01

    Triassic and Early Jurassic rifting set the stage for the subsequent development of carbonate platforms in the Late Jurassic. These platforms formed along the interior margins of salt basins separated from the main ancestral Gulf of Mexico by a series of positive features. A major sea level rise, after deposition of the Louann Salt (late Callovian), drowned the interior salt basins around the margins of the Gulf of Mexico, leading to an anoxic event. Organic-rich sediments of the lower Smackover were deposited as a basin-fill sequence, forming one of the major hydrocarbon source rocks of the region. As sea level rise slowed in the late Oxfordian, carbonate production began to catch up with sea level rise along the basin margins, leading to the initial development of a rimmed carbonate platform. The platform margin was marked by high-energy ooid grainstones, while crustacean pellet muds were deposited in the platform interior. A high-energy ooid-dominated platform (upper Smackover) developed in the late Oxfordian when sea level reached a standstill. During the subsequent Kimmeridgian sea level rise, a second rimmed carbonate platform, the Haynesville, was developed. During the initial rise, grainstones were deposited on the platform margin, while the interior was dominated by evaporites (Buckner) and siliciclastics. As sea level slowed and reached a standstill, the platform margin facies extended shoreward (Gilmer) and a high-energy platform, analogous to the upper Smackover, was formed. The Smackover and Haynesville platforms of the northwestern gulf show a parallel evolution in response to cyclic changes in Upper Jurassic sea level.

  16. Structures technology project summary: Earth orbiting platforms program area of the space platforms technology program

    NASA Technical Reports Server (NTRS)

    Bush, Harold

    1991-01-01

    Viewgraphs are presented on the structures technology for the Earth orbiting platforms program. The objective of the work is to develop component and system level structural concepts and design methods to enable in-space construction and deployment of large platform structures in low earth orbit (LEO) and geosynchronous orbit (GEO) including primary platform structures, reflectors and antenna, and habitat and storage modules.

  17. Microfluidic platform for assessing pancreatic islet functionality through dielectric spectroscopy

    PubMed Central

    Heileman, K.; Daoud, J.; Hasilo, C.; Gasparrini, M.; Paraskevas, S.; Tabrizian, M.

    2015-01-01

    Human pancreatic islets are seldom assessed for dynamic responses to external stimuli. Thus, the elucidation of human islet functionality would provide insights into the progression of diabetes mellitus, evaluation of preparations for clinical transplantation, as well as for the development of novel therapeutics. The objective of this study was to develop a microfluidic platform for in vitro islet culture, allowing the multi-parametric investigation of islet response to chemical and biochemical stimuli. This was accomplished through the fabrication and implementation of a microfluidic platform that allowed the perifusion of islet culture while integrating real-time monitoring using impedance spectroscopy, through microfabricated, interdigitated electrodes located along the microchamber arrays. Real-time impedance measurements provide important dielectric parameters, such as cell membrane capacitance and cytoplasmic conductivity, representing proliferation, differentiation, viability, and functionality. The perifusion of varying glucose concentrations and monitoring of the resulting impedance of pancreatic islets were performed as proof-of-concept validation of the lab-on-chip platform. This novel technique to elucidate the underlying mechanisms that dictate islet functionality is presented, providing new information regarding islet function that could improve the evaluation of islet preparations for transplantation. In addition, it will lead to a better understanding of fundamental diabetes-related islet dysfunction and the development of therapeutics through evaluation of potential drug effects. PMID:26339324

  18. Low temperature silicon nitride waveguides for multilayer platforms

    NASA Astrophysics Data System (ADS)

    Domínguez Bucio, T.; Tarazona, A.; Khokhar, A. Z.; Mashanovich, G. Z.; Gardes, F. Y.

    2016-05-01

    Several 3D multilayer silicon photonics platforms have been proposed to provide densely integrated structures for complex integrated circuits. Amongst these platforms, great interest has been given to the inclusion of silicon nitride layers to achieve low propagation losses due to their capacity of providing tight optical confinement with low scattering losses in a wide spectral range. However, none of the proposed platforms have demonstrated the integration of active devices. The problem is that typically low loss silicon nitride layers have been fabricated with LPCVD which involves high processing temperatures (<1000 ºC) that affect metallisation and doping processes that are sensitive to temperatures above 400ºC. As a result, we have investigated ammonia-free PECVD and HWCVD processes to obtain high quality silicon nitride films with reduced hydrogen content at low temperatures. Several deposition recipes were defined through a design of experiments methodology in which different combinations of deposition parameters were tested to optimise the quality and the losses of the deposited layers. The physical, chemical and optical properties of the deposited materials were characterised using different techniques including ellipsometry, SEM, FTIR, AFM and the waveguide loss cut-back method. Silicon nitride layers with hydrogen content between 10-20%, losses below 10dB/cm and high material quality were obtained with the ammonia-free recipe. Similarly, it was demonstrated that HWCVD has the potential to fabricate waveguides with low losses due to its capacity of yielding hydrogen contents <10% and roughness <1.5nm.

  19. Fission in intermediate energy heavy ion reactions

    SciTech Connect

    Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.; Boissevain, J.; Fowler, M.M.; Gavron, A.; Jacak, B.V.; Lysaght, P.S.; Britt, H.C.; Fields, D.J.

    1989-04-01

    A systematic study of reaction mechanisms at intermediate energies (50--100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components--intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: the reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicity of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. 15 refs., 7 figs.

  20. Keto-Enol Thermodynamics of Breslow Intermediates.

    PubMed

    Paul, Mathias; Breugst, Martin; Neudörfl, Jörg-Martin; Sunoj, Raghavan B; Berkessel, Albrecht

    2016-04-20

    Breslow intermediates, first postulated in 1958, are pivotal intermediates in carbene-catalyzed umpolung. Attempts to isolate and characterize these fleeting amino enol species first met with success in 2012 when we found that saturated bis-Dipp/Mes imidazolidinylidenes readily form isolable, though reactive diamino enols with aldehydes and enals. In contrast, triazolylidenes, upon stoichiometric reaction with aldehydes, gave exclusively the keto tautomer, and no isolable enol. Herein, we present the synthesis of the "missing" keto tautomers of imidazolidinylidene-derived diamino enols, and computational thermodynamic data for 15 enol-ketone pairs derived from various carbenes/aldehydes. Electron-withdrawing substituents on the aldehyde favor enol formation, the same holds for N,N'-Dipp [2,6-di(2-propyl)phenyl] and N,N'-Mes [2,4,6-trimethylphenyl] substitution on the carbene component. The latter effect rests on stabilization of the diamino enol tautomer by Dipp substitution, and could be attributed to dispersive interaction of the 2-propyl groups with the enol moiety. For three enol-ketone pairs, equilibration of the thermodynamically disfavored tautomer was attempted with acids and bases but could not be effected, indicating kinetic inhibition of proton transfer. PMID:26876370

  1. Physics of intermediate shocks: A review

    NASA Technical Reports Server (NTRS)

    Karimabadi, H.

    1995-01-01

    Intermediate shocks (ISs) lead to a transition from super-Alfvenic to sub-Alfvenic flow and are different from slow and fast shocks in that an IS rotates the component of the magnetic field tangent to the shock plane by 180 deg. Another peculiarity of ISs is that for the same upstream conditions an IS can have two different downstream states. There also exist a second class of ISs which rotate the magnetic field by an angle other than 180 deg. Due to their noncoplanar nature they cannot be time-stationary and are referred to as time-dependent intermediate shocks (TDIS). The existence of ISs has been the subject of much controversy over the years. Early studies questioned the physical reality of ISs. However, the studies of ISs found a new impetus when C.C. Wu showed that ISs do exist and are stable within the resistive MHD framework. In this paper, after a brief historical overview of the subject, we will review the latest developments in the study of ISs. In particular, we will address the questions of stability and structure of ISs and the relationship between ISs and other discontinuities. One of the recent developments has been the finding that ISs can be unsteady, reforming in time. Details of this process will be discussed. Finally, we examine the effect of anisotropy on the resolutions and discuss the relevance of ISs to the observed field rotations at the Earth's magnetopause.

