Science.gov

Sample records for plating thickness standards

  1. Overriding plate thickness control on subducting plate curvature

    NASA Astrophysics Data System (ADS)

    Holt, Adam F.; Buffett, Bruce A.; Becker, Thorsten W.

    2015-05-01

    Subducting plate (SP) curvature exerts a key control on the amount of bending dissipation associated with subduction, and the magnitude of the subduction-resisting bending force. However, the factors controlling the development of SP curvature are not well understood. We use numerical models to quantify the role of SP rheology on the minimum radius of curvature, Rmin. We find that Rmin depends strongly on the SP thickness when the rheology is viscous. This dependence is substantially reduced when the SP behaves plastically, in line with the lack of correlation between Rmin and SP thickness on Earth. In contrast, plasticity leads to a strong positive correlation between Rmin and the overriding plate (OP) thickness. Using an analysis of Rmin versus OP thickness, we show that such a positive correlation exists on Earth. This suggests that OP structure, in conjunction with SP plasticity, is crucial in generating slab curvature systematics on Earth.

  2. 49 CFR 179.200-6 - Thickness of plates.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the base plate, the cladding may be considered a part of the base plate when determining thickness. If cladding material does not have tensile strength at least equal to the base plate, the base plate...

  3. 49 CFR 179.300-6 - Thickness of plates.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... plate, the cladding may be considered a part of the base plate when determining the thickness. If cladding material does not have tensile strength at least equal to the base plate, the base plate...

  4. 49 CFR 179.300-6 - Thickness of plates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... plate, the cladding may be considered a part of the base plate when determining the thickness. If cladding material does not have tensile strength at least equal to the base plate, the base plate...

  5. 49 CFR 179.200-6 - Thickness of plates.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the base plate, the cladding may be considered a part of the base plate when determining thickness. If cladding material does not have tensile strength at least equal to the base plate, the base plate...

  6. 49 CFR 179.300-6 - Thickness of plates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... plate, the cladding may be considered a part of the base plate when determining the thickness. If cladding material does not have tensile strength at least equal to the base plate, the base plate...

  7. 49 CFR 179.300-6 - Thickness of plates.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... plate, the cladding may be considered a part of the base plate when determining the thickness. If cladding material does not have tensile strength at least equal to the base plate, the base plate...

  8. 49 CFR 179.200-6 - Thickness of plates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the base plate, the cladding may be considered a part of the base plate when determining thickness. If cladding material does not have tensile strength at least equal to the base plate, the base plate...

  9. 49 CFR 179.200-6 - Thickness of plates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the base plate, the cladding may be considered a part of the base plate when determining thickness. If cladding material does not have tensile strength at least equal to the base plate, the base plate...

  10. Variable thickness double-refracting plate

    DOEpatents

    Hadeishi, Tetsuo

    1976-01-01

    This invention provides an A.C., cyclic, current-controlled, phase retardation plate that uses a magnetic clamp to produce stress birefringence. It was developed for an Isotope-Zeeman Atomic Absorption Spectrometer that uses polarization modulation to effect automatic background correction in atomic absorption trace-element measurements. To this end, the phase retardation plate of the invention is a variable thickness, photoelastic, double-refracting plate that is alternately stressed and released by the magnetic clamp selectively to modulate specific components selected from the group consisting of circularly and plane polarized Zeeman components that are produced in a dc magnetic field so that they correspond respectively to Zeeman reference and transmission-probe absorption components. The polarization modulation changes the phase of these polarized Zeeman components, designated as .sigma. reference and .pi. absorption components, so that every half cycle the components change from a transmission mode to a mode in which the .pi. component is blocked and the .sigma. components are transmitted. Thus, the Zeeman absorption component, which corresponds in amplitude to the amount of the trace element to be measured in a sample, is alternately transmitted and blocked by a linear polarizer, while the circularly polarized reference components are continuously transmitted thereby. The result is a sinusoidally varying output light amplitude whose average corresponds to the amount of the trace element present in the sample.

  11. 49 CFR 179.200-6 - Thickness of plates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... strength properties at least equal to the base plate, the cladding may be considered a part of the base plate when determining thickness. If cladding material does not have tensile strength at least equal...

  12. 49 CFR 179.100-6 - Thickness of plates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... properties at least equal to the base plate, the cladding may be considered a part of the base plate when determining thickness. If cladding material does not have tensile strength at least equal to the base...

  13. 49 CFR 179.100-6 - Thickness of plates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... properties at least equal to the base plate, the cladding may be considered a part of the base plate when determining thickness. If cladding material does not have tensile strength at least equal to the base...

  14. 49 CFR 179.100-6 - Thickness of plates.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... properties at least equal to the base plate, the cladding may be considered a part of the base plate when determining thickness. If cladding material does not have tensile strength at least equal to the base...

  15. 49 CFR 179.400-8 - Thickness of plates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... formula, whichever is greater: t = Pd / 2SE Where: t = minimum thickness of plate, after forming, in... by the following formula, whichever is greater: t = 1.83 Pd / 2SE Where: t = minimum thickness...

  16. 49 CFR 179.400-8 - Thickness of plates.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., whichever is greater: t = Pd / 2SE Where: t = minimum thickness of plate, after forming, in inches; P... the following formula, whichever is greater: t = 1.83 Pd / 2SE Where: t = minimum thickness of...

  17. 49 CFR 179.400-8 - Thickness of plates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., whichever is greater: t = Pd / 2SE Where: t = minimum thickness of plate, after forming, in inches; P... the following formula, whichever is greater: t = 1.83 Pd / 2SE Where: t = minimum thickness of...

  18. 49 CFR 179.400-8 - Thickness of plates.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., whichever is greater: t = Pd / 2SE Where: t = minimum thickness of plate, after forming, in inches; P... the following formula, whichever is greater: t = 1.83 Pd / 2SE Where: t = minimum thickness of...

  19. 49 CFR 179.400-8 - Thickness of plates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., whichever is greater: t = Pd / 2SE Where: t = minimum thickness of plate, after forming, in inches; P... the following formula, whichever is greater: t = 1.83 Pd / 2SE Where: t = minimum thickness of...

  20. Plate Thickness Variation Effects on Crack Growth Rates in 7050-T7451 Alloy Thick Plate

    NASA Astrophysics Data System (ADS)

    Schubbe, Joel J.

    2011-02-01

    A study has been accomplished to characterize the fatigue crack growth rates and mechanisms in thick plate (16.51 cm) commercial grade 7050-T7451 aluminum plate in the L-S orientation. Examination of the effects of potential property gradients in the plate material was accomplished through hardness measurements along the short transverse direction and with compact tension tests. Tests exhibited a distinct trend of reduced center plane hardness in the plates. Compact tension specimens and the compliance method were used to determine crack growth rates for specimens machined from the t/4 and t/2 planar locations and oriented for L-S crack growth. Crack growth rate data (long crack) from the tests highlighted significant growth rate differences between the t/4 and t/2 locations. No significant effect of R-ratio was observed in the 0.05-0.3 range tested. Additionally, crack front splitting was noted in all specimens to differing degrees with data showing significant retardation of growth rate curves for the L-S orientation above 13 MPa ?m in the center plane, and 10 MPa ?m at quarter plane, where branching and splitting parallel to the load axis are dominant growth mechanisms.

  1. Variation of Stress Intensity Factor through the Thickness of Plate

    NASA Astrophysics Data System (ADS)

    Oshkour, A. A.; Sahari, B. B.; Ali, Aidy

    2011-02-01

    Stress intensity factor (SIF) is one of the most important parameters in fracture mechanics. Therefore there is essential request on investigation of the behavior of SIF. Due to extensive and practical usage of plate structures in components, hence the behavior of SIF through the thickness of plate has been done. The three dimensional (3D) plate has simulated in ABAQUS finite element software. Crack tip has been meshed by 20 quarter node elements. The results presented that the SIF in free surfaces of plate had minimum value and variation of SIFs approximately was constant through the thickness of plate except on free surface.

  2. Design of a Variable Thickness Plate to Focus Bending Waves

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Lin, Sz-Chin Steven; Cabell, Randolph H.; Huang, Tony Jun

    2012-01-01

    This paper describes the design of a thin plate whose thickness is tailored in order to focus bending waves to a desired location on the plate. Focusing is achieved by smoothly varying the thickness of the plate to create a type of lens, which focuses structural-borne energy. Damping treatment can then be positioned at the focal point to efficiently dissipate energy with a minimum amount of treatment. Numerical simulations of both bounded and unbounded plates show that the design is effective over a broad frequency range, focusing traveling waves to the same region of the plate regardless of frequency. This paper also quantifies the additional energy dissipated by local damping treatment installed on a variable thickness plate relative to a uniform plate.

  3. Thickness dependence of the Casimir force between a magnetodielectric plate and a diamagnetic plate

    SciTech Connect

    Inui, Norio

    2011-11-15

    This paper examines the repulsive Casimir force between a magnetodielectric plate, with static permeability greater than static permittivity, and a diamagnetic plate. As the thickness of the magnetodielectric plate is decreased, the attractive component of the Casimir force decreases more than the repulsive one. This effect makes the net Casimir force repulsive, and a larger repulsive Casimir force is generated compared to the Casimir force between the plates with infinite thickness.

  4. Overriding plate thickness control on subducting slab curvature

    NASA Astrophysics Data System (ADS)

    Holt, A.; Buffett, B. A.; Becker, T. W.

    2014-12-01

    The curvature of subducting lithosphere controls deformation due to bending at the trench, which results in a force that dissipates gravitational potential energy and may affect seismic coupling. We use 2-D, thermo-mechanical subduction models to explore the dependence of the radius of curvature on the thickness of the subducting and overriding plates for models with both viscous and effectively plastic lithospheric rheologies. Such a plastic rheology has been shown to reproduce the bending stresses/moment computed using a kinematic strain rate description and a laboratory derived composite rheology. Laboratory and numerical models show that the bending geometry of subducting slabs with a viscous rheology is strongly dependent on slab thickness; thicker plates have a larger radius of curvature. However, the curvature of subducting plates on Earth, illuminated by the distribution of earthquake hypocenters, shows little to no dependence on the plate thickness or age. Such an observation is instead compatible with plates that have a plastic rheology. Indeed, our numerical models show that the radius of curvature of viscous plates has a stronger dependence on subducting plate thickness than in equivalent plastic models. In viscous plates, the bending moment produces a torque, which balances the torque exerted by buoyancy. However, for the plastic plate case the bending moment saturates at a maximum value and so cannot balance the gravitational torque. The saturation of bending moment means that, (a) the radius of curvature of the bending region is not constrained by this torque balance, and, (b) other forces are required to balance the gravitational torque. We explore the role that the overriding plate could play in controlling the subducting plate curvature in plastic plate models where the bending stresses have saturated. For such plates, we find that increasing the thickness of the overriding plate causes the radius of curvature to increase. The same correlation is found in real subduction zones when the radius of curvature is compared with near-trench overriding lithospheric thickness. We suggest that the thickness of the overriding plate, through controlling the depth extent of the slab suction caused by the strong overriding plate, exerts a primary control on the curvature of subducting lithosphere.

  5. Thick plate flexure. [for lithospheric models of Mars and earth

    NASA Technical Reports Server (NTRS)

    Comer, R. P.

    1983-01-01

    Analytical expressions are derived for the displacements and stresses due to loading of a floating, uniform, elastic plate of arbitrary thickness by a plane or axisymmetric harmonic load. The solution is exact except for assumptions of small strains and linear boundary conditions, and gravitation within the plate is neglected. For typical earth parameters its predictions are comparable to those of the usual thin plate theory frequently assumed in studies of lithospheric flexure, gravity and regional isostasy. Even for a very thick lithosphere, which may exist in some regions of Mars, the thin plate theory is a better approximation to the thick plate solution than the elastic half-space limit, except for short-wavelength loads.

  6. 49 CFR 179.220-6 - Thickness of plates.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of the outer shell must be not less than seven-sixteenths of an inch. (d) See 179.220-9 for plate... thickness, after forming of the inner container shell and 2:1 ellipsoidal heads must be not less than... required bursting pressure in psig; S = Minimum tensile strength of plate material in p.s.i. as...

  7. Modes of vibration on sqaure fiberglass epoxy composite thick plate

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Marques, E. R. C.; Lee, S. S.

    1986-01-01

    The frequencies and nodal patterns of a square thick plate of unidirectional fiberglass epoxy composite are measured experimentally. The constituent material is transversely isotropic. The plate is transversely excited at the center of the upper face, its resonant frequencies in the frequency range of 3 kHz to 21.73 kHz are detected and the measured nodal patterns are sketched.

  8. Stress measurement in thick plates using nonlinear ultrasonics

    SciTech Connect

    Abbasi, Zeynab E-mail: dozevin@uic.edu; Ozevin, Didem E-mail: dozevin@uic.edu

    2015-03-31

    In this paper the interaction between nonlinear ultrasonic characteristics and stress state of complex loaded thick steel plates using fundamental theory of nonlinear ultrasonics is investigated in order to measure the stress state at a given cross section. The measurement concept is based on phased array placement of ultrasonic transmitter-receiver to scan three angles of a given cross section using Rayleigh waves. The change in the ultrasonic data in thick steel plates is influenced by normal and shear stresses; therefore, three measurements are needed to solve the equations simultaneously. Different thickness plates are studied in order to understand the interaction of Rayleigh wave penetration depth and shear stress. The purpose is that as the thickness becomes smaller, the shear stress becomes negligible at the angled measurement. For thicker cross section, shear stress becomes influential if the depth of penetration of Rayleigh wave is greater than the half of the thickness. The influences of plate thickness and ultrasonic frequency on the identification of stress tensor are numerically studied in 3D structural geometry and Murnaghan material model. The experimental component of this study includes uniaxial loading of the plate while measuring ultrasonic wave at three directions (perpendicular, parallel and angled to the loading direction). Instead of rotating transmitter-receiver pair for each test, a device capable of measuring the three angles is designed.

  9. Methods for measuring plating thicknesses on TAB lead frames

    NASA Technical Reports Server (NTRS)

    Hagen, M. P.

    1977-01-01

    Plating three layer tape lead frames, used for tape automated bonding, offers a challenge to the electroplater because of nonuniform topography. Each lead frame contains large (typically .05 x. .05 inch) flat test pads located around the perimeter of the frame. These test pads are electrically connected to the bondable lead frame fingers which extend into an area in the center of the frame called the feature hole. The feature hole exposes these fingers to plating on all sides, while the test pads are exposed on only one side. In addition, the fingers are small in cross section (typically .003 x .0015 inches). Recent thickness measurements indicate that plating around the lead frame fingers is nearly twice as thick as that on test pad areas. Procedures and equipment were developed for measuring the thickness of the deposited material. Discussion was centered on the data obtained using the various measurement techniques and equipment.

  10. 49 CFR 179.220-6 - Thickness of plates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Thickness of plates. 179.220-6 Section 179.220-6 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank...

  11. 49 CFR 179.100-6 - Thickness of plates.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Thickness of plates. 179.100-6 Section 179.100-6 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks...

  12. Residual stress determination in thick welded steel plates

    NASA Astrophysics Data System (ADS)

    Em, Vyacheslav; Woo, Wanchuck; Seong, Baek-Seok; Mikula, Pavol; Joo, Jongdae; Kang, Mi-Hyun; Lee, Kyu Hong

    2012-02-01

    Through thickness strain distribution of 50 mm thick welded ferritic steel (bcc) plate was studied using diffraction reflections 211 and 110 and neutron wavelengths of 1.55 and 2.39Å, respectively. Experimental results showed that for stress measurements in a possibly maximum thick weld, the different strain components should be measured with different reflections 211 and 110. The strains measured with these reflections for the same component are close. Since planes (211) and (110) of bcc ferrite have the same diffraction elastic constants the appropriate values of stresses could be derived from strains measured with reflections 211 and 110.

  13. Growth defects in thick ion-plated coatings

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1975-01-01

    Industrial ion plating conditions were selected to deposit metallic coatings such as copper, gold, and chromium 2 micrometer thick on metal and glass substrates. The surface finishes of 304 stainless steel, copper, and brass were utilized with mechanically and electrolytically polished surfaces. Nodular growth occurred in these coatings during ion plating as revealed by scanning electron microscopy. Surface irregularities such as scratches, steps, ledges, and so forth are responsible for outward growth, the typical cone type, whereas surface contaminants and loosely settled foreign particles are responsible for lateral growth; namely, the extreme localized surface outgrowths. These defect crystallographic features create porosity in the coatings when subjected to stresses and strains.

  14. Incremental ECAP of thick continuous plates - machine and initial trials

    NASA Astrophysics Data System (ADS)

    Rosochowski, A.; Olejnik, L.

    2014-08-01

    Incremental ECAP (I-ECAP) can be used for SPD of continuous bars, plates and sheets. This paper describes design, construction and preliminary trials of a prototype machine capable of processing thick continuous plates. To increase productivity, a two-turn I-ECAP is used, which is equivalent to route C in conventional one-turn ECAP. The machine has a reciprocating punch inclined at 45°, a clamp holding the plate in the die during deformation and a feeder incrementally feeding the plate when it is not deformed; all these devices are driven by hydraulic actuators controlled by a PLC. The machine is capable of deforming materials at room temperature as well as elevated temperatures. The die is heated with electric heaters. The machine has also an integrated cooling system and a lubrication system. The material used for the initial trials was Al 1050 plate (10×50×1000) conversion coated with calcium aluminate and lubricated with dry soap. The process was carried out at room temperature using 1.6 mm feeding stroke and a low cycle frequency of approximately 0.2 Hz. The UFG structure after the first pass of the process revealed by STEM confirms process feasibility.

  15. On the propagation of long thickness-stretch waves in piezoelectric plates.

    PubMed

    Huang, Dejin; Yang, Jiashi

    2014-07-01

    We study the propagation of thickness-stretch waves in a piezoelectric plate of polarized ceramics with thickness poling or crystals of class 6 mm whose sixfold axis is along the plate thickness. For device applications we consider long waves with wavelengths much longer than the plate thickness. A system of two-dimensional equations in the literature governing thickness-stretch, extensional, and symmetric thickness-shear motions of the plate is further simplified. The equations obtained can be used to analyze piezoelectric plate acoustic wave devices operating with thickness-stretch modes. PMID:24582557

  16. Analytical 3-D p-element for quadrilateral platesPart 1: Thick isotropic plate structures

    NASA Astrophysics Data System (ADS)

    Zhu, B.; Leung, A. Y. T.; Li, Q. S.; Lu, J. W. Z.; Zhang, X. C.

    2007-06-01

    An analytical three-dimensional (3-D) p-version element for the vibration analysis of arbitrary quadrilateral thick plates is presented. With the additional hierarchical shape functions and analytically integrated element matrices, the computed accuracy is considerably improved. The computed natural frequencies of cantilever and simply supported square plates show that the convergence rate of the present element is very fast with respect to the number of hierarchical terms and it can predict very accurate modes. The element is applicable to the free vibration analysis of quadrilateral, polygonal plates as well as 3-D space structures. The continuous wavelet transform (CWT) is applied for the identification of damping ratios. Based on the Rayleigh damping model, the damped vibration response is obtained. A simple experiment is performed to verify the predicted vibration responses. The results show that the proposed element is also efficient for the vibration response analysis of plates.

  17. Analysis of a Fluid-Loaded Thick Plate

    NASA Astrophysics Data System (ADS)

    Hull, Andrew J.

    2002-10-01

    The physics of a thick plate with fluid loading on both sides provides the theoretical basis for insertion loss and echo reduction tests, both of which are typically used to determine how efficiently a material transmits or reflects energy. Such testing is conducted by insonifying a submerged, slab-shaped sample and then measuring the transmitted and reflected sound pressure. Based on the sound pressure level of the incident field, the insertion loss and echo reduction quantities can be calculated. when these experiments are performed in a small tank, the wall motion of the sample is sometimes measured, with the fluid pressure then calculated based on this displacement. The above measurements and corresponding theory are important to the U.S. Navy because they help designers develop the most effective acoustic sonar windows, sonar and ship baffles, and anechoic marine coatings.

  18. Estimates of elastic plate thicknesses beneath large volcanos on Venus

    NASA Technical Reports Server (NTRS)

    Mcgovern, Patrick J.; Solomon, Sean C.

    1992-01-01

    Megellan radar imaging and topography data are now available for a number of volcanos on Venus greater than 100 km in radius. These data can be examined to reveal evidence of the flexural response of the lithosphere to the volcanic load. On Earth, flexure beneath large hotspot volcanos results in an annual topographic moat that is partially to completely filled in by sedimentation and mass wasting from the volcano's flanks. On Venus, erosion and sediment deposition are considered to be negligible at the resolution of Magellan images. Thus, it may be possible to observe evidence of flexure by the ponding of recent volcanic flows in the moat. We also might expect to find topographic signals from unfilled moats surrounding large volcanos on Venus, although these signals may be partially obscured by regional topography. Also, in the absence of sedimentation, tectonic evidence of deformation around large volcanos should be evident except where buried by very young flows. We use analytic solutions in axisymmetric geometry for deflections and stresses resulting from loading of a plate overlying an inviscid fluid. Solutions for a set of disk loads are superimposed to obtain a solution for a conical volcano. The deflection of the lithosphere produces an annular depression or moat, the extent of which can be estimated by measuring the distance from the volcano's edge to the first zero crossing or to the peak of the flexural arch. Magellan altimetry data records (ARCDRs) from data cycle 1 are processed using the GMT mapping and graphics software to produce topographic contour maps of the volcanos. We then take topographic profiles that cut across the annular and ponded flows seen on the radar images. By comparing the locations of these flows to the predicted moat locations from a range of models, we estimate the elastic plate thickness that best fits the observations, together with the uncertainty in that estimate.

  19. Plate coating: influence of concentrated surfactants on the film thickness.

    PubMed

    Delacotte, Jrme; Montel, Lorraine; Restagno, Frdric; Scheid, Benot; Dollet, Benjamin; Stone, Howard A; Langevin, Dominique; Rio, Emmanuelle

    2012-02-28

    We present a large range of experimental data concerning the influence of surfactants on the well-known Landau-Levich-Derjaguin experiment where a liquid film is generated by pulling a plate out of a bath. The thickness h of the film was measured as a function of the pulling velocity V for different kinds of surfactants (C(12)E(6), which is a nonionic surfactant, and DeTAB and DTAB, which are ionic) and at various concentrations near and above the critical micellar concentration (cmc). We report the thickening factor ? = h/h(LLD), where h(LLD) is the film thickness obtained without a surfactant effect, i.e., as for a pure fluid but with the same viscosity and surface tension as the surfactant solution, over a wide range of capillary numbers (Ca = ?V/?, with ? being the surfactant solution viscosity and ? its surface tension) and identify three regimes: (i) at small Ca ? is large due to confinement and surface elasticity (or Marangoni) effects, (ii) for increasing Ca there is an intermediate regime where ? decreases as Ca increases, and (iii) at larger (but still small) Ca ? is slightly higher than unity due to surface viscosity effects. In the case of nonionic surfactants, the second regime begins at a fixed Ca, independent of the surfactant concentration, while for ionic surfactants the transition depends on the concentration, which we suggest is probably due to the existence of an electrostatic barrier to surface adsorption. Control of the physical chemistry at the interface allowed us to elucidate the nature of the three regimes in terms of surface rheological properties. PMID:22283676

  20. The technology and welding joint properties of hybrid laser-tig welding on thick plate

    NASA Astrophysics Data System (ADS)

    Shenghai, Zhang; Yifu, Shen; Huijuan, Qiu

    2013-06-01

    The technologies of autogenous laser welding and hybrid laser-TIG welding are used on thick plate of high strength lower alloy structural steel 10CrNiMnMoV in this article. The unique advantages of hybrid laser-TIG welding is summarized by comparing and analyzing the process parameters and welding joints of autogenous laser welding laser welding and hybrid laser-TIG welding. With the optimal process parameters of hybrid welding, the good welding joint without visible flaws can be obtained and its mechanical properties are tested according to industry standards. The results show that the hybrid welding technology has certain advantages and possibility in welding thick plates. It can reduce the demands of laser power, and it is significant for lowering the aspect ratio of weld during hybrid welding, so the gas in the molten pool can rise and escape easily while welding thick plates. Therefore, the pores forming tendency decreases. At the same time, hybrid welding enhances welding speed, and optimizes the energy input. The transition and grain size of the microstructure of hybrid welding joint is better and its hardness is higher than base material. Furthermore, its tensile strength and impact toughness is as good as base material. Consequently, the hybrid welding joint can meet the industry needs completely.

  1. A high-sensitivity, dual-plate, thickness-shear mode pressure sensor.

    PubMed

    Hu, Yuantai; Yang, Jiashi; Zeng, Yun; Jiang, Qing

    2006-11-01

    We propose a dual-plate pressure sensor operating with pressure-induced frequency shifts of thickness-shear modes of a crystal plate resonator. Under an applied normal pressure. The dual-plate structure causes flexure in the crystal plate rather than circumferential compression in usual thickness-shear pressure sensors. This suggests higher sensitivity because a plate responds to a normal pressure more than to a circumferential compression, which is shown by a theoretical analysis using the theory for small fields superposed on initial fields. PMID:17091855

  2. Relationship between clinical periodontal biotype and labial plate thickness: an in vivo study.

    PubMed

    Cook, D Ryan; Mealey, Brian L; Verrett, Ronald G; Mills, Michael P; Noujeim, Marcel E; Lasho, David J; Cronin, Robert J

    2011-01-01

    The primary aim of this study was to evaluate the differences in labial plate thickness in patients identified as having thin versus thick/average periodontal biotypes. The association between biotype and labial plate thickness was evaluated by correlating information obtained from cone beam computed tomographs, diagnostic impressions, and clinical examinations of the maxillary anterior teeth (canine to canine) in 60 patients. Compared to a thick/average biotype, a thin biotype was associated with thinner labial plate thickness (P < .001), narrower keratinized tissue width (P < .001), greater distance from the cementoenamel junction to the initial alveolar crest (P = .02), and probe visibility through the sulcus. There was no relationship between biotype and tooth height-to-width ratio or facial recession. Periodontal biotype is significantly related to labial plate thickness, alveolar crest position, keratinized tissue width, gingival architecture, and probe visibility but unrelated to facial recession. PMID:21837300

  3. 49 CFR 179.300-6 - Thickness of plates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... § 179.301 and shall be such that at the tank test pressure the maximum fiber stress in the wall of the... psig; s = wall stress in psig (c) If plates are clad with material having tensile strength at...

  4. General analytical approach for sound transmission loss analysis through a thick metamaterial plate

    SciTech Connect

    Oudich, Mourad; Zhou, Xiaoming; Badreddine Assouar, M.

    2014-11-21

    We report theoretically and numerically on the sound transmission loss performance through a thick plate-type acoustic metamaterial made of spring-mass resonators attached to the surface of a homogeneous elastic plate. Two general analytical approaches based on plane wave expansion were developed to calculate both the sound transmission loss through the metamaterial plate (thick and thin) and its band structure. The first one can be applied to thick plate systems to study the sound transmission for any normal or oblique incident sound pressure. The second approach gives the metamaterial dispersion behavior to describe the vibrational motions of the plate, which helps to understand the physics behind sound radiation through air by the structure. Computed results show that high sound transmission loss up to 72 dB at 2 kHz is reached with a thick metamaterial plate while only 23 dB can be obtained for a simple homogeneous plate with the same thickness. Such plate-type acoustic metamaterial can be a very effective solution for high performance sound insulation and structural vibration shielding in the very low-frequency range.

  5. Penny-shaped crack in a plate of finite thickness subjected to a uniform shearing stress

    NASA Astrophysics Data System (ADS)

    Lee, Doo-Sung

    2013-04-01

    This paper contains an analysis of the stress distribution in a plate of finite thickness of an elastic material containing a penny-shaped crack when it is deformed by the application of a uniform shearing stress on the surface of the plate. The crack lies on the central plane of the plate with its surface parallel to those of the plate and is stress-free. By making a suitable representation of the stress function for the problem, the problem is reduced to the solution of a pair of Fredholm integral equations of the second kind. This pair of Fredholm integral equations of the second kind is solved numerically, and the increase in the stress intensity magnification factor due to the effect of the finite thickness of the plate is presented for various values of the thickness.

  6. A solution procedure for behavior of thick plates on a nonlinear foundation and postbuckling behavior of long plates

    NASA Technical Reports Server (NTRS)

    Stein, M.; Stein, P. A.

    1978-01-01

    Approximate solutions for three nonlinear orthotropic plate problems are presented: (1) a thick plate attached to a pad having nonlinear material properties which, in turn, is attached to a substructure which is then deformed; (2) a long plate loaded in inplane longitudinal compression beyond its buckling load; and (3) a long plate loaded in inplane shear beyond its buckling load. For all three problems, the two dimensional plate equations are reduced to one dimensional equations in the y-direction by using a one dimensional trigonometric approximation in the x-direction. Each problem uses different trigonometric terms. Solutions are obtained using an existing algorithm for simultaneous, first order, nonlinear, ordinary differential equations subject to two point boundary conditions. Ordinary differential equations are derived to determine the variable coefficients of the trigonometric terms.

  7. Effect of mechanical restraint on weldability of reduced activation ferritic/martensitic steel thick plates

    NASA Astrophysics Data System (ADS)

    Serizawa, Hisashi; Nakamura, Shinichiro; Tanaka, Manabu; Kawahito, Yousuke; Tanigawa, Hiroyasu; Katayama, Seiji

    2011-10-01

    As one of the reduced activation ferritic/martensitic steels, the weldability of thick F82H plate was experimentally examined using new heat sources in order to minimize the total heat input energy in comparison with TIG welding. A full penetration of 32 mm thick plate could be produced as a combination of a 12 mm deep first layer generated by a 10 kW fiber laser beam and upper layers deposited by a plasma MIG hybrid welding with Ar + 2%O shielding gas. Also, the effect of mechanical restraint on the weldability under EB welding of thick F82H plate was studied by using FEM to select an appropriate specimen size for the basic test. The appropriate and minimum size for the basic test of weldability under EB welding of 90 mm thick plate might be 200 mm in length and 400 mm in width where the welding length should be about 180 mm.

  8. Variation of strain energy release rate with plate thickness. [fracture mode transition

    NASA Technical Reports Server (NTRS)

    Sih, G. C.; Hartranft, R. J.

    1973-01-01

    An analytical model of a through-thickness crack in a statically stretched plate is presented in which the crack front stress state is permitted to vary in the direction of the plate thickness. The amplitude or intensity of this stress field can be made nearly constant over a major portion of the interior crack front which is in a state of plane strain. The average amount of work available for extending a small segment of the crack across the thickness is associated with an energy release rate quantity in a manner similar to the two-dimensional Griffith crack model. The theoretically calculated energy release rate is shown to increase with increasing plate thickness, indicating that available work for crack extension is higher in a thicker plate.

  9. Linear and non-linear deflection analysis of thick rectangular plates. 2: Numerical applications

    NASA Astrophysics Data System (ADS)

    Bencharif, N.; Ng, S. F.

    1994-03-01

    Variational methods are widely used for the solution of complex differential equations in mechanics for which exact solutions are not possible. The finite difference method, although well known as an efficient numerical method, was applied in the past only for the analysis of linear and non-linear thin plates. In this paper the suitability of the method for the analysis of non-linear deflection of thick plates is studied for the first time. While there are major differences between small deflection and large deflection plate theories, the former can be treated as a particular case of the latter, when the centre deflection of the plate is less than or equal to 0.2-0.25 of the thickness of the plate. The finite difference method as applied here is a modified finite difference approach to the ordinary finite difference method generally used for the solution of thin plate problems. In this analysis thin plates are treated as a particular case of the corresponding thick plate when the boundary conditions of the plates are taken into account. The method is first applied to investigate the deflection behaviour of clamped and simply supported square isotropic thick plates. After the validity of the method is established, it is then extended to the solution of rectangular thick plates of various aspect ratios and thicknesses. Generally, beginning with the use of a limited number of mesh sizes for a given plate aspect ratio and boundary conditions, a general solution of the problem including the investigation of accuracy and convergence was extended to rectangular thick plates by providing more detailed functions satisfying the rectangular mesh sizes generated automatically by the program. Whenever possible results obtained by the present method are compared with existing solutions in the technical literature obtained by much more laborious methods and close agreements are found. The significant number of results presented here are not currently available in the technical literature. The submatrices involved in the formation of the finite difference equations from the governing differential equations are generated directly by the computer program. The subroutine SOLINV using the change of variable technique illustrated elsewhere takes care of the solution of the general system. Simplicity in formulation and quick convergence are the obvious advantages of the finite difference formulation developed to compute small and large deflection analysis of thick plates in comparison with other numerical methods requiring extensive computer facilities.

  10. 46 CFR 32.59-1 - Minimum section modulus and plating thickness requirements-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... I oil cargo listed in 46 CFR Table 30.25-1. (c) For all vessels except those limited on their... 46 Shipping 1 2010-10-01 2010-10-01 false Minimum section modulus and plating thickness... SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Minimum Longitudinal Strength and Plating...

  11. 46 CFR 32.59-1 - Minimum section modulus and plating thickness requirements-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... I oil cargo listed in 46 CFR Table 30.25-1. (c) For all vessels except those limited on their... 46 Shipping 1 2011-10-01 2011-10-01 false Minimum section modulus and plating thickness... SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Minimum Longitudinal Strength and Plating...

  12. 46 CFR 32.59-1 - Minimum section modulus and plating thickness requirements-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... I oil cargo listed in 46 CFR Table 30.25-1. (c) For all vessels except those limited on their... 46 Shipping 1 2014-10-01 2014-10-01 false Minimum section modulus and plating thickness... SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Minimum Longitudinal Strength and Plating...

  13. 46 CFR 32.59-1 - Minimum section modulus and plating thickness requirements-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... I oil cargo listed in 46 CFR Table 30.25-1. (c) For all vessels except those limited on their... 46 Shipping 1 2012-10-01 2012-10-01 false Minimum section modulus and plating thickness... SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Minimum Longitudinal Strength and Plating...

  14. 46 CFR 32.59-1 - Minimum section modulus and plating thickness requirements-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... I oil cargo listed in 46 CFR Table 30.25-1. (c) For all vessels except those limited on their... 46 Shipping 1 2013-10-01 2013-10-01 false Minimum section modulus and plating thickness... SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Minimum Longitudinal Strength and Plating...

  15. The displacement field in the vibration analysis of laminated thick plates

    SciTech Connect

    Ohta, Yoshiki; Narita, Yoshihiro

    1995-11-01

    The present paper discusses the assumption of displacement fields used in the vibration analysis of FRP laminated thick plates. For this purpose, the strain and kinetic energies of a FRP cross-ply laminated plate are evaluated analytically based on the three-dimensional theory of elasticity, and the displacements of the rectangular plate, which are simply-supported at all edges, are expanded into the polynomial forms with respect to thickness coordinate. A frequency equation is formulated by using the energy method minimizing the Lagrange function. In the numerical calculations, natural frequencies are obtained for the plates with various stacking sequence and the thickness ratios, and the validity of the assumption of displacement fields and the range of applicability of the various plate theories (e.g. the Classical Plate Theory (CPT), the First-Order Shear Deformation Theory (FSDT) and the Higher-Order Shear Deformation Theory (HSDT)), which are widely used in the vibration analysis of FRP laminated plates, to the laminated thick plates are discussed by comparing the present results with the CPT and the FSDT solutions.

  16. Measurement of water falling film thickness to flat plate using confocal chromatic sensoring technique

    SciTech Connect

    Zhou, D.W. |; Gambaryan-Roisman, T.; Stephan, P.

    2009-01-15

    An experimental investigation of wavy water film falling down a flat plate has been carried out using confocal chromatic sensoring technique to determine the instantaneous and statistical characteristics of the film. The experiments involved three parameters: liquid feed mode, Reynolds number and plate inclination angle. The present time-average film thickness data is compared with the previous experimental and theoretical results showing a good agreement. A new correlation for the average film thickness is suggested. Our results show that the liquid feed mode has a vital influence on the film thickness and that the film thickness increases with Reynolds number and decreased plate inclination angle. The root-mean-square value of the film thickness fluctuations depends non-monotonically on the film Reynolds number. The corresponding mechanisms are analyzed. (author)

  17. Temperature Dependent Fracture Model and its Application to Ultra Heavy Thick Steel Plate Used for Shipbuilding

    NASA Astrophysics Data System (ADS)

    Jang, Yun Chan; Lee, Youngseog; An, Gyu Baek; Park, Joon Sik; Lee, Jong Bong; Kim, Sung Il

    In this study, experimental and numerical studies were performed to examine the effects of thickness of steel plate on the arrest fracture toughness. The ESSO tests were performed with the steel plates having temperature gradient along the crack propagation direction. A temperature dependent crack initiation criterion was proposed as well. A series of three-dimensional FEA was then carried out to simulate the ESSO test while the thickness of the steel plate varies. Results reveal that a temperature dependent brittle criterion proposed in this study can describe the fracture behavior properly.

  18. Development of microalloyed thick plate for high-strength steel structural applications

    SciTech Connect

    Ruddle, G.E.; Baragar, D.L.; Kostic, M.

    1995-12-31

    A pilot-scale development of weldable thick plate ({>=}0.75 in. (19 mm)) or high-strength steel structural applications has been conducted at Metals Technology Laboratories CANMET. Based on the findings of a literature survey and mathematical predictions, rolling schedule modifications were applied to develop improved thick-plate microstructure and mechanical properties in a Ti-N-Nb-microalloyed base composition steel. Subsequently, the effects on plate microstructure and mechanical properties of microalloying/alloying additions to the base composition were evaluated. This paper describes the processing and alloying development to achieve as-hot-rolled properties of YS >345 MPa, UTS 485-550 MPa and impact transition {>=}40 J at {minus}40 C in 0.75 in. and 1.5 in. (19 and 38 mm) thick plate.

  19. Effect of vibratory stress relief during welding of thick stainless steel plate

    NASA Astrophysics Data System (ADS)

    Spooner, S.; David, S. A.; Wang, X. L.; Hubbard, C. R.; Holden, T. M.; Root, J. H.

    1993-12-01

    Residual strains were measured in two welded 25-mm thick plates of type 304 stainless steel by the neutron diffraction technique. The filler metal employed to weld these plates was type 308 stainless steel. One of the two welds was prepared without any vibratory stress relief treatment and the other was vibrated at a frequency below the resonant condition which gives a fraction the resonant amplitude during welding. In both plates the largest residual stress component found in the heat affected zone and in the base metal is along the fusion joint (longitudinal) and is found at the boundary between the weld zone and the heat affected zone. This longitudinal component is 300 +/- 50 MPa in tension. The associated normal stress was close to zero and the transverse stress was 80 +/- 50 MPa. Variations in residual stresses with thickness through the base metal plate were small. The treated plate and untreated plate showed nearly identical patterns of stress distribution. Differences in the measured stresses between the vibratory-stress-relief treated and the untreated plates fall within the error bars of the stress determination in these particular 25 mm thick 300-type stainless steel plates.

  20. Vibration and damping of laminated, composite-material plates including thickness-shear effects

    NASA Technical Reports Server (NTRS)

    Bert, C. W.; Siu, C. C.

    1972-01-01

    An analytical investigation of sinusoidally forced vibration of laminated, anisotropic plates including bending-stretching coupling, thickness-shear flexibility, all three types of inertia effects, and material damping is presented. In the analysis the effects of thickness-shear deformation are considered by the use of a shear correction factor K, analogous to that used by Mindlin for homogeneous plates. Two entirely different approaches for calculating the thickness-shear factor for a laminate are presented. Numerical examples indicate that the value of K depends on the layer properties and the stacking sequence of the laminate.

  1. Thickness vibration of piezoelectric plates of 6mm crystals with tilted six-fold axis and two-layered thick electrodes.

    PubMed

    Du, Jianke; Xian, Kai; Wang, Ji; Yang, Jiashi

    2009-02-01

    We perform a theoretical analysis of thickness vibrations in piezoelectric plates of crystals with 6mm symmetry. The six-fold axis is tilted with respect to the plate surfaces. The major surfaces of the plate are covered with two layers of electrodes of different metals. The equations of linear piezoelectricity are used for the crystal plate. The electrodes are modeled by the equations of elasticity. Thickness vibrations frequencies and modes as well as impedance are calculated and examined. PMID:18951601

  2. Simultaneous determination of the ultrasound velocity and the thickness of solid plates from the analysis of thickness resonances using air-coupled ultrasound.

    PubMed

    Gmez Alvarez-Arenas, Toms E

    2010-02-01

    A method that combines transmission of air-coupled ultrasound pulses through solid plates and amplitude and phase spectral analysis is presented. In particular, the method analyzes the first thickness resonance of the plates. The purpose is to determine, simultaneously, velocity and attenuation coefficient of the ultrasounds in the material and the thickness of the plate. This is especially useful when thickness can not be measured independently. The method is successfully applied to soft membranes, biological samples and FRP composites. PMID:19819512

  3. Damage assessment and residual compression strength of thick composite plates with through-the-thickness reinforcements

    NASA Technical Reports Server (NTRS)

    Smith, Barry T.; Farley, Gary L.; Maiden, Janice; Coogan, Dreux; Moore, Judith G.

    1991-01-01

    Damage in composite materials was studied with through-the-thickness reinforcements. As a first step it was necessary to develop new ultrasonic imaging technology to better assess internal damage of the composite. A useful ultrasonic imaging technique was successfully developed to assess the internal damage of composite panels. The ultrasonic technique accurately determines the size of the internal damage. It was found that the ultrasonic imaging technique was better able to assess the damage in composite panel with through-the-thickness reinforcements than by destructively sectioning the specimen and visual inspection under a microscope. Five composite compression-after-impact panels were tested. The compression-after-impact strength of the panels with the through-the-thickness reinforcements was almost twice that of the comparable panel without through-the-thickness reinforcement.

  4. Damage assessment and residual compression strength of thick composite plates with through-the-thickness reinforcements

    NASA Technical Reports Server (NTRS)

    Smith, Barry T.

    1990-01-01

    Damage in composite materials was studied with through-the-thickness reinforcements. As a first step it was necessary to develop new ultrasonic imaging technology to better assess internal damage of the composite. A useful ultrasonic imaging technique was successfully developed to assess the internal damage of composite panels. The ultrasonic technique accurately determines the size of the internal damage. It was found that the ultrasonic imaging technique was better able to assess the damage in a composite panel with through-the-thickness reinforcements than by destructively sectioning the specimen and visual inspection under a microscope. Five composite compression-after-impact panels were tested. The compression-after-impact strength of the panels with the through-the-thickness reinforcements was almost twice that of the comparable panel without through-the-thickness reinforcement.

  5. 78 FR 59065 - Interview Room Recording System Standard and License Plate Reader Standard Workshops

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-25

    ... Plate Readers used by criminal justice agencies. Sessions are intended to inform manufacturers, test... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF JUSTICE Office of Justice Programs Interview Room Recording System Standard and License Plate Reader...

  6. Thickness effects on the plastic collapse of perforated plates with triangular penetration patterns

    SciTech Connect

    Gordon, J.L.; Jones, D.P.; Holliday, J.E.

    2000-03-01

    This paper investigates the effects of plate thickness on the accuracy of limit load solutions obtained using an elastic-perfectly plastic [EPP] equivalent solid [EQS] procedure for flat perforated plates with a triangular array of penetrations. The EQS approach for limit loads is based on an EQS collapse surface that is valid for generalized plane strain. This assumption is applicable for very thick plates but is known to be less reasonable for very thin plates where plane stress may be a better assumption. The limits of applicability of the generalized plane strain assumption are investigated by obtaining limit load solutions for perforated plates of various thicknesses that are subjected to in-plane and bending loads. Plastic limit load solutions obtained using three-dimensional EPP finite element analysis [FEA] of models which include each penetration explicitly are compared with solutions obtained using the EQS approximation. The penetration pattern chosen for this study has a ligament efficiency (ligament width-to-pitch ratio, h/P) of 0.32. For plates thicker than the pitch, the limit load calculated using the EQS method for both in-plane and bending loads is shown to be very accurate (within 4%) of the limit load calculated for the explicit model. On the other hand, for thin plates (t/P< 2), the EQS limit load is 5% greater than the explicit limit load for bending and 8% greater than the explicit limit load for in-plane loads. For thinner plates, the collapse surface is tied to the local geometry deformation and, hence, an equivalent solid plate representation of plastic collapse is a function of deformation mode and thickness.

  7. A study on friction stir welding of 12mm thick aluminum alloy plates

    NASA Astrophysics Data System (ADS)

    Kumar, Deepati Anil; Biswas, Pankaj; Tikader, Sujoy; Mahapatra, M. M.; Mandal, N. R.

    2013-12-01

    Most of the investigations regarding friction stir welding (FSW) of aluminum alloy plates have been limited to about 5 to 6 mm thick plates. In prior work conducted the various aspects concerning the process parameters and the FSW tool geometry were studied utilizing friction stir welding of 12 mm thick commercial grade aluminum alloy. Two different simple-to-manufacture tool geometries were used. The effect of varying welding parameters and dwell time of FSW tool on mechanical properties and weld quality was examined. It was observed that in order to achieve a defect free welding on such thick aluminum alloy plates, tool having trapezoidal pin geometry was suitable. Adequate tensile strength and ductility can be achieved utilizing a combination of high tool rotational speed of about 2000 r/min and low speed of welding around 28 mm/min. At very low and high dwell time the ductility of welded joints are reduced significantly.

  8. A new finite element formulation for vibration analysis of thick plates

    NASA Astrophysics Data System (ADS)

    Senjanovi?, Ivo; Vladimir, Nikola; Cho, Dae Seung

    2015-06-01

    A new procedure for determining properties of thick plate finite elements, based on the modified Mindlin theory for moderately thick plate, is presented. Bending deflection is used as a potential function for the definition of total (bending and shear) deflection and angles of cross-section rotations. As a result of the introduced interdependence among displacements, the shear locking problem, present and solved in known finite element formulations, is avoided. Natural vibration analysis of rectangular plate, utilizing the proposed four-node quadrilateral finite element, shows higher accuracy than the sophisticated finite elements incorporated in some commercial software. In addition, the relation between thick and thin finite element properties is established, and compared with those in relevant literature.

  9. Viscoplastic dynamics of isotropic plates of variable thickness under explosive loading

    NASA Astrophysics Data System (ADS)

    Nemirovskii, Yu. V.; Yankovskii, A. P.

    2007-03-01

    A problem of viscoplastic dynamic bending of isotropic plates of variable thickness is formulated. A method for integrating the initial-boundary problem is developed. Numerical results are compared with a known analytical solution obtained within a rigid-plastic model; good agreement is demonstrated. The efficiency of the method developed is verified by numerical computations. It is shown that the final flexure of plates can be reduced severalfold by applying rational design.

  10. Effect of geometric nonlinearity on the free flexural vibrations of moderately thick rectangular plates

    NASA Technical Reports Server (NTRS)

    Raju, K. K.; Rao, G. V.; Raju, I. S.

    1978-01-01

    The effect of geometric nonlinearity on the free flexural vibrations of moderately thick rectangular plates is studied in this paper. Finite element formulation is employed to obtain the non-linear to linear period ratios for some rectangular plates. A conforming finite element of rectangular shape wherein the effects of shear deformation and rotatory inertia are included, is developed and used for the analysis. Results are presented for both simply supported and clamped boundary conditions.

  11. Detecting the thickness mode frequency in a concrete plate using backward wave propagation.

    PubMed

    Bjurström, Henrik; Ryden, Nils

    2016-02-01

    Material stiffness and plate thickness are the two key parameters when performing quality assurance/quality control on pavement structures. In order to estimate the plate thickness non-destructively, the Impact Echo (IE) method can be utilized to extract the thickness resonance frequency. An alternative to IE for estimating the thickness resonance frequency of a concrete plate, and to subsequently enable thickness determination, is presented in this paper. The thickness resonance is often revealed as a sharp peak in the frequency spectrum when contact receivers are used in seismic testing. Due to a low signal-to-noise ratio, IE is not ideal when using non-contact microphone receivers. In studying the complex Lamb wave dispersion curves at a frequency infinitesimally higher than the thickness frequency, it is seen that two counter-directed waves occur at the same frequency but with phase velocities in opposite directions. Results show that it is possible to detect the wave traveling with a negative phase velocity using both accelerometers and air-coupled microphones as receivers. This alternative technique can possibly be used in non-contact scanning measurements based on air-coupled microphones. PMID:26936549

  12. Simultaneous measurement of refractive index and thickness of birefringent wave plates

    SciTech Connect

    Yeh, Y.-L

    2008-04-01

    A nondestructive measurement system based on a position sensing detector (PSD) and a laser interferometer for determining the thickness and refractive indices of birefringent optical wave plates has been developed. Unlike previous methods presented in the literature, the proposed metrology system allows the refractive index and thickness properties of the optical plate to be measured simultaneously. The experimental results obtained for the e-light and o-light refractive indices of a commercially available birefringent optical wave plate with refractive indices of no=1.542972 and ne=1.552033 are found to be accurate to within 0.004132 and 0.000229, respectively. Furthermore, the experimentally derived value of the wave plate thickness deviates by no more than 0.9 {mu}m from the analytically derived value of 453.95 {mu}m. Overall, the experimental results confirm that the proposed metrology system provides a simple yet highly accurate means of obtaining simultaneous measurements of the refractive indices and thickness of birefringent optical wave plates.

  13. Thick plate bending wave transmission using a mobility power flow approach

    NASA Technical Reports Server (NTRS)

    Mccollum, M. D.; Cuschieri, J. M.

    1990-01-01

    The mobility power flow (MPF) approach is used in this paper to describe the flexural behavior of an L-shaped plate structure consisting of thick plates with rotary inertia and shear deformation effects included in the analysis. The introduction of the thick plate effects significantly increases the complexity of the structural mobility functions used in the definitions of the power flow terms; however, because of the substructuring that is used in the MPF approach, the complexity of the problem is significantly reduced as compared to solving for the global structure. Additionally, with the MPF approach the modal behavior is described. The MPF analysis of the L-shaped plate is performed for the case of point force excitation on one plate, with the two plates being identical in both size and thickness. The results of this analysis are compared to results from the finite-element analysis (FEA) and the statistical energy analysis (SEA) and show very good agreement in the low- and high-frequency regimes, respectively.

  14. The effect of damping layers on vibration of laminated thick plates

    SciTech Connect

    Ohta, Yoshiki; Narita, Yoshihiro

    1995-11-01

    This paper deals with the effect of damping layers on vibration characteristics of cross-ply laminated, fiber reinforced plastics (FRP) thick plates with damping interleaves. For this purpose, the laminated plates are modeled by using the Multi-Layer (Individual-Layer) Theory. In this theory, a coordinate system is individually taken in each FRP layer or damping layer, and in-plane and out-of-plane displacements are assumed in the polynomial forms of third and second order, respectively. A set of governing equations for the whole laminated plate is derived from the equations of motion and other interfacial conditions. The free vibration and steady state vibration problems of the laminated plate are thus solved by the multi-layer theory. For comparison, an analysis is also presented by using the Lamination Theory, which uses only a single displacement field for the whole plate. Natural frequencies and steady state responses are calculated in numerical examples for the plates with various stacking sequence and thickness ratios of damping layers to FRP layers, and the effects of location and thickness of the damping layers on vibration characteristics are studied. Furthermore, the applicability of both the multi-layer and the lamination theories in the vibration analysis is discussed by comparing two sets of results.

  15. Crack-growth behavior in thick welded plates of Inconel 718 at room and cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Forman, R. G.

    1974-01-01

    Results of mechanical-properties and axial-load fatigue and fracture tests performed on thick welded plates of Inconel 718 superalloy are presented. The test objectives were to determine the tensile strength properties and the crack-growth behavior in electron-beam, plasma-arc, and gas tungsten are welds for plates 1.90 cm (0.75 in) thick. Base-metal specimens were also tested to determine the flaw-growth behavior. The tests were performed in room-temperature-air and liquid nitrogen environments. The experimental crack-growth-rate data are correlated with theoretical crack-growth-rate predictions for semielliptical surface flaws.

  16. Micro-Structural Study of Fretting Contact Caused by the Difference of the Tin Plating Thickness

    NASA Astrophysics Data System (ADS)

    Ito, Tetsuya; Sawada, Shigeru; Hattori, Yasuhiro; Saitoh, Yasushi; Tamai, Terutaka; Iida, Kazuo

    In recent years, there has been increasing demand to miniaturize wiring harness connectors in automobiles due to the increasing volume of electronic equipment and the reduction of the installation space allocated for the electronic equipment in automobiles for the comfort of the passengers. With this demand, contact failure caused by the fretting corrosion is expected to become a serious problem. In this report, we examined micro-structural observations of fretting contacts of two different tin plating thicknesses using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) and so on. Based on the results, we compared the microstructure difference of fretting contact caused by the difference of the tin plating thickness.

  17. Relation between subduction megathrust earthquakes, sediment thickness at trench, and plate coupling

    NASA Astrophysics Data System (ADS)

    Heuret, A.; Conrad, C. P.; Funiciello, F.; Lallemand, S.

    2011-12-01

    Extreme seismic events (Mw 8.5 and higher) are uniformly characterized by trench-parallel rupture lengths longer than about 250 km, whereas downdip rupture width ranges from less than 70 km (e.g., Central Aleutians) to more than 200 km (e.g., Andaman-Sumatra). The ability of rupture to propagate in the trench-parallel direction thus appears to play a fundamental role in determining the potential magnitude that an earthquake can achieve for a given subduction zone. The rupture length may be influenced by the nature of the plate interface and the normal stresses applied to the plate interface (plate coupling). The nature of the plate interface is potentially modified by sediment subduction. Subduction of a thick section of trench sediment constructs a laterally homogenous layer between upper and lower plates that smoothes subducted sea-floor relief and strength-coupling asperities (Ruff, 1989). Such a homogeneous interface running parallel to the subduction zone tends to favor long trench-parallel propagation of rupture, and thus large earthquake magnitudes. Compressive normal stresses applied along the plate interface may also tune the earthquake magnitude potential (Ruff & Kanamori, 1980). This plate coupling across the subducting interface can be indirectly estimated by Upper Plate Strain analysis, by using the back-arc as a strain sensor from which we can infer the back-arc stress state. Compressive back-arcs indicate that large stresses are transmitted across the plate interface whereas extensional settings indicate weak plate coupling. Here we present the results of a study funded by the European Science Foundation - EURYI project titled "Convergent margin and seismogenesis". Maximal earthquake magnitude, sediment thickness at the trench and Upper Plate Strain are characterized for worldwide subduction zones in order to test how plate coupling and sediment thickness combine to explain the occurrence of mega-events at the subduction interface. Subduction zones are described through an initial set of 505 transects, systematically extracted each 1 of trench, and merged into 62 subduction segments of homogeneous seismogenetic conditions. Maximal earthquake magnitude has been estimated by combining instrumental and historical seismicity. Trench sediment thickness has been constrained for 48 subduction segments; based on a compilation of 165 different seismic-reflection lines (33% of the initial set of transects).

  18. High-accuracy thickness measurement of a transparent plate with the heterodyne central fringe identification technique

    SciTech Connect

    Wu, Wang-Tsung; Hsieh, Hung-Chih; Chang, Wei-Yao; Chen, Yen-Liang; Su, Der-Chin

    2011-07-20

    In a modified Twyman-Green interferometer, the optical path variation is measured with the heterodyne central fringe identification technique, as the light beam is focused by a displaced microscopic objective on the front/rear surface of the test transparent plate. The optical path length variation is then measured similarly after the test plate is removed. The geometrical thickness of the test plate can be calculated under the consideration of dispersion effect. This method has a wide measurable range and a high accuracy in the measurable range.

  19. High-precision thickness setting models for titanium alloy plate cold rolling without tension

    NASA Astrophysics Data System (ADS)

    Wang, Xiaochen; Yang, Quan; He, Fei; Sun, Youzhao; Xiao, Huifang

    2015-03-01

    Due to its highly favorable physical and chemical properties, titanium and titanium alloy are widely used in a variety of industries. Because of the low output of a single batch, plate cold rolling without tension is the most common rolling production method for titanium alloy. This method is lack of on-line thickness closed-loop control, with carefully thickness setting models for precision. A set of high-precision thickness setting models are proposed to suit the production method. Because of frequent variations in rolling specification, a model structural for the combination of analytical models and statistical models is adopted to replace the traditional self-learning method. The deformation resistance and friction factor, the primary factors which affect model precision, are considered as the objectives of statistical modeling. Firstly, the coefficient fitting of deformation resistance analytical model based on over-determined equations set is adopted. Additionally, a support vector machine(SVM) is applied to the modeling of the deformation resistance and friction factor. The setting models are applied to a 1450 plate-coiling mill for titanium alloy plate rolling, and then thickness precision is found consistently to be within 3%, exceeding the precision of traditional setting models with a self-learning method based on a large number of stable rolling data. Excellent application performance is obtained. The proposed research provides a set of high-precision thickness setting models which are well adapted to the characteristics of titanium alloy plate cold rolling without tension.