  2. Advanced intermediate temperature sodium copper chloride battery

    NASA Astrophysics Data System (ADS)

    Yang, Li-Ping; Liu, Xiao-Min; Zhang, Yi-Wei; Yang, Hui; Shen, Xiao-Dong

    2014-12-01

    Sodium metal chloride batteries, also called as ZEBRA batteries, possess many merits such as low cost, high energy density and high safety, but their high operation temperature (270-350 °C) may cause several issues and limit their applications. Therefore, decreasing the operation temperature is of great importance in order to broaden their usage. Using a room temperature ionic liquid (RTIL) catholyte composed of sodium chloride buffered 1-ethyl-3-methylimidazolium chloride-aluminum chloride and a dense β″-aluminates solid electrolyte film with 500 micron thickness, we report an intermediate temperature sodium copper chloride battery which can be operated at only 150 °C, therefore alleviating the corrosion issues, improving the material compatibilities and reducing the operating complexities associated with the conventional ZEBRA batteries. The RTIL presents a high ionic conductivity (0.247 S cm-1) at 150 °C and a wide electrochemical window (-2.6 to 2.18 vs. Al3+/Al). With the discharge plateau at 2.64 V toward sodium and the specific capacity of 285 mAh g-1, this intermediate temperature battery exhibits an energy density (750 mWh g-1) comparable to the conventional ZEBRA batteries (728-785 mWh g-1) and superior to commercialized Li-ion batteries (550-680 mWh g-1), making it very attractive for renewable energy integration and other grid related applications.

  3. Intermediate energy neutron beams from the MURR

    SciTech Connect

    Brugger, R.M.; Herleth, W.H. )

    1990-01-01

    Several reactors in the United States are potential candidates to deli1ver beams of intermediate energy neutrons for NCT. At this time, moderators, as compared to filters, appear to be the more effective means of tailoring the flux of these reactors. The objective is to sufficiently reduce the flux of fast neutrons while producing enough intermediate energy neutrons for treatments. At the University of Missouri Research Reactor (MURR), the code MCNP has recently been used to calculate doses in a phantom. First, ideal beams of 1, 35, and 1000 eV neutrons were analyzed to determine doses and advantage depths in the phantom. Second, a high quality beam that had been designed to fit in the thermal column of the MURR, was reanalyzed. MCNP calculations of the dose in phantom in this beam confirmed previous calculations and showed that this beam would be a nearly ideal one with neutrons of the desired energy and also a high neutron current. However, installation of this beam will require a significant modification of the thermal column of the MURR. Therefore, a second beam that is less difficult to build and install, but of lower neutron current, has been designed to fit in MURR port F. This beam is designed using inexpensive A1, S, and Pb. The doses calculated in the phantom placed in this beam show that it will be satisfactory for sample tests, animal tests, and possible initial patient trials. Producing this beam will require only modest modifications of the existing tube.

  4. X-rays from intermediate mass stars

    NASA Astrophysics Data System (ADS)

    Robrade, Jan

    I will review the X-ray properties of intermediate mass stars and discuss possible X-ray generating mechanisms. Main-sequence stars of spectral type mid B to mid A neither drive sufficiently strong winds to produce shock generated X-rays, nor possess an outer convection zone to generate dynamo driven magnetic activity and coronae. Consequently they should be virtually X-ray dark and occasionally detected X-ray emission was usually attributed to undetected low-mass companions. However, in magnetic intermediate mass stars, the Ap/Bp stars, a different X-ray production mechanism may operate. It is termed the magnetically channeled wind-shock model, where the stellar wind from both hemispheres is channelled towards the equatorial plane, collides and forms a rigidly rotating disk around the star. The strong shocks of the nearly head-on wind collision as well as the existence of magnetically confined plasma in a dynamic circumstellar disk can lead to diverse X-ray phenomena. In this sense Ap/Bp stars bridge the 'classical' X-ray regimes of cool and hot stars.

  5. A fluorescent-switch-based computing platform in defending information risk.

    PubMed

    Sun, Wei; Zhou, Can; Xu, Chun-Hu; Fang, Chen-Jie; Zhang, Chao; Li, Zhan-Xian; Yan, Chun-Hua

    2008-01-01

    A molecular computing platform to defend against illegal information theft and invasion is obtained by the rational control of chemical reaction sequences in a newly prepared multiswitchable fluorophore 2-(4-aminophenylethylyl)-5-methoxy-2-(2-pyridyl)thiazole. Some of the fluorescent states with distinct recognition features are only activated through input-sequence-sensitive conversions. Chemically encoded user identity information can then be transmitted from a sequential logic unit to a combinational logic circuit, and hence, result in user-specific digital functionalities. The user's password entry is authorized prior to each computing step to check not only the user's identity, but also to reconfigure the molecular platform from the standby state to the corresponding operational state. Illegal accesses to the molecular computing platform are unable to activate the operation of the trusted users due to the incorrect activation processes, thereby ensuring the information is secured against information invasions. PMID:18553327

  6. Large communications platforms versus smaller satellites

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Communications systems using large platforms are compared with systems using conventional satellites. Systems models were generated and compared for U.S. domestic application and for 1 INTELSAT's international and domestic transponder lease application. Technology advances were assumed the platforms and the evolution of conventional satellites.

  7. Helicopter Flight Simulation Motion Platform Requirements

    NASA Technical Reports Server (NTRS)

    Schroeder, Jeffery Allyn

    1999-01-01

    To determine motion fidelity requirements, a series of piloted simulations was performed. Several key results were found. First, lateral and vertical translational platform cues had significant effects on fidelity. Their presence improved performance and reduced pilot workload. Second, yaw and roll rotational platform cues were not as important as the translational platform cues. In particular, the yaw rotational motion platform cue did not appear at all useful in improving performance or reducing workload. Third, when the lateral translational platform cue was combined with visual yaw rotational cues, pilots believed the platform was rotating when it was not. Thus, simulator systems can be made more efficient by proper combination of platform and visual cues. Fourth, motion fidelity specifications were revised that now provide simulator users with a better prediction of motion fidelity based upon the frequency responses of their motion control laws. Fifth, vertical platform motion affected pilot estimates of steady-state altitude during altitude repositioning. Finally, the combined results led to a general method for configuring helicopter motion systems and for developing simulator tasks that more likely represent actual flight. The overall results can serve as a guide to future simulator designers and to today's operators.

  8. Selecting a Virtual World Platform for Learning

    ERIC Educational Resources Information Center

    Robbins, Russell W.; Butler, Brian S.

    2009-01-01

    Like any infrastructure technology, Virtual World (VW) platforms provide affordances that facilitate some activities and hinder others. Although it is theoretically possible for a VW platform to support all types of activities, designers make choices that lead technologies to be more or less suited for different learning objectives. Virtual World…

  9. Venus Atmospheric Maneuverable Platform (VAMP)

    NASA Astrophysics Data System (ADS)

    Polidan, R.; Lee, G.; Sokol, D.; Griffin, K.; Bolisay, L.; Barnes, N.

    2014-04-01

    Over the past years we have explored a possible new approach to Venus upper atmosphere exploration by applying recent Northrop Grumman (non-NASA) development programs to the challenges associated with Venus upper atmosphere science missions. Our concept is a low ballistic coefficient (<50 Pa), semibuoyant aircraft that deploys prior to entering the Venus atmosphere, enters the Venus atmosphere without an aeroshell, and provides a long-lived (months to years), maneuverable vehicle capable of carrying science payloads to explore the Venus upper atmosphere. VAMP targets the global Venus atmosphere between 55 and 70 km altitude and would be a platform to address VEXAG goals I.A, I.B, and I.C. We will discuss the overall mission architecture and concept of operations from launch through Venus arrival, orbit, entry, and atmospheric science operations. We will present a strawman concept of VAMP, including ballistic coefficient, planform area, percent buoyancy, inflation gas, wing span, vehicle mass, power supply, propulsion, materials considerations, structural elements, subsystems, and packaging. The interaction between the VAMP vehicle and the supporting orbiter will also be discussed. In this context, we will specifically focus upon four key factors impacting the design and performance of VAMP: 1. Science payload accommodation, constraints, and opportunities 2. Characteristics of flight operations and performance in the Venus atmosphere: altitude range, latitude and longitude access, day/night performance, aircraft performance, performance sensitivity to payload weight 3. Feasibility of and options for the deployment of the vehicle in space 4. Entry into the Venus atmosphere, including descent profile, heat rate, total heat load, stagnation temperature, control, and entry into level flight We will discuss interdependencies of the above factors and the manner in which the VAMP strawman's characteristics affect the CONOPs and the science objectives. We will show how the