  20. Numerical Investigation of Residual Stress in Thick Titanium Alloy Plate Joined with Electron Beam Welding

    NASA Astrophysics Data System (ADS)

    Liu, Chuan; Wu, Bing; Zhang, Jian Xun

    2010-10-01

    A finite-element (FE) simulation process integrating three dimensional (3D) with two-dimensional (2D) models is introduced to investigate the residual stress of a thick plate with 50-mm thickness welded by an electron beam. A combined heat source is developed by superimposing a conical volume heat source and a uniform surface heat source to simulate the temperature field of the 2D model with a fine mesh, and then the optimal heat source parameters are employed by the elongated heat source for the 3D simulation without trial simulations. The welding residual stress also is investigated with emphasis on the through-thickness stress for the thick plate. Results show that the agreement between simulation and experiment is good with a reasonable degree of accuracy in respect to the residual stress on the top surface and the weld profile. The through-thickness residual stress of the thick plate induced by electron beam welding is distinctly different from that of the arc welding presented in the references.

  1. On the relations between cratonic lithosphere thickness, plate motions, and basal drag

    USGS Publications Warehouse

    Artemieva, I.M.; Mooney, W.D.

    2002-01-01

    An overview of seismic, thermal, and petrological evidence on the structure of Precambrian lithosphere suggests that its local maximum thickness is highly variable (140-350 km), with a bimodal distribution for Archean cratons (200-220 km and 300-350 km). We discuss the origin of such large differences in lithospheric thickness, and propose that the lithospheric base can have large depth variations over short distances. The topography of Bryce Canyon (western USA) is proposed as an inverted analog of the base of the lithosphere. The horizontal and vertical dimensions of Archean cratons are strongly correlated: larger cratons have thicker lithosphere. Analysis of the bimodal distribution of lithospheric thickness in Archean cratons shows that the "critical" surface area for cratons to have thick (>300 km) keels is >6-8 ?? 106 km2 . Extrapolation of the linear trend between Archean lithospheric thickness and cratonic area to zero area yields a thickness of 180 km. This implies that the reworking of Archean crust should be accompanied by thinning and reworking of the entire lithospheric column to a thickness of 180 km in accord with thickness estimates for Proterozoic lithosphere. Likewise, extrapolation of the same trend to the size equal to the total area of all Archean cratons implies that the lithospheric thickness of a hypothesized early Archean supercontinent could have been 350-450 km decreasing to 280-400 km for Gondwanaland. We evaluate the basal drag model as a possible mechanism that may thin the cratonic lithosphere. Inverse correlations are found between lithospheric thickness and (a) fractional subduction length and (b) the effective ridge length. In agreement with theoretical predictions, lithospheric thickness of Archean keels is proportional to the square root of the ratio of the craton length (along the direction of plate motion) to the plate velocity. Large cratons with thick keels and low plate velocities are less eroded by basal drag than small fast-moving cratons. Basal drag may have varied in magnitude over the past 4 Ga. Higher mantle temperatures in the Archean would have resulted in lower mantle viscosity. This in turn would have reduced basal drag and basal erosion, and promoted the preservation of thick (>300 km) Archean keels, even if plate velocities were high during the Archean. ?? 2002 Elsevier Science B.V. All rights reserved.

  2. Free vibration of super elliptical plates with constant and variable thickness by Ritz method

    NASA Astrophysics Data System (ADS)

    eriba??, Seyit; Altay, Glay

    2009-01-01

    In this study free vibration of simply supported and clamped super elliptical plates is investigated. This class of plates includes a wide range of external boundaries varying from an ellipse to a rectangle. Although studies on the upper and lower bounds of these plate geometries, namely circle and rectangle, are quite extensive, contributions on the mid-shapes, especially for simply supported boundary edges are very limited. The Kirchhoff plate model with isotropic and homogeneous material is studied. The super elliptical powers are chosen from 1 to 10. The Ritz method is employed for the solution of the energy equations of the plates. The effects of Poisson's ratio, which should not be neglected for simply supported plates with curved boundaries, and the aspect ratio of the plate are both examined in detail. The effect of thickness variation is also considered in this study. In order to avoid long computational run times, physically pertinent trial functions are utilized. The frequency parameters obtained are presented and compared with published results for plate shapes that match the current cases.

  3. Weakly nonlinear behavior of a plate thickness-mode piezoelectric transformer.

    PubMed

    Yang, Jiashi; Chen, Ziguang; Hu, Yuantai; Jiang, Shunong; Guo, Shaohua

    2007-04-01

    We analyzed the weakly nonlinear behavior of a plate thickness-shear mode piezoelectric transformer near resonance. An approximate analytical solution was obtained. Numerical results based on the analytical solution are presented. It is shown that on one side of the resonant frequency the input-output relation becomes nonlinear, and on the other side the output voltage experiences jumps. PMID:17441598

  4. Air-coupled ultrasonic through-transmission thickness measurements of steel plates.

    PubMed

    Waag, Grunde; Hoff, Lars; Norli, Petter

    2015-02-01

    Non-destructive ultrasonic testing of steel structures provide valuable information in e.g. inspection of pipes, ships and offshore structures. In many practical applications, contact measurements are cumbersome or not possible, and air-coupled ultrasound can provide a solution. This paper presents air-coupled ultrasonic through-transmission measurements on a steel plate with thicknesses 10.15 mm; 10.0 mm; 9.8 mm. Ultrasound pulses were transmitted from a piezoelectric transducer at normal incidence, through the steel plate, and were received at the opposite side. The S1, A2 and A3 modes of the plate are excited, with resonance frequencies that depend on the material properties and the thickness of the plate. The results show that the resonances could be clearly identified after transmission through the steel plate, and that the frequencies of the resonances could be used to distinguish between the three plate thicknesses. The S1-mode resonance was observed to be shifted 10% down compared to a simple plane wave half-wave resonance model, while the A2 and S2 modes were found approximately at the corresponding plane-wave resonance frequencies. A model based on the angular spectrum method was used to predict the response of the through-transmission setup. This model included the finite aperture of the transmitter and receiver, and compressional and shear waves in the solid. The model predicts the frequencies of the observed modes of the plate to within 1%, including the down-shift of the S1-mode. PMID:25257299

  5. Orbiter Cold Plate Intergranular Corrosion: Development of NDE Standards and Assessment of NDE Methods

    NASA Technical Reports Server (NTRS)

    Smith, Stephen W.; Winfree, William P.; Piascik, Robert S.

    2002-01-01

    During pre-servicing of a space shuttle (orbiter vehicle, OV-102), helium leak detection of an avionics cold plate identified a leak located in the face sheet oriented towards the support shelf. Subsequent destructive examination of the leaking cold plate revealed that intergranular corrosion had penetrated the 0.017-inch thick aluminum (AA6061) face sheet. The intergranular attack (IGA) was likely caused by an aggressive crevice environment created by condensation of water vapor between the cold plate and support shelf. Face sheet susceptibility to IGA is a result of the brazing process used in the fabrication of the cold plates. Cold plate components were brazed at 1000 F followed by a slow cooling process to avoid distortion of the bonded cold plate. The slow cool process caused excessive grain boundary precipitation resulting in a material that is susceptible to IGA. The objectives of this work are as follows: (1) Develop first-of-a-kind nondestructive evaluation (NDE) standards that contain IGA identical to that found in the orbiter cold plates; and (2) Assess advanced NDE techniques for corrosion detection and recommend methods for cold plate examination. This report documents the results of work performed at Langley Research Center to fulfill these objectives.

  6. Testing Plate Reconstructions For The High Arctic Using Crustal Thickness Mapping From Gravity Inversion

    NASA Astrophysics Data System (ADS)

    Alvey, A. D.; Gaina, C.; Kusznir, N. J.; Torsvik, T. H.

    2006-12-01

    The plate tectonic history of the Amerasia Basin (High Arctic) and its distribution of oceanic and continental lithosphere is poorly known. A new method of gravity inversion with an embedded lithosphere thermal gravity anomaly correction has been applied to the NGA (U) Arctic Gravity Project data to predict crustal thickness and to test different plate reconstructions within the Arctic region. Two end member plate reconstruction models have been tested: in one model the Mendeleev Ridge is rifted from the Canadian margin while in the other it is rifted from the Lomonosov Ridge. The inversion of gravity data to map crustal thickness variation within oceanic and rifted continental margin lithosphere requires the incorporation of a lithosphere thermal gravity anomaly correction for both oceanic and continental lithosphere. Oceanic lithosphere and stretched continental margin lithosphere produce a large negative residual thermal gravity anomaly (up to -380 mGal), for which a correction must be made in order to determine realistic Moho depth by gravity anomaly inversion. The lithosphere thermal model used to predict the lithosphere thermal gravity anomaly correction may be conditioned using plate reconstruction models to provide the age and location of oceanic lithosphere. Two end- member plate reconstruction models have been constructed for the opening of the Amerasia Basin and used to determine lithosphere thermal gravity anomaly corrections: in one model the (presumably) continental Mendeleev Ridge is rifted from the Canadian margin in the Jurassic while in the other it is rifted off the Lomonosov Ridge (Eurasia Basin) in the Late-Cretaceous. Crustal thickness predicted by gravity anomaly inversion for the two plate reconstructions is significantly different in the Makarov Basin because of their different lithosphere thermal gravity corrections. The plate reconstruction with younger Makarov Basin ages gives a crustal thickness of the order 6-8 km thinner than the older Makarov Basin model. A crustal thickness of approximately 20 km has been obtained from seismic refraction data (Lebedeva-Ivanova et al., 2006) which would imply a Late Mid-Cretaceous age for the Makarov Basin. In this case plume-related forces may have contributed to the opening of this basin, as regional plate tectonics predict compression and not extension in the Makarov Basin area at this time.

  7. Active sound radiation control of a thick piezolaminated smart rectangular plate

    NASA Astrophysics Data System (ADS)

    Hasheminejad, Seyyed M.; Keshavarzpour, Hemad

    2013-09-01

    A spatial state-space formulation based on the linear three-dimensional piezoelasticity theory in conjunction with the classical Rayleigh integral acoustic radiation model is employed to obtain a semi-analytic solution for the coupled vibroacoustic response of a simply supported, arbitrarily thick, piezolaminated rectangular plate, set in an infinite rigid baffle. The smart structure is composed of an orthotropic supporting core layer integrated with matched volume velocity spatially distributed piezoelectric sensor and uniform force actuator layers. To assist controller design, a frequency-domain subspace-based identification technique is applied to estimate the coupled fluid-structure dynamics of the system. A standard linear quadratic Gaussian (LQG) optimal controller is subsequently synthesized and simulated based on the identified model and the optimal control input voltage for minimizing the estimated net volume velocity (total radiated power) of the panel is calculated in both frequency and time domains. Numerical simulations demonstrate the effectiveness of the adopted volumetric sensing/actuation technique in conjunction with the optimal control strategy for suppressing the predicted sound radiation response of a three-layered (NaNb5O15/Al/PZT4) sandwich panel in both frequency and time domains. The trade-off between dynamic performance and control effort penalty is examined for two different types of loading (i.e., impulsive and broadband random disturbances). Validity of the results is demonstrated by comparison with a commercial finite element package, as well as with the data available in the literature.

  8. The Transition from Thick to Thin Plate Wake Physics: Whither Vortex Shedding?

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2016-01-01

    The near and very near wake of a flat plate with a circular trailing edge is investigated with data from direct numerical simulations. Computations were performed for six different combinations of the Reynolds numbers based on plate thickness (D) and boundary layer momentum thickness upstream of the trailing edge (theta). Unlike the case of the cylinder, these Reynolds numbers are independent parameters for the flat plate. The separating boundary layers are turbulent in all the cases investigated. One objective of the study is to understand the changes in the wake vortex shedding process as the plate thickness is reduced (increasing theta/D). The value of D varies by a factor of 16 and that of theta by approximately 5 in the computations. Vortex shedding is vigorous in the low theta/D cases with a substantial decrease in shedding intensity in the large theta/D cases. Other shedding characteristics are also significantly altered with increasing theta/D. A visualization of the shedding process in the different cases is provided and discussed. The basic shedding mechanism is explored in depth. The effect of changing theta/D on the time-averaged, near-wake velocity statistics is also discussed. A functional relationship between the shedding frequency and the Reynolds numbers mentioned above is obtained.

  9. Postbuckling response of long thick plates loaded in compression including higher order transverse shearing effects

    NASA Technical Reports Server (NTRS)

    Stein, Manuel; Sydow, P. Daniel; Librescu, Liviu

    1990-01-01

    Buckling and postbuckling results are presented for compression-loaded simply-supported aluminum plates and composite plates with a symmetric lay-up of thin + or - 45 deg plies composed of many layers. Buckling results for aluminum plates of finite length are given for various length-to-width ratios. Asymptotes to the curves based on buckling results give N(sub xcr) for plates of infinite length. Postbuckling results for plates with transverse shearing flexibility are compared to results from classical theory for various width-to-thickness ratios. Characteristic curves indicating the average longitudinal direct stress resultant as a function of the applied displacements are calculated based on four different theories: Classical von Karman theory using the Kirchoff assumptions, first-order shear deformation theory, higher-order shear deformation theory, and 3-D flexibility theory. Present results indicate that the 3-D flexibility theory gives the lowest buckling loads. The higher-order shear deformation theory has fewer unknowns than the 3-D flexibility theory but does not take into account through-the-thickness effects. The figures presented show that small differences occur in the average longitudinal direct stress resultants from the four theories that are functions of applied end-shortening displacement.

  10. Postbuckling response of long thick plates loaded in compression including higher order transverse shearing effects

    NASA Technical Reports Server (NTRS)

    Stein, Manuel; Sydow, Daniel P.; Librescu, Liviu

    1990-01-01

    This paper presents buckling and postbuckling results for compression-loaded simply-supported aluminum plates and composite plates with a symmetric lay-up of thin +/-45-deg plies composed of many layers. Buckling results for aluminum plates of finite length are given for various length-to-width ratios. Asymptotes to the curves based on the buckling results give N(XCr) for plates of infinite length. Postbuckling results for plates with transverse shearing flexibility are compared to results from classical theory for various width-to-thickness ratios. Characteristic curves indicating the average longitudinal direct stress resultant as a function of the applied displacements are calculated based on four different theories: classical von Karman theory using the Kirchhoff assumptions, first-order shear deformation theory, higher-order shear deformation theory, and three-dimensional flexibility theory. Present results indicate that the three-dimensional flexibility theory gives the lowest buckling loads. The higher-order shear deformation theory has fewer unknowns than the three-dimensional flexibility theory but does not take into account through-the-thickness effects. The figures presented show that small differences occur in the average longitudinal direct stress resultants from the four theories that are functions of applied end-shortening displacement.

  11. Propagation of thickness-twist waves through a joint between two semi-infinite piezoelectric plates.

    PubMed

    Yang, Jiashi; Chen, Ziguang; Hu, Yuantai

    2007-04-01

    We study the propagation of thickness-twist waves through a joint between two semi-infinite piezoelectric plates of crystals with 6-mm symmetry or polarized ceramics. An exact solution from the three-dimensional equations of piezoelectricity is obtained. The solution shows the cutoff of certain waves and the presence of localized electromechanical fields near the joint. The results are of fundamental importance to the understanding and design of resonators and other devices made from plates of these materials, in particular thin film resonators of ZnO and AlN. PMID:17441600

  12. Accurate free vibration analysis of thick laminated circular plates with attached rigid core

    NASA Astrophysics Data System (ADS)

    Hosseini-Hashemi, Sh.; Rezaee, V.; Atashipour, S. R.; Girhammar, U. A.

    2012-12-01

    This paper deals with the free vibration behavior of laminated transversely isotropic circular plates with axisymmetric rigid core attached at the center. The governing equations of motion are obtained based on Mindlin's first-order shear deformation plate theory. Two possible categories of vibration modes related to up-down translation of the core and wobbly rotation of the core about a diameter are studied. Accurate natural frequencies hitherto not reported in the literature are presented for a wide range of thickness-to-radius ratio, inner-to-outer radius ratio, mass and moment of inertia ratios of the core and various boundary conditions at the outer edge of the plate. Numerical results are compared with those of a three-dimensional finite element method (3-D FEM) to demonstrate the high accuracy and reliability of the current analysis.

  13. Effect of Initial Stress on a Fiber-Reinforced Anisotropic Thermoelastic Thick Plate

    NASA Astrophysics Data System (ADS)

    Abbas, Ibrahim A.; Abd-alla, Abo-el-nour N.

    2011-05-01

    The two-dimensional problem of generalized thermoelasticity for a fiber-reinforced anisotropic thick plate under initial stress is studied in the context of the Lord and Shulman theory. The upper surface of the plate is thermally insulated with prescribed surface loading while the lower surface of the plate rests on a rigid foundation and temperature. The problem is solved numerically using a finite element method. Numerical results for the temperature distribution, and the displacement and stress components are given and illustrated graphically. It is found from the graphs that the initial stress significantly influences the variations of field quantities. The results obtained in this paper may offer a theoretical basis and meaningful suggestions for the design of various fiber-reinforced anisotropic thermoelastic elements under loading to meet special engineering requirements.

  14. Mechanical response of thick laminated beams and plates subject to out-of-plane loading

    NASA Technical Reports Server (NTRS)

    Hiel, C. C.; Brinson, . F.

    1989-01-01

    The use of simplified elasticity solutions to determine the mechanical response of thick laminated beams and plates subject to out-of-plane loading is demonstrated. Excellent results were obtained which compare favorably with theoretical, numerical and experimental analyses from other sources. The most important characteristic of the solution methodology presented is that it combines great mathematical precision with simplicity. This symbiosis has been needed for design with advanced composite materials.

  15. Postbuckling response of long thick isotropic plates loaded in compression including higher order transverse shearing effects

    NASA Technical Reports Server (NTRS)

    Stein, Manuel; Sydow, P. Daniel; Librescu, Liviu

    1990-01-01

    Buckling and postbuckling results for aluminum plates loaded in compression are presented. The buckling results were plotted to show the effects of thickness on the stress coefficient. Buckling results are given for various length-to-width ratios. Postbuckling results for plates with transverse shearing flexibility are compared to results from classical theory for various width-to-thickness ratios. The plates are considered to be long with side edges simply supported, with edges free of stress and the plates are subjected to longitudinal compressive displacement. Characteristic curves indicating the average longitudinal direct stress resultant as a function of the applied displacements are calculated based on four different theories: Classical von Karman, first-order shear deformation, higher-order shear deformation, and three-dimensional flexibility. Present results indicate that the three-dimensional flexibility theory gives the lowest and therefore, most accurate results. The higher-order shear deformation theory has fewer unknowns than the three-dimensional flexibility but is not as accurate. The figures presented show that small differences occur in the maximum stress resultants and the transverse displacements calculated when the effects of transverse shear are included.

  16. Development of the nitride film thickness standard (NFTS)

    NASA Astrophysics Data System (ADS)

    Durga Pal, Prabha

    1998-07-01

    The semiconductor industry has been demanding film thickness reference material for films other than thermally grown silicon dioxide for sometime. To meet this challenge, Nitride Film Thickness Standard (NFTS) has been developed in four nominal thickness values, 20.0 nm, 90.0 nm, 120.0 nm and 200.0 nm. These are silicon nitride (Si3N4) films on silicon crystal substrate. Work is underway to develop a 9.0 nm standard. Thin nitride films are particularly needed for calibration of the thickness of nitride layers in capacitors and isolation masks for LOCOS (local oxidation of silicon). The reference material is certified for derived film thickness. The study consists of measurements made on four different sets of wafers that included patterned and unpatterned wafers. The measurements made on these wafer sets were used for answering issues related to film stability and cleaning. The stability study includes the search for a cleaning process that will restore a prior surface condition. On two sets of wafers two different types of cleaning procedures were used. Results indicate that a sulfuric acidmegasonic clean will etch the nitride film while an isopropyl alcohol clean followed by a deionized water rinse can be used over and over again. The third set of wafers was never cleaned and measurements were made on these over a period of two years. The last set of wafers is patterned. These are cleaned prior to measurement. Results show that LPCVD silicon nitride films are stable and can be used with confidence over a long period of time for calibrating optical metrology instruments.

  17. Quantitative Microstructural Characterization of Thick Aluminum Plates Heavily Deformed Using Equal Channel Angular Extrusion

    NASA Astrophysics Data System (ADS)

    Mishin, O. V.; Segal, V. M.; Ferrasse, S.

    2012-12-01

    A detailed quantitative analysis of the microstructure has been performed in three orthogonal planes of 15-mm-thick aluminum plates heavily deformed via two equal channel angular extrusion (ECAE) routes. One route was a conventional route A with no rotation between passes. Another route involved sequential 90 deg rotations about the normal direction (ND) between passes. The microstructure in the center of these plates, and especially the extent of microstructural heterogeneity, has been characterized quantitatively and compared with that in bar samples extruded via either route A or route Bc with 90 deg rotations about the longitudinal axis. Statistically robust data were obtained in this work using gallium enhanced microscopy and EBSD mapping of large sample areas. For the plate processed using route A, the fraction of high-angle boundaries was found to strongly depend on the inspection plane, being smallest in the plane perpendicular to the ND (plane Z), where the largest subgrain size and most profound microstructural heterogeneities were also revealed. In comparison, the plate extruded with 90 deg rotations about the ND was less heterogeneous and contained smaller subgrains in plane Z. Comparing the plate and bar samples, the most refined and least heterogeneous microstructure was observed in the route Bc bar sample. The differences in the microstructure are reflected in the hardness data; the hardness is lowest after ECAE via route A and greatest in the bar sample processed using route Bc.

  18. A Study on Segmented Multiple-Step Forming of Doubly Curved Thick Plate by Reconfigurable Multi-Punch Dies

    SciTech Connect

    Ko, Young Ho; Han, Myoung Soo; Han, Jong Man

    2007-05-17

    Doubly curved thick plate forming in shipbuilding industries is currently performed by a thermal forming process, called as Line Heating by using gas flame torches. Due to the empirical manual work of it, the industries are eager for an alternative way to manufacture curved thick plates for ships. It was envisaged in this study to manufacture doubly curved thick plates by the multi-punch die forming. Experiments and finite element analyses were conducted to evaluate the feasibility of the reconfigurable discrete die forming to the thick plates. Single and segmented multiple step forming procedures were considered from both forming efficiency and accuracy. Configuration of the multi-punch dies suitable for the segmented multiple step forming was also explored. As a result, Segmented multiple step forming with matched dies had a limited formability when the objective shapes become complicate, while a unmatched die configuration provided better possibility to manufacture large curved plates for ships.

  19. A Study on Segmented Multiple-Step Forming of Doubly Curved Thick Plate by Reconfigurable Multi-Punch Dies

    NASA Astrophysics Data System (ADS)

    Ko, Young Ho; Han, Myoung Soo; Han, Jong Man

    2007-05-01

    Doubly curved thick plate forming in shipbuilding industries is currently performed by a thermal forming process, called as Line Heating by using gas flame torches. Due to the empirical manual work of it, the industries are eager for an alternative way to manufacture curved thick plates for ships. It was envisaged in this study to manufacture doubly curved thick plates by the multi-punch die forming. Experiments and finite element analyses were conducted to evaluate the feasibility of the reconfigurable discrete die forming to the thick plates. Single and segmented multiple step forming procedures were considered from both forming efficiency and accuracy. Configuration of the multi-punch dies suitable for the segmented multiple step forming was also explored. As a result, Segmented multiple step forming with matched dies had a limited formability when the objective shapes become complicate, while a unmatched die configuration provided better possibility to manufacture large curved plates for ships.

  20. Single Transducer Ultrasonic Imaging Method that Eliminates the Effect of Plate Thickness Variation in the Image

    NASA Technical Reports Server (NTRS)

    Roth, Don J.

    1996-01-01

    This article describes a single transducer ultrasonic imaging method that eliminates the effect of plate thickness variation in the image. The method thus isolates ultrasonic variations due to material microstructure. The use of this method can result in significant cost savings because the ultrasonic image can be interpreted correctly without the need for machining to achieve precise thickness uniformity during nondestructive evaluations of material development. The method is based on measurement of ultrasonic velocity. Images obtained using the thickness-independent methodology are compared with conventional velocity and c-scan echo peak amplitude images for monolithic ceramic (silicon nitride), metal matrix composite and polymer matrix composite materials. It was found that the thickness-independent ultrasonic images reveal and quantify correctly areas of global microstructural (pore and fiber volume fraction) variation due to the elimination of thickness effects. The thickness-independent ultrasonic imaging method described in this article is currently being commercialized under a cooperative agreement between NASA Lewis Research Center and Sonix, Inc.

  1. Quasi-Rayleigh waves in butt-welded thick steel plate

    SciTech Connect

    Kamas, Tuncay E-mail: victorg@sc.edu Giurgiutiu, Victor E-mail: victorg@sc.edu Lin, Bin E-mail: victorg@sc.edu

    2015-03-31

    This paper discusses theoretical and experimental analyses of weld guided surface acoustic waves (SAW) through the guided wave propagation (GWP) analyses. The GWP analyses have been carried out by utilizing piezoelectric wafer active sensors (PWAS) for in situ structural inspection of a thick steel plate with butt weld as the weld bead is ground flush. Ultrasonic techniques are commonly used for validation of welded structures in many in-situ monitoring applications, e.g. in off-shore structures, in nuclear and pressure vessel industries and in a range of naval applications. PWAS is recently employed in such ultrasonic applications as a resonator as well as a transducer. Quasi-Rayleigh waves a.k.a. SAW can be generated in relatively thick isotropic elastic plate having the same phase velocity as Rayleigh waves whereas Rayleigh waves are a high frequency approximation of the first symmetric (S0) and anti-symmetric (A0) Lamb wave modes. As the frequency becomes very high the S0 and the A0 wave speeds coalesce, and both have the same value. This value is exactly the Rayleigh wave speed and becomes constant along the frequency i.e. Rayleigh waves are non-dispersive guided surface acoustic waves. The study is followed with weld-GWP tests through the pitch-catch method along the butt weld line. The tuning curves of quasi-Rayleigh wave are determined to show the tuning and trapping effect of the weld bead that has higher thickness than the adjacent plates on producing a dominant quasi-Rayleigh wave mode. The significant usage of the weld tuned and guided quasi-Rayleigh wave mode is essentially discussed for the applications in the in-situ inspection of relatively thick structures with butt weld such as naval offshore structures. The paper ends with summary, conclusions and suggestions for future work.

  2. Quasi-Rayleigh waves in butt-welded thick steel plate

    NASA Astrophysics Data System (ADS)

    Kamas, Tuncay; Giurgiutiu, Victor; Lin, Bin

    2015-03-01

    This paper discusses theoretical and experimental analyses of weld guided surface acoustic waves (SAW) through the guided wave propagation (GWP) analyses. The GWP analyses have been carried out by utilizing piezoelectric wafer active sensors (PWAS) for in situ structural inspection of a thick steel plate with butt weld as the weld bead is ground flush. Ultrasonic techniques are commonly used for validation of welded structures in many in-situ monitoring applications, e.g. in off-shore structures, in nuclear and pressure vessel industries and in a range of naval applications. PWAS is recently employed in such ultrasonic applications as a resonator as well as a transducer. Quasi-Rayleigh waves a.k.a. SAW can be generated in relatively thick isotropic elastic plate having the same phase velocity as Rayleigh waves whereas Rayleigh waves are a high frequency approximation of the first symmetric (S0) and anti-symmetric (A0) Lamb wave modes. As the frequency becomes very high the S0 and the A0 wave speeds coalesce, and both have the same value. This value is exactly the Rayleigh wave speed and becomes constant along the frequency i.e. Rayleigh waves are non-dispersive guided surface acoustic waves. The study is followed with weld-GWP tests through the pitch-catch method along the butt weld line. The tuning curves of quasi-Rayleigh wave are determined to show the tuning and trapping effect of the weld bead that has higher thickness than the adjacent plates on producing a dominant quasi-Rayleigh wave mode. The significant usage of the weld tuned and guided quasi-Rayleigh wave mode is essentially discussed for the applications in the in-situ inspection of relatively thick structures with butt weld such as naval offshore structures. The paper ends with summary, conclusions and suggestions for future work.

  3. Buckling analysis of moderately thick rectangular plates using coupled displacement field method

    NASA Astrophysics Data System (ADS)

    Meera Saheb, K.; Aruna, K.

    2015-12-01

    A simple and efficient coupled displacement field method is developed to study the buckling load parameters of the moderately thick rectangular plates. This method has been successfully applied to study the same for the Timoshenko beams. A single term trigonometric admissible displacement field is assumed for one of the variables, say, the total rotations (in both X, Y directions). Making use of the coupling equations, the spatial variation for the remaining lateral displacement field is derived in terms of the total rotations. The coupled displacement field method makes the energy formulation to contains half the number of unknown independent coefficients, in the case of a rectangular plate, contrary to the conventional Rayleigh-Ritz method. The expressions for the non-dimensional buckling load parameters of the moderately thick rectangular plates with all the edges simply supported are derived. The numerical values of these parameters obtained using the coupled displacement field method match very well with open literature demonstrating the effectiveness of the coupled displacement field method.

  4. A large-deformation thin plate theory with application to one-atom-thick layers

    NASA Astrophysics Data System (ADS)

    Delfani, M. R.; Shodja, H. M.

    2016-02-01

    Nowadays, two-dimensional materials due to their vast engineering and biomedical applications have been the focus of many researches. The present paper proposes a large-deformation theory for thin plates with application to one-atom-thick layers (OATLs). The deformation is formulated exactly in the mathematical framework of Lagrangian description. In particular, an exact finite strain analysis is given - in addition to the usual strain tensor associated to the middle surface, the second and third fundamental forms of the middle surface of the deformed thin plate are also maintained in the analysis. Exact closed-form solutions for a uniaxially curved thin plate due to pure bending in one case and due to a combination of vertical and horizontal loading in another are obtained. As a special case of the latter problem, the exact solution for the plane-strain bulge test of thin plates is derived. Subsequently, the approximation of Vlassak and Nix [Vlassak, J.J., Nix, W.D., 1992. J. Mater. Res., 7(12), 3242-3249] for the load-deflection equation is recovered. The given numerical results are devoted to graphene as the most well-known OATL.

  5. EVALUATION OF TERMINAL VERTEBRAL PLATE ON CERVICAL SPINE AT DIFFERENT AGE GROUPS AND ITS CORRELATION WITH INTERVERTEBRAL DISC THICKNESS

    PubMed Central

    Luiz Vieira, Juliano Silveira; da Silva Herrero, Carlos Fernando Pereira; Porto, Maximiliano Aguiar; Nogueira Barbosa, Marcello Henrique; Garcia, Sérgio Britto; Zambelli Ramalho, Leandra Náira; Aparecido Defino, Helton Luiz

    2015-01-01

    To evaluate, by means of histomorphometry, terminal vertebral plate thickness, intervertebral disc thickness and its correlation on different age groups, seeking to identify its correlation. Methods: C4-C5 and C5-C6 cervical segments removed from human cadavers of both genders were assessed and divided into five groups of 10-year age intervals, from 21 years old. TVP and intervertebral disc thickness evaluation was made by means of histomorphometry of histological slides stained with hematoxylin and eosyn. Lower C4 TVP, upper C5 TVP, and upper C6 TVP de were compared between each other and to the interposed intervertebral disc thickness between relevant TVP. Results: The thickness of terminal vertebral plates adjacent to the same ID did not show statistic differences. However, the comparison of upper and lower vertebral plates thickness on the same cervical vertebra (C5), showed statistical difference on all age groups studied. We found a statistical correlation coefficient above 80% between terminal vertebral plate and adjacent intervertebral disc, with a proportional thickness reduction of both structures on the different cervical levels studied, and also on the different age groups assessed. Conclusion: Terminal vertebral plate shows a morphologic correlation with the intervertebral disc next to it, and does not show correlation with the terminal vertebral plate on the same vertebra.

  6. Feasibility study on welding and cutting methods for thick plate in fusion reactor

    SciTech Connect

    Osaki, T.; Nakayama, Y.; Kobayashi, T.

    1995-12-31

    Application of tungsten-arc inert-gas (TIG) welding with narrow gap has been considered as a hopeful joint method to suppress post welding deformation for thick plates. The authors studied some parameters to predict the post-welding deformation for the narrow gap shape of TIG welding. As for cutting methods, the water jet method was applied for weld joints in this study. Reweld tests by using the TIG welding method were successfully performed under the condition of cutting surface as it was. Results of tensile tests for reweld joints showed no reduction in strength. This reveals a good prospect of providing reweld groove surface without any machining on site.

  7. PIV measurement of separated flow over a blunt plate with different chord-to-thickness ratios

    NASA Astrophysics Data System (ADS)

    Shi, Liu Liu; Liu, Ying Zheng; Yu, Jun

    2010-05-01

    The influence of the chord-to-thickness ratio (c/t) on the spatial characteristics of the separated shear layer over a blunt plate and the leading-edge vortices embedded in the separated shear layer was studied extensively using planar particle image velocimetry (PIV). Three systems corresponding to different shedding modes were chosen for the comparative study: c/t=3, 6 and 9. The Reynolds number based on the plate's thickness (t) was Ret=1×103. A gigapixel CCD camera was used to acquire images with a spatial resolution of 0.06t×0.06t in the measurement range of 9.5t×4.5t. Distributions of statistical quantities, such as the streamline pattern, streamwise velocity fluctuation intensity, shear stress and reverse flow intermittency, showed that the separated shear layer in the system with c/t=3 did not reattach to the plate's surface, while the near-wake behind the trailing edge was highly unstable because the energetic leading-edge vortices were shed into the wake. The separated shear layer of the system with c/t=6 periodically reattached to the plate's surface, which resulted in intensified fluctuations of the near wake behind the trailing edge. In the longest system (c/t=9), the separated shear layer always reattached to the plate's surface far upstream from the trailing edge, which did not induce large fluctuations of the near wake. Furthermore, the proper orthogonal decomposition (POD) was extensively employed to filter the original velocity fields spatially to identify the large-scale vortices immersed in the separated shear layer easily. The distribution of the v-v correlation coefficients of the spatially filtered flow fields reflected the organized large-scale vortices in the three systems. The number of alternations of the positive and negative correlation coefficients across the flow field were determined to be 1, 2 and 3 for the systems with c/t=3, 6 and 9, respectively; this is in agreement with the shedding mode of each system. The distribution of the swirling strength of the separated shear layer accurately determined the positions and structures of the large-scale vortices formed above the plate surface.

  8. An improved plate theory of order (1,2) for thick composite laminates

    NASA Technical Reports Server (NTRS)

    Tessler, A.

    1992-01-01

    A new (1,2)-order theory is proposed for the linear elasto-static analysis of laminated composite plates. The basic assumptions are those concerning the distribution through the laminate thickness of the displacements, transverse shear strains and the transverse normal stress, with these quantities regarded as some weighted averages of their exact elasticity theory representations. The displacement expansions are linear for the inplane components and quadratic for the transverse component, whereas the transverse shear strains and transverse normal stress are respectively quadratic and cubic through the thickness. The main distinguishing feature of the theory is that all strain and stress components are expressed in terms of the assumed displacements prior to the application of a variational principle. This is accomplished by an a priori least-square compatibility requirement for the transverse strains and by requiring exact stress boundary conditions at the top and bottom plate surfaces. Equations of equilibrium and associated Poisson boundary conditions are derived from the virtual work principle. It is shown that the theory is particularly suited for finite element discretization as it requires simple C(sup 0)- and C(sup -1)-continuous displacement interpolation fields. Analytic solutions for the problem of cylindrical bending are derived and compared with the exact elasticity solutions and those of our earlier (1,2)-order theory based on the assumed displacements and transverse strains.

  9. A study on transverse weld cracks in thick steel plate with the FCAW process

    SciTech Connect

    Lee, H.W.; Kang, S.W.; Um, D.S.

    1998-12-01

    The transverse crack in thick plate welding is discussed with respect to deposited metal. In recent years, many of the new steel developments such as thermo-mechanical controlled process (TMCP) have been intended to improve weldability. When TMCP steel is used to achieve high strength with lean composition, the weld metal is more likely to suffer hydrogen cracking than the heat-affected zone (HAZ) of the base steel. Weld metal hydrogen cracking is even more likely if alloying is necessary to match the strength and toughness of the base metal. This is primarily due to the more highly alloyed weld metal`s increased susceptibility to hydrogen cracking. One type of cold crack, referred to as a transverse crack, is caused by the complex interaction of the diffusible hydrogen supply, tensile residual stress and susceptible microstructure. This form of cracking generally is not encountered when welding plate sections less than 10 mm thick. However, when thicker sections (50 mm or more) are welded, welds are subjected to more rapid cooling accompanied by more severe cooling stresses.

  10. Mixed finite-difference scheme for analysis of simply supported thick plates.

    NASA Technical Reports Server (NTRS)

    Noor, A. K.

    1973-01-01

    A mixed finite-difference scheme is presented for the stress and free vibration analysis of simply supported nonhomogeneous and layered orthotropic thick plates. The analytical formulation is based on the linear, three-dimensional theory of orthotropic elasticity and a Fourier approach is used to reduce the governing equations to six first-order ordinary differential equations in the thickness coordinate. The governing equations possess a symmetric coefficient matrix and are free of derivatives of the elastic characteristics of the plate. In the finite difference discretization two interlacing grids are used for the different fundamental unknowns in such a way as to reduce both the local discretization error and the bandwidth of the resulting finite-difference field equations. Numerical studies are presented for the effects of reducing the interior and boundary discretization errors and of mesh refinement on the accuracy and convergence of solutions. It is shown that the proposed scheme, in addition to a number of other advantages, leads to highly accurate results, even when a small number of finite difference intervals is used.

  11. Vibration of elastically restrained cross-ply laminated plates with variable thickness

    NASA Astrophysics Data System (ADS)

    Ashour, Ahmed S.

    2005-11-01

    The natural frequencies of symmetrically laminated plates of variable thickness are analyzed using the finite strip transition matrix technique. In this paper, the natural frequencies of such plates are determined for edges with being elastically restrained against both rotation and transition or both. A successive conjunction of the classical finite strip method and the transition matrix method is applied to develop a new modification of the finite strip method to reduce the complexity of the problem. The displacement function is expressed as the product of a basic trigonometric series function in the longitudinal direction and an unknown function that has to be determined in the other direction. Using the new transition matrix, after necessary simplification and the satisfaction of the boundary conditions, yields a set of simultaneous equations that leads to the characteristic matrix of vibration. The mode shapes and the frequency parameters for different combinations of elastic or translational restraint coefficients have been presented and compared with those available from other methods in the literature. Also, the effect of the tapered ratio and the aspect ratio on the natural frequencies and the mode shapes of the plates are presented. The good agreement with other methods demonstrates the validity and the reliability of the proposed method.

  12. Analysis of transient heat flow to thick-walled plates and cylinders. [to determine gas heat transfer coefficient

    NASA Technical Reports Server (NTRS)

    Powell, W. B.

    1973-01-01

    A methodology is described for the analysis of a transient temperature measurement made in a flat or curved plate subjected to convective heat transfer, such that the surface heat flux, the hot-gas temperture, and the gas heat transfer coefficient can be determined. It is shown that if the transient temperature measurement is made at a particular point located nearly midway in the thickness of the plate there is an important simplification in the data analysis process, in that the factor relating the surface heat flux to the measured rate of rise of temperature becomes invariant for a Fourier Number above 0.60 and for all values of the Biot Number. Parameters are derived, tabulated, and plotted which enable straightforward determination of the surface heat flux, the hot-gas temperature, of the plate, the rate of rise of temperature, the plate thickness and curvature, and the mean thermal properties of the plate material at the test temperature.

  13. Influence of stack plate thickness and voltage input on the performance of loudspeaker-driven thermoacoustic refrigerator

    NASA Astrophysics Data System (ADS)

    Putra, Nandy; Agustina, Dinni

    2013-04-01

    A loudspeaker-driven thermoacoustic refrigerator has been built and tested to gain understanding of its thermal performance and the cooling rate. The influence of plate thickness made of acrylic sheet was experimentally investigated by varying plate thickness of the stack, 0.15 mm, 0.5 mm and 1 mm, respectively. The experiments were conducted with various voltage input to the driver starting from setting 4 to 9 voltage peak-to-peak. The temperatures at both ends of the stack were acquired. For all variations, thermoacoustic cooling effect occurred in seconds and escalated rapidly in two minutes and became stable in ten-minute time. The experimental results showed that higher voltage input yielded higher thermal performance and faster cooling rate. For each set of experiment, the operating frequency and other parameters of the stack were kept unchanged. The experimental results show that the thermal performance and cooling rate increase with the decrease of plate thickness. The largest temperature difference, 14.8C, was achieved with 0.1 mm plate thickness at voltage setting 9. However, the thermal performance gained for 0.5 mm plate thickness voltage setting of 9, was arguably the optimum thickness in terms of advantages in the ease of fabricating the stack and more consistent cooling.

  14. 77 FR 58580 - Interview Room Recording System Standard and License Plate Reader Standard Workshops

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ...The National Institute of Justice (NIJ) and the International Association of Chiefs of Police (IACP) are hosting two workshops in conjunction with the 119th Annual IACP Conference in San Diego CA. The focus of the workshops is the development of NIJ performance standards for Interview Room Recording Systems and License Plate Readers used by criminal justice agencies. Sessions are intended to......

  15. Influence of a welding sequence on the welding residual stress of a thick plate

    NASA Astrophysics Data System (ADS)

    Ji, S. D.; Fang, H. Y.; Liu, X. S.; Meng, Q. G.

    2005-06-01

    The residual stress in one-groove welding using an ellipsoidal heat source is analysed. The results show that it can ameliorate the residual stress distribution and greatly decrease the peak value of residual stress after welding if the converse welding method is adopted between adjacent layers in a multi-layer weld, or between adjacent beads in every layer. Moreover, the numerical simulation results of the double V-groove thick plate welding model show that the residual tensile stress appears on the weld and nearby, the residual compressive stress appears on the area far away from the weld and the peak value of tensile stress appears on the surface of the weld. Differences in the welding sequence influence the value and the distribution of the welding residual stress greatly, and a more suitable welding sequence can be deduced. The reliability of the numerical simulation results is proved by the experimental results.

  16. Optimal rectangular plate and shallow shell topologies using thickness distribution or homogenization

    NASA Astrophysics Data System (ADS)

    Tenek, Lazarus H.; Hagiwara, Ichiro

    1994-05-01

    Topological optimization of plates, as well as shallow cylindrical and curved (spherical) shells, are attempted in the present study. For all structures examined, our objective is the minimization of the strain energy function under a volume constraint. An optimum distribution of thickness or microstructural density is sought under the hypothesis that the design variables can only be assigned their extreme allowable bounds, or values very near them, so that material can be removed from low density areas and thus, an optimum topology can be determined. The structural response is computed via a finite element analysis. The analytical formulation is based on a form of linear shallow shell theory with the effects of transverse shear deformation and bending-extensional coupling included. The method of feasible directions is used to perform the optimization task. Numerical examples for various boundary conditions showing similarities or differences of the two methods are presented and discussed. For all structures examined, it is found that the assumption of a repetitious microstructure based on homogenization theory resulted in stronger optima. For clamped plates and shells, both methods converged to nearly identical topologies, an indication of possible global optimal layouts.

  17. Study of space spectral characteristics of the BRDF diffuse standard plate in visible and infrared bands

    NASA Astrophysics Data System (ADS)

    Wu, Houping; Feng, Guojin; Zheng, Chundi; Li, Ping; Wang, Yu

    2015-10-01

    The bidirectional reflectance distribution function (BRDF) diffuse plate as the standard of value transfer and carrier for BRDF, plays an important role in the study of radiometric calibration and scattering properties of. The space spectral characteristics of developed BRDF diffuse standard plate were measured by BRDF standard device. The standard BRDF values were given under more wavelengths and more geometric conditions in the visible to the infrared spectral bands, and the uncertainty is 1%. By comparison, the developed BRDF diffuse standard plate in visible and infrared bands reached the similar international standards plate level.

  18. Thickness resonances dispersion characteristics of a lossy piezoceramic plate with electrodes of arbitrary conductivity.

    PubMed

    Mezheritsky, Alex A; Mezheritsky, Alex V

    2007-12-01

    A theoretical description of the dissipative phenomena in the wave dispersion related to the "energytrap" effect in a thickness-vibrating, infinite thicknesspolarized piezoceramic plate with resistive electrodes is presented. The three-dimensional (3-D) equations of linear piezoelectricity were used to obtain symmetric and antisymmetric solutions of plane harmonic waves and investigate the eigen-modes of thickness longitudinal (TL) up to third harmonic and shear (TSh) up to ninth harmonic vibrations of odd- and even-orders. The effects of internal and electrode energy dissipation parameters on the wave propagation under regimes ranging from a short-circuit (sc) condition through RC-type relaxation dispersion to an opencircuit (oc) condition are examined in detail for PZT piezoceramics with three characteristic T -mode energy-trap figure-of-merit c-(D)(33)/c-(E)(44) values - less, near equal and higher 4 - when the second harmonic spurious TSh resonance lies below, inside, and above the fundamental TL resonanceantiresonance frequency interval. Calculated complex lateral wave number dispersion dependences on frequency and electrode resistance are found to follow the universal scaling formula similar to those for dielectrics characterization. Formally represented as a Cole-Cole diagram, the dispersion branches basically exhibit Debye-like and modified Davidson Cole dependences. Varying the dissipation parameters of internal loss and electrode conductivity, the interaction of different branches was demonstrated by analytical and numerical analysis. For the purposes of dispersion characterization of at least any thickness resonance, the following theorem was stated: the ratio of two characteristic determinants, specifically constructed from the oc and sc boundary conditions, in the limit of zero lateral wave number, is equal to the basic elementary-mode normalized admittance. As was found based on the theorem, the dispersion near the basic and nonbasic TL and TSh resonances reveal some simple representations related to the respective elementary admittance and showing the connection between the propagation and excitation problems in a continuous piezoactive medium. PMID:18276573

  19. Flaw growth behavior in thick welded plates of 2219-T87 aluminum at room and cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Forman, R. G.; Glorioso, S. V.; Medlock, J. D.

    1973-01-01

    Axial load fatigue and fracture tests were conducted on thick welded plates of 2219-T87 aluminum alloy to determine the tensile strength properties and the flaw growth behavior in electron beam, gas metal arc, and pulse current gas tungsten arc welds for plates 6.35 centimeters (2.5 in.) thick. The tests were conducted in room temperature air and in liquid nitrogen environments. Specimens were tested in both the as-welded and the aged after welding conditions. The experimental crack growth rate were correlated with theoretical crack growth rate predictions for semielliptical surface flaws.

  20. A {1,2}-Order Plate Theory Accounting for Three-Dimensional Thermoelastic Deformations in Thick Composite and Sandwich Laminates

    NASA Technical Reports Server (NTRS)

    Tessler, A.; Annett, M. S.; Gendron, G.

    2001-01-01

    A {1,2}-order theory for laminated composite and sandwich plates is extended to include thermoelastic effects. The theory incorporates all three-dimensional strains and stresses. Mixed-field assumptions are introduced which include linear in-plane displacements, parabolic transverse displacement and shear strains, and a cubic distribution of the transverse normal stress. Least squares strain compatibility conditions and exact traction boundary conditions are enforced to yield higher polynomial degree distributions for the transverse shear strains and transverse normal stress through the plate thickness. The principle of virtual work is used to derive a 10th-order system of equilibrium equations and associated Poisson boundary conditions. The predictive capability of the theory is demonstrated using a closed-form analytic solution for a simply-supported rectangular plate subjected to a linearly varying temperature field across the thickness. Several thin and moderately thick laminated composite and sandwich plates are analyzed. Numerical comparisons are made with corresponding solutions of the first-order shear deformation theory and three-dimensional elasticity theory. These results, which closely approximate the three-dimensional elasticity solutions, demonstrate that through - the - thickness deformations even in relatively thin and, especially in thick. composite and sandwich laminates can be significant under severe thermal gradients. The {1,2}-order kinematic assumptions insure an overall accurate theory that is in general superior and, in some cases, equivalent to the first-order theory.

  1. Laser-Assisted Stir Welding of 25-mm-Thick HSLA-65 Plate

    NASA Astrophysics Data System (ADS)

    Williamson, Keith M.

    2002-12-01

    Laser-assisted stir welding is a hybrid process that combines energy from a laser with functional heating and mechanical energy to join materials in the solid state. The technology is an adaptation of friction stir welding which is particularly suited for joining thick plates. Aluminum plates up to 75 mm thick have been successfully joined using friction stir welding. Since joining occurs in the solid state, stir technology offers the capability for fabricating full penetration joints in thick plates with better mechanical properties and less weld distortion than is possible by fusion processes. Currently friction stir welding is being used in several industries to improve productivity, reduce weight, and increase the strength of welded structures. Examples include: (a) the aircraft/aerospace industry where stir technology is currently being used to fabricate the space shuttle's external tank as well as components of the Delta family of rockets; (b) the shipping industry where container manufacturers are using stir technology to produce lighter containers with more payload capacity; and (c) the oil industry where offshore platform manufactures are using automated stir welding plants to fabricate large panels and structures up to 16 meters long with widths as required. In all these cases, stir technology has been restricted to aluminum alloys; however, stainless and HSLA 65 steels have been recently stir welded with friction as the primary heat source. One of the difficulties in adapting stir welding to steel is tool wear aggravated by the high tool rubbing velocities needed to provide frictional heat input into the material. Early work showed that the tool shoulder reached temperatures above 1000 C and the weld seam behind the tool stayed within this temperature range for up to 25 mm behind the tool. Cross sections of stir welded samples showed that the heat-affected zone is relatively wide and follows the profile of the tool shoulder. Besides minimizing the tool wear by increasing the energy into the material, another benefit of the proposed Laser Assisted Stir Welding (LASW is to reduce the width of the heat affected zone which typically has the lowest hardness in the weld region. Additionally, thermal modeling of the friction stir process shows that the heat input is asymmetric and suggests that the degree of asymmetry could improve the efficiency of the process. These asymmetries occur because the leading edge of the tool supplies heat to cold material while the trailing edge provides heat to material already preheated by the leading edge. As a result, flow stresses on the advancing side of the joint are lower than corresponding values on the retreating side. The proposed LASW process enhances these asymmetries by providing directional heating to increase the differential in flow stress across the joint and improve the stir tool efficiency. Theoretically the LASW process can provide the energy input to allow the flow stresses on the advancing side to approach zero and the stir efficiency to approach 100 percent. Reducing the flow stresses on the advancing side of the weld creates the greatest pressure differential across the stir weld and eliminates the possibility of voids on the advancing side of the joint. Small pressure differentials result in poor stir welds because voids on the advancing side are not filled by the plastic flow of material from the retreating side.

  2. Effect of pervaporation plate thickness on the rate of methanol evaporation in a passive vapor-feed direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Fauzi, N. F. I.; Hasran, U. A.; Kamarudin, S. K.

    2015-09-01

    In a passive vapor-feed direct methanol fuel cell (DMFC), methanol vapor is typically obtained using a pervaporation plate in a process by which liquid methanol contained in the fuel reservoir undergoes a phase change to vapor in the anodic vapor chamber. This work investigates the effect of pervaporation plate thickness on the rate of methanol evaporation using a three-dimensional simulation model developed by varying the plate thickness. A. The rate of methanol evaporation was measured using Darcy's law. The rate of methanol evaporation was found to be inversely proportional to the plate thickness, where the decrease in thickness inevitably lowers the resistance along the plate and consequently increases the methanol transport through the plate. This shows that the plate thickness has a significant influence on the rate of methanol evaporation and thereby plays an important role in improving the performance of the passive vapor-feed direct methanol fuel cell.

  3. Numerical simulation of full-penetration laser beam welding of thick aluminium plates with inductive support

    NASA Astrophysics Data System (ADS)

    Bachmann, Marcel; Avilov, Vjaceslav; Gumenyuk, Andrey; Rethmeier, Michael

    2012-01-01

    A three-dimensional laminar steady-state numerical model was developed to investigate the influence of an alternating current (ac) magnetic field during high-power full-penetration laser welding on the weld pool dynamics and weld cross section of a 20 mm thick aluminium plate in flat position. Three-dimensional heat transfer, fluid dynamics including phase transition and electromagnetic field partial differential equations were solved iteratively with the commercial finite element software COMSOL Multiphysics using temperature-dependent material properties up to evaporation temperature. Thermocapillary convection at the weld pool surfaces, natural convection and latent heat of solid-liquid phase transition were taken into account in this model. Solidification was modelled by the Carman-Kozeny equation for porous media morphology. The ac magnet was mounted on the root side of the weld specimen. The magnetic field was aligned perpendicular to the welding direction. The flow pattern in the melt and thus also the temperature distribution were significantly changed by the application of oscillating magnetic fields. It was shown that the application of an ac magnetic field to laser beam welding allows for a prevention of the gravity drop-out. The simulation results are in good qualitative agreement with the experimental observations.

  4. Thick shell tectonics on one-plate planets - Applications to Mars

    NASA Technical Reports Server (NTRS)

    Banerdt, W. B.; Saunders, R. S.; Phillips, R. J.; Sleep, N. H.

    1982-01-01

    Using the zero frequency equations of a self-gravitating elastic spherical shell overlying a strengthless fluid, a theory for stress distribution in thick lithospheric shells on one-plate planets is developed. For both the compensated and flexural modes, stress distributions in lithospheres are reviewed. For compensated modes, surface stresses depend only on surface topography, whereas for flexural modes it is shown that, for long wavelengths, stress trajectories are mainly dependent on the lithospheric lateral density distribution and not on elastic properties. Computational analyses are performed for Mars, and it is found that isostatically compensated models correctly predict the graben structure in the immediate Tharsis region and a flexural loading model is satisfactory in explaining the graben in the regions surrounding Tharsis. A three-stage model for the evolution of Tharsis is hypothesized: isostasy with north-south graben formation on Tharsis, followed by flexural loading and radial graben formation on the perimeter of Tharsis, followed by a last stage of loading with little or no regional deformation.

  5. Enumeration of heterotrophs, fecal coliforms and Escherichia coli in water: comparison of 3M Petrifilm plates with standard plating procedures.

    PubMed

    Schraft, H; Watterworth, L A

    2005-03-01

    A total of 177 naturally contaminated water samples were analyzed by membrane filtration according to the Standard Methods for the Examination of Water and Wastewater published by the American Public Health Association. Filters were incubated in parallel on mHPC-agar and 3M Petrifilm Aerobic Count Plates (Petrifilm AC plates) for heterotrophic counts. Fecal coliforms and Escherichia coli were enumerated on mFC-agar and 3M Petrifilm E. coli/Coliform Count Plates (Petrifilm EC plates). Typical colonies on each media type were confirmed following standard procedures. Heterotrophic counts were between 10(3) and 10(4) CFU/mL and the average log10 counts obtained on Petrifilm AC plates were about two-fold lower than on mHPC-agar. Counts for fecal coliforms and E. coli were between 10(2) and 10(3) CFU/mL. Average log10 counts for confirmed fecal coliforms obtained on Petrifilm EC plates were slightly lower than on mFC agar with a correlation coefficient of 0.949. The average log10 counts for confirmed E. coli on Petrifilm EC plates and on mFC agar were statistically not different (P=0.126) with a correlation coefficient of 0.879. Specificity of Petrifilm EC plates and mFC agar was evaluated by comparing typical colony counts with confirmed counts. On mFC agar, counts for typical colonies were by 2 log10 CFU higher than the actual confirmed counts. In contrast, on Petrifilm EC plates typical colony counts were almost identical to confirmed colony counts for both fecal coliforms and E. coli. This comparison illustrates the high specificity of Petrifilm EC plates for enumeration of both fecal coliforms and E. coli in water. PMID:15649535

  6. Investigating Transition Zone Thickness Variation under the Arabian Plate: Evidence Lacking for Deep Mantle Upwellings

    NASA Astrophysics Data System (ADS)

    Juliá, J.; Tang, Z.; Mai, P. M.; Zahran, H.

    2014-12-01

    Cenozoic volcanic outcrops in Arabia - locally known as harrats - span more than 2000 km along the western half of the Arabian plate, from eastern Yemen to southern Syria. The magmatism is bimodal in character, with older volcanics (30 to 20 My) being tholeiitic-to-transitional and paralleling the Red Sea margin, and younger volcanics (12 Ma to Recent) being transitional-to-strongly-alkalic and aligning in a more north-south direction. The bimodal character has been attributed to a two-stage rifting process along the Red Sea, where the old volcanics would have produced from shallow sources related to an initial passive rifting stage, and young volcanics would have originated from one or more deep-seated mantle plumes driving present active rifting. Early models suggested the harrats would have resulted from either lateral flow from the Afar plume in Ethiopia, or more locally from a separate mantle plume directly located under the shield. Most recently, tomographic images of the Arabian mantle have suggested the northern harrats could be resulting from flow originating at a deep plume under Jordan. In this work, we investigate the location of deep mantle plumes under the Arabian plate by mapping transition zone thickness with teleseismic receiver functions. The transition zone is bounded by seismic discontinuities, nominally at 410 and 660 km depth, originating from phase transitions in the olivine-normative component of the mantle. The precise depth of the discontinuities is strongly dependent on temperature and, due to the opposing signs of the corresponding Clapeyron slopes, positive temperature anomalies are expected to result in thinning of the transition zone. Our dataset consists of ~5000 low-frequency (fc < 0.25 Hz) receiver function waveforms obtained at ~110 broadband stations belonging to a number of permanent and temporary seismic networks in the region. The receiver functions were migrated to depth and stacked along a ~2000 km long record section displaying P-to-S conversions at seismic discontinuities under Western Arabia. Our results display a normal to thicker-than-average transition zone under the study area, suggesting thermal perturbations of the transition zone due to deep mantle upwellings under the western shield and/or Jordan are unlikely.

  7. Effect of Backing Plate Thermal Property on Friction Stir Welding of 25-mm-Thick AA6061

    NASA Astrophysics Data System (ADS)

    Upadhyay, Piyush; Reynolds, Anthony

    2014-04-01

    By using backing plates made out of materials with widely varying thermal diffusivity this work seeks to elucidate the effects of the root side thermal boundary condition on weld process variables and resulting joint properties. Welds were made in 25.4-mm-thick AA6061 using ceramic, titanium, steel, and aluminum as backing plate (BP) material. Welds were also made using a "composite backing plate" consisting of longitudinal narrow strip of low diffusivity material at the center and two side plates of high diffusivity aluminum. Stir zone temperature during the welding was measured using two thermocouples spot welded at the core of the probe: one at the midplane height and another near the tip of the probe corresponding to the root of the weld. Steady state midplane probe temperatures for all the BPs used were found to be very similar. Near root peak temperature, however, varied significantly among weld made with different BPs all other things being equal. Whereas the near root and midplane temperature were the same in the case of ceramic backing plate, the root peak temperature was 318 K (45 °C) less than the midplane temperature in the case of aluminum BP. The trends of nugget hardness and grain size in through thickness direction were in agreement with the measured probe temperatures. Hardness and tensile test results show that the use of composite BP results in stronger joint compared to monolithic steel BP.

  8. A 100 mm thick API 2W Gr. 60 steel plate produced by TMCP and its applicability to offshore structures

    SciTech Connect

    Kubo, Takahiro; Nakano, Yoshifumi; Tanigawa, Osamu; Ishii, Hiroaki; Marshall, P.W.

    1994-12-31

    A 100 mm thick API 2W Gr. 60 steel plate was produced from a continuously cast stab on the basis of the fundamental study on the effect of chemical composition on toughness of HAZ. The application of TMCP could reduce the chemical composition and consequently resulted in good weldability and good toughness of welded joints. The HAZ toughness of the welded joint was evaluated by the three point bend CTOD test using K-groove submerged arc welded joints made with heat inputs of 0.8, 3.0 and 4.5 kJ/mm. The surface notched, wide plate tensile test was also performed using the welded joint made with a heat input of 4.5 kJ/mm. The applicability of the developed steel plate and its welded joints to offshore structures was studied using the flaw assessment procedures adopted by WES2805 and BSI PD6493.

  9. Scattering of the fundamental shear horizontal guided wave by a part-thickness crack in an isotropic plate.

    PubMed

    Rajagopal, P; Lowe, M J S

    2008-11-01

    The interaction of the fundamental shear horizontal (SH0) guided mode with part-thickness cracks in an isotropic plate is studied as an extension within the context and general framework of previous work ["Short range scattering of the fundamental shear horizontal guided wave mode normally incident at a through thickness crack in an isotropic plate," J. Acoust Soc. Am. 122, 1527-1538 (2007); "Angular influence on scattering when the fundamental shear horizontal guided wave mode is incident at a through-thickness crack in an isotropic plate," J. Acoust. Soc. Am. 124, 2021-2030 (2008)] by the authors with through-cracks. The symmetric incidence case where the principal direction of the incident beam bisects the crack face at 90 degrees is studied using finite element simulations validated by experiments and analysis, and conclusions are inferred for general incidence angles using insights obtained with the through-thickness studies. The influence of the crack length and the monitoring distance on the specular reflection is first examined, followed by a study of the angular profile of the reflected field. With each crack length considered, the crack depth and operating frequencies are varied. For all crack depths studied, the trend of the results is identical to that for the corresponding through-thickness case and the values differ only by a frequency dependent scale factor. Theoretical analysis is used to understand the physical basis for such behavior and estimates are suggested for the scale factor--exact for the high-frequency scattering regime and empirical for the medium- and low-frequency regimes. PMID:19045777

  10. Variation of crack-opening stresses in three-dimensions - Finite thickness plate

    NASA Technical Reports Server (NTRS)

    Chermahini, R. G.; Blom, A. F.

    1991-01-01

    A 3D elastic-plastic finite-element analysis is conducted to study crack-growth behavior of thin and thick center-cracked specimens under constant-amplitude loading conditions. The numerical analysis and the specimen configuration and loading are described for both the thin and thick conditions. Stabilized crack-opening stresses of interior and exterior regions are given as are the closure and opening profiles of the crack-surface plane after the tenth cycle. The effect of thickness is discussed with respect to the crack-opening stress levels and the plastic zones of the interior and exterior regions. A load-reduced-displacement technique allows the calculation of the crack-opening stresses at three locations on the crack surface plane. The constraint effect related to thickness gives a lower stabilized crack-opening stress level for the thick specimens.

  11. Biomechanical Evaluation of a Mandibular Spanning Plate Technique Compared to Standard Plating Techniques to Treat Mandibular Symphyseal Fractures

    PubMed Central

    Richardson, Matthew; Hayes, Jonathan; Jordan, J. Randall; Puckett, Aaron; Fort, Matthew

    2015-01-01

    Purpose. The purpose of this study is to compare the biomechanical behavior of the spanning reconstruction plate compared to standard plating techniques for mandibular symphyseal fractures. Materials and Methods. Twenty-five human mandible replicas were used. Five unaltered synthetic mandibles were used as controls. Four experimental groups of different reconstruction techniques with five in each group were tested. Each synthetic mandible was subjected to a splaying force applied to the mandibular angle by a mechanical testing unit until the construct failed. Peak load and stiffness were recorded. The peak load and stiffness were analyzed using ANOVA and the Tukey test at a confidence level of 95% (P < 0.05). Results. The two parallel plates' group showed statistically significant lower values for peak load and stiffness compared to all other groups. No statistically significant difference was found for peak load and stiffness between the control (C) group, lag screw (LS) group, and the spanning plate (SP1) group. Conclusions. The spanning reconstruction plate technique for fixation of mandibular symphyseal fractures showed similar mechanical behavior to the lag screw technique when subjected to splaying forces between the mandibular gonial angles and may be considered as an alternative technique when increased reconstructive strength is needed. PMID:26649332

  12. Application of MMC model on simulation of shearing process of thick hot-rolled high strength steel plate

    NASA Astrophysics Data System (ADS)

    Dong, Liang; Li, Shuhui; Yang, Bing; Gao, Yongsheng

    2013-12-01

    Shear operation is widely used as the first step in sheet metal forming to cut the sheet or plate into the required size. The shear of thick hot-rolled High Strength Steel (HSS) requires large shearing force and the sheared edge quality is relatively poor because of the large thickness and high strength compared with the traditional low carbon steel. Bad sheared edge quality will easily lead to edge cracking during the post-forming process. This study investigates the shearing process of thick hot-rolled HSS plate metal, which is generally exploited as the beam of heavy trucks. The Modified Mohr-Coulomb fracture criterion (MMC) is employed in numerical simulation to calculate the initiation and propagation of cracks during the process evolution. Tensile specimens are designed to obtain various stress states in tension. Equivalent fracture strains are measured with Digital Image Correlation (DIC) equipment to constitute the fracture locus. Simulation of the tension test is carried out to check the fracture model. Then the MMC model is applied to the simulation of the shearing process, and the simulation results show that the MMC model predicts the ductile fracture successfully.

  13. Application of MMC model on simulation of shearing process of thick hot-rolled high strength steel plate

    SciTech Connect

    Dong, Liang; Li, Shuhui; Yang, Bing; Gao, Yongsheng

    2013-12-16

    Shear operation is widely used as the first step in sheet metal forming to cut the sheet or plate into the required size. The shear of thick hot-rolled High Strength Steel (HSS) requires large shearing force and the sheared edge quality is relatively poor because of the large thickness and high strength compared with the traditional low carbon steel. Bad sheared edge quality will easily lead to edge cracking during the post-forming process. This study investigates the shearing process of thick hot-rolled HSS plate metal, which is generally exploited as the beam of heavy trucks. The Modified Mohr-Coulomb fracture criterion (MMC) is employed in numerical simulation to calculate the initiation and propagation of cracks during the process evolution. Tensile specimens are designed to obtain various stress states in tension. Equivalent fracture strains are measured with Digital Image Correlation (DIC) equipment to constitute the fracture locus. Simulation of the tension test is carried out to check the fracture model. Then the MMC model is applied to the simulation of the shearing process, and the simulation results show that the MMC model predicts the ductile fracture successfully.

  14. An approximate semi-analytical method for prediction of interlaminar shear stresses in an arbitrarily laminated thick plate

    NASA Technical Reports Server (NTRS)

    Chaudhuri, Reaz A.; Seide, Paul

    1987-01-01

    An approximate semianalytical method for determination of interlaminar shear stress distribution through the thickness of an arbitrarily laminated thick plate has been presented. The method is based on the assumptions of transverse inextensibility and layerwise constant shear angle theory (LCST) and utilizes an assumed quadratic displacement potential energy based finite element method (FEM). Centroid of the triangular surface has been proved from a rigorous mathematical point of view (Aubin-Nitsche theory), to be the point of exceptional accuracy for the interlaminar shear stresses. Numerical results indicate close agreement with the available three-dimensional elasticity theory solutions. A comparison between the present theory and that due to an assumed stress hybrid FEM suggest that the (normal) traction-free-edge condition is not satisfied in the latter approach. Furthermore, the present paper is the first to present the results for interlaminar shear stresses in a two-layer thick square plate of balanced unsymmetric angle-ply construction. A comparison with the recently proposed Equilibrium Method (EM) indicates the superiority of the present method, because the latter assures faster convergence as well as simultaneous vanishing of the transverse shear stresses on both of the exposed surfaces of the laminate. Superiority of the present method over the EM, in the case of a symmetric laminate, is limited to faster convergence alone. It has also been demonstrated that the combination of the present method and the reduced (quadratic order) numerical integration scheme yields convergence of the interlaminar shear stresses almost as rapidly as that of the nodal displacements, in the case of a thin plate.

  15. Vibro-acoustic response of an infinite, rib-stiffened, thick-plate assembly using finite-element analysis.

    PubMed

    Remillieux, Marcel C; Burdisso, Ricardo A

    2012-07-01

    The vibration of and sound radiation from an infinite, fluid-loaded, thick-plate assembly stiffened periodically with ribs are investigated numerically using finite-element analysis. First, numerical simulations are compared to the analytical solutions presented recently for this particular problem [Hull and Welch, J. Sound Vib. 329, 4192-4211 (2010)]. It is shown that the solutions reported in this reference are partially incorrect because the number of modes was not chosen correctly. Subsequently, the numerical model is used to study the effect of repeated and equally spaced void inclusions on the vibro-acoustic response of the system. PMID:22779570

  16. Postbuckling of long thick plates in compression including higher order transverse shearing effects

    NASA Technical Reports Server (NTRS)

    Stein, Manuel; Sydow, P. D.; Librescu, Liviu

    1990-01-01

    Aluminum plates of various length/width ratios loaded in compression are examined analytically in terms of buckling and postbuckling for comparison with classical theory. The plates are considered to be subjected to longitudinal compressive displacement with no edge stress and are assumed to be simply supported at the side edges. The average longitudinal direct stresses are computed to plot characteristic curves by means of the following theories: 3D flexibility, higher-order shear deformation, first-order shear deformation, and classical von Karman. The 3D flexibility approach yields the lowest results with more unknowns than the higher-order shear-deformation method. The 3D flexibility approach is considered to be the most accurate, and it is shown that the calculated resultants and displacements tend to vary when consideration is given to the effects of transverse shear.

  17. Improved stress-intensity factors for semi-elliptical surface cracks in finite-thickness plates

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Newman, J. C., Jr.

    1977-01-01

    Stress-intensity factors for shallow and deep semi-elliptical surface cracks in plates subjected to tension are presented. To verify the accuracy of the three-dimensional finite-element models employed, convergence was studied by varying the number of degrees of freedom in the models from 1500 to 6900. The 6900 degrees of freedom used here were more than twice the number used in previously reported solutions.

  18. Relationship between the buccal bone plate thickness and the healing of postextraction sockets with/without ridge preservation.

    PubMed

    Cardaropoli, Daniele; Tamagnone, Lorenzo; Roffredo, Alessandro; Gaveglio, Lorena

    2014-01-01

    In 48 postextraction sites, sockets were grafted with bovine bone mineral plus collagen membrane (test) or had spontaneous healing (control). After 4 months, horizontal ridge width reduction was 0.71 mm in the test group and 4.04 mm in the control group, while vertical ridge loss was 0.58 mm and 1.67 mm, respectively. No correlation was found between the thickness of the buccal bone wall and the alveolar bone loss in the test group, while an inverse correlation was found in the control group. Ridge preservation compensated for postextraction alveolar ridge resorption irrespective of the buccal plate thickness, whereas leaving the extraction socket undisturbed may result in alveolar bone loss. PMID:24600657

  19. Longitudinal change in femorotibial cartilage thickness and subchondral bone plate area in male and female adolescent vs. mature athletes.

    PubMed

    Eckstein, Felix; Boeth, Heide; Diederichs, Gerd; Wirth, Wolfgang; Hudelmaier, Martin; Cotofana, Sebastian; Hofmann-Amtenbrink, Margarethe; Duda, Georg

    2014-05-01

    Little is known about changes in human cartilage thickness and subchondral bone plate area (tAB) during growth. The objective of this study was to explore longitudinal change in femorotibial cartilage thickness and tAB in adolescent athletes, and to compare these data with those of mature former athletes. Twenty young (baseline age 16.0 0.6 years) and 20 mature (46.3 4.7 years) volleyball athletes were studied (10 men and 10 women in each group). Magnetic resonance images were acquired at baseline and at year 2-follow-up, and longitudinal changes in cartilage thickness and tAB were determined quantitatively after segmentation. The yearly increase in total femorotibial cartilage thickness was 0.8% (95% confidence interval [CI]: -0.5; 2.1%) in young men and 1.4% (95% CI: 0.7; 2.2%) in young women; the gain in tAB was 0.4% (95% CI: -0.1; 0.8%) and 0.7% (95% CI: 0.2; 1.2%), respectively (no significant difference between sexes). The cartilage thickness increase was greatest in the medial femur, and was not significantly associated with the variability in tAB growth (r=-0.19). Mature athletes showed smaller gains in tAB, and lost >1% of femorotibial cartilage per annum, with the greatest loss observed in the lateral tibia. In conclusion, we find an increase in cartilage thickness (and some in tAB) in young athletes toward the end of adolescence. This increase appeared somewhat greater in women than men, but the differences between both sexes did not reach statistical significance. Mature (former) athletes displayed high rates of (lateral) femorotibial cartilage loss, potentially due to a high prevalence of knee injuries. PMID:24439995

  20. Tectonic plate coupling and elastic thickness derived from the inversion of a steady state viscoelastic model using geodetic data: Application to southern North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Cohen, Steven C.; Darby, Desmond J.

    2003-03-01

    A steady state viscoelastic model of deformation at an oblique convergence zone is used to analyze crustal velocities deduced from Global Positioning System (GPS) observations in southern North Island, New Zealand. The model is physically more reasonable than elastic dislocation theory because the tectonic plates have finite elastic thicknesses. In an inversion that makes use of Green's functions derived from finite element calculations, we solve for depth-dependent fault backslip rates. The associated chi-squared goodness of fit parameter depends on the values of the elastic thicknesses of the overriding Australian and subducting Pacific Plates. These thicknesses are systematically varied in order to find the chi-squared minimum. We find that: (1) the plates have coupling coefficient between 0.8 and 1.0 to a depth of about 22 km; (2) elastic dislocation theory appears to adequately fit the observations because the effects of viscoelastic flow are small; (3) viscoelastic results depend on the contrast between the elastic moduli of the plates, (4) the trench normal, rather than the trench parallel component of motion is more diagnostic for choosing between models with different parameters; (5) for the favored model (one with a weak continental crust), the estimated value of the Pacific Plate thickness is 40-60 km. Although the estimates of the plate thickness are not tightly constrained, those deduced from geodetic data tend to be larger than those deduced from geologic data, consistent with the idea that thickness estimates depend on the time scale of the loading process.

  1. Analytical and numerical methods for vibration analysis of thick rectangular plates by modified Mindlin theory

    NASA Astrophysics Data System (ADS)

    Senjanović, I.; Hadžić, N.; Tomić, M.; Vladimir, N.; Cho, D. S.

    2014-10-01

    Total deflection and angles of rotations in the Mindlin plate theory are decomposed into bending and transverse shear deflection, bending rotations and in-plane shear angles. Single differential equation of flexural vibrations is derived in terms of bending deflection as potential function for determination of all displacements and sectional forces. The equation is solved analytically for different combinations of boundary conditions. Shear locking-free rectangular finite element is formulated. Illustrative examples are solved analytically and numerically, and the obtained results are compared with the ones available in the relevant literature.

  2. Computational Study of a Plate Mounted Finite Cylinder: Aspect Ratio and Boundary Layer Thickness Effects

    NASA Astrophysics Data System (ADS)

    Hummer, Christopher J.

    The integration of protrusions on aircraft, whether they are antennas or sensor turrets, can impact both aircraft safety and performance. The protrusions vary in size and shape and where they are placed on the aircraft can greatly affect the flow around the structure. This work utilizes the power and adaptability of modern computational methods to analyze finite cylinders of various aspect ratios subjected to incoming flow of varying boundary layer thickness. The geometry and flow conditions for the analysis match a wind tunnel test completed by the University of Cincinnati in 2005. This flow is challenging to model computationally because the flow is largely separated and influenced by both ends of the cylinder. The four cylinders analyzed, labeled by their diameter and height in inches, are D2H5, D4H2, D4H5, and D4H10. These four cylinders were subjected to cross-flows with two different boundary layer thicknesses for a total of eight cases. The boundary layer thicknesses were 1.5" and 6.0". This work compared the computational results with both the wind tunnel results and with available literature. The results compared favorably with both and captured all primary flow features for this class of flows. Furthermore, the impacts of cylinder aspect ratio and boundary layer thickness were evident in the results. The lower the aspect ratio of the cylinder, the more the flow from the free-end dominates the wake. Higher aspect ratio cylinders can be divided into regions with juncture flow near the wall, Karman style shedding near the middle and free-end effects near the tip. This work also identifies a transitional cylinder aspect ratio where the flow transitions from segregated regions to being dominated by the free-end downwash. This work shows that modern computational methods are capable of modelling the complex flow about a finite cylinder and can provide valuable insight to aid in protrusion design and integration.

  3. Thick Plate Rolling—a Numerical Approach in Comparison with Analytics and Experimental Data

    NASA Astrophysics Data System (ADS)

    Prommer, Hannes; Bojahr, Manuel; Tschullik, Ralf; Kaeding, Patrick

    2011-05-01

    Today, wind turbines are mostly made of glass or carbon fibre. The manufacturing process leads to high precision and quality of the final product. Nevertheless, this fabrication method of rotor blades is very cost intensive and its production technology is not the best in terms of recyclability. In addition to its good recyclability, the handling of steel is well known and its fabrication is inexpensive. Due to these facts an idea of foils to be produced from steel arose. In cooperation with a metal forming company the 3-Dimensional rolling concept came up. Initially, rolling experiments with cold lead plates in a scale of 1:4 are made to simulate the later on used hot steel plates. Such an approach has to be accompanied by fundamental research. This paper sketches the lead rolling experiment and gives an assessment if it is applicable for a hot rolling process with steel. For this purpose, the lead test data are interpreted, the numerical model is explained and results are presented. Furthermore, an analytical flat rolling approach is used to calculate process parameters like stamping force of the upper roll and necessary friction. The applicability and precision of the analytical results are discussed in comparison with the results of the FEM model and the experimental data. Concluding the paper, validity and pitfalls of this concept are outlined and a short outlook for further research is given. The purpose of these considerations is to get closer to process parameters for an experiment in full scale for hot rolling of a rotor blade.

  4. Comparison of Residual Stress Distributions of Similar and Dissimilar Thick Butt-Weld Plates

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroshi; Katsuyama, Jinya; Morii, Yukio

    Residual stress distributions of 35 mm thick dissimilar metal butt-weld between A533B ferritic steel and Type 304 austenitic stainless steel (304SS) with Ni alloy welds and similar metal butt-weld of 304SS were measured using neutron diffraction. Effects of differences in thermal expansion coefficients (CTEs) and material strengths on the weld residual stress distributions were discussed by comparison of the residual stress distributions between the similar and dissimilar metal butt-welds. Residual stresses in the similar metal butt-weld exhibited typical distributions found in a thick butt-weld and they were distributed symmetrically on either side of the weld line. Meanwhile, asymmetric residual stress distributions were observed near the root of the dissimilar metal butt-weld, which was caused by differences in CTEs and yield strengths among both parent materials and weld metals. Transverse residual stress distribution of the dissimilar metal butt-weld was similar trend to that of the similar metal butt-weld, since effect of difference in CTEs were negligible, while magnitude of the transverse residual stress near the root depended on the yield strengths of each metal. In contrast, the normal and longitudinal residual stresses in the dissimilar metal butt-weld distributed asymmetrically on either side of weld line due to influence of differences in CTEs.

  5. Layered Plating Specimens For Mechanical Tests

    NASA Technical Reports Server (NTRS)

    Thompson, Linda B.; Flowers, Cecil E.

    1991-01-01

    Layered specimens readily made in standard sizes for tensile and other tests of mechanical properties. Standard specimen of metal ordinarily difficult to plate to standard grip thickness or diameter made by augmentation with easier-to-plate material followed by machining to standard size and shape.

  6. Effects of specimen thickness and side-groove on fracture toughness of JN1 austenitic stainless steel rolled plate at liquid helium temperature

    SciTech Connect

    Shindo, Y.; Horiguchi, K.; Kobori, T.

    1997-06-01

    In order to evaluate the fracture toughness (J{sub IC}) of JN1 austenitic stainless steel rolled plate, we performed elastic-plastic fracture toughness tests with standard and modified compact tension specimens at liquid helium temperature. These tests were conducted in accordance with ASTM standards E813-81 and E813-87 for determining J{sub IC} using the unloading compliance method to monitor crack growth. The effects of specimen thickness and side-groove on J{sub IC} and tearing modulus (T{sub mat}) are reported. The final value of physical crack extension was taken as the average of nine measurements using an optical microscope. Fracture surfaces were examined by scanning electron microscopy (SEM) to verify the failure mechanisms. The effects of crack tunneling on the determination of J-integral resistance curves and valid J{sub IC} values, and a difference between ASTM standards E813-81 and E813-87 are also discussed.

  7. 78 FR 65554 - Exhaust Emission Standards for New Aircraft Turbine Engines and Identification Plate for Aircraft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Parts 34 and 45 RIN 2120-AK15 Exhaust Emission Standards for New Aircraft Turbine Engines and Identification Plate for Aircraft Engines Correction In rule document 2013-24712, appearing on pages 63015-63017...

  8. Free vibrations of simply supported nonhomogeneous isotropic rectangular plates of bilinearly varying thickness and elastically restrained edges against rotation using Rayleigh-Ritz method

    NASA Astrophysics Data System (ADS)

    Kumar, Yajuvindra

    2012-03-01

    This paper addresses the free transverse vibrations of thin simply supported nonhomogeneous isotropic rectangular plates of bilinearly varying thickness with elastically restrained edges against rotation. The Gram-Schmidt process has been used to generate two-dimensional boundary characteristic orthogonal polynomials, which have been used in the Rayleigh-Ritz method to study the problem. The lowest three frequencies have been computed for various values of nonhomogeneous parameters, thickness parameters, aspect ratio and flexibility parameters. A comparison of the results with those available in the literature has been made. Three-dimensional mode shapes for the specified plate have been presented.

  9. Mo layer thickness requirement on the ion source back plate for the HNB and DNB ion sources in ITER

    SciTech Connect

    Singh, M. J.; Hemsworth, R.; Boilson, D.; De Esch, H. P. L.

    2015-04-08

    All the inner surfaces of the ion sources and the upstream surface of the plasma grid of the ITER neutral beam ion sources are proposed to be coated with molybdenum. This is done to avoid sputtering of the base material (Cu or CuCrZr) by the ions in the source plasma (D{sup +}, D{sub 2}{sup +}, D{sub 3}{sup +} or H{sup +}, H{sub 2}{sup +}, H{sub 3}{sup +}). The sputtering of Mo by the ions in the source plasma is low compared to that from Cu, and the threshold energy for sputtering ∼80 eV) is high compared to the energy of the ions in the source. However the D{sub 2}{sup +}, H{sub 2}{sup +} and D{sup +}, H{sup +} ions backstreaming from the accelerators will have energies that substantially exceed that threshold and it is important that the Mo layer is not eroded such that the base material is exposed to the source plasma. In the case of the HNB, the backstreaming ion power is calculated to be in the order of ∼1 MW, and the average energy of the backstreaming ions is calculated to be ∼300 keV. The ion sources in the HNB beam lines, 40 A 1 MeV D and 46 A 870 keV H beams, are supposed to operate for a period of 2 x 10{sup 7} s. For the DNB, 60 A 100 keV H beams, the corresponding number is 1.4 × 10{sup 6} s considering a beam duty cycle of 3s ON/20s OFF with 5 Hz modulation. The Mo layer on the ion source back plate should be thick enough to survive this operational time. Thickness estimation has been carried out taking into account the sputtering yields (atoms/ion), the energy spectrum of the backstreaming ions and the estimated profiles on the ion source back plate.

  10. A study of narrow gap laser welding for thick plates using the multi-layer and multi-pass method

    NASA Astrophysics Data System (ADS)

    Li, Ruoyang; Wang, Tianjiao; Wang, Chunming; Yan, Fei; Shao, Xinyu; Hu, Xiyuan; Li, Jianmin

    2014-12-01

    This paper details a new method that combines laser autogenous welding, laser wire filling welding and hybrid laser-GMAW welding to weld 30 mm thick plate using a multi-layer, multi-pass process. A Y shaped groove was used to create the joint. Research was also performed to optimize the groove size and the processing parameters. Laser autogenous welding is first used to create the backing weld. The lower, narrowest part of the groove is then welded using laser wire filling welding. Finally, the upper part of the groove is welded using laser-GMAW hybrid welding. Additionally, the wire feeding and droplet transfer behaviors are observed by high speed photography. The two main conclusions from this work are: the wire is often biased towards the side walls, resulting in a lack of fusion at the joint and the creation of other defects for larger groove sizes. Additionally, this results in the droplet transfer behavior becoming unstable, leading to a poor weld appearance for smaller groove sizes.

  11. Low resistivity Ga-doped ZnO thin films of less than 100 nm thickness prepared by ion plating with direct current arc discharge

    SciTech Connect

    Yamada, Takahiro; Miyake, Aki; Kishimoto, Seiichi; Makino, Hisao; Yamamoto, Naoki; Yamamoto, Tetsuya

    2007-07-30

    Low resistivity Ga-doped ZnO films were prepared on a glass substrate by ion plating with direct current arc discharge. Thickness dependent changes in the electrical properties of the films are reported, focusing on the thin films of less than 100 nm thickness. Structural analyses showed that the thinnest film of 30 nm thickness consists of well-oriented columnar grains normal to the substrate, and the resistivity was as low as 4.4x10{sup -4} {omega} cm. The changes in lattice strain and c-axis fluctuation with the growth of grains are also shown to be associated with the electrical properties.

  12. Standardization of proton-induced x-ray emission technique for analysis of thick samples

    NASA Astrophysics Data System (ADS)

    Ali, Shad; Zeb, Johar; Ahad, Abdul; Ahmad, Ishfaq; Haneef, M.; Akbar, Jehan

    2015-09-01

    This paper describes the standardization of the proton-induced x-ray emission (PIXE) technique for finding the elemental composition of thick samples. For the standardization, three different samples of standard reference materials (SRMs) were analyzed using this technique and the data were compared with the already known data of these certified SRMs. These samples were selected in order to cover the maximum range of elements in the periodic table. Each sample was irradiated for three different values of collected beam charges at three different times. A proton beam of 2.57 MeV obtained using 5UDH-II Pelletron accelerator was used for excitation of x-rays from the sample. The acquired experimental data were analyzed using the GUPIXWIN software. The results show that the SRM data and the data obtained using the PIXE technique are in good agreement.

  13. Preparation and evaluation of submerged-arc weld in 4 inch thick 3Cr-1. 5Mo-0. 1V steel plate. Final report

    SciTech Connect

    Wada, T.; Cox, T.B.

    1983-12-15

    A 79-pass submerged-arc weld joint was prepared in a 4-inch thick 3Cr-1.5Mo-0.1V steel plate using welding wire with a composition similar to the base plate. Welding was made without difficulty, and no cracking was observed after stress relieving at 1175 F (635 C) for 4 hours. After stress relieving to tensile strength levels of 80 to 110 ksi (550 to 760 Mpa), tensile and Charpy impact properties of the weld metal and the heat-affected zone (HAZ) were determined. The HAZ exhibited virtually the same tensile strength and toughness as the base plate. The weld metal exhibited somewhat lower toughness, while its tensile strength was equivalent to that of the base plate.

  14. Three-dimensional residual stress characterization of thick plate weldments with advanced measurement instrumentation and methodologies: Final technical report for period January 1984 to April 1986

    SciTech Connect

    Ruud, C.O.; Snoha, D.J.

    1986-09-01

    A residual study was performed on a thirteen-inch thick, multi-pass, vee groove but weldment of 2-1/4 Cr 1 Mo steel alloy plate. The sample studies was about 13 inches thick by 9.5 inches along the weld by 35 inches normal to the weld, and was cut from a weldment several times larger along the weld and about 48 inches wide normal to the weld. Residual stresses were measured on the two rolled plate faces and on the two faces exposed by sectioning through the weld and which were normal to the weld center line. Nearly two thousand stress measurements were performed on each of the sample faces along several traverse lines and in two directions in the plane of the surface of the face. Several residual stress readings were performed at each location and the mean of these measurements plotted. The plots indicate the three-dimensional stress field extant in the sample. Further, the sample was cut in a plane parallel with the rolled plate surface to provide two sections about 2-1/4 inches thick and about 10-3/4 inches thick. The newly exposed face was mapped for residual stresses as well as one of the previously mapped faces. Nearly ten thousand residual stress measurements were performed on the thirteen-inch thick multi-pass HSLA steel weldment producing over seventy-two individual plots of stress traverses to provide the most thorough experimental analysis of a thick weldment to date. The data clearly illustrates the complexity of the three-dimensional residual stress state in thick multi-pass steel weldments and the magnitude of the difficulties to be faced in developing numerical models for residual stresses in these weldments.

  15. A new clinical unit for digital radiography based on a thick amorphous Selenium plate: Physical and psychophysical characterization

    SciTech Connect

    Rivetti, Stefano; Lanconelli, Nico; Bertolini, Marco; Acchiappati, Domenico

    2011-08-15

    Purpose: Here, we present a physical and psychophysical characterization of a new clinical unit (named AcSelerate) for digital radiography based on a thick a-Se layer. We also compared images acquired with and without a software filter (named CRF) developed for reducing sharpness and noise of the images and making them similar to images coming from traditional computed radiography systems. Methods: The characterization was achieved in terms of physical figures of merit [modulation transfer function (MTF), noise power spectra (NPS), detective quantum efficiency (DQE)], and psychophysical parameters (contrast-detail analysis with an automatic reading of CDRAD images). We accomplished measurements with four standard beam conditions: RAQ3, RQA5, RQA7, and RQA9. Results: The system shows an excellent MTF (about 50% at the Nyquist frequency). The DQE is about 55% at 0.5 lp/mm and above 20% at the Nyquist frequency and is almost independent from exposure. The contrast-detail curves are comparable to some of the best published data for other systems devoted to imaging in general radiography. The CRF filter influences both the MTF and NPS, but it does lead to very small changes on DQE. Also the visibility of CDRAD details is basically unaltered, when the filter is activated. Conclusions: As normally happens with detector based on direct conversion, the system presents an excellent MTF. The improved efficiency caused by the thick layer allows getting good noise characteristics and DQE results better (about 10% on average) than many of the computed radiography (CR) systems and comparable to those obtained by the best systems for digital radiography available on the market.

  16. The properties of thickness-twist (TT) wave modes in a rotated Y-cut quartz plate with a functionally graded material top layer.

    PubMed

    Wang, Bin; Qian, Zhenghua; Li, Nian; Sarraf, Hamid

    2016-01-01

    We propose the use of thickness-twist (TT) wave modes of an AT-cut quartz crystal plate resonator for measurement of material parameters, such as stiffness, density and material gradient, of a functionally graded material (FGM) layer on its surface, whose material property varies exponentially in thickness direction. A theoretical analysis of dispersion relations for TT waves is presented using Mindlin's plate theory, with displacement mode shapes plotted, and the existence of face-shear (FS) wave modes discussed. Through numerical examples, the effects of material parameters (stiffness, density and material gradient) on dispersion curves, cutoff frequencies and mode shapes are thoroughly examined, which can act as a theoretical reference for measurements of unknown properties of FGM layer. PMID:26254981

  17. Influence of thickness shear deformation on free vibrations of rectangular plates, cylindrical panels and cylinders of antisymmetric angle-ply construction

    NASA Astrophysics Data System (ADS)

    Soldatos, K. P.

    1987-11-01

    This paper is concerned with the influence of thickness shear deformation and rotatory inertia on the free vibrations of antisymmetric angle-ply laminated circular cylindrical panels. Two kinds of thickness shear deformable shell theories are considered. In the first one, uniformly distributed thickness shear strains through the shell thickness and, therefore, thickness shear correction factors are used. In the second theory a parabolic variation of thickness shear strains and stresses with zero values at the inner and outer shell surfaces is assumed. The analysis is mainly based on Love's approximations but, for purposes of comparison, Donnell's shallow shell approximations are also considered. For a simply supported panel, the equations of motion of the aforementioned theories, as well as of the corresponding classical theories, are solved by using Galerkin's method. For a family of graphite-epoxy angle-ply laminated plates and circular cylindrical panels, numerical results are obtained, compared and discussed and some interesting conclusions are made regarding the shell theories considered as well as the mathematical method employed.

  18. Validity Study of a Jump Mat Compared to the Reference Standard Force Plate

    PubMed Central

    Rogan, Slavko; Radlinger, Lorenz; Imhasly, Caroline; Kneubuehler, Andrea; Hilfiker, Roger

    2015-01-01

    Background: In the field of vertical jump diagnostics, force plates (FP) are the reference standard. Recently, despite a lack of evidence, jump mats have been used increasingly. Important factors in favor of jumping mats are their low cost and portability. Objectives: This validity study compared the Haynl-Elektronik jump mat (HE jump mat) with the reference standard force plate. Materials and Methods: Ten healthy volunteers participated and each participant completed three series of five drop jumps (DJ). The parameters ground contact time (GCT) and vertical jump height (VJH) from the HE jump mat and the FP were used to evaluate the concurrent validity. The following statistical calculations were performed: Pearson's correlation (r), Bland-Altman plots (standard and for adjusted trend), and regression equations. Results: The Bland-Altman plots suggest that the HE jump mat measures shorter contact times and higher jump heights than the FP. The trend-adjusted Bland-Altman plot shows higher mean differences and wider wing-spreads of confidence limits during longer GCT. During the VJH the mean differences and the wing-spreads of the confidence limits throughout the range present as relatively constant. The following regression equations were created, as close as possible to the true value: GCT = 5.920385 + 1.072293 [value HE jump mat] and VJH = -1.73777 + 1.011156 [value HE jump mat]. Conclusions: The HE jump mat can be recommended in relation to the validity of constraints. In this study, only a part of the quality criteria were examined. For the final recommendation it is advised to examine the HE jump mat on the other quality criteria (test-retest reliability, sensitivity change). PMID:26715970

  19. Thickness of the liquid film formed by a growing bubble in a narrow gap between two horizontal plates

    SciTech Connect

    Moriyama, K.; Inoue, A.

    1996-02-01

    An experiment was performed to measure the thickness of the liquid film formed by a growing flattened bubble in a narrow gap whose width ranged from 0.1 to 0.4 mm. High-speed photographs were also taken to measure the bubble growth velocity in order to validate an investigation into the mechanism of the liquid film formation. From the experimental results, it was clarified that the liquid film thickness was controlled by the viscous boundary layer thickness or the capillary number according to whether the Bond number was greater or smaller than 2. 9 refs., 11 figs., 1 tab.

  20. On the thermally-induced residual stresses in thick fiber-thermoplastic matrix (PEEK) cross-ply laminated plates

    SciTech Connect

    Hu, S.; Nairn, J.A.

    1992-09-01

    An analytical method for calculating thermally-induced residual stresses in laminated plates is applied to cross-ply PEEK laminates. The authors considered three cooling procedures: slow cooling (uniform temperature distribution); convective and radiative cooling; and rapid cooling by quenching (constant surface temperature). Some of the calculated stresses are of sufficient magnitude to effect failure properties such as matrix microcracking.

  1. On the thermally-induced residual stresses in thick fiber-thermoplastic matrix (PEEK) cross-ply laminated plates

    NASA Technical Reports Server (NTRS)

    Hu, Shoufeng; Nairn, John A.

    1992-01-01

    An analytical method for calculating thermally-induced residual stresses in laminated plates is applied to cross-ply PEEK laminates. We considered three cooling procedures: slow cooling (uniform temperature distribution); convective and radiative cooling; and rapid cooling by quenching (constant surface temperature). Some of the calculated stresses are of sufficient magnitude to effect failure properties such as matrix microcracking.

  2. Investigation of the properties of superconducting plates with a thickness of the order of the coherence length ? in the framework of the Ginzburg-Landau theory

    NASA Astrophysics Data System (ADS)

    Bezotosnyi, P. I.; Gavrilkin, S. Yu.; Lykov, A. N.; Tsvetkov, A. Yu.

    2015-07-01

    The properties of superconducting plates with a thickness of the order of the coherence length ? have been investigated by numerically solving the system of one-dimensional Ginzburg-Landau equations. The equations have been solved using boundary conditions of the general form for the order parameter, which makes it possible to take into account the influence of the boundaries of the plate on its superconducting properties. The behavior of the critical current and critical magnetic field as a function of external parameters has been analyzed. It has been shown that the inclusion of the influence of the boundary in the calculations leads to results that are in better agreement with the experimental data.

  3. Stress-intensity factors for a wide range of semi-elliptical surface cracks in finite-thickness plates

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Newman, J. C., Jr.

    1979-01-01

    Surface cracks are among the more common flaws in aircraft and pressure vessel components. Several calculations of stress-intensity factors for semi-elliptical surface cracks subjected to tension have appeared in the literature. However, some of these solutions are in disagreement by 50-100%. In this paper, stress-intensity factors for shallow and deep semi-elliptical surface cracks in plates subjected to tension are presented. To verify the accuracy of the three-dimensional finite-element models employed, convergence was studied by varying the number of degrees of freedom in the models from 1500 to 6900. The 6900 degrees of freedom used here were more than twice the number used in previously reported solutions. Also, the stress-intensity variations in the boundary-layer region at the intersection of the crack with the free surface were investigated.

  4. Plate-Tectonic Analysis of Shallow Seismicity: Apparent Boundary Width, beta-Value, Corner Magnitude, Coupled Lithosphere Thickness, and Coupling in 7 Tectonic Settings

    NASA Astrophysics Data System (ADS)

    Bird, P.; Kagan, Y. Y.

    2003-12-01

    A new plate model [Bird, 2003, G3, 10.1029/2001GC000252] is used to analyze the mean seismicities of 7 types of plate boundary (CRB continental rift boundary, CTF continental transform fault, CCB continental convergent boundary, OSR oceanic spreading ridge, OTF oceanic transform fault, OCB oceanic convergent boundary, SUB subduction zone). We compare the plate-like (non-orogen) regions of model PB2002 with the CMT catalog to select apparent boundary half-widths, and then assign 95% of shallow earthquakes to one of these settings. A tapered Gutenberg-Richter model of the frequency/moment relation is fit to the subcatalog for each setting by maximum-likelihood. Best-fitting ? values range from 0.53 to 0.92, but all 95%-confidence ranges are consistent with a common value of 0.61-0.66. To better determine some corner magnitudes we expand the subcatalogs by: (1) inclusion of orogens; and (2) inclusion of years 1900-1975 from the catalog of Pacheco and Sykes [1992]. Combining both earthquake statistics and the plate-tectonic constraint on moment rate, corner magnitudes include: CRB 7.64-.26+.76, CTF 8.01-.21+.45, CCB 8.46-.39+.21, OCB 8.04-.22+.52, and SUB 9.58-.46+.48. Coupled lithosphere thicknesses are found to be: CRB 3.0-1.4+7.0 km; CTF 8.6-4.1+11 km; CCB 18-11+? km; OSR 0.13-0.09+.13 km for normal-faulting and 0.40-.21+? km for strike-slip; OTF 12-7.1+?, 1.6-0.5+1.4, and 1.5-0.6+1.2 km at low, medium, and high velocities; OCB 3.8-2.3+13.7 km, and SUB 18.0-10.8+? km. Generally high coupling of subduction and continental plate boundaries suggests that here all seismic gaps are dangerous unless proven to be creeping. Generally low coupling within oceanic lithosphere suggests a different model of isolated seismic asperities surrounded by large seismic gaps which may be permanent.

  5. A Study on the Application of Submerged Arc Welding for Thin Plate of A-Grade 3.2 Thickness Steel in Ship Structure

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Soo; Yun, Jin-Oh; Lim, Dong-Yong; Jang, Yong-Won; Kim, Bong-Joon; Oh, Chong-In

    2010-06-01

    This paper is focused on application submerged arc welding process, which offers many advantages compared to conventional CO2 welding process, for thin plate in ship structure. For this purpose, optimized welding conditions are determined according to combination of wire & flux, relationship between welding parameters, bead shapes and mechanical tests such as tensile, bend and hardness. Also finite element(FE) based numerical simulation of thermal history and welding residual stress in welded joint of A-grade 3.2 thickness steel has been checked to qualitative tendency in this paper. In conclusion our company applied to this method in work piece and it was no problem. From the result of this study, it makes substantial saving of time and manufacturing cost and raises the welding quality of product.

  6. The repair of full-thickness articular cartilage defects. Immune responses to reparative tissue formed by allogeneic growth plate chondrocyte implants

    SciTech Connect

    Kawabe, N.; Yoshinao, M. )

    1991-07-01

    Growth plate cartilage cultivated in vitro was attached with a fibrin clot to a full-thickness articular cartilage defect on knee joints in allogeneic New Zealand rabbits. The healing of the defects was assessed by gross examination, light microscopy, and immunologic analysis for 24 weeks. Immunologic assessment of cell-mediated immunity, cytotoxicity of a humoral antibody by a 51 chromium release assay, and immunofluorescence studies were carried out. During the first two weeks following grafting, healing was excellent in 11 of the 17 defects. From three to 24 weeks, 11 of 42 defects examined had good results. Host lymphocytes had accumulated around the allograft at two to 12 weeks. Most of the implanted cartilage grown in vitro died and was replaced by fibrous tissue. The immunologic studies suggested that the implanted cartilage began to degenerate two to three weeks after implantation partially because of a humoral immune response but more importantly because of cell-mediated cytotoxicity.

  7. Enumeration of waterborne Escherichia coli with petrifilm plates: comparison to standard methods.

    PubMed

    Vail, J H; Morgan, R; Merino, C R; Gonzales, F; Miller, R; Ram, J L

    2003-01-01

    Escherichia coli is often monitored in environmental waters as an indicator of the possible presence of human pathogens associated with feces. Petrifilm E. coli/coliform count plates (3M, Minneapolis, MN), previously validated for enumerating E. coli in food, were tested for monitoring E. coli in environmental water. Escherichia coli counts in environmental water samples enumerated with Petrifilm were significantly correlated (R > 0.9; slope = 0.9-1.0; p < 0.001) with counts obtained with three commonly used methods, mTEC (Becton Dickinson, Sparks, MD), m-ColiBlue (Hach, Loveland, CO), and Colilert-18/IDEXX Quanti-Tray 2000 (IDEXX, Westbrook, ME). Blue colonies on Petrifilm plates were most reliably identified as E. coli when accompanied by gas formation, as determined by characterization of the colonies on MacConkey agar plates (PML Microbiologicals, Mississauga, ON, Canada) and by polymerase chair reaction (PCR) with E. coli-specific primers. The main disadvantage of Petrifilm plates for environmental water testing is the small volume (1 mL per sample) that can be tested; however, the plates appear to be suitable for screening and locating sites that exceed criteria for total body and partial body contact. Simplicity of use and storage, reliability, and relatively low cost make Petrifilm plates suitable for volunteer-based and educational water quality monitoring applications, particularly when used as a preliminary screening method to identify problem sites. PMID:12549577

  8. The thickness of the lithospheric plate and the parameters of the asthenosphere beneath the Scandinavian Shield according to the BEAR experiment

    NASA Astrophysics Data System (ADS)

    Kovtun, A. A.; Vardanyants, I. L.

    2015-07-01

    The article summarizes the works on studying the upper mantle structure beneath the Scandinavian Shield from the magnetotelluric (MT) data of the BEAR experiment combined with the global magnetovariational (MV) data. During the past few years, we improved the technique of joint interpretation of MT and global MV data, which enabled us to draw more reliable conclusions concerning the structure of the upper mantle and outline the ways of further increasing the efficiency of the MT method in determining the thickness of the lithospheric plate and geoelectrical parameters of the asthenosphere. Our study of the upper mantle structure from the BEAR data suggests the presence of the asthenosphere at a depth of 200 to 300 km with the electric resistivity of 20-40 Ω m, which corresponds to a 1-2% melt of the mantle material. For obtaining more exact estimates, the BEAR data should be interpreted together with the MV data from the observatories located in the Scandinavian Shield. In the future, this approach will probably enable a more reliable zoning of the Scandinavian shield according to the thickness and depth of the asthenosphere.

  9. Standardized Scalp Massage Results in Increased Hair Thickness by Inducing Stretching Forces to Dermal Papilla Cells in the Subcutaneous Tissue

    PubMed Central

    Kobayashi, Kazuhiro; Hama, Takanori; Murakami, Kasumi; Ogawa, Rei

    2016-01-01

    Objective: In this study, we evaluated the effect of scalp massage on hair in Japanese males and the effect of stretching forces on human dermal papilla cells in vitro. Methods: Nine healthy men received 4 minutes of standardized scalp massage per day for 24 weeks using a scalp massage device. Total hair number, hair thickness, and hair growth rate were evaluated. The mechanical effect of scalp massage on subcutaneous tissue was analyzed using a finite element method. To evaluate the effect of mechanical forces, human dermal papilla cells were cultured using a 72-hour stretching cycle. Gene expression change was analyzed using DNA microarray analyses. In addition, expression of hair cycle-related genes including IL6, NOGGIN, BMP4, and SMAD4 were evaluated using real-time reverse transcription-polymerase chain reaction. Results: Standardized scalp massage resulted in increased hair thickness 24 weeks after initiation of massage (0.085 ± 0.003 mm vs 0.092 ± 0.001 mm). Finite element method showed that scalp massage caused z-direction displacement and von Mises stress on subcutaneous tissue. In vitro, DNA microarray showed gene expression change significantly compared with nonstretching human dermal papilla cells. A total of 2655 genes were upregulated and 2823 genes were downregulated. Real-time reverse transcription-polymerase chain reaction demonstrated increased expression of hair cycle–related genes such as NOGGIN, BMP4, SMAD4, and IL6ST and decrease in hair loss–related genes such as IL6. Conclusions: Stretching forces result in changes in gene expression in human dermal papilla cells. Standardized scalp massage is a way to transmit mechanical stress to human dermal papilla cells in subcutaneous tissue. Hair thickness was shown to increase with standardized scalp massage. PMID:26904154

  10. 76 FR 57913 - Amendments to National Emission Standards for Hazardous Air Pollutants for Area Sources: Plating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ... direct final rule published at 76 FR 35750 on June 20, 2011. ADDRESSES: Docket: All documents in the... Air Pollutants for Area Sources: Plating and Polishing'' which was published on June 20, 2011 (76 FR... (76 FR 35806) published on the same day as a direct final rule, EPA will not institute a...

  11. 76 FR 35744 - Amendments to National Emission Standards for Hazardous Air Pollutants for Area Sources: Plating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-20

    ... amending this rule? On July 1, 2008 (73 FR 37741), we issued the NESHAP for Area Sources: Plating and... Executive Order 12866 (58 FR 51735, October 4, 1993) and is therefore not subject to review under the... Order 13175 (65 FR 67249, November 6, 2000). This final rule makes certain technical corrections...

  12. Review of Consensus Standard Spectra for Flat Plate and Concentrating Photovoltaic Performance

    SciTech Connect

    Myers, D.

    2011-09-01

    Consensus standard reference terrestrial solar spectra are used to establish nameplate ratings for photovoltaic device performance at standard reporting conditions. This report describes reference solar spectra developed in the United States and international consensus standards community which are widely accepted as of this writing (June 2011).

  13. Angular influence on the scattering of fundamental shear horizontal guided waves by a through-thickness crack in an isotropic plate.

    PubMed

    Rajagopal, P; Lowe, M J S

    2008-10-01

    The angular influence on the scattering of cylindrical-crested waves of the fundamental shear horizontal (SH0) guided mode by through-thickness cracks in an isotropic plate is studied in the context of array imaging using ultrasonic guided waves. Finite element simulations are used to obtain trends which are subject to analytical study and experimental confirmation. The influence of the incidence angle on reflection behavior is first studied in terms of two complementary cases, that of normal incidence and that of specular reflection at various oblique incidence angles. The normal incidence study suggests that for a given incidence angle, the peak reflection is concentrated around the specular direction, while the oblique incidence studies show that maximum specular reflection occurs in the case of normal incidence. The variation of diffraction with both the angle of incidence and that of monitoring is then taken up and this shows that when the first diffraction from the crack edges can be separated, its angular dependence can be obtained from literature on similar bulk elastic wave scattering problems. PMID:19062842

  14. Short range scattering of the fundamental shear horizontal guided wave mode normally incident at a through-thickness crack in an isotropic plate.

    PubMed

    Rajagopal, P; Lowe, M J S

    2007-09-01

    Interaction of the fundamental shear horizontal mode with through-thickness cracks in an isotropic plate is studied in the context of low frequency array imaging for ultrasonic guided wave nondestructive evaluation with improved resolution. Circular wave fronts are used and the symmetric case where a line from the wave source bisects the crack face normally is considered. Finite element simulations are employed to obtain trends subject to analytical and experimental validation. The influence of the crack length and of the location of source and measurement positions on the specular reflection from the crack face is first examined. These studies show that low frequency short range scattering is strongly affected by diffraction phenomena, leading to focusing of energy by the crack in the backscatter direction. Study of the diffraction from the crack edges reveals contributions due to a direct diffraction at the edges and multiple reverberations across the crack length. A simple diffraction model is shown to adequately represent cracks up to moderate lengths, providing an easy means of estimating the far field of the waves. The presence of multiple diffraction components is quantitatively established and surface waves on the crack face are identified as equivalent to low frequency symmetric modes of rectangular ridge waveguides. PMID:17927412

  15. Tungsten Inert Gas and Friction Stir Welding Characteristics of 4-mm-Thick 2219-T87 Plates at Room Temperature and -196 C

    NASA Astrophysics Data System (ADS)

    Lei, Xuefeng; Deng, Ying; Yin, Zhimin; Xu, Guofu

    2014-06-01

    2219-T87 aluminum alloy is widely used for fabricating liquid rocket propellant storage tank, due to its admirable cryogenic property. Welding is the dominant joining method in the manufacturing process of aerospace components. In this study, the tungsten inert gas welding and friction stir welding (FSW) characteristics of 4-mm-thick 2219-T87 alloy plate at room temperature (25 C) and deep cryogenic temperature (-196 C) were investigated by property measurements and microscopy methods. The studied 2219 base alloy exhibits a low strength plane anisotropy and excellent room temperature and cryogenic mechanical properties. The ultimate tensile strength values of TIG and FSW welding joints can reach 265 and 353 MPa at room temperature, and 342 and 438 MPa at -196 C, respectively. The base metal consists of elongated deformed grains and many nano-scaled ? (Al2Cu) aging precipitates. Fusion zone and heat-affected zone (HAZ) of the TIG joint are characterized by coarsening dendritic grains and equiaxed recrystallized grains, respectively. The FSW-welded joint consists of the weld nugget zone, thermo-mechanically affected zone (TMAZ), and HAZ. In the weld nugget zone, a micro-scaled sub-grain structure is the main microstructure characteristic. The TMAZ and HAZ are both characterized by coarsened aging precipitates and elongated deformed grains. The excellent FSW welding properties are attributed to the preservation of the working structures and homogenous chemical compositions.

  16. Gel microbead cultivation with a subenrichment procedure can yield better bacterial cultivability from a seawater sample than standard plating method

    NASA Astrophysics Data System (ADS)

    Ji, Shiqi; Zhao, Rui; Yin, Qi; Zhao, Yuan; Liu, Chenguang; Xiao, Tian; Zhang, Xiaohua

    2012-03-01

    A gel microbead (GMD) cultivation method was employed to cultivate microorganisms from an amphioxus breeding zone in Qingdao, P. R. China. The culture results were compared with those by standard plating method. In the GMD-based method, the microcolony-forming GMDs were sorted by fluorescence-activated cell sorting (FACS). To further get pure cultures, a subsequent enrichment culture and a streaking purification procedure were conducted on marine R2A medium. Eighty bacterial strains isolated by the GMD-based method were randomly selected for sequencing. These isolates belonged to Alphaproteobacteria (33%), Gammaproteobacteria (44%), Bacteroidetes (11%), Actinobacteria (5%), Firmicutes (5%), Epsilonproteobacteria (1%), and Verrucomicrobia (1%), the last two groups being usually difficult to culture. The 16S rRNA gene sequences revealed a diverse community with 91.1%-100% of the bacterial rRNAs similarities. Thirteen strains were sharing 16S rRNA gene sequence which was less than 97% similar to any other rRNA genes currently deposited in TYP16S database. Seventy isolates derived from the standard plating method fell into 4 different taxonomic groups: Alphaproteobacteria (9%), Gammaproteobacteria (81%), Bacteroidetes (7%) and Firmicutes (3%) with a 16S rRNA gene sequence similarities between 95.8%-100%, in which only 3 strains were sharing 16S rRNA gene sequence of less than 97%. The results indicated that the GMD-based method with subenrichment culture yielded more taxonomic groups and more novel microbial strains, including members of previously rarely cultured groups, when compared with the standard plating method, and that this method markedly improved the bacterial cultivability.

  17. Comparison of 3M Petrifilm Aerobic Count Plates to standard plating methodology for use with AOAC antimicrobial efficacy methods 955.14, 955.15, 964.02, and 966.04 as an alternative enumeration procedure: collaborative study.

    PubMed

    Nelson, Maria T; LaBudde, Robert A; Tomasino, Stephen F; Pines, Rebecca M

    2013-01-01

    A multilaboratory study was conducted to determine the equivalence of the 3M Petrifilm Aerobic Count Plate and standard plating methodology for measuring viable bacteria and spores recovered from hard-surface carriers (stainless steel and porcelain), also known as "control carrier counts," used in AOAC antimicrobial efficacy test methods. Six laboratories participated in the study in which carriers inoculated with Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella enterica, and spores of Bacillus subtilis were evaluated using 3M Petrifilm Aerobic Count (AC) plates and standard plating side-by-side. The data were analyzed using a matched-pair t-test to determine the between-method effect with confidence intervals. For all test organisms pooled across all laboratories, the mean difference in log10 concentration between the standard plate count method and 3M Petrifilm AC Plates was -0.012, with a 95% confidence interval of (-0.090, +0.066), which was well within the -0.5, +0.5 interval established as the acceptance criterion. The between-carrier SD averaged 0.139; the between-replicate SD was 0.050. The carrier reproducibility, given that a single replicate per carrier is done, was estimated to be 0.148. Although differences were seen in the final concentrations of the test organisms among laboratories, there were no statistical differences between the enumeration methods. Based on the results from this study, 3M Petrifilm AC Plates are equivalent to standard plating methodology and can be used as an alternative procedure for the enumeration of test organisms used in AOAC Methods 955.14, 955.15, 964.02, and 966.04. PMID:24000742

  18. Correction of Thick Foil Errors in Prompt Neutron (CALIFORNIUM-252 Nu), Fission Cross Section (sigma(f)) and Other Ionization Chamber Fission Data Standards.