  10. Intermediates in the cation reactions in solution probed by an in situ surface enhanced Raman scattering method

    PubMed Central

    Tan, Chih-Shan; Chen, Hung-Ying; Chen, Hsueh-Szu; Gwo, Shangjr; Chen, Lih-Juann

    2015-01-01

    For chemical reactions in liquid state, such as catalysis, understanding of dynamical changes is conducive to practical applications. Solvation of copper salts in aqueous solution has implications for life, the environment, and industry. In an ongoing research, the question arises that why the color of aqueous CuCl2 solution changes with solution concentration? In this work, we have developed a convenient and efficient in situ surface enhanced Raman scattering technique to probe the presence of many intermediates, some of them are responsible for color change, in crystallization of aqueous copper chloride solution. The versatility of the novel technique was confirmed in the identification of five intermediates states in the transition from CdS to MoS2 nanowires in solution. The facile in situ method is expected to be widely applicable in probing intermediate states in a variety of chemical reactions in solution. PMID:26333518

  11. Intermediates in the cation reactions in solution probed by an in situ surface enhanced Raman scattering method

    NASA Astrophysics Data System (ADS)

    Tan, Chih-Shan; Chen, Hung-Ying; Chen, Hsueh-Szu; Gwo, Shangjr; Chen, Lih-Juann

    2015-09-01

    For chemical reactions in liquid state, such as catalysis, understanding of dynamical changes is conducive to practical applications. Solvation of copper salts in aqueous solution has implications for life, the environment, and industry. In an ongoing research, the question arises that why the color of aqueous CuCl2 solution changes with solution concentration? In this work, we have developed a convenient and efficient in situ surface enhanced Raman scattering technique to probe the presence of many intermediates, some of them are responsible for color change, in crystallization of aqueous copper chloride solution. The versatility of the novel technique was confirmed in the identification of five intermediates states in the transition from CdS to MoS2 nanowires in solution. The facile in situ method is expected to be widely applicable in probing intermediate states in a variety of chemical reactions in solution.

  12. [Chemical weapons and chemical terrorism].

    PubMed

    Nakamura, Katsumi

    2005-10-01

    Chemical Weapons are kind of Weapons of Mass Destruction (WMD). They were used large quantities in WWI. Historically, large quantities usage like WWI was not recorded, but small usage has appeared now and then. Chemical weapons are so called "Nuclear weapon for poor countrys" because it's very easy to produce/possession being possible. They are categorized (1) Nerve Agents, (2) Blister Agents, (3) Cyanide (blood) Agents, (4) Pulmonary Agents, (5) Incapacitating Agents (6) Tear Agents from the viewpoint of human body interaction. In 1997 the Chemical Weapons Convention has taken effect. It prohibits chemical weapons development/production, and Organization for the Prohibition of Chemical Weapons (OPCW) verification regime contributes to the chemical weapons disposal. But possibility of possession/use of weapons of mass destruction by terrorist group represented in one by Matsumoto and Tokyo Subway Sarin Attack, So new chemical terrorism countermeasures are necessary. PMID:16296384

  13. High-precision hydraulic Stewart platform

    NASA Astrophysics Data System (ADS)

    van Silfhout, Roelof G.

    1999-08-01

    We present a novel design for a Stewart platform (or hexapod), an apparatus which performs positioning tasks with high accuracy. The platform, which is supported by six hydraulic telescopic struts, provides six degrees of freedom with 1 μm resolution. Rotations about user defined pivot points can be specified for any axis of rotation with microradian accuracy. Motion of the platform is performed by changing the strut lengths. Servo systems set and maintain the length of the struts to high precision using proportional hydraulic valves and incremental encoders. The combination of hydraulic actuators and a design which is optimized in terms of mechanical stiffness enables the platform to manipulate loads of up to 20 kN. Sophisticated software allows direct six-axis positioning including true path control. Our platform is an ideal support structure for a large variety of scientific instruments that require a stable alignment base with high-precision motion.

  14. Viking B complex gets new accommodations platform

    SciTech Connect

    Not Available

    1992-05-04

    This paper reports that a new accommodation platform in the Viking gas field, operated by Conoco (U.K.) Ltd. in the southern North SEa, was commissioned January 10. The new facility is equipped with the first freefall lifeboats to enter service in the U.K. offshore oil and gas industry, the Conoco. The platform is linked to the other three Viking B platforms by a 65 m bridge. The other platforms are where drilling, production, and compression activities occur. As well as accommodating up to 56 people on the new platform, it also contains a monitoring and control station, plant and switchgear rooms, fire pumps, and a loading bay. The project cost {Brit pounds}18 million and required 14 months from design to commissioning. It included building and installing a new jacket and deck and moving existing accommodation module and helideck from their previous location on the Viking BD to the new BA.

  15. Space Station Based Microacceleration Experiment Platform

    NASA Technical Reports Server (NTRS)

    Barber, Katy; Economopoulos, Tony; Evenson, Erik; Gonzalez, Raul; Henson, Steve; Parada, Enrique; Robinson, Rick; Scott, Mike; Spotz, Bill

    1990-01-01

    Normal Space Station Freedom activities, such as docking, astronauts' movement, equipment vibrations, and space station reboosts, exert forces on the structure, resulting in static or transient accelerations greater than many microgravity experiments can tolerate. A solution to this problem is to isolate experiments on a separate platform free from such disturbances. The Space Station Based Microacceleration Experiment Platform, a proposed solution to the Space Station microgravity experiment problem is described. It is modular in design and can be telerobotically assembled and operated. The Microacceleration Experiment Platform (MEP) consists of a minimum configuration platform to which power, propulsion, propellant, and experiment modules are added. The platform's layout is designed to take maximum advantage of the microgravity field structure in orbit.

  16. New Parabolic Flight Platform for Microgravity Experiments

    NASA Astrophysics Data System (ADS)

    Valdatta, M.; Brucas, D.; Tomkus, V.; Ragauskas, U.; Razgunas, M.

    2015-09-01

    Microgravity experiments are important in field of space development; they give the possibility to simulate near-space conditions to test new kind of systems and subsystems for space or to perform biological researches. The existing platforms, to perform reduced gravity experiments, allow achieving the targets of the researches. Otherwise these platforms are either very expensive or of a very short duration. Another important issue is the repeatability of the experiment for some platforms. Fast repeatability platform (ensuring fast turnaround time), can guarantee only few seconds of microgravity time. For these reason there is the need of platforms for microgravity experiments that will cover the needs of all the experiments that cannot fit into required time, cost and repeatability of any other experiment methodology. The paper explains the mission plan and first scientific data of new family of parabolic unmanned planes. Each of these planes can be used to achieve scientific parabolic flight.

  17. Apparatus to position a microelectromechanical platform

    DOEpatents

    Miller, Samuel Lee; Rodgers, Murray Steven

    2003-09-23

    The present invention comprises a microelectromechanical positioner to achieve substantially translational positioning of a platform without rotational motion, thereby maintaining a constant angular orientation of the platform during movement. A linkage mechanism of the positioner can comprise parallelogram linkages to constrain the rotational motion of the platform. Such linkages further can comprise flexural hinges or other turning joints at the linkage pivots to eliminate the need for rubbing surfaces. A plurality of the linkage mechanisms can be used to enable translational motion of the platform with two degrees of freedom. A variety of means can be used to actuate the positioner. Independent actuation of the anchor links of the linkage mechanisms with rotary electrostatic actuators can be used to provide controlled translational movement of the platform.

  18. National Bioenergy Center - Biochemical Platform Integration Project: Quarterly Update, Winter 2010

    SciTech Connect

    Schell, D.

    2011-02-01

    Winter 2011 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: 33rd Symposium on Biotechnology for Fuels and Chemicals program topic areas; results from reactive membrane extraction of inhibitors from dilute-acid pretreated corn stover; list of 2010 task publications.

  19. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #28, Spring 2011

    SciTech Connect

    Schell, D. J.

    2011-04-01

    Spring 2011 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: 33rd Symposium on Biotechnology for Fuels and Chemicals program sessions and special topic sessions; assessment of waste water treatment needs; and an update on new arabinose-to-ethanol fermenting Zymomonas mobilis strains.