    NASA Astrophysics Data System (ADS)

    Cohensedgh, Farhad

    This research resolves two problems that have long been of important concern in experimental fission physics: (1) determination of pulse height distribution response of ionization chambers in fission fragment detection measurements, and (2) correction of "thick-foil effect" systematic errors in standard values of the fundamental parameters of fission physics--the average number of prompt neutrons per fission (=nu), absolute fission activity and true fission rate of samples (TFR), and isotopic fission cross sections (sigma _{f}). Results are obtained by a comprehensive digital simulation of the electrostatics and pulse height distribution response of the parallel-plate, ungridded, electron-pulse ionization fission chamber together with prompt neutron -fragment multiplicity and angular distribution correlations, neutron-fragment coincidence detection and related variations in the 4pi^here around the chamber for a wide range of the relevant factors--foil thickness, alpha particle interference bias level, fission detector configuration characteristics, fissile isotopes (^{252}Cf, ^{235}U, etc.) and other experimental parameters. Isotope-specific double-energy (E_1,E_2) natural variations in fragment spectrum, in fragment-specific range-energy (dE/dx) relations and in prompt neutron-fragment multiplicity (nu) and nuclear temperature dependent angular distribution correlations are simulated in detail. Detailed results are obtained for double-energy, fragment-specific count loss fractions resulting from in -foil fragment absorption and from alpha -interference discrimination as well as for chamber detection efficiency, fragment spectrum distortion and prompt neutron -fragment coincidence detection distribution variations. Decay alpha pulse pileup statistics are discussed, and the behavior of and factors affecting the fragment pulse height distribution tail are analyzed in detail. Fragment pairs and prompt neutrons issued from them are tracked in the 4pi^ace around the chamber. Light-to-heavy fragment detection ratio variations in neutron-gated coincidence measurements are also obtained in 4pi space. Effects of these systematics on absolute, relative and ratio measurements of fundamental fission parameters are discussed. Magnitudes and mechanisms of production of thick-foil errors are identified and analyzed in detail, and methods for correcting these errors and for improving measurement setup design are given.

  19. 49 CFR 571.403 - Standard No. 403; Platform lift systems for motor vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Federal Motor Vehicle Safety Standard No. 404, Platform Lift Installations in Motor Vehicles (49 CFR 571... steel plate of uniform thickness and the load that rests on the test pallet is made of rectangular steel plate(s) of uniform thickness and sides that measure between 533 mm (21 in) and 686 mm (27 in)....

  20. Angular shear plate

    DOEpatents

    Ruda, Mitchell C. (Tucson, AZ); Greynolds, Alan W. (Tucson, AZ); Stuhlinger, Tilman W. (Tucson, AZ)

    2009-07-14

    One or more disc-shaped angular shear plates each include a region thereon having a thickness that varies with a nonlinear function. For the case of two such shear plates, they are positioned in a facing relationship and rotated relative to each other. Light passing through the variable thickness regions in the angular plates is refracted. By properly timing the relative rotation of the plates and by the use of an appropriate polynomial function for the thickness of the shear plate, light passing therethrough can be focused at variable positions.

  1. 78 FR 63017 - Exhaust Emissions Standards for New Aircraft Gas Turbine Engines and Identification Plate for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... engines with rated thrusts greater than 26.7 kilonewtons (kN) (76 FR 45012). The EPA also proposed...). The final rule adopting these proposals was published on June 18, 2012 (77 FR 36342), and was... (77 FR 76842) adopting the EPA's new emissions standards in part 34. Although the EPA's NPRM...

  2. 78 FR 63015 - Exhaust Emissions Standards for New Aircraft Gas Turbine Engines and Identification Plate for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... kilonewtons (kN) (76 FR 45012). The EPA also proposed adopting the gas turbine engine test procedures of the... 18, 2012 (77 FR 36342), and was effective July 18, 2012. On December 31, 2012, the FAA published a final rule with a request for comments (77 FR 76842) adopting the EPA's new emissions standards in...

  3. 75 FR 75186 - License Plate Reader Standard Special Technical Committee Request for Proposals for Certification...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-02

    ... a 12-month time period with the goal of completing development of the standard and certification program requirements. It is anticipated that STC meetings will begin in January 2011. Travel expenses and per diem will be reimbursed for all STC meetings; however, participation time will not be funded....

  4. A Chlorhexidine- Agar Plate Culture Medium Protocol to Complement Standard Broth Culture of Mycobacterium tuberculosis.

    PubMed

    Asmar, Shady; Chatellier, Sonia; Mirande, Caroline; van Belkum, Alex; Canard, Isabelle; Raoult, Didier; Drancourt, Michel

    2016-01-01

    The culture of Mycobacterium tuberculosis using parallel inoculation of a solid culture medium and a liquid broth provides the gold standard for the diagnosis of tuberculosis. Here, we evaluated a chlorhexidine decontamination-MOD9 solid medium protocol versus the standard NALC-NaOH-Bactec 960 MGIT protocol for the diagnosis of pulmonary tuberculosis by culture. Three-hundred clinical specimens comprising 193 sputa, 30 bronchial aspirates, 10 broncho-alveolar lavages, 47 stools, and 20 urines were prospectively submitted for the routine diagnosis of tuberculosis. The contamination rates were 5/300 (1.7%) using the MOD9 protocol and 17/300 (5.7%) with the Bactec protocol, respectively (P < 0.05, Fisher exact test). Of a total of 50 Mycobacterium isolates (48 M. tuberculosis and two Mycobacterium abscessus) were cultured. Out of these 50, 48 (96%) isolates were found using the MOD9 protocol versus 35 (70%) when using the Bactec protocol (P < 0.05, Fisher exact test). The time to positivity was 10.1 ± 3.9 days versus 14.7 ± 7.3 days, respectively, (P < 0.05, Student's t-test). These data confirmed the usefulness of parallel inoculation of a solid culture medium with broth for the recovery of M. tuberculosis in agreement with current recommendations. More specifically, chlorhexidine decontamination and inoculation of the MOD9 solid medium could be proposed to complement the standard Bactec 960 MGIT broth protocol. PMID:26834733

  5. A Chlorhexidine- Agar Plate Culture Medium Protocol to Complement Standard Broth Culture of Mycobacterium tuberculosis

    PubMed Central

    Asmar, Shady; Chatellier, Sonia; Mirande, Caroline; van Belkum, Alex; Canard, Isabelle; Raoult, Didier; Drancourt, Michel

    2016-01-01

    The culture of Mycobacterium tuberculosis using parallel inoculation of a solid culture medium and a liquid broth provides the gold standard for the diagnosis of tuberculosis. Here, we evaluated a chlorhexidine decontamination-MOD9 solid medium protocol versus the standard NALC-NaOH-Bactec 960 MGIT protocol for the diagnosis of pulmonary tuberculosis by culture. Three-hundred clinical specimens comprising 193 sputa, 30 bronchial aspirates, 10 broncho-alveolar lavages, 47 stools, and 20 urines were prospectively submitted for the routine diagnosis of tuberculosis. The contamination rates were 5/300 (1.7%) using the MOD9 protocol and 17/300 (5.7%) with the Bactec protocol, respectively (P < 0.05, Fisher exact test). Of a total of 50 Mycobacterium isolates (48 M. tuberculosis and two Mycobacterium abscessus) were cultured. Out of these 50, 48 (96%) isolates were found using the MOD9 protocol versus 35 (70%) when using the Bactec protocol (P < 0.05, Fisher exact test). The time to positivity was 10.1 3.9 days versus 14.7 7.3 days, respectively, (P < 0.05, Students t-test). These data confirmed the usefulness of parallel inoculation of a solid culture medium with broth for the recovery of M. tuberculosis in agreement with current recommendations. More specifically, chlorhexidine decontamination and inoculation of the MOD9 solid medium could be proposed to complement the standard Bactec 960 MGIT broth protocol. PMID:26834733

  6. Reappraising elastic thickness variation at oceanic trenches

    NASA Astrophysics Data System (ADS)

    Bry, Madeleine; White, Nicky

    2007-08-01

    We reassess the variation of elastic thickness as a function of lithospheric plate age using a global database of bathymetric and free-air gravity profiles which are perpendicular to oceanic trenches. As in many previous studies, our starting point is the well-known floating elastic plate model. In order to remove the influence of short-wavelength features not associated with lithospheric bending, adjacent profiles from 10-Myr bins have been stacked together to construct average profiles with standard deviations. Each average profile was then inverted in a two-stage procedure. First, singular value decomposition was used to determine two unknown flexural parameters, together with a regional slope and offset, for any given elastic thickness. This procedure was repeated for a range of elastic thicknesses. Second, residual misfit was plotted as a function of elastic thickness, and the global minimum was identified. This two-stage procedure makes no prior assumptions about magnitude of the load, size of the bending moment, or whether the elastic plate is broken/continuous. We obtained excellent fits between theory and observation for both bathymetric and gravity profiles from lithosphere with an age range of 0-150 Ma. The shape of the residual misfit function indicates the degree of confidence we have in our elastic thickness estimates. The lower limit of elastic thickness is usually well determined but upper limits are often poorly constrained. Inverse modeling was carried out using a range of profile lengths (250-300, 500, and 700 km). In general, our estimates show no consistent increase of elastic thickness as a function of plate age. This surprising result is consistent with recent reassessments of elastic thickness beneath seamounts and implies either that elastic thickness is independent of plate age or that elastic thickness cannot be measured with sufficient accuracy to reveal such a relationship. Modeling of short free-air gravity profiles (250-300 km) does tentatively suggest that elastic thickness increases linearly from 5 to 10 km between 0 and 20 Ma and from 10 to 15 km between 20 and 150 Ma. This variation roughly matches the depth to the 200C isotherm which corresponds to an homologous temperature of 0.4 for wet peridotite. Unfortunately, for longer profile lengths, there is no temporal dependence, and elastic thicknesses vary considerably for all plate ages. Bathymetric profile modeling yields similar results although uncertainties are larger.

  7. Evaluation of brush plated alloys as substitutes for tank plated hard chromium

    SciTech Connect

    Durham, H.B.; Hooper, A.M.

    1995-11-01

    This paper summarizes results obtained from a test program conducted in cooperation with Tinker Air Force Base (TAFB) in 1993 for the purpose of evaluating the potential of using brush plated alloys as replacements for tank plated hard chromium which is used in the overhaul of jet engines. Tank plating is energy expensive and generates waste products in several of the plating steps. Test specimens used in this study were fabricated from carbon steel, chromium-based stainless steel, and nickel-based stainless steel. Baseline specimens were tank plated with hard chromium or with a soft nickel capped with hard chromium. The specimens were tested for fatigue, thickness, microhardness, Taber wear, and Falex pin and vee block wear. All test were conducted in accordance with standard procedures of the American Society for Testing and Materials (ASTM). Test results obtained from the baseline specimens were compared with those obtained from specimens which had been coated with the three brush plated layered alloy solutions used in this evaluation. Results of this study show that brush plated alloy coatings appear promising as alternatives to tank plated hard chromium. Some data quality problems were encountered during testing, so at this time, definitive statements concerning the use of brush plating alloys as an acceptable alternative to tank plated hard chromium in critical TAFB maintenance, cannot be made. Although these tests results are not positive for TAFB`s operation, users of hard chromium tank plating with less critical applications may find brush plated coatings a suitable alternative. 1 ref.

  8. Chromium ion plating studies for enhancement of bearing lifetime

    NASA Technical Reports Server (NTRS)

    Davis, J. H.

    1982-01-01

    Six 440-C hardened stainless steel roller bearing test rods were ion plated with various chromium films of thicknesses from .2 microns to 7 microns. The thinner (approximately .2 microns) coating sample had 3 times the fatigue life of the unplated (standard) specimens. Contrastingly, the samples having thicker coatings (several microns) had short fatigue lives (about 3% of the unplated standard).

  9. Plating To Reinforce Welded Joints

    NASA Technical Reports Server (NTRS)

    Otousa, J. E.

    1982-01-01

    Electrodeposition used to strengthen welded joints gouged, nicked, or suffered other mechanical damage. Plating cell, typically of acrylic plastic such as poly (Methylmetacrylate), is assembled around part to be plated. Areas not to be plated are masked with plater's tape. Weld area is plated in standard nickel-plating process.

  10. Technical note: enumeration of mesophilic aerobes in milk: evaluation of standard official protocols and Petrifilm aerobic count plates.

    PubMed

    Freitas, R; Nero, L A; Carvalho, A F

    2009-07-01

    Enumeration of mesophilic aerobes (MA) is the main quality and hygiene parameter for raw and pasteurized milk. High levels of these microorganisms indicate poor conditions in production, storage, and processing of milk, and also the presence of pathogens. Fifteen raw and 15 pasteurized milk samples were submitted for MA enumeration by a conventional plating method (using plate count agar) and Petrifilm Aerobic Count plates (3M, St. Paul, MN), followed by incubation according to 3 official protocols: IDF/ISO (incubation at 30 degrees C for 72 h), American Public Health Association (32 degrees C for 48 h), and Brazilian Ministry of Agriculture (36 degrees C for 48 h). The results were compared by linear regression and ANOVA. Considering the results from conventional methodology, good correlation indices and absence of significant differences between mean counts were observed, independent of type of milk sample (raw or pasteurized) and incubation conditions (IDF/ISO, American Public Health Association, or Ministry of Agriculture). Considering the results from Petrifilm Aerobic Count plates, good correlation indices and absence of significant differences were only observed for raw milk samples. The microbiota of pasteurized milk interfered negatively with the performance of Petrifilm Aerobic Count plates, probably because of the presence of microorganisms that poorly reduce the dye indicator of this system. PMID:19528584

  11. Standardized performance tests of collectors of solar thermal energy - A flat-plate copper collector with parallel mylar striping

    NASA Technical Reports Server (NTRS)

    Johnson, S. M.

    1976-01-01

    Basic test results are reported for a flat plate solar collector whose performance was determined in a solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.

  12. Channel plate for DNA sequencing

    DOEpatents

    Douthart, R.J.; Crowell, S.L.

    1998-01-13

    This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface. 15 figs.

  13. Channel plate for DNA sequencing

    DOEpatents

    Douthart, Richard J. (Richland, WA); Crowell, Shannon L. (Eltopia, WA)

    1998-01-01

    This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface.

  14. Overriding Plate Controls on Subduction Zone Evolution

    NASA Astrophysics Data System (ADS)

    Sharples, W. K.; Jadamec, M. A.; Moresi, L. N.; Capitanio, F. A.

    2014-12-01

    Seismic data, rock deformation experiments, and geochemical studies indicate variability in the thickness, buoyancy, and strength of the lithosphere at plate boundaries. However, geodynamic models of subduction commonly either omit an overriding plate or do not investigate role of the variation in overriding plate properties on the subduction evolution. We present time-dependent numerical models of subduction that vary the overriding plate thickness, strength, and density and allow for a plate interface that evolves with time via an anisotropic brittle failure rheology. We examine the emergence of (a) asymmetric versus symmetric subduction, (b) trench retreat versus advance, (c) subduction zone geometry, (d) slab stagnation versus penetration into the lower mantle, and (e) flat slab subduction. The majority of the models result in sustained asymmetric subduction. The models demonstrate that trench retreat is correlated with a thin overriding plate, whereas, trench advance is correlated with a thick and/or strong overriding plate. Slab dip, measured at a depth below the plate boundary interface, has a negative correlation with an increase in overriding plate thickness. Overriding plate thickness exerts a first order control over slab penetration into the lower mantle, with penetration most commonly occurring in models with a thick overriding plate. Periods of flat slab subduction occur with thick, strong overriding plates producing strong plate boundary interface coupling. The results provide insight into how the overriding plate plays a role in establishing advancing and retreating subduction, as well as providing an explanation for the variation of slab geometry observed in subduction zones on Earth.

  15. Eddy current thickness measurement apparatus

    DOEpatents

    Rosen, Gary J.; Sinclair, Frank; Soskov, Alexander; Buff, James S.

    2015-06-16

    A sheet of a material is disposed in a melt of the material. The sheet is formed using a cooling plate in one instance. An exciting coil and sensing coil are positioned downstream of the cooling plate. The exciting coil and sensing coil use eddy currents to determine a thickness of the solid sheet on top of the melt.

  16. Measuring Metal Thickness With an Electric Probe

    NASA Technical Reports Server (NTRS)

    Shumka, A.

    1986-01-01

    Thickness of metal parts measured from one side with aid of Kelvin probe. Method developed for measuring thickness of end plate on sealed metal bellows from outside. Suitable for thicknesses of few thousandth's of inch (few hundred micrometers). Method also used to determine thickness of metal coatings applied by sputtering, electroplating, and flame spraying.

  17. Comparison of Buffered, Acidified Plate Antigen to Standard Serologic Tests for the Detection of Serum Antibodies to Brucella abortus in Elk (Cervus canadensis).

    PubMed

    Clarke, P Ryan; Edwards, William H; Hennager, Steven G; Block, Jean F; Yates, Angela M; Ebel, Eric; Knopp, Douglas J; Fuentes-Sanchez, Antonio; Jennings-Gaines, Jessica; Kientz, Rebecca L; Simunich, Marilyn

    2015-07-01

    Brucellosis (caused by the bacterium Brucella abortus) is a zoonotic disease endemic in wild elk (Cervus canadensis) of the Greater Yellowstone Ecosystem, US. Because livestock and humans working with elk or livestock are at risk, validated tests to detect the B. abortus antibody in elk are needed. Using the ?-statistic, we evaluated the buffered, acidified plate antigen (BAPA) assay for agreement with the results of the four serologic tests (card test [card], complement fixation test [CF], rivanol precipitation plate agglutination test [RIV], standard plate agglutination test [SPT]) that are approved by the US Department of Agriculture for the detection of the B. abortus antibody in elk. From 2006 to 2010, serum samples collected from elk within B. abortus-endemic areas (n = 604) and nonendemic areas (n = 707) and from elk culture-positive for B. abortus (n = 36) were split and blind tested by four elk serum diagnostic laboratories. ?-Values showed a high degree of agreement for the card (0.876), RIV (0.84), and CF (0.774) test pairings and moderate agreement for the SPT (0.578). Sensitivities for the BAPA, card, RIV, CF, and SPT were 0.859, 0.839, 0.899, 1.00, and 0.813, whereas specificities were 0.986, 0.993, 0.986, 0.98, and 0.968, respectively. The positive predictive values and the negative predictive values were calculated for 2.6%, 8.8%, and 16.2% prevalence levels. These findings suggest the BAPA test is a suitable screening test for the B. abortus antibodies in elk. PMID:25984771

  18. Thick Toenails

    MedlinePLUS

    The official consumer website of: Visit ACFAS.org | About ACFAS | Informacin en Espaol Advanced Search Home Foot & Ankle Conditions Thick Toenails Text Size Print Bookmark Thick Toenails Toenails will often become thick as an individual grows older. Thickening may also occur as ...

  19. Aluminum transfer method for plating plastics

    NASA Technical Reports Server (NTRS)

    Goodrich, W. D.; Stalmach, C. J., Jr.

    1977-01-01

    Electroless plating technique produces plate of uniform thickness. Hardness and abrasion resistance can be increased further by heat treatment. Method results in seamless coating over many materials, has low thermal conductivity, and is relatively inexpensive compared to conventional methods.

  20. Plate motion

    SciTech Connect

    Gordon, R.G. )

    1991-01-01

    The motion of tectonic plates on the earth is characterized in a critical review of U.S. research from the period 1987-1990. Topics addressed include the NUVEL-1 global model of current plate motions, diffuse plate boundaries and the oceanic lithosphere, the relation between plate motions and distributed deformations, accelerations and the steadiness of plate motions, the distribution of current Pacific-North America motion across western North America and its margin, plate reconstructions and their uncertainties, hotspots, and plate dynamics. A comprehensive bibliography is provided. 126 refs.

  1. Natural vibrations of laminated anisotropic plates

    NASA Technical Reports Server (NTRS)

    Reddy, J. N.; Kuppusamy, T.

    1984-01-01

    This paper contains a description of the three-dimensional elasticity equations and the associated finite element model for natural vibrations of laminated rectangular plates. The numerical results for natural frequencies are compared with those obtained by a shear deformable plate theory. A number of cross-ply and angle-ply rectangular plates are analyzed for natural frequencies. For relatively thick plates, the plate element predicts frequencies higher than those predicted by the 3-D element.

  2. Sub-Plate Overlap Code Documentation

    NASA Technical Reports Server (NTRS)

    Taff, L. G.; Bucciarelli, B.; Zarate, N.

    1997-01-01

    An expansion of the plate overlap method of astrometric data reduction to a single plate has been proposed and successfully tested. Each plate is (artificially) divided into sub-plates which can then be overlapped. This reduces the area of a 'plate' over which a plate model needs to accurately represent the relationship between measured coordinates and standard coordinates. Application is made to non-astrographic plates such as Schmidt plates and to wide-field astrographic plates. Indeed, the method is completely general and can be applied to any type of recording media.

  3. Fuel cell end plate structure

    DOEpatents

    Guthrie, Robin J. (East Hartford, CT); Katz, Murray (Newington, CT); Schroll, Craig R. (Glastonbury, CT)

    1991-04-23

    The end plates (16) of a fuel cell stack (12) are formed of a thin membrane. Pressure plates (20) exert compressive load through insulation layers (22, 26) to the membrane. Electrical contact between the end plates (16) and electrodes (50, 58) is maintained without deleterious making and breaking of electrical contacts during thermal transients. The thin end plate (16) under compressive load will not distort with a temperature difference across its thickness. Pressure plate (20) experiences a low thermal transient because it is insulated from the cell. The impact on the end plate of any slight deflection created in the pressure plate by temperature difference is minimized by the resilient pressure pad, in the form of insulation, therebetween.

  4. NICKEL PLATING PROCESS

    DOEpatents

    Hoover, T.B.; Zava, T.E.

    1959-05-12

    A simplified process is presented for plating nickel by the vapor decomposition of nickel carbonyl. In a preferred form of the invention a solid surface is nickel plated by subjecting the surface to contact with a mixture containing by volume approximately 20% nickel carbonyl vapor, 2% hydrogen sulfide and .l% water vapor or 1% oxygen and the remainder carbon dioxide at room temperature until the desired thickness of nickel is obtained. The advantage of this composition over others is that the normally explosive nickel carbonyl is greatly stabilized.

  5. Quantum levitation of a thin magnetodielectric plate on a metallic plate using the repulsive Casimir force

    NASA Astrophysics Data System (ADS)

    Inui, Norio

    2012-04-01

    Levitation of a thin magnetodielectric plate on a metallic plate by using the repulsive Casimir force is theoretically considered. If the permittivity of the metallic plate near zero frequency is expressed by a plasma model and the static permeability of the magnetodielectric plate is higher than its static permittivity, the Casimir force between the magnetodielectric plate and the metallic plate changes from attractive to repulsive as the separation between them increases. Furthermore, as the thickness of the magnetodielectric plate is decreased, the attractive component of the Casimir force decreases more than the repulsive one. This effect generates a larger repulsive Casimir force as compared with that between the plates having infinite thickness. Combined with the effect of decreasing the weight of the plate, this might enable a thin plate to levitate in vacuum. The height of quantum levitation is evaluated for a combination of yttrium iron garnet and gold.

  6. Injection moulded low cost bipolar plates for PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Heinzel, A.; Mahlendorf, F.; Niemzig, O.; Kreuz, C.

    The development of bipolar plates that can be produced by standard mass production techniques is a main issue for the commercialization of PEM fuel cells, as bipolar plates contribute significantly to the cost structure of PEM stacks. In recent years, the University of Duisburg-Essen together with the Zentrum fr BrennstoffzellenTechnik GmbH (ZBT) has identified a number of carbon-polymer composites with densities of 1.6 g/cm 3, specific bulk conductivities between 5 and 150 S/cm and material prices between 2 and 10 /kg. Standard composite mixtures consist of a thermoplast and a carbon compound mixture with additional additives to increase the conductivity of the compound material. The composites generally show high corrosion resistance in the PEM fuel cell environment. Composite material samples proved to be absolutely stable in immersion tests in sulphuric acid and deionized water under pure oxygen atmosphere for several thousand hours. ZBT has successfully demonstrated the production of bipolar plates by injection moulding with cycle times of 30-60 s. With the help of tailored moulds injection moulding of bipolar plates becomes price competitive even for comparatively small series in the range of several thousand plates. PEM stacks with injection moulded bipolar plates of 2.5-4 mm thickness and an electrical power of up to 200 W have been constructed and successfully operated.

  7. Adherent protective coatings plated on magnesium-lithium alloy

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Zinc is plated on a magnesium-lithium alloy by using a modification of the standard zinc-plate immersion bath. Further protection is given the alloy by applying a light plating of copper on the zinc plating. Other metals are plated on the copper by using conventional plating baths.

  8. Bipolar battery plate

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor)

    1987-01-01

    A liquid-impermeable plate (10) having through-plate conductivity with essentially zero resistance comprises an insulator sheet (12) having a series of spaced perforations (14) each of which contains a metal element (16) sealingly received into the perforation (14). A low-cost plate can readily be manufactured by punching a thermoplastic sheet (40) such as polypropylene with a punching tool (52), filling the apertures with led spheres (63) having a diameter smaller than the holes (50) but larger than the thickness of the sheet, sweeping excess spheres (62) off the sheet with a doctor blade (60) and then pressing a heated platen (74) onto the sheet to swage the spheres into a cylindrical shape and melt the surrounding resin to form a liquid-impermeable collar (4) sealing the metal into the sheet.

  9. Thick DGP braneworlds

    SciTech Connect

    Quiros, Israel; Matos, Tonatiuh

    2008-11-15

    We study Dvali-Gabadadze-Porrati (DGP) braneworlds with finite thickness. In respect to the standard (thin) DGP Friedmann equation, finite thickness of the brane causes a subtle modification of the cosmological equations that can lead to significant physical consequences. The resulting cosmology is governed by two length scales which are associated with the brane thickness and with the crossover length, respectively. In this setup both early inflation and late-time acceleration of the expansion are a consequence of the 5D geometry. At early times, as well as at late times, 5D effects become dominant (gravity leaks into the extra dimension), while, at intermediate times, gravity is effectively 4D due to nontrivial physics occurring in standard (thin) DGP scenarios.

  10. General properties of the acoustic plate modes at different temperatures.

    PubMed

    Anisimkin, V I; Anisimkin, I V; Voronova, N V; Pu?hkov, Yu V

    2015-09-01

    Using acoustic plate modes with SH-polarization and quartz crystal with Euler angles 0, 132.75, 90, as an example, general properties of the acoustic plate modes at different temperatures are studied theoretically and experimentally in the range from -40 to +80C. It is shown that in addition to well-known parameters responsible for temperature characteristics of acoustic waves the temperature coefficients of the acoustic plate modes depend on the mode order n, plate thickness h/?, and expansion of the plate in direction of its thickness (h - thickness, ? - acoustic wavelength). These properties permit the mode sensitivity to be increased or decreased without replacing plate material and orientation. PMID:26002698

  11. Glued Joint Behavior of Ribs for Wood-Based Composite Plates

    NASA Astrophysics Data System (ADS)

    Frolovs, G.; Rocens, K.; Sliseris, J.

    2015-11-01

    This article presents experimental investigations of composite sandwich plywood plates with cell type core and their connections between skin layers of birch plywood and a core of straight and curved plywood honeycomb-type ribs. This shape of core ribs provides several improvements for these plates in the manufacturing process as well as improves the mechanical properties of plywood plates. This specific form of ribs allows simplifying the manufacturing of these plates although it should be detailed and improved. The most typical cases (series of specimens) were compared to the results obtained from FEM (ANSYS) simulations. All thicknesses of elements are chosen according to plywood supplier assortment. Standard birch plywood (Riga Ply) plates were used - three layer plywood was chosen for skin elements (Surfaces) and three or five layer plywood was chosen for edge elements. Different bond pressures were taken to compare their influence on joint strength and stiffness.

  12. Calculation of the Parameters for a Superconducting Thin Plate within Ginzburg-landau Theory

    NASA Astrophysics Data System (ADS)

    Bezotosnyi, P. I.; Gavrilkin, S. Yu.; Lykov, A. N.; Tsvetkov, A. Yu.

    The behavior of a superconducting plate with transport current in a magnetic field parallel to its surface was studied by using numerical solution of Ginzburg-Landau (GL) equations. Boundary conditions for the order parameter in their general form have been used. The boundary conditions allow to consider the influence of the plate's boundaries on the superconducting state inside it. According to the calculations some features of the dependences of critical current and critical magnetic field in the parallel to the plate's surface direction as a function of the plate thickness have been detected. Such dependences are not explained by standard formulas for thin plates. On the basis of the calculations, an approach to estimate the coherence length ? has been proposed. The results of the calculations are consistent with experimental data and qualitative analysis of the calculations within GL theory.

  13. Consecutive Plate Acoustic Suppressor Apparatus and Methods

    NASA Technical Reports Server (NTRS)

    Doychak, Joseph (Inventor); Parrott, Tony L. (Inventor)

    1993-01-01

    An apparatus and method for suppressing acoustic noise utilizes consecutive plates, closely spaced to each other so as to exploit dissipation associated with sound propagation in narrow channels to optimize the acoustic resistance at a liner surface. The closely spaced plates can be utilized as high temperature structural materials for jet engines by constructing the plates from composite materials. Geometries of the plates, such as plate depth, shape, thickness, inter-plate spacing, arrangement, etc., can be selected to achieve bulk material-like behavior.

  14. Consecutive plate acoustic suppressor apparatus and methods

    NASA Technical Reports Server (NTRS)

    Doychak, Joseph (Inventor); Parrott, Tony (Inventor)

    1992-01-01

    An apparatus and method for suppressing acoustic noise utilizes consecutive plates, closely spaced to each other so as to exploit dissipation associated with sound propagation in narrow channels to optimize the acoustic resistance at a liner surface. The closely spaced plates can be utilized as high temperature structural materials for jet engines by constructing the plates from composite materials. Geometries of the plates, such as plate depth, shape, thickness, inter-plate spacing, arrangement, etc., can be selected to achieve bulk material-like behavior.

  15. Plating Processes Utilizing High Intensity Acoustic Beams

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C. (Inventor); Denofrio, Charles (Inventor)

    2002-01-01

    A system and a method for selective plating processes are disclosed which use directed beams of high intensity acoustic waves to create non-linear effects that alter and improve the plating process. The directed beams are focused on the surface of an object, which in one embodiment is immersed in a plating solution, and in another embodiment is suspended above a plating solution. The plating processes provide precise control of the thickness of the layers of the plating, while at the same time, in at least some incidents, eliminates the need for masking.

  16. Strap grid tubular platea new positive plate for lead-acid batteries. Processes of residual sulphation of the positive plate

    NASA Astrophysics Data System (ADS)

    Pavlov, D.; Papazov, G.; Monahov, B.

    For almost a century now the tubular plate design has been based on cylindrical tubes and spines. The contact surface between the positive active mass (PAM) and the spine is small, which results in high polarisation of the plate at high discharge currents and low power output of the cell. In an attempt to eliminate these disadvantages, the shape of the tubes has been changed to flattened elliptic and the spines have been replaced by strap grids. The thickness of this new type of tubular plate, strap grid tubular plate (SGTP), is between 3 and 5 mm. Batteries with tubular plates of the new design (SGTP batteries) can be used in electric vehicle (EV) and photovoltaic (PV) system applications. This paper presents results of SGTP battery tests according to the European standards for EV, hybrid electric vehicle (HEV) and photovoltaic (PV) system batteries. SGTP batteries have a cycle life of 1000 ECE-15-EV cycles, 6000 ECE-HEV cycles and more than eight gross PV cycles. The optimum battery charge algorithm for VRLA batteries with strap grid tubular plates has been established and the mechanism of disintegration of the positive active mass has been disclosed. The following phenomena are responsible for the decline in capacity of the positive plates. First, when the PAM is built up of globules adhering closely to each other, a strong skeleton with thick aggregates (branches) with a membrane surface is formed. The surface layer of the branches impedes the access of H 2O and H 2SO 4 to their interior thus reducing the utilisation of the PAM. Besides, internal stresses are created in the aggregates, which cause them to crack. Secondly, when the PAM is built up of individual agglomerates with micropores in between, a porous mass with large surface is formed. The tubes keep the aggregates together and prolong the cycle life of the battery. During discharge, the contacts between the aggregates weaken and the capacity declines. Third, during discharge, the H 2SO 4 concentration in the pores of the plate inner layers (close to the straps) increases. In concentrated H 2SO 4 solution the solubility of PbSO 4 crystals decreases. This slows down the rate of oxidation of PbSO 4 to PbO 2. Some parts of the PbSO 4 crystals in the PAM of the charged plate remain unoxidised (residual sulphation). Thus, the capacity of the plate is lower. Strap corrosion is the phenomenon that may limit the cycle life of SGT plates.

  17. 49 CFR 230.46 - Badge plates.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges 230.46 Badge plates. A metal badge plate showing the allowed steam pressure shall be attached to...

  18. 49 CFR 230.46 - Badge plates.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges 230.46 Badge plates. A metal badge plate showing the allowed steam pressure shall be attached to...

  19. Investigation on mechanical properties of contemporary metallic bone plates: towards the development of composite bone plates.

    PubMed

    Hoque, M E; Zainal, N H; Syarif, J

    2008-07-01

    This study aims at investigating the mechanical properties of the contemporary metallic bone plates determining the effect of their length, width and thickness on the properties and compares with the composite bone plates. Three-points bending test was performed over the stainless steel plates of different length, width and thickness. The test results showed that different plates had different mechanical properties. However, the properties are still much higher than that of particular bones intended to be treated. Therefore, the reported findings strongly encourage developing composite bone plates with biocompatible polymers/fibers that would have modulated properties according to the requirements. PMID:19024999

  20. Peen plating

    NASA Technical Reports Server (NTRS)

    Babecki, A. J. (Inventor); Haehner, C. L.

    1973-01-01

    A process for metal plating which comprises spraying a mixture of metallic powder and small peening particles at high velocity against a surface is described. The velocity must be sufficient to impact and bond metallic powder onto the surface. In the case of metal surfaces, the process has as one of its advantages providing mechanical working (hardening) of the surface simultaneously with the metal plating.

  1. The Fresnel zone plate antenna

    NASA Astrophysics Data System (ADS)

    Wiltse, James C.; Garrett, James E.

    1991-01-01

    The Fresnel zone plate, a planar device producing lens-like focusing and imaging of electromagnetic waves, is introduced. Compared to lenses, the zone plate offers advantages in terms of simplicity (flat construction, no curvature), reduced thickness, weight, absorption loss and cost. The main disadvantage of the zone plates is a reduced efficiency compared to a lens; a quarter-wave correction gives 81 percent efficiency and an eight-wave correction would give 95 percent. Experimental results obtained at a variety of microwave and mm-wave frequencies are discussed.

  2. Standardized performance tests of collectors of solar thermal energy-a flat-plate collector with a single-tube serpentine flow distribution

    NASA Technical Reports Server (NTRS)

    Johnson, S.

    1976-01-01

    This preliminary data report gives basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficienty is correlated in terms of inlet temperature and flux level.

  3. The Bending and Stretching of Plates

    NASA Astrophysics Data System (ADS)

    Mansfield, Eric Harold

    1989-09-01

    Written by one of the world's leading authorities on plate behavior, this study gives a clear physical insight into elastic plate behavior. Small-deflection theory is treated in Part 1 in chapters dealing with basic equations: including thermal effects and multi-layered anisotropic plates, rectangular plates, circular and other shaped plates, plates whose boundaries are amenable to conformal transformation, plates with variable thickness, and approximate methods. Large-deflection theory is treated in Part 2 in chapters dealing with basic equations and exact solutions; approximate methods, including post-buckling behavior; and asymptotic theories for very thin plates, including tension field theory and inextensional theory. The mathematical content is necessarily high, making the style of the book appropriate to engineers and applied mathematicians. E.H. Mansfield is a Fellow of the Royal Society, a founder member of the Fellowship of Engineering, and the author of over 100 publications.

  4. The Bending and Stretching of Plates

    NASA Astrophysics Data System (ADS)

    Mansfield, Eric Harold

    2005-08-01

    Written by one of the world's leading authorities on plate behavior, this study gives a clear physical insight into elastic plate behavior. Small-deflection theory is treated in Part 1 in chapters dealing with basic equations: including thermal effects and multi-layered anisotropic plates, rectangular plates, circular and other shaped plates, plates whose boundaries are amenable to conformal transformation, plates with variable thickness, and approximate methods. Large-deflection theory is treated in Part 2 in chapters dealing with basic equations and exact solutions; approximate methods, including post-buckling behavior; and asymptotic theories for very thin plates, including tension field theory and inextensional theory. The mathematical content is necessarily high, making the style of the book appropriate to engineers and applied mathematicians. E.H. Mansfield is a Fellow of the Royal Society, a founder member of the Fellowship of Engineering, and the author of over 100 publications.

  5. Bipolar battery plate

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor)

    1985-01-01

    A liquid-impermeable plate (10) having throughplate conductivity with essentially zero resistance comprises an insulator sheet (12) having a series of spaced perforations (14) each of which contains a metal element (16) sealingly received into the perforation (14). A low-cost plate can readily be manufactured by punching a thermoplastic sheet (40) such as polypropylene with a punching tool (52), filling the apertures with lead spheres (63) having a diameter smaller than the holes (50) but larger than the thickness of the sheet, sweeping excess spheres (62) off the sheet with a doctor blade (60) and then pressing a heated platen (74) onto the sheet to swage the spheres into a cylindrical shape and melt the surrounding resin to form a liquid-impermeable collar (4) sealing the metal into the sheet.

  6. Plates with Incompatible Prestrain

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Kaushik; Lewicka, Marta; Schäffner, Mathias

    2016-01-01

    We study effective elastic behavior of the incompatibly prestrained thin plates, where the prestrain is independent of thickness and uniform through the plate's thickness h. We model such plates as three-dimensional elastic bodies with a prescribed pointwise stress-free state characterized by a Riemannian metric G, and seek the limiting behavior as {h to 0} . We first establish that when the energy per volume scales as the second power of h, the resulting {Γ} -limit is a Kirchhoff-type bending theory. We then show the somewhat surprising result that there exist non-immersible metrics G for whom the infimum energy (per volume) scales smaller than h 2. This implies that the minimizing sequence of deformations carries nontrivial residual three-dimensional energy but it has zero bending energy as seen from the limit Kirchhoff theory perspective. Another implication is that other asymptotic scenarios are valid in appropriate smaller scaling regimes of energy. We characterize the metrics G with the above property, showing that the zero bending energy in the Kirchhoff limit occurs if and only if the Riemann curvatures R 1213, R 1223 and R 1212 of G vanish identically. We illustrate our findings with examples; of particular interest is an example where {G_{2 × 2}} , the two-dimensional restriction of G, is flat but the plate still exhibits the energy scaling of the Föppl-von Kármán type. Finally, we apply these results to a model of nematic glass, including a characterization of the condition when the metric is immersible, for {G = Id3 + γ n ⊗ n} given in terms of the inhomogeneous unit director field distribution { n in R^3}.

  7. Preparation of thick molybdenum targets

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1974-01-01

    Thick natural molybdenum deposits on nickel plated copper substrates were prepared by thermal decomposition of molybdenum hexacarbonyl vapors on a heated surface in an inert gas atmosphere. The molybdenum metal atoms are firmly bonded to the substrate atoms, thus providing an excellent thermal contact across the junction. Molybdenum targets thus prepared should be useful for internal bombardment in a cyclotron where thermal energy inputs can exceed 10 kW.

  8. An understanding of HSLA-65 plate steels

    NASA Astrophysics Data System (ADS)

    Sampath, K.

    2006-02-01

    HSLA-65 plate steels can be produced using one of five plate manufacturing techniques: normalizing, controlled rolling (CR), controlled rolling followed by accelerated cooling (CR-AC), direct quenching and tempering (DQT), or conventional quenching and tempering (Q&T). The HSLA-65 steels are characterized by low carbon content and low alloy content, and they exhibit a low carbon equivalent that allows improved plate weldability. These characteristics in turn (a) provide the steel plate with a refined microstructure that ensures high strength and toughness; (b) eliminate or substantially reduce the need for preheating during welding; (c) resist susceptibility to hydrogen-assisted cracking (HAC) in the weld heat affected zone (HAZ) when fusion (arc) welded using low heat-input conditions; and (d) depending on section thickness, facilitate high heat-input welding (about 2 kJ/mm) without significant loss of strength or toughness in the HAZ. However, application of this plate manufacturing process and of these controls produces significant differences in the metallurgical structure and range of mechanical properties of the HSLA-65 plate steels both among themselves and versus conventional higher strength steel (HSS) plates. For example, among the HSLA-65 plate steels, those produced by Q&T exhibit minimal variability in mechanical properties, especially in thicker plates. Besides variability in mechanical properties depending on plate thickness, the CR and CR-AC plate steels exhibit a relatively higher yield strength to ultimate tensile strength (YS/UTS) ratio than do DQT and Q&T steels. Such differences in processing and properties of HSLA-65 plate steels could potentially affect the selection and control of various secondary fabrication practices, including arc welding. Consequently, fabricators must exercise extreme caution when transferring allowable limits of certified secondary fabrication practices from one type of HSLA-65 plate steel to another, even for the same plate thickness.

  9. Cadmium plating replacements

    SciTech Connect

    Nelson, M.J.; Groshart, E.C.

    1995-03-01

    The Boeing Company has been searching for replacements to cadmium plate. Two alloy plating systems seem close to meeting the needs of a cadmium replacement. The two alloys, zinc-nickel and tin-zinc are from alloy plating baths; both baths are neutral pH. The alloys meet the requirements for salt fog corrosion resistance, and both alloys excel as a paint base. Currently, tests are being performed on standard fasteners to compare zinc-nickel and tin-zinc on threaded hardware where cadmium is heavily used. The Hydrogen embrittlement propensity of the zinc-nickel bath has been tested, and just beginning for the tin-zinc bath. Another area of interest is the electrical properties on aluminum for tin-zinc and will be discussed. The zinc-nickel alloy plating bath is in production in Boeing Commercial Airplane Group for non-critical low strength steels. The outlook is promising that these two coatings will help The Boeing Company significantly reduce its dependence on cadmium plating.

  10. Cadmium plating replacements

    NASA Technical Reports Server (NTRS)

    Nelson, Mary J.; Groshart, Earl C.

    1995-01-01

    The Boeing Company has been searching for replacements to cadmium plate. Two alloy plating systems seem close to meeting the needs of a cadmium replacement. The two alloys, zinc-nickel and tin-zinc are from alloy plating baths; both baths are neutral pH. The alloys meet the requirements for salt fog corrosion resistance, and both alloys excel as a paint base. Currently, tests are being performed on standard fasteners to compare zinc-nickel and tin-zinc on threaded hardware where cadmium is heavily used. The Hydrogen embrittlement propensity of the zinc-nickel bath has been tested, and just beginning for the tin-zinc bath. Another area of interest is the electrical properties on aluminum for tin-zinc and will be discussed. The zinc-nickel alloy plating bath is in production in Boeing Commercial Airplane Group for non-critical low strength steels. The outlook is promising that these two coatings will help The Boeing Company significantly reduce its dependence on cadmium plating.

  11. 24 CFR 3280.5 - Data plate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Data plate. 3280.5 Section 3280.5... MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS General § 3280.5 Data plate. Each manufactured home shall bear a data plate affixed in a permanent manner near the main electrical panel or other...

  12. 24 CFR 3280.5 - Data plate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Data plate. 3280.5 Section 3280.5... MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS General § 3280.5 Data plate. Each manufactured home shall bear a data plate affixed in a permanent manner near the main electrical panel or other...

  13. 24 CFR 3280.5 - Data plate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Data plate. 3280.5 Section 3280.5... MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS General § 3280.5 Data plate. Each manufactured home shall bear a data plate affixed in a permanent manner near the main electrical panel or other...

  14. 24 CFR 3280.5 - Data plate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Data plate. 3280.5 Section 3280.5... MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS General § 3280.5 Data plate. Each manufactured home shall bear a data plate affixed in a permanent manner near the main electrical panel or other...

  15. Buckling Analysis of Rectangular Plates With Holes

    NASA Technical Reports Server (NTRS)

    Nemeth, M. P.

    1987-01-01

    BUCKO is computer program developed to predict buckling of rectangular compression-loaded orthotropic plate with centrally located cutout. Plate assumed balanced, symmetric laminate of uniform thickness. Cutout shape elliptical, circular, rectangular, or square. Package includes sample data demonstrating essence of program and ease of use. Written in FORTRAN V.

  16. Lightweight, Rack-Mountable Composite Cold Plate/Shelves

    NASA Technical Reports Server (NTRS)

    Hurlbert, Kathryn M.; Ruemmele, Warren; Nguyen, Hai D.; Andish, Kambiz; McCalley, Sean

    2004-01-01

    Rack-mountable composite-material structural components that would serve as both shelves and cold plates for removing heat from electronic or other equipment mounted on the shelves have been proposed as lightweight alternatives to all-metal cold plate/shelves now in use. A proposed cold plate/shelf would include a highly thermally conductive face sheet containing oriented graphite fibers bonded to an aluminum honeycomb core, plus an extruded stainless-steel substructure containing optimized flow passages for a cooling fluid, and an inlet and outlet that could be connected to standard manifold sections. To maximize heat-transfer efficiency, the extruded stainless-steel substructure would be connected directly to the face sheet. On the basis of a tentative design, the proposed composite cold plate/shelf would weigh about 38 percent less than does an all-aluminum cold plate in use or planned for use in some spacecraft and possibly aircraft. Although weight is a primary consideration, the tentative design offers the additional benefit of reduction of thickness to half that of the all-aluminum version.

  17. Comparison of 3M Petrifilm environmental Listeria plates against standard enrichment methods for the detection of Listeria monocytogenes of epidemiological significance from environmental surfaces.

    PubMed

    Nyachuba, D G; Donnelly, C W

    2007-11-01

    Environmental monitoring using sensitive methods for detection and elimination of harborage sites of Listeria monocytogenes is key to the control of this organism. The 3M Petrifilm Environmental Listeria (EL) Plate-a no enrichment method-was compared with the USDA/FSIS, modified USDA/FSIS (mUSDA), and ISO methods for detection/recovery of L. monocytogenes on 4 environmental surfaces (brick, dairy board, stainless steel, and epoxy resin). The efficacy of 3 sampling devices including the Microbial-Vac system((R)), environmental sponge, and 3M Quick swab in recovering epidemiologically significant strains of uninjured and sublethally injured L. monocytogenes from environmental surfaces was evaluated. Environmental surfaces were inoculated with Listeria to obtain final cell densities of approximately 10 to 100 CFU/100 cm(2). The surfaces were then sampled and processed. For all methods, percent recovery (% samples where Listeria was detected) was significantly higher (P < 0.05) for uninjured cells (75% to 100%) compared to injured cells (58.9% to 81.1%). The Petrifilm EL Plate method efficiently recovered both low level and injured Listeria populations from environmental test surfaces when used in conjunction with environmental sponge and the 3M Quick swab sampling. The mUSDA method was superior to all other methods for recovering both uninjured (100% recovery) and injured L. monocytogenes (80.8% to 81.1% recovery). Sponges and swabs were equally effective in recovering uninjured and injured Listeria and were significantly different (P < 0.05) from the Microbial-Vac system. The findings indicate that both mUSDA and Petrifilm EL Plate methods can be used for the detection of potentially injured Listeria on food processing environmental surfaces. PMID:18034727

  18. Stiffnesses of laminated flat plates

    NASA Astrophysics Data System (ADS)

    1994-04-01

    ESDU 94003 gives formulae for the in-plane and flexural stiffnesses of laminated flat plates built-up from thin orthotropic layers that may have different material properties, thicknesses, and orientations of their principal axes of orthotropy. The influence of the lay-up arrangement on the plate stiffnesses is explained. A complete list of possible forms of the stiffness matrices is provided with in each case examples of possible lay-up arrangements that will give them. Although it is normally convenient to use the central plane of the plate as the reference plane, subsequent calculations may be simplified by adopting another parallel reference plane; formulae are given for the values of the coupled in-plane and flexural stiffness matrix and the flexural stiffness matrix of the plate for such a shift of reference plane. The in-plane stiffness matrix is unaffected. A worked example illustrates the calculation of the stiffnesses. The relationship between the stiffnesses of a layer and the complete matrix of the elastic constants for an anisotropic solid is included. The relationship of the stiffnesses of both isotropic plates and sandwich panels with the laminated plate stiffnesses is also given. Equations are given relating the stress and strain in a layer in one axis system to those in another. The formulae apply to composite plates with systematic fibrous reinforcements in metallic or non-metallic matrices.

  19. Influence of boundary conditions and plate geometries on buckling optimization of symmetric laminate plates

    SciTech Connect

    Hu, H.T.

    1995-12-31

    The buckling resistance of symmetrically laminated plates with a given material system and subjected to uniaxial compression is maximized with respect to fiber orientations by using a sequential linear programming method together with a simple move-limit strategy. Significant influence of plate thicknesses, aspect ratios, central circular cutouts and end conditions on the optimal fiber orientations and the associated optimal buckling loads of symmetrically laminated plates has been shown through this investigation.

  20. Impact on multilayered composite plates

    NASA Technical Reports Server (NTRS)

    Kim, B. S.; Moon, F. C.

    1977-01-01

    Stress wave propagation in a multilayer composite plate due to impact was examined by means of the anisotropic elasticity theory. The plate was modelled as a number of identical anisotropic layers and the approximate plate theory of Mindlin was then applied to each layer to obtain a set of difference-differential equations of motion. Dispersion relations for harmonic waves and correction factors were found. The governing equations were reduced to difference equations via integral transforms. With given impact boundary conditions these equations were solved for an arbitrary number of layers in the plate and the transient propagation of waves was calculated by means of a Fast Fourier Transform algorithm. The multilayered plate problem was extended to examine the effect of damping layers present between two elastic layers. A reduction of the interlaminar normal stress was significant when the thickness of damping layer was increased but the effect was mostly due to the softness of the damping layer. Finally, the problem of a composite plate with a crack on the interlaminar boundary was formulated.

  1. 46 CFR 154.170 - Outer hull steel plating.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Outer hull steel plating. 154.170 Section 154.170... Structure § 154.170 Outer hull steel plating. (a) Except as required in paragraph (b) of this section, the outer hull steel plating, including the shell and deck plating must meet the material standards of...

  2. 46 CFR 154.170 - Outer hull steel plating.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Outer hull steel plating. 154.170 Section 154.170... Structure § 154.170 Outer hull steel plating. (a) Except as required in paragraph (b) of this section, the outer hull steel plating, including the shell and deck plating must meet the material standards of...

  3. 46 CFR 154.170 - Outer hull steel plating.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Outer hull steel plating. 154.170 Section 154.170... Structure § 154.170 Outer hull steel plating. (a) Except as required in paragraph (b) of this section, the outer hull steel plating, including the shell and deck plating must meet the material standards of...

  4. 46 CFR 154.170 - Outer hull steel plating.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Outer hull steel plating. 154.170 Section 154.170... Structure § 154.170 Outer hull steel plating. (a) Except as required in paragraph (b) of this section, the outer hull steel plating, including the shell and deck plating must meet the material standards of...

  5. 46 CFR 154.170 - Outer hull steel plating.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Outer hull steel plating. 154.170 Section 154.170... Structure § 154.170 Outer hull steel plating. (a) Except as required in paragraph (b) of this section, the outer hull steel plating, including the shell and deck plating must meet the material standards of...

  6. Nonlinear flexure and equivalent mechanical thickness of the lithosphere

    NASA Astrophysics Data System (ADS)

    Ranalli, G.

    1994-12-01

    The elastic flexural thickness of the lithosphere depends on plate curvature. As curvature increases, the elastic core of the plate is thinned from above (frictional yielding) and from below (plastic creep). Sometimes decoupling between crust and mantle elastic cores can also occur. The mechanical thickness of the lithosphere, on the other hand, is the thickness of the rheologically layered plate having a strength above a critical threshold. In order to estimate the mechanical thickness from a simple uniform-rheology plate model, we adopt a plastic work-hardening constitutive equation, which results in lower stresses in the regions of high strain, relative to the elastic model. It is, therefore, a better approximation to the actual rheology of the flexed lithosphere where there is no lower-crustal decoupling (e.g., in oceanic and in cold continental lithosphere). The equivalent mechanical thickness of the nonlinear plate can be directly obtained, if the curvature is known, from the estimated elastic flexural rigidity or thickness. Comparison with numerical integration of bending moment in rheologically layered lithosphere shows that equivalent mechanical thickness is a good estimation of mechanical thickness. Examination of both oceanic and continental data suggests that mechanical thickness is controlled by the 900 100 C isotherm. This corresponds to a creep strength of the order of 10 MPa in upper mantle material.

  7. 49 CFR 571.403 - Standard No. 403; Platform lift systems for motor vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... approved the materials incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51 (See... Federal Motor Vehicle Safety Standard No. 404, Platform Lift Installations in Motor Vehicles (49 CFR 571... rectangular steel plate of uniform thickness and the load that rests on the test pallet is made of...

  8. Acoustic radiation from a point excited infinite bilaminar plate

    SciTech Connect

    Yum, S.H.

    1992-01-01

    Presented in this thesis is a refined model for plate deformation which allows for new types of thickness and extensional displacements not currently feasible in the classical or Timoshenko-Mindlin plate theories. An infinite bilaminar plate is fabricated in such a way that the two plates, made of different, isotropic, homogeneous materials, are perfectly bonded. A new mathematical model of the vibration of an infinite bilaminar plate has been obtained by using energy methods. The displacement field is based on symmetric and anti-symmetric displacement functions in both the thickness stretch and the thickness shear of each layer. From this model, the Timoshenko-Mindlin thick plate theory and the Bernoulli-Euler classic plate theory for a single plate can be recovered as special limiting cases. For this model, six-branched frequency-wavenumber spectrums of the single and the bilaminar plates are computed. This allows the introduction of suitable correction coefficients to correct the resulting frequency spectra so that they correspond to those of the exact elasticity theory. In addition, the relationship between frequency and critical angle spectra has been examined. The acoustic pressure directivity of a point force excited plate has been obtained, and the influence of structural damping on the directivity function of the plate is investigated.

  9. Voltage-current characteristics of a pin-plate system with different plate configurations

    NASA Astrophysics Data System (ADS)

    Feng, Zhuangbo; Long, Zhengwei

    2013-03-01

    In this paper, the voltage-current (V-I) characteristics of a pin-plate system with four types of collection plate configurations are studied experimentally. The collection plates consider a single metal plate, a metal plate with a fly ash cake layer, a metal plate with a clean filter media and a metal plate with a dirty filter media. The results show that the clean filter media has no obvious effect on the V-I characteristics. But the dirty filter media reduces the current density because of its high resistance. The thick fly ash cake layer increase current density because of the anti-corona effect but the increment is not very obvious.

  10. Forced Asymmetric Response of Linearly Tapered Circular Plates

    NASA Astrophysics Data System (ADS)

    Gupta, A. P.; Goyal, N.

    1999-03-01

    The eigenfunction method is used to analyze the asymmetric response of linearly tapered circular plates subjected to transverse loads, uniformly distributed over an annular sectorial area of the plate. The analysis is based on the classical plate theory. Numerical results are presented graphically for the transverse deflection and stresses of the plate for various combinations of plate and loading parameters. Results obtained, as a particular case, for a plate of constant thickness subjected to an off-center half-sine pulse point load are compared with previously published results and found to match exactly.

  11. Quaternions as astrometric plate constants

    NASA Technical Reports Server (NTRS)

    Jefferys, William H.

    1987-01-01

    A new method for solving problems in relative astrometry is proposed. In it, the relationship between the measured quantities and the components of the position vector of a star is modeled using quaternions, in effect replacing the plate constants of a standard four-plate-constant solution with the four components of a quaternion. The method allows a direct solution for the position vectors of the stars, and hence for the equatorial coordinates. Distortions, magnitude, and color effects are readily incorporated into the formalism, and the method is directly applicable to overlapping-plate problems. The advantages of the method include the simplicity of the resulting equations, their freedom from singularities, and the fact that trigonometric functions and tangential point transformations are not needed to model the plate material. A global solution over the entire sky is possible.