  20. TE/TM-based integrated optical sensing platforms

    NASA Astrophysics Data System (ADS)

    Koster, Tonnis Meindert

    An analysis, the design, the fabrication and the characterisation of two integrated optical bimodal evanscent field sensing platforms (read-out systems) are described: one for absorptive sensing of chemical concentrations and one for refractometric sensing. The first platform uses two modes to compensate for the influences of background absorption in the case of using thin transduction layers. The second platform is a differential refractometer, i.e. the two interrogation modes show a different sensitivity to the measurand and the output signals are a function of the difference in the sensitivity. For these sensing platforms, several integrated optical functionalities have been developed, amongst others a (wavelength tunable) passive polarisation converter and mode selective waveguide- detector coupling structures. The converter assures that a well known power ratio of the two interrogation modes is obtained. After interrogation the two modes are coupled, using coupling structures, to different detectors in order to separately obtain the information carried by the modes. The design of the platforms and individual optical functionalities has been done taking technological tolerances into account, resulting in the highest possible reproducibility for the given technology. The devices have been fabricated in SiON technology. The polarisation converter, an asymmetrical grating structure, proved to be highly efficient, with a 98% conversion for a length of 12 millimeters, and showed functional losses of 3 dB/cm. It has been theoretically and experimentally shown that using thermo-optical actuation, the position of the conversion peak can be tuned over a broad wavelength range. Experimentally, a 12 nm wavelength shift for a temperature change of 100 degrees Celcius has been shown. The amount of light coupled into monolithically integrated photodiodes by the coupling structures agrees very well with theory. Characterisation of the differential sensor showed a resolution

  1. A platform for the discovery of new macrolide antibiotics.

    PubMed

    Seiple, Ian B; Zhang, Ziyang; Jakubec, Pavol; Langlois-Mercier, Audrey; Wright, Peter M; Hog, Daniel T; Yabu, Kazuo; Allu, Senkara Rao; Fukuzaki, Takehiro; Carlsen, Peter N; Kitamura, Yoshiaki; Zhou, Xiang; Condakes, Matthew L; Szczypiński, Filip T; Green, William D; Myers, Andrew G

    2016-05-19

    The chemical modification of structurally complex fermentation products, a process known as semisynthesis, has been an important tool in the discovery and manufacture of antibiotics for the treatment of various infectious diseases. However, many of the therapeutics obtained in this way are no longer effective, because bacterial resistance to these compounds has developed. Here we present a practical, fully synthetic route to macrolide antibiotics by the convergent assembly of simple chemical building blocks, enabling the synthesis of diverse structures not accessible by traditional semisynthetic approaches. More than 300 new macrolide antibiotic candidates, as well as the clinical candidate solithromycin, have been synthesized using our convergent approach. Evaluation of these compounds against a panel of pathogenic bacteria revealed that the majority of these structures had antibiotic activity, some efficacious against strains resistant to macrolides in current use. The chemistry we describe here provides a platform for the discovery of new macrolide antibiotics and may also serve as the basis for their manufacture. PMID:27193679

  2. A platform for the discovery of new macrolide antibiotics

    NASA Astrophysics Data System (ADS)

    Seiple, Ian B.; Zhang, Ziyang; Jakubec, Pavol; Langlois-Mercier, Audrey; Wright, Peter M.; Hog, Daniel T.; Yabu, Kazuo; Allu, Senkara Rao; Fukuzaki, Takehiro; Carlsen, Peter N.; Kitamura, Yoshiaki; Zhou, Xiang; Condakes, Matthew L.; Szczypiński, Filip T.; Green, William D.; Myers, Andrew G.

    2016-05-01

    The chemical modification of structurally complex fermentation products, a process known as semisynthesis, has been an important tool in the discovery and manufacture of antibiotics for the treatment of various infectious diseases. However, many of the therapeutics obtained in this way are no longer effective, because bacterial resistance to these compounds has developed. Here we present a practical, fully synthetic route to macrolide antibiotics by the convergent assembly of simple chemical building blocks, enabling the synthesis of diverse structures not accessible by traditional semisynthetic approaches. More than 300 new macrolide antibiotic candidates, as well as the clinical candidate solithromycin, have been synthesized using our convergent approach. Evaluation of these compounds against a panel of pathogenic bacteria revealed that the majority of these structures had antibiotic activity, some efficacious against strains resistant to macrolides in current use. The chemistry we describe here provides a platform for the discovery of new macrolide antibiotics and may also serve as the basis for their manufacture.

  3. Chemical microsensors

    DOEpatents

    Li, DeQuan; Swanson, Basil I.

    1995-01-01

    An article of manufacture is provided including a substrate having an oxide surface layer and a selective thin film of a cyclodextrin derivative chemically bound upon said substrate, said film is adapted for the inclusion of a selected organic compound therewith. Such an article can be either a chemical sensor capable of detecting a resultant mass change from inclusion of the selected organic compound or a chemical separator capable of reversibly selectively separating a selected organic compound.

  4. Standard Energy Efficiency Data Platform

    Energy Science and Technology Software Center (ESTSC)

    2014-07-15

    The SEED platform is expected to be a building energy performance data management tool that provides federal, state and local governments, building owners and operators with an easy, flexible and cost-effective method to collect information about groups of buildings, oversee compliance with energy disclosure laws and demonstrate the economic and environmental benefits of energy efficiency. It will allow users to leverage a local application to manage data disclosure and large data sets without the ITmore » investment of developing custom applications. The first users of SEED will be agencies that need to collect, store, and report/share large data sets generated by benchmarking, energy auditing, retro-commissioning or retrofitting of many buildings. Similarly, building owners and operators will use SEED to manage their own energy data in a common format and centralized location. SEED users will also control the disclosure of their information for compliance requirements, recognition programs such as ENERGY STAR, or data sharing with the Buildings Performance Database and/or other third parties at their discretion.« less

  5. ESF Mine Power Center Platforms

    SciTech Connect

    T.A. Misiak

    2000-02-10

    The purpose and objective of this analysis is to structurally evaluate the existing Exploratory Studies Facility (ESF) mine power center (MPC) support frames and to design service platforms that will attach to the MPC support frames. This analysis follows the Development Plan titled ''Produce Additional Design for Title 111 Evaluation Report'' (CRWMS M&O 1999a). This analysis satisfies design recommended in the ''Title III Evaluation Report for the Surface and Subsurface Power System'' (CRWMS M&O 1999b, Section 7.6) and concurred with in the ''System Safety Evaluation of Title 111 Evaluation Reports Recommended Work'' (Gwyn 1999, Section 10.1.1). This analysis does not constitute a level-3 deliverable, a level-4 milestone, or a supporting work product. This document is not being prepared in support of the Monitored Geologic Repository (MGR) Site Recommendation (SR), Environmental Impact Statement (EIS), or License Application (LA) and should not be cited as a reference in the MGR SR, EIS, or LA.

  6. Multi-Platform Avionics Simulator

    NASA Technical Reports Server (NTRS)

    Clark, Micah; Steinke, Robert; McMahon, Elihu

    2006-01-01

    Multi-Platform Avionics Simulator (MPAvSim) is a software library for development of simulations of avionic hardware. MPAvSim facilitates simulation of interactions between flight software and such avionic peripheral equipment as telecommunication devices, thrusters, pyrotechnic devices, motor controllers, and scientific instruments. MPAvSim focuses on the behavior of avionics as seen by flight software, rather than on performing high-fidelity simulations of dynamics. However, MPAvSim is easily integrable with other programs that do perform such simulations. MPAvSim makes it possible to do real-time partial hardware- in-the-loop simulations. An MPAvSim simulation consists of execution chains (see figure) represented by flow graphs of models, defined here as stateless procedures that do some work. During a simulation, MPAvSim walks the execution chain, running each model in turn. Using MPAvSim, flight software can be run against a spacecraft that is all simulation, all hardware, or part hardware and part simulation. With respect to a specific piece of hardware, either the hardware itself or its simulation can be plugged in without affecting the rest of the system. Thus, flight software can be tested before hardware is available, and as items of hardware become available, they can be substituted for their simulations, with minimal disruption.

  7. Concrete platforms for Southeast Asia

    SciTech Connect

    Hoff, G.C.; Reusswig, G.H.

    1995-10-01

    The use of concrete offshore structures for hydrocarbon resource developments in SE Asia has, to-date, had little precedent but their potential across the region seems unlimited. The interest is continuing to grow because the structures can be built using local materials and local labor in the countries where the platforms are to be used. For many applications, they are cost competitive with steel structures. The concrete substructure requires little or no maintenance throughout the life of the structure, thus reducing operating costs. The concrete structures can be self-installing without the use of crane barges or heavy-lift vessels. They are re-floatable and can be used again in other locations. They also can be designed to include oil or condensate storage within the structure, thus eliminating the need for additional floating storage in areas where offshore pipelines do not exist. The paper describes a few concrete structure concepts that are applicable for Indonesia, Malaysia, Vietnam and Australia and considerations for their use.

  8. Gloves of Viton protect against hazardous chemicals

    SciTech Connect

    Not Available

    1984-03-01

    In a chemical plant where monomers and intermediates for neoprene synthetic rubber and Kelvar aramid fiber are made, gloves were needed to provide effective protection against permeation by chemicals encountered in certain operations in the manufacturing process. In performance tests commissioned by the National Institute of Occupational Safety and Health, gloves of Viton fluorelastomer offered six times the protection of other materials against toxic substances.

  9. Intermediate Pashto Textbook Revised Edition and Intermediate Pashto Workbook Revised Edition.

    ERIC Educational Resources Information Center

    Tegey, Habibullah; Robson, Barbara

    Intermediate Pashto is part of a set of materials for teaching oral and written Afghan Pashto. The transcription of a word or phrase is given only when the word or phrase is introduced, or when pronunciation is the focus. Dialogues and readings on various topics (e.g. food, shopping, weather, family, etc.) are used, with accompanying presentations…

  10. Novel Approaches for the Accumulation of Oxygenated Intermediates to Multi-Millimolar Concentrations

    PubMed Central

    Krebs, Carsten; Dassama, Laura M. K.; Matthews, Megan L.; Jiang, Wei; Price, John C.; Korboukh, Victoria; Li, Ning; Bollinger, J. Martin

    2012-01-01

    Metalloenzymes that utilize molecular oxygen as a co-substrate catalyze a wide variety of chemically difficult oxidation reactions. Significant insight into the reaction mechanisms of these enzymes can be obtained by the application of a combination of rapid kinetic and spectroscopic methods to the direct structural characterization of intermediate states. A key limitation of this approach is the low aqueous solubility (< 2 mM) of the co-substrate, O2, which undergoes further dilution (typically by one-third or one-half) upon initiation of reactions by rapid-mixing. This situation imposes a practical upper limit on [O2] (and therefore on the concentration of reactive intermediate(s) that can be rapidly accumulated) of ∼1-1.3 mM in such experiments as they are routinely carried out. However, many spectroscopic methods benefit from or require significantly greater concentrations of the species to be studied. To overcome this problem, we have recently developed two new approaches for the preparation of samples of oxygenated intermediates: (1) direct oxygenation of reduced metalloenzymes using gaseous O2 and (2) the in situ generation of O2 from chlorite catalyzed by the enzyme chlorite dismutase (Cld). Whereas the former method is applicable only to intermediates with half lives of several minutes, owing to the sluggishness of transport of O2 across the gas-liquid interface, the latter approach has been successfully applied to trap several intermediates at high concentration and purity by the freeze-quench method. The in situ approach permits generation of a pulse of at least 5 mM O2 within ∼ 1 ms and accumulation of O2 to effective concentrations of up to ∼ 11 mM (i.e. ∼ 10-fold greater than by the conventional approach). The use of these new techniques for studies of oxygenases and oxidases is discussed. PMID:24368870

  11. Transient Ru-methyl formate intermediates generated with bifunctional transfer hydrogenation catalysts

    PubMed Central

    Perry, Richard H.; Brownell, Kristen R.; Chingin, Konstantin; Cahill, Thomas J.; Waymouth, Robert M.; Zare, Richard N.

    2012-01-01

    Desorption electrospray ionization (DESI) coupled to high-resolution Orbitrap mass spectrometry (MS) was used to study the reactivity of a (β-amino alcohol)(arene)RuCl transfer hydrogenation catalytic precursor in methanol (CH3OH). By placing [(p-cymene)RuCl2]2 on a surface and spraying a solution of β-amino alcohol in methanol, two unique transient intermediates having lifetimes in the submillisecond to millisecond range were detected. These intermediates were identified as Ru (II) and Ru (IV) complexes incorporating methyl formate (HCOOCH3). The Ru (IV) intermediate is not observed when the DESI spray solution is sparged with Ar gas, indicating that O2 dissolved in the solvent is necessary for oxidizing Ru (II) to Ru (IV). These proposed intermediates are supported by high-resolution and high mass accuracy measurements and by comparing experimental to calculated isotope profiles. Additionally, analyzing the bulk reaction mixture using gas chromatography-MS and nuclear magnetic resonance spectroscopy confirms the formation of HCOOCH3. These results represent an example that species generated from the (β-amino alcohol)(arene)RuCl (II) catalytic precursor can selectively oxidize CH3OH to HCOOCH3. This observation leads us to propose a pathway that can compete with the hydrogen transfer catalytic cycle. Although bifunctional hydrogen transfer with Ru catalysts has been well-studied, the ability of DESI to intercept intermediates formed in the first few milliseconds of a chemical reaction allowed identification of previously unrecognized intermediates and reaction pathways in this catalytic system. PMID:22315417

  12. BATMAV: a 2-DOF bio-inspired flapping flight platform

    NASA Astrophysics Data System (ADS)

    Bunget, Gheorghe; Seelecke, Stefan

    2010-04-01

    Due to the availability of small sensors, Micro-Aerial Vehicles (MAVs) can be used for detection missions of biological, chemical and nuclear agents. Traditionally these devices used fixed or rotary wings, actuated with electric DC motortransmission, a system which brings the disadvantage of a heavier platform. The overall objective of the BATMAV project is to develop a biologically inspired bat-like MAV with flexible and foldable wings for flapping flight. This paper presents a flight platform that features bat-inspired wings which are able to actively fold their elbow joints. A previous analysis of the flight physics for small birds, bats and large insects, revealed that the mammalian flight anatomy represents a suitable flight platform that can be actuated efficiently using Shape Memory Alloy (SMA) artificial-muscles. A previous study of the flight styles in bats based on the data collected by Norberg [1] helped to identify the required joint angles as relevant degrees of freedom for wing actuation. Using the engineering theory of robotic manipulators, engineering kinematic models of wings with 2 and 3-DOFs were designed to mimic the wing trajectories of the natural flier Plecotus auritus. Solid models of the bat-like skeleton were designed based on the linear and angular dimensions resulted from the kinematic models. This structure of the flight platform was fabricated using rapid prototyping technologies and assembled to form a desktop prototype with 2-DOFs wings. Preliminary flapping test showed suitable trajectories for wrist and wingtip that mimic the flapping cycle of the natural flyer.

  13. Limonene: a versatile chemical of the bioeconomy.

    PubMed

    Ciriminna, Rosaria; Lomeli-Rodriguez, Monica; Demma Carà, Piera; Lopez-Sanchez, Jose A; Pagliaro, Mario

    2014-12-18

    (+)-Limonene is a renewable chemical with numerous and growing applications. Its traditional uses such as flavor, fragrance and green solvent are rapidly expanding to include its utilization as a platform chemical, extraction solvent for natural products and an active agent for functionalized products. We anticipate that the expansion in uses for limonene will translate into increasing production and use of this relevant natural product, especially for advanced applications. PMID:25341412

  14. Calculating Shocks In Flows At Chemical Equilibrium

    NASA Technical Reports Server (NTRS)

    Eberhardt, Scott; Palmer, Grant

    1988-01-01

    Boundary conditions prove critical. Conference paper describes algorithm for calculation of shocks in hypersonic flows of gases at chemical equilibrium. Although algorithm represents intermediate stage in development of reliable, accurate computer code for two-dimensional flow, research leading up to it contributes to understanding of what is needed to complete task.