  12. Sensitivity, Specificity, and Predictive Values of Three Salmonella Rapid Detection Kits Using Fresh and Frozen Poultry Environmental Samples versus Those of Standard Plating

    PubMed Central

    Peplow, Melissa O.; Correa-Prisant, Maria; Stebbins, Martha E.; Jones, Frank; Davies, Peter

    1999-01-01

    To reduce human exposure to Salmonella spp. in poultry products, broiler chicken flocks have been tested by culture methods. Since the standard techniques may take 3 to 5 days, rapid detection methods have been developed. In this study we tested the performance of three rapid tests originally developed for food samples by using environmental samples obtained from poultry houses. These rapid tests were Reveal, an enzyme-linked immunosorbent assay from Neogen Corp.; BIND, a bacterial ice nucleation detection method from Idetek Corp.; and a filter monitor method from Future Medical Technologies, Inc. For the standard culture, brilliant green with novabiocin and xyloselysinetergitol-4 agar were used for presumptive identification, and identities were confirmed by using poly-O antisera. Environmental samples were collected from farms belonging to an integrated poultry company prior to chick placement and 1 week before slaughter. Sensitivities, specificities, and predictive values with 95% confidence intervals were calculated. Statistical differences were determined by using McNemars chi square test. The sensitivities of the different tests were not stable, varying widely between sample times, and were affected by freezing of the samples. All of the rapid tests had low sensitivities, which led to many false-negative results. All tests were able to detect Salmonella spp. at a concentration of 10 CFU/ml in at least one of four trials. The BIND and Reveal tests were simple to use with multiple samples and reduced laboratory time by up to 1 day. Based on our results, we do not recommend that any of these rapid tests, in their present state of development, be utilized with environmental samples collected with drag swabs. PMID:10049863

  13. Orthogonal femoral plating

    PubMed Central

    Auston, D. A.; Werner, F. W.; Simpson, R. B.

    2015-01-01

    Objectives This study tests the biomechanical properties of adjacent locked plate constructs in a femur model using Sawbones. Previous studies have described biomechanical behaviour related to inter-device distances. We hypothesise that a smaller lateral inter-plate distance will result in a biomechanically stronger construct, and that addition of an anterior plate will increase the overall strength of the construct. Methods Sawbones were plated laterally with two large-fragment locking compression plates with inter-plate distances of 10 mm or 1 mm. Small-fragment locking compression plates of 7-hole, 9-hole, and 11-hole sizes were placed anteriorly to span the inter-plate distance. Four-point bend loading was applied, and the moment required to displace the constructs by 10 mm was recorded. Results We found that a 1 mm inter-plate distance supported greater moments than a 10 mm distance in constructs with only lateral plates. Moments supported after the addition of a 9- or 11-hole anterior plate were greater for both 10 mm and 1 mm inter-plate distance, with the 11-hole anterior plate supporting a greater moment than a 9-hole plate. Femurs with a 7-hole anterior plate fractured regardless of lateral inter-plate distance size. Conclusion This suggests that the optimal plate configuration is to minimise lateral inter-plate distance and protect it with an anterior plate longer than seven holes. Cite this article: Bone Joint Res 2015;4:238. PMID:25715873

  14. Stop motion microphotography of laser driven plates

    SciTech Connect

    Frank, A.M.; Trott, W.M.

    1994-09-01

    Laser driven plates have been used for several years for high velocity shock wave and impact studies. Recent questions about the integrity and ablation rates of these plates coupled with an improved capability for microscopic stop motion photography led to this study. For these experiments, the plates were aluminum, coated on the ends of optical fibers. A high power laser pulse in the fiber ionizes the aluminum at the fiber/coating interface. The plasma thus created accelerates the remaining aluminum to high velocities, several kilometers per second. We defined {open_quotes}thick{close_quotes} or {open_quotes}thin{close_quotes} coatings as those where a flying plate (flyer) was launched vs. the material being completely ionized. Here we were specifically interested in the thick/thin boundary to develop data for the numerical models attempting to predict flyer behavior.

  15. Perforated plates for thin-walled structures

    NASA Astrophysics Data System (ADS)

    Drdacky, M.; Lesak, J.

    1992-10-01

    Perforated plates, that is, plates with a high density of small openings, as a suitable sheet material for thin walled plated structures are presented. Perforations enable to increase a wall thickness of thin walled structures and thus, also, their load carrying capacity at the same material consumption. Results of experimental research concerning the stability behavior of such perforated webs compressed at two opposite edges are described. The influence of the plate thickness, the perforation extent, shapes of holes, and support conditions were studied. A simple semi-empirical method for estimating critical loads of perforated webs is presented. A utilization of perforated webs in search of optimum mass distribution in compressed thin walls is demonstrated.

  16. Growth Plate Fractures

    MedlinePLUS

    .org Growth Plate Fractures Page ( 1 ) The bones of children and adults share many of the same risks for injury. But because they ... to a unique injury called a growth plate fracture. Growth plates are areas of cartilage located near ...

  17. Heat Treatment of Friction-Stir-Welded 7050 Aluminum Plates

    NASA Technical Reports Server (NTRS)

    Petter, George E.; Figert, John D.; Rybicki, Daniel J.; Burns, Timothy

    2006-01-01

    A method of heat treatment has been developed to reverse some of the deleterious effects of friction stir welding of plates of aluminum alloy 7050. This alloy is considered unweldable by arc and high-energy-density beam fusion welding processes. The alloy can be friction stir welded, but as-welded workpieces exhibit low ductility, low tensile and yield strengths, and low resistance to stress corrosion cracking. Heat treatment according to the present method increases tensile and yield strengths, and minimizes or eliminates stress corrosion cracking. It also increases ductility. This method of heat treatment is a superior alternative to a specification-required heat treatment that caused the formation of large columnar grains, which are undesired. Workpieces subjected to the prior heat treatment exhibited elongations <2 percent, and standard three-point bend specimens shattered. The development of the present heat treatment method was guided partly by the principles that (1) by minimizing grain sizes and relieving deformation stresses, one can minimize or eliminate stress corrosion cracking and (2) the key to maximizing strength and eliminating residual stresses is to perform post-weld solution heating for as long a time as possible while incurring little or no development of large columnar grains in friction stir weld nuggets. It is necessary to perform some of the solution heat treatment (to soften the alloy and improve machine welding parameters) before welding. The following is an example of thickness- dependent pre- and post-weld heat treatments according to the present method: For plates 0.270 in. (approx.6.86 mm) thick milled from plates 4.5 in. (114.3 mm) thick, perform pre-weld solution heating at 890 F (477 C) for 1 hour, then cool in air. After friction stir welding, perform solution heating for 10 minutes, quench, hold at room temperature for 96 hours, then age at 250 F (121 C) for 5 hours followed by 325 F (163 C) for 27 hours.

  18. 49 CFR 179.100-6 - Thickness of plates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... specified in 179.101, nor that calculated by the following formula: t = Pd / 2SE Where: d = Inside diameter in inches; E = 1.0 welded joint efficiency; except for heads with seams=0.9; P = Minimum...

  19. TFSSRA - THICK FREQUENCY SELECTIVE SURFACE WITH RECTANGULAR APERTURES

    NASA Technical Reports Server (NTRS)

    Chen, J. C.

    1994-01-01

    Thick Frequency Selective Surface with Rectangular Apertures (TFSSRA) was developed to calculate the scattering parameters for a thick frequency selective surface with rectangular apertures on a skew grid at oblique angle of incidence. The method of moments is used to transform the integral equation into a matrix equation suitable for evaluation on a digital computer. TFSSRA predicts the reflection and transmission characteristics of a thick frequency selective surface for both TE and TM orthogonal linearly polarized plane waves. A model of a half-space infinite array is used in the analysis. A complete set of basis functions with unknown coefficients is developed for the waveguide region (waveguide modes) and for the free space region (Floquet modes) in order to represent the electromagnetic fields. To ensure the convergence of the solutions, the number of waveguide modes is adjustable. The method of moments is used to compute the unknown mode coefficients. Then, the scattering matrix of the half-space infinite array is calculated. Next, the reference plane of the scattering matrix is moved half a plate thickness in the negative z-direction, and a frequency selective surface of finite thickness is synthesized by positioning two plates of half-thickness back-to-back. The total scattering matrix is obtained by cascading the scattering matrices of the two half-space infinite arrays. TFSSRA is written in FORTRAN 77 with single precision. It has been successfully implemented on a Sun4 series computer running SunOS, an IBM PC compatible running MS-DOS, and a CRAY series computer running UNICOS, and should run on other systems with slight modifications. Double precision is recommended for running on a PC if many modes are used or if high accuracy is required. This package requires the LINPACK math library, which is included. TFSSRA requires 1Mb of RAM for execution. The standard distribution medium for this program is one 5.25 inch 360K MS-DOS format diskette. It is also available on a .25 inch streaming magnetic tape cartridge (Sun QIC-24) in UNIX tar format. This program was developed in 1992 and is a copyrighted work with all copyright vested in NASA.

  20. 49 CFR 230.46 - Badge plates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Badge plates. 230.46 Section 230.46 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.46 Badge plates. A metal...

  1. 30 CFR 20.13 - Approval plate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Approval plate. 20.13 Section 20.13 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MINE LAMPS OTHER THAN STANDARD CAP LAMPS 20.13 Approval plate. The manufacturer shall attach, stamp, or mold an...

  2. 30 CFR 20.13 - Approval plate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Approval plate. 20.13 Section 20.13 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MINE LAMPS OTHER THAN STANDARD CAP LAMPS 20.13 Approval plate. The manufacturer shall attach, stamp, or mold an...

  3. 30 CFR 20.13 - Approval plate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MINING PRODUCTS ELECTRIC MINE LAMPS OTHER THAN STANDARD CAP LAMPS 20.13 Approval plate. The... permissible lamp. The plate shall bear the emblem of the Mine Safety and Health Administration, and be inscribed as follows: Permissible _____ Lamp. Approval No. issued to the Company. When deemed...

  4. 30 CFR 20.13 - Approval plate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... MINING PRODUCTS ELECTRIC MINE LAMPS OTHER THAN STANDARD CAP LAMPS 20.13 Approval plate. The... permissible lamp. The plate shall bear the emblem of the Mine Safety and Health Administration, and be inscribed as follows: Permissible _____ Lamp. Approval No. issued to the Company. When deemed...

  5. Computing relative plate velocities: a primer

    SciTech Connect

    Bevis, M.

    1987-08-01

    Standard models of present-day plate motions are framed in terms of rates and poles of rotation, in accordance with the well-known theorem due to Euler. This article shows how computation of relative plate velocities from such models can be viewed as a simple problem in spherical trigonometry. A FORTRAN subroutine is provided to perform the necessary computations.

  6. 40 CFR 426.40 - Applicability; description of the plate glass manufacturing subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... plate glass manufacturing subcategory. 426.40 Section 426.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Plate Glass Manufacturing Subcategory § 426.40 Applicability; description of the plate...

  7. 40 CFR 426.40 - Applicability; description of the plate glass manufacturing subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... plate glass manufacturing subcategory. 426.40 Section 426.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Plate Glass Manufacturing Subcategory § 426.40 Applicability; description of the plate...

  8. Natural frequencies of twisted rotating plates

    NASA Technical Reports Server (NTRS)

    Ramamurti, V.; Kielb, R.

    1984-01-01

    A detailed comparison is presented of the predicted eigenfrequencies of twisted rotating plates as obtained by using two different shape functions. Primarily, rotating twisted plates of two different aspect ratios and two different thickness ratios are considered. The effects of rotation are included by using a 'stress smoothing' technique when calculating the augmented stiffness matrix. In addition, the effects of Coriolis acceleration, contributions from membrane behavior, setting angle and sweep angle are considered. The effects of geometric nonlinearity are briefly discussed. Finally, results of a brief study of cambered plates are presented.

  9. Practical designs for thin film wave plates

    NASA Astrophysics Data System (ADS)

    Hodgkinson, Ian J.; Wu, Qi Hong

    1998-09-01

    Thin film wave plates are constructed by the oblique deposition of dielectric material onto glass substrates. Two basic designs incorporating biaxial columnar thin films have been proposed. The single-column-angle plate provides different sensitivities of retardance to angular tilting, but suffers from thickness (and hence retardance) wedging. The double-column-angle plate is relatively insensitive in tilt and substantially free of wedging. However, both basic designs are susceptible to the ingress of atmospheric moisture, which has the effect of reducing the retardance. In this paper we describe modifications to the basic designs that seal the wave plates against the uptake of atmospheric moisture. The modifications eliminate wedging in the single- column-angle plate, but the characteristic angular sensitivity of the basic designs are retained.

  10. Temperature-dependent creep buckling of plates

    NASA Technical Reports Server (NTRS)

    Ross, D. A.; Berke, L.

    1981-01-01

    Time-dependent lateral deflection of flat rectangular plates is predicted by the Norton-Bailey (Norton 1929, Bailey 1935) power law for material creep. The plates have a through-thickness steady-state temperature distribution, and the effects are considered by using Maxwell's law to modify the power creep law. Equations are derived for creep exponents of 3 and 5, using the sandwich plate element to predict creep buckling of plates. Predictions of creep buckling with a temperature variation between the inner and outer plate surfaces are found to be somewhat dependent on the creep buckling relationship assumed. When significant scatter justifies a variation in the creep constants up to an order of magnitude, discrepancies in predictions using the two exponents are reasonable, and for one engineering material, the predictions have the same degree of agreement with experimental data as have the respective creep laws.

  11. Torsion and transverse bending of cantilever plates

    NASA Technical Reports Server (NTRS)

    Reissner, Eric; Stein, Manuel

    1951-01-01

    The problem of combined bending and torsion of cantilever plates of variable thickness, such as might be considered for solid thin high-speed airplane or missile wings, is considered in this paper. The deflections of the plate are assumed to vary linearly across the chord; minimization of the potential energy by means of the calculus of variations then leads to two ordinary linear differential equations for the bending deflections and the twist of the plate. Because the cantilever is analyzed as a plate rather than as a beam, the effect of constraint against axial warping in torsion is inherently included. The application of this method to specific problems involving static deflection, vibration, and buckling of cantilever plates is presented. In the static-deflection problems, taper and sweep are considered.

  12. Copper Map Plate Detail

    USGS Multimedia Gallery

    A portion of the engraving on the plate used to print points, lines, and text in black ink. Engravings on the plate are left-to-right reversed. This plate was cleaned and treated to improve the visibility of the engraving. The plate was used to print the Washington [D.C.] and vicinity, 1:31,680-sca...

  13. Sputtering and ion plating

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The proceedings of a conference on sputtering and ion plating are presented. Subjects discussed are: (1) concepts and applications of ion plating, (2) sputtering for deposition of solid film lubricants, (3) commercial ion plating equipment, (4) industrial potential for ion plating and sputtering, and (5) fundamentals of RF and DC sputtering.

  14. MTR plates modeling with MAIA

    SciTech Connect

    Marelle, V.; Dubois, S.; Ripert, M.; Noirot, J.

    2008-07-15

    MAIA is a thermo-mechanical code dedicated to the modeling of MTR fuel plates. The main physical phenomena modeled in the code are the cladding oxidation, the interaction between fuel and Al-matrix, the swelling due to fission products and the Al/fuel particles interaction. The creeping of the plate can be modeled in the mechanical calculation. MAIA has been validated on U-Mo dispersion fuel experiments such as IRIS 1 and 2 and FUTURE. The results are in rather good agreement with post-irradiation examinations. MAIA can also be used to calculate in-pile behavior of U{sub 3}Si{sub 2} plates as in the SHARE experiment irradiated in the SCK/Mol BR2 reactor. The main outputs given by MAIA throughout the irradiation are temperatures, cladding oxidation thickness, interaction thickness, volume fraction of meat constituents, swelling, displacements, strains and stresses. MAIA is originally a two-dimensional code but a three-dimensional version is currently under development. (author)

  15. Volcano spacing and plate rigidity

    SciTech Connect

    Brink, U. )

    1991-04-01

    In-plane stresses, which accompany the flexural deformation of the lithosphere under the load adjacent volcanoes, may govern the spacing of volcanoes in hotspot provinces. Specifically, compressive stresses in the vicinity of a volcano prevent new upwelling in this area, forcing a new volcano to develop at a minimum distance that is equal to the distance in which the radial stresses change from compressional to tensile (the inflection point). If a volcano is modeled as a point load on a thin elastic plate, then the distance to the inflection point is proportional to the thickness of the plate to the power of 3/4. Compilation of volcano spacing in seven volcanic groups in East Africa and seven volcanic groups of oceanic hotspots shows significant correlation with the elastic thickness of the plate and matches the calculated distance to the inflection point. In contrast, volcano spacing in island arcs and over subduction zones is fairly uniform and is much larger than predicted by the distance to the inflection point, reflecting differences in the geometry of the source and the upwelling areas.

  16. Variations in lithospheric thickness on Venus

    NASA Technical Reports Server (NTRS)

    Johnson, C. L.; Sandwell, David T.

    1992-01-01

    Recent analyses of Magellan data have indicated many regions exhibiting topograhic flexure. On Venus, flexure is associated predominantly with coronae and the chasmata with Aphrodite Terra. Modeling of these flexural signatures allows the elastic and mechanical thickness of the lithosphere to be estimated. In areas where the lithosphere is flexed beyond its elastic limit the saturation moment provides information on the strength of the lithosphere. Modeling of 12 flexural features on Venus has indicated lithospheric thicknesses comparable with terrestrial values. This has important implications for the venusian heat budget. Flexure of a thin elastic plate due simultaneously to a line load on a continuous plate and a bending moment applied to the end of a broken plate is considered. The mean radius and regional topographic gradient are also included in the model. Features with a large radius of curvature were selected so that a two-dimensional approximation could be used. Comparisons with an axisymmetric model were made for some features to check the validity of the two-dimensional assumption. The best-fit elastic thickness was found for each profile crossing a given flexural feature. In addition, the surface stress and bending moment at the first zero crossing of each profile were also calculated. Flexural amplitudes and elastic thicknesses obtained for 12 features vary significantly. Three examples of the model fitting procedures are discussed.

  17. Novel 3D ultrasound image-based biomarkers based on a feature selection from a 2D standardized vessel wall thickness map: a tool for sensitive assessment of therapies for carotid atherosclerosis

    NASA Astrophysics Data System (ADS)

    Chiu, Bernard; Li, Bing; Chow, Tommy W. S.

    2013-09-01

    With the advent of new therapies and management strategies for carotid atherosclerosis, there is a parallel need for measurement tools or biomarkers to evaluate the efficacy of these new strategies. 3D ultrasound has been shown to provide reproducible measurements of plaque area/volume and vessel wall volume. However, since carotid atherosclerosis is a focal disease that predominantly occurs at bifurcations, biomarkers based on local plaque change may be more sensitive than global volumetric measurements in demonstrating efficacy of new therapies. The ultimate goal of this paper is to develop a biomarker that is based on the local distribution of vessel-wall-plus-plaque thickness change (VWT-Change) that has occurred during the course of a clinical study. To allow comparison between different treatment groups, the VWT-Change distribution of each subject must first be mapped to a standardized domain. In this study, we developed a technique to map the 3D VWT-Change distribution to a 2D standardized template. We then applied a feature selection technique to identify regions on the 2D standardized map on which subjects in different treatment groups exhibit greater difference in VWT-Change. The proposed algorithm was applied to analyse the VWT-Change of 20 subjects in a placebo-controlled study of the effect of atorvastatin (Lipitor). The average VWT-Change for each subject was computed (i) over all points in the 2D map and (ii) over feature points only. For the average computed over all points, 97 subjects per group would be required to detect an effect size of 25% that of atorvastatin in a six-month study. The sample size is reduced to 25 subjects if the average were computed over feature points only. The introduction of this sensitive quantification technique for carotid atherosclerosis progression/regression would allow many proof-of-principle studies to be performed before a more costly and longer study involving a larger population is held to confirm the treatment efficacy.

  18. An evaluation of displacement-based finite element models used for free vibration analysis of homogeneous and composite plates

    NASA Astrophysics Data System (ADS)

    Burlayenko, V. N.; Altenbach, H.; Sadowski, T.

    2015-12-01

    The finite element vibration analysis of plates has become one of the classical problems over the past several decades. Different finite element plate models based on classical, standard and improved shear deformable plate theories, three-dimensional elasticity equations or their combinations have been developed. The ability and accuracy of each such model can be established by validating it against analytical models, if it is possible, or other numerical models. In this paper, a comparative study of different plate finite element models used for the free vibration analysis of homogeneous isotropic and anisotropic, composite laminated and sandwich thin and thick plates with different boundary conditions is presented. The aim of the study is to find out the weaknesses and strengths of each model used and to pick out their interchangeability for the finite element calculations. For comparisons, the plate models based on classical and first-order shear deformation theories within the framework of both single-layer and layer-wise concept and three-dimensional theory of elasticity are used. The models are created using the finite element package ABAQUSTM. Natural frequencies obtained by the authors are compared with results known in the literature from different analytical or approximate solutions and, then, the correlation between them is discussed in detail. At the end, conclusions are drawn concerning the utility of each model considered for vibration predictions of plates.

  19. Plate Tectonics, Geographical Information System, paleogeography

    Energy Science and Technology Software Center (ESTSC)

    2002-05-24

    The PaleoX.framwork is a dynamically linked/loaded framework for Cocoa applications. The primary goal of this library is to standardize several elements used for working with paleogeographic data. This includes objects designed to organize information for tectonic plates, including maps, rotation objects, plate names, and designations. In addition, PaleoX provides object-oriented solutions for handling standard paleogeographic file formats from the PALEOMAP Project.

  20. A THUMBNAIL HISTORY OF HETEROTROPHIC PLATE COUNT (HPC) METHODOLOGY IN THE UNITED STATES

    EPA Science Inventory

    Over the past 100 years, the method of determining the number of bacteria in water, foods or other materials has been termed variously as: bacterial plate count, total plate count, total viable plate count, aerobic plate count, standard plate cound and more recently, heterotrophi...

  1. Accuracy of the TRIA3 thick shell element

    NASA Technical Reports Server (NTRS)

    Case, William R.; Concha, Marco; Mcginnis, Mark

    1992-01-01

    The accuracy of the new TRIA3 thick shell element is assessed via comparison with a theoretical solution for thick homogeneous and honeycomb flat simply supported plates under the action of a uniform pressure load. The theoretical thick plate solution is based on the theory developed by Reissner and includes the effects of transverse shear flexibility which are not included in the thin plate solutions based on Kirchoff plate theory. In addition, the TRIA3 is assessed using a set of finite element test problems developed by the MacNeal-Schwendler Corp. (MSC). Comparison of the COSMIC TRIA3 element as well as those from MSC and Universal Analytics Inc. (UAI) for these problems is presented. The current COSMIC TRIA3 element is shown to have excellent comparison with both the theoretical solutions and also those from the two commercial versions of NASTRAN with which it is compared.

  2. Steady-state heat conduction in multilayered composite plates and shells

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Burton, W. S.

    1991-01-01

    A study is made of a predictor-corrector procedure for the accurate determination of the temperature and heat flux distributions in thick multilayered composite plates and shells. A linear through-the-thickness temperature distribution is used in the predictor phase. The functional dependence of temperature on the thickness coordinate is then calculated a posteriori and used in the corrector phase. Extensive numerical results are presented for linear steady-state heat conduction problems, showing the effects of variation in the geometric and lamination parameters on the accuracy of the thermal response predictions of the predictor-corrector approach. Both antisymmetrically laminated anisotropic plates and multilayered orthotropic cylinders are considered. The solutions are assumed to be periodic in the surface coordinates. For each problem the standard of comparison is taken to be the analytic three-dimensional solution based on treating each layer as a homogeneous anisotropic medium. The potential of the predictor-corrector approach for predicting the thermal response of multilayered plates and shells with complicated geometry is discussed.

  3. Dual passband dichroic plate for X-band

    NASA Astrophysics Data System (ADS)

    Otoshi, T. Y.; Franco, M. M.

    1992-10-01

    A need arose in the NASA Deep Space Network, a worldwide tracking system, for a dichroic plate that would be transparent at two desired frequency bands in the X-band region and be totally reflective at S-band. The dual-passband dichroic plate that was developed to meet the technical requirements is a thick metallic plate having an array of periodic round holes filled with Teflon plugs. Test results on an experimental prototype plate indicate that it is technically possible to design a dielectrically filled dichroic plate that meets all of these technical requirements.

  4. The primary resonance of laminated piezoelectric rectangular plates.

    PubMed

    Zhao, Shuai; Shi, Zhifei; Xiang, Hongjun

    2009-11-01

    Based on Hamilton's principle and the Rayleigh-Ritz method, a model of a nonlinear dynamic laminated piezoelectric rectangular plate was established, and the governing equations were derived and solved for both the thin-plate and thick-plate models. In the present investigation, the nonlinear constitutive relations of piezoelectric materials were considered and the effects of the nonlinearity on the response of the plate were discovered. The primary resonance of rectangular plate is investigated with the use of the method of multiple scales. The results obtained in the present paper agree very well with the experiment results. PMID:19942538

  5. Electromagnetic semitransparent δ-function plate: Casimir interaction energy between parallel infinitesimally thin plates

    NASA Astrophysics Data System (ADS)

    Parashar, Prachi; Milton, Kimball A.; Shajesh, K. V.; Schaden, M.

    2012-10-01

    We derive boundary conditions for electromagnetic fields on a δ-function plate. The optical properties of such a plate are shown to necessarily be anisotropic in that they only depend on the transverse properties of the plate. We unambiguously obtain the boundary conditions for a perfectly conducting δ-function plate in the limit of infinite dielectric response. We show that a material does not “optically vanish” in the thin-plate limit. The thin-plate limit of a plasma slab of thickness d with plasma frequency ωp2=ζp/d reduces to a δ-function plate for frequencies (ω=iζ) satisfying ζd≪ζpd≪1. We show that the Casimir interaction energy between two parallel perfectly conducting δ-function plates is the same as that for parallel perfectly conducting slabs. Similarly, we show that the interaction energy between an atom and a perfect electrically conducting δ-function plate is the usual Casimir-Polder energy, which is verified by considering the thin-plate limit of dielectric slabs. The “thick” and “thin” boundary conditions considered by Bordag are found to be identical in the sense that they lead to the same electromagnetic fields.

  6. Toward the Standard Population Synthesis Model of the X-Ray Background: Evolution of X-Ray Luminosity and Absorption Functions of Active Galactic Nuclei Including Compton-thick Populations

    NASA Astrophysics Data System (ADS)

    Ueda, Yoshihiro; Akiyama, Masayuki; Hasinger, Gnther; Miyaji, Takamitsu; Watson, Michael G.

    2014-05-01

    We present the most up to date X-ray luminosity function (XLF) and absorption function of active galactic nuclei (AGNs) over the redshift range from 0 to 5, utilizing the largest, highly complete sample ever available obtained from surveys performed with Swift/BAT, MAXI, ASCA, XMM-Newton, Chandra, and ROSAT. The combined sample, including that of the Subaru/XMM-Newton Deep Survey, consists of 4039 detections in the soft (0.5-2 keV) and/or hard (>2 keV) band. We utilize a maximum likelihood method to reproduce the count rate versus redshift distribution for each survey, by taking into account the evolution of the absorbed fraction, the contribution from Compton-thick (CTK) AGNs, and broadband spectra of AGNs, including reflection components from tori based on the luminosity- and redshift-dependent unified scheme. We find that the shape of the XLF at z ~ 1-3 is significantly different from that in the local universe, for which the luminosity-dependent density evolution model gives much better description than the luminosity and density evolution model. These results establish the standard population synthesis model of the X-ray background (XRB), which well reproduces the source counts, the observed fractions of CTK AGNs, and the spectrum of the hard XRB. The number ratio of CTK AGNs to the absorbed Compton-thin (CTN) AGNs is constrained to be ?0.5-1.6 to produce the 20-50 keV XRB intensity within present uncertainties, by assuming that they follow the same evolution as CTN AGNs. The growth history of supermassive black holes is discussed based on the new AGN bolometric luminosity function.

  7. Toward the standard population synthesis model of the X-ray background: Evolution of X-ray luminosity and absorption functions of active galactic nuclei including Compton-thick populations

    SciTech Connect

    Ueda, Yoshihiro; Akiyama, Masayuki; Hasinger, Günther; Miyaji, Takamitsu; Watson, Michael G.

    2014-05-10

    We present the most up to date X-ray luminosity function (XLF) and absorption function of active galactic nuclei (AGNs) over the redshift range from 0 to 5, utilizing the largest, highly complete sample ever available obtained from surveys performed with Swift/BAT, MAXI, ASCA, XMM-Newton, Chandra, and ROSAT. The combined sample, including that of the Subaru/XMM-Newton Deep Survey, consists of 4039 detections in the soft (0.5-2 keV) and/or hard (>2 keV) band. We utilize a maximum likelihood method to reproduce the count rate versus redshift distribution for each survey, by taking into account the evolution of the absorbed fraction, the contribution from Compton-thick (CTK) AGNs, and broadband spectra of AGNs, including reflection components from tori based on the luminosity- and redshift-dependent unified scheme. We find that the shape of the XLF at z ∼ 1-3 is significantly different from that in the local universe, for which the luminosity-dependent density evolution model gives much better description than the luminosity and density evolution model. These results establish the standard population synthesis model of the X-ray background (XRB), which well reproduces the source counts, the observed fractions of CTK AGNs, and the spectrum of the hard XRB. The number ratio of CTK AGNs to the absorbed Compton-thin (CTN) AGNs is constrained to be ≈0.5-1.6 to produce the 20-50 keV XRB intensity within present uncertainties, by assuming that they follow the same evolution as CTN AGNs. The growth history of supermassive black holes is discussed based on the new AGN bolometric luminosity function.

  8. Bending of skew plates of variable rigidity.

    NASA Technical Reports Server (NTRS)

    Willems, N.; Mahmood, S. S.

    1972-01-01

    Description of an analytical procedure for studying the bending of thin skew plates of a thickness varying in one direction, under arbitrary lateral loading. The analysis was programmed for execution on an electronic computer for various conditions and types of loading. The results obtained suggest that the proposed analytical procedure is more accurate than the finite-difference technique used in earlier investigations.

  9. Non-cyanide silver plating

    SciTech Connect

    Dini, J.W.

    1995-11-07

    Lawrence Livermore National Laboratory (LLNL) and Technic, Inc. have entered into a CRADA (Cooperative Research and Development Agreement) with the goal of providing industry with an environmentally benign alternative to the presently used silver cyanide plating process. This project has been in place for about six months and results are quite promising. The main objective, that of deposition of deposits as thick as 125 um (5 mils), has been met. Property data such as stress and hardness have been obtained and the structure of the deposit has been analyzed via metallography and x-ray diffraction. These results will be presented in this paper, along with plans for future work.

  10. An elastic plate model for interseismic deformation in subduction zones

    NASA Astrophysics Data System (ADS)

    Kanda, Ravi V. S.; Simons, Mark

    2010-03-01

    Geodetic observations of interseismic surface deformation in the vicinity of subduction zones are frequently interpreted using simple kinematic elastic dislocation models (EDM). In this theoretical study, we develop a kinematic EDM that simulates plate subduction over the interseismic period (the elastic subducting plate model (ESPM)) having only 2 more degrees of freedom than the well-established back slip model (BSM): an elastic plate thickness and the fraction of flexural stresses due to bending at the trench that are released continuously. Unlike the BSM, in which steady state deformation in both plates is assumed to be negligible, the ESPM includes deformation in the subducting and overriding plates (owing to plate thickness), while still preserving the correct sense of convergence velocity between the subducting and overriding plates, as well as zero net steady state vertical offset between the two plates when integrated over many seismic cycles. The ESPM links elastic plate flexure processes to interseismic deformation and helps clarify under what conditions the BSM is appropriate for fitting interseismic geodetic data at convergent margins. We show that the ESPM is identical to the BSM in the limiting case of zero plate thickness, thereby providing an alternative motivation for the BSM. The ESPM also provides a consistent convention for applying the BSM to any megathrust interface geometry. Even in the case of nonnegligible plate thickness, the deformation field predicted by the ESPM reduces to that of the BSM if stresses related to plate flexure at the trench are released either continuously and completely at shallow depths during the interseismic period or deep in the subduction zone (below 100 km). However, if at least a portion of these stresses are not continuously released in the shallow portion of the subduction zone (via seismic or aseismic events), then the predicted surface velocities of these two models can differ significantly at horizontal distances from the trench equivalent to a few times the effective interseismic locking depth.

  11. Thermal distortion tests of aluminum and stainless steel plates

    SciTech Connect

    Bielick, E.; Fornek, T.; Spinka, H.; Underwood, D.

    1993-06-25

    An important upgrade to the STAR detector at the Brookhaven National Laboratory RHIC accelerator will be an electromagnetic calorimeter. One design being considered for this calorimeter involves cast lead modules covering {Delta}{phi} = 6{degree} and 0 {le} {vert_bar}{eta}{vert_bar} {le} 1. These modules would consist of alternating layers of lead and sheets of plastic scintillator. The gaps for scintillator between the layers of lead would be created by parallel aluminum plates of thickness {approx_equal}6.6 mm = 0.260in. in the mold for the modules. These plates would need to be machined or ground to be reasonably flat, perhaps to {plus_minus}0.003in., and of uniform thickness from plate to plate. These requirements are imposed by the need to remove the plates from the casting after cooling, and to have good uniformity of the lead layer thickness, which gives good performance for the modules as a calorimeter. Aluminum was chosen for the plates because of its high coefficient of thermal expansion. An important cost in this calorimeter design is associated with the machining or grinding of the plates to proper thickness and flatness. In most cost estimates, it has been assumed that the mold parts could be used many times. This note describes a simple test which was conducted to investigate possible distortions in the plates after repeated heating to temperatures at which the lead would be poured into the mold and cooling.

  12. How the interior viscosity structure of a terrestrial planet controls plate driving forces and plate tectonics

    NASA Astrophysics Data System (ADS)

    Hoeink, T.; Lenardic, A.; Jellinek, M.; Richards, M. A.

    2011-12-01

    One of the fundamental unresolved problems in Earth and planetary science is the generation of plate tectonics from mantle convection. Important achievements can be made when considering rheological properties in the context of mantle convection dynamics. Among these milestones are (1) a deeper understanding of the balance of forces that drive and resist plate motion and (2) the dynamic generation of narrow plate boundaries (that lead to a piecewise continuous surface velocity distribution). Extending classic plate-tectonic theory we predict a plate driving force due to viscous coupling at the base of the plate from fast flow in the asthenosphere. Flow in the asthenosphere is due to shear-driven contributions from an overriding plate and due to additional pressure-driven contributions. We use scaling analysis to show that the extent to which this additional plate-driving force contributes to plate motions depends on the lateral dimension of plates and on the relative viscosities and thicknesses of lithosphere and asthenosphere. Whereas slab-pull forces always govern the motions of plates with a lateral extent greater than the mantle depth, asthenosphere-drive forces can be relatively more important for smaller (shorter wavelength) plates, large relative asthenosphere viscosities or large asthenosphere thicknesses. Published plate velocities, tomographic images and age-binned mean shear wave velocity anomaly data allow us to estimate the relative contributions of slab-pull and asthenosphere-drive forces driving the motions of the Atlantic and Pacific plates. At the global scale of terrestrial planets, we use 3D spherical shell simulations of mantle convection with temperature-, depth- and stress dependent rheology to demonstrate that a thin low-viscosity layer (asthenosphere) governs convective stresses imparted to the lithosphere. We find, consistent with theoretical predictions, that convective stresses increase for thinner asthenospheres. This result might eliminate the need for special weakening mechanisms to generate plate tectonics from mantle convection. Our results elucidate the role of the asthenosphere for plate tectonics on Earth, and also provide insights into the differences in tectonic styles between Earth and Venus.

  13. Earth's Decelerating Tectonic Plates

    SciTech Connect

    Forte, A M; Moucha, R; Rowley, D B; Quere, S; Mitrovica, J X; Simmons, N A; Grand, S P

    2008-08-22

    Space geodetic and oceanic magnetic anomaly constraints on tectonic plate motions are employed to determine a new global map of present-day rates of change of plate velocities. This map shows that Earth's largest plate, the Pacific, is presently decelerating along with several other plates in the Pacific and Indo-Atlantic hemispheres. These plate decelerations contribute to an overall, globally averaged slowdown in tectonic plate speeds. The map of plate decelerations provides new and unique constraints on the dynamics of time-dependent convection in Earth's mantle. We employ a recently developed convection model constrained by seismic, geodynamic and mineral physics data to show that time-dependent changes in mantle buoyancy forces can explain the deceleration of the major plates in the Pacific and Indo-Atlantic hemispheres.

  14. Growth Plate Injuries

    MedlinePLUS

    ... may be negatively affected. How Are Growth Plate Fractures Diagnosed? A child who has persistent pain, or ... 1999. Used with the author’s permission. Type I: Fracture Through the Growth Plate The epiphysis is completely ...

  15. Portable Plating System

    NASA Technical Reports Server (NTRS)

    Flores, R.

    1984-01-01

    Plating system mounted on portable cart includes 30-gallon (23.5 liter) electrolyte tank, filler pump, heaters, replenishing anodes, plating rectifiers and tank rectifier to continously remove contaminants.

  16. Corneal thickness in glaucoma.

    PubMed

    De Cevallos, E; Dohlman, C H; Reinhart, W J

    1976-02-01

    The central corneal stromal thickness of patients with open angle glaucoma, secondary glaucoma (the majority aphakic), or a history of unilateral acute angle closure glaucoma were measured and compared with the stromal thickness of a group of normal patients. In open angle glaucoma, there was a small but significant increase in the average stromal thickness. This thickness increase was, in all likelihood, due to an abnormal function of the endothelium in this disease since the level of the intraocular pressure did not seem to be a factor. There was no correlation between stromal thickness and duration of the glaucoma or type of anti-glaucomatous medication. Most cases of secondary glaucome, controlled medically or not, had markedly increased corneal thickness, again, most likely, due to endothelial damage rather than to level of intraocular pressure. After an angle closure attack, permanent damage to the cornea was found to be rare. PMID:1247273

  17. ASSEMBLY OF PARALLEL PLATES

    DOEpatents

    Groh, E.F.; Lennox, D.H.

    1963-04-23

    This invention is concerned with a rigid assembly of parallel plates in which keyways are stamped out along the edges of the plates and a self-retaining key is inserted into aligned keyways. Spacers having similar keyways are included between adjacent plates. The entire assembly is locked into a rigid structure by fastening only the outermost plates to the ends of the keys. (AEC)

  18. Rotatable shear plate interferometer

    DOEpatents

    Duffus, Richard C. (Livermore, CA)

    1988-01-01

    A rotatable shear plate interferometer comprises a transparent shear plate mounted obliquely in a tubular supporting member at 45.degree. with respect to its horizontal center axis. This tubular supporting member is supported rotatably around its center axis and a collimated laser beam is made incident on the shear plate along this center axis such that defocus in different directions can be easily measured.

  19. Paper terahertz wave plates.

    PubMed

    Scherger, Benedikt; Scheller, Maik; Vieweg, Nico; Cundiff, Steven T; Koch, Martin

    2011-12-01

    We present a low-cost terahertz wave plate based on form birefringence fabricated using ordinary paper. Measurements of the transfer function of the wave plate between polarizers closely agree with predictions based on the measured complex indices of refraction of the effective medium. For the design frequency, the dependence on wave plate angle also agrees with theory. PMID:22273881

  20. Plating Tank Control Software

    Energy Science and Technology Software Center (ESTSC)

    1998-03-01

    The Plating Tank Control Software is a graphical user interface that controls and records plating process conditions for plating in high aspect ratio channels that require use of low current and long times. The software is written for a Pentium II PC with an 8 channel data acquisition card, and the necessary shunt resistors for measuring currents in the millampere range.

  1. Three-dimensional estimate of the lithospheric effective elastic thickness of the Line ridge

    NASA Astrophysics Data System (ADS)

    Hu, Minzhang; Li, Jiancheng; Jin, Taoyong; Xu, Xinyu; Xing, Lelin; Shen, Chongyang; Li, Hui

    2015-09-01

    Using a new bathymetry grid formed with vertical gravity gradient anomalies and ship soundings (BAT_VGG), a 1° × 1° lithospheric effective elastic thickness (Te) grid of the Line ridge was calculated with the moving window admittance technique. As a comparison, both the GEBCO_08 and SIO V15.1 bathymetry datasets were used to calculate Te as well. The results show that BAT_VGG is suitable for the calculation of lithospheric effective elastic thickness. The lithospheric effective elastic thickness of the Line ridge is shown to be low, in the range of 5.5-13 km, with an average of 8 km and a standard deviation of 1.3 km. Using the plate cooling model as a reference, most of the effective elastic thicknesses are controlled by the 150-300 °C isotherm. Seamounts are primarily present in two zones, with lithospheric ages of 20-35 Ma and 40-60 Ma, at the time of loading. Unlike the Hawaiian-Emperor chain, the lithospheric effective elastic thickness of the Line ridge does not change monotonously. The tectonic setting of the Line ridge is discussed in detail based on our Te results and the seamount ages collected from the literature. The results show that thermal and fracture activities must have played an important role in the origin and evolution of the ridge.

  2. Scaling of energy absorbing composite plates

    NASA Technical Reports Server (NTRS)

    Jackson, Karen; Lavoie, J. Andre; Morton, John

    1994-01-01

    The energy absorption response and crushing characteristics of geometrically scaled graphite-Kevlar epoxy composite plates were investigated. Two different trigger mechanisms including notch, and steeple geometries were incorporated into the plate specimens to initiate crushing. Sustained crushing was achieved with a new test fixture which provided lateral support to prevent global buckling. Values of specific sustained crushing stress (SSCS) were obtained which were lower than values reported for tube specimens from previously published data. Two sizes of hybrid plates were fabricated; a baseline or model plate, and a full-scale plate with inplane dimensions scaled by a factor of two. The thickness dimension of the full-scale plates was increased using two different techniques: the ply-level method in which each ply orientation in the baseline laminate stacking sequence is doubled, and the sublaminate technique in which the baseline laminate stacking sequence is repeated as a group. Results indicated that the SSCS has a small dependence on trigger mechanism geometry. However, a reduction in the SSCS of 10-25% was observed for the full-scale plates as compared with the baseline specimens, indicating a scaling effect in the crushing response.

  3. Scaling of energy absorbing composite plates

    NASA Technical Reports Server (NTRS)

    Jackson, Karen; Morton, John; Traffanstedt, Catherine; Boitnott, Richard

    1992-01-01

    The energy absorption response and crushing characteristics of geometrically scaled graphite-Kevlar epoxy composite plates were investigated. Three different trigger mechanisms including chamfer, notch, and steeple geometries were incorporated into the plate specimens to initiate crushing. Sustained crushing was achieved with a simple test fixture which provided lateral support to prevent global buckling. Values of specific sustained crushing stress (SSCS) were obtained which were comparable to values reported for tube specimens from previously published data. Two sizes of hybrid plates were fabricated; a baseline or model plate, and a full-scale plate with in-plane dimensions scaled by a factor of two. The thickness dimension of the full-scale plates was increased using two different techniques; the ply-level method in which each ply orientation in the baseline laminate stacking sequence is doubled, and the sublaminate technique in which the baseline laminate stacking sequence is repeated as a group. Results indicated that the SSCS is independent of trigger mechanism geometry. However, a reduction in the SSCS of 10-25 percent was observed for the full-scale plates as compared with the baseline specimens, indicating a scaling effect in the crushing response.

  4. The nonlinear transient response of thin, rectangular elastic plates

    NASA Technical Reports Server (NTRS)

    Rajagopal, G.; Lowery, R. L.

    1976-01-01

    The results of experiments and theoretical analysis of the nonlinear, transient response of thin, rectangular, elastic, simply supported plates are presented. In the experiments, a plane wave tube with a special pulse generator at one end and a thin glass plate mounted at the other end was used to subject the glass plate to pressure pulses of different magnitudes. Whole-field measurements of the response of the plate were obtained by the reflected moire grid technique. The largest ratio of center deflection to thickness of the plate during the experiments was 5.6. The theoretical response of the glass plate to the pressure pulses was computed by solving the von Karman equations governing large deflections in elastic plates by two methods - (1) the finite-difference method, and (2) Galerkin's method. Good agreement was found between theoretically predicted and experimentally measured response.

  5. Local plate/rod descriptors of 3D trabecular bone micro-CT images from medial axis topologic analysis

    SciTech Connect

    Peyrin, Francoise; Attali, Dominique; Chappard, Christine; Benhamou, Claude Laurent

    2010-08-15

    Purpose: Trabecular bone microarchitecture is made of a complex network of plate and rod structures evolving with age and disease. The purpose of this article is to propose a new 3D local analysis method for the quantitative assessment of parameters related to the geometry of trabecular bone microarchitecture. Methods: The method is based on the topologic classification of the medial axis of the 3D image into branches, rods, and plates. Thanks to the reversibility of the medial axis, the classification is next extended to the whole 3D image. Finally, the percentages of rods and plates as well as their mean thicknesses are calculated. The method was applied both to simulated test images and 3D micro-CT images of human trabecular bone. Results: The classification of simulated phantoms made of plates and rods shows that the maximum error in the quantitative percentages of plate and rods is less than 6% and smaller than with the structure model index (SMI). Micro-CT images of human femoral bone taken in osteoporosis and early or advanced osteoarthritis were analyzed. Despite the large physiological variability, the present method avoids the underestimation of rods observed with other local methods. The relative percentages of rods and plates were not significantly different between osteoarthritis and osteoporotic groups, whereas their absolute percentages were in relation to an increase of rod and plate thicknesses in advanced osteoarthritis with also higher relative and absolute number of nodes. Conclusions: The proposed method is model-independent, robust to surface irregularities, and enables geometrical characterization of not only skeletal structures but entire 3D images. Its application provided more accurate results than the standard SMI on simple simulated phantoms, but the discrepancy observed on the advanced osteoarthritis group raises questions that will require further investigations. The systematic use of such a local method in the characterization of trabecular bone samples could provide new insight in bone microarchitecture changes related to bone diseases or to those induced by drugs or therapy.

  6. 7 CFR 51.2091 - Thickness.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Thickness. 51.2091 Section 51.2091 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF...

  7. 7 CFR 51.2091 - Thickness.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Thickness. 51.2091 Section 51.2091 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF...

  8. An improved plating process

    NASA Technical Reports Server (NTRS)

    Askew, John C.

    1994-01-01

    An alternative to the immersion process for the electrodeposition of chromium from aqueous solutions on the inside diameter (ID) of long tubes is described. The Vessel Plating Process eliminates the need for deep processing tanks, large volumes of solutions, and associated safety and environmental concerns. Vessel Plating allows the process to be monitored and controlled by computer thus increasing reliability, flexibility and quality. Elimination of the trivalent chromium accumulation normally associated with ID plating is intrinsic to the Vessel Plating Process. The construction and operation of a prototype Vessel Plating Facility with emphasis on materials of construction, engineered and operational safety and a unique system for rinse water recovery are described.

  9. Education and "Thick" Epistemology

    ERIC Educational Resources Information Center

    Kotzee, Ben

    2011-01-01

    In this essay Ben Kotzee addresses the implications of Bernard Williams's distinction between "thick" and "thin" concepts in ethics for epistemology and for education. Kotzee holds that, as in the case of ethics, one may distinguish between "thick" and "thin" concepts of epistemology and, further, that this distinction points to the importance of

  10. Thick film hydrogen sensor

    SciTech Connect

    Hoffheins, B.S.; Lauf, R.J.

    1995-09-19

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors. 8 figs.

  11. Thick film hydrogen sensor

    DOEpatents

    Hoffheins, Barbara S. (Knoxville, TN); Lauf, Robert J. (Oak Ridge, TN)

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  12. Education and "Thick" Epistemology

    ERIC Educational Resources Information Center

    Kotzee, Ben

    2011-01-01

    In this essay Ben Kotzee addresses the implications of Bernard Williams's distinction between "thick" and "thin" concepts in ethics for epistemology and for education. Kotzee holds that, as in the case of ethics, one may distinguish between "thick" and "thin" concepts of epistemology and, further, that this distinction points to the importance of…

  13. CMUT Fabrication Based On A Thick Buried Oxide Layer.

    PubMed

    Kupnik, Mario; Vaithilingam, Srikant; Torashima, Kazutoshi; Wygant, Ira O; Khuri-Yakub, Butrus T

    2010-10-01

    We introduce a versatile fabrication process for direct wafer-bonded CMUTs. The objective is a flexible fabrication platform for single element transducers, 1D and 2D arrays, and reconfigurable arrays. The main process features are: A low number of litho masks (five for a fully populated 2D array); a simple fabrication sequence on standard MEMS tools without complicated wafer handling (carrier wafers); an improved device reliability; a wide design space in terms of operation frequency and geometric parameters (cell diameter, gap height, effective insulation layer thickness); and a continuous front face of the transducer (CMUT plate) that is connected to ground (shielding for good SNR and human safety in medical applications). All of this is achieved by connecting the hot electrodes individually through a thick buried oxide layer, i.e. from the handle layer of an SOI substrate to silicon electrodes located in each CMUT cell built in the device layer. Vertical insulation trenches are used to isolate these silicon electrodes from the rest of the substrate. Thus, the high electric field is only present where required - in the evacuated gap region of the device and not in the insulation layer of the post region. Array elements (1D and 2D) are simply defined be etching insulation trenches into the handle wafer of the SOI substrate. PMID:22685377

  14. CMUT Fabrication Based On A Thick Buried Oxide Layer

    PubMed Central

    Kupnik, Mario; Vaithilingam, Srikant; Torashima, Kazutoshi; Wygant, Ira O.; Khuri-Yakub, Butrus T.

    2010-01-01

    We introduce a versatile fabrication process for direct wafer-bonded CMUTs. The objective is a flexible fabrication platform for single element transducers, 1D and 2D arrays, and reconfigurable arrays. The main process features are: A low number of litho masks (five for a fully populated 2D array); a simple fabrication sequence on standard MEMS tools without complicated wafer handling (carrier wafers); an improved device reliability; a wide design space in terms of operation frequency and geometric parameters (cell diameter, gap height, effective insulation layer thickness); and a continuous front face of the transducer (CMUT plate) that is connected to ground (shielding for good SNR and human safety in medical applications). All of this is achieved by connecting the hot electrodes individually through a thick buried oxide layer, i.e. from the handle layer of an SOI substrate to silicon electrodes located in each CMUT cell built in the device layer. Vertical insulation trenches are used to isolate these silicon electrodes from the rest of the substrate. Thus, the high electric field is only present where required in the evacuated gap region of the device and not in the insulation layer of the post region. Array elements (1D and 2D) are simply defined be etching insulation trenches into the handle wafer of the SOI substrate. PMID:22685377

  15. Multicolor printing plate joining

    NASA Technical Reports Server (NTRS)

    Waters, W. J. (Inventor)

    1984-01-01

    An upper plate having ink flow channels and a lower plate having a multicolored pattern are joined. The joining is accomplished without clogging any ink flow paths. A pattern having different colored parts and apertures is formed in a lower plate. Ink flow channels each having respective ink input ports are formed in an upper plate. The ink flow channels are coated with solder mask and the bottom of the upper plate is then coated with solder. The upper and lower plates are pressed together at from 2 to 5 psi and heated to a temperature of from 295 F to 750 F or enough to melt the solder. After the plates have cooled and the pressure is released, the solder mask is removed from the interior passageways by means of a liquid solvent.

  16. Automatic cortical thickness analysis on rodent brain

    NASA Astrophysics Data System (ADS)

    Lee, Joohwi; Ehlers, Cindy; Crews, Fulton; Niethammer, Marc; Budin, Francois; Paniagua, Beatriz; Sulik, Kathy; Johns, Josephine; Styner, Martin; Oguz, Ipek

    2011-03-01

    Localized difference in the cortex is one of the most useful morphometric traits in human and animal brain studies. There are many tools and methods already developed to automatically measure and analyze cortical thickness for the human brain. However, these tools cannot be directly applied to rodent brains due to the different scales; even adult rodent brains are 50 to 100 times smaller than humans. This paper describes an algorithm for automatically measuring the cortical thickness of mouse and rat brains. The algorithm consists of three steps: segmentation, thickness measurement, and statistical analysis among experimental groups. The segmentation step provides the neocortex separation from other brain structures and thus is a preprocessing step for the thickness measurement. In the thickness measurement step, the thickness is computed by solving a Laplacian PDE and a transport equation. The Laplacian PDE first creates streamlines as an analogy of cortical columns; the transport equation computes the length of the streamlines. The result is stored as a thickness map over the neocortex surface. For the statistical analysis, it is important to sample thickness at corresponding points. This is achieved by the particle correspondence algorithm which minimizes entropy between dynamically moving sample points called particles. Since the computational cost of the correspondence algorithm may limit the number of corresponding points, we use thin-plate spline based interpolation to increase the number of corresponding sample points. As a driving application, we measured the thickness difference to assess the effects of adolescent intermittent ethanol exposure that persist into adulthood and performed t-test between the control and exposed rat groups. We found significantly differing regions in both hemispheres.

  17. Design parameters of stainless steel plates for maximizing high frequency ultrasound wave transmission.

    PubMed

    Michaud, Mark; Leong, Thomas; Swiergon, Piotr; Juliano, Pablo; Knoerzer, Kai

    2015-09-01

    This work validated, in a higher frequency range, the theoretical predictions made by Boyle around 1930, which state that the optimal transmission of sound pressure through a metal plate occurs when the plate thickness equals a multiple of half the wavelength of the sound wave. Several reactor design parameters influencing the transmission of high frequency ultrasonic waves through a stainless steel plate were examined. The transmission properties of steel plates of various thicknesses (1-7 mm) were studied for frequencies ranging from 400 kHz to 2 MHz and at different distances between plates and transducers. It was shown that transmission of sound pressure through a steel plate showed high dependence of the thickness of the plate to the frequency of the sound wave (thickness ratio). Maximum sound pressure transmission of ∼ 60% of the incident pressure was observed when the ratio of the plate thickness to the applied frequency was a multiple of a half wavelength (2 MHz, 6mm stainless steel plate). In contrast, minimal sound pressure transmission (∼ 10-20%) was measured for thickness ratios that were not a multiple of a half wavelength. Furthermore, the attenuation of the sound pressure in the transmission region was also investigated. As expected, it was confirmed that higher frequencies have more pronounced sound pressure attenuation than lower frequencies. The spatial distribution of the sound pressure transmitted through the plate characterized by sonochemiluminescence measurements using luminol emission, supports the validity of the pressure measurements in this study. PMID:25637292

  18. What Are Growth Plate Injuries?

    MedlinePLUS

    ... foot, or hip bones. Who Gets Growth Plate Injuries? Growth plate injuries happen to children and young people. The ... boys as in girls. What Causes Growth Plate Injuries? Growth plate injuries happen for many reasons. Most occur after ...

  19. Accurate stress resultants equations for laminated composite deep thick shells

    SciTech Connect

    Qatu, M.S.

    1995-11-01

    This paper derives accurate equations for the normal and shear force as well as bending and twisting moment resultants for laminated composite deep, thick shells. The stress resultant equations for laminated composite thick shells are shown to be different from those of plates. This is due to the fact the stresses over the thickness of the shell have to be integrated on a trapezoidal-like shell element to obtain the stress resultants. Numerical results are obtained and showed that accurate stress resultants are needed for laminated composite deep thick shells, especially if the curvature is not spherical.

  20. Finite stretching of a circular plate of neo-Hookean material.

    NASA Technical Reports Server (NTRS)

    Biricikoglu, V.

    1971-01-01

    The analytical solution presented is based on the assumption that the deformed thickness of the plate is approximately constant. The nonlinear equations governing finite axisymmetric deformations of a circular plate made of neo-Hookean material are used in the analysis. The variation of circumferential extension ratio and the variation of deformed thickness are shown in graphs.

  1. Screen test for cadmium and nickel plates

    NASA Technical Reports Server (NTRS)

    Phan, Angie H.; Zimmerman, Albert H.

    1994-01-01

    A new procedure is described which was recently developed to quantify loading uniformity of nickel and cadmium plates and to screen finished electrodes prior to cell assembly. The technique utilizes the initial solubility rates of the active material in a standard chemical deloading solution at fixed conditions. The method can provide a reproducible indication of plate loading uniformity in situations where high surface loading limits the free flow of deloading solution into the internal porosity of the sinter plate. A preliminary study indicates that 'good' cell performance is associated with higher deloading rates.