  15. 15 CFR 742.2 - Proliferation of chemical and biological weapons.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Federal Register citations affecting § 742.2, see the List of CFR Sections Affected, which appears in the... in ECCN 1C350 (precursor and intermediate chemicals used in the production of chemical warfare agents... on the CCL, chemical detection systems controlled by 1A004.c for detecting chemical warfare...

  16. ApoE4-specific Misfolded Intermediate Identified by Molecular Dynamics Simulations

    PubMed Central

    Williams II, Benfeard; Convertino, Marino; Das, Jhuma; Dokholyan, Nikolay V.

    2015-01-01

    The increased risk of developing Alzheimer’s disease (AD) is associated with the APOE gene, which encodes for three variants of Apolipoprotein E, namely E2, E3, E4, differing only by two amino acids at positions 112 and 158. ApoE4 is known to be the strongest risk factor for AD onset, while ApoE3 and ApoE2 are considered to be the AD-neutral and AD-protective isoforms, respectively. It has been hypothesized that the ApoE isoforms may contribute to the development of AD by modifying the homeostasis of ApoE physiological partners and AD-related proteins in an isoform-specific fashion. Here we find that, despite the high sequence similarity among the three ApoE variants, only ApoE4 exhibits a misfolded intermediate state characterized by isoform-specific domain-domain interactions in molecular dynamics simulations. The existence of an ApoE4-specific intermediate state can contribute to the onset of AD by altering multiple cellular pathways involved in ApoE-dependent lipid transport efficiency or in AD-related protein aggregation and clearance. We present what we believe to be the first structural model of an ApoE4 misfolded intermediate state, which may serve to elucidate the molecular mechanism underlying the role of ApoE4 in AD pathogenesis. The knowledge of the structure for the ApoE4 folding intermediate provides a new platform for the rational design of alternative therapeutic strategies to fight AD. PMID:26506597

  17. PackBot: a versatile platform for military robotics

    NASA Astrophysics Data System (ADS)

    Yamauchi, Brian M.

    2004-09-01

    The iRobot PackBot is a combat-tested, man-portable UGV that has been deployed in Afghanistan and Iraq. The PackBot is also a versatile platform for mobile robotics research and development that supports a wide range of payloads suitable for many different mission types. In this paper, we describe four R&D projects that developed experimental payloads and software using the PackBot platform. CHARS was a rapid development project to develop a chemical/radiation sensor for the PackBot. We developed the CHARS payload in six weeks and deployed it to Iraq to search for chemical and nuclear weapons. Griffon was a research project to develop a flying PackBot that combined the capabilities of a UGV and a UAV. We developed a Griffon prototype equipped with a steerable parafoil and gasoline-powered motor, and we completed successful flight tests including remote-controlled launch, ascent, cruising, descent, and landing. Valkyrie is an ongoing research and development project to develop a PackBot payload that will assist medics in retrieving casualties from the battlefield. Wayfarer is an applied research project to develop autonomous urban navigation capabilities for the PackBot using laser, stereo vision, GPS, and INS sensors.

  18. Zymomonas mobilis: a novel platform for future biorefineries

    PubMed Central

    2014-01-01

    Biosynthesis of liquid fuels and biomass-based building block chemicals from microorganisms have been regarded as a competitive alternative route to traditional. Zymomonas mobilis possesses a number of desirable characteristics for its special Entner-Doudoroff pathway, which makes it an ideal platform for both metabolic engineering and commercial-scale production of desirable bio-products as the same as Escherichia coli and Saccharomyces cerevisiae based on consideration of future biomass biorefinery. Z. mobilis has been studied extensively on both fundamental and applied level, which will provide a basis for industrial biotechnology in the future. Furthermore, metabolic engineering of Z. mobilis for enhancing bio-ethanol production from biomass resources has been significantly promoted by different methods (i.e. mutagenesis, adaptive laboratory evolution, specific gene knock-out, and metabolic engineering). In addition, the feasibility of representative metabolites, i.e. sorbitol, bionic acid, levan, succinic acid, isobutanol, and isobutanol produced by Z. mobilis and the strategies for strain improvements are also discussed or highlighted in this paper. Moreover, this review will present some guidelines for future developments in the bio-based chemical production using Z. mobilis as a novel industrial platform for future biofineries. PMID:25024744

  19. Zymomonas mobilis: a novel platform for future biorefineries.

    PubMed

    He, Ming Xiong; Wu, Bo; Qin, Han; Ruan, Zhi Yong; Tan, Fu Rong; Wang, Jing Li; Shui, Zong Xia; Dai, Li Chun; Zhu, Qi Li; Pan, Ke; Tang, Xiao Yu; Wang, Wen Guo; Hu, Qi Chun

    2014-01-01

    Biosynthesis of liquid fuels and biomass-based building block chemicals from microorganisms have been regarded as a competitive alternative route to traditional. Zymomonas mobilis possesses a number of desirable characteristics for its special Entner-Doudoroff pathway, which makes it an ideal platform for both metabolic engineering and commercial-scale production of desirable bio-products as the same as Escherichia coli and Saccharomyces cerevisiae based on consideration of future biomass biorefinery. Z. mobilis has been studied extensively on both fundamental and applied level, which will provide a basis for industrial biotechnology in the future. Furthermore, metabolic engineering of Z. mobilis for enhancing bio-ethanol production from biomass resources has been significantly promoted by different methods (i.e. mutagenesis, adaptive laboratory evolution, specific gene knock-out, and metabolic engineering). In addition, the feasibility of representative metabolites, i.e. sorbitol, bionic acid, levan, succinic acid, isobutanol, and isobutanol produced by Z. mobilis and the strategies for strain improvements are also discussed or highlighted in this paper. Moreover, this review will present some guidelines for future developments in the bio-based chemical production using Z. mobilis as a novel industrial platform for future biofineries. PMID:25024744

  20. Chemicals from coal - The Eastman experience. [Anhydride

    SciTech Connect

    Larkins, T.H.

    1986-03-01

    Tennessee Eastman Company is a major producer of chemicals, fibers and plastics. It is located in Kingsport, Tennessee, headquarters for the Eastman Chemicals Division of Eastman Kodak Company. Eastman Companies employ a total of 12,250 people in Kingsport. Other domestic Eastman Chemicals Division plants are located in Texas, South Carolina, Arkansas and New York. The authors began to witness a flow of products from one of the most highly technical and sophisticated chemical processes in operation in the world. The Eastman ''Chemicals-from-Coal'' facility is not a sunfuel plant. To be sure, we are producing syngas from coal, but the syngas is used to produce acetic anhydride. Acetic anhydride is very important to Eastman. This chemical intermediate eventually finds its way into such diverse products as aspirin, cigarette filters, tool handles, and photographic film. It also is used to make other chemical intermediates such as cellulose esters, anhydrides, triacetin, and acetate ester solvents, all of which have a variety of end uses. The chemicals-from-coal project had its inception in the late 1960's when Eastman stepped up its program of energy conservation and began a search for lower cost chemical feedstocks. Our concern started before the national concern caused by a ten-fold increase in petroleum prices during the past decade.

  1. The intermediate comets and nongravitational effects

    NASA Technical Reports Server (NTRS)

    Yeomans, D. K.

    1986-01-01

    The motions of the intermediate-period comets Pons-Brooks, Olbers, Brorsen-Metcalf, and Westphal are investigated over their observed intervals. The three apparitions of comets Pons-Brooks and Olbers were successfully linked, using the now standard nongravitational-force model. The two apparitions of Comet Brorsen-Metcalf were successfully linked without the need for nongravitational effects. For the 1852 and 1913 apparitions of Comet Westphal, complete success was not achieved in modeling the comet's motion either with or without nongravitational effects. However, by including these effects, the comet's astrometric observations could be represented significantly better than if they were assumed inoperative. Comet Westphal's dynamic and photometric behavior suggests its complete disintegration before reaching perihelion in 1913. If the very large radial nongravitational parameter determined for Comet Westphal is due to the comet's disintegration into dust, then the resultant dust-particle size is of the order of 0.8 mm.