  2. Crustal thickness variations in Venezuela from deep seismic observations

    NASA Astrophysics Data System (ADS)

    Schmitz, M.; Avila, J.; Bezada, M.; Vieira, E.; Yez, M.; Levander, A.; Zelt, C. A.; Jcome, M. I.; Magnani, M. B.; The Bolivar Active Seismic Working Group

    2008-11-01

    The Caribbean-South America plate boundary zone is a complex zone of plate interactions, forming thrust belts and foreland basins in northern Venezuela. Within the framework of the BOLIVAR and GEODINOS projects, the geodynamics of plate interactions is being investigated using interdisciplinary geological and geophysical methods. Here, we focus on the results of the land based active seismic observations done in 2004 along four deep seismic wide angle profiles, acquired perpendicular to the Caribbean-South America plate boundary in northern Venezuela between longitudes 63 W and 70 W, and ranging from about latitudes 12 N to about 9 N. The mostly unreversed profiles provide information on the crustal structure from the oceanic-transitional crust on the southern border of the Caribbean plate to the continental crust of the Caribbean Mountain System and their associated foreland basins, which are bordered to the south by the Guayana Shield, which corresponds to stable South America plate. The derived crustal thickness oscillates around 35 km along the coastline, corresponding to the Caribbean Mountain System, and decreases only slightly towards the Leeward Antilles. To the south, in the area of the Eastern Venezuela Basin, crustal thickness reaches 40 km, increasing towards the Guayana Shield to 45 km. Nevertheless, there are two regions of anomalous crustal thickness, proven by arrivals from the lower crust and the Moho discontinuity. In the eastern part of the Eastern Venezuela Basin, crustal thickness reaches up to 50 km, with high velocity anomalies within the lower crust, which are interpreted as reworked lower crustal and upper mantle material, associated to the plate interactions of the South American and the Caribbean plates. The second anomalous zone is a remarkable crustal thinning from 35 km to 27 km in the Falcn Basin in western Venezuela, which extends eastwards into the Bonaire Basin, as documented by PmP reflections derived from land shots, and observations of the air gun blasts on the stations of the Venezuelan seismological network.

  3. Finite stretching of an annular plate.

    NASA Technical Reports Server (NTRS)

    Biricikoglu, V.; Kalnins, A.

    1971-01-01

    The problem of the finite stretching of an annular plate which is bonded to a rigid inclusion at its inner edge is considered. The material is assumed to be isotropic and incompressible with a Mooney-type constitutive law. It is shown that the inclusion of the effect of the transverse normal strain leads to a rapid variation in thickness which is confined to a narrow edge zone. The explicit solutions to the boundary layer equations, which govern the behavior of the plate near the edges, are presented.

  4. Simulating radiographic inspections with imaging plates

    NASA Astrophysics Data System (ADS)

    Yao, Min; Duvauchelle, Philippe; Kaftandjian, Valérie; Petersol-Parmentier, Angéla; Schumm, Andreas

    2016-02-01

    Computed Radiography (CR) based on photostimulable imaging plates (IP) is a potential replacement technique for traditional silver film radiography. For the inspections of components with high wall thicknesses requiring higher energy sources, however, imaging plate performance suffers from a spectral response which is low for the higher energies and high in the energy range where scattered radiation is typically observed. For these applications, care must be taken to apply appropriate filtering. Simulation tools are expected to be helpful in determining optimal operating conditions. We present a computer model which combines deterministic and Monte Carlo methods to simulate the imaging chain, focusing in particular on the scanner model.

  5. Lamb waves in binary locally resonant phononic plates with two-dimensional lattices

    NASA Astrophysics Data System (ADS)

    Hsu, Jin-Chen; Wu, Tsung-Tsong

    2007-05-01

    The authors study the propagation of Lamb waves in two-dimensional locally resonant phononic-crystal plates, composed of periodic soft rubber fillers in epoxy host with a finite thickness. Our calculations are based on the efficient plane wave expansion formulation which utilized Mindlin's plate theory. Calculated results show that the low-frequency gaps of Lamb waves are opened up by the localized resonance mechanism. The resonant frequencies of flexure-dominated plate modes are significantly dependent not only on the radius of circular rubber fillers but also on the plate thickness. The properties of localized resonance are qualitatively analogous to the vibration of a circular thin plate.

  6. Linear versus nonlinear theories for laminated composite plates and shells

    SciTech Connect

    Qatu, M.S.

    1995-11-01

    Linear and nonlinear shear-deformation theories for laminated composite plates and shells are discussed in this paper. The emphasis here is on the range of validity for each class of theories. The finite element method is used to determine the maximum stresses for a wide range of statically loaded plate and shell panels with various thickness ratios. This paper concludes that for the vast majority of composite materials and for moderately thick plates and shells, stresses normally reach the maximum allowable stress before nonlinear terms can become important. This has been demonstrated by showing that for the limiting case of shear deformation theories (in which the minimum span length (or radius) to thickness ratio is 20), the material usually fails before the maximum deflection reaches the magnitude of the thickness (where nonlinear terms start to become significant).

  7. Far infrared transmission of a thick TGS single crystal at 7K, and beers' law validity

    NASA Astrophysics Data System (ADS)

    Gerbaux, X.; Marin Cudraz, H.

    1990-01-01

    Far IR transmission of a thick Triglycine Sulfate (TGS) single crystal t=8 mm thick is compared with calculations using the absorption index measured with a very thin t=13 μm thick plate. Big discrepancies suggest the occurence of surface layers.

  8. Origami of thick panels

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Peng, Rui; You, Zhong

    2015-07-01

    Origami patterns, including the rigid origami patterns in which flat inflexible sheets are joined by creases, are primarily created for zero-thickness sheets. In order to apply them to fold structures such as roofs, solar panels, and space mirrors, for which thickness cannot be disregarded, various methods have been suggested. However, they generally involve adding materials to or offsetting panels away from the idealized sheet without altering the kinematic model used to simulate folding. We develop a comprehensive kinematic synthesis for rigid origami of thick panels that differs from the existing kinematic model but is capable of reproducing motions identical to that of zero-thickness origami. The approach, proven to be effective for typical origami, can be readily applied to fold real engineering structures.

  9. Plates and FEM

    NASA Astrophysics Data System (ADS)

    Blaauwendraad, J.

    The word plate is a collective term for systems in which transfer of forces occurs in two directions; walls, deep beams, floors and bridge slabs are all plates. We distinguish two main categories, plates that are loaded in their plane, and plates loaded perpendicularly to their plane. For both categories we give an approach with differential equations, such that a basic understanding is provided and for certain characteristic cases an exact solution can be determined. We follow the displacement method, working with differential equations. In plates that are loaded in their plane, the plane stress state is called the membrane state. All stress components are parallel to the mid- plane of the plate. In special cases we can simply determine the stresses.

  10. Flat plate heat exchangers

    SciTech Connect

    Berringer, R.T.

    1981-09-29

    A lightweight flat plate heat exchanger comprised of two or more essentially parallel flat plates which are formed and arranged to provide fluid flow passages between the plates. New combinations of plastic plates include the usage of transparent plastic foam and honeycomb structures. Improved shapes of flow passages include the usage of flow nozzles, flow diffusers, and jet pumps to increase fluid flow and heat transfer. The invention includes the usage of transparent plastic foam plates which are shaped to concentrate solar energy onto plastic tubes. Clear plastic tubes containing black heat transfer fluid are included. The invention includes the usage of spiral flow channels within plastic foam plates. Six different embodiments of the invention are included. Five of the embodiments could be used as efficient lightweight solar collectors.

  11. Cracking investigation of Nd:YAG laser welded gold plated glass sealing alloys

    SciTech Connect

    Mizik, P.M.; Jimenez, E.

    1992-02-01

    Nd:TAG laser butt-lap joint welds were evaluated to determine the maximum gold plating thickness allowable on two glass-sealing alloys without causing weld cracks. The plate thickness was .012 in. Weld penetration ranged from .010 to .015 in. Crack analyses included scanning electron microscope, metallography, scanning Auger, and electron probe micro-analyzer. It was determined that 50 {mu}in. of gold plating is an acceptable upper limit.

  12. Plating methods, a survey

    NASA Technical Reports Server (NTRS)

    Berkowitz, J. B.; Emerson, N. H.

    1972-01-01

    Results are presented of a comprehensive search of the literature available, much of which has been generated by the research centers of NASA and its contractors, on plating and coating methods and techniques. Methods covered included: (1) electroplating from aqueous solutions; (2) electroplating from nonaqueous solutions; (3) electroplating from fused-salt baths; (4) electroforming; (5) electroless plating, immersion plating, and mirroring; (6) electroplating from gaseous plasmas; and (7) anodized films and conversion coatings.

  13. GOLD PLATING PROCESS

    DOEpatents

    Seegmiller, R.

    1957-08-01

    An improved bath is reported for plating gold on other metals. The composition of the plating bath is as follows: Gold cyanide from about 15 to about 50 grams, potassium cyanide from about 70 to about 125 grams, and sulfonated castor oil from about 0.1 to about 10 cc. The gold plate produced from this bath is smooth, semi-hard, and nonporous.

  14. Fuel Cell Thermal Management Through Conductive Cooling Plates

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Burke, Kenneth A.

    2008-01-01

    An analysis was performed to evaluate the concept of utilizing conductive cooling plates to remove heat from a fuel cell stack, as opposed to a conventional internal cooling loop. The potential advantages of this type of cooling system are reduced stack complexity and weight and increased reliability through the reduction of the number of internal fluid seals. The conductive cooling plates would extract heat from the stack transferring it to an external coolant loop. The analysis was performed to determine the required thickness of these plates. The analysis was based on an energy balance between the thermal energy produced within the stack and the heat removal from the cooling plates. To accomplish the energy balance, the heat flow into and along the plates to the cooling fluid was modeled. Results were generated for various numbers of cells being cooled by a single cooling plate. The results provided cooling plate thickness, mass, and operating temperature of the plates. It was determined that utilizing high-conductivity pyrolitic graphite cooling plates can provide a specific cooling capacity (W/kg) equivalent to or potentially greater than a conventional internal cooling loop system.

  15. PLATES WITH OXIDE INSERTS

    DOEpatents

    West, J.M.; Schumar, J.F.

    1958-06-10

    Planar-type fuel assemblies for nuclear reactors are described, particularly those comprising fuel in the oxide form such as thoria and urania. The fuel assembly consists of a plurality of parallel spaced fuel plate mennbers having their longitudinal side edges attached to two parallel supporting side plates, thereby providing coolant flow channels between the opposite faces of adjacent fuel plates. The fuel plates are comprised of a plurality of longitudinally extending tubular sections connected by web portions, the tubular sections being filled with a plurality of pellets of the fuel material and the pellets being thermally bonded to the inside of the tubular section by lead.

  16. Low loss dichroic plate

    NASA Technical Reports Server (NTRS)

    Woo, R. T.; Ludwig, A. C. (inventors)

    1973-01-01

    A low loss dichroic plate is disclosed for passing radiation within a particular frequency band and reflecting radiation outside of that frequency band. The dichroic plate is comprised of a configuration of dipole elements defined by slots formed in a conductive plate. The slots are dimensioned so as to pass radiation of a selected frequency and are shaped so as to minimize the relationship between that frequency and the tilt angle of the plate relative to the direction of radiation. The slots are arranged so as to minimize signal power loss due to cross polarization effects.

  17. Assessment of Nuclear Fuels using Radiographic Thickness Measurement Method

    SciTech Connect

    Muhammad Abir; Fahima Islam; Hyoung Koo Lee; Daniel Wachs

    2014-11-01

    The Convert branch of the National Nuclear Security Administration (NNSA) Global Threat Reduction Initiative (GTRI) focuses on the development of high uranium density fuels for research and test reactors for nonproliferation. This fuel is aimed to convert low density high enriched uranium (HEU) based fuel to high density low enriched uranium (LEU) based fuel for high performance research reactors (HPRR). There are five U.S. reactors that fall under the HPRR category, including: the Massachusetts Institute of Technology Reactor (MITR), the National Bureau of Standards Reactor (NBSR), the Missouri University Research Reactor (UMRR), the Advanced Test Reactor (ATR), and the High Flux Isotope Reactor (HFIR). U-Mo alloy fuel phase in the form of either monolithic or dispersion foil type fuels, such as ATR Full-size In center flux trap Position (AFIP) and Reduced Enrichment for Research and Test Reactor (RERTR), are being designed for this purpose. The fabrication process1 of RERTR is susceptible to introducing a variety of fuel defects. A dependable quality control method is required during fabrication of RERTR miniplates to maintain the allowable design tolerances, therefore evaluating and analytically verifying the fabricated miniplates for maintaining quality standards as well as safety. The purpose of this work is to analyze the thickness of the fabricated RERTR-12 miniplates using non-destructive technique to meet the fuel plate specification for RERTR fuel to be used in the ATR.

  18. Thermal diffusivity of nonflat plates using the flash method

    SciTech Connect

    Salazar, Agustin; Fuente, Raquel; Apinaniz, Estibaliz; Mendioroz, Arantza

    2011-01-15

    The flash method is the standard technique to measure the thermal diffusivity of solid samples. It consists of heating the front surface of an opaque sample by a brief light pulse and detecting the temperature evolution at its rear surface. The thermal diffusivity is obtained by measuring the time corresponding to the half maximum of the temperature rise, which only depends on the sample thickness and thermal diffusivity through a simple formula. Up to now, the flash method has been restricted to flat samples. In this work, we extend the flash method to measure the thermal diffusivity of nonflat samples. In particular, we focus on plates with cylindrical and spherical shapes. The theoretical model indicates that the same expression for flat samples can also be applied to cylindrical and spherical plates, except for extremely curved samples. Accordingly, a curvature limit for the application of the expression for flat samples is established. Flash measurements on lead foils of cylindrical shape confirm the validity of the model.

  19. A backing plate for quartz crystal resonators improves the baseline stability and the baseline reproducibility

    NASA Astrophysics Data System (ADS)

    Bttcher, Andreas; Peschel, Astrid; Johannsmann, Diethelm

    2015-03-01

    We report on a simple way to hold quartz crystal resonators, which allows for removal of the crystal from a liquid cell and reinsertion into the cell without losing the reference frequency. The crystal is permanently glued to a circular backing plate with a diameter of 1?inch (25.4?mm), where the latter takes up most of the stress occurring during handling. The backing plate also provides for electrical connections. Reduced stress has three effects, which are a reduced frequency drift during an experiment, a reduced variability of frequency upon reinsertion into the cell and an increased lifetime of the crystals. The standard deviation in f/n (f the frequency, n the overtone order) upon reinsertion into a cell was between 0.4 and 1?Hz, which corresponds to an uncertainty in film thickness between 0.08 and 0.2?nm (assuming a fundamental frequency of 5?MHz and a density of the film of 1?g?cm-3). In most experimental regards, the crystal-plate assembly can be treated as if it were a 1?inch crystal. Since the cost of the backing plate is less than the cost of a crystal, it can be treated as a disposable item like the crystal itself.

  20. Accurate thickness measurement of graphene.

    PubMed

    Shearer, Cameron J; Slattery, Ashley D; Stapleton, Andrew J; Shapter, Joseph G; Gibson, Christopher T

    2016-03-29

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials. PMID:26894444

  1. Accurate thickness measurement of graphene

    NASA Astrophysics Data System (ADS)

    Shearer, Cameron J.; Slattery, Ashley D.; Stapleton, Andrew J.; Shapter, Joseph G.; Gibson, Christopher T.

    2016-03-01

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1–1.3 nm to 0.1–0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  2. Growth of large KDP crystals in the form of plates

    SciTech Connect

    Beriot, E; Tatartchenko, V

    1998-05-01

    This paper suggests a new technique of growth-oriented KDP crystals in the form of plates. The technique includes: using small oriented seeds spaced between two parallel platforms with a rapid growth of crystals between these two platforms, in a tank containing a KDP solution. As a result, crystals in the form of plates can be obtained. The thickness of the crystal plate depends on the distance between platforms. The horizontal dimensions of the plate depend on the volume of solution and the diameter of the platforms. The orientation of the plates are defined by the orientation of the seed. KDP crystals in the form of plates of two orientations are grown. The peculiarities of morphology and some characteristics of crystals are discussed.

  3. Plate Wave Resonance with Air-Coupled Ultrasonics

    NASA Astrophysics Data System (ADS)

    Bar, H. N.; Dayal, V.; Barnard, D.; Hsu, D. K.

    2010-02-01

    Air-coupled ultrasonic transducers can excite plate waves in metals and composites. The coincidence effect, i.e., the wave vector of plate wave coincides with projection of exciting airborne sound vector, leads to a resonance which strongly amplifies the sound transmission through the plate. The resonance depends on the angle of incidence and the frequency. In the present study, the incidence angle for maximum transmission (?max) is measured in plates of steel, aluminum, carbon fiber reinforced composites and honeycomb sandwich panels. The variations of (?max) with plate thickness are compared with theoretical values in steel, aluminum and quasi-isotropic carbon fiber composites. The enhanced transmission of air-coupled ultrasound at oblique incidence can substantially improve the probability of flaw detection in plates and especially in honeycomb structures. Experimental air-coupled ultrasonic scan of subtle flaws in CFRP laminates showed definite improvement of signal-to-noise ratio with oblique incidence at ?max.

  4. Free vibration analysis of continuous rectangular plates

    NASA Astrophysics Data System (ADS)

    Huang, M.; Ma, X. Q.; Sakiyama, T.; Matsuda, H.; Morita, C.

    2010-02-01

    Vibration characteristics of rectangular plates continuous over full range line supports or partial line supports have been studied by using a discrete method. Concentrated loads with Heaviside unit functions and Dirac delta functions are used to simulate the line supports. The fundamental differential equations are established for the bending problem of the continuous plate. By transforming these differential equations into integral equations and using the trapezoidal rule of the approximate numerical integration, the solution of these equations is obtained. Green function which is the solution of deflection of the bending problem of plate is used to obtain the characteristic equation of the free vibration. The effects of the line support, the variable thickness and aspect ratio on the frequencies and mode shapes are considered. By comparing the numerical results obtained by the present method with those previously published, the efficiency and accuracy of the present method are investigated.

  5. Deformation and instability of underthrusting lithospheric plates

    NASA Technical Reports Server (NTRS)

    Liu, H.

    1972-01-01

    Models of the underthrusting lithosphere are constructed for the calculation of displacement and deflection. First, a mathematical theory is developed that rigorously demonstrates the elastic instability in the decending lithosphere. The theory states that lithospheric thrust beneath island arcs becomes unstable and suffers deflection as the compression increases. Thus, in the neighborhood of the edges where the lithospheric plate plunges into the asthenosphere and mesosphere its shape will be contorted. Next, the lateral displacement is calculated, and it is shown that, before contortion, the plate will thicken and contract at different positions with the variation in thickness following a parabolic profile. Finally, the depth distribution of the intermediate and deep focus earthquakes is explained in terms of plate buckling and contortion.

  6. Drag Measurements of Porous Plate Acoustic Liners

    NASA Technical Reports Server (NTRS)

    Wolter, John D.

    2005-01-01

    This paper presents the results of direct drag measurements on a variety of porous plate acoustic liners. The existing literature describes numerous studies of drag on porous walls with injection or suction, but relatively few of drag on porous plates with neither injection nor suction. Furthermore, the porosity of the porous plate in existing studies is much lower than typically used in acoustic liners. In the present work, the acoustic liners consisted of a perforated face sheet covering a bulk acoustic absorber material. Factors that were varied in the experiment were hole diameter, hole pattern, face sheet thickness, bulk material type, and size of the gap (if any) between the face sheet and the absorber material.

  7. Composite plates impact damage - An atlas

    NASA Technical Reports Server (NTRS)

    Finn, Scott R.; Springer, George S.

    1991-01-01

    The present volume on impact damage in composite plates presents an extensive compendium of visual and graphic data regarding a variety of material and impactor parameters. The photographs are taken with X-ray and C-scan imaging in conjunction with a dye penetrant to show matrix cracks and delaminations. Impact and static-loading tests are performed on plates of graphite-epoxy, graphite-toughened epoxy, and graphite-PEEK materials. The images are presented to yield specific visual data regarding such parameters as impactor velocity, thickness of the back ply group, impactor nose radius, and the effects of multiple delaminations. The images are grouped in eight subsets that correspond to parameters including plate length, material, and the difference in fiber orientation between adjacent ply groups. This substantial volume represents a systematic effort to study the effects of several material parameters on impact damage.

  8. Blue Willow Story Plates

    ERIC Educational Resources Information Center

    Fontes, Kris

    2009-01-01

    In the December 1997 issue of "SchoolArts" is a lesson titled "Blue Willow Story Plates" by Susan Striker. In this article, the author shares how she used this lesson with her middle-school students many times over the years. Here, she describes a Blue Willow plate painting project that her students made.

  9. Earthquakes and plate tectonics

    USGS Publications Warehouse

    Spall, H.

    1977-01-01

    An explanation is to be found in plate tectonics, a concept which has revolutionized thinking in the Earth sciences in the last 10 years. The theory of plate tectonics combines many of the ideas about continental drift (originally proposed in 1912 by Alfred Wegener in Germany) and sea-floor spreading (suggested originally by Harry Hess of Princeton University). 

  10. Variations in elastic thickness and flexure of the Maracaibo block

    NASA Astrophysics Data System (ADS)

    Arnaiz-Rodrguez, Mariano S.; Audemard, Franck

    2014-12-01

    We estimate the lateral variations of the elastic thickness of the Maracaibo block with a 3D numerical approach by using centered finite differences. The calculation is based on solving the fourth-order partial differential equation that governs the bending of a thin plate fixed on its boundaries (zero displacement) with variable thickness (or elastic thickness for this particular case). An initial plate-load model is built and is iteratively modified to fit the general basement configuration and gravity data. The final result is an elastic thickness map that covers the Maracaibo block and the surrounding sections of the South American plate. It shows that the elastic thickness ranges from 30 km to 18 km with a mean value of 23.6 km and a mode of 26 km. The largest elastic thickness values are associated with the location of the Santa Marta Mountains and the Barinas Apure Basin, while the smallest ones with the Mrida Andes-Maracaibo Basin flexural system. The current basement configuration within the Maracaibo basin, formed as a result of its geodynamic evolution, has affected the mechanical properties of the Maracaibo block near the current Mrida Andes position. The load of the Perij Range is compensated by a complex stress tensor, and that of the Santa Marta Mountains does not have an isostatic root as it is held by a relatively strong lithosphere.

  11. Turbine vane plate assembly

    SciTech Connect

    Schiavo Jr., Anthony L.

    2006-01-10

    A turbine vane assembly includes a turbine vane having first and second shrouds with an elongated airfoil extending between. Each end of the airfoil transitions into a shroud at a respective junction. Each of the shrouds has a plurality of cooling passages, and the airfoil has a plurality of cooling passages extending between the first and second shrouds. A substantially flat inner plate and an outer plate are coupled to each of the first and second shrouds so as to form inner and outer plenums. Each inner plenum is defined between at least the junction and the substantially flat inner plate; each outer plenum is defined between at least the substantially flat inner plate and the outer plate. Each inner plenum is in fluid communication with a respective outer plenum through at least one of the cooling passages in the respective shroud.

  12. Sizing plate heat exchangers

    SciTech Connect

    Kerner, J. )

    1993-11-01

    Since their commercial debut in the 1930s, plate heat exchangers have found widespread use in the chemical process industries (CPI). Today, more than two dozen firms market this space-saving and highly efficient type of heat exchanger. One reason for the popularity of plate heat exchangers is that their overall heat-transfer coefficient (U) is superior to that of shell-and-tube heat exchangers [1,2,3,4]. In clean water-to-water service, for example, a shell-and-tube heat exchanger has a U value of 350 Btu/ft[sup 2]-h-F, much lower than the 1,000 of a plate design at the same pressure drop. However, the plate heat exchanger's much higher U values also mean that fouling factors have a much greater effect on calculations of exchanger surface area. The right fouling factor is the key to specifying plate heat exchanger areas correctly.

  13. Standardized performance tests of collectors of solar thermal energy: A selectively coated, flat-plate copper collector with one transparent cover and a tube-to-tube spacing of 5 5/8 inches

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This preliminary data report gives basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficiency is correlated in terms of inlet temperature and flux level.

  14. Standard performance tests of collectors of solar thermal energy: A selectively coated, flat-plate copper collector with one transparent cover and a tube-to-tube spacing of 3-7/8 inches

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Basic test results are given of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes, and coolant flow rates. Collector efficiency is correlated in terms of inlet temperature and flux level.

  15. Characterization of 100 micron thick positive photoresist on 300-mm wafers

    NASA Astrophysics Data System (ADS)

    Flack, Warren W.; Nguyen, Ha-Ai; Capsuto, Elliott; Abreau, Kelly

    2005-05-01

    The widespread adoption of advanced packaging techniques is driven by device performance and chip form factor considerations. Flip chip packaging is currently growing at a thirty percent compound annual rate and it is expected that in the near future over sixty percent of all 300 mm wafers will be bumped. To ensure optimal productivity and cost of ownership it is imperative to provide lithographic equipment and materials that are optimized for these applications. Due to the constantly shrinking bump pitch, it is critical to show excellent CD uniformity across the entire 300 mm wafer surface for feature sizes as small as 70 microns. Flip chip packaging as well as Nanotechnology (MEMS) applications frequently use one or more very thick photoresist layers for electroplating applications. The plating levels require a photosensitive polymer material capable of coating, exposing and electroplating with conventional equipment and standard ancillary process chemicals. Additionally the process times for coating, baking, exposure and development must be considered since these impacts the overall cost of ownership of the lithography cell. For thick photoresist layers the sidewall profile, plating resistance and postplating stripability are important characteristics. This study will characterize a novel single coat, positive tone photoresist (ShinEtsu SIPR 7120-20) used in electroplating levels up to 100 ?m thick on 300 mm wafers exposed with the Ultratech Spectrum 300e2 stepper and coated and developed with a Steag Hamatech Modutrack system. Process capability is determined by analyzing photoresist film thickness uniformity and critical dimension (CD) control across the wafer. Basic photoresist characterization techniques such as cross sectional SEM analysis are used to establish lithographic capabilities. This study shows excellent adhesion to copper with no surface treatment and no photoresist popping during exposure or post exposure bake (PEB). High aspect ratio, lead-free, solder structures were then electroplated using the optimized photoresist process to demonstrate photoresist durability and stripability.

  16. Spreading continents kick-started plate tectonics.

    PubMed

    Rey, Patrice F; Coltice, Nicolas; Flament, Nicolas

    2014-09-18

    Stresses acting on cold, thick and negatively buoyant oceanic lithosphere are thought to be crucial to the initiation of subduction and the operation of plate tectonics, which characterizes the present-day geodynamics of the Earth. Because the Earth's interior was hotter in the Archaean eon, the oceanic crust may have been thicker, thereby making the oceanic lithosphere more buoyant than at present, and whether subduction and plate tectonics occurred during this time is ambiguous, both in the geological record and in geodynamic models. Here we show that because the oceanic crust was thick and buoyant, early continents may have produced intra-lithospheric gravitational stresses large enough to drive their gravitational spreading, to initiate subduction at their margins and to trigger episodes of subduction. Our model predicts the co-occurrence of deep to progressively shallower mafic volcanics and arc magmatism within continents in a self-consistent geodynamic framework, explaining the enigmatic multimodal volcanism and tectonic record of Archaean cratons. Moreover, our model predicts a petrological stratification and tectonic structure of the sub-continental lithospheric mantle, two predictions that are consistent with xenolith and seismic studies, respectively, and consistent with the existence of a mid-lithospheric seismic discontinuity. The slow gravitational collapse of early continents could have kick-started transient episodes of plate tectonics until, as the Earth's interior cooled and oceanic lithosphere became heavier, plate tectonics became self-sustaining. PMID:25230662

  17. Industrialization of the ion plating process

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1976-01-01

    A new process referred to as ion plating by induction heating (IPIH) is described, which combines the advantages of both ion plating and induction heating. The IPIH apparatus consists of the specimen (cathode) to be coated and the evaporation heating source, which is a ceramic crucible containing the metal to be heated. The specimen is an internal part of the high-voltage ceramic-metal vacuum feedthrough and is connected to the negative terminal of the high-voltage power supply, the positive terminal of the power supply being grounded. The plating conditions are the same as those most commonly used in industrial ion plating. A number of metals - such as nickel, iron, platinum - which were practically impossible to deposit by resistance heating evaporation can now be effectively evaporated and deposited to any desired thickness. Excellent adherence is observed for many metals deposited on various metal surfaces in thicknesses from 0.15 to 50 microns, regardless of the materials selected for coating and substrate.

  18. Liquid thickness gauge

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M. (inventor)

    1988-01-01

    A method and apparatus are developed to measure the thickness of a liquid on a surface independent of liquid conductivity. Two pairs of round, corrosion resistant wires are mounted in an insulating material such that the cross-sectional area of each wire is flush with and normal to the surface. The resistance between each pair of wires is measured using two ac resistance measuring circuits, in which the ratio of the outputs of the two resistance measuring circuits is indicative of the thickness of the liquid on the surface.

  19. Crustal Thickness of Iran Inferred from Converted Waves

    NASA Astrophysics Data System (ADS)

    Taghizadeh-Farahmand, Fataneh; Afsari, Narges; Sodoudi, Forough

    2015-02-01

    The Iranian plate is part of the Alpine-Himalayan orogenic belt, which has been formed by the continental collision between the Arabian and Eurasian plates. The present-day Iranian plate is characterized by diverse tectonic domains including mountain belts (e.g. Zagros and Alborz, Kopeh-Dagh) and oceanic plate subduction (e.g. Makran). Here we present the lateral variations of the Moho discontinuity beneath Iran using a detailed P receiver function study. Our results allow for more precise estimations of the crustal thickness and enable us to provide a detailed Moho depth map for all of Iran for the first time. We used the teleseismic events recorded from 1995 to 2011 at 77 national permanent stations (24 broadband and 53 short period stations). Our results show significant variations in the crustal thickness, which are related to the different geological features within Iran. In general, the average crustal thickness beneath Iran is about 40-45 km. A relatively thick crust of about 54 2 km due to the shortening is observed beneath the Alborz mountain ranges. The crust beneath the Alborz zone shows a thickness changing from 47 2 to 45 2 km from west to east and reaches a thickness of about 50 2 km beneath the Kopeh-Dagh mountain range. We find the thinnest crust of about 33 2 km beneath the Makran subduction zone in southeast Iran showing a normal continental crust, which has not been influenced by collisional processes. The thickest crust (~66 2 km) is locally observed beneath the Sanandaj-Sirjan Zone, which is considered the suture zone of the collision between the Arabian and Eurasian plates.

  20. Vibrations of rectangular plates with moderately large initial deflections at elevated temperatures using finite element method

    NASA Technical Reports Server (NTRS)

    Gray, C. C.

    1990-01-01

    A finite-element formulation is developed for the free vibration of rectangular plates which are under the influence of moderately large stress-free initial deflections and large thermal deflections. The von Karman nonlinear strain-displacement relations are used to account for the thermal deflections. The plates are thin, isotropic, and Hookean in nature. The temperature imposed on the plate is assumed to be constant through the thickness of the plate. Uniform and sinusoidal temperature distributions are studied. The material properties of the plates are temperature-dependent due to the relatively high temperatures imposed on the plates.

  1. Study of narrow-band dichroic plates with circular, rectangular, or Pyleguide apertures

    NASA Astrophysics Data System (ADS)

    Chen, J. C.

    1992-11-01

    The dichroic plate considered in this article is a metal plate perforated with arrays of apertures such that electromagnetic waves of certain frequencies pass through the plate and other frequencies are reflected. The shape of the apertures is an important contributor to the performance of the dichroic plate. An S/X dichroic plate, which passes X-band (8.4-8.45 GHz) and reflects S-band (2.0-2.32 GHz), is chosen for a case study. A comparison of the performance of dichroic plates of the same thickness and array pattern is presented for three different aperture shapes: circular, Pyleguide, and rectangular.

  2. Inverse problem of pulsed eddy current field of ferromagnetic plates

    NASA Astrophysics Data System (ADS)

    Chen, Xing-Le; Lei, Yin-Zhao

    2015-03-01

    To determine the wall thickness, conductivity and permeability of a ferromagnetic plate, an inverse problem is established with measured values and calculated values of time-domain induced voltage in pulsed eddy current testing on the plate. From time-domain analytical expressions of the partial derivatives of induced voltage with respect to parameters, it is deduced that the partial derivatives are approximately linearly dependent. Then the constraints of these parameters are obtained by solving a partial linear differential equation. It is indicated that only the product of conductivity and wall thickness, and the product of relative permeability and wall thickness can be determined accurately through the inverse problem with time-domain induced voltage. In the practical testing, supposing the conductivity of the ferromagnetic plate under test is a fixed value, and then the relative variation of wall thickness between two testing points can be calculated via the ratio of the corresponding inversion results of the product of conductivity and wall thickness. Finally, this method for wall thickness measurement is verified by the experiment results of a carbon steel plate. Project supported by the National Defense Basic Technology Research Program of China (Grant No. Z132013T001).

  3. Imaging performance of microsphere plates

    NASA Astrophysics Data System (ADS)

    Lapington, Jonathan S.; Worth, L. B.; Trow, Matthew W.

    1995-09-01

    The microsphere plate (MSP) is a new type of electron multiplier device operating along similar lines to the well known microchannel plate (MCP). The MSP is manufactured by El- Mul Technologies Ltd., using glass beads 20 to 60 micrometer diameter, sintered together to form a wafer less than 1 mm thick. Conductive coatings are applied to the upper and lower surfaces, and a high voltage is applied between these two electrodes, allowing secondary electron multiplication to take place. The device uses the surfaces of the randomly arranged interstices of the sintered glass beads as dynodes, whereas in the MCP, dynodes are constituted by the inner surfaces of the longitudinal pores. The homogeneous composition of the MSP causes charge to spread laterally during multiplication, resulting in a spatial resolution of about 2 line pairs/mm when proximity focused to a phosphor. Charge division readouts benefit from this charge spreading, such as the wedge and strip anode which requires a charge footprint of order 1 - 2 mm diameter. We present results of experiments on the imaging performance of detectors using MSPs with readouts such as the wedge and strip anode. We discuss and quantify the potential advantages to be gained from MSPs, such as the higher gain achievable per stage, reduced susceptibility to paralysis owing to their isotropic conductivity, etc. Potential MSP disadvantages, such as image nonlinearities, quantum efficiency variability, and pulse height saturation are analyzed.

  4. Thick Film Interference.

    ERIC Educational Resources Information Center

    Trefil, James

    1983-01-01

    Discusses why interference effects cannot be seen with a thick film, starting with a review of the origin of interference patterns in thin films. Considers properties of materials in films, properties of the light source, and the nature of light. (JN)

  5. Computational valve plate design

    NASA Astrophysics Data System (ADS)

    Kalbfleisch, Paul

    Axial piston machines are widely used in many industries for their designs compactness, flexibility in power transfer, variable flow rate, and high efficiencies as compared to their manufacturing costs. One important component of all axial piston machines that is a very influential on the performance of the unit is the valve plate. The aim of this research is to develop a design methodology that is general enough to design all types of valve plates and the simple enough not to require advanced technical knowledge from the user. A new style of valve plate designs has been developed that comprehensively considers all previous design techniques and does not require significant changes to the manufacturing processes of valve plates. The design methodology utilizes a previously developed accurate computer model of the physical phenomenon. This allows the precise optimization of the valve plate design through the use of simulations rather than expensive trial and error processes. The design of the valve plate is clarified into the form of an optimization problem. This formulation into an optimization problem has motivated the selection of an optimization algorithm that satisfies the requirements of the design. The proposed design methodology was successfully tested in a case study in the shown to be very successful in improving required performance of the valve plate design.

  6. Earthquakes and plate tectonics.

    USGS Publications Warehouse

    Spall, H.

    1982-01-01

    Earthquakes occur at the following three kinds of plate boundary: ocean ridges where the plates are pulled apart, margins where the plates scrape past one another, and margins where one plate is thrust under the other. Thus, we can predict the general regions on the earth's surface where we can expect large earthquakes in the future. We know that each year about 140 earthquakes of magnitude 6 or greater will occur within this area which is 10% of the earth's surface. But on a worldwide basis we cannot say with much accuracy when these events will occur. The reason is that the processes in plate tectonics have been going on for millions of years. Averaged over this interval, plate motions amount to several mm per year. But at any instant in geologic time, for example the year 1982, we do not know, exactly where we are in the worldwide cycle of strain build-up and strain release. Only by monitoring the stress and strain in small areas, for instance, the San Andreas fault, in great detail can we hope to predict when renewed activity in that part of the plate tectonics arena is likely to take place. -from Author

  7. Stop-motion microphotography of laser-driven plates

    NASA Astrophysics Data System (ADS)

    Frank, Alan M.; Trott, Wayne M.

    1994-10-01

    Laser driven plates have been used for several years for high velocity shock wave and impact studies. Recent questions about the integrity and ablation rates of these plates coupled with an improved capability for microscopic stop motion photography led to this study. For these experiments, the plates were aluminum, coated on the ends of optical fibers. A high power laser pulse in the fiber ionizes the aluminum at the fiber/coating interface. The plasma thus created accelerates the remaining aluminum to high velocities, several kilometers per second. We defined `thick' or `thin' coatings as those where a flying plate (flyer) was launched vs. the material being completely ionized. Here we were specifically interested in the thick/thin boundary to develop data for the numerical models attempting to predict flyer behavior.

  8. Observations of plate martensite in a low carbon steel

    SciTech Connect

    Fonda, R.W.; Spanos, G.; Vandermeer, R.A. )

    1994-09-15

    It has long been known that there are two predominant morphologies of martensite in steels. These morphologies are currently referred to as plate martensite and lath martensite and are primarily distinguished by the size and shape of individual martensite grains. Plate martensite is typically several microns thick and tens of microns in diameter, while lath martensite is typically less than one-half micron thick, a few microns wide, and tens of microns long. This paper presents evidence of a coarse plate-shaped martensite morphology in a commercial HSLA-100 steel which contains only 0.07% carbon. This morphology was discovered during microstructural characterization of specimens thermally cycled to simulate weld heat affected zones in a steel plate and was reproduced in other specimens subjected to a quench and temper heat treatment.

  9. Plate removal following orthognathic surgery.

    PubMed

    Little, Mhairi; Langford, Richard Julian; Bhanji, Adam; Farr, David

    2015-11-01

    The objectives of this study are to determine the removal rates of orthognathic plates used during orthognathic surgery at James Cook University Hospital and describe the reasons for plate removal. 202 consecutive orthognathic cases were identified between July 2004 and July 2012. Demographics and procedure details were collected for these patients. Patients from this group who returned to theatre for plate removal between July 2004 and November 2012 were identified and their notes were analysed for data including reason for plate removal, age, smoking status, sex and time to plate removal. 3.2% of plates were removed with proportionally more plates removed from the mandible than the maxilla. 10.4% of patients required removal of one or more plate. Most plates were removed within the first post-operative year. The commonest reasons for plate removal were plate exposure and infection. The plate removal rates in our study are comparable to those seen in the literature. PMID:26325615

  10. Analysis on formulas of concrete plate under contact explosion

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Liang, Longhe; Lou, Jianfeng

    2015-09-01

    Based on many test data of concrete plates of several thicknesses, this paper presents some new simple engineering formulas for computing critical thickness of scabbing and perforation, the front explosion diameter and the rear scabbing diameter of reinforced concrete plates under contact explosion. For the damage problem of a 20 cm thick concrete target under contact explosion of 1.25 kg TNT charge, the paper gives the numerical simulation results of LS-DYNA software for comparison. The damage zone of concrete plate in numerical simulation is determined by analysis of tension pressure resulted from shock wave reflection on the free boundary. And the numerical simulation results are in basic agreement on the results of these engineering formulas.

  11. MEASUREMENT METHOD FOR WELDING RESIDUAL STRESS IN STEEL I-SHAPED GIRDER WITH THICK FLANGE AND ITS INFLUENCE ON LOAD CARRYING CAPACITY FOR BENDING

    NASA Astrophysics Data System (ADS)

    Miyashita, Takeshi; Inaba, Naofumi; Hirayama, Shigeyuki; Liu, Cuiping; Nagai, Masatsugu

    Recently, the construction number of steel girder bridge using thick plates has been increasing. It is afraid that residual stress in the thick plates affects the load carrying capacity of the girder. Therefore, this study aims to measure the distribution of residual stresses in the thick plates by mechanical cutting method. Herein, simplified measurement method is proposed for the measurement in the thickness direction. As a result, it was found that the slope of stress distribution in the thickness direction becomes large as the thickness of the plate increases. Then, after considering the equilibriums of residual stress three-dimensionally, the residual stress was introduced into a finite element analysis model, which is the modeling of an existing bridge at the intermediate support. It was confirmed that residual stress in the thick plate does not affect the load carrying capacity of steel girder in bending.

  12. COMPPAP - COMPOSITE PLATE BUCKLING ANALYSIS PROGRAM (IBM PC VERSION)

    NASA Technical Reports Server (NTRS)

    Smith, J. P.

    1994-01-01

    The Composite Plate Buckling Analysis Program (COMPPAP) was written to help engineers determine buckling loads of orthotropic (or isotropic) irregularly shaped plates without requiring hand calculations from design curves or extensive finite element modeling. COMPPAP is a one element finite element program that utilizes high-order displacement functions. The high order of the displacement functions enables the user to produce results more accurate than traditional h-finite elements. This program uses these high-order displacement functions to perform a plane stress analysis of a general plate followed by a buckling calculation based on the stresses found in the plane stress solution. The current version assumes a flat plate (constant thickness) subject to a constant edge load (normal or shear) on one or more edges. COMPPAP uses the power method to find the eigenvalues of the buckling problem. The power method provides an efficient solution when only one eigenvalue is desired. Once the eigenvalue is found, the eigenvector, which corresponds to the plate buckling mode shape, results as a by-product. A positive feature of the power method is that the dominant eigenvalue is the first found, which is this case is the plate buckling load. The reported eigenvalue expresses a load factor to induce plate buckling. COMPPAP is written in ANSI FORTRAN 77. Two machine versions are available from COSMIC: a PC version (MSC-22428), which is for IBM PC 386 series and higher computers and compatibles running MS-DOS; and a UNIX version (MSC-22286). The distribution medium for both machine versions includes source code for both single and double precision versions of COMPPAP. The PC version includes source code which has been optimized for implementation within DOS memory constraints as well as sample executables for both the single and double precision versions of COMPPAP. The double precision versions of COMPPAP have been successfully implemented on an IBM PC 386 compatible running MS-DOS, a Sun4 series computer running SunOS, an HP-9000 series computer running HP-UX, and a CRAY X-MP series computer running UNICOS. COMPPAP requires 1Mb of RAM and the BLAS and LINPACK math libraries, which are included on the distribution medium. The COMPPAP documentation provides instructions for using the commercial post-processing package PATRAN for graphical interpretation of COMPPAP output. The UNIX version includes two electronic versions of the documentation: one in LaTex format and one in PostScript format. The standard distribution medium for the PC version (MSC-22428) is a 5.25 inch 1.2Mb MS-DOS format diskette. The standard distribution medium for the UNIX version (MSC-22286) is a .25 inch streaming magnetic tape cartridge (Sun QIC-24) in UNIX tar format. For the UNIX version, alternate distribution media and formats are available upon request. COMPPAP was developed in 1992.

  13. COMPPAP - COMPOSITE PLATE BUCKLING ANALYSIS PROGRAM (UNIX VERSION)

    NASA Technical Reports Server (NTRS)

    Smith, J. P.

    1994-01-01

    The Composite Plate Buckling Analysis Program (COMPPAP) was written to help engineers determine buckling loads of orthotropic (or isotropic) irregularly shaped plates without requiring hand calculations from design curves or extensive finite element modeling. COMPPAP is a one element finite element program that utilizes high-order displacement functions. The high order of the displacement functions enables the user to produce results more accurate than traditional h-finite elements. This program uses these high-order displacement functions to perform a plane stress analysis of a general plate followed by a buckling calculation based on the stresses found in the plane stress solution. The current version assumes a flat plate (constant thickness) subject to a constant edge load (normal or shear) on one or more edges. COMPPAP uses the power method to find the eigenvalues of the buckling problem. The power method provides an efficient solution when only one eigenvalue is desired. Once the eigenvalue is found, the eigenvector, which corresponds to the plate buckling mode shape, results as a by-product. A positive feature of the power method is that the dominant eigenvalue is the first found, which is this case is the plate buckling load. The reported eigenvalue expresses a load factor to induce plate buckling. COMPPAP is written in ANSI FORTRAN 77. Two machine versions are available from COSMIC: a PC version (MSC-22428), which is for IBM PC 386 series and higher computers and compatibles running MS-DOS; and a UNIX version (MSC-22286). The distribution medium for both machine versions includes source code for both single and double precision versions of COMPPAP. The PC version includes source code which has been optimized for implementation within DOS memory constraints as well as sample executables for both the single and double precision versions of COMPPAP. The double precision versions of COMPPAP have been successfully implemented on an IBM PC 386 compatible running MS-DOS, a Sun4 series computer running SunOS, an HP-9000 series computer running HP-UX, and a CRAY X-MP series computer running UNICOS. COMPPAP requires 1Mb of RAM and the BLAS and LINPACK math libraries, which are included on the distribution medium. The COMPPAP documentation provides instructions for using the commercial post-processing package PATRAN for graphical interpretation of COMPPAP output. The UNIX version includes two electronic versions of the documentation: one in LaTex format and one in PostScript format. The standard distribution medium for the PC version (MSC-22428) is a 5.25 inch 1.2Mb MS-DOS format diskette. The standard distribution medium for the UNIX version (MSC-22286) is a .25 inch streaming magnetic tape cartridge (Sun QIC-24) in UNIX tar format. For the UNIX version, alternate distribution media and formats are available upon request. COMPPAP was developed in 1992.

  14. Heterotrophic plate count methodology in the United States.

    PubMed

    Reasoner, Donald J

    2004-05-01

    In the United States (US), the history of bacterial plate counting (BPC) methods used for water can be traced largely through Standard Methods for the Examination of Water and Wastewater (Standard Methods). The bacterial count method has evolved from the original Standard Methods (1st edition, 1905) plate count which used nutrient gelatin and incubation at 20 degrees C for 48 h, to the HPC method options in the latest edition of Standard Methods that provide greater flexibility of application, depending on the data needs of the water analyst. The use of agar-agar as a gelling agent, replacing gelatin, allowed the use of higher incubation temperatures and resulted in the "body temperature count" (37 degrees C) found in the 3rd through the 8th edition of Standard Methods. The change from 37 degrees C incubation to 35+/-0.5 degrees C accommodated laboratories that did both milk and water analyses. By using a single temperature, fewer incubators were needed. The term "standard plate count" (SPC) first appeared in 1960 (11th edition) along with plate count agar. Incubation at 20 degrees C for the plate count was dropped from the 13th to 15th editions and few changes were made in the SPC method from the 11th edition through the 13th editions. Plate count analysis of bottled waters was included in the 14th edition (1975), calling for incubation at 35+/-0.5 degrees C for 72+/-4 h. Perhaps the most significant changes in plate count methods occurred with the 16th edition (1985). The term heterotrophic plate count replaced the standard plate count, and the spread plate (SP) and membrane filter (MF) methods were added along with new media for pour and spread plates (R2A agar and NWRI agar, both low nutrient) and for the membrane filter method (mHPC medium). The use of low nutrient media, lower incubation temperature, and longer incubation times, results in higher plate count results for most water samples. The options currently available, including low and high nutrient media, incubation temperatures (20 degrees C, 28 degrees C or 35 degrees C), plating methods (pour plate (PP), spread plate and membrane filter) and range of incubation times (24, 48, 72 h and 5-7 days) provide great flexibility in the application of the HPC analysis to drinking water. PMID:15145589

  15. Unsteady aerodynamics of fluttering and tumbling plates

    NASA Astrophysics Data System (ADS)

    Andersen, A.; Pesavento, U.; Wang, Z. Jane

    2005-10-01

    We investigate the aerodynamics of freely falling plates in a quasi-two-dimensional flow at Reynolds number of 10(3) , which is typical for a leaf or business card falling in air. We quantify the trajectories experimentally using high-speed digital video at sufficient resolution to determine the instantaneous plate accelerations and thus to deduce the instantaneous fluid forces. We compare the measurements with direct numerical solutions of the two-dimensional Navier Stokes equation. Using inviscid theory as a guide, we decompose the fluid forces into contributions due to acceleration, translation, and rotation of the plate. For both fluttering and tumbling we find that the fluid circulation is dominated by a rotational term proportional to the angular velocity of the plate, as opposed to the translational velocity for a glider with fixed angle of attack. We find that the torque on a freely falling plate is small, i.e. the torque is one to two orders of magnitude smaller than the torque on a glider with fixed angle of attack. Based on these results we revise the existing ODE models of freely falling plates. We get access to different kinds of dynamics by exploring the phase diagram spanned by the Reynolds number, the dimensionless moment of inertia, and the thickness-to-width ratio. In agreement with previous experiments, we find fluttering, tumbling, and apparently chaotic motion. We further investigate the dependence on initial conditions and find brief transients followed by periodic fluttering described by simple harmonics and tumbling with a pronounced period-two structure. Near the cusp-like turning points, the plates elevate, a feature which would be absent if the lift depended on the translational velocity alone.

  16. Planar Antennas On Thick Dielectric Substrates

    NASA Technical Reports Server (NTRS)

    Lee, K. A.; Frerking, M. A.

    1989-01-01

    Features include ease of fabrication and wide range of operating frequencies. Planar antennas on thick dielectric substrates built for use at millimeter wavelengths from 40 to 400 GHZ. Antennas of this type quasi-optical structures, for which expensive, precisely machined waveguides not required. Made easily by standard photolithography and integrated with planar mixers or detectors to form arrays.

  17. Vibration of skewed cantilever plates and helicoidal shells

    NASA Technical Reports Server (NTRS)

    Beres, D. P.; Bailey, C. D.

    1975-01-01

    Theoretical vibration frequencies and mode shapes are obtained for skewed plates and helicoidal shells with a cantilever boundary. Using Hamilton's law of varying action, a power series solution is developed to obtain converged numerical results for the five lowest frequencies. Effects of geometrical variables such as aspect ratio, sweep angle and shell radius to thickness ratio are investigated. Accuracy of the solution method is substantiated by comparison with existing skewed plate spherical cap, and conical shell results.

  18. MyPlate

    MedlinePLUS

    ... Is MyPlate? Fruits All About the Fruit Group Nutrients and Health Benefits Tips to Help You Eat ... Food Gallery Vegetables All About the Vegetable Group Nutrients and Health Benefits Tips to Help You Eat ...

  19. Reduction of astrometric plates

    NASA Technical Reports Server (NTRS)

    Stock, J.

    1984-01-01

    A rapid and accurate method for the reduction of comet or asteroid plates is described. Projection equations, scale length correction, rotation of coordinates, linearization, the search for additional reference stars, and the final solution are examined.

  20. Feynman's wobbling plate

    NASA Astrophysics Data System (ADS)

    Tuleja, Slavomir; Gazovic, Boris; Tomori, Alexander; Hanc, Jozef

    2007-03-01

    In the book Surely You Are Joking, Mr. Feynman! Richard Feynman tells a story of a Cornell cafeteria plate being tossed into the air. As the plate spun, it wobbled. Feynman noticed a relation between the two motions. He solved the motion of the plate by using the Lagrangian approach. This solution didn't satisfy him. He wanted to understand the motion of the plate by analyzing the motion of its individual particles and the forces acting on them. He was successful, but he didn't tell us how he did it. We provide an elementary explanation for the two-to-one ratio of wobble to spin frequencies, based on an analysis of the motion of the particles and the forces acting on them. We also demonstrate the power of numerical simulation and computer animation to provide insight into a physical phenomenon and guidance on how to do the analysis.

  1. Plate tectonics: Metamorphic myth

    NASA Astrophysics Data System (ADS)

    Korenaga, Jun

    2016-01-01

    Clear evidence for subduction-induced metamorphism, and thus the operation of plate tectonics on the ancient Earth has been lacking. Theoretical calculations indicate that we may have been looking for something that cannot exist.

  2. Tectonic Plate Movement.

    ERIC Educational Resources Information Center

    Landalf, Helen

    1998-01-01

    Presents an activity that employs movement to enable students to understand concepts related to plate tectonics. Argues that movement brings topics to life in a concrete way and helps children retain knowledge. (DDR)

  3. Plate forming and break down pizza box

    DOEpatents

    Pantisano, Frank; Devine, Scott M.

    1992-01-01

    A standard corrugated paper pizza box is provided with slit cuts cut through the top panel of the pizza box in a shape to form four circular serving plates with a beveled raised edge and cross slit cuts through the bottom panel of the pizza box separating the box into four essentially equal portions for easy disposal.

  4. Development of a brazing process for the production of water- cooled bipolar plates made of chromium-coated metal foils for PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Mueller, M.; Hoehlich, D.; Scharf, I.; Lampke, T.; Hollaender, U.; Maier, H. J.

    2016-03-01

    Beside lithium batteries, PEM fuel cells are the most promising strategy as a power source to achieve the targets for introducing and increasing the usage of electric vehicles. Due to limited space and weight problems, water cooled, metallic bipolar plates in a fuel cell metal stack are preferred in motor vehicles. These plates are stamped metal sheets with a complex structure, interconnected media-tight. To meet the multiple tasks and requirements in use, complex and expensive combinations of materials are currently in use (carbon fiber composites, graphite, gold-plated nickel, stainless and acid resistant steel). The production of such plates is expensive as it is connected with considerable effort or the usage of precious metals. As an alternative, metalloid nitrides (CrN, VN, W2N, etc.) show a high chemical resistance, hardness and a good conductivity. So this material category meets the basic requirements of a top layer. However, the standard methods for their production (PVD, CVD) are expensive and have a slow deposition rate and a lower layer thicknesses. Because of these limitations, a full functionality over the life cycle of a bipolar plate is not guaranteed. The contribution shows the development and quantification of an alternative production process for bipolar plates. The expectation is to get significant advantages from the combination of chromium electrodeposition and thermochemical treatment to form chromium nitrides. Both processes are well researched and suitable for series production. The thermochemical treatment of the chromium layer also enables a process-integrated brazing.

  5. The crustal thickness of Australia

    USGS Publications Warehouse

    Clitheroe, G.; Gudmundsson, O.; Kennett, B.L.N.

    2000-01-01

    We investigate the crustal structure of the Australian continent using the temporary broadband stations of the Skippy and Kimba projects and permanent broadband stations. We isolate near-receiver information, in the form of crustal P-to-S conversions, using the receiver function technique. Stacked receiver functions are inverted for S velocity structure using a Genetic Algorithm approach to Receiver Function Inversion (GARFI). From the resulting velocity models we are able to determine the Moho depth and to classify the width of the crust-mantle transition for 65 broadband stations. Using these results and 51 independent estimates of crustal thickness from refraction and reflection profiles, we present a new, improved, map of Moho depth for the Australian continent. The thinnest crust (25 km) occurs in the Archean Yilgarn Craton in Western Australia; the thickest crust (61 km) occurs in Proterozoic central Australia. The average crustal thickness is 38.8 km (standard deviation 6.2 km). Interpolation error estimates are made using kriging and fall into the range 2.5-7.0 km. We find generally good agreement between the depth to the seismologically defined Moho and xenolith-derived estimates of crustal thickness beneath northeastern Australia. However, beneath the Lachlan Fold Belt the estimates are not in agreement, and it is possible that the two techniques are mapping differing parts of a broad Moho transition zone. The Archean cratons of Western Australia appear to have remained largely stable since cratonization, reflected in only slight variation of Moho depth. The largely Proterozoic center of Australia shows relatively thicker crust overall as well as major Moho offsets. We see evidence of the margin of the contact between the Precambrian craton and the Tasman Orogen, referred to as the Tasman Line. Copyright 2000 by the American Geophysical Union.

  6. Luting cement-metal surface physicochemical interactions on film thickness.

    PubMed

    Strutz, J M; White, S N; Yu, Z; Kane, C L

    1994-08-01

    Low film thickness is critical to the clinical success of cemented castings. This study investigated the effect of luting agent-metal physico-chemical surface interactions on film thicknesses of representative luting agents. Control group luting agents were placed between two glass plates, as described by American Dental Association specifications 8, 61, and 66, and test group luting agents were positioned between glass and metal plates. The materials selected were zinc phosphate cement, polycarboxylate cement, glass ionomer cement, glass ionomer-composite resin hybrid cement and a resinous cement, with a type III gold alloy, a noble metal ceramic alloy, and a base metal ceramic alloy. A two-way analysis of variance and follow-up tests were done. The effects of the type of metal surface, type of cement, and their statistical interaction significantly affected film thickness (p < 0.0001). The type of cement had a greater affect on film thickness than the type of metal. A glass ionomer cement produced lower overall film thicknesses than other cement types, and a noble metal ceramic alloy created lower overall film thicknesses than other types of metal. American Dental Association specifications for cement film thickness did not accurately reflect normal cement use. PMID:7932256

  7. Investigations of a new field in gas chromatography: capillary columns with a super-thick layer of stationary liquid phase.

    PubMed

    Berezkin, V G; Lapin, A B; Lipsky, J B

    2005-08-19

    Basic characteristics (efficiency, selectivity, non-equilibrium) of capillary columns with a super-thick layer of stationary liquid phase are investigated. In contrast to traditionally used capillary columns with standard stationary phase thickness of 0.1-0.5 um, some new variables are now established. Firstly, the values of relative retention depend on carrier gas linear velocity. Secondly, the asymmetry of chromatographic peaks increased in accordance with the increase in carrier gas velocity. Thirdly, it was theoretically and experimentally shown that dependence of the height equivalent to a theoretical plate (HETP) on carrier gas velocity is linear. The above noted variables are evidences that the new type of GC is realized under these conditions. The use of capillary columns with super-thick layer of stationary liquid phase is practical when the following problems have to be solved: (1) Separation of highly volatile substances; (2) Preliminary concentration of trace compounds from strong diluted samples; (3) Improvements in measurement and accuracy due to the advantages of splitless injection into wide bore columns with super-thick films. Solutions to some analytical tasks while using super-thick stationary liquid phase are shown: (1) Large volume injection into capillary column with sample transfer speed up to 100 microL min(-1); (2) Isothermal splitless injection; (3) Separation of low boiling compounds; (4) Separation of polar substances (alcohols). PMID:16114231

  8. Assessing Why Plates Move

    NASA Astrophysics Data System (ADS)

    Bowin, C.

    2004-05-01

    Over the past 42 years, since the first realization that the ocean floors are youthful (not ancient relics from early in the history of the Earth), and the concomitant development of the Theory of Plate Tectonics, an understanding of the observed motions has been sought. Speculation and analyses have concentrated upon three principal forces: ridge push, subducted slab pull, and sub-lithosphere traction from Earth's internal convection motions, with forces due to subducted slabs dominating. Some researchers have speculated that the motions of plates are random, however, the author in 1974 noting that a pattern of spreading between Australia and Antarctica progressed in time westward across the Indian Ocean, and then continued opening the Gulf of Aden and on into the Red Sea concluded that plate motions were not random. Recent evidence from the broad exposure of upper mantle rocks (peridotite) on the ocean floor at the ultra slow spreading Gakkel Ridge in the Arctic Ocean, indicate to the author that there is no ridge push force. Thus, seafloor-spreading sites are reactive features, not driving force contributors. A reconstruction of past absolute plate motions shows that sites of subduction have remained near their same arc/trench locations, but spreading centers and transform faults have moved about. Hence, confirming that sites of subduction are an important control for plate motions. The author's analysis of the positive residual geoid anomalies (spherical harmonic degrees 4-10) over arc/trench systems of the world, suggested forces of 2.8x1020-3.2x1021 N are available to drive plate tectonics. Some studies have proposed models for how such forces might couple to plate motions, but none have yet been definitive. New clues are being sought from the unique change in absolute plate motion of the Pacific plate, at about 46-48 Ma ago: from a northward subduction beneath the Aleutian trench/arc during the time when the Emperor seamount chain was formed, to its' present north of west motion subducting beneath the western Pacific trench/arcs, the direction during which the Hawaiian volcanic trend has been formed. Only the Pacific plate shows such a major change in absolute plate motion at that time, and the author takes this change, in but a few million years, to indicate that masses linked to slab subduction are more important than traction from an underlying mantle convection.

  9. Measurement of sediment and crustal thickness corrected RDA for 2D profiles at rifted continental margins: Applications to the Iberian, Gulf of Aden and S Angolan margins

    NASA Astrophysics Data System (ADS)

    Cowie, Leanne; Kusznir, Nick

    2014-05-01

    Subsidence analysis of sedimentary basins and rifted continental margins requires a correction for the anomalous uplift or subsidence arising from mantle dynamic topography. Whilst different global model predictions of mantle dynamic topography may give a broadly similar pattern at long wavelengths, they differ substantially in the predicted amplitude and at shorter wavelengths. As a consequence the accuracy of predicted mantle dynamic topography is not sufficiently good to provide corrections for subsidence analysis. Measurements of present day anomalous subsidence, which we attribute to mantle dynamic topography, have been made for three rifted continental margins; offshore Iberia, the Gulf of Aden and southern Angola. We determine residual depth anomaly (RDA), corrected for sediment loading and crustal thickness variation for 2D profiles running from unequivocal oceanic crust across the continental ocean boundary onto thinned continental crust. Residual depth anomalies (RDA), corrected for sediment loading using flexural backstripping and decompaction, have been calculated by comparing observed and age predicted oceanic bathymetries at these margins. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions from Crosby & McKenzie (2009). Non-zero sediment corrected RDAs may result from anomalous oceanic crustal thickness with respect to the global average or from anomalous uplift or subsidence. Gravity anomaly inversion incorporating a lithosphere thermal gravity anomaly correction and sediment thickness from 2D seismic reflection data has been used to determine Moho depth, calibrated using seismic refraction, and oceanic crustal basement thickness. Crustal basement thicknesses derived from gravity inversion together with Airy isostasy have been used to correct for variations of crustal thickness from a standard oceanic thickness of 7km. The 2D profiles of RDA corrected for both sediment loading and non-standard crustal thickness provide a measurement of anomalous uplift or subsidence which we attribute to mantle dynamic topography. We compare our sediment and crustal thickness corrected RDA analysis results with published predictions of mantle dynamic topography from global models.

  10. Fractal multifiber microchannel plates

    NASA Technical Reports Server (NTRS)

    Cook, Lee M.; Feller, W. B.; Kenter, Almus T.; Chappell, Jon H.

    1992-01-01

    The construction and performance of microchannel plates (MCPs) made using fractal tiling mehtods are reviewed. MCPs with 40 mm active areas having near-perfect channel ordering were produced. These plates demonstrated electrical performance characteristics equivalent to conventionally constructed MCPs. These apparently are the first MCPs which have a sufficiently high degree of order to permit single channel addressability. Potential applications for these devices and the prospects for further development are discussed.

  11. The immediate palatal plate.

    PubMed

    Langer, B

    1975-10-01

    The immediate palatal plate is therapeutically beneficial for relief of temporomandibular joint pain, for reduction of occlusal trauma with and without selective grinding, for orthodontic tooth movement as a disarticulating device, and for relief of pericementitis subsequent to periodontal surgery. The immediate palatal plate is durable and well tolerated by patients and has established itself to be more than just an interim appliance. PMID:1058312

  12. Positive battery plate

    NASA Technical Reports Server (NTRS)

    Rowlette, John R. (Inventor)

    1985-01-01

    The power characteristics of a lead acid battery are improved by incorporating a dispersion of 1 to 10% by weight of a thermodynamically stable conductivity additive, such as conductive tin oxide coated glass fibers (34) of filamentary glass wool (42) in the positive active layer (32) carried on the grid (30) of the positive plate (16). Positive plate potential must be kept high enough to prevent reduction of the tin oxide to tin by utilizing an oversized, precharged positive paste.

  13. Effect of Curvature on the Impact Damage Characteristics and Residual Strength of Composite Plates

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Starnes, James H., Jr.

    1998-01-01

    The results of a study of the response and failure characteristics of thin, cylindrically curved, composite plates subjected to low-speed impact damage are presented. The results indicate that the plate radius and the plate thickness are important structural parameters that influence the nonlinear response of a plate for a given amount of impact energy. Analytical and experimental contact-force results are compared for several plates and the results correlate well. The impact-energy levels required to cause damage initiation and barely visible impact damage are a function of the plate radius for a given plate thickness. The impact-energy levels required to initiate impact damage for plates with a certain range of radii are greater than plates with other radii. The contact-force results corresponding to these impact-energy levels follow a similar trend. Residual strength results for plates with barely visible impact damage suggest that the compression-after-impact residual strength is also a function of plate radius. The residual strength of impact-damaged flat plates appears to be lower than the residual strength of the corresponding cylindrically curved plates.

  14. Finite Element and Plate Theory Modeling of Acoustic Emission Waveforms

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.; Hamstad, M. A.; Gary, J.; OGallagher, A.

    1998-01-01

    A comparison was made between two approaches to predict acoustic emission waveforms in thin plates. A normal mode solution method for Mindlin plate theory was used to predict the response of the flexural plate mode to a point source, step-function load, applied on the plate surface. The second approach used a dynamic finite element method to model the problem using equations of motion based on exact linear elasticity. Calculations were made using properties for both isotropic (aluminum) and anisotropic (unidirectional graphite/epoxy composite) materials. For simulations of anisotropic plates, propagation along multiple directions was evaluated. In general, agreement between the two theoretical approaches was good. Discrepancies in the waveforms at longer times were caused by differences in reflections from the lateral plate boundaries. These differences resulted from the fact that the two methods used different boundary conditions. At shorter times in the signals, before reflections, the slight discrepancies in the waveforms were attributed to limitations of Mindlin plate theory, which is an approximate plate theory. The advantages of the finite element method are that it used the exact linear elasticity solutions, and that it can be used to model real source conditions and complicated, finite specimen geometries as well as thick plates. These advantages come at a cost of increased computational difficulty, requiring lengthy calculations on workstations or supercomputers. The Mindlin plate theory solutions, meanwhile, can be quickly generated on personal computers. Specimens with finite geometry can also be modeled. However, only limited simple geometries such as circular or rectangular plates can easily be accommodated with the normal mode solution technique. Likewise, very limited source configurations can be modeled and plate theory is applicable only to thin plates.

  15. Thick brane solutions

    NASA Astrophysics Data System (ADS)

    Dzhunushaliev, Vladimir; Folomeev, Vladimir; Minamitsuji, Masato

    2010-06-01

    This paper gives a comprehensive review on thick brane solutions and related topics. Such models have attracted much attention from many aspects since the birth of the brane world scenario. In many works, it has been usually assumed that a brane is an infinitely thin object; however, in more general situations, one can no longer assume this. It is also widely considered that more fundamental theories such as string theory would have a minimal length scale. Many multidimensional field theories coupled to gravitation have exact solutions of gravitating topological defects, which can represent our brane world. The inclusion of brane thickness can realize a variety of possible brane world models. Given our understanding, the known solutions can be classified into topologically non-trivial solutions and trivial ones. The former class contains solutions of a single scalar (domain walls), multi-scalar, gauge-Higgs (vortices), Weyl gravity and so on. As an example of the latter class, we consider solutions of two interacting scalar fields. Approaches to obtain cosmological equations in the thick brane world are reviewed. Solutions with spatially extended branes (S-branes) and those with an extra time-like direction are also discussed.

  16. Phononic plate waves.

    PubMed

    Wu, Tsung-Tsong; Hsu, Jin-Chen; Sun, Jia-Hong

    2011-10-01

    In the past two decades, phononic crystals (PCs) which consist of periodically arranged media have attracted considerable interest because of the existence of complete frequency band gaps and maneuverable band structures. Recently, Lamb waves in thin plates with PC structures have started to receive increasing attention for their potential applications in filters, resonators, and waveguides. This paper presents a review of recent works related to phononic plate waves which have recently been published by the authors and coworkers. Theoretical and experimental studies of Lamb waves in 2-D PC plate structures are covered. On the theoretical side, analyses of Lamb waves in 2-D PC plates using the plane wave expansion (PWE) method, finite-difference time-domain (FDTD) method, and finite-element (FE) method are addressed. These methods were applied to study the complete band gaps of Lamb waves, characteristics of the propagating and localized wave modes, and behavior of anomalous refraction, called negative refraction, in the PC plates. The theoretical analyses demonstrated the effects of PC-based negative refraction, lens, waveguides, and resonant cavities. We also discuss the influences of geometrical parameters on the guiding and resonance efficiency and on the frequencies of waveguide and cavity modes. On the experimental side, the design and fabrication of a silicon-based Lamb wave resonator which utilizes PC plates as reflective gratings to form the resonant cavity are discussed. The measured results showed significant improvement of the insertion losses and quality factors of the resonators when the PCs were applied. PMID:21989878

  17. Effect of adhesive thickness on adhesively bonded T-joint

    NASA Astrophysics Data System (ADS)

    Abdullah, A. R.; Afendi, Mohd; Majid, M. S. Abdul

    2013-12-01

    The aim of this work is to analyze the effect of adhesive thickness on tensile strength of adhesively bonded stainless steel T-joint. Specimens were made from SUS 304 Stainless Steel plate and SUS 304 Stainless Steel perforated plate. Four T-joint specimens with different adhesive thicknesses (0.5, 1.0, 1.5 and 2.0 mm) were made. Experiment result shows T-joint specimen with adhesive thickness of 1.0 mm yield highest maximum load. Identical T-joint specimen jointed by spot welding was also tested. Tensile test shows welded T-Joint had eight times higher tensile load than adhesively bonded T-joint. However, in low pressure application such as urea granulator chamber, high tensile strength is not mandatory. This work is useful for designer in fertilizer industry and others who are searching for alternative to spot welding.

  18. Delaminations in composite plates under transverse impact loads - Experimental results

    NASA Technical Reports Server (NTRS)

    Finn, Scott R.; He, Ye-Fei; Springer, George S.

    1993-01-01

    Tests were performed measuring the locations and geometries of delaminations in Fiberite T300/976 graphite/epoxy, Fiberite IM7/977-2 graphite-toughened epoxy, and ICI APC-2 graphite/PEEK plates subjected to transverse impact loads. The data provide specific information on the effects of impactor velocity, impactor mass, material, thickness of back ply group, difference in fiber orientation between adjacent ply groups, plate thickness, and impactor nose radius. The data were compared to the results of the Finn-Springer model. The model was found to describe the data with reasonable accuracy.

  19. 49 CFR 230.26 - Tensile strength of shell plates.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Strength of Materials § 230.26 Tensile strength of shell plates. When the tensile strength of... 49 Transportation 4 2012-10-01 2012-10-01 false Tensile strength of shell plates. 230.26...

  20. 49 CFR 230.26 - Tensile strength of shell plates.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Strength of Materials § 230.26 Tensile strength of shell plates. When the tensile strength of... 49 Transportation 4 2011-10-01 2011-10-01 false Tensile strength of shell plates. 230.26...

  1. 49 CFR 230.26 - Tensile strength of shell plates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Strength of Materials § 230.26 Tensile strength of shell plates. When the tensile strength of... 49 Transportation 4 2010-10-01 2010-10-01 false Tensile strength of shell plates. 230.26...

  2. 49 CFR 230.26 - Tensile strength of shell plates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Strength of Materials § 230.26 Tensile strength of shell plates. When the tensile strength of... 49 Transportation 4 2014-10-01 2014-10-01 false Tensile strength of shell plates. 230.26...

  3. 49 CFR 230.26 - Tensile strength of shell plates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Strength of Materials § 230.26 Tensile strength of shell plates. When the tensile strength of... 49 Transportation 4 2013-10-01 2013-10-01 false Tensile strength of shell plates. 230.26...

  4. Thermal stresses and buckling of elastic plates with reinforced edges

    SciTech Connect

    Ahmed, M.; Dillon, O.W. Jr.

    1987-01-01

    An approximation method based on the method of Kantorovich is used to calculate the critical thickness necessary to prevent thermal buckling of a rectangular cantilever plate with edge stiffeners. The case where no external loads are applied is considered, and the only stresses are those due to the prescribed thermal profile. Stiffeners are found to play an important role in the thermal buckling by affecting the overall distribution of the in-plane stresses within the plate. Results show that edge stiffeners can cause less or more buckling, and that in most situations the edge stiffeners hinder buckling because a thicker plate is required than if the stiffeners were not present. 11 references.

  5. Inverse characterization of plates using zero group velocity Lamb modes.

    PubMed

    Grnsteidl, Clemens; Murray, Todd W; Berer, Thomas; Veres, Istvn A

    2016-02-01

    In the presented work, the characterization of plates using zero group velocity Lamb modes is discussed. First, analytical expressions are shown for the determination of the k-? location of the zero group velocity Lamb modes as a function of the Poisson's ratio. The analytical expressions are solved numerically and an inverse problem is formulated to determine the unknown wave velocities in plates of known thickness. The analysis is applied to determine the elastic properties of tungsten and aluminum plates based on the experimentally measured frequency spectra. PMID:26527393

  6. Conductivity fuel cell collector plate and method of fabrication

    DOEpatents

    Braun, James C. (Juno Beach, FL)

    2002-01-01

    An improved method of manufacturing a PEM fuel cell collector plate is disclosed. During molding a highly conductive polymer composite is formed having a relatively high polymer concentration along its external surfaces. After molding the polymer rich layer is removed from the land areas by machining, grinding or similar process. This layer removal results in increased overall conductivity of the molded collector plate. The polymer rich surface remains in the collector plate channels, providing increased mechanical strength and other benefits to the channels. The improved method also permits greater mold cavity thickness providing a number of advantages during the molding process.

  7. Normal-Pressure Tests of Circular Plates with Clamped Edges

    NASA Technical Reports Server (NTRS)

    Mcpherson, Albert E; Ramberg, Walter; Levy, Samuel

    1942-01-01

    A fixture is described for making normal-pressure tests of flat plates 5 inches in diameter in which particular care was taken to obtain rigid clamping at the edges. Results are given for 19 plates, ranging in thickness form 0.015 to 0.072 inch. The center deflections and the extreme-fiber stresses at low pressures were found to agree with theoretical values; the center deflections at high pressures were 4 to 12 percent greater than the theoretical values. Empirical curves are derived of the pressure for the beginning of the permanent set as a function of the dimensions of the plate and the tensile properties of the material.

  8. Two-dimensional nonlinear models for heterogeneous plates

    NASA Astrophysics Data System (ADS)

    Pruchnicki, Erick

    2009-05-01

    We consider a formal asymptotic study of plates with periodically rapidly varying heterogeneities. The asymptotic analysis is performed when both the period of change of the material properties and the thickness of the plate are of the same orders of magnitude. We consider a plate made of Ciarlet-Geymonat type materials (P.G. Ciarlet and G. Geymonat (1982)). Depending on the order of magnitude of the applied loads, we obtain a nonlinear membrane model and a nonlinear membrane inextensional-bending model as announced in E. Pruchnicki (2006). Our approach is based on a sequence of recursive minimization problems. To cite this article: E. Pruchnicki, C. R. Mecanique 337 (2009).

  9. Effect of plate width on the growth and coalescence of fatigue cracks in plate-to-plate welded T-joints

    SciTech Connect

    Yee, R.; Burns, D.J.; Lambert, S.B.; Lecsek, R.L.; Mohaupt, U.H.

    1995-12-31

    The effect of plate width on the initiation and propagation of fatigue cracks in plate-to-plate T-joints with loading transverse attachment plates and flat fillet-like weld profiles was investigated in a series of constant amplitude fatigue tests. There was no observable effect of plate width on initiation life, propagating life, or total fatigue life, but plate width had a significant effect on crack shape development and crack growth rates. More cracks initiated along the weld toes of wider joints. As a result, the aspect ratios of dominant surface cracks were lower in wider joints, and the dominant surface cracks propagated faster through the thickness of wider base plates. However, there was a greater propensity for edge cracking in narrower specimens because fatigue cracks initiated closer to the free edges of such joints. This offset the faster growth of dominant surface cracks in wider joints so that there was no net effect of plate width on propagation life. A multiple crack linear elastic fracture mechanics model successfully simulated these differences in crack shape development behavior.

  10. Power flow analysis of two coupled plates with arbitrary characteristics

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1988-01-01

    The limitation of keeping two plates identical is removed and the vibrational power input and output are evaluated for different area ratios, plate thickness ratios, and for different values of the structural damping loss factor for the source plate (plate with excitation) and the receiver plate. In performing this parametric analysis, the source plate characteristics are kept constant. The purpose of this parametric analysis is to be able to determine the most critical parameters that influence the flow of vibrational power from the source plate to the receiver plate. In the case of the structural damping parametric analysis, the influence of changes in the source plate damping is also investigated. As was done previously, results obtained from the mobility power flow approach will be compared to results obtained using a statistical energy analysis (SEA) approach. The significance of the power flow results are discussed together with a discussion and a comparison between SEA results and the mobility power flow results. Furthermore, the benefits that can be derived from using the mobility power flow approach, are also examined.

  11. Nonlinearity Parameter Measurement for Polymer Plates Using Focused Ultrasound

    NASA Astrophysics Data System (ADS)

    Saito, Shigemi

    2008-06-01

    To select an appropriate material for acoustic window available for B/A imaging, the acoustic property including B/A has been measured for 1 mm thick polymer plates with a focusing system. Observing the second harmonic components contained in the sound transmitted through the polymer plate which is put, together with a sound reflector set at the back, within the focal region of 18.6 MHz focused ultrasound yields an extraordinary B/A value as large as 26.6, for example, in polystyrene. Taking into account the phase advances of the second harmonic due to velocity dispersion in polymer plate and multiple reflections at the gap between the plate and reflector, however, the B/A in polystyrene is corrected to 11.4. In a similar manner, the B/A values are obtained for other polymer plates.

  12. Shear buckling response of tailored, rectangular, composite plates

    NASA Technical Reports Server (NTRS)

    Biggers, Sherrill B.; Pageau, Stephane S.

    1993-01-01

    The concept of stiffness tailoring for improved shear buckling resistance of rectangular composite plates is investigated analytically. The tailoring involves only the redistribution of the given material with given orientations to create beneficial stiffening patterns across the planform of the plate. The resulting local nonuniformities in thickness and membrane and bending stiffness combine to change the buckling response of the plate. The weight and average membrane shear stiffness are essentially unaffected by the tailoring. Practical limitations on the degree to which the tailoring may be carried out are shown to govern most designs. Improvements in the shear buckling load on the order of 50 percent are shown possible with monolithic tailoring. Tailored sandwich concepts, in which a light-weight core material is added to keep both plate surfaces flat, can produce improvements well over 100 percent in specific buckling loads compared with uniform composite plates.

  13. A refined nonlinear theory of plates with transverse shear deformation

    NASA Technical Reports Server (NTRS)

    Reddy, J. N.

    1984-01-01

    A higher-order shear deformation theory of plates accounting for the von Karman strains is presented. The theory contains the same dependent unknowns as in the Hencky-Mindlin type first-order shear deformation theory and accounts for parabolic distribution of the transverse shear strains through the thickness of the plate. Exact solutions of simply supported plates are obtained using the linear theory and the results are compared with the exact solutions of three-dimensional elasticity theory, the first order shear deformation theory, and the classical plate theory. The present theory predicts the deflections, stresses, and frequencies more accurately when compared to the first-order theory and the classical plate theory.

  14. Three-dimensional solutions for antisymmetrically laminated anisotropic plates

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Burton, W. Scott

    1990-01-01

    Analytic three-dimensional elasticity solutions are presented for the stress and free vibration problems of multilayered anisotropic plates. The plates are assumed to have rectangular geometry and antisymmetric lamination with respect to the middle plane. A mixed formulation is used with the fundamental unknowns consisting of the six stress components and the three displacement components of the plate. Each of the plate variables is decomposed into symmetric and antisymmetric components in the thickness direction, and is expressed in terms of a double Fourier series in the Cartesian surface coordinates. Extensive numerical results are presented showing the effects of variation in the lamination and geometric parameters of composite plates on the importance of the transverse stress and strain components.

  15. Caribbean plate interactions

    SciTech Connect

    Ball, M. )

    1993-02-01

    Vector analysis of plate motions, derived from studies of Atlantic magnetic lineations and fracture zone trends, indicates the following relative movements between the Caribbean, North American, and South American Plates. (1) During Early Jurassic to Early Cretaceous, the North American Plate moved 1900 km westward and 900 km northward relative to the South American Plate. A broad zone including the Caribbean region, i.e., the zone between the North and South America Plates, was a site of left-lateral shear and north-south extension. (2) During Early Cretaceous to Late Cretaceous, the North American Mate moved an additional 1200 km westward relative to South America across this zone. (3) During Late Cretaceous to the end of the Eocene, the North American Plate moved 200 km westward and 400 km northward relative to the South American Plate. (4) From the end of the Eocene to near the end of the Miocene, North America converged on South America some 200 km and moved 100 km eastward relative to it. Through the Mesozoic and earliest Tertiary history of the Caribbean, the region was a shear zone within which left-lateral displacement exceeded 3000 km and north-south extension exceeded 1300 km. In regard to time, 80% of the history of the Caribbean region is one of north-south extension and left-lateral shear. In terms of space, 97% of the shear is left-lateral and the ratio of divergence versus convergence is 7 to 1. Thus, characterizing the Caribbean region, and the Atlantic to its east, as a zone of north-south extension and left-lateral shear, is a fair generalization.

  16. Titan's thick haze layer

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Titan's thick haze layer is shown in this enhanced Voyager 1 image taken Nov. 12, 1980 at a distance of 435,000 kilometers (270,000 miles). Voyager images of Saturn's largest moon show Titan completely enveloped by haze that merges with a darker 'hood' or cloud layer over the north pole. Such a mantle is not present at the south pole. At Voyager's closest approach to Titan on Nov. 11, 1980, spacecraft instruments found that the moon has a substantial atmosphere, far denser than that of Mars and possibly denser than Earth's. The Voyager Project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif.

  17. Using Plate Mapping to Examine Portion Size and Plate Composition for Large and Small Divided Plates

    PubMed Central

    Sharp, David E.; Sobal, Jeffery; Wansink, Brian

    2015-01-01

    Does the size of a plate influence the serving of all items equally, or does it influence the serving of some foods – such as meat versus starch versus vegetables – very differently? To examine this, we utilize a promising new plate mapping method where people drew a meal on a paper plate to examine sensitivity to small versus large three-compartment divided plates in portion size and meal composition in a sample of 109 university students. The total drawn meal area was 37% bigger on large plates than small plates, that is, the portion of plate coverage did not differ by plate size. Men and women drew bigger vegetable portions and men drew bigger meat portions on large plates when compared to small plates. These results suggest that men and women are differentially sensitive to plate size for overall meal size and for meal composition. Implications for decreasing portion size and improving meal balance are discussed. PMID:25280373

  18. Forced vibrations of SC-cut quartz crystal rectangular plates with partial electrodes by the Lee plate equations.

    PubMed

    Wu, Rongxing; Wang, Wenjun; Chen, Guijia; Du, Jianke; Ma, Tingfeng; Wang, Ji

    2016-02-01

    Lee plate equations for high frequency vibrations of piezoelectric plates have been established and perfected over decades with the sole objective of obtaining accurate predictions of frequency and mode shapes to aid the analysis and design of quartz crystal resonators. The latest improvement includes extra terms related to derivatives of the flexural displacement to provide much accurate solutions for vibrations of the thickness-shear mode, which is the functioning mode of resonators and has much higher frequency than the flexural mode. The improved Lee plate equations have been used in the analysis of high frequency vibrations of quartz crystal plates as an essential step for analysis of AT- and SC-cut quartz crystal resonators after validations with fully electrode quartz crystal piezoelectric plates. In this study, closed-form solutions of free and forced vibrations of SC-cut quartz plates with partial electrodes are obtained. A procedure has been established for the calculation of dispersion relations, frequency spectra, selected vibration modes, and capacitance ratios of forced vibrations. The vibration solutions obtained with the first-order Lee plate equations are proven to be close to solutions from the Mindlin plate equations. It is now clear that both the Mindlin and Lee plate equations can be used in the analysis and design of quartz crystal resonators. PMID:26433435

  19. Influence of cortical bone thickness on the ultrasound velocity

    PubMed Central

    Mandarano-Filho, Luiz Garcia; Bezuti, Mrcio Takey; Mazzer, Nilton; Barbieri, Cludio Henrique

    2012-01-01

    Objective An experimental in vitro study was carried out to evaluate the influence of cortical bone thickness on ultrasound propagation velocity. Methods Sixty bone plates were used, made from bovine femurs, with thickness ranging from 1 to 6 mm (10 of each). The ultrasound velocity measurements were performed using a device specially designed for this purpose, in an underwater acoustic tank and with direct contact using contact gel. The transducers were positioned in two ways: on opposite sides, with the bone between them, for the transverse measurement; and parallel to each other, on the same side of the bone plates, for the axial measurements. Results In the axial transmission mode, the ultrasound velocity speed increased with cortical bone thickness, regardless of the distance between the transducers, up to a thickness of 5 mm, then remained constant thereafter. There were no changes in velocity when the transverse measures were made. Conclusion Ultrasound velocity increased with cortical bone thickness in the axial transmission mode, until the thickness surpasses the wavelength, after which point it remained constant. Level of Evidence: Experimental Study. PMID:24453601

  20. SUEX process optimization for ultra-thick high-aspect ratio LIGA imaging

    NASA Astrophysics Data System (ADS)

    Johnson, Donald W.; Goettert, Jost; Singh, Varshni; Yemane, Dawit

    2011-04-01

    The focus of this paper is on the use of SUEX Thick Dry Film Sheet (TDFS) laminates which DJ DevCorp is developing as a thick resist material in optical and X-ray lithography. Preliminary thick dry film sheets up to 1mm thickness were successfully prepared and patterned at the CAMD X-ray beamlines and presented at HARMST 2007. Recently, new results have been published using SUEX resist sheets in UV lithography showing great market potential including plating molds for metal microparts, polymer MEMS, multilayer microfluidics structures, BioMEMS, medical devices, wafer level packaging processes, and displays. The SUEX TDFS are available in a range of thicknesses from 100?m to 1mm or more and are pre-cut into a number of standard wafer sizes. This new material is a modified epoxy formulation containing an antimony-free photo acid generator (PAG) prepared under a highly controlled solvent-less process which provides uniform coatings between two throw-away layers of protective polyester film. As part of our initial studies resist layers of 250, 500 and 1000?m were laminated onto regular silicon wafers using a hot roll laminator at a speed of 1ft/min at 75C. The entire substrate preparation takes about 1 hour and with practice users can prepare up to 10 substrates in this time which are typically ready to use within 2 hours. In our efforts to develop a commercially viable product we have conducted experiments using standard equipment available at CAMD (Quintel UV aligner and CAMD XRLM 1 and 4 beamline). Initial X-ray exposure tests were done with a bottom dose ranging between 100 and 400 J/cm3 and a top/bottom dose ratio of less than 3 for sheets up to 2mm in thickness. Exposure time for typical conditions of the CAMD storage ring (ring current ranging between 100 and 160mA, beam lifetime of about 10hrs at 100mA ring current) is about 10-15min for a 4' wafer. After exposure the samples were immediately post exposure baked between 70C and 110C using a convection oven, taken out and cooled to RT then relaxed up to 3 days before development to reduce stress. Development was done in PGMEA for up to 3 hours for the 1000?m thick samples followed by a short IPA rinse and drying in air. Very high aspect ratios of 100 or more have been routinely patterned with nearly perfectly straight sidewalls (~1-1.5?m deviation for a 1mm tall structure) and excellent image fidelity.

  1. Flat-plate boiloff calorimeters for testing of thermal insulation systems

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Johnson, W. L.; Kelly, A. O.; Meneghelli, B. J.; Swanger, A. M.

    2015-12-01

    Cryostats have been developed and standardized for laboratory testing of thermal insulation systems in a flat-plate configuration. Boiloff calorimetry is the measurement principle for determining the effective thermal conductivity (ke) and heat flux (q) of test specimens under a wide range of actual conditions. Cryostat-500 is thermally guarded to measure absolute thermal performance when calibrated with a known reference via an adjustable-edge guard ring. With liquid nitrogen as the energy meter, the cold boundary temperature can be adjusted to any temperature between 77 K and approximately 300 K by the interposition of a thermal resistance layer between the cold mass and the specimen. A low thermal conductivity suspension system has compliance rods that adjust for specimen thickness and compression force. Material type, thickness, density, flatness, compliance, outgassing, and temperature sensor placement are important test considerations, and edge effects and calibration techniques for the apparatus are crucial. Over the full vacuum pressure range, the thermal performance capability is nearly four orders of magnitude. The horizontal configuration provides key advantages over the vertical cylindrical cryostats for testing at ambient pressure conditions. Cryostat-500’s design and test methods, other flat-plate boiloff calorimeters, and results for select thermal insulation materials (composites, foams, aerogels) are discussed.

  2. The characteristics of frost growth on parallel plates

    NASA Astrophysics Data System (ADS)

    Han, Heung Do; Ro, Sung Tack

    An experimental investigation was undertaken to characterize the effect of environmental conditions on frost growth on a vertical plate in a parallel flow geometry. Humid air was conditioned to have a dew point below 0C and laminar flow prevailed. The test section was fabricated by using three cooling plates with individual insulators to minimize longitudinal conduction. It is known that frost formation on the heat exchanger surfaces seriously affects the performance of the system. The frost is dominantly formed in the inlet region of a heat exchanger. In order to understand the characteristics of frost growth in the entrance region, several experiments were carried out. The experimental parameters were plate temperature, air humidity, air temperature, air Reynolds number, location, and uncooled inlet length. The frosting conditions were limited to air temperatures from 5 to 15C, air Reynolds numbers from 1600 to 2270, air humidity ratios from 0.00275 to 0.0037 kg w /kg a , and plate temperatures from -10 to -20C. Frost growth toward the front of the plate was thicker and denser than toward the rear. In the low humidity conditions below 0C dew point frost growth increased with decreasing plate temperature and increasing humidity. For laminar flow, the dew point below 0C and non-cyclic frosting period, the frost thickness increased with increasing air temperature. This behavior can be explained by an increase of the transfer rate and a non-cyclic frosting without melting in a sublimation-ablimation process. The average growth thickness at three locations showed little dependence on the Reynolds numbers. However, there were only small differences in the front and rear plates. Frost thickness decreased with increasing uncooled inlet length. This result could be used to suppress frost growth in the plate finned tube heat exchanger.

  3. Start-up vortex flow past an accelerated flat plate

    NASA Astrophysics Data System (ADS)

    Xu, Ling; Nitsche, Monika

    2015-03-01

    Viscous flow past a finite flat plate accelerating in the direction normal to itself is studied numerically. The plate moves with nondimensional speed tp, where p = 0, 1/2, 1, 2. The work focuses on resolving the flow at early to moderately large times and determining the dependence on the acceleration parameter p. Three stages in the vortex evolution are identified and quantified. The first stage, referred to as the Rayleigh stage [Luchini and Tognaccini, "The start-up vortex issuing from a semi-infinite flat plate," J. Fluid Mech. 455, 175-193 (2002)], consists of a vortical boundary layer of roughly uniform thickness surrounding the plate and its tip, without any separating streamlines. This stage is present only for p > 0, for a time-interval that scales like p3, as p ? 0. The second stage is one of self-similar growth. The vortex trajectory and circulation satisfy inviscid scaling laws, the boundary layer thickness satisfies viscous laws. The self-similar trajectory starts immediately after the Rayleigh stage ends and lasts until the plate has moved a distance d = 0.5 to 1 times its length. Finally, in the third stage, the image vorticity due to the finite plate length becomes relevant and the flow departs from self-similar growth. The onset of an instability in the outer spiral vortex turns is also observed, however, at least for the zero-thickness plate considered here, it is shown to be easily triggered numerically by underresolution. The present numerical results are compared with experimental results of Pullin and Perry ["Some flow visualization experiments on the starting vortex," J. Fluid Mech. 97, 239-255 (1980)], and numerical results of Koumoutsakos and Shiels ["Simulations of the viscous flow normal to an impulsively started and uniformly accelerated flat plate," J. Fluid Mech. 328, 177-227 (1996)].

  4. Reduced Plating Ignitron

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A (Inventor); Pearson, J Boise (Inventor)

    2014-01-01

    An ignitron apparatus has an airtight tubular housing having a first sealed end and a second sealed end. An anode is connected at the first sealed end, projecting into the housing, and a recess at the second sealed and forms a well which contains a quantity of liquid gallium or gallium alloy making up the cathode. An ignitor projects through the liquid metal and into the housing. The inner surface of the housing includes at least one plating-reduction structure to prevent electrical shorting of the apparatus caused by plating of the liquid metal.

  5. Evolution of plate tectonics on terrestrial planets

    NASA Astrophysics Data System (ADS)

    Meissner, R.

    1983-04-01

    The evidence for plate-tectonic (PT) evolution analogous to that on earth is presented for the moon, Mercury, Mars, and Venus. The alpha, beta, and buckling phases of earth PT and their dependence on plate formation and convection processes are characterized. PT is considered a necessary phase in the cooling of terrestrial planets. Hypsographic curves, smoothed topography and crustal-depth profiles, and data on crustal thickness, lithospheric thickness, center-of-mass/center-of-figure offset, and ratio of volcanic plains to highland areas, are given for each of the planets; the Mercury data are found to be insufficient for accurate PF modeling. It is shown that type-beta PT has specific boundary conditions now satisfied only on earth, while type-alpha PT acted on the earth at 3.8-1.2 GY and probably on the moon at 4.4-4.0 GY, on Mars with increased intensity for a longer period, and on Venus (where the present abundance of PT features and the surface thermal-boundary conditions may resemble those of the Archean earth) only since about 2 GY. The estimated evolution of tectonic styles and lithospheric thickness in time is plotted, and it is suggested that the beta phase may generally be of short duration.

  6. Plate-mantle coupling from post-Pangea plate kinematics

    NASA Astrophysics Data System (ADS)

    Zahirovic, Sabin; Dietmar Mller, R.; Seton, Maria; Flament, Nicolas

    2015-04-01

    Convection in the Earth's mantle that involves plates at the surfaces gives rise to plate velocities that vary through time and depend on the balance of plate boundary forces, with the present-day providing a snapshot of this ongoing process. However, present-day plate velocities do not capture plate behaviour over geologically representative timeframes and thus cannot be used to evaluate factors limiting plate velocities. Previous studies investigated the effects of continental keels on plate speeds by either using the present-day snapshot or a limited number of reconstructed plate configurations, often leading to conflicting results. For example, an early assumption was that continental keels (especially cratons) were unlikely to impede fast plate motions because India's velocity approached ~20 cm/yr in the Eocene prior to the collision with Eurasia. We employ a modern plate reconstruction approach with evolving global topological plate boundaries for the post-Pangea timeframe (since 200 Ma) to evaluate factors controlling plate velocities. Plate boundary configurations and plate velocities are extracted from the open-source and cross-platform plate reconstruction package GPlates (www.gplates.org) at 1 Myr intervals. For each plate, at each timestep, the area of continental and cratonic lithosphere is calculated to evaluate the effect on plate velocities. Our results support that oceanic plates tend to be 2-3 times faster than plates with large portion of continental plate area, consistent with predictions of numerical models of mantle convection. The fastest plates (~8.5 cm/yr RMS) are dominated by oceanic plate area and high subducting portion of plate perimeter, while the slowest plates (~2.6-2.8 cm/yr RMS) are dominated by continental plate area and bounded by transforms and mid-oceanic ridge segments. Importantly, increasing cratonic fractions (both Proterozoic and Archean lithosphere) significantly impede plate velocities, suggesting that deep continental keels impinge on asthenospheric flow to increase shear traction, thus anchoring the plate in the more viscous mantle transition zone. However, plates with significant cratonic fragments exhibit short-lived (~10 Myr) accelerations, such as the rapid motion of the Indian plate that is correlated with plume head arrivals as recorded by large igneous province (LIPs) emplacement, highlighting the necessity to analyse plate velocities over long geological timeframes. By evaluating factors controlling plate velocities in the post-Pangea timeframe, simple principles can be applied to highlight potential plate velocity artefacts for Paleozoic and earlier times for which no hotspot tracks, nor in-situ seafloor spreading histories, are preserved. Based on the post-Pangea timeframe, a principle that can be applied to pre-Pangea times is that plates with less than ~50% continental area can reach RMS velocities of ~20 cm/yr, while plates with more than 50% continental fraction do not exceed RMS velocities of ~10 cm/yr. Similarly, plates with large portions of continental or cratonic area with RMS velocities exceeding ~15 cm/yr for more than ~10 Myr should be flagged as potential artefacts requiring further justification of plate driving forces in such scenarios.

  7. Polar Plate Theory for Orthogonal Anisotropy

    NASA Technical Reports Server (NTRS)

    Bailey, Michelle D.; Bower, Mark V.

    2000-01-01

    Laminated fiber-reinforced (or filamentary) composites are used today for their high strength-to-weight and stiffness-to-weight ratios. However, because of the anisotropic behavior of composites, determining the response on a macroscopic scale is challenging. This is particularly evident in the evaluation of the governing differential equations of a circular disk with the fibers of the lamina oriented with rectilinear orthogonality. This includes any situation involving a composite plate of circular geometry in which out-of-plane displacements due to load are desired, such as fastener pull through loading of a composite plate. Current analysis techniques use numerical methods with rectilinear coordinate systems to solve problems with circular geometry. These analyses over predict plate stiffness by 20% and underpredict failure by 70%. Consequently, there is a need to transform classical composite plate theory to a polar coordinate system. In order to better analyze structures with circular geometries the classical composite plate equations are transformed into the plate equations for a rectilinearly anisotropic composite in polar coordinates. A composite plate is typically a laminate of fibers in rectilinear directions. Subsequent to the lay-tip the necessary geometry is cut out of a rectangular plate. In a similar manner, the derivation of the plate equation starts with the fundamental definitions of strain, displacement and curvature and incorporates the material property angular dependence into the equilibrium equations for a differential polar element. In the transformed state, the stiffness coefficients are no longer constant, adding to the complexity of the governing differential equations. This paper discusses the new derivation and evaluation of the plate equations for a circular composite disk with orthogonal rectilinear anisotropy. The resultant new three partial differential equations, which describe the circular anisotropic plate, can be used to evaluate out-of-plane displacements for given load conditions in design of composite Structures. Without the formation of these unique plate equations, design of such structures is not a precise engineering accomplishment due to the lack of precise design tools. Such structures are over designed to compensate and costly tests need to be performed after production to validate safety. Though impossible to present the mathematical solution within the limits of this paper, the application of the newly derived plate equation in its orthotropic form for a balanced symmetric laminate compared favorably with test results and surpassed the results of standard numerical methods. Within the limitations of the problem foundation the predictive model provides a mechanism for establishing out-of-plane deflection levels for a circular composite plate. Future work in this area should include incorporating the circular composite plate equations in Finite Element Models. The new anisotropic polar plate equations call be utilized as a design tool so that the design more accurately meets the requirements, thus taking full advantage of the weight savings of composites. These accomplishments have not previously been presented to the engineering community nor ever proposed to the IAF. Should the proposed paper be accepted for presentation, attendance is assured.

  8. Free vibrations of thermally stressed orthotropic plates with various boundary conditions

    NASA Technical Reports Server (NTRS)

    Bailey, C. D.; Greetham, J. C.

    1973-01-01

    An analytical investigation of the vibrations of thermally stressed orthotropic plates in the prebuckled region is presented. The investigation covers the broad class of trapezoidal plates with two opposite sides parallel. Each edge of the plate may be subjected to different uniform boundary conditions. variable thickness and arbitrary temperature distributions (analytical or experimental) for any desired combination of boundary conditions may be prescribed. Results obtained using this analysis are compared to experimental results obtained for isotropic plates with thermal stress, and to results contained in the literature for orthotropic plates without thermal stress. Good agreement exists for both sets of comparisons.

  9. Thermal effect on the linear and nonlinear analysis of cross-ply laminated plates

    SciTech Connect

    Lee, S.Y.; Ou, J.J.

    1993-12-31

    The cylindrical bending of cross ply laminated plates subjected to an uniform transverse load is evaluated via classical plate theory and Von Karman`s larger deflection plate theory, respectively. It is shown the influence of the temperature variation, boundary conditions, span to thickness ratio and stacking sequence on the accuracy of the linear analysis is quite significant. ne linear laminated plate theory may not be adequate for the analysis of several cross ply laminated plates even in small deflection range and at room temperature.

  10. Natural vibrations of laminated anisotropic plates using three-dimensional elasticity theory

    NASA Technical Reports Server (NTRS)

    Reddy, J. N.; Kuppusamy, T.

    1983-01-01

    The paper contains a description of the three-dimensional elasticity equations and the associated finite element model for natural vibrations of laminated anisotropic rectangular plates. The numerical results for natural frequencies are compared with those obtained by a shear deformable plate theory. A number of cross-ply and angle-ply rectangular plates are analyzed for natural frequencies. For relatively thick plates, the shear deformable-plate theory element predicts frequencies higher than those predicted by the three-dimensional elasticity theory element.

  11. Three-beam interferogram analysis method for surface flatness testing of glass plates and wedges

    NASA Astrophysics Data System (ADS)

    Sunderland, Zofia; Patorski, Krzysztof

    2015-09-01

    When testing transparent plates with high quality flat surfaces and a small angle between them the three-beam interference phenomenon is observed. Since the reference beam and the object beams reflected from both the front and back surface of a sample are detected, the recorded intensity distribution may be regarded as a sum of three fringe patterns. Images of that type cannot be succesfully analyzed with standard interferogram analysis methods. They contain, however, useful information on the tested plate surface flatness and its optical thickness variations. Several methods were elaborated to decode the plate parameters. Our technique represents a competitive solution which allows for retrieval of phase components of the three-beam interferogram. It requires recording two images: a three-beam interferogram and the two-beam one with the reference beam blocked. Mutually subtracting these images leads to the intensity distribution which, under some assumptions, provides access to the two component fringe sets which encode surfaces flatness. At various stages of processing we take advantage of nonlinear operations as well as single-frame interferogram analysis methods. Two-dimensional continuous wavelet transform (2D CWT) is used to separate a particular fringe family from the overall interferogram intensity distribution as well as to estimate the phase distribution from a pattern. We distinguish two processing paths depending on the relative density of fringe sets which is connected with geometry of a sample and optical setup. The proposed method is tested on simulated data.

  12. Experimental Structural Dynamic Response of Plate Specimens Due to Sonic Loads in a Progressive Wave Tube

    NASA Technical Reports Server (NTRS)

    Betts, Juan F.

    2001-01-01

    The objective of the current study was to assess the repeatability of experiments at NASA Langley's Thermal Acoustic Fatigue Apparatus (TAFA) facility and to use these experiments to validate numerical models. Experiments show that power spectral density (PSD) curves were repeatable except at the resonant frequencies, which tended to vary between 5 Hz to 15 Hz. Results show that the thinner specimen had more variability in the resonant frequency location than the thicker sample, especially for modes higher than the first mode in the frequency range. Root Mean Square (RMS) tended to be more repeatable. The RMS behaved linearly through the SPL range of 135 to 153 dB. Standard Deviations (STDs) of the results tended to be relatively low constant up to about 147 dB. The RMS results were more repeatable than the PDS results. The STD results were less than 10% of the RMS results for both the 0.125 in (0.318 cm) and 0.062 in (0.1588 cm) thick plate. The STD of the PSD results were around 20% to 100% of the mean PSD results for non-resonant and resonant frequencies, respectively, for the 0.125 in (0.318 cm) thicker plate and between 25% to 125% of the mean PSD results, for nonresonant and resonant frequencies, respectively, for the thinner plate.

  13. Sulfur content of carbon steel plate material for dished end manufacture by cold spinning

    SciTech Connect

    Dutta, T.; Chandawale, R.G.; Vanchinath, S.A.

    1999-07-01

    Over many years SA 516 Gr.70 plate material is being used for the construction of boilers and pressure vessels and has become a standard of the industry. However a typical failure of this material during dished end manufacture has troubled the manufacturer on and off. Many times lamellar separation takes place along the central line of the thickness visible at the edges of the dished ends after cold spinning. In this present study the authors have carried out a customized shear test to ascertain the effect of sulfur content on the susceptibility of the SA 516 Gr. 70 plate material to fail by shear along the plane of segregation. This study indicated that the presence of central segregation is a critical factor to induce reduction in the shear strength. As the sulfur content goes down the segregation line disappears and the shear strength also increases. At 0.01% maximum sulfur best results are obtained. It was supported by the field observation of failed dished ends, where failures are observed with plates with typical sulfur content of 0.02% and above.

  14. BEPLATE emdash simulation of electrochemical plating

    SciTech Connect

    Giles, G.E. ); Gray, L.J. ); Bullock, J.S. IV )

    1990-09-01

    BEPLATE is a FORTRAN code that uses the boundary element method to simulate the electrochemical plating of material on parts, primarily rotating axisymmetric parts. A boundary element technique is used to solve for the local current density and thus the plating rate on the part, which is used to calculate the growth in the plated layer over a user-specified time step. The surface is moved to reflect this growth, and the new surface is used to generate the local current density. This cycle is repeated until the final time specified by the analyst, producing the final plated thickness. BEPLATE includes models for the polarization effects at both the part (cathode) and anode and allows the use of symmetry planes and nonconducting shields. For electroplating simulations, the part shape is normally assumed to be axisymmetric with a centerline along the z-axis. More general part shapes can be analyzed by BEPLATE if the surface growth simulation is not needed. In either case, the shield, anode, and tank geometries are not restricted to specific shapes. This report includes the information required to run BEPLATE, specifically, a brief description of the BEPLATE system including hardware and software requirements, a description of the complete simulation process, discussion of rules for generating models, and additional reference material. This system of codes consists of model generators (PIGS or PATRAN), input processor (BEPIN), the simulation code (BEPLATE) and postprocessing codes (PATRAN or CONPLOT).

  15. Experimental investigation on the dynamic response of clamped corrugated sandwich plates subjected to underwater impulsive loadings

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Zhang, Wei; Li, Dacheng; Hypervelocity Impact Research Center Team

    2015-06-01

    Corrugated sandwich plates are widely used in marine industry because such plates have high strength-to-weight ratios and blast resistance. The laboratory-scaled fluid-structure interaction experiments are performed to demonstrate the shock resistance of solid monolithic plates and corrugated sandwich plates by quantifying the permanent transverse deflection at mid-span of the plates as a function of impulsive loadings per areal mass. Sandwich structures with 6mm-thick and 10mm-thick 3003 aluminum corrugated core and 5A06 face sheets are compared with the 5A06 solid monolithic plates in this paper. The dynamic deformation of plates are captured with the the 3D digital speckle correlation method (DIC). The results affirm that sandwich structures show a 30% reduction in the maximum plate deflection compare with a monolithic plate of identical mass per unit area, and the peak value of deflection effectively reduced by increasing the thickness core. The failure modes of sandwich plates consists of core crushing, imprinting, stretch tearing of face sheets, bending and permanent deformation of entire structure with the increasing impulsive loads, and the failure mechanisms are analyzed with the postmortem panels and dynamic deflection history captured by cameras. National Natural Science Foundation of China (NO.: 11372088).

  16. Development status of thick film photoresist for semiconductor packaging

    NASA Astrophysics Data System (ADS)

    Misumi, Koichi; Saito, Koji; Obiya, Hiroyuki

    2005-05-01

    In recent years, the demand of thick film photoresists for both copper metal posts and solder bump has been rising for Wafer Level Chip Size Package (WL-CSP) applications. The polymerizing negative tone photoresist, typified by Dry-film photoresist, for metal post applications is currently the mainstream method, but difficulty in removal, thickness selectivity, scaling of chip size and high definition requirements has made the development of a positive tone photoresist for thick film application a necessity. However, the sensitization of a conventional DNQ positive tone photoresist system was difficult due to the nature of the reaction mechanism. In order to meet these requirements, a study was made with a new approach with a positive tone chemically amplified photoresist system, and will be explained in detail in this paper. In general, DNQ type thick photoresist for plating process is developed from the positive tone photoresist platform for semiconductor application through optimization of resist composition and improvement of cracking during the plating process through addition of plasticizers. Inherent performance or compatibility issues with the conventional plasticizer in positive tone chemically amplified photoresist have lead to the development of plasticizer with protecting group. This modification of composition has improved the phtoresist for cracks and swelling of bumps after plating. This is the first chemically amplified photo resist designed for use in the consumer product manufacturing industry.

  17. Partial Thickness Rotator Cuff Tears: Current Concepts

    PubMed Central

    Matthewson, Graeme; Beach, Cara J.; Nelson, Atiba A.; Woodmass, Jarret M.; Ono, Yohei; Boorman, Richard S.; Lo, Ian K. Y.; Thornton, Gail M.

    2015-01-01

    Partial thickness rotator cuff tears are a common cause of pain in the adult shoulder. Despite their high prevalence, the diagnosis and treatment of partial thickness rotator cuff tears remains controversial. While recent studies have helped to elucidate the anatomy and natural history of disease progression, the optimal treatment, both nonoperative and operative, is unclear. Although the advent of arthroscopy has improved the accuracy of the diagnosis of partial thickness rotator cuff tears, the number of surgical techniques used to repair these tears has also increased. While multiple repair techniques have been described, there is currently no significant clinical evidence supporting more complex surgical techniques over standard rotator cuff repair. Further research is required to determine the clinical indications for surgical and nonsurgical management, when formal rotator cuff repair is specifically indicated and when biologic adjunctive therapy may be utilized. PMID:26171251

  18. Plate Rolling Modeling at Mill 5000 of OJSC ``Magnitogorsk Iron and Steel'' for Analysis and Optimization of Temperature Rates

    NASA Astrophysics Data System (ADS)

    Salganik, V.; Shmakov, A.; Pesin, A.; Pustovoytov, D.

    2010-06-01

    Modeling of strip deflected mode and thermal state in rolling is an integral part of the technology and perspective rolling-mill machinery such as plate mill 5000 of the OJSC "Magnitogorsk Iron and Steel". To comprehend metal behavior in the deformation zone in the rough passes during plate rolling it is essential to assess the impact of various temperature factors on variations in field of stress and strain intensities as well as temperature fields in deformation. To do such researches in consideration of various software products and adequate results one of the most effective methods nowadays is regarded as the method of finite elements. The research shows modeling of roughing rolling of a pipe steel sheet with strength category X80 according to standard API-5L. In the research of the metal deflected mode software product DEFORM 2D has been used for the isothermal and nonisothermic process. The mathematical modeling allows revealing the impact of temperature field on the metal deflected mode in the rough passes in plate rolling. Supposedly, it is deformation heating that can have more impact on the ingot temperature profile in the finishing passes in controlled rolling of the pipe steel grades. It is defined by high percent reduction, rolling speeds; more area of heat exchange surface; less thickness and lower temperature of rolling. The results can be used to develop efficient modes of plate rolling of the pipe steels.

  19. Fabrication of a micro-hole array on metal foil by nanosecond pulsed laser beam machining using a cover plate

    NASA Astrophysics Data System (ADS)

    Ha, Kyoung Ho; Lee, Se Won; Kim, Janggil; Jee, Won Young; Chu, Chong Nam

    2015-02-01

    A novel laser beam machining (LBM) method is proposed to achieve higher precision and better quality beyond the limits of a commercialized nanosecond pulsed laser system. The use of a cover plate is found to be effective for the precision machining of a thin metal foil at micro scale. For verifying the capability of cover plate laser beam machining (c-LBM) technology, a 30 by 30 array of micro-holes was fabricated on 8?m-thick stainless steel 304 (STS) foil. As a result, thermal deformation and cracks were significantly reduced in comparison with the results using LBM without a cover plate. The standard deviation of the inscribed and circumscribed circle of the holes with a diameter of 12?m was reduced to 33% and 81%, respectively and the average roundness improved by 77%. Moreover, the smallest diameter obtainable by c-LBM in the given equipment was found to be 6.9?m, which was 60% less than the minimum size hole by LBM without a cover plate.

  20. Ultrasonic Inspection Of Thick Sections

    NASA Technical Reports Server (NTRS)

    Friant, C. L.; Djordjevic, B. B.; O'Keefe, C. V.; Ferrell, W.; Klutz, T.

    1993-01-01

    Ultrasonics used to inspect large, relatively thick vessels for hidden defects. Report based on experiments in through-the-thickness transmission of ultrasonic waves in both steel and filament-wound composite cases of solid-fuel rocket motors.

  1. Effectiveness of nickel plating in inhibiting atmospheric corrosion of copper alloy contacts

    SciTech Connect

    Ernest, T.; Sorensen, R.; Guilinger, T.

    1997-12-31

    A series of tests was run to determine the effect of Ni plating thickness on connector contact resistance. Copper coupons were plated with an electrolytic nickel strike followed by electroless nickel to produce Ni layers of 10, 20, 55 and 100 {micro}in. The coupons were then exposed to a simulated industrial environment. Pore corrosion was observed after the exposure, which correlated with Ni thickness. In a second series of tests, beryllium-copper four-tine contacts with 50 {micro}in of gold plate over electrolytic nickel strike/electroless-nickel plates of varying thickness were exposed the same corrosive environment. Contact resistance of mated pairs was monitored over a two-month period. The degradation in contact resistance correlated with the Ni thickness used in the connectors.

  2. LOWLID FORMATION AND PLATE TECTONICS ON EXOPLANETS

    NASA Astrophysics Data System (ADS)

    Stamenkovic, V.; Noack, L.; Breuer, D.