  2. Pineal parenchymal tumor of intermediate differentiation.

    PubMed

    Patil, Meena; Karandikar, Manjiri

    2015-01-01

    The 2007 World Health Organization classification of tumors of the central nervous system identified "pineal parenchymal tumor of intermediate differentiation" (PPTID) as a new pineal parenchymal neoplasm, located between pineocytoma and pineoblastoma as grade II or III. Because of the small number of reported cases, the classification of PPT is still a matter of controversy. We report a case of PPTID. A 25-year-old female patient was admitted to hospital with complaints of a headache, nausea, vomiting since 1-year. Computed tomography/magnetic resonance imaging of the brain showed well-defined, mildly enhancing lesion in the region of the pineal gland with areas of calcification. The tumor was excised. After 3 years, she presented with metastasis in thoracic and lumbosacral spinal region. This is a rare event. PMID:26549088

  3. EGRET sources at intermediate galactic latitude

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P. (Principal Investigator)

    1996-01-01

    This paper presents the abstracts of four papers (using ROSAT data) that are submitted to refereed journals during the current reporting period. The papers are: (1) Extreme x-ray variability in the narrow-line QSO PHL 1092; (2) The Geminga pulsar (soft x-ray variability and an EUVE observation); (3) a broad-band x-ray study of the geminga pulsar; and (4) Classification of IRAS-selected x-ray galaxies in the ROSAT all-sky survey. The abstracts of these papers are given in the next four sections of this report, and their status is given in the Appendix. Finally, two new projects (De-identifying a non-AGN and EGRET sources at intermediate galactic latitude) for which ROSAT data were recently received are currently being studied under this grant. A summary of work in progress on these new projects is given in the last two sections of this report.

  4. Intermediate load modules for test and evaluation

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Photovoltaic modules were tested for qualification. Tests involved the following: (1) delivery of 20 solar cells for use as reference cells; (2) module documentation and inspection plans specifying the 10 Group I modules; (3) design review of module documentation from Group I modules; (4) revise module documentation to overcome any problems of deficiencies associated with the Group I modules; (5) delivery of 10 Group II modules built to revised specifications; (6) testing of Group II modules to the criteria as outlined in qualification specification. It is found that the solarvolt MSP43E40B satisfies the design criteria of qualification specification for intermediate load modules. Design changes were made in the Group I modules to overcome the deficiencies which allowed Group II modules to pass the qualification tests.

  5. Benchmark West Texas Intermediate crude assayed

    SciTech Connect

    Rhodes, A.K.

    1994-08-15

    The paper gives an assay of West Texas Intermediate, one of the world's market crudes. The price of this crude, known as WTI, is followed by market analysts, investors, traders, and industry managers around the world. WTI price is used as a benchmark for pricing all other US crude oils. The 41[degree] API < 0.34 wt % sulfur crude is gathered in West Texas and moved to Cushing, Okla., for distribution. The WTI posted prices is the price paid for the crude at the wellhead in West Texas and is the true benchmark on which other US crudes are priced. The spot price is the negotiated price for short-term trades of the crude. And the New York Mercantile Exchange, or Nymex, price is a futures price for barrels delivered at Cushing.

  6. Supervising Remote Humanoids Across Intermediate Time Delay

    NASA Technical Reports Server (NTRS)

    Hambuchen, Kimberly; Bluethmann, William; Goza, Michael; Ambrose, Robert; Rabe, Kenneth; Allan, Mark

    2006-01-01

    The President's Vision for Space Exploration, laid out in 2004, relies heavily upon robotic exploration of the lunar surface in early phases of the program. Prior to the arrival of astronauts on the lunar surface, these robots will be required to be controlled across space and time, posing a considerable challenge for traditional telepresence techniques. Because time delays will be measured in seconds, not minutes as is the case for Mars Exploration, uploading the plan for a day seems excessive. An approach for controlling humanoids under intermediate time delay is presented. This approach uses software running within a ground control cockpit to predict an immersed robot supervisor's motions which the remote humanoid autonomously executes. Initial results are presented.

  7. Kinetic advantage of controlled intermediate nuclear fusion

    SciTech Connect

    Guo Xiaoming

    2012-09-26

    The dominated process of controlled fusion is to let nuclei gain enough kinetic energy to overcome Coulomb barrier. As a result, a fusion scheme can consider two factors in its design: to increase kinetic energy of nuclei and to alter the Coulomb barrier. Cold Fusion and Hot fusion are all one-factor schemes while Intermediate Fusion is a twofactors scheme. This made CINF kinetically superior. Cold Fusion reduces deuteron-deuteron distance, addressing Coulomb barrier, and Hot Fusion heat up plasma into extreme high temperature, addressing kinetic energy. Without enough kinetic energy made Cold Fusion skeptical. Extreme high temperature made Hot Fusion very difficult to engineer. Because CIFN addresses both factors, CIFN is a more promising technique to be industrialized.

  8. Kinetic advantage of controlled intermediate nuclear fusion

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoming

    2012-09-01

    The dominated process of controlled fusion is to let nuclei gain enough kinetic energy to overcome Coulomb barrier. As a result, a fusion scheme can consider two factors in its design: to increase kinetic energy of nuclei and to alter the Coulomb barrier. Cold Fusion and Hot fusion are all one-factor schemes while Intermediate Fusion is a twofactors scheme. This made CINF kinetically superior. Cold Fusion reduces deuteron-deuteron distance, addressing Coulomb barrier, and Hot Fusion heat up plasma into extreme high temperature, addressing kinetic energy. Without enough kinetic energy made Cold Fusion skeptical. Extreme high temperature made Hot Fusion very difficult to engineer. Because CIFN addresses both factors, CIFN is a more promising technique to be industrialized.

  9. Intermediate inflation driven by DBI scalar field

    NASA Astrophysics Data System (ADS)

    Nazavari, N.; Mohammadi, A.; Ossoulian, Z.; Saaidi, Kh.

    2016-06-01

    Picking out a DBI scalar field as inflation, the slow-rolling inflationary scenario is studied by attributing an exponential time function to scale factor, known as intermediate inflation. The perturbation parameters of the model are estimated numerically for two different cases, and the final result is compared with Planck data. The diagram of tensor-to-scalar ratio r versus scalar spectra index ns is illustrated, and it is found that they are within an acceptable range as suggested by Planck. In addition, the acquired values for amplitude of scalar perturbation reveal the ability of the model to depict a good picture of the Universe in one of its earliest stages. As a further argument, the non-Gaussianity is investigated, displaying that the model prediction stands in a 68% C.L. regime according to the latest Planck data.

  10. Physical properties of cytoplasmic intermediate filaments.

    PubMed

    Block, Johanna; Schroeder, Viktor; Pawelzyk, Paul; Willenbacher, Norbert; Köster, Sarah

    2015-11-01

    Intermediate filaments (IFs) constitute a sophisticated filament system in the cytoplasm of eukaryotes. They form bundles and networks with adapted viscoelastic properties and are strongly interconnected with the other filament types, microfilaments and microtubules. IFs are cell type specific and apart from biochemical functions, they act as mechanical entities to provide stability and resilience to cells and tissues. We review the physical properties of these abundant structural proteins including both in vitro studies and cell experiments. IFs are hierarchical structures and their physical properties seem to a large part be encoded in the very specific architecture of the biopolymers. Thus, we begin our review by presenting the assembly mechanism, followed by the mechanical properties of individual filaments, network and structure formation due to electrostatic interactions, and eventually the mechanics of in vitro and cellular networks. This article is part of a Special Issue entitled: Mechanobiology. PMID:25975455

  11. Intermediate range order in alkaline borate glasses

    NASA Astrophysics Data System (ADS)

    Crupi, C.; Carini, G.; Ruello, G.; D'Angelo, G.

    2016-03-01

    We describe the neutron diffraction patterns of a series of alkaline borate glasses at different metal oxide content. Strong differences are observed in the intermediate range order as a function of the specific alkaline ion and of its concentration. On these results, we propose that the first sharp diffraction peak arises from correlations of atoms of voids and show that the compositional variation of this peak intensity in alkaline borate glasses is due to changes in the distribution of void sizes within the three-dimensional network. We argue that our interpretation in terms of interstitial (empty and/or filled) voids, having different sizes, provides a general explanation for all anomalous behaviours revealed for the first sharp diffraction peak.

  12. Search via quantum walks with intermediate measurements

    NASA Astrophysics Data System (ADS)

    Buksman, Efrain; de Oliveira, André L. Fonseca; de Lacalle, Jesús García López

    2015-06-01

    A modification of Tulsi's quantum search algorithm with intermediate measurements of the control qubit is presented. In order to analyze the effect of measurements in quantum searches, a different choice of the angular parameter is used. The study is performed for several values of time lapses between measurements, finding close relationships between probabilities and correlations (mutual information and cumulative correlation measure). The order of this modified algorithm is estimated, showing that for some time lapses the performance is improved, and becomes of order O(N) (classical brute-force search) when measurements are taken in every step. The results provide a possible way to analyze improvements to other quantum algorithms using one, or more, control qubits.

  13. Picornavirus uncoating intermediate captured in atomic detail

    PubMed Central

    Ren, Jingshan; Wang, Xiangxi; Hu, Zhongyu; Gao, Qiang; Sun, Yao; Li, Xuemei; Porta, Claudine; Walter, Thomas S.; Gilbert, Robert J.; Zhao, Yuguang; Axford, Danny; Williams, Mark; McAuley, Katherine; Rowlands, David J.; Yin, Weidong; Wang, Junzhi; Stuart, David I.; Rao, Zihe; Fry, Elizabeth E.

    2013-01-01

    It remains largely mysterious how the genomes of non-enveloped eukaryotic viruses are transferred across a membrane into the host cell. Picornaviruses are simple models for such viruses, and initiate this uncoating process through particle expansion, which reveals channels through which internal capsid proteins and the viral genome presumably exit the particle, although this has not been clearly seen until now. Here we present the atomic structure of an uncoating intermediate for the major human picornavirus pathogen CAV16, which reveals VP1 partly extruded from the capsid, poised to embed in the host membrane. Together with previous low-resolution results, we are able to propose a detailed hypothesis for the ordered egress of the internal proteins, using two distinct sets of channels through the capsid, and suggest a structural link to the condensed RNA within the particle, which may be involved in triggering RNA release. PMID:23728514

  14. Intermediate Ethanol Blends Catalyst Durability Program

    SciTech Connect

    West, Brian H; Sluder, Scott; Knoll, Keith; Orban, John; Feng, Jingyu

    2012-02-01

    In the summer of 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends (also known as mid-level blends) on legacy vehicles and other engines. The purpose of the test program was to develop information important to assessing the viability of using intermediate blends as a contributor to meeting national goals for the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20 - gasoline blended with 15% and 20% ethanol - on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This report provides the results of the catalyst durability study, a substantial part of the overall test program. Results from additional projects will be reported separately. The principal purpose of the catalyst durability study was to investigate the effects of adding up to 20% ethanol to gasoline on the durability of catalysts and other aspects of the emissions control systems of vehicles. Section 1 provides further information about the purpose and context of the study. Section 2 describes the experimental approach for the test program, including vehicle selection, aging and emissions test cycle, fuel selection, and data handling and analysis. Section 3 summarizes the effects of the ethanol blends on emissions and fuel economy of the test vehicles. Section 4 summarizes notable unscheduled maintenance and testing issues experienced during the program. The appendixes provide additional detail about the statistical models used in the analysis, detailed statistical analyses, and detailed vehicle specifications.

  15. Lung cancer: chemoprevention and intermediate effect markers.

    PubMed

    Tockman, M S

    2001-01-01

    Even after smoking cessation, genetic damage in the airways epithelium may lead to focal progression of lung carcinogenesis. Some centres now report as many new lung cancer cases among former smokers as among current smokers. Chemoprevention is a potential approach to diminish the progression of pre-clinical genetic damage. The most intensively studied lung cancer chemoprevention agents are the retinoids, including vitamin A and its synthetic analogues and precursors. While effective in suppressing lung carcinogenesis in animal models, retinoids have failed to inhibit carcinogenesis in human chemoprevention trials with premalignant end-points (sputum atypia, bronchial metaplasia). In trials with lung cancer end-points, administration of retinoids either was ineffective or, in the case of beta-carotene, led to greater lung cancer incidence and mortality. In view of these findings, markers of specific retinoid effect (i.e., levels of RAR-beta) become less relevant. Other markers of genetic instability and proliferation may be useful for both early detection and potentially as intermediate-effect markers for new chemoprevention trials. Cytological atypia, bronchial metaplasia, protein (hnRNP A2/B1) overexpression, ras oncogene activation and tumour-suppressor gene deletion, genomic instability (loss of heterozygosity, microsatellite alterations), abnormal methylation, helical CT detection of atypical adenomatous hyperplasia and fluorescent bronchoscopic detection of angiogenic squamous dysplasia offer great promise for molecular diagnosis of lung cancer far in advance of clinical presentation. These end-points can now be evaluated as monitors of response to chemoprevention as potential intermediate-effect markers. PMID:11220665

  16. A Method for the Flux Growth of Intermediate Composition Olivine

    NASA Astrophysics Data System (ADS)

    Deangelis, M. T.; Anovitz, L. M.; Labotka, T. C.; Frederick, D. A.

    2009-05-01

    Though solid solution of iron and magnesium between forsterite (Mg2SiO4) and fayalite (Fe2SiO4) is possible in the olivine crystal structure, the high oxygen fugacity condition of the terrestrial mantle inhibits the widespread crystallization of intermediate (Fo40-Fo60) composition olivine. This limitation is not the same for some other inner solar system bodies (e.g. the Moon and Mars), where conditions are reducing and olivine compositions are wide ranging. Unfortunately, the amount of samples from the Moon and Mars is extremely limited; with only Apollo and Luna mission samples, lunar meteorites, and Martian meteorites available for direct mineralogic and petrologic characterization. These characterizations have provided a useful basis for many spectroscopic and modeling interpretations, but many fundamental questions remain and may only be answerable through either direct observation of rocks or by analog experimentation. The motivation for our work on growth of intermediate olivine crystals, therefore, is to create realistic starting material for use in Mars and Moon analog experiments. A variety of crystal growth methods have been previously used to synthesize olivine, including: the Czochralski-pulling (CZ) method, the floating-zone image furnace (FZ) method, and sol-gel processing techniques. Both the CZ and FZ methods have the advantage of producing large crystals, but the growth apparatus and regulation of reduced atmospheric conditions during growth can make these techniques both time and cost intensive. Sol-gel processing to produces olivine fibers is a useful chemical technique, but obtaining larger grain sizes can be difficult. An alternative method for crystal growth is through the use a flux, which can grow crystals relatively quickly and inexpensively. We have grown synthetic crystals of intermediate composition (Fo30-Fo70) olivine using a lithium borate (B5Li3O9) flux. The starting material was a mixture of magnesite (MgCO3), siderite (FeCO3), and

  17. Chemical preconcentrator

    DOEpatents

    Manginell, Ronald P.; Frye-Mason, Gregory C.

    2001-01-01

    A chemical preconcentrator is disclosed with applications to chemical sensing and analysis. The preconcentrator can be formed by depositing a resistive heating element (e.g. platinum) over a membrane (e.g. silicon nitride) suspended above a substrate. A coating of a sorptive material (e.g. a microporous hydrophobic sol-gel coating or a polymer coating) is formed on the suspended membrane proximate to the heating element to selective sorb one or more chemical species of interest over a time period, thereby concentrating the chemical species in the sorptive material. Upon heating the sorptive material with the resistive heating element, the sorbed chemical species are released for detection and analysis in a relatively high concentration and over a relatively short time period. The sorptive material can be made to selectively sorb particular chemical species of interest while not substantially sorbing other chemical species not of interest. The present invention has applications for use in forming high-sensitivity, rapid-response miniaturized chemical analysis systems (e.g. a "chem lab on a chip").

  18. Chemical sensors

    DOEpatents

    Lowell, Jr., James R.; Edlund, David J.; Friesen, Dwayne T.; Rayfield, George W.

    1991-01-01

    Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising (a) a mechanochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, operatively coupled to (b) a transducer capable of directly converting said expansion or contraction to a measurable electrical response.

  19. Chemical sensors

    DOEpatents

    Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.

    1991-07-02

    Sensors responsive to small changes in the concentration of chemical species are disclosed. The sensors comprise a mechanochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment. They are operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical response. 9 figures.

  20. Chemical Peels

    MedlinePlus

    ... the complications or potential side effects of a chemical peel? Temporary or permanent change in skin color, particularly for women on birth control pills, who subsequently become pregnant or have a history of brownish facial ... after having a chemical peel? All peels require some follow-up care: ...