    2009-12-01

    The last years of astronomical observation have opened the doors to a universe filled with extrasolar planets. Detection techniques still only offer the possibility to detect mainly Super-Earths above five Earth masses. But detection techniques do steadily improve and are offering the possibility to detect even smaller planets. The observations show that planets seem to exist in many possible sizes just as the planets and moons of our own solar system do. It is only a natural question to ask if planetary mass has an influence on some key habitability factors such as on plate tectonics, allowing us to test which exoplanets might be more likely habitable than others, and allowing us to understand if plate tectonics on Earth is a stable or a critical, instable process that could easily be perturbed. Here we present results derived from 1D parameterized thermal evolution and 2D/3D computer models, showing how planetary mass influences the propensity of plate tectonics for planets with masses ranging from 0.1 to 10 Earth masses. Lately [2, 3] studied the effect of planetary mass on the ability to break plates and hence initiate plate tectonics - but both derived results contradictory to the other. We think that one of the reasons why both studies [2, 3] are not acceptable in their current form is partly due to an oversimplification. Both treated viscosity only temperature-dependent but neglected the effect pressure has on enlarging the viscosity in the deep mantle. More massive planets have therefore a stronger pressure-viscosity-coupling making convection at high pressures sluggish or even impossible. For planets larger than two Earth masses we observe that a conductive lid (termed low-lid) forms above the core-mantle boundary and thus reduces the effective convective part of the mantle when including a pressure-dependent term into the viscosity laws as shown in [1]. Moreover [2, 3] use time independent steady state models neglecting the fact that plate tectonics is a dynamic process changing with time. By combining 1D thermal time evolution models and 2D/3D steady state models we are able to conclude that planetary mass does influence the propensity of plate tectonics on planets. The pressure dependence changes the scaling laws for parameterized models and influences the scaling of stresses associated with breaking of plates and thus the initiation of plate tectonics. The results indicate that for planets with masses larger than Earth lithospheric plates are either becoming thicker or remain similar in thickness and yield stresses to break the plates increase - making it harder to assume that plate tectonics is more likely on Super-Earths. Moreover, convective stresses decrease more than yield stresses do for planets smaller than Earth, leading to the fact that planets with masses close to one Earth mass seem to have better chances to exhibit plate tectonics than larger or smaller planets with similar composition and structure. References [1] Noack, L. Stamenkovic, V., and Breuer, D. (2009) ESLAB 09, P1.04. [2] Valencia, D., OConnell, R.J., and Sasselov, D.D. (2007) Astroph. J., 670, 45-48. [3] ONeill, C. and Lenardic, A. (2007) GRL, 34, L19204

  3. Dual passband dichroic plate for X-band

    NASA Technical Reports Server (NTRS)

    Otoshi, T. Y.; Franco, M. M.

    1988-01-01

    A need arose in the Deep Space Network for a dichroic plate that would simultaneously pass two desired frequency bands in the X-band region. In addition, the plate must be totally reflective for S-band frequencies. A dielectrically loaded dichroic plate is described that was developed to meet this need. The unique microwave properties that the new dichroic plate had to possess were: (1) insertion losses of less than 0.04 dB for X-band uplink frequencies centered at 7167 MHz and for X-band downlink frequencies centered at about 8425 MHz; (2) insertion losses that met the low loss requirements at 30 deg incidence angle simultaneously for both parallel and perpendicular polarizations; (3) total reflectivity at S-band frequencies; and (4) ability to maintain these electrical characteristics while passing 100 kW of CW power at X-band or while reflecting 100 kW of CW power at S-band. The dual passband dichroic plate is a thick metallic plate having an array of periodic round holes filled with Teflon plugs. Test results on an experimental prototype plate indicate that it is technically possible to design a dielectrically filled dichroic plate that meets all of the technical requirements.

  4. Strength of Rectangular Flat Plates Under Edge Compression

    NASA Technical Reports Server (NTRS)

    Schuman, Louis; Back, Goldie

    1931-01-01

    Flat rectangular plates of duralumin, stainless iron, monel metal, and nickel were tested under loads applied at two opposite edges and acting in the plane of the plate. The edges parallel to the direction of loading were supported in V grooves. The plates were all 24 inches long and varied in width from 4 to 24 inches by steps of 4 inches, and in thickness from 0.015 to 0.095 inch by steps of approximately 0.015 inch. There were also a few 1, 2, 3, and 6 inch wide specimens. The loads were applied in the testing machine at the center of a bar which rested along the top of the plate. Load was applied until the plate failed to take any more load. The tests show that the loads carried by the plates generally reached a maximum for the 8 or 12 inch width and that there was relatively small drop in load for the greater widths. Deflection and set measurement perpendicular to the plane of the plate were taken and the form of the buckle determined. The number of buckles were found to correspond in general to that predicted by the theory of buckling of a plate uniformly loaded at two opposite edges and simply supported at the edges.

  5. Ultrasonic evaluation of residual stresses in rolled aluminum plate

    SciTech Connect

    Bray, Don E.; Kim, Seon-Jin; Fernandes, Micky

    1999-12-02

    The L{sub CR} ultrasonic technique has shown an ability to distinguish between three aluminum plates furnished by Kaiser Aluminum. The 1.22x1.19 m(48x47 in) plates are 19 mm (0.75 inch) thick, but differ in heat treatment and rolling conditions. One is fully annealed (O temper), the second was heat-treated to T651 temper, and the third is a stress relieved plate. Travel-times were obtained at twenty-five locations on each side of all plates. The O temper plate showed large travel-time differences between the sides, but the variation for a side was small. The heat-treated plate showed large differences both between the sides and on each side. The stress relieved plate, on the other hand, showed very uniform L{sub CR} travel-times both for the two sides and on each side. These preliminary results indicate that the L{sub CR} method may be further developed for use in quality control in the manufacture of rolled aluminum plates.

  6. INL HIP Plate Fabrication

    SciTech Connect

    B. H. Park; C. R. Clark; J. F. Jue

    2010-02-01

    This document outlines the process used to bond monolithic fuel plates by Hot Isostatic Pressing (HIP). This method was developed at Idaho National Laboratory (INL) for the Reduced Enrichment for Research and Test Reactors (RERTR) program. These foils have been used in a number of irradiation experiments in support of the United States Global Threat Reduction Initiative (GTRI) program.

  7. The Plate Tectonics Project

    ERIC Educational Resources Information Center

    Hein, Annamae J.

    2011-01-01

    The Plate Tectonics Project is a multiday, inquiry-based unit that facilitates students as self-motivated learners. Reliable Web sites are offered to assist with lessons, and a summative rubric is used to facilitate the holistic nature of the project. After each topic (parts of the Earth, continental drift, etc.) is covered, the students will…

  8. Unitary plate electrode

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor); Clough, Thomas J. (Inventor); Josefowicz, Jack Y. (Inventor); Sibert, John W. (Inventor)

    1985-01-01

    The unitary electrode (10) comprises a porous sheet (12) of fiberglass the strands (14) of which contain a coating (16) of conductive tin oxide. The lower portion of the sheet contains a layer (18) of resin and the upper layer (20) contains lead dioxide forming a positive active electrode on an electrolyte-impervious layer. The strands (14) form a continuous conduction path through both layers (16, 18). Tin oxide is prevented from reduction by coating the surface of the plate facing the negative electrode with a conductive, impervious layer resistant to reduction such as a thin film (130) of lead or graphite filled resin adhered to the plate with a layer (31) of conductive adhesive. The plate (10) can be formed by casting a molten resin from kettle (60) onto a sheet of glass wool (56) overlying a sheet of lead foil and then applying positive active paste from hopper (64) into the upper layer (68). The plate can also be formed by passing an assembly of a sheet ( 80) of resin, a sheet (86) of sintered glass and a sheet (90) of lead between the nip (92) of heated rollers (93, 95) and then filling lead oxide into the pores (116) of the upper layer (118).

  9. The Plate Tectonics Project

    ERIC Educational Resources Information Center

    Hein, Annamae J.

    2011-01-01

    The Plate Tectonics Project is a multiday, inquiry-based unit that facilitates students as self-motivated learners. Reliable Web sites are offered to assist with lessons, and a summative rubric is used to facilitate the holistic nature of the project. After each topic (parts of the Earth, continental drift, etc.) is covered, the students will

  10. Effect of 1partial thickness actuation on stress concentration reduction near a hole

    NASA Technical Reports Server (NTRS)

    Sensharma, P. K.; Kadivar, M. H.; Haftka, R. T.

    1994-01-01

    Recently, there has been much interest in adaptive structures that can respond to a varying environment by changing their properties. Piezoelectric materials and shape memory alloys (SMA) are often used as partial thickness actuators to create such adaptivity by applied energy, usually electric curent. These actuators can be used to inducce strains in a structure and reduce stresses in regions of high stress concentration. Two of the present authors show that axisymmetric actuation strains applied troughout the thickness of a plate with a hole can reduce the stress concentration factor (SCF) in an isotropic plate from 3 to 2. However, in most cases actuators are expected to be bonded to or embedded in the plate, so that the actuation strains are applied in the actuators and not directly in the plate. The objective of this note is to show that such partial-thickness actuation cannot be used to reduce the stress concentration factor with axisymmetric actuations strain distribution.

  11. Nuclear reactor alignment plate configuration

    DOEpatents

    Altman, David A; Forsyth, David R; Smith, Richard E; Singleton, Norman R

    2014-01-28

    An alignment plate that is attached to a core barrel of a pressurized water reactor and fits within slots within a top plate of a lower core shroud and upper core plate to maintain lateral alignment of the reactor internals. The alignment plate is connected to the core barrel through two vertically-spaced dowel pins that extend from the outside surface of the core barrel through a reinforcement pad and into corresponding holes in the alignment plate. Additionally, threaded fasteners are inserted around the perimeter of the reinforcement pad and into the alignment plate to further secure the alignment plate to the core barrel. A fillet weld also is deposited around the perimeter of the reinforcement pad. To accomodate thermal growth between the alignment plate and the core barrel, a gap is left above, below and at both sides of one of the dowel pins in the alignment plate holes through with the dowel pins pass.

  12. Characterization of a texture gradient in tantalum plate

    SciTech Connect

    Wright, S.I.; Gray, G.T. III

    1994-11-01

    Clark et al. have shown that significant texture gradients can be produced in rolled tantalum plate and that the strength of the gradient is dependent on the processing path. Texture gradients are often ignored because they are time consuming to characterize and add significant complexity to materials modeling. The variation in texture through the thickness of rolled materials is most commonly measured by sectioning samples to different depths through the thickness of the plate and then measuring the texture from these section planes by X-ray diffraction. A new technique based on automatic indexing of electron backscatter diffraction patterns in the scanning electron microscope enables spatially specific orientations to be measured in a practical manner. This technique allows spatial variations in texture to be measured directly enabling gradients in texture to be investigated in more detail than previously possible. This data can be used directly in coupled finite-element/polycrystal-plasticity models to simulate the effects of variations in texture on the plastic behavior of polycrystals. This work examines the variation in texture through the thickness of a tantalum plate and its resultant effect on the compressive deformation of samples prepared from the plate. The characterization of the texture gradient using the automatic point-by-point measurement technique mentioned above is described in detail. The effect of the gradient on the plastic response of through-thickness compression tests is also discussed.

  13. Non-destructive evaluation of coating thickness using guided waves

    NASA Astrophysics Data System (ADS)

    Ostiguy, Pierre-Claude; Quaegebeur, Nicolas; Masson, Patrice

    2015-04-01

    Among existing strategies for non-destructive evaluation of coating thickness, ultrasonic methods based on the measurement of the Time-of-Flight (ToF) of high frequency bulk waves propagating through the thickness of a structure are widespread. However, these methods only provide a very localized measurement of the coating thickness and the precision on the results is largely affected by the surface roughness, porosity or multi-layered nature of the host structure. Moreover, since the measurement is very local, inspection of large surfaces can be time consuming. This article presents a robust methodology for coating thickness estimation based on the generation and measurement of guided waves. Guided waves have the advantage over ultrasonic bulk waves of being less sensitive to surface roughness, and of measuring an average thickness over a wider area, thus reducing the time required to inspect large surfaces. The approach is based on an analytical multi-layer model and intercorrelation of reference and measured signals. The method is first assessed numerically for an aluminum plate, where it is demonstrated that coating thickness can be measured within a precision of 5 micrometers using the S0 mode at frequencies below 500 kHz. Then, an experimental validation is conducted and results show that coating thicknesses in the range of 10 to 200 micrometers can be estimated within a precision of 10 micrometers of the exact coating thickness on this type of structure.

  14. Modeling of composite beams and plates for static and dynamic analysis

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.

    1992-01-01

    A rigorous theory and the corresponding computational algorithms were developed for through-the-thickness analysis of composite plates. This type of analysis is needed in order to find the elastic stiffness constants of a plate. Additionally, the analysis is used to post-process the resulting plate solution in order to find approximate three-dimensional displacement, strain, and stress distributions throughout the plate. It was decided that the variational-asymptotical method (VAM) would serve as a suitable framework in which to solve these types of problems. Work during this reporting period has progressed along two lines: (1) further evaluation of neo-classical plate theory (NCPT) as applied to shear-coupled laminates; and (2) continued modeling of plates with nonuniform thickness.

  15. Using ultrasonic SH waves to estimate the quality of adhesive bonds in plate structures

    NASA Astrophysics Data System (ADS)

    Yew, C. H.; Weng, X. W.

    1985-05-01

    A method using SH waves to estimate the quality of an adhesive layer in a bonded plate is presented in this paper. A mathematical analysis of SH-wave motions in a bonded plate consistent with the experimental arrangement was carried out in full. It is found that the cutoff frequency of the second mode waves in the plate is dependent upon the thickness and the mechanical properties of the adhesive layer, and the waves in the plate resonate at this frequency. This wave resonating phenomenon was used in the experimental determination of the property of the adhesive layer. An experimental verification of the method was carried out using adhesives of several different properties. It is demonstrated that the resonant frequency of the second mode wave in the plate is dependent upon the moduli and thickness ratio between the adhesive layer and plate as predicted by the analysis.

  16. Effect of Thermal Gradient on Vibration of Non-uniform Visco-elastic Rectangular Plate

    NASA Astrophysics Data System (ADS)

    Khanna, Anupam; Kaur, Narinder

    2015-12-01

    Here, a theoretical model is presented to analyze the effect of bilinear temperature variations on vibration of non-homogeneous visco-elastic rectangular plate with non-uniform thickness. Non-uniformity in thickness of the plate is assumed linear in one direction. Since plate's material is considered as non-homogeneous, authors characterized non-homogeneity in poisson ratio and density of the plate's material exponentially in x-direction. Plate is supposed to be clamped at the ends. Deflection for first two modes of vibration is calculated by using Rayleigh-Ritz technique and tabulated for various values of plate's parameters i.e. taper constant, aspect ratio, non-homogeneity constants and thermal gradient. Comparison of present findings with existing literature is also provided in tabular and graphical manner.

  17. Vibrational analysis of rectangular sandwich plates resting on some elastic point supports

    SciTech Connect

    Ichinomiya, Osamu; Maruyama, Koichi; Sekine, Kouji

    1995-11-01

    An approximate solution of forced-vibration for rectangular sandwich plate resting on some elastic point supports is presented. The sandwich plate has thin, anisotropic composite laminated faces and a thick orthotropic core. The simplified sandwich plate model is used in the analysis. The governing equation of elastically point supported rectangular sandwich plate is obtained by using the Lagrange equation. The steady state response solution to a sinusoidally varying point force is also derived. The response curves of rectangular sandwich plates having CFRP laminated faces and aluminum honeycomb core is calculated. Application examples illustrate the effects of laminate lay-up of face sheets, core material properties and core thickness ratio on the vibration characteristics of rectangular sandwich plate.

  18. Coating thickness and elastic modulus measurement using ultrasonic bulk wave resonance

    SciTech Connect

    Dixon, S.; Lanyon, B.; Rowlands, G.

    2006-04-03

    Measurement of the resonant through thickness ultrasonic modes of a homogeneous plate using a fast Fourier transform of the temporal data can be used to calculate plate thickness very accurately. We describe an extension of this principle to two-layer systems, examining a thin coating on a substrate of known properties. The resonant behavior of these systems is predicted and we explain how this approach is used to measure coating thickness and elastic modulus. Noncontact electromagnetic acoustic transducers are used for ultrasonic measurement, as they do not significantly affect the resonant response of the system, unlike alternative contact transducers.

  19. Present-day intra-plate deformation of the Eurasian plate

    NASA Astrophysics Data System (ADS)

    Garcia-Sancho, Candela; Govers, Rob; Warners-Ruckstuhl, Karin N.; Tesauro, Magdala

    2014-05-01

    We build on the results of two recent, yet independent, studies. In the first (Warners-Ruckstuhl et al., 2013) the forces on, and stresses within the Eurasian plate were established. In the second (Tesauro et al., 2012) the distribution of mechanically strong and weak parts of the Eurasian plate was found. The aim of our work is to predict lithospheric deformation of the Eurasian plate and to compare it with observations. This constitutes a test of both the force/stress results and of the strength results. Specific questions are to which extent stresses localize in specific regions and whether micro-plates as identified by geodesists arise naturally from the results. Importantly, Warners-Ruckstuhl et al. (2013) found an ensemble of mechanically consistent force models based on plate interaction forces, lithospheric body forces and convective tractions. Each of these force sets is in mechanical equilibrium. A subset drives Eurasia in the observed direction of absolute motion and generates a stress field in a homogeneous elastic plate that fits observed horizontal stress directions to first order. Deformation models constitute a further test and a possibility to discriminate between the remaining force sets. Following Tesauro et al. (2012) we assume five different compositions for the upper and lower crust. We use their geotherms and crustal thickness maps to estimate vertical distributions of strength at any location within the Eurasian plate. Based on the assumption that horizontal strain rates do not vary with depth allows us to estimate the vertically averaged viscosity of each point. We include major active faults in our mechanical model. We compare our results with GPS velocities, InSAR, seismic, and paleomagnetic observations, which capture present-day and long-term deformation. We discuss various causes for differences.

  20. Waterway Ice Thickness Measurements

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The ship on the opposite page is a U. S. Steel Corporation tanker cruising through the ice-covered waters of the Great Lakes in the dead of winter. The ship's crew is able to navigate safely by plotting courses through open water or thin ice, a technique made possible by a multi-agency technology demonstration program in which NASA is a leading participant. Traditionally, the Great Lakes-St. Lawrence Seaway System is closed to shipping for more than three months of winter season because of ice blockage, particularly fluctuations in the thickness and location of ice cover due to storms, wind, currents and variable temperatures. Shippers have long sought a system of navigation that would allow year-round operation on the Lakes and produce enormous economic and fuel conservation benefits. Interrupted operations require that industrial firms stockpile materials to carry them through the impassable months, which is costly. Alternatively, they must haul cargos by more expensive overland transportation. Studies estimate the economic benefits of year-round Great Lakes shipping in the hundreds of millions of dollars annually and fuel consumption savings in the tens of millions of gallons. Under Project Icewarn, NASA, the U.S. Coast Guard and the National Oceanic Atmospheric Administration collaborated in development and demonstration of a system that permits safe year-round operations. It employs airborne radars, satellite communications relay and facsimile transmission to provide shippers and ships' masters up-to-date ice charts. Lewis Research Center contributed an accurate methods of measuring ice thickness by means of a special "short-pulse" type of radar. In a three-year demonstration program, Coast Guard aircraft equipped with Side-Looking Airborne Radar (SLAR) flew over the Great Lakes three or four times a week. The SLAR, which can penetrate clouds, provided large area readings of the type and distribution of ice cover. The information was supplemented by short-pulse radar measurements of ice thickness. The radar data was relayed by a NOAA satellite to a ground station where NOAA analyzed it and created picture maps, such as the one shown at lower left, showing where icebreakers can cut paths easily or where shipping can move through thin ice without the aid of icebreakers. The ice charts were then relayed directly to the wheelhouses of ships operating on the Lakes. Following up the success of the Great Lakes program, the icewarn team applied its system in another demonstration, this one a similarly successful application designed to aid Arctic coast shipping along the Alaskan North Slope. Further improvement of the ice-monitoring system is planned. Although aircraft-mounted radar is effective, satellites could provide more frequent data. After the launch this year of Seasat, an ocean-monitoring satellite, NASA will conduct tests to determine the ice-mapping capability and accuracy of satellite radar images.

  1. Redesign of Indonesian-made osteosynthesis plates to enhance their mechanical behavior.

    PubMed

    Dewo, P; van der Houwen, E B; Suyitno; Marius, R; Magetsari, R; Verkerke, G J

    2015-02-01

    Mechanical properties determined by fatigue strength, ductility, and toughness are important measures for osteosynthesis plates in order to tolerate some load-bearing situations caused by muscle contractions and weight-bearing effects. Previous study indicated that Indonesian-made plates showed lower mechanical strength compared to the European AO standard plate. High stress under load-bearing situations often starts from surface of the plate; we therefore refined the grain size of the surface by using shot peening and surface mechanical attrition treatment (SMAT). Single cycle bending tests showed that shot-peened and SMAT-treated plates had significantly higher load limit and bending stress compared to the original plates (p<0.05). Weibull analysis confirmed the improvement of proportional load limit of SMAT-treated plates. Fatigue limit also increased upon shot-peening and SMAT treatment (improvement ratio 18% and 27%, respectively). Significant improvement ratio of fatigue tests can be observed in SMAT-treated plates compared to the untreated and shot-peened plates. Fatigue performance demonstrated equivalent results between SMAT-treated and standard plate. These designated that mechanical properties of Indonesian-made plates can be improved upon SMAT treatment leading to significant enhancement of mechanical strength thus is comparable to the standard plate. Our findings highlight the benefits of SMAT treatment to improve mechanical strength of Indonesian-made osteosynthesis plates. PMID:25523978

  2. Theory and performance of plated thermocouples.

    NASA Technical Reports Server (NTRS)

    Pesko, R. N.; Ash, R. L.; Cupschalk, S. G.; Germain, E. F.

    1972-01-01

    A theory has been developed to describe the performance of thermocouples which have been formed by electroplating portions of one thermoelectric material with another. The electroplated leg of the thermocouple was modeled as a collection of infinitesimally small homogeneous thermocouples connected in series. Experiments were performed using several combinations of Constantan wire sizes and copper plating thicknesses. A transient method was used to develop the thermoelectric calibrations, and the theory was found to be in quite good agreement with the experiments. In addition, data gathered in a Soviet experiment were also found to be in close agreement with the theory.

  3. 40 CFR 426.40 - Applicability; description of the plate glass manufacturing subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... plate glass manufacturing subcategory. 426.40 Section 426.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) GLASS MANUFACTURING POINT SOURCE CATEGORY Plate Glass Manufacturing Subcategory § 426.40 Applicability; description of the plate...

  4. 40 CFR 426.40 - Applicability; description of the plate glass manufacturing subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... plate glass manufacturing subcategory. 426.40 Section 426.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) GLASS MANUFACTURING POINT SOURCE CATEGORY Plate Glass Manufacturing Subcategory § 426.40 Applicability; description of the plate...

  5. 40 CFR 426.40 - Applicability; description of the plate glass manufacturing subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... plate glass manufacturing subcategory. 426.40 Section 426.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) GLASS MANUFACTURING POINT SOURCE CATEGORY Plate Glass Manufacturing Subcategory § 426.40 Applicability; description of the plate...

  6. Preparation and magnetic properties of Ni-P-La coating by electroless plating on silicon substrate

    NASA Astrophysics Data System (ADS)

    Gao, Yun; Wang, Jihui; Yuan, Jing; Li, Haiqin

    2016-02-01

    Ni-P-La coatings were prepared on Si substrate by electroless plating method under different La content, pH value, plating temperature and plating time. The surface morphology, chemical composition, structure and magnetic properties of coatings were observed and determined by scanning electron microscope (SEM), energy dispersive X-ray spectrometry (EDS), X-ray diffractometer (XRD) and vibrating sample magnetometer (VSM). The results showed that Ni-P-La coating is smooth and uniform with a cellular morphology grown in columnar manner. With the increase of La content, pH value and plating time, the thickness and saturation magnetization of coating are increased continuously, but the stability of plating bath is decreased greatly with La content and pH value. Under higher plating temperature, the thickness and saturation magnetization of coatings are obviously enhanced. But too high plating temperature is harmful to the plating bath and coating. The optimum plating conditions for Ni-P-La coating is La2O3 addition of 10 mg L-1, pH value of 5.0, plating temperature of 75 °C and plating time of 45 min. The role of La element is to benefit the deposition of Ni element, promote the formation of Ni phase during the annealing process, and thus improve the magnetic properties of Ni-P-La coating.

  7. Segmentation, surface extraction, and thickness computation of articular cartilage

    NASA Astrophysics Data System (ADS)

    Pakin, S. Kubilay; Tamez-Pena, Jose G.; Totterman, Saara; Parker, Kevin J.

    2002-05-01

    Accurate computation of the thickness of articular cartilage in 3D is crucial in diagnosis of joint diseases. The purpose of this research project is to develop an unsupervised method to produce three-dimensional (3D) thickness map of articular cartilage with magnetic resonance imaging (MRI). The method consists of two main parts, cartilage extraction and thickness map computation. The initial segmentation for cartilage extraction is achieved using a recently proposed algorithm which depends on region-growing. The regions produced during this process are labeled as cartilage or non-cartilage using a voting procedure which essentially depends on local 2-class clustering and makes use of prior knowledge about cartilage regions. Following cartilage extraction, femoral and tibial cartilages are separated by detecting the interface between them using a deformable model. After the separation, the cartilage surfaces are reconstructed as a triangular mesh and divided into two plates according to the relation between surface normal at each vertex and principal axes of the structure. For surface reconstruction, we propose an algorithm which incorporates a simple MR imaging model which allows surface representations with sub-voxel accuracy. Our thickness computation algorithm treats each plate separately as a deformable model while considering the other plate as the target surface towards which it is deformed. At the end of deformation, the thickness values at each vertex is defined as the distance between the locations at pre and post-deformation instances. The performance of the cartilage segmentation is compared to manual tracing. Also, the performance evaluation of the thickness computation algorithm on phantoms resulted in RMS errors on the order of 1%.

  8. Liquid film thickness measurement by two-line TDLAS

    SciTech Connect

    Yang, Huinan; Chen, Jun; Cai, Xiaoshu; Greszik, Daniel; Dreier, Thomas; Schulz, Christof

    2014-04-11

    A fiber-based two-line tunable diode-laser absorption sensor with two near-infrared (NIR) distributed-feedback (DFB) diode lasers at ∼1.4 μm was used for non-intrusive time-resolved liquid water film thickness measurement. When probing the liquid film at two different wavelengths with significantly different absorption cross-sections, the additional signal losses due to surface fowling, reflection and beam steering can be eliminated. In this work, the evaporation process of a liquid film on transparent quartz plate was tracked and large fluctuations of film thickness were found at the end of the evaporation.

  9. MyPlate Food Guide

    MedlinePLUS

    ... follow throughout your life. 2. Fruits Like veggies, fruits contain vitamins, minerals, and fiber. The red section of MyPlate is slightly smaller than the green, but together fruits and veggies should fill half your plate. Whole ...

  10. Renewable liquid reflecting zone plate

    DOEpatents

    Toor, Arthur; Ryutov, Dmitri D.

    2003-12-09

    A renewable liquid reflecting zone plate. Electrodes are operatively connected to a dielectric liquid in a circular or other arrangement to produce a reflecting zone plate. A system for renewing the liquid uses a penetrable substrate.

  11. What Are Growth Plate Injuries?

    MedlinePLUS

    ... Injuries Find a Clinical Trial Journal Articles Growth Plate Injuries PDF Version Size: 123 KB Audio Version Time: ... 7.6 MB November 2014 What Are Growth Plate Injuries? Fast Facts: An Easy-to-Read Series of ...

  12. The magma ocean as an impediment to lunar plate tectonics

    NASA Technical Reports Server (NTRS)

    Warren, Paul H.

    1993-01-01

    The primary impediment to plate tectonics on the moon was probably the great thickness of its crust and particularly its high crust/lithosphere thickness ratio. This in turn can be attributed to the preponderance of low-density feldspar over all other Al-compatible phases in the lunar interior. During the magma ocean epoch, the moon's crust/lithosphere thickness ratio was at the maximum theoretical value, approximately 1, and it remained high for a long time afterwards. A few large regions of thin crust were produced by basin-scale cratering approximately contemporaneous with the demise of the magma ocean. However, these regions probably also tend to have uncommonly thin lithosphere, since they were directly heated and indirectly enriched in K, Th, and U by the same cratering process. Thus, plate tectonics on the moon in the form of systematic lithosphere subduction was impeded by the magma ocean.

  13. The magma ocean as an impediment to lunar plate tectonics

    NASA Astrophysics Data System (ADS)

    Warren, P. H.

    1993-03-01

    The primary impediment to plate tectonics on the moon was probably the great thickness of its crust and particularly its high crust/lithosphere thickness ratio. This in turn can be attributed to the preponderance of low-density feldspar over all other Al-compatible phases in the lunar interior. During the magma ocean epoch, the moon's crust/lithosphere thickness ratio was at the maximum theoretical value, approximately 1, and it remained high for a long time afterwards. A few large regions of thin crust were produced by basin-scale cratering approximately contemporaneous with the demise of the magma ocean. However, these regions probably also tend to have uncommonly thin lithosphere, since they were directly heated and indirectly enriched in K, Th, and U by the same cratering process. Thus, plate tectonics on the moon in the form of systematic lithosphere subduction was impeded by the magma ocean.

  14. Microchannel plate streak camera

    DOEpatents

    Wang, C.L.

    1989-03-21

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras is disclosed. The improved streak camera is far more sensitive to photons (UV to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1,000 KeV x-rays. 3 figs.

  15. Microchannel plate streak camera

    DOEpatents

    Wang, Ching L. (Livermore, CA)

    1989-01-01

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras. The improved streak camera is far more sensitive to photons (UV to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1000 KeV x-rays.

  16. Microchannel plate streak camera

    DOEpatents

    Wang, C.L.

    1984-09-28

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras. The improved streak camera is far more sensitive to photons (uv to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1000 keV x-rays.

  17. North American plate dynamics

    NASA Technical Reports Server (NTRS)

    Richardson, Randall M.; Reding, Lynn M.

    1991-01-01

    Deformation within the North American plate in response to various tectonic processes is modeled using an elastic finite element analysis. The tectonic processes considered in the modeling include ridge forces associated with the normal thermal evolution of oceanic lithosphere, shear and normal stresses transmitted across transforms, normal stresses transmitted across convergent boundaries, stresses due to horizontal density contrasts within the continent, and shear tractions applied along the base of the plate. Model stresses are calculated with respect to a lithostatic reference stress state. Shear stresses transmitted across transform boundaries along the San Andreas and Caribbean are small, of the order of 5-10 MPa. Also, compressive stresses of the order of 5-10 MPa transmitted across the major transforms improve the fit to the data. Compressive stresses across convergent margins along the Aleutians and the Middle America trench are important.

  18. Elastic plate spallation

    NASA Technical Reports Server (NTRS)

    Oline, L.; Medaglia, J.

    1972-01-01

    The dynamic finite element method was used to investigate elastic stress waves in a plate. Strain displacement and stress strain relations are discussed along with the stiffness and mass matrix. The results of studying point load, and distributed load over small, intermediate, and large radii are reported. The derivation of finite element matrices, and the derivation of lumped and consistent matrices for one dimensional problems with Laplace transfer solutions are included. The computer program JMMSPALL is also included.

  19. Plate motion and deformation

    SciTech Connect

    Minster, B.; Prescott, W.; Royden, L.

    1991-02-01

    Our goal is to understand the motions of the plates, the deformation along their boundaries and within their interiors, and the processes that control these tectonic phenomena. In the broadest terms, we must strive to understand the relationships of regional and local deformation to flow in the upper mantle and the rheological, thermal and density structure of the lithosphere. The essential data sets which we require to reach our goal consist of maps of current strain rates at the earth's surface and the distribution of integrated deformation through time as recorded in the geologic record. Our success will depend on the effective synthesis of crustal kinematics with a variety of other geological and geophysical data, within a quantitative theoretical framework describing processes in the earth's interior. Only in this way can we relate the snapshot of current motions and earth structure provided by geodetic and geophysical data with long-term processes operating on the time scales relevant to most geological processes. The wide-spread use of space-based techniques, coupled with traditional geological and geophysical data, promises a revolution in our understanding of the kinematics and dynamics of plate motions over a broad range of spatial and temporal scales and in a variety of geologic settings. The space-based techniques that best address problems in plate motion and deformation are precise space-geodetic positioning -- on land and on the seafloor -- and satellite acquisition of detailed altimetric and remote sensing data in oceanic and continental areas. The overall science objectives for the NASA Solid Earth Science plan for the 1990's, are to Understand the motion and deformation of the lithosphere within and across plate boundaries'', and to understand the dynamics of the mantle, the structure and evolution of the lithosphere, and the landforms that result from local and regional deformation. 57 refs., 7 figs., 2 tabs.

  20. Plated wire memory subsystem

    NASA Technical Reports Server (NTRS)

    Reynolds, L.; Tweed, H.

    1972-01-01

    The work performed entailed the design, development, construction and testing of a 4000 word by 18 bit random access, NDRO plated wire memory for use in conjunction with a spacecraft imput/output unit and central processing unit. The primary design parameters, in order of importance, were high reliability, low power, volume and weight. A single memory unit, referred to as a qualification model, was delivered.

  1. Microchannel Plate Detectors

    NASA Astrophysics Data System (ADS)

    Fraser, G.; Murdin, P.

    2000-11-01

    Microchannel plates (MCPs) are imaging electron multipliers of high gain which have been widely used in space astronomy from the visible to the x-ray and in space plasma analysis. MCPs are, in fact, the archetypal detectors for space science: fast, compact, low-mass, low-power devices with a wavelength response extending from the optical to the x-ray, coupled with high sensitivity to ions and ele...

  2. Aeroelastic Tailoring of a Plate Wing with Functionally Graded Materials

    NASA Technical Reports Server (NTRS)

    Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia; Jutte, Christine V.

    2014-01-01

    This work explores the use of functionally graded materials for the aeroelastic tailoring of a metallic cantilevered plate-like wing. Pareto trade-off curves between dynamic stability (flutter) and static aeroelastic stresses are obtained for a variety of grading strategies. A key comparison is between the effectiveness of material grading, geometric grading (i.e., plate thickness variations), and using both simultaneously. The introduction of material grading does, in some cases, improve the aeroelastic performance. This improvement, and the physical mechanism upon which it is based, depends on numerous factors: the two sets of metallic material parameters used for grading, the sweep of the plate, the aspect ratio of the plate, and whether the material is graded continuously or discretely.

  3. ILC TARGET WHEEL RIM FRAGMENT/GUARD PLATE IMPACT ANALYSIS

    SciTech Connect

    Hagler, L

    2008-07-17

    A positron source component is needed for the International Linear Collider Project. The leading design concept for this source is a rotating titanium alloy wheel whose spokes rotate through an intense localized magnetic field. The system is composed of an electric motor, flexible motor/drive-shaft coupling, stainless steel drive-shaft, two Plumber's Block tapered roller bearings, a titanium alloy target wheel, and electromagnet. Surrounding the target wheel and magnet is a steel frame with steel guarding plates intended to contain shrapnel in case of catastrophic wheel failure. Figure 1 is a layout of this system (guard plates not shown for clarity). This report documents the FEA analyses that were performed at LLNL to help determine, on a preliminary basis, the required guard plate thickness for three potential plate steels.

  4. DVR plating of distal radius fractures.

    PubMed

    Vanhaecke, J; Fernandez, D L

    2015-11-01

    Volar plating has become the standard of care for most distal radius fractures. When done for the right indication and with adequate mastering of the technique complication ratio is low. The concept of subchondral support is key in this technique. Osteoporotic patients will especially benefit from this type of fixation which allows early immobilization, quick return to activities of daily living and early good outcome. PMID:26319206

  5. Predicting gravity and sediment thickness in Afghanistan

    NASA Astrophysics Data System (ADS)

    Jung, W.; Brozena, J.; Peters, M.

    2013-02-01

    The US Naval Research Laboratory conducted comprehensive high-altitude (7 km above mean sea level) aero-geophysical surveys over Afghanistan in 2006 (Rampant Lion I). The surveys were done in collaboration with the US Geological Survey and upon the request of Islamic Republic of Afghanistan Ministry of Mines. In this study, we show that a best fitting admittance between topography and airborne gravity in western Afghanistan can be used to predict airborne gravity for the no-data area of eastern Afghanistan where the mountains are too high to conduct airborne surveys, due to the threat of ground fire. The differences between the airborne and the predicted gravity along a tie-track through the no-data area were found to be within 12 mGal range with rms difference 7.3 mGal, while those between the predicted gravity from a simple Airy model (with compensation depth of 32 km and crustal density of 2.67 g cm-3) and the airborne gravity were within 22 mGal range with rms difference 10.3 mGal. A combined airborne free-air anomaly has been constructed by merging the predicted gravity with the airborne data. We also demonstrate that sediment thickness can be estimated for basin areas where surface topography and airborne free-air anomaly profiles do not show a correlation presumably because of thick sediments. In order to estimate sediment thickness, we first determine a simple linear relationship from a scatter plot of the airborne gravity points and the interpolated Shuttle Radar Topography Mission (SRTM) topography along the Rampant Lion I tracks, and computed corresponding quasi-topography tracks by multiplying the linear relationship with the airborne free-air anomalies. We then take the differences between the SRTM and quasi-topography as a first-order estimate of sediment thickness. A global gravity model (GOCO02S), upward continued to the same altitude (7 km above mean sea level) as the data collection, was compared with the low-pass filtered (with cutoff wavelength 132 km which is approximately equivalent to the reported safe degree and order 250 of GOCO02S at 34 N) combined airborne free-air anomalies. The rms difference between the two data sets was 12.4 mGal. The observed admittance in the western Afghanistan mountains appears to be best fit to a theoretical elastic plate compensation model (with an effective elastic thickness of 5 km and crustal thickness of 22 km) where the ratio between surface load and subsurface load is equal.

  6. The origin of thick discs

    NASA Astrophysics Data System (ADS)

    Comern, Sbastien

    2015-03-01

    Thick discs are defined to be disc-like components with a scale height larger than that of the classical discs. They are ubiquitous (Yoachim & Dalcanton 2006; Comern et al. 2011a), they are made of mostly old and metal-poor stars and are most easily detected in close to edge-on galaxies. Their origin has been considered mysterious and several formation theories have been proposed: The thick disc being formed secularly by thin disc stars heated by disc overdensities such as giant molecular clouds or spiral arms (Villumsen 1985, ApJ, 290, 75) and by stars moved outwards from their original orbits by radial migration mechanisms (Schnrich & Binney 2009). The thick disc being formed by the heating of the thin disc by satellites (Quinn et al. 1993) and the tidal stripping of them (Abadi et al. 2003). The thick disc being formed fast and already thick at high redshift in an highly unstable disc. Inside that thick disc, a thin disc would form afterwards as suggested by Elemgreen & Elmegreen (2006). The thick disc being formed originally thick at high redshift by the merger of gas-rich protogalactic fragments and a thin disc forming afterwards within it (Brook et al. 2007). The first mechanism is a secular evolution mechanism. The time-scale of the second one is dependent on the merger history of the main galaxy. In the two last mechanisms, the thick disc forms already thick in a short time-scale at high redshift. Recent Milky Way studies, (see, e.g., Bovy et al. 2012), have shown indications that there is no discontinuity between the thin and the thick disc chemical and kinematic properties. Instead, those studies indicate the presence of a monotonic distribution of disc thicknesses. This would suggest a secular origin for the Milky Way thick disc. Studies in external galaxies (Yoachim & Dalcanton 2006; Comern et al. 2011b), have shown that low-mass disc galaxies have thick disc relative masses much larger than those found in large-mass galaxies. Because low-mass galaxies are dynamically younger than their larger counterparts, it seems difficult for their thick discs to have a secular evolution origin, but simulations show that their thick disc masses are compatible with those of a thick disc formed at high redshift. Thus, recent studies seem to indicate that large-mass galaxies have their thick discs formed mainly due to secular evolution and that low-mass galaxies have them formed at high redshift.

  7. Fabrication of large thick panels of transparent spinel

    NASA Astrophysics Data System (ADS)

    Patterson, Mark; Gilde, Gary A.; Roy, Donald W.

    2001-11-01

    The use of magnesium aluminate spinel for optical windows, domes and armor has previously been investigated for a wide range of specific applications. The material properties rival that of ALON and sapphire, although there exists the potential for the fabrication of larger parts at significantly lower costs. The ability to fabricate transparent spinel by hot-pressing into large plates has gained interest for the fabrication of low-cost transparent armor for a range of applications. The present paper describes development efforts that are underway to fabricate spinel panels up to 22 inches in diameter and 0.5 inches thick. A 600 ton press is being installed at a facility in Millersville, MD that will be able to fabricate 22 inch diameter parts by late 2002. In the future, this press will potentially be able to fabricate 40 inch diameter plates with minimal changes. There is additional interest in these plates for large IR windows.

  8. Accurate Simulation of Acoustic Emission Sources in Composite Plates

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.; Gorman, M. R.

    1994-01-01

    Acoustic emission (AE) signals propagate as the extensional and flexural plate modes in thin composite plates and plate-like geometries such as shells, pipes, and tubes. The relative amplitude of the two modes depends on the directionality of the source motion. For source motions with large out-of-plane components such as delaminations or particle impact, the flexural or bending plate mode dominates the AE signal with only a small extensional mode detected. A signal from such a source is well simulated with the standard pencil lead break (Hsu-Neilsen source) on the surface of the plate. For other sources such as matrix cracking or fiber breakage in which the source motion is primarily in-plane, the resulting AE signal has a large extensional mode component with little or no flexural mode observed. Signals from these type sources can also be simulated with pencil lead breaks. However, the lead must be fractured on the edge of the plate to generate an in-plane source motion rather than on the surface of the plate. In many applications such as testing of pressure vessels and piping or aircraft structures, a free edge is either not available or not in a desired location for simulation of in-plane type sources. In this research, a method was developed which allows the simulation of AE signals with a predominant extensional mode component in composite plates requiring access to only the surface of the plate.

  9. A high-resolution local network study of the Nazca plate Wadati-Benioff zone under western Argentina

    NASA Technical Reports Server (NTRS)

    Smalley, Robert F., Jr.; Isacks, Bryan L.

    1987-01-01

    Seismic data, recorded by INPRES telemetered network located above one of the subhorizontal segments of the subducted Nazca plate Wadati-Benioff zone beneath western Argentina, were analyzed to determine the zone's fine structure. The depth of the center and the thickness of the subhorizontal Wadati-Benioff zone beneath the network were calculated to be about 107 km and about 20 km, respectively, with most of the seismogenic zone concentrated in a region about 12 km thick. The Nazca plate is interpreted to be in a state of down-dip tension and to be decoupled from the overriding South American plate by a weak zone of asthenospheric or shear-heated material. The South American plate is estimated to be 80 km thick, based on the location of the subducted Nazca plate and an inferred decoupling zone between the plates.

  10. Effect of the absorption coefficient of aluminium plates on their thermoelastic bending in photoacoustic experiments

    NASA Astrophysics Data System (ADS)

    Markushev, D. D.; Ordonez-Miranda, J.; Rabasovi?, M. D.; Galovi?, S.; Todorovi?, D. M.; Bialkowski, S. E.

    2015-06-01

    The open-cell photoacoustic signal measured in the transmission configuration for aluminum thin plates with thicknesses of 280 ?m, 197 ?m, and 112 ?m is experimentally and theoretically analyzed, in the 20 Hz-7 kHz modulation frequency range. It is shown that the observed differences between the predictions of the standard thermoelastic model and the experiment data of both the amplitude and phase of the photoacoustic signal can be overcome by considering the aluminum samples coated with a thin layer of black paint as volume-absorber materials. This new approach provides a quite good agreement with the obtained experimental data, in the whole frequency range, and yields an effective absorption coefficient of (16 2) mm-1, for a 280 ?m-thick sample. The introduction of the finite absorption coefficient led to the correct ratio between the thermal diffusion and thermoelastic components of the photoacoustic signal. Furthermore, it is found that the "volume-absorber" approach accurately describes the behavior of the amplitude, but not that of the phase recorded for a 112 ?m-thick sample, due to its relatively strong thermoelastic bending, which is not considered by this theory. Within the approximation of the small bending, the proposed "volume-absorber" model provides a reliable description of the photoacoustic signal for Al samples thicker than 112 ?m, and extends the applicability of the classical "opaque" approach.

  11. A new multilength scale plate theory with delamination

    SciTech Connect

    Williams, T.O.

    1997-11-01

    Laminated composite plates and shells are potential candidates for many demanding structural applications. A natural choice of analytical/numerical model for the analysis of such structures are equivalent two-dimensional (2D) plate and shell theories. These types of theories provide an efficient and potentially accurate alternative to the use of a three-dimensional finite element (FE) analysis. To effectively model the behavior of composite structures a plate theory must be able to accurately model a variety of inherent history-dependent phenomena. These phenomena include plasticity, viscoplasticity, viscoelasticity, constituent damage within lamina, delamination, and local (sublaminate) and global buckling of the plate. Delamination and local buckling operate at length scales on the order of the lamina thickness. The global buckling and overall motion of a plate can be associated with dimensions of the order of the laminate thickness. A new type of laminated plate theory is presented. It is based on a generalized displacement framework obtained from a superposition of global and local displacement fields. The functional forms of the global and local displacements are arbitrary. The theory represents a novel two length scale or local-global approach to plate analysis. The theory incorporates delamination and/or nonlinear elastic or inelastic interfacial behavior in a unified fashion through the use of interfacial constitutive relations. The theory accounts for nonlinearities in the von Karman sense to allow for the analysis of buckling behavior. Thus, the theory represents a general framework for obtaining any order and type of displacement based plate theory in the presence of delamination, buckling, and/or nonlinear material behavior as well as the interactions between these effects.

  12. Analytical modeling and vibration analysis of internally cracked rectangular plates

    NASA Astrophysics Data System (ADS)

    Joshi, P. V.; Jain, N. K.; Ramtekkar, G. D.

    2014-10-01

    This study proposes an analytical model for nonlinear vibrations in a cracked rectangular isotropic plate containing a single and two perpendicular internal cracks located at the center of the plate. The two cracks are in the form of continuous line with each parallel to one of the edges of the plate. The equation of motion for isotropic cracked plate, based on classical plate theory is modified to accommodate the effect of internal cracks using the Line Spring Model. Berger's formulation for in-plane forces makes the model nonlinear. Galerkin's method used with three different boundary conditions transforms the equation into time dependent modal functions. The natural frequencies of the cracked plate are calculated for various crack lengths in case of a single crack and for various crack length ratio for the two cracks. The effect of the location of the part through crack(s) along the thickness of the plate on natural frequencies is studied considering appropriate crack compliance coefficients. It is thus deduced that the natural frequencies are maximally affected when the crack(s) are internal crack(s) symmetric about the mid-plane of the plate and are minimally affected when the crack(s) are surface crack(s), for all the three boundary conditions considered. It is also shown that crack parallel to the longer side of the plate affect the vibration characteristics more as compared to crack parallel to the shorter side. Further the application of method of multiple scales gives the nonlinear amplitudes for different aspect ratios of the cracked plate. The analytical results obtained for surface crack(s) are also assessed with FEM results. The FEM formulation is carried out in ANSYS.

  13. History and Evolution of Precambrian plate tectonics

    NASA Astrophysics Data System (ADS)

    Fischer, Ria; Gerya, Taras

    2014-05-01

    Plate tectonics is a global self-organising process driven by negative buoyancy at thermal boundary layers. Phanerozoic plate tectonics with its typical subduction and orogeny is relatively well understood and can be traced back in the geological records of the continents. Interpretations of geological, petrological and geochemical observations from Proterozoic and Archean orogenic belts however (e.g., Brown, 2006), suggest a different tectonic regime in the Precambrian. Due to higher radioactive heat production the Precambrian lithosphere shows lower internal strength and is strongly weakened by percolating melts. The fundamental difference between Precambrian and Phanerozoic tectonics is therefore the upper-mantle temperature, which determines the strength of the upper mantle (Brun, 2002) and the further tectonic history. 3D petrological-thermomechanical numerical modelling experiments of oceanic subduction at an active plate at different upper-mantle temperatures show these different subduction regimes. For upper-mantle temperatures < 175 K above the present day value a subduction style appears which is close to present day subduction but with more frequent slab break-off. At upper-mantle temperatures 175 - 250 K above present day values steep subduction continues but the plates are weakened enough to allow buckling and also lithospheric delamination and drip-offs. For upper-mantle temperatures > 250 K above the present day value no subduction occurs any more. The whole lithosphere is delaminating and due to strong volcanism and formation of a thicker crust subduction is inhibited. This stage of 200-250 K higher upper mantle temperature which corresponds roughly to the early Archean (Abbott, 1994) is marked by strong volcanism due to sublithospheric decompression melting which leads to an equal thickness for both oceanic and continental plates. As a consequence subduction is inhibited, but a compressional setup instead will lead to orogeny between a continental or felsic terrain and an oceanic or mafic terrain as well as internal crustal convection. Small-scale convection with plume shaped cold downwellings also in the upper mantle is of increased importance compared to the large-scale subduction cycle observed for present temperature conditions. It is also observed that lithospheric downwellings may initiate subduction by pulling at and breaking the plate. References: Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937-940. Brown, M., 2006. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the neoarchean. Geology 34, 961-964. Brun, J.P., 2002. Deformation of the continental lithosphere: Insights from brittle-ductile models. Geological Society, London, Special Publications 200, 355-370.

  14. Thickness distribution of superplastic formed titanium-based domes

    NASA Astrophysics Data System (ADS)

    Li, Qizhen

    2010-05-01

    Superplastic forming is an appealing and affordable technique for manufacturing titanium-based structural parts. In this work, circular samples with uniform initial thickness were formed superplastically using finite element modeling (FEM) and the formed domes are analyzed to investigate their thickness distributions. The results indicate that the dome thickness is not uniform and decreases from the apex to the periphery for each formed dome. The increase of the formed dome height results in the increased thinning of the samples, and the increase of the ratio between the thickness at the dome apex and that at the dome periphery. The predicted thickness distribution based on the Enikeev and Kruglov (E-K) model has a good agreement with the FEM result for the formed domes with a large apex height, while it deviates from the FEM result for the formed domes with a small apex height. A possible reason is the neglecting of the body force from the sample weight in the analytical E-K model. The obtained knowledge will help guide the initial thickness design for the plate samples to realize the expected final thickness distributions.

  15. Highly conductive, multi-layer composite precursor composition to fuel cell flow field plate or bipolar plate

    DOEpatents

    Jang, Bor Z. (Centerville, OH); Zhamu, Aruna (Centerville, OH); Guo, Jiusheng (Centerville, OH)

    2011-02-15

    This invention provides a moldable, multiple-layer composite composition, which is a precursor to an electrically conductive composite flow field plate or bipolar plate. In one preferred embodiment, the composition comprises a plurality of conductive sheets and a plurality of mixture layers of a curable resin and conductive fillers, wherein (A) each conductive sheet is attached to at least one resin-filler mixture layer; (B) at least one of the conductive sheets comprises flexible graphite; and (C) at least one resin-filler mixture layer comprises a thermosetting resin and conductive fillers with the fillers being present in a sufficient quantity to render the resulting flow field plate or bipolar plate electrically conductive with a conductivity no less than 100 S/cm and thickness-direction areal conductivity no less than 200 S/cm.sup.2.

  16. Design of broadband transmission quarter-wave plates for polarization control of isolated attosecond pulses

    NASA Astrophysics Data System (ADS)

    Chen, Shujing; Lin, Chengyou; Gao, Hua

    2015-07-01

    Using a standard Levenberg-Marquardt algorithm, broadband quarter-wave plates (QWPs) with bandwidth from 3 to 18 eV in the extreme ultraviolet (EUV) region were designed using aperiodic Mo/Si multilayers. By analyzing the design results of the Mo/Si multiayers with different bilayer numbers, we found that a Mo/Si multilayer with more bilayers can achieve broader phase control, but suffers from lower total throughput and a degree of circular polarization. In addition, the pulse broadenings caused by the group delay dispersions of the designed broadband QWPs were studied, and their layer distributions were investigated. The oscillating distribution of bilayer thickness in optimized multilayers was observed, which is considered to be the reason for forming the broadband phase control. Such broadband QWPs can be applied to generate a circularly polarized broadband EUV source, such as isolated attosecond pulse, directly from a linearly polarized source.

  17. Analyses of functionally graded plates with a magnetoelectroelastic layer

    NASA Astrophysics Data System (ADS)

    Sladek, J.; Sladek, V.; Krahulec, S.; Pan, E.

    2013-03-01

    A meshless local Petrov-Galerkin (MLPG) method is presented for the analysis of functionally graded material (FGM) plates with a sensor/actuator magnetoelectroelastic layer localized on the top surface of the plate. The Reissner-Mindlin shear deformation theory is applied to describe the plate bending problem. The expressions for the bending moment, shear force and normal force are obtained by integration through the FGM plate and magnetoelectric layer for the corresponding constitutive equations. Then, the original three-dimensional (3D) thick-plate problem is reduced to a two-dimensional (2D) problem. Nodal points are randomly distributed over the mean surface of the considered plate. Each node is the center of a circle surrounding the node. The weak-form on small subdomains with a Heaviside step function as the test function is applied to derive local integral equations. After performing the spatial MLS approximation, a system of ordinary differential equations of the second order for certain nodal unknowns is obtained. The derived ordinary differential equations are solved by the Houbolt finite-difference scheme. Pure mechanical loads or electromagnetic potentials are prescribed on the top of the layered plate. Both stationary and transient dynamic loads are analyzed.

  18. Perforated plates for cryogenic regenerators and method of fabrication

    DOEpatents

    Hendricks, John B. (Huntsville, AL)

    1994-01-01

    Perforated plates (10) having very small holes (14) with a uniform diameter throughout the plate thickness are prepared by a "wire drawing" process in which a billet of sacrificial metal is disposed in an extrusion can of the plate metal, and the can is extruded and restacked repeatedly, converting the billet to a wire of the desired hole diameter. At final size, the rod is then sliced into wafers, and the wires are removed by selective etching. This process is useful for plate metals of interest for high performance regenerator applications, in particular, copper, niobium, molybdenum, erbium, and other rare earth metals. Er.sub.3 Ni, which has uniquely favorable thermophysical properties for such applications, may be incorporated in regions of the plates by providing extrusion cans (20) containing erbium and nickel metals in a stacked array (53) with extrusion cans of the plate metal, which may be copper. The array is heated to convert the erbium and nickel metals to Er.sub.3 Ni. Perforated plates having two sizes of perforations (38, 42), one of which is small enough for storage of helium, are also disclosed.

  19. Perforated plates for cryogenic regenerators and method of fabrication

    DOEpatents

    Hendricks, J.B.

    1994-03-29

    Perforated plates having very small holes with a uniform diameter throughout the plate thickness are prepared by a [open quotes]wire drawing[close quotes] process in which a billet of sacrificial metal is disposed in an extrusion can of the plate metal, and the can is extruded and restacked repeatedly, converting the billet to a wire of the desired hole diameter. At final size, the rod is then sliced into wafers, and the wires are removed by selective etching. This process is useful for plate metals of interest for high performance regenerator applications, in particular, copper, niobium, molybdenum, erbium, and other rare earth metals. Er[sub 3]Ni, which has uniquely favorable thermophysical properties for such applications, may be incorporated in regions of the plates by providing extrusion cans containing erbium and nickel metals in a stacked array with extrusion cans of the plate metal, which may be copper. The array is heated to convert the erbium and nickel metals to Er[sub 3]Ni. Perforated plates having two sizes of perforations, one of which is small enough for storage of helium, are also disclosed. 10 figures.

  20. Effects of transverse shearing flexibility on the postbuckling of plates loaded by inplane shear

    NASA Technical Reports Server (NTRS)

    Stein, Manuel

    1987-01-01

    This paper presents buckling and postbuckling results for plates loaded by inplane shear. The buckling results have been plotted to show the effects of thickness on the stress coefficient for aluminum plates. Results are given for various length-to-width ratios. Postbuckling results for thin plates with transverse shearing flexibility are compared to results from classical theory. The problems considered are the postbuckling response of plates in shear made of aluminum and of a + or - 45 deg graphite-epoxy laminate. Thus the materials are isotropic and orthotropic, respectively. The plates are considered to be long with side edges simply supported, with various inplane edge conditions, and the plates are subject to a constant shearing displacement along the side edges. Characteristic curves presenting the average shear stress resultant as a function of the applied displacement are given. These curves indicate that change in inplane edge conditions influence plate postbuckling stiffness and that transverse shearing is important in some cases